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ABSTRACT

Ideas from coding theory are employed to theoretically demonstrate the engineer-

ing of mutation-tolerant genes, genes that can sustain up to some arbitrarily chosen

number of mutations and still express the originally intended protein. Attention is re-

stricted to tolerating substitution mutations. Future advances in genomic engineering

will make possible the ability to synthesize entire genomes from scratch. This presents

an opportunity to embed desirable capabilities like mutation-tolerance, which will be

useful in preventing cell deaths in organisms intended for research or industrial ap-

plications in highly mutagenic environments. In the extreme case, mutation-tolerant

genes (mutols) can make organisms resistant to retroviral infections.

An algebraic representation of the nucleotide bases is developed. This algebraic

representation makes it possible to convert nucleotide sequences into algebraic se-

quences, apply mathematical ideas and convert results back into nucleotide terms.

Using the algebra developed, a mapping is found from the naturally-occurring codons

to an alternative set of codons which makes genes constructed from them mutation-

tolerant, provided no more than one substitution mutation occurs per codon. The

ideas discussed naturally extend to finding codons that can tolerate t arbitrarily cho-

sen number of mutations per codon. Finally, random substitution events are simulated

in both a wild-type green fluorescent protein (GFP) gene and its mutol variant and

the amino acid sequence expressed from each post-mutation is compared with the

amino acid sequence pre-mutation.

This work assumes the existence of synthetic protein-assembling entities that func-

tion like tRNAs but can read k nucleotides at a time, with k ≥ 5. The realization of

this assumption is presented as a challenge to the research community.
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Chapter 1

ALGEBRAIC REPRESENTATION OF NUCLEOTIDE BASES

1.1 Introduction

In our effort to develop genes that can tolerate mutations, we will be employing

some mathematical ideas. To make this possible, we need to represent nucleotide

bases, the building blocks from which DNA and RNA are constructed, with suitable

mathematical entities. This way, we can easily apply mathematical ideas to algebraic

representations of codons or nucleotide sequences and convert results back into nu-

cleotide terms. This chapter is devoted to finding suitable algebraic representations

for the bases: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U).

In section 1.2, an interesting algebraic structure called a field is introduced. In

section 1.3, we construct a field whose elements will be used as algebraic represen-

tations of the bases. In section 1.4, we assign elements of the field constructed in

section 1.3 to the bases. Finally, in section 1.5, we discuss how computation is done

in a field.

Most concepts utilized throughout this work are from the areas of linear algebra

and coding theory. The uninitiated will find the following references helpful: Axler

(2007), Ling (2004), and Lin and Costello (1983).

1.2 Field

A field F is a set together with two binary operations addition (denoted by +) and

multiplication (denoted by ∗) defined such that the following axioms are satisfied:

1. Closure. ∀ x, y ∈ F, x+ y ∈ F and x ∗ y ∈ F
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2. Commutativity. ∀ x, y ∈ F, x+ y = y + x and x ∗ y = y ∗ x

3. Associativity. ∀ x, y, z ∈ F, x + (y + z) = (x + y) + z and x ∗ (y ∗ z) =

(x ∗ y) ∗ z

4. Existence of additive and multiplicative identities. (a) There exists an additive

identity 0 ∈ F such that x+0 = x for all x ∈ F. (b) There exists a multiplicative

identity 1 ∈ F such that x ∗ 1 = x for all x ∈ F

5. Existence of additive and multiplicative inverses. (a) For every x ∈ F , there

exists an additive inverse denoted −x ∈ F such that x+(−x) = 0. (b) For every

x ∈ F except 0, there exists an inverse denoted x−1 ∈ F such that x ∗ x−1 = 1.

6. Distributivity of multiplication over addition.

For all x, y, z ∈ F, x ∗ (y + z) = x ∗ y + x ∗ z

7. Distinctness of additive and multiplicative identities. 1 6= 0

The axioms outlined above demonstrate why a field is ideal for use in representing

nucleotide bases algebraically. The algebraic properties a field possesses, like closure,

commutativity, associativity, distributivity, etcetra, as outlined in axioms 1 through

6, are essential for ease of algebraic manipulations. By using elements from a field for

the representation of nucleotides, we will be able to easily perform algebraic manipu-

lations and apply mathematical ideas to algebraic equivalents of nucleotide sequences,

toward the goal of developing mutation-tolerant genes.

In the next section, we will construct a field with 4 elements. Adenine, Gua-

nine, and Cytosine will each be assigned one of these algebraic elements. Thymine

and Uracil will both be assigned the same fourth element since Uracil is the RNA

“equivalent” of Thymine.
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1.3 Constructing Field of order 4

In general, if p is prime and addition and multiplication are done in modulo-p,

the set {0, 1, 2, . . . , p − 1} satisfies all the field axioms outlined in Section 1.2 above

and thus forms a field of p elements. The number of elements in a field is called its

order. When the order of a field is finite, we call it a Galois field and denote it by

GF(number of elements). Also, when the number of elements in a Galois field is

prime, we call the field a prime field.

We desire to construct a field of 4 elements: GF(4). However, 4 is not prime and

so {0, 1, 2, . . . , 4−1} = {0, 1, 2, 3} is not a field. We can however employ a well-known

idea from field theory which allows the construction of any field GF(pq) from GF(p),

where p is prime and q is any positive integer. Thus, we can construct our desired

field GF(22) from GF(2) = {0, 1}, which is the field formed from {0, 1, 2, . . . , p − 1}

when p = 2. When GF(2) is extended to get GF(22), GF(2) is called the base field

and GF(22) is called an extension field. To utilize this strategy, we first introduce

two concepts:

1. Polynomials over fields. If we construct an n-degree polynomial f(α) = f0+

f1 α+f2 α
2+· · ·+fn−1 αn−1+fn αn such that its coefficients f0, f1, f2, . . . , fn−1, fn

are all taken from a field called F, we say that f(α) is a “polynomial over field

F ”. As an example, polynomials over GF(2) are polynomials with all coefficients

either 0 or 1. In general, there are 2n polynomials of degree n that can be

constructed over GF(2). To see this, notice that for any polynomial of degree n

over GF(2), its coefficients f0, f1, f2, . . . , fn−1 can each have two possible values

(0 or 1) whereas coefficient fn must be 1 since if it is 0, the polynomial will

no longer be of degree n. Thus, the total number of n-degree polynomials over

GF(2) is 2 ∗ 2 ∗ · · · ∗ 2︸ ︷︷ ︸
n times

∗ 1 = 2n. For example, there are 22 = 4 polynomials

3



over GF(2) that are of degree 2. They are:

α2, α + α2, 1 + α2, and 1 + α + α2 (1.1)

2. Primitive polynomials. A q-degree polynomial f(α) over a prime field GF(p)

is called primitive if the smallest positive integer n for which f(α) divides αn + 1

without a remainder is n = pq−1. Primitive polynomials are important because

they are used in constructing extension fields from base fields. It is difficult to

test all polynomials over a given field to find ones that are primitive. As such,

tables of primitive polynomials exist from which desired primitive polynomials

can be obtained. Using one such table, we find that of the four polynomials of

degree 2 over GF(2) (listed in 1.1 ), only one is primitive:

p(α) = 1 + α + α2 (1.2)

With these two concepts introduced, we state without proof a theorem with

which we can construct GF(22) from GF(2).

Theorem 1.1. If f(α) is a q-degree primitive polynomial over GF(p), the set of all

q-degree polynomials over GF(p) taken as modulo f(α) forms GF(pq).

Remark. Just as an integer like 9 can be expressed in modulo 3 by dividing 9 by 3 and

keeping the remainder, a polynomial f1(α) can be expressed as modulo of another

polynomial f2(α) by dividing f1(α) by f2(α) and keeping the remainder.

Using Theorem 1.1 above, we will divide each of the 4 polynomials in Equa-

tion (1.1) by the primitive polynomial in Equation (1.2), keeping the remainder in

each case. The set of these four remainders, under modulo 2 addition and multipli-

cation, will satisfy all the field axioms in Section 1.2 and thus form the desired field
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of four elements, GF(22).

1

α2 + α + 1 α2

α2 + α + 1

α+ 1

1

α2 + α + 1 α2 + α

α2 + α + 1

1

1

α2 + α + 1 α2 + 1

α2 + α + 1

α

1

α2 + α + 1 α2 + α + 1

α2 + α + 1

0

The remainders are 0, 1, α, and α + 1. Using Theorem 1.1, our desired field1 is:

GF(22) = { 0, 1, α, α + 1 }, with + and ∗ done in mod 2 (1.3)

Compact form of α+ 1. For every extension field, all the non-zero elements of the

set are expressed in terms of one special element called the primitive element. By

noticing that 1 can be written as α0, it is easy to spot that α is the primitive element

in the field we just constructed (Equation 1.3 above). A well-known result in field

theory is that a primitive element is a root of its corresponding primitive polynomial.

Thus, p(α) = 1+α+α2 = 0, where p is the primitive polynomial used in constructing

GF(22). Using this relation, we can find another useful form of the α + 1 element in

GF(22):

1The phrase “with + and ∗ done in mod 2” in (1.3) is vital because a set by itself is not a field.

When we mention the set without the operations, it must be taken as implied.
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1 + α + α2 = 0

1 + α + (α2 + α2) = 0 + α2 (added α2 to both sides)

α2 + α2 = (1 + 1)α2 = (0)α2 = 0 (1 + 1 = 0 due to modulo 2 addition)

∴ 1 + α = α2 (1.4)

According to (1.4) above, the element α + 1 in GF(22) is equal to α2. We can

thus write GF(22) = {0, 1, α, α+ 1} as {0, 1, α, α2}. Because α2 is more compact,

we will use it more often. Being in exponent form, it will also be used primarily in

multiplication operations, whereas the α + 1 form will be used mainly in addition

operations.

1.4 Assignment of Field elements to nucleotide Bases

Our goal at the beginning of this chapter was to find suitable algebraic entities to

represent the nucleotide bases. We constructed a field of four elements, GF(22), in

the preceding section. Here, we assign these elements to the bases.

As outlined in Table 1.1 below, we will represent Adenine with 0, Guanine with α,

and Cytosine with α2. Because the RNA “equivalent” of Thymine is Uracil, they are

both assigned 1. These assignments are not arbitrary. They have been done such that

adding 1 to the algebraic representation of any base gives the algebraic representation

of its Watson-Crick base pair. Examples2:

1) 0 (Adenine) + 1 = 1 (Thymine)

2) 1 (Thymine) + 1 = 0 (Adenine)

3) α (Guanine) + 1 = α2 (Cytosine)

4) α2 (Cytosine) + 1 = (α + 1) + 1 = α (Guanine)

2All operations are done in modulo 2. Also, note that α2 = α+ 1 (Equation 1.4)
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Base Algebraic Representation

Adenine (A) 0

Guanine (G) α

Cytosine (C) α2

Thymine (T) & Uracil (U) 1

Table 1.1: Algebraic representation of Nucleotide Bases. Note that α2 = α + 1

We will refer to the set of elements used to represent the bases as B (as in Bases),

where the subscripts used are simply to indicate which base the element represents

and may be left out for the sake of compactness:

B = {0A, 1T or U , αG, α
2
C} (1.5)

As stated earlier, notice that 1 is used to represent both Thymine (T) and Uracil

(U) since each can be thought of as the DNA or RNA “equivalent” of the other.

As such, when 1 appears in the algebraic representation of a nucleotide sequence, it

should be seen as representing Thymine or Uracil based on the context. Obviously,

if 1 appears in a DNA sequence, it represents Thymine. In an RNA sequence, it

represents Uracil.

1.5 Doing Algebra with the Base Representations

Our goal for this chapter was to find suitable algebraic representations for the nu-

cleotide bases so that we can write any nucleotide sequence as a sequence of algebraic

entities, apply mathematical ideas to it, and map results back into nucleotide terms,

with the aim of developing mutation-tolerant genes. Having found such suitable al-

gebraic entities (elements of set B), we now discuss how addition, multiplication,

subtraction, and division can be done with them.

7



GF(2) = {0, 1}, the base field from which our extension field of 4 elements,

B = {0, 1, α, α2}, was constructed, is only a field under mod 2 addition and

multiplication. By implication, B is also a field under mod 2 addition and multipli-

cation. As such all operations will be done in mod 2. Note that because we used

elements from a field to represent the bases, all the field axioms outlined in Section

1.2 hold. As such, for all operations, the commutative, associative, and distributive

properties can be used. It’s also vital to remember that α2 = α + 1 (Equation 1.4).

• Addition. Adding any elements of B is just like normal addition, keeping in

mind that in mod 2, 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1 and 1 + 1 = 0.

An addition table is shown in Table 1.2a. Adding any element to itself gives 0.

Also, as indicated earlier, adding α2 (which equals α + 1) to any element gives

its Watson-Crick base pair.

• Multiplication. Multiplication can also be done by keeping in mind that in

mod 2, 0 ∗ 0 = 0, 0 ∗ 1 = 0, 1 ∗ 0 = 0 and 1 ∗ 1 = 1. Note that for any

element b,

bi ∗ bk = b ∗ b ∗· · · ∗ b︸ ︷︷ ︸
i times

∗ b ∗ b ∗· · · ∗ b︸ ︷︷ ︸
k times

= bi+k

One relation that will be useful in simplifying multiplication operations is

α3 = 1. To see this, notice that α3 = α2 ∗α, and from the multiplication table

(Table 1.2b), α2∗α = 1. For example, α∗α2∗α2 = α5 can be simplified as α5 =

α3 ∗ α2 = 1 ∗ α2 = α2.

