Uncertainty Modeling for Nonlinear and Linear Heated Structures

by

Pengchao Song

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved April 2019 by the
Graduate Supervisory Committee:

Marc Mignolet, Chair
Spring Berman
Aditi Chattopadhyay
Hanging Jiang
Yongming Liu
Benjamin Smarslok

ARIZONA STATE UNIVERSITY

May 2019



ABSTRACT

This investigation focuses on the development of uncertainty modeling methods
applicable to both the structural and thermal models of heated structures as part of an
effort to enable the design under uncertainty of hypersonic vehicles. The maximum
entropy-based nonparametric stochastic modeling approach is used within the context of
coupled structural-thermal Reduced Order Models (ROMs). Not only does this strategy
allow for a computationally efficient generation of samples of the structural and thermal
responses but the maximum entropy approach allows to introduce both aleatoric and
some epistemic uncertainty into the system.

While the nonparametric approach has a long history of applications to structural
models, the present investigation was the first one to consider it for the heat conduction
problem. In this process, it was recognized that the nonparametric approach had to be
modified to maintain the localization of the temperature near the heat source, which was
successfully achieved.

The introduction of uncertainty in coupled structural-thermal ROMs of heated
structures was addressed next. It was first recognized that the structural stiffness
coefficients (linear, quadratic, and cubic) and the parameters quantifying the effects of
the temperature distribution on the structural response can be regrouped into a matrix that
is symmetric and positive definite. The nonparametric approach was then applied to this
matrix allowing the assessment of the effects of uncertainty on the resulting temperature
distributions and structural response.

The third part of this document focuses on introducing uncertainty using the
Maximum Entropy Method at the level of finite element by randomizing elemental



matrices, for instance, elemental stiffness, mass and conductance matrices. This approach
brings some epistemic uncertainty not present in the parametric approach (e.g., by
randomizing the elasticity tensor) while retaining more local character than the operation
in ROM level.

The last part of this document focuses on the development of “reduced ROMs”
(RROMs) which are reduced order models with small bases constructed in a data-driven
process from a “full” ROM with a much larger basis. The development of the RROM
methodology is motivated by the desire to optimally reduce the computational cost
especially in multi-physics situations where a lack of prior understanding/knowledge of
the solution typically leads to the selection of ROM bases that are excessively broad to
ensure the necessary accuracy in representing the response. It is additionally emphasized
that the ROM reduction process can be carried out adaptively, i.e., differently over

different ranges of loading conditions.
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1. INTRODUCTION

1.1. Motivation and Focus

The design of hypersonic vehicles has been a goal for the U.S. Air Force for decades
but it still remains a dire challenge. The prediction of the behavior of hypersonic
structures is a complex task because of the strong multi-physics interactions taking place
between structural response, aerodynamic force and heating, and heat conduction and
radiation. Under hypersonic conditions, the aerodynamic and thermal loading are severe
and likely to result in large deformations and strong nonlinearities in structural response,
whereas standard structural dynamic analyses and design procedures assume a linear
behavior.

Moreover, uncertainties may be expected to be important to the structural response
under such severe conditions. For example, strongly nonlinear events such as buckling
and shap-through may be triggered by asymmetries in systems designed to be symmetric.
The uncertainties considered here include those associated with vehicle-to-vehicle
variability, i.e., aleatoric uncertainty, and those resulting from modeling
assumptions/simplifications, i.e., epistemic uncertainty. While safety factors are
traditionally used to address these uncertainties, they lead to structures that are too heavy
and thus not able to fulfill the design requirements. The success of a design under
uncertainty of hypersonic vehicles will require a specific modeling of the uncertainties
and their propagation through the coupled structural-thermal-aerodynamic interactions to
predict probability density functions, percentiles, standard deviations, etc. of the response
quantities of interest. Such modeling and propagation is the main focus of this

investigation.



There are two options in uncertainty modeling: parametric and non-parametric. In
parametric methods, parameters of the model such as material properties (Young’s
modulus, thermal conductivity) are modeled as random variables or stochastic fields,
typically at the finite element level. While easy at first glance, there are challenges
associated with parametric uncertainty modeling. The first is the proper selection of the
(typically joint) probability density functions of the random variables or stochastic fields
used. Obtaining such information typically requires a very significant amount of data,
which is typically not available, leaving the user to carry out a series of assumptions
which may be difficult to assess. The approach, when carried out at a finite element level,
can be quite expensive for Monte-Carlo simulations with a large number of realizations.

There is a vast body of work focusing on application of parametric methods; see
(Schenk and Schuéller 2003) and (Schenk and Schuéller 2007) for examples in modeling
parameter uncertainties in the post buckling of cylindrical shells and see (Sankar et al
1993) and (Sarrouy et al 2012) in the context of uncertainties in high speed rotors. When
modeling random fields, the polynomial chaos representation — a parametric
representation of the uncertainty — has often been used and is the basis for the stochastic
finite element method, see (Ghanem and Spanos 1991).

An option to reduce the computational cost is to rely on reduced order models
(ROMs) for the determination of the response/solution. Accordingly, one can introduce
the uncertainty at the finite element level then create a ROM for each finite element
realization, and then finally compute the response of the ROM. An even faster strategy
would be to bypass the finite element level realizations and directly generate random
realizations of the ROM, see (Soize 2017) for an accelerated introduction of uncertainty

2



quantification in computational engineering. This process is the essence of the maximum
entropy nonparametric approach reviewed next.

1.2. Maximum Entropy Nonparametric Modeling

The maximum entropy-based nonparametric stochastic modeling approach initially
proposed by Soize (2000), see (Soize 2012) for a recent comprehensive review, is an
elegant approach to randomize ROMs directly. It proceeds directly from the mean model
ROMs, assumed to be characterized by matrices, randomizing them so that they always
satisfy physical requirements (positive definiteness, symmetry, etc.). This is clearly not
sufficient information to define the joint probability density function of the elements of
these matrices. To alleviate this situation, it will be assumed that this function achieves
the maximum of the entropy given the physical requirements as constraints. Moreover, as
discussed in (Soize 2000) and (Soize 2012), this approach not only permits the modeling
of aleatoric but also some epistemic uncertainty.

In its original formulation, i.e., for a symmetric positive definite matrix A (such as

the mass and linear stiffness matrices), the maximum entropy nonparametric approach

proceeds as follows. First, the mean matrix A is decomposed as
A=LL" (1.1)
e.g., by Cholesky factorization. Then, random matrices A are generated as
A=CHHTLT (1.2)
where H is a lower triangular matrix such that (see also Fig. 1.1)

(1) its off-diagonal elements Hj;, i=l, are normally distributed (Gaussian) random

variables with standard deviation ¢ =1/./2u, and

3



(2) its diagonal elements H;; are obtained as Hjj =/Yjj/n where Y;j; is Gamma
distributed with parameter (p(i)—1)/2 where
p(i)=n—i+2hg-1 and p=(n+2ry—1)/2 (1.3)

zero mean Gaussian, independent of
each other with standard dev.o; =1/y/2;
] — lambda=1

square root of Gamma,
independent of all others

p — lmbda=l

Proba. Dens. Funet,

Figure 1.1. Structure of the Random H Matrices with n =8, i =2, and Ao = 1 and 10.
In the above equations, n is the size of the matrices and the parameter Ay> 0 is the

free parameter of the statistical distribution of the random matrices A. An alternative
parametrization is through the dispersion parameter 6 defined as

2 n+l
n+2ig -1

(1.4)
1.3. Nonlinear Thermal-Structural Reduced Order Model
The non-intrusive construction of reduced order models to predict the nonlinear
geometric response of structures has been well developed and demonstrated successful in
many applications in at least the last 20 years. This approach represents the extension to

the nonlinear geometric situation of the modal models used for the dynamic response of

linear structures and also relies on expressing it as a combination of limited number of

4



basis functions. The difference with respect to the linear case is that the equations of
motion for the generalized coordinates are no longer linear but rather involve cubic
polynomials of the general coordinates.

A particular set of nonlinear ROM studies, initiated at least by (McEwan et al 2001),
have focused on developing the entire reduced order model from commercial FEA
software and, accordingly, proceed non-intrusively relying on standard inputs and outputs
from such software. Since 2001, many developments have been made and successfully
applied, see (Mignolet et al 2013) for a review. Further, see (Hollkamp et al 2005),
(Mignolet et al 2003), (Kim et al 2013), (Przekop and Rizzi 2007), (Przekop and Rizzi on
AIAAJ 2006), (Prezkop et al 2012), (Rizze and Przekop 2008), (Przekop and Rizzi on Int
Conf Adv Struct Dyna 2006) and (Perez et al 2014) for the selection of the modal basis;
and see (Muravyov and Rizzi 2003), (Kim et al 2009), (Perez et al 2014), (Wang et al
2019) and (Spottswood and Allemang 2007) for algorithms to identify the coefficients of
the cubic polynomials appearing in the equations of motion. The current state of the art in
this nonlinear ROM approach is well beyond simple beam and plates, see the following
references (Y. Wang et al 2018), (Gogulapati et al 2017), (Gogulapati et al 2014), (Perez
et al 2010), (Perez et al 2014), (X.Q. Wang et al 2018) and (Matney et al 2012) for the
validation of the nonlinear ROM methodology to fairly complex structures.

The coupled structural-thermal ROMs employed here are based on the representation
of the temperature and displacements of the finite element nodes, stacked in the time
varying vectors T(t) and u(t), in expansion forms, i.e.

TM)= S ) T (L5)
n=1
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u(t)= %qn(t) y(" (1.6)

In these equations, T™M and w(”) are the thermal and structural basis functions,
or modes, while t,(t) and q,(t) are the time-dependent thermal and structural

generalized coordinates.
Assuming that the material properties (elasticity tensor, coefficient of thermal
expansion) do not vary with temperature, it is found, e.g. (Perez et al 2011), for the

structural generalized coordinates that (summation over repeated indices assumed)

Mijdij + Dyjd; + K - Ki(jtlh) Tjaj+ Ki(ﬁ)qqu + Ki(j?%qquqp =R +FRVy @)

In this equation, M, denotes the elements of the mass matrix, Ki(jl), Ki(ﬁ), Ki(jgl,z)

are linear, quadratic, and cubic stiffness coefficients and F, are the modal mechanical

forces. The parameters Ki(jtlh) and Fiﬁth) represent the sole coupling terms with the

temperature field which is described by the governing equations (Perez et al 2011,

Matney et al 2011)

Bij ’i:j+Kij‘l:j :PI (1.8)
where Bjj and Ri j are the capacitance and conductance matrices of the finite

element model, which are assumed here not to depend on temperature. The source term

P, represents the combined effects of an applied flux, nonzero homogenous boundary

conditions, radiation, latency, etc. as applicable.



Having established the forms of the governing equations, i.e., Eqs (1.7) and (1.8), it

remains to address (i) the selection of the basis functions T™M and \p(”) and (ii) the

identification of all stiffness, mass, conductance, and capacitance parameters from
commercial finite element software. The latter effort is detailed in (Perez et al 2011, Kim
et al 2013, Mignolet et al 2013, Perez et al 2014) for temperature independent structural
properties and has been extended in (Matney et al 2011) when they vary linearly with the
local temperature. The former issue has also been addressed, in (Mignolet et al 2013) for
the structural problem, see also (Kim et al 2013, Mignolet et al 2013, Perez et al 2014)
for the linear + dual modes basis selected here. The construction of the thermal basis has
been investigated in a series of papers (Perez et al 2011, Falkiewicz and Cesnik 2011,
Matney et al 2014, Matney et al 2015, Murthy et al 2016) and can be achieved from a
series of snapshots of the temperature distribution, e.g., (Falkiewicz and Cesnik 2011), a
priori from the conductance and capacitance matrices (Perez et al 2011), or using a
combination of a priori information and a few snapshots (Matney et al 2014, Matney et al
2015, Murthy et al 2016).

The above discussion demonstrates that coupled nonlinear structural-thermal reduced
order models can be constructed from well characterized finite element models. Given
this state of the art, it is then timely to consider the introduction of uncertainty in these
models to bridge the gap between designed and realized structures and assess the effects
of the differences between them.

1.4. Research Topics

The maximum entropy method has been applied to a broad range of structural

problems, in these problems the response exhibits mostly global features. However, when
7



applied to a problem that exhibits local response, e.g., a class of heat conduction
problems, this method tends to lead to a globalized response as will be shown in Chapter
2. This undesirable effect is an unexpected consequence of the epistemic uncertainty
introduced by this method, the uncertain changes to the model’s structure are more likely
to promote a global response at the contrary of localizing it. Then, introduced in Chapter
2 is an extension to the maximum entropy method resolving this issue and maintaining
the local behavior of the uncertain response if the mean model response is localized. This
work was published in (Song and Mignolet, 2018).

In Chapter 3, uncertainty modeling in structural-thermal coupled system is addressed
in the framework of reduced order model. Since the effects of uncertainty on structural
properties have been well studied, the investigation is focused primarily on introducing
uncertainty in the thermal properties (capacitance, conductance) and in thermal structural
coupling effect (coefficient of thermal expansion).

The globalization of the uncertain response observed in Chapter 2 demonstrated for
the first time a negative associated with introducing epistemic uncertainty modeling at the
ROM level, i.e., at a global level. Besides proceeding with the new formulation of
Chapter 2, one could imagine introducing the epistemic uncertainty at a lower level
where its effects will remain more local. This perspective motivated the work of Chapter
4 in where the nonparametric methodology is applied at the finite element level by
randomizing the elemental stiffness matrices of each element. This new strategy brings
epistemic uncertainty not present in the parametric modeling while retaining more local
character of this uncertainty than achieved with the ROM level nonparametric approach.
While this approach is technically possible for nonlinear geometric problems, it is

8



demonstrated and studied here for linear structural problems without and then with
heating effects.

The last focus of this dissertation is on the formulation and first assessment of a
methodology to adapt/reduce the basis of ROMs. In complex multiphysics problems, the
construction of a single “full” ROM for the entire mission/range of loadings is very likely
to lead to large bases to ensure that the set of responses is well captured, especially since
these responses are generally not well predictable a priori. The clear drawback of these
large bases is a large computational cost undercutting the benefits of using ROMs. To
address this situation, a methodology is developed in Chapter 5 to use short segment of
response data generated from such large ROMs to construct smaller bases of “Reduced
ROMs”. Such RROMs would then have the desired computational advantage but may not
be valid over the broad range of loading conditions desired thereby leading to the need to
adapt the RROMs. The key questions of how large the RROM basis should be to
optimize the RROM computational benefit and of the determination of the time/loading
condition at which to adapt are addressed in Chapter 5. Moreover, a validation of this
RROM strategy to a coupled structural-thermal-aerodynamic response of a representative

hypersonic panel is successfully carried out.



2. REDUCED ORDER MODEL-BASED UNCERTAINTY MODELING OF

STRUCTURES WITH LOCALIZED RESPONSE

2.1. Introduction

Since its initial formulation in (Soize 2000), the maximum entropy-based
nonparametric approach has been extended multiple times to cover new classes of
problems, e.g., vibro-acoustics (Durand et al 2008, Ohayon and Soize 2014),
rotordynamics (Murthy et al 2010 Part I, Murthy et al 2010 Part II, Murthy et al 2014),
nonlinear structural dynamics (Mignolet and Soize 2008, Capiez-Lernout et al 2014),
nonlinear thermoelastic problems (Song et al 2017), linear viscoelastic structures (Soize
2012), etc., but also in rigid body dynamics (Batou and Soize 2012, Richter and Mignolet
2017) and micromechanics and multiscale modeling, see (Soize 2012). The focus of the
present effort is on yet another extension of this approach, more specifically to problems
in which the response of the uncertain structure is expected to be localized with the mean
model response either localized as well (the first case considered below) or global (the
second case). The present effort focuses on structural applications only but there are
non-structural ones in which these conditions are encountered, e.g., in some heat
conduction problems (Song et al 2017), and to which the present discussion may also
apply.

2.2. Representative Examples

2.2.1. Class A Structures

To illustrate one class of structures investigated here, consider the annulus shown in
Fig. 2.1(a) of inner radius 0.8m, outer radius 1m, thickness 0.002m clamped on its inner
radius and free on the outer one. The material, aluminum, is assumed to be homogenous

10



and isotropic with Young’s modulus E = 7.3 10%° Pa and Poisson’s ratio v= 0.316. The
annulus is subjected to a static uniform unit pressure in the quadrant 6<[180,270] degrees
highlighted in yellow in Fig. 2.1(a). To evaluate the displacement field of the annulus, it
was modeled by 4-node shell finite elements within Nastran (CQUAD4 elements) with a
mesh of 144 nodes around the periphery and 6 in the radial direction. Then, shown in Fig.
1(b) is the transverse displacement of the periphery which is clearly localized near the

excitation, i.e., in the band 6<[150,300] degrees.

Displacement

P 0 50 100 150 200
: Position (Dearees)
@71 (b)
Figure 2.1. (a) the Annulus and Its Finite Element Model with the Loading Domain
Highlighted in Yellow. (b) Static Transverse Displacement at the Periphery, Full Finite

Element (FEA) and Reduced Order Models (ROM).

A reduced order model of the finite element one can be constructed by representing

the nodal responses stacked in the vector u as a linear combination of basis functions v,

,i.e. as

Q=Zqi Yi (21)
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where the variables q; are referred to as generalized coordinates. The adoption of the

representation of Eq. (2.1) transforms the equations for the nodal displacements

1T

Krgu=Fgg (2.2)

where Kpg and E g are the finite element stiffness matrix and loading, into
Kg=F (2.3)
where

K=¥TKeg¥ and F=W¥'Fg (2.4)
with T denoting the operation of matrix transposition and ¥ = &1y2 Vi Wy

The above reduced order model construction was exemplified by selecting the basis

functions y; as the linear modes of the annulus. Then, shown in Fig. 2.1(b) is the

transverse displacement of the periphery obtained with 55 such modes which, as
expected, closely approximates the finite element solution.
2.2.2. Class B Structures

A second type of structures that exhibit a localization of the static response are those
that are composed to sub-structures weakly coupled to each other. A very simple example
of this situation is the chain of oscillators showed in Fig. 2.2(a). To demonstrate the
localization, the chain was selected to have 12 masses connected to their neighbors by a
spring of common stiffness ke = 0.15 N/m and to ground by different springs, of
respective stiffnesses (from mass 1 to 12): 1.45; 1.69; 2.20; 2.86; 3.71; 4.83; 5.07; 5.32,;

5.59; 5.87; 6.16; 6.62 N/m. Moreover, the chain was assumed to be open at its two ends.

