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ABSTRACT 

This investigation focuses on the development of uncertainty modeling methods 

applicable to both the structural and thermal models of heated structures as part of an 

effort to enable the design under uncertainty of hypersonic vehicles. The maximum 

entropy-based nonparametric stochastic modeling approach is used within the context of 

coupled structural-thermal Reduced Order Models (ROMs). Not only does this strategy 

allow for a computationally efficient generation of samples of the structural and thermal 

responses but the maximum entropy approach allows to introduce both aleatoric and 

some epistemic uncertainty into the system. 

While the nonparametric approach has a long history of applications to structural 

models, the present investigation was the first one to consider it for the heat conduction 

problem. In this process, it was recognized that the nonparametric approach had to be 

modified to maintain the localization of the temperature near the heat source, which was 

successfully achieved. 

The introduction of uncertainty in coupled structural-thermal ROMs of heated 

structures was addressed next. It was first recognized that the structural stiffness 

coefficients (linear, quadratic, and cubic) and the parameters quantifying the effects of 

the temperature distribution on the structural response can be regrouped into a matrix that 

is symmetric and positive definite. The nonparametric approach was then applied to this 

matrix allowing the assessment of the effects of uncertainty on the resulting temperature 

distributions and structural response. 

The third part of this document focuses on introducing uncertainty using the 

Maximum Entropy Method at the level of finite element by randomizing elemental 
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matrices, for instance, elemental stiffness, mass and conductance matrices. This approach 

brings some epistemic uncertainty not present in the parametric approach (e.g., by 

randomizing the elasticity tensor) while retaining more local character than the operation 

in ROM level. 

The last part of this document focuses on the development of “reduced ROMs” 

(RROMs) which are reduced order models with small bases constructed in a data-driven 

process from a “full” ROM with a much larger basis. The development of the RROM 

methodology is motivated by the desire to optimally reduce the computational cost 

especially in multi-physics situations where a lack of prior understanding/knowledge of 

the solution typically leads to the selection of ROM bases that are excessively broad to 

ensure the necessary accuracy in representing the response. It is additionally emphasized 

that the ROM reduction process can be carried out adaptively, i.e., differently over 

different ranges of loading conditions. 
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1. INTRODUCTION 

1.1. Motivation and Focus 

The design of hypersonic vehicles has been a goal for the U.S. Air Force for decades 

but it still remains a dire challenge. The prediction of the behavior of hypersonic 

structures is a complex task because of the strong multi-physics interactions taking place 

between structural response, aerodynamic force and heating, and heat conduction and 

radiation. Under hypersonic conditions, the aerodynamic and thermal loading are severe 

and likely to result in large deformations and strong nonlinearities in structural response, 

whereas standard structural dynamic analyses and design procedures assume a linear 

behavior. 

Moreover, uncertainties may be expected to be important to the structural response 

under such severe conditions. For example, strongly nonlinear events such as buckling 

and snap-through may be triggered by asymmetries in systems designed to be symmetric. 

The uncertainties considered here include those associated with vehicle-to-vehicle 

variability, i.e., aleatoric uncertainty, and those resulting from modeling 

assumptions/simplifications, i.e., epistemic uncertainty. While safety factors are 

traditionally used to address these uncertainties, they lead to structures that are too heavy 

and thus not able to fulfill the design requirements. The success of a design under 

uncertainty of hypersonic vehicles will require a specific modeling of the uncertainties 

and their propagation through the coupled structural-thermal-aerodynamic interactions to 

predict probability density functions, percentiles, standard deviations, etc. of the response 

quantities of interest. Such modeling and propagation is the main focus of this 

investigation. 
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There are two options in uncertainty modeling: parametric and non-parametric. In 

parametric methods, parameters of the model such as material properties (Young’s 

modulus, thermal conductivity) are modeled as random variables or stochastic fields, 

typically at the finite element level. While easy at first glance, there are challenges 

associated with parametric uncertainty modeling. The first is the proper selection of the 

(typically joint) probability density functions of the random variables or stochastic fields 

used. Obtaining such information typically requires a very significant amount of data, 

which is typically not available, leaving the user to carry out a series of assumptions 

which may be difficult to assess. The approach, when carried out at a finite element level, 

can be quite expensive for Monte-Carlo simulations with a large number of realizations. 

There is a vast body of work focusing on application of parametric methods; see 

(Schenk and Schuëller 2003) and (Schenk and Schuëller 2007) for examples in modeling 

parameter uncertainties in the post buckling of cylindrical shells and see (Sankar et al 

1993) and (Sarrouy et al 2012) in the context of uncertainties in high speed rotors. When 

modeling random fields, the polynomial chaos representation – a parametric 

representation of the uncertainty – has often been used and is the basis for the stochastic 

finite element method, see (Ghanem and Spanos 1991). 

 An option to reduce the computational cost is to rely on reduced order models 

(ROMs) for the determination of the response/solution. Accordingly, one can introduce 

the uncertainty at the finite element level then create a ROM for each finite element 

realization, and then finally compute the response of the ROM. An even faster strategy 

would be to bypass the finite element level realizations and directly generate random 

realizations of the ROM, see (Soize 2017) for an accelerated introduction of uncertainty 
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quantification in computational engineering. This process is the essence of the maximum 

entropy nonparametric approach reviewed next. 

1.2. Maximum Entropy Nonparametric Modeling 

The maximum entropy-based nonparametric stochastic modeling approach initially 

proposed by Soize (2000), see (Soize 2012) for a recent comprehensive review, is an 

elegant approach to randomize ROMs directly. It proceeds directly from the mean model 

ROMs, assumed to be characterized by matrices, randomizing them so that they always 

satisfy physical requirements (positive definiteness, symmetry, etc.). This is clearly not 

sufficient information to define the joint probability density function of the elements of 

these matrices. To alleviate this situation, it will be assumed that this function achieves 

the maximum of the entropy given the physical requirements as constraints. Moreover, as 

discussed in (Soize 2000) and (Soize 2012), this approach not only permits the modeling 

of aleatoric but also some epistemic uncertainty. 

In its original formulation, i.e., for a symmetric positive definite matrix A (such as 

the mass and linear stiffness matrices), the maximum entropy nonparametric approach 

proceeds as follows. First, the mean matrix A  is decomposed as 

T
LLA =                             (1.1) 

e.g., by Cholesky factorization. Then, random matrices A are generated as  

TT
LHHLA =                          (1.2) 

where H is a lower triangular matrix such that (see also Fig. 1.1) 

(1) its off-diagonal elements ilH , li  , are normally distributed (Gaussian) random 

variables with standard deviation = 2/1 , and 
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(2) its diagonal elements iiH  are obtained as = /iiii YH  where iiY  is Gamma 

distributed with parameter ( )( ) 2/1−ip  where 

( ) 12 0 −+−= inip  and ( ) 2/12 0 −+= n              (1.3) 

 

Figure 1.1. Structure of the Random H Matrices with n = 8, i =2, and λ0 = 1 and 10. 

In the above equations, n is the size of the matrices and the parameter 0 > 0 is the 

free parameter of the statistical distribution of the random matrices A. An alternative 

parametrization is through the dispersion parameter  defined as 

12

1

0

2

−+

+
=

n

n
                          (1.4) 

1.3. Nonlinear Thermal-Structural Reduced Order Model 

The non-intrusive construction of reduced order models to predict the nonlinear 

geometric response of structures has been well developed and demonstrated successful in 

many applications in at least the last 20 years. This approach represents the extension to 

the nonlinear geometric situation of the modal models used for the dynamic response of 

linear structures and also relies on expressing it as a combination of limited number of 
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basis functions. The difference with respect to the linear case is that the equations of 

motion for the generalized coordinates are no longer linear but rather involve cubic 

polynomials of the general coordinates. 

A particular set of nonlinear ROM studies, initiated at least by (McEwan et al 2001), 

have focused on developing the entire reduced order model from commercial FEA 

software and, accordingly, proceed non-intrusively relying on standard inputs and outputs 

from such software. Since 2001, many developments have been made and successfully 

applied, see (Mignolet et al 2013) for a review. Further, see (Hollkamp et al 2005), 

(Mignolet et al 2003), (Kim et al 2013), (Przekop and Rizzi 2007), (Przekop and Rizzi on 

AIAAJ 2006), (Prezkop et al 2012), (Rizze and Przekop 2008), (Przekop and Rizzi on Int 

Conf Adv Struct Dyna 2006) and (Perez et al 2014) for the selection of the modal basis; 

and see (Muravyov and Rizzi 2003), (Kim et al 2009), (Perez et al 2014), (Wang et al 

2019) and (Spottswood and Allemang 2007) for algorithms to identify the coefficients of 

the cubic polynomials appearing in the equations of motion. The current state of the art in 

this nonlinear ROM approach is well beyond simple beam and plates, see the following 

references (Y. Wang et al 2018), (Gogulapati et al 2017), (Gogulapati et al 2014), (Perez 

et al 2010), (Perez et al 2014), (X.Q. Wang et al 2018) and (Matney et al 2012) for the 

validation of the nonlinear ROM methodology to fairly complex structures. 

The coupled structural-thermal ROMs employed here are based on the representation 

of the temperature and displacements of the finite element nodes, stacked in the time 

varying vectors T(t) and u(t), in expansion forms, i.e. 

( ) ( )


=

=

1

)(

n

n
n tt TT                         (1.5) 
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( ) ( )
=

=
M

n

n
n tqt

1

)(u                         (1.6) 

In these equations, )(n
T  and )(n  are the thermal and structural basis functions, 

or modes, while ( )tn  and ( )tqn  are the time-dependent thermal and structural 

generalized coordinates. 

Assuming that the material properties (elasticity tensor, coefficient of thermal 

expansion) do not vary with temperature, it is found, e.g. (Perez et al 2011), for the 

structural generalized coordinates that (summation over repeated indices assumed) 

  l
th

ilipljijlpljijljl
th

ijlijjijjij FFqqqKqqKqKKqDqM +=++−++
)()3()2()()1(

 

(1.7) 

In this equation,
ijM  denotes the elements of the mass matrix, )1(

ijK , 
)2(

ijl
K , 

)3(
ijlp

K  

are linear, quadratic, and cubic stiffness coefficients and iF  are the modal mechanical 

forces. The parameters 
)(th

ijl
K  and 

)(th
il

F  represent the sole coupling terms with the 

temperature field which is described by the governing equations (Perez et al 2011, 

Matney et al 2011) 

ijijjij PKB =+
~

                        (1.8) 

where ijB  and ijK
~

 are the capacitance and conductance matrices of the finite 

element model, which are assumed here not to depend on temperature. The source term 

iP  represents the combined effects of an applied flux, nonzero homogenous boundary 

conditions, radiation, latency, etc. as applicable. 
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Having established the forms of the governing equations, i.e., Eqs (1.7) and (1.8), it 

remains to address (i) the selection of the basis functions )(n
T  and )(n  and (ii) the 

identification of all stiffness, mass, conductance, and capacitance parameters from 

commercial finite element software. The latter effort is detailed in (Perez et al 2011, Kim 

et al 2013, Mignolet et al 2013, Perez et al 2014) for temperature independent structural 

properties and has been extended in (Matney et al 2011) when they vary linearly with the 

local temperature. The former issue has also been addressed, in (Mignolet et al 2013) for 

the structural problem, see also (Kim et al 2013, Mignolet et al 2013, Perez et al 2014) 

for the linear + dual modes basis selected here. The construction of the thermal basis has 

been investigated in a series of papers (Perez et al 2011, Falkiewicz and Cesnik 2011, 

Matney et al 2014, Matney et al 2015, Murthy et al 2016) and can be achieved from a 

series of snapshots of the temperature distribution, e.g., (Falkiewicz and Cesnik 2011), a 

priori from the conductance and capacitance matrices (Perez et al 2011), or using a 

combination of a priori information and a few snapshots (Matney et al 2014, Matney et al 

2015, Murthy et al 2016). 

The above discussion demonstrates that coupled nonlinear structural-thermal reduced 

order models can be constructed from well characterized finite element models. Given 

this state of the art, it is then timely to consider the introduction of uncertainty in these 

models to bridge the gap between designed and realized structures and assess the effects 

of the differences between them. 

1.4. Research Topics 

The maximum entropy method has been applied to a broad range of structural 

problems, in these problems the response exhibits mostly global features. However, when 
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applied to a problem that exhibits local response, e.g., a class of heat conduction 

problems, this method tends to lead to a globalized response as will be shown in Chapter 

2. This undesirable effect is an unexpected consequence of the epistemic uncertainty 

introduced by this method, the uncertain changes to the model’s structure are more likely 

to promote a global response at the contrary of localizing it. Then, introduced in Chapter 

2 is an extension to the maximum entropy method resolving this issue and maintaining 

the local behavior of the uncertain response if the mean model response is localized. This 

work was published in (Song and Mignolet, 2018). 

In Chapter 3, uncertainty modeling in structural-thermal coupled system is addressed 

in the framework of reduced order model. Since the effects of uncertainty on structural 

properties have been well studied, the investigation is focused primarily on introducing 

uncertainty in the thermal properties (capacitance, conductance) and in thermal structural 

coupling effect (coefficient of thermal expansion). 

The globalization of the uncertain response observed in Chapter 2 demonstrated for 

the first time a negative associated with introducing epistemic uncertainty modeling at the 

ROM level, i.e., at a global level. Besides proceeding with the new formulation of 

Chapter 2, one could imagine introducing the epistemic uncertainty at a lower level 

where its effects will remain more local. This perspective motivated the work of Chapter 

4 in where the nonparametric methodology is applied at the finite element level by 

randomizing the elemental stiffness matrices of each element. This new strategy brings 

epistemic uncertainty not present in the parametric modeling while retaining more local 

character of this uncertainty than achieved with the ROM level nonparametric approach. 

While this approach is technically possible for nonlinear geometric problems, it is 
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demonstrated and studied here for linear structural problems without and then with 

heating effects. 

The last focus of this dissertation is on the formulation and first assessment of a 

methodology to adapt/reduce the basis of ROMs. In complex multiphysics problems, the 

construction of a single “full” ROM for the entire mission/range of loadings is very likely 

to lead to large bases to ensure that the set of responses is well captured, especially since 

these responses are generally not well predictable a priori. The clear drawback of these 

large bases is a large computational cost undercutting the benefits of using ROMs. To 

address this situation, a methodology is developed in Chapter 5 to use short segment of 

response data generated from such large ROMs to construct smaller bases of “Reduced 

ROMs”. Such RROMs would then have the desired computational advantage but may not 

be valid over the broad range of loading conditions desired thereby leading to the need to 

adapt the RROMs. The key questions of how large the RROM basis should be to 

optimize the RROM computational benefit and of the determination of the time/loading 

condition at which to adapt are addressed in Chapter 5. Moreover, a validation of this 

RROM strategy to a coupled structural-thermal-aerodynamic response of a representative 

hypersonic panel is successfully carried out. 
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2. REDUCED ORDER MODEL-BASED UNCERTAINTY MODELING OF 

STRUCTURES WITH LOCALIZED RESPONSE 

2.1. Introduction 

Since its initial formulation in (Soize 2000), the maximum entropy-based 

nonparametric approach has been extended multiple times to cover new classes of 

problems, e.g., vibro-acoustics (Durand et al 2008, Ohayon and Soize 2014), 

rotordynamics (Murthy et al 2010 Part I, Murthy et al 2010 Part II, Murthy et al 2014), 

nonlinear structural dynamics (Mignolet and Soize 2008, Capiez-Lernout et al 2014), 

nonlinear thermoelastic problems (Song et al 2017), linear viscoelastic structures (Soize 

2012), etc., but also in rigid body dynamics (Batou and Soize 2012, Richter and Mignolet 

2017) and micromechanics and multiscale modeling, see (Soize 2012). The focus of the 

present effort is on yet another extension of this approach, more specifically to problems 

in which the response of the uncertain structure is expected to be localized with the mean 

model response either localized as well (the first case considered below) or global (the 

second case). The present effort focuses on structural applications only but there are 

non-structural ones in which these conditions are encountered, e.g., in some heat 

conduction problems (Song et al 2017), and to which the present discussion may also 

apply. 

2.2. Representative Examples 

2.2.1.  Class A Structures 

To illustrate one class of structures investigated here, consider the annulus shown in 

Fig. 2.1(a) of inner radius 0.8m, outer radius 1m, thickness 0.002m clamped on its inner 

radius and free on the outer one. The material, aluminum, is assumed to be homogenous 
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and isotropic with Young’s modulus E = 7.3 1010 Pa and Poisson’s ratio = 0.316. The 

annulus is subjected to a static uniform unit pressure in the quadrant [180,270] degrees 

highlighted in yellow in Fig. 2.1(a). To evaluate the displacement field of the annulus, it 

was modeled by 4-node shell finite elements within Nastran (CQUAD4 elements) with a 

mesh of 144 nodes around the periphery and 6 in the radial direction. Then, shown in Fig. 

1(b) is the transverse displacement of the periphery which is clearly localized near the 

excitation, i.e., in the band [150,300] degrees.  

 
                 (a)¶                                 (b) 

Figure 2.1. (a) the Annulus and Its Finite Element Model with the Loading Domain 

Highlighted in Yellow. (b) Static Transverse Displacement at the Periphery, Full Finite 

Element (FEA) and Reduced Order Models (ROM). 

A reduced order model of the finite element one can be constructed by representing 

the nodal responses stacked in the vector u as a linear combination of basis functions 

, i.e. as 

                           (2.1) 
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where the variables  are referred to as generalized coordinates. The adoption of the 

representation of Eq. (2.1) transforms the equations for the nodal displacements 

                          (2.2) 

where  and  are the finite element stiffness matrix and loading, into 

                            (2.3) 

where 

   and                    (2.4) 

with  denoting the operation of matrix transposition and . 

The above reduced order model construction was exemplified by selecting the basis 

functions  as the linear modes of the annulus. Then, shown in Fig. 2.1(b) is the 

transverse displacement of the periphery obtained with 55 such modes which, as 

expected, closely approximates the finite element solution. 

2.2.2.  Class B Structures 

A second type of structures that exhibit a localization of the static response are those 

that are composed to sub-structures weakly coupled to each other. A very simple example 

of this situation is the chain of oscillators showed in Fig. 2.2(a). To demonstrate the 

localization, the chain was selected to have 12 masses connected to their neighbors by a 

spring of common stiffness = 0.15 N/m and to ground by different springs, of 

respective stiffnesses (from mass 1 to 12): 1.45; 1.69; 2.20; 2.86; 3.71; 4.83; 5.07; 5.32; 

5.59; 5.87; 6.16; 6.62 N/m. Moreover, the chain was assumed to be open at its two ends. 

Then, shown in Fig. 2.2(b) is the static response of the chain under uniform forces acting 

iq
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on the masses 3, 4, and 5. It is clearly observed that the static response is localized to the 

three masses on which the loading is applied. 

 
(a)                                  (b) 

Figure 2.2. (a) The chain discrete model. (b) Static response of the chain due to unit loads 

on masses 3, 4, and 5. 

2.2.1.  Class C Structures 

Bladed disks are a class of structures with peculiar properties and with geometric 

features that are in between those of the class A and B structures described above. They 

are continuous structures, such as the annulus of Fig. 2.1, but with discrete features (the 

blades) that are often weakly coupled to each other (especially in the lowest frequency 

modes), as the chain model of Fig. 2.2. Shown in Fig. 2.3(a), (b) is a representative 

12-blade bladed disk (it is a reduction of the number of blades to 12 of the 24-blade one 

considered in (Bladh et al 2001)) and shown in Fig. 2.3(c) is the static response at the tip 

of the 12 blades induced by a unit force applied at the tip of blade 1. Clearly, this 

response is very localized (note the logarithmic scale of the ordinates). 
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(a)                   (b)                        (c) 

Figure 2.3. Bladed Disk Example: (a) Overall View, (b) Blade Sector Finite Element 

Mesh, and (c) Static Response at Blade Tip Due to Unit Load at the Tip of Blade 1. 