Remark. Though only the two operations discussed above are explicitly defined on a

field, we can still do subtraction and division because subtraction and division can

be written in terms of addition and multiplication, respectively.
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+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α

α α α2 0 1

α2 α2 α 1 0

(a) Addition Table

∗ 0 1 α α2

0 0 0 0 0

1 0 1 α α2

α 0 α α2 1

α2 0 α2 1 α

(b) Multiplication Table

Table 1.2: Arithmetic table for GF(22). Note that + and ∗ are done mod 2.

• Subtraction. Note that a− b = a + (−b), where −b is the additive inverse of

b. Thus, to subtract b from a, we first find the additive inverse of b (which is

denoted by −b) and add it to a. Note that an additive inverse of an element b

is the element which when added to b, gives 0. Looking at the addition table in

Table 1.2a, we notice that adding any element to itself gives 0. This means that

for set B, the additive inverse of any element is itself. This has two interesting

implications: 1) Subtracting an element from another is the same as adding

them. For example, a − b = a + (−b) = a + b since −b, which denotes the

inverse of b, equals b itself. 2) Because of implication 1, the addition table

shown in Table 1.2a also acts as a subtraction table for the elements in B.

• Division. Note that
a

b
= a ∗ b−1, where b−1 is the multiplicative inverse of b.

Thus, to divide a by b, we first find the multiplicative inverse of b then multiply

it by a. Remember that the multiplicative inverse of an element b is an element

which when multiplied by b, gives 1. For example, to find
1

α2
, we first find the

multiplicative inverse of α2 by looking at the multiplicative table (Table 1.2b)

to find the element which when multiplied by α2, gives 1. Since α2 ∗ α = 1, α

is the multiplicative inverse of α2. Thus,
1

α2
= 1 ∗ (α2)

−1
= 1 ∗ α = α.
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1.6 Algebraic representation of Codons

Having found suitable algebraic representation for the nucleotide bases, we can

now write each of the 64 DNA sense (5′ → 3′) codons in terms of the algebraic

representation of its nucleotide bases.

(α α2 1) GCT

(α α2 0) GCA

(α α2 α2) GCC

(α α2 α) GCG

Ala
(0 0 1) AAT

(0 0 α2) AAC

Asn
(α 0 1) GAT

(α 0 α2) GAC

Asp
(1 α 1) TGT

(1 α α2) TGC

Cys

(α 0 0) GAA

(α 0 α) GAG

Glu
(α2 0 0) CAA

(α2 0 α) CAG

Gln

(α α 1) GGT

(α α 0) GGA

(α α α2) GGC

(α α α) GGG

Gly
(α2 0 1) CAT

(α2 0 α2) CAC

His

(0 1 1) AAT

(0 1 α2) ATC

(0 1 0) ATA

 Ile

(1 1 0) TTA

(1 1 α) TTG

(α2 1 1) CTT

(α2 1 0) CTA

(α2 1 α2) CTC

(α2 1 α) CTG


Leu

(0 0 0)AAA

(0 0 α) AAG

Lys (0 1 α) ATG Met

(α2 α2 1) CCT

(α2 α2 0) CCA

(α2 α2 α2) CCC

(α2 α2 α) CCG

Pro
(1 1 1) TTT

(1 1 α2) TTC

Phe

(0 α2 1) ACT

(0 α2 α2) ACC

(0 α2 0) ACA

(0 α2 α) ACG

Thr
(1 0 1) TAT

(1 0 α2) TAC

Tyr

(α 1 1) GTT

(α 1 0) GTA

(α 1 α2) GTC

(α 1 α) GTG

Val

(1 α2 1) TCT

(1 α2 0) TCA

(1 α2 α2) TCC

(1 α2 α) TCG

(0 α 1) AGT

(0 α α2) AGC


Ser (1 α α) TGG Trp

(α2 α 1) CGT

(α2 α α2) CGC

(α2 α 0) CGA

(α2 α α) CGG

(0 α 0) AGA

(0 α α) AGG


Arg

(1 0 0) TAA

(1 0 α) TAG

(1 α 0) TGA

 Stop

10



Chapter 2

CODONS AS VECTORS

2.1 Introduction

In the previous chapter, a suitable algebraic representation was found for the

nucleotide bases: B = {0A, 1T or U , αG, α
2
C}. In section 1.6, each DNA codon was

then written in terms of the algebraic representation of its nucleotides. For example,

codon ATG in terms of the algebraic representation of its nucleotide bases is 01α

since A, T, and G are represented by 0, 1, and α, respectively.

ATG
algebraic form−−−−−−−−−−−−−−−→ 0 1 α

To distinguish between codons and their algebraic forms, we will call the algebraic

forms p-codons. Thus, the p-codon of ATG is 01α. In section 2.2, we consider the

set of all 64 p-codons corresponding to the 64 DNA codons and show that this set

forms a vector space where the p-codons are vectors and 0, 1, α, and α2 are scalars.

From section 2.3 through 2.5, relevant vector space concepts are discussed in the

context of this codon vector space.

2.2 Codon Vector Space

Consider set C below whose elements are the 64 p-codons. We wish to show that

this set is a vector space. This is important because by confirming that C is indeed

a vector space, we can make use of all theory that has been developed about vector

spaces, toward our goal of developing mutation-tolerant genes. Let’s first define a

vector space.

11



C =



(0 0 0), (0 0 1), (0 0 α), (0 0 α2), (0 1 0), (0 1 1), (0 1 α), (0 1 α2),

(0 α 0), (0 α 1), (0 α α), (0 α α2), (0 α2 0), (0 α2 1), (0 α2 α), (0 α2 α2),

(1 0 0), (1 0 1), (1 0 α), (1 0 α2), (1 1 0), (1 1 1), (1 1 α), (1 1 α2),

(1 α 0), (1 α 1), (1 α α), (1 α α2), (1 α2 0), (1 α2 1), (1 α2 α), (1 α2 α2),

(α 0 0), (α 0 1), (α 0 α), (α 0 α2), (α 1 0), (α 1 1), (α 1 α), (α 1 α2),

(α α 0), (α α 1), (α α α), (α α α2), (α α2 0), (α α2 1), (α α2 α), (α α2 α2),

(α2 0 0), (α2 0 1), (α2 0 α), (α2 0 α2), (α2 1 0), (α2 1 1), (α2 1 α), (α2 1 α2),

(α2 α 0), (α2 α 1), (α2 α α), (α2 α α2), (α2 α2 0), (α2 α2 1), (α2 α2 α), (α2 α2 α2)



Definition 1. (Vector Space) A vector space V is a set of objects (called vectors)

that can be added (+) together and multiplied (·) by scalars such that the following

axioms are satisfied for any choice of vectors u, v, and w and scalars a and b :

1. Closure. u+w ∈ V and a · v ∈ V

2. Commutativity. u+w = w+ u

3. Additive identity. There exists a zero vector, denoted 0, in C such that u+ 0 = u

4. Multiplicative identity. 1 · v = v

5. Additive inverses. For any vector u ∈ V, there exists −u ∈ V such that u + (−u) = 0

6. Associativity. u+ (v+w) = (u+ v) +w and a · (b · v) = (a · b) · v

7. Distributivity. a · (u+ v) = (a · u) + (a · v) and (a+ b) · u = (a · u) + (b · u)

What the definition says is that if we form a set and define a way of adding the

elements of the set and also define multiplication of the elements by some scalars

such that the addition and multiplication operations obey all the 7 axioms listed,

then we have a vector space. Thus, to demonstrate that the set of p-codons C

(with B = {0, 1, α, α2} as scalars) is a vector space, we need to do two things
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as per the definition: 1) define two operations: the addition of two p-codons and

multiplication of a p-codon by a scalar and 2) show that the 7 axioms are satisfied

under those operations. We do these in sections 2.2.1 through 2.2.3 below. Addition

of p-codons and multiplication of p-codons by scalars are defined in terms of tuples

of length n so as to generalize to our later needs. In the context of C, we simply set

n = 3.

2.2.1 Addition of p-codons.

We define the addition of p-codons a = (a1, a2, ..., an) and b = (b1, b2, ..., bn)

as a+ b = (a1 + b1, a2 + b2, ..., an + bn) where the + in ai + bi for i = 1, 2, ..., n is

modulo 2 addition as given in addition table 1.2a.

2.2.2 Multiplication of p-codons by scalars.

We define the multiplication of a p-codon a = (a1, a2, ..., an) by a scalar λ in B

as λ · a = (λa1, λa2, ..., λan). We will sometimes write λ · a simply as λa.

2.2.3 Proof that axioms 1 through 7 are satisfied.

Having defined addition of p-codons and scalar multiplication, we are now in a

position to show that set C satisfies axioms 1 through 7 and is thus a vector space. For

the proofs below, it is important to keep two things in mind. First, the set of scalars

B = {0, 1, α, α2} is a field and so addition or multiplication of any members of the

set always results in another member of the set (see Table 1.2). Second, C is the set

of all 3-tuples whose 3 elements are chosen from B and so to show that some arbitrary

3-tuple (λ1 λ2 λ3) is a member of C, we only need to show that λ1, λ2, and λ3 are

elements of B.

1. Closure.
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(a) For any p-codons u and w in C, u+w is another p-codon in C

Let u = (u1 u2 u3) and w = (w1 w2 w3). Then u +w = (u1 + w1 u2 +

w2 u3 + w3). Since the sum of any elements in B yields another element

in B, u1 + w1, u2 + w2, and u3 + w3 are in B. We conclude that u +w

is in C, as desired.

(b) For any p-codon v in C and scalar a in B, a · v is a p-codon in C

Let v = (v1 v2 v3). Then a · v = (av1 av2 av3). Since the product of any

scalars in B yields another in B, av1, av2, and av3 are in B. We conclude

that a · v is in C, as desired.

2. Commutativity. For any p-codons u and w in C, u+w = w+ u

Let u = (u1 u2 u3) and w = (w1 w2 w3). Then u+w = (u1+w1 u2+w2 u3+

w3) and w + u = (w1 + u1 w2 + u2 w3 + u3). Addition of scalars from B is

commutative and so ui + wi = wi + ui for i = 1, 2, 3. Thus, u+w = w + u.

3. Additive identity. There exists a zero p-codon, denoted 0, in C such that for

any p-codon u in C, u+ 0 = u

Note that 0 is a scalar in B. When a = 0 in 1(b) above, we find that there

exists a vector 0 = (0, 0, 0) in C. Let u = (u1 u2 u3). Then u + 0 =

(u1 u2 u3) + (0 0 0) = (u1 + 0 u2 + 0 u3 + 0) = (u1 u2 u3) = u, as desired.

4. Multiplicative Identity. For any p-codon v in C, 1 · v = v

Note that 1 is the multiplicative identity element in B. Let v = (v1 v2 v3).

Then 1 · v = (1 · v1 1 · v2 1 · v3) = (v1 v2 v3) = v, as desired.

5. Additive inverses. For any p-codon u ∈ C, there exists an additive inverse

−u ∈ C such that u+ (−u) = 0. Notice that each element in B has an additive

inverse which is itself because addition is done in modulo 2 : 0 + 0 = 0,
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1 + 1 = 0, α + α = 0, and α2 + α2 = 0. Because addition of p-codons is

defined componentwise, for any p-codon u = (u1 u2 u3), u+ u= 0 and so u

is its own additive inverse. Thus, −u = −1 · u = 1 · u = u. We conclude that

each p-codon in C has an additive inverse, as required.

6. Associativity. For any u,v,w ∈ C and a, b ∈ B,

(a) u+ (v+w) = (u+ v) +w

u+ (v+w) = (u1 u2 u3) + (v1 + w1, v2 + w2, v3 + w3)

= (u1 + v1 + w1, u2 + v2 + w2, u3 + v3 + w3)

= (u1 + v1, u2 + v2, u3 + v3) + (w1 w2 w3)

= (u+ v) +w

(b) a · (b · v) = (a · b) · v

a · (b · v) = a · (b · v1, b · v2, b · v3)

= (a · b · v1, a · b · v2, a · b · v3)

= (a · b) · (v1 v2 v3)

= (a · b) · v

7. Distributivity. For any u,v ∈ C and a, b ∈ B,
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(a) a · (u+ v) = (a · u) + (a · v)

a · (u+ v) = a · (u1 + v1, u2 + v2, u3 + v3)

= (a · (u1 + v1), a · (u2 + v2), a · (u3 + v3))

= (a · u1 + a · v1, a · u2 + a · v2, a · u3 + a · v3) (step 3)

= (a · u1, a · u2, a · u3) + (a · v1, a · v2, a · v3)

= a · (u1 u2 u3) + a · (v1 v2 v3)

= (a · u) + (a · v)

(b) (a+ b) · u = (a · u) + (b · u)

(a+ b) · u = (a+ b) · (u1 u2 u3)

= ((a+ b) · u1, (a+ b) · u2, (a+ b) · u3)

= (a · u1 + b · u1, a · u2 + b · u2, a · u3 + b · u3) (step 3)

= (a · u1, a · u2, a · u3) + (b · u1, b · u2, b · u3)

= a · (u1 u2 u3) + b · (u1 u2 u3)

= (a · u) + (b · u)

Step 3 in (a) and (b) above both follow from their respective step 2 due to field

axiom 6 in section 1.2. All other steps follow from the definition of p-codon

addition and multiplication of p-codons by scalars given earlier in this section.