Then, shown in Fig. 2.2(b) is the static response of the chain under uniform forces acting
12



on the masses 3, 4, and 5. It is clearly observed that the static response is localized to the

three masses on which the loading is applied.
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>
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o
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Lo ;\,C \Tei

‘/\/\XL m W m '/\/\/\_ m ‘/\/\/\_

L\/\/L[ LW . 2 4 6 8 10 12

ki1 k,- kr‘—l Mass number

(@) (b)

Figure 2.2. (a) The chain discrete model. (b) Static response of the chain due to unit loads
on masses 3, 4, and 5.
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2.2.1. Class C Structures

Bladed disks are a class of structures with peculiar properties and with geometric
features that are in between those of the class A and B structures described above. They
are continuous structures, such as the annulus of Fig. 2.1, but with discrete features (the
blades) that are often weakly coupled to each other (especially in the lowest frequency
modes), as the chain model of Fig. 2.2. Shown in Fig. 2.3(a), (b) is a representative
12-blade bladed disk (it is a reduction of the number of blades to 12 of the 24-blade one
considered in (Bladh et al 2001)) and shown in Fig. 2.3(c) is the static response at the tip
of the 12 blades induced by a unit force applied at the tip of blade 1. Clearly, this

response is very localized (note the logarithmic scale of the ordinates).
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Figure 2.3. Bladed Disk Example: (a) Overall View, (b) Blade Sector Finite Element
Mesh, and (c) Static Response at Blade Tip Due to Unit Load at the Tip of Blade 1.

2.3. “Standard” Maximum Entropy Nonparametric Approach

The maximum entropy nonparametric approach introduced in Chapter 1 was applied
as is to the 55x55 stiffness matrix of the reduced order model of the annulus and 300
random matrices K were determined. From each one of those, a set of generalized
coordinates g was determined that satisfies

Kg=F (2.5)

and the resulting set of nodal displacements u were obtained from Eg. (2.1). Shown in
yellow in Fig. 2.4(a) is the uncertainty band corresponding to the 5th and 95th percentile
of the transverse displacement of the periphery as determined from the 300 samples of
the response. Comparing Figs 2.1(b) and 2.4(a), it is observed that the above uncertainty
modeling approach has induced some globalization of the response, i.e., the response
outside of the region 6[150,300] degrees is not nearly zero for all samples as could have
been construed from Fig. 2.1(b). Note that this effect likely leads to a higher entropy of

the response as compared to the localized case given its increased spread of the joint
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probability density function of this response. This finding seems quite consistent with,
although separate from, the maximization of entropy of the matrix K which is guaranteed

by the construction of Egs (2.2)-(2.4).

] %1078 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 06
0 = 0.5 Unc. Band
= 04 ——5th percent ||
ey 5 ——95th percent
= £ -
£ o 0.3F Average
g, & —— Mean Model
3  0.2f ]
a 2
-3 Unc. Band 8 01k
— 5th percent S 7
| |[——95th percent | @
. —Average 0
——Mean Model
5L . . . . . . a 0.1 : ‘ : : :
0 50 100 150 200 250 300 350 2 4 6 8 10 12
Position (Degree) Mass number
(@) (b)

Figure 2.4. (a) Static Transverse Displacement at the Periphery of the Annulus and (B)
Static Displacement of the 12 Masses of the Chain Model. Mean Model (in Red) and
5th-95th Percentile Uncertainty Band (in Yellow) of the Displacement, Standard
Stochastic Reduced Order Model with (a) 6 = 0.05, (b) 6= 0.1.

As an additional example, shown in Fig. 2.4(b) is the 5th and 95th percentile of the
static response of the 12 masses of the chain example of Fig. 2.3 which is seen to exhibit
an uncertainty-induced globalization of the response.

It is important to recognize that the above globalization effects are certainly
physically possible. For the annulus, they could for example take place if the disk on
which the annulus is clamped is not rigid as specified in the mean model but rather
exhibits some flexibility which induces a long range interaction between nodal responses.

If, however, there is additional knowledge about the uncertainty that indicates that

such a globalization does not take place, then the above methodology must be modified
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to reflect it, e.g., by adding constraints in the optimization of the entropy or modeling
differently the random stiffness matrix. One such modification is formulated below.

In concluding this section, it should be recognized that the localization of the
response observed in Figs 2.1(b), 2.2(b), 2.3(c), and 4 is in the neighborhood of the
excitation and thus this localization zone would move if the part of the structure loaded
was to change. If the loading, and thus the zone of localization, is well defined and
invariant, a substructuring approach could be developed in which this zone is a
substructure with the rest of the structure another. Then, uncertainty could be introduced
nonparametrically in the two substructures as discussed in (Soize and Chebli 2003). If the
loading zone varies or is unknown when the model is constructed, this approach could
still likely be used by substructuring the entire structure finely enough to capture the
localization at the expense of an increase in the number of degrees of freedom in the
model. The methods developed below are in contrast with this situation, keeping the
modeling of the structure whole.

2.4. Maximum Entropy Nonparametric Modeling for Static Localized Responses

2.4.1. Local and Global Stiffness Matrices

Before revising the above standard nonparametric approach, it is necessary to
identify the property of the stiffness matrices K and Kgg that induces the existence
of a localized response. To this end, recall that the solution u of Eq. (2.1) can be

expanded in terms of the eigenvectors ¢ j and corresponding eigenvalues 2 j of Kre

as

16



Q=Z@d} j (26)
J

owing to the orthogonality of the eigenvectors implied by the symmetry of Kgg . Note

in Eg. (2.6) and in the ensuing ones in this section that the summation is extended over all

eigenvectors.

To proceed further in the discussion, assume first that the eigenvectors ¢ j are

extended to the entire structure; this is true of the annulus of Fig. 2.1(a) (as well as the

bladed disk of Fig. 2.3 but not the chain of Fig. 2.2) for which (l)j are harmonic

functions of the angle 0 (as discretized by the finite element modeling). Then:

(i) a localized response as shown in Fig. 2.1(b) is possible only if the dominant

coefficients (@Tj Ej/ A j have somewnhat similar values as to create an appropriate mix

of the extended functions d_>j to produce localization,
(i1) the “modal forces” q_ﬂ F decrease slowly as the index j is increased given the

localization of the excitation or equivalently the values q_ﬂ F for the dominant modes

tend to be quite similar.

Combining these two arguments, it is thus concluded that localization must require

that the lowest eigenvalues A ; of Kgg be close together if the eigenvectors of this

stiffness matrix are extended. This result is confirmed by the plot of eigenvalues of the
annulus’ stiffness matrix shown in Fig. 2.5: the first few of its eigenvalues are indeed

closely spaced.
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Figure 2.5. Eigenvalues of the Stiffness Matrix of the Annulus Finite Element in
Increasing Order.

For structures with localized response and well separated eigenvalues of their
stiffness matrix, e.g., the chain model, the change in stiffness matrix induced by the
random matrix H (Eqg. (1.2)) produces changes in the eigenvectors, most specifically
populating the zeros or very small components with non-zero ones that produce the
globalization effect.

The above comments suggest that what is important for localization is:

(i) the relative separation of the first few eigenvalues which must be small when the
eigenvectors are extended (class A structures), or

(i) the localized nature of the eigenvectors when the eigenvalues are not close
together (class B structures).

To confirm the statement (i), rewrite Eq. (2.6) in the form

H=%l _ (@IEFEJ‘L— +i1 M(@EEFE)(P 2.7)

i

or
18



I-e-

_ A — _ _ _
g[%zq_)]i)-;}lz {ilz( 1 ) Jd_)-:]EFE :P].EFE +P2EFE- (28)
J

where P; is proportional to the identity matrix and thus P, E g is a purely local term,

i.e., the corresponding displacement at each node only depends on the force acting at that

node. This term will dominate when the terms (d_)] Fre )(xl —Aj )/kj are all small,

I.e., when the dominant eigenvectors (those with significant values of q_)Tj F ) havea

small relative difference of eigenvalue with eigenvector 1.

A similar discussion to the above one applies for the mean reduced order stiffness
matrix K of eigenvectors ?; and eigenvalues W j so that

GE[ Yoo } [1 z(“l;“j)g o ]E QFE+QF. (29)

i M1 Hj
Associated to this decomposition of the flexibility matrix Q into a component

inducing local effects (Q;) and a more global one (Q, ) is a similar split of the stiffness

matrix K into a local component, K| , and a more global one, Kg , defined as

J— — _1 J—

K. =[G " = MY e, 9Tj and Kg =K-K_  (2.10a),(2.10b)

j
where the summation in Eq. (2.10a) is extended over all eigenvectors/eigenvalues leading
to the localization of the response.
2.4.2. Local/Global Maximum Entropy Nonparametric Modeling
The above discussion has demonstrated that a localization of the response will only

occur in class A structures when the relative spread of the dominant eigenvalues of the
19



stiffness matrix is small. However, this spread is often increased, sometimes very
significantly for the first few eigenvalues, when using the standard nonparametric

approach as shown in Fig. 2.6.
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Figure 2.6. Relative Eigenvalue Separation of the Reduced order Model Stiffness Matrix.
Mean Model (in Red) and 5th-95th Percentile Uncertainty Band (in Yellow), Standard
Nonparametric Stochastic Model.

Thus, imposing a localization constraint on the stochastic modeling will require
controlling the eigenvalues of the dominant modes (those with eigenvalues close to A1)
separately from the rest of them. In this regard, note that the dominant eigenvectors are
mostly present in K| while those with eigenvalues far from ;1 are dominantin K.

On the basis of the above observations, it is proposed here to model the uncertainty
in K| and Kg separately. Since there is no particular requirement on the latter matrix
(which is nevertheless symmetric and positive definite) and its randomization, the
standard nonparametric approach will be applied leading to an uncertain matrix Kg

defined as
20



Kg =Lg Hg HE L where Kg =Lg L& (2.11a),(2.11b)
with Hg a lower triangular random matrix as defined by Eqgs (1.3)-(1.4) and Fig. 1.1
for a particular dispersion value d¢ .

Maintaining small the relative separation between the eigenvalues of the dominant

eigenvectors can be achieved by scaling uniformly all eigenvalues. This observation
suggests that a first approach to introduce uncertainty in K| is to simply multiply it by
a random variable A which consistently with the maximum entropy concepts can be
selected as H12 where Hj isa 1x1 matrix defined as in Egs (1.3)-(1.4) and Fig. 1.1
with a specified dispersion 98 .

A small change in the relative separation between eigenvalues can also be induced by

splitting K| as Kg in Eg. (2.11) and introducing a random lower triangular matrix
H_ of dispersion & . Combining the above two operations leads to the proposed model
KL=HZL H_H[ L] where K.=L[_Ll. (212a),(2.12b)
Note finally that since K| is defined by Eq. (2.10a), its decomposition in Eq.

(2.12b) is readily achieved by selecting
L. :\/u_1(p1(£2 (33...] . (2.13)
The uncertain reduced order stiffness matrix is then obtained as
K:KL+KG' (214)

The above derivations have been carried out assuming that all eigenvectors were

retained in Eq. (2.10a). From a practical perspective, it is sufficient to restrict it to the
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eigenvectors corresponding to the set of close eigenvalues (class A structures) or to the
localized eigenvectors excited by the loading (class B structures).
2.4.3. Algorithm
The application of the above approach can be decomposed into the following steps:

(a) selection of the basis functions i and computation of the mean ROM stiffness

matrix K from its finite element counterpart Kge using Eqg. (2.4),

(b) determination of the eigenvectors P and eigenvalues pj of the matrix K,

(c) selection of the set (values of j) of these eigenvectors and eigenvalues that lead to
localization, i.e., closely spaced eigenvalues (for class A structures) or localized

eigenvectors (for class B structures),

(d) construction of the mean model matrices K and Kg according to Egs
(2.10a) and (2.10b),

(e) selection of the dispersion parameters dg,871,and o,

(f) computation of the decomposition matrices Lg and L, satisfying Egs (2.11b)
and (2.12b),

(9) simulation of the random matrices Kg and K according to Eqgs (2.11a) and

(16a),
(h) assembly of the random stiffness matrices as in Eq. (2.14).
2.4.4. Applications

The three-parameter (g, 91,9 ) stochastic model formulated above was first

applied to the reduced order model of the annulus with the first 8 eigenvectors P

22



retained in the summation of Eq. (2.10a) and p, selected as 0.99 times the lowest

eigenvalue. To highlight the effects of each random component on the response, shown in
Figs 2.7 (a),(c),(e) are the uncertainty bands obtained with each of the parameters set to a
nonzero value in turn. Also shown, on Figs 2.7 (b),(d),(f) are 3 samples of the
corresponding responses.

From Figs 2.7 (a),(b), corresponding to &g # 0, it is observed that the randomization
of Kg only leads to a small, rather constant, global uncertainty band consistently with
the above discussions. Next, consider Figs 2.7 (c),(d) corresponding to &;=0and

which leads to a very localized large variability of the response confirming that K
does indeed control the localized behavior. Finally, shown in Figs 2.7 (e),(f) are the
results corresponding to & # 0 which are very similar to those shown in Figs 2.7 (a),(b)
suggesting, for the present application, that it is sufficient to only consider the two

parameter model defined by dg and &1, i.e., with

KL =HZK. (2.15)
Shown in Fig. 2.8 are the uncertainty band (Fig. 2.8(a)) and 3 samples of the
response (Fig. 2.8(b)) corresponding to the combined case of all three parameters
nonzero. It is seen that their effects approximately superpose, creating a thin uncertainty
band away from the localization region but a much more significant one within it and

samples that exhibit the localization as was desired.
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Figure 2.7. Static Transverse Displacement at the Periphery of the Mean Annulus (in
Red) and Results from the Stochastic Reduced Order Model: (a),(c),(e) 5th-95th
Percentile Uncertainty Band (in Yellow), (b),(d),(f) 3 Samples.(dg, 61,6 ) = (a),(b)

(0.1,0,0); (c),(d) (0,0.05,0); (e),(f) (0,0,0.02)
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Figure 2.8. Static Transverse Displacement at the Periphery of the Mean Annulus (in
Red) and Results from the Stochastic Reduced Order Model: (a) 5th-95th Percentile
Uncertainty Band (in Yellow), (b) 3 Samples. (8¢ ,81,9 )=(0.1,0.05,0.02).

Not only does the uniform shift of the close eigenvalues of the stiffness matrix
induced by Eq. (2.15) produce localization of the uncertain response but it also appears to
be the main mechanism to induce this localization. To clarify this issue, consider a
parametric stochastic model of the annulus in which only the Young’s modulus is
uncertain, more specifically represented according to the model of (Soize 2006) as a 1x1
matrix. Selecting the dispersion parameter & (equal to the coefficient of variation here)
equal to 0.1 and the correlation length to 0.43 (corresponding to an arc of approximately
30 degrees of the inner radius) led to the uncertain bands shown in Fig. 2.9(a). As
expected, the response is localized to the neighborhood of the excitation.

Next, the random finite element matrix Kgg was projected on the 55 linear modes

of the mean model selected to construct the corresponding random ROM stiffness matrix

A

K . It was itself projected on the first 8 eigenvectors of the mean model ROM stiffness
matrix, generating
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Kp = Epl(_pz ...QJ Kkplgz ...(_ps] and K=¥'Kgg¥. (2.16a),(2.16b)
This step is straightforward here as the mean ROM stiffness matrix K is diagonal and
thus the eigenvectors o; are entirely zero except for the component i equal to 1. Thus,

K, is the top left 8x8 block of K.
The random matrix K plays arole very similarto K| as it captures the

variability associated with the first 8 eigenvectors of the mean model ROM stiffness

matrixX. Then, according to Eq. (2.15), this matrix was tentatively approximated by
Kp=Kp+dlg (2.17)

where Kp denotes the mean of K, which is a diagonal matrix with elements .,
uo, ..., ug,disacentered random variable, and lg denotes the 8x8 identity matrix. To
assess the quality of this approximation, each sample of the matrix K, was first
considered and the corresponding value of d minimizing the error

e=|Kp-Kp-dlg|_ (2.18)
was obtained. In this equation, the symbol | || denotes the Frobenius norm of a matrix.

Proceeding with a straightforward differentiation led to
1 _
d==tr[Kp - Kp] (2.19)

where tr [U] denotes the trace of an arbitrary matrix U. Introducing, this expression in
the error ¢ yields its minimum value denoted as &, . An overall approximation error of

K in the form of Eq. (2.17) can then be defined as
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(2.20)
2183

eEp=
F

The above computations were carried out for the samples of Fig. 2.9(a) and it was

found that & =0.26. This small value demonstrates that most of the variability in K,

can indeed be modeled by a uniform shift of eigenvalues.
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N
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Figure 2.9. Static Transverse Displacement at the Periphery of the Mean Annulus (in
Red) and Results from the Parametric Stochastic Model with Uncertain Young’s
Modulus Only. 5th-95th Percentile Uncertainty Band (in Yellow) Corresponding to (a)

Full Finite Element Simulation, (b) ROM with the Matrix K Approximated.

To provide a final confirmation of the appropriateness of the stochastic model of Eqs

(2.10)-(2.14), the computation of the static response of the annulus was carried out by

(i) replacing K, by Kp+d Ig as the 8x8 top left block of the matrix K

(ii) zeroing out the remaining elements of the first 8 rows and columns of K to
approximately parallel the structure of K, Eq. (2.14), since these elements are small, of

the order of pj —py.
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Then, shown in Fig. 2.9(b) is the uncertainty band on the response obtained by

utilizing the above modified K matrix as ROM stiffness matrix. Comparing this figure
with its original counterpart, Fig. 2.9(a), it is observed that the results are very similar
with only a difference in the width of the band. This finding is fully expected as the
projection process of Eqgs (2.17)-(2.19) has effectively decreased the overall level of
uncertainty and thus a thinner uncertainty band is expected. A rescaling of the variability
of the random parameter d would boost back the band to its width in Fig. 2.9(a). This
scaling could be seen as a calibration of the model to the data of Fig. 2.9(a).

The three-parameter (3,91, ) stochastic model was also applied to the chain
model with the eigenvectors P30 9y and 9c, i.e., the eigenvectors significantly
excited by the loading, retained in the summation of Eq. (2.10a). Moreover, the parameter
pp was selected equal to 0.99 times the third eigenvalue (the lowest eigenvalue

corresponding to the retained eigenvectors). Then, shown in Fig. 2.10 is the uncertainty

band corresponding to the case g =0.1, §;=0.1, and & =0. It is again observed that

the uncertain response is localized to the masses 3, 4, and 5 as is the mean model.
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Figure 2.10. Static Displacement of the Chain Model. Mean Model (in Red) and 5th-95th
Percentile Uncertainty Band (in Yellow) for (8g,91,6)=(0.1,0.1,0).

2.5. Maximum Entropy Nonparametric Modeling for Mode Shapes Localization

The discussion of the above section focused on maintaining the localized character of
the response of the mean model when introducing uncertainty. In contrast to this
situation, there exists a class of structures in which the mean model response is global but
the introduction of uncertainty induces localization. Bladed disks, i.e., the structures of
class C, are notorious examples of this situation when analyzing the free response
properties, i.e., mode shapes. Rather typically, consider the finite element model of the
bladed disk of Fig. 2.3 in which all blades have identical properties (i.e., the tuned disk)
and shown in Fig. 2.11 are 2 of its low frequency modes more specifically those
corresponding to 2 and 6 nodal diameters of the first family. Clearly, these mode shapes
are extended to the entire structure, i.e., global. Next, blade-to-blade variations in their
Young’s modulus are introduced to create mistuning. Given the quality of the
manufacturing process, these differences can be expected to be small and thus the
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Young’s moduli of the 12 blades were selected as 0.995, 0.996, 0.997, 0.998, 0.999,
1.000, 1.001, 1.002, 1.003, 1.004, 1.005, 1006 of the tuned model value. Then, shown in
Fig. 2.12 are two typical low frequency modes and note that they are very strongly
localized to only 1 blade out of the 12, on different blades for different modes. An
additional observation that has been made in relation to mistuning is that variations of
properties of the disk (the support of the blades) does not lead in itself to localization.
The dominant sensitivity of the modes is thus with respect to blade-to-blade variations of

their properties.
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Figure 2.11. Some Mode Shapes of the First Family, Tuned Bladed Disk Model. (a), (b)
Overall View, (c), (d) Tip Displacements. (a), (c) 2 Nodal Diameter Modes, (b), (d) 6
Nodal Diameter Modes

30



it
‘.‘ﬂ“’

L
Vi
111{\\1 &*\\‘?\.‘. SR J o il

1l
A | 'i','
\{\'}l}\‘

i
et 1L
{\‘\:'\“‘Q\\Q\:‘w“‘«v
RS

W “§§§‘§‘W

Figure 2.12. Overall View of Some Mode Shapes of the First Family, Mistuned Bladed
Disk.

It is desired here to duplicate these phenomenological effects by introducing
uncertainty on a reduced order model of the bladed disk. In this regard, it ought to be
recognized that there are reduced order modeling methods which are more apt than others
at mistuning the blades vs. mistuning all components (disk and blades). For example,
sub-structuring based reduced order models (e.g., following a Craig-Bampton approach)
in which each blade is a particular sub-structure are particularly convenient for the
introduction of blade mistuning as the response of each blade is associated with specific
ROM degrees of freedom. The intent here is to consider a “worst case” scenario, more
specifically a reduced order model based on a series of tuned modes of the bladed disk in
which the blades specific degrees of freedom are lost. This was achieved for the bladed
disk of Fig. 2.3 by selecting the first 200 modes of the tuned model.

It was first questioned whether the standard nonparametric method of Egs (1.1)-(1.4)

and/or the revised approach of Eqgs (2.10)-(2.12) could generate strongly localized modes

31



as seen in Fig. 2.12. To this end, shown in Fig. 2.13 are the first two modes obtained for a
particular mistuned disk realization and with each of these methods. It is clearly seen that
most of these modes are distorted but are not localized. In fact, the results corresponding

to (8¢, 01,6 )=(0,0.1,0) are neither distorted nor localized as they correspond to a tuned

disk with properties different than the baseline one. These observations are not
surprising: the transformation from physical coordinates to modal ones spreads the
uncertainty well defined on blades to the ensemble of modal elements in the ROM mass
and/or stiffness elements. This process induces specific correlations between the elements
of these matrices that are not, and cannot be expected to be, duplicated by the
nonparametric approaches. Accordingly, a revised of the approach of Egs (2.10)-(2.12) is
proposed below for this class of applications.

More specifically, it is suggested that the randomization of the local component of

the ROM stiffness matrix of Eq. (2.10a), denoted here as KL,ROM , be done in the finite

element domain, then mapped back to the ROM by pre and post multiplication by Sl
and ¥ . Moreover, this randomization should affect only diagonal elements in the finite
element domain to not modify the connectivity of various degrees of freedom, i.e., not to

create a coupling (for example between blades) that does not exist in the mean model.

That is, the uncertainty on KL,ROM should originate from the diagonal component of a

finite element space matrix IZL,,:EM satisfying

[— T —
KLrom =¥ KL rem Y. (2.21)
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(d) (8g,871,8.)=(0,0,0.1).

This matrix will be expressed similarly to KL,ROM ,1.e.,as

- T T
KL, Fem =H1ZZj 2y =WZZ

]

(2.22)

where p4 isan appropriately selected parameter (see below) and Z is the matrix of

columns z;

J
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with these vectors satisfying the underdetermined system of equations



vz =0;. (2.23)

Proceeding with a least squares solution of the equations yields

o]
2y =¥ o, (2.24)

which then completely defines IZL, rem - Note in the above equations that the indices |

range over all eigenvectors/eigenvalues leading to the localization of the response.

As stated above, the plan is to induce localization of the mode shapes by

randomizing the diagonal component of K| rgp , denoted as K pgmp  or

KL Femp = diag[KL,FEM ] =1 diag[z z' ] (2.25)
Then, the off-diagonal component of }?L, FEM Can be regrouped with the previous
global part of the ROM stiffness matrix to form the new Kg
Kg =K -K_ rom +¥" [KL,FEM - KL,FEMD]\P =K-¥'K_ remp¥?.  (2.26)

Given this split of the mean model stiffness matrix into local and global components, it is

proposed to introduce uncertainty on Kg as in Eq. (2.11) but the randomization of

KL remp Will require that this matrix remains diagonal (see discussion above). To this

end, it is proposed to proceed in parallel with Eq. (2.12a) with a “scaling” (scalar H12)

and a “distortion” (matrix Hy ), that is

Ki remp = mH{ diaglz Hz HZZT (2.27)
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where the matrix Hy is a lower triangular random matrix defined by Eqs (1.3)-(1.4)
and Fig. 1.1 for a particular dispersion &7 . Regrouping terms, the random ROM
stiffness matrix is then

K=Kg+¥ K remp?- (2.28)

2.5.1. Algorithm
The application of the above approach can be decomposed into the following steps:

(a) selection of the basis functions i and computation of the mean ROM stiffness
matrix K from its finite element counterpart Kre using Eq. (2.4),

(b) determination of the eigenvectors P and eigenvalues pj of the matrix K,

(c) selection of the set (values of j) of these eigenvectors and eigenvalues that will
lead to localization of the uncertain response, i.e., closely spaced eigenvalues for the

bladed disk example,

(d) determination of the corresponding columns Z according to Eq. (2.24),

(e) construction of the mean model matrix KL,FEMD according to Eq. (2.25),

(f) determination of the mean stiffness matrix Kg from Eq. (2.26),

(9) selection of the parameter 41 which is as large as possible while maintaining the
positive definiteness of the matrix Kg,

(h) selection of the dispersion parameters 6g,81,and &,

(i) simulation of the random matrices K| ggpp according to Eqg. (2.27),

(j) computation of the decomposition matrix Lg satisfying Eqg. (2.11b),
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(k) simulation of the random K¢ according to Eq. (2.11a),

(I) assembly of the random stiffness matrices as in Eq. (2.28).
2.5.2. Application
The above modeling procedure was applied to the 200 modes ROM of the disk of

Fig. 2.3 with the summation in Eq. (2.22) extending over the first 12 modes. Moreover,

the parameter p; was selected as the largest value for which the matrix Kg is positive

definite. Then, shown in Fig. 2.14 are the four typical modes for a particular mistuned

disk realization obtained with (g, 91,9 ) = (0.1, 0.1, 0.02). It is seen that these modes

are indeed strongly localized to 1 or 2 blades as desired.
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Figure 2.14. Tip Displacements of Four Typical Modes for a Particular Mistuned Disk
Realization Obtained with the Approach of Egs. (2.21)-(2.28) for (3g,81,9) = (0.1,

0.1, 0.02).
To better understand the role of each uncertainty mechanism on the occurrence of
localization, the three cases (dg,061,6.) = (0.1, 0, 0), (0, 0.1, 0), and (0, 0, 0.02) were

also investigated and shown in Fig. 2.15 are some typical mode shapes of a particular

realization of the bladed disk.
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Figure 2.15. Tip Displacements of Some Typical Modes for a Particular Mistuned Disk
Realization Obtained with the Approach of Egs. (2.21)-(2.28) for (a) (dg,01,6.) = (0.1,

0,0), (b) (8g5,671,0.)=1(0,0.1,0),and (c) (8g,81,9.) =(0, 0, 0.02).
These figures demonstrate that:
(i) the effect of the uncertainty on Kg (controlled by d ) does induce distortion
but not localization,
(ii) the uniform shift of eigenvalues (controlled by &1) creates neither distortion nor

localization as it produces a tuned model different from the mean one,
(ii1) that the mixing of eigenvalues induced by Hz (controlled by § ) is the

source of the localization of the modes.

37



This situation is in contrast with class A and B structures for which the mean model

response is localized and where the uniform shift of eigenvalues, quantified by &, is the

dominant mechanism to be modeled.

While the above methodology has been described in the context of the stiffness

matrix, it can be used in the same format to introduce uncertainty in the mass matrix.

Specifically, one can decompose the mean ROM mass matrix M into local and global

components with
ML, FemD = diag[mL,FEM ] =m diag[z ZT]
and
Mg =M -¥"M| remp? -
Then, uncertain matrices M| ggpmp and Mg can be generated as
M| FEMD = nH{ diaglz Hy HJZT

and

MG = ﬁG HG H(-E ﬁc;r where I\WG = ﬁG ﬁc;r

The uncertain ROM mass matrix is then obtained as

M =MG +\PTML,FEMD\P .

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

For the selection of the matrix Z, it is desired through the local mass matrix to affect

the natural frequencies which are closely spaced. Since the mean ROM mass matrix is

identity here, the mean mode shapes are the corresponding eigenvectors of the mean
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ROM stiffness matrix P and thus the selection of the vector Zj in Eq. (2.23) is still

appropriate.
The above formulation was applied to the 200 modes ROM of the disk of Fig. 2.3

with the columns z; determined from the first 12 modes. Moreover, the parameter m;

was selected as the largest value for which the matrix Mg is positive definite. Given

the above discussion on the role of the three different uncertainty mechanisms, the
dispersion parameters (g, 91,9 ) were first selected as (0, 0, 0.02). Then, shown in Fig.
2.16(a) are the first two modes for a particular mistuned disk realization; they are seen to
be localized consistently with Fig. 2.15(c). Adding a random shift of the eigenvalues, i.e.,
with &7 # 0, does not affect noticeably the modes, see Fig. 2.16(b), as may be expected
since this shift only induces a tuned change to the system. Finally, the uncertainty on the
global mass matrix Mg induces distortion of the modes, see Fig. 2.16(c) but not
localization, again consistently with the stiffness based uncertainty results of Fig. 2.15.
Having successfully achieved localization producing mistuning, it was of interest to
assess how to add further uncertainty to a bladed disk already mistuned. Since such a disk
exhibits the properties of class A and B structures, i.e., its eigenvalues are closely spaced
and the modes are localized, it was construed that the randomization approach of Eq.
(2.10)-(2.12) would conserve the localization of the mode shapes. These properties were

indeed confirmed for the mistuned disk of Fig. 2.12 for (8g,97,6.) = (0.1, 0.1, 0.0), the

results not shown here for brevity.
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Figure 2.16. Tip Displacements of Some Typical Modes for a Particular Mistuned Disk
Realization Obtained with the Approach of Egs. (2.29)-(2.33) for (a) (85 ,91,6.) = (0, 0,

0.02), (b) (8g,81,8,) = (0, 0.1, 0.02), and () (8¢ ,51,5, ) = (0.01, 0.1, 0.02).
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3. NONLINEAR GEOMETRIC THERMOELASTIC RESPONSE OF STRUCTURES

WITH UNCERTAIN THERMAL AND STRUCTURAL PROPERTIES

3.1. Introduction

The present Chapter focuses on the effects of uncertainty on the response of heated
structures undergoing large deformations. In such multidisciplinary problems, the
uncertainty may be associated with each discipline and/or with their coupling. Since the
consideration of uncertainty on the structural properties alone has been discussed
extensively before, this investigation will focus more specifically on the novel aspects of
the uncertainty on the thermal properties (capacitance, conductance) and the
thermal-structural coupling induced by the coefficient of thermal expansion. The
propagation of these uncertainties to both temperature distribution and structural response
will be determined. In this regard, note that thermal-structural coupling is effectively a
one-way interaction. Indeed, the temperature distribution induces stresses in the structure
that result in thermal loads and changes in its natural frequencies and mode shapes. In
reverse however, the structural deformations directly affect the temperature distribution
only through the very weak latency term which is ignored. A stronger coupling between
the structural deformations and the temperature distribution may however exist in
aero-structural-thermal problems since the structural motion will affect the aerodynamics
and especially the aeroheating which drives the temperature distribution. This situation is
not considered here. Moreover, it will be assumed that all properties are independent of
temperature with the extension of the present formulations left as future work.

Owing to the potential or actual occurrence of thermal buckling, it is highly desirable
to carry out the structural analysis in a nonlinear geometric format which, unfortunately,
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leads to a significant increase in computational effort especially when considering
dynamic situations. These conflicting requirements have led to the formulation and
development of nonlinear thermal-structural reduced order modeling strategies for the
temperature and displacements, see (Perez et al 2011) and (Matney et al 2011), which are
based on similar developments for structural only models, see (Kim et al 2013, Mignolet
et al 2013) and (Perez et al 2014).
3.2.  Uncertainty Modeling
3.2.1. Modeling of Conductance and Capacitance Matrices
Uncertainty in the conductance and capacitance properties of the structure can be
included in the reduced order model by modeling the corresponding ROM matrices
(conductance and/or capacitance) using the above nonparametric approaches as these
matrices are symmetric and positive definite.
3.2.2. Modeling of the Structural and Coupling Properties
The next task is the modeling of uncertainties in the material properties that affect

the structural ROM, e.g., the tensor of elasticity, coefficient of thermal expansion. The

intent here is on generating random values of the parameters Ki(jl) : Ki(ﬁ) : Ki(j3|2), Ki(jtlh)

, and Figth) directly, as opposed to simulating the material properties in the finite

element then mapping them to the ROM. To proceed in this manner, it is necessary to
first establish the mathematical/physical properties that those parameters must satisfy,
then construct simulation algorithms that maintain these properties for every sample.

Such an effort was carried out in (Mignolet and Soize 2008) for the structural alone

problem, i.e., the simulation of the parameters Ki(jl), Ki(ﬁ) ,and Ki(jslg). More
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specifically, it was shown that a matrix Kpg composed of these stiffnesses is positive

definite. This property was derived from the following expressions (Kim et al 2013,

Mignolet and Soize 2008)

au™  auM

K = iklp = — dX (3.1)
o, Xk X p
K@ = L[R@, + kD, + RO (32)
mnp = 5 [ mnp pmn npm .
where
, ou{m M sy (P)
Kr(n2r2p= — Cijl U™ Ve gx (3.3)
oX | Xy X,
Qo
and
1 . ouM oyl su M U P
K@np == [ ————Cjaw ————dX (3.4)
Pr2d oxy oxe T ooxp axy,

Qo
In these equations, Qg denotes the domain of the structure in the undeformed
configuration, Ui(m)(X) is the mth basis function for the representation of the ith
component of the displacement vector over the continuous domain X € Q. Moreover,
Cikip s the elasticity tensor.
Next, a reshaping was first performed to transforms the MxMxM third order tensor

K@ into a MxM 2 rectangular array K@ and the MxMxMxM fourth order tensor
K® into a M 2xM 2 square matrix K®  These operations are achieved as follows:
=R with J=(n-1)M+p (3.5)
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and
KO =k, with  I=(m-)M+s  and  J=(n-1)M+p. (3.6)
Construct next the expression
Eq =K® wy w, +2Kr(an) W V3 +2|Z|(§)V| V; (3.7)
where w,, and v, are the components mand | of arbitrary vectors w and v. Then,

from Eqs (3.1)-(3.4) one finds

(m) (n) (m)
ouU; ay, ou; ] | 3
[Wm 8)(I|<Jcik|p [Wn aXJ-I- Z[Wm 5)21' Jcijkl (VJ ZIEI ))-I—(V| ng) )Cjklw (VJ Z|(W)) dx

au™ 0 au M )
:I W X +V| Zij Cijkl Wh 6X| +V; Zkl dX = jBij Cijkl Bkl dX

Q I Q
(3.8)
where for notational convenience
(M Ay P oy (m
ZIEIJ) _ U U and  Bjj =wp LtV Zi(‘l) (3.9)
Xy X X ]

Since the elasticity tensor Ciyp is positive definite, it is seen from the last equality of

Eqg. (3.8) that Eg is positive for any vectors w and V. Rewriting this quantity as

1 k@
T LT K K w
Es = [W v ]{R(zﬁ ZR(B)HV} (3.10)
itis seen that the PxP (P=M + M 2) symmetric matrix Kp defined as
kK@ k@
Kg = {RQ)T ) (3.11)

is positive definite.
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To extend this discussion to include the structural-thermal coupling terms Ki(jtlh) ,

and Fifth), note first that these parameters can be expressed as (Perez et al 2011).

() - | ou{™ au M

mnp = .
A, oX @XJ

Cjuir oy, TP dX (3.12)

and

(m)
R | oU;

mn —
0, X

Ciwir oy, T dX.. (3.13)

which are of the same form as Egs (3.1)-(3.4) but involve the strain term o T (n)

where o is the coefficient of thermal expansion tensor and T (X ) is the nth basis
function for the temperature in the continuous domain X € Q.
Next, proceed in reverse of Eqgs (3.7)-(3.8) and define

(m) (n)
oU; oJ
EC = I Wn a)é +V) Zi(jl) +Zny (xijT(m)}Cin {Wn 8)(k

vy 20 420 a TO |dX

Q j
(3.14)
which is positive for all wg,, v|,and z,,.Expanding the products in the integrand
leads to
kKO g

F
EC:WT v STIIR@T  Hg@  gl(th)

w
v (3.15)
T )T () |,

where kﬁh) is the M 2xu rectangular array obtained by reshaping the third order tensor

K(th) according to
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IZ,(S‘) = R0 with 1=(i-1)M+] (3.16)

and K () is the pxu symmetric, positive definite matrix of components

KE = [o s 7™ Cpr ey, T dX. (3.17)
Q

Since the expression Ec of Eq. (3.14) is positive for all wy,, v|,and zp,itis

concluded that the QxQ (Q =M +pu+ M 2) symmetric matrix Kg

(th)

(th) (3.18)
(tt)

KO RO

F
Ke=|KOT 2k® K
gt g

is positive definite.

The above property provides a clear path for the simulation of parameters Ki(jl) ,

K@ K@

il Kijip» Kijji > and Fifth) within the maximum entropy nonparametric approach.

Specifically, form first the matrix K of the mean model from the parameters Ki(jl) :

Ki(ﬁ), Ki(jslg), Ki(jtlh), Fifth), and Kr(rﬁ]) of the finite element model of the mean
structure. Then, proceed with the simulation of random matrices K according to Egs
(1.1)-(1.4) and Fig. 1.1, i.e.,

Ke=Lx Lk and Kc=LxHxHKLK  (3.19), (3.20)

where (assuming a Cholesky decomposition of K¢ )
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L= 02 02 o | and He=|HY 1D o | @21,62)
i of oo HY HE Her

where the subscripts S and T refer to the structural and thermal part of the model.

Finally, decompose the random matrices K¢ of Eq. (3.20) according to the

partition of Eq. (3.18) and identify the random parameters Ki(jl), Ki(ﬁ), Ki(jslz)’ Ki(jtlh),

and Fifth). It is interesting to note in the above format that the simulation of the

thermal-structural coupling properties Ki(jtlh) and Fifth) is achieved in conjunction with
the structural only model but independently of the thermal properties, e.g., capacitance,
conductance.

While the above developments assumed that the elasticity tensor and thermal
expansion were independent of temperatures, linear variations of these properties can also
be considered in a deterministic ROM formulation, see (Matney et al 2011), and in an
uncertain one, see Appendix A for the extension of Eqgs (1.7), (3.11)-(3.18) to the case of
the thermal expansion varying with temperature as an example of the process.

3.3. Implementation Challenges

The above process seems clear and well defined but after a closer inspection and

trials, three key challenges were encountered. They are described below separately and

their solutions briefly discussed, see Appendices B and C for details.
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3.3.1. Identified Coefficients vs. Symmetric Coefficients

It should first be recognized that a series of terms in Eq. (1.7) involve the same

monomials of the generalized coordinates, e.g. Ki(ﬁ) and Ki(u?) , and thus these terms
may naturally be regrouped leading to the ROM governing equations

Mquj + Dquj +[Kigl) + K-(th) T :| qJ + K(Z)CIJC" + K(s)

th
il il Sajaap=F+F"V 7. (323

This equation is very similar to Eq. (1.7) except that there is no repetition in the

monomials because Kigf) and Ki(j?% are nonzero only for j < land j <1< p. Note

further that the identification methods discussed in (Perez et al 2011), (Matney et al

2011), (Kim et al 2013), (Mignolet et al 2013) and (Perez et al 2014) yield the

coefficients Kiglz) and Ki(jfg) not Ki(jf) and Ki(j?g but it is these latter ones which are

necessary in Eq. (3.18). Accordingly, an intermediate step in the simulation process is to

transform one set of quadratic and cubic coefficients ( Kiglz) and Ki(jfg , referred to as

(2) and KO

“identified”) into another (K; i ijlp referred to as “symmetric”). To this end,

comparing Egs. (1.7) and (3.23) it is found that

0 for I <n
Kr(nzn)l =Kk for I=n (3.24a)
2 2
Krgm)l + Kr(m?] for I >n
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0 unlessp>1>n

K® for p=I=n

Koo = Kot + K + Ky for p=1>n (3.24b)
Kggu + Kr(nﬁ)pl + Kr(ﬁ?l)lp for p>I=n
zKﬁglp + 2K§n3|gIn + 2Kr(ns|)pn for p>I>n

Moreover, as discussed in (Mignolet and Soize 2008), the symmetry properties of the

elasticity tensor and the form of Egs (3.3) and (3.4) also imply that

> (2 2 (2
Ki(jl) = Ki(lj) (3.25)
and
B _k® _k® _k®
Kmnlp - Knmlp - Kmnpl - KIpmn (3.26)

Unfortunately, Eqgs (3.24) and (3.25) are not sufficient to yield a unique set of values

2 3
of K@ and k© i i

i il except for the one mode

from given values of K

situation, i.e., all indices equal. The problem is further compounded by a similar issue in
the transformation of the quadratic parameters Kigf) to their related coefficients Kiﬁ)
using Eq. (3.2). It is thus not possible to uniquely map the identified coefficients Kiglz)

and K&

ilp to the corresponding blocks of the matrix K.

This problem is not specific to the matrix K, it is also encountered in the purely
structural situation, i.e., when constructing the matrix Kpg, and it has recently been

addressed (Wang et al 2018) based on the following observations:
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(a) the decomposition of the identified coefficients Ki(jf) and Ki(j?g) into the

parameters Ki(jf) and Ki(ﬁz) should only be a function of the modes i, j, l and i, j, I, p,
respectively.
(b) the decomposition should ensure that the matrix Kpg corresponding to the n

selected modes or any subset of these modes, is positive definite, or as close as possible
to it.

Accordingly, it was proposed in (Wang et al 2018) to proceed in steps, resolving the

indeterminacy on all distinct two-mode coefficients, i.e., K,(”z) K,(,JZ) KS,ZJ) KS,ZI)

Ki(l‘?J) , Ki(lfj) : Kiﬁ) ,and Kiﬁ) , by enforcing that they satisfy Eqgs (3.2) and (3.24) and
lead to a maximum of the lowest eigenvalue of the matrix Kpg corresponding to the two
modesiand j > i.

Next, the indeterminacy on all distinct three-mode coefficients, i.e., KA k@

ijl - jil e

S (2 3 3
Kl(ij)’ Ki(n;)wa”d Ki(li;))’

was similarly resolved by enforcing that they satisfy Egs (3.2)
and (3.24) and lead to a maximum of the lowest eigenvalue of the matrix Kg
corresponding to the three modes p > |1 > j> i.

Finally, the indeterminacy on all distinct four-mode coefficients, i.e., Ki(ﬁz), Ki(l]?’[)),

and K-(3)

ipjl » Was again resolved by enforcing that they satisfy Egs (3.2) and (3.24) and

lead to a maximum of the lowest eigenvalue of the matrix Kpg corresponding to the four

modesiandj>iand|l>j>i.
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3.3.2. Lack of Positive Definiteness of the Matrix Kg

After the series of optimization efforts carried out in the previous section, it was

found that the resulting matrix Kg may not be positive definite, see (Wang et al 2018)

for justification and examples. In such cases, it was proposed that this matrix be modified
to become positive definite. This modification was accomplished:

(a) without affecting the part of Kg that is positive definite, e.g., the linear stiffness

matrix K(l);

(b) inducing the smallest changes possible to this matrix.

The procedure proposed in (Wang et al 2018) is summarized here in Appendix B and
its application to the matrix K discussed.

3.3.3. The Matrix K(tt) Is Not Well Identifiable

An unusual feature of the matrix K¢ is that it involves the matrix K ) which

does not appear in the reduced order model equations, Eqgs (1.7) or (3.23), and thus its
identification/selection requires further discussions.

At first, it was intended to identify the mean value of this matrix. An indirect

approach was devised in which the terms oqu(”) and  Cjyr oc,rT(”) were

recognized as components Ir and jk of the thermal only strain tensor aﬁfh) and the
corresponding stress tensor cﬁfh) both induced by the thermal mode n. Then, the
coefficient Kr%) corresponds to the integral (summation over all nodes/elements) of the

product s%h) :c,(qth) . It remained then to determine the thermal strain and stresses. This
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was accomplished by applying temperature along mode n on the structure with all of its

nodes restrained, the resulting stress distribution would then equal GQ“) and the

corresponding strains aﬁfh) could then be obtained using the tensor of elasticity.

The implementation of this identification approach within Nastran was not

successful, leading, even for very small reduced order models, to matrices K¢ that
were not positive definite. Accordingly, another strategy was devised. Specifically, since
K(tt) isonly presentin K¢, notin Egs (1.7) or (3.23), its determination is effectively
part of the stochastic modeling effort. Then, its value being unclear, it was argued that

K ) should be determined by the entropy optimization effort. It is shown in Appendix
C that this condition leads to Lyt , in Eq. (3.21), is equal to the identity matrix.

This result completes the determination of the lower triangular matrix Ly, its

structural only blocks I:(Sl), [(328),and I:(S3S) are determined by the Cholesky

decomposition of the positive definite Kg resulting of the sections 3.3.1 and 3.3.2

above. Moreover, from Egs (3.18) and (3.19),
) - [0 ana o[k Q]" @n ez

3.4. Implementation of Separate Uncertainty Levels

The matrix K¢ involves two different properties of the structure: its elasticity

tensor and its coefficient of thermal expansion the level of variability of which may be
different. This situation is similar to the maximum entropy modeling of uncertainties that

satisfy and violate certain symmetries, see (Murthy et al 2014) for a rotordynamic
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application and (Matney et al 2011) for an implementation focused on material
properties. In these investigations, it was proposed to compound the effects, i.e., H
matrices, induced by both types of uncertainties.

In the present context, the compounding of the uncertainties in the elasticity and

thermal expansion tensors can be achieved by expressing Hy as

Hy = Hr Hg (3.29)
where
1
Lo o HY o0 o
2 3
Hr= 0 1 of ad Hg={HY HY o (330), 331
(2 o 0 I
o -

In the above equations, | denotes the identity matrix of appropriate dimensions and the *

designates a matrix partition which is irrelevant as it does not arise further in the

computations, affecting only the matrix K () of the random structures. Rewriting Eq.

(3.20) with (3.29) yields
= = — = T
Kc =Lk Hy Hg HE HY Lk =(Lx Hy )Hs HE (Ck Hr) (3.32)
it is seen that the randomization of the structural properties is a two-step process. First, is

the randomization by Hy transforming the mean model matrix K¢ into the random

one
Ke =L Hr HT Tk = (L Hr )(Tk Hr)' (3.33)

which serves as a mean model for the further randomization by Hg .
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Note in the above process that the random matrix Hy only affects the ST blocks of

Kc, e, Ki(jtlh) and Fifth), and thus it models the uncertainty associated with the
thermal expansion which is present only in those terms. On the contrary, the components

of the random matrix Hg will affect all blocks of the K matrix and thus is

appropriate for the modeling of the uncertainty in the elasticity tensor which is present in

all elements of K¢ .
The selection of blocks of the Hg and Hy matrices as the identity or the zero

matrix does not conform with the discussion of Eqs (1.1) — (1.4) and Fig. 1.1 but it is
consistent with the extended nonparametric formulation developed in (Mignolet and
Soize 2008) in which the uncertainty associated with the corresponding eigenvalues is set

to zero while no constraint is imposed on the variability of the other eigenvalues.

Accordingly, the block H%) and H%) are simulated as off-diagonal elements of the

matrix H of Fig. 1.1, i.e., as independent identically distributed zero mean Gaussian

random variables with standard deviation o related to a uncertainty level &7 . Finally, the

2x2 top left block of Hg is simulated as in Egs (1.1) — (1.4) and Fig. 1.1 with the

appropriate matrix size, i.e., M +M 2 and uncertainty level dg.

3.5. Example of Application — Straight Beam
3.5.1. Mean Model
The panel of (Matney et al 2011) was considered to demonstrate the application of

the above uncertainty modeling strategies and provide a first assessment of the effects of
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on the structural-thermal response uncertainty on the thermal properties and/or on the
coefficient of thermal expansion.

Following (Matney et al 2011), the panel was modeled as an isotropic
clamped-clamped beam with properties given in Table 3.1 and was modeled by finite
elements in MSC.Nastran. The structural model consisted of 40 CBEAM elements while
the thermal one involved 40 CQUADA4 elements along the beam and 6 through thickness.

Table 3.1. Clamped-Clamped Beam Mean Properties

Beam Length (L) 0.2286 m
Cross-section Width (w) 0.0127 m
Cross-section Thickness (h) | 7.88 10* m
Density 2700 kg/m?®
Young’s Modulus 73,000 MPa
Shear Modulus 27,730 MPa
Coeff. Thermal Expansion 2.510°/°C
Mesh (CBEAM) 40

The beam was subjected to a triangular flux of width 2A=0.4 L, see Fig. 3.1,

oscillating about the middle of the beam (ag = L/2) with a frequency Q and an

amplitude 6=0.075 L. The peak heat flux was selected so that the peak temperature on the
upper surface of the beam would be 10°C for the steady problem (2 = 0) while the

bottom surface was maintained at 0°C. The ends of the beam were also maintained at 0°C.
This thermal loading led to a tip static deflection of 0.65 thickness and thus to a nonlinear

geometric behavior.
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Figure 3.1. Beam Panel Subjected to an Oscillating Shock.
A reduced order model of the panel was constructed using 17 structural modes and
12 thermal basis functions, see ((Matney et al 2011) for details, which led to an excellent
prediction of the full Nastran results. Of particular interest here is the peak response vs.
frequency Q which displays a peak for Q approximately equal to 1/2 of the first linear

natural frequency of the beam, see Fig. 3.2.
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Figure 3.2. Maximum Transverse Deflection on the Beam and at the Beam Middle as a
Function of the Flux Oscillation Frequency Q as Determined from the ROM and Nastran
Computations.
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3.5.2. Uncertainty Modeling and Analysis

The consideration of uncertainty on the conductance properties was first carried out.
In selecting the simulation strategy, Eqgs. (1.1) — (1.4) or Egs. (2.11) — (2.14), it was first
noted in the results presented in (Matney et al 2011) that the temperature distribution
rapidly decayed to zero away from the zone heated by the triangular flux. This
observation suggested that the temperature distribution exhibited a localized behavior. To
confirm this expectation, a concentrated flux was applied to the beam and the resulting
steady temperature was determined using a full finite element analysis, see Fig. 3.3(a). It
is clearly seen that the temperature is strongly localized. In fact, this behavior results
from the fixed temperature boundary condition on the bottom. If this condition was
replaced by an adiabatic one, the temperature distribution would be the one shown in Fig.

3.3(b) which is extended to the entire panel, i.e., exhibits a global behavior.

(a) (b)

Figure 3.3. Distribution of Temperature in a Beam Due to a Single Heat Flux at the
Location Marked by X. (a) Adiabatic Boundary Condition on Beam Top but Zero
Temperature on Bottom. (b) Adiabatic Boundary Conditions Throughout.

The localized vs. global character of the temperature distribution can also be assessed
from the eigenvalues of the conductance-capacitance problem as shown in Fig. 3.4. A
localized character is associated with a series of close eigenvalues occurring at a nonzero
value, see Fig. 3.4(a), while a global problem results when these values are spread in
relative values. The existence of these two opposite behaviors for the mean model

suggests that the uncertainty modeling strategy of the conductance and capacitance
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matrices should similarly be able to induce mostly global or mostly local variations. On
this basis, the maximum entropy approach for localized responses, Eqs (2.11) — (2.14), is
proposed here to model these uncertain matrices regardless of the thermal boundary

conditions.
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Figure 3.4. Comparisons of Eigenvalues of the Conductance-Capacitance Problem. (a)
Case (a) of Fig. 3.3, (b) Case (b) of Fig. 3.3. (c) Comparison

Given the localized behavior of the current example problem (with the fixed

temperature boundary conditions), see Fig. 3.3(a) or 3.4(a), it was expected that the

uncertainty would mostly be introduced on the local component of the model, i.e., IZL :

Nevertheless, the effects of introducing the uncertainty on KG and IZL were

separately assessed first then jointly. The overall uncertainty level was quantified as in

(Soize 2012) by the dispersion parameter & defined by Eq. (1.4).
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Then, shown in Fig. 3.5 is the temperature distribution on the beam at a
representative time induced by the oscillating flux. The yellow band represents the range

of values between the 5th and 95th percentile of the temperature obtained at each node

point for a value of 6=0.05 on the global component of the conductance matrix, IZG ,and

no uncertainty on its local counterpart, IZL . Note that the uncertainty band extends very
far reaching the boundaries as expected from a global behavior. On the contrary, see Fig.
3.6 the temperature induced by a similar uncertainty in IZ,_ remains very localized to
the middle of the beam where the flux is defined. Combining these two uncertainties
leads to the results of Fig. 3.7 which exhibit broad band near the flux and only a very
small band away from it as would be physically expected.

Having successfully produced random samples of the temperature distribution, it was
next desired to propagate this uncertainty to the structural response. Each sample of the
temperature was input to the structural ROM to determine the response over the range of
oscillation frequencies Q corresponding to the peak in Fig. 3.2(b). The resulting
uncertainty band corresponding to the 5th-95th percentile was then evaluated for each
frequency and is shown in Fig. 3.8. Note the broad range of frequencies over which the
peak is observed and that the width of the (yellow) uncertainty band in the response at
peak is wider than the one on the temperature, i.e., about +10% of the mean value vs.

+5% in Fig. 3.7.
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Figure 3.5. Uncertainty Band Induced by Introducing Uncertainty Only in the Global
Component of the ROM Conductance Matrix. 40Hz Oscillating Triangular Heat Flux.
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Figure 3.6. Uncertainty Band Induced by Introducing Uncertainty Only in the Local
Component of the ROM Conductance Matrix. 40Hz Oscillating Triangular Heat Flux.
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Figure 3.7. Uncertainty Band Induced by Introducing Uncertainty on Both Local and
Global Components of the ROM Conductance Matrix. 40Hz Oscillating Triangular Heat
Flux.
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Oscillating Frequency. Uncertainty on Conductance.
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Figure 3.9. Uncertainty Band on Peak Structural Response as a Function of the Flux
Oscillating Frequency. Uncertainty on Thermal-Structural Coupling Parameters.

Uncertainty in the structural model was next considered, first in the thermal
expansion, i.e., on the thermal-structural coupling, was introduced first through the

matrix Ht with Hg set to the identity matrix and proceeding with Eqgs (B.12) and
(B.13) to resolve the singularity of the matrix K¢ . Note that the matrix K,3 was not

found to be a significant contributor to the mean response and thus Eq. (B.14) was not
implemented. The uncertainty analysis was carried out with a value of & = 10*. This

value seems very small, giving rise to coefficients of variation of 0.59% (I =1), 0.35% (I

=3), 0.80% (I =5) on the parameters K ! and 0.56% (I =1), 3.05% (I =3), 7.84% (I =5)

on Flﬁth) which are the key driving terms to the first and dominant structural mode. Then,

shown in Fig. 3.9 is the uncertainty band and mean model prediction of the peak beam
(transverse) response as a function of frequency. Note that the width of the band, +£2.5%

of the mean value at the resonance, is significantly larger than the above coefficients of
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variations of the parameters demonstrating a strong sensitivity of the response with
respect to the coefficient of thermal expansion and thus the importance of carrying such
uncertainty analyses.

The uncertainty on the structural part only was also considered and implemented

through the matrix Hg with Hy set to the identity matrix. This effort was carried out

with a value of & = 0.02 which corresponds to a coefficient of variation of the first natural
frequency of 0.56%. Then, shown in Fig. 3.10 are the uncertainty band and mean model
prediction of the peak beam (transverse) response as a function of frequency. Once again,
it is seen that the uncertainty level on the response is much larger than it is for the model
coefficients, confirming the sensitivity of the response. Finally, shown in Fig. 3.11 is
uncertainty band induced by both structural and thermal expansion uncertainties. As
expected, this band is wider than the ones seen in Figs. 3.9 and 3.10 and corresponding to

each uncertainties separately.
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Figure 3.10. Uncertainty Band on Peak Structural (Transverse) Response as a Function of
the Flux Oscillating Frequency. Uncertainty on Structural Parameters Only.
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Figure 3.11. Uncertainty Band on Peak Structural (Transverse) Response as a Function of

the Flux Oscillating Frequency. Uncertainty on Structural and Thermal-Structural
Coupling Parameters.

3.6. Example of Application — Panel with Stiffeners
3.6.1.Mean Model

The second validation is on the panel with stiffeners as shown in Fig. 3.12 which was
originally considered in (Culler and McNamara 2011) and is subjected to a trajectory
spanning Mach 2 to Mach 12 in 300 seconds with fully coupled
structural/thermal/aerodynamic computations. Full details of the panel properties are in
(Culler and McNamara 2011) but some key features are:

(1) nonlinear geometric structural effects are considered,

(i) the coefficient of thermal expansion is linearly dependent on temperature but the
tensor of elasticity is not,

(iii) the heat conduction problem is solved on the undeformed configuration with

capacitance and conductance properties varying with temperature,
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(iv) the aerodynamic forces are determined from piston theory while the
aerodynamic heat flux is estimated from Eckert reference enthalpy method,

(v) the structural problem is solved quasi statically while the heat conduction is
marched through a time step;

(vi) the computations of the thermal problem and the structural one are staggered,
marched with time step of 0.5s. The thermal solution at one time step is obtained first,
from the thermal and structural fields at the previous time step. Then, the structural
problem is solved using the current temperature distribution.

A structural-thermal ROM of this panel providing a close match of finite element
results was developed in (Matney et al 2015) and shown in Fig. 3.13 is a comparison of
the maximum transverse displacement and the temperature of the center of the panel
predicted by the finite element model (Culler and McNamara 2011) and by the ROM
(Matney et al 2015). In this ROM, the structural model included 44 structural basis

functions, and the thermal model included 42 basis functions.
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Figure 3.12. A Hypersonic Panel with Stiffener (Culler and McNamara 2011).
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Figure 3.13. (a) Maximum Transverse Displacements and (b) Temperature of the Panel

Center Over the Trajectory. Predictions by Finite Element Models (Culler and McNamara
2011) and Structural-Thermal Full ROM (Matney et al 2015).

3.6.2.Uncertainty Modeling and Analysis
Owing to the dependence of the coefficient of thermal expansion on the temperature,
the introduction of uncertainty in the structural and structural-thermal properties was

carried out on the Kp matrix of Appendix A and according to the discussion of Section

3.3.2 for the handling of the positive definiteness issues. In this problem, the block K3

in Eq. (B.7) was found to be important in determining the mean response. Accordingly,
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the uncertainty was introduced following Egs (B.12)-(B.14) with levels &g and &7 for
K,3 equal to those for K;; and Kjs3.

Due to the issues described in (Wang et al 2018), the ROM coefficients identified

from Nastran computations typically do not satisfy the basic symmetry properties derived
in (Muravyov and Rizzi 2003) and (Mignolet and Soize 2008), such as Kr(]ﬁ)nm = 3IZ,(n3nnn

, see Eq. (3.24b). In (Wang et al 2018) and section 3.5.2 these conditions were enforced
by symmetrization, see (Mignolet and Soize 2008). For the present ROM however, the
symmetrization was found to affect the prediction of the mean model. Thus, to avoid this
negative effect, a mapping was first established between symmetrized and
non-symmetrized identified coefficients of the mean model. This mapping was then used
in reverse to transform the random coefficients simulated on the basis of the symmetrized
model to random coefficients relevant to the non-symmetrized ROM.

It is known from prior investigations of this panel that its behavior is very sensitive
to small changes, e.g., visible differences were obtained with two different versions of
Nastran, and thus the levels of uncertainty were selected small. Considering first

structural uncertainty only (i.e., &1 =0), &g was selected as 0.001. Then, the coefficient
of variation of Kl(ihl) and Kl(tlhl)1 were found to be 0.37%, while those of Fl(lth) and

Fl(ltg) equaled 2.70%. Plotted in Figs. 3.14 — 3.15 are the 5 realizations and 10-90%

uncertainty band of maximum displacements along with the mean model for the entire
300s trajectory. It is clear that the effect of uncertainty is increasing with increasing time

and Mach number. It should also be noted that the drop in maximum response occurring
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at about 230s for the mean model was not duplicated by two of the realizations shown
suggesting that the change of dominant mode did not happen for that realization.

The effects of thermal uncertainty only (i.e., 5= 0) were also considered with &y

= 0.005. This selection leads to coefficient of variation of Kl(ihl) and Kl(tlhl)1 about

0.00% and 0.00%, in F") and F!) about 5.27% and 43.33%. Then, shown in Figs.

3.16 — 3.17 are the evolution of the maximum response on the panel for 5 samples and
band showing again that the variability of the response is very prominent near the mode

switching event.
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Figure 3.14. Maximum Displacement of the Panel Over 300s, 5 Realizations with &g =
0.001 and &1 =0, Along with the Mean Model.
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4. MAXIMUM ENTROPY STRUCTURAL-THERMAL UNCERTAINTY

MODELING AT THE FINITE ELEMENT LEVEL

4.1. Introduction

A modification of the maximum entropy modeling approach was developed in
Chapter 2 when the uncertain response is expected to exhibit a localized behavior. That
modification was achieved by understanding the properties of the ROM matrices leading
to a localization of the response and adapting the method to meet those properties.
Another approach, however, would be to introduce the uncertainty in a more spatially
localized manner to mitigate the globalization associated with the maximization of the
entropy. It is such an approach which is proposed here, i.e., to introduce the uncertainty
on each finite element matrix (mass, stiffness, conduction, etc.) following the maximum
entropy concept and treating the corresponding matrix from the baseline model as a mean
ROM. This approach represents a novel compromise between the modeling of
uncertainty within the elements (e.g., by randomizing the elasticity tensor) on one end
and at the level of a global ROM on the other. It brings some epistemic uncertainty not
present in the former approach while retaining more local character than the latter one.

Validations of this approach to a heated structural problem is carried out below. It is
moreover demonstrated that the approach can be used to model the uncertainty in the
elasticity tensor and the coefficient of thermal expansion (CTE) to relate element/nodal
strains and temperatures to their stress counterpart.

4.2. Single Physics Elemental Level Uncertainty Modeling

As described in the introduction, the focus of the present effort is on developing an
uncertainty modeling strategy at the level of the finite element. To this end, denote by
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K an elemental matrix (stiffness, mass, conductance) of the baseline finite element.
Next, assume that the only properties required for its uncertain counterpart K are that this
matrix is positive definite, symmetric, and non-singular. Then, following the maximum
entropy strategy, one can express

K=Lx Hc Hk Lk (4.1)
where [K is a decomposition of K satisfying

K =Lk Lk (4.2)

and Hy isa lower triangular matrix as defined in Fig. 1.1. The process could then be

repeated for each element in turn.

In applying the above concepts, there are two key issues which must be carefully
addressed. The first one is that the matrices Hy corresponding to different elements
cannot be simulated independently of each other. Doing so would induce very high
spatial frequency variations which are unphysical. Rather, it is proposed here to adopt the

matrix field modeling proposed in (Soize 2006) which views each element Hj; as the
transformation of a zero mean, unit variance Gaussian field PFjj with a specified
stationary autocorrelation function

R(y)=E|R;(x)P;(x")] y=x—X (4.3)
where x and X’ denote the coordinates of two elements (e.g., of their center).
Specifically, for i#j

Hij:Gij (4-4)

while fori =]
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-1
Hii = Fit [F(R;) (4.5)
where F is the cumulative distribution function of the standard Gaussian random variable

and Fl__|1 is the inverse of the cumulative distribution function of the Gamma random

i
variable H;;, see Chapter 1.2 for detail.

The correlation between random elemental matrices of neighboring finite elements
implied by the above algorithm must be reflected on every component of the assembled
matrix. That is, if a strong correlation is expected between two different finite elements,
then there must exist a similarly strong correlation between the components of their
elemental matrices which are added together in the construction of the global matrix.

Since the matrix Hy is built from the independent fields F;;, this condition can be

satisfied if:

(1) the elemental matrices of the mean and uncertain models are expressed in the
same (i.e., global) frame of reference, and

(2) each simulated sample of the random global matrix is independent of the ordering
of the nodes in each element.

This latter condition can be achieved as follows.

(i) Organize the mean elemental matrices K consistently with the ordering of its
degrees of freedom as: degree of freedom 1 for all nodes, degree of freedom 2 for all

nodes, etc.
(i1) Adopt lower triangular (or block lower triangular) decompositions EK to retain

the same ordering of the degrees of freedom.
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(iii) Restrict the random matrices Hy so that each of their samples is invariant
with respect to a permutation of the ordering of the nodes. This is achieved here by
expressing

Hk =H®I, (4.6)
where H is a mxm random matrix simulated as described in Eq. (4.3)-(4.5) where m is the
number of degrees of freedom per node. Moreover, |, denotes the rxr identity matrix

where r is the number of nodes per element and ® denotes the Kronecker product
operation.

Once the elemental matrix (or matrices) have been simulated for each element, the
finite element model is reassembled and the response can be determined. Proceeding with
a series of such simulations provides a population of responses from which statistics can
be determined.

4.3. Uncertainty on Heated Structures

It is next desired to extend the above formulation to heated structures in which there
IS uncertainty in both the structural and structural-thermal coupling (i.e., coefficient of
thermal expansion) properties. The governing equations for a particular element can be
written as

M + Kx = Fy, T + Fggy (4.7)

where M is the element mass matrix, K the elemental isothermal stiffness matrix and

Fs are applied static structural loads, assumed deterministic. Moreover, T is the
temperature of the element and F, is the vector of thermal “forces” at each node and

each degree of freedom of the element. They are assumed here to be temperature
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independent reflecting a similar property of the coefficient of thermal expansion (the
extension to the case of a coefficient of thermal expansion linearly dependent on
temperature is discussed in previous chapter). Finally, x is the vector of displacement
degrees of freedom of the elements.

It is worthwhile to recognize, e.g., see Song et al (2017), that the vector F,
depends on both the coefficient of thermal expansion but also on the elasticity tensor of
the element. Thus, a randomization of K to reflect uncertainties in this tensor cannot be
done aloneg, it ought to include F, as well. This point was instrumental in the
discussion of (Song et al 2017) and led to the introduction of a matrix combining cold
stiffness properties and thermal effects which was shown to be positive definite.
Following this discussion but reduced to the linear case (nonlinear geometric effects were

also included in (Song et al 2017)) demonstrates that the positive semi definite elemental

matrix of interest is

Ke { “ } (4.8)

R Krr
where Kq1 is the elemental version of the matrix introduced in (Song et al 2017) which
does not appear in Eq. (4.8), see below for discussion.

Based on this observation, it is concluded that the elemental modeling of heated
structures desired here should be performed as in previous section on the matrix K¢ of
mean K¢ (an overbar is used consistently as before to denote matrices related to the
mean model). To this end, note first that the structural degrees of freedom need to be
reordered as described above. Then, let L be a decomposition of K¢ satisfying
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Ke=Lc L& (4.9)

More specifically, assume here that L is selected in the block triangular form

T o
=] _ _ 410
= L—th Lt } (419

Then, introducing Eg. (4.10) into Eq. (4.9), it is readily seen that Ly is defined as

before, Eq. (4.2), and thus with the symmetry condition
Lk = KY2 (4.11)
Next, from Eq. (4.9) and (4.10), the block Ly, should be determined to satisfy

Lin Lk = R (4.12)
In evaluating this block, two properties of the stiffness matrix K and the thermal

forces vector Fy, play a key role. Specifically,

(a) the matrix K is only positive semi definite exhibiting the 6 rigid body modes as
the element is free-free, and
(b) the application of the temperature does not induce any rigid body displacements.

Denoting by ®gg the matrix formed by stacking in columns the 6 rigid body

modes, the above two properties imply that
K@z =0 and ®pgFy, =0. (4.13), (4.14)
The singularity of K andthus Ly (see Eq. (4.11)) prevents its inversion to
determine Ly, directly from Eq. (4.12) but Eq. (4.13) guarantees that there are finite

norm matrices Ly, satisfying Eqg. (4.12). To proceed, let ®p be the matrix of the
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normalized deformation (non-rigid) modes of K stacked in columns and denote by

Ap the corresponding diagonal matrix of non-zero eigenvalues. Then, Eq. (4.13)

implies that F, can be expressed as
Fp =®p P with p=®L Fy, . (4.15), (4.16)
Moreover, to avoid the presence of the null space of K in Ly, let
L =" 5. (@.17)
Then, introducing Eq. (4.15) and (4.17) in Eq. (4.12) leads to

g=A3?p. (4.18)
To complete the decomposition of Eqgs (4.9) and (4.10), it remains to obtain the block

Lyt Wwhich is in principle derived from the matrix Ky . This matrix is difficult to

estimate accurately non-intrusively from a commercial finite element code. Then,
considering that it does not appear in the governing equations, Eq. (7), it has been

proposed that it be selected to maximize the entropy of the simulated matrices K¢ . This

is achieved (see Appendix C) when the block Lyt is equal to the identity matrix which

is assumed here in the sequel.

The randomization of the matrix K¢ is then proposed as in Eq. (4.2), i.e.,

Ke =Lc He HE LT (4.19)

where H¢ is the random block lower triangular matrix

Hg 0
He = (4.20)
Hin  Hrr
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where H is the matrix of Eq. (4.6) and Hy, and Hyt are novel random matrices
of form to be derived.

In this context, note first from the lower triangular form of both L and Hc that
Hyr would only affect the Kyt block. Since this matrix does not appear in the
governing equations, Eq. (4.7), its value is irrelevant and thus Hyt needs not be

computed nor discussed. It will be symbolically replaced by a * in the sequel to
emphasize this fact.

Next, note that the matrix K¢ involves two different properties of the structure: its

elasticity tensor and its coefficient of thermal expansion, the level of variability of which
may be different. To reflect these two variabilities, it is proposed here, as in Chapter 2

and (Song et al 2017), to compound them by expressing H¢ as the product of two

block lower triangular matrices, one expressing the uncertainty on the stiffness properties

(Hg ) and the other on the thermal properties (Hy ), i.e.,
Hc =Ht Hg (4.21)

where

L (Hk 0
Hy _(HTS *j and Hg _( 0 Ij' (4.22), (4.23)

In the above equations, | denotes the identity matrix of appropriate dimensions.

Rewriting Eq. (4.19) with Eq. (4.21) yields

e =T Hr Hs HUHT T = (T Hr)Hs M (T Hr)| 429
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from which it is seen that the randomization of the structural properties is a two-step
process. First is the randomization by Hy transforming the mean model matrix K¢

into the random one

i TiT ([ i T
Ke =Le Hy Hy Lo =(Le Hr )(Le Hr) (4.24)
which serves as a mean model for the further randomization by Hg .
The selection of blocks of the Hg and Hy matrices as the identity or the zero

matrix does not conform with the discussion of Fig. 1.1 but it is consistent with the
extended nonparametric formulation developed in (Mignolet and Soize 2008) in which
the uncertainty associated with the corresponding eigenvalues is set to zero while no
constraint is imposed on the variability of the other eigenvalues. Accordingly, the block

Hyg is simulated from off-diagonal elements of the matrix H of Fig. 1.1, i.e., from

independent identically distributed zero mean Gaussian random processes with standard

deviation ot related to a uncertainty level &y, see below.

Performing the matrix multiplications in Eqgs (4.21) and (4.24) and comparing the

results with Eqgs (4.8) and (4.20) leads to
Hy, = Hys Hi (4.25)
Fip = Lk He His + Ly H Hk g 4.26
th = Lk Hk Hys + Lk Hk Hik Lin (4.26)
together with Eq. (4.1) for the stiffness matrix.

Note in Eq. (4.26) that Fy, involves the compounding of the uncertainties in the

structural and thermal properties in Hx and Hxyg, respectively, which is consistent
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with the fact that Fy, involves both properties. On the contrary, the stiffness matrix K
only involves the structural uncertainties in  H , also consistently with its definition.
Moreover, the stiffness matrix K and the vector F, of the uncertain structures must
retain the properties (a) and (b) above with respect to the rigid body modes, i.e.,
K®gg =0 and ®pgFy =0 (4.27), (4.28)
Both of these conditions are satisfied by the forms of Eq. (4.1) and (4.26) since
Ll ®gg = Ly @gg =0 (4.29)
It remains to select the form of the random matrix Hyg to complete the

formulation. As discussed in (Song and Mignolet 2018) and above, it is necessary that

this matrix be such that each realization of the thermal force vector Fy, permutes, as the
mean model, under a permutation of the node numbers. To express this condition, let

P, =Bdiag(P;,Py,..., P;) (4.30)
where Bdiag is the operation creating a block diagonal matrix of the blocks specified and
P, is an arbitrary rxr permutation matrix where, as before, r is the number of nodes per

element. Under this permutation,
K — PJKP, andthus Ly — PJ L¢P, (4.31), (4.32)
Fn — Ps By andthus Ly, — Ly P (4.33), (4.34)
Then, one also needs Eqs (4.31) and (4.33) to be true for the uncertain matrices, i.e.,

K —> PJKP, and iy, — PJ Fy (4.35), (4.36)

The condition (4.35) implies
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Py Hg Hi P, =Hg Hi (4.37)
which is automatically satisfied by Eq. (4.6) as
Py Hy Py =Hg . (4.38)
Focusing next on the condition (4.36), it can be rewritten with the above results as
Hrs — HsP (4.39)
to be satisfied for every realization in Hyg. A first approach to satisfy this condition is
to impose
Hrs R =Hrs (4.40)
which is satisfied by
Hys =hrs ®J, (4.41)
where hrg is arow vector of m components defined as random fields with a specified
correlation length; and J, denotes the row vector of dimension r with all elements

equal to one.
The selection of Eq. (4.41) leads however to negligible uncertainty effects in the

absence of structural uncertainty. This occurs because the Kronecker product by J,

effectively induces vectors Hyg which are along the rigid body modes only. Then, the

product Ly H%S is zero and, in the absence of structural uncertainty, i.e., with Hg

equal to the identity matrix, one finds from Eq. (4.26) that F, = Fy,. Thus, no

uncertainty is introduced in the system.
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Another approach to satisfy Eq. (4.39) is to express Hyg in terms of a mean model
matrix/vector which exhibits the permutation. Given the size of the block H+g, it is
proposed here to express it in terms of Ly, as

Hrs =L U (4.42)

where U is a random matrix. Given Eq. (4.34), Eq. (4.39) would be satisfied by a matrix

U proportional to the identity matrix but the more general form would satisfy
PIUP =U. (4.43)
This condition is satisfied in particular with
U =diag(hrs ®J; ) (4.44)
where diag is the operation taking a vector and creating the diagonal matrix having these

elements along the diagonal.

The application of the above approach to introduce uncertainty in a heated structure

thus proceed as follows. First, from the mean model stiffness matrix K, determine Ly
according to Eq. (4.11) and in the process find the deformation modes @p and the

corresponding matrix of eigenvalues Ap . Then, from the mean model thermal forces

Fi, , determine the vector P according to Eq. (4.16) and the representation of Ly,

from Eqgs (4.17) and (4.18). This completes the decomposition of the mean model.

The introduction of uncertainty is achieved next with the mxm random matrix H
simulated as described in Eqgs (4.3)-(4.5) from a set of independent Gaussian random
processes with specified correlation length and with an uncertainty level &g relating to

Fig. 1.1 according to
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% and pg = (4.45), (4.46)

1
Og = m E
Each realization of this matrix is then multiplied (Kronecker product) by 1, to obtain
the corresponding sample of H , Eq. (4.6), and then of the stiffness matrix K using Eq.
4.2).

Next, samples of m additional independent Gaussian random processes with
specified correlation length (not necessarily the same as for the structural problem) are
generated and multiplied by the common standard deviation ot =87 /</m+3, &7
being the thermal uncertainty level. They are then stacked in the vector hyg from which
realizations of the vector Hyg are obtained using Eqgs (4.42) and (4.44). Finally, the
realizations of the random thermal force vector F, are computed from Eq. (4.26).

4.4. Validation on Correlation Length of Elemental Matrix Components

The construction of the random elemental matrices according to Eqs (4.1)-(4.6) and
(4.44) relies on 2 parameters, the overall uncertainty level 5 and the correlation length

Leorr - While the former parameter is well defined in terms of the elemental matrices, see

Eq. (10), the latter operates at the upstream stage of the simulation of the random fields

Rij - Accordingly, it is desirable to first assess how Lgo, relates to the correlation

between components of the simulated K matrices of different elements.

To this end, two structural models were constructed with 100 identical beam
elements, one in straight line, the other forming a half circle, see Fig. 4.1. The finite
element model was developed in Nastran with CBEAM elements with 6 degrees of

freedom per node and 2 nodes per elements, i.e., 12 degrees of freedom per element.
83



(a)

(b)

Figure 4.1. Beam Models for Correlation Length Analysis. (a) Straight Beam, (b) Half
Circle Beam.

Each element of the mean model of the two structures was assumed to have length
0.0057m, a rectangular cross section with sides 0.0127m (width) x 7.88 10*m (thickness)
and be made of homogenous, isotropic, elastic material with Young modulus E =

73.000MPa and Poisson’s ratio of v = 0.316. The correlation length L., and
uncertainty level 6 of the random fields F; were set to 10 element lengths, i.e., 0.057m,

and 0.1, respectively. For the curved beam, the correlation length was quantified along
the arc length of the inner circle.

Since the mean elemental matrices of each element are identical, the random

elemental matrices of elements  Kj; (n), n denoting the element number (between 1 and

100), are at least wide sense stationary and one can compute the correlation lengths

W) —m (4.47)
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where RE<”K) (m) denotes the autocovariance of the component ij of the random
elemental stiffness matrix defined as
ij = =
R(KK)(m):E{[Kij(n)_KijJ[Kij(ner)_Kij Jf (4.48)
Then, shown in Fig. 4.2 is a sample of the autocovariance functions of the elements
Kij (n) and of the random field Py, as estimated from the population of 3000

realizations using Eq. (4.48) with n = 1. Next, performing the summation over all lags m
=1,..,991in Eq. (4.47) leads to the correlation lengths which are shown in Fig. 4.3 and

which are very similar to those of the random fields F;. It appears from Figs 4.2 and 4.3

that the simulated components of the elemental stiffness matrix obey a correlation

structure similar to the one of the original Gaussian fields F;.

12 L t T 3
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0.8
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0.4

0.2

Auto/cross correlation function

0 20 40 60 80 100
Distance between nodes

Figure 4.2. Autocovariance Functions of Some Components  Kj; (n) (in Colors) and
Rj(n) (in Black Dashed Lines).
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Figure 4.3. Correlation Length of the Components Kij (n) (in Number of Elements) for
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4.5. Application Example

To illustrate the above uncertainty modeling, consider the annulus shown in Fig. 4.4
of inner radius 0.8m, outer radius 1m, thickness 0.002m clamped on its inner radius and
free on the outer one. The material, aluminum, is assumed to be homogenous and
isotropic with Young’s modulus E = 7.3 10'° Pa, Poisson’s ratio v=0.316, and coefficient
of thermal expansion o = 2.5 10°/°C. The annulus is subjected to a uniform pressure of
1Pa or a uniform temperature of 1°C in the quadrant 6<[180,270] degrees highlighted in
yellow in Fig. 4.4. To evaluate the displacement field of the annulus, it was modeled by
4-node (so r = 4) shell finite elements within Nastran (CQUADA4 elements) with a mesh
of 144 nodes around the periphery and 6 in the radial direction. Each node has 6 degrees
of freedom and thus m = 6.

The autocorrelation function of (Soize 2006) was selected here with a correlation
length equivalent to 60 deg. of the internal radius or about 24 elements Moreover, the

structural uncertainty level 3¢ was set to 0.1 which corresponds to a coefficient of

variation of the first natural frequency of the entire structure equal to 3%. Then, with a
uniform pressure loading, shown in yellow in Fig. 4.5(a) is the uncertainty band
corresponding to the 5th and 95th percentile of the transverse displacement of the
periphery as determined from the 300 samples of the response. The response is clearly
localized as the one from the mean model. For comparison, shown in Fig. 4.5(b) is the
uncertainty band generated by the approach of (Song and Mignolet 2018). While a one to
one comparison of the bands cannot be made as the methods involve different

parameters, it is clear that the predictions are similar in all qualitative aspects.
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Figure 4.4 . The Annulus and Its Finite Element Model, Loading Domain Highlighted in

Yellow.
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Figure 4.5. Static Transverse Displacement at the Periphery of the Mean Annulus (in
Red) and 5th-95th Percentile Uncertainty Band from (a) the Above Uncertain Finite
Element Model, (b) (Song and Mignolet 2018).

Next the loading was changed to temperature loading only, i.e., with Fg, =0 onall
elements. The correlation length was also set to 60 degree and &g was set to 0.1. The
matrix Hyg was set to zero so that the uncertainty is on the structural only terms. Then,

shown in Fig. 4.6 are the 5th-95th percentile uncertainty bands of the displacements at the
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edge obtained from 300 realizations. Note that the band in the transverse direction
includes both positive and negative values with an average approximately zero which is
the mean model result. Thus, the introduction of uncertainty has led to transverse

displacements not existing in the mean model, i.e., epistemic uncertainty has indeed been

introduced.
5
10 -6
155 : L L _x10
1F 6
5

e 05F =
o Q
5 g 4
g 0
5 53
A 05 Unc. Band a Unc. Band

—5th percent 2| | —5th percent

1 ——95th percent | ——95th percent
— Average 1+ | Average
15 — Mean Model — Mean Model
. L r 0 , R
0 100 200 300 0 100 200 300
Position (Degree) Position (Degree)
-6
x 10
6

=
[¢3]
S
(3]
o
o
o
(%)
A Unc. Band
——5th percent
——95th percent
4H
— Average
— Mean Model
-6 T r r
0 100 200 300

Position (Degree)
Figure 4.6 Displacements (in m) at the Periphery of the Mean Annulus (in Red) and

5th-95th Percentile Uncertainty Band in (a) Transverse, (b) Radial and (c) Tangential
Direction. Uncertainty on Stiffness.

It was next of interest to introduce uncertainty on the thermal force part only. This is

done by setting H as the identity matrix in Eqgs (4.1) and (4.26) leaving the
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uncertainty from the Hyg block only. The elements of this matrix were simulated as in

Eqs (4.42) and (4.44) with the same correlation length of 60 degree of the internal radius

and an uncertainty level &1 =0.1. Then, shown in Fig. 4.7 are the 5th-95th percentile

uncertainty band in the transverse, radial, and tangential directions at the edge of the

plates obtained from 300 realizations. Note here that the structural symmetry of the flat

annulus has not been modified since there is no structural uncertainty and thus the

transverse displacements are zero as for the mean model.
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Figure 4.7 Displacements (in m) at the Periphery of the Mean Annulus (in Red) and

5th-95th Percentile Uncertainty Band in (a) Transverse, (b) Radial and (c) Tangential

Direction. Uncertainty on Thermal Force Only.



Finally, shown in Fig. 4.8 are the uncertainty bands obtained when combining both
types of uncertainties. As expected, these bands are then wider than they are when either

set of uncertainty alone is present but only marginally so.
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Figure 4.8 Displacements (in m) at the Periphery of the Mean Annulus (in Red) and

5th-95th Percentile Uncertainty Band in (a) Transverse, (b) Radial and (c) Tangential
Direction. Uncertainty on Both Stiffness and Thermal Force.

4.6. Summary
The focus of this investigation was on the development and first validation of a novel
uncertainty modeling strategy that operates at the elemental level of finite element

models of heated linear structures. A key feature of the approach is that the elemental
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stiffness matrix and thermal force vector are simulated jointly to respect the dependence
of both of them on the elasticity properties of the structure. Following the maximum
entropy approach, the method produces samples of these elemental matrices and vectors
given their mean and two sets of parameters that describe (i) the overall level of
uncertainty (structural and thermal separately) and (ii) the correlation of the structural and
coefficient of thermal expansion properties, separately, across the structure. Owing to the
use of the maximum entropy approach, the proposed modeling strategy accounts for
aleatoric and some epistemic uncertainty of both types of material properties. The ease of

application of the method was demonstrated on a first example.
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5. NONLINEAR REDUCED ROMS: FORMULATION AND APPLICATIONS

5.1. Introduction

Nonlinear reduced order models are built by first choosing a sufficient number of
modes to form the basis functions. These chosen modes must be able to capture the
response of the structure over its entire trajectory and up to a required accuracy. Even
under white noise dynamic excitations, but especially in static conditions, this mode
selection strategy often overstates the number of modes that are really active/play an
important role in the response prediction. The penalty for having a basis too large is an
increase in computational cost in (i) identifying the ROM and (ii) computing the solution,
especially in multi-physics problems.

The approach investigated here to address this issue is a data-driven reduction of the
ROM into a reduced ROM (RROM). This reduction would proceed as follows. Firstly,
the (full) ROM would be used to compute the response for an appropriate number of
loading conditions or time steps, €.g., these could be the first 10 to 15 of a series of
similar static loadings in a static problem or the first 10 to 15 time steps in a transient
problem. This data would then be used, in a proper orthogonal decomposition (POD)
format, to rotate the ROM basis into a set of modes that represent the response in the
most compact form. These modes would be those, and only those, that are kept for the
RROM.

It is anticipated that the RROM would be used to compute the response for the next
series of loading conditions/time steps, then a check would take place to assess whether
the RROM is still valid. If yes, then continue march the RROM. If not, then the full ROM
would be restarted for another number of loading conditions/time steps with the previous
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RROM results as initial conditions. This new full ROM data then can be used for
determining new RROM.

The ROM reduction strategy would be particularly helpful when considering
uncertainty given (i) the repeated computations that are required in a Monte-Carlo
simulation, and (ii) that the ROM reduction can actually be modeled as epistemic
uncertainty and thus accounted in the computations.

5.2. Reduced ROM

5.2.1. Basis Reduction

Let the snapshots of the full ROM generalized coordinates ¢;,i=1,.., M, ateach
load level s or time step s be stacked into a vector ¢y and let the matrix Q be formed as
0 =1[q1,9,, ---,qn], Wwhere N is the number of snapshots selected. Next, a POD analysis
is performed on the matrix Q and the first several eigenvectors u; of the matrix QQT

are used to define the new basis. Denoting the eigenvector matrix U = [uq, Uy, ..., Uy,
where M s the number of POD eigenvectors retained, the new basis can be expressed as

P, =¥, U (5.1)
where ¥ = [¥W, 9@, wM] includes the modes of the full ROM and W, =

[lPr(l), @ lPr(M)] contains the modes in the reduced ROM.

A practical detail of the above approach relates to the dual modes whose generalized
coordinates are typically much smaller than those of the linear modes. Yet, it is known
that their contributions to the response is fundamental. Moreover, it was desired to

maintain one part of the basis as originating from the low frequency linear modes of the
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structure. This situation has led to the following two-step application of the above
strategy.

The generalized coordinates associated with the transverse/linear modes are first

considered leading to a snapshot matrix Q(t) , Where t denotes transverse part. The size

of this matrix is n; x N, where n; is the number of transverse modes in the full ROM.

Once the corresponding eigenvector matrix, denoted as U(t) , has been determined, the
residuals of the projection of the transverse response of the full ROM on the reduced

ROM basis can be evaluated at each snapshot as
Q(res) - Q(t) _u®y (5.2)

where X is the best fit of the equation U (t)x = Q(t) :

In the second step, these above residuals are grouped with the dual part of the

selected snapshots to form the matrix
’ Q(res)
Q =[ (5.3)

where Q(d) is the dual part of Q, and has dimension (M - nt)x N . Then, the dual part

of the reduced ROM basis is achieved by performing the POD analysis on Q’, leading to

the transformation matrix U’. Assembling the two steps leads to the combined

transformation matrix
(1) (1)
U:[U(t)U )} where U':[U ] (5.4)
U

to be used in Eqg. 5.1.
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When the structure is subjected to the effects of temperature, in addition to
mechanical/aerodynamic loading, the structural basis is increased by a series of “thermal
enrichments”, i.e., basis functions necessary to capture the displacements induced by the
temperature which often are different from those resulting from mechanical/aerodynamic

loads. When such enrichments are present, their reduction is done separately of the linear

and duals modes as a third POD step leading to a transformation matrix U(e) which can

be combined with those from the transverse and dual modes as

u® y®
u=[ o ul o | (5.5)
o o u®

Finally, the reduction of the thermal basis is also achieved, as above but in a single

step leading to a separate transformation matrix V.
5.2.2. Evaluation of ROM Coefficients

Having established the basis of the RROM, it remains to determine its stiffness
coefficients. This identification could be performed as for the full ROM, see (Mignolet et
al 2013, Perez et al 2014, Perez et al 2011, Matney et al 2011), but this effort can be
significantly reduced by recognizing that the dependence of the governing equations on
the generalized coordinates (structural and thermal) is polynomial. Accordingly, it is
possible to map directly the RROM coefficients from their ROM counterparts. For
instance:

K =RP U U, (5.6)
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2) (2
Kgm); = Ki(jI)Uianb Ui (5.7)
3 (3
K:glb)cd = Ki(jngUianb Ui U pg (5.8)
th)  —(th
Kgbc) = Ki(jl )UianbVIc (5.9)

where the coefficients with overbar are those of the full ROM and those without refer to
the RROM.

5.3. Validation Example

A first assessment of the RROM methodology was conducted on the panel with
stiffeners in Section 3.6, see Fig. 3.12, which was originally considered in (Culler and
McNamara 2011) and is subjected to a trajectory spanning Mach 2 to Mach 12 in 300
seconds with fully coupled structural/thermal/aerodynamic computations. From the
summary presented in Section 3.6, recalled that the coupled solution procedure between
the thermal and structural models are staggered and time-marched with a step of 0.5s.
The thermal solution at one time step is obtained first, from the thermal and structural
fields at the previous time step. Then, the structural problem is solved using the current
temperature distribution.

As shown in Section 3.6, a structural-thermal ROM of this panel providing a close
match of finite element results was developed in (Matney et al 2015) and shown in Fig.
3.13 is a comparison of the maximum transverse displacement and the temperature of the
center of the panel predicted by the finite element model (Culler and McNamara 2011)
and by the ROM (Matney et al 2015). In this ROM, the structural model included 44
structural basis functions, split into linear modes, dual modes, and thermal enrichments,

and 42 thermal basis functions. The construction of the structural basis followed a series
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of steps that have been practiced on a variety of structural models and thus was
considered to be close to optimal. The construction of the thermal basis however was
more challenging owing to the potential for the temperature distribution to exhibit local
effects which are difficult to predict a priori in this fully coupled problem. It is thus
expected that the thermal basis could likely be reduced. A simple metric used below to
evaluate the computational advantage of the reduction in bases is the number of
coefficients in the ROM. Since the coefficient of thermal expansion depends linearly on

temperature while the tensor or elasticity does not, the number of structural ROM

coefficients is of order M*/6+M 2H2 /4 which is much larger than those present in

the thermal ROM, i.e., order of u2/2 coefficients. Thus, only the reduction in

structural ROM coefficients is considered below. Clearly, the evaluation of the restoring
force from the linear, quadratic, and cubic stiffness terms is not the only computational
cost involved in marching the ROM but it may be expected to be the dominant one for M

large enough as the solution of linear equations, involved in any marching/solution

procedure, would only involve order of M3 or u3 operations.

5.3.1. Effects of Size of RROMs
Given its complexity, the size of the bases, and the presence of two different ROMs,
structural and thermal, this problem is an excellent test case to validate the Reduced
ROM concept. It was first desired to assess whether a reduction of the bases could
actually be achieved. To this end, a somewhat typical span of the full ROM data was
selected, i.e., between 76 and 100 seconds of the mission. During that time, the panel

exhibits a rapid increase in the transverse response. The corresponding ROM data, i.e.,
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the 50 snapshots of displacements and temperature distributions was then treated by the
3-step POD approach described above and led to several sets of M structural modes and p
thermal ones, depending on the number of eigenvectors retained in the POD analysis.
Each of these RROMs was then identified, i.e., a complete identification was performed
here vs. using Egs. (5.6) - (5.9) to avoid possible loss of accuracy issues that would have
clouded the discussion of the results presented below. Finally, each RROM was marched
in the same manner as the full ROM and its structural and thermal predictions were then
compared to those of the full ROM. The RROMs were considered accurate as long as
largest relative norm of the differences in thermal and structural predictions (taken here
as the ROM generalized coordinates) reached 2.5%.

The length of time for which each of these RROM was found to be accurate and the
corresponding reduction in the number of coefficients as compared to the full ROM are
presented in Table 5.1. Note in this table that the structural ROM order is split between
number of linear modes, duals, and thermal enrichments, respectively. Moreover, the
reduction in the number of structural coefficients is shown as a percentage of the full
number corresponding to the 44 structural modes and 42 thermal ones.

The results of Table 5.1 clearly demonstrate the potential computational benefit of
using RROMs, the 30 structural and 10 thermal modes RROM would have nearly 90%
less coefficients, so the RROM would run approximately 10 times faster than the ROM.
Yet, it would provide an accurate prediction of the response for a significant length of
time (54 seconds, approximately 1/6 of the mission length). As the number of structural
and thermal modes is decreased, the computational benefit is further increased but the

length of time for which the RROM is valid decreases. This finding likely reflects the
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evolving nature of the structural deformations and temperature distribution over the
mission profile: keeping a small number of modes only allows the capture of the physics
in the close neighborhood of where the full ROM data was chosen. It is interesting to

note that increasing the order of one of the two physical models, i.e., structural and
thermal, does not necessarily increase the span of validity of the RROM, as seen for the
two order 15 structural RROM: increasing the number of thermal modes from 5 to 7 does
not change this span. It is most likely because matching the structural deformation is the
most significant weakness of these RROMSs. When the structural order is increased to 30,
the increase of the number of thermal modes from 7 to 10 does lead to an increase span of
validity, likely because the thermal RROM is now the least accurate.

Table 5.1. RROM Validity and Cost Reduction vs. Order Selected. ROM Data from

76-100s.

Structural Thermal Coeff. Reduction (%) Valid
RROM orders | RROM order | fromM | from p both | for (s)
5+5+5 5 92.7 56.9 99.3| 135
5+5+5 7 92.7 56.1 99.2| 135
6+6+6 6 89.2 56.6 98.6 | 235
T+7+7 7 84.7 56.1 974 | 245

8+8+8 8 79.1 55.7 956 | 21
9+9+9 9 72.3 55.1 93.0| 26.5

10+10+10 7 64.0 56.1 90.1| 42

10+10+10 10 64.0 54.5 89.3| 54

5.3.2. Effects of Length of Full ROM Data Used
The next step of the RROM assessment was focused on understanding the effects of
the span of full ROM data selected for the POD process. This was done by selecting
various length of full ROM data, one starting at 76s and another at the beginning (0s) and

constructing RROM s of fixed orders, then evaluating for how long these RROMs were
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valid. The structural RROM orders were selected as 5+5+5 for the data starting at the
beginning and 10+10+10 from 76s onward. In both cases, 7 thermal modes were included
in the RROM. As seen in Table 5.2, these orders lead to reductions of the number of
structural coefficients by approximately 99% and 90%, respectively.

Table 5.2. RROM Validity and Cost Reduction vs. Span of Full ROM Data.

Data Structural Thermal Coeff. Reduction Valid
Span (s) | RROM order | RROM order | fromM | from p both for (s)
0.5-7 5+5+5 7 92.7 56.1 99.2 42
0.5-13 5+5+5 7 92.7 56.1 99.2 40
0.5-20 5+5+5 7 92.7 56.1 99.2 53
0.5-25 5+5+5 7 92.7 56.1 99.2 65
0.5-35 5+5+5 7 92.7 56.1 99.2 66
76-88 10+10+10 7 64.0 56.1 90.1 26
76-95 10+10+10 7 64.0 56.1 90.1 28
76-100 10+10+10 7 64.0 56.1 90.1 42
76-110 10+10+10 7 64.0 56.1 90.1 58

The results of Table 5.2 confirm what might have been expected, i.e., that using a
larger number of snapshots leads to a basis that better captures the physics and thus is
valid for longer times but the benefit tapers off as the data length increases. For example,
25 seconds of data at the beginning of the mission permits the prediction for an ensuing
65 seconds but adding 10 more seconds of data (20 more snapshots) only lead to 1 more
second of RROM validity. A similar situation can also be seen for the data started at 76s:
increasing the data span by 5 seconds, from 20s to 25s, leads to an increase of the
accurate prediction range by 14s but increasing the data span by an extra 10s (i.e., 35s
total) only increases the prediction range by 16s.

The data of Table 5.2 also indicates that the range of validity of a RROM is not only

a function of its orders and data length but also of the evolving physics. Near the
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beginning of the mission, the displacements and temperature change slowly as seen in Fig.
3.13 and a low orders RROM may be valid for a “long time”, e.g., for 65s using 25s of
data. However, around the 76s time, that same length of data and a RROM with structural
orders doubled is only valid for 42s. This shorter prediction time reflects the much faster
changes in structural deformations and temperatures taking place.

5.4. Development of Adaptive RROMs For Efficiency and Accuracy

The above discussion has demonstrated the strong potential of RROMs to achieve

computational effort reductions, but it also shown that the RROMs may not be applicable
to the entire range of loading conditions desired and/or the entire mission trajectory.
Accordingly, it is proposed here to proceed with a succession of full ROM/RROM
computations where the RROMs are adapted to previously determined full ROM data as
follows, see Fig. 5.1 for flowchart.

(i)  March the full ROM for a small span of time/loading conditions.

(ii) Based on these responses of the full ROM, construct a RROM by the multi step
POD process.

(iii) Start marching the RROM with initial conditions corresponding to the full
ROM end point projected on the RROM basis.

(iv) Periodically use the response of the RROM as initial estimate to run the full
ROM to check the validity of the RROM and continue as long as the RROM
predictions are accurate.

(v) If/when the RROM predictions are no longer accurate, i.e., the discrepancy
between the ROM and RROM predictions in (iv) is too large, march the full
ROM for a short time starting from a RROM estimate of the ROM solution.
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Then, construct a new RROM based on the response of the full ROM in this
period. Start marching this RROM.
(vi) Repeat (iv) and (v) until the end of the mission or the set of loading cases to be

considered is exhausted.

¥ '
Start March full Build new March End of
ROM RROM RROM N marching
A

A
Evaluate full
ROM

Figure 5.1. Flowchart of the RROM Construction and Adaptation Processes.

The above discussion has demonstrated the worth of RROMs to enhance the
computational efficiency of large ROMs and thus warrants a deeper analysis of some of
the key steps of the approach. Specifically, the next subsections will address the
important questions of:

(i) restarting the ROM from an available RROM solution,

(i) determining the time at which a RROM is no longer accurate enough and doing
so without the knowledge of the full ROM solution,

(iii) selecting the number of POD eigenvectors in the RROM, and

(iv) selecting the length of data of full ROM for the construction of RROMs.

5.4.1.Restarting the full ROM

In seeking to implement the above procedure to the structural/thermal/aerodynamic
response of the hypersonic panel of Fig. 3.12, it was first recognized that using the
RROM solution to deduce the corresponding full ROM solution (not an estimate of it) is

not possible in the given format. The challenge is that the thermal and structural
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computations are staggered and thus there is no iteration taking place over the thermal
and structural solution together to obtain the joint solution at one time. Thus, to obtain
the full ROM thermal solution at one particular time step, one would require the full
ROM thermal and structural solutions at the previous time step. Since neither is available,
there does not appear a way to exactly get the full ROM thermal solution without
marching from time t = 0. The same problem is encountered when trying to obtain the
full ROM structural solution at one time step as the full ROM temperature distribution at
that time is not known.

The best palliative is then to select the temperature and displacements at the time
step just before restart as originating exactly from the RROM. The staggered marching
then proceeds from this information and the ROM temperature field is obtained at the
next step using the ROM deformations (which affect the temperature through the change
in aerodynamics and thus in aero heating). The marching then continues leading to ROM
based displacements and temperatures referred to here as the “approximate ROM
solution”. While this solution does not match the full ROM solution, which is marched
since time t = 0, it is expected that it would converge back to it as the time after restart
increases as long as the full ROM is stable in the neighborhood of these solutions. This is
the case here as seen on Fig. 5.2 which shows the relative norm errors between the
structural and thermal solutions obtained by the approximate ROM restarted at 76s, 156s,
and 223s from 3 different RROMs (see below) and those obtained from the full ROM. It
is seen that the error is indeed generally decreasing so that the approximate ROM

solutions do indeed converge back to the full one.
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Figure 5.2. Relative Norm Errors Between 3 Approximate ROMs and the Full ROM.
(@) Structural Error. (b) Thermal Error.

This convergence and the small levels of errors seen in Fig. 5.2 suggest that the
approximate ROM may reflect well enough the physics in the problem to serve as
appropriate data for the rotation/downsizing of the basis from ROM to RROM. To
confirm this potential, the above adaptation process, see Fig. 5.1, was implemented with
4 RROMs each based on 25 seconds of full ROM (for the 1st RROM) or approximate
ROM (for the other 3). The details of these RROMs are presented in Table 5.3 and shown
in Fig. 5.3 are the predictions of typical structural deflection and temperature time
histories obtained by the adaptive process and by the full ROM. Clearly, the matching is
very good to excellent and these RROM provide a significant decrease in the
computation effort: averaging the reductions in coefficients weighted by time span of
validity yields an overall reduction by 93.6% over the 200s of RROM computations! If
one factors in the full ROM computations (100s), the reduction is still by 62.4%, even

though the adaptation has not been optimized.

105



Table 5.3. Adaptive RROM Validity and Cost Reduction.

Data Structural Thermal Coeff. Reduction Valid Valid
Span (s) | ROM orders | ROM order | fromM | from p both from (s) | till ()
1-25 5+5+5 5 92.7 56.9 99.3 26 75
76-100 10+10+10 10 64.0 54.5 89.3 101 155
156-180 T+7+7 7 84.7 56.1 97.4 181 222
223-247 9+12+9 9 64.0 55.1 89.6 248 300
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Figure 5.3. Predictions of (a) the Maximum Transverse Displacement and (b) the

Temperature of the Panel Center by the Full ROM and the Reduced ROMs
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5.4.2. Determining if the RROM is no longer valid

Since the above computations were only a first assessment of the adaptive RROM
process, the assessment of the validity of the RROMs and the determination of the stop
times of Table 5.3 was performed in comparison to the (available) full ROM predictions
with the relative error, referred to as “full error”, limited to 2.5% as discussed in
connection with Tables 5.1 and 5.2. This is not appropriate for future applications
because the full ROM predictions would in general not be available. Moreover, as
discussed above, the staggering of the computations prevents obtaining them from the
RROM solutions. However, based on the above discussion one can introduce two
alternate error measures:

structural error: error between the structural RROM and approximate ROM
predictions at a given time t with the temperature obtained from the RROM

thermal error: error between the thermal RROM and approximate ROM predictions
at a given time t with the deformations obtained from the RROM.

Note that both of these errors are computed independently at each time t, there is no
marching as is done when simulating data according to the approximate ROM.

Shown in Fig. 5.4 are the structural and thermal errors each corresponding to a
particular RROM segment together with the corresponding full ROM errors. While the
magnitudes of these two types of error are typically different, their behaviors are very
similar, except for the oscillatory behavior of the thermal error. Most notably, both
structural/thermal errors and their full counterparts grow steadily at approximately the
same rate. This property enables the use of the thermal and structural errors as indicators
of the accuracy of the RROM solutions to be used in future applications.
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Figure 5.4. Comparisons of the Structural and Thermal Errors to the Full Errors for
Selected RROMs.

5.4.3. Selecting the length of data of full ROM and the number of POD
eigenvectors

As observed from Section 5.3, there are two major factors affecting the length of
time a RROM is valid. One of them is the number of solution snapshots of the full (or
approximate as its best surrogate, see Section 5.4.1) ROM used to construct the reduced
basis, the other is the number of modes selected into this basis. In the data of Table 5.3,
these two factors were chosen rather arbitrarily to obtain some perspective on their
influence. To achieve maximum computational efficiency, a formal strategy of these
parameters needs to be devised. Clearly, with more full ROM snapshots the RROM is
likely to have longer valid time, see Table 5.2, but this also implies a longer,
computationally more expensive full ROM run. Similarly, with a larger basis the RROM
would have longer valid time but would be costlier, see Table 5.1.

These trade-offs must be addressed and it is proposed here is to rely on an “average
cost” for each full ROM — RROM period defined as
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Can :(CF |_|: +CRLR)/(LF +LR) (510)
where Lg and Lg are the length of time the full ROM and RROM are marched, and

Cg and Cpg are the cost per time step of the full ROM and RROM which can each be
determined from
C=M*/6+M?u?/4 (5.11)
where M is the number of structural modes and x is the number of thermal modes of
either full ROM or RROM.
It is proposed here that the numbers of POD eigenvectors retained in the RROM and

the length of full ROM data Lg be selected to minimize the average cost Cayq , EQ.

(5.10) assuming that such a minimum occurs. To test this strategy and confirm the
existence of a minimum, RROMs of different basis sizes were constructed using different
approximate ROM data lengths from the time of 76s onward. The average cost is given in
Table 5.4 for different RROM basis sizes for 25s of approximate ROM data. Moreover,
shown in Table 5.5 are the average costs for various approximate ROM data lengths
keeping the RROM basis sizes constant. Similar data is presented in Tables 5.6 and 5.7
using full ROM data starting from 1s onward. It appears from these tables that a
minimum does indeed take place, and corresponds to the 10+10+10 structural-10 thermal
modes RROM built from 25s of approximate ROM data for the 76s onward period while
for the 1s onward period it is for the 7+7+7 structural-7 thermal modes RROM built from
15s of full ROM data. These numbers of modes and lengths of ROM data are consistent

with the intuitive selection carried out earlier.
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Table 5.4. Average Cost of Full ROM — RROM Period Starting from 76s Onward, 25s of
Approximate ROM Data, Varying RROM Size.

RROM size Valid for (s) Average cost
5+5+5+5 13.5 9.6349E+05
6+6+6+6 23.5 7.7198E+05
T+7+7+7 24.5 7.6541E+05
8+8+8+8 21 8.3296E+05
9+9+9+9 26.5 7.7087E+05
10+10+10+10 54 5.7552E+05
11+11+11+11 62 5.8918E+05
12+12+12+12 68.5 6.3458E+05
13+13+12+13 68.5 6.9461E+05
14+14+12+14 73.5 7.5212E+05
15+15+12+15 74 8.3517E+05

Table 5.5. Average Cost of Full ROM — RROM Period Starting from 76s Onward,
Varying Data Length Used

RROM size | 11+11+11+11 10+10+10+10 9+9+9+9

Data length | Valid Average Valid Average Valid Average

(s) for (s) | cost for (s) | cost for (s) cost

15 355 6.0125E+05 | 33.5 5.6604E+05 | 25.5 6.1264E+05
20 315 7.1520E+05 | 31 6.7552E+05 | 27.5 6.8233E+05
25 62 5.8918E+05 | 54 5.7552E+05 | 26.5 7.7087E+05
30 64 6.2885E+05 | 56 6.1830E+05 | 54 5.9445E+05

Table 5.6. Average Cost of Full ROM — RROM Period Starting from 1s Onward, 25s of
Full ROM Data, Varying RROM Size.

RROM size Valid for (s) Average cost
3+3+3+3 18 8.6010E+05
4+4+4+4 42.5 5.5012E+05
5+5+5+5 49.5 5.0267E+05
6+6+6+6 65 4.2542E+05
T+7+7+7 65 4.3799E+05
8+8+8+8 67 4.4874E+05
9+9+9+49 67.5 4.7499E+05
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Table 5.7. Average Costs of Full ROM — RROM Period Starting from 1s Onward,
Varying Data Length Used

RROM size | 5+5+5+5 6+6+6+6 T+7+7+7

Data length Valid Average Valid Average Valid Average

(s) for (s) | cost for (s) | cost for (s) cost

15 27.5 5.2818E+5 | 29.5 5.1189E+5 |57.5 3.3588E+05
20 42 4.8359E+5 | 61.5 3.7821E+5 | 68.5 3.6338E+05
25 49.5 5.0267E+5 | 65 4.2542E+5 | 65 4.3799E+05
30 66 4.6879E+5 | 66 4.7605E+5 | 64 4.9760E+05

These observations indicate that beginning at a certain point in the trajectory, there
exists an optimum combination of length of full ROM data and size of RROM that yields
the lowest cost. A selection strategy of these optimum parameters can be performed as
follows:

(i) march the full ROM or approximate ROM for a few time steps (7 — 10 seconds);

(i) with Eqgs. (5.1) — (5.5), build RROM basis functions of different sizes, determine
the valid time of these RROMs and their average cost;

(iii) march the full ROM or approximate ROM for a little longer, e.g., 1 second;

(iv) with this longer data, build RROM basis functions of different sizes, determine
the valid time of these RROMSs and their average cost;

(v) compare (iv) with (ii), if the lowest average cost of (iv) is smaller than (ii), then
iterate (iii) - (iv) and compare the result of the last two iterations, if the lowest
average cost of last iteration is equal or larger than previous iteration, then

(vi) select the RROM with lowest cost in the current iteration to continue marching.

The key step in the above strategy is (ii) which would lead to a large cost if carried
out as stated. What would be desired instead would be to estimate this time without

running the RROM for the entire time span. It is suggested here to use, and more
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specifically model, the representation error with respect to the response of the full
ROM/approximate ROM to establish an estimator of the valid time.

Shown in Fig. 5.5 is the time history of the representation error in the transverse
displacements of a 10 linear modes basis using the approximate ROM data in the period
76s — 100s, plotted after the end of this period. This curve was first approximated by a
6th order autoregressive model with quadratic, linear and constant exogenous terms using
the first 15s of data, and the matching is very good until the required level, i.e., up to
155s which corresponds to 2.5% error in displacement (see the example in Section 5.4.1).

Plotted in Fig. 5.6 are the representation error and its corresponding approximation
for the 8 linear modes basis RROM. Using this approximation to estimate the RROM
valid time would lead to a 1 — 2 seconds error and in turn to a 1% — 2% of difference in
average cost which is not significant. However, the quality of the approximation is not
guaranteed in other cases, e.g., for the thermal representation error with 10 thermal
modes, see Fig. 5.7. While the approximation obtained using the first 15s of data is not
good, using the entire 55s of data would lead to a good fit. In fact, using simply a
quadratic polynomial also gives good fit in most cases using the entire 55s of data. These
findings suggest that:

(1) the errors grow closely to quadratically (or as a quadratic polynomial), especially
after a "long" time, however, at the beginning there is a transient present,

(2) because of the transient, the modeling of the error using a quadratic polynomial is

typically not very accurate if using only a short length of data at the beginning,
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(3) the modeling of the transient using exponential terms, relying on an
autoregressive modeling, often improves the matching but not always or not always
significantly,

(4) the use of short data, e.g., a few seconds, at the beginning as a predictor of the

curves would require the modeling of the transient in an appropriate functional form.
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Figure 5.5. Linear Part Representation Error of a 10 Linear Mode Basis Built Using

Approximate RROM Data from 76s — 100s, and the Curve Fit with 6th Order
Autoregressive Model with Quadratic Terms.
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An alternative approach to estimate the number of POD eigenvectors (and length of
ROM data) would be to analyze the behavior of the error for different number of modes
(and length of ROM data) to assess the difference in rates of growth of the error. Such a
comparison is shown in Fig. 5.8 for the linear representation error with different number
of POD eigenvectors plotted only over a short period after the RROM start, i.e., from
100s-110s. Seeking a model that has a "small" number of modes and a "slow" growth of
the error would suggest the best choice is 8 linear modes in this case. A similar analysis
for the dual representation error, see Fig. 5.9, suggests 10 dual modes as basis. These
selections are close to the model built in Section 5.4.1, where a 10 linear, 10 dual, 10
thermal enrichment and 10 thermal modes basis was chosen as the best after several trials
using different mode numbers. Based on this limited analysis, it is believed that the
comparative analysis of short term data can be successfully used to select good

approximate values of the number of basis functions to be used in the RROM.
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6. SUMMARY

This proposal focuses primarily on the modeling of uncertainty in coupled
structural-thermal models of heated structures and on its propagation to the response and
temperature distribution. This effort is carried out at the level of reduced order models
and finite element elemental matrices of both structural response and heat conduction
using the maximum entropy framework/nonparametric approach first proposed by (Soize
2000).

6.1. Uncertainty Modeling of Structures with Localized Behavior at ROM Level

While the maximum entropy has been widely used and validated on many - mostly
structural - problems, it had never been reported that its use leads to a globalization of the
uncertain response when the mean model has a localized response. While this situation
may be physically admissible, there are certainly situations in which one expects the
uncertain response to be localized as well. This problem is especially relevant in the
present context because heat conduction is prone to localization. Accordingly, an
extension of the maximum entropy method was developed in Chapter 2 to address this
issue. This Chapter also addressed the reverse problem of generating uncertain localized
responses when the mean model response is global, as is observed in bladed disks due to
mistuning.