2.3. “Standard” Maximum Entropy Nonparametric Approach 

The maximum entropy nonparametric approach introduced in Chapter 1 was applied 

as is to the 55x55 stiffness matrix of the reduced order model of the annulus and 300 

random matrices K were determined. From each one of those, a set of generalized 

coordinates q was determined that satisfies 

                            (2.5) 

and the resulting set of nodal displacements u were obtained from Eq. (2.1). Shown in 

yellow in Fig. 2.4(a) is the uncertainty band corresponding to the 5th and 95th percentile 

of the transverse displacement of the periphery as determined from the 300 samples of 

the response. Comparing Figs 2.1(b) and 2.4(a), it is observed that the above uncertainty 

modeling approach has induced some globalization of the response, i.e., the response 

outside of the region [150,300] degrees is not nearly zero for all samples as could have 

been construed from Fig. 2.1(b). Note that this effect likely leads to a higher entropy of 

the response as compared to the localized case given its increased spread of the joint 
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probability density function of this response. This finding seems quite consistent with, 

although separate from, the maximization of entropy of the matrix K which is guaranteed 

by the construction of Eqs (2.2)-(2.4). 

 
(a)                                 (b) 

Figure 2.4. (a) Static Transverse Displacement at the Periphery of the Annulus and (B) 

Static Displacement of the 12 Masses of the Chain Model. Mean Model (in Red) and 

5th-95th Percentile Uncertainty Band (in Yellow) of the Displacement, Standard 

Stochastic Reduced Order Model with (a) δ = 0.05, (b) δ= 0.1. 

As an additional example, shown in Fig. 2.4(b) is the 5th and 95th percentile of the 

static response of the 12 masses of the chain example of Fig. 2.3 which is seen to exhibit 

an uncertainty-induced globalization of the response. 

It is important to recognize that the above globalization effects are certainly 

physically possible. For the annulus, they could for example take place if the disk on 

which the annulus is clamped is not rigid as specified in the mean model but rather 

exhibits some flexibility which induces a long range interaction between nodal responses. 

If, however, there is additional knowledge about the uncertainty that indicates that 

such a globalization does not take place, then the above methodology must be modified 
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to reflect it, e.g., by adding constraints in the optimization of the entropy or modeling 

differently the random stiffness matrix. One such modification is formulated below. 

In concluding this section, it should be recognized that the localization of the 

response observed in Figs 2.1(b), 2.2(b), 2.3(c), and 4 is in the neighborhood of the 

excitation and thus this localization zone would move if the part of the structure loaded 

was to change. If the loading, and thus the zone of localization, is well defined and 

invariant, a substructuring approach could be developed in which this zone is a 

substructure with the rest of the structure another. Then, uncertainty could be introduced 

nonparametrically in the two substructures as discussed in (Soize and Chebli 2003). If the 

loading zone varies or is unknown when the model is constructed, this approach could 

still likely be used by substructuring the entire structure finely enough to capture the 

localization at the expense of an increase in the number of degrees of freedom in the 

model. The methods developed below are in contrast with this situation, keeping the 

modeling of the structure whole. 

2.4. Maximum Entropy Nonparametric Modeling for Static Localized Responses 

2.4.1.  Local and Global Stiffness Matrices 

Before revising the above standard nonparametric approach, it is necessary to 

identify the property of the stiffness matrices  and  that induces the existence 

of a localized response. To this end, recall that the solution u of Eq. (2.1) can be 

expanded in terms of the eigenvectors and corresponding eigenvalues  of  

as 

K FEK

j
 j FEK
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                     (2.6) 

owing to the orthogonality of the eigenvectors implied by the symmetry of . Note 

in Eq. (2.6) and in the ensuing ones in this section that the summation is extended over all 

eigenvectors. 

To proceed further in the discussion, assume first that the eigenvectors  are 

extended to the entire structure; this is true of the annulus of Fig. 2.1(a) (as well as the 

bladed disk of Fig. 2.3 but not the chain of Fig. 2.2) for which  are harmonic 

functions of the angle  (as discretized by the finite element modeling). Then: 

(i) a localized response as shown in Fig. 2.1(b) is possible only if the dominant 

coefficients  have somewhat similar values as to create an appropriate mix 

of the extended functions   to produce localization, 

(ii) the “modal forces”  decrease slowly as the index j is increased given the 

localization of the excitation or equivalently the values  for the dominant modes 

tend to be quite similar. 

Combining these two arguments, it is thus concluded that localization must require 

that the lowest eigenvalues  of  be close together if the eigenvectors of this 

stiffness matrix are extended. This result is confirmed by the plot of eigenvalues of the 

annulus’ stiffness matrix shown in Fig. 2.5: the first few of its eigenvalues are indeed 

closely spaced. 
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Figure 2.5. Eigenvalues of the Stiffness Matrix of the Annulus Finite Element in 

Increasing Order. 

For structures with localized response and well separated eigenvalues of their 

stiffness matrix, e.g., the chain model, the change in stiffness matrix induced by the 

random matrix H (Eq. (1.2)) produces changes in the eigenvectors, most specifically 

populating the zeros or very small components with non-zero ones that produce the 

globalization effect.  

The above comments suggest that what is important for localization is: 

(i) the relative separation of the first few eigenvalues which must be small when the 

eigenvectors are extended (class A structures), or 

(ii) the localized nature of the eigenvectors when the eigenvalues are not close 

together (class B structures). 

To confirm the statement (i), rewrite Eq. (2.6) in the form 
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.  (2.8) 

where  is proportional to the identity matrix and thus  is a purely local term, 

i.e., the corresponding displacement at each node only depends on the force acting at that 

node. This term will dominate when the terms  are all small, 

i.e., when the dominant eigenvectors (those with significant values of ) have a 

small relative difference of eigenvalue with eigenvector 1. 

A similar discussion to the above one applies for the mean reduced order stiffness 

matrix  of eigenvectors  and eigenvalues  so that 

.  (2.9) 

Associated to this decomposition of the flexibility matrix into a component 

inducing local effects ( ) and a more global one ( ) is a similar split of the stiffness 

matrix  into a local component, , and a more global one, , defined as 

     and         (2.10a),(2.10b) 

where the summation in Eq. (2.10a) is extended over all eigenvectors/eigenvalues leading 

to the localization of the response. 

2.4.2.  Local/Global Maximum Entropy Nonparametric Modeling 
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stiffness matrix is small. However, this spread is often increased, sometimes very 

significantly for the first few eigenvalues, when using the standard nonparametric 

approach as shown in Fig. 2.6.  

 

Figure 2.6. Relative Eigenvalue Separation of the Reduced order Model Stiffness Matrix. 

Mean Model (in Red) and 5th-95th Percentile Uncertainty Band (in Yellow), Standard 

Nonparametric Stochastic Model. 

Thus, imposing a localization constraint on the stochastic modeling will require 

controlling the eigenvalues of the dominant modes (those with eigenvalues close to 1 ) 

separately from the rest of them. In this regard, note that the dominant eigenvectors are 

mostly present in LK  while those with eigenvalues far from 1  are dominant in GK . 

On the basis of the above observations, it is proposed here to model the uncertainty 

in LK  and GK  separately. Since there is no particular requirement on the latter matrix 

(which is nevertheless symmetric and positive definite) and its randomization, the 

standard nonparametric approach will be applied leading to an uncertain matrix GK  

defined as 
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T
G

T
GGGG LHHLK =       where      T

GGG LLK =     (2.11a),(2.11b) 

with GH  a lower triangular random matrix as defined by Eqs (1.3)-(1.4) and Fig. 1.1 

for a particular dispersion value G . 

Maintaining small the relative separation between the eigenvalues of the dominant 

eigenvectors can be achieved by scaling uniformly all eigenvalues. This observation 

suggests that a first approach to introduce uncertainty in LK  is to simply multiply it by 

a random variable  which consistently with the maximum entropy concepts can be 

selected as 2
1H  where 1H  is a 1x1 matrix defined as in Eqs (1.3)-(1.4) and Fig. 1.1 

with a specified dispersion 1 . 

A small change in the relative separation between eigenvalues can also be induced by 

splitting LK  as GK  in Eq. (2.11) and introducing a random lower triangular matrix 

LH  of dispersion L . Combining the above two operations leads to the proposed model 

T
L

T
LLLL LHHLHK 2

1=       where      T
LLL LLK = .   (2.12a),(2.12b) 

Note finally that since LK  is defined by Eq. (2.10a), its decomposition in Eq. 

(2.12b) is readily achieved by selecting 

 
3211 =LL .            (2.13) 

The uncertain reduced order stiffness matrix is then obtained as 

GL KKK += .                        (2.14) 

The above derivations have been carried out assuming that all eigenvectors were 

retained in Eq. (2.10a). From a practical perspective, it is sufficient to restrict it to the 
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eigenvectors corresponding to the set of close eigenvalues (class A structures) or to the 

localized eigenvectors excited by the loading (class B structures). 

2.4.3.  Algorithm 

The application of the above approach can be decomposed into the following steps: 

(a) selection of the basis functions 
i

  and computation of the mean ROM stiffness 

matrix K  from its finite element counterpart FEK  using Eq. (2.4), 

(b) determination of the eigenvectors 
j

  and eigenvalues j  of the matrix K , 

(c) selection of the set (values of j) of these eigenvectors and eigenvalues that lead to 

localization, i.e., closely spaced eigenvalues (for class A structures) or localized 

eigenvectors (for class B structures), 

(d) construction of the mean model matrices LK  and GK  according to Eqs 

(2.10a) and (2.10b), 

(e) selection of the dispersion parameters G , 1 , and L , 

(f) computation of the decomposition matrices GL  and LL  satisfying Eqs (2.11b) 

and (2.12b),  

(g) simulation of the random matrices GK  and LK  according to Eqs (2.11a) and 

(16a), 

(h) assembly of the random stiffness matrices as in Eq. (2.14). 

2.4.4.  Applications 

The three-parameter ( G , 1 , L ) stochastic model formulated above was first 

applied to the reduced order model of the annulus with the first 8 eigenvectors 
j

  
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retained in the summation of Eq. (2.10a) and 1  selected as 0.99 times the lowest 

eigenvalue. To highlight the effects of each random component on the response, shown in 

Figs 2.7 (a),(c),(e) are the uncertainty bands obtained with each of the parameters set to a 

nonzero value in turn. Also shown, on Figs 2.7 (b),(d),(f) are 3 samples of the 

corresponding responses. 

From Figs 2.7 (a),(b), corresponding to G  0, it is observed that the randomization 

of GK  only leads to a small, rather constant, global uncertainty band consistently with 

the above discussions. Next, consider Figs 2.7 (c),(d) corresponding  to 1  0 and 

which leads to a very localized large variability of the response confirming that LK  

does indeed control the localized behavior. Finally, shown in Figs 2.7 (e),(f) are the 

results corresponding to L  0 which are very similar to those shown in Figs 2.7 (a),(b) 

suggesting, for the present application, that it is sufficient to only consider the two 

parameter model defined by G  and 1 , i.e., with  

LL KHK 2
1= .              (2.15) 

Shown in Fig. 2.8 are the uncertainty band (Fig. 2.8(a)) and 3 samples of the 

response (Fig. 2.8(b)) corresponding to the combined case of all three parameters 

nonzero. It is seen that their effects approximately superpose, creating a thin uncertainty 

band away from the localization region but a much more significant one within it and 

samples that exhibit the localization as was desired. 
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Figure 2.7. Static Transverse Displacement at the Periphery of the Mean Annulus (in 

Red) and Results from the Stochastic Reduced Order Model: (a),(c),(e) 5th-95th 

Percentile Uncertainty Band (in Yellow), (b),(d),(f) 3 Samples.( G , 1 , L ) = (a),(b) 

(0.1,0,0); (c),(d) (0,0.05,0); (e),(f) (0,0,0.02) 
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(a)                               (b) 

Figure 2.8. Static Transverse Displacement at the Periphery of the Mean Annulus (in 

Red) and Results from the Stochastic Reduced Order Model: (a) 5th-95th Percentile 

Uncertainty Band (in Yellow), (b) 3 Samples. ( G , 1 , L )=(0.1,0.05,0.02). 

Not only does the uniform shift of the close eigenvalues of the stiffness matrix 

induced by Eq. (2.15) produce localization of the uncertain response but it also appears to 

be the main mechanism to induce this localization. To clarify this issue, consider a 

parametric stochastic model of the annulus in which only the Young’s modulus is 

uncertain, more specifically represented according to the model of (Soize 2006) as a 1x1 

matrix. Selecting the dispersion parameter  (equal to the coefficient of variation here) 

equal to 0.1 and the correlation length to 0.43 (corresponding to an arc of approximately 

30 degrees of the inner radius) led to the uncertain bands shown in Fig. 2.9(a). As 

expected, the response is localized to the neighborhood of the excitation. 

Next, the random finite element matrix FEK  was projected on the 55 linear modes 

of the mean model selected to construct the corresponding random ROM stiffness matrix 

K̂ . It was itself projected on the first 8 eigenvectors of the mean model ROM stiffness 

matrix, generating  
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   
821821

ˆ =  KK
T

p    and   = FE
T KK̂ .     (2.16a),(2.16b) 

This step is straightforward here as the mean ROM stiffness matrix K  is diagonal and 

thus the eigenvectors 
i

  are entirely zero except for the component i equal to 1. Thus, 

pK  is the top left 8x8 block of K̂ . 

The random matrix pK  plays a role very similar to LK  as it captures the 

variability associated with the first 8 eigenvectors of the mean model ROM stiffness 

matrix. Then, according to Eq. (2.15), this matrix was tentatively approximated by 

8IdKK pp +=                        (2.17) 

where pK  denotes the mean of pK  which is a diagonal matrix with elements 1 ,  

2 , ..., 8 , d is a centered random variable, and 8I  denotes the 8x8 identity matrix. To 

assess the quality of this approximation, each sample of the matrix pK  was first 

considered and the corresponding value of d minimizing the error 

Fpp IdKK 8−−=                    (2.18) 

was obtained. In this equation, the symbol 
F

 denotes the Frobenius norm of a matrix. 

Proceeding with a straightforward differentiation led to 

 pp KKtrd −=
8

1
                     (2.19) 

where  Utr  denotes the trace of an arbitrary matrix U. Introducing, this expression in 

the error  yields its minimum value denoted as min . An overall approximation error of 

pK  in the form of Eq. (2.17) can then be defined as 
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 

 
Fp

A
KE

E min

= .                         (2.20) 

The above computations were carried out for the samples of Fig. 2.9(a) and it was 

found that A = 0.26. This small value demonstrates that most of the variability in pK  

can indeed be modeled by a uniform shift of eigenvalues. 

 
(a)                               (b) 

Figure 2.9. Static Transverse Displacement at the Periphery of the Mean Annulus (in 

Red) and Results from the Parametric Stochastic Model with Uncertain Young’s 

Modulus Only. 5th-95th Percentile Uncertainty Band (in Yellow) Corresponding to (a) 

Full Finite Element Simulation, (b) ROM with the Matrix K̂  Approximated. 

To provide a final confirmation of the appropriateness of the stochastic model of Eqs 

(2.10)-(2.14), the computation of the static response of the annulus was carried out by  

(i) replacing pK  by 8IdK p +  as the 8x8 top left block of the matrix K̂  

(ii) zeroing out the remaining elements of the first 8 rows and columns of K̂  to 

approximately parallel the structure of K, Eq. (2.14), since these elements are small, of 

the order of 1−i . 
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Then, shown in Fig. 2.9(b) is the uncertainty band on the response obtained by 

utilizing the above modified K̂  matrix as ROM stiffness matrix. Comparing this figure 

with its original counterpart, Fig. 2.9(a), it is observed that the results are very similar 

with only a difference in the width of the band. This finding is fully expected as the 

projection process of Eqs (2.17)-(2.19) has effectively decreased the overall level of 

uncertainty and thus a thinner uncertainty band is expected. A rescaling of the variability 

of the random parameter d would boost back the band to its width in Fig. 2.9(a). This 

scaling could be seen as a calibration of the model to the data of Fig. 2.9(a). 

The three-parameter ( G , 1 , L ) stochastic model was also applied to the chain 

model with the eigenvectors 
3

 , 
4

 , and 
5

 , i.e., the eigenvectors significantly 

excited by the loading, retained in the summation of Eq. (2.10a). Moreover, the parameter 

1  was selected equal to 0.99 times the third eigenvalue (the lowest eigenvalue 

corresponding to the retained eigenvectors). Then, shown in Fig. 2.10 is the uncertainty 

band corresponding to the case G =0.1, 1 =0.1, and L =0. It is again observed that 

the uncertain response is localized to the masses 3, 4, and 5 as is the mean model. 
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Figure 2.10. Static Displacement of the Chain Model. Mean Model (in Red) and 5th-95th 

Percentile Uncertainty Band (in Yellow) for ( G , 1 , L )=(0.1,0.1,0). 

2.5. Maximum Entropy Nonparametric Modeling for Mode Shapes Localization 

The discussion of the above section focused on maintaining the localized character of 

the response of the mean model when introducing uncertainty. In contrast to this 

situation, there exists a class of structures in which the mean model response is global but 

the introduction of uncertainty induces localization. Bladed disks, i.e., the structures of 

class C, are notorious examples of this situation when analyzing the free response 

properties, i.e., mode shapes. Rather typically, consider the finite element model of the 

bladed disk of Fig. 2.3 in which all blades have identical properties (i.e., the tuned disk) 

and shown in Fig. 2.11 are 2 of its low frequency modes more specifically those 

corresponding to 2 and 6 nodal diameters of the first family. Clearly, these mode shapes 

are extended to the entire structure, i.e., global. Next, blade-to-blade variations in their 

Young’s modulus are introduced to create mistuning. Given the quality of the 

manufacturing process, these differences can be expected to be small and thus the 
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Young’s moduli of the 12 blades were selected as 0.995, 0.996, 0.997, 0.998, 0.999, 

1.000, 1.001, 1.002, 1.003, 1.004, 1.005, 1006 of the tuned model value. Then, shown in 

Fig. 2.12 are two typical low frequency modes and note that they are very strongly 

localized to only 1 blade out of the 12, on different blades for different modes. An 

additional observation that has been made in relation to mistuning is that variations of 

properties of the disk (the support of the blades) does not lead in itself to localization. 

The dominant sensitivity of the modes is thus with respect to blade-to-blade variations of 

their properties. 

       
                  (a)                                  (b) 

 
                  (c)                                  (d) 

Figure 2.11. Some Mode Shapes of the First Family, Tuned Bladed Disk Model. (a), (b) 

Overall View, (c), (d) Tip Displacements. (a), (c) 2 Nodal Diameter Modes, (b), (d) 6 

Nodal Diameter Modes 
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Figure 2.12. Overall View of Some Mode Shapes of the First Family, Mistuned Bladed 

Disk. 

It is desired here to duplicate these phenomenological effects by introducing 

uncertainty on a reduced order model of the bladed disk. In this regard, it ought to be 

recognized that there are reduced order modeling methods which are more apt than others 

at mistuning the blades vs. mistuning all components (disk and blades). For example, 

sub-structuring based reduced order models (e.g., following a Craig-Bampton approach) 

in which each blade is a particular sub-structure are particularly convenient for the 

introduction of blade mistuning as the response of each blade is associated with specific 

ROM degrees of freedom. The intent here is to consider a “worst case” scenario, more 

specifically a reduced order model based on a series of tuned modes of the bladed disk in 

which the blades specific degrees of freedom are lost. This was achieved for the bladed 

disk of Fig. 2.3 by selecting the first 200 modes of the tuned model. 

