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ABSTRACT  

   

There is an ongoing debate around the extent that anthropogenic processes 

influence both plant species distribution dynamics and plant biodiversity patterns. Past 

human food use may leave a strong legacy on not only the extent that food plants are 

dispersed and fill their potential geographic ranges, but also on food plant species 

richness in areas that have been densely populated by humans through time. The 

persistent legacy of plant domestication on contemporary species composition has been 

suggested to be significant in some regions. However, little is known about the effects 

that past human food use has had on the biogeography of the Sonoran Desert despite its 

rich cultural diversity and species richness. I used a combination of ecoinformatics, 

ethnobotanical, and archaeological data sources to quantitatively assess the impacts of 

pre-Columbian, and in some cases, more recent, human-mediated dispersal of food plants 

on the Sonoran Desert landscape. I found that (i) food plants do fill more of their 

potential geographic ranges than their un-used congeners, and that polyploidy, growth 

form, and life form are correlated with range filling and past food usage. I also found that 

(ii) both pre-Columbian and contemporary human population presence are correlated 

with relative food plant species richness. Thus, both past human food use and 

contemporary human activities may have influenced the geographic distribution of food 

plants at regional scales as well as species richness patterns. My research emphasizes that 

there is an interplay between ecological and anthropogenic processes, and that, therefore, 

humans must be considered as part of the landscape and included in ecological models.  
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CHAPTER 1 

INTRODUCTION 

Drivers of Species’ Geographic Ranges 

 

A species geographic range is considered to be limited by the full range of biotic 

and abiotic conditions that influence its potential (i.e., or fundamental) and realized niche 

(Soberon & Peterson 2005, Soberon & Nakamura 2009). A recent review has suggested 

that studies on individual species’ geographic ranges are predominantly considered in the 

context of climate factors (Tomiolio & Ward 2018). The “bioclimatic envelope 

hypothesis” is a backbone of many studies that operate under the assumption that species 

track their climatic envelope by shifting their distribution in order to match areas with 

favorable distributions (Tomiolio & Ward 2018). In particular, temperature and 

precipitation are two of the most frequently investigated drivers of range expansion and 

contraction (Tomiolio & Ward 2018).  

Dispersal (e.g., seed, fruit, pollen) and species interactions may also influence 

species’ geographic distributions (Soberon & Peterson 2005, Soberon & Nakamura 

2009). The predominance of the “bioclimatic envelope hypothesis” has potentially caused 

a limited and biased understanding on what drives species range expansion (Tomiolio & 

Ward 2018). More research is emphasizing that the interspecific relationship between 

human and plant species has left a cumulative legacy on overall biodiversity patterns and 

species distribution dynamics (Boivin et. al. 2016).  However, in many cases, 

anthropogenic factors (e.g., agriculture and urbanization) are overlooked and not 

considered as substantial drivers of range expansion i.e., a recent review found that only 

4.3% of 109 papers addressed anthropogenic factors (Tomiolio & Ward 2018). It has 
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been shown that multiple factors can be responsible for range expansion depending on 

habit and temporal and geographic scales (Tomiolio & Ward 2018). Although there are 

studies on range expansion that do account for both climate and anthropogenic factors, 

the percentage is quite low (Tomiolio & Ward 2018), and there is even less knowledge on 

their relative contribution to both range expansion and, in turn, richness patterns. The 

relationship between species distributions and species richness can be quite significant as 

the number of species in a given area is often influenced by each individual species’ 

distribution.   

Drivers of Richness Patterns 

 

Humboldt was the first Western scientist to interpret the distribution of vegetation 

as being controlled by climate (Pausas & Bond 2018). Many of science’s well-established 

hypotheses on species distributions and richness may be heavily biased toward 

Humboldt’s forest-centric and climate-centric view of nature, dating back to the 1800s 

(Hawkins 2001, Pausas & Bond 2018). Europeans, like Humboldt, were accustomed to 

living in more forested environments and viewed alternative environments such as 

grasslands, savannas, and shrublands as fundamentally degraded (Pausas & Bond 2018). 

They did not necessarily consider how other factors in addition to climate (e.g., fire 

regimes herbivores, and megafauna dispersal, or humans) could have significantly shaped 

vegetation. This bias has arguably remained in ecology and biogeography with even a 

lack of recognition on the importance of certain plant consumers and/or disturbance 

variables (e.g., fire regimes and herbivores) in ecology and biogeography textbooks 

(Pausas & Bond 2018). Commonly, the distribution of species is explained in the more 

traditional terms of climate (e.g., the ‘species-energy’ hypothesis) and/or historical 
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biogeography (e.g., the latitudinal diversity gradient, ‘out of the tropics’ hypothesis) at 

regional scales.  

The climatically based species-energy hypothesis proposes that energy 

availability generates and maintains richness gradients (Hawkins et. al. 2003, Allen et. al. 

2007). The latitudinal diversity gradient (LDG) is then potentially maintained as a direct 

consequence of greater energy availability towards the equator (Allen et. al. 2007). The 

LDG refers to the higher richness of species in the tropics compared to higher latitudes 

(Hawkins 2001, Willig et. al. 2003, Hillebrand 2004, Kerkhoff et. al. 2014). In terms of 

plants, the average species richness generally peaks where climate conditions are warm, 

wet and more seasonably stable and declines as conditions become colder, drier and more 

seasonably unstable (Janzen 1967, Gaston 2000, Ghalambor et. al. 2006, Kerkhoff et. al. 

2014). Some studies have found that integrating both evolutionary and ecological 

processes is a promising framework for understanding biodiversity patterns (Kerkhoff et. 

al. 2014). The tropical conservatism hypothesis (TCH) proposes that part of the LDG 

could be explained due to niche conservatism; most clades originate in the tropics and 

then radiate outward, leading to higher diversification and lower extinction in the tropics 

(Weins & Donoghue 2004, Kerkhoff et. al. 2014). Plants in the tropics have also been 

observed to be limited in their ability to adapt to temperate climate conditions and are, 

therefore, also limited in their ability to disperse (Kerkhoff et. al. 2014).  

Although the LDG is a very prominent pattern, species richness patterns can be 

very multifaceted. As a result, it is also important to consider underlying patterns that 

also influence species richness such as other spatial variables (e.g. longitude, elevation, 

depth) and environmental ones (e.g., topography, aridity) (Gaston 2000). The wide range 
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of hypotheses proposed suggest that species richness is a complex pattern, and no single 

mechanism can adequately explain a given pattern especially at varying spatial scales 

(Gaston 2000). Studies show that not one of the major groups of biodiversity theories can 

explain the LDG alone (Lamanna et. al. 2014). Research also suggests that although 

modern climate has a very strong influence on species richness, it is not the only factor 

influencing species richness (Hawkins et. al. 2003). Importantly, climatic variables are 

sometimes insufficient in explaining richness gradients even over large spatial extents 

(Hawkins et. al. 2003). For example, differences in grain size and spatial extent can 

influence the relative contributions of climatic variables in regression models (Hawkins 

et. al. 2003). Studies also show that wildfires and anthropogenic fires as well as animal 

activity (e.g., grazing) can influence species richness patterns (Tomiolo & Ward 2018). It 

is important to be mindful of the Humboldtian bias and avoid overlooking other plant 

consumers, such as past humans, as significant environmental shapers and consider 

disturbance as a central mechanism in nature (Pausas & Bond 2018).  

Alternative Hypotheses for the Drivers of Species’ Geographic Ranges and Richness 

Patterns 

 

Plants have been used by humans for food as well as for medicine, fiber, fuel, 

construction, and spiritual purposes for millennia (Boivin et. al. 2016). The lines between 

uses can be complex due to people’s relationships with natural, social and spiritual 

domains (Gruca et. al. 2014). For example, often times, the spiritual framework (e.g., 

supernatural forces, mystic powers) is an inextricable part of traditional medicine (Gruca 

et. al. 2014). The ramifications of overall past plant use can also be seen in the 

architectural legacies of past pre-Columbian societies. The great houses of Chaco 
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Canyon, New Mexico are some of the largest pre-Columbian buildings in North America 

with over 240,000 trees used in construction (Guiterman, C.H. et. al. 2015). Recent 

research has shown that 70% of timbers likely originated over 75 km away from Chaco, 

suggesting an enormous investment in materials, labor, and human ingenuity partially 

due to plant resource availability (Guiterman, C.H. et. al. 2015). Collaborative research 

between ecologists and archaeologists have further expanded our knowledge on how 

plant resource availability can impact past human-mediated selection of plants for food. 

This interspecific relationship between plants and humans can also influence species 

richness patterns, emphasizing the importance of viewing landscapes as biocultural 

systems (Briggs et. al. 2006). 

An explanation for plant richness patterns that has been gaining more attention is 

the past human-mediated dispersal and cultivation of food plants. There are significant 

instances globally that suggest that broad ecological dynamics such as plant species 

richness can be a product of past human farming and cultivation of wild plants (Ross, 

2011, Boivin et. al. 2016, Levis et. al. 2017). Several lines of evidence suggest that this 

human-environment relationship in which humans influence ecosystems due to 

agricultural practices has been significant in certain regions since the late Pleistocene 

(e.g., Southwest Asia (Fuller et. al. 2012), South America (Clement et. al. 2010), North 

China (Bettinger et. al. 2010); and see Ellis et. al. 2013). In Southwest Asia, recent 

evidence suggests a higher species richness of food plants that were involved in early 

cultivation than originally thought (i.e., only eight founder crops). There are now 

considered to be 16 or 17 major food plant species such as Avena sterilis L. (wild oat), 

Vicia peregrina L. (vetch), and Lathyrus sativus L. (grass pea) (Fuller et. al. 2012). In 
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South America, at least 138 crops were being cultivated and managed by native 

Amazonians, and certain ones such as Manihot esculenta Crantz (manioc) and Bactris 

gasipaes Kunth. (peach palm) were widely dispersed by humans in Amazonia (Clement 

et. al. 2010). Charred macrofossils of Panicum miliaceum L. (broomcorn millet) and the 

increase in ceramic remains supports how intensive farming became in North China ca. 

7000-5700 BP. Biocultural systems are products of both the choices people have made as 

well as the variety of factors (e.g. the physical environment, social conditions) that 

influence those choices.  

The factors that drive species distributions and richness also depend on spatial 

scale (McGill 2010). Interdisciplinary research can provide a more balanced perspective 

on the relative importance of variables that potentially drive biodiversity patterns at these 

different scales. For example, for decades, researchers subscribed to the belief that plant 

species assemblages characterizing various regions (e.g., lowland Amazonian rain forest, 

Sonoran Desert) were nearly ‘pristine’ and untouched by past human populations (Bush 

et. al. 2015). Contemporary research that incorporates archaeological data and the 

archaeological perspectives suggest this is not the case. This research is further 

suggesting that the persistent legacy of past human impact can vary at different scales 

(see Levis et. al. 2017 for regional scale example, Hall et. al. 2013 for a local scale 

example, and Bush et. al. 2015 for overall discussion on the spatial heterogeneity of 

human settlement). Archaeology and paleoecology have enabled long-term 

reconstruction of population and land-use histories. These data can be integrated into 

ecological and geo-spatial studies on biodiversity patterns and species distribution 

dynamics (Ellis et. al. 2013).  
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Including more perspectives in both ecology and archaeology can encourage a 

variety of ideas and viewpoints in conservation policy and biogeography as a discipline. 

Collaborative research can help disentangle the drivers of biodiversity patterns. By 

incorporating multiple lines of thinking, we can avoid considering landscapes to be either 

completely ‘pristine’ and decoupled from human land-use legacies or as cultural parks, 

completely influenced by humans disregarding climatic effects and biotic interactions. In 

this way it may be easier to avoid extreme false dichotomies of either ‘no use’ or ‘all use’ 

(Bush et. al. 2015).  

It can be challenging to ascertain the relative contributions of multiple impacts, 

and how well each contribution may be maintained on the landscape over time at varying 

spatial and temporal scales. Although in many regions there is indisputable evidence that 

past humans impacted the landscape through food use (Ross 2011, Hall et. al. 2013, 

Sedrez dos Reis et. al. 2014, Bush et. al. 2015, Levis et. al. 2017), it can be difficult to 

draw a distinction between the legacies of past people and contemporary human impacts 

(Bush et. al. 2015). In regard to anthropogenic factors, both past and modern agricultural 

practices as well as the encouragement of wild food plants can alter species’ dispersal 

regimes, impact soil quality and nutrient pools (Normand et. al. 2017).  

Implications 

 

Although the extent of pre-Columbian and historical human food use can differ 

depending on the region, these findings still have long-term implications for how 

biodiversity conservation is approached. Advocacy for conservation policy that includes 

Native American and other indigenous perspectives is being seen as more necessary to 

prevent the loss of biological, cultural, and food diversity (Foster et. al. 2003, Gavin et. 
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al. 2015). A recent study estimated that indigenous populations manage or have tenure 

rights over at least ~38 million km2 in 87 countries or politically distinct areas on all 

inhabited continents (Garnett et. al. 2018).  This represents over a quarter of the world’s 

land surface (Garnett et. al. 2018). In many cases, these groups have long-standing 

relationships with the land, having used and modified landscapes for millennia. In this 

way, they can bring an important perspective to how contemporary land use is 

approached. As such, biocultural conservation recognizes that broad questions on 

biodiversity patterns cannot be taken on without collaborative partnerships amongst 

scientists and archaeologists, governments, conservation practitioners, and indigenous 

populations (Gavin et. al. 2015, Garnett et. al. 2018).  

There are still challenges in regard to how biocultural conservation is approached. 

Even global and national conservation strategies that include indigenous communities 

still ignore local economic and infrastructure needs and the long-term implications for 

local populations. Misrepresentations and stereotyping of indigenous groups also remain, 

with mismatches between what the government and scientific community expects of 

indigenous groups and how indigenous groups view their role in conservation (Kohler & 

Brondizio 2016). 

Despite the continued debate on how to implement biocultural conservation 

(Kohler & Brondizio 2016), researchers need to consider the social-ecological 

relationships that have been occurring for millennia (Boivin et. al. 2016). To be effective 

at understanding biodiversity patterns and conserving ecosystems, researchers need to go 

beyond the view of humans as only a recent disturbance. Similar to having more 

inclusive biodiversity conservation approaches (Gavin et. al. 2015, Garnett et. al. 2018), 
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there also needs to be a continued focus on making the study of biogeography and, in 

turn, biodiversity patterns, more inclusive.  