Having shown that C, the set of all 64 p-codons is a vector space, we can refer to

the p-codons as vectors. We next discuss vector space concepts that are essential to

our work. In doing this, we adopt some conventions. We will write B3 to mean the

set of all 3-tuples whose elements are chosen from the set of scalars B. Since the

vector space C fits this description, we will henceforth refer to it as B3. We also note
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that the arguments given to show that C satisfies the vector space axioms extend

naturally to Bn, where n is a positive integer. Thus, Bn is a vector space under

the same addition and scalar multiplication defined in sections 2.2.1 and 2.2.2 and is

defined as:

Bn = {(u1, u2, ..., un) : ui ∈ B for i = 1, 2, ..., n} (2.1)

The vector space Bn, where n > 3 will be needed in the next chapter and so the

discussions below are done in the general context of Bn. Obviously, when n = 3 we

obtain the vector space C.

2.3 Subspaces of Bn

A subspace of Bn is defined as any nonempty subset of Bn which is itself a vector

space under the same vector addition and scalar multiplication defined on Bn (given

in sections 2.2.1 and 2.2.2). Let C be a subset of Bn. To verify that C is a subspace,

we only need to check that the closure axiom is satisfied on C. Thus, we only need

to verify (2.2) below:

For any u, v,w ∈ C and λ ∈ B, (a) u+ v ∈ C (b) λ ·w ∈ C (2.2)

To see why the closure axiom is sufficient to verify if C is a subspace, notice that

because C is a subset of a vector space, axioms1 2, 4, 6, and 7 are automatically

satisfied. Also, because every vector in C is its own additive inverse due to modulo 2

addition, axiom 5 is satisfied on C, leaving the closure (axiom 1) and additive identity

(axiom 3) axioms to be checked. The additive identity axiom requires that there be an

identity vector which when added to any vector, leaves the vector unchanged. Because

we have defined addition as componentwise, we only need show that 0 = (0, 0, ..., 0)

is in C to satisfy the additive identity axiom. When λ = 0 in (2.2) above, the closure

1Given in the vector space definition (Definition 1)
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axiom verifies the membership of 0 in C. Thus, any nonempty subset of Bn that

satisfies the closure axiom satisfies all the vector space axioms and is a subspace.

Examples: {(0, 0, 0), (0, 0, 1), (0, 0, α), (0, 0, α2)} and {(0, 0, 0), (0, 1, α),

(0, α, α2), (0, α2, 1)} are two subspaces of B3 since the closure axiom (stated in (2.2))

is satisfied on them.

2.4 Linear Combination, Span, and Linear Independence

2.4.1 Linear Combination

Let v1,v2, . . . ,vk be vectors in Bn. A linear combination of v1,v2, . . . ,vk is

another vector in Bn of the form λ1v1 + λ2v2 + · · ·+ λkvk, where λ1, λ2, . . . , λk are

scalars chosen from B. For example, one linear combination of the vectors (0, 1, α),

(0, 0, 1), and (0, 1, α2) in B3 is 0 · (0, 1, α) + α · (0, 0, 1) + α2 · (0, 1, α2) = (0, α2, 0),

which is another vector in B3. Another linear combination is obtained by choosing

different scalars: 1 · (0, 1, α) + 0 · (0, 0, 1) + 0 · (0, 1, α2) = (0, 1, α).

2.4.2 Span

Let U = {u1,u2, . . . ,uk} be a nonempty subset of Bn. The span of U , denoted

span(U), is the set of all linear combinations of the vectors in U .

span(U) = {λ1u1 + λ2u2 + · · ·+ λkuk : λi ∈ B} (2.3)

For example, let U = {(1, 0, 1)} be a subset of B3. Then span(U) = {0 · (1, 0, 1), 1 ·

(1, 0, 1), α ·(1, 0, 1), α2 ·(1, 0, 1)} = {(0, 0, 0), (1, 0, 1), (α, 0, α), (α2, 0, α2)}. We note

that span(U) = {(0, 0, 0), (1, 0, 1), (α, 0, α), (α2, 0, α2)} is a subspace of B3. This

claim is verified by observing that the addition of any two vectors in span(U) yields

a vector in span(U) and multiplying any vector in span(U) by a scalar in B yields a

vector in span(U). Span(U) is not unique in being a subspace. In general, the span
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of any nonempty subset of Bn is a subspace. This claim is proved below.

Proof: If U is a nonempty subset of Bn, span(U) is a subspace.

Let U = {u1,u2, . . . ,uk} be a nonempty subset of Bn. Then span(U) is given in

(2.3) and vectors in span(U) are of the form λ1u1 + λ2u2 + · · ·+ λkuk where λi ∈ B.

Let x = η1u1 + η2u2 + · · ·+ ηkuk and y = γ1u1 + γ2u2 + · · ·+ γkuk be any

two vectors in span(U).

Then x+y = (η1+γ1)u1+(η2+γ2)u2+· · ·+(ηk+γk)uk. Because ηi+γi ∈ B, x+

y ∈ span(U). Let λ be any scalar in B. Then λx = (λη1)u1+(λη2)u2+· · ·+(ληk)uk.

Because ληi ∈ B, λ · x ∈ span(U). It has been shown that the closure axiom is

satisfied on span(U). As discussed in section 2.3, this is sufficient to conclude that

span(U) is a subspace. �

Important terminology: Let U be a nonempty subset of Bn and C a subspace

of Bn. If span(U) = C, we say that U spans C and call U a generating or span-

ning set of C. This terminology is appropriate because we can have only U and

still obtain all vectors in the subspace C simply by forming linear combinations

of the vectors in U . Using this terminology in the context of the example given

earlier, the subset U = {(1, 0, 1)} of B3 spans or generates the subspace C =

{(0, 0, 0), (1, 0, 1), (α, 0, α), (α2, 0, α2)} since span(U) = C.

2.4.3 Linear Independence

A set of vectors from Bn {u1,u2, . . . ,uk} is linearly independent if the only choice

of scalars λ1, λ2, . . . , λk from B that makes λ1u1 + λ2u2 + · · · + λkuk equal 0 is

λ1 = λ2 = · · · = λk = 0. For example, {(1, 0, 0), (0, 0, α)} is a linearly independent

set of vectors from B3 because λ1 and λ2 must both be 0 in order for λ1 · (1, 0, 0) +

λ2 · (0, 0, α) = (0, 0, 0) = 0 to be true. In contrast, {(α, 0, 1), (1, 0, α2)} is not linearly
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independent since we can choose values for λ1 and λ2 other than λ1 = λ2 = 0 such

that λ1 · (1, 0, 0) + λ2 · (0, 0, α) = 0. For example, α2 · (1, 0, 0) + 1 · (0, 0, α) = 0.

Such a set that is not linearly independent is called linearly dependent.

Consider the subset U = {(1, 0, 1)} of B3. As discussed in section 2.4.2, U spans

the subspace C = {(0, 0, 0), (1, 0, 1), (α, 0, α), (α2, 0, α2)}. Thus, span(U)= C. Note

that U is linearly independent since the only λ that makes λ · (1, 0, 1) = 0 is λ = 0.

Now consider the set V = {(1, 0, 1), (α, 0, α), (α2, 0, α2)} which was formed by adding

two vectors, (α, 0, α) and (α2, 0, α2), to U . Note that V is linearly dependent since

1 · (1, 0, 1) + 1 · (α, 0, α) + 1 · (α2, 0, α2) = 0. It can be checked that span(V )= C.

Thus, despite having two extra vectors, V still has the same span as U . This is

explained by the fact that V is linearly dependent. In any linearly dependent set,

there is at least one vector which is already in the span of the other vectors in the set

such that its removal does not change the span of the set2.

This illustrates an important fact which we will not formally prove: given a linearly

independent set and a linearly dependent set that both span a subspace of Bn, the

linearly independent set will have fewer number of vectors.

2.5 Bases and Dimension of Bn

2.5.1 Bases

A basis of the vector space Bn is defined as a linearly independent set that spans

Bn. Let W be such a basis of Bn. Then by definition, W spans Bn and so every

vector in Bn can be obtained from a linear combination of the vectors in W . Thus,

though Bn has 4n vectors, we need only keep track of the |W | vectors in the basis

W . Also, the linear independence requirement in the definition implies that |W | is

2This does not hold when the linearly dependent set in question is {(0, 0, 0)}. We could however

define span of the empty set to be {(0, 0, 0)} for this case.
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the smallest number of vectors needed to span Bn.

Several sets of vectors that are linearly independent and span Bn exist. Thus,

there are several possible sets to use as basis of Bn, but we will use the simplest:

W = {(1, 0, . . . , 0)︸ ︷︷ ︸
1st

, (0, 1, 0, . . . , 0)︸ ︷︷ ︸
2nd

, . . . , (0, . . . , 0, 1)︸ ︷︷ ︸
nth

} (2.4)

|W | = n and each vector in W is an n-tuple. The first vector has 1 in its first position

and 0 in the other positions, the second vector has 1 in its second position and 0 in

the other positions, and so forth. Finally, the nth vector has 1 in its nth position and

0 in other positions. Next, we prove that W is indeed linearly independent and spans

Bn.

λ1 · (1, 0, . . . , 0) + λ2 · (0, 1, 0, . . . , 0) + · · ·+λn · (0, . . . , 0, 1) = (λ1, λ2, . . . , λn) (2.5)

The linear combination of the basis vectors is given in (2.5), where λi ∈ B. Because

the only scalars that make (λ1, λ2, . . . , λn) = (0, 0, . . . , 0) true is λ1 = · · · = λn = 0,

we conclude that (2.4) is linearly independent. With the linear combination of the

vectors in W given in (2.5) as (λ1, λ2, . . . , λn), it is clear that by choosing λ1 =

v1, λ2 = v2, . . . , λn = vn, any vector (v1, v2, . . . , vn) in Bn can be written as a linear

combination of the vectors in W . We conclude that W spans Bn. As such, we have

verified that (2.4) is indeed a basis of Bn.

A basis is by definition required to be linearly independent. This linear inde-

pendence requirement leads to the fact that there is a unique way of expressing

any vector v in Bn as a linear combination of the basis vectors. For example,

in B3, (2.4) reduces to the basis W = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and the only

way of expressing the vector (1, α, α2) in B3 as a linear combination of the basis is

1 · (1, 0, 0) + α · (0, 1, 0) + α2 · (0, 0, 1). Though we prove this fact in the context of

our chosen basis (given in (2.4)), it holds for every other basis of Bn.
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Let v ∈ Bn. Assume that v can be written as two different linear combinations

of the basis vectors. Thus v = λ1(1, 0, . . . , 0) + · · · + λn(0, . . . , 0, 1) and v =

η1 · (1, 0, . . . , 0) + · · ·+ ηn · (0, . . . , 0, 1). Subtracting these two expressions results in

0 = (λ1 − η1) · (1, 0, . . . , 0) + · · ·+ (λn − ηn) · (0, . . . , 0, 1) (2.6)

Recalling that {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} is a linearly indepen-

dent set, (2.6) holds only if (λ1− η1) = (λ2− η2) = . . . = (λn− ηn) = 0. This implies

that λ1 = η1, λ2 = η2, . . . , λn = ηn. We thus conclude that the two supposedly

different linear combinations are actually the same and so the expression of v as a

linear combination of the basis vectors is unique.

2.5.2 Dimension

Dimension of a vector space is defined as the number of vectors in its basis.

W = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} is a basis of Bn. |W | = n and

so the dimension of Bn is n. As mentioned earlier, several other basis of Bn exist. It

can however be shown that each such basis has n vectors3. As such, the dimension

of Bn is independent of which basis of Bn is being considered. We will write dim(V )

to mean the dimension of some vector space V .

2.6 Orthogonal Complements

Let u = (u1, u2, . . . , un) and w = (w1, w2, . . . , wn) be vectors in Bn. The inner

product of u and w, denoted u ·w, is defined as u ·w = u1w1 + u1w1 + · · ·+ unwn.

When u ·w = 0 we say u and v are orthogonal to each other.

Let A be a nonempty subset of Bn. The orthogonal complement of A, denoted A⊥,

3Proof of this statement is not given as it’s not directly relevant to our work.
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is the set of all vectors in Bn that are orthogonal to every vector in A. Mathematically,

A⊥ = { x ∈ Bn : x · a = 0 for all a ∈ A } (2.7)

The orthogonal complement of any nonempty subset of Bn is a subspace. We offer a

proof below. As discussed in section 2.3, the closure axiom alone is sufficient to prove

that a subset of a vector space is a subspace.

Proof: Given any nonempty subset A ⊆ Bn, A⊥ is a subspace.

Let u,v,w ∈ A⊥, a ∈ A, and λ ∈ B. Then (u+ v) · a = u · a+ v · a = 0, which

implies that (u+ v) ∈ A⊥. Also, (λw) · a = λ(w · a) = 0, which implies (λw) ∈ A⊥.

Because (u+v) ∈ A⊥ and (λw) ∈ A⊥, the closure axiom is satisfied and we conclude

that A⊥ is a subspace. �

The fact proved above will be useful to our work for the case where A is not only

a subset but also a subspace. As such, we take A as a subspace in the discussions

that follow. Being subspaces, A and A⊥ each have a set of basis vectors and hence a

dimension. A well-known linear algebra result is that the dimensions of a subspace

plus the dimension of its orthogonal complement equals the dimension of the vector

space they are subsets of. In our case, since dim(Bn) = n and A,A⊥ ⊆ Bn,

dim(A) + dim(A⊥) = n (2.8)

Let G and H be matrices whose rows are the basis vectors of A and A⊥, respec-

tively. Such matrices are called generator matrices. If dim(A) = k, G is a k × n

matrix and H is an (n − k) × n matrix. Note that G and H both have n columns

because vectors in Bn are of length n. Because every vector in A is orthogonal to

every other vector in A⊥, the following equations hold and will be used in chapter 3.

aHT = 0 for any a ∈ A (2.9)
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GHT = 0 (2.10)
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Chapter 3

TOLERATING SUBSTITUTION MUTATIONS

3.1 Introduction

In the previous chapter, we noted that the algebraic representations of naturally-

occurring codons form a vector space, which we denoted as B3. One vector in B3 is

(0 1 α), which is the algebraic representation of ATG, which in a DNA sense strand,

represents Methionine. Consider a substitution mutation event which changes the

p-codon (0 1 α) to (0 α2 α), which is the algebraic representation of ACG and will

ultimately be translated as Threonine, instead of the originally intended Methionine.