It was first questioned whether the standard nonparametric method of Eqs (1.1)-(1.4) 

and/or the revised approach of Eqs (2.10)-(2.12) could generate strongly localized modes 
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as seen in Fig. 2.12. To this end, shown in Fig. 2.13 are the first two modes obtained for a 

particular mistuned disk realization and with each of these methods. It is clearly seen that 

most of these modes are distorted but are not localized. In fact, the results corresponding 

to ( G , 1 , L )=(0,0.1,0) are neither distorted nor localized as they correspond to a tuned 

disk with properties different than the baseline one. These observations are not 

surprising: the transformation from physical coordinates to modal ones spreads the 

uncertainty well defined on blades to the ensemble of modal elements in the ROM mass 

and/or stiffness elements. This process induces specific correlations between the elements 

of these matrices that are not, and cannot be expected to be, duplicated by the 

nonparametric approaches. Accordingly, a revised of the approach of Eqs (2.10)-(2.12) is 

proposed below for this class of applications. 

More specifically, it is suggested that the randomization of the local component of 

the ROM stiffness matrix of Eq. (2.10a), denoted here as ROMLK , , be done in the finite 

element domain, then mapped back to the ROM by pre and post multiplication by T  

and  . Moreover, this randomization should affect only diagonal elements in the finite 

element domain to not modify the connectivity of various degrees of freedom, i.e., not to 

create a coupling (for example between blades) that does not exist in the mean model. 

That is, the uncertainty on ROMLK ,  should originate from the diagonal component of a 

finite element space matrix FEMLK ,  satisfying 

= FEML
T

ROML KK ,, .         (2.21) 
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                  (a)                                  (b) 

 

                  (c)                                  (d) 

Figure 2.13. Tip Displacements of the First Two Modes for a Particular Mistuned Disk 

Realization Obtained with (a) Standard Nonparametric Method,  =0.1, the Revised 

Approach of Eq. (2.10) with (b) ( G , 1 , L )=(0.1,0,0), (c) ( G , 1 , L )=(0,0.1,0), and 

(d) ( G , 1 , L )=(0,0,0.1). 

This matrix will be expressed similarly to ROMLK , , i.e., as 

T

j

T
jjFEML ZZzzK 11, ==                   (2.22) 

where 1  is an appropriately selected parameter (see below) and Z is the matrix of 

columns jz  with these vectors satisfying the underdetermined system of equations 

2 4 6 8 10 12
-0.5

0

0.5

1

Blade Number

M
o

d
a

l 
d

is
p

la
c
e

m
e

n
t

 

 

mode 1

mode 2

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Blade number

M
o

d
a

l 
d

is
p

la
c
e

m
e

n
t

 

 

mode 1

mode 2

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Blade number

M
o

d
a

l 
d

is
p

la
c
e

m
e

n
t

 

 

mode 1

mode 2

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Blade number

M
o

d
a

l 
d

is
p

la
c
e

m
e

n
t

 

 

mode 1

mode 2



34 

jj
T z = .                         (2.23) 

Proceeding with a least squares solution of the equations yields 

 
j

T
jz =

−1
                      (2.24) 

which then completely defines FEMLK , . Note in the above equations that the indices j 

range over all eigenvectors/eigenvalues leading to the localization of the response. 

As stated above, the plan is to induce localization of the mode shapes by 

randomizing the diagonal component of FEMLK , , denoted as FEMDLK ,   or 

   T
FEMLFEMDL ZZdiagKdiagK 1,, == .           (2.25) 

Then, the off-diagonal component of FEMLK ,  can be regrouped with the previous 

global part of the ROM stiffness matrix to form the new GK  

  −=−+−= FEMDL
T

FEMDLFEML
T

ROMLG KKKKKKK ,,,, .   (2.26) 

Given this split of the mean model stiffness matrix into local and global components, it is 

proposed to introduce uncertainty on GK  as in Eq. (2.11) but the randomization of 

FEMDLK ,  will require that this matrix remains diagonal (see discussion above). To this 

end, it is proposed to proceed in parallel with Eq. (2.12a) with a “scaling” (scalar 2
1H ) 

and a “distortion” (matrix ZH ), that is 

 TT
ZZFEMDL ZHHZdiagHK 2

11, =              (2.27) 
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where the matrix ZH  is a lower triangular random matrix defined by Eqs (1.3)-(1.4) 

and Fig. 1.1 for a particular dispersion Z . Regrouping terms, the random ROM 

stiffness matrix is then 

+= FEMDL
T

G KKK , .                  (2.28) 

2.5.1.  Algorithm 

The application of the above approach can be decomposed into the following steps: 

(a) selection of the basis functions 
i

  and computation of the mean ROM stiffness 

matrix K  from its finite element counterpart FEK  using Eq. (2.4), 

(b) determination of the eigenvectors 
j

  and eigenvalues j  of the matrix K , 

(c) selection of the set (values of j) of these eigenvectors and eigenvalues that will 

lead to localization of the uncertain response, i.e., closely spaced eigenvalues for the 

bladed disk example, 

(d) determination of the corresponding columns jz  according to Eq. (2.24), 

(e) construction of the mean model matrix FEMDLK ,  according to Eq. (2.25), 

(f) determination of the mean stiffness matrix GK  from Eq. (2.26), 

(g) selection of the parameter 1  which is as large as possible while maintaining the 

positive definiteness of the matrix GK , 

(h) selection of the dispersion parameters G , 1 , and L , 

(i) simulation of the random matrices FEMDLK ,  according to Eq. (2.27), 

(j) computation of the decomposition matrix GL  satisfying Eq. (2.11b), 
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(k) simulation of the random GK  according to Eq. (2.11a), 

(l) assembly of the random stiffness matrices as in Eq. (2.28). 

2.5.2.  Application 

The above modeling procedure was applied to the 200 modes ROM of the disk of 

Fig. 2.3 with the summation in Eq. (2.22) extending over the first 12 modes. Moreover, 

the parameter 1  was selected as the largest value for which the matrix GK  is positive 

definite. Then, shown in Fig. 2.14 are the four typical modes for a particular mistuned 

disk realization obtained with ( G , 1 , L ) = (0.1, 0.1, 0.02). It is seen that these modes 

are indeed strongly localized to 1 or 2 blades as desired. 

 

Figure 2.14. Tip Displacements of Four Typical Modes for a Particular Mistuned Disk 

Realization Obtained with the Approach of Eqs. (2.21)-(2.28) for ( G , 1 , L ) = (0.1, 

0.1, 0.02). 

To better understand the role of each uncertainty mechanism on the occurrence of 

localization, the three cases ( G , 1 , L ) = (0.1, 0, 0), (0, 0.1, 0), and (0, 0, 0.02) were 

also investigated and shown in Fig. 2.15 are some typical mode shapes of a particular 

realization of the bladed disk.  
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Figure 2.15. Tip Displacements of Some Typical Modes for a Particular Mistuned Disk 

Realization Obtained with the Approach of Eqs. (2.21)-(2.28) for (a) ( G , 1 , L ) = (0.1, 

0, 0), (b) ( G , 1 , L ) = (0, 0.1, 0), and (c) ( G , 1 , L ) = (0, 0, 0.02). 

These figures demonstrate that: 

(i) the effect of the uncertainty on GK  (controlled by G ) does induce distortion 

but not localization, 

(ii) the uniform shift of eigenvalues (controlled by 1 ) creates neither distortion nor 

localization as it produces a tuned model different from the mean one, 

(iii) that the mixing of eigenvalues induced by ZH  (controlled by L ) is the 

source of the localization of the modes. 

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Blade number

M
o

d
a

l 
d

is
p

la
c
e

m
e

n
t

 

 

mode 1

mode 2

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Blade number

M
o

d
a

l 
d

is
p

la
c
e

m
e

n
t

 

 

mode 3

mode 4

0 2 4 6 8 10 12
-1

-0.8

-0.6

-0.4

-0.2

0

Blade number

M
o

d
a

l 
d

is
p

la
c
e

m
e

n
t

 

 

mode 1

mode 2



38 

This situation is in contrast with class A and B structures for which the mean model 

response is localized and where the uniform shift of eigenvalues, quantified by 1 , is the 

dominant mechanism to be modeled. 

While the above methodology has been described in the context of the stiffness 

matrix, it can be used in the same format to introduce uncertainty in the mass matrix. 

Specifically, one can decompose the mean ROM mass matrix M  into local and global 

components with 

   T
FEMLFEMDL ZZdiagMdiagM 1,, ==            (2.29) 

and 

−= FEMDL
T

G MMM ,  .                  (2.30) 

Then, uncertain matrices FEMDLM ,  and GM  can be generated as 

 TT
ZZFEMDL ZHHZdiagHM 2

11, =               (2.31) 

and 

T
G

T
GGGG PHHPM =       where      T

GGG PPM = .         (2.32) 

The uncertain ROM mass matrix is then obtained as 

+= FEMDL
T

G MMM ,  .                  (2.33) 

For the selection of the matrix Z, it is desired through the local mass matrix to affect 

the natural frequencies which are closely spaced. Since the mean ROM mass matrix is 

identity here, the mean mode shapes are the corresponding eigenvectors of the mean 
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ROM stiffness matrix 
j

  and thus the selection of the vector jz  in Eq. (2.23) is still 

appropriate. 

The above formulation was applied to the 200 modes ROM of the disk of Fig. 2.3 

with the columns jz  determined from the first 12 modes. Moreover, the parameter 1  

was selected as the largest value for which the matrix GM  is positive definite. Given 

the above discussion on the role of the three different uncertainty mechanisms, the 

dispersion parameters ( G , 1 , L ) were first selected as (0, 0, 0.02). Then, shown in Fig. 

2.16(a) are the first two modes for a particular mistuned disk realization; they are seen to 

be localized consistently with Fig. 2.15(c). Adding a random shift of the eigenvalues, i.e., 

with 01  , does not affect noticeably the modes, see Fig. 2.16(b), as may be expected 

since this shift only induces a tuned change to the system. Finally, the uncertainty on the 

global mass matrix GM  induces distortion of the modes, see Fig. 2.16(c) but not 

localization, again consistently with the stiffness based uncertainty results of Fig. 2.15.  

Having successfully achieved localization producing mistuning, it was of interest to 

assess how to add further uncertainty to a bladed disk already mistuned. Since such a disk 

exhibits the properties of class A and B structures, i.e., its eigenvalues are closely spaced 

and the modes are localized, it was construed that the randomization approach of Eq. 

(2.10)-(2.12) would conserve the localization of the mode shapes. These properties were 

indeed confirmed for the mistuned disk of Fig. 2.12 for ( G , 1 , L ) = (0.1, 0.1, 0.0), the 

results not shown here for brevity. 
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(a)                                (b) 

 

   (c) 

Figure 2.16. Tip Displacements of Some Typical Modes for a Particular Mistuned Disk 

Realization Obtained with the Approach of Eqs. (2.29)-(2.33) for (a) ( G , 1 , L ) = (0, 0, 

0.02), (b) ( G , 1 , L ) = (0, 0.1, 0.02), and (c) ( G , 1 , L ) = (0.01, 0.1, 0.02). 
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3. NONLINEAR GEOMETRIC THERMOELASTIC RESPONSE OF STRUCTURES 

WITH UNCERTAIN THERMAL AND STRUCTURAL PROPERTIES 

3.1. Introduction 

The present Chapter focuses on the effects of uncertainty on the response of heated 

structures undergoing large deformations. In such multidisciplinary problems, the 

uncertainty may be associated with each discipline and/or with their coupling. Since the 

consideration of uncertainty on the structural properties alone has been discussed 

extensively before, this investigation will focus more specifically on the novel aspects of 

the uncertainty on the thermal properties (capacitance, conductance) and the 

thermal-structural coupling induced by the coefficient of thermal expansion. The 

propagation of these uncertainties to both temperature distribution and structural response 

will be determined. In this regard, note that thermal-structural coupling is effectively a 

one-way interaction. Indeed, the temperature distribution induces stresses in the structure 

that result in thermal loads and changes in its natural frequencies and mode shapes. In 

reverse however, the structural deformations directly affect the temperature distribution 

only through the very weak latency term which is ignored. A stronger coupling between 

the structural deformations and the temperature distribution may however exist in 

aero-structural-thermal problems since the structural motion will affect the aerodynamics 

and especially the aeroheating which drives the temperature distribution. This situation is 

not considered here. Moreover, it will be assumed that all properties are independent of 

temperature with the extension of the present formulations left as future work. 

Owing to the potential or actual occurrence of thermal buckling, it is highly desirable 

to carry out the structural analysis in a nonlinear geometric format which, unfortunately, 
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leads to a significant increase in computational effort especially when considering 

dynamic situations. These conflicting requirements have led to the formulation and 

development of nonlinear thermal-structural reduced order modeling strategies for the 

temperature and displacements, see (Perez et al 2011) and (Matney et al 2011), which are 

based on similar developments for structural only models, see (Kim et al 2013, Mignolet 

et al 2013) and (Perez et al 2014). 

3.2. Uncertainty Modeling 

3.2.1.  Modeling of Conductance and Capacitance Matrices 

Uncertainty in the conductance and capacitance properties of the structure can be 

included in the reduced order model by modeling the corresponding ROM matrices 

(conductance and/or capacitance) using the above nonparametric approaches as these 

matrices are symmetric and positive definite. 

3.2.2.  Modeling of the Structural and Coupling Properties 

The next task is the modeling of uncertainties in the material properties that affect 

the structural ROM, e.g., the tensor of elasticity, coefficient of thermal expansion. The 

intent here is on generating random values of the parameters )1(
ijK , 

)2(
ijl

K , 
)3(

ijlp
K , 

)(th
ijl

K

, and 
)(th

il
F  directly, as opposed to simulating the material properties in the finite 

element then mapping them to the ROM. To proceed in this manner, it is necessary to 

first establish the mathematical/physical properties that those parameters must satisfy, 

then construct simulation algorithms that maintain these properties for every sample. 

Such an effort was carried out in (Mignolet and Soize 2008) for the structural alone 

problem, i.e., the simulation of the parameters )1(
ijK , 

)2(
ijl

K , and 
)3(

ijlp
K . More 
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specifically, it was shown that a matrix BK  composed of these stiffnesses is positive 

definite. This property was derived from the following expressions (Kim et al 2013, 

Mignolet and Soize 2008) 
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In these equations, 0  denotes the domain of the structure in the undeformed 

configuration, ( )X
)(m

iU  is the mth basis function for the representation of the ith 

component of the displacement vector over the continuous domain 0X . Moreover, 

iklpC  is the elasticity tensor. 

Next, a reshaping was first performed to transforms the MxMxM third order tensor 

(2)
K̂  into a MxM 2 rectangular array (2)

K
~

 and the MxMxMxM fourth order tensor 

(3)
K  into a M 2xM 2 square matrix (3)

K
~

. These operations are achieved as follows: 

)2()2( ˆ~
mnpmJ KK =       with       J=(n-1)M+p             (3.5) 
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and 

)3()3(~
msnpIJ KK =      with    I=(m-1)M+s   and   J=(n-1)M+p.    (3.6) 

Construct next the expression 
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where mw  and Iv  are the components m and I of arbitrary vectors w  and v . Then, 

from Eqs (3.1)-(3.4) one finds 
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where for notational convenience 
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Since the elasticity tensor iklpC  is positive definite, it is seen from the last equality of 

Eq. (3.8) that SE  is positive for any vectors w  and v . Rewriting this quantity as 
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it is seen that the PxP (
2MMP += ) symmetric matrix BK  defined as 
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is positive definite. 
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To extend this discussion to include the structural-thermal coupling terms 
)(th

ijl
K , 

and 
)(th

il
F , note first that these parameters can be expressed as (Perez et al 2011). 
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which are of the same form as Eqs (3.1)-(3.4) but involve the strain term 
)(n

lr
T  

where  is the coefficient of thermal expansion tensor and ( )X
)(nT  is the nth basis 

function for the temperature in the continuous domain 0X . 

Next, proceed in reverse of Eqs (3.7)-(3.8) and define 
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which is positive for all mw , Iv , and mz . Expanding the products in the integrand 

leads to 
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where ( )th
K
~

 is the M 2x rectangular array obtained by reshaping the third order tensor 

( )th
K  according to 
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and ( )tt
K  is the x symmetric, positive definite matrix of components 
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Since the expression CE  of Eq. (3.14) is positive for all mw , Iv , and mz , it is 

concluded that the QxQ ( 2MMQ ++= ) symmetric matrix CK   
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is positive definite. 

The above property provides a clear path for the simulation of parameters )1(
ijK , 

)2(
ijl

K , 
)3(

ijlp
K , 

)(th
ijl

K , and 
)(th

il
F  within the maximum entropy nonparametric approach. 

Specifically, form first the matrix CK  of the mean model from the parameters )1(
ijK , 

)2(
ijl

K , 
)3(

ijlp
K , 

)(th
ijl

K , 
)(th

il
F , and )(tt

mnK  of the finite element model of the mean 

structure. Then, proceed with the simulation of random matrices CK  according to Eqs 

(1.1)-(1.4) and Fig. 1.1, i.e., 

T
C = K KK L L    and   T T

C = K K K KK L H H L     (3.19), (3.20) 

where (assuming a Cholesky decomposition of CK ) 
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where the subscripts S and T refer to the structural and thermal part of the model. 

Finally, decompose the random matrices CK  of Eq. (3.20) according to the 

partition of Eq. (3.18) and identify the random parameters )1(
ijK , 

)2(
ijl

K , 
)3(

ijlp
K , 

)(th
ijl

K , 

and 
)(th

il
F . It is interesting to note in the above format that the simulation of the 

thermal-structural coupling properties 
)(th

ijl
K  and 

)(th
il

F  is achieved in conjunction with 

the structural only model but independently of the thermal properties, e.g., capacitance, 

conductance. 

While the above developments assumed that the elasticity tensor and thermal 

expansion were independent of temperatures, linear variations of these properties can also 

be considered in a deterministic ROM formulation, see (Matney et al 2011), and in an 

uncertain one, see Appendix A for the extension of Eqs (1.7), (3.11)-(3.18) to the case of 

the thermal expansion varying with temperature as an example of the process. 

3.3. Implementation Challenges 

The above process seems clear and well defined but after a closer inspection and 

trials, three key challenges were encountered. They are described below separately and 

their solutions briefly discussed, see Appendices B and C for details. 
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3.3.1.  Identified Coefficients vs. Symmetric Coefficients 

It should first be recognized that a series of terms in Eq. (1.7) involve the same 

monomials of the generalized coordinates, e.g. )2(
ijl

K  and (2)
ilj

K , and thus these terms 

may naturally be regrouped leading to the ROM governing equations 

(1) ( ) (2) (3) ( )th th
ij j ij j l j j l j l p i lij ijl ijl ijlp il

M q D q K K q K q q K q q q F F + + +  + + = + 
 

.  (3.23) 

This equation is very similar to Eq. (1.7) except that there is no repetition in the 

monomials because (2)
ijl

K  and (3)
ijlp

K  are nonzero only for j  l and j  l  p. Note 

further that the identification methods discussed in (Perez et al 2011), (Matney et al 

2011), (Kim et al 2013), (Mignolet et al 2013) and (Perez et al 2014) yield the 

coefficients (2)
ijl

K  and (3)
ijlp

K  not (2)
ijl

K  and (3)
ijlp

K  but it is these latter ones which are 

necessary in Eq. (3.18). Accordingly, an intermediate step in the simulation process is to 

transform one set of quadratic and cubic coefficients ( (2)
ijl

K  and (3)
ijlp

K , referred to as 

“identified”) into another ( (2)
ijl

K  and (3)
ijlp

K , referred to as “symmetric”). To this end, 

comparing Eqs. (1.7) and (3.23) it is found that 

(2) (2)

(2) (2)
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Moreover, as discussed in (Mignolet and Soize 2008), the symmetry properties of the 

elasticity tensor and the form of Eqs (3.3) and (3.4) also imply that  

(2) (2)ˆ ˆ
ijl ilj

K K=                          (3.25) 

and 

)3()3()3()3(
lpmnmnplnmlpmnlp

KKKK ===                 (3.26) 

Unfortunately, Eqs (3.24) and (3.25) are not sufficient to yield a unique set of values 

of (2)
ijl

K  and (3)
ijlp

K  from given values of (2)
ijl

K  and (3)
ijlp

K  except for the one mode 

situation, i.e., all indices equal. The problem is further compounded by a similar issue in 

the transformation of the quadratic parameters (2)
ijl

K  to their related coefficients (2)ˆ
ijl

K  

using Eq. (3.2). It is thus not possible to uniquely map the identified coefficients (2)
ijl

K  

and (3)
ijlp

K  to the corresponding blocks of the matrix CK . 