A study of the eigenvalues/eigenvectors of the stiffness matrix of structures
exhibiting localized responses showed that either their lowest eigenvalues are densely
populated or their modes are strongly localized to the domain of the excitation. These
observations suggested that the part (the “local” component) of the ROM stiffness matrix
associated with these eigenvalues/eigenvectors be modeled separately from the rest of the
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stiffness matrix (the “global” component) to maintain the localization. The stochastic
modeling of the local and global components of the ROM stiffness matrix was achieved
differently but both on the basis of the maximum entropy concepts leading to a

3-hyperparameter model. One of these hyperparameters, 8¢, controls the globalization
of the uncertainty, another, 01, governs the level of uncertainty in the localized zone,

and a third one, &, controls the distortion of the response in the localized zone. This

approach was successfully demonstrated on two structures: an annulus, which exhibits
closely spaced eigenvalues of its stiffness matrix, and to a chain of oscillators for which

the eigenvalues of the stiffness matrix are well separated but the eigenvectors are strongly
localized. It was found that the hyperparameter 61 and its associated component of the

stochastic model play a dominant role in the overall uncertainty of the response.

The second part of Chapter 2 focused on structures, e.g., bladed disks, for which the
mean model exhibits global mode shapes while those of the uncertain structures are
strongly localized. This behavior is often recognized as originating from closely spaced
natural frequencies and triggered by uncertainty in specific parts of the structures, e.g., of
the blades in bladed disks, which is challenging to implement within global ROMs of the
entire structure. To model these effects, the local component of the ROM stiffness matrix
associated with its closely spaced eigenvalues was mapped back to the finite element
domain where the uncertainty was introduced. The application of this approach to a

bladed disk finite element model demonstrated that the localization can indeed be
produced and that it primarily results from the hyperparameter &, and its associated

component of the stochastic model.
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6.2. Thermal — Structural Uncertainty Modeling at ROM Level

Having extended the nonparametric method, Chapter 3 returned to the main focus of
this effort, i.e., the modeling and assessment of uncertainty on thermal and structural
properties on the temperature and response of heated structures. This study was
conducted directly on coupled thermal-structural reduced order models using maximum
entropy concepts to randomize the associated matrices. Moreover, nonlinear geometric
effects were included in the structural ROM. The resulting analysis is thus carried out
very efficiently as compared to a similar effort involving a modeling of uncertainty at the
finite element model level.

The uncertainty on the conductance properties was considered first. Using a
particular beam example, it was shown that the behavior of the temperature distribution
may be strongly dependent on the boundary conditions, i.e., being localized near the
applied flux or very global. Then, the simulation strategy chosen for the uncertain ROM
conductance matrices is a recent extension of the nonparametric approach in which the
local and global characters of the uncertainty on the temperature can be separately
controlled. Accordingly, this approach is applicable to the various type of thermal
boundary conditions. This uncertainty on the thermal properties was propagated to the
nonlinear structural response by imposing the random temperature distributions on the
panel. The results demonstrate a level of variability of the response that is similar to that
of the temperature distributions.

The uncertainties on the structural, i.e., structural and thermal-structural coupling
(thermal expansion) properties was considered next. It was shown that these uncertainties
may indeed be modeled directly at the ROM level and both appear through the positive
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definite matrix K of Eq. (3.18). Yet, the formulation permits the imposition of

uncertainties on either property separately or together through their compounding in Eg.
(3.29). Further, practical implementation details that appear when the mean ROM is
identified from a black box finite element code were pointed out and resolved in a
general setting. The application of these concepts to the beam example was finally
performed and it was observed that a coefficient of variation around 0.6% of the key
structural-thermal coupling terms led to a much increased variability, of the order of
+2.5%, of the structural response near its peak demonstrating a significant sensitivity of
this response with respect to the coefficient of thermal expansion uncertainty. A similar
sensitivity was also observed with respect to the structural only parameters of the model.
Application example was also made in a panel with stiffeners under hypersonic airflow,
the uncertainty modeling also suggests a large sensitivity of the response at higher Mach
number with respect to uncertainties in elasticity tensor and coefficient of thermal
expansion.

6.3. Maximum Entropy Structural-Thermal Uncertainty Modeling at the Finite

Element Level

The maximum entropy uncertainty modeling, when associated with reduced order
model, is very efficient computationally. As stated in Chapter 1, it permits to introduce
aleatoric as well as some epistemic uncertainty in to the model, which is a desirable
feature in uncertainty modeling of hypersonic vehicles. However, as demonstrated in
Chapter 2 for localized responses, the introduction of epistemic uncertainty at the global
ROM level main affect features of the solution. While the strategy to maintain particular

properties on the random ROM matrices is clear in the maximum entropy strategy, it is
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much more difficult to maintain particular features of the ROM solution. As
demonstrated in Chapter 2, this difficulty is rooted, at least in part, with the level i.e.,
global ROM, at which the epistemic uncertainty is introduced.

Accordingly, a new approach was introduced and first validated in Chapter 4 in
which uncertainty is introduced at the elemental level of finite element models of heated
linear structures. A key feature of the approach is that the elemental stiffness matrix and
thermal force vector are simulated jointly to respect the dependence of both of them on
the elasticity properties of the structure. Following the maximum entropy approach, the
method produces samples of these elemental matrices and vectors given their mean and
two sets of parameters that describe (i) the overall level of uncertainty (structural and
thermal separately) and (ii) the correlation of the structural and coefficient of thermal
expansion properties, separately, across the structure. Owing to the use of the maximum
entropy approach, the proposed modeling strategy accounts for aleatoric and some
epistemic uncertainty of both types of material properties. The ease of application of the
method was demonstrated on a first example.

6.4. Nonlinear Reduced ROMs

While the ROMs are much more efficient than full finite element model solutions,
they can still be computationally expensive especially when facing
aero-thermal-structural coupled problems. This cost is of course further heightened when
propagating uncertainties using Monte-Carlo simulations. The focus of the proposed
investigation in Chapter 5 was on the development and first validation of a data-driven
reduction process of structural-thermal ROMs into “reduced ROMs” (RROMs) of much
smaller but potentially evolving bases that lead to predictions of the structural response
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and temperature with an accuracy similar to that of the original, “full”’, ROMs at a much
reduced computational cost. A dedicated process centered around Proper Orthogonal
Decompositions (POD) was formulated to extract dominant eigenvectors of the various
types of basis functions (linear and dual modes, thermal enrichments, and thermal basis
functions). This process was validated on a representative hypersonic panel problem and
significant reductions of the structural and thermal bases, especially of the latter, were
observed. Moreover, these reductions in bases led to significant decreases of the number

of coefficients in the model and correspondingly of the computational effort, between 62%
and 94% reduction in computations.

It was noted that a RROM may not be valid for the entire range of load
level/trajectory thereby leading to the need to adapt the RROMs. The key questions of
how large the RROM basis should be to optimize the RROM computational benefit and
of the determination of the time/loading condition at which to adapt were discussed and
strategies to resolve them proposed. The validation of this RROM methodology was
critically and successfully performed on the coupled structural-thermal-aerodynamic

response of a representative hypersonic panel.
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APPENDIX A

ROM COEFFICIENTS WHEN CTE IS LINEARLY DEPENDENT ON
TEMPERATURE
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When the coefficient of thermal expansion depends linearly on temperature, Eq. (1.7)

is replaced by (Matney Et al 2011)
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yD M) with 1= (m-1) u+p. (A.8)
Since Ec isstill positive forall wy,, v|, z,,and py, itis concluded by expanding

that the matrix Kp defined as
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Moreover, the elements of the matrix K<tt) are still given by Eq. (3.17) but with a

replaced by oc(o). Further, one also obtains
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Having established the necessary positive definiteness property, it remains to discuss

the potential to identify the coefficients from finite element runs. Since Kﬁﬁ?,’ and

Fiﬁt:,h) multiply a product of two t values, it is not possible to identify them directly if p

and | are different. Specifically, one has

~(th th th =(th th th
Kiﬁlp) = Kiﬁlp) * Ki(jpl) and Fil(p )= Fil(p )+ Fil(Jl ' p>l (A-14)
but
R _ k) and  E) — g (th), (A.15)

i = i ill ill
However, it is seen from Eq. (A.3) and (A.5) that the coefficients Ki%) and Fif;t;)h) are
symmetric with respect to their last two indices and thus from Eq. (A.14)

th thy 1 —(th th thy 1 =(th
K = k) = R and Rt =R = > R p>I (A.16)

The identification of the k(™) and k(™) has not been attempted since this effort was
not successful for the simpler terms in K<tt).Accordineg, k(™ and k(") together

with K(tt) will be selected based on the maximization of the entropy leading, see
Appendix C, to the corresponding block of the Cholesky decomposition being the

identity matrix.
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APPENDIX B

PROCEDURE TO MAKE Kpg POSITIVE DEFINITE
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As stated in the main text, the process to render the matrix K g positive definite

was achieved in (Wang et al 2018)

(a) without affecting the part of K g that is positive definite, e.g., the linear

@

stiffness matrix K*”, and
(b) inducing the smallest changes possible to this matrix.
The condition (a) has been achieved iteratively by constructing the biggest block of

the original matrix kg that is positive definite. This block is at least of size M since the

@

linear stiffness matrix K7 is positive definite. Accordingly, the top left block of K g

of size M+1 is first considered and it is checked for positive definiteness (e.g., by
constructing its Cholesky decomposition). If it is positive definite, the algorithm moves to
the top left block of size M+2 and the process is repeated.

Otherwise, a permutation of the rows and columns M+1 and M+2 is performed. If the
top left block of size M+1 is now positive definite, the algorithm accepts the permutation
and moves forward to the top left block of size M+2. On the contrary, the permutation
between rows M+1 and M+2 is reversed and a permutation of rows M+1 and M+3 is
performed followed by a positive definiteness check. This process concludes when no
permutation of rows and columns achieves an increase in the size of the top left block of

Kg Which is positive definite.

At that point, the matrix Kg has been transformed in a symmetric matrix KB

which has the form

oy
o
1]

[ Kiz Ki2 ] 1)
. .
Kiz Ko
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where Kyq is positive definite and of size N, Kqp isofsize N xNp and Kpp is
of size N xNp where N, =M2+M -N,.

The task (b) above then proceeds with replacing the matrix KB by

;| K K| |0 A
KBZ[ T + o1 =Kg+A (B.2)
Kig Ka2] [A1 A

where the matrix A will be selected to have the minimum Frobenius norm under the

constraint that KB is at least positive semidefinite. The solution of this nonlinear

optimization problem will be obtained iteratively through a sequence of linear
optimization problems in which the positive definiteness constraint is enforced linearly.

This process leads at iteration m to (Wang et al 2018)

Al—Eou.w. [+?] . to= X WP] eaea

where Vj and Xi are the eigenvalues of the matrix K at iteration m. Moreover, the

eigenvectors are partitioned into vectors \I;i(l) and \T;i(z) of Np and Ny components,

T T
respectively. That is, 7 {[q;i(l)} [\pi(zq }.Finally, the coefficients L are

solutions of the linear system of equations

~ ) T T
Nz (Zari bri +bf; )Hr =—Aj With ar 2[\7’1('1)} §§) and by :[\pgz)} ¥ (B5)
Ar<0
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Solving the linear system of equations (B.5) yields the values of the coefficients L;
which can then be reintroduced in Eq. (B.3) and (B.4) to yield the unknown partitions Al

and Ay of A.
The resulting matrix KB will then in general not be positive definite but the

process can be repeated with a new KB = KB until a matrix KB positive

definite/semidefinite is finally obtained. At that point, the rows/columns permutations

performed to obtain the largest block positive definite are reversed leading to a matrix
Kp which is positive definite and thus could serve as the basis for the structural

uncertainty modeling.

In principle, achieving the positive definiteness of the structural only component of
the matrix K¢ (i.e., Kpg)is sufficient to enable the stochastic modeling process as

defined in Egs (3.19)-(3.22). Unfortunately, barely achieving positive definiteness or

semidefiniteness induces ill conditioning in the propagation of the uncertainty to the

structural-thermal matrices of the model. Indeed, if Kg is singular, then so is E(SS;)

(see Eq. (3.21) and it is not possible to determine 2

Y< Which should satisfy (see Eqg.

(3.19) and (3.21))

(1 T k) @9

If the matrix Kp is not singular but has very small eigenvalues, E(T?S) will have

large terms that depend strongly on these small eigenvalues. Considering further that they
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probably result from the introduction of the matrix A; and Aj, not from an actual

property of the structure, it is concluded that the values of E(TZS) will be large and
unphysical.

To remedy this situation, two options are proposed here. The first relies on splitingt

the components of F(th) and K(th) consistently with the eigenvalues of the matrix

Kg . Specifically, assuming that permutations of rows and columns have been performed
to transform this latter matrix into its form of Eq. (B.1), one has

K11 Kig+41 Ky

Ko =| K +A] Kyp+A, Koy |[=KP+KD). (B.7)
K1 K23 k()
In this equation,
K11 Kig+A; Ky 0 0 0
KO =| KLh+A] Kp+a, R | and K& =0 0  Kyu-R| (B
K{s R k(® 0 KL-RT 0
where R is a matrix such that the Cholesky decomposition of K((:l) is of the form
L; 0 0
V=D Op 0 (B.9)
Ly 0 1

in which the presence of the identity matrix in the 33 block results from the discussion of

Appendix C. Performing the product of Eq. (B.3) leads to
I:ll E;l_rl = Kll; I:El = EI]:!'[K]_Z +Al]; E-:lg—l = EI%Kl?), and fma”y R= |:21 I:-:!i—l (BlO)
which fully defines E(é) and enables the generation of the structural only partition of

random K¢ matrices. The structural-thermal component of these matrices will be
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obtained by summing, as for the mean model above, the contributions obtained using the

':(1? decomposition in Eqg. (3.20) and those obtained with the I:(Kz) matrix

| 0 0
02 | o | 0 (B.11)

0 KI;—RT 1
where the introduction of the identity matrix along the diagonal is consistent with the
maximum entropy discussion of Appendix C.

A second option to address the near singularity of the matrix Kg is to recognize
that the components of this matrix associated with the near zero eigenvalues do not
introduce uncertainty in Kg  within the nonparametric framework (see Wang et al 2018
for related discussion). Accordingly, it is sufficient to randomize solely the block Kj;
of this matrix. In this perspective, the randomization of the matrix K can be reduced

to that of

. Kin Kz ]
KC=[ . (B.12)
T tt
K5 K (tt)

of which the Cholesky decomposition is taken as (see also section 3.3.3)

Ly O
q?=[£i I]. (B.13)
31

The above approach is appropriate when the effects of the block K,5 on the mean

response of the structure is small. Otherwise, this matrix must also be randomized as

suggested in Eq. (B.11) leading to

I T
K23 =(K23+HT2)H82H32 (814)
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where Hg, isqxqgand Hy, ispxqgwhen Ky ispxaq,
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APPENDIX C

MAXIMUM ENTROPY UNCERTAINTY MODLEING OF A MATRIX WITH

UNKNOWN LOWER RIGHT CORNER
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This appendix focuses on the determination of the deterministic matrix ETT

yielding a maximum entropy of the random matrices K¢ as defined by

Sk =] P (K)In pi, (k)dk . (C.1)
Q

To this end, rewrite first Eq. (3.20) as
Kc =Lk GLk where G=Hy Hk (C.2),(C.3)

and note that Eq. (C.2) can be viewed as a linear transformation of the random elements
of the matrix G into the random components of K¢ . Accordingly, the joint probability
density functions of the elements of these two matrices are related by the equation

Pk (K)=Ps(g)/|det(J)] and dk=|det(J)dg  (C.4),(C.5)
where J is the Jacobian of the transformation. To evaluate this matrix from Eq. (C.2), it is
convenient to rewrite it first stacking the columns of the matrix K¢ below each other

and proceeding similarly with the matrix G consistently with the vec operation. Then, one

obtains

vec(KC)zvec(I:KGEL):(LK ® Ly Jvec(G) (C.6)
where ® denotes the Kronecker product owing to the property
vec(ABC)=(CT ®A|vec(B) c7)

for any matrices A, B, and C with consistent dimensions.

From Eg. (C.6), it is found that
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J=Lx ®Lk sothat det(J) det(LK) HLK i (C.8),(C.9)

where the last equality holds owing to the triangular structure of I:K .

Next, combining Eq. (C.1), (C.4), and (C.5), it is found that

< = | b6 () [ po (9)"ftet(3)Jdo (€10)
Qg

where (g is the appropriate domain of variations of the matrices g. Since J is a

constant matrix (independent of g), Eq. (C.10) reduces to

Sk =In[|det(J)|]j pc (9)dg — I pG(g)In[pG(g)]dg=In[|det(J)|]+SG
O O

(C.11)

where Sg is the entropy of the matrices G and is independent of I:K . Recognizing

that

det(3) =[ det(Lx )| = [det(ﬂ(sls) )det(ﬂ(s?’s))det(l:ﬁ )T (C.12)
it is concluded that maximizing the entropy Sk is achieved when the determinant of
ETT is as large as possible, unless some constraint is added to the problem.

In this regard, consider the effect of I:TT on the simulated reduced order model

coefficients. This matrix affects only the random coefficients Ki(jtlh) and Fifth) through

the products Ly H%) and Lpp H%), ie., Lyr provides ascaling of the effects of

HT which are all proportional to the standard deviation . So, increasing uniformly ETT
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is equivalent to increasing o. Accordingly, it is not possible to specify or identify both a
uniform scaling of [TT and the standard deviation . The approach chosen here is then

to constraint the uniform scaling so that o can be a true parameter of the model. Thus, to

the maximization of the entropy is now added the scaling constraint

|Crr [l =k (C.13)

The lower triangular matrix I:TT sought leads to a maximum value of its determinant
while satisfying Eq. (C.13). Proceeding with a Lagrange multiplier, it is desired to find
the elements L, i >, of Ly suchthat Lj>o0and
[ I
Y=HL“+Y ZZLU—M (C14)
i=1 i=1j<i
is maximum where vy is the Lagrange multiplier. Differentiating Eq. (C.14) with respect to

Lij 1= j demonstrates first that these components must all be zero and thus the matrix

[TT is diagonal. Then, differentiating Eq. (C.14) with respect to Ejj yields
[ _ Ho_ )
H Lii + 2y LJ] =0 or HLii +2’Y L” =0 (C.15),(C.16)
i=1,i ] i=1
where Eqg. (C.16) results from (C.15) by multiplication by Ejj # 0. Since the product

term in Eq. (C.16) is independent of Ejj ,itis concluded that %; is independent of

i)

the index j and thus, from Eq. (C.13), E%j:l. Since the diagonal terms Ejj must be
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positive, one obtains Ejj =1 for all j and thus the lower triangular matrix ETT sought

equals the identity matrix.
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PERMISSION TO USE PUBLISHED OR PUBLISHABLE WORK
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