Engineering Mutation-Tolerant Genes
by

Prince Kwame Ampofo

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved April 2019 by the
Graduate Supervisory Committee:

Xiaojun Tian, Chair

Samira Kiani
Yang Kuang

ARIZONA STATE UNIVERSITY
May 2019

ABSTRACT

Ideas from coding theory are employed to theoretically demonstrate the engineer-
ing of mutation-tolerant genes, genes that can sustain up to some arbitrarily chosen
number of mutations and still express the originally intended protein. Attention is re-
stricted to tolerating substitution mutations. Future advances in genomic engineering
will make possible the ability to synthesize entire genomes from scratch. This presents
an opportunity to embed desirable capabilities like mutation-tolerance, which will be
useful in preventing cell deaths in organisms intended for research or industrial ap-
plications in highly mutagenic environments. In the extreme case, mutation-tolerant
genes (mutols) can make organisms resistant to retroviral infections.

An algebraic representation of the nucleotide bases is developed. This algebraic
representation makes it possible to convert nucleotide sequences into algebraic se-
quences, apply mathematical ideas and convert results back into nucleotide terms.
Using the algebra developed, a mapping is found from the naturally-occurring codons
to an alternative set of codons which makes genes constructed from them mutation-
tolerant, provided no more than one substitution mutation occurs per codon. The
ideas discussed naturally extend to finding codons that can tolerate t arbitrarily cho-
sen number of mutations per codon. Finally, random substitution events are simulated
in both a wild-type green fluorescent protein (GFP) gene and its mutol variant and
the amino acid sequence expressed from each post-mutation is compared with the
amino acid sequence pre-mutation.

This work assumes the existence of synthetic protein-assembling entities that func-
tion like tRNAs but can read k& nucleotides at a time, with & > 5. The realization of

this assumption is presented as a challenge to the research community.

DEDICATION

This work 1s dedicated to my family for their love and care.

i

ACKNOWLEDGMENTS
I would like to express my gratitude to Dr. Xiaojun Tian, Dr. Samira Kiani and
Dr. Yang Kuang for serving on my committee and for their constructive feedback on
my work. Special thanks also to the Mastercard Foundation for the scholarship that
made my education at Arizona State University, which culminated in this thesis,

possible.

1l

TABLE OF CONTENTS

Page

... v
CHAPTER

1 ALGEBRAIC REPRESENTATION OF NUCLEOTIDE BASES 1

1

1

(1.3 Constructing Field of order 4| 3

(1.4 Assignment of Field elements to nucleotide Bases| 6

(1.5 Doing Algebra with the Base Representations|..................... 7

(1.6 Algebraic representation ot Codons|............................... 10

2 CODONS AS VECTORN

3 TOLERATING SUBSTTTUTION MUTATIONS]

[3.2 Hamming Distance and Weight|.............. 26

[3.3 Tolerating ¢ Substitution Mutations per Codon| 28

[3.4 Example: Tolerating 1 Substitution Mutation per Codon| 31
REEERENCES . 45
APPENDIX

A S-LETTER CODONS TO S-LETTER CODONS

v

LIST OF TABLES

Table Page
[I.1 ~Algebraic representation ot Nucleotide Bases|......................... 7
(1.2 Arithmetic table for GF(27)o i 9
[3.1 Mapping to Alternative Codons|.......... 34
[3.1 Mapping to Alternative Codons|............ 35
[3.1 Mapping to Alternative Codons|............ 36
3.3 GFP DNA Sequence and Its Mutol Variant| 41
3.3 GFP DNA Sequence and Its Mutol Variant| 42
3.3 GFP DNA Sequence and Its Mutol Variant| 43
(3.4 Mutation Simulation Resultsl. o 44
[A.1 Degeneracy Mapping|........ i 47
[A.1 Degeneracy Mapping|......... ... i 48
[A.1 Degeneracy Mapping|...... i 49
[A.1 Degeneracy Mapping|...... ... i 50
[A.1 Degeneracy Mapping|....... .. . i 51
[A.1 Degeneracy Mapping|....... ... i 52
[A.1 Degeneracy Mapping|...... 53
[A.1 Degeneracy Mapping|...... 54
[A.1 Degeneracy Mapping|......... ... 55
[A.1 Degeneracy Mapping|......... .. . i 56

vi

Chapter 1

ALGEBRAIC REPRESENTATION OF NUCLEOTIDE BASES

1.1 Introduction

In our effort to develop genes that can tolerate mutations, we will be employing
some mathematical ideas. To make this possible, we need to represent nucleotide
bases, the building blocks from which DNA and RNA are constructed, with suitable
mathematical entities. This way, we can easily apply mathematical ideas to algebraic
representations of codons or nucleotide sequences and convert results back into nu-
cleotide terms. This chapter is devoted to finding suitable algebraic representations
for the bases: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U).

In section [1.2] an interesting algebraic structure called a field is introduced. In
section [1.3] we construct a field whose elements will be used as algebraic represen-
tations of the bases. In section [1.4] we assign elements of the field constructed in
section to the bases. Finally, in section (1.5, we discuss how computation is done
in a field.

Most concepts utilized throughout this work are from the areas of linear algebra
and coding theory. The uninitiated will find the following references helpful: |Axler
(2007), |Ling (2004)), and |Lin and Costello| (1983).

1.2 Field

A field F is a set together with two binary operations addition (denoted by +) and

multiplication (denoted by %) defined such that the following axioms are satisfied:

1. Closure. Vx,y e F, z4+ye€F and zxyeF

2. Commutativity. Voz,y e F, x+y=y+x and zxxy=yx*zx

3. Associativity. Vz,y,z € F, z+(y+z2)=(r+y) +2z and zx*x(yxz)=

(x*xy) =z

4. Existence of additive and multiplicative identities. (a) There exists an additive
identity 0 € F' such that x40 = z for all z € F. (b) There exists a multiplicative

identity 1 € F' such that x x 1 =z for all x € F

5. Existence of additive and multiplicative inverses. (a) For every = € F, there
exists an additive inverse denoted —x € F' such that z+(—z) = 0. (b) For every

x € F except 0, there exists an inverse denoted z~' € F such that z «x 27 = 1.

6. Distributivity of multiplication over addition.

Forall z,y,z € F, xzx(y+z2)=zxy+z*xz
7. Distinctness of additive and multiplicative identities. 1 # 0

The axioms outlined above demonstrate why a field is ideal for use in representing
nucleotide bases algebraically. The algebraic properties a field possesses, like closure,
commutativity, associativity, distributivity, etcetra, as outlined in axioms 1 through
6, are essential for ease of algebraic manipulations. By using elements from a field for
the representation of nucleotides, we will be able to easily perform algebraic manipu-
lations and apply mathematical ideas to algebraic equivalents of nucleotide sequences,

toward the goal of developing mutation-tolerant genes.

In the next section, we will construct a field with 4 elements. Adenine, Gua-
nine, and Cytosine will each be assigned one of these algebraic elements. Thymine
and Uracil will both be assigned the same fourth element since Uracil is the RNA

“equivalent” of Thymine.

1.3 Constructing Field of order 4

In general, if p is prime and addition and multiplication are done in modulo-p,
the set {0,1,2,...,p — 1} satisfies all the field axioms outlined in Section above
and thus forms a field of p elements. The number of elements in a field is called its
order. When the order of a field is finite, we call it a Galois field and denote it by
GF(number of elements). Also, when the number of elements in a Galois field is
prime, we call the field a prime field.

We desire to construct a field of 4 elements: GF(4). However, 4 is not prime and
s0{0,1,2,...,4—1} = {0,1,2,3} is not a field. We can however employ a well-known
idea from field theory which allows the construction of any field GF(p?) from GF(p),
where p is prime and ¢ is any positive integer. Thus, we can construct our desired
field GF(2?) from GF(2) = {0,1}, which is the field formed from {0,1,2,...,p — 1}
when p = 2. When GF(2) is extended to get GF(2?), GF(2) is called the base field
and GF(2?) is called an extension field. To utilize this strategy, we first introduce

two concepts:

1. Polynomials over fields. If we construct an n-degree polynomial f(«) = fo+
fra+foo4- -+ fr_ya" 14 f, o™ such that its coefficients fo, fi, fo, - -+, fact, fn
are all taken from a field called F, we say that f(«) is a “polynomial over field
F”. As an example, polynomials over GF(2) are polynomials with all coefficients
either 0 or 1. In general, there are 2" polynomials of degree n that can be
constructed over GF(2). To see this, notice that for any polynomial of degree n
over GF(2), its coefficients fo, f1, fa, ..., fn_1 can each have two possible values
(0 or 1) whereas coefficient f,, must be 1 since if it is 0, the polynomial will
no longer be of degree n. Thus, the total number of n-degree polynomials over

GF(2)is 2%2%---%x2 % 1 = 2" For example, there are 22 = 4 polynomials
—

n times

over GF(2) that are of degree 2. They are:

o, a+a? 140 and 1+4a+a? (1.1)

2. Primitive polynomials. A g-degree polynomial f(«) over a prime field GF(p)
is called primitive if the smallest positive integer n for which f(a) divides o + 1
without a remainder is n = p?—1. Primitive polynomials are important because
they are used in constructing extension fields from base fields. It is difficult to
test all polynomials over a given field to find ones that are primitive. As such,
tables of primitive polynomials exist from which desired primitive polynomials
can be obtained. Using one such table, we find that of the four polynomials of

degree 2 over GF(2) (listed in[1.1]), only one is primitive:
p(a) =1+ a+a? (1.2)

With these two concepts introduced, we state without proof a theorem with

which we can construct GF(2?) from GF(2).

Theorem 1.1. If f(«) is a g-degree primitive polynomial over GF(p), the set of all

q-degree polynomials over GF(p) taken as modulo f(a) forms GF(pY).

Remark. Just as an integer like 9 can be expressed in modulo 3 by dividing 9 by 3 and
keeping the remainder, a polynomial fi(«) can be expressed as modulo of another
polynomial fy(«) by dividing fi(«) by f2(a) and keeping the remainder.

Using Theorem above, we will divide each of the 4 polynomials in Equa-
tion by the primitive polynomial in Equation , keeping the remainder in
each case. The set of these four remainders, under modulo 2 addition and multipli-

cation, will satisfy all the field axioms in Section and thus form the desired field

of four elements, GF(2?).

1 1
+a+1]a? 2+a+1]a®+a

o> +a+1 a?+a+1
a-+1 1

1 1
?F+a+1|a®+1 H+a+l|la®?+a+1
a?+a+1 > +a+1
« 0

The remainders are 0, 1, o, and v 4+ 1. Using Theorem our desired ﬁeldﬂ is:

GF(2*)={0, 1, o, a+ 1}, with + and % done in mod 2 (1.3)

Compact form of a + 1. For every extension field, all the non-zero elements of the

set are expressed in terms of one special element called the primitive element. By
noticing that 1 can be written as oY, it is easy to spot that « is the primitive element
in the field we just constructed (Equation above). A well-known result in field
theory is that a primitive element is a root of its corresponding primitive polynomial.
Thus, p(a) = 1+a+a? = 0, where p is the primitive polynomial used in constructing
GF(2%). Using this relation, we can find another useful form of the a + 1 element in

GF(2%):

!The phrase “with + and * done in mod 2” in (1.3)) is vital because a set by itself is not a field.

When we mention the set without the operations, it must be taken as implied.

l+a+a*=0
l+a+(@+a®)=0+0a° (added o to both sides)
a?+a?=(1+1)a”=(0)a*=0 (141 =0 due to modulo 2 addition)

1+a=a? (1.4)

According to above, the element o + 1 in GF(2?) is equal to o>. We can
thus write GF(22) = {0, 1, a, a+1} as {0, 1, a, a?}. Because o is more compact,
we will use it more often. Being in exponent form, it will also be used primarily in
multiplication operations, whereas the o + 1 form will be used mainly in addition

operations.
1.4 Assignment of Field elements to nucleotide Bases

Our goal at the beginning of this chapter was to find suitable algebraic entities to
represent the nucleotide bases. We constructed a field of four elements, GF(2?%), in
the preceding section. Here, we assign these elements to the bases.