This problem is not specific to the matrix CK , it is also encountered in the purely 

structural situation, i.e., when constructing the matrix BK , and it has recently been 

addressed (Wang et al 2018) based on the following observations: 
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(a) the decomposition of the identified coefficients (2)
ijl

K  and (3)
ijlp

K  into the 

parameters 
(2)ˆ
ijl

K  and )3(
ijlp

K  should only be a function of the modes i, j, l and i, j, l, p, 

respectively. 

(b) the decomposition should ensure that the matrix BK  corresponding to the n 

selected modes or any subset of these modes, is positive definite, or as close as possible 

to it. 

Accordingly, it was proposed in (Wang et al 2018) to proceed in steps, resolving the 

indeterminacy on all distinct two-mode coefficients, i.e., 
(2)ˆ
ijjK , 

(2)ˆ
iijK , 

(2)ˆ
jijK , 

(2)ˆ
jiiK , 

(3)
iiijK , (3)

iijjK , (3)
ijijK , and (3)

ijjjK , by enforcing that they satisfy Eqs (3.2) and (3.24) and 

lead to a maximum of the lowest eigenvalue of the matrix BK  corresponding to the two 

modes i and j > i. 

Next, the indeterminacy on all distinct three-mode coefficients, i.e., 
(2)ˆ
ijl

K , 
(2)ˆ
jil

K , 

(2)ˆ
lij

K , (3)
iilp

K , and (3)
ilip

K , was similarly resolved by enforcing that they satisfy Eqs (3.2) 

and (3.24) and lead to a maximum of the lowest eigenvalue of the matrix BK  

corresponding to the three modes p > l > j> i. 

Finally, the indeterminacy on all distinct four-mode coefficients, i.e., )3(
ijlp

K , (3)
iljp

K , 

and (3)
ipjl

K , was again resolved by enforcing that they satisfy Eqs (3.2) and (3.24) and 

lead to a maximum of the lowest eigenvalue of the matrix BK  corresponding to the four 

modes i and j > i and l > j > i. 
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3.3.2.  Lack of Positive Definiteness of the Matrix BK  

After the series of optimization efforts carried out in the previous section, it was 

found that the resulting matrix BK  may not be positive definite, see (Wang et al 2018) 

for justification and examples. In such cases, it was proposed that this matrix be modified 

to become positive definite. This modification was accomplished: 

(a) without affecting the part of BK  that is positive definite, e.g., the linear stiffness 

matrix (1)
K ; 

(b) inducing the smallest changes possible to this matrix. 

The procedure proposed in (Wang et al 2018) is summarized here in Appendix B and 

its application to the matrix CK  discussed. 

3.3.3.  The Matrix ( )tt
K  Is Not Well Identifiable 

An unusual feature of the matrix CK  is that it involves the matrix ( )tt
K  which 

does not appear in the reduced order model equations, Eqs (1.7) or (3.23), and thus its 

identification/selection requires further discussions. 

At first, it was intended to identify the mean value of this matrix. An indirect 

approach was devised in which the terms ( )n
lr T  and  

( )n
jklr lrC T  were 

recognized as components lr and jk of the thermal only strain tensor 
( )th
n and the 

corresponding stress tensor 
( )th
n both induced by the thermal mode n. Then, the 

coefficient ( )tt
mnK  corresponds to the integral (summation over all nodes/elements) of the 

product 
( ) ( )

:
th th

m n  . It remained then to determine the thermal strain and stresses. This 
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was accomplished by applying temperature along mode n on the structure with all of its 

nodes restrained, the resulting stress distribution would then equal 
( )th
n  and the 

corresponding strains 
( )th
n  could then be obtained using the tensor of elasticity. 

The implementation of this identification approach within Nastran was not 

successful, leading, even for very small reduced order models, to matrices CK  that 

were not positive definite. Accordingly, another strategy was devised. Specifically, since 

( )tt
K  is only present in CK , not in Eqs (1.7) or (3.23), its determination is effectively 

part of the stochastic modeling effort. Then, its value being unclear, it was argued that 

( )tt
K  should be determined by the entropy optimization effort. It is shown in Appendix 

C that this condition leads to TTL , in Eq. (3.21), is equal to the identity matrix. 

This result completes the determination of the lower triangular matrix KL , its 

structural only blocks 
( )1

SSL , 
( )2

SSL , and 
( )3

SSL  are determined by the Cholesky 

decomposition of the positive definite BK  resulting of the sections 3.3.1 and 3.3.2 

above. Moreover, from Eqs (3.18) and (3.19), 

( ) ( ) ( )1 1
T

th T
TS SS

−
 =
  

L F L  and 
( ) ( ) ( ) ( ) ( )2 1 2 3

T
Tth T

TS TS SS SS

−
   = −
      

L K L L L .  (3.27), (3.28) 

3.4. Implementation of Separate Uncertainty Levels 

The matrix CK  involves two different properties of the structure: its elasticity 

tensor and its coefficient of thermal expansion the level of variability of which may be 

different. This situation is similar to the maximum entropy modeling of uncertainties that 

satisfy and violate certain symmetries, see (Murthy et al 2014) for a rotordynamic 
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application and (Matney et al 2011) for an implementation focused on material 

properties. In these investigations, it was proposed to compound the effects, i.e., H 

matrices, induced by both types of uncertainties. 

In the present context, the compounding of the uncertainties in the elasticity and 

thermal expansion tensors can be achieved by expressing KH  as 

T S=KH H H                        (3.29) 

where 

( ) ( )1 2
*

T

TS TS

 
 
 =
 
 
 

I

H I

H H

 

    and 

( )

( ) ( )

1

2 3

SS

S SS SS

 
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 

= 
 
 
 

H

H H H

I

 



 

.   (3.30), (3.31) 

In the above equations, I denotes the identity matrix of appropriate dimensions and the * 

designates a matrix partition which is irrelevant as it does not arise further in the 

computations, affecting only the matrix ( )tt
K  of the random structures. Rewriting Eq. 

(3.20) with (3.29) yields 

( ) ( )
TT T T T

C T S S T T S S T= =K K K KK L H H H H L L H H H L H       (3.32) 

it is seen that the randomization of the structural properties is a two-step process. First, is 

the randomization by TH  transforming the mean model matrix CK  into the random 

one 

( )( )
TT T

C T T T T= =K K K KK L H H L L H L H             (3.33) 

which serves as a mean model for the further randomization by SH . 
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Note in the above process that the random matrix TH  only affects the ST blocks of 

CK , i.e., 
)(th

ijl
K  and 

)(th
il

F , and thus it models the uncertainty associated with the 

thermal expansion which is present only in those terms. On the contrary, the components 

of the random matrix SH  will affect all blocks of the CK  matrix and thus is 

appropriate for the modeling of the uncertainty in the elasticity tensor which is present in 

all elements of CK . 

The selection of blocks of the SH  and TH  matrices as the identity or the zero 

matrix does not conform with the discussion of Eqs (1.1) – (1.4) and Fig. 1.1 but it is 

consistent with the extended nonparametric formulation developed in (Mignolet and 

Soize 2008) in which the uncertainty associated with the corresponding eigenvalues is set 

to zero while no constraint is imposed on the variability of the other eigenvalues. 

Accordingly, the block 
( )1

TSH  and 
( )2

TSH  are simulated as off-diagonal elements of the 

matrix H of Fig. 1.1, i.e., as independent identically distributed zero mean Gaussian 

random variables with standard deviation  related to a uncertainty level T . Finally, the 

2x2 top left block of SH  is simulated as in Eqs (1.1) – (1.4) and Fig. 1.1 with the 

appropriate matrix size, i.e., 2M M+ , and uncertainty level S . 

3.5. Example of Application – Straight Beam 

3.5.1.  Mean Model 

The panel of (Matney et al 2011) was considered to demonstrate the application of 

the above uncertainty modeling strategies and provide a first assessment of the effects of 
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on the structural-thermal response uncertainty on the thermal properties and/or on the 

coefficient of thermal expansion. 

Following (Matney et al 2011), the panel was modeled as an isotropic 

clamped-clamped beam with properties given in Table 3.1 and was modeled by finite 

elements in MSC.Nastran. The structural model consisted of 40 CBEAM elements while 

the thermal one involved 40 CQUAD4 elements along the beam and 6 through thickness. 

Table 3.1. Clamped-Clamped Beam Mean Properties 

Beam Length (L) 0.2286 m 

Cross-section Width (w) 0.0127 m 

Cross-section Thickness (h) 7.88 10-4 m 

Density 2700 kg/m3 

Young’s Modulus 73,000 MPa 

Shear Modulus 27,730 MPa 

Coeff. Thermal Expansion 2.5 10-5 /°C 

Mesh (CBEAM) 40 

 

The beam was subjected to a triangular flux of width 2=0.4 L, see Fig. 3.1, 

oscillating about the middle of the beam ( 2/0 La = ) with a frequency  and an 

amplitude =0.075 L. The peak heat flux was selected so that the peak temperature on the 

upper surface of the beam would be 10C for the steady problem ( = 0) while the 

bottom surface was maintained at 0C. The ends of the beam were also maintained at 0C. 

This thermal loading led to a tip static deflection of 0.65 thickness and thus to a nonlinear 

geometric behavior. 
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Figure 3.1. Beam Panel Subjected to an Oscillating Shock. 

A reduced order model of the panel was constructed using 17 structural modes and 

12 thermal basis functions, see ((Matney et al 2011) for details, which led to an excellent 

prediction of the full Nastran results. Of particular interest here is the peak response vs. 

frequency  which displays a peak for  approximately equal to 1/2 of the first linear 

natural frequency of the beam, see Fig. 3.2. 

 

Figure 3.2. Maximum Transverse Deflection on the Beam and at the Beam Middle as a 

Function of the Flux Oscillation Frequency  as Determined from the ROM and Nastran 

Computations. 
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3.5.2.  Uncertainty Modeling and Analysis 

The consideration of uncertainty on the conductance properties was first carried out. 

In selecting the simulation strategy, Eqs. (1.1) – (1.4) or Eqs. (2.11) – (2.14), it was first 

noted in the results presented in (Matney et al 2011) that the temperature distribution 

rapidly decayed to zero away from the zone heated by the triangular flux. This 

observation suggested that the temperature distribution exhibited a localized behavior. To 

confirm this expectation, a concentrated flux was applied to the beam and the resulting 

steady temperature was determined using a full finite element analysis, see Fig. 3.3(a). It 

is clearly seen that the temperature is strongly localized. In fact, this behavior results 

from the fixed temperature boundary condition on the bottom. If this condition was 

replaced by an adiabatic one, the temperature distribution would be the one shown in Fig. 

3.3(b) which is extended to the entire panel, i.e., exhibits a global behavior. 

 

Figure 3.3. Distribution of Temperature in a Beam Due to a Single Heat Flux at the 

Location Marked by X. (a) Adiabatic Boundary Condition on Beam Top but Zero 

Temperature on Bottom. (b) Adiabatic Boundary Conditions Throughout. 

The localized vs. global character of the temperature distribution can also be assessed 

from the eigenvalues of the conductance-capacitance problem as shown in Fig. 3.4. A 

localized character is associated with a series of close eigenvalues occurring at a nonzero 

value, see Fig. 3.4(a), while a global problem results when these values are spread in 

relative values. The existence of these two opposite behaviors for the mean model 

suggests that the uncertainty modeling strategy of the conductance and capacitance 
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matrices should similarly be able to induce mostly global or mostly local variations. On 

this basis, the maximum entropy approach for localized responses, Eqs (2.11) – (2.14), is 

proposed here to model these uncertain matrices regardless of the thermal boundary 

conditions. 

 

 

Figure 3.4. Comparisons of Eigenvalues of the Conductance-Capacitance Problem. (a) 

Case (a) of Fig. 3.3, (b) Case (b) of Fig. 3.3. (c) Comparison 

Given the localized behavior of the current example problem (with the fixed 

temperature boundary conditions), see Fig. 3.3(a) or 3.4(a), it was expected that the 

uncertainty would mostly be introduced on the local component of the model, i.e., LK
~

. 

Nevertheless, the effects of introducing the uncertainty on GK
~

 and LK
~

 were 

separately assessed first then jointly. The overall uncertainty level was quantified as in 

(Soize 2012) by the dispersion parameter  defined by Eq. (1.4). 
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Then, shown in Fig. 3.5 is the temperature distribution on the beam at a 

representative time induced by the oscillating flux. The yellow band represents the range 

of values between the 5th and 95th percentile of the temperature obtained at each node 

point for a value of =0.05 on the global component of the conductance matrix, GK
~

, and 

no uncertainty on its local counterpart, LK
~

. Note that the uncertainty band extends very 

far reaching the boundaries as expected from a global behavior. On the contrary, see Fig. 

3.6 the temperature induced by a similar uncertainty in LK
~

 remains very localized to 

the middle of the beam where the flux is defined. Combining these two uncertainties 

leads to the results of Fig. 3.7 which exhibit broad band near the flux and only a very 

small band away from it as would be physically expected. 

Having successfully produced random samples of the temperature distribution, it was 

next desired to propagate this uncertainty to the structural response. Each sample of the 

temperature was input to the structural ROM to determine the response over the range of 

oscillation frequencies  corresponding to the peak in Fig. 3.2(b). The resulting 

uncertainty band corresponding to the 5th-95th percentile was then evaluated for each 

frequency and is shown in Fig. 3.8. Note the broad range of frequencies over which the 

peak is observed and that the width of the (yellow) uncertainty band in the response at 

peak is wider than the one on the temperature, i.e., about 10% of the mean value vs. 

5% in Fig. 3.7. 
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Figure 3.5. Uncertainty Band Induced by Introducing Uncertainty Only in the Global 

Component of the ROM Conductance Matrix. 40Hz Oscillating Triangular Heat Flux. 

 

Figure 3.6. Uncertainty Band Induced by Introducing Uncertainty Only in the Local 

Component of the ROM Conductance Matrix. 40Hz Oscillating Triangular Heat Flux. 
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Figure 3.7. Uncertainty Band Induced by Introducing Uncertainty on Both Local and 

Global Components of the ROM Conductance Matrix. 40Hz Oscillating Triangular Heat 

Flux. 

 

Figure 3.8. Uncertainty Band on Peak Structural Response as a Function of the Flux 

Oscillating Frequency. Uncertainty on Conductance. 
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Figure 3.9. Uncertainty Band on Peak Structural Response as a Function of the Flux 

Oscillating Frequency. Uncertainty on Thermal-Structural Coupling Parameters. 

Uncertainty in the structural model was next considered, first in the thermal 

expansion, i.e., on the thermal-structural coupling, was introduced first through the 

matrix TH  with SH  set to the identity matrix and proceeding with Eqs (B.12) and 

(B.13) to resolve the singularity of the matrix CK . Note that the matrix 23K  was not 

found to be a significant contributor to the mean response and thus Eq. (B.14) was not 

implemented. The uncertainty analysis was carried out with a value of  = 10-4. This 

value seems very small, giving rise to coefficients of variation of 0.59% (l =1), 0.35% (l 

=3), 0.80% (l =5) on the parameters 
)(

11
th
l

K  and 0.56% (l =1), 3.05% (l =3), 7.84% (l =5) 

on
)(

1
th

l
F  which are the key driving terms to the first and dominant structural mode. Then, 

shown in Fig. 3.9 is the uncertainty band and mean model prediction of the peak beam 

(transverse) response as a function of frequency. Note that the width of the band, 2.5% 

of the mean value at the resonance, is significantly larger than the above coefficients of 

39 40 41 42 43
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Frequency (Hz)

M
a
x
im

u
m

 A
m

p
it
u
d
e
 R

e
s
p
o
n
s
e
/T

h
ic

k
n
e
s

 

 

Unc. Band

5th percent

95th percent

Average

Mean model



63 

variations of the parameters demonstrating a strong sensitivity of the response with 

respect to the coefficient of thermal expansion and thus the importance of carrying such 

uncertainty analyses. 

The uncertainty on the structural part only was also considered and implemented 

through the matrix SH  with TH  set to the identity matrix. This effort was carried out 

with a value of  = 0.02 which corresponds to a coefficient of variation of the first natural 

frequency of 0.56%. Then, shown in Fig. 3.10 are the uncertainty band and mean model 

prediction of the peak beam (transverse) response as a function of frequency. Once again, 

it is seen that the uncertainty level on the response is much larger than it is for the model 

coefficients, confirming the sensitivity of the response. Finally, shown in Fig. 3.11 is 

uncertainty band induced by both structural and thermal expansion uncertainties. As 

expected, this band is wider than the ones seen in Figs. 3.9 and 3.10 and corresponding to 

each uncertainties separately. 

 

Figure 3.10. Uncertainty Band on Peak Structural (Transverse) Response as a Function of 

the Flux Oscillating Frequency. Uncertainty on Structural Parameters Only. 
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Figure 3.11. Uncertainty Band on Peak Structural (Transverse) Response as a Function of 

the Flux Oscillating Frequency. Uncertainty on Structural and Thermal-Structural 

Coupling Parameters. 

3.6. Example of Application – Panel with Stiffeners 

3.6.1. Mean Model 

The second validation is on the panel with stiffeners as shown in Fig. 3.12 which was 

originally considered in (Culler and McNamara 2011) and is subjected to a trajectory 

spanning Mach 2 to Mach 12 in 300 seconds with fully coupled 

structural/thermal/aerodynamic computations. Full details of the panel properties are in 

(Culler and McNamara 2011) but some key features are: 

(i) nonlinear geometric structural effects are considered, 

(ii) the coefficient of thermal expansion is linearly dependent on temperature but the 
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(iv) the aerodynamic forces are determined from piston theory while the 

aerodynamic heat flux is estimated from Eckert reference enthalpy method, 

(v) the structural problem is solved quasi statically while the heat conduction is 

marched through a time step; 

(vi) the computations of the thermal problem and the structural one are staggered, 

marched with time step of 0.5s. The thermal solution at one time step is obtained first, 

from the thermal and structural fields at the previous time step. Then, the structural 

problem is solved using the current temperature distribution. 

A structural-thermal ROM of this panel providing a close match of finite element 

results was developed in (Matney et al 2015) and shown in Fig. 3.13 is a comparison of 

the maximum transverse displacement and the temperature of the center of the panel 

predicted by the finite element model (Culler and McNamara 2011) and by the ROM 

(Matney et al 2015). In this ROM, the structural model included 44 structural basis 

functions, and the thermal model included 42 basis functions. 

 

Figure 3.12. A Hypersonic Panel with Stiffener (Culler and McNamara 2011). 
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Figure 3.13. (a) Maximum Transverse Displacements and (b) Temperature of the Panel 

Center Over the Trajectory. Predictions by Finite Element Models (Culler and McNamara 

2011) and Structural-Thermal Full ROM (Matney et al 2015). 

3.6.2. Uncertainty Modeling and Analysis 

Owing to the dependence of the coefficient of thermal expansion on the temperature, 

the introduction of uncertainty in the structural and structural-thermal properties was 

carried out on the DK  matrix of Appendix A and according to the discussion of Section 

3.3.2 for the handling of the positive definiteness issues. In this problem, the block 23K  

in Eq. (B.7) was found to be important in determining the mean response. Accordingly, 

(a) 

(b) 
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the uncertainty was introduced following Eqs (B.12)-(B.14) with levels S  and T  for 

23K  equal to those for 11K  and 13K . 

Due to the issues described in (Wang et al 2018), the ROM coefficients identified 

from Nastran computations typically do not satisfy the basic symmetry properties derived 

in (Muravyov and Rizzi 2003) and (Mignolet and Soize 2008), such as (3) (3)3nnnm mnnnK K=

, see Eq. (3.24b). In (Wang et al 2018) and section 3.5.2 these conditions were enforced 

by symmetrization, see (Mignolet and Soize 2008). For the present ROM however, the 

symmetrization was found to affect the prediction of the mean model. Thus, to avoid this 

negative effect, a mapping was first established between symmetrized and 

non-symmetrized identified coefficients of the mean model. This mapping was then used 

in reverse to transform the random coefficients simulated on the basis of the symmetrized 

model to random coefficients relevant to the non-symmetrized ROM.  

It is known from prior investigations of this panel that its behavior is very sensitive 

to small changes, e.g., visible differences were obtained with two different versions of 

Nastran, and thus the levels of uncertainty were selected small. Considering first 

structural uncertainty only (i.e., T = 0), S was selected as 0.001. Then, the coefficient 

of variation of 
( )
111

th
K  and 

( )
1111

th
K  were found to be 0.37%, while those of 

( )
11

th
F  and 

( )
111

th
F  equaled 2.70%. Plotted in Figs. 3.14 – 3.15 are the 5 realizations and 10-90% 

uncertainty band of maximum displacements along with the mean model for the entire 

300s trajectory. It is clear that the effect of uncertainty is increasing with increasing time 

and Mach number. It should also be noted that the drop in maximum response occurring 
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at about 230s for the mean model was not duplicated by two of the realizations shown 

suggesting that the change of dominant mode did not happen for that realization. 

The effects of thermal uncertainty only (i.e., S = 0) were also considered with T

= 0.005. This selection leads to coefficient of variation of 
( )
111

th
K  and 

( )
1111

th
K  about 

0.00% and 0.00%, in 
( )

11

th
F  and 

( )
111

th
F  about 5.27% and 43.33%. Then, shown in Figs. 

3.16 – 3.17 are the evolution of the maximum response on the panel for 5 samples and 

band showing again that the variability of the response is very prominent near the mode 

switching event. 

 

Figure 3.14. Maximum Displacement of the Panel Over 300s, 5 Realizations with S = 

0.001 and T = 0, Along with the Mean Model. 
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Figure 3.15. Maximum Displacement of the Panel Over 300s, 10 – 90% uncertainty band 

from 98 realizations with S = 0.001 and T = 0, Along with the Mean Model. 

 

Figure 3.16. Maximum Displacement of the Panel Over 300s, 3 Realizations with S = 0 

and T = 0.005, Along with the Mean Model. 
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Figure 3.17. Maximum Displacement of the Panel Over 300s, 10 – 90% uncertainty band 

from 100 realizations with S = 0 and T = 0.005, Along with the Mean Model. 
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4. MAXIMUM ENTROPY STRUCTURAL-THERMAL UNCERTAINTY 

MODELING AT THE FINITE ELEMENT LEVEL 

4.1. Introduction 

A modification of the maximum entropy modeling approach was developed in 

Chapter 2 when the uncertain response is expected to exhibit a localized behavior. That 

modification was achieved by understanding the properties of the ROM matrices leading 

to a localization of the response and adapting the method to meet those properties. 

Another approach, however, would be to introduce the uncertainty in a more spatially 

localized manner to mitigate the globalization associated with the maximization of the 

entropy. It is such an approach which is proposed here, i.e., to introduce the uncertainty 

on each finite element matrix (mass, stiffness, conduction, etc.) following the maximum 

entropy concept and treating the corresponding matrix from the baseline model as a mean 

ROM. This approach represents a novel compromise between the modeling of 

uncertainty within the elements (e.g., by randomizing the elasticity tensor) on one end 

and at the level of a global ROM on the other. It brings some epistemic uncertainty not 

present in the former approach while retaining more local character than the latter one. 

Validations of this approach to a heated structural problem is carried out below. It is 

moreover demonstrated that the approach can be used to model the uncertainty in the 

elasticity tensor and the coefficient of thermal expansion (CTE) to relate element/nodal 

strains and temperatures to their stress counterpart. 

4.2. Single Physics Elemental Level Uncertainty Modeling 

As described in the introduction, the focus of the present effort is on developing an 

uncertainty modeling strategy at the level of the finite element. To this end, denote by 
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K  an elemental matrix (stiffness, mass, conductance) of the baseline finite element. 

Next, assume that the only properties required for its uncertain counterpart K are that this 

matrix is positive definite, symmetric, and non-singular. Then, following the maximum 

entropy strategy, one can express 

TT
KKKK LHHLK =                       (4.1) 

where KL  is a decomposition of K satisfying 

T
KK LLK =                           (4.2) 

and KH  is a lower triangular matrix as defined in Fig. 1.1. The process could then be 

repeated for each element in turn. 

In applying the above concepts, there are two key issues which must be carefully 

addressed. The first one is that the matrices KH  corresponding to different elements 

cannot be simulated independently of each other. Doing so would induce very high 

spatial frequency variations which are unphysical. Rather, it is proposed here to adopt the 

matrix field modeling proposed in (Soize 2006) which views each element ijH  as the 

transformation of a zero mean, unit variance Gaussian field ijP  with a specified 

stationary autocorrelation function 

( ) ( ) ( ) xxy = ijij PPER      xxy −=              (4.3) 

where x and x  denote the coordinates of two elements (e.g., of their center). 

Specifically, for ij 

ijij PH =                            (4.4) 

while for i = j 
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( ) ijHii PFFH
ii

1−=                         (4.5) 

where F is the cumulative distribution function of the standard Gaussian random variable 

and 1−

iiH
F  is the inverse of the cumulative distribution function of the Gamma random 

variable iiH , see Chapter 1.2 for detail. 

The correlation between random elemental matrices of neighboring finite elements 

implied by the above algorithm must be reflected on every component of the assembled 

matrix. That is, if a strong correlation is expected between two different finite elements, 

then there must exist a similarly strong correlation between the components of their 

elemental matrices which are added together in the construction of the global matrix. 

Since the matrix KH  is built from the independent fields ijP , this condition can be 

satisfied if: 

(1) the elemental matrices of the mean and uncertain models are expressed in the 

same (i.e., global) frame of reference, and 

(2) each simulated sample of the random global matrix is independent of the ordering 

of the nodes in each element. 

This latter condition can be achieved as follows. 

(i) Organize the mean elemental matrices K  consistently with the ordering of its 

degrees of freedom as: degree of freedom 1 for all nodes, degree of freedom 2 for all 

nodes, etc. 

(ii) Adopt lower triangular (or block lower triangular) decompositions KL  to retain 

the same ordering of the degrees of freedom. 
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(iii) Restrict the random matrices KH  so that each of their samples is invariant 

with respect to a permutation of the ordering of the nodes. This is achieved here by 

expressing 

rK IHH =                          (4.6) 

where H is a mxm random matrix simulated as described in Eq. (4.3)-(4.5) where m is the 

number of degrees of freedom per node. Moreover, rI  denotes the rxr identity matrix 

where r is the number of nodes per element and   denotes the Kronecker product 

operation. 

Once the elemental matrix (or matrices) have been simulated for each element, the 

finite element model is reassembled and the response can be determined. Proceeding with 

a series of such simulations provides a population of responses from which statistics can 

be determined. 

4.3. Uncertainty on Heated Structures 

It is next desired to extend the above formulation to heated structures in which there 

is uncertainty in both the structural and structural-thermal coupling (i.e., coefficient of 

thermal expansion) properties. The governing equations for a particular element can be 

written as 

 th strT= +Mx + Kx F F                      (4.7) 

where M is the element mass matrix, K the elemental isothermal stiffness matrix and 

strF  are applied static structural loads, assumed deterministic. Moreover, T is the 

temperature of the element and thF  is the vector of thermal “forces” at each node and 

each degree of freedom of the element. They are assumed here to be temperature 
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independent reflecting a similar property of the coefficient of thermal expansion (the 

extension to the case of a coefficient of thermal expansion linearly dependent on 

temperature is discussed in previous chapter). Finally, x is the vector of displacement 

degrees of freedom of the elements. 

It is worthwhile to recognize, e.g., see Song et al (2017), that the vector thF  

depends on both the coefficient of thermal expansion but also on the elasticity tensor of 

the element. Thus, a randomization of K to reflect uncertainties in this tensor cannot be 

done alone, it ought to include thF  as well. This point was instrumental in the 

discussion of (Song et al 2017) and led to the introduction of a matrix combining cold 

stiffness properties and thermal effects which was shown to be positive definite. 

Following this discussion but reduced to the linear case (nonlinear geometric effects were 

also included in (Song et al 2017)) demonstrates that the positive semi definite elemental 

matrix of interest is 

th
C T

th TT

 
=  

  

K F
K

F K
                         (4.8) 

where TTK  is the elemental version of the matrix introduced in (Song et al 2017) which 

does not appear in Eq. (4.8), see below for discussion. 

Based on this observation, it is concluded that the elemental modeling of heated 

structures desired here should be performed as in previous section on the matrix CK  of 

mean CK  (an overbar is used consistently as before to denote matrices related to the 

mean model). To this end, note first that the structural degrees of freedom need to be 

reordered as described above. Then, let CL  be a decomposition of CK  satisfying 
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T
C C C=K L L .                         (4.9) 

More specifically, assume here that CL  is selected in the block triangular form 

0
 C

th TT

 
=  

 

KL
L

L L
                      (4.10) 

Then, introducing Eq. (4.10) into Eq. (4.9), it is readily seen that KL  is defined as 

before, Eq. (4.2), and thus with the symmetry condition 

1/2=KL K                          (4.11) 

Next, from Eq. (4.9) and (4.10), the block thL  should be determined to satisfy 

T T
h tht =KL FL                         (4.12) 

In evaluating this block, two properties of the stiffness matrix K  and the thermal 

forces vector thF  play a key role. Specifically, 

(a) the matrix K  is only positive semi definite exhibiting the 6 rigid body modes as 

the element is free-free, and 

(b) the application of the temperature does not induce any rigid body displacements. 

Denoting by RB  the matrix formed by stacking in columns the 6 rigid body 

modes, the above two properties imply that 

RB =K    and h
T
RB t =F  .            (4.13), (4.14) 

The singularity of K  and thus KL  (see Eq. (4.11)) prevents its inversion to 

determine thL  directly from Eq. (4.12) but Eq. (4.13) guarantees that there are finite 

norm matrices thL  satisfying Eq. (4.12). To proceed, let D  be the matrix of the 



77 

normalized deformation (non-rigid) modes of K  stacked in columns and denote by 

D  the corresponding diagonal matrix of non-zero eigenvalues. Then, Eq. (4.13) 

implies that thF  can be expressed as 

Dth =F p  with t
T

hD=p F .           (4.15), (4.16) 

Moreover, to avoid the presence of the null space of K  in thL , let 

T
th

T
D=qL  .                         (4.17) 

Then, introducing Eq. (4.15) and (4.17) in Eq. (4.12) leads to 

1/2
D
−=q p .                         (4.18) 

To complete the decomposition of Eqs (4.9) and (4.10), it remains to obtain the block 

TTL  which is in principle derived from the matrix TTK . This matrix is difficult to 

estimate accurately non-intrusively from a commercial finite element code. Then, 

considering that it does not appear in the governing equations, Eq. (7), it has been 

proposed that it be selected to maximize the entropy of the simulated matrices CK . This 

is achieved (see Appendix C) when the block TTL  is equal to the identity matrix which 

is assumed here in the sequel. 

The randomization of the matrix CK  is then proposed as in Eq. (4.2), i.e., 

T T
C C C C C=K L H H L                      (4.19) 

where CH  is the random block lower triangular matrix 

C
th TT

 
=  

 

KH
H

H H


                      (4.20) 
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where KH  is the matrix of Eq. (4.6) and thH  and TTH  are novel random matrices 

of form to be derived. 

In this context, note first from the lower triangular form of both CL  and CH  that 

TTH  would only affect the TTK  block. Since this matrix does not appear in the 

governing equations, Eq. (4.7), its value is irrelevant and thus TTH  needs not be 

computed nor discussed. It will be symbolically replaced by a * in the sequel to 

emphasize this fact. 

Next, note that the matrix CK  involves two different properties of the structure: its 

elasticity tensor and its coefficient of thermal expansion, the level of variability of which 

may be different. To reflect these two variabilities, it is proposed here, as in Chapter 2 

and (Song et al 2017), to compound them by expressing CH  as the product of two 

block lower triangular matrices, one expressing the uncertainty on the stiffness properties 

( SH ) and the other on the thermal properties ( TH ), i.e.,  

C T S=H H H                          (4.21) 

where 

T
TS

 
= 

 

I
H

H




 and S

 
= 

 

KH
H

I




.         (4.22), (4.23) 

In the above equations, I denotes the identity matrix of appropriate dimensions. 

Rewriting Eq. (4.19) with Eq. (4.21) yields 

( ) ( )
TT T T T

C C T S S T C C T S S C T= =K L H H H H L L H H H L H       (4.24) 
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from which it is seen that the randomization of the structural properties is a two-step 

process. First is the randomization by TH  transforming the mean model matrix CK  

into the random one 

( )( )
TT T

C C T T C C T C T= =K L H H L L H L H            (4.24) 

which serves as a mean model for the further randomization by SH . 

The selection of blocks of the SH  and TH  matrices as the identity or the zero 

matrix does not conform with the discussion of Fig. 1.1 but it is consistent with the 

extended nonparametric formulation developed in (Mignolet and Soize 2008) in which 

the uncertainty associated with the corresponding eigenvalues is set to zero while no 

constraint is imposed on the variability of the other eigenvalues. Accordingly, the block 

TSH  is simulated from off-diagonal elements of the matrix H of Fig. 1.1, i.e., from 

independent identically distributed zero mean Gaussian random processes with standard 

deviation T  related to a uncertainty level T , see below. 

Performing the matrix multiplications in Eqs (4.21) and (4.24) and comparing the 

results with Eqs (4.8) and (4.20) leads to 

T
th TS= KH H H                         (4.25) 

T T T
th TS th= +K K K K KF L H H L H H L                 (4.26) 

together with Eq. (4.1) for the stiffness matrix. 

Note in Eq. (4.26) that thF  involves the compounding of the uncertainties in the 

structural and thermal properties in KH  and TSH , respectively, which is consistent 
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with the fact that thF  involves both properties. On the contrary, the stiffness matrix K 

only involves the structural uncertainties in KH , also consistently with its definition. 

Moreover, the stiffness matrix K and the vector thF  of the uncertain structures must 

retain the properties (a) and (b) above with respect to the rigid body modes, i.e., 

RB =K    and h
T
RB t =F              (4.27), (4.28) 

Both of these conditions are satisfied by the forms of Eq. (4.1) and (4.26) since 

T
RB RB= =K KL L                       (4.29) 

It remains to select the form of the random matrix TSH  to complete the 

formulation. As discussed in (Song and Mignolet 2018) and above, it is necessary that 

this matrix be such that each realization of the thermal force vector thF  permutes, as the 

mean model, under a permutation of the node numbers. To express this condition, let 

( )Bdiag , , ,e r r r=P P P P                   (4.30) 

where Bdiag is the operation creating a block diagonal matrix of the blocks specified and 

rP  is an arbitrary rxr permutation matrix where, as before, r is the number of nodes per 

element. Under this permutation, 

T
e e→K P K P  and thus T

e e→K KL P L P      (4.31), (4.32) 

h
T
eth t→ PF F  and thus th th e→L L P        (4.33), (4.34) 

Then, one also needs Eqs (4.31) and (4.33) to be true for the uncertain matrices, i.e., 

T
e e→K P K P  and h

T
eth t→ PF F         (4.35), (4.36) 

The condition (4.35) implies 
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T T T
e e =K K K KP H H P H H                    (4.37) 

which is automatically satisfied by Eq. (4.6) as 

T
e e =K KP H P H .                      (4.38) 

Focusing next on the condition (4.36), it can be rewritten with the above results as 

TS TS eP→H H                       (4.39) 

to be satisfied for every realization in TSH . A first approach to satisfy this condition is 

to impose 

TS e TSP =H H                         (4.40) 

which is satisfied by 

TS TS r= H h J                        (4.41) 

where TSh  is a row vector of m components defined as random fields with a specified 

correlation length; and rJ  denotes the row vector of dimension r with all elements 

equal to one. 

The selection of Eq. (4.41) leads however to negligible uncertainty effects in the 

absence of structural uncertainty. This occurs because the Kronecker product by rJ  

effectively induces vectors TSH  which are along the rigid body modes only. Then, the 

product T
TSKL H  is zero and, in the absence of structural uncertainty, i.e., with KH  

equal to the identity matrix, one finds from Eq. (4.26) that th th=F F . Thus, no 

uncertainty is introduced in the system. 
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Another approach to satisfy Eq. (4.39) is to express TSH  in terms of a mean model 

matrix/vector which exhibits the permutation. Given the size of the block TSH , it is 

proposed here to express it in terms of thL  as 

TS th=H L U                          (4.42) 

where U is a random matrix. Given Eq. (4.34), Eq. (4.39) would be satisfied by a matrix 

U proportional to the identity matrix but the more general form would satisfy 

T
e e =P U P U .                        (4.43) 

This condition is satisfied in particular with 

( )diag TS r= U h J                      (4.44) 

where diag is the operation taking a vector and creating the diagonal matrix having these 

elements along the diagonal. 

The application of the above approach to introduce uncertainty in a heated structure 

thus proceed as follows. First, from the mean model stiffness matrix K , determine KL  

according to Eq. (4.11) and in the process find the deformation modes D  and the 

corresponding matrix of eigenvalues D . Then, from the mean model thermal forces 

thF , determine the vector p  according to Eq. (4.16) and the representation of thL  

from Eqs (4.17) and (4.18). This completes the decomposition of the mean model. 

The introduction of uncertainty is achieved next with the mxm random matrix H 

simulated as described in Eqs (4.3)-(4.5) from a set of independent Gaussian random 

processes with specified correlation length and with an uncertainty level S  relating to 

Fig. 1.1 according to 
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1

S
S

m


 =

+
 and 

2

1

2
S

S

 =


             (4.45), (4.46) 

Each realization of this matrix is then multiplied (Kronecker product) by rI  to obtain 

the corresponding sample of KH , Eq. (4.6), and then of the stiffness matrix K using Eq. 

(4.1). 

Next, samples of m additional independent Gaussian random processes with 

specified correlation length (not necessarily the same as for the structural problem) are 

generated and multiplied by the common standard deviation / 3T T m =  + , T  

being the thermal uncertainty level. They are then stacked in the vector TSh  from which 

realizations of the vector TSH  are obtained using Eqs (4.42) and (4.44). Finally, the 

realizations of the random thermal force vector thF  are computed from Eq. (4.26).  

4.4. Validation on Correlation Length of Elemental Matrix Components 

The construction of the random elemental matrices according to Eqs (4.1)-(4.6) and 

(4.44) relies on 2 parameters, the overall uncertainty level  and the correlation length 

corrL . While the former parameter is well defined in terms of the elemental matrices, see 

Eq. (10), the latter operates at the upstream stage of the simulation of the random fields 

ijP . Accordingly, it is desirable to first assess how corrL  relates to the correlation 

between components of the simulated K matrices of different elements. 

To this end, two structural models were constructed with 100 identical beam 

elements, one in straight line, the other forming a half circle, see Fig. 4.1. The finite 

element model was developed in Nastran with CBEAM elements with 6 degrees of 

freedom per node and 2 nodes per elements, i.e., 12 degrees of freedom per element. 
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(a) 

 

(b) 

Figure 4.1. Beam Models for Correlation Length Analysis. (a) Straight Beam, (b) Half 

Circle Beam. 

Each element of the mean model of the two structures was assumed to have length 

0.0057m, a rectangular cross section with sides 0.0127m (width)  7.88 10-4m (thickness) 

and be made of homogenous, isotropic, elastic material with Young modulus E = 

73.000MPa and Poisson’s ratio of  = 0.316. The correlation length corrL  and 

uncertainty level  of the random fields ijP  were set to 10 element lengths, i.e., 0.057m, 

and 0.1, respectively. For the curved beam, the correlation length was quantified along 

the arc length of the inner circle. 

Since the mean elemental matrices of each element are identical, the random 

elemental matrices of elements ( )ijK n , n denoting the element number (between 1 and 

100), are at least wide sense stationary and one can compute the correlation lengths 

( )

( ) ( )

( ) ( )

1

0

ij
KK

ij m
corr ij

KK

R m

L

R

==


                      (4.47) 
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where 
( ) ( )
ij

KKR m  denotes the autocovariance of the component ij of the random 

elemental stiffness matrix defined as 

( ) ( ) ( ) ( ) ij
ij ij ij ijKKR m E K n K K n m K   = − + −   

         (4.48) 

Then, shown in Fig. 4.2 is a sample of the autocovariance functions of the elements 

( )ijK n  and of the random field 11P  as estimated from the population of 3000 

realizations using Eq. (4.48) with n = 1. Next, performing the summation over all lags m 

= 1, ..., 99 in Eq. (4.47) leads to the correlation lengths which are shown in Fig. 4.3 and 

which are very similar to those of the random fields ijP . It appears from Figs 4.2 and 4.3 

that the simulated components of the elemental stiffness matrix obey a correlation 

structure similar to the one of the original Gaussian fields ijP . 

 

Figure 4.2. Autocovariance Functions of Some Components ( )ijK n  (in Colors) and 

( )ijP n  (in Black Dashed Lines). 
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(a) 

 

(b) 

Figure 4.3. Correlation Length of the Components ( )ijK n  (in Number of Elements) for 

the Straight and Curved Beams. (a) Diagonal Components, i = j =1, .., 12, (b) All 

Components, i  j. Also Shown On Are the Correlation Lengths of the Processes ( )ijP n , 

(a) i = j =1, .., 6, (b) i  j, i. 
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4.5. Application Example 

To illustrate the above uncertainty modeling, consider the annulus shown in Fig. 4.4 

of inner radius 0.8m, outer radius 1m, thickness 0.002m clamped on its inner radius and 

free on the outer one. The material, aluminum, is assumed to be homogenous and 

isotropic with Young’s modulus E = 7.3 1010 Pa, Poisson’s ratio = 0.316, and coefficient 

of thermal expansion  = 2.5 10-5/C. The annulus is subjected to a uniform pressure of 

1Pa or a uniform temperature of 1C in the quadrant [180,270] degrees highlighted in 

yellow in Fig. 4.4. To evaluate the displacement field of the annulus, it was modeled by 

4-node (so r = 4) shell finite elements within Nastran (CQUAD4 elements) with a mesh 

of 144 nodes around the periphery and 6 in the radial direction. Each node has 6 degrees 

of freedom and thus m = 6. 

The autocorrelation function of (Soize 2006) was selected here with a correlation 

length equivalent to 60 deg. of the internal radius or about 24 elements Moreover, the 

structural uncertainty level S  was set to 0.1 which corresponds to a coefficient of 

variation of the first natural frequency of the entire structure equal to 3%. Then, with a 

uniform pressure loading, shown in yellow in Fig. 4.5(a) is the uncertainty band 

corresponding to the 5th and 95th percentile of the transverse displacement of the 

periphery as determined from the 300 samples of the response. The response is clearly 

localized as the one from the mean model. For comparison, shown in Fig. 4.5(b) is the 

uncertainty band generated by the approach of (Song and Mignolet 2018). While a one to 

one comparison of the bands cannot be made as the methods involve different 

parameters, it is clear that the predictions are similar in all qualitative aspects. 
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Figure 4.4 . The Annulus and Its Finite Element Model, Loading Domain Highlighted in 

Yellow. 

  

Figure 4.5. Static Transverse Displacement at the Periphery of the Mean Annulus (in 

Red) and 5th-95th Percentile Uncertainty Band from (a) the Above Uncertain Finite 

Element Model, (b) (Song and Mignolet 2018). 

Next the loading was changed to temperature loading only, i.e., with str =F   on all 

elements. The correlation length was also set to 60 degree and S  was set to 0.1. The 

matrix TSH  was set to zero so that the uncertainty is on the structural only terms. Then, 

shown in Fig. 4.6 are the 5th-95th percentile uncertainty bands of the displacements at the 
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edge obtained from 300 realizations. Note that the band in the transverse direction 

includes both positive and negative values with an average approximately zero which is 

the mean model result. Thus, the introduction of uncertainty has led to transverse 

displacements not existing in the mean model, i.e., epistemic uncertainty has indeed been 

introduced. 

 

 

Figure 4.6 Displacements (in m) at the Periphery of the Mean Annulus (in Red) and 

5th-95th Percentile Uncertainty Band in (a) Transverse, (b) Radial and (c) Tangential 

Direction. Uncertainty on Stiffness. 

It was next of interest to introduce uncertainty on the thermal force part only. This is 
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uncertainty from the TSH  block only. The elements of this matrix were simulated as in 

Eqs (4.42) and (4.44) with the same correlation length of 60 degree of the internal radius 

and an uncertainty level T =0.1. Then, shown in Fig. 4.7 are the 5th-95th percentile 

uncertainty band in the transverse, radial, and tangential directions at the edge of the 

plates obtained from 300 realizations. Note here that the structural symmetry of the flat 

annulus has not been modified since there is no structural uncertainty and thus the 

transverse displacements are zero as for the mean model. 

 

 

Figure 4.7 Displacements (in m) at the Periphery of the Mean Annulus (in Red) and 

5th-95th Percentile Uncertainty Band in (a) Transverse, (b) Radial and (c) Tangential 

Direction. Uncertainty on Thermal Force Only. 
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Finally, shown in Fig. 4.8 are the uncertainty bands obtained when combining both 

types of uncertainties. As expected, these bands are then wider than they are when either 

set of uncertainty alone is present but only marginally so. 

 

 

Figure 4.8 Displacements (in m) at the Periphery of the Mean Annulus (in Red) and 

5th-95th Percentile Uncertainty Band in (a) Transverse, (b) Radial and (c) Tangential 

Direction. Uncertainty on Both Stiffness and Thermal Force. 

4.6. Summary 

The focus of this investigation was on the development and first validation of a novel 
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stiffness matrix and thermal force vector are simulated jointly to respect the dependence 

of both of them on the elasticity properties of the structure. Following the maximum 

entropy approach, the method produces samples of these elemental matrices and vectors 

given their mean and two sets of parameters that describe (i) the overall level of 

uncertainty (structural and thermal separately) and (ii) the correlation of the structural and 

coefficient of thermal expansion properties, separately, across the structure. Owing to the 

use of the maximum entropy approach, the proposed modeling strategy accounts for 

aleatoric and some epistemic uncertainty of both types of material properties. The ease of 

application of the method was demonstrated on a first example. 
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5. NONLINEAR REDUCED ROMS: FORMULATION AND APPLICATIONS 

5.1. Introduction 

Nonlinear reduced order models are built by first choosing a sufficient number of 

modes to form the basis functions. These chosen modes must be able to capture the 

response of the structure over its entire trajectory and up to a required accuracy. Even 

under white noise dynamic excitations, but especially in static conditions, this mode 

selection strategy often overstates the number of modes that are really active/play an 

important role in the response prediction. The penalty for having a basis too large is an 

increase in computational cost in (i) identifying the ROM and (ii) computing the solution, 

especially in multi-physics problems.  

The approach investigated here to address this issue is a data-driven reduction of the 

ROM into a reduced ROM (RROM). This reduction would proceed as follows. Firstly, 

the (full) ROM would be used to compute the response for an appropriate number of 

loading conditions or time steps, e.g., these could be the first 10 to 15 of a series of 

similar static loadings in a static problem or the first 10 to 15 time steps in a transient 

problem. This data would then be used, in a proper orthogonal decomposition (POD) 

format, to rotate the ROM basis into a set of modes that represent the response in the 

most compact form. These modes would be those, and only those, that are kept for the 

RROM. 

It is anticipated that the RROM would be used to compute the response for the next 

series of loading conditions/time steps, then a check would take place to assess whether 

the RROM is still valid. If yes, then continue march the RROM. If not, then the full ROM 

would be restarted for another number of loading conditions/time steps with the previous 
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RROM results as initial conditions. This new full ROM data then can be used for 

determining new RROM. 

The ROM reduction strategy would be particularly helpful when considering 

uncertainty given (i) the repeated computations that are required in a Monte-Carlo 

simulation, and (ii) that the ROM reduction can actually be modeled as epistemic 

uncertainty and thus accounted in the computations. 

5.2. Reduced ROM 

5.2.1.  Basis Reduction 

Let the snapshots of the full ROM generalized coordinates iq , i = 1, ..., M , at each 

load level s or time step s be stacked into a vector sq  and let the matrix Q be formed as 

Q = [𝒒1, 𝒒2, … , 𝒒𝑁], where N is the number of snapshots selected. Next, a POD analysis 

is performed on the matrix Q and the first several eigenvectors iu  of the matrix T
QQ  

are used to define the new basis. Denoting the eigenvector matrix U = [𝒖1, 𝒖2, … , 𝒖𝑀], 

where M is the number of POD eigenvectors retained, the new basis can be expressed as 

r f= U                             (5.1) 

where 𝚿f = [𝚿(1), 𝚿(2), … ,𝚿(M̅)] includes the modes of the full ROM and 𝚿r =

[𝚿r
(1), 𝚿r

(2), … ,𝚿r
(M)

] contains the modes in the reduced ROM. 

A practical detail of the above approach relates to the dual modes whose generalized 

coordinates are typically much smaller than those of the linear modes. Yet, it is known 

that their contributions to the response is fundamental. Moreover, it was desired to 

maintain one part of the basis as originating from the low frequency linear modes of the 
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structure. This situation has led to the following two-step application of the above 

strategy.  

The generalized coordinates associated with the transverse/linear modes are first 

considered leading to a snapshot matrix ( )t
Q , where t denotes transverse part. The size 

of this matrix is tn N , where tn  is the number of transverse modes in the full ROM. 

Once the corresponding eigenvector matrix, denoted as 
( )t

U , has been determined, the 

residuals of the projection of the transverse response of the full ROM on the reduced 

ROM basis can be evaluated at each snapshot as 

( ) ( ) ( )res t t
= −Q Q U x                      (5.2) 

where x is the best fit of the equation ( ) ( )t t
=U x Q . 

In the second step, these above residuals are grouped with the dual part of the 

selected snapshots to form the matrix 

( )

( )

res

d

 
 =
 






Q
Q

Q

                         (5.3) 

where ( )d
Q  is the dual part of Q, and has dimension ( )tM n N−  . Then, the dual part 

of the reduced ROM basis is achieved by performing the POD analysis on Q , leading to 

the transformation matrix U . Assembling the two steps leads to the combined 

transformation matrix 

( ) ( )

( )0 d

tt 
 =
  

UU
U

U

 where 

( )

( )d

t 
  =
  

U
U

U

                 (5.4) 

to be used in Eq. 5.1. 
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When the structure is subjected to the effects of temperature, in addition to 

mechanical/aerodynamic loading, the structural basis is increased by a series of “thermal 

enrichments”, i.e., basis functions necessary to capture the displacements induced by the 

temperature which often are different from those resulting from mechanical/aerodynamic 

loads. When such enrichments are present, their reduction is done separately of the linear 

and duals modes as a third POD step leading to a transformation matrix 
( )e

U  which can 

be combined with those from the transverse and dual modes as 

( ) ( )

( )

( )

t

d

e

t 
 
 =
 
 
  

U U

U U

U



 

 

.                     (5.5) 

Finally, the reduction of the thermal basis is also achieved, as above but in a single 

step leading to a separate transformation matrix V. 

5.2.2.  Evaluation of ROM Coefficients 

Having established the basis of the RROM, it remains to determine its stiffness 

coefficients. This identification could be performed as for the full ROM, see (Mignolet et 

al 2013, Perez et al 2014, Perez et al 2011, Matney et al 2011), but this effort can be 

significantly reduced by recognizing that the dependence of the governing equations on 

the generalized coordinates (structural and thermal) is polynomial. Accordingly, it is 

possible to map directly the RROM coefficients from their ROM counterparts. For 

instance: 

( ) ( )1 1
jbij iaab

K K U U=                        (5.6) 
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( ) ( )2 2
ia jb lcabc ijl

K K U U U=                      (5.7) 

( ) ( )3 3
ia jb lc pdd ija pbc l

K K U U U U=                   (5.8) 

( ) ( )th th
ia jb lcabc ijl

K K U U V=                      (5.9) 

where the coefficients with overbar are those of the full ROM and those without refer to 

the RROM. 

5.3. Validation Example 

A first assessment of the RROM methodology was conducted on the panel with 

stiffeners in Section 3.6, see Fig. 3.12, which was originally considered in (Culler and 

McNamara 2011) and is subjected to a trajectory spanning Mach 2 to Mach 12 in 300 

seconds with fully coupled structural/thermal/aerodynamic computations. From the 

summary presented in Section 3.6, recalled that the coupled solution procedure between 

the thermal and structural models are staggered and time-marched with a step of 0.5s. 

The thermal solution at one time step is obtained first, from the thermal and structural 

fields at the previous time step. Then, the structural problem is solved using the current 

temperature distribution. 

As shown in Section 3.6, a structural-thermal ROM of this panel providing a close 

match of finite element results was developed in (Matney et al 2015) and shown in Fig. 

3.13 is a comparison of the maximum transverse displacement and the temperature of the 

center of the panel predicted by the finite element model (Culler and McNamara 2011) 

and by the ROM (Matney et al 2015). In this ROM, the structural model included 44 

structural basis functions, split into linear modes, dual modes, and thermal enrichments, 

and 42 thermal basis functions. The construction of the structural basis followed a series 
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of steps that have been practiced on a variety of structural models and thus was 

considered to be close to optimal. The construction of the thermal basis however was 

more challenging owing to the potential for the temperature distribution to exhibit local 

effects which are difficult to predict a priori in this fully coupled problem. It is thus 

expected that the thermal basis could likely be reduced. A simple metric used below to 

evaluate the computational advantage of the reduction in bases is the number of 

coefficients in the ROM. Since the coefficient of thermal expansion depends linearly on 

temperature while the tensor or elasticity does not, the number of structural ROM 

coefficients is of order 4 2 2/ 6 / 4M M+   which is much larger than those present in 

the thermal ROM, i.e., order of 2 / 2  coefficients. Thus, only the reduction in 

structural ROM coefficients is considered below. Clearly, the evaluation of the restoring 

force from the linear, quadratic, and cubic stiffness terms is not the only computational 

cost involved in marching the ROM but it may be expected to be the dominant one for M 

large enough as the solution of linear equations, involved in any marching/solution 

procedure, would only involve order of 
3M  or 3  operations. 

5.3.1. Effects of Size of RROMs 

Given its complexity, the size of the bases, and the presence of two different ROMs, 

structural and thermal, this problem is an excellent test case to validate the Reduced 

ROM concept. It was first desired to assess whether a reduction of the bases could 

actually be achieved. To this end, a somewhat typical span of the full ROM data was 

selected, i.e., between 76 and 100 seconds of the mission. During that time, the panel 

exhibits a rapid increase in the transverse response. The corresponding ROM data, i.e., 
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the 50 snapshots of displacements and temperature distributions was then treated by the 

3-step POD approach described above and led to several sets of M structural modes and  

thermal ones, depending on the number of eigenvectors retained in the POD analysis.  

Each of these RROMs was then identified, i.e., a complete identification was performed 

here vs. using Eqs. (5.6) - (5.9) to avoid possible loss of accuracy issues that would have 

clouded the discussion of the results presented below. Finally, each RROM was marched 

in the same manner as the full ROM and its structural and thermal predictions were then 

compared to those of the full ROM. The RROMs were considered accurate as long as 

largest relative norm of the differences in thermal and structural predictions (taken here 

as the ROM generalized coordinates) reached 2.5%. 

The length of time for which each of these RROM was found to be accurate and the 

corresponding reduction in the number of coefficients as compared to the full ROM are 

presented in Table 5.1. Note in this table that the structural ROM order is split between 

number of linear modes, duals, and thermal enrichments, respectively. Moreover, the 

reduction in the number of structural coefficients is shown as a percentage of the full 

number corresponding to the 44 structural modes and 42 thermal ones. 

The results of Table 5.1 clearly demonstrate the potential computational benefit of 

using RROMs, the 30 structural and 10 thermal modes RROM would have nearly 90% 

less coefficients, so the RROM would run approximately 10 times faster than the ROM. 

Yet, it would provide an accurate prediction of the response for a significant length of 

time (54 seconds, approximately 1/6 of the mission length). As the number of structural 

and thermal modes is decreased, the computational benefit is further increased but the 

length of time for which the RROM is valid decreases. This finding likely reflects the 
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evolving nature of the structural deformations and temperature distribution over the 

mission profile: keeping a small number of modes only allows the capture of the physics 

in the close neighborhood of where the full ROM data was chosen. It is interesting to 

note that increasing the order of one of the two physical models, i.e., structural and 

thermal, does not necessarily increase the span of validity of the RROM, as seen for the 

two order 15 structural RROM: increasing the number of thermal modes from 5 to 7 does 

not change this span. It is most likely because matching the structural deformation is the 

most significant weakness of these RROMs. When the structural order is increased to 30, 

the increase of the number of thermal modes from 7 to 10 does lead to an increase span of 

validity, likely because the thermal RROM is now the least accurate. 

Table 5.1. RROM Validity and Cost Reduction vs. Order Selected. ROM Data from 

76-100s. 

Structural 

RROM orders 

Thermal 

RROM order 

Coeff. Reduction (%) Valid 

for (s) from M from  both 

5+5+5 5 92.7 56.9 99.3 13.5 

5+5+5 7 92.7 56.1 99.2 13.5 

6+6+6 6 89.2 56.6 98.6 23.5 

7+7+7 7 84.7 56.1 97.4 24.5 

8+8+8 8 79.1 55.7 95.6 21 

9+9+9 9 72.3 55.1 93.0 26.5 

10+10+10 7 64.0 56.1 90.1 42 

10+10+10 10 64.0 54.5 89.3 54 

 

5.3.2.  Effects of Length of Full ROM Data Used 

The next step of the RROM assessment was focused on understanding the effects of 

the span of full ROM data selected for the POD process. This was done by selecting 

various length of full ROM data, one starting at 76s and another at the beginning (0s) and 

constructing RROMs of fixed orders, then evaluating for how long these RROMs were 
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valid. The structural RROM orders were selected as 5+5+5 for the data starting at the 

beginning and 10+10+10 from 76s onward. In both cases, 7 thermal modes were included 

in the RROM. As seen in Table 5.2, these orders lead to reductions of the number of 

structural coefficients by approximately 99% and 90%, respectively. 

Table 5.2. RROM Validity and Cost Reduction vs. Span of Full ROM Data. 