My study contributes to a growing body of research suggesting that it is also 

important to include past humans from biogeographical processes such as dispersal. I 

suggest that in semi-arid regions of the world (i.e., the Sonoran Desert and Southwest, 

U.S.) it is also important to consider the pre-Columbian and historic use of plants for 

food on biogeographic processes (i.e., dispersal) that can drive species richness on both 

large and smaller geographic scales. In this thesis I test the core idea that human activity 

is a major driver of plant species richness in the Sonoran Desert.  

In Chapter 2, I investigate whether human food use in pre-Columbian and more 

recent times determine how well a species fills its potential geographic range. I also 

investigate whether there are certain ecological traits that predispose certain species to 

human food use and fill their potential range more than others. In Chapter 3, I investigate 

whether both pre-Columbian or contemporary human population presence predicts 

relative food plant species richness patterns for the Hohokam region (i.e., an area of the 

Sonoran Desert populated by sedentary pre-Columbian agriculturalists from 400-1450 

A.D.). Together, these results suggest that both past human food use and contemporary 

human activities influence the geographic distribution of food plants at regional scales as 

well as species richness patterns. I argue that it is important to view landscapes as 

palimpsests, in which layers of ecological processes and human activity are etched on and 

erased temporally and spatially. My results also emphasize that the Sonoran Desert is a 

biocultural landscape, and that there needs to continue to be a cross-disciplinary approach 
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to ecological research. This is the essential in order to address broad biogeographical 

questions on distribution and biodiversity patterns.   

REFERENCES 

Allen, A. P. Gillooly, J.F. & Brown, J.H. (2007). Recasting the species-energy 

hypothesis: the different roles of kinetic and potential energy in regulating biodiversity. 

Pages 283-299 in D. Storch, P.A. Marquet, and J.H. Brown, editors. Scaling Biodiversity. 

Cambridge University Press, Cambridge, U.K.  

 

Bettinger, R.L., Barton, L. & Morgan, C. (2010). The origins of food production in North 

China: a different kind of agricultural revolution. Evol. Anthropol. 19. 9-21. 

 

Bovin, N.L., Zeder, M.A., Fuller, D.Q., Crowther, A., Larson, G., Erlandson, J.M., 

Denham, T. et. al. (2016). Ecological consequences of human niche construction: 

examining long-term anthropogenic shaping of global species distributions. PNAS. 113, 

6388-6396.  

 

Briggs, J.M., Spielmann, K.A., Schaafsma, H., Kintigh, K.W., Kruse, M., Morehose, K. 

et. al. (2006). Why ecology needs archaeologists and archaeology needs ecologists. Front 

Ecol. Environ. 4, 180-188. 

 

Bush, M.B., McMichael, C.H., Piperno, D.R., Silman, M.R., Barlow, J., Peres, C.A. et. 

al. (2015). Anthropogenic influence on Amazonian forests in pre-history: an ecological 

perspective. J. Biogeogr. 42. 2277-2288.  

 

Clement C.R. & Junqueira A.B. (2010). Between a pristine myth and an impoverished 

future. Biotropica. 42(5). 534-536.  

 

Ellis, E.C., Kaplan, J.O., Fuller, D. Q., Vavrus, S., Goldwijk, K.K. & Verburg, P.H. 

(2013). Used planet: a global history. PNAS. 110(20). 7978-7985.  

 

Foster, D., Swanson, F., Aber, J., Burke, I., Brokaw, N., Tilman, D. et. al. (2003). The 

importance of land-use legacies to ecology and conservation. Bioscience. 53(1). 77-88.  

 

Fuller, D.Q., Willcox, G., & Allaby, R.G. (2011). Early agricultural pathways: moving 

outside the ‘core area’ hypothesis in Southwest Asia. J. Exp. Bot. 63(2). 617-633.  

 

Gaston, K.J. (2000). Global patterns in biodiversity. Nature. 405(6783). 220-227. 

 

Garnett, S.T., Burgess, N.D., Fa, J.E., Fernandez-Llamazares, A., Molnar, Z., Robinson, 

C.J. et. al. (2018). A spatial overview of the global importance of Indigenous lands for 

conservation. Nat. Sustain. 1(7). 369-374.  

 



 11 

Gavin, M.C., McCarter, J., Mead, A., Berkes, F., Stepp, J.R., Peterson, D. et. al. (2015). 

Defining biocultural approaches to conservation. Trends Ecol Evol. 30(3). 140-145.  

 

Ghalambor, C. K., Huey, R.B., Martin, P.R, Tewksbury, J.J. & Wang. G. (2006). Are 

mountain passes higher in the tropics? Janzen’s hypothesis revisited. Intreg. Comp. Biol. 

46(1). 5-17.  

 

Gruca, M., Camara-Leret, R., Macia, M.J. & Balslev, H. (2014). New categories for 

traditional medicine in the Economic Botany Data Collection Standard. J. 

Ethnopharmacol. 155(2). 1388-1392.  

 

Guiterman, C.H., Swetnam, T.W. & Dean, J.S. (2015). Eleventh-century shift in timber 

procurement areas for the great houses of Chaco Canyon. PNAS.  113(5). 1186-1190. 

 

Hall, S.J., Trujillo, J., Nakase, D., Strawhacker, C., Kruse-Peeples, M., Schaafsma, H. et. 

al. (2013). Legacies of prehistoric agricultural practices within plant and soil properties 

across an arid ecosystem. Ecosystems. 16(7), 1273-1293.  

 

Hawkins, B.A. (2001). Ecology’s oldest pattern? Trends Ecol. Evol. 16(8). 470. 

Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J., Kaufman, D.M. et. al. 

(2003). Energy, water and broad-scale geographic patterns of species richness. Ecology. 

84(12). 3105-3117.  

Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. Am. Nat. 

163(2). 192-211.  

 

Kerkhoff, A.J., Moriarty, P.E. & Weiser, M.D. (2014). The latitudinal species richness 

gradient in new world woody angiosperms is consistent with the tropical conservatism 

hypothesis. PNAS. 11(22). 8125-8130.  

 

Kohler, F. & Brondizio, E.S. (2016). Considering the needs of indigenous and local 

populations in conservation programs. Consrv.Biol.. 31(2). 245-251.  

 

Lamanna, C., Blonder, B., Violle, C., Kraft, N.J.B., Sandel, B., Simova, I. et. al. (2014). 

Functional trait space and the latitudinal diversity gradient. PNAS. 111(38) 13745-13750.  

 

Levis, C., Costa, F.R.C, Bongers, F., Pena-Claros, M., Clement, C.R., Junqueira, A.B. et 

al. (2017). Persistent effects of pre-Columbian plant domestication on Amazonian forest 

composition. Science. 355(6329), 925-931.  

 

McGill, B.J. (2010). Matters of scale. Science. 328(5978). 575-576. 

 



 12 

Normand, S. Hoye, T.T., Forbes, B.C., Bowden, J.J., Davies, A.L., Odgaard, B.V. et. al. 

(2017). Legacies of historical human activities in arctic woody plant dynamics. Annu. 

Rev. Environ. Resour. 42(17). 541-567.  

 

Pausas, J.G. & Bond, W.J. (2018). Humboldt and the reinvention of nature. J. Ecol. 

10(11110. 1-7.   

 

Ross, N.J. (2011). Modern tree species composition reflects ancient Maya “forest 

gardens” in northwest Belize. Ecol. Appl. 21(1). 75-84.  

 

Sedrez dos Reis, M., Ladio, A. & Peroni, N. (2014). Landscapes with Araucaria in South 

America: evidence for a cultural dimension. Ecol. Soc. 19(2). 43.  

 

Soberon, J. & Nakamura, M. (2009). Niches and distributional areas: concepts, methods, 

and assumptions. PNAS. 106. 19644-19650.  

 

Soberon, J. & Peterson, A.T. (2005). Interpretations of models of fundamental ecological 

niches and species’ distributional areas. Biodiv. Inf.. 2. 1-10.  

 

Tomiolo, S. & Ward, D. (2018). Species migrations and range shifts: a synthesis of 

causes and consequences. Perspect. Plant. Ecol. Syst.. 33. 62-77.  

 

Wiens, J.J. & Donoghue, M.J. (2004). Historical biogeography, ecology and species 

richness. Trends Ecol. Evol. 19(12). 639-644.  

 

Willig, M.R., Kaufman, D.M. & Stevens, R.D. (2003). Latitudinal gradients of 

biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst.. 34. 273-

309. 

 

 

 



 13 

CHAPTER 2 

FOOD USE EXPANDED PLANT SPECIES DISTRIBUTIONS IN THE SONORAN 

DESERT 

ABSTRACT 

Climate is usually regarded as the main determinant of plant species’ distributions. 

However, past human use of species for food may have factored into regional and 

continental species’ climatic geographic ranges. I hypothesized that increased human-

mediated dispersal of food plants has resulted in species filling more of their potential 

climatic geographic range. I also hypothesized that key ecological traits could predispose 

a species to occupy more of its potential climatic geographic range and be selected by 

humans for food. By integrating ethnobotanical knowledge and ecoinformatics data for 

the Sonoran Desert, I found that food plants fill more of their potential geographic ranges 

than their un-used congeners. I also found that polyploidy, growth form, and life form are 

correlated with range filling and past food usage. This study demonstrates that human 

food preferences can leave a long-lasting impact on the distribution of plant species 

today.  
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INTRODUCTION 

The reshaping of global biodiversity by humans has had a significant impact on Earth’s 

ecosystems (McKey et al. 2010, Bovin et. al. 2016, Levis et. al. 2017). However, a key 

component missing from species distribution modeling, is the ecological legacy of past 

human populations (McKey et. al. 2010). Species distribution modeling typically 

assumes that any given species geographic distribution is influenced by three central 

processes: (i) biotic interactions (i.e., competition, predation, mutualisms, etc.); (ii) 

abiotic factors (i.e., temperature, precipitation, geographic space, etc.); (iii) movement via 

dispersal (i.e., seed, pollen, humans) (the BAM framework; Soberon & Peterson 2005, 

Soberon & Nakamura 2009, Peterson 2011). While biotic and abiotic factors are known 

important drivers of plant distributions, the relative role of dispersal in influencing a 

species geographic range is less clear (Soberon & Peterson 2005).  In particular, the 

impact of prehistoric and historic human populations on this third process, movement via 

dispersal, is often overlooked. However, there is growing evidence that present-day 

species distributions cannot be fully understood without also addressing the past impacts 

of human movement of species on the landscape, whether direct (e.g., via cultivation) or 

indirect (e.g., via alteration of habitats) (Bovin et. al. 2016).  

Including humans as potential drivers of species distributions is needed to forecast 

future changes in biodiversity. Collaborative research between ecologists and 

archaeologists is expanding our understanding of how past human land use has 

influenced ecosystem functioning and structure (e.g. Briggs et. al. 2006, Hall et. al. 

2013). Ecological niche models (ENMs) that incorporate anthropogenic features (e.g. 

agricultural lands) can improve predictions relative to ENMs that are based solely on 
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environmental variables because species’ distribution dynamics unfold within an 

ecological-cultural (i.e. biocultural) system (Kodis et. al. 2018). Assessing the role of 

human activity on landscapes is critical for accurate forecasting, as well as for data-

driven policy-making around conservation. There is a long history of governmental 

agencies and NGOs placing greater conservation value on landscapes thought to be 

untouched by humans. This has caused negative social consequences via the exclusion of 

indigenous populations from protected areas and national parks (Denevan 1992, 

Brockington & Igoe 2006, Agrawai & Redford 2009, De Bont 2015, Anaya & Espírito-

Santo 2018).  

Plants have been used by humans for many purposes, such as medicine, 

ceremony, construction and food, for millennia and these uses tend to overlap. However, 

the use of plants for food is one of the most important ways humans may increase the 

distributions of plants, via propagation, wild-harvesting, and dispersal. Human 

populations have reorganized plant distributions at regional and continental scales 

(Crosby, Jr. 1972). In many landscapes, the legacy of humans remains apparent today 

(Abrams & Nowacki 2008, Shephard Jr. & Ramirez 2011, Warren II 2016, Levis et. al. 

2017, but see also MacDougall 2003). The majority of evidence for this legacy comes 

from Amazonia (Bitencourt & Krauspenhar 2006, Clement & Junqueiria 2010, , 

Shephard Jr. & Ramirez 2011, Sedrez dos Reis, Ladio & Peroni 2014, Clement et. al. 

2015, Levis et. al. 2017, Junqueira et. al. 2017, Levis et. al. 2018, but also see 

McMichael, C.H. et. al. 2017), Southeast Asia (Brosius 1991, Barton & Denham 2011, 

Yang et. al 2013), and Central America (Nesheim et al. 2010, Ford et. al. 2016). In South 

America, the geographic expansion of Araucaria araucana (Mol.) C. Koch (monkey 



 16 

puzzle tree) and Araucaria angustifolia (Bert.) O. Kuntze (Brazilian pine nut) was not 

only caused by more favorable climate conditions, but also past hunter-gathers 

(Bitencourt & Krauspenhar 2006, Sedrez dos Reis, Ladio & Peroni 2014). The expanded 

distribution of the Bertholletia excelsa Bonpl. (Brazil nut) has been facilitated by past 

human populations through cultivation and trade of the seeds (Shepard Jr. & Ramirez 

2011). Across both island Southeast Asia and New Guinea, past inhabitants exploited 

plants such as Eugeissona utilis Becc. (sago), Colocasia esculenta (L.) Schott (taro), 

Dioscorea spp. (yam), and Musa spp. (banana) (Brosius 1991, Barton & Denham 2011, 

Yang et. al 2013 & Bovin et. al. 2016). In Central America, the Maya cultivated forest 

gardens, encouraging and farming numerous food plants (e.g. Zea mays L.) (Ford et. al. 

2016).  

Impacts of humans are best established for food plants that are economically 

important in the present day. However, biogeographers still lack understanding of the 

quantitative scope of human impacts on the geographic distribution of the vast majority 

of food plants that are no longer a major component of human diets. A key way to 

address this is through the concept of range filling (Svenning & Skov 2004), defined here 

as the ratio between the realized (R) and potential (P) geographic range. R/P is a measure 

of how well species have dispersed to fill their potential ranges (Svenning & Skov 2004). 

In order to examine the role humans have played in expanding plant species realized 

geographic ranges, I asked: 

1) did human food use in prehistoric and historic times statistically influence R/P? 

2) what ecological traits predisposed species to food use and high R/P? 
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I hypothesized that past human utilization of food plant species has resulted in increased 

dispersal to favorable habitats, assuming that ranges are otherwise limited by dispersal 

(Holt et. al. 2004, Guo et. al. 2005, Svenning et. al. 2008). As a result, compared to un-

used congeners and other un-used species, food plants should maintain higher population 

densities and fill more of their potential geographic range (i.e., have higher R/P) than 

their un-used congeners, which presumably have otherwise similar phenotypes and life 

histories (Wiens & Graham 2005) (Hypothesis A).  

I also hypothesized that certain plant traits like polyploidy, growth form (i.e., herb, 

shrub, tree), and life form (i.e., perennial or annual) should predispose certain species to 

be selected for by humans and/or fill their potential geographic distribution range more 

fully (Hypothesis B). (Meyer et. al. 2012, Meyer & Purugganan 2013). For example, 

both growth form and life form can play a significant role in predicting species’ range 

limits (Violle et. al. 2014, Stahl et al. 2014) and human food use (Meyer et. al. 2012, 

Whitehead et. al. 2016). Additionally, certain traits associated with polyploidy could 

predispose these species to higher range filling and human food use (e.g., increased 

disease resistance, phenotypic plasticity) (Meyers et. al. 2012).  

I focused my study on the Sonoran Desert in southwestern North America (Omernik 

2004, Wiken et. al. 2011, USEPA 2016). The Sonoran Desert has immense plant 

diversity, with a long history of human occupation by both foraging and agricultural 

populations throughout the Holocene (Bell & Castetter 1937, Bohrer 1987, Bohrer 1991, 

Rea 1997, Hodgson 2001). The Sonoran Desert contains the oldest evidence for maize 

agriculture north of Mesoamerica dating to ca. 2100 B.P. (Merrill et. al. 2009) and also 

saw the development of extensive agricultural settlements throughout the well-watered 
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portions of the region in the pre-Hispanic period (Hill et. al. 2004). The Sonoran Desert is 

perhaps most closely associated with the Hohokam archaeological culture (ca. A.D. 400-

1450), which was characterized by large and long-lived settlements, intensive agriculture 

including hundreds of miles of irrigation canals along major rivers, and an exchange and 

market system extending throughout much of the region and beyond (Bayman 2001, 

Abbott et. al. 2007; Fish & Fish 2007, Hodgson et. al. 2018). The later prehistory of the 

Sonoran Desert saw substantial population declines (see Hill et. al. 2004) and an end to 

many of the hallmarks of the Hohokam system. However, there is evidence of continuity 

occupation and agricultural land use in some areas (see Loendorf et. al. 2013, Loendorf & 

Lewis 2017), and evidence of new arrivals in others as the diverse contemporary 

indigenous populations of the Sonoran Desert became recognizable in the archaeological 

record (e.g., O’odham, Seri, Apache, Maricopa, Yavapai, Cocopa, and others). The diets 

of these populations varied due to vegetational, faunal, and environmental differences, 

but they all used Sonoran Desert plants extensively for food and other uses (e.g., 

medicinal and ceremonial) (Castetter & Underhill 1935, Felger & Moser 1976, 

Crosswhite 1981, Bohrer 1991, Hodgson 2001, Rea 2007, Nabhan 2016).  

There has been limited quantitative analysis on the distributions of the many native 

plants that were utilized for food by various prehistoric and historic populations in the 

Sonoran Desert. Such analysis would provide a key test case for understanding the 

prevalence of human impacts on plant distributions in semi-arid regions. It seems likely 

that hundreds of species were, at the very least, wild harvested, and some were possibly 

domesticated or cultivated (Castetter & Underhill 1935, Hodgson 2001, Hodgson et. al. 

2018). Archaeological, morphological, and molecular evidence leaves little doubt that 
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Agave spp. such as A. murpheyi F. Gibson (Hohokam Agave), A. delamateri W.C. 

Hodgson & L. Slauson (Tonto Basin Agave), and Agave sanpedroensis (San Pedro 

Agave) W. C. Hodgson & Salywon are pre-Columbian domesticates extensively 

cultivated in Arizona by indigenous peoples (Parker et. al. 2007, Hodgson & Salywon 

2013, Hodgson et. al. 2018). Mesquite, (Prosopis glandulosa Torr., P. velutina Woot., 

and P. pubescens Benth.), was one of the most widespread and useful wild-harvested 

food plants in the Sonoran Desert (Bell & Castetter 1937, Hodgson 2001). Prosopis 

velutina (velvet mesquite) was so important to the Akimel O’odham that they referred to 

it as a the ‘tree of life’ (Crosswhite 1981, Rea 1997). Other examples of plants moved by 

past people include Cylindropuntia fulgida (Engelm.) Knuth (chain-fruit cholla) and 

Stenocereus thurberi (Engelm.) Buxbaum (organ-pipe cactus) by the Seri and Hordeum 

pusillum Nutt. (little barley), a pre-Columbian domesticate of the Hohokam (Hodgson 

2001). 

  Some researchers also argue that crops moved as part of “ecological packages” 

that included non-domesticated or “weed” species (Bovin et. al. 2016). The Hohokam 

took up prolonged residence in which successive generations continued to irrigate land as 

well as farm and harvest a variety of plants, including weedy species (Fish & Fish 2007, 

Bayman 2001). Weedy annuals, especially Chenopodium spp.(goosefoot), are frequently 

recovered at archeological sites as well as Amaranthus spp. (amaranth), Descurainia spp. 

(tansy mustard), Astragalus spp. (milk vetch), and Hordeum pusillum Nutt. (little barley) 

(Gasser 1981, Bohrer 1987, Gasser & Kwiatkowski 1991, Bohrer 1991, Fritz et. al. 

2009).  



 20 

Historic Akimel O’odham populations managed both cultivated fields and 

“second gardens” that were comprised of wild and semi-wild greens (Crosswhite 1981). 

These “weeds” included Amaranthus palmeri S. Watson (Palmer’s amaranth), Portulaca 

oleracea L. (little hogweed), Descurainia pinnata (Walter) Britton (western tansy 

mustard), and Salvia columbariae Benth. (desert chia) (Rea 2007). Any weeds that were 

not edible were eliminated, and older plants that had not been picked in time were 

intentionally allowed to go to seed for the following year (Crosswhite 1981, Rea 1997). 

These are just a few examples of a much broader history of food plant usage that was a 

significant part of past indigenous peoples’ (e.g., O’odham, Apache, Yavapai, Seri, 

Mohave, Cocopah) livelihoods in the Sonoran Desert region. 

To assess my hypotheses, I quantified the extent at which past human populations 

have driven current species distribution and biodiversity dynamics through the 

domestication, cultivation, and wild harvesting of Sonoran Desert food plants. These 

results explore the extent of human impacts in a more arid region (i.e. an understudied 

region for this kind of research) and provide an example case for exploring human 

impacts on plant biogeography elsewhere.  

MATERIALS AND METHODS 

Ethnobotanical Dataset 

  

I developed an ethnobotanical dataset of Sonoran Desert food plants based on Hodgson 

(2001) comprising 356 food plants that have been used by multiple past human 

populations. These plants were selected based on their native origin and available 

documentation (i.e., ethnographies, voucher specimens) that could contextualize their 

food usage as being part of the history, physical, and social environments of indigenous 
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populations (Hodgson 2001). Populations include the Hohokam, Akimel O’odham, 

Western Apache, Tohono O’odham, Hia C-eḍ O'odham, Maricopa, Kevelchadon, 

Quechan, Halchidhoma, Mohave, Kumeyaay, Cahuilla, Cupeño, Cocopah, Seri, Yaqui 

(and Mayo combined under the name Cahita), and Pima Bajo. Non-native food plant 

species (e.g., Erodium cicutarium (L.) L'Hér. ex Aiton, Sonchus spp.) were not included 

in this study to focus the analysis on native, food plants of the Sonoran Desert. Species 

such as Cyperus rotundus L. (sedge), C.esculentus L. (sedge) were included due to being 

quite naturalized and cosmopolitan in the region. Lantana camara L. (lantana) and 

Bidens pilosa L. (hairy beggarticks) were also included as they also are considered to be 

relatively naturalized and originate in the Americas. As the study of ethnobotany is 

continually evolving, there may still be food plants with inferred uses that are not yet 

documented. For this reason, I decided to focus on a core set of food plants with the 

understanding that this plant list may be updated in the future.  It is also important to note 

that cultural groups can have their own folk taxonomy, describing and organizing their 

natural surroundings from collective social knowledge (Rea 1997). Sometimes Linnaean 

taxonomy and folk taxonomy do not fit conveniently together because a group or person 

may combine what they consider to be similar plants together, referring to them with the 

same name. The potential inconsistencies between folk taxonomy and scientific names is 

another aspect to keep in mind when considering my results (Wendy Hodgson, per. 

comm., April 22, 2019). 

For each food plant, I identified the closest relatives that were used and those that 

were un-used by pre-Columbian peoples (see Appendix A: List of Food Plants and 

Congeners Excel Spreadsheet). I refer to these species as congeners and note that they 
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may or may not include sister species. Used and un-used congeners were selected through 

a systematic review of phylogenetic publications (see Appendix B: Phylogenetic 

Literature Review). Species were considered “used” if they were documented as being 

utilized for any purpose (e.g., ceremonial, medicinal, construction, food) by pre-

Columbian peoples. Species that were not documented to have been used for any purpose 

were designated “un-used”. The North American Native American Database (Moerman 

2003) as well as IUCN species lists, SEINet, (SEINet Portal Network 2018) and 

ethnobotanical articles were queried to ascertain the proper category for each species. 

Un-used congeners were selected for the comparative analysis with the core Sonoran 

Desert food species. Sometimes it was necessary to select a congener that was 

significantly less documented as being utilized or was not primarily used for food but for 

other purposes (e.g., medicinal, fiber, fuel).  

I excluded Agave spp. from this study. It was not possible to model Agave 

because of large uncertainties around the phylogenetic relationships amongst the 

domesticates and their wild progenitors within the Sonoran Desert; moreover, nearly all 

Agave species have documented uses, limiting ability to make comparisons to unused 

congeners (Parker et. al. 2007, Hodgson & Salywon 2013, Parker et. al. 2014, Hodgson 

et. al. 2018, Wendy C. Hodgson, Andrew M. Salywon, per. comm.March 28, 2018). In 

total, n=801 food plants and used/un-used congeners were included in the R/P analysis. 

Estimating range filling 

I used the realized/potential range size ratio (R/P) as a measure of how well species fill 

their potential ranges based on rasterized geographic distribution data. P was defined as 

the total number of pixels predicted to be suitable habitat using a species distribution 
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model. R was defined as the number of pixels containing at least one occurrence point. 

Both R and P were calculated for North America as well as clipped to the Sonoran 

Desert. R was then calculated as the number of cells with at least one observation, while 

P was calculated as the number of cells predicted as suitable (above a threshold value) by 

a species distribution model. For the Sonoran Desert analysis, both R and P were 

calculated using a 10km x 10km pixel grain size. The North America R and P were 

estimated at a much coarser resolution of 50 km x 50 km to account for this being a 

continental scale analysis. As there is no single natural scale that ecological patterns 

should be studied, these scales were chosen to account for the varying geographic extents 

(e.g., regional and continental) of the analysis (Dungan et. al. 2002, Elith & Leathwick 

2009).  

  I first compared distributions using the Commission for Environmental 

Cooperations’s (CEC) Sonoran Desert Level III Eco-Region as the extent (Omernik 

2004, Wiken et. al. 2011, USEPA 2016). This regional-scale analysis included Arizona, 

California, northern Baja California, and Sonora (Wiken et. al. 2011), comprising desert 

and thornscrub biomes. This analysis excluded higher elevation areas above 1219 m. 

based on clipping to a Global Multi-resolution Terrain Elevation Data 2010 elevation 

raster (Danielson & Gesch 2011) in order to exclude montane areas where ethnobotanical 

records were not available. I then analyzed the geographic ranges of these core Sonoran 

Desert food plants for North America, defined as the entirety of the continent (i.e., 

Canada, United States, Mexico, Central America), to capture the geographic differences 

between food plants and their un-used congeners across a larger geographic extent and to 
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include congeners that may have had at least part of their distributions outside of the 

Sonoran Desert.  

I combined species occurrence data from several biodiversity databases: BIEN 4 

(Maitner et. al. 2017, accessed May 2018), SEINet (SEINet Portal Network 2018, 

accessed May 2018), and GBIF (Chamberlin 2017, accessed May 2018). This approach 

may suffer from undersampling biases but is the best option given the lack of available 

gridded atlas data for species in this region. Analyses were conducted at coarse grain 

sizes to mitigate these biases. Occurrence data for each species was downloaded through 

the R statistical software program APIs for each database. Only herbarium specimens 

were included (to be as accurate as possible and conservative) and all duplicated 

coordinates were removed. Data cleaning for GBIF was performed using the 

‘CoordinateCleaner’ package in R (Zizka 2018). Records with suspicious individual 

counts were removed (i.e., very high occurrence counts may indicate inappropriate data 

or data entry problems). Very old records (before 1945) were removed as these were 

more likely to be unreliable with regards to location. Coordinates were also removed if 

they were within 0.5 degrees radius around the GBIF headquarters in Copenhagen, DK, 

and if they were assigned to the location of zoos, botanical gardens, herbaria, universities, 

museums, or open ocean.  

To estimate P, I used generalized linear models (GLM) to generate a threshold 

suitability surface for each species (Thuiller et. al. 2003) using the ‘sdm’ package in R 

(Naimi & Araujo 2016). I then used kappa threshold (via the ‘dismo’ package (Hijmans 

et. al. 2007)) to transform the model predictions into a binary presence/absence. Specific 

bioclimatic variables from WorldClim (Ficke & Hijmans 2017) were chosen to prevent 
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overfitting of the species distribution models. The bioclimatic variables chosen were 

BIO1=Annual Mean Temperature, BIO5=Maximum Temperature of Warmest Month, 

BIO6=Mininum Temperature of Coldest Month, BIO12=Annual Precipitation, 

BIO13=Precipitation of Wettest Month, and BIO14=Precipitation of Driest Month. I 

focused on climatic variables as, at a coarser scale, potential distributions are thought to 

be determined more by indirect, large-scale variables such as climate (Thuiller, et. al. 

2003, Bahn & McGill 2007, Wisz et. al. 2013).  

Statistical Analysis for R/P 

The Sonoran Desert food plant R/P ratios were first compared to the R/P ratios of their 

un-used congeners within the Sonoran Desert geographic extent (Fig. 1). I also compared 

the relative change in R/P between the food plants and both their used and un-used 

congeners (Fig. 2). I created two proportional indexes (PI): (i) a PI that compared the 

food plants (FP) to their used congeners (UC) and (ii), a PI that compared the food plants 

(FP) to their un-used congeners (UUC): 
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I then assessed each proportional index relative to the null expectation of zero. A more 

positive PI value indicated a greater difference in R/P ratios between the food plant and 

congener with the food plant having a higher R/P ratio (i.e. higher range filling). The 
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proportional index used the R and P values from the North America analysis (i.e. not 

clipping to the Sonoran Desert) in order to use as many phylogenetically related 

congeners as possible. Wilcoxon unpaired tests were conducted to compare food plants 

and their congeners. Conducting statistical analyses on the R/P ratios at both regional (i.e. 

Sonoran Desert; Fig. 1) and continental (i.e. North America; Fig. 2) scales allowed us to 

investigate food plant range filling from two different biogeographical perspectives.  

Ecological trait dataset 

I created a trait dataset for all the above species. Traits included growth form (e.g., herb 

vs. shrub), life form (annual vs. perennial) and polyploidy (binary, yes/no).  Growth form 

and life form data was synthesized from the SEINet Portal Network (SEINet Portal 

Network 2018, accessed July 2018) as well as the USDA Plant Database (USDA 2018, 

accessed July 2018) and the Flora of North America (eFloras 2008, accessed July 2018). 

Information on polyploidy was gathered from published studies as well as the 

Chromosome Counts Database (Rice et. al. 2015, accessed July 2018). I obtained 

complete data for all traits except polyploidy, for which 59% of species had data 

available (i.e., including the food plants, un-used congeners, as well as the used 

congeners).  

I then determined whether these traits or their interactions with food usage 

predicted R/P by conducting two multiple linear regression analyses. The first model 

(G.L.Model) focused solely on growth form and life form for the complete dataset of 

food plants and un-used congeners (See Fig. S1 in Appendix C, n=534 species). The 

second model (G.L.P.Model) was a dataset of food plants and un-used congeners for all 
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traits including only cases for which ploidy data was available (Fig. 3, n=329 species). 

Model forms were: 

 

𝐺. 𝐿. 𝑀𝑜𝑑𝑒𝑙 =  R/P ~ 𝐹𝑜𝑜𝑑. 𝑈𝑠𝑎𝑔𝑒 ∗ (𝐺𝑟𝑜𝑤𝑡ℎ 𝐹𝑜𝑟𝑚 + 𝐿𝑖𝑓𝑒 𝐹𝑜𝑟𝑚) 

𝐺. 𝐿. 𝑃. 𝑀𝑜𝑑𝑒𝑙 = 𝑅/𝑃 ~𝐹𝑜𝑜𝑑. 𝑈𝑠𝑎𝑔𝑒 ∗ (𝐺𝑟𝑜𝑤𝑡ℎ 𝐹𝑜𝑟𝑚 + 𝐿𝑖𝑓𝑒 𝐹𝑜𝑟𝑚 + 𝑃𝑜𝑙𝑦𝑝𝑙𝑜𝑖𝑑𝑦) 

 

Used congeners were excluded from both models so that the food plants were directly 

compared to their un-used congeners. The R/P ratios for North America were chosen for 

this analysis because the dataset had a more comprehensive selection of un-used 

congeners to compare with the food plants. Type III ANOVAs were conducted for both 

multiple linear regression analyses to test for significance of each predictor variable. 

RESULTS 

I found that Sonoran Desert food plants do fill their potential range more than their un-

used congeners in an unpaired analysis (Fig. 1, Wilcoxon: W =16999, P = 1.03e-12, 

median R/P ratio for food plants=0.21, median R/P ratio for Un-used congeners =0.07). 

Additionally, the proportional indexes (PI) revealed in a paired analysis that Sonoran 

Desert food plants compared directly to their un-used congeners fill more of their 

potential distribution range across North America (Fig. 2, Wilcoxon: W=77549, P<2.2e-

16, median PI for FP-UUC=0.49, median PI for FP-UC=0.06).  

R/P was predicted by several traits and as well as an interaction between 

polyploidy and food usage. Both regression models were statistically significant overall 

(G.L.P.Model=Adjusted R2=0.20, F-statistic=8.61, P=2.47e-13; See Fig. 3 for 

G.L.P.Model and Fig. S1 for G.L.Model). Both regression models also indicated that 
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lower range filling of the un-used congeners was significant (G.L.P.Model Un-used 

Congener coefficient= -0.07, SE= 0.02, t statistic= -3.16, P=1.0e-03, ANOVA P=1.0e-03; 

see Fig. 3; See Fig. S1 for G.L.Model;). G.L.P.Model revealed that species with 

succulent growth forms (e.g. species in the Cactaceae family) had lower R/P ratios across 

North America (Succulent coefficient=-0.05, SE=0.02, t statistic=-2.8, P=5.62e-03, 

ANOVA Growth Form: P=6.2e-03; see Fig. 3).  In contrast, polyploid species had overall 

higher R/P ratios across North America (Polyploidy coefficient = 0.02, SE=0.01, t 

statistic= 2.15, P= 3.0e-02; ANOVA Polyploidy: P= 3.0e-02; see Fig. 3). There was also 

a significant interaction between polyploidy and the un-used congeners. The mean and 

median R/P ratios for polyploid un-used congeners were higher than the mean and 

median R/P ratios for the un-used congeners not documented as polyploid (G.L.P.Model: 

Un-used:Polyploidy coefficient=0.05, SE=0.02, t statistic= 2.0, P=4.6e-02; ANOVA: 

P=4.6e-02; see Fig. 3 and see Appendix D: Median and Mean R/P Ratios for Polypoidy 

Table S1). The mean and median R/P ratios for the polyploid food plants were also 

higher compared to the food plants that were not documented as polyploid, but the 

difference was not statistically significant (see Appendix D: Median and Mean R/P 

Ratios for Polypoidy Table S1). 

DISCUSSION 

I found that the Sonoran Desert species documented as being used for food filled 

their potential geographic range more than un-used congeners, consistent with 

Hypothesis A (i.e., the human utilization of food plant species has resulted in increased 

dispersal to favorable habitats, assuming that ranges are otherwise limited by dispersal). 

This pattern was statistically significant for my regional analysis (i.e., the Sonoran 



 29 

Desert) that compared R/P ratios between the food plants and un-used congeners (Fig. 1). 

In the more stringent test using the proportional indexes (i.e. comparing species pairs that 

were highly related and presumably ecologically very similar), I found a similar overall 

pattern in which the food plants had higher R/P ratios than their un-used congeners (Fig. 

2), also consistent with Hypothesis A (i.e., food plants should maintain higher population 

densities and fill more of their potential geographic range than their unused congeners, 

which presumably have otherwise similar phenotypes and life histories). My results 

provide evidence that it is important to include past human dispersal of food plants when 

predicting current plant species distributions.  

The higher R/P ratios of the food plants (Figs. 1 & 2) suggests that economically 

and culturally significant plant species are also likely to be influenced by non-

environmental factors. There were instances of wild and semi-wild greens, mentioned in 

the literature as being encouraged or managed by past humans, having higher range 

filling ratios than their unused congeners. For example, S. columbariae (i.e., approx. 

55%) filled its potential range more than its unused congener, Salvia leucophylla (i.e, 

approx. 8%). A. palmeri (i.e. approx. 56%) also filled its potential range more than its 

unused congener A. wrightii (i.e., approx. 1%).  A. palmeri, one of the most abundant 

weedy plants, was quite popular and harvested by groups such as the River Pima and 

Tohono O’odham (Hodgson 2001). D.  pinnata, another one of the semi-wild greens that 

was encouraged in “second gardens” by groups such as the Akimel O’odham, was also 

possibly cultivated by the Hohokam (Bohrer 1970, Hodgson 2001). D. pinnata’s range 

filling ratio was approximately 67% compared to one of its unused congeners, D. incisa 

(Engelm. Ex. A. Gray) Britton (mountain tansy mustard) which had a range filling ratio 
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of approximately 1%. Legumes such as Phaseolus acutifolius (tepary bean) have been an 

important source of protein for over 5,000 years in the Americas (Hodgson 2001). P. 

acutifolius had a range filling ratio of approximately 20% while its unused congener, P. 

grayanus Woot. & Standl. (Gray’s bean) had a range filling ratio of approximately 2%. 

Other probable domesticated plants such as H. pusillum (i.e., 12%) had only a very small 

difference in range filling than its unused congener, Hordeum arizonicum Covas. 

(Arizona barley) (i.e., 10%). There were also instances of food plants, with no unused 

congeners in the Sonoran Desert, such as mesquite all having relatively robust range 

filling ratios (i.e., P. glandulosa approx. 62%, P. pubescens approx. 38%, P. velutina 

approx. 54%). Although there is general consensus that both environmental filtering (i.e., 

abiotic constraints) and dispersal filtering (e.g., chance colonization, differences in 

dispersal abilities) play a role in community assembly and distribution dynamics (Guo et. 

al. 2005, Fraaije et. al. 2015), my research suggests that past human-mediated dispersal of 

food plants is also a major driver of community assembly and distribution dynamics.  

Ecological traits provide some limited insight into which species are more likely 

to have geographic ranges modified by humans (Meyer et. al. 2012). I identified trait 

predictors of food use and R/P in both regression models (G.L.P.Model, Fig. 3; see 

Appendix C: G.L.Model Fig. S1), consistent with Hypothesis B (i.e., certain plant traits 

like polyploidy, growth form, and life form should predispose certain species to be 

selected for by humans and/or fill their potential geographic distribution ranges more). 

Polyploidy and succulence influenced R/P ratios (i.e., range filling) (G.L.P.Model, Fig. 

3). The higher range filling for polyploidy species (Fig. 3; see Appendix D: Median and 

Mean R/P Ratios for Polyploidy, Table S1) is potentially indicative of their higher 
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phenotypic plasticity (Meyers et. al. 2012, Minkov et. al. 2016). Increased genetic 

diversity (i.e. genotypic plasticity) could result in these species’ morphology and 

physiology being better adapted to different environmental niches (i.e. phenotypic 

plasticity) (Leitch & Leitch 2008). This phenotypic plasticity may result in the polyploid 

plants filling their potential distribution range more in my analysis (see Appendix D: 

Median and Mean R/P Ratios for Polyploidy Table S1). The greater tendency for 

polyploids to have phenotypic plasticity compared to diploid taxa may have also made 

some of these plants more appealing to past humans (i.e., easier to cultivate, larger fruits 

or bigger plant parts in general). This legacy of past human selection combined with 

greater phenotypic plasticity could be a potential factor in why the polyploid food plants 

had higher R/P ratios compared to food plants that were not documented as polyploid 

(see Appendix D: Median and Mean R/P Ratios for Polyploidy Table S1) 

Succulents had lower R/P ratios across North America (G.L.P.Model, Fig. 3; and 

see  Appendix C: G.L.Model Fig. S1). The median R/P ratios for succulents was higher 

for the Sonoran Desert analysis than the North America analysis (see Appendix E: 

Median and Mean R/P Ratios for Succulents Table S2). Succulent species found in the 

Cactaceae and Asparagaceae families have been culturally important for many prehistoric 

and historic Sonoran Desert indigenous populations. The Sonoran Desert overlaps with 

some of the regions (e.g., Southwestern United States) that are thought to be where the 

Cactaceae lineage is most prominent (Arakaki et. al. 2011). This could contribute to 

human populations having greater access to a variety of useful cacti species.  

There are more perennials (378 out of 534) than annuals (156 out of 534) in the 

G.L.Model’s ecological trait dataset. Although there are many annual food plants that 
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were important to past human populations in the Sonoran Desert (e.g., H. pusillum Nutt., 

Amaranthus spp.), the region has an extensive amount of culturally and economically 

useful perennial species that range from perennial herbs to succulents (e.g., cacti, yucca, 

trees). The collective abundance and richness of both succulents and other perennials 

perhaps suggests that there were more opportunities to use these plants by pre-historic 

and historic people because of the historical plant biogeography (e.g., phylogenetic and 

distributional history of the plants across time scales) of the region. For example, the 

Akimel O’odham journeyed into the hills to gather the fruits of Y. baccata Torr. (banana 

yucca) (Bell & Castetter 1941) and received its preserved fruit of banana yucca in trade 

with the Tohono O’odham (Hodgson 2001).  

It is essential to view landscapes as biocultural landscapes, linking ecological and 

cultural systems.  Research reveals a long history of pre-Columbian modification in the 

Amazon, Southeast Asia, and Central America, with impacts on biodiversity at regional 

scales (Yang et. a. 2013, Ford. et. al. 2016, Levis et. al. 2017). The Sonoran Desert is also 

known for its rich biodiversity and ethnobotanical history (Hodgson 2001). Although 

there is growing evidence that the Sonoran Desert was a hotspot for Agave domestication 

and cultivation, less research has been conducted on species that were managed in semi-

cultivated systems, wild-harvested or directly and indirectly transported (Briggs et. al. 

2006). This research demonstrates that the impacts of past human food use in semi-arid 

environments can also be significant.  

Other factors beyond human dispersal could explain my findings that Sonoran 

Desert food plants generally fill their potential ranges more than their un-used congeners. 

Many species attractive to humans as food are also attractive to megaherbivores 
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(Guimaraes, Galetti & Jordano, 2008, Gill 2014, Doughty et. al. 2015, van Zonneveld et. 

al. 2018, Bocherens 2018). Megaherbivores behaved as ecosystem engineers, changing 

the structure of vegetation through mechanisms such as dispersing very large seeded and 

fleshy fruits (Bocherens 2018). Many of these large fruits tend to be rich in nutritious 

pulp which would be attractive to both past humans and megaherbivores. Unraveling 

these factors remain challenging as extant animals such as livestock, deer, coyote and 

birds continue to disperse some of these fruits such as Opuntia spp. (prickly-pear cactus) 

(Majure & Ervin 2007).  However, there is evidence that pre-Columbian human 

harvesting has been central to the maintenance of the geographic ranges of a variety of 

fleshy-fruited species (Guimaraes, Galetti & Jordano, 2008). Some Native Americans 

were cactus seed predators and dispersers. The Seri practiced “second harvest” of 

Pachycereus pringlei (S. Watson) Britton & Rose (cardón) seeds, and all of the Baja 

California groups who utilized Stenocereus gummosus (Engelmann) Gibson & Horak and 

S. thurberi (Engelmann) Buxbaum (Pitahaya) practiced this second type of harvest as 

well (del Barco 1981, Hodgson 2001). They would leave their fecal material on a flat 

rock in the sun to dry, return to glean the seeds, and then clean and cook the seeds to be 

prepared for food such as flour (del Barco 1981, Hodgson 2001). Proboscidea parviflora 

(Woot.) Woot. & Standl. (devil’s claw) most likely had its populations severely reduced 

after megaherbivore extinction. Although cattle are good dispersers, keeping plants like 

devil’s claw from going extinct, Native Americans also kept it growing as a source of 

fiber for basketry and bred horticultural varieties (Janzen 1986, Bretting 1986). These 

interspecific human and plant interactions encouraged human-mediated dispersal of food 

plants and perhaps plants of other uses too (i.e., fiber) (Janzen 1986).  
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Colonial or industrial uses of plants by non-indigenous people could have also 

affected the distribution of plants. While I have suggested impacts of indigenous peoples, 

Spanish colonists and/or European settlers may have also had an impact on species 

distribution dynamics and biodiversity as well (Crosby, Jr. 1972). Not only did European 

settlers cultivate New World food plants, they also brought with them many of their own 

culturally significant plants as well as domesticated animals. The legacies of herbivore 

introduction include browsing, grazing, and trampling of herbaceous species which can 

increase the probability of survival by perennial species (Janzen 1986). While my spatial 

datasets cannot directly uncover the timescales over which human impacts have occurred, 

it is likely that current patterns have been shaped by both indigenous peoples and 

European settlers.  

My work has shown that food plants do fill more of their potential geographic 

range than their un-used congeners, and that certain ecological traits can have an 

influence on range filling and potentially human selection. Results further challenge the 

myth of ‘pristine’ landscapes, especially in semi-arid environments. Better quantifying 

the impacts of human-mediated dispersal of useful plants will be important for predictive 

modeling of biodiversity dynamics.  
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FIGURES 

 

 
Figure 1 Density plots of food plant (FP) (red) R/P ratios compared to the R/P ratios of 

their un-used congeners (UUC) (blue) in the Sonoran Desert. The dashed vertical lines 

indicate the overall median R/P ratio for the food plants (red) and the overall median R/P 

ratio for the un-used congeners (blue). The food plants (red) had a significantly higher 

overall median R/P ratio compared to the overall median R/P ratio for the un-used 

congeners (blue) (Wilcoxon: W=16999, P=1.03e-12). 
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Figure 2. Density plots of proportional indexes (PI) that compared the relative change in 

R/P between the food plants (FP) to their used congeners (UC) (FP-UC) (red), and to 

their un-used congeners (UUC) (FP-UUC) (blue). The dashed vertical lines indicate the 

overall median R/P ratio for the FP-UUC density plot (blue) and the FP-UC density plot 

(red). The FP-UUC PI overall median R/P ratio was significantly higher than the overall 

median R/P ratio for the FP-UC PI (Wilcoxon: W=77549, P<2.2e-16). 
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Figure 3 Coefficient estimates for the predictors of R/P in North America (G.L.P.Model). 

Data included species for which ploidy data was available (n =329). (*), P <0.05; (**) P 

<0.01). Ecological traits such as succulence and polyploidy were statistically significant, 

correlating with R/P. Food usage was also statistically significant, correlating with R/P.  
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CHAPTER 3 

PRE-COLUMBIAN AND CONTEMPORARY POPULATION INFLUENCE ON 

FOOD PLANT SPECIES RICHNESS IN THE SONORAN DESERT  

ABSTRACT 

Human activity may leave a persistent legacy on biodiversity (i.e. species richness) 

through dispersal of useful plants for food and other important uses (e.g., medicine, 

construction, ceremony). The consequences of human activities on plant biogeography 

are poorly understood in arid regions despite a rich history of indigenous populations 

using an extensive assemblage of native plants especially for food, and the deep footprint 

of settler-driven land use. I investigated the influence that pre-Columbian populations and 

contemporary populations had on the richness of food plants in the Sonoran Desert. I 

found that: (i) the ratio of food plant richness to total species richness is greater with 

higher contemporary population density and pre-Columbian population density based on 

pre-Columbian population density at spatial scales consistent with foraging-by-food 

distances. I also found (ii) an influence of contemporary population density but a weaker 

legacy of pre-Columbian population density at smaller spatial distances consistent with 

intensive land use. Thus, the primary impact on biodiversity appears to be consistent with 

broader-scale wild-harvesting and dispersal, rather than through intensive agricultural 

propagation, and also consistent with strong effects of contemporary settlement. With the 

limited extant archaeological data, these findings suggest that areas with high population 

density (pre- and post- colonization) retain legacies of these uses through increases in 

useful species’ geographic ranges.  
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INTRODUCTION 

There are many hypotheses for the drivers of species richness patterns. At broad scales, 

species richness patterns are traditionally explained in terms of climate (e.g., the ‘species- 

energy’ hypothesis) (Hawkins et. al. 2003, Allen et. al. 2007) and/or historical 

biogeography (e.g., the ‘out of the tropics’ hypothesis, the tropical niche conservatism 

hypothesis) (Janzen 1967, Jablonski et. al. 2006, Ghalambor et. al. 2006, Kerkhoff et. al. 

2014, Lamanna et. al. 2014). At regional scales, topographic complexity (Coblentz & 

Riitters 2004), as well as elevation (Parker 1991) are also considered to play an important 

role in plant distributions and species richness patterns (Merriam 1890, Merriam 1894, 

Coblentz & Riitters 2004). The wide range of hypotheses proposed and still studied 

(Stevens 1989, Currie 1991, Currie et. al. 1999, Currie et. al. 2004. Hillebrand 2004, 

Wiens & Donoghue 2004) clearly show that species richness is a complex pattern with 

explanations varying across spatial scales (Gaston 2000). 

These hypotheses do not extensively consider biotic factors via dispersal, 

genetic/phenotypic plasticity and competition as well as how humans, throughout time, 

have influenced biodiversity patterns (Crosby, Jr. 1972, Denevan 1992, Clement & 

Junqueira 2010, Sedrez et. al. 2014, Piperno et. al. 2015, Warren II 2016, Levis et. al. 

2017, Junqueira et. al. 2017). Species richness patterns can be more fully understood by 

viewing biodiversity patterns as a product of interactions between human cultures and 

ecology, the study of how organisms react with one another and with their physical 

environment (Malhi 2017, Levis et. al. 2017). Many environments once assumed to be 

“pristine” are now acknowledged to be at least partially structured by past and present 

human activity (Piperno et. al. 2015) which some researchers refer to as biocultural 
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landscapes. Biocultural landscapes can also be viewed as palimpsests, i.e. temporal and 

spatial layers of successive activities that are partially destroyed and reworked (Bailey 

2007, Bovin et. al. 2016).  This framework has a long history of being applied to 

archaeology, but only more recently to ecology (Bailey 2007, Bovin et. al. 2016). Thus, 

species richness, could be the outcome of both ecological processes and human activities 

that are erased and etched on the landscape over time.  

Although studies in Southeast Asia (Brosius 1991, Barton & Denham 2011, Yang 

et. al. 2013), Central America (Ross 2011, Ford et. al. 2016), and the Amazon Basin 

(Bitencourt & Krauspenhar 2006, Mckey et. al. 2010, Clement & Junqueira 2010, Sedrez 

et. al. 2014, Clement et. al. 2015, Junqueira et. al. 2017, Levis et. al. 2017, Levis et. al. 

2018show that past humans modified landscapes, the biogeographic consequences of 

these human actions are poorly known. In some regions, past human-mediated dispersal 

and cultivation of food plants may have played an important role in structuring species 

richness, for example, via pre-Columbian farming and cultivation of wild plants (Abrams 

& Nowacki 2008, Ross 2011, Levis et. al. 2017). In a few cases, there is evidence for 

regional expansion of particular species distribution through food use. For example, in 

the Amazon Basin, forests closer to archaeological sites have greater relative and 

absolute abundance and richness of domesticated species on a regional scale (Levis et. al. 

2017). There is also evidence that Neotropical fruit species that were once megafauna-

dispersed are also thought to have had their geographic and environmental ranges 

maintained and expanded through human-mediated dispersal and management (van 

Zonneveld et. al. 2018).  
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It is important to consider both past and present human populations in 

understanding richness patterns (Bush et. al. 2015, McMichael et. al. 2017). For instance, 

there is also evidence of impacts from 500 years of colonization by European settlers and 

recovering, indigenous populations in the Amazon on plant distribution and richness 

(McMichael et. al. 2017). For example, the Amazonian rubber boom of 1850-1920 

resulted in enrichment of forests with deliberately sown Hevea.Brasiliensis Willd. ex 

A.Juss.) Müll.Arg. (rubber tree) and edible palms (McMichael et. al. 2017), 

accompanying other kinds of modification such as deforestation, agroforestry and 

agriculture. Contemporary human populations are also found clustered around the same 

major river channels as pre-Columbian populations (Piperno et. al. 2015, McMichael et. 

al. 2017). These cumulative impacts can still be discernible on the landscape at varying 

levels and spatial scales (Bush et. al. 2015, McMichael et. al. 2017, Junqueira et. al. 2017, 

Levis et. al. 2017, van Zonneveld et. al. 2018). However, causality can be uncertain -do 

people influence plant richness, or does richness influence people to inhabit species rich 

habitats? Even though it is difficult to answer this question, I can still use the presence of 

people as an effective indicator; in others, I can conjecture that active dispersal occurred 

and that people can drive richness patterns. There is significant evidence for this in regard 

to isolated species such as Quercus spp. (oak), Carya spp. (hickory) and Castanea spp. 

(chestnut) in eastern North American forests (Abrams & Nowacki 2008) and Gleditsia 

triacanthos L. (honey locust) by the Cherokee in the Southern Appalachian Mountain 

Region (U.S.) (Warren 2016), but there has not been a test of this for whole species 
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assemblages outside of the Amazon (Junqueira et. al. 2017, Levis et. al. 2017, 

McMichael et. al. 2017).  

Here I asked whether pre-Columbian and/or contemporary human activity shapes 

species richness patterns. I hypothesized that pre-Columbian populations altered 

biodiversity patterns at the landscape scale through cultivation, wild-harvesting, and 

dispersal of food plants. As a result, I predicted that there would be higher food plant 

species richness in areas that had high pre-Columbian populations (Hypothesis A). I also 

hypothesized that contemporary populations would have a significant effect on food plant 

species richness patterns. I predicted that urbanization and settlement for ranching, 

agriculture, etc. also lead to increased dispersal of useful native plants (Janzen 1986, 

Stuart et. al. 2006), and/or that areas with high utility for these activities also have high 

habitat value for useful native plants (Hope et. al. 2003, McMichael et. al. 2017, Howard 

n.d.). Given that people settle in areas that are favorable for high plant diversity, or 

specifically select places because of their high plant diversity (Goncalves et. al. 2016, 

Gaoue et. al. 2017), I predicted there would be higher food plant species richness in areas 

of high contemporary population density (Hypothesis B). The arguments for past and 

contemporary human effects on the landscape are not mutually exclusive. There is a need 

to tease apart the separate and combined effects on regional plant species richness of both 

pre-Columbian and contemporary populations. 

I focused my work on the Sonoran Desert of southwestern North America as 

defined by Omernik 2004 and USEPA 2016. The Sonoran Desert is rich in plant species 

diversity and cultural history (Hodgson 2001 Nabhan 2016). Not only does the Sonoran 

Desert region possess a long legacy of past indigenous populations using plants for food 
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(Castetter & Underhill 1935, Bell & Castetter 1937, Bell & Castetter 1941, Gasser 1981, 

Crosswhite, 1981, Bohrer 1987, Bohrer 1991, Gasser & Kwiatkowski 1991, Rea 1997, 

Hodgson 2001, Fritz et. al. 2009), but the arid conditions help preserve the archaeological 

evidence of past settlements, and thus, it can be easier to perceive (Matthew Peeples per. 

comm. March 2019). Pre-Columbian human impacts on plants may be both direct and 

indirect through activities such as encouraging propagation and/or trade between 

individuals and larger social groups (Bayman 2001, Fish & Fish 2007). The Phoenix and 

Tucson metropolitan areas currently have a combined population of approximately 8 

million people.  Contemporary human direct and indirect impacts on native plant 

distributions may include seed dispersal via road networks (Ansong & Pickering 2013, 

Auffret et. al. 2014), and other animals that disperse seeds through man-made “linear 

gaps” like roadways, trails, and powerlines (Suárez-Esteban et. al. 2016). Land clearance 

for both agriculture (Hope et. al. 2003) and cities (Walker et. al. 2009), as well as 

residential homeowner landscaping preferences (Walker et. al. 2009, see Hope et. al. 

2003 and Hope et. al. 2006 for ‘luxury effect’ hypothesis) could also influence plant 

species richness.  

The most likely source of pre-Columbian influence on biodiversity during the 

more recent Anthropocene in the Sonoran Desert are the Hohokam people. The Hohokam 

is an archaeological cultural designation for sedentary agriculturalists who resided in the 

Sonoran Desert and adjacent areas ca. 400-1450 A.D. (Bayman 2001, Abbott et. al. 2007, 

Fish & Fish 2007). They inhabited approximately 80,000 km2 in the southern half of 

Arizona and adjacent northern Sonora, Mexico (see Appendix K: Hohokam Defined 
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Region). The Hohokam’s subsistence practices were multifaceted and included direct 

cultivation of cultigens as well as the encouragement and dispersal of native, wild plants 

(Bohrer 1987, Bohrer 1991, see Appendix G: Hohokam Food Production and Cultivation 

and Appendix L: Examples of Hohokam Plants Used). I analyzed Hohokam effects on 

food plant species richness at two different buffer distances, reflecting the distances 

populations would travel for transplanting, transporting, and dispersing food plant species 

(i.e., 36 km buffer distance; Figs. 4-7), as well as farming (i.e., 7 km buffer distance; See 

Appendix H: Hohokam 7 km Buffer Distance Figs. S2-S5). Cross-cultural studies 

suggest that these distances equate to the rough distance that could be covered on foot in 

one day (36 km) and the typical range of intensive agricultural land use in similar arid 

environments (7 km; see Varien 1999, Wilcox et al. 2007, Hill et. al. 2015)  

The impacts of Hohokam food use have historically been analyzed for particular 

archaeological sites and complexes (Briggs et. al. 2006, Hall et. al. 2013).  Pollen records 

reflect intensive use and transport of a wide variety of native plant species ranging from 

succulents to weedy annuals and the more well-researched cultigens (See Appendix F: 

Hohokam Food Plant Use). Despite extensive archaeobotanical data, little is known on 

how these diverse uses have impacted regional species richness patterns. There are 

elevated frequencies of Chenopodiaceae-Amaranthus and other weedy pollen types 

around agricultural land in this region (Stuart et. al. 2006), possibly overlapping with the 

elevated concentrations of pre-Columbian pollen samples of signature weedy taxa that 

the Hohokam used for food (Fish 1984, Stuart et. al. 2006). Thus, it seems more also 
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likely that in addition to settling in areas of high plant richness, the Hohokam actively 

enriched their settlements with food plants, influencing species richness.  

MATERIALS AND METHODS 

Ethnobotanical Dataset 

I compiled an ethnobotanical dataset of Sonoran Desert food plants based on Hodgson 

(2001) comprised of 356 plants that have been used by past human populations. They 

were selected for this analysis based on their native origin and available documentation 

(i.e. ethnographies, preserved specimens) that contextualize their food use as being part 

of the history, physical and social environments of indigenous populations. I then 

identified the food plants that had occurrences within the study area of the Hohokam 

(n=253). This was based on BIEN4 (Maitner et. al. 2017), SEINet Portal Network 

(SEINet Portal Network 2018) and GBIF data (Chamberlin 2017).  

Hohokam Study Area  

My study uses archaeological information from the Heritage Southwest Database (HSW) 

study area for the Hohokam region (i.e. comprising the geographic extent of the 

Hohokam populations in the Sonoran Desert). The HSW is a digital geodatabase 

containing information on more than 10,000 pre-Columbian and more recent 

archaeological sites across the U.S. Southwest and Mexican Northwest, maintained by 

the non-profit Archaeology Southwest in Tucson (Peeples et. al. 2006, Hill et. al. 2002). 

This database contains information on more than 1,000 settlements occupied across the 

Hohokam region between A.D. 700 and 1450 (see Doelle 1995, Doelle 1980, Hill et. al. 

2004, Peeples 2006). This database includes estimates of the sizes and occupation spans 
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of individual sites based on available archaeological information including counts of 

structures from surface or excavations, dated archaeological materials, and the classes of 

public architectural features present. These data have been used to estimate population 

across the Hohokam region (Doelle 1995, Hill et. al. 2004, Mills et. al. 2013, 2015).  

Species Distribution Modeling 

Species distribution modeling was used to estimate the potential areas of distributions for 

the food plants. This was done on the basis of each species observed presences and 

pseudo-absences. The species occurrence data was then combined from several 

biodiversity databases: BIEN 4 (Maitner et. al. 2017), SEINet (SEINet Portal Network 

2018), and GBIF (Chamberlin 2017). Although this approach can suffer from 

undersampling, it is the best option given the lack of available gridded atlas data for 

species for this region, or of available regional plot data (pers. comm. 2018, R. Madera; 

pers. comm. 2018, B. Maitner). Although there are no herbarium records from the pre-

Columbian time period, herbarium species occurrences were used to capture the most 

accurate plant occurrence records for the Hohokam region. The ‘CoordinateCleaner’ 

package in R (Zizka 2018) was used to perform data cleaning on GBIF data, removing 

duplicate records. Records with suspicious individual counts were removed (i.e., very 

high occurrence counts may indicate inappropriate data or data entry problems). Very old 

records (i.e., before 1945) were removed as these were more likely to be unreliable with 

regards to location, and if they were assigned to the location of zoos, botanical gardens, 

herbaria, universities, museums, or open ocean.  

Potential range estimates were defined as the total number of pixels predicted to 

be suitable habitat using a species distribution model. I used the ‘dismo’ package 
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(Hijmans et. al. 2007) to choose pseudo-absence points at random from the extent of the 

Sonoran Desert. I then used general additive models (GAM) to generate a threshold 

suitability surface for each food plant species using the ‘sdm’ package in R (Naimi & 

Araujo 2016). GAMs provide added flexibility for fitting more ecologically realistic 

relationships in SDMs (Elith et. al. 2006, Elith & Leathwick 2009). I then used the 

‘spec_sens’ threshold (via the ‘dismo’ package) to transform the model predictions into a 

binary presence/absence. The spatial scale of 2 km x 2 km was chosen given the 

geographic extent of the study area, the scale of available data, and the goals of the study 

(Elith & Leathwick 2009). Finer resolution can provide better predictions for fixed or 

very locally mobile organisms (Guisan & Thuiller 2005). 

Elevation, topographic and climatic variables were used as predictors for the 

SDMs. Specific climatic variables from WorldClim (Fick & Hijmans 2017) were chosen 

to prevent overfitting of the species distribution models. The bioclimatic variables chosen 

were BIO1- Annual Mean Temperature, BIO5- Maximum Temperature of Warmest 

Month, BIO6=Mininum Temperature Coldest Month, BIO12=Annual Precipitation, 

BIO13= Precipitation of Wettest Month, and BIO14= Precipitation of Driest Month. 

Potential distributions are thought to be determined primarily by indirect, large-scale 

variable such as climate (Thuiller et. al. 2003, Bahn & McGill 2007, Wisz et. al. 2013). I 

chose a small set of variables to avoid model overfitting to capture precipitation and 

temperature variation likely to be relevant to a broad range of species (Tomiolo & Ward 

2018).  I also included elevation (USGS GMTED10) (Danielson & Gesh 2011) and 

topography (USGS 2013) data which are thought to contribute to plant distribution at 

more intermediate scales (Elith & Leathwick 2009). Although I used these climate 
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variables for the SDMs, due to the wide variety of food plant species analyzed, there was 

an inability to create models more sensitive to soil type, slope exposures and other more 

nuanced habitat requirements of the plants. It is also important to note that these climate 

variables are recent and do not necessarily reflect the exact climate during the pre-

Columbian Hohokam time period. 

Response and Predictor Variables 

The response variable (i.e., the variable I analyzed and tried to explain) in the models was 

relative food plant species richness. I first calculated a total richness for the food plants 

(i.e., food plant richness) by overlaying maps of species distributions from the above 

models. I then estimated total richness by overlaying distributions of all known species, 

using data available from BIEN3 (Maitner et. al. 2017). The richness values in these two 

raster datasets were divided to derive a relative food plant species richness raster. The 

BIEN3 species range maps (Maitner et. al. 2017) are currently the most comprehensive 

set of land plant range maps available and include 98,829 species across North and South 

America (Brian Maitner per comm. Jan. 2019). I downloaded range maps for all available 

species as GIS shapefiles using the package ‘BIEN’ for R (Maitner et. al. 2017). 

Analyses were carried out for each 100 km x 100 km resolution cell in North and South 

America. The species richness map was then resampled to the Hohokam study area (i.e., 

my geographic extent) and 2km x 2km resolution.  

Predictor variables (i.e., variables that may explain changes in the response 

variable) comprised river distance, Hohokam maximum population and contemporary 

population density. I used the ‘raster’ package to create a river distance layer using river 

data from major rivers in the Hohokam region. I consider distance from river as a driver 



 57 

of food plant species richness, with potentially higher richness closer to rivers. In order to 

estimate Hohokam population, I used the HSW data from the Hohokam region and 

created buffers around every settlement in the study area at both the 7 km (farming) and 

36 km (wild-harvesting) distance. I then used the maximum estimated population for any 

interval for every site. This measure of population is a measure of the relative intensity of 

population throughout the Hohokam sequence. Areas that had either more sites or larger 

sites would provide high values and areas with few sites or smaller sites during the period 

between A.D. 700 and 1450 would have lower values. Contemporary population data was 

downloaded from NASA’s Socioeconomic Data and Applications Center (SEDAC) 

(CIESIN 2017).  

The spatial extent of the study was delineated by setting a 36 km buffer around 

each archaeological site. This is estimated to be a day’s walk from a major settlement 

(Wilcox et. al. 2007, Hill et. al. 2015) and defines a potential zone of plant use. (e.g., 

exchange, transplant, dispersal, propagation) amongst Hohokam settlements (Fig.1). I 

also repeated analyses using a 7 km buffer around each archaeological site which is 

estimated to be the distance people will travel to specifically farm (see Wilcox et. al. 

2007, Varien 1999; See Appendix H: Hohokam & km Buffer Distance Fig. S1).  

Regressions and Spatial Autocorrelation 

I built a spatial GAM using the ‘mgcv’ package (Wood 2011, Wood 2017) to 

predict the response variables using the explanatory variables, accounting for spatial 

autocorrelation of the data. GAMs with spatial terms are useful to account for spatial 

autocorrelation (Leathwick 2001) and are commonly used to implement non-parametric 

smoothers in regression models (Jones & Wrigley 1995, Guisan & Zimmerman 2000). I 
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also included two interaction terms (i) Hohokam population and contemporary population 

and, (ii) Hohokam population and distance from river to further test how pre- and post- 

Columbian settlement patterns impact relative food plant species richness. I power-

transformed (lambda=1/4) the population and river distance data to improve normality of 

the model residuals. I then scaled the explanatory variables to account for differences in 

variance. A smoothing term was applied to the spatial term (i.e., the latitude and 

longitude coordinates) for a full smooth of the interaction (Jones & Wrigley 1995, Guisan 

& Zimmerman 2000). I also used a smoothing term on the other explanatory variables as 

well as the interaction terms. I used the ‘visreg’ package (Breheny & Burchett 2017) to 

create partial residual plots and interaction plots to ascertain variable importance for 

relative food plant species richness. It is important to note that I did not include the 

climate variables in the GAM in order to avoid circular results as the climate variables 

were used to create the SDMs. However, I did conduct a supplementary analysis at the 36 

km distance that included the climate variables for transparency (See Appendix I 

Hohokam 36 km Buffer Distance with Climate Variables).  

RESULTS 

At distance scales consistent with wild-harvesting (36 km), the model including all the 

explanatory variables for relative food plant species richness was statistically significant 

(Adjusted R2 = 0.827, -REML=-78134) with a deviance explained at 82.8%. High 

relative food plant species richness was partially predicted by high pre-Columbian and 

contemporary populations. There was higher relative food plant species richness in areas 

that had the highest pre-Columbian populations using a GAM regression analysis (Fig 4, 

Fig. 5, GAM: s(Hohokam.Pop.) F=37.46, P=<2e-16). Additionally, I found that there was 
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higher relative food plant species richness in areas of high contemporary population 

density (Fig. 5, GAM: s(Contemporary.Pop.) F=14.05, P=0.000178). These results 

suggest that high population density of pre-Columbian and contemporary populations 

may have had a persistent positive effect on the enrichment of food plant species 

richness.  

In addition to pre-Columbian and contemporary population, spatial dependence 

was also found to be a driver for the enrichment of food plant species richness. Modeling 

the spatial dependence in the systematic part of the model did account for spatial 

autocorrelation. The spatial term was statistically significant (Fig. 5, GAM: s(x,y) 

F=1423.06, P=<2e-16). Relative food plant species richness was not influenced by 

distance from river except for a decrease in food plant richness at the furthest distance 

from rivers (Fig. 5, GAM: s(River.Distance) F=14.14, P=<2e-16).  

I found that relative food plant species richness was also partially predicted by 

two interactions terms. The highest centers of contemporary population density (i.e., 

Phoenix and Tucson) and the areas of highest pre-Columbian populations (i.e., which 

also include Phoenix and Tucson but extend outward) tended to also have some of the 

highest instances of relative food plant species richness. The combined effects between 

Hohokam population and contemporary population were statistically significant (Fig. 5, 

GAM: s(Hohokam.Pop., Contemporary. Pop.) F=37.49, P=<2e-16; Fig. 6). There were 

also instances of high relative food plant species richness in areas of jus high 

contemporary population or just high Hohokam population estimates (Fig. 6). The 

interaction between Hohokam population and distance from river was found to also be 

statistically significant (Fig. 5, GAM: s(Hohokam.Pop, River.Distance) F=31.03, P=<2e-
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16; Fig. 7). There appears to be higher food plant richness both in areas close and further 

from the river at different pre-Columbian population maximums (Fig. 7) This is 

potentially indicative of how, in certain cases, the Hohokam would inhabit areas close to 

rivers and then expand their settlements outward, possibly engaging in exchange and 

dispersal of food plants away from the river via harvesting as well as caring techniques.  

At distance scales consistent with agriculture (7 km) the model, including all 

predictor variables, was statistically significant (Adjusted R2=0.852, -REML=-26181) 

with a deviance explained at 85.4%. Although there were some instances of higher 

relative food plant species richness within areas of higher pre-Columbian populations, the 

results were not statistically significant at this buffer distance (see Appendix H: 

Hohokam 7 km Buffer Distance Fig. S2, Fig. S3, GAM: s(Hohokam.Pop.) F=0.637, 

P=0.698). However, similar to the 36 km distance results, I did find that there was higher 

relative food plant species richness in areas of high contemporary population density and 

this was statistically significant (see Appendix H: Hohokam 7 km Buffer Distance Fig. 

S3, GAM: s(Contemporary.Pop.), F=17.026, P=3.79e-05).  

Both distance from river and spatial dependence of the values are also found to be 

drivers for the enrichment of food plant species richness. Similar to the 36 km distance 

results, modeling the spatial dependence in the systematic part of the model did account 

for spatial autocorrelation. The spatial term was statistically significant (see Appendix 

H: Hohokam 7 km Buffer Distance Fig. S3, GAM: s(x,y) F=602.924, P=<2e-16). 

Relative food plant species richness was not influenced by distance from river (richness 

remains relatively constant (see Appendix H: Hohokam 7 km Buffer Distance Fig. S3, 

GAM: s(River.Distance), F=10.814, P=<2e-16).  
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Relative food plant species richness was also partially predicted by the interaction 

between Hohokam and contemporary population at the 7 km buffer distance. This was 

also statistically significant (see Appendix H: Hohokam 7 km Buffer Distance Fig. S3, 

GAM: s(Hohokam.Pop., Contemporary. Pop.) F=13.650, P=<2e-16; Fig. S4). Similar to 

the 36 km buffer distance, there was enrichment of food plant species richness in areas 

where high contemporary population density and high Hohokam population density 

overlap, and also areas of high contemporary population density but low Hohokam 

populations (Fig. S4). The interaction between Hohokam population and distance from 

river was also statistically significant (see Appendix H: Hohokam 7km Buffer Distance 

Fig. S3, GAM: s(Hohokam.Pop., River.Distance) F=3.982, P=<2e-16; Fig. S5). 

However, highest enrichment of food plant species richness was found further from rivers 

at both lower and higher Hohokam population estimates potentially suggesting other 

drivers as an influence at this distance.  

DISCUSSION 

This study used archaeological and ecological data to provide evidence for both 

prehistoric and contemporary human influence on plant biogeography. My results show 

that, at distances consistent with wild-harvesting (36 km), both pre-Columbian and 

contemporary population have shaped patterns of relative food plant species richness. 

However, the importance of each factor in the GAM varied depending on buffer scale 

See Appendix H: Hohokam 7 km Buffer Distance). Therefore, both hypotheses received 

partial support. I found that, when basing my analysis on a day’s walk from a major 

settlement (i.e., the 36 km buffer distance), there was higher relative food plant species 

richness in areas that had the highest pre-Columbian populations, partially consistent with 
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Hypothesis A (i.e., there would be higher food plant species richness in areas that had 

high pre-Columbian populations) (Fig. 5).  

At the 36 km buffer distance, I also identified contemporary population as 

potentially an important influence on relative food plant species richness, consistent with 

Hypothesis B (Fig. 5) (i.e., there would be higher food plant species richness in areas of 

high contemporary population density). It is a challenge to understand if food plant 

distributions are shaped by both contemporary populations and pre-Columbian 

populations, or if there are one or more common drivers that could cause high population 

and high relative food plant richness. One common factor could be the canal networks in 

the Phoenix Basin and the interest in continuing to settle in areas where water remains 

available (e.g. the Santa Cruz River) in the Tucson Basin (Fish & Fish 1992). For 

example, in the mid-1800s, Piman Indian farmers and Mormon pioneers of the Lehi 

settlement used the ancient canals as a model for modern irrigation in the Phoenix area 

(Howard n.d.). The early historic canals were formed largely by cleaning out the 

Hohokam canals (Howard n.d.).  This could have helped maintain remnant populations of 

food plants that were originally encouraged and dispersed by the Hohokam. There is 

generally higher relative food plant species richness in areas of both high Hohokam 

populations and contemporary population (Fig. 6), suggesting that it is important to 

address the combination of pre-Columbian and contemporary human effects on a 

landscape scale. 

Climate variables were found to be significant drivers of relative food plant 

species richness as well (see Appendix I: Hohokam 36km Buffer Distance with Climate 

Variables Fig S6 & S7). However, it is important to consider that the extent of this 



 63 

significance may be due to the climate variables also being used for the food plant SDMs. 

In order to account for this, I added the climate variables into the GAM for the 36k m 

distance in the Supplementary section. Even with the addition of the climate variables in 

the model, the conclusions remain qualitatively very similar (see Appendix I: Hohokam 

36 km Buffer Distance with Climate Variables Fig S6 & S7). Namely, Hohokam 

population and the interaction between Hohokam population and contemporary 

population as well as Hohokam population and distance from river remain significant. 

This suggests that the persistent effects of population could also be a driver of food plant 

species enrichment patterns.  

There are also instances of higher relative food plant species richness in areas of 

high contemporary population, but lower Hohokam population estimates (see Appendix 

I: Hohokam 36 km Buffer Distance with Climate Variables Fig. S8). Although it is in the 

best interest of contemporary human populations in water-limited areas to also be close to 

canals, technological advances do make it easier to expand even further outward than the 

Hohokam potentially could have expanded. Additionally, studies have shown in the 

Phoenix area that there is an overall trend for native and introduced plant diversity to be 

higher (i.e., higher generic species richness) in the contemporary, human-managed, urban 

landscape where there is higher available nutrients and water due to fertilization and 

irrigation (Hope et. al. 2003). This could also be a possibility in the Tucson area, which is 

also comprised of neighborhoods of varying income levels and access to human-

controlled nutrients and irrigation (Halper et. al. 2012). However, there are also instances 

of higher relative food plant species richness with high Hohokam populations and low 

contemporary population (see Appendix I: Hohokam 36 km Buffer Distance with 
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Climate Variables Fig. S8). This suggests that it is equally as important to consider how 

human impacts in pre-Columbian times can persist on the landscape scale as well. I argue 

that both pre-Columbian and recent management of plants continues to shape patterns of 

plant species richness in the Sonoran Desert today.   

It was also found that the relative impacts of pre-Columbian and recent 

populations can differ depending on buffer distance (i.e., how many points I included in 

the study where there were no humans, but where there potentially could have been). At 

the 7 km buffer distance (see Appendix H: Hohokam 7 km Buffer Distance), there is 

actually a general decrease in relative food plant species richness as Hohokam population 

increases (see Appendix H: Hohokam 7 km Buffer Distance). This suggests that 

although this zone is the nearest available by pre-Columbian people for agricultural use, 

it does not necessarily capture the entire zone or continuum of food plant use (i.e., 

agricultural as well as wild-harvesting, dispersal through exchange and transport). Similar 

to the 36 km buffer distance, the analysis suggests high relative food plant species 

richness in areas of both high contemporary population and high Hohokam populations 

(see Appendix H: Hohokam 7 km Buffer Distance, Fig.S4). When I considered the 

combined effect of distance from river and Hohokam population, it appeared that there 

was only high relative food plant species richness in areas of high Hohokam population 

estimates regardless of distance from river (see Appendix H: Hohokam 7 km Buffer 

Distance, Fig. S5). This could suggest that the Hohokam increased food plant species 

richness through the management and dispersal of these plants around their settlements.  

The Hohokam were gatherers and consumers of desert food plants, dispersing and 

encouraging populations of both woody perennials as well as weedier species beyond 
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their settlements (Gasser 1981, Crown 1987, Bohrer 1987, Gasser & Kwaitkowski 1991, 

Bohrer 1991, Fish 1993, Fish & Fish 1994). In more recent times, leguminous trees such 

as mesquite (e.g., Prosopis glandulosa, P. velutina, and P. pubescens) were considered 

desirable for their nutritious beans and would be left standing in cleared fields, sometimes 

also growing densely in hedgerows that were sustained through agricultural water. 

Identified seeds and charcoal from pre-Columbian settlements supports the availability of 

these trees through time as well (Fish & Fish 1992). It is also thought that weedy plants 

such as Chenopodium spp. (goosefoot), Amaranthus spp. (amaranth), and Boerhavia spp 

(spiderling). were encouraged within agricultural fields as secondary resources by the 

Hohokam. These species were less water intensive compared to the cultigens (e.g., Zea 

mays, Cucurbita spp., Phaseolus spp.) (Fish & Fish 1992). Hordeum pusillum (little 

barley) as well as Descurainia pinnata (tansy mustard) also grew well on disturbed 

ground (Bohrer 1991). Phaseolus spp. (bean) as well as Opuntia spp. (prickly pear) and 

Cylindropuntia spp. (cholla) were most likely tended to and transplanted amongst 

settlements (Fish & Fish 1992).  

One of the limits of my analysis was my inability to quantify the impact of 

subsequent human populations after the pre-Columbian Hohokam but before 

contemporary times. In order to more fully capture a continuum of use and investigate the 

legacy of food use through time on the landscape, population estimates of other cultural 

groups will be needed (e.g., Pima, Apache, Tohono O’odham). It is also important to 

consider the legacy of European settlers in the Hohokam region. In the late 1700s, 

Spanish soldiers began to farm in areas in proximity to the Tohono O’odham in the 

Tucson Basin (Darling & Lewis 2007). The arrival of the railroad in the 1800s allowed 
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for large amounts of non-native foods to be imported into Tucson, also altering the suite 

of crops cultivated on farmland (e.g., water-intensive crops such as lettuce and 

watermelon). By the late 1800s, the combination of drought, ground-water pumping, and 

digging a deeper canal had led to the degradation of the river and disrupted traditional 

farming (Thiel 2010).   

Limited archaeological and population data mean that this study is a first effort in 

arid regions to investigate on the relative influence of human food use on biodiversity 

patterns (i.e. food plant species richness) by considering pre-Columbian and 

contemporary populations on the landscape scale. This is in contrast to analyses that 

solely focus on past human food use and the resulting richness and distribution legacies 

on the landscape (Levis et. al. 2017).  The results strongly suggest that in general, species 

richness patterns and biogeography of useful species are not necessarily primarily driven 

by environment, but also have large human signatures –even in ‘pristine’ areas or those 

that were apparently abandoned for long periods of time. I argue that it can be limiting to 

consider distribution and richness patterns solely from a climate-centric perspective 

(Pausas & Bond 2018). My analysis contributes to a growing body of research suggesting 

for a more integrative view of nature in which disturbance plays a central role (Pausas & 

Bond 2018). This approach may begin to form the basis of an inclusive biogeography that 

includes more human effects.  
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Figure 5. Partial residuals for each explanatory variable used in the GAM for the 36 

km buffer distance (Adjusted R2 = 0.827, -REML=-78134 with a deviance explained 

at 82.8%). Partial residual plots show the relationship between each predictor variable 

and the response variable given that the other predictor variables are in the model. 

This is useful for understanding the relative importance of each predictor variable. 

Hohokam and Contemporary population increase correlates with higher relative food 

plant species richness.  
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Figure 6 Relative food plant species richness was partially predicted by an interaction 

between Hohokam.Pop. and Contemporary.Pop in the GAM using the 36 km buffer 

distance (GAM: s(Hohokam.Pop., Contemporary. Pop.) F=37.49, P=<2e-16). The red 

represents higher relative food plant species richness. There is higher relative food plant 

species richness with instances of higher contemporary and Hohokam populations, high 

Hohokam populations and low contemporary populations, as well as high contemporary 

populations and low Hohokam populations.  

High Contemporary 

Pop., Low Hohokam 

Pop. 

High Contemporary 

Pop., High Hohokam 

Pop. 

Low Contemporary 

Pop., Low Hohokam 

Pop. 

Low Contemporary 

Pop., High Hohokam 
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Figure 7 Relative food plant species richness was partially predicted by an interaction 

between River.Distance and Hohokam.Pop in the GAM using the 36 km buffer distance 

(GAM: s(Hohokam.Pop, River.Distance) F=31.03, P=<2e-16). The red represents higher 

relative food plant species richness. There was high relative food plant species richness 

close and far from the rivers regardless of Hohokam population density. 

High Hohokam Pop., 

Close to river 

High Hohokam Pop.,  

Far from river 
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The first multiple linear regression analysis (G.L.Model) focused exclusively on growth 

form and life form as these traits had the most data (n=534 total species) available for my 

species list.  

 

𝐺. 𝐿. 𝑀𝑜𝑑𝑒𝑙 =  R/P ~ 𝐹𝑜𝑜𝑑. 𝑈𝑠𝑎𝑔𝑒 ∗ (𝐺𝑟𝑜𝑤𝑡ℎ 𝐹𝑜𝑟𝑚 + 𝐿𝑖𝑓𝑒 𝐹𝑜𝑟𝑚) 

 

I identified trait predictors of food use and R/P. G.L.Model was statistically 

significant overall (Adjusted R2=0.19, F-statistic=14.44, P<2.2e-16). Similar to 

G.L.P.Model, G.L.Model revealed that the un-used congeners has significantly lower R/P 

ratios than the Sonoran Desert food plants (Un-used Congener coefficient= -0.08, SE= 

0.01, t= -5.45, P=6.0e-08, ANOVA Food.Usage: P < 6.0e-08). Succulent and perennial 

species had significantly lower R/P ratios within North America (Succulent coefficient = 

-0.05, SE=0.01, t statistic=-3.12, P=1.87e-03; ANOVA Form: P=2.4e-03; Perennial 

coefficient = -0.03, SE=0.01, t statistic=-2.22, P=2.7e-02; ANOVA Life Cycle: P=2.7e-

02). 



 110 

 
Figure S1 Coefficient estimates for the predictors of R/P in North America (G.L.Model). 

Data included species for all traits except ploidy (n =534). (*), P <0.05; (**) P <0.01; 

(***), P<0.001). Succulence and perenniality were statistically significant and correlated 

with R/P. Food use was also statistically significant and correlated with R/P.  
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APPENDIX D 

MEDIAN AND MEAN R/P RATIOS FOR POLYPLOIDY 
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Polyploidy (un-used 
congeners) 

Median R/P North 
America (G.L.P.Model) 

Mean R/P North America 
(G.L.P.Model) 

0 0.11 0.12 

1 0.18 0.19 

Polyploidy (food plants) Median R/P North 
America (G.L.P.Model) 

Mean R/P North America 
(G.L.P.Model) 

0 0.19 0.20 

1 0.23 0.23 

 

Table S1 The mean and median R/P ratios for polyploid un-used congeners and the food 

plants using the R/P ratios for North America (1=polyploid, 0=not polyploid).   
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APPENDIX E 

MEDIAN AND MEAN R/P RATIOS FOR SUCCULENTS 
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Form Median R/P 
North America 

Median R/P 
Sonoran 
Desert 

Mean R/P 
North America 

Mean R/P 
Sonoran 
Desert 

Succulent 0.14 0.19 0.15 0.22 
 

 

Table S2 The median and mean R/P ratios for succulents for both the Sonoran Desert 

analysis than the North America analysis.  
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APPENDIX F 

HOHOKAM FOOD PLANT USE 
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The Hohokam occupation of the Sonoran Desert region is characterized by large and 

long-lasting agricultural communities and, along the major water ways, they created one 

of the largest irrigation canal systems in the Americas. The Hohokam developed risk 

management strategies, adapting to the wide range of topographic complexity and 

environmental variability that characterizes the Sonoran Desert (Fish & Fish 1992).  They 

cultivated crops such as Zea mays L. (maize), Phaseolus acutifolius var. acutifolius A. 

Gray (tepary beans), Curcurbita pepo L. (pepo squash), and Amaranthus hybridus L. 

(grain amaranth). They also are thought to have encouraged native, wild species using 

hundreds of miles of irrigation canals along the Salt, San Pedro, Verde, and Gila Rivers, 

as well as dryland runoff techniques such as rock alignments, terraces and check dams to 

slow water runoff and capture sediment. (Bayman 2001, Fish & Fish 2007, Abbott et. al. 

2007, Hodgson et. al. 2018).  

However, the Hohokam also interacted with many non-cultivated species. The 

Hohokam were direct gatherers and consumers of a wide variety of desert vegetation 

(Fish & Fish 1992). The Hohokam engaged in both intentional manipulation and 

unintentional enhancement of plant species for food use (Fish 1993 Other succulents 

besides agave were perhaps transplanted to a lesser scale throughout Hohokam 

settlements such as Opuntia spp. (prickly-pear) and Cylindropuntia spp. (cholla) (Fish 

1993). The Hohokam likely encouraged certain weeds as valuable food sources, allowing 

the weeds to grow amongst crops and sometimes scattering the seeds to ensure their 

supply (Bohrer 1970, Gasser & Kwiatkowski 1991, Fish & Fish 1992, Fish 1993). The 

Hohokam applied a “continuum of use” framework which ranged from extensive 

cultivation of crops to wild-harvesting and dispersal of other native plant species. These 
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native plant species include Prosopis spp, (mesquite), Lycium spp. (wolfberry), and 

weedy species such as Boerhavia spp. (spiderlings), Descurainia spp. (tansy mustard), 

Hordeum pusillum Nutt. (little barley grass), Trianthema portulacastrum L. (desert horse 

purslane), Panicum grasses, Amaranthus spp. (amaranth) and Chenopodium spp. 

(goosefoot) (Gasser & Kwiatkowski 1991, Bohrer 1970, Fish 2000). Preserved small-

seeded wild grasses such as Sporobolus sp. (dropseed) and Eragrastis sp. (Lovegrass) 

were found in abundance at the Marana Mound site in Tucson (Hansen-Speer 2013). This 

small-seeded wild grass had an even higher percentage presence (56%) than corn (46%, 

suggesting their use as a food source. Sporobolus sp. in particular is easily gathered and 

processed because it has a naked grain (i.e. the seed is easily freed from the glumes and 

bracts) and more contemporary ethnographic accounts continue to document them as a 

food source (Castetter & Bell 1951, Hansen-Speer 2013).  

The impacts of Hohokam food use have generally been analyzed for individual 

species at fine spatial scales, i.e., at particular archaeological site complexes. Research on 

the Cave Creek archaeological complex has showed that agricultural practices have had a 

discernable impact on plant community dynamics (Hall et. al. 2013). Traces of Hohokam 

food dispersal can be found at certain archaeological sites. Another study at the Cave 

Creek archaeological complex used pollen records to show that plants identified as 

partially domesticated (e.g., plants in the Chenopodium and Amaranthus genera) by the 

Hohokam increased during the cultivation time period (Briggs et. al. 2006). High 

concentrations of herbaceous annuals and perennials as well as moisture-dependent 

lichens and mosses continue to demonstrate how rock pile features provide beneficial 

microenvironments compared to areas relatively rock-free (Fish 2000)  
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APPENDIX G 

HOHOKAM FOOD PRODUCTION AND CULTIVATION 
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The climate of the Salt-Gila Basin (i.e. Phoenix Basin) is generally characterized by long, 

hot summers, and short, mild winters. Both humidity and rainfall are low, and the rate of 

evaporation is high (Crown 1987). Average annual precipitation is 241 mm/year with 

most rainfall occurring in midwinter and the heavy but abrupt monsoon rains in 

midsummer (Crown 1987). The geological environment of the Basin is a mixture of 

floodplain, terraces and bajadas (Crown 1987). Along the Gila and Salt Rivers of the 

Basin, Hohokam constructed the largest irrigation systems in pre-Columbian North 

America to support large populations in this semi-arid environment (Fish & Fish 2007). 

Archaeological evidence suggests that there were 14 irrigation networks with an 

estimated aggregate length of 300 miles in the city of Phoenix (i.e., lower Salt River 

valley) (Fish & Fish 2007).  Research also suggests that in response to this environmental 

variability and topographic complexity, Hohokam communities integrated different 

agricultural practices for different environmental zones (Crown 1987, Fish 1993, Fish & 

Fish 1994).  

Zonally differentiated land-use was implemented in conjunction with the Salt and 

Gila Rivers canal network. Along the Gila River, habitation sites are found within 1km of 

the canals located in the floodplain with some of the large sites extending outward 

(Crown 1987). However, the Hohokam would travel further for wild-plant harvesting and 

trading, creating an extensive socio-economic network (Fish & Fish 1992). Habitation in 

the Tucson Bain was concentrated within river and mountain flank bands, in proximity to 

the Santa Cruz River and the Tucson Mountains and Tortolita Mountains. Both the canal 

irrigation networks that characterizes the Salt-Gila Basin and the Tucson Basin also 

integrated floodwater diversion on alluvial fans, rockpile complexes, checkdams, contour 
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terraces on upper slopes, and hillside masonry terraces (Fish & Fish 1994). The Tucson 

Basin can be organized into zones of occupation and food production as well. The 

particular topography and environment of the zones made some more appropriate for 

agriculture while others for wild plant harvesting. For example, within the Upper Valley 

Slope of the Tortolita Mountains, unique and specialized sites have been discovered 

coinciding with large densities of saguaro. This suggests that this may have been an area 

where Carnegiea gigantea (Engelm.) Briton & Rose saguaro camps were created for the 

procurement and trading of saguaro fruits (Fish & Fish 1992).  

Shells were also used as a currency in exchange for agricultural products in some 

of the most arid Hohokam habitations. The shells helped facilitate an exchange network 

of food productions throughout the Hohokam region (McGuire & Howard 1987). The 

Papagueria is one of the most arid areas within the Sonoran Desert, characterized by high 

temperatures and low rainfall (i.e., average annual precipitation is less than 15 cm) 

(Doelle 1980). There is also an absence of permanent streams in the region, and the 

Hohokam most likely faced relatively low resource predictability from year to year 

(Doelle 1980). It has been hypothesized that Hohokam in the western Papagueria 

gathered shells from the Gulf of California and would return to the Papagueria to 

manufacture shell ornaments (Glycymeris bracelets). The Papaguerians would trade both 

the shells and the jewelry into the Gila Bend and the Phoenix basin in exchange for 

agricultural products (McGuire & Howard 1987).  
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APPENDIX H 

HOHOKAM 7 KM BUFFER DISTANCE  
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Figure S3 Partial residuals for each explanatory variable used in the GAM for the 7 km buffer 

distance (Adjusted R2=0.852, -REML=-2618 with a deviance explained at 85.4%.). Partial 

residual plots show the relationship between each predictor variable and the response variable 

given that the other predictor variables are in the model. This is useful for understanding the 

relative importance of each predictor variable. Contemporary population increase correlates with 

higher relative food plant richness.  
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Figure S4 Relative food plant species richness was partially predicted by an interaction 

between Hohokam.Pop. and Contemporary.Pop in the GAM using the 7 km buffer 

distance (GAM: s(Hohokam.Pop., Contemporary. Pop.  F=13.650, P=<2e-16). The red 

represents higher relative food plant species richness. There is higher relative food plant 

species richness with instances of higher contemporary and Hohokam populations, as 

well as high contemporary populations and low Hohokam populations. There is no 

instances of high relative food plant species richness with low contemporary population 

and high Hohokam population, in contrast to the 36 km distance analysis.  
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Figure S5 Relative food plant species richness was partially predicted by an interaction 

between River.Distance and Hohokam.Pop in the GAM using the 7 km buffer distance 

(GAM: s(Hohokam.Pop., River.Distance) F=3.982, P=<2e-16) . The red represents 

higher relative food plant species richness. There was only high relative food plant 

species richness farthest from the rivers, regardless of Hohokam population density. 

High Hohokam Pop.,  

Close to river 
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APPENDIX I 

HOHOKAM 36 KM BUFFER DISTANCE WITH CLIMATE VARIABLES
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Despite the addition of the climate variables to the model, high relative food plant species 

richness was partially predicted by high pre-Columbian populations.  The GAM 

regression analysis was statistically significant overall (Adjusted R2=0.97, -REML = -

93690) with a deviance explained of 97%. There was higher relative food plant richness 

in areas that had the highest pre-Columbian populations (see Supplementary 

Information I: Hohokam 36 km Buffer Distance with Climate Variables Figs S6 & S7, 

GAM: s(Hohokam.Pop.) F=20.193, P=<2e-16). In contrast to the 36 km distance GAM 

without climate variables, contemporary population remains relatively constant except for 

a slight decrease at the highest contemporary population densities (see Supplementary 

Information I: Hohokam 36 km Buffer Distance with Climate Variables Fig. S7, GAM: 

s(Contemporary.Pop.) F=6.271, P=<1.65e-08). This suggests that perhaps the climate 

variables offset some of the influence of contemporary population on relative food plant 

species richness. This also suggests that perhaps there are persistent legacies of pre-

Columbian populations in conjunction with contemporary population and climate.  

In addition to the population variables, spatial dependence of the values remained 

significant for the enrichment of food plant species richness. Just like in the 36 km 

distance without climate variables and the 7km distance models, modeling the spatial 

dependence in the systematic part of the model did account for spatial autocorrelation. 

The spatial term was statistically significant (see Supplementary Information I: 

Hohokam 36 km Buffer Distance with Climate Variables Fig. S7, GAM: s(x,y) 

F=399.145, P=<2.e-16). Relative food plant species richness was not influenced by 

distance from river except for a decrease in food plant richness at the furthest distance 

from rivers similar to the 36 km distance without climate variables (see Supplementary 
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Information I: Hohokam 36 km Buffer Distance with Climate Variables Fig. S7, GAM: 

s(River.Distance) F=13.1, P=<2e-16).  

I again found that relative food plant species richness was also partially predicted 

by two interactions. Very similar to the 36 km distance model without climate variables, 

the highest centers of contemporary population density (i.e., Phoenix and Tucson) and the 

areas of highest pre-Columbian populations tended to also have some of the highest 

instances of relative food plant species richness. The interaction between Hohokam 

population and contemporary population were statistically significant (see 

Supplementary Information I: Hohokam 36 km Buffer Distance with Climate 

Variables, Fig. S7, GAM: s(Hohokam.Pop., Contemporary. Pop.) F=19.046, P=<2e-16; 

Fig. S8). It is again important to note that there were also instances of high relative food 

plant species richness in areas of solely high contemporary population and solely high 

Hohokam population estimates (Fig. S8). I also found that the interaction between 

Hohokam population and distance from river was statistically significant (see 

Supplementary Information I: Hohokam 36 km Buffer Distance with Climate, Fig. S7 

GAM: s(Hohokam.Pop, River.Distance) F=21.433, P=<2e-16; Fig. S9). The 36 km 

buffer distance with climate variables model also reflects that, perhaps in certain cases, 

the Hohokam would inhabit areas close to rivers and then expand their settlements 

outward. 
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Figure S8 Relative food plant species richness was partially predicted by an interaction 

between Hohokam.Pop. and Contemporary.Pop in the GAM using the 36 km buffer 

distance with climate variables (GAM: s(Hohokam.Pop., Contemporary. Pop.)  

F=19.046, P=<2e-16). The red represents higher relative food plant species richness. 

There is higher relative food plant species richness with instances of higher contemporary 

Hohokam populations, high Hohokam populations and low contemporary populations, as 

well as higher contemporary population and low Hohokam population. There are also 

instances of higher food plant species richness with both low contemporary and 

Hohokam population. 
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Figure S9 Relative food plant species richness was partially predicted by an interaction 

between River.Distance and Hohokam.Pop in the GAM using the 36 km buffer distance 

with climate variables (GAM: s(Hohokam.Pop., River.Distance) F=21.433 P=<2e-16). 

The red represents higher relative food plant species richness. Similar to the other 36 km 

model, there was high relative food plant species richness close and far from the rivers 

regardless of Hohokam population density. 
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APPENDIX J 

MAP OF HOHOKAM STUDY AREA POPULATION ESTIMATES 
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Figure S10. 36 km buffer distance overlaid by the contemporary locations of the Phoenix 

and Tucson metropolitan areas in Arizona, U.S (combined population approximately 8 

million).
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APPENDIX K 

HOHOKAM DEFINED REGION 
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Figure S11 The Hohokam inhabited approximately 80,000 km2 in the southern half 

Arizona which includes both Phoenix and Tucson. The Hohokam created an extensive 

canal network that has inspired the modern canal networks in contemporary times.  
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APPENDIX L 

EXAMPLES OF HOHOKAM PLANTS USED FOR FOOD 
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Figure S12 Several plants that were used by the Hohokam for food. The Hohokam used a 

wide variety of plant functional types. (a) Hordeum pusillum Nutt. Little Barley. (b) 

Chenopodium berlandieri Moq. Pit-Seed Goosefoot. (c) Prosopis glandulosa Torr. 

Honey Mesquite. (d) Opuntia engelmannii Salm-Dyck. Engelmann prickly pear. SEINet 

Portal Network 2018. 
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APPENDIX M 

METADATA FOR 36 KM AND 7 KM RASTERSTACKS 
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APPENDIX N 

METADATA FOR R/P RATIO CSV FILES 

 


	It is important to consider both past and present human populations in understanding richness patterns (Bush et. al. 2015, McMichael et. al. 2017). For instance, there is also evidence of impacts from 500 years of colonization by European settlers and...

