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ABSTRACT

Allocating tasks for a day’s or week’s schedule is known to be a challenging and

difficult problem. The problem intensifies by many folds in multi-agent settings. A

planner or group of planners who decide such kind of task association schedule must

have a comprehensive perspective on (1) the entire array of tasks to be scheduled (2)

idea on constraints like importance cum order of tasks and (3) the individual abilities

of the operators. One example of such kind of scheduling is the crew scheduling done

for astronauts who will spend time at International Space Station (ISS). The schedule

for the crew of ISS is decided before the mission starts. Human planners take part in

the decision-making process to determine the timing of activities for multiple days for

multiple crew members at ISS. Given the unpredictability of individual assignments

and limitations identified with the various operators, deciding upon a satisfactory

timetable is a challenging task. The objective of the current work is to develop an

automated decision assistant that would assist human planners in coming up with

an acceptable task schedule for the crew. At the same time, the decision assistant

will also ensure that human planners are always in the driver’s seat throughout this

process of decision-making.

The decision assistant will make use of automated planning technology to assist

human planners. The guidelines of Naturalistic Decision Making (NDM) and the

Human-In-The -Loop decision making were followed to make sure that the human is

always in the driver’s seat. The use cases considered are standard situations which

come up during decision-making in crew-scheduling. The effectiveness of automated

decision assistance was evaluated by setting it up for domain experts on a comparable

domain of scheduling courses for master students. The results of the user study eval-

uating the effectiveness of automated decision support were subsequently published.
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Chapter 1

INTRODUCTION

The problem of mission-critical decision making is a ubiquitous one. Decision

making under such scenarios is characterized by uncertainty, multiple stakeholders

and complex interrelated resource constraints and the decision maker is often required

to come up with a decision under given time constraints. In such a situation a mistake,

even a minuscule one could lead to catastrophic failures. The critical nature of such

a job asks for the decision maker to not only have expert knowledge about the task

at hand but also keep track of any changes to the state of the system. Moreover,

given the fact that the system can have multiple stakeholders, decision makers must

try to arrive at a decision which is acceptable to all stakeholders and at the same

time maximizes the overall utility. The decision-making process, therefore, becomes a

lengthy and time-consuming one and the decision makers can easily get overwhelmed.

Even after much thought and deliberations by the human decision maker, the final

decision might still not be optimal or suited for the current state of the system.

Therefore, some degree of assistance is often required by the human decision maker

to reach a decision.

For example, consider the decision support for the International Space Station(ISS).

These massive structures not only solely house a crew but also conjointly are tasked

to perform scientific studies and routine activities. Scientists who are a part of the

science team, perform various scientific experiments. Support crew performs auxiliary

tasks like provision, repair or photo operation. Apart from their professional duties,

crew members even have to portion time for daily routine activities like breakfast,

lunch, exercise or sleep. Mission planners are responsible for coming up with daily
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Figure 1.1: A Schedule Prepared for the Crew by Mission Planners after Consulting
with Various Stakeholders

schedules for the crew. Typically decision-making becomes a challenge for the mission

planners because they need to arrive at a schedule that tries to maximize the objec-

tive achieved by each crew member. Additionally, they are responsible for ensuring

that the plans are up to date and revised throughout the mission. While coming up

with an idea, they may also need to prioritize various objectives and be able to satisfy

resource constraints.

The mission planners act as supervisors and try to finalize the schedule along with

mission objectives even before the mission take off. NASA has been following this

approach for quite some time as mentioned in Marquez et al. (2013). However, the

current practice often leads to unstable plans in a dynamically changing system like

that of ISS. It also makes the routine schedule of the crew quite inflexible. It may

happen that a small number of experiments did not produce the expected outcome or

some tasks took more time than expected, which may, in turn, create discrepancies

in the pre-planned schedule. In such scenarios, the crew cannot always be dependent

on the mission planners to give them a new schedule on time, as there could be
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significant communication delay and the team will have to spend additional time to

provide latest updates to the ground staff. The need to include mission planners in

the loop also restricts the crew’s ability to update their schedule, since they may have

to coordinate not only with mission planners on the ground but also with other peers

making the entire process undesirable and even unreliable.

As we can see from the above discussion, decision making for crew scheduling is

a tough task for human planners. So, in such scenarios instead of human-decision

makers, what if we make use of an automated decision-making system. While, such

a decision-making system can arrive at plans or schedule which are correct and op-

timal quite efficiently, however decisions by such a system (in our case, schedules

for crew scheduling) may be inexplicable to the human planner. For example, In

the crew scheduling domain, the system may come up with a schedule that precedes

REPAIR LATCH task before TAKE PHOTO task. However if the human planner

is unaware of this usability of LATCH for taking a photo can get confused as to why

this ordering was done.

In Smith (2012), the author has suggested an explanation as a way to establish

common ground among various stakeholders while discussing the schedule generated

by the system. The author has also imagined a continuous iterative process until

everyone agrees with a plan or schedule with the explanation being used at the end of

each round to come to a conclusion. Thankfully, there is much literature on developing

agents that are capable of explaining the approach taken by the assistant to reach a

decision. The current consensus in works related to ”Explainable AI” as stated by

Miller (2017) is that the explanations should help the user not only understand the

current decision but also provide the reason as to why it was chosen over alternative

solutions. One approach for simplifying the problem of explanation generation is to

make use of a symbolic decision-making model.
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In addition to Explanation-based decision making, we make use of design guide-

lines from the Naturalistic Decision-Making framework. Naturalistic decision-making(NDM)

Klein (2008) is a framework that studies the higher cognitive process of decision mak-

ing by human actors for such mission-critical situations. It ensures that the user is

always in control of the decision-making process. We also consider the principles

of Human-In-The-Loop (HILP) decision making while designing the application use

cases.

In this current thesis, we will develop an automated decision assistant for crew

scheduling domain. We will ensure that the use cases in an automated decision

assistant which comes up in naturalistic decision-making scenarios are appropriately

tested. At the same time, we will evaluate such a system by performing a user study

to evaluate the effectiveness of principal components of automated decision support.

1.1 Contributions of This Thesis

Our main contribution can be subdivided into two major sections. The first section

will deal with an application named as CAP and the second section deals with a user

study evaluation on an application named as iPass . I have described in brief below,

what each of these sections entails.

1.1.1 CAP - Decision Support for Crew Scheduling.

We developed CAP which is an automated decision support system to provide

decision support for human planners involved in creating schedules for crew members

atop a space station like ISS. While developing this decision support application, we

made sure that the human planner is at the center of the decision-making process

rather than the automated planner. The idea that the human should be the primary

4



decision-maker is one of the core ideas of Naturalized Decision Making(NDM) and

Human-in-Loop Planning(HILP). CAPbeing based on the rules of NDM and HILP

makes the human planner the primary decision maker with the decision assistant

playing a supportive role. The objective of the human planner is to reach a schedule

acceptable to multiple stakeholders whereas the decision assistant aims to assist the

human whenever there is an ask for such support from the human planner. We will

discuss all of the features of CAP and then look at some use-cases which are real-time

scenarios involving usage of decision support for crew scheduling.

1.1.2 iPass - Evaluation of the Effectiveness of Automated Planning for Decision

Support

Due to the absence of domain experts (in our case mission planners), we were

unable to evaluate the effectiveness of the decision support by CAP . Hence, we devel-

oped a second application with the principles of decision support from CAP . We have

named this application iPass . The objective of this application was to assist the

students of a particular University in coming up with a course plan or IPOS for their

degree program which could be an undergraduate, graduate or a combined degree.

This application along with allowing students to add or delete various subjects, also

allowed them to select a committee for defense and allowed them to choose a spe-

cialization for their program. While selecting a course schedule, different constraints

were enforced like mandatory inclusion of deficiency courses, selection of courses as

per specialization and many more similar restrictions. We evaluated using various

subsets of students with varying initial states and varying level of decision support

which served as our control parameters. Our evaluation was dependent on how well or

how efficient the participants were while generating the course schedule given various

different decision support control parameters. We will discuss the methodology for
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the user study; various hypothesis studied during the study and the limitations with

our study. We have also evaluated the results of this study using statistical measure to

show the degree of effectiveness of decision support in assisting the human planners.

1.2 Thesis Organisation

Chapter 1 introduces the challenges of decision making in mission-critical scenarios

like that of crew scheduling. It gives a basic understanding of how difficult it is for

a decision maker to decide on a plan or a schedule given a model. This chapter also

introduces various solutions to support decision making utilizing automated decision

support.

Chapter 2 provides us with the necessary background and the related work related

to the field of automated decision support. In this chapter, we look in details at various

approaches to develop personal decision assistants and the evolving theories behind

such assistants. We will also compare and contrast features of an already existing

tool with our application CAP .

Chapter 3 delves in detail about CAP . Here, we have mentioned the software

architecture, the features and relevant use-cases in detail. We have also provided an

overview of how the planning problem is formulated and how we can perform decision

assistance to a human planner by keeping the human-in-the-loop.

Chapter 4 describes iPass in detail with all of its features. In the same chapter

We have also described many of our hypothesis for the user study on iPass . Upon

getting the results of the user study, we have evaluated it by utilizing various statistical

measures. We then compare the results to check if our hypothesis were valid.

Chapter 5 is a short section which gives a conclusion to the thesis with a short

discussion on the future work to be done.
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Chapter 2

BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 Automated Planning

Our software system CAP will make use of automated planning or AI planning

methodologies to develop a decision-support system. In this section, we will briefly

describe automated planning or AI planning. Planning in general sense is devising

a plan of actions to achieve one’s goals as per Russell and Norvig (2003). As per

Ghallab et al. (2004), The purpose of planning is to search for a sequence of actions

to reach a goal state. In the context of classical planning, planning algorithms are

used to figure out a sequence of actions from an initial state to a final state. If the final

state satisfies particular rules for success, we then call it a goal state. The objective

of any planning algorithm is to find this sequence of actions which would transpire an

agent from an initial state to a goal state. Such a sequence of actions is also known

as a plan. A planning problem consists of the current state, domain, and the final

goal that has to be achieved.