Due to the degeneracy of the genetic code, some substitution mutations result in

another codon that still codes for the same amino acid. Take Cysteine as an example.

In a DNA sense strand, Cysteine is coded for by both TGT (p-codon (1 α 1)) and

TGC (p-codon (1 α α2)). If the last nucleotide is mutated from C to T or T to

C, there will be no subsequent change in the resulting amino acid after translation.

Any other substitution mutation will result in a codon which codes for an unintended

amino acid.

Our goal in this chapter is to find a set of 64 ‘unnatural’ codons that are each able

to tolerate an arbitrarily chosen number of substitution mutations to any nucleotide.

That is, codons that can sustain some chosen number of mutation errors and still

guarantee that upon translation, the amino acid sequence will not differ from that

originally intended. To do this, we will employ ideas from coding theory. These ideas

sum up to building some sort of redundancy into the naturally occuring codons. As

such, the codons we develop will necessarily each have more than 3 nucleotides and
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will be chosen from the vector space Bn, where n > 3. Exactly which n we will use

will be noted later. We introduce a few concepts that will be needed.

3.2 Hamming Distance and Weight

3.2.1 Hamming Distance

The Hamming distance (Hamming, 1950) between two vectors u = (u1, u2, ..., un)

and v = (v1, v2, ..., vn) in Bn is the number of places where ui 6= vi. For example, the

Hamming distance between u = (0 1 α) and v = (1 0 α), is 2 since they differ in

two places. We will denote the Hamming distance between u and v by d(u,v). Note

that d(u,v) can only take the values 0, 1, 2, . . . , n. Also note that d(u,v) = d(v,u).

Another important property of the Hamming distance is that it satisfies the triangle

inequality1. Thus, given vectors u,v,w, d(u,w) ≤ d(u,v) + d(v,w).

3.2.2 Hamming Weight

Let u = (u1, u2, ..., un) be some vector in Bn. Its Hamming weight, which we will

denote as wt(u), is the number of places where ui 6= 0. In other words, wt(u) =

d(u, 0). For example, the weight of u = (0 1 α2) is wt(u) = 2.

3.2.3 Important Relationship between Hamming Distance and Weight

Consider vectors u and v in Bn and let w = u + v. Then, for i = 1, 2, . . . , n,

wi = 0 if and only if ui = vi since we use base 2 addition. In other words, the

coordinates of w will be non-zero only at coordinates where u and v differ. As such,

we can find the Hamming distance between two vectors by first adding them and then

1A proof of this will not be directly relevant to our work. As such, it is not given.
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taking the Hamming weight of the result. Mathematically, we write

d(u,v) = wt(u+ v) (3.1)

The above relationship becomes very useful when we desire to find the Hamming

distance between all unique pairs of vectors in a vector space (or subspace) and report

the minimum, called the minimum Hamming distance and denoted dmin. Take Bn

as the vector space of interest. Since Bn has 4n vectors, if we naively tried to find

dmin(Bn) without the relationship given in the previous paragraph, we will have to

find the Hamming distance between (4n ∗ (4n − 1))/2 pairs of vectors and report

the minimum as dmin(Bn). By making use of the relationship d(u,v) = wt(u + v),

we need only find the weight of each of the 4n − 1 non-zero vectors and report the

minimum as dmin(Bn). Thus, the claim is that given some vector space V ,

dmin(V ) = wtmin(V ) (3.2)

where wtmin(V ) is the minimum of the weights of the non-zero vectors in V .

To see why (3.2) is true, first note that if v1 and v2 are different vectors in the

vector space V , then their sum, w = v1 + v2, is a non-zero vector also in V . Thus,

if we put all the vectors in V into all possible pairs of two, say (vi,vj), where i 6= j,

then the sum of each pair will yield some w such that the set of all the ws will be

equal to the non-zero vectors in V . Combining this with (3.1), it follows that if we

want to find dmin(V ), instead of finding the Hamming distance between all possible

pairs of unique vectors and checking the minimum, we can simply check the weight

of each non-zero vector in V and record the minimum as our dmin(V ) because each

non-zero vector in V is the result of summing some two different vectors in V .
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3.3 Tolerating t Substitution Mutations per Codon

Our goal has been to find some 64 ‘unnatural’ codons to used in place of the

naturally-occurring codons in the construction of genes such that the genes are capable

of tolerating an arbitrarily chosen number of substitution mutations per codon. We

will put the p-codons of these 64 unnatural codons in a set M = {m1,m2, . . . ,m64}.

To make use of equation (3.2), we will require that M be a subspace of Bn, where

n > 3. This requirement also simplifies our work greatly because as a subspace, M

is completely defined by its basis. So, we need only find the basis vectors of M . All

the other vectors can be obtained via linear combinations of the basis vectors.

3.3.1 Substitution Mutation as Vector Addition

Consider the p-codon u = (0 1 α) ∈ B3 and assume that some substitution

mutation modified u into ũ = (1 0 α). Since ũ = u+ (1 1 0), we can refer to (1 1 0)

as the mutation vector. In general, for any u ∈ Bn, if a mutation event results in

u becoming ũ such that ũ = u + w, where w ∈ B3, we shall call w the mutation

vector and write m̃(u,w) to mean the vector ũ that results from mutating u with

the mutation vector w. Thus,

m̃(u,w) = ũ = u+w (3.3)

We now present a theorem that is essential to finding M . It gives the restriction in

terms of Hamming distance that must be placed on the vectors in M to ensure that

they have properties (also given in the theorem) necessary to tolerate mutations.

Theorem 3.1. Let M = {m1,m2, . . . ,m64} be a subspace of Bn, where n > 3. If

dmin(M) ≥ 2t+1, then if t or less substitution mutations occur in any codon mi ∈M

so that it becomes m̃i, then
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1. d(mi, m̃i) ≤ t

2. m̃i /∈M

3. d(m̃i,mj) > t for any mj ∈M , where mj 6= mi

Proof

1. Since t or less substitution mutations occurred in mi, it follows that m̃i and

mi differ in at most t places and hence d(mi, m̃i) ≤ t.

2. It takes a mutation vector of weight ≥ 2t + 1 to turn any codon in M into a

different codon in M since dmin(M) ≥ 2t+ 1. Since ≤ t substitution mutations

occurred in mi, m̃i cannot possibly be in M .

3. We prove this by contradiction so assume that d(m̃i,mj) ≤ t. We know from

1) that d(mi, m̃i) ≤ t. Then, d(mi, m̃i) + d(m̃i,mj) ≤ 2t. Using the triangle

inequality, we have that d(mi,mj) ≤ d(mi, m̃i) + d(m̃i,mj) ≤ 2t. This is a

contradiction, since we know that d(mi,mj) ≥ 2t+1 because dmin(M) ≥ 2t+1.

We conclude that d(m̃i,mj) > t, as desired. �

Using theorem 3.1, our task of developing codons capable of tolerating t mutations

is simplified and can be stated as: find some set of vectors M = {m1,m2, . . . ,m64}

such that dmin(M) ≥ 2t + 1. Upon finding such an M , we are guaranteed that any

mutation event with a mutation vector of weight t or less that occurs in any codon

in M will result in a new codon that is none of the vectors in M but still closest

in Hamming distance to the original codon and can thus be decoded as the original

codon. We next use the concept of orthogonal complements previously discussed in

section 2.6.
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3.3.2 Finding Generator Matrices for M⊥ and M

Let H = [h1, h2, . . . , hn], where hi is the ith column of H, be the generator matrix

for M⊥. Then from equation (2.9) we know that aHT = 0 for a ∈ M . Thus, if

a = (a1, a2, . . . , an), a1h1 + a2h2 + . . . anhn = 0. Let k = 2t + 1. According to

equation (3.2), dmin(M) = k implies that wtmin(M) = k, which has two implications

that combine with the fact that a1h1 +a2h2 + . . . anhn = 0 to tell us how to construct

H. These are discussed below:

1. wtmin(M) = k implies that at least one vector in M has weight k.

Let m = (m1,m2, . . . ,mk) ∈M be such a vector with weight k and let

mi1,mi2, . . . ,mik be its k non-zero coordinates. Then m1h1 + m2h2 + . . . +

mkhk = mi1hi1 + mi2hi2 + . . . + mikhik = 0. This implies that the generator

matrix H has some k columns that are linearly dependent.

2. wtmin(M) = k implies that there is no vector in M with weight k − 1.

This means there is no m ∈M with the k − 1 non-zero coordinates mi1,mi2

, . . . ,mi(k−1) such that mi1hi1 + mi2hi2 + . . . + mi(k−1)hi(k−1) = 0. This implies

that any k − 1 columns of H are linearly independent.

The two discussions above tell us how the requirement of dmin(M) = k on M

translates to restrictions on the generator matrix H of its orthogonal complement

M⊥. These restrictions tell us how to construct H: construct H such that 1) some k

columns are linearly dependent and 2) any k − 1 columns are linearly independent,

where k = 2t + 1 and t is the arbitrary number of substitution mutations we want

to tolerate per codon. Once H is constructed, we can then find the generator matrix

of M , call it G, from the equation GHT = 0, which was given in section 2.6. Note

that G completely tells us the vectors in M = {m1,m2, . . . ,m64} since its rows are

a basis of M . The approach is demonstrated in the next section.
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3.4 Example: Tolerating 1 Substitution Mutation per Codon

Here, we use the ideas discussed in the previous sections, particularly section 3.3.2,

to find an example set of 64 alternative codons M = {m1,m2, . . . ,m64}, where

M ⊆ Bn and n > 3, such that a gene constructed from these codons is guaranteed to

tolerate any 1 substitution mutation per codon2.

We know that if dmin(M) = wtmin(M) ≥ 2t + 1, then M will have the structure

necessary for tolerating any mutation with mutation vector of weight less than or equal

to t. For our example, t = 1 and so we will form an M with dmin(M) = wtmin(M) = 3.

Using ideas discussed in the prior section, this requires that we find G, the generator

matrix of M , from GHT = 0 where H, the generator matrix of M⊥, is a matrix with

two restrictions: 1) some 3 columns are linearly dependent and 2) any 2 columns of

H are linearly independent.

As noted in section 2.6, if G has size k × n, H will have size (n − k) × n. To

find H and then G, we need to know what n and k are. M is a subspace of 64

vectors, one to ‘replace’ each naturally-occurring codon. Given that we have 4 scalars,

0, 1, α, and α2, M must have 3 basis vectors so that all possible linear combinations

of the 3 basis vectors yields 64 vectors. By definition, the rows of G are the basis

vectors of M . Thus, G has k = 3 rows. We will choose the subspace M from the

vector space B5 and so n = 5. This choice will be explained in the next section.

Given n = 5 and k = 3, G and H have sizes 3 × 5 and 2 × 5, respectively. Let’s

construct H.

Consider the set of vectors A={(1, α2), (1, α), (α, α), (1, 0), (0, 1)}. Since

1·(α, α)+α·(1, 0)+α·(0, 1) = 0, (α, α), (1, 0) and (0, 1) are linearly dependent. Also,

one can verify that any two vectors from A are linearly independent. The vectors in

2Thus, any codon can tolerate a mutation with mutation vector of weight 1.
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A thus satisfy the two requirements on the the column vectors of H. As such, we can

use these vectors as the column vectors of H, as shown below.

H =

 1 1 α 1 0

α2 α α 0 1

 (3.4)

Note that H is not unique. Any matrix of size 2× 5 with column vectors that satisfy

the two requirements mentioned earlier can be used. Also note that the submatrix

formed from the last two columns is the 2× 2 identity matrix I2 =
[
1 0
0 1

]
. This choice

was made so we could make use of the fact that if H = [P | In−k], where In−k is the

n− k × n− k identity matrix, then G = [Ik | P T ] satisfies GHT = 0. Using this fact

and H given in equation (3.4), we have G as:

G =


1 0 0 1 α2

0 1 0 1 α

0 0 1 α α

 (3.5)

The rows of G form a basis of the set M = {m1,m2, . . . ,m64}. Thus, every mi ∈M

can be obtained from a linear combination of the form mi = λ1 · (1, 0, 0, 1, α2) + λ2 ·

(0, 1, 0, 1, α) + λ3 · (0, 0, 1, α, α), where λi are scalars. This linear combination can

be written as the matrix multiplication given below:

mi = (λ1, λ2, λ3) ·G (3.6)

Thus, G maps each vector (λ1, λ2, λ3) ∈ B3 uniquely to a vector (ω1, ω2, ω3, ω4, ω5) ∈

M . In essence, G tells us which unnatural codon of length 5 to use in place of each

naturally-occuring codon of length 3 such that genes constructed from the unnatural
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codons can tolerate up to one substitution mutation per codon. For example, the p-

codon of ATG is (0 1 α). (0 1 α)·G = (0 1 α α 1), which is the p-codon for ATGGT. We

will thus use the synthetic codon ATGGT in place of ATG. Table 3.1 shows results

from evaluating equation (3.6) for all p-codons of the naturally occuring codons.

It shows how all 64 naturally-occuring codons should be mapped to the mutation-

tolerant (mutol) codons of length 5 in set M such that genes constructed from the

mutol codons will be tolerant of up to one substitution mutation per codon. Since we

represented both thymine and uracil with scalar 1 as outlined in table 1.1, T in the

codons column of table 3.1 can simply be replaced with U to get the corresponding

RNA codons.