As outlined in Table below, we will represent Adenine with 0, Guanine with «,
and Cytosine with . Because the RNA “equivalent” of Thymine is Uracil, they are
both assigned 1. These assignments are not arbitrary. They have been done such that
adding 1 to the algebraic representation of any base gives the algebraic representation

of its Watson-Crick base pair. Examplesﬂ

1) 0 (Adenine) + 1 =1 (Thymine)

2) 1 (Thymine) + 1 = 0 (Adenine)

w

a (Guanine) + 1 = o? (Cytosine)

)
)
)
)

4) o? (Cytosine) + 1 = (o + 1) + 1 = a (Guanine)

2All operations are done in modulo 2. Also, note that a? = a + 1 (Equation

6

Base Algebraic Representation

Adenine (A) 0
Guanine (G) a
Cytosine (C) o?
Thymine (T) & Uracil (U) 1

Table 1.1: Algebraic representation of Nucleotide Bases. Note that o® = a4 1

We will refer to the set of elements used to represent the bases as B (as in Bases),
where the subscripts used are simply to indicate which base the element represents

and may be left out for the sake of compactness:

B = {0A7 1T or Us QGqG, QQC} (15>

As stated earlier, notice that 1 is used to represent both Thymine (T) and Uracil
(U) since each can be thought of as the DNA or RNA “equivalent” of the other.
As such, when 1 appears in the algebraic representation of a nucleotide sequence, it
should be seen as representing Thymine or Uracil based on the context. Obviously,
if 1 appears in a DNA sequence, it represents Thymine. In an RNA sequence, it

represents Uracil.
1.5 Doing Algebra with the Base Representations

Our goal for this chapter was to find suitable algebraic representations for the nu-
cleotide bases so that we can write any nucleotide sequence as a sequence of algebraic
entities, apply mathematical ideas to it, and map results back into nucleotide terms,
with the aim of developing mutation-tolerant genes. Having found such suitable al-
gebraic entities (elements of set B), we now discuss how addition, multiplication,

subtraction, and division can be done with them.

7

GF(2) = {0,1}, the base field from which our extension field of 4 elements,
B = {0, 1, a, a?}, was constructed, is only a field under mod 2 addition and
multiplication. By implication, B is also a field under mod 2 addition and multipli-
cation. As such all operations will be done in mod 2. Note that because we used
elements from a field to represent the bases, all the field axioms outlined in Section
hold. As such, for all operations, the commutative, associative, and distributive

properties can be used. It’s also vital to remember that a? = a + 1 (Equation [1.4)).

e Addition. Adding any elements of B is just like normal addition, keeping in
mind that in mod 2, 0+0=0, 04+1=1, 1+0=1 and 1+4+1=0.
An addition table is shown in Table [[.2al Adding any element to itself gives 0.
Also, as indicated earlier, adding o (which equals o + 1) to any element gives

its Watson-Crick base pair.

e Multiplication. Multiplication can also be done by keeping in mind that in
mod 2, 0x0=0, 0x1=0, 1x0=0 and 1x1=1. Note that for any
element b,

bokb" =bpxbk--xb x Dbrbko--xb=0b"TF
—— S——
i times k times
One relation that will be useful in simplifying multiplication operations is

3 2

a® = 1. To see this, notice that a® = a? * a, and from the multiplication table

(Table|1.2b), a?xa = 1. For example, axa?*a? = a° can be simplified as a® =
ad*xa?=1%a?=a%
Remark. Though only the two operations discussed above are explicitly defined on a

field, we can still do subtraction and division because subtraction and division can

be written in terms of addition and multiplication, respectively.

+ 0 1 o a? * 0 1 « o?
0 1 @ a? 0 0 0 0 0

1 1 0 o « 110 1 o o
a | a o 0 1 al 0 a o 1
a2 a2 a 1 0 a2 0 o 1 a
(a) Addition Table (b) Multiplication Table

Table 1.2: Arithmetic table for GF(2%). Note that 4+ and * are done mod 2.

e Subtraction. Note that a — b = a + (—b), where —b is the additive inverse of
b. Thus, to subtract b from a, we first find the additive inverse of b (which is
denoted by —b) and add it to a. Note that an additive inverse of an element b
is the element which when added to b, gives 0. Looking at the addition table in
Table [1.2a], we notice that adding any element to itself gives 0. This means that
for set B, the additive inverse of any element is itself. This has two interesting
implications: 1) Subtracting an element from another is the same as adding
them. For example, a —b = a + (—=b) = a + b since —b, which denotes the
inverse of b, equals b itself. 2) Because of implication 1, the addition table

shown in Table [[.2al also acts as a subtraction table for the elements in B.

Division. Note that % = a x b, where b~! is the multiplicative inverse of b.
Thus, to divide a by b, we first find the multiplicative inverse of b then multiply
it by a. Remember that the multiplicative inverse of an element b is an element
which when multiplied by b, gives 1. For example, to find %, we first find the
multiplicative inverse of o by looking at the multiplicative table (Table

to find the element which when multiplied by o2, gives 1. Since a® x o = 1, «

1 _
is the multiplicative inverse of a®. Thus, — = 1 % (a?) '—lxa=ua
o

1.6 Algebraic representation of Codons

Having found suitable algebraic representation for the nucleotide bases, we can
now write each of the 64 DNA sense (5" — 3') codons in terms of the algebraic

representation of its nucleotide bases.

a a?0) goa Ala (001) gar Asn (a01) gar Asp (1al)rar

(
(Cys
(a a? a?) goe (00 a?) aac (a0 a?) gac (1 aa?) rge
(a a? @) gog
(v 1) gor
(00) gaa Glu (a? 00) caa al (a @ 0) gga al (@?01) car His
(@ 0 a) gac a® 0) cac (v v 0?) gae (@ 0 a?) cac
(11 0) \ <a ’ a) e
TTA
(11) rrg
011) gar
E() 1 032) arc ¢ e (ozz 11) err Leu (0:00)a24 Lys (01 @) arg Met
(010) ars (@®10) cra (00 @) aac
(a® 1 a?) cre
(a1 a) cra
(@® a? 1) cor (0a®1) acr
(@ a? 0) coa p (111) ppr Phe (0 &® &?) acc Thr (101) par -
(a? o? o?) ceoo (11a?%) rrc (0 a®0) aca (10) rac
(a® & a) cea \ (0 &* @) acc \

2
a” 0) CGA Al"g

ala) gra 0al)agr 0a0) aga
0 a a?) agc 0 o) aca
(1 0 O) TAA g
(1 O Oé) TAG StOp
(1 (e O) TGA

10

Chapter 2

CODONS AS VECTORS

2.1 Introduction

In the previous chapter, a suitable algebraic representation was found for the
nucleotide bases: B = {04, 17 or v, ag, a*c}. In section , each DNA codon was
then written in terms of the algebraic representation of its nucleotides. For example,
codon ATG in terms of the algebraic representation of its nucleotide bases is 0la

since A, T, and G are represented by 0,1, and «, respectively.

algebraic form

ATG s01 «

To distinguish between codons and their algebraic forms, we will call the algebraic
forms p-codons. Thus, the p-codon of ATG is 0la. In section , we consider the
set of all 64 p-codons corresponding to the 64 DNA codons and show that this set
forms a vector space where the p-codons are vectors and 0, 1, «, and o? are scalars.
From section through [2.5] relevant vector space concepts are discussed in the

context of this codon vector space.
2.2 Codon Vector Space

Consider set C below whose elements are the 64 p-codons. We wish to show that
this set is a vector space. This is important because by confirming that C is indeed
a vector space, we can make use of all theory that has been developed about vector
spaces, toward our goal of developing mutation-tolerant genes. Let’s first define a

vector space.

11

000), (001), (00a), (00a?), (010), (011), (0la), (01a?),
0a0), (Oal), Oaa), Oaa?), (0a20), (0a%1), (0a?a), (0a®a?),
100), (101), (10a), (10a?), (110), (111), (11la), (11a?),
(1 a0), (1al), (1 aa), (1 a a?), (1a?0), (1a%1), (1a%a), (1a?a?),
(@00), («01), (ax0a), (a0a?), (' 10), (a11), (a1l a), (a1 a?),
(aa0), (aal), (aaa), (aaad?), (@a?0), (xa?®1l), (xa?a), (aa?a?),
(@?200), (@201), (a®0a), (@*0a?), (a®10), (a®211), (a®1a), (a®1a?),
(@®a0), (a?al), (®aa), (@®aa?), (@?a?0), (a?a®1), (a?a?a), (a®a?a?)

Definition 1. (Vector Space) A vector space V' is a set of objects (called vectors)
that can be added (+) together and multiplied (-) by scalars such that the following

axioms are satisfied for any choice of vectors w, v, and w and scalars a and b :

1. Closure. u4+weV and a-veV

2. Commutativity,. w+w=w+u

3. Additive identity. There exists a zero vector, denoted 0, in C' such that ©w+ 0 =wu

4. Multiplicative identity. 1-v=wv

5. Additive inverses. For any vector w € V, there exists —u € V such that u + (—u) =0
6. Associativity,. w4+ (v+w)=(u+v)+w and a-(b-v)=(a-b)- v

7. Distributivity. a-(u+v)=(a-u)+ (a-v) and (a+b)-u=(a-u) + (b-u)

What the definition says is that if we form a set and define a way of adding the
elements of the set and also define multiplication of the elements by some scalars
such that the addition and multiplication operations obey all the 7 axioms listed,
then we have a vector space. Thus, to demonstrate that the set of p-codons C

(with B = {0, 1, a, o} as scalars) is a vector space, we need to do two things

12

as per the definition: 1) define two operations: the addition of two p-codons and
multiplication of a p-codon by a scalar and ~ 2) show that the 7 axioms are satisfied
under those operations. We do these in sections through below. Addition
of p-codons and multiplication of p-codons by scalars are defined in terms of tuples
of length n so as to generalize to our later needs. In the context of C, we simply set

n=3.
2.2.1 Addition of p-codons.

We define the addition of p-codons a = (ay, as, ..., a,) and b = (by, bo,..., by,)
as a+b=(a;+0by, ag+ by, ..., a, +b,) where the + in a; +b; fori =1,2,...,nis

modulo 2 addition as given in addition table [I.2a]
2.2.2 Multiplication of p-codons by scalars.

We define the multiplication of a p-codon a = (a;, as, ..., a,) by a scalar A in B

as A-a = (Aaj, Aag,..., Aa,). We will sometimes write A - @ simply as Aa.
2.2.3 Proof that axioms 1 through 7 are satisfied.

Having defined addition of p-codons and scalar multiplication, we are now in a
position to show that set C satisfies axioms 1 through 7 and is thus a vector space. For
the proofs below, it is important to keep two things in mind. First, the set of scalars
B=1{0, 1, a, a?}is a field and so addition or multiplication of any members of the
set always results in another member of the set (see Table[L.2). Second, C is the set
of all 3-tuples whose 3 elements are chosen from B and so to show that some arbitrary
3-tuple (A1 Ay A3) is a member of C, we only need to show that Aj, Ay, and A3 are

elements of B.

1. Closure.

13

(a) For any p-codons v and w in C, u + w is another p-codon in C

Let w = (uy ug uz) and w = (wy we ws). Then w+w = (ug + wy ug +
wy ug + ws). Since the sum of any elements in B yields another element
in B, w; +wy, us + ws, and uz + ws are in B. We conclude that u + w

is in C, as desired.

(b) For any p-codon v in C' and scalar a in B, a - v is a p-codon in C'

Let v = (v; v3 v3). Then a - v = (av; avy avs). Since the product of any
scalars in B yields another in B, awv, avs, and avs are in B. We conclude

that a - v is in C', as desired.

2. Commutativity. For any p-codons w and w in C, u+w=w+ u

Let w = (uy ug u3z) and w = (wy wy w3). Then u+w = (ug+w; us+wy uz+
wz) and w+ v = (w; +u; we +uy ws+ uz). Addition of scalars from B is

commutative and so u; +w; = w; +u; for e =1, 2, 3. Thus, u + w = w + u.

3. Additive identity. There exists a zero p-codon, denoted 0, in C' such that for

any p-codon win C, u+0=wu

Note that 0 is a scalar in B. When a = 0 in 1(b) above, we find that there
exists a vector 0 = (0, 0, 0) in C. Let w = (u; uz uz). Then w + 0 =

(up ug uz) + (000) = (u1 +0 we+0 wuz+0)=(u; us uz) = w, as desired.

4. Multiplicative Identity. For any p-codon v in C, 1-v=w

Note that 1 is the multiplicative identity element in B. Let v = (v; vy v3).

Then 1-v=(1-v; 1-vy 1-v3)= (v vy v3) =10, as desired.

5. Additive inverses. For any p-codon u € C|, there exists an additive inverse

—u € Csuch that w 4+ (—u) = 0. Notice that each element in B has an additive

inverse which is itself because addition is done in modulo 2 : 0+ 0 = 0,

14

1+1=0, a+a=0, and a?+ o? = 0. Because addition of p-codons is
defined componentwise, for any p-codon u = (uy us u3z), w+ u= 0 and so u
is its own additive inverse. Thus, —u = —1-u = 1 - u = u. We conclude that

each p-codon in C' has an additive inverse, as required.
6. Associativity. For any w,v,w € C and a,b € B,

(a) u+ (v+w)=(u+v)+w

U+ (v4+w) = (uy ug uz) + (v1 +wiy, vo+ we, vs+ ws)
= (uy +v1 + wy, Uy + vy + wa, uz+ vs+ ws)
= (ug +v1, us+v2, ug+v3) + (w1 we ws)

=(u+v)+w

(b) a-(b-v)=(a-b)-v

a-(b-v)=a-(b-vy, b-vg, b-v3)
=(a-b-v1, a-b-vy, a-b-vs)
= (a-b)- (v vg v3)

=(a-b) v

7. Distributivity. For any w,v € C and a,b € B,

15

(a) a-(u+v)=(a-u)+(a-v)

a-(u+v)=a-(ug +vi, us + v, us+ vs)
=(a-(ug +v1), a-(uz+wv9), a-(uz+v3))
=(a-uy+a-vy, a-uy+a-ve, a-uz+a-vs)
=(a-uy, a-uy a-uz) + (a-vy, a-vy, a-v3)
=a-(up ug ug) + a- (v vy v3)

=(a-u) +(a-v)

(b) (a+b)-u=(a-u) + (b-u)

(a+0b)-u=(a+0b) (u1 uz ug)
=((@+b)-u, (@a+0b) us (a+0) us)
=(a-uy+b-uy, a-us+b-uy, a-uz+b-us)
=(a-uy, a-uy, a-uz) + (b-uy, b-us, b-uz)
=a-(u; ug ug) + b-(ug uy us)

=(a-u) + (b-u)

(step 3)

(step 3)

Step 3 in (a) and (b) above both follow from their respective step 2 due to field

axiom 6 in section [I.2] All other steps follow from the definition of p-codon

addition and multiplication of p-codons by scalars given earlier in this section.

16

Having shown that C', the set of all 64 p-codons is a vector space, we can refer to
the p-codons as vectors. We next discuss vector space concepts that are essential to
our work. In doing this, we adopt some conventions. We will write B® to mean the
set of all 3-tuples whose elements are chosen from the set of scalars B. Since the

vector space C fits this description, we will henceforth refer to it as B®. We also note

that the arguments given to show that C satisfies the vector space axioms extend

naturally to B", where n is a positive integer. Thus, B" is a vector space under

the same addition and scalar multiplication defined in sections [2.2.1| and [2.2.2| and is

defined as:

B" = {(u1,ug, ..., up) 1 u; € Bfori=1,2,...,n} (2.1)

The vector space B", where n > 3 will be needed in the next chapter and so the
discussions below are done in the general context of B". Obviously, when n = 3 we

obtain the vector space C.
2.3 Subspaces of B"

A subspace of B" is defined as any nonempty subset of B" which is itself a vector

space under the same vector addition and scalar multiplication defined on B" (given

in sections [2.2.1] and [2.2.2)). Let C' be a subset of B". To verify that C' is a subspace,

we only need to check that the closure axiom is satisfied on C'. Thus, we only need

to verify below:
For any w,v,w € C and A€ B, (a) u+veC b)) N»weC (22

To see why the closure axiom is sufficient to verify if C' is a subspace, notice that
because C is a subset of a vector space, axiomsﬂ 2,4,6, and 7 are automatically
satisfied. Also, because every vector in C'is its own additive inverse due to modulo 2
addition, axiom 5 is satisfied on C, leaving the closure (axiom 1) and additive identity
(axiom 3) axioms to be checked. The additive identity axiom requires that there be an
identity vector which when added to any vector, leaves the vector unchanged. Because
we have defined addition as componentwise, we only need show that 0 = (0,0, ...,0)

is in C to satisfy the additive identity axiom. When A = 0 in (2.2)) above, the closure

LGiven in the vector space definition (Definition i

17

axiom verifies the membership of 0 in C. Thus, any nonempty subset of B" that
satisfies the closure axiom satisfies all the vector space axioms and is a subspace.
Examples: {(0,0,0), (0,0,1), (0,0,a), (0,0,a®)} and {(0,0,0), (0,1,),

(0,a,02), (0,a2,1)} are two subspaces of B® since the closure axiom (stated in (2.2))

is satisfied on them.
2.4 Linear Combination, Span, and Linear Independence
2.4.1 Linear Combination

Let vy,va,...,v, be vectors in B". A linear combination of vq,vs,..., v is
another vector in B" of the form A\jv; + Aowa +- -+ Apvg, where A\, Ao, ..., A\, are
scalars chosen from B. For example, one linear combination of the vectors (0,1, a),
(0,0,1), and (0,1,02)in B* is 0-(0,1,a) + «-(0,0,1) + a?-(0,1,a?) = (0,a?,0),
which is another vector in B®. Another linear combination is obtained by choosing

different scalars: 1-(0,1,a) + 0-(0,0,1) + 0-(0,1,a%) = (0,1,).
2.4.2 Span

Let U = {u1,us,...,u} be a nonempty subset of B". The span of U, denoted

span(U), is the set of all linear combinations of the vectors in U.
span(U) = {\u1 + Aus + -+ + \yug © \; € B} (2.3)

For example, let U = {(1,0,1)} be a subset of B*. Then span(U) = {0-(1,0,1), 1-
(1,0,1), a-(1,0,1), a*-(1,0,1)} = {(0,0,0), (1,0,1), (,0,a), (a? 0,a?)}. We note
that span(U) = {(0,0,0), (1,0,1), (a,0,a), (a?0,a%)} is a subspace of B*. This
claim is verified by observing that the addition of any two vectors in span(U) yields
a vector in span(U) and multiplying any vector in span(U) by a scalar in B yields a

vector in span(U). Span(U) is not unique in being a subspace. In general, the span

18

of any nonempty subset of B" is a subspace. This claim is proved below.

Proof: If U is a nonempty subset of B", span(U) is a subspace.

Let U = {u1,us,...,u;} be a nonempty subset of B". Then span(U) is given in
and vectors in span(U) are of the form Ajw; + Aoug + - - - + Ayuy where \; € B.
Let x = muy + nmous +---+ mpur and y = yyuy + Yus + -+ Yur be any
two vectors in span(U).

Then x4y = (n+y)ur+ (Ne+72)ue+- - -+ (N +7%)ug. Because n;+v; € B, o+
y € span(U). Let A be any scalar in B. Then A = (Any)uq +(An2)ua+- - -+ (Anx)y
Because A\n; € B, A -« € span(U). It has been shown that the closure axiom is
satisfied on span(U). As discussed in section [2.3] this is sufficient to conclude that
span(U) is a subspace. B

Important terminology: Let U be a nonempty subset of B" and C a subspace

of B". If span(U) = C, we say that U spans C and call U a generating or span-
ning set of C. This terminology is appropriate because we can have only U and
still obtain all vectors in the subspace C' simply by forming linear combinations
of the vectors in U. Using this terminology in the context of the example given
carlier, the subset U = {(1,0,1)} of B® spans or generates the subspace C' =
{(0,0,0), (1,0,1), (o, 0,), (a?,0,0?)} since span(U) = C.

2.4.3 Linear Independence

A set of vectors from B" {uy, uo, ..., u} is linearly independent if the only choice
of scalars Ay, \o,..., Ay from B that makes Aju; + \aus + - -+ + Aguy, equal 0 is
Al = Ay =+ =) = 0. For example, {(1,0,0), (0,0,«)} is a linearly independent
set of vectors from B* because A; and A, must both be 0 in order for A; - (1,0,0) +

A2+ (0,0,a) = (0,0,0) = 0 to be true. In contrast, {(a,0,1), (1,0,a?)} is not linearly

19

independent since we can choose values for A; and Ay other than A\; = Ay = 0 such
that A\; - (1,0,0) + Xo-(0,0,a) = 0. For example, o - (1,0,0) + 1-(0,0,a) = 0.
Such a set that is not linearly independent is called linearly dependent.

Consider the subset U = {(1,0,1)} of B*. As discussed in section , U spans
the subspace C' = {(0,0,0), (1,0,1), (a,0,a), (a?0,a?)}. Thus, span(U)= C. Note
that U is linearly independent since the only A that makes A - (1,0,1) =0is A = 0.
Now consider the set V = {(1,0, 1), (a,0,), (a?,0,a?*)} which was formed by adding
two vectors, (o,0,a) and (a?,0,a?), to U. Note that V is linearly dependent since
1-(1,0,1) + 1-(a,0,a) + 1-(a?0,a?)=0. It can be checked that span(V)= C.
Thus, despite having two extra vectors, V still has the same span as U. This is
explained by the fact that V is linearly dependent. In any linearly dependent set,
there is at least one vector which is already in the span of the other vectors in the set
such that its removal does not change the span of the Setﬂ.

This illustrates an important fact which we will not formally prove: given a linearly
independent set and a linearly dependent set that both span a subspace of B", the

linearly independent set will have fewer number of vectors.
2.5 Bases and Dimension of B"
2.5.1 Bases

A basis of the vector space B" is defined as a linearly independent set that spans
B". Let W be such a basis of B". Then by definition, W spans B" and so every
vector in B" can be obtained from a linear combination of the vectors in W. Thus,
though B" has 4™ vectors, we need only keep track of the |W| vectors in the basis

W. Also, the linear independence requirement in the definition implies that || is

2This does not hold when the linearly dependent set in question is {(0,0,0)}. We could however

define span of the empty set to be {(0,0,0)} for this case.

20

the smallest number of vectors needed to span B".
Several sets of vectors that are linearly independent and span B" exist. Thus,

there are several possible sets to use as basis of B", but we will use the simplest:

w ={(1,0,...,0), (0,1,0,...,0),..., (0,...,0,1)} (2.4)
1st 2nd nth

|W| = n and each vector in W is an n-tuple. The first vector has 1 in its first position
and 0 in the other positions, the second vector has 1 in its second position and 0 in
the other positions, and so forth. Finally, the nth vector has 1 in its nth position and
0 in other positions. Next, we prove that W is indeed linearly independent and spans

B".
A (1,0,...,0)+ A2+ (0,1,0,...,0) 44X - (0,...,0,1) = (A, Aas..., An) (2.5)

The linear combination of the basis vectors is given in , where \; € B. Because
the only scalars that make (A1, Aa,..., A,) = (0,0,...,0) trueis A\ = --- =\, =0,
we conclude that is linearly independent. With the linear combination of the
vectors in W given in as (A1, A2,...,An), it is clear that by choosing \; =
U1, A2 = Ua,..., A\, = Uy, any vector (vq,vs,...,v,) in B" can be written as a linear
combination of the vectors in W. We conclude that W spans B". As such, we have
verified that is indeed a basis of B".

A Dbasis is by definition required to be linearly independent. This linear inde-
pendence requirement leads to the fact that there is a unique way of expressing
any vector v in B" as a linear combination of the basis vectors. For example,
in B3, reduces to the basis W = {(1,0,0), (0,1,0), (0,0,1)} and the only
way of expressing the vector (1, a,a?) in B? as a linear combination of the basis is
1-(1,0,0) + a-(0,1,0) + a?-(0,0,1). Though we prove this fact in the context of
our chosen basis (given in (2.4))), it holds for every other basis of B".

21

Let v € B". Assume that v can be written as two different linear combinations
of the basis vectors. Thus v = A\(1,0,...,0) + ---+ X, (0,...,0,1) and v =

- (1,0,...,0) +---4 n,-(0,...,0,1). Subtracting these two expressions results in

0=\ —m)-(1,0,...,0) +---4+ (Ap—ms)-(0,...,0,1) (2.6)
Recalling that {(1,0,...,0), (0,1,0,...,0),..., (0,...,0,1)} is a linearly indepen-
dent set, (2.6 holds only if (A —n1) = (A2 —12) = ... = (A, —n,) = 0. This implies

that Ay = n1, Ao = mo,..., A\ = 1,. We thus conclude that the two supposedly
different linear combinations are actually the same and so the expression of v as a

linear combination of the basis vectors is unique.
2.5.2 Dimension

Dimension of a vector space is defined as the number of vectors in its basis.
w ={(1,0,...,0), (0,1,0,...,0),..., (0,...,0,1)} is a basis of B". |W| = n and
so the dimension of B" is n. As mentioned earlier, several other basis of B" exist. It
can however be shown that each such basis has n vector§’] As such, the dimension
of B" is independent of which basis of B" is being considered. We will write dim(V)

to mean the dimension of some vector space V.
2.6 Orthogonal Complements

Let uw = (uy,ug,...,u,) and w = (wy,ws,...,w,) be vectors in B". The inner
product of w and w, denoted u - w, is defined as u - w = vywy + wwy + - -+ + UpLW,.
When v - w = 0 we say u and v are orthogonal to each other.

Let A be a nonempty subset of B”. The orthogonal complement of A, denoted A+,

3Proof of this statement is not given as it’s not directly relevant to our work.

22

is the set of all vectors in B" that are orthogonal to every vector in A. Mathematically,
At ={xzecB" : z-a=0forallac A} (2.7)

The orthogonal complement of any nonempty subset of B" is a subspace. We offer a
proof below. As discussed in section [2.3] the closure axiom alone is sufficient to prove

that a subset of a vector space is a subspace.

Proof: Given any nonempty subset A C B", At is a subspace.

Let u,v,w € A*, a € A, and A € B. Then (u+wv)-a=u-a+v-a =0, which
implies that (u +v) € AL, Also, (\w) - @ = M(w - a) = 0, which implies (A\w) € A*.
Because (u+wv) € At and (Mw) € At the closure axiom is satisfied and we conclude
that A+ is a subspace. B

The fact proved above will be useful to our work for the case where A is not only
a subset but also a subspace. As such, we take A as a subspace in the discussions
that follow. Being subspaces, A and A* each have a set of basis vectors and hence a
dimension. A well-known linear algebra result is that the dimensions of a subspace
plus the dimension of its orthogonal complement equals the dimension of the vector

space they are subsets of. In our case, since dim(B") =n and A, At C B”,
dim(A) + dim(A*Y) = n (2.8)

Let G and H be matrices whose rows are the basis vectors of A and A*, respec-
tively. Such matrices are called generator matrices. If dim(A) = k, G is a k xn
matrix and H is an (n — k) X n matrix. Note that G and H both have n columns
because vectors in B" are of length n. Because every vector in A is orthogonal to

every other vector in A+, the following equations hold and will be used in chapter 3.

aH” =0 for any a € A (2.9)

23

GHT =0

24

(2.10)

Chapter 3

TOLERATING SUBSTITUTION MUTATIONS

3.1 Introduction

In the previous chapter, we noted that the algebraic representations of naturally-
occurring codons form a vector space, which we denoted as B®. One vector in B? is
(0 1 «), which is the algebraic representation of ATG, which in a DNA sense strand,
represents Methionine. Consider a substitution mutation event which changes the
p-codon (0 1) to (0 a® «), which is the algebraic representation of ACG and will
ultimately be translated as Threonine, instead of the originally intended Methionine.

Due to the degeneracy of the genetic code, some substitution mutations result in
another codon that still codes for the same amino acid. Take Cysteine as an example.
In a DNA sense strand, Cysteine is coded for by both TGT (p-codon (1 « 1)) and
TGC (p-codon (1 a a?)). If the last nucleotide is mutated from C to T or T to
C, there will be no subsequent change in the resulting amino acid after translation.
Any other substitution mutation will result in a codon which codes for an unintended
amino acid.

Our goal in this chapter is to find a set of 64 ‘unnatural’ codons that are each able
to tolerate an arbitrarily chosen number of substitution mutations to any nucleotide.
That is, codons that can sustain some chosen number of mutation errors and still
guarantee that upon translation, the amino acid sequence will not differ from that
originally intended. To do this, we will employ ideas from coding theory. These ideas
sum up to building some sort of redundancy into the naturally occuring codons. As

such, the codons we develop will necessarily each have more than 3 nucleotides and

25

will be chosen from the vector space B", where n > 3. Exactly which n we will use

will be noted later. We introduce a few concepts that will be needed.
3.2 Hamming Distance and Weight
3.2.1 Hamming Distance

The Hamming distance (Hamming, 1950) between two vectors u = (uy, ua, ..., uy)
and v = (v, vg, ..., v,) in B" is the number of places where u; # v;. For example, the
Hamming distance between uw = (0 1 «) and v = (1 0 «), is 2 since they differ in
two places. We will denote the Hamming distance between u and v by d(u,v). Note
that d(u,v) can only take the values 0,1,2,...,n. Also note that d(u,v) = d(v,u).
Another important property of the Hamming distance is that it satisfies the triangle

inequalityE]. Thus, given vectors u, v, w, d(u,w) < d(u,v)+ d(v,w).
3.2.2 Hamming Weight

Let w = (uy,us, ..., u,) be some vector in B". Its Hamming weight, which we will
denote as wt(u), is the number of places where u; # 0. In other words, wt(u) =

d(u,0). For example, the weight of u = (0 1 o?) is wt(u) = 2.
3.2.3 Important Relationship between Hamming Distance and Weight

Consider vectors u and v in B" and let w = w + v. Then, for i = 1,2,...,n,
w; = 0 if and only if w; = wv; since we use base 2 addition. In other words, the
coordinates of w will be non-zero only at coordinates where u and v differ. As such,

we can find the Hamming distance between two vectors by first adding them and then

LA proof of this will not be directly relevant to our work. As such, it is not given.

26

taking the Hamming weight of the result. Mathematically, we write
d(u,v) = wt(u + v) (3.1)

The above relationship becomes very useful when we desire to find the Hamming
distance between all unique pairs of vectors in a vector space (or subspace) and report
the minimum, called the minimum Hamming distance and denoted d,,;,. Take B"
as the vector space of interest. Since B" has 4™ vectors, if we naively tried to find
dpmin(B™) without the relationship given in the previous paragraph, we will have to
find the Hamming distance between (4™ x (4™ — 1))/2 pairs of vectors and report
the minimum as d,,;,(B"). By making use of the relationship d(u,v) = wt(u + v),
we need only find the weight of each of the 4" — 1 non-zero vectors and report the

minimum as d,;,,(B"™). Thus, the claim is that given some vector space V|

where wt,,;;, (V') is the minimum of the weights of the non-zero vectors in V.

To see why is true, first note that if v; and vy are different vectors in the
vector space V', then their sum, w = v; + v3, is a non-zero vector also in V. Thus,
if we put all the vectors in V' into all possible pairs of two, say (v;, v;), where i # j,
then the sum of each pair will yield some w such that the set of all the ws will be
equal to the non-zero vectors in V. Combining this with , it follows that if we
want to find d,,;,(V'), instead of finding the Hamming distance between all possible
pairs of unique vectors and checking the minimum, we can simply check the weight
of each non-zero vector in V' and record the minimum as our d,,;,(V’) because each

non-zero vector in V' is the result of summing some two different vectors in V.

27

3.3 Tolerating ¢ Substitution Mutations per Codon

Our goal has been to find some 64 ‘unnatural’ codons to used in place of the
naturally-occurring codons in the construction of genes such that the genes are capable
of tolerating an arbitrarily chosen number of substitution mutations per codon. We
will put the p-codons of these 64 unnatural codons in a set M = {my,ma, ..., me4}.
To make use of equation , we will require that M be a subspace of B", where
n > 3. This requirement also simplifies our work greatly because as a subspace, M
is completely defined by its basis. So, we need only find the basis vectors of M. All

the other vectors can be obtained via linear combinations of the basis vectors.
3.3.1 Substitution Mutation as Vector Addition

Consider the p-codon u = (0 1 a) € B? and assume that some substitution
mutation modified v into u = (1 0 a). Since w = u+ (1 1 0), we can refer to (1 1 0)

as the mutation vector. In general, for any uw € B", if a mutation event results in

u becoming @ such that & = w + w, where w € B?, we shall call w the mutation
vector and write m(u,w) to mean the vector w that results from mutating w with

the mutation vector w. Thus,
m(u,w) =u=u+w (3.3)

We now present a theorem that is essential to finding M. It gives the restriction in
terms of Hamming distance that must be placed on the vectors in M to ensure that

they have properties (also given in the theorem) necessary to tolerate mutations.

Theorem 3.1. Let M = {m,, ma,...,mgs} be a subspace of B", where n > 3. If
Apin (M) > 2t+1, then if t or less substitution mutations occur in any codon m; € M

so that it becomes ™y, then

28

1. d(m;,m;) <t

2. m; ¢ M

3. d(my;,mj) >t for any m; € M, where m; # m,
Proof

1. Since t or less substitution mutations occurred in m;, it follows that m; and

my; differ in at most ¢ places and hence d(m;, m;) < t.

2. It takes a mutation vector of weight > 2¢ 4+ 1 to turn any codon in M into a
different codon in M since d,,;, (M) > 2t 4+ 1. Since < ¢ substitution mutations

occurred in my;, m; cannot possibly be in M.

3. We prove this by contradiction so assume that d(m;, m;) < t. We know from
1) that d(m;, m;) < t. Then, d(m;, m;) + d(m;, m;) < 2t. Using the triangle
inequality, we have that d(m;, m;) < d(m;,m;) + d(m;, m;) < 2t. This is a
contradiction, since we know that d(m;, m;) > 2t+1 because dyn (M) > 2t+1.

We conclude that d(m;, m;) > t, as desired. B

Using theorem our task of developing codons capable of tolerating t mutations
is simplified and can be stated as: find some set of vectors M = {my, my,..., meg4}
such that d;,(M) > 2t + 1. Upon finding such an M, we are guaranteed that any
mutation event with a mutation vector of weight ¢ or less that occurs in any codon
in M will result in a new codon that is none of the vectors in M but still closest
in Hamming distance to the original codon and can thus be decoded as the original
codon. We next use the concept of orthogonal complements previously discussed in

section

29

3.3.2 Finding Generator Matrices for M+ and M

Let H = [hy, ha, ..., hy,], where h; is the ith column of H, be the generator matrix
for M*. Then from equation we know that aH? = 0 for a € M. Thus, if
a = (a1,as,...,a,), ajhy + aghy + ...a,h, = 0. Let k = 2t + 1. According to
equation , dpmin (M) = k implies that wt,,;,(M) = k, which has two implications
that combine with the fact that a1h; +a2hs +. .. a,h, = 0 to tell us how to construct

H. These are discussed below:

1. wtin (M) = k implies that at least one vector in M has weight k.

Let m = (mq, ma,...,my) € M be such a vector with weight k& and let
M1, My, . .., M, be its k non-zero coordinates. Then mihy + moho + ... +
mkhk = milhil + mizhig + ...+ mzkhzk = 0. This implies that the generator

matrix H has some k columns that are linearly dependent.

2. Wiy (M) = k implies that there is no vector in M with weight & — 1.

This means there is no m € M with the k£ — 1 non-zero coordinates m;;, m;o
yooe ,mi(k_l) such that milhﬂ + mighig S mi(k_l)hi(k_l) = 0. This implies

that any k£ — 1 columns of H are linearly independent.

The two discussions above tell us how the requirement of dp;,,(M) = k on M
translates to restrictions on the generator matrix H of its orthogonal complement
M+, These restrictions tell us how to construct H: construct H such that 1) some k
columns are linearly dependent and 2) any k — 1 columns are linearly independent,
where k = 2t + 1 and t is the arbitrary number of substitution mutations we want
to tolerate per codon. Once H is constructed, we can then find the generator matrix
of M, call it G, from the equation GH? = 0, which was given in section . Note
that G completely tells us the vectors in M = {my, ma, ..., me4} since its rows are

a basis of M. The approach is demonstrated in the next section.

30

3.4 Example: Tolerating 1 Substitution Mutation per Codon

Here, we use the ideas discussed in the previous sections, particularly section |3.3.2]
to find an example set of 64 alternative codons M = {m,, may,..., Mg}, where
M C B" and n > 3, such that a gene constructed from these codons is guaranteed to
tolerate any 1 substitution mutation per CodonE|.

We know that if dyi, (M) = Wt (M) > 2t + 1, then M will have the structure
necessary for tolerating any mutation with mutation vector of weight less than or equal
to t. For our example, t = 1 and so we will form an M with d,;,,(M) = wtin(M) = 3.
Using ideas discussed in the prior section, this requires that we find GG, the generator
matrix of M, from GH' = 0 where H, the generator matrix of M+, is a matrix with
two restrictions: 1) some 3 columns are linearly dependent and 2) any 2 columns of
H are linearly independent.

As noted in section 2.6 if G has size k x n, H will have size (n — k) x n. To
find H and then G, we need to know what n and k are. M is a subspace of 64
vectors, one to ‘replace’ each naturally-occurring codon. Given that we have 4 scalars,
0,1, «, and o?, M must have 3 basis vectors so that all possible linear combinations
of the 3 basis vectors yields 64 vectors. By definition, the rows of G are the basis
vectors of M. Thus, G has k = 3 rows. We will choose the subspace M from the
vector space B® and so n = 5. This choice will be explained in the next section.
Given n = 5 and k£ = 3, G and H have sizes 3 x 5 and 2 x 5, respectively. Let’s
construct H.

Consider the set of vectors A={(1,a?), (1,a), (a,a), (1,0), (0,1)}. Since
1-(a,a)+a-(1,0)+a-(0,1) =0, (a,), (1,0) and (0, 1) are linearly dependent. Also,

one can verify that any two vectors from A are linearly independent. The vectors in

2Thus, any codon can tolerate a mutation with mutation vector of weight 1.

31

A thus satisfy the two requirements on the the column vectors of H. As such, we can

use these vectors as the column vectors of H, as shown below.

1 1 a1 0
H= (3.4)

a2 a a 01

Note that H is not unique. Any matrix of size 2 x 5 with column vectors that satisfy
the two requirements mentioned earlier can be used. Also note that the submatrix
formed from the last two columns is the 2 x 2 identity matrix I = [§$]. This choice
was made so we could make use of the fact that if H = [P | I,,_|, where I,,_j is the
n — k x n — k identity matrix, then G = [I}, | PT] satisfies GH” = 0. Using this fact

and H given in equation (3.4)), we have G as:

1 001 o2
G=10101 a (3.5)
0 01 aa «
The rows of G form a basis of the set M = {m,, ma, ..., mgs}. Thus, every m; € M

can be obtained from a linear combination of the form m; = A; - (1,0,0,1,a%) + Xo-
(0,1,0,1,«0) + A3-(0,0,1,,), where \; are scalars. This linear combination can

be written as the matrix multiplication given below:

m; — ()\1,)\2,)\3) . G (36)

Thus, G maps each vector (A1, A2, \3) € B? uniquely to a vector (wy, ws, w3, wy,ws) €

M. In essence, G tells us which unnatural codon of length 5 to use in place of each

naturally-occuring codon of length 3 such that genes constructed from the unnatural

32

codons can tolerate up to one substitution mutation per codon. For example, the p-
codon of ATGis (01). (01a)-G = (01« 1), which is the p-codon for ATGGT. We
will thus use the synthetic codon ATGGT in place of ATG. Table [3.1] shows results
from evaluating equation for all p-codons of the naturally occuring codons.
It shows how all 64 naturally-occuring codons should be mapped to the mutation-
tolerant (mutol) codons of length 5 in set M such that genes constructed from the
mutol codons will be tolerant of up to one substitution mutation per codon. Since we
represented both thymine and uracil with scalar 1 as outlined in table T in the
codons column of table can simply be replaced with U to get the corresponding
RNA codons.

Three observations can be made about the 5-letter codons in table B.1] we claim
will confer mutation-tolerance upon genes constructed from them: 1) each of the
5-letter unnatural codons can have any 1 of its nucleotides replaced with any other
nucleotide without turning into any of the other 63 codons. 2) upon substituting
any 1 nucleotide in any of the 5-letter codons, the resulting 5-letter codon is still most
similar to the originally intended codon in terms of Hamming Distance. 3) any 1
nucleotide substitution in any of the 5-letter codons results in a 5-letter codon that
is not in Table |3.1] These observations are desirable and are simply consequences of
theorem for the case t = 1. Observation 3 however poses a challenge, which is

addressed in the next section.

33

Table 3.1: Mapping to Alternative Codons

p-codons DNA Codons

000) 0000 0) AAA AAAAA
001) 001aa) AAT AATGG
00 a) (00 a a® a?) AAG AAGCC
00 a?) 00a211) AAC AACTT
010) 0101 a) ATA ATATG
011) (011a20) ATT ATTCA
01a) 0laal) ATG ATGGT
01 a?) (01 a0 a?) ATC ATCAC
) (0a0aad® AGA AGAGC

) 0a101) AGT AGTAT

) (0aal0) AGG AGGTA

2) (0 a a® a® a) AGC AGCCG

0) (0a®0a1) ACA ACACT
0a1) (0a%11a ACT ACTTC
0 a? a) (0a%a0a) ACG ACGAG
0 a® a?) (0 a® a® a 0) ACC ACCGA
00) (1001 a?) TAA TAATC
101) (101a21) TAT TATCT
10a) (10aa0) TAG TAGGA
10 a?) (10a?0a) TAC TACAG
110) (11001) TTA TTAAT
111) (111aa? TTT TTTGC

34

Table 3.1: Mapping to Alternative Codons

p-codons DNA Codons

) (11aa?a) TTG TTGCC
2) (11a210) TTC TTCTA
) (1a0a20) TGA TGACA
) (lalla) TGT TGTTG
) (laa0a TGG TGGAC
2) (laa®al) TGC TGOGT
0) (1a20aa) TCA TCAGG
1) (1a2100) TCT TCTAA
a) (1a®al1) TCG TCGTT
242) (1a?a?a? a?) TCC TCCCC
) (@00al) CAA GAAGT
) (@010 a?) GAT GATAC
) (@0ala) GAG GAGTG
2 (40 aa?0) GAC GACCA
) (a10aa?) GTA GTACC
) (@1111) GTT GTTTT
) (a1a00) QTG GTGAA
2) (ala®aa) GTC GTCGC
) (@a00a) GGA GGAAC
) (aala0) GGT GGTGA
) (@aaal) GGG GGGCT
2 (aaa’la GGC GGCTC
a a® 0) (@a*010) GCA GCATA

35

Table 3.1: Mapping to Alternative Codons

p-codons DNA Codons

1) (aa®1a? a) GCT GCTCG
a) (a a® a a a?) GCG GCGGC
a?) (@a®a®01) GCC GCCAT
0) (a*> 00 a? a) CAA CAACG
1) (@20110) CAT CATTA
0a) (a>0a01) CAG CAGAT
a®) (a® 0 a* a a?) CAC CACGC
0) (a210a0) CTA CTAGA
1) (a>110a) CTT CTTAG
a) (a®*1ala? CTG CTGTC
a®) (a®*1a*a*1) CTC CTCCT
0) (@a011) CGA CCGATT
1) (a* a1 a?® a?) CGT CGTCC
a) (a* a a a a) CGG CGGGG
a?) (a*> a a®> 0 0) CGC CGCAA
0) (a®*a*00a? CCA CCAAC

1) (a*a®*1al) CCT CCTGT

a) (a* a* a a® 0) CCG CCGCA
a’a?) (a* a*a*1a) CCC CCCTG

36

3.4.1 Codon Degeneracy

We first demonstrate observation 3 made in the previous section. Let & =
ATGGT, which is the 5-letter mutation-tolerant variant of the naturally-occuring
codon ATG. Assume a mutation event that substitutes the third nucleotide of x,
guanine, with adenine. The resulting codon will be z=ATAGT. We can confirm that
ATAGT is indeed not one of the 64 5-letter codons given in table This is also
true of any 5-letter codon which results from a 1 nucleotide substitution mutation of
any of the other 63 codons.

This poses the following challenge. Assume we have a gene, call it K, constructed
using the mutation-tolerant 5-letter codons given in table [3.1] and artificial tRNAs
that recognize the 64 corresponding 5-letter RNA codons. Further assume that some
1 nucleotide substitution has occurred in a codon @ of K to become . We know that
@ is not in table [3.1, Thus, the translation of gene K cannot progress beyond the
RNA equivalent of codon @ since its pattern is not one of the 64 patterns recognized
by the the artificial tRNAs. In fact, there will be 4°> — 64 RNA codons not recognized
by the artificial tRNAs.

The solution is obvious. We ought to have artificial tRNAs that recognize RNA
codons beyond those for the 64 5-letter codons given in [3.1] For example, instead of
having an artificial tRNA decode only AUGGU as methionine (the amino acid coded
for by the naturally-occurring AUG) we will have several artificial tRNAs that decode
several bH-letter RNA codons, including the ‘original’ AUGGU, as methionine. Our
approach to doing that is as follows.

As discussed in section, nucleotide substitutions can be described as the addition
of a mutation vector to a p-codon. As such, being tolerant of single nucleotide substi-

tutions means that the 5-letter codons in table|3.1| tolerate any mutation event whose

37

mutation vector is one of the rows [Flin Z below.

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
00 1 0 0
00 0 1 0
0 0 0 0 1
a 0 0 0 0
710 a 0 0 0 (3.7)
0 0 a 0 O
00 0 a 0
00 0 0 «
a2 0 0 0 0
00 a2 0 0 0
0 0 a2 0 0
0 0 0 a® 0
0 0 0 0 o

Using this fact, given any 5-letter codon a from table our approach to deciding
which 5-letter codons to decode in the same manner as « is as follows: add the p-codon
of x to each row of Z, then have artificial tRNAs that decode all resulting codons as
you would x. Combining this approach with equation , we give equation
which takes as input the p-codon (A1, A2, A3) of a naturally-occurring 3-letter codon
and yields K, a 16 x 1 matrix whose rows are p-codons of 16 5—letter codons where
the first codon is the mutation-tolerant codon to be used in place of the naturally-

occurring 3-letter codon in the construction of a gene and all 16 5-letter codons are

3The zero mutation vector leads to a silent mutation but is added to facilitate use of Z in a latter

equation.

38

to be decoded by artificial tRNAs during translation as the 3-letter codon would be

in the natural genetic code.

K = @16[()\1)\2)\3) . G] -+ Z

where ©,[i] = [i, 4,..., "
N —

n times

Take codon ATG as an example. In a DNA sense strand, it codes for methionine.
Its p-codon is (01cr). Using equation (3.8), K = [(0laal), (1laal), (00cal),
(01a2al), (01aa?1), (0laa0), (alaal), (0a?aal), (010al), (01a01), (0laca?),
(a*1aal), (Oaaal), (011al), (01all), (0laca)]¥. The first p-codon in K is
(0lal). In nucleotide terms, it is ATGGT. Thus, in ‘converting’ a naturally-
occurring gene to its mutol variant, codon ATGGT should be used in place of ATG.
Also, we ought to have artificial tRNAs that recognize and decode all 16 5-letter
codons corresponding to the p-codons in K (given below) as ATG would naturally

be decoded — methionine.

ATGGT(OlOzal) ATGCT(Olaa2 1) ATAGT(OIOOA) AGGGT(Oaaal)
TTGGT(llaal) ATGGA(OlaaO) ATGAT(OlaOI) ATTGT(Ollal)
AAGGT(UO(MXI) GTGGT(alaal) ATGGC(OIO(O{OCQ) ATGTT(Olall)

ATCGT(OIQ2Q1) ACGGT(OQQQQU CTGGT(oﬂlaal) ATGGG(Olaaa)

Just as we did above for codon ATG, equation (3.8)) has been evaluated for all 64

3-letter codons and the results are given in Appendix A in table [A.]]

39

3.4.2 Demonstration of Mutation-Tolerance Capability

Here, we simulate random substitution mutations in both a wild type GFP gene
(NCBI Reference Sequence: NC_011521.1) and its mutol variant to demonstrate the
superior mutation-tolerance of the mutol variant. By mutol variantl], we mean the
DNA sequence obtained by replacing the naturally occurring 3-letter codons with the
5-letter codons we constructed. In Table below, the top sequence in each row is
the wild type GFP DNA sequence. The middle sequence on each row is the DNA
sequence of the mutol variant with each 5-letter codon right below its corresponding
3-letter codon. As previously mentioned, the underlying assumption is that there
exists some synthetic tRNAs capable of ‘reading’ these 5-letter codons. The bottom
sequence in each row also indicates the amino acid coded for by the codons. The first

and last codon in each row are numbered for ease of reference.

We randomly selected 20 same-numbered codons from the wild type GFP DNA
and its mutol variant. For each of these codons, we randomly substituted one of its
nucleotides. We then noted the amino acids coded for by the post-mutation codons in
both the wild type and the mutol variant. The results for each of 20 mutated codons
in both sequences are given in table [3.4, The columns named “Mutation” have a
syntax of the form X — Y, which simply means the original codon was X and became
Y after the mutation. The same syntax is used in the columns named “Translation”,
where the amino acid on the left of the arrow is the originally intended amino acid
and the amino acid on the right is the amino acid coded for by the mutated codon.
From the table, we see that only codon number 25 and codon number 167 in the
wild type sequence still coded for the original amino acid post-mutation. In contrast,
all 20 codons that were mutated in the mutol variant still coded for the originally

intended amino acid post-mutation.

4Mutol variant as in mutation-tolerant variant

40

Table 3.3: GFP DNA Sequence and Its Mutol Variant

5 ATG! AGT AAA GGA GAA GAA CTT 7
5 ATGCT AGTAT AAAAA GGAAG GAAGT GAAGT CTTAG
M S K G E E L
TTC 8 ACT GGA GTT GTC CCA ATT 4
TTCTA ACTTC GGAAG GTTTT GTCGG CCAAC ATTCA
F T G v v P I
CcTT 1° GTT GAA TTA GAT GGT GAT %!
CTTAG GTTTT GAAGT TTAAT GATAC GGTGA GATAC
L AV E L D G D
GTT 22 AAT GGG CAC AAA TTT TCT 28
GTTTT AATGG GGGCT CACGC AAAAA TTTGC TCTAA
v N G H K F S
GTC % AGT GGA GAG GGT GAA GGT %
GTCGG AGTAT GGAAG GAGTG GGTGA GAAGT GGTGA
\Y4 S G E G E G
GAT 36 GCA ACA TAC GGA AAA CTT 42
GATAC GCATA ACACT TACAG GGAAG AAAAA CTTAG
D A T Y G K L
ACC #3 CTT AAA TTT ATT TGC ACT #°
ACCGA CTTAG AAAAA TTTGC ATTCA TGCGT ACTTC
T L K F I C T
ACT 20 GGA AAA CTA CCT GTT CCA 28
ACTTC GGAAG AAAAA CTAGA CCTGT GTTTT CCAAC
T G K L P v P
TGG °7 CCA ACA CTT GTC ACT ACT %
TGGAC CCAAC ACACT CTTAG GTCGG ACTTC ACTTC
W P T L v T T
TTC % GGT TAT GGT GTT CAA TGC ™
TTCTA GGTGA TATCT GGTGA GTTTT CAACG TGCGT
F G Y G \Y4 Q C
TTT ™ GCG AGA TAC CCA GAT CAT 77
TTTGC GCGGC AGAGC TACAG CCAAC GATAC CATTA
F A R Y P D H
ATG ™8 AAA CAG CAT GAC TTT TTC 8
ATGGT AAAAA CAGAT CATTA GACCA TTTGC TTCTA
M K Q H D F F

41

Table 3.3: GFP DNA Sequence and Its Mutol Variant

AAG ¥ AGT GCC ATG CCT GAA GaT ™
AAGCC AGTAT GCCAT ATGGT CCTGT GAAGT GGTGA
K S A M P E G
TAT 22 GTA CAG GAA AGA ACT ATA 98
TATCT GTACC CAGAT GAAGT AGAGC ACTTC ATATG
Y v Q E R T I
TTT % TTC AAA GAT GAC GGG AAC 19°
TTTGC TTCTA AAAAA GATAC GACCA GGGCT AACTT
F F K D D G N
TAC 106 AAG ACA CGT GCT GAA GTC 12
TACAG AAGCC ACACT CGTCC GCTCG GAAGT GTCGG
Y K T R A E \Y%
AAG 13 TTT GAA GGT GAT ACC cTT '
AAGCC TTTGC GAAGT GGTGA GATAC ACCGA CTTAG
K F E G D T L
GTT 120 AAT AGA ATC GAG TTA AAA 126
GTTTT AATGG AGAGC ATCAC GAGTG TTAAT AAAAA
\Y4 N R I E L K
GGT %7 ATT GAT TTT AAA GAA GAT 133
GGTGA ATTCA GATAC TTTGC AAAAA GAAGT GATAC
G I D F K E D
GGA 13 AAC ATT CTT GGA CAC AAA 10
GGAAG AACTT ATTCA CTTAG GGAAG CACGC AAAAA
G N I L G H K
TTG 4 GAA TAC AAC TAT AAC TCA 47
TTGCG GAAGT TACAG AACTT TATCT AACTT TCAGG
L E Y N Y N S
CAC '8 AAT GTA TAC ATC ATG GCA 154
CACGC AATGG GTACC TACAG ATCAC ATGGT GCATA
H N v Y I M A
GAC 1% AAA CAA AAG AAT GGA ATC 6!
GACCA AAAAA CAACG AAGCC AATGG GGAAG ATCAC
D K Q K N G I
AAA 162 GTT AAC TTC AAA ATT AGA 168
AAAAA GTTTT AACTT TTCTA AAAAA ATTCA AGAGC
K AV N F K I R

42

Table 3.3: GFP DNA Sequence and Its Mutol Variant

CAC 169 AAC ATT GAA GAT GGA AGC 17
CACGC AACTT ATTCA GAAGT GATAC GGAAG AGCCG
H N I E D G S
GTT ¢ CAA CTA GCA GAC CAT TAT '82
GTTTT CAACG CTAGA GCATA GACCA CATTA TATCT
\Y% Q L A D H Y
CAA 183 CAA AAT ACT CCA ATT GGC ¥
CAACG CAACG AATGG ACTTC CCAAC ATTCA GGCTC
Q Q N T P I G
GAT 10 GGC CCT GTC CTT TTA CCA 196
GATAC GGCTC CCTGT GTCGG CTTAG TTAAT CCAAC
D G P v L L P
GAC 197 AAC CAT TAC CTG TCC ACA 293
GACCA AACTT CATTA TACAG CTGTC TCCCC ACACT
D N H Y L S T
CAA 204 TCT GCC CTT TCG AAA GAT 210
CAACG TCTAA GCCAT CTTAG TCGTT AAAAA GATAC
Q S A L S K D
ccoc 2! AAC GAA AAG AGA GAC CAC 217
CCCTG AACTT GAAGT AAGCC AGAGC GACCA CACGC
P N E K R D H
ATG 218 GTC CTT CTT GAG TTT GTA 224
ATGGT GTCGG CTTAG CTTAG GAGTG TTTGC GTACC
M v L L E F v
ACA 2% GCT GCT GGG ATT ACA CAT 23!
ACACT GCTCG GCTCG GGGCT ATTCA ACACT CATTA
T A A G I T H
GGC 232 ATG GAT GAA CTA TAC AAA 238
GGCTC ATGGT GATAC GAAGT CTAGA TACAG AAAAA
G M D E L Y K
TAA 239 3/
TAATC 3

Stop

43

Wildtype GFP

Mutol Variant

Codon No. Mutation Translation Mutation Translation
10 GGA — GCA G—A GGAAG — GCAAG G—-G
13 CCA — GCA P— A CCAAC — CCAAG P—P
15 CTT — GTT L—-V CTTAG — CCTAG L—-L
18 TTA — GTA L—-V TTAAT — TTAGT L—-L
19 GAT — CAT D—H GATAC — AATAC D—D
23 AAT — AAA N — K AATGG — AATGT N — N
25 CAC — CAT H—-H CACGC — CACAC H—-H
39 TAC — TTC Y- F TACAG — TCCAG Y=Y
55 GTT — ATT V =1 GTTTT — GCTTT V-V
83 TTT — TAT F—-Y TTTGC — TTGGC F—-F
94 CAG — CAC Q—H CAGAT — CAGCT Q—Q
102 GAT — GTT D—V GATAC — GCTAC D—D
108 ACA — ATA T =1 ACACT — ACAGT T—T
112 GTC — GCC V- A GTCGG — TTCGG V=V
130 TTT — ATT F—1 TTTGC — TATGC F—F
138 GGA — TGA | G — Stop | GGAAG — GGGAG G—-G
150 GTA — GGA V-G GTACC — GTACA V-V
167 ATT — ATA I =1 ATTCA — AGTCA I =1
211 CCC — ACC P—-T CCCTG — CTCTG P—P
233 ATG — ATA M—1 ATGGT — ATTGT M—-M

Table 3.4: Mutation Simulation Results

44

REFERENCES

Axler, S., Linear Algebra Done Right (Springer, 2007).

Hamming, R. W., “Error detecting and error correcting codes”, Bell System Technical
Journal 29, 2, 147160 (1950).

Lin, S. and D. J. Costello, Error control coding: fundamentals and applications
(Prentice-Hall, 1983).

Ling, S., Coding theory : a first course (Cambridge University Press, Cambridge, UK
New York, 2004).

45

APPENDIX A

3-LETTER CODONS TO 5-LETTER CODONS

46

Table A.1: Degeneracy Mapping

AAAAA (90000) AAATA o010 AAGAA 90a00) ACAAA (042000
AAA TAAAA (10000) AAAAT goo01) AAAGA (00040 AACAA (004200
(000) ATAAA (01000) GAAAA (40000) AAAAG (000a) AAACA (090420)
AATAA (00100 AGAAA (94000) CAAAA (420000 AAAAC (0000a2)
AATGG 0o1aa) AATCG(go142a) AACGG(g0a2qa) ACTGG(0a214a)
AAT TATGG (1014a) AATGC (go1442) AATAG (9010q) AAGGG (0paaa)
(001) | ATTGG(o1100) GATGG(apraa) ~ AATGA(gora) AATTG(o0110)
AAAGG(000aa) AGTGG (pa1aa) CATGG (42014a) AATGT go1q1)
AAGCC(00gazary AAGGC(0aaary AAACC(gonazary ACGCC(ogzaazary
AAG TAGCC(10aa2a2) AAGCG(00aaza) AAGTCgoa1a2) AATCC (0o1a242)
(00a) ATGCC(140202) GAGCC(a0ua2az) AAGCT(goaaz1y AAGAC(00a0a2)
AACCC(gpazazazy AGGCC(gaaa2a?) CAGCC(420aa2a2) AAGCA (goaaz0)
AACTT (goa211) AACAT (goazo1) AATTT go111) ACCTT (gazq211)
AAC TACTT (104211) AACTA goaz10) AACCT (goa2a21y AAATT (goo11)
(00a%) | ATCTT(g1a211) GACTT(apa211) AACTC(gpa21a2) AACGT (004241
AAGTT (0ga11) AGCTT (gaaz11) CACTT 4200211y AACTG(goa21a)
ATATG 0101a) ATAAG (9100a) ATGTG01410) AGATG (04010)
ATA TTATG11010a) ATATC 010142) ATACG (010424) ATCTG(01421a)
(010) AAATG (g001a) GTATG (41010) ATATA (1010) ATAGG (0104a)
ATTTG (0111a) ACATG(04201a) CTATG (421010) ATATT (g1011)
ATTCA (011420) ATTGA (01140 ATCCA (1024200 AGTCA (0a1420)
ATT TTTCA (111420 ATTCT (011421 ATTTA (01110 ATGCA (914420
(011) | AATCA(o1a20) GTTCA(u11020) ATTCG (o11420) ATTAA (01100
ATACA (010420 ACTCA (9a21420) CTTCA(a211a200 ATTCC(011a242)
ATGGT (p14a1) ATGCT (014421) ATAGT (010a1) AGGGT gaqa1)
ATG TTGGT (114a1) ATGGA (014a0) ATGAT (01401) ATTGT 01141
(0la) AAGGT o) GTGGT (410a1) ATGGC(o1aaaz) ATGTT (01011
ATCGT g1y ACGGT(0n20a) CTGGT (w2100 ATGGG(01000)

47

Table A.1: Degeneracy Mapping

ATCAC(p1420a2) ATCTC(p1a2142) ATTAC 911042) AGCAC (paaz0a2)
ATC | TTCAC(1a00n ATCAG(ora20 ATCGCroraear) ATAAC(p10002)
(016%) | AACAC(0pa2002) GTCAC(12002) ATCAT (g10201) ATCCC 1024242
ATGAC 0140a2) ACCAC(ga242002) CTCAC(a21a2042) ATCAA (914200)
AGAGC (ga0aa2) AGACC gq0a242) AGGGC(0gaaa?) ATAGC (010442)
AGA TGAGC (140aa2) AGAGG (040aa) AGAAC (0a00a2) AGCGC (aazaaz)
(0a0) | ACAGC(ga200a2) GCGAGC(agoaazy AGAGT (ga0a1) AGATC 40102
AGTGC (ga14a2) AAAGC(gp0aa2) CGAGC(4200a02) AGAGA (040a0)
AGTAT (ga101) AGTTT (ga111) AGCAT (04q201) ATTAT (1101
AGT TGTAT (14101 AGTAA (94100 AGTGT (pa1a1) AGGAT (04401)
(Oal) ACTAT (42101 GGTAT (4a101) AGTAC (04100) AGTCT (ga1421)
AGAAT (ga001) AATAT go101) CGTAT (424101) AGTAG (0a10q)
AGGTA (04q10) AGGAA (04q00) AGATA (04010) ATGTA (01410)
AGG TGGTA (14410 AGGTT (gaa11) AGGCA (04aa20) AGTTA (ga110)
(0aa) | ACGTA(gaza10) GGGTA(gga10) AGGTG(ggare) AGGGA (gaaa0)
AGCTA (gaa210) AAGTA goa10) CGGTA (424a10) AGGTC gaa1a2)
AGCCG(0aaza2a) AGCGG(0aa24a) AGTCG 0a142a) ATCCG 0142a24)
AGC TGCCG(1aa2a2a) AGCCC(ua2a2a2) AGCTG(0aa21a) AGACG (0a0a2a)
(0aa®) | ACCCG(oa2a2020) GGOCC(agaraza)y ACGCCA(uazaz0) AGCAG (0ga20a)
AGGCG (04aa2a) AACCG (0pazaza) CGCCG(a2qa2a2a) AGCCT (guazq21)
ACACT(0g20021) ACAGT(gu20a1) ACGCT(og20021) AAACT (gg0a21)
ACA TCACT (1420a21) ACACA (0420420) ACATT (gq2011) ACCCT (g4242421)
(0a°0) | AGACT(oaoaz1) GCACT(g20021) ACACC(oa2007a7) ACAAT (ga2001)
ACTCT(ga21a21) ATACT (g10421) CCACT (a2420a21) ACACG (0a20a2a)
ACTTC(ga21142) ACTAC(0421042) ACCTC(ga2a2142) AATTC(go11a2)
ACT TCTTC(1a211a2) ACTTG(0a211a) ACTCC(pa21a242) ACGTC(pazq1a2)
(0a°1) | AGTTC(oui1azy GCTTC(aa211a2) ACTTT(ow2111) ACTGC(0g21002)
ACATC gaz201a2) ATTTC(0111a2) CCTTC(42421142) ACTTA (ga2110)

48

Table A.1: Degeneracy Mapping

ACGAG (0a24a0a) ACGTG(0a2q1q) ACAAG (042000) AAGAG (gpa0a)
ACG | TCGAG(era0e) ACGAC(ezaney ACGGG(gtansy ACTAG (002100
(0a*a) | AGGAG (0aa0a) GOGAG (4a2a0a) ACGAA(u2a00) ACGCG (0a2aaza)
ACCAG(0a2a20a) ATGAG (01404) CCGAG(a242q0a) ACGAT (042401)
ACCGA (042a2a0) ACCCA(a2a2a20) ACTGA (042140 AACGA (904240
ACC TCCGA(142a2a0) ACCGT (0a24241) ACCAA(gazaz00) ACAGA (042040
(06%a?) | AGCGA(gurar) ~ GCOCA(uarazay ACCGG(gzazan) ACCTA(guze210)
ACGGA (9azaa0) ATCGA (014240 CCCGA (4242a240) ACCGC(ga242aa2)
TAATC(100142) TAAAC (100042) TAGTC(10a142) TCATC14201a2)
TAA AAATC 000142) TAATG (1001a) TAACC (1004242) TACTC(1042142)
(100) TTATC (110142) CAATC (4200142) TAATT (10011 TAAGC (100002)
TATTC(o11ary TGATC(aoraz) GAATC(aoorazy TAATA(10010)
TATCT (101421) TATGT (101a1) TACCT (1042421) TCTCT (1421a21)
TAT AATCT (go1a21) TATCA (101420 TATTT (10111) TAGCT (104a21)
(101) TTTCT(111421) CATCT (4201421 TATCC 1014242y TATAT (10101
TAACT (100421) TGTCT (1a1a21) GATCT (q01421) TATCG(101424)
TAGGA (104a0) TAGCA (104420) TAAGA (10040) TCGGA (142aa0)
TAG AAGGA goaa0) TAGGT (104a1) TAGAA (10400) TATGA (10140)
(10a) TTGGA (114a0) CAGGA (4204a0) TAGGG (100aa) TAGTA (10410
TACGA (104240) TGGGA (14440 GAGGA (40440 TAGGC(1044a2)
TACAG (10a20q) TACTG (10a214) TATAG(1010a) TCCAG(142420a)
TAC AACAG (00420a) TACAC (10420a2) TACGG (10a2aa) TAAAG (1000a)
(106*) | TTCAG(14200) CACAG(a200200) TACAA(100200) TACCG (100224
TAGAG (10a0a) TGCAG(1aa20a) GACAG (404200 TACAT (104201)
TTAAT (11001) TTATT(11011) TTGAT (11001) TGAAT (14001,
TTA ATAAT (01001) TTAAA (11000) TTAGT (110a1) TTCAT (114201)
(110) TAAAT (10001) CTAAT (421001 TTAAC (11002) TTACT (110421)
TTTAT (11101) TCAAT (142001) GTAAT (41001) TTAAG (11004)

49

Table A.1: Degeneracy Mapping

TTTGC(111442) TTTCC(111a242) TTCGC1142402) TGTGC(1414a2)
TTT ATTGC 0114a2) TTTGG(1114a) TTTAC(1110a2) TTGGC(1144a2)
(111) TATGC(101002) CTTGC(s211002) TTTGT(11101) TTTTC(111102)
TTAGC (110aa2) TCTGC1a214a2) GTTGC (a114a2) TTTGA (11140
TTGCG (11442q) TTGGG(114aq) TTACG (11042q) TGGCG(1a4a2q)
TTG ATGCG (01aa2q) TTGCC(114a242) TTGTG(11a1a) TTTCG(111424)
(11a) | TAGCG(0aa2a) CTGCG(a21a020) TTGCA(10a20) TTGAC(11400)
TTCCG(11a242a) TCGCG(1424a2a) GTGCG (414a2a) TTGCT (114a21)
TTCTA (114210) TTCAA (114200 TTTTA (11110) TGCTA (144210
TTC ATCTA (014210 TTCTT (114211) TTCCA (1142420 TTATA (11010
(116) | TACTA (104210 CTCTA(p210210) TTCTG(1a21a) TTCGA (110240
TTGTA (11410) TCCTA (1424210) GTCTA (414210 TTCTC(1142142)
TGACA (1a0420) TGAGA (140a0) TGGCA (1aaa20) TTACA (110420)
TGA AGACA (9a0a20) TGACT (140a21) TGATA (14010 TGCCA (1442420
(1a0) | TCACA(1a20020) CGACA(s2a0020) TGACG(100a2a) TGAAA (10000)
TGTCA (141420 TAACA (100420) GGACA (440420 TGACC (140a242)
TGTTG(1411a) TGTAG(14104) TGCTG (14421a) TTTTG11114)
TGT AGTTG(0a11a) TGTTC(1a1142) TGTCG (141424) TGGTG(14a1a)
(lal) | TCTTGuar11a) CGTTG(a2a11ay TGTTA(a110) TGTGG (1a140)
TGATG (1 q010) TATTG (10110 GGTTGgarra) TGTTT(1011)
TGGAC(14a0a2) TGGTC(14a142) TGAAC(1400a2) TTGAC(114042)
TGG AGGAC (gaa0a2) TGGAG(1440a) TGGGC (144402 TGTAC (1410a2)
(laa) TCCGAC(142a002) CGCGAC(4200002) TGGAT (10001 TGGCClia0a242)
TGCAC(1402002) TAGAC(104042) GGGAC (444042 TGGAA (14400
TGCGT (144241) TGCCT (14a2a21) TGTGT (14141) TTCGT (1142a1)
TGC AGCGT gga2a1) TGCGA (14a2a0) TGCAT (144201) TGAGT (140a1)
(1aa®) | TCCCT (1420201 CCCCT(e20a2a1) TGCGC(ragrae>y TGCTT(1ag21)
TGGGT (144a1) TACGT (1042a1) GGCGT (gaa2a1) TGCGG (1442aa)

20

Table A.1: Degeneracy Mapping

TCAGG(1420aa) TCACG(142042a) TCGGG (142aaa) TAAGG(1004q)
TCA | ACAGG(a200e) TCAGC(a20aez) TCAAG(a200 — TCCGG (1a2aan)
(1620) | TGAGG(aoas) CCAGG(s20200a) TCAGA(1a2000) TCATG (102010
TCTGG(1421aa) TTAGG (1104q) GCAGG (4420aa) TCAGT (142041)
TCTAA (142100 TCTTA (142110 TCCAA (1424200) TATAA (10100)
TCT ACTAA (042100) TCTAT (142101) TCTGA (142140 TCGAA (1a2400)
(1a*1) | TGTAA (14100 CCTAA (4242100) TCTAG (14210a) TCTCA (1421420)
TCAAA (142000 TTTAA (11100 GCTAA (4a2100) TCTAC(1421042)
TCGTT (1a2a11) TCGAT (142401) TCATT (142011) TAGTT (10a11)
TCG ACGTT gaza11) TCGTA(142410) TCGCT (142aa21) TCTTT (142111)
(1a*a) | TGGTT(1ga11) CCCTT(g202a11) TCGTCara1ary TCGGT (102ga1)
TCCTT 120011y TTGTT (11011 GCGTT gqzarr) TCOTG (142010)
TCCCC(1a242a242) TCCGC(1a242q02) TCTCC(14214242) TACCC(10a24242)
TCC ACCCC(ga2qa2a2q2) TCCCG1a24242a) TCCTC(1a2a21a2) TCACC(14204242)
(16%6%) | TGCCC(ag20202) CCCCC(u202020202) TCCCT(1202021) TCCAC (1020202
TCGCC142aa2q2) TTCCC(11a24242) GCCCCaaza2a2a2) TCCCA (14242420)
GAAGT (40041) GAACT (400a21) GAGGT (40aa1) GCAGT (4a20a1)
GAA CAAGT (4200a1) GAAGA (400a0) GAAAT (40001) GACGT (q0a2a1)
(a00) GTAGT (41041 AAAGT (go0a1) GAAGC(400aa2) GAATT (40011
GATGT (401a1) GGAGT (440a1) TAAGT (100a1) GAAGG (a00aa)
GATAC 4010a2) GATTC 4011a2) GACAC(40a2042) GCTAC(4a210a2)
GAT CATAC (42010a2) GATAG (4010a) GATGC(q01aa2) GAGAC (4040a2)
(a01) GTTAC (411002) AATAC 01002) GATAT (40101 GATCC (4010242
GAAAC (4000a2) GGTAC (441042) TATAC (101042) GATAA (40100)
GAGTG(40a1a) GAGAG (40a00) GAATG (40010) GCGTG(qa2a1a)
GAG CAGTG (420410 GAGTC(q0a1a2) GAGCG (404a2a) GATTG (4011a)
(ala) GTGTGC (4101a) AAGTG (goa1a) GAGTA (40a10) GAGGC (40aaa)
GACTG(q0421a) GGGTG(aaa1a) TAGTG1041a) GAGTT (40a11)

o1

Table A.1: Degeneracy Mapping

GACCA (4002420 GACGA (404240) GATCA (401420 GCCCA (4a242a20)
GAC CACCA (420424200 GACCT (q042421) GACTA (404210) GAACA (400420)
(a0a®) | GTCCA(g1a2020) AACCA(pa2a20) GACCG(apa2ara) GACAA (m0a200)
GAGCA (40aa20) GGCCAuaazaz0) TACCA(10424200 GACCC(q042a242)
GTACC(410a242) GTAGC(4104a2) GTGCC(a1aa202) GGACC(qa0a2a2)
GTA CTACC(a210a242) GTACG(410420a) GTATC (410142 GTCCC(a1a2a242)
(a10) GAACC 000242y ATACC (0104242 GTACT (410421) GTAAC (410042
GTTCC(a11a2q2) GCACC(4420a2a2) TTACC(110a242) GTACA (410420)
GTTTT (q1111) GTTAT (41101 GTCTT (q1a211) GGTTT (4a111)
GTT CTTTT(¢121111) GTTTA(alllO) GTTCT(anazl) GTGTT(alall)
(all) GATTT (q0111) ATTTT (01111 GTTTC(11a2) GTTGT(a11a1)
GTATT (41011 GCTTT (qaz111) TTTTT 11111) GTTTG(a111a)
GTGAA (41400 GTGTA 41410 GTAAA (41000 GGGAA (4aa00)
GTG CTGAA (421400) GTGAT (a1401) GTGGA (41440 GTTAA (41100)
(ala) GAGAA (40000 ATGAA (91000) GTGAC (41000) GTGCA (414420
GTCAA (414200 GCGAA (442400) TTGAA(11400) GTGAC (4140a2)
GTCGG (41a2aa) GTCCG (a142a2a) GTTGG (411aa) GGCGG (qaazaa)
GTC CTCGG(a21a2aa) GTCGC(a142aa2) GTCAG(a1420a) GTAGG (410aa)
(a1a®) | GACGG(uoa2aa) ATCGC(0102aa) GTCGA(1a2a0) GTCTG (q14210)
GTGGG(410a0a) GCCGGa2azaa) TTCGG(11424a) GTCGT (a14241)
GGAAG (4400q) GGATG (4a01q) GGGAG (4aa0a) GTAAG(4100a)
GGA CGAAG(42400a) GGAAC (4400a2) GGAGG(4a0aa) GGCAG (44420a)
(aa0) GCAAG (aa200a) AGAAG (0a000) GGAAA (40000) GGACG (4a0a2a)
GGTAG (4a10a) GAAAG (40000) TGAAG (1400q) GGAAT (4a001)
GGTGA (44140 GGTCA (qa1a20) GGCGA (44a240) GTTGA (41140
GGT CGTGA (424140 GGTGT 4q1a1) GGTAA (44100) GGGGA (44440
(aal) | GOTGA(sar1a0p AGTCA (04140) GGTGC(4a1aa) GGTTA (ga110)
GGAGA (44040) GATGA (40140) TGTGA (141a0) GGTGC(q4q1aa2)

52

Table A.1: Degeneracy Mapping

GGGCT (44aa21) GGGGT (qaaar) GGACT (qa0a21) GTGCT (a14a21)
GGG CGGCT 4240021y GGGCA (444a20) GGGTT (4aa11) GGTCT (4a1a1)
(a00) | GOGCT(araerty AGGCT(ggaerty GGGCC(agaazary CGGAT gaann)
GGCCT(qaazaz1) GAGCT (q04421) TGGCT (144a21) GGGCG (aaaaza)
GGCTCgaaz1a2) GGCAC(44420a2) GGTTC4a1142) GTCTC(a1a2142)
GGC CGCTC(a2aa2102) GGCTG(qaa21a) GGCCCaaazazaz)y GGATC(ga0142)
(aaa®) | GCCTC(aarar1a2) AGCTClouar1a2) GGCTT(gaar11) GGCGC (gan?an?)
GGGTC(4qa1a2) GACTC (40a2142) TGCTC1aa2142) GGCTA(qaa210)
GCATA (442010) GCAAA (442000 GCGTA (442410) GAATA (40010
GCA CCATA (4242010) GCATT (4az011) GCACA (4420420 GCCTA (4a24210)
(aa®0) | GGATA (4a010) ACATA (042010) GCATG (442010) GCAGA (4420a0)
GCTTA(g2110) GTATA (41010) TCATA 142010y GCATC(ga20102)
GCTCG (4a21a2a) GCTGG (4a21aa) GCCCG(gazazaza) GATCG (q0142a)
GCT CCTCG(a2a21024) GCTCC(ga21a242) GCTTG(ga2114) GCGCG(aa2aa2a)
(aa®1) | GOTCG(uarara) ACTCC(pg2107a) GOTCA(ugz1a20) GCTAG(aa210a)
GCACG(4a20a2a) GTTCG(a1142q) TCTCG(1a2142q) GCTCT (ga21421)
GCGGCaa2aaazy GOGCC(aa2aa2a2) GCAGC(4a20aa2) GAGGC(40aaa2)
GCG CCGGC(aza2aaa2) GCGGG(aa2aaa) GCGAC(4a2a0a2) GCTGC(ga21aa2)
(aa’a) | GGGGClugeary ACGGC(pa2aaa) CGCCGT(ae20a1) GCGTClag2a1a2)
GCCGCua202aa2) GTGGC(g10aa2) TCGGC(142aaa2) GCGGA (4a24a0)
GCCAT (ga2q201) GCCTT (ge24211) GCTAT (4az101) GACAT (q04201)
GOC | CCCAT(gg201) GCCAA(gqrazn) GOCGT(aarazaly GCAAT (maz001)
(a0%a®) | GGOAT(gee201) ACCAT(guzas01) GCCAC(ag2a2002) GCCCT(nuza2021)
GCGAT (4a2a01) GTCAT (414201) TCCAT (1424201) GCCAG(aa2a20a)
CAACG(420002a) CAAGG(a200aa) CAGCG(a20aa2a) CCACG(42420a24)
CAA GAACG (40042a) CAACC(4200a242) CAATG (420010) CACCG (420a2a24)
(a*00) | CTACG(e210020) TAACG(10002a) CAACA (4200020) CAAAG (42000a)
CATCG(a201a20) CGACG(4240a24) AAACG(000aza) CAACT (4200a21)

93

Table A.1: Degeneracy Mapping

CATTA (420110) CATAA (a20100) CACTA (4204210 CCTTA (4242110
CAT GATTA (40110) CATTT (a20111) CATCA (4201420 CAGTA (420410)
(a*01) | CTTTA(eim0) TATTA(0110) CATTG(s20110) CATGA(420140)
CAATA (420010) CGTTA (424110 AATTA 0o110) CATTC (42011a2)
CAGAT (420401) CAGTT (420a11) CAAAT (420001) CCGAT (4242401)
CAG GAGAT (40a01) CAGAA (420400 CAGGT (4204a1) CATAT (420101)
(a®0a) | CTGAT(w21401) TAGAT(10001) CAGAC (4200002) CAGCT (4204021
CACAT 4200201y CGGAT (424401) AAGAT (oa01) CAGAG (42040a)
CACGC(420a2aa2) CACCC(a2042a242) CATGC(4201002) CCCGC(424202aa2)
CAC GACGC(q0a2aa2) CACGG(420424a) CACAC(420a2002) CAAGC(4200aa2)
(a%00%) | CTCGC(4210%a02) TACGC(1pa2aar) CACGT(a200201) CACTC (q2002102)
CAGGC(a20aaz) CGCGC(u2002aaz) AACGC(o0a2002) CACGA (q200200)
CTAGA (4210a0) CTACA (4210420) CTGGA (4214a0) CGAGA (4240a0)
CTA GTAGA (41040 CTAGT (4210a1) CTAAA (421000 CTCGA (42142a0)
(@®10) | CAAGA(20000) TTAGA(110a0) CTAGCG(s2100a) CTATA (g21010)
CTTGA (421140 CCAGA (4242040 ATAGA (01040) CTAGC (42104a2)
CTTAG (42110a) CTTTG(42111a) CTCAG(421a200) CGTAG(42410a)
CTT GTTAG(allOa) CTTAC(a2110a2) CTTGG(a211aa) CTGAG(a21a0a)
(@®11) | CATAG(o010) TTTAG(1100) CTTAA (211000 CTTCG (g211020)
CTAAG 421004) CCTAG (424210a) ATTAG (0110a) CTTAT (421101
CTGTC(q214142) CTGAC(4214042) CTATC(4210142) CGGTC424a142)
CTG GTGTC(a1a102) CTGTG(a21a10) CTGCC(a21aa2q2) CTTTC(a2111a2)
(a1a) | CAGTC(s20a102) TTGTCriara) CTGTT(s21a11) CTGGC(a210002)
CTCTC(a21a2102) CCGTC(a2a2q1a2) ATGTC(p1a142) CTGTA (421410
CTCCT (42142421 CTCGT (4214241) CTTCT (4211a21) CGCCT (q2qa2a21)
CTC GTCCT 4142421y CTCCA(421424200 CTCTT(4214211) CTACT (4210a21)
(a®16%) | CACCT 2002021y TTCCT(11a221) CTCCC(g2102q22) CTCAT (214201
CTGCT (4214a21) CCCCT(424202421) ATCCT(01a2421) CTCCG(42142424)

o4

Table A.1: Degeneracy Mapping

CGATT (424011) CGAAT (424001 CGGTT (a24a11) CTATT (421011)
CGA | GGATT(wo11) CGATA (420010, CGACT(g2q0a21) CGOTT 4200011
(a%a0) | CCATT(g2q2011) TCATT (10011 CGATC(200102) CGAGT (4240a1)
CGTTT (424111) CAATT (420011 AGATT gao11) CGATG (42401q)
CGTCC(a2a1a242) CGTGC(42410a2) CGCCC(a2aaza2q2) CTTCC(a211a242)
CGT GGTCC(ha1a242) CGTCG(4241a2a) CGTTC(a2a1102) CGGCC(4240a242)
(a®al) | CCTCC(w2a210202) TGTCCararary CGTCT(g2a1021) CGTAC(a201002)
CGACC(42q0a2a2) CATCC(a2014242) AGTCCpa1a242) CGTCA (4241420
CGGGG(a2aaaa) CGGCG(a2qaazay CGAGG(a240aa) CTGGG(42144a)
CGG GGGGG (4aaaa) CGGGC(a2qaaa?) CGGAG (42440a) CGTGG(42q1aa)
(0%aa) | CCCGG(e20200a) TGCGE (10gaa) CGCGCA(u20aa0) CGGTGC(s20a10)
CGCGG(u0a2an) CAGGG(a20000) AGGGG(ogena) COGGT (g200a1)
CGCAA (42402000 CGCTA (4244210 CGTAA (424100) CTCAA (4214200)
CGC GGCAA (444200) CGCAT (4244201) CGCGA (42aa2q00) CGAAA (424000
(a%a0®) | CCCAA(2ra200) TGCAA(aq200) CGCAG(aa20m) CGCCA (g2aa2az)
CGGAA (424a00) CACAA (4204200) AGCAA (0aa200) CGCAC (424a2042)
CCAAC(u2420002) CCATC(a24201a2) CCGAC(u24200a2) CAAAC(4200042)
CCA GCAAC(ua20002) CCAAG (4242000 CCAGC(a2420aa2) CCCAC(424242042)
(a%a®0) | CGAAC(200002) TCAAC(a20002) CCAAT(0202001) CCACC (420200202
CCTAC(424210a2) CTAAC (4210042 ACAAC(0a200a2) CCAAA (4242000)
CCTGT (a2a2141) CCTCT (2421021 CCCGT(a24242q1) CATGT (42014a1)
CCT | GOTGT(erran) COCTGA(gr1a0) CCTAT (202101 CCGGT (g2g20an)
(a®a®1) | COTGT(s2a1a1) TCTGT (142101 COCTGC(2021002) CCTTT (g242111)
CCAGT 4242001y CTTGT(4211a1) ACTGT (0421a1) CCTGG (a2421aa)
CCGCA(a2a2aa20) CCGGA(a242aa0) CCACA (424204200 CAGCA(420aa20)
CCG GCGCAazaaz0) CCGCT (42424021 COGTA (42424100 CCTCA (42421420)
(a®a%a) | CGGCA(g2aae20) TCCCA(1a20020) CCGCC(a2a2a02a) CCGAA (4202000,
CCCCA (4242424200 CTGCA (4214420 ACGCA (ga2aaz0) CCGCC(a242aa242)

95

Table A.1: Degeneracy Mapping

CCCTG(a2a2a21a) CCCAG(a2424200) CCTTG(a2a211) CACTG(420a214)
cce GCCTGaza21a) CCCTC(42a242142) CCCCG(a242a242a) CCATG(a24201a)
(a®a®a®) | CGCTG(a2aa21ay TCOCTG(ra2021a) COCTA(u2a20210) CCCGC(a20202aa)
CCGTG(a242a1a) CTCTG(421a214) ACCTG(pa2a21a) CCCTT(g2424211)

o6