Data 

Span (s) 

Structural 

RROM order 

Thermal 

RROM order 

Coeff. Reduction Valid 

for (s) from M from  both 

0.5-7 5+5+5 7 92.7 56.1 99.2 42 

0.5-13 5+5+5 7 92.7 56.1 99.2 40 

0.5-20 5+5+5 7 92.7 56.1 99.2 53 

0.5-25 5+5+5 7 92.7 56.1 99.2 65 

0.5-35 5+5+5 7 92.7 56.1 99.2 66 

76-88 10+10+10 7 64.0 56.1 90.1 26 

76-95 10+10+10 7 64.0 56.1 90.1 28 

76-100 10+10+10 7 64.0 56.1 90.1 42 

76-110 10+10+10 7 64.0 56.1 90.1 58 

 

The results of Table 5.2 confirm what might have been expected, i.e., that using a 

larger number of snapshots leads to a basis that better captures the physics and thus is 

valid for longer times but the benefit tapers off as the data length increases. For example, 

25 seconds of data at the beginning of the mission permits the prediction for an ensuing 

65 seconds but adding 10 more seconds of data (20 more snapshots) only lead to 1 more 

second of RROM validity. A similar situation can also be seen for the data started at 76s: 

increasing the data span by 5 seconds, from 20s to 25s, leads to an increase of the 

accurate prediction range by 14s but increasing the data span by an extra 10s (i.e., 35s 

total) only increases the prediction range by 16s. 

The data of Table 5.2 also indicates that the range of validity of a RROM is not only 

a function of its orders and data length but also of the evolving physics. Near the 
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beginning of the mission, the displacements and temperature change slowly as seen in Fig. 

3.13 and a low orders RROM may be valid for a “long time”, e.g., for 65s using 25s of 

data. However, around the 76s time, that same length of data and a RROM with structural 

orders doubled is only valid for 42s. This shorter prediction time reflects the much faster 

changes in structural deformations and temperatures taking place. 

5.4. Development of Adaptive RROMs For Efficiency and Accuracy 

The above discussion has demonstrated the strong potential of RROMs to achieve 

computational effort reductions, but it also shown that the RROMs may not be applicable 

to the entire range of loading conditions desired and/or the entire mission trajectory. 

Accordingly, it is proposed here to proceed with a succession of full ROM/RROM 

computations where the RROMs are adapted to previously determined full ROM data as 

follows, see Fig. 5.1 for flowchart. 

(i) March the full ROM for a small span of time/loading conditions. 

(ii) Based on these responses of the full ROM, construct a RROM by the multi step 

POD process. 

(iii) Start marching the RROM with initial conditions corresponding to the full 

ROM end point projected on the RROM basis.  

(iv) Periodically use the response of the RROM as initial estimate to run the full 

ROM to check the validity of the RROM and continue as long as the RROM 

predictions are accurate. 

(v) If/when the RROM predictions are no longer accurate, i.e., the discrepancy 

between the ROM and RROM predictions in (iv) is too large, march the full 

ROM for a short time starting from a RROM estimate of the ROM solution. 
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Then, construct a new RROM based on the response of the full ROM in this 

period. Start marching this RROM. 

(vi) Repeat (iv) and (v) until the end of the mission or the set of loading cases to be 

considered is exhausted. 

 

Figure 5.1. Flowchart of the RROM Construction and Adaptation Processes. 

The above discussion has demonstrated the worth of RROMs to enhance the 

computational efficiency of large ROMs and thus warrants a deeper analysis of some of 

the key steps of the approach. Specifically, the next subsections will address the 

important questions of: 

(i) restarting the ROM from an available RROM solution, 

(ii) determining the time at which a RROM is no longer accurate enough and doing 

so without the knowledge of the full ROM solution, 

(iii) selecting the number of POD eigenvectors in the RROM, and 

(iv) selecting the length of data of full ROM for the construction of RROMs. 

5.4.1. Restarting the full ROM 

In seeking to implement the above procedure to the structural/thermal/aerodynamic 

response of the hypersonic panel of Fig. 3.12, it was first recognized that using the 

RROM solution to deduce the corresponding full ROM solution (not an estimate of it) is 

not possible in the given format. The challenge is that the thermal and structural 
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computations are staggered and thus there is no iteration taking place over the thermal 

and structural solution together to obtain the joint solution at one time. Thus, to obtain 

the full ROM thermal solution at one particular time step, one would require the full 

ROM thermal and structural solutions at the previous time step. Since neither is available, 

there does not appear a way to exactly get the full ROM thermal solution without 

marching from time t = 0. The same problem is encountered when trying to obtain the 

full ROM structural solution at one time step as the full ROM temperature distribution at 

that time is not known. 

The best palliative is then to select the temperature and displacements at the time 

step just before restart as originating exactly from the RROM. The staggered marching 

then proceeds from this information and the ROM temperature field is obtained at the 

next step using the ROM deformations (which affect the temperature through the change 

in aerodynamics and thus in aero heating). The marching then continues leading to ROM 

based displacements and temperatures referred to here as the “approximate ROM 

solution”. While this solution does not match the full ROM solution, which is marched 

since time t = 0, it is expected that it would converge back to it as the time after restart 

increases as long as the full ROM is stable in the neighborhood of these solutions. This is 

the case here as seen on Fig. 5.2 which shows the relative norm errors between the 

structural and thermal solutions obtained by the approximate ROM restarted at 76s, 156s, 

and 223s from 3 different RROMs (see below) and those obtained from the full ROM. It 

is seen that the error is indeed generally decreasing so that the approximate ROM 

solutions do indeed converge back to the full one. 
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Figure 5.2. Relative Norm Errors Between 3 Approximate ROMs and the Full ROM. 

(a) Structural Error. (b) Thermal Error. 

This convergence and the small levels of errors seen in Fig. 5.2 suggest that the 

approximate ROM may reflect well enough the physics in the problem to serve as 

appropriate data for the rotation/downsizing of the basis from ROM to RROM. To 

confirm this potential, the above adaptation process, see Fig. 5.1, was implemented with 

4 RROMs each based on 25 seconds of full ROM (for the 1st RROM) or approximate 

ROM (for the other 3). The details of these RROMs are presented in Table 5.3 and shown 

in Fig. 5.3 are the predictions of typical structural deflection and temperature time 

histories obtained by the adaptive process and by the full ROM. Clearly, the matching is 

very good to excellent and these RROM provide a significant decrease in the 

computation effort: averaging the reductions in coefficients weighted by time span of 

validity yields an overall reduction by 93.6% over the 200s of RROM computations! If 

one factors in the full ROM computations (100s), the reduction is still by 62.4%, even 

though the adaptation has not been optimized. 
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Table 5.3. Adaptive RROM Validity and Cost Reduction. 

Data 

Span (s) 

Structural 

ROM orders 

Thermal 

ROM order 

Coeff. Reduction Valid 

from (s) 

Valid 

till (s) from M from  both 

1-25 5+5+5 5 92.7 56.9 99.3 26 75 

76-100 10+10+10 10 64.0 54.5 89.3 101 155 

156-180 7+7+7 7 84.7 56.1 97.4 181 222 

223-247 9+12+9 9 64.0 55.1 89.6 248 300 

 

 

 

Figure 5.3. Predictions of (a) the Maximum Transverse Displacement and (b) the 

Temperature of the Panel Center by the Full ROM and the Reduced ROMs 

(b) 

(a) 
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5.4.2.  Determining if the RROM is no longer valid 

Since the above computations were only a first assessment of the adaptive RROM 

process, the assessment of the validity of the RROMs and the determination of the stop 

times of Table 5.3 was performed in comparison to the (available) full ROM predictions 

with the relative error, referred to as “full error”, limited to 2.5% as discussed in 

connection with Tables 5.1 and 5.2. This is not appropriate for future applications 

because the full ROM predictions would in general not be available. Moreover, as 

discussed above, the staggering of the computations prevents obtaining them from the 

RROM solutions. However, based on the above discussion one can introduce two 

alternate error measures: 

structural error: error between the structural RROM and approximate ROM 

predictions at a given time t with the temperature obtained from the RROM 

thermal error: error between the thermal RROM and approximate ROM predictions 

at a given time t with the deformations obtained from the RROM. 

Note that both of these errors are computed independently at each time t, there is no 

marching as is done when simulating data according to the approximate ROM. 

Shown in Fig. 5.4 are the structural and thermal errors each corresponding to a 

particular RROM segment together with the corresponding full ROM errors. While the 

magnitudes of these two types of error are typically different, their behaviors are very 

similar, except for the oscillatory behavior of the thermal error. Most notably, both 

structural/thermal errors and their full counterparts grow steadily at approximately the 

same rate. This property enables the use of the thermal and structural errors as indicators 

of the accuracy of the RROM solutions to be used in future applications. 
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   (a)                                 (b) 

Figure 5.4. Comparisons of the Structural and Thermal Errors to the Full Errors for 

Selected RROMs. 

5.4.3.  Selecting the length of data of full ROM and the number of POD 

eigenvectors 

As observed from Section 5.3, there are two major factors affecting the length of 

time a RROM is valid. One of them is the number of solution snapshots of the full (or 

approximate as its best surrogate, see Section 5.4.1) ROM used to construct the reduced 

basis, the other is the number of modes selected into this basis. In the data of Table 5.3, 

these two factors were chosen rather arbitrarily to obtain some perspective on their 

influence. To achieve maximum computational efficiency, a formal strategy of these 

parameters needs to be devised. Clearly, with more full ROM snapshots the RROM is 

likely to have longer valid time, see Table 5.2, but this also implies a longer, 

computationally more expensive full ROM run. Similarly, with a larger basis the RROM 

would have longer valid time but would be costlier, see Table 5.1. 

These trade-offs must be addressed and it is proposed here is to rely on an “average 

cost” for each full ROM – RROM period defined as 
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( ) ( )/avg F F R R F RC C L C L L L= + +                 (5.10) 

where FL  and RL  are the length of time the full ROM and RROM are marched, and 

FC  and RC  are the cost per time step of the full ROM and RROM which can each be 

determined from 

4 2 2/ 6 / 4C M M= +                      (5.11) 

where M is the number of structural modes and μ is the number of thermal modes of 

either full ROM or RROM. 

It is proposed here that the numbers of POD eigenvectors retained in the RROM and 

the length of full ROM data FL  be selected to minimize the average cost avgC , Eq. 

(5.10) assuming that such a minimum occurs. To test this strategy and confirm the 

existence of a minimum, RROMs of different basis sizes were constructed using different 

approximate ROM data lengths from the time of 76s onward. The average cost is given in 

Table 5.4 for different RROM basis sizes for 25s of approximate ROM data. Moreover, 

shown in Table 5.5 are the average costs for various approximate ROM data lengths 

keeping the RROM basis sizes constant. Similar data is presented in Tables 5.6 and 5.7 

using full ROM data starting from 1s onward. It appears from these tables that a 

minimum does indeed take place, and corresponds to the 10+10+10 structural-10 thermal 

modes RROM built from 25s of approximate ROM data for the 76s onward period while 

for the 1s onward period it is for the 7+7+7 structural-7 thermal modes RROM built from 

15s of full ROM data. These numbers of modes and lengths of ROM data are consistent 

with the intuitive selection carried out earlier. 
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Table 5.4. Average Cost of Full ROM – RROM Period Starting from 76s Onward, 25s of 

Approximate ROM Data, Varying RROM Size. 

RROM size Valid for (s) Average cost 

5+5+5+5 13.5 9.6349E+05 

6+6+6+6 23.5 7.7198E+05 

7+7+7+7 24.5 7.6541E+05 

8+8+8+8 21 8.3296E+05 

9+9+9+9 26.5 7.7087E+05 

10+10+10+10 54 5.7552E+05 

11+11+11+11 62 5.8918E+05 

12+12+12+12 68.5 6.3458E+05 

13+13+12+13 68.5 6.9461E+05 

14+14+12+14 73.5 7.5212E+05 

15+15+12+15 74 8.3517E+05 

 

Table 5.5. Average Cost of Full ROM – RROM Period Starting from 76s Onward, 

Varying Data Length Used 

RROM size 11+11+11+11 10+10+10+10 9+9+9+9 

Data length 

(s) 

Valid 

for (s) 

Average 

cost 

Valid 

for (s) 

Average 

cost 

Valid 

for (s) 

Average 

cost 

15 35.5 6.0125E+05 33.5 5.6604E+05 25.5 6.1264E+05 

20 31.5 7.1520E+05 31 6.7552E+05 27.5 6.8233E+05 

25 62 5.8918E+05 54 5.7552E+05 26.5 7.7087E+05 

30 64 6.2885E+05 56 6.1830E+05 54 5.9445E+05 

 

Table 5.6. Average Cost of Full ROM – RROM Period Starting from 1s Onward, 25s of 

Full ROM Data, Varying RROM Size. 

RROM size Valid for (s) Average cost 

3+3+3+3 18 8.6010E+05 

4+4+4+4 42.5 5.5012E+05 

5+5+5+5 49.5 5.0267E+05 

6+6+6+6 65 4.2542E+05 

7+7+7+7 65 4.3799E+05 

8+8+8+8 67 4.4874E+05 

9+9+9+9 67.5 4.7499E+05 
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Table 5.7. Average Costs of Full ROM – RROM Period Starting from 1s Onward, 

Varying Data Length Used 

RROM size 5+5+5+5 6+6+6+6 7+7+7+7 

Data length 

(s) 

Valid 

for (s) 

Average 

cost 

Valid 

for (s) 

Average 

cost 

Valid 

for (s) 

Average 

cost 

15 27.5 5.2818E+5 29.5 5.1189E+5 57.5 3.3588E+05 

20 42 4.8359E+5 61.5 3.7821E+5 68.5 3.6338E+05 

25 49.5 5.0267E+5 65 4.2542E+5 65 4.3799E+05 

30 66 4.6879E+5 66 4.7605E+5 64 4.9760E+05 

 

These observations indicate that beginning at a certain point in the trajectory, there 

exists an optimum combination of length of full ROM data and size of RROM that yields 

the lowest cost. A selection strategy of these optimum parameters can be performed as 

follows: 

(i) march the full ROM or approximate ROM for a few time steps (7 – 10 seconds); 

(ii) with Eqs. (5.1) – (5.5), build RROM basis functions of different sizes, determine 

the valid time of these RROMs and their average cost; 

(iii) march the full ROM or approximate ROM for a little longer, e.g., 1 second; 

(iv) with this longer data, build RROM basis functions of different sizes, determine 

the valid time of these RROMs and their average cost; 

(v) compare (iv) with (ii), if the lowest average cost of (iv) is smaller than (ii), then 

iterate (iii) - (iv) and compare the result of the last two iterations, if the lowest 

average cost of last iteration is equal or larger than previous iteration, then 

(vi) select the RROM with lowest cost in the current iteration to continue marching. 

The key step in the above strategy is (ii) which would lead to a large cost if carried 

out as stated. What would be desired instead would be to estimate this time without 

running the RROM for the entire time span. It is suggested here to use, and more 
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specifically model, the representation error with respect to the response of the full 

ROM/approximate ROM to establish an estimator of the valid time. 

Shown in Fig. 5.5 is the time history of the representation error in the transverse 

displacements of a 10 linear modes basis using the approximate ROM data in the period 

76s – 100s, plotted after the end of this period. This curve was first approximated by a 

6th order autoregressive model with quadratic, linear and constant exogenous terms using 

the first 15s of data, and the matching is very good until the required level, i.e., up to 

155s which corresponds to 2.5% error in displacement (see the example in Section 5.4.1). 

Plotted in Fig. 5.6 are the representation error and its corresponding approximation 

for the 8 linear modes basis RROM. Using this approximation to estimate the RROM 

valid time would lead to a 1 – 2 seconds error and in turn to a 1% – 2% of difference in 

average cost which is not significant. However, the quality of the approximation is not 

guaranteed in other cases, e.g., for the thermal representation error with 10 thermal 

modes, see Fig. 5.7. While the approximation obtained using the first 15s of data is not 

good, using the entire 55s of data would lead to a good fit. In fact, using simply a 

quadratic polynomial also gives good fit in most cases using the entire 55s of data. These 

findings suggest that: 

(1) the errors grow closely to quadratically (or as a quadratic polynomial), especially 

after a "long" time, however, at the beginning there is a transient present, 

(2) because of the transient, the modeling of the error using a quadratic polynomial is 

typically not very accurate if using only a short length of data at the beginning, 
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(3) the modeling of the transient using exponential terms, relying on an 

autoregressive modeling, often improves the matching but not always or not always 

significantly, 

(4) the use of short data, e.g., a few seconds, at the beginning as a predictor of the 

curves would require the modeling of the transient in an appropriate functional form. 

 

Figure 5.5. Linear Part Representation Error of a 10 Linear Mode Basis Built Using 

Approximate RROM Data from 76s – 100s, and the Curve Fit with 6th Order 

Autoregressive Model with Quadratic Terms. 
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Figure 5.6. Linear Part Representation Error of an 8 Linear Mode Basis Built Using 

Approximate RROM Data from 76s – 100s, and the Curve Fit with 6th Order 

Autoregressive Model with Quadratic Terms. 

 

Figure 5.7. Thermal Representation Error of an 10 Thermal Mode Basis Built Using 

Approximate RROM Data from 76s – 100s; the Curve Fit with 6th Order Autoregressive 

Model with Quadratic Terms using 15s of data; and the Curve fit with Quadratic 

Polynomial Only Using 55s of Data. 
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An alternative approach to estimate the number of POD eigenvectors (and length of 

ROM data) would be to analyze the behavior of the error for different number of modes 

(and length of ROM data) to assess the difference in rates of growth of the error. Such a 

comparison is shown in Fig. 5.8 for the linear representation error with different number 

of POD eigenvectors plotted only over a short period after the RROM start, i.e., from 

100s-110s. Seeking a model that has a "small" number of modes and a "slow" growth of 

the error would suggest the best choice is 8 linear modes in this case. A similar analysis 

for the dual representation error, see Fig. 5.9, suggests 10 dual modes as basis. These 

selections are close to the model built in Section 5.4.1, where a 10 linear, 10 dual, 10 

thermal enrichment and 10 thermal modes basis was chosen as the best after several trials 

using different mode numbers. Based on this limited analysis, it is believed that the 

comparative analysis of short term data can be successfully used to select good 

approximate values of the number of basis functions to be used in the RROM. 
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Figure 5.8. Growth of Linear Representation Error of Different Number of Modes. 

 

Figure 5.9. Growth of Dual Representation Error of Different Number of Modes. 
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6. SUMMARY 

This proposal focuses primarily on the modeling of uncertainty in coupled 

structural-thermal models of heated structures and on its propagation to the response and 

temperature distribution. This effort is carried out at the level of reduced order models 

and finite element elemental matrices of both structural response and heat conduction 

using the maximum entropy framework/nonparametric approach first proposed by (Soize 

2000). 

6.1. Uncertainty Modeling of Structures with Localized Behavior at ROM Level 

While the maximum entropy has been widely used and validated on many - mostly 

structural - problems, it had never been reported that its use leads to a globalization of the 

uncertain response when the mean model has a localized response. While this situation 

may be physically admissible, there are certainly situations in which one expects the 

uncertain response to be localized as well. This problem is especially relevant in the 

present context because heat conduction is prone to localization. Accordingly, an 

extension of the maximum entropy method was developed in Chapter 2 to address this 

issue. This Chapter also addressed the reverse problem of generating uncertain localized 

responses when the mean model response is global, as is observed in bladed disks due to 

mistuning. 

A study of the eigenvalues/eigenvectors of the stiffness matrix of structures 

exhibiting localized responses showed that either their lowest eigenvalues are densely 

populated or their modes are strongly localized to the domain of the excitation. These 

observations suggested that the part (the “local” component) of the ROM stiffness matrix 

associated with these eigenvalues/eigenvectors be modeled separately from the rest of the 
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stiffness matrix (the “global” component) to maintain the localization. The stochastic 

modeling of the local and global components of the ROM stiffness matrix was achieved 

differently but both on the basis of the maximum entropy concepts leading to a 

3-hyperparameter model. One of these hyperparameters, , controls the globalization 

of the uncertainty, another, , governs the level of uncertainty in the localized zone, 

and a third one, , controls the distortion of the response in the localized zone. This 

approach was successfully demonstrated on two structures: an annulus, which exhibits 

closely spaced eigenvalues of its stiffness matrix, and to a chain of oscillators for which 

the eigenvalues of the stiffness matrix are well separated but the eigenvectors are strongly 

localized. It was found that the hyperparameter  and its associated component of the 

stochastic model play a dominant role in the overall uncertainty of the response. 

The second part of Chapter 2 focused on structures, e.g., bladed disks, for which the 

mean model exhibits global mode shapes while those of the uncertain structures are 

strongly localized. This behavior is often recognized as originating from closely spaced 

natural frequencies and triggered by uncertainty in specific parts of the structures, e.g., of 

the blades in bladed disks, which is challenging to implement within global ROMs of the 

entire structure. To model these effects, the local component of the ROM stiffness matrix 

associated with its closely spaced eigenvalues was mapped back to the finite element 

domain where the uncertainty was introduced. The application of this approach to a 

bladed disk finite element model demonstrated that the localization can indeed be 

produced and that it primarily results from the hyperparameter  and its associated 

component of the stochastic model. 

G

1

L

1

L
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6.2. Thermal – Structural Uncertainty Modeling at ROM Level 

Having extended the nonparametric method, Chapter 3 returned to the main focus of 

this effort, i.e., the modeling and assessment of uncertainty on thermal and structural 

properties on the temperature and response of heated structures. This study was 

conducted directly on coupled thermal-structural reduced order models using maximum 

entropy concepts to randomize the associated matrices. Moreover, nonlinear geometric 

effects were included in the structural ROM. The resulting analysis is thus carried out 

very efficiently as compared to a similar effort involving a modeling of uncertainty at the 

finite element model level. 

The uncertainty on the conductance properties was considered first. Using a 

particular beam example, it was shown that the behavior of the temperature distribution 

may be strongly dependent on the boundary conditions, i.e., being localized near the 

applied flux or very global. Then, the simulation strategy chosen for the uncertain ROM 

conductance matrices is a recent extension of the nonparametric approach in which the 

local and global characters of the uncertainty on the temperature can be separately 

controlled. Accordingly, this approach is applicable to the various type of thermal 

boundary conditions. This uncertainty on the thermal properties was propagated to the 

nonlinear structural response by imposing the random temperature distributions on the 

panel. The results demonstrate a level of variability of the response that is similar to that 

of the temperature distributions. 

The uncertainties on the structural, i.e., structural and thermal-structural coupling 

(thermal expansion) properties was considered next. It was shown that these uncertainties 

may indeed be modeled directly at the ROM level and both appear through the positive 
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definite matrix CK  of Eq. (3.18). Yet, the formulation permits the imposition of 

uncertainties on either property separately or together through their compounding in Eq. 

(3.29). Further, practical implementation details that appear when the mean ROM is 

identified from a black box finite element code were pointed out and resolved in a 

general setting. The application of these concepts to the beam example was finally 

performed and it was observed that a coefficient of variation around 0.6% of the key 

structural-thermal coupling terms led to a much increased variability, of the order of 

±2.5%, of the structural response near its peak demonstrating a significant sensitivity of 

this response with respect to the coefficient of thermal expansion uncertainty. A similar 

sensitivity was also observed with respect to the structural only parameters of the model. 

Application example was also made in a panel with stiffeners under hypersonic airflow, 

the uncertainty modeling also suggests a large sensitivity of the response at higher Mach 

number with respect to uncertainties in elasticity tensor and coefficient of thermal 

expansion. 

6.3. Maximum Entropy Structural-Thermal Uncertainty Modeling at the Finite 

Element Level 

The maximum entropy uncertainty modeling, when associated with reduced order 

model, is very efficient computationally. As stated in Chapter 1, it permits to introduce 

aleatoric as well as some epistemic uncertainty in to the model, which is a desirable 

feature in uncertainty modeling of hypersonic vehicles. However, as demonstrated in 

Chapter 2 for localized responses, the introduction of epistemic uncertainty at the global 

ROM level main affect features of the solution. While the strategy to maintain particular 

properties on the random ROM matrices is clear in the maximum entropy strategy, it is 
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much more difficult to maintain particular features of the ROM solution. As 

demonstrated in Chapter 2, this difficulty is rooted, at least in part, with the level i.e., 

global ROM, at which the epistemic uncertainty is introduced. 

Accordingly, a new approach was introduced and first validated in Chapter 4 in 

which uncertainty is introduced at the elemental level of finite element models of heated 

linear structures. A key feature of the approach is that the elemental stiffness matrix and 

thermal force vector are simulated jointly to respect the dependence of both of them on 

the elasticity properties of the structure. Following the maximum entropy approach, the 

method produces samples of these elemental matrices and vectors given their mean and 

two sets of parameters that describe (i) the overall level of uncertainty (structural and 

thermal separately) and (ii) the correlation of the structural and coefficient of thermal 

expansion properties, separately, across the structure. Owing to the use of the maximum 

entropy approach, the proposed modeling strategy accounts for aleatoric and some 

epistemic uncertainty of both types of material properties. The ease of application of the 

method was demonstrated on a first example. 

6.4. Nonlinear Reduced ROMs 

While the ROMs are much more efficient than full finite element model solutions, 

they can still be computationally expensive especially when facing 

aero-thermal-structural coupled problems. This cost is of course further heightened when 

propagating uncertainties using Monte-Carlo simulations. The focus of the proposed 

investigation in Chapter 5 was on the development and first validation of a data-driven 

reduction process of structural-thermal ROMs into “reduced ROMs” (RROMs) of much 

smaller but potentially evolving bases that lead to predictions of the structural response 
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and temperature with an accuracy similar to that of the original, “full”, ROMs at a much 

reduced computational cost. A dedicated process centered around Proper Orthogonal 

Decompositions (POD) was formulated to extract dominant eigenvectors of the various 

types of basis functions (linear and dual modes, thermal enrichments, and thermal basis 

functions). This process was validated on a representative hypersonic panel problem and 

significant reductions of the structural and thermal bases, especially of the latter, were 

observed. Moreover, these reductions in bases led to significant decreases of the number 

of coefficients in the model and correspondingly of the computational effort, between 62% 

and 94% reduction in computations. 

It was noted that a RROM may not be valid for the entire range of load 

level/trajectory thereby leading to the need to adapt the RROMs. The key questions of 

how large the RROM basis should be to optimize the RROM computational benefit and 

of the determination of the time/loading condition at which to adapt were discussed and 

strategies to resolve them proposed. The validation of this RROM methodology was 

critically and successfully performed on the coupled structural-thermal-aerodynamic 

response of a representative hypersonic panel. 
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APPENDIX A 

ROM COEFFICIENTS WHEN CTE IS LINEARLY DEPENDENT ON 

TEMPERATURE 
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When the coefficient of thermal expansion depends linearly on temperature, Eq. (1.7) 

is replaced by (Matney Et al 2011) 
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In these equations, it was assumed that 
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With Eq. (A.6), Eq. (3.14) becomes 
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     ( ) ( ) ( )I m p
Y T T=     with     I = (m-1)  + p.           (A.8) 

Since CE  is still positive for all mw , Iv , mz , and I , it is concluded by expanding 

that the matrix DK  defined as 
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is positive definite. In this matrix, 
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Moreover, the elements of the matrix 
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jklrjk lr

IJ

T T C T T d



  =  
   

tt
K X        (A.13) 

with I= (m-1)  + n  and  J= (p-1)  + s. 
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Having established the necessary positive definiteness property, it remains to discuss 

the potential to identify the coefficients from finite element runs. Since ( )th
ijlp

K  and 

( )th
ilp

F  multiply a product of two  values, it is not possible to identify them directly if p 

and l are different. Specifically, one has 

( ) ( ) ( )th th th
ijlp ijlp ijpl

K K K= +   and ( ) ( ) ( )th th th
ilp ilp ipl

F F F= +  p > l       (A.14) 

but 

( ) ( )th th
ijll ijll

K K=  and  ( ) ( )th th
ill ill

F F= .                (A.15) 

However, it is seen from Eq. (A.3) and (A.5) that the coefficients ( )th
ijlp

K  and ( )th
ilp

F  are 

symmetric with respect to their last two indices and thus from Eq. (A.14) 

( ) ( ) ( )1

2

th th th
ijlp ijpl ijlp

K K K= =   and ( ) ( ) ( )1

2

th th th
ilp ipl ilp

F F F= =  p > l     (A.16) 

The identification of the ( )
2

tt
K  and ( )

3

tt
K  has not been attempted since this effort was 

not successful for the simpler terms in 
( )tt

K . Accordingly, ( )
2

tt
K  and ( )

3

tt
K  together 

with 
( )tt

K  will be selected based on the maximization of the entropy leading, see 

Appendix C, to the corresponding block of the Cholesky decomposition being the 

identity matrix. 
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APPENDIX B 

PROCEDURE TO MAKE BK  POSITIVE DEFINITE 
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As stated in the main text, the process to render the matrix BK  positive definite 

was achieved in (Wang et al 2018) 

(a) without affecting the part of BK  that is positive definite, e.g., the linear 

stiffness matrix 
(1)

K , and 

(b) inducing the smallest changes possible to this matrix. 

The condition (a) has been achieved iteratively by constructing the biggest block of 

the original matrix BK  that is positive definite. This block is at least of size M since the 

linear stiffness matrix 
(1)

K  is positive definite. Accordingly, the top left block of BK  

of size M+1 is first considered and it is checked for positive definiteness (e.g., by 

constructing its Cholesky decomposition). If it is positive definite, the algorithm moves to 

the top left block of size M+2 and the process is repeated. 

Otherwise, a permutation of the rows and columns M+1 and M+2 is performed. If the 

top left block of size M+1 is now positive definite, the algorithm accepts the permutation 

and moves forward to the top left block of size M+2. On the contrary, the permutation 

between rows M+1 and M+2 is reversed and a permutation of rows M+1 and M+3 is 

performed followed by a positive definiteness check. This process concludes when no 

permutation of rows and columns achieves an increase in the size of the top left block of 

BK  which is positive definite. 

At that point, the matrix BK  has been transformed in a symmetric matrix BK

which has the form 

11 12

12 22
B T

 
=  

  

K K
K

K K
                        (B.1) 
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where 11K  is positive definite and of size pN , 12K  is of size pN  rN , and 22K  is 

of size rN  rN  where 2
r pN M M N= + − . 

The task (b) above then proceeds with replacing the matrix BK  by 

11 12 1

12 22 1 2

ˆ
B BT T

   
= + = +   

      

K K
K K

K K

 


 
             (B.2) 

where the matrix  will be selected to have the minimum Frobenius norm under the 

constraint that ˆ
BK  is at least positive semidefinite. The solution of this nonlinear 

optimization problem will be obtained iteratively through a sequence of linear 

optimization problems in which the positive definiteness constraint is enforced linearly. 

This process leads at iteration m to (Wang et al 2018) 

(1) (2)
1

0i

T

i i i
 

 = 
    , 

(2) (2)
2

0i

T

i i i
 

 = 
      (B.3),(B.4) 

where i  and i  are the eigenvalues of the matrix BK  at iteration m. Moreover, the 

eigenvectors are partitioned into vectors 
(1)
i  and 

(2)
i  of pN  and rN  components, 

respectively. That is, (1) (2)
T T

T
i i i

    =      
   . Finally, the coefficients i  are 

solutions of the linear system of equations 

( )2

0

2

r

ri ri ri r ia b b

 

+  = −  with (1) (1)
T

rs r sa  =
 
   and (2) (2)

T

rs r sb  =
 
    (B.5) 
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Solving the linear system of equations (B.5) yields the values of the coefficients i  

which can then be reintroduced in Eq. (B.3) and (B.4) to yield the unknown partitions 1  

and 2  of . 

The resulting matrix ˆ
BK  will then in general not be positive definite but the 

process can be repeated with a new BK = ˆ
BK  until a matrix ˆ

BK  positive 

definite/semidefinite is finally obtained. At that point, the rows/columns permutations 

performed to obtain the largest block positive definite are reversed leading to a matrix 

BK  which is positive definite and thus could serve as the basis for the structural 

uncertainty modeling. 

In principle, achieving the positive definiteness of the structural only component of 

the matrix CK  (i.e., BK ) is sufficient to enable the stochastic modeling process as 

defined in Eqs (3.19)-(3.22). Unfortunately, barely achieving positive definiteness or 

semidefiniteness induces ill conditioning in the propagation of the uncertainty to the 

structural-thermal matrices of the model. Indeed, if BK  is singular, then so is ( )3

SSL  

(see Eq. (3.21) and it is not possible to determine ( )2

TSL  which should satisfy (see Eq. 

(3.19) and (3.21)) 

        ( ) ( ) ( ) ( ) ( )2 1 3 2T T th
SS TS SS TS+ =L L L L K .     (B.6) 

If the matrix BK  is not singular but has very small eigenvalues, ( )2

TSL  will have 

large terms that depend strongly on these small eigenvalues. Considering further that they 



137 

probably result from the introduction of the matrix 1  and 2 , not from an actual 

property of the structure, it is concluded that the values of ( )2

TSL  will be large and 

unphysical. 

To remedy this situation, two options are proposed here. The first relies on splitingt 

the components of 
( )th

F  and 
( )th

K  consistently with the eigenvalues of the matrix 

BK . Specifically, assuming that permutations of rows and columns have been performed 

to transform this latter matrix into its form of Eq. (B.1), one has 

          

( )

11 12 1 13

(1) (2)
12 1 22 2 23

13 23

T T
C C C

T T

 +
 

= + + = + 
 
  

tt

K K K

K K K K K K

K K K



  .      (B.7) 

In this equation,  

( )

11 12 1 13

(1)
12 1 22 2

13

T T
C

T T

 +
 

= + + 
 
  

tt

K K K

K K K R

K R K



    and 
(2)

23

23

C

T T

 
 

= − 
 

−  

K K R

K R

  

 

 

   (B.8) 

where R is a matrix such that the Cholesky decomposition of (1)
CK  is of the form 

        

11
(1)

21 22

31

 
 

= 
 
 

K

L

L L L

L I

 





         (B.9) 

in which the presence of the identity matrix in the 33 block results from the discussion of 

Appendix C. Performing the product of Eq. (B.3) leads to 

 11 11 11
T =L L K ;  1

21 11 12 1
T −= +L L K  ; 1

31 11 13
T −=L L K ; and finally 21 31

T=R L L  (B.10) 

which fully defines (1)
KL  and enables the generation of the structural only partition of 

random CK  matrices. The structural-thermal component of these matrices will be 
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obtained by summing, as for the mean model above, the contributions obtained using the 

(1)
KL  decomposition in Eq. (3.20) and those obtained with the (2)

KL  matrix 

       
(2)

23
T T

 
 

= 
  − 

K

I

L I

K R I

 

 



        (B.11) 

where the introduction of the identity matrix along the diagonal is consistent with the 

maximum entropy discussion of Appendix C. 

A second option to address the near singularity of the matrix BK  is to recognize 

that the components of this matrix associated with the near zero eigenvalues do not 

introduce uncertainty in BK  within the nonparametric framework (see Wang et al 2018 

for related discussion). Accordingly, it is sufficient to randomize solely the block 11K  

of this matrix. In this perspective, the randomization of the matrix CK  can be reduced 

to that of 

 
( )

11 13

13

ˆ
C T

 
=  

  
tt

K K
K

K K
.                      (B.12) 

of which the Cholesky decomposition is taken as (see also section 3.3.3) 

       
(1) 11

31

 
= 

 
K

L
L

L I


.            (B.13) 

The above approach is appropriate when the effects of the block 23K  on the mean 

response of the structure is small. Otherwise, this matrix must also be randomized as 

suggested in Eq. (B.11) leading to  

( )2323 2 2 2
T

T S SK K Η Η Η= +                  (B.14) 
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where 2SH  is q  q and 2TH  is p  q when 23K  is p  q, 
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APPENDIX C 

MAXIMUM ENTROPY UNCERTAINTY MODLEING OF A MATRIX WITH 

UNKNOWN LOWER RIGHT CORNER 
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This appendix focuses on the determination of the deterministic matrix TTL  

yielding a maximum entropy of the random matrices CK  as defined by 

( ) ( )ln
C C

S p p d



= − K K Kk k k .                 (C.1) 

To this end, rewrite first Eq. (3.20) as 

T
C = K KK L G L  where T= K KG H H          (C.2),(C.3) 

and note that Eq. (C.2) can be viewed as a linear transformation of the random elements 

of the matrix G into the random components of CK . Accordingly, the joint probability 

density functions of the elements of these two matrices are related by the equation 

( ) ( ) ( )/ det
C

p p=K Gk g J   and  ( )detd d=k J g    (C.4),(C.5) 

where J is the Jacobian of the transformation. To evaluate this matrix from Eq. (C.2), it is 

convenient to rewrite it first stacking the columns of the matrix CK  below each other 

and proceeding similarly with the matrix G consistently with the vec operation. Then, one 

obtains 

( ) ( ) ( ) ( )T
C = = K K K Kvec K vec L G L L L vec G            (C.6) 

where  denotes the Kronecker product owing to the property 

( ) ( ) ( )T= vec ABC C A vec B                   (C.7) 

for any matrices A, B, and C with consistent dimensions. 

From Eq. (C.6), it is found that  
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= K KJ L L  so that ( ) ( )
2 2

,det det K ii

i

L= = KJ L   (C.8), (C.9) 

where the last equality holds owing to the triangular structure of KL . 

Next, combining Eq. (C.1), (C.4), and (C.5), it is found that 

( ) ( ) ( )ln / detS p p d



 = −  
G

K G Gg g J g             (C.10) 

where G  is the appropriate domain of variations of the matrices g. Since J is a 

constant matrix (independent of g), Eq. (C.10) reduces to 

( ) ( ) ( ) ( ) ( )ln det ln ln detS p d p p d S

 

   = − = +      
G G

K G G G GJ g g g g g J  

(C.11) 

where SG  is the entropy of the matrices G and is independent of KL . Recognizing 

that  

( ) ( ) ( ) ( ) ( )
2

2 1 3
det det det det det TTSS SS

     = =           
KJ L L L L     (C.12) 

it is concluded that maximizing the entropy SK  is achieved when the determinant of 

TTL  is as large as possible, unless some constraint is added to the problem. 

In this regard, consider the effect of TTL  on the simulated reduced order model 

coefficients. This matrix affects only the random coefficients )(th
ijl

K  and )(th
il

F  through 

the products ( )1
TT TSL H  and ( )2

TT TSL H , i.e., TTL  provides a scaling of the effects of 

TH which are all proportional to the standard deviation . So, increasing uniformly TTL  
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is equivalent to increasing . Accordingly, it is not possible to specify or identify both a 

uniform scaling of TTL  and the standard deviation . The approach chosen here is then 

to constraint the uniform scaling so that  can be a true parameter of the model. Thus, to 

the maximization of the entropy is now added the scaling constraint 

TT F
= L                         (C.13) 

The lower triangular matrix TTL  sought leads to a maximum value of its determinant 

while satisfying Eq. (C.13). Proceeding with a Lagrange multiplier, it is desired to find 

the elements ijL , i  j, of TTL  such that iiL > 0 and 

2

11

ii ij
i j ii

L L

 

= =

 
  = +  − 
 
 

                   (C.14) 

is maximum where  is the Lagrange multiplier. Differentiating Eq. (C.14) with respect to 

ijL  i  j demonstrates first that these components must all be zero and thus the matrix 

TTL  is diagonal. Then, differentiating Eq. (C.14) with respect to jjL  yields 

1,

2 0ii jj

i i j

L L



= 

+  =  or 
2

1

2 0ii jj

i

L L



=

+  =      (C.15),(C.16) 

where Eq. (C.16) results from (C.15) by multiplication by jjL  0. Since the product 

term in Eq. (C.16) is independent of jjL , it is concluded that 2
jjL  is independent of 

the index j and thus, from Eq. (C.13), 2
jjL = 1. Since the diagonal terms jjL  must be 
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positive, one obtains jjL = 1 for all j and thus the lower triangular matrix TTL  sought 

equals the identity matrix. 
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APPENDIX D 
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