Three observations can be made about the 5-letter codons in table 3.1 we claim

will confer mutation-tolerance upon genes constructed from them: 1) each of the

5-letter unnatural codons can have any 1 of its nucleotides replaced with any other

nucleotide without turning into any of the other 63 codons. 2) upon substituting

any 1 nucleotide in any of the 5-letter codons, the resulting 5-letter codon is still most

similar to the originally intended codon in terms of Hamming Distance. 3) any 1

nucleotide substitution in any of the 5-letter codons results in a 5-letter codon that

is not in Table 3.1. These observations are desirable and are simply consequences of

theorem 3.1 for the case t = 1. Observation 3 however poses a challenge, which is

addressed in the next section.
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Table 3.1: Mapping to Alternative Codons

p-codons DNA Codons

(0 0 0) (0 0 0 0 0) AAA AAAAA

(0 0 1) (0 0 1 a a) AAT AATGG

(0 0 a) (0 0 a a2 a2) AAG AAGCC

(0 0 a2) (0 0 a2 1 1) AAC AACTT

(0 1 0) (0 1 0 1 a) ATA ATATG

(0 1 1) (0 1 1 a2 0) ATT ATTCA

(0 1 a) (0 1 a a 1) ATG ATGGT

(0 1 a2) (0 1 a2 0 a2) ATC ATCAC

(0 a 0) (0 a 0 a a2) AGA AGAGC

(0 a 1) (0 a 1 0 1) AGT AGTAT

(0 a a) (0 a a 1 0) AGG AGGTA

(0 a a2) (0 a a2 a2 a) AGC AGCCG

(0 a2 0) (0 a2 0 a2 1) ACA ACACT

(0 a2 1) (0 a2 1 1 a2) ACT ACTTC

(0 a2 a) (0 a2 a 0 a) ACG ACGAG

(0 a2 a2) (0 a2 a2 a 0) ACC ACCGA

(1 0 0) (1 0 0 1 a2) TAA TAATC

(1 0 1) (1 0 1 a2 1) TAT TATCT

(1 0 a) (1 0 a a 0) TAG TAGGA

(1 0 a2) (1 0 a2 0 a) TAC TACAG

(1 1 0) (1 1 0 0 1) TTA TTAAT

(1 1 1) (1 1 1 a a2) TTT TTTGC
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Table 3.1: Mapping to Alternative Codons

p-codons DNA Codons

(1 1 a) (1 1 a a2 a) TTG TTGCG

(1 1 a2) (1 1 a2 1 0) TTC TTCTA

(1 a 0) (1 a 0 a2 0) TGA TGACA

(1 a 1) (1 a 1 1 a) TGT TGTTG

(1 a a) (1 a a 0 a2) TGG TGGAC

(1 a a2) (1 a a2 a 1) TGC TGCGT

(1 a2 0) (1 a2 0 a a) TCA TCAGG

(1 a2 1) (1 a2 1 0 0) TCT TCTAA

(1 a2 a) (1 a2 a 1 1) TCG TCGTT

(1 a2 a2) (1 a2 a2 a2 a2) TCC TCCCC

(a 0 0) (a 0 0 a 1) GAA GAAGT

(a 0 1) (a 0 1 0 a2) GAT GATAC

(a 0 a) (a 0 a 1 a) GAG GAGTG

(a 0 a2) (a 0 a2 a2 0) GAC GACCA

(a 1 0) (a 1 0 a2 a2) GTA GTACC

(a 1 1) (a 1 1 1 1) GTT GTTTT

(a 1 a) (a 1 a 0 0) GTG GTGAA

(a 1 a2) (a 1 a2 a a) GTC GTCGG

(a a 0) (a a 0 0 a) GGA GGAAG

(a a 1) (a a 1 a 0) GGT GGTGA

(a a a) (a a a a2 1) GGG GGGCT

(a a a2) (a a a2 1 a2) GGC GGCTC

(a a2 0) (a a2 0 1 0) GCA GCATA
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Table 3.1: Mapping to Alternative Codons

p-codons DNA Codons

(a a2 1) (a a2 1 a2 a) GCT GCTCG

(a a2 a) (a a2 a a a2) GCG GCGGC

(a a2 a2) (a a2 a2 0 1) GCC GCCAT

(a2 0 0) (a2 0 0 a2 a) CAA CAACG

(a2 0 1) (a2 0 1 1 0) CAT CATTA

(a2 0 a) (a2 0 a 0 1) CAG CAGAT

(a2 0 a2) (a2 0 a2 a a2) CAC CACGC

(a2 1 0) (a2 1 0 a 0) CTA CTAGA

(a2 1 1) (a2 1 1 0 a) CTT CTTAG

(a2 1 a) (a2 1 a 1 a2) CTG CTGTC

(a2 1 a2) (a2 1 a2 a2 1) CTC CTCCT

(a2 a 0) (a2 a 0 1 1) CGA CGATT

(a2 a 1) (a2 a 1 a2 a2) CGT CGTCC

(a2 a a) (a2 a a a a) CGG CGGGG

(a2 a a2) (a2 a a2 0 0) CGC CGCAA

(a2 a2 0) (a2 a2 0 0 a2) CCA CCAAC

(a2 a2 1) (a2 a2 1 a 1) CCT CCTGT

(a2 a2 a) (a2 a2 a a2 0) CCG CCGCA

(a2 a2 a2) (a2 a2 a2 1 a) CCC CCCTG
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3.4.1 Codon Degeneracy

We first demonstrate observation 3 made in the previous section. Let x =

ATGGT, which is the 5-letter mutation-tolerant variant of the naturally-occuring

codon ATG. Assume a mutation event that substitutes the third nucleotide of x,

guanine, with adenine. The resulting codon will be x̃=ATAGT. We can confirm that

ATAGT is indeed not one of the 64 5-letter codons given in table 3.1. This is also

true of any 5-letter codon which results from a 1 nucleotide substitution mutation of

any of the other 63 codons.

This poses the following challenge. Assume we have a gene, call it K, constructed

using the mutation-tolerant 5-letter codons given in table 3.1 and artificial tRNAs

that recognize the 64 corresponding 5-letter RNA codons. Further assume that some

1 nucleotide substitution has occurred in a codon x of K to become x̃. We know that

x̃ is not in table 3.1. Thus, the translation of gene K cannot progress beyond the

RNA equivalent of codon x̃ since its pattern is not one of the 64 patterns recognized

by the the artificial tRNAs. In fact, there will be 45− 64 RNA codons not recognized

by the artificial tRNAs.

The solution is obvious. We ought to have artificial tRNAs that recognize RNA

codons beyond those for the 64 5-letter codons given in 3.1. For example, instead of

having an artificial tRNA decode only AUGGU as methionine (the amino acid coded

for by the naturally-occurring AUG) we will have several artificial tRNAs that decode

several 5-letter RNA codons, including the ‘original’ AUGGU, as methionine. Our

approach to doing that is as follows.

As discussed in section, nucleotide substitutions can be described as the addition

of a mutation vector to a p-codon. As such, being tolerant of single nucleotide substi-

tutions means that the 5-letter codons in table 3.1 tolerate any mutation event whose
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mutation vector is one of the rows 3 in Z below.

Z =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

α 0 0 0 0

0 α 0 0 0

0 0 α 0 0

0 0 0 α 0

0 0 0 0 α

α2 0 0 0 0

0 α2 0 0 0

0 0 α2 0 0

0 0 0 α2 0

0 0 0 0 α2



(3.7)

Using this fact, given any 5-letter codon x from table 3.1, our approach to deciding

which 5-letter codons to decode in the same manner as x is as follows: add the p-codon

of x to each row of Z, then have artificial tRNAs that decode all resulting codons as

you would x. Combining this approach with equation (3.6), we give equation (3.8)

which takes as input the p-codon (λ1, λ2, λ3) of a naturally-occurring 3-letter codon

and yields K, a 16× 1 matrix whose rows are p-codons of 16 5−letter codons where

the first codon is the mutation-tolerant codon to be used in place of the naturally-

occurring 3-letter codon in the construction of a gene and all 16 5-letter codons are

3The zero mutation vector leads to a silent mutation but is added to facilitate use of Z in a latter

equation.
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to be decoded by artificial tRNAs during translation as the 3-letter codon would be

in the natural genetic code.

K = ϕ16[ (λ1λ2λ3) ·G ] + Z

where ϕn[i] = [i, i, . . . , i︸ ︷︷ ︸
n times

]T
(3.8)

Take codon ATG as an example. In a DNA sense strand, it codes for methionine.

Its p-codon is (01α). Using equation (3.8), K = [ (01αα1), (11αα1), (00αα1),

(01α2α1), (01αα21), (01αα0), (α1αα1), (0α2αα1), (010α1), (01α01), (01ααα2),

(α21αα1), (0ααα1), (011α1), (01α11), (01ααα) ]T . The first p-codon in K is

(01αα1). In nucleotide terms, it is ATGGT. Thus, in ‘converting’ a naturally-

occurring gene to its mutol variant, codon ATGGT should be used in place of ATG.

Also, we ought to have artificial tRNAs that recognize and decode all 16 5-letter

codons corresponding to the p-codons in K (given below) as ATG would naturally

be decoded — methionine.

ATGGT(01αα1)

TTGGT(11αα1)

AAGGT(00αα1)

ATCGT(01α2α1)

ATGCT(01αα21)

ATGGA(01αα0)

GTGGT(α1αα1)

ACGGT(0α2αα1)

ATAGT(010α1)

ATGAT(01α01)

ATGGC(01ααα2)

CTGGT(α21αα1)

AGGGT(0ααα1)

ATTGT(011α1)

ATGTT(01α11)

ATGGG(01ααα)

Just as we did above for codon ATG, equation (3.8) has been evaluated for all 64

3-letter codons and the results are given in Appendix A in table A.1.
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3.4.2 Demonstration of Mutation-Tolerance Capability

Here, we simulate random substitution mutations in both a wild type GFP gene

(NCBI Reference Sequence: NC 011521.1) and its mutol variant to demonstrate the

superior mutation-tolerance of the mutol variant. By mutol variant4, we mean the

DNA sequence obtained by replacing the naturally occurring 3-letter codons with the

5-letter codons we constructed. In Table 3.3 below, the top sequence in each row is

the wild type GFP DNA sequence. The middle sequence on each row is the DNA

sequence of the mutol variant with each 5-letter codon right below its corresponding

3-letter codon. As previously mentioned, the underlying assumption is that there

exists some synthetic tRNAs capable of ‘reading’ these 5-letter codons. The bottom

sequence in each row also indicates the amino acid coded for by the codons. The first

and last codon in each row are numbered for ease of reference.

We randomly selected 20 same-numbered codons from the wild type GFP DNA

and its mutol variant. For each of these codons, we randomly substituted one of its

nucleotides. We then noted the amino acids coded for by the post-mutation codons in

both the wild type and the mutol variant. The results for each of 20 mutated codons

in both sequences are given in table 3.4. The columns named “Mutation” have a

syntax of the form X −→ Y, which simply means the original codon was X and became

Y after the mutation. The same syntax is used in the columns named “Translation”,

where the amino acid on the left of the arrow is the originally intended amino acid

and the amino acid on the right is the amino acid coded for by the mutated codon.

From the table, we see that only codon number 25 and codon number 167 in the

wild type sequence still coded for the original amino acid post-mutation. In contrast,

all 20 codons that were mutated in the mutol variant still coded for the originally

intended amino acid post-mutation.

4Mutol variant as in mutation-tolerant variant
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Table 3.3: GFP DNA Sequence and Its Mutol Variant

5′ ATG 1

5′ ATGCT

M

AGT

AGTAT

S

AAA

AAAAA

K

GGA

GGAAG

G

GAA

GAAGT

E

GAA

GAAGT

E

CTT 7

CTTAG

L

TTC 8

TTCTA

F

ACT

ACTTC

T

GGA

GGAAG

G

GTT

GTTTT

V

GTC

GTCGG

V

CCA

CCAAC

P

ATT 14

ATTCA

I

CTT 15

CTTAG

L

GTT

GTTTT

V

GAA

GAAGT

E

TTA

TTAAT

L

GAT

GATAC

D

GGT

GGTGA

G

GAT 21

GATAC

D

GTT 22

GTTTT

V

AAT

AATGG

N

GGG

GGGCT

G

CAC

CACGC

H

AAA

AAAAA

K

TTT

TTTGC

F

TCT 28

TCTAA

S

GTC 29

GTCGG

V

AGT

AGTAT

S

GGA

GGAAG

G

GAG

GAGTG

E

GGT

GGTGA

G

GAA

GAAGT

E

GGT 35

GGTGA

G

GAT 36

GATAC

D

GCA

GCATA

A

ACA

ACACT

T

TAC

TACAG

Y

GGA

GGAAG

G

AAA

AAAAA

K

CTT 42

CTTAG

L

ACC 43

ACCGA

T

CTT

CTTAG

L

AAA

AAAAA

K

TTT

TTTGC

F

ATT

ATTCA

I

TGC

TGCGT

C

ACT 49

ACTTC

T

ACT 50

ACTTC

T

GGA

GGAAG

G

AAA

AAAAA

K

CTA

CTAGA

L

CCT

CCTGT

P

GTT

GTTTT

V

CCA 56

CCAAC

P

TGG 57

TGGAC

W

CCA

CCAAC

P

ACA

ACACT

T

CTT

CTTAG

L

GTC

GTCGG

V

ACT

ACTTC

T

ACT 63

ACTTC

T

TTC 64

TTCTA

F

GGT

GGTGA

G

TAT

TATCT

Y

GGT

GGTGA

G

GTT

GTTTT

V

CAA

CAACG

Q

TGC 70

TGCGT

C

TTT 71

TTTGC

F

GCG

GCGGC

A

AGA

AGAGC

R

TAC

TACAG

Y

CCA

CCAAC

P

GAT

GATAC

D

CAT 77

CATTA

H

ATG 78

ATGGT

M

AAA

AAAAA

K

CAG

CAGAT

Q

CAT

CATTA

H

GAC

GACCA

D

TTT

TTTGC

F

TTC 84

TTCTA

F
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Table 3.3: GFP DNA Sequence and Its Mutol Variant

AAG 85

AAGCC

K

AGT

AGTAT

S

GCC

GCCAT

A

ATG

ATGGT

M

CCT

CCTGT

P

GAA

GAAGT

E

GGT 91

GGTGA

G

TAT 92

TATCT

Y

GTA

GTACC

V

CAG

CAGAT

Q

GAA

GAAGT

E

AGA

AGAGC

R

ACT

ACTTC

T

ATA 98

ATATG

I

TTT 99

TTTGC

F

TTC

TTCTA

F

AAA

AAAAA

K

GAT

GATAC

D

GAC

GACCA

D

GGG

GGGCT

G

AAC 105

AACTT

N

TAC 106

TACAG

Y

AAG

AAGCC

K

ACA

ACACT

T

CGT

CGTCC

R

GCT

GCTCG

A

GAA

GAAGT

E

GTC 112

GTCGG

V

AAG 113

AAGCC

K

TTT

TTTGC

F

GAA

GAAGT

E

GGT

GGTGA

G

GAT

GATAC

D

ACC

ACCGA

T

CTT 119

CTTAG

L

GTT 120

GTTTT

V

AAT

AATGG

N

AGA

AGAGC

R

ATC

ATCAC

I

GAG

GAGTG

E

TTA

TTAAT

L

AAA 126

AAAAA

K

GGT 127

GGTGA

G

ATT

ATTCA

I

GAT

GATAC

D

TTT

TTTGC

F

AAA

AAAAA

K

GAA

GAAGT

E

GAT 133

GATAC

D

GGA 134

GGAAG

G

AAC

AACTT

N

ATT

ATTCA

I

CTT

CTTAG

L

GGA

GGAAG

G

CAC

CACGC

H

AAA 140

AAAAA

K

TTG 141

TTGCG

L

GAA

GAAGT

E

TAC

TACAG

Y

AAC

AACTT

N

TAT

TATCT

Y

AAC

AACTT

N

TCA 147

TCAGG

S

CAC 148

CACGC

H

AAT

AATGG

N

GTA

GTACC

V

TAC

TACAG

Y

ATC

ATCAC

I

ATG

ATGGT

M

GCA 154

GCATA

A

GAC 155

GACCA

D

AAA

AAAAA

K

CAA

CAACG

Q

AAG

AAGCC

K

AAT

AATGG

N

GGA

GGAAG

G

ATC 161

ATCAC

I

AAA 162

AAAAA

K

GTT

GTTTT

V

AAC

AACTT

N

TTC

TTCTA

F

AAA

AAAAA

K

ATT

ATTCA

I

AGA 168

AGAGC

R
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Table 3.3: GFP DNA Sequence and Its Mutol Variant

CAC 169

CACGC

H

AAC

AACTT

N

ATT

ATTCA

I

GAA

GAAGT

E

GAT

GATAC

D

GGA

GGAAG

G

AGC 175

AGCCG

S

GTT 176

GTTTT

V

CAA

CAACG

Q

CTA

CTAGA

L

GCA

GCATA

A

GAC

GACCA

D

CAT

CATTA

H

TAT 182

TATCT

Y

CAA 183

CAACG

Q

CAA

CAACG

Q

AAT

AATGG

N

ACT

ACTTC

T

CCA

CCAAC

P

ATT

ATTCA

I

GGC 189

GGCTC

G

GAT 190

GATAC

D

GGC

GGCTC

G

CCT

CCTGT

P

GTC

GTCGG

V

CTT

CTTAG

L

TTA

TTAAT

L

CCA 196

CCAAC

P

GAC 197

GACCA

D

AAC

AACTT

N

CAT

CATTA

H

TAC

TACAG

Y

CTG

CTGTC

L

TCC

TCCCC

S

ACA 203

ACACT

T

CAA 204

CAACG

Q

TCT

TCTAA

S

GCC

GCCAT

A

CTT

CTTAG

L

TCG

TCGTT

S

AAA

AAAAA

K

GAT 210

GATAC

D

CCC 211

CCCTG

P

AAC

AACTT

N

GAA

GAAGT

E

AAG

AAGCC

K

AGA

AGAGC

R

GAC

GACCA

D

CAC 217

CACGC

H

ATG 218

ATGGT

M

GTC

GTCGG

V

CTT

CTTAG

L

CTT

CTTAG

L

GAG

GAGTG

E

TTT

TTTGC

F

GTA 224

GTACC

V

ACA 225

ACACT

T

GCT

GCTCG

A

GCT

GCTCG

A

GGG

GGGCT

G

ATT

ATTCA

I

ACA

ACACT

T

CAT 231

CATTA

H

GGC 232

GGCTC

G

ATG

ATGGT

M

GAT

GATAC

D

GAA

GAAGT

E

CTA

CTAGA

L

TAC

TACAG

Y

AAA 238

AAAAA

K

TAA 239 3′

TAATC 3′

Stop
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Wildtype GFP Mutol Variant

Codon No. Mutation Translation Mutation Translation

10 GGA −→ GCA G −→ A GGAAG −→ GCAAG G −→ G

13 CCA −→ GCA P −→ A CCAAC −→ CCAAG P −→ P

15 CTT −→ GTT L −→ V CTTAG −→ CCTAG L −→ L

18 TTA −→ GTA L −→ V TTAAT −→ TTAGT L −→ L

19 GAT −→ CAT D −→ H GATAC −→ AATAC D −→ D

23 AAT −→ AAA N −→ K AATGG −→ AATGT N −→ N

25 CAC −→ CAT H −→ H CACGC −→ CACAC H −→ H

39 TAC −→ TTC Y −→ F TACAG −→ TCCAG Y −→ Y

55 GTT −→ ATT V −→ I GTTTT −→ GCTTT V −→ V

83 TTT −→ TAT F −→ Y TTTGC −→ TTGGC F −→ F

94 CAG −→ CAC Q −→ H CAGAT −→ CAGCT Q −→ Q

102 GAT −→ GTT D −→ V GATAC −→ GCTAC D −→ D

108 ACA −→ ATA T −→ I ACACT −→ ACAGT T −→ T

112 GTC −→ GCC V −→ A GTCGG −→ TTCGG V −→ V

130 TTT −→ ATT F −→ I TTTGC −→ TATGC F −→ F

138 GGA −→ TGA G −→ Stop GGAAG −→ GGGAG G −→ G

150 GTA −→ GGA V −→ G GTACC −→ GTACA V −→ V

167 ATT −→ ATA I −→ I ATTCA −→ AGTCA I −→ I

211 CCC −→ ACC P −→ T CCCTG −→ CTCTG P −→ P

233 ATG −→ ATA M −→ I ATGGT −→ ATTGT M −→ M

Table 3.4: Mutation Simulation Results
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APPENDIX A

3-LETTER CODONS TO 5-LETTER CODONS

46



Table A.1: Degeneracy Mapping

AAA

(000)

AAAAA(00000)

TAAAA(10000)

ATAAA(01000)

AATAA(00100)

AAATA(00010)

AAAAT(00001)

GAAAA(a0000)

AGAAA(0a000)

AAGAA(00a00)

AAAGA(000a0)

AAAAG(0000a)

CAAAA(a20000)

ACAAA(0a2000)

AACAA(00a200)

AAACA(000a20)

AAAAC(0000a2)

AAT

(001)

AATGG(001aa)

TATGG(101aa)

ATTGG(011aa)

AAAGG(000aa)

AATCG(001a2a)

AATGC(001aa2)

GATGG(a01aa)

AGTGG(0a1aa)

AACGG(00a2aa)

AATAG(0010a)

AATGA(001a0)

CATGG(a201aa)

ACTGG(0a21aa)

AAGGG(00aaa)

AATTG(0011a)

AATGT(001a1)

AAG

(00a)

AAGCC(00aa2a2)

TAGCC(10aa2a2)

ATGCC(01aa2a2)

AACCC(00a2a2a2)

AAGGC(00aaa2)

AAGCG(00aa2a)

GAGCC(a0aa2a2)

AGGCC(0aaa2a2)

AAACC(000a2a2)

AAGTC(00a1a2)

AAGCT(00aa21)

CAGCC(a20aa2a2)

ACGCC(0a2aa2a2)

AATCC(001a2a2)

AAGAC(00a0a2)

AAGCA(00aa20)

AAC

(00a2)

AACTT(00a211)

TACTT(10a211)

ATCTT(01a211)

AAGTT(00a11)

AACAT(00a201)

AACTA(00a210)

GACTT(a0a211)

AGCTT(0aa211)

AATTT(00111)

AACCT(00a2a21)

AACTC(00a21a2)

CACTT(a20a211)

ACCTT(0a2a211)

AAATT(00011)

AACGT(00a2a1)

AACTG(00a21a)

ATA

(010)

ATATG(0101a)

TTATG(1101a)

AAATG(0001a)

ATTTG(0111a)

ATAAG(0100a)

ATATC(0101a2)

GTATG(a101a)

ACATG(0a201a)

ATGTG(01a1a)

ATACG(010a2a)

ATATA(01010)

CTATG(a2101a)

AGATG(0a01a)

ATCTG(01a21a)

ATAGG(010aa)

ATATT(01011)

ATT

(011)

ATTCA(011a20)

TTTCA(111a20)

AATCA(001a20)

ATACA(010a20)

ATTGA(011a0)

ATTCT(011a21)

GTTCA(a11a20)

ACTCA(0a21a20)

ATCCA(01a2a20)

ATTTA(01110)

ATTCG(011a2a)

CTTCA(a211a20)

AGTCA(0a1a20)

ATGCA(01aa20)

ATTAA(01100)

ATTCC(011a2a2)

ATG

(01a)

ATGGT(01aa1)

TTGGT(11aa1)

AAGGT(00aa1)

ATCGT(01a2a1)

ATGCT(01aa21)

ATGGA(01aa0)

GTGGT(a1aa1)

ACGGT(0a2aa1)

ATAGT(010a1)

ATGAT(01a01)

ATGGC(01aaa2)

CTGGT(a21aa1)

AGGGT(0aaa1)

ATTGT(011a1)

ATGTT(01a11)

ATGGG(01aaa)
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Table A.1: Degeneracy Mapping

ATC

(01a2)

ATCAC(01a20a2)

TTCAC(11a20a2)

AACAC(00a20a2)

ATGAC(01a0a2)

ATCTC(01a21a2)

ATCAG(01a20a)

GTCAC(a1a20a2)

ACCAC(0a2a20a2)

ATTAC(0110a2)

ATCGC(01a2aa2)

ATCAT(01a201)

CTCAC(a21a20a2)

AGCAC(0aa20a2)

ATAAC(0100a2)

ATCCC(01a2a2a2)

ATCAA(01a200)

AGA

(0a0)

AGAGC(0a0aa2)

TGAGC(1a0aa2)

ACAGC(0a20aa2)

AGTGC(0a1aa2)

AGACC(0a0a2a2)

AGAGG(0a0aa)

GGAGC(aa0aa2)

AAAGC(000aa2)

AGGGC(0aaaa2)

AGAAC(0a00a2)

AGAGT(0a0a1)

CGAGC(a2a0aa2)

ATAGC(010aa2)

AGCGC(0aa2aa2)

AGATC(0a01a2)

AGAGA(0a0a0)

AGT

(0a1)

AGTAT(0a101)

TGTAT(1a101)

ACTAT(0a2101)

AGAAT(0a001)

AGTTT(0a111)

AGTAA(0a100)

GGTAT(aa101)

AATAT(00101)

AGCAT(0aa201)

AGTGT(0a1a1)

AGTAC(0a10a2)

CGTAT(a2a101)

ATTAT(01101)

AGGAT(0aa01)

AGTCT(0a1a21)

AGTAG(0a10a)

AGG

(0aa)

AGGTA(0aa10)

TGGTA(1aa10)

ACGTA(0a2a10)

AGCTA(0aa210)

AGGAA(0aa00)

AGGTT(0aa11)

GGGTA(aaa10)

AAGTA(00a10)

AGATA(0a010)

AGGCA(0aaa20)

AGGTG(0aa1a)

CGGTA(a2aa10)

ATGTA(01a10)

AGTTA(0a110)

AGGGA(0aaa0)

AGGTC(0aa1a2)

AGC

(0aa2)

AGCCG(0aa2a2a)

TGCCG(1aa2a2a)

ACCCG(0a2a2a2a)

AGGCG(0aaa2a)

AGCGG(0aa2aa)

AGCCC(0aa2a2a2)

GGCCG(aaa2a2a)

AACCG(00a2a2a)

AGTCG(0a1a2a)

AGCTG(0aa21a)

AGCCA(0aa2a20)

CGCCG(a2aa2a2a)

ATCCG(01a2a2a)

AGACG(0a0a2a)

AGCAG(0aa20a)

AGCCT(0aa2a21)

ACA

(0a20)

ACACT(0a20a21)

TCACT(1a20a21)

AGACT(0a0a21)

ACTCT(0a21a21)

ACAGT(0a20a1)

ACACA(0a20a20)

GCACT(aa20a21)

ATACT(010a21)

ACGCT(0a2aa21)

ACATT(0a2011)

ACACC(0a20a2a2)

CCACT(a2a20a21)

AAACT(000a21)

ACCCT(0a2a2a21)

ACAAT(0a2001)

ACACG(0a20a2a)

ACT

(0a21)

ACTTC(0a211a2)

TCTTC(1a211a2)

AGTTC(0a11a2)

ACATC(0a201a2)

ACTAC(0a210a2)

ACTTG(0a211a)

GCTTC(aa211a2)

ATTTC(0111a2)

ACCTC(0a2a21a2)

ACTCC(0a21a2a2)

ACTTT(0a2111)

CCTTC(a2a211a2)

AATTC(0011a2)

ACGTC(0a2a1a2)

ACTGC(0a21aa2)

ACTTA(0a2110)
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Table A.1: Degeneracy Mapping

ACG

(0a2a)

ACGAG(0a2a0a)

TCGAG(1a2a0a)

AGGAG(0aa0a)

ACCAG(0a2a20a)

ACGTG(0a2a1a)

ACGAC(0a2a0a2)

GCGAG(aa2a0a)

ATGAG(01a0a)

ACAAG(0a200a)

ACGGG(0a2aaa)

ACGAA(0a2a00)

CCGAG(a2a2a0a)

AAGAG(00a0a)

ACTAG(0a210a)

ACGCG(0a2aa2a)

ACGAT(0a2a01)

ACC

(0a2a2)

ACCGA(0a2a2a0)

TCCGA(1a2a2a0)

AGCGA(0aa2a0)

ACGGA(0a2aa0)

ACCCA(0a2a2a20)

ACCGT(0a2a2a1)

GCCGA(aa2a2a0)

ATCGA(01a2a0)

ACTGA(0a21a0)

ACCAA(0a2a200)

ACCGG(0a2a2aa)

CCCGA(a2a2a2a0)

AACGA(00a2a0)

ACAGA(0a20a0)

ACCTA(0a2a210)

ACCGC(0a2a2aa2)

TAA

(100)

TAATC(1001a2)

AAATC(0001a2)

TTATC(1101a2)

TATTC(1011a2)

TAAAC(1000a2)

TAATG(1001a)

CAATC(a2001a2)

TGATC(1a01a2)

TAGTC(10a1a2)

TAACC(100a2a2)

TAATT(10011)

GAATC(a001a2)

TCATC(1a201a2)

TACTC(10a21a2)

TAAGC(100aa2)

TAATA(10010)

TAT

(101)

TATCT(101a21)

AATCT(001a21)

TTTCT(111a21)

TAACT(100a21)

TATGT(101a1)

TATCA(101a20)

CATCT(a201a21)

TGTCT(1a1a21)

TACCT(10a2a21)

TATTT(10111)

TATCC(101a2a2)

GATCT(a01a21)

TCTCT(1a21a21)

TAGCT(10aa21)

TATAT(10101)

TATCG(101a2a)

TAG

(10a)

TAGGA(10aa0)

AAGGA(00aa0)

TTGGA(11aa0)

TACGA(10a2a0)

TAGCA(10aa20)

TAGGT(10aa1)

CAGGA(a20aa0)

TGGGA(1aaa0)

TAAGA(100a0)

TAGAA(10a00)

TAGGG(10aaa)

GAGGA(a0aa0)

TCGGA(1a2aa0)

TATGA(101a0)

TAGTA(10a10)

TAGGC(10aaa2)

TAC

(10a2)

TACAG(10a20a)

AACAG(00a20a)

TTCAG(11a20a)

TAGAG(10a0a)

TACTG(10a21a)

TACAC(10a20a2)

CACAG(a20a20a)

TGCAG(1aa20a)

TATAG(1010a)

TACGG(10a2aa)

TACAA(10a200)

GACAG(a0a20a)

TCCAG(1a2a20a)

TAAAG(1000a)

TACCG(10a2a2a)

TACAT(10a201)

TTA

(110)

TTAAT(11001)

ATAAT(01001)

TAAAT(10001)

TTTAT(11101)

TTATT(11011)

TTAAA(11000)

CTAAT(a21001)

TCAAT(1a2001)

TTGAT(11a01)

TTAGT(110a1)

TTAAC(1100a2)

GTAAT(a1001)

TGAAT(1a001)

TTCAT(11a201)

TTACT(110a21)

TTAAG(1100a)
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Table A.1: Degeneracy Mapping

TTT

(111)

TTTGC(111aa2)

ATTGC(011aa2)

TATGC(101aa2)

TTAGC(110aa2)

TTTCC(111a2a2)

TTTGG(111aa)

CTTGC(a211aa2)

TCTGC(1a21aa2)

TTCGC(11a2aa2)

TTTAC(1110a2)

TTTGT(111a1)

GTTGC(a11aa2)

TGTGC(1a1aa2)

TTGGC(11aaa2)

TTTTC(1111a2)

TTTGA(111a0)

TTG

(11a)

TTGCG(11aa2a)

ATGCG(01aa2a)

TAGCG(10aa2a)

TTCCG(11a2a2a)

TTGGG(11aaa)

TTGCC(11aa2a2)

CTGCG(a21aa2a)

TCGCG(1a2aa2a)

TTACG(110a2a)

TTGTG(11a1a)

TTGCA(11aa20)

GTGCG(a1aa2a)

TGGCG(1aaa2a)

TTTCG(111a2a)

TTGAG(11a0a)

TTGCT(11aa21)

TTC

(11a2)

TTCTA(11a210)

ATCTA(01a210)

TACTA(10a210)

TTGTA(11a10)

TTCAA(11a200)

TTCTT(11a211)

CTCTA(a21a210)

TCCTA(1a2a210)

TTTTA(11110)

TTCCA(11a2a20)

TTCTG(11a21a)

GTCTA(a1a210)

TGCTA(1aa210)

TTATA(11010)

TTCGA(11a2a0)

TTCTC(11a21a2)

TGA

(1a0)

TGACA(1a0a20)

AGACA(0a0a20)

TCACA(1a20a20)

TGTCA(1a1a20)

TGAGA(1a0a0)

TGACT(1a0a21)

CGACA(a2a0a20)

TAACA(100a20)

TGGCA(1aaa20)

TGATA(1a010)

TGACG(1a0a2a)

GGACA(aa0a20)

TTACA(110a20)

TGCCA(1aa2a20)

TGAAA(1a000)

TGACC(1a0a2a2)

TGT

(1a1)

TGTTG(1a11a)

AGTTG(0a11a)

TCTTG(1a211a)

TGATG(1a01a)

TGTAG(1a10a)

TGTTC(1a11a2)

CGTTG(a2a11a)

TATTG(1011a)

TGCTG(1aa21a)

TGTCG(1a1a2a)

TGTTA(1a110)

GGTTG(aa11a)

TTTTG(1111a)

TGGTG(1aa1a)

TGTGG(1a1aa)

TGTTT(1a111)

TGG

(1aa)

TGGAC(1aa0a2)

AGGAC(0aa0a2)

TCGAC(1a2a0a2)

TGCAC(1aa20a2)

TGGTC(1aa1a2)

TGGAG(1aa0a)

CGGAC(a2aa0a2)

TAGAC(10a0a2)

TGAAC(1a00a2)

TGGGC(1aaaa2)

TGGAT(1aa01)

GGGAC(aaa0a2)

TTGAC(11a0a2)

TGTAC(1a10a2)

TGGCC(1aaa2a2)

TGGAA(1aa00)

TGC

(1aa2)

TGCGT(1aa2a1)

AGCGT(0aa2a1)

TCCGT(1a2a2a1)

TGGGT(1aaa1)

TGCCT(1aa2a21)

TGCGA(1aa2a0)

CGCGT(a2aa2a1)

TACGT(10a2a1)

TGTGT(1a1a1)

TGCAT(1aa201)

TGCGC(1aa2aa2)

GGCGT(aaa2a1)

TTCGT(11a2a1)

TGAGT(1a0a1)

TGCTT(1aa211)

TGCGG(1aa2aa)
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TCA

(1a20)

TCAGG(1a20aa)

ACAGG(0a20aa)

TGAGG(1a0aa)

TCTGG(1a21aa)

TCACG(1a20a2a)

TCAGC(1a20aa2)

CCAGG(a2a20aa)

TTAGG(110aa)

TCGGG(1a2aaa)

TCAAG(1a200a)

TCAGA(1a20a0)

GCAGG(aa20aa)

TAAGG(100aa)

TCCGG(1a2a2aa)

TCATG(1a201a)

TCAGT(1a20a1)

TCT

(1a21)

TCTAA(1a2100)

ACTAA(0a2100)

TGTAA(1a100)

TCAAA(1a2000)

TCTTA(1a2110)

TCTAT(1a2101)

CCTAA(a2a2100)

TTTAA(11100)

TCCAA(1a2a200)

TCTGA(1a21a0)

TCTAG(1a210a)

GCTAA(aa2100)

TATAA(10100)

TCGAA(1a2a00)

TCTCA(1a21a20)

TCTAC(1a210a2)

TCG

(1a2a)

TCGTT(1a2a11)

ACGTT(0a2a11)

TGGTT(1aa11)

TCCTT(1a2a211)

TCGAT(1a2a01)

TCGTA(1a2a10)

CCGTT(a2a2a11)

TTGTT(11a11)

TCATT(1a2011)

TCGCT(1a2aa21)

TCGTC(1a2a1a2)

GCGTT(aa2a11)

TAGTT(10a11)

TCTTT(1a2111)

TCGGT(1a2aa1)

TCGTG(1a2a1a)

TCC

(1a2a2)

TCCCC(1a2a2a2a2)

ACCCC(0a2a2a2a2)

TGCCC(1aa2a2a2)

TCGCC(1a2aa2a2)

TCCGC(1a2a2aa2)

TCCCG(1a2a2a2a)

CCCCC(a2a2a2a2a2)

TTCCC(11a2a2a2)

TCTCC(1a21a2a2)

TCCTC(1a2a21a2)

TCCCT(1a2a2a21)

GCCCC(aa2a2a2a2)

TACCC(10a2a2a2)

TCACC(1a20a2a2)

TCCAC(1a2a20a2)

TCCCA(1a2a2a20)

GAA

(a00)

GAAGT(a00a1)

CAAGT(a200a1)

GTAGT(a10a1)

GATGT(a01a1)

GAACT(a00a21)

GAAGA(a00a0)

AAAGT(000a1)

GGAGT(aa0a1)

GAGGT(a0aa1)

GAAAT(a0001)

GAAGC(a00aa2)

TAAGT(100a1)

GCAGT(aa20a1)

GACGT(a0a2a1)

GAATT(a0011)

GAAGG(a00aa)

GAT

(a01)

GATAC(a010a2)

CATAC(a2010a2)

GTTAC(a110a2)

GAAAC(a000a2)

GATTC(a011a2)

GATAG(a010a)

AATAC(0010a2)

GGTAC(aa10a2)

GACAC(a0a20a2)

GATGC(a01aa2)

GATAT(a0101)

TATAC(1010a2)

GCTAC(aa210a2)

GAGAC(a0a0a2)

GATCC(a01a2a2)

GATAA(a0100)

GAG

(a0a)

GAGTG(a0a1a)

CAGTG(a20a1a)

GTGTG(a1a1a)

GACTG(a0a21a)

GAGAG(a0a0a)

GAGTC(a0a1a2)

AAGTG(00a1a)

GGGTG(aaa1a)

GAATG(a001a)

GAGCG(a0aa2a)

GAGTA(a0a10)

TAGTG(10a1a)

GCGTG(aa2a1a)

GATTG(a011a)

GAGGG(a0aaa)

GAGTT(a0a11)
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GAC

(a0a2)

GACCA(a0a2a20)

CACCA(a20a2a20)

GTCCA(a1a2a20)

GAGCA(a0aa20)

GACGA(a0a2a0)

GACCT(a0a2a21)

AACCA(00a2a20)

GGCCA(aaa2a20)

GATCA(a01a20)

GACTA(a0a210)

GACCG(a0a2a2a)

TACCA(10a2a20)

GCCCA(aa2a2a20)

GAACA(a00a20)

GACAA(a0a200)

GACCC(a0a2a2a2)

GTA

(a10)

GTACC(a10a2a2)

CTACC(a210a2a2)

GAACC(a00a2a2)

GTTCC(a11a2a2)

GTAGC(a10aa2)

GTACG(a10a2a)

ATACC(010a2a2)

GCACC(aa20a2a2)

GTGCC(a1aa2a2)

GTATC(a101a2)

GTACT(a10a21)

TTACC(110a2a2)

GGACC(aa0a2a2)

GTCCC(a1a2a2a2)

GTAAC(a100a2)

GTACA(a10a20)

GTT

(a11)

GTTTT(a1111)

CTTTT(a21111)

GATTT(a0111)

GTATT(a1011)

GTTAT(a1101)

GTTTA(a1110)

ATTTT(01111)

GCTTT(aa2111)

GTCTT(a1a211)

GTTCT(a11a21)

GTTTC(a111a2)

TTTTT(11111)

GGTTT(aa111)

GTGTT(a1a11)

GTTGT(a11a1)

GTTTG(a111a)

GTG

(a1a)

GTGAA(a1a00)

CTGAA(a21a00)

GAGAA(a0a00)

GTCAA(a1a200)

GTGTA(a1a10)

GTGAT(a1a01)

ATGAA(01a00)

GCGAA(aa2a00)

GTAAA(a1000)

GTGGA(a1aa0)

GTGAG(a1a0a)

TTGAA(11a00)

GGGAA(aaa00)

GTTAA(a1100)

GTGCA(a1aa20)

GTGAC(a1a0a2)

GTC

(a1a2)

GTCGG(a1a2aa)

CTCGG(a21a2aa)

GACGG(a0a2aa)

GTGGG(a1aaa)

GTCCG(a1a2a2a)

GTCGC(a1a2aa2)

ATCGG(01a2aa)

GCCGG(aa2a2aa)

GTTGG(a11aa)

GTCAG(a1a20a)

GTCGA(a1a2a0)

TTCGG(11a2aa)

GGCGG(aaa2aa)

GTAGG(a10aa)

GTCTG(a1a21a)

GTCGT(a1a2a1)

GGA

(aa0)

GGAAG(aa00a)

CGAAG(a2a00a)

GCAAG(aa200a)

GGTAG(aa10a)

GGATG(aa01a)

GGAAC(aa00a2)

AGAAG(0a00a)

GAAAG(a000a)

GGGAG(aaa0a)

GGAGG(aa0aa)

GGAAA(aa000)

TGAAG(1a00a)

GTAAG(a100a)

GGCAG(aaa20a)

GGACG(aa0a2a)

GGAAT(aa001)

GGT

(aa1)

GGTGA(aa1a0)

CGTGA(a2a1a0)

GCTGA(aa21a0)

GGAGA(aa0a0)

GGTCA(aa1a20)

GGTGT(aa1a1)

AGTGA(0a1a0)

GATGA(a01a0)

GGCGA(aaa2a0)

GGTAA(aa100)

GGTGG(aa1aa)

TGTGA(1a1a0)

GTTGA(a11a0)

GGGGA(aaaa0)

GGTTA(aa110)

GGTGC(aa1aa2)
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GGG

(aaa)

GGGCT(aaaa21)

CGGCT(a2aaa21)

GCGCT(aa2aa21)

GGCCT(aaa2a21)

GGGGT(aaaa1)

GGGCA(aaaa20)

AGGCT(0aaa21)

GAGCT(a0aa21)

GGACT(aa0a21)

GGGTT(aaa11)

GGGCC(aaaa2a2)

TGGCT(1aaa21)

GTGCT(a1aa21)

GGTCT(aa1a21)

GGGAT(aaa01)

GGGCG(aaaa2a)

GGC

(aaa2)

GGCTC(aaa21a2)

CGCTC(a2aa21a2)

GCCTC(aa2a21a2)

GGGTC(aaa1a2)

GGCAC(aaa20a2)

GGCTG(aaa21a)

AGCTC(0aa21a2)

GACTC(a0a21a2)

GGTTC(aa11a2)

GGCCC(aaa2a2a2)

GGCTT(aaa211)

TGCTC(1aa21a2)

GTCTC(a1a21a2)

GGATC(aa01a2)

GGCGC(aaa2aa2)

GGCTA(aaa210)

GCA

(aa20)

GCATA(aa2010)

CCATA(a2a2010)

GGATA(aa010)

GCTTA(aa2110)

GCAAA(aa2000)

GCATT(aa2011)

ACATA(0a2010)

GTATA(a1010)

GCGTA(aa2a10)

GCACA(aa20a20)

GCATG(aa201a)

TCATA(1a2010)

GAATA(a0010)

GCCTA(aa2a210)

GCAGA(aa20a0)

GCATC(aa201a2)

GCT

(aa21)

GCTCG(aa21a2a)

CCTCG(a2a21a2a)

GGTCG(aa1a2a)

GCACG(aa20a2a)

GCTGG(aa21aa)

GCTCC(aa21a2a2)

ACTCG(0a21a2a)

GTTCG(a11a2a)

GCCCG(aa2a2a2a)

GCTTG(aa211a)

GCTCA(aa21a20)

TCTCG(1a21a2a)

GATCG(a01a2a)

GCGCG(aa2aa2a)

GCTAG(aa210a)

GCTCT(aa21a21)

GCG

(aa2a)

GCGGC(aa2aaa2)

CCGGC(a2a2aaa2)

GGGGC(aaaaa2)

GCCGC(aa2a2aa2)

GCGCC(aa2aa2a2)

GCGGG(aa2aaa)

ACGGC(0a2aaa2)

GTGGC(a1aaa2)

GCAGC(aa20aa2)

GCGAC(aa2a0a2)

GCGGT(aa2aa1)

TCGGC(1a2aaa2)

GAGGC(a0aaa2)

GCTGC(aa21aa2)

GCGTC(aa2a1a2)

GCGGA(aa2aa0)

GCC

(aa2a2)

GCCAT(aa2a201)

CCCAT(a2a2a201)

GGCAT(aaa201)

GCGAT(aa2a01)

GCCTT(aa2a211)

GCCAA(aa2a200)

ACCAT(0a2a201)

GTCAT(a1a201)

GCTAT(aa2101)

GCCGT(aa2a2a1)

GCCAC(aa2a20a2)

TCCAT(1a2a201)

GACAT(a0a201)

GCAAT(aa2001)

GCCCT(aa2a2a21)

GCCAG(aa2a20a)

CAA

(a200)

CAACG(a200a2a)

GAACG(a00a2a)

CTACG(a210a2a)

CATCG(a201a2a)

CAAGG(a200aa)

CAACC(a200a2a2)

TAACG(100a2a)

CGACG(a2a0a2a)

CAGCG(a20aa2a)

CAATG(a2001a)

CAACA(a200a20)

AAACG(000a2a)

CCACG(a2a20a2a)

CACCG(a20a2a2a)

CAAAG(a2000a)

CAACT(a200a21)
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CAT

(a201)

CATTA(a20110)

GATTA(a0110)

CTTTA(a21110)

CAATA(a20010)

CATAA(a20100)

CATTT(a20111)

TATTA(10110)

CGTTA(a2a110)

CACTA(a20a210)

CATCA(a201a20)

CATTG(a2011a)

AATTA(00110)

CCTTA(a2a2110)

CAGTA(a20a10)

CATGA(a201a0)

CATTC(a2011a2)

CAG

(a20a)

CAGAT(a20a01)

GAGAT(a0a01)

CTGAT(a21a01)

CACAT(a20a201)

CAGTT(a20a11)

CAGAA(a20a00)

TAGAT(10a01)

CGGAT(a2aa01)

CAAAT(a20001)

CAGGT(a20aa1)

CAGAC(a20a0a2)

AAGAT(00a01)

CCGAT(a2a2a01)

CATAT(a20101)

CAGCT(a20aa21)

CAGAG(a20a0a)

CAC

(a20a2)

CACGC(a20a2aa2)

GACGC(a0a2aa2)

CTCGC(a21a2aa2)

CAGGC(a20aaa2)

CACCC(a20a2a2a2)

CACGG(a20a2aa)

TACGC(10a2aa2)

CGCGC(a2aa2aa2)

CATGC(a201aa2)

CACAC(a20a20a2)

CACGT(a20a2a1)

AACGC(00a2aa2)

CCCGC(a2a2a2aa2)

CAAGC(a200aa2)

CACTC(a20a21a2)

CACGA(a20a2a0)

CTA

(a210)

CTAGA(a210a0)

GTAGA(a10a0)

CAAGA(a200a0)

CTTGA(a211a0)

CTACA(a210a20)

CTAGT(a210a1)

TTAGA(110a0)

CCAGA(a2a20a0)

CTGGA(a21aa0)

CTAAA(a21000)

CTAGG(a210aa)

ATAGA(010a0)

CGAGA(a2a0a0)

CTCGA(a21a2a0)

CTATA(a21010)

CTAGC(a210aa2)

CTT

(a211)

CTTAG(a2110a)

GTTAG(a110a)

CATAG(a2010a)

CTAAG(a2100a)

CTTTG(a2111a)

CTTAC(a2110a2)

TTTAG(1110a)

CCTAG(a2a210a)

CTCAG(a21a20a)

CTTGG(a211aa)

CTTAA(a21100)

ATTAG(0110a)

CGTAG(a2a10a)

CTGAG(a21a0a)

CTTCG(a211a2a)

CTTAT(a21101)

CTG

(a21a)

CTGTC(a21a1a2)

GTGTC(a1a1a2)

CAGTC(a20a1a2)

CTCTC(a21a21a2)

CTGAC(a21a0a2)

CTGTG(a21a1a)

TTGTC(11a1a2)

CCGTC(a2a2a1a2)

CTATC(a2101a2)

CTGCC(a21aa2a2)

CTGTT(a21a11)

ATGTC(01a1a2)

CGGTC(a2aa1a2)

CTTTC(a2111a2)

CTGGC(a21aaa2)

CTGTA(a21a10)

CTC

(a21a2)

CTCCT(a21a2a21)

GTCCT(a1a2a21)

CACCT(a20a2a21)

CTGCT(a21aa21)

CTCGT(a21a2a1)

CTCCA(a21a2a20)

TTCCT(11a2a21)

CCCCT(a2a2a2a21)

CTTCT(a211a21)

CTCTT(a21a211)

CTCCC(a21a2a2a2)

ATCCT(01a2a21)

CGCCT(a2aa2a21)

CTACT(a210a21)

CTCAT(a21a201)

CTCCG(a21a2a2a)
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CGA

(a2a0)

CGATT(a2a011)

GGATT(aa011)

CCATT(a2a2011)

CGTTT(a2a111)

CGAAT(a2a001)

CGATA(a2a010)

TGATT(1a011)

CAATT(a20011)

CGGTT(a2aa11)

CGACT(a2a0a21)

CGATC(a2a01a2)

AGATT(0a011)

CTATT(a21011)

CGCTT(a2aa211)

CGAGT(a2a0a1)

CGATG(a2a01a)

CGT

(a2a1)

CGTCC(a2a1a2a2)

GGTCC(aa1a2a2)

CCTCC(a2a21a2a2)

CGACC(a2a0a2a2)

CGTGC(a2a1aa2)

CGTCG(a2a1a2a)

TGTCC(1a1a2a2)

CATCC(a201a2a2)

CGCCC(a2aa2a2a2)

CGTTC(a2a11a2)

CGTCT(a2a1a21)

AGTCC(0a1a2a2)

CTTCC(a211a2a2)

CGGCC(a2aaa2a2)

CGTAC(a2a10a2)

CGTCA(a2a1a20)

CGG

(a2aa)

CGGGG(a2aaaa)

GGGGG(aaaaa)

CCGGG(a2a2aaa)

CGCGG(a2aa2aa)

CGGCG(a2aaa2a)

CGGGC(a2aaaa2)

TGGGG(1aaaa)

CAGGG(a20aaa)

CGAGG(a2a0aa)

CGGAG(a2aa0a)

CGGGA(a2aaa0)

AGGGG(0aaaa)

CTGGG(a21aaa)

CGTGG(a2a1aa)

CGGTG(a2aa1a)

CGGGT(a2aaa1)

CGC

(a2aa2)

CGCAA(a2aa200)

GGCAA(aaa200)

CCCAA(a2a2a200)

CGGAA(a2aa00)

CGCTA(a2aa210)

CGCAT(a2aa201)

TGCAA(1aa200)

CACAA(a20a200)

CGTAA(a2a100)

CGCGA(a2aa2a0)

CGCAG(a2aa20a)

AGCAA(0aa200)

CTCAA(a21a200)

CGAAA(a2a000)

CGCCA(a2aa2a20)

CGCAC(a2aa20a2)

CCA

(a2a20)

CCAAC(a2a200a2)

GCAAC(aa200a2)

CGAAC(a2a00a2)

CCTAC(a2a210a2)

CCATC(a2a201a2)

CCAAG(a2a200a)

TCAAC(1a200a2)

CTAAC(a2100a2)

CCGAC(a2a2a0a2)

CCAGC(a2a20aa2)

CCAAT(a2a2001)

ACAAC(0a200a2)

CAAAC(a2000a2)

CCCAC(a2a2a20a2)

CCACC(a2a20a2a2)

CCAAA(a2a2000)

CCT

(a2a21)

CCTGT(a2a21a1)

GCTGT(aa21a1)

CGTGT(a2a1a1)

CCAGT(a2a20a1)

CCTCT(a2a21a21)

CCTGA(a2a21a0)

TCTGT(1a21a1)

CTTGT(a211a1)

CCCGT(a2a2a2a1)

CCTAT(a2a2101)

CCTGC(a2a21aa2)

ACTGT(0a21a1)

CATGT(a201a1)

CCGGT(a2a2aa1)

CCTTT(a2a2111)

CCTGG(a2a21aa)

CCG

(a2a2a)

CCGCA(a2a2aa20)

GCGCA(aa2aa20)

CGGCA(a2aaa20)

CCCCA(a2a2a2a20)

CCGGA(a2a2aa0)

CCGCT(a2a2aa21)

TCGCA(1a2aa20)

CTGCA(a21aa20)

CCACA(a2a20a20)

CCGTA(a2a2a10)

CCGCG(a2a2aa2a)

ACGCA(0a2aa20)

CAGCA(a20aa20)

CCTCA(a2a21a20)

CCGAA(a2a2a00)

CCGCC(a2a2aa2a2)
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CCC

(a2a2a2)

CCCTG(a2a2a21a)

GCCTG(aa2a21a)

CGCTG(a2aa21a)

CCGTG(a2a2a1a)

CCCAG(a2a2a20a)

CCCTC(a2a2a21a2)

TCCTG(1a2a21a)

CTCTG(a21a21a)

CCTTG(a2a211a)

CCCCG(a2a2a2a2a)

CCCTA(a2a2a210)

ACCTG(0a2a21a)

CACTG(a20a21a)

CCATG(a2a201a)

CCCGG(a2a2a2aa)

CCCTT(a2a2a211)
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