Planning vs Acting

Planning is the process of deliberation over state-space, and any planning algorithm

aims to reach a goal state. Searching for a plan always involves searching within

predicted states and do not account for exigencies whereas the opposite is true for

acting. Acting is the process of executing an action given the current state and

activity. Acting makes use of an existing plan as a guide to move within the states.
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However, acting can lead to unexpected contingencies. It is now up to the agent to

perform a type of online learning to update the plan or restart a new plan from the

current state. The process of decision making is to generate a plan while acting upon

the decision is the actual acting on the plan. Re-planning could happen if constraints

or goals changes during acting on a plan.

Model Representation in Planning

In planning problems, the real-world model is often represented as a toy model. Any

model of such kind would consist of a domain, an initial state, and a goal. The domain

is a written representation of the world using literals, variables, actions, preconditions,

effects. The primary objective of any planning problem is to reach a goal state. We

represent a state in the domain using fluents and predicates. These fluent themselves

are a distinct representation (ground truths) of objects or group of objects that can

change over time. Domain-specific planning only allows for generalized ground truths.

An action schema constitutes of action fluent with its required precondition and

its expected effect. Both the precondition and effect are a conjunction of states

which can be either be positive or negative. An action is applicable if all of it’s

necessary preconditions are found to be true. After we have built our domain with

the action schema, we can use either a forward search (progression) or backward

search(regression) to find our requisite plan from the domain given an initial and a

goal state.

PDDL - Planning Domain Definition language

To represent our model we make use of a representational language called PDDL (

Planning Domain Definition Language) McDermott et al. (1998). PDDL makes use of

factored representation. A PDDL domain file consists of a definition of the domain,
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requirements satisfied by the domain, types of various objects in the domain, the

property of a state as predicates and finally the action schemata. The action schemata

contain the preconditions and effects of each action. A state can be any combination

of one or more predicates. A PDDL problem file consists of an initial state and a

goal state for the requisite domain. A Planner program like metric-FF(Hoffmann

(2003)) finds out the sequence of actions(plans) which would lead to the goal state

from the given initial state. A plan validator validates if a given plan is correct given

an initial state, the goal state, and the goal. For our decision assistant, we will make

use of numerical fluents to keep track of changes in time in the schedule which is a

continuous resource.

2.1.2 Human-in-loop Planning and Scheduling

Human in loop planning or HILP in short as advocated by Kambhampati and

Talamadupula (2015) and Chakraborty (2018) is required in many decision-making

scenarios. As we have discussed earlier human decision maker’s task can become quite

complicated in real-world situations. At the same time leaving the entire decision

making to automation could lead to inexplicable or undesirable plans. So we do need

a planning mechanism which will enable humans and robots to team together.

Human-in-loop planning can happen in decision support at many different levels.

One approach is to suggest a plan even before the robot or the AI system is asked

about it. Another method would be to wait until the human makes a mistake and

then suggest a change rectifying it. Other than this a decision support system can

act a passive observer and can only come to help when asked by the human actor.

The levels in which we can use automation is quite similar to levels of automation

described by Parasuraman et al. (2000). The basic idea behind HILP in decision
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making is, humans, do want assistance from the AI agent but at their terms. At

the same time, the robots should only do what is expected of them, and they should

assist as per the understanding between both the human and the robot. Keeping

Human-in-the -loop makes the robot a better assistant in decision-making scenarios.

Just like for assistance in planning, decision assistance is necessitated while creat-

ing or preparing schedules. The AI system is regularly updated with control param-

eters and the mission goals of an industrial system like a spacecraft. While they can

validate, create and assist any plan, keeping human in the loop is also important.

2.1.3 Explanations with Model Reconciliation

There have been some recent works in explanation generation for plans. Few

of them has been mentioned in the next chapter. However, in our case, we have

to consider that there is some amount of model asymmetry in between the human

and the automated decision assistant. The reason for the presence of such a model

asymmetry could be varied, but often it is the result of the limited capability of

human actors to keep themselves updated with the latest changes at all times. It

could be entirely possible that the decision assistant’s model is outdated due to some

external reasons. Whatever be the idea, we have to make sure that the human and

the decision assistant reduce this asymmetry so that they can reach an agreement

concerning the decision reached. This synergy is always a necessity in human-robot

teaming domains. At the same time, We want the plan to be close to the human’s

model because it would make the plan appear more explicable to the human. We also

always assume in decision support scenarios that the human to be a domain expert

and has an internal model of the system. We expect the plan to close to the one

expected by the human so that is is understandable to the human and there are no

surprises for the human.
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For generating such explanation which reduces the asymmetry, we will utilize

the research on Model Reconciliation from existing literature of Chakraborti et al.

(2017a). Model Reconciliation is an approach to provide a solution for the problem of

model symmetry by bringing the human model closer to the model of the automation.

The authors have formulated the Model Reconciliation Problem(MRP) in between a

human model and a robot model, and the solution for such problems is termed a

multi-model explanation. An MRP considers both the robot’s model Mr and the

human’s approximation of it, i.e., Mh. Initially, no optimal plan was found in Mh

using the same initial state and goal state because of Model differences. These model

differences could be because of the absence of certain preconditions and effects or a

gap in understanding of the current state. Mh is Model Reconciliation is supposed

to happen when the incremental model ÒM can find an optimal plan for Mr . The

explanation that is returned is the difference between the incremental model ÒM and

human model Mh. One important property that is guaranteed here by the authors

is minimality of the generated explanation. The explanation generated is always

a minimal update to the human’s model as there is no sequentiality to the search

processes and all model differences are maintained in a set with precedence given to

the low cost of the update.

2.2 Related Work

2.2.1 Related Work in Human -in-loop Planning

HILP as a subset of Human aware planning as suggested by Kambhampati and

Talamadupula (2015) makes an effort to keep the human in the loop while acting on

the environment. In case of decision support systems, the boundaries are defined by

the system boundaries in which or for which the decision is being taken. Authors
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in Kambhampati and Talamadupula (2015) have described four different areas for

keeping the human in the loop by the robot. They call it the modalities. These

are Cooperation Modality, Communication Modality, What is communicated and

Knowledge Level. Accordingly, they have provided with many examples of domains

with various levels of patterns can vary for Human-in-Loop-Planning or in short HILP.

One important example here would be that of human-robot teaming. Here we can

see that the Cooperation Modality is either teaming or collaboration, Communication

could be a natural language, What is communicated could be goals, tasks or some

other model information and Knowledge level could be something relevant to the

domain not described by any other modalities. Keeping Human-in the-loop is vital

because the human will not only make sure that the robot is working as per his wishes.

The robot can learn from the environment but if it should act as per human’s needs.

MAPGEN by Ai-Chang et al. (2004) is a practical use-case showing the impor-

tance of HILP. The primary user of MAPGEN is the MER mission tactical planners.

Tactical planners will utilize MAPGEN most efficiently to reach their mission goals

for the day. Keeping these planners(human)-in-loop can bear much better result for

the day’s scheduled goals in case the rover is faced with unexpected situations. Cur-

rently, the mixed-initiative planning for MAPGEN puts the automated planner in

driver seat rather than the human-in-loop.

In the case of Mixed-Initiative Planning, humans are in the loop and can provide

requirements to the planner for planning, but the cooperation is from human to the

robot, with the human having to accept the plan the robot come up with. Advantage

of such an approach is that the planner considers the human’s objectives. The disad-

vantage here is that the human’s aim may not always be reflected in the final plan as

there are multiple stakeholders. Also, humans are not communicated as to why their

changes was not considered for the final plan. In comparison, HILP has a varying
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degree of modalities like Cooperation, Communication, What is communicated and

Knowledge Level. Our automated decision assistance is also HILP, but it provides

support for human planners keeping them in the driver’s seat. It assists when asked

for help by the human planner and not proactively. Plus it can also communicate an

explanation back to human to reconcile any model differences.

Parasuraman et al. (2000) has also shown us by giving many examples of why it is

essential that the human is kept in the loop. They have shown how many automation

related incidents and accidents can be prevented if the human is aware of the internal

state of the system. HILP becomes even more essential in decision-support because

in case of decision support human does not only want to know the decision system

has reached but would also like to learn why this decision has been reached? The idea

of understandable plans is quite evident from the concept of explicability in Zhang

et al. (2016). In HILP it is important that the conclusion reached must be agreeable

and reasonable to humans.

Once we have kept a human in the loop, we want the domain model to be repre-

sented appropriately. Upon serving the problems appropriately, we want the system

to assist the human in various ways. Sengupta et al. (2017) RADAR system does

not only generate plans and thrust on the human but would help the human deci-

sion maker in providing validation for a hand-coded plan. It also assists the human

planner to complete his/her plan from the partial plan and offer him or her with an

explanation. RADAR uses methodologies for plan validation, plan explanation or

plan generation developed in soliloquy. Our system CAP is quite similar to RADAR,

but it is specially optimized for assisting mission planners in generating valid plans

for crew scheduling Scenarios.
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2.2.2 Related Work in Explainable Ai

In Parasuraman et al. (2000) authors have also pointed out that human operators

must not be oblivious to the working of automation. They have provided historical

data to support their claims. An analogy would be the case of an enterprise software

solution. Through debugging, we can understand the internal states of variables in

software. However, the same level of flexibility is not allowed or present in current AI

systems. Explainable AI is the domain of research where the human-in-the-loop asks

for explanation whenever she is unaware of the internal workings of the automation.

Explainable AI or need for explanations in AI and automated systems is driving many

research work in parallel. One seminal work is that of Miller (2018). The authors

have discussed here the need for explanation and also highlighted what variety of ex-

planations are necessitated for AI systems. They additionally have discussed kinds of

”Explanations” for people like Constructive explanation or Attributive explanation.

In their seminal work, they have also tried to explain a couple of Attributive expla-

nations like a Social Attribution or a Causal Connection. Also according to them,

explanations must give an idea about the causal history of a system. This piece of

information is referred to as explanatory information. Explanations can be used to

answer ”What ?”, ”How?” and ”Why ?” questions. All these questions give us appro-

priate reasoning based on factual assertion and causal history of an ongoing process.

This process could be something like to reach a particular goal cum destination or

perform a specific task or reconfigure to an appropriate configuration.

Intelligibility and Interpretability are related terms. As per Weld and Bansal

(2018) Intelligibility can be introduced to the system either by exploiting the inherent

interpretability of models like linear models. GAMs by Hastie (2017) and GA2Ms in

Lou et al. (2013) are example of similar models. Linear models are easily interpretable
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given they have a human-observable set of features. GA2MS were found to be more

explainable then other linear models. Linear models cannot learn in research domains

like image recognition or voice recognition. It is here we use an inscrutable system like

Neural networks or random forests. In such cases, the models were tested by making

them locally interpretable by using an algorithm called LIME. LIME by Ribeiro et al.

(2016) only sees for local separation points or boundaries. The authors in Weld and

Bansal (2018) have also suggested going for the interactive training of neural networks

wherein the pictures and description can be trained together. So each picture will

have its own explanation. However, in these cases, a further interactive explanation

is not possible.

Verbalization by Rosenthal et al. (2016) is another way to represent the internal

states of the system for the path or decisions they have taken. Authors have described

three different properties for Verbalization which would shape a verbalization output

and are dependent on the expectation of the human user. These are the abstraction,

locality, and specificity. Abstraction represents the level of vocabulary used with the

simplest being described only in points and the most complex one containing turns

and semantic annotations. The locality describes the segment of the route a user

may be interested. Specificity indicates the number of concepts or details needed

to be discussed. The values are dependent on what a user expects from the robot.

Moreover, a user can change the values to get a better understanding of the system.

Scheduling problems can also be represented as constraint programs. Many com-

mon scheduling problems like crew scheduling, factory scheduling has been described

as constraint programs as shown by Pinedo (2016) and Dechter and Cohen (2003).

There has been some work in generating explanations for constraint programs as well.

The primary aim for such practices was better user experience. The user is thought

to be an expert. Hence not much effort was given for model reconciliation. Earlier,
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constraint programming systems did not provide much information back to the user

when they were not able to find a solution. They would display some default message

without actually explaining back to the user any more information about this error.

The human then has to check the constraints themselves to find out what may be

causing this error. Often this would require a lot of backtracking and elimination

based reasoning by the human planner. The idea behind using explanations in con-

straint programming is to automate this process of reasoning of the user and then

generate the user-oriented explanations.

Earlier work in explanations for constraint programming talks about constraints

as the mode of communication between the human planner and the solver. Humans

will either add/remove certain constraints and check how the solver responds. Some

of the earlier works are Jussien (2001) and Jussien and Barichard (2000) . As per

Jussien (2001) ”an explanation is a set of constraints justifying the propagation events

generated by a solver.”. As per Jussien and Barichard (2000) ”an explanation E for

a piece of information I (current lower bound, current upper bound, value removal,

...) is a set of constraints such that its associated information remains valid as long

as all the constraints in E are effectively active in the constraints system.” PaLM

in Jussien and Barichard (2000) has multiple examples of how explanation is being

provided for a scheduling problem when either new constraints were added or deleted.

The self-explain feature explains as to which constraints can change the final result

variable.

2.2.3 Related Work in Automated Decision Assistance

Automated decision assistance can be seen as an area in the loop with Human-

in-Loop Planning and Assistance. But many different kinds of research has been

done for Automated decision assistance. The idea is to make the robot a subsididary
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who either interacts or does not interacts with the human depending on human’s

requirement. Decision-Theoretic Model of Assistance by Fern et al. (2007) is one

such example. The authors modeled a intelligent assistant system using an Assistant

POMDP. They observed a goal-oriented agent, i.e., the human and assist it with an

intelligent assistant so that assistive actions will decrease the global cost of reaching

the goal. Cooperative Inverse Reinforcement Learning (CIRL) by Hadfield-Menell

et al. (2016) also tried to model an autonomous system which would help the human

in achieving its goal without actually causing any unintended consequences.

Mixed-initiative interfaces by Horvitz (1999) is another approach to decision sup-

port where the automated system must sense the humans need and can act accord-

ingly. They have provided the following factors for successful integration of such

systems

• Providing Automated services which are genuinely valuable regarding cost or

time over direct manipulation.

• Uncertainty in a user’s goal and focus must be modeled appropriately.

• Must make sure that user is not distracted when making decisions.

• The ideal action is inferred considering costs, benefits, and uncertainties.

• Dialog with the user to understand his focus.

• The user should be allowed to invoke automated services.

• Aim to minimize the cost of poor guesses.

• In case of too much uncertainty, the agents should gracefully degrade certain

service.

• The user has the right to refine the analysis of agents.

17



• Socially appropriate behaviors for agent-user interaction.

• Maintain a trace or record of recent interactions.

• Learning by observation

The mentioned LookOut system infers about the User’s goals by using a linear SVM

classifier. Once the classification process is completed, the results from the classifier

act as evidence for the uncertain purpose of the user. Given the four utilities based on

action, dialog, and goal we can find an expected probability after which the intelligent

agent can take action.

Mixed-Initiative interfaces by Horvitz (1999) and RADAR by Sengupta et al.

(2017) are similar in the way they both provide proactive assistance, but RADAR

also offers many other features which are absent in Mixed-Initiative interfaces. The

features would include Plan Validation, Plan suggestion and Plan Explanation for

the firefighting domain. Also, Mixed-initiative interface was an idea paper of how

interfaces have a goal to proactively support humans should be designed whereas

RADAR is an application built for proactive decision support.

Naturalistic Decision Making(NDM) is another area of interest for people working

with decision Assistants. NDM has been at the forefront of analysis in large aeronau-

tical, Mechanical and Electrical systems involving mission-critical decision making.

These systems typically involve human supervisors to manage and maintain internal

and external processes. These professionals usually have a predefined set of goals

to be achieved. NDM studies the measure of effectiveness for the selections made

underneath such high-stakes situations.
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2.2.4 Related Work in Decision Assistance in Crew Scheduling

Smith et al. (2000) provides us with the necessary groundwork to represent a

scheduling problem as a planning problem. Authors have also performed a comparison

of various planning and search strategies for temporal planning problems. Crew

scheduling have been studied by Freling et al. (2004) and Caprara et al. (1999) by

using the operation research methodologies. NASA has previously, used scheduling

methodologies for deep space missions for Hubble in Johnston (1990) and MARS

rovers in Ai-Chang et al. (2004). An earth-based human planner uses these systems

and provides a complete plan as output that often becomes difficult for a crew member

in space to understand and edit. To address this, NASA has recently developed a

tool called ”Playbook” that is based on the principle of “Self-scheduling” by crew

members as described in Marquez et al. (2017). Earth Analogs of the International

Space Station (ISS) were utilized for the preliminary tests.

The idea behind self-scheduling, at a high level, is that the crew is expected to

resolve scheduling conflicts by themselves by rearranging tasks. To support such kind

of decision making specific markers were provided by the system where the crew knew

it could not schedule its task. Indeed, this method has its disadvantages as rightly

pointed out by Marquez et al. (2017). These issues often happen due to limited

domain knowledge of crew members, and often this knowledge is limited to their

mission objectives. They do not have a complete understanding of the entire system.

Also such kind of scheduling can create a conflict if a less critical task was scheduled

before a high priority task. It would be challenging to resolve such conflicts as it would

involve a lot of manual processes. In such situations, our tool would be of significant

advantage as it would give a lot less cognitive load to the human decision maker and

will always validate the schedule with the latest updates to the system. We have
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Figure 2.1: Comparison Between Nasa’s Playbook and Our System CAP

made a contrast between both of these tools in figure 2.1. From the comparison, it

is evident that the playbook does not possess many capabilities for decision support.

Hence it’s primary use is limited to only manual scheduling of activities. In contrast,

our developed system CAP has support for automated decision assistance which can

assist the crew in reaching an effective decision faster.
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Chapter 3

CAP - DECISION SUPPORT FOR CREW SCHEDULING

In this section, we briefly describe CAP a decision support system for crew schedul-

ing which was developed by integrating the capabilities of automated planning tech-

nologies like validating a plan, generating a plan or explaining a plan. Our system

is a full stack software application with a web interface that helps a human decision

maker to create, validate, complete a schedule for multiple crew members doing mul-

tiple tasks at multiple locations. We first described the planning domain followed by

the user interface and the back-end technologies in detail. We have then described

use-cases relevant to Crew scheduling for effective decision support.

3.1 Modelling the Crew Scheduling Problem

We have modeled the domain for CAP based on the NASA Crew Scheduling(NCS)

problem. The primary objective of NCS has been to create schedules concerning the

daily activities of crew members aboard a space station (such as ISS). Currently, the

action of generating task schedules is a manual activity with hardly any support (in

terms of decision-making) beyond interfacing elements Marquez et al. (2017). In this

current section we will try to provide assistance to human planners in crew scheduling

scenarios. We will formulate the problem of crew scheduling as a planning problem

before utilizing the automated planning technologies to develop the decision support

system for it.
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3.1.1 Planning Formulation

Crew Scheduling in CAP is represented as a planning problem written in Planning

Domain Definition Language (PDDL) McDermott et al. (1998) version 2.0. The plan-

ning problem given by  would consist of the current state given by I (state in which

the spacecraft is in), action model M(which captures the actions and constraints on

these actions which could be spatial, temporal or local in nature.), and the final goal

state G (In our case it is a day’s schedule). The planning problem  = 〈M,I,G〉

The solution to the planning problem  is the schedule of activities planned

for the day. The plan or schedule that needs to be made in order to solve the

planning problem be denoted as π that is a concatenation of two smaller plans, i.e.,

π = 〈πp, πƒ 〉 where πp denotes the past, i.e. the partial plan that is already made

and πƒ denotes the future tasks or plan that needs to be made.

3.1.2 Detailed PDDL Based Model Description

The planning model developed for crew scheduling provides an ideal test-bed to

illustrate the usefulness of decision support using the power of automated planning

techniques. The model will include representation of both the planner and the internal

human representation of it. Any validation, suggestion or explanation will be provided

concerning the planner’s model. Figure 3.1 shows a few instances of fluents of the

domain in PDDL. The complete domain and an example problem file are copied at

the end in the Appendix section. We will describe the various sections of the model

next in this section.

• Task and Actions

Multiple different kinds of actions are supported by our domain which are stand-

in or toy actions for some of the real activities performed by crew members at
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Figure 3.1: Front Panel

ISS. Some of these are described below–

Universal Actions are the tasks which are performed by all crew members

as part of their daily routines. Some of these tasks are mandatory like sleeping

or breakfast while most are optional like exercise or daily meetings. Often such

a task could take up space and block calendars of crew members. As space and

crew, both are constrained quantities so the planner must prioritize activities

to arrive at a schedule maximizing mission objectives.

Science Experiments are performed by professional researchers, scien-

tists, and experienced crew members. Again tasks of this kind take up space,

and any crew member cannot deliver them. They need people with specializa-

tion. Therefore their requirement of personals is even more constrained than

the Universal Actions. Examples include tasks requiring physical, biological or

chemical study or tasks like mass spectrometry. Some of these tasks are needed

to follow a precedence order.

Communication Tasks that send over the consequences of investigations
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or gets information about new undertakings or information about updates to

an existing venture from NASA’s ground stations. These tasks often have tem-

poral constraints. We may face a delay in completion due to communication

or equipment failures. In such an occurrence a replanning with assistance is

desired.

Maintenance Tasks involve repair and cleaning of equipment which are

utilized in other activities. These may have constraints relating to individual

members while ensuring that a single person is not always allocated maintenance

tasks. Also, a precedence order is often observed in between such tasks and other

tasks. One good example will be if an instrument is not repaired all pending

experiments requiring that instrument would not be possible. Only a repair can

generate the necessary effect to perform dependent tasks.

• Goal State

The goal of a crew scheduling problem would be to arrive at a task schedule

for the crew by maximally utilizing resources and abiding by constraints. The

generated plan would be a crew schedule containing the list of actions with a

time stamp and crew assignment. The goal of our decision support system is to

assist the human decision maker in reaching his goal of building a task schedule.

• Assumptions

Following assumptions were made while developing the domain model for CAP.

It was done keeping in mind the computational abilities and the overall time

complexity of the finding an optimal plan.

1. The total number of hours a crew member can work in a day is ten.

2. The maximum number of crew members is fixed at four.
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3. The human model is available in PDDL to facilitate the generation of

explanations.

4. A single crew member can perform only one task at a given instant.

5. The minimum unit of time to schedule a task is one hour.

3.2 System Architecture

In this section, we will describe the system architecture of our decision support

system in detail. We will also describe all of the primary components of CAP.

3.2.1 Control Flow

Figure 3.2 shows the control flow of our application. The main component of our

application are the following three components.

1. Interactive User Interface

2. Parsing and Back-end Services

3. Automated Planning Technology

The Interactive User Interface provides an intuitive and a domain optimized user in-

terface for an end user to understand and participate in generating plans and sched-

ules easily. The parsing and back-end services hosted on a different machine interact

with the user interface through micro-services. This micro-service layer also act as a

channel of communication to interact between the user interface and the automated

planning technologies. Automated planning technology serves the role of the primary

component of the decision support system that assists the human planner. Each of

the components has been described in detail in the below sections.
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Figure 3.2: Control Flow Diagram of the CAP Interface.

3.2.2 User Interface

The user interface for CAP consist of multiple sections. Each of the section has a

role to play in providing better user interface to the end user. Over ally, the intuitive

UI design reduces cognitive load in the end user.

Front Panel

The front panel as illustrated in figure 3.3) consists of two sections one being the plan

panel and the other being the button panel. It supports plan authoring by letting

users drag their mouse over a time scale to create activities where they can specify

the activity type and the astronauts who should be assigned to that activity. Other

than creating a new task, a task (denoted by blue boxes in figure 3.3) can be moved

around in a timeline along with extending the ends of the task. On hovering over

a particular activity, it shows the details associated with the activity. Lastly, the

button panel consists of three buttons– two of them (validate and suggest) show up

by default and one (explain) that is displayed after the user asks for a suggestion to
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Figure 3.3: Front Panel

the system.

Task panel

The task panel in figure 3.4 is a form-based panel comes up when a user drags a

section in a crew members timeline. Here the decision maker has to insert three

other parameters including the name of the task, the type of the task and if it is a

collaborative task he has to insert other crew members as well. Once inserted the

task will appear on all of the selected crew members timelines. If there is any conflict,

an error message would appear, and the task assignment would fail.

Dialogs

Dynamic UI dialog has been utilized to display appropriate status messages. In figure

3.10 below, we could see an explanation shown to the user. Dialogs are also used to

show error messages or status messages.
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Figure 3.4: Task Panel

Interactive UI Components

User interface has been designed keeping in mind of design principles advocated in

Shneiderman (2010). The UI also minimizes the chance of callback hell due to dan-

gling JavaScript code, by using a variant of reactive programming paradigm as men-

tioned in Kambona et al. (2013). To give the user less cognitive load, we provide her

with visual cues including highlighting the new section of plans once a partial plan

has been updated, usage of visual cues is the use of a color-coded button in the dialog

to emphasize upon the user the different situations emanating out of the assistant.

Software Stack - Frontend

For the development of user interface, we made use of following frameworks and

programming languages:-

• HTML 5 and CSS - We used HTML 5 and CSS 3 to build the initial blueprint
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of the system.

• REACT Framework - User interface logic was written in REACT using JSX

based code. REACT was used for easy transferability of components across

applications because of its original usage of the Component Application model.

• JavaScript - JavaScript was useful for events and state management. We did not

implement a separate module for event and state management but rather used

the internal functionalities of Javascript based DOM for event management.

• Web dev Server - Web dev server hosted the reactive front end after compiling

down the ES6 version of code to ES5.

3.2.3 Parsing and Backend Architecture

Parsing layer acts as a bridge between the front end and back end by converting the

UI objects to a PDDL plan or vice versa. For each functional use cases mentioned

in section 5, we would utilize an associated backend component. The associated

component would either validate, suggest or explain a plan to the user based on the

user’s request.

Software Stack - Backend

For the back-end and the parsing logic, we made use of following frameworks and

programming languages:-

• Flask - Hosted on Flask Server which is a micro web framework written in

Python. It does not require particular tools or libraries but rather use extensions

to host services. We will host Python based micro services using JSON as our

means of communication with the front end.
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• Python - Python is used to develop the microservices, backend parsing logic

and facilitating the Automated planning services.

As you can see separate servers are used for front-end and back-end to make sure that

processing load can be distributed across multiple machines. The communication

between front-end and back-end happened via micro-services through JSON.

3.2.4 Automated Planning Technology

Based on the planning formulation, we can now use off-the-shelf automated plan-

ning technologies to provide support during the Decision-making process.

• Plan Explanation Tool - Generate explanation by comparing the human and the

robot’s model from Chakraborti et al. (2017b). This tool considers two PDDL

based models(one for the human planner, one for CAP ). It then does an A-star

search on the generated intermediate models, until it finds a plan optimal in an

intermediate model. It then extracts the explanation as shown in Chakraborti

et al. (2017b) and returns it to the end-user.

• Plan Recognition Tool - Plan Recognition Tool improvises the existing logic of

the PR2 Plan by Ramı́rez and Geffner (2009) by including functionalities for

numerical fluents for PDDL version 2.1 by Fox and Long (2003). Based on the

existing plan supplied by the human planner, the tool will produce a domain

where the supplied plan is already satisfied. It will then search for a plan in

the corresponding domain model which will satisfy the end goal in the original

model. The found plan is returned to be displayed to the human planner.

• Plan Validator Tool - Validation of a plan was done by utilizing the VAL tool

by Howey et al. (2004a). This tool tries to satisfy the constraints in the PDDL
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domain using the provided plan. Each action in the schedule is checked from

the provided initial state for any constraint violation. If using the sequence of

actions are valid, the plan validator returns success else it returns the violation.

• metric-FF Planner - To search for a new plan, we utilized the Metric-FF by

Hoffmann (2003). Here, the planner will search for a schedule given the initial

state, goal state, and the action model. This particular tool is useful when the

user is unsure of how to create a schedule and asks CAP for a complete schedule.

3.3 USE CASES

Figure 3.5: Control Flow for Validating a User’s Partial Schedule and Reporting
Constraint Violations.

In this section, we will try to demonstrate specific scenarios which a human planner

may face while generating schedules for the crew member. Our use cases will highlight

the working of CAP as a decision support system which can help the human planner

in mission-critical scenarios.
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Figure 3.6: Validating a User’s Partial Schedule and Reporting Constraint Viola-
tions.

3.3.1 Plan Validation

When a human makes a schedule by interacting with the user interface, they might

not be aware of all of the constraints imposed by the domain or the individual astro-

nauts. Thus, the partial plan πp may not be realizable in practice. Plan validation

using VAL Howey et al. (2004a) allows them to check if πp is executable. If not, it

can point out the constraints that are presently being violated, thereby helping the

human on how to fix it.

The use case for plan validation has been shown in 3.5. In the initial screen, the

human will make a plan using our hassle-free and interactive UI. Once done she will
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Figure 3.7: Control Flow for Suggesting the User a Completion for Their Partial
Input Schedule.

ask the automated system to validate the schedule. The automated System validates

the schedule for constraint violations and sends its output back to the home screen.

We can see in Figure 3.6, the user selects an action CUBERRT – this is as Science

experiment which requires two crew members. The user having forgotten these con-

straints assigns the task to only a single crew member. Upon clicking ‘validate’, CAP

reports this constraint violation.

3.3.2 Plan Suggestion

Given a partial plan πp, which may or may not be empty, the human planner

can ask the system to generate the remaining schedule, i.e., πƒ . To do this, we use

a re-implementation of Ramı́rez and Geffner (2009) for numerical fluents. Originally

this approach was used for plan recognition, but we find it an effective tool that

can be used for plan completion as well. Fortunately, this completion method may
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sometimes fix some of the validation errors that existed in the πp made by the human.

Suggestion can be of two types depending on the size of the partial plan. If the

partial plan is size zero, that is no conditions has been added to the schedule by

the user; we search for a schedule without any partial schedule using a planner like

metric-FF. If the user has provided a partial task schedule with multiple tasks, then

the back end system considers this partial task schedule while generating the final

schedule. The use case for such a scenario is shown in 3.7

In Figure 3.8, the user selects three actions (indicated with a blue border to the

left of the action name) and asks the planner to complete the schedule for the day.

Note that not only does the planner come up with the entire schedule where the

actions added by CAP has a red border, but also combines appropriate actions before

the blue actions to overcome constraint violations of the human’s initial plan.

3.3.3 Plan Explanation

Often, a plan suggested by the system is inexplicable to the human in the loop.

In such a case, we allow the human to ask the planner for explanations and provide

explanations based on the model reconciliation technique Chakraborti et al. (2017a).

It is done by assuming a predefined model of the user (i.e., a user who is familiar with

some of the constraints in the domain) and then providing a minimal subset of those

constraints that support the suggested plan.

in 3.11 we could see that the TAKE PHOTO essentially has a dependency on the

latch. The latch has to be open during taking the photo. While the task of COM-

MUNICATION essentially has the completely reverse effect. Now, if this condition is

not known to a novice user, she may get confused as to why the schedule was wrong.

An explanation using Model Reconciliation can solve this confusion.

In Figure 3.10, as the human is surprised as to why a particular photo taking
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Figure 3.8: Suggesting the User a Completion for Their Partial Input Schedule.
Tasks Added by CAP Have a Left Red Border.

task is scheduled before a daily activity when clearly in their mind the priority of the

latter task is more than the first one. The planner points out a particular effect of the

former action that enables the latter action; thus, justifying the ordering. Thus, while

explanations provide details of the domain that support a plan, validation points out

constraints that invalidate a plan.

3.4 Limitations of CAP

We see a few limitations with our system CAP and we will point them out in this

section.

• The decision support system is not needed to work or has limited application

when humans are fully aware of the changes in the domain at all time. Hu-
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Figure 3.9: Control Flow for How Explanations Were Generated for a Particular
Completion of a given Partial Plan.

mans will not seek assistance in such cases when they can come up with more

straightforward plans. The humans may not utilize many of the features of the

decision support system like explanation feature given that they may not either

think of using it or forget about it. In that case, our system has no way to

communicate back to the human to use these features

• The system is a simulated version with approximations. The real time system

could possess more challenges.

.

3.5 Conclusion

In the current section, we have demonstrated Crew Scheduling which is an auto-

mated decision support system for crew scheduling. We have described all its features
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Figure 3.10: CAP Provides Explanations as to Why It Suggested a Particular Com-
pletion of a given Partial Plan.

and workings along with the software stack used for its development. Finally, we have

also shown relevant use cases demonstrating scenarios which a mission planner may

face during crew scheduling. We have demonstrated how our application can assist

the human planner in such scenarios while adhering to principles of NDM and HILP.
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Figure 3.11: An Example Scenario Demonstrating Explanation Using Model Rec-
onciliation.
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Chapter 4

IPASS : EVALUATION OF THE EFFECTIVENESS OF AUTOMATED

PLANNING FOR DECISION SUPPORT

One of the significant difficulties of the design of user studies in the area of auto-

mated decision support is access to domain experts who can verify the real usefulness

of the decision support system. As stated earlier, It would have been nearly impos-

sible to study the effectiveness of our framework built for crew scheduling because

of unavailability of mission planners for a user study. In this section, we will try to

construct a “plan of study” for graduate students of a university using the same prin-

ciples of decision support highlighted in Chapter 3. The reason being we have easily

accessible domain experts, i.e., graduate students for this evaluation. Moreover, this,

in turn, allows us to perform a comprehensive study of key elements of decision sup-

port techniques using automated planning. The data gathered from these experiments

were analyzed to determine to what extent automated task planning technologies pro-

posed in the existing literature are useful as support systems for human-in-the-loop

decision making.

4.1 Introduction

As mentioned in previous chapters, the theory of decision support is built around

the idea of enabling human decision makers make decisions faster and more accurately

with the added commitment to never take the decision making away from the decision

maker. Although it is quite evident that the field of automated planning Ghallab et al.

(2004) which aims to develop technologies that can compute a plan or a course of

action given a problem description seems to be a perfect fit for this endeavor. However,
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Figure 4.1: Illustration of the Crew Scheduling interface.

a user study evaluation can factually determine whether the synergy between the

human planner and the automated planner has happened correctly or not. We can

see whether the human can utilize the capacities of decision support to its fullest

potential. The purpose of this paper is to do a case study of two key components of

RADAR from Sengupta et al. (2017) and CAP from Chapter 3.

• the ability to validate a given plan for correctness.

• the ability to suggest a completion to a partial plan.

• demonstrate to what extent these components affect the the effectiveness of

collaborative planning

4.2 iPass – System Overview

In this section, we describe the iPass planning domain and the components of

the User Interface, which includes a feedback form to let the user answer subjective

questions.
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4.2.1 The iPass Domain and Interface

The task at hand to select subjects for ongoing and future semesters along with

managing constraints of the domain is a scheduling problem. The domain was chosen

because of the following reasons

• This task of course advising is challenging because we can see its presence

in existing literature Khan et al. (2012) and also was recently presented as a

competitive domain in the International Planning Competition Track (2018) as

a benchmark domain;

• At the same time, we have domain experts, i.e., graduate students readily avail-

able for whom the domain is useful.

The interface (shown in Figure 4.1) has three panels –

• The panel on the left shows the relevant information of the student (e.g., infor-

mation on deficiency courses, visa and residency status, research status, etc.)

• The central panel is utilized by the student to build the iPOS with various sub-

panels and forms to assist in building the IPOS. In this panel, a student can

include adding courses, adding her specialization and her committee members.

• The panel on the right is an interactive interface to rework or rearrange the plan.

It is often done to satisfy various constraints in the domain like the difficulty or

an average number of courses a semester or total cost of tuition for the current

plan.

• The last section is the decision support components. Decision support compo-

nents like validate and suggest helps the user in coming up with a valid and

desired plan. We will describe more about them in the next section.
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4.2.2 Decision Support Components

The iPOS design problem is represented as a planning problem written in Planning

Domain Definition Language (PDDL) by McDermott et al. (1998). It is quite similar

to that of CAP. In this case, the planning problem would consist of the current state

(which captures the student information), domain (which obtains the constraints of

the area such as rules a student must follow), and the final goal that has to be

achieved (a complete plan of study). The solution to a planning problem is the plan

of study. Based on the planning formulation, we can now use off-the-shelf automated

planning technologies to provide support during the planning process to the user who

is constructing the plan of study. It is entirely analogous to the way we did with CAP.

- Plan Validation – Plan validation allows a student to ask the interface to check

for correctness of a partially filled out iPOS. Again, We utilized VAL Howey

et al. (2004b) to check if a sub-plan is executable in the compiled planning

domain. For example, if a user attempts to violate rules or constraints of the

domain like adding a normal course before completing deficiencies or adding a

chair who is outside of the student’s specialization area, the VAL will highlight

this violation in a similar way it did in CAP for task assignments.

- Plan Suggestion – We will make use of an existing compilation from Ramı́rez

and Geffner (2009) to complete a plan. The compiler here takes in the plan

already constructed by the student, turns them into observations that must

be produced in a compiled version of the original planning problem, and then

solves it to ensure that parts of the iPOS already specified by the student are

respected in the suggestions it is coming up with. One example would be If

a student chooses their specialization and ask for suggestions that complete

the rest of the course requirements and possible committee chair selection that
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satisfies that specialization.

- Plan Explanations – The planner also provides explanations of its sugges-

tions, only if requested by the user, using the technique of model reconcil-

iation introduced in existing literature Chakraborti et al. (2017a).

4.2.3 Comparison with CAP

As mentioned earlier, we are evaluating iPass because it was not possible to

do a user study on astronauts who are domain experts for CAP . We chose iPass

because the nature of the problem for which assistance was required was similar. In

both cases, we had an assignment problem. CAP had a task assignment problem for

the crew where the human planner assigns various tasks for the crew considering

various constraints while iPass had a course assignment problem for the students

where the students themselves assign multiple subjects as per initial constraints. The

background automated planning technologies we are using to assist is also the same.

This way we will test the effectiveness of the same automated decision support which

was being used in CAP . At the same time, the degree of assistance from the background

decision assistant was also identical. Although, it is not a foolproof evaluation and

the best evaluation can only happen only with a user study on astronauts, but our

user study evaluated the necessary features for the effectiveness of automated decision

support.

4.3 Aim of the Study

To determine the individual as well as the cumulative impact of the two decision

support components, validation, and suggestion – we evaluated our interface in the

below four conditions –
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C0 Both validation and suggestion capabilities are absent in the interface. The users

do have to pass correctness bypassing all constraints of the domain themselves

before they can submit.

C1 Only validation capability is enabled in the interface.

C2 Only suggestion capability is enabled in the interface.

C3 Both validation and suggestion options are available in the interface.

Further, each participant, assigned to one of the study conditions C, performed the

iPOS planning task twice. The student information was generated randomly in each

case. So have two sub-conditions, C1


and C2


for each study condition C. We will

judge our study based on the following parameters.

1. Planning performance for each study condition P → Planning performance is

how the plan has performed relatively concerning various parameters like Time

of completion for each study condition or the satisfaction of the final plan or

interface by the end user. It is necessarily the performance of how the system

behaved during an isolated evaluation.

2. The difference in time to completion between C1


and C2


is → ΔT(C) is the

difference in times of the two sub-conditions of the study for the end-user. The

study of this parameter will help us to understand whether the user performed

better with the knowledge of the interface, domain and hence using this infor-

mation, whether the user can now do a better job at creating a plan, i.e., an

IPOSS.

Given the above four conditions and two parameters, we are put forwarding the

following hypothesizes concerning the parameters. These hypotheses are in sync with
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the idea that the user can arrive at a better decision with active and consistent

support.

H1. We hypothesize an increasing order of planning performance P as shown below

–

P(C0) < P(C1), P(C2) < P(C3)

Note that, it is not expected that validation or suggestion functionalities by

themselves are more useful than the other. ’Performance’ can be interpreted in

various forms as shown below:

H1a. The time to completion T(C),  = [0,3] will follow the same order as

above, e.g. T(C0) > T(C1), T(C2) > T(C3).

H1b. The satisfaction with the final plan of study constructed will follow the

same order.

H1c. The satisfaction with the feedback from the interface will follow the same

order.

Note: The satisfaction measure in H1b and H1c checks how much the user is

satisfied with the plan. If the user was pleased with the final plan of study,

it means that the user was able to create an IPOS which according to them

was excellent. If the user was satisfied with the feedback from the interface, it

says that the user’s experience from the interface was satisfactory. Now, the

reason we think this improved planning performance is because we will ask the

user to explain the IPOS at the end. So we expect them to produce a valid

IPOS and not a namesake. Given that they have to complete the task in a

time-constrained manner so if they are satisfied by the end product, we assume

they had a better planning performance. As decision support’s objective is to
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assist human planners, so a measure showing human satisfaction is required to

show how well our decision support system worked.

H2. The time to completion will reduce in all four conditions, however the reduction

ΔT(C) = T(C1 ) − T(C
2

) will also follow the same order, i.e. –

ΔT(C0) < ΔT(C1) < ΔT(C2) < ΔT(C3)

We expect this to happen because,

1. In the later condition, users are provided relevant details of the domain

as they construct a plan, and are thus expected to become more familiar

with the domain.

2. Also, the user becomes more used to the interface the second time. So, the

ability to navigate across the interface should improve.

3. This effect should be much more visible in C2 and C3 which provides

explanations specifically for purposes of model reconciliation.

H3. The effects of support components on performance will be more pronounced and

visible for subjects with less expertise, e.g., students who had not previously

completed their iPOS.

4.4 Experimental Results

4.4.1 User Study - Evaluation Process

The user study was conducted in the following steps.

1. The study was conducted on the university premises.

2. Each subject was given $15 for an hour of study when they used iPass software

to make two IPOSs for the two conditions discussed above.
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Figure 4.2: Average Time Taken (along with Confidence Interval of 95%) by a

Participant to Complete the Two Parts of the Study for Each Condition c1


and c2

.

3. At the start of the study, participants were informed that they would be asked

to explain each IPOS with the hope that it will help them be more invested in

the task as suggested by Mercier and Sperber (2011).

4. Then they were given a document explaining the planning domain and another

document explaining the functionality of the elements in the interface.

5. Lastly, they were given 20 minutes to make each IPOS, after which they were

presented with a feedback form.

4.4.2 User Study - Information about Participants

Out of a total of 56 participants, six were undergraduates, and the rest 50 were

graduate students. We also had a group of experienced 18 participants who had

submitted an IPOS before. The participants were distributed evenly among the four

study conditions.
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4.4.3 Hypothesis H1

H1a. The average time a participant took to complete the first and the second

IPOS and submit their feedback 1 is shown in Figure 4.2. The data shows a significant

improvement in performance with regards to time as one goes from C0 to C3 showing

that the automated planning technologies have helped in improving the efficiency of

the decision making process. We conducted t-tests to show the statistical significance

of the results (i.e the effect on time to create the IPOS) for each of the IPOS when

we move from C0 to C3. For the first IPOS, we see the effect of decision support on

the time to create the IPOS in initial condition C3 (M = 27.02, SD = 7.29, N =

14) from initial condition C0 (M = 32.06, SD = 4.95, N = 14) which had no

decision support. This effect is profound as shown from the results of t-test for a

confidence interval of 95% and d = 0.8 is t(23) = 2.17, p < 0.05. For the

second IPOS, we see the effect of decision support on the time to create the IPOS

in initial condition C3 (M = 15.51, SD = 5.90, N = 14) from initial condition

C0 (M = 25.58, SD = 4.42, N = 14) which had no decision support even more

significantly than first IPOS. This effect is even more profound then the first IPOS

as shown from the results of t-test for a confidence interval of 95% and d = 1.93 is

t(24) = 5.153, p < 0.001.

Unfortunately, At the same time no measurable improvement in performance was

found from (1) C0 to C1 or C2 and (2) C1 or C2 to C3 was observed. Thus, hypothesis

H1a was found to be only partly true. Frequency of different functionalities that were

used on the interface by the participants like the number of times the end users

checked their solution for submission, and the number of times they rearranged, added

or deleted actions in the plan are analyzed to study the behavior of the participants.

1Since the feedback was part of all the conditions, this is indicative of, even though not the actual,
planning time.
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This is shown in Figure 4.3. Our observations are stated below –

1. The average number of checks called was the highest in the case C0. this was

expected as it did not have any plan validation or suggestion support.

2. The average number of checks value is considerably less for the cases C3 and

C1 which had validation feature.

3. Considering that the number of times a user validated their plan in conditions

C1 and C3 (shown in Fig. 4.4), the use of check did not significantly have an

impact on the time taken by the user to finish the IPOS.

4. The average number of times users rearranged actions is almost similar for all

the conditions.

5. The average number of times a user clicked delete in the conditions C2 and C3,

indicates that even though they clicked suggest four times in average in both

of these two conditions (shown in Fig. 4.5), they were not satisfied with the

plan generated by the automated planning system and hence edited (added and

deleted) many actions.

H1b. In Figure 4.6, the answers of the users to the subjective statement Q3: I

am happy with the final Plan of Study was plotted on the Likert Scale for all of the

four conditions. It is observed that case C0 has the least number of users who agreed

(either agreed or strongly agreed) with the statement across all the four requirements.

It is an expected scenario as many users were not even able to build a valid plan of

study without any decision support in C0. For C1, six participants said they agreed

with the statement Q3, and For C2 and C3, half of the participants were happy

(i.e., either agreed or strongly agreed) with their plan of study, which is the highest

across all the four conditions. However, in C2 there was one participant who strongly
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Figure 4.3: Average Number of times Participants Added, Deleted, Rearranged
Courses or Clicked ‘check’ While Making an Ipos for All the Conditions c1


.

Figure 4.4: Average Number of times ‘validate’ Was Clicked in Condition c1
1

and

c1
3
.

disagreed with the statement, while for C3 there were none. Thus, the hypothesis

H1b holds. It was mentioned earlier that the participants erased and included more

activities for the conditions C2 and C3 that can give plan recommendations. In the

light of answers to the question Q3, it is intriguing to notice that even though the

participants altered the proposed plan, having a ready-made plan accessible to them

to bootstrap on for altering made them increasingly proficient, and also expanded
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Figure 4.5: Average Number of Times ‘suggest’ Was Clicked in Conditions c1
2

and

c1
3
.

Figure 4.6: Average Score for Subjective Q3 for Conditions c1

.

their fulfillment.

H1c. Let nC denote the number of participants who either agree or strongly

agree with the statement Q2: The feedback from the interface helped the iPOS making

process., then from the figure 4.7 it is shown that the relation nC0 < nC1 , nC2 ≤ nC3
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Figure 4.7: User Agreement Metrics for the Statement ‘q2: The Feedback from the
Interface Helped the Ipos Making Process’ for Each Condition c1


.

holds. Although the equality holds for nC1 and nC3 . The number of people who

strongly agreed to the statement was, by far, the highest for C3. Thus, it is proven

that the hypothesis H1c holds.

4.4.4 Hypothesis H2

The mean reduction in time has been plotted in completing the second IPOS after

doing the first IPOS with iPass for all the four study conditions in Figure 4.8. We

can deduce that

1. The lowest reduction in time for C0 was expected as it shows that feedback

given to the user by the decision support system helps them learn more about

the domain model, thereby improving their performance in making the second

IPOS.
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Figure 4.8: Time Difference δT(C) Between Two Tasks c1


and c2


of ipos Planning

for Every Condition c (along with Confidence Interval of 90%).

Figure 4.9: Time Taken by Experienced (in Yellow) and Non-experienced (in Blue)
Users to Make the First Ipos (c1


).
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Figure 4.10: Feedback of Non-experienced Users about the Statement ‘q1: The
Planning Task Was Pretty Simple for Me’.

2. The highest decrease in time occurred for the conditions C1 and C3. We think

that this decrease in time could have happened because of the presence of plan

validation in both of these conditions. It informed the users about the reason

behind each error they made while constructing the first IPOS. Hence it was

effective in teaching the users about the actual domain. We conducted t-tests

to show the statistical significance of the results (i.e the higher decrease in time

while creating IPOS for the second time) for each of the IPOS when we move

from C0 to C1 and C0 to C3. While moving from C0 to C1, we see the effect

of decision support having an effect on the decrease in time while creating the

second IPOS in initial condition C1 (M = 11.603, SD = 8.203, N = 14)

from initial condition C0 (M = 6.47, SD = 4.97, N = 14) which had no

decision support. This effect is profound as shown from the results of t-test

for a confidence interval of 90% and d = 0.76 is t(21) = −2.00, p < 0.1.
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While moving from C0 to C3, we see the effect of decision support having

an effect on the decrease in time even more significantly while creating the

second IPOS in initial condition C3 (M = 11.51, SD = 5.95, N = 14) from

initial condition C0 (M = 6.47, SD = 4.97, N = 14) which had no decision

support even more significantly. This effect is even more profound as shown

from the results of t-test for a confidence interval of 90% and d = 0.95 is

t(25) = −2.42, p < 0.05.

3. It was also hypothesized that the presence of plan explanations in C2 and C3

will reduce the time significantly because these explanations will teach the user

more about the domain, thus reconciling their model differences. However, due

to less usage of the Explanation features, we cannot come to a strong conclusion.

Hence, H2 was also only found to be only partially true. It supports the theory that

the use of automated planning C3 for decision support improves the efficiency of the

human planner thereby reducing the time for making the second IPOS.

4.4.5 Hypothesis H3

It was noticed that the performance (time) was not significantly better for par-

ticipants who had filled an IPOS before when compared to participants with no

experience (Figure 4.9). Although the experienced participants did perform slightly

better at C0, C1 and C3. It was also noticed that for C2, the users who had no prior

experience performed better which was surprising. The reason we thought could be

because the non-experienced group had prior conceptions about the rules of making

an IPOS and thus, spent time making plans that appeared valid in their model, but

were invalid in the iPass domain. With the presence of ‘validate’ in C1, they might

have ended up having to correct their partial plans multiple times, resulting in a long
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time and worse performance.

The response of non-experienced users to the subjective question Q1: The plan-

ning task was pretty simple for me was plotted in Figure 4.10. Interestingly, the

non-experienced users seemed to agree (or strongly agree) more with the statement

in C3 compared to C0, which indicates that support features have contributed to a

decrease in perceived difficulty of the task.

4.5 Limitations

Although our User Study was fairly successful in proving the importance of de-

cision support. It too has its limitations. Larger sample size with diverse subjects

other than computer science could have probably given us a better idea on some of

our hypothesis. I am also mentioning a few of the limitation of our evaluation process

itself.

1. The behavior mentioned in hypothesis H1 whereby we see a high number of adds

and deletes is indicative that the planner decisively failed to capture general user

preferences and we believe that the work on building explicable plans Zhang

et al. (2016) will help improve the performance further for the cases C2 and

C3.

2. While generating our hypothesis, we did not think of the scenario where the

users will not make use of the explanation feature. Hence, we could not evaluate

this feature properly as the users did not make use of it that much. If we

had hypothesized about it and then made some suggestions accordingly during

the user study in one set of experiments, we could have studied the effect of

explanation on decision making to a greater extent.

3. The use of satisfaction measure for hypothesis H1 does not consider the bias
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the user may be subjected to due to various psychological reason while filling

the survey. Are they filling the survey accurately or are they just doing it for

namesake? Also how much presence of a person, who was overlooking the test

affects the user’s answers. We did not consider these factors while considering

the satisfaction measure as a parameter for planning performance.

4. H3 failed as users with no experience in generating IPOSs were also able to

make IPOSs very efficiently. It could have happened because of their prior

conceptions which led to valid plans in their model. If we had thought about

it before the user study, we could have made changes to the domain model to

make it unfamiliar yet recognizable to a set of participants for at least a set

of experiments. We think that because of familiarity of the domain, people

without any experience of building IPOS could still use it.

4.6 Conclusion

In conclusion, we found that two key decision support components – validation

and suggestion – for human-in-the-loop planning tasks were, in general, helpful in

improving the performance or satisfaction of the human decision-maker. From the

written feedback, we noticed that 11 people asked for more feedback from the interface

in C0 (3 of whom mentioned suggestion feedback and 5 mentioned validation feed-

back) thus highlighting the role of the evaluated support components in the normative

expectations of the user. Multiple users asked for computer generated suggestions in

C1, and for modeling of preferences on top of constraints in C2 and C3 thus corrob-

orating patterns observed in data, and underlying their need in the future design of

CAP iPass and decision support in general.
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Chapter 5

CONCLUSION AND FUTURE WORK

In conclusion, we can say that we have successfully demonstrated the capabilities of

an automated decision support system using the principles of Naturalized Decision

Making(NDM), Human-In-The-Loop decision assistance(HILP) and Explainable AI

based assistance. We set up two automated decision support systems CAP and iPass

utilizing the basic tenets from all of the three disciplines. Both of our tools supported

use cases which required decision support in their particular domains. Our objective of

creating an interface to support decision making in crew scheduling domains was also

achieved. We also did a user survey with iPass and presented its results suggesting

the usefulness of automated decision support. We can say that with automated

decision support especially with its validation and suggestion functionalities, the user

experience was improved while making a decision. The integration of explanation

generation through Model Reconciliation, in general, helped the end user to better

gauze the system. For using explanation feature, the system does not assume anything

and would leave it to the human planner to decide when it would need explanation.

Even though the system can compute an explanation, it will only compute it when

the human asks for it. We have also tested the performance of humans without

explanation feature in initial condition C0 and C1 and initial condition C2 and C3

with the explanation feature. We do not see any heavy usage of the explanation

feature for C2 and C3, so we cannot conclusively say that explanations were always

helpful.

We did not do a deep dive into how much over-reliance can happen with our

system. Our primary objective was to make sure that humans are assisted while they
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have to decide on a high stake scenario. We also ensured that the humans are in

the driver’s seat throughout the decision-making process. As our decision support

system is a factored decision support system with multiple varying features like plan

validation, plan suggestion or explanation, we expect the user to interact more with

the system. Also, we don’t provide the end solution instead provide an assistance

mechanism which can be accessed interactively by the human planner to reach to a

solution. To develop a feature for studying over-reliance, we must consider diverse

demography of domain experts. The reason being multiple social and cultural factors

can affect the decision of a human to over-rely on automation. It is a separate

problem of engendering trust with automation. Only with a use-case that targets to

resolve this particular question on a user study can adequately provide evidence for

over-reliance. This issue of over-reliance on automation was not investigated in our

user study as the demography was not diverse enough. Though one crucial point was

observed from the study, and that is even though explanation feature was available for

IPOS we did not see a lot of its usage in the 2nd run which means the human-decision

makers did not over-rely on it.

Although, in our current work we have performed Model Reconciliation and ac-

cordingly generated an explanation. A separate work of ours Sreedharan et al. (2019)

does not even require a particular model of a human for reconciliation but instead,

try to learn from the generated and presented explanations which has been better

understood by the human actor. In the future, we can try to combine this particular

approach of Model Reconciliation with CAP like system. Moreover, instead of search-

ing over the model space for reconciliation, we can learn an explanatory model which

works for a category of users.

In future, We will try to represent the problem of crew scheduling as a constraint

program which will be challenging given occurrence of various tasks in the schedule
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based on effect of certain other tasks. Other ideas to improve the system includes

fact and foil based explanations and use of intelligible models to represent human

preferences.
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APPENDIX A

RAW DATA
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A.1 Domain for CAP

(define (domain Nasa strips advanced model withSoftConstraints)
;; ===== ;; REQUIREMENTS ;; =====
(:requirements :strips :typing :fluents :negative-preconditions
:disjunctive-preconditions :equality :existential-preconditions
:quantified-preconditions :conditional-effects :adl)
;; ===== ;; TYPES ;; =====
(:types crew activity location - objects )
;; ===== ;; PREDICATES ;; =====
(:predicates
(daystarted)
(daycompleted)
(assign crewmember ?crmem - crew ?wrt - activity)
(deactivatingactivityforcrew ?wrt - activity)
(typeofactivitynormal ?actvar - activity)
(typeofactivitytype01 ?actvar - activity)
(typeofactivitytype02 ?actvar - activity)
(typeofactivitytakephoto ?actvar - activity)
(inordercrew ?crew1 - crew ?crew2 - crew)
(currentcrewmember ?crew - crew)
(cannotassigncrew ?wrt - activity)
(busy crewmember ?crew1 - crew)
(blocked location ?loc - location)
(changelevel ?crew1 - crew)
(latch open)
(activated activity forloc ?wrt - activity ?loc - location)
(activated activity forcrew ?wrt - activity)
(activitycompleted ?wrt - activity)
(activityinprogress)
(recentlyused ?crmem - crew)
(useonlyonceforcleanup)
(useforincreasingthecbustvalue)
)
;; ===== ;; FUNCTIONS ;; =====
(:functions
(rem time today forall)
(rem time today ?crmem - crew)
(number of crew members ?wrt - activity)
(max crewmember for activity ?wrt - activity)
(decreaseintime)
(cannotbeusedtill)
(revecountcannotbeusedtill)
)
;; ===== ;; ACTIONS ;; =====
(:action starting day
:parameters ()
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:precondition (and(not(daystarted)))
:effect (and(daystarted))
) ;; (:action close latch ;; :parameters ()
;; :precondition (and(not (daystarted)))
;; :effect (and (not(latch open))) ;; )
;;(:action cleanrrecentlyusedtaskone
;; :parameters(?wrt - activity)
;; :precondition(and(¿(cannotbeusedtill)0)
;; (not(useonlyonceforcleanup))
;; (deactivatingactivityforcrew ?wrt))
;; :effect(and(useonlyonceforcleanup)
(decrease(cannotbeusedtill)(max crewmember for activity ?wrt)))
;;)
(:action cleanrrecentlyusedtaskone
:parameters(?crmem - crew)
:precondition(and(=(revecountcannotbeusedtill)4))
:effect(and(not(recentlyused ?crmem)))
)
(:action cleanrrecentlyusedtasktwo
:parameters()
:precondition(and(=(revecountcannotbeusedtill)4))
:effect(and(decrease(revecountcannotbeusedtill)4))
)
(:action starting activity normal
:parameters (?wrt - activity ?loc - location )
:precondition(and
(daystarted)
(not(activitycompleted ?wrt))
;;(useonlyonceforcleanup)
(not(activityinprogress))
(typeofactivitynormal ?wrt)
(not(blocked location ?loc)))
:effect(and (blocked location ?loc)
(activityinprogress)
;;(not(useonlyonceforcleanup))
(activated activity forloc ?wrt ?loc)
(activated activity forcrew ?wrt))
)
(:action starting activity type01
:parameters (?wrt - activity ?loc - location )
:precondition(and
(daystarted)
;;(useonlyonceforcleanup)
(not(activitycompleted ?wrt))
(not(activityinprogress))
(typeofactivitytype01 ?wrt)
(not(blocked location ?loc))
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(not(latch open)))
:effect(and (activityinprogress)
(blocked location ?loc)
;;(not(useonlyonceforcleanup))
(activated activity forloc ?wrt ?loc)
(activated activity forcrew ?wrt))
)
(:action starting activity type02
:parameters (?wrt - activity ?loc - location )
:precondition(and
(daystarted)
;;(useonlyonceforcleanup)
(not(activitycompleted ?wrt))
(not(activityinprogress))
(typeofactivitytype02 ?wrt)
(not(blocked location ?loc))
(not(latch open)))
:effect(and
(activityinprogress)
(blocked location ?loc)
;;(not(useonlyonceforcleanup))
(activated activity forloc ?wrt ?loc)
(activated activity forcrew ?wrt)) )
(:action starting activity takephoto
:parameters (?wrt - activity ?loc - location )
:precondition(and
(daystarted)
;;(useonlyonceforcleanup)
(not(activitycompleted ?wrt))
(not(activityinprogress))
(typeofactivitytakephoto ?wrt)
(not(blocked location ?loc))
(latch open))
:effect(and
(activityinprogress)
(blocked location ?loc)
(not(latch open))
;;(not(useonlyonceforcleanup))
(activated activity forloc ?wrt ?loc)
(activated activity forcrew ?wrt))
)
(:action assigning current crew member
:parameters(?crmem - crew ?crmem1 - crew)
:precondition(and(currentcrewmember ?crmem)
(busy crewmember ?crmem)
(inordercrew ?crmem ?crmem1)
) :effect(and
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(not(currentcrewmember ?crmem))
(currentcrewmember ?crmem1))
)
(:action assigning crew members activity
:parameters (?wrt - activity ?crmem - crew )
:precondition(and(activated activity forcrew ?wrt) (not(recentlyused ?crmem))
(not(busy crewmember ?crmem))
(not(cannotassigncrew ?wrt))
(¿(rem time today ?crmem)0)
(¡(number of crew members ?wrt)(max crewmember for activity ?wrt)))
:effect(and (assign crewmember ?crmem ?wrt)
(busy crewmember ?crmem)
(decrease(rem time today ?crmem)(decreaseintime))
(decrease(rem time today forall)(decreaseintime))
(increase(number of crew members ?wrt)1)
) )
;;Checks if all crewmember are assigned and frees the location.
(:action free location after assignment
:parameters (?wrt - activity ?loc - location)
:precondition (and(activated activity forcrew ?wrt)
(=(number of crew members ?wrt)(max crewmember for activity ?wrt))
(activated activity forloc ?wrt ?loc)
(blocked location ?loc))
:effect (and
(cannotassigncrew ?wrt)
(not(blocked location ?loc))
(deactivatingactivityforcrew ?wrt)
(not(activated activity forloc ?wrt ?loc))
) )
;;Loop over crew member(s)
and frees all of them one by one (:action free individual crew members
:parameters (?wrt - activity ?crmem - crew)
:precondition (and(deactivatingactivityforcrew ?wrt)
(assign crewmember ?crmem ?wrt)
(¿(number of crew members ?wrt)0))
:effect (and (not(assign crewmember ?crmem ?wrt))
(not(busy crewmember ?crmem))
(increase(revecountcannotbeusedtill)1)
(decrease(number of crew members ?wrt)1)
(recentlyused ?crmem)
) )
(:action complete activity
:parameters(?wrt - activity)
:precondition(and(deactivatingactivityforcrew ?wrt)
(activated activity forcrew ?wrt)
(=(number of crew members ?wrt)0)
)
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:effect(and
(not(activityinprogress))
(activitycompleted ?wrt)
(not(activated activity forcrew ?wrt))
(not(deactivatingactivityforcrew ?wrt))
)
)
(:action complete day
:parameters()
:precondition(and(daystarted)
(not(activityinprogress))
(¡=(rem time today forall)0)
)
:effect(and(not(daystarted))
(daycompleted)
) )
)

A.2 A Daily Plan Generated for CAP

(STARTING DAY)
(STARTING ACTIVITY TYPE01 MASSSPECTROMETRYCAB02 LOCF)
(ASSIGNING CREW MEMBERS ACTIVITY
MASSSPECTROMETRYCAB02 CREWMEMBER-1)
(FREE LOCATION AFTER ASSIGNMENT
MASSSPECTROMETRYCAB02 LOCF)
(FREE INDIVIDUAL CREW MEMBERS
MASSSPECTROMETRYCAB02 CREWMEMBER-1)
(COMPLETE ACTIVITY MASSSPECTROMETRYCAB02)
(STARTING ACTIVITY TYPE01
MASSSPECTROMETRYCAB03 LOCA)
(ASSIGNING CREW MEMBERS ACTIVITY
MASSSPECTROMETRYCAB03 CREWMEMBER-2)
(ASSIGNING CREW MEMBERS ACTIVITY
MASSSPECTROMETRYCAB03 CREWMEMBER-3)
(ASSIGNING CREW MEMBERS ACTIVITY
MASSSPECTROMETRYCAB03 CREWMEMBER-4)
(FREE LOCATION AFTER ASSIGNMENT
MASSSPECTROMETRYCAB03 LOCA)
(FREE INDIVIDUAL CREW MEMBERS
MASSSPECTROMETRYCAB03 CREWMEMBER-3)
(FREE INDIVIDUAL CREW MEMBERS
MASSSPECTROMETRYCAB03 CREWMEMBER-4)
(FREE INDIVIDUAL CREW MEMBERS
MASSSPECTROMETRYCAB03 CREWMEMBER-2)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-1)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-2)
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(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-3)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-4)
(COMPLETE ACTIVITY MASSSPECTROMETRYCAB03)
(STARTING ACTIVITY NORMAL XRAYEXP2 LOCA)
(CLEANRRECENTLYUSEDTASKTWO)
(ASSIGNING CREW MEMBERS ACTIVITY
XRAYEXP2 CREWMEMBER-1)
(FREE LOCATION AFTER ASSIGNMENT XRAYEXP2 LOCA)
(FREE INDIVIDUAL CREW MEMBERS XRAYEXP2 CREWMEMBER-1)
(COMPLETE ACTIVITY XRAYEXP2)
(STARTING ACTIVITY NORMAL XRAYEXP LOCF)
(ASSIGNING CREW MEMBERS ACTIVITY XRAYEXP CREWMEMBER-2)
(ASSIGNING CREW MEMBERS ACTIVITY XRAYEXP CREWMEMBER-3)
(ASSIGNING CREW MEMBERS ACTIVITY XRAYEXP CREWMEMBER-4)
(FREE LOCATION AFTER ASSIGNMENT XRAYEXP LOCF)
(FREE INDIVIDUAL CREW MEMBERS XRAYEXP CREWMEMBER-3)
(FREE INDIVIDUAL CREW MEMBERS XRAYEXP CREWMEMBER-4)
(FREE INDIVIDUAL CREW MEMBERS XRAYEXP CREWMEMBER-2)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-1)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-2)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-3)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-4)
(COMPLETE ACTIVITY XRAYEXP)
(CLEANRRECENTLYUSEDTASKTWO)
(STARTING ACTIVITY TYPE01
COMMUNICATION2 LOCA)
(ASSIGNING CREW MEMBERS ACTIVITY
COMMUNICATION2 CREWMEMBER-2)
(FREE LOCATION AFTER ASSIGNMENT COMMUNICATION2 LOCA)
(FREE INDIVIDUAL CREW MEMBERS
COMMUNICATION2 CREWMEMBER-2)
(COMPLETE ACTIVITY COMMUNICATION2)
(STARTING ACTIVITY TYPE02
REPAIRSHUTTLE03 LOCF) (ASSIGNING CREW MEMBERS ACTIVITY
REPAIRSHUTTLE03 CREWMEMBER-1)
(ASSIGNING CREW MEMBERS ACTIVITY
REPAIRSHUTTLE03 CREWMEMBER-3)
(ASSIGNING CREW MEMBERS ACTIVITY
REPAIRSHUTTLE03 CREWMEMBER-4)
(FREE LOCATION AFTER ASSIGNMENT
REPAIRSHUTTLE03 LOCF)
(FREE INDIVIDUAL CREW MEMBERS
REPAIRSHUTTLE03 CREWMEMBER-4)
(FREE INDIVIDUAL CREW MEMBERS
REPAIRSHUTTLE03 CREWMEMBER-3)
(FREE INDIVIDUAL CREW MEMBERS
REPAIRSHUTTLE03 CREWMEMBER-1)
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(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-1)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-2)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-3)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-4)
(COMPLETE ACTIVITY REPAIRSHUTTLE03)
(CLEANRRECENTLYUSEDTASKTWO)
(STARTING ACTIVITY TYPE02 REPAIRSHUTTLE3 LOCA)
(ASSIGNING CREW MEMBERS ACTIVITY
REPAIRSHUTTLE3 CREWMEMBER-2)
(FREE LOCATION AFTER ASSIGNMENT
REPAIRSHUTTLE3 LOCA)
(FREE INDIVIDUAL CREW MEMBERS
REPAIRSHUTTLE3 CREWMEMBER-2)
(COMPLETE ACTIVITY REPAIRSHUTTLE3)
(STARTING ACTIVITY TYPE01 COMMUNICATION LOCF)
(ASSIGNING CREW MEMBERS ACTIVITY
COMMUNICATION CREWMEMBER-3)
(ASSIGNING CREW MEMBERS ACTIVITY
COMMUNICATION CREWMEMBER-4)
(ASSIGNING CREW MEMBERS ACTIVITY
COMMUNICATION CREWMEMBER-1)
(FREE LOCATION AFTER ASSIGNMENT
COMMUNICATION LOCF)
(FREE INDIVIDUAL CREW MEMBERS
COMMUNICATION CREWMEMBER-4)
(FREE INDIVIDUAL CREW MEMBERS
COMMUNICATION CREWMEMBER-1)
(FREE INDIVIDUAL CREW MEMBERS
COMMUNICATION CREWMEMBER-3)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-1)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-2)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-3)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-4)
(COMPLETE ACTIVITY COMMUNICATION)
(CLEANRRECENTLYUSEDTASKTWO)
(STARTING ACTIVITY TYPE02 BREAKFAST2 LOCA)
(ASSIGNING CREW MEMBERS ACTIVITY
BREAKFAST2 CREWMEMBER-1)
(ASSIGNING CREW MEMBERS ACTIVITY
BREAKFAST2 CREWMEMBER-4)
(FREE LOCATION AFTER ASSIGNMENT BREAKFAST2 LOCA)
(FREE INDIVIDUAL CREW MEMBERS BREAKFAST2 CREWMEMBER-1)
(FREE INDIVIDUAL CREW MEMBERS BREAKFAST2 CREWMEMBER-4)
(COMPLETE ACTIVITY BREAKFAST2)
(STARTING ACTIVITY NORMAL REPAIRSHUTTLE01 LOCA)
(ASSIGNING CREW MEMBERS ACTIVITY
REPAIRSHUTTLE01 CREWMEMBER-2)
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(ASSIGNING CREW MEMBERS ACTIVITY
REPAIRSHUTTLE01 CREWMEMBER-3)
(FREE LOCATION AFTER ASSIGNMENT REPAIRSHUTTLE01 LOCA)
(FREE INDIVIDUAL CREW MEMBERS
REPAIRSHUTTLE01 CREWMEMBER-2)
(FREE INDIVIDUAL CREW MEMBERS
REPAIRSHUTTLE01 CREWMEMBER-3)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-1)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-2)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-3)
(CLEANRRECENTLYUSEDTASKONE CREWMEMBER-4)
(COMPLETE ACTIVITY REPAIRSHUTTLE01)
(CLEANRRECENTLYUSEDTASKTWO)
(COMPLETE DAY)
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