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ABSTRACT 

Prior research has established associations between sleep duration and body mass 

index (BMI) scores and risk for obesity in middle childhood, but it is less clear whether other 

objectively- and subjectively-measured sleep indicators may be associated with BMI scores, 

weight status (e.g., obesity), and other estimates of weight and body fat such as waist 

circumference (WC) and percent body fat. Empirical studies have also demonstrated independent 

associations between broad self-regulation and sleep indicators and BMI scores, but no study to 

date has tested these factors in a model together and the extent to which associations between 

normative sleep problems, weight indicators, and effortful control (EC) may be explained by 

shared genetic or environmental influences. Data from a large longitudinal study of twins was 

used to test phenotypic associations between sleep problems at eight years and weight indicators 

at nine years, including whether EC at eight years moderates these associations. Additionally, 

multiple quantitative behavior genetic models were used to estimate unique and shared genetic 

and environmental covariances among normative sleep problems, weight indicators, and EC at 

eight years of age and whether additive genetic influence on weight in middle childhood differs by 

child weight status group.  Phenotypic findings showed that greater sleep duration at eight years 

predicted greater decreases BMI at nine years of age for children with low levels of EC at eight 

years. Greater sleep midpoint variability at eight years predicted greater increases in percent 

body fat from eight to nine years of age for children with low EC at eight years. Behavior genetic 

findings showed greater environmental influences on parent-reported sleep duration and quality, 

as well as objective sleep midpoint variability. Similarly, associations between parent-reported 

sleep duration and sleep midpoint variability and other sleep indicators and EC were primarily 

accounted for by shared environmental factors. In contrast, there was high additive genetic 

influence on objective sleep quantity and quality, all weight indicators, and EC. Many of the 

associations between sleep indicators, sleep and weight indicators, and among weight indicators 

were entirely accounted for by shared additive genetic factors, suggesting that common, 

underlying sets of genes explain these relations.  
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CHAPTER 1 

INTRODUCTION AND BACKGROUND LITERATURE 

About 30% of children sleep eight or fewer hours per night during middle childhood 

(National Sleep Foundation, 2014), suggesting that children may regularly experience normative 

sleep problems (i.e., non-clinical sleep problems like short duration, poor sleep quality; Sadeh, 

Raviv, & Gruber, 2000; Smaldone, Honig, & Byrne, 2007). Furthermore, normative sleep 

problems in childhood have been associated with numerous negative outcomes including 

internalizing and externalizing problems and decreased academic performance (Smaldone et al., 

2007). Another aspect of health that may be linked with children’s normative sleep problems is 

adiposity, a defining characteristic of obesity (excess body fatness; Cole & Rolland-Cachera, 

2002; Tyler & Fullerton, 2008; Wells, 2014). Indeed, cross-sectional and longitudinal studies have 

consistently linked shorter nighttime sleep duration with higher body mass index (BMI) scores and 

increased odds of being classified as overweight or obese in childhood (see review by Magee & 

Hale, 2012).  

Although studies have established links between short sleep duration and BMI or risk for 

obesity in childhood, the mechanisms underlying these associations are less clear. Theoretically, 

there are biological, psychological, social, and contextual processes that may explain relations 

between sleep problems and weight indicators; however, these mechanisms are rarely tested. 

Understanding whether important person-level psychosocial factors (e.g., effortful control [EC]) 

may explain links between sleep and weight indicators in children or whether relations between 

sleep and weight indicators may be attributed to genetic or environmental factors is critical, as 

discerning these processes may help inform interventions aimed at weight loss and reducing 

childhood obesity, as well as improving child sleep quantity, quality, and timing.  

Given these gaps in the literature regarding associations between child sleep problems 

and weight indicators, the aims of the current dissertation were to: 1) test whether objective and 

subjective sleep at eight years of age were associated with objective weight indictors (BMI, waist 

circumference [WC], percent body fat) both concurrently and one year later (controlling for earlier 

weight), as well as whether EC at eight years moderated links between sleep and weight 
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indicators, and 2) estimate unique and shared genetic and environmental variances and 

covariances between sleep, weight indicators, and EC at eight years, and examine genetic and 

environmental contributions on weight status categories at eight years of age (underweight, 

healthy, overweight, obese).   

Theoretical Frameworks for Childhood Sleep and Weight 

Despite broad literature showing links between sleep and weight across the lifespan, 

there is not a single, overarching conceptual model to explain links between normative sleep 

problems and weight in children, including various biological, psychological, social, and 

environmental factors that may account for these relations. However, two main theories are 

particularly relevant when examining complex, multilevel relationships between sleep and weight 

in childhood: 1) developmental systems theory (e.g., biopsychosocial and contextual model for 

sleep; Becker, Langberg, & Byers, 2015; Damon & Lerner, 2008) and 2) the integrative model of 

health behaviors (e.g., individual differences of stress-induced eating; Fishbein, 2000; Greeno & 

Wing, 1994). 

Developmental Systems Theory. Developmental systems theories propose 

bidirectional relationships between multiple variables, with these variables and relationships often 

crossing multiple levels of organization (Damon & Lerner, 2008). An example of this type of 

theory is Bronfenbrenner’s Ecological Systems Model (Bronfenbrenner, 1992; Bronfenbrenner & 

Morris, 2006). All developmental systems theories share six to seven main principles, providing a 

firm foundation for theoretical and conceptual models hypothesizing associations among specific 

variables. Three principles are particularly relevant to the current dissertation. First, 

developmental systems theories adopt a holistic approach to understanding associations 

between variables across development, explicitly moving away from reductionism and 

determinism (Damon & Lerner, 2008). The current dissertation considered associations among 

multiple sleep and weight indicators, while examining the role of critical covariates (e.g., sex, 

puberty), EC, and genetics, rather that oversimplifying links among variables and assuming that a 

particular pathway has long-term, immutable influences on a trait (e.g., genetic determinism; 

Damon & Lerner, 2008). 
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Second, developmental systems theories hold that there are multiple levels of 

organization within human development, beginning with genetic, biological, and physiological 

variables (Damon & Lerner, 2008), and continuing with individual-level, family-level, community-

level (e.g., school, work, peers, etc.), societal-level, and cultural- and chronological-level 

variables. The current dissertation tested individual-level differences between various sleep and 

weight indicators, allowing us to better understand associations between sleep and weight 

indicators at the person-level, genetic contributions to these links, and individual differences in 

links between sleep, weight indicators, and EC.  

 Third, developmental systems models acknowledge that specific traits may change within 

and across individuals over time (Damon & Lerner, 2008). The current dissertation tested whether 

child sleep problems at eight years of age predicted changes in weight indicators from eight to 

nine years during middle childhood. Theoretical frameworks suggest that changes in sleep 

behavior (e.g., restricted sleep) may serve as an initial stressor that lead to a cascade of other 

biological (hormonal) and psychosocial changes, which in turn leads to changes in weight 

(typically weight gain; Miller & Cappuccio, 2007; Spiegel, Tasali, Penev, & Van Cauter, 2004). 

However, there is evidence that there are likely bidirectional relationships (another key tenant in 

developmental systems theories) between sleep problems and weight indicators both 

concurrently and longitudinally (Fatima Doi, & Mamun, 2016; Magee & Hale, 2012).  

Timing may also be important when examining links among traits. Middle childhood 

(approximately ages six to 12) may be an important period, as it seems to be a distinctive period 

that falls between other sensitive developmental periods and transitions (Collins, 1984). Notably, 

there are clear shifts in sleep architecture that occur at the beginning and end of middle childhood 

(Crowley, Tarokh, & Carskadon, 2014), with older children (approximately 8 years) sleeping fewer 

hours per night on average and demonstrating greater daytime sleepiness compared to younger 

children (approximately ages four and five; Crabtree & Williams, 2009). Similarly, research 

indicates that there are marked changes in weight and adiposity at the beginning of middle 

childhood, due to the development of eating and physical activity habits (Daniels, 2006). The 

onset of puberty (which usually begins in the middle or end of middle childhood) may be another 
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factor associated with normative sleep problems and weight gain or status. Finally, research 

suggests that increases and/or changes in genetic and environmental influences on sleep 

problems (e.g., insomnia) and obesity tend to remain stable or slightly increase over childhood 

and adolescence (Barclay, Gehrman, Gregory, Eaves, & Silberg, 2014; Plomin, DeFries, Knopik, 

& Neiderhiser, 2013). Thus, the current dissertation examined links between sleep and weight 

indicators while considering the role of variables from multiple levels of organization like genetics, 

age, sex, socioeconomic status (SES), ethnicity, and puberty, as well as how relations between 

sleep and weight indicators may change within and across individuals over time (i.e., eight to nine 

years) or contexts after accounting for other variables.  

One example of a developmental systems theory is the biopsychosocial and contextual 

model of sleep (Becker et al., 2015), which considers how various biological, psychological, and 

social/environmental factors independently contribute to sleep, and how these factors interact 

with one another to influence sleep behaviors across adolescence. However, the biopsychosocial 

and contextual model of sleep focuses on adolescence and largely ignores other health behaviors 

that may contribute to sleep, such as weight or adiposity. Thus, there is significant opportunity for 

improvement (additions and changes) in current models outlining contributions to sleep such as 

the biopsychosocial and contextual model of sleep. 

The Integrative Model of Health Behaviors. The Integrative Model of Health Behaviors 

(Fishbein, 2000) is a large theoretical model with greater clinical focus than developmental 

systems theories. The model explains contributions to health behaviors, while informing 

intervention and prevention efforts to reduce risky health behaviors (Fishbein, 2000). While the 

model was initially used to explain the spread of HIV (via health behaviors and decisions) and 

potential points of intervention for the disease, broad tenants of the integrative model can be 

applied to other health behaviors and subsequent disorders or diseases. First, health behaviors in 

the integrative health model are generally comprised of actions, a target, context, and a time 

frame (Fishbein, 2000). Relevant to the current dissertation and using increases in weight 

indicators or status as an outcome, the action may be eating, the target may be food, the context 

may be within the home or at school (or both), and the time period may be specific time frames 
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(e.g., middle childhood) or across development. Building upon this, the integrative model of health 

behaviors holds that any changes in action, target, context or time can produce change in a 

health behavior or disease (Fishbein, 2000). The current dissertation not only assessed relations 

between sleep and change in weight indicators, but also considered various timing and contextual 

factors that may affect these associations. Third, there are significant individual differences in 

internal and external variables that likely contribute to a health behavior (Fishbein, 2000).  The 

current dissertation tested whether children in higher weight status groups (overweight or obese) 

may have different genetic influences on weight than other children, accounting for between-

person variability in weight.  

An example of a model related to the Integrative Model of Health Behaviors is the 

Individual Differences Model of Stress-induced Eating, which aims to clarify etiology and causes 

of obesity (Greeno & Wing, 1994). The individual differences model proposes that there are 

differences between obese and non-obese individuals regarding stress responses, such that 

obese individuals are more likely to eat in response to stress compared to non-obese individuals 

(Greeno & Wing, 1994). One proposed explanation for differences between obese and non-obese 

individuals is that individuals who have problems with “restraint” tend to over-eat (particularly 

when stressed), resulting in weight gain and obesity (Greeno & Wing, 1994). This “restraint” 

concept is relevant to the current dissertation as it may be related to an individual’s temperament, 

specifically levels of EC and self-regulation (the extent to which individuals can willfully control 

behaviors, attention, and cognition; Eisenberg, Hofer, Sulik, & Spinrad, 2014). Indeed, studies 

demonstrate that there is variability in self-regulation within the population (Kochanska & Knaack, 

2003), suggesting that self-regulation and EC may be ideal aspects of temperament to assess in 

relation to individual differences in eating behaviors and obesity. However, the Individual 

Differences Model of Stress-induced Eating is somewhat narrow and focuses primarily on how 

stress influences eating behaviors, rather than other person-level factors (e.g., lifestyle, 

demographic, etc.) that may contribute to sleep and/or obesity. Aim 1 of the current dissertation 

tested whether EC moderated associations between sleep and weight indicators, acting as a 

possible protective factor and reducing negative effects of poor sleep on weight outcomes. Aim 2 
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of the current dissertation examined whether EC may be a key psychosocial factor that shares 

overlapping genetic or environmental factors with sleep and weight indicators.  

Building a New Theoretical Model Linking Sleep and Weight Indicators  

There is no theoretical or conceptual model in psychology that addresses associations 

and pathways between sleep problems and weight indicators or status in childhood. However, we 

can combine the best characteristics of existing theoretical frameworks to create a 

comprehensive framework with which to test associations between normative sleep problems and 

weight indicators in childhood. Figure 1 outlines a proposed theoretical model that combines key 

aspects of developmental systems theories and the integrative model of health behavior and 

serves as rationale and description of how sleep problems and weight indicators may be 

associated in the current dissertation. The current dissertation does not test or address all 

pathways in the proposed model. As such, pathways of interest are numbered and discussed in 

more detail below.   

Biological vulnerabilities. Biological vulnerabilities (Path 1) may contribute to relations 

between child sleep and weight indicators, including physiological, hormonal, or genetic factors. 

Strong theoretical evidence suggests that endocrine and hormone processes underlie links 

between sleep and weight, such that sleep problems may prompt changes in hormones levels 

(specifically leptin, ghrelin, and insulin) and problems with glucose uptake and metabolism (Miller 

& Cappuccio, 2007; Spiegel et al., 2004), which may lead to increased adiposity (Miller & 

Cappuccio, 2007; Spiegel et al., 2004). One empirical study also showed that greater sleep 

duration variability and shorter sleep duration were associated with greater changes in insulin 

levels and health risk during middle childhood (Spruyt, Molfese, & Gozal, 2011).  

Relevant to the current dissertation, genetic factors are another prominent biological 

pathway that may account for relationships between sleep and weight indicators or status. The 

sleep-wake cycle is constitutionally-based and one of the earliest biological rhythms to develop 

and regulate (Peirano, Algarin, & Uauy, 2003), suggesting that sleep contains genetic influences. 

Indeed, cross-sectional studies indicate that subjective and objective reports of various sleep 

parameters such as sleep duration and daytime sleepiness are moderately heritable (30-70%; 
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e.g., Gregory, Rijsdijk, & Eley, 2006). Like sleep, adiposity and weight are biologically-based and 

contain genetic influences (Kopelman, 2000), with recent studies showing 60-70% of the variance 

in BMI and 40-60% of variance in WC is accounted for by additive genetics in middle childhood 

(see Fernandez, Klimentidis, Dulin-Keita, & Casazza, 2012; Wardle, Carnell, Haworth, & Plomin, 

2008). The current dissertation used a behavior genetic framework to test links between sleep, 

weight indicators, and EC in middle childhood.  

Environmental factors. Environmental factors (Path 2) likely directly impact links 

between child sleep and weight indicators. For example, both broad environmental contexts (e.g., 

family, physical home environment, school), as well as specific environmental factors (e.g., family 

eating behaviors, food availability, sleep environment; Spruijt-Metz, 2011) may influence 

associations between sleep and weight in childhood. The “Sleep in America” Poll also reported 

that child sleep difficulties in a given week could be attributed to things like evening activities 

(34%) or ambient or direct light (8%; National Sleep Foundation, 2014) among other factors. 

Empirical literature also indicates that household chaos and/or disruptions surrounding bedtime 

have been linked to greater likelihood of sleep disruptions at night in middle childhood (Fiese, 

Winter, Sliwinski, & Anbar, 2007). The current dissertation estimated broad environmental or 

contextual effects on links between sleep, weight indicators, and EC through behavior genetic 

models.  

Psychosocial factors. Psychological factors (Path 3) also likely influence links between 

sleep and weight in childhood. Of interest to the current dissertation, self-regulatory EC is 

theorized to influence behavioral, cognitive, and emotional processes, including sleep-wake 

cycles and feeding behavior in the first few years of life (Calkins, Perry, & Dollar, 2016). Self-

regulation may continue to influence sleep and weight in middle childhood, as studies have 

shown that poor self-regulation early in life contributes to sleep problems and weight gain and risk 

for obesity later in childhood (Graziano, Calkins, & Keane, 2010; Van den Bergh & Mulder, 2012). 

Thus, both phenotypic and behavior genetic associations between EC, sleep, and weight 

indicators in middle childhood were tested in the current dissertation. 
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Demographic and lifestyle factors. The bottom portion of the conceptual model 

provides multiple examples of demographic and health and lifestyle factors (Path 4) that may 

have direct, indirect, and/or interactive effects on relations between normative sleep problems 

and weight in childhood. For example, studies have shown that low socioeconomic status (SES; 

Biggs, Lushington, Martin, van den Heuvel, & Kennedy, 2013; Breitenstein, Doane, & Lemery-

Chalfant, in press; O’Dea, Dibley, & Rankin, 2014; Wisniewski & Chernausek, 2009), poor diet 

(Franckle et al., 2015; Kjeldsen et al., 2014), low physical activity (Carson, Tremblay, Chaput, & 

Chastin, 2016), ethnicity (Biggs et al., 2013; Wisniewski & Chernausek, 2009), sex (Biggs et al., 

2013; El-Sheikh, Bagley, Keiley, & Erath, 2014), and puberty (Laberge et al., 2001) may be 

potential moderators of associations between sleep and weight indicators. The current 

dissertation included many of these factors in analytic models to account for individual differences 

particularly in sex, race/ethnicity, time of assessment, SES, pubertal development, and prior 

weight indicator scores (e.g., earlier BMI scores). 

Development and change over time. Finally, Path 5 is a broad representation of time, 

such that it delineates how biological, psychological, social, and contextual factors are 

contributing to links between normative sleep problems and weight indicators continuously across 

childhood (and the lifespan). The current dissertation addressed Path 5 by testing prospective 

associations between objective and subjective sleep at eight years and weight indicators and 

status at nine years of age (Aim 1).   

Defining Sleep Problems and Weight Indicators  

Definitions of (normative) sleep problems, objective and subjective sleep indicators, 

weight and obesity differ and change considerably across studies and theoretical frameworks. 

Within the current dissertation, normative sleep problems in middle childhood were defined 

broadly as children experiencing non-clinical levels of sleep disruptions including restricted sleep, 

poor sleep quality, trouble with sleep onset, and increased daytime sleepiness (National Sleep 

Foundation, 2014; Sadeh et al., 2000; Smaldone et al., 2007). Objective sleep indicators were 

defined as facets of sleep (quantity, quality, variability) measured using wrist-based 
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accelerometers or actigraph watches for the current dissertation. References to subjective sleep 

indicators and problems described parent-reports of child sleep duration and quality. 

Regarding weight, the current dissertation considered multiple weight indicators and 

weight status. Specifically, body mass index scores (BMI) accounted for height and weight when 

estimating overall body mass, whereas waist circumference (WC) estimated visceral or 

abdominal adipose fat tissue (Vivier & Thompkins, 2008). Percent body fat provided a measure of 

the proportion of body fat to an individual’s total body weight (Tanita, 2016). Importantly, BMI, 

WC, and percent body fat did not directly measure adipose tissue, but rather provided a proxy for 

adipose body tissue or fat (Vivier & Thompkins, 2008).  

Researchers and clinicians also utilize these various proxy measures of adiposity to 

classify individuals into specific groups (often for comparison purposes) as a way of better 

understanding how adiposity may be linked to child developmental outcomes. Researchers and 

clinicians typically classify children (and adults) into four different weight categories: underweight, 

normal or healthy weight, overweight, and obese (Centers for Disease Control, 2015). Children 

are often placed in one of these four categories based on measurements or scores for BMI, WC, 

and percent body fat, accounting for sex and age (Centers for Disease Control, 2015). The 

current dissertation used these weight status categories within Aims 1 and 2, with children placed 

in weight status categories based on age- and sex-specific percentiles for BMI, WC, and percent 

body fat.  

Developmental Importance of Examining Sleep and Weight in Middle Childhood 

As noted, middle childhood serves as distinctive developmental period (Collins, 1984), 

characterized by shifts in sleep architecture and timing, increases (and possibly decreases) in 

adiposity, pubertal development, and potential changes in genetic and environmental influences 

on traits like sleep and weight (Barclay et al., 2014; Crabtree & Williams, 2009; Crowley et al., 

2014; Daniels, 2006; Plomin et al., 2013). Thus, examining various normative sleep problems and 

indicators during middle childhood is critical, as childhood sleep problems have also been 

associated with numerous child developmental outcomes (Smaldone et al., 2007) including poor 

mental and physical health (Chaput et al., 2016; Smaldone et al., 2007), more anxiety and 



	 	

	
 
10 

depressive symptoms (Gregory, Eley, O'Connor, Rijsdijk, & Plomin, 2005; Smaldone et al., 2007), 

increased problem behaviors and ADHD (Sadeh, Gruber, & Raviv, 2002; Smaldone et al., 2007), 

and poorer grades and less positive school experiences (see Astill, Van der Heijden, Van 

IJzendoorn, & Van Someren, 2012; Curcio, Ferrara, & De Gennaro, 2006; Smaldone et al., 

2007).  

Weight indicators and status may be one facet aspect of poor physical health that is 

related to sleep (see Astill et al., 2012; Chaput et al., 2016; Smaldone et al., 2007), making it 

essential to further examine associations between child sleep problems and weight indicators and 

weight status. In particular, there is a growing obesity epidemic within the child population (both 

nationally and worldwide), with approximately 33% of children and adolescents (ages 2-19) in the 

United States classified as either overweight, and 17% of these children also meeting cutoff 

scores for obesity in 2010 (Ogden, Carroll, Kit, & Flegal, 2012; Ogden, Carroll, Kit, & Flegal, 

2014; Pulgaron, 2013). Additionally, considerable research has shown that numerous negative 

health outcomes in childhood and adulthood are associated with high adiposity and risk for 

obesity (via BMI scores), including greater risk for morbidity and mortality (Vivier & Thompkins, 

2008), physical health problems such as Type 2 diabetes mellitus, asthma or breathing problems 

(Ayer, Charakida, Deanfield, & Celermajer, 2015; Howe et al., 2014; Park, Falconer, Viner, & 

Kinra, 2012; Pulgaron, 2013), lower self-esteem, greater anxiety and depressive symptoms 

(Pulgaron, 2013; see Vivier & Thompkins, 2008), and cognitive deficits (Liang, Matheson, Kaye, & 

Boutelle, 2013). Overall, middle childhood serves as a unique period of development during 

which alterations in associations between sleep and weight indicators may occur and should be 

more closely examined. 

Prior Literature Linking Sleep Problems and Weight Indicators  

Cross-sectional studies. Recent reviews and meta-analyses have illustrated that short 

subjective sleep duration was associated with higher BMI scores, increased risk for obesity, and 

increased weight gain both cross-sectionally and longitudinally (Cappuccio et al., 2008; Magee & 

Hale, 2012). Specifically, cross-sectional empirical studies have shown that shorter parent-

reported and actigraphy-based sleep duration (including later bedtimes and waketimes; Ekstedt, 
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Nyberg, Ingre, Ekblom, & Marcus, 2013) are associated with risk for obesity and/or higher BMI 

scores (Chaput, Brunet, & Tremlay, 2006; Ekstedt et al., 2013; Martinez et al., 2014; Nixon et al., 

2008; von Kries, Toschke, Wurmser, Sauerwald, & Koletzko, 2002), greater WC (Chaput et al., 

2006), and higher percent body fat (Nixon et al., 2008; von Kries et al., 2002). Notably, 

associations between short sleep duration and risk for being overweight or obese remain after 

controlling for multiple demographic and lifestyle factors, such as parent obesity, parent 

education, sex, age, screen time, physical activity level, eating behaviors, and birth height and 

weight (Chaput et al., 2006; Martinez et al., 2014; Nixon et al., 2008; von Kries et al., 2002).   

Regarding other objective sleep indicators, one meta-analysis also found that poor sleep 

quality was concurrently associated with greater risk for being overweight or obese, independent 

of sleep duration (Fatima et al., 2016). Empirical studies also show that greater objective sleep 

duration variability is associated with obesity (Spryut et al., 2011), and lower objective sleep 

efficiency predicted higher zBMI scores after controlling for various risk factors such as parent 

education, SES, family structure, and stressful life events (Bagley & El-Sheikh, 2013).  

Longitudinal studies. Far fewer longitudinal studies have tested links between child 

sleep and weight indicators. However, longitudinal research suggests children who obtain more 

sleep at night on average (via parent-report), have earlier bedtimes, and later wake times show 

lower BMI scores and lower risk of being obese five years later after accounting for initial BMI and 

demographic factors (Snell, Adam, & Duncan, 2007). Similarly, longer objective sleep duration in 

early childhood was associated with lower zBMI scores, lower percent body fat, and 

approximately a 60% reduced risk for being classified as overweight or obese at age seven after 

adjusting for BMI and body fat at age three and demographic factors (Carter, Taylor, Williams, & 

Taylor, 2011). On the other hand, children who were consistently short sleepers (via parent-

report) in early childhood showed higher BMI scores and greater risk of being overweight or 

obese children at age six compared to children who were persistently long sleepers after 

accounting for numerous confounding factors (Touchette et al., 2008).  

Overall, cross-sectional and longitudinal studies show that shorter objective and 

subjective sleep duration, quality, and later sleep timing are associated with greater BMI scores 
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increased risk for being overweight or obese. However, few studies assess multiple objective and 

subjective measures of sleep or multiple weight indicators or test associations between sleep and 

weight over time while adjusting for a number of demographic and lifestyle factors.  

The Role of Effortful Control in Associations Among Sleep and Weight Indicators 

As outlined in the conceptual model (Figure 1, Path 3), EC may be an important 

psychosocial factor that accounts for or modulates associations between normative sleep 

problems and weight indicators in middle childhood. Within the current dissertation, EC was 

defined as a broad, regulatory dimension of temperament that typically includes executive 

functioning (e.g., planning, decision making, and detecting errors), as well as inhibitory control, 

attentional focusing, persistence, and low intensity pleasure (Eisenberg et al., 2014; Rothbart & 

Bates, 2008). EC is also the extent to which individuals can willfully activate a subdominant 

response to stimuli and inhibit a dominant response to stimuli (Eisenberg et al., 2014). 

Characteristics of EC and broad self-regulation like attentional focusing and willful behavioral 

inhibition begin to appear around 12 months of age and steadily increase across childhood, with 

sharp increases at the beginning of middle childhood (ages five to six; Eisenberg et al., 2014; 

Kochanska & Knaack, 2003). A recent review identified EC as a crucial factor influencing child 

(and adult) development, such that children with higher EC show better emotional regulation and 

understanding, greater socioemotional awareness and empathy, higher school liking and 

academic achievement, and better adjustment overall (Eisenberg et al., 2014).  

Studies have also shown that EC is independently associated with normative sleep 

problems and weight indicators in middle childhood. Lower levels of broad self-regulation have 

been independently associated with poor sleep, shorter sleep duration, and higher BMI scores 

both concurrently and longitudinally in middle childhood (Graziano et al., 2010; Graziano, 

Kelleher, Calkins, Keane, & Brien, 2013; Hughes, Power, O'Connor, & Fisher, 2015; Williams & 

Sciberras, 2016). For example, one recent longitudinal study found that children with average to 

high self-regulation exhibited diminished parent-reported sleep problems over time (69% of 

children; Williams, Nicholson, Walker, & Berthelsen, 2016), whereas children with lower self-

regulatory skills showed increased sleep problems across early and middle childhood (31%). 
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Regarding various components of self-regulation and weight indicators, Hughes and colleagues 

(2015) found that lower eating self-regulation was associated with higher zBMI scores in 

preschoolers, but broad self-regulation (accounting multiple aspects of self-regulation) was not 

related to zBMI scores. Another study found that children with lower emotional self-regulation and 

inhibitory control (component of self-regulation) at two years of age were more likely to be 

classified as obese at about five years of age (Graziano et al., 2010).  

Overall, EC and broad self-regulation are linked independently with sleep, BMI scores 

and risk for obesity concurrently and longitudinally, but it is less clear whether specific aspects of 

self-regulation like EC are associated with sleep and weight, as no studies to my knowledge have 

tested various facets of sleep, weight indicators, and EC in a model together. Furthermore, while 

direct relations between EC, sleep, and weight indicators have been established, links between 

sleep and weight may vary according to child EC levels. For example, it is possible that poor 

sleep predicts increased BMI, WC, and percent body fat, but only for children with low levels of 

EC and poor self-regulation more broadly. As such, dysregulated behaviors, emotions, or 

cognitions would help explain links between poor sleep and increased weight and adiposity for 

particular children with low EC. Thus, Aim 1 of the current dissertation tested whether child EC at 

eight years moderates associations between sleep at eight years and weight indicators at nine 

years.  

The Role of Genetics in Associations Among Sleep and Weight Indicators 

Based on prior literature showing independent links between sleep, weight indicators, 

and EC, it may also be critical to examine associations between these traits within a genetically-

informed design. The twin method is one way of exploring the contributions of genetic and 

environmental factors on developmental outcomes in the population by comparing monozygotic 

(MZ; identical) and dizygotic twins (DZ; fraternal; Plomin et al., 2013). Comparing MZ and DZ 

twins shows the heritability of traits (Plomin et al., 2013), such that any differences observed 

between MZ twins can be attributed to environmental factors alone, given that MZ twins share 

100% of their segregating DNA, while any behavioral differences between DZ twins may be 
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attributed to both genetic and environmental factors, as DZ twins share roughly 50% of their 

genetic composition (Plomin et al., 2013).  

Using these assumptions regarding genetic composition, the ACE model can be used to 

estimate differences between MZ and DZ twins on variances in additive genetic, shared 

environmental, and non-shared environmental factors that contributes to a phenotypic trait (see 

Figure 2; Neale & Cardon, 1992; Plomin et al., 2013). The additive genetic (A) portion of the 

model accounts for the likelihood that multiple genes influence a phenotype (Neale & Cardon, 

1992; Plomin et al., 2013). The proportion of additive genetic contribution to a behavior will differ 

between MZ and DZ twin pairs (MZ set to 1.0, DZ set to 0.5), due to the differences in percentage 

of shared genetic composition between twin types. Shared environmental factors (C) represent 

any aspect of the environment that is shared for a set of twins and may influence a phenotype to 

make twins more similar to one another. Shared environmental factors are assumed to equal to 

100% (or 1.0) for both MZ and DZ twin pairs raised together (Neale & Cardon, 1992; Plomin et 

al., 2013). Finally, the non-shared environmental component (E) in the ACE model represents 

variation in the phenotype accounted for by contextual experiences the twins do not share, and 

thus make twins more different from one another (Neale & Cardon, 1992; Plomin et al., 2013). 

The E component is important for measuring contextual factors that twins may experience 

uniquely, such as schooling or peer groups, as well as measurement error.  

Prior research indicates genetic and environmental influences on various sleep 

parameters, weight indicators, and EC in twin samples of children in middle childhood, with sleep 

parameters and problems as much as 70% heritable, and daytime sleepiness (indicator of sleep 

quality) being 30 to 55% heritable (Breitenstein, Doane, Clifford, & Lemery-Chalfant, 2018; 

Gregory et al., 2006; Moore et al., 2009). Twins studies estimating genetic and environmental 

influences on weight indicators are more consistent, showing that BMI is between 60 and 70% 

heritable (Maes, Neale, & Eaves, 1997; Fernandez et al., 2012; Wardle et al., 2008), and about 

40% of the variance in WC is accounted for by unique genetic and environmental factors, while 

the remaining 60% can be explained by overlapping additive genetic contributions with BMI 

scores (Wardle et al., 2008). Finally, EC and other aspects of temperament show between 20 to 
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60% heritability (Saudino & Micalizzi, 2015), although empirical studies suggest EC is between 50 

and 70% heritable in middle childhood, with some consistency across multiple reporters as well 

(Lemery-Chalfant, Doelger, & Goldsmith, 2008; Lemery-Chalfant, Kao, Swann, & Goldsmith, 

2013; Mullineaux, Deater-Deckard, Petrill, Thompson, & DeThorne, 2009). Overall, Aim 2 of the 

current dissertation used univariate ACE models to estimate contributions to sleep, weight 

indicators, and EC for twins in a large, multiethnic and socioeconomically diverse sample of 

children in middle childhood. 

Quantitative Behavioral Genetic Models 

Beyond simple ACE modeling, other quantitative behavioral genetic models can estimate 

unique and shared genetic and environmental contributions to sleep, weight indicators, and EC 

(Neale & Maes, 2004; Plomin et al., 2013). Three quantitative behavioral genetic models relevant 

to the current dissertation are the Multivariate Cholesky Decomposition, the Independent 

Pathway Model, and the Liability Threshold Model, with each model answering slightly different 

questions regarding genetic and environmental associations between traits.  

Using a Multivariate Cholesky Decomposition model can help researchers determine the 

extent to which genetic or environmental factors influence a given trait after accounting for 

genetic and environmental influences shared with other traits (see Figure 3; Clifford, Lemery-

Chalfant, & Goldsmith, 2015; Neale & Maes, 2004). As depicted in Figure 3, the multivariate 

Cholesky decomposition can estimate unique additive genetic (A3), shared environmental (C3) 

and nonshared environmental (E3) influences on weight indicators such as BMI scores. Further, 

the multivariate Cholesky decomposition accounts for additive genetic (A1 and A2), common 

environmental (C1 and C2), and nonshared environmental (E1 and E2) influences on weight 

indicators (e.g., BMI) that are shared with sleep (e.g., sleep duration) and EC, respectively.  

The Independent Pathway Model is similar to the Multivariate Cholesky Decomposition, 

but tests whether there is a common underlying set of genes (As), a single shared environmental 

factor (Cs) or a common nonshared environmental factor (Es) that accounts for associations 

among traits. (see Figure 4; Clifford et al., 2015; Neale & Maes, 2004). In addition, the 

independent pathway model estimates unique additive genetic (A1, A2, and A3), shared 
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environmental (C1, C2, and C3), and nonshared environmental factors (E1, E2, and E3) that 

contribute to a particular trait, independent of other traits or behaviors. For example, we can test 

whether there is an underlying additive genetic factor that explains links between sleep, weight 

indicators, and EC (As), or whether a single shared environmental or psychosocial factor (Cs) 

such as general dysregulation can explain associations between sleep, weight indicators, and 

EC.  

Finally, Liability Threshold Models allow researchers to use categorical data to test the 

extent to which genetic and environmental influences on a trait may differ across groups of 

individuals (Figure 5; Plomin et al., 2013). For example, the Liability Threshold Model can use the 

assumptions of a typical ACE model and estimate differences in additive genetic, shared 

environmental, and nonshared environmental factors between groups on physical health traits 

like weight (e.g., weight status group). The Liability Threshold Model is particularly useful in that it 

can inform clinical research and interventions, given that the model utilizes categorical data which 

is often used with psychological and physical health diagnoses.  

Regarding genetic and environmental associations between sleep and weight indicators, 

there are no studies to our knowledge testing these associations with child samples. However, at 

least one set of studies using adult twins found that shorter self-reported sleep duration was 

associated with higher BMI scores, and these associations were accounted for entirely by 

common environmental effects (Watson, Buchwald, Vitiello, Noonan, & Goldberg, 2010). A 

related study found that shorter self-reported sleep duration predicted greater BMI scores, as well 

as higher heritability of BMI scores particularly for participants who reported longer sleep duration 

(Watson et al., 2012). These findings suggest that restricted sleep may provide an opportunity or 

context that allows for greater genetic expression of BMI or weight more broadly, whereas longer 

sleep duration may restrict genetic expression of BMI or weight.  

Intersections between Psychosocial Factors, Sleep, and Weight Indicators 
 
 A few empirical studies have been conducted that examine whether biological, 

psychological or contextual factors influence associations between sleep problems and weight 

indicators. One study found that sleep problems at eight years predicted depressive symptoms at 
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10 years in a longitudinal sample of twins, and stability in sleep problems over time were primarily 

explained by genetic influences (46%), although stability in depressive symptoms was accounted 

for by shared environmental factors primarily (Gregory, Rijsdijk, Lau, Dahl, & Eley, 2009). 

Associations between sleep problems and depressive symptoms across middle childhood were 

primarily accounted for by genetic factors (Gregory et al., 2009). Another study by Faith et al. 

(2012) found phenotypic associations between self-regulation and eating behaviors in a small 

sample of twins in middle childhood, such that poor self-regulation was linked to increased eating 

and greater percent body fat, with these relationships being particularly strong for Hispanic and 

African American children and girls in the study. Furthermore, the authors found that the greatest 

proportion of the variance in poor self-regulatory eating was accounted for by shared 

environmental factors, with the remaining variance primarily attributed to nonshared 

environmental influences (Faith et al., 2012). Overall, there are few studies examining 

biopsychosocial and contextual intersections of sleep problems and weight in middle childhood; 

however, future studies should aim to test phenotypic associations among multiple domains of 

functioning (like EC), sleep problems, and weight indicators to clarify these relationships, as well 

as test these associations within a behavior genetics framework to determine whether shared 

genes or the environment account for links among sleep, weight indicators, and EC. 

The Present Study  

Aim 1. The first aim of the current dissertation had two parts: Aim 1a tested whether 

objective and subjective sleep at eight years of age was associated with concurrent objective 

weight indictors (BMI, WC, percent body fat, risk for being classified as overweight/obese). Aim 

1b examined whether objective and subjective sleep at eight years predicted objective weight 

indicators one year later in middle childhood, controlling for prior weight indicators and significant 

demographic factors at eight years. Furthermore, Aim 1a and 1b both tested whether EC at eight 

years moderated associations between sleep at eight years and weight indicators concurrently 

and longitudinally. While substantial research has established associations between subjective 

and objective sleep duration and BMI scores or risk for being overweight or obese, there are still 

a number of gaps in the literature regarding these links. First, most studies have only examined 
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cross-sectional (rather than longitudinal) associations between sleep duration and BMI or risk for 

obesity. Further, there are mixed results regarding cross-sectional and longitudinal findings, with 

some studies showing associations between sleep and weight both concurrently and over time 

(e.g., see review by Magee & Hale, 2012), while others have found no or mixed associations 

between sleep and weight, particularly as age increases (Patel & Hu, 2008). Thus, it is less clear 

whether there are associations between sleep and weight indicators, after controlling for prior 

weight and other important demographic factors, particularly when using sleep to predict 

subsequent weight (Snell et al., 2007). Additionally, associations between sleep and weight 

indicators may be stronger during particular developmental periods such as middle childhood. 

Second, many studies examine subjective sleep (rather than objective sleep or multi-

method sleep assessment), which may be problematic. Studies suggest anywhere from 20 

minutes to almost an hour difference between actigraphy reports of sleep duration and parent-

reported sleep duration, with parents consistently reporting longer sleep duration (Martinez et al., 

2014; Nixon et al., 2008). Research also indicates that various aspects of sleep, as well as 

objective versus subjective sleep estimates, may have differential relations with developmental 

outcomes (see Patel & Hu, 2008; Tremaine, Dorrian, & Blunden, 2010), making it pertinent to 

examine multiple facets of subjective and objective measures of sleep.  

Furthermore, most studies have only collected data for sleep duration, BMI scores, and 

risk for being overweight or obese (via BMI scores). As such, there is little information about how 

other sleep parameters (e.g., sleep efficiency, sleep midpoint time variability) and additional 

weight indicators (WC and percent body fat) may be related to one another. Scant research 

suggests that lower sleep efficiency and later bedtimes and wake times is associated with higher 

BMI scores and increased risk for being classified as overweight or obese (Bagley & El-Sheikh, 

2013; Ekstedt et al., 2013; see meta-analysis by Fatima et al., 2016). However, no study to my 

knowledge has examined sleep midpoint variability specifically (which accounts for fluctuations in 

bedtime and waketime) in relation to weight indicators or risk for obesity.  

Finally, few studies to my knowledge have tested whether important family- or person-

level factors may strengthen or weaken links between sleep and weight indicators during middle 
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childhood. Child self-regulation has been associated with sleep duration and quality (Hughes et 

al., 2015; Williams & Sciberras, 2016), as well as BMI and risk for obesity in childhood (e.g., 

Graziano et al., 2010; Granziano et al., 2013), suggesting that specific facets of regulation like 

EC, may serve as important moderators of links between sleep and weight indicators.  

Given these limitations in the literature, the current dissertation used cross-sectional data 

as well as a short-term longitudinal design to examine whether a) different aspects of sleep and 

EC were associated with weight indicators concurrently, and b) multiple sleep parameters and 

child EC predicted changes in weight indicators from eight to nine years of age. The first aim 

used actigraphy-based estimates of sleep duration, sleep efficiency (proxy for sleep quality), and 

sleep midpoint variability, as well as parent-reported sleep duration and daytime sleepiness 

(proxy for sleep quality) to test differential relations between sleep and weight outcomes both 

cross-sectionally and longitudinally. Additionally, the current dissertation used objectively 

measured BMI scores, WC, percent body fat, and weight status (based on all weight indicators). 

Based on prior literature, I predicted that shorter objective and subjective duration, lower objective 

sleep efficiency and subjective daytime sleepiness, and greater objective sleep midpoint 

variability at eight years would be linked with higher BMI scores, greater WC, higher percent body 

fat, and greater risk for being classified as overweight or obese at eight years (Aim 1a). I also 

expected that shorter objective and subjective duration, lower objective sleep efficiency and 

subjective daytime sleepiness, and greater objective sleep midpoint variability at eight years 

would be linked with higher BMI scores, greater WC, higher percent body fat, and greater risk for 

being classified as overweight or obese at nine years (Aim 1b). For both Aim 1a and b, I also 

hypothesized that there would be stronger negative associations between objective and 

subjective sleep and weight indicators and status for children with lower levels of EC, whereas 

links between sleep and weight indicators would be attenuated for children with average and high 

levels of EC.     

Aim 2. Prior literature has demonstrated independent associations between EC and 

various aspects of sleep and weight indicators, and other studies show moderate to high 

heritability of various sleep parameters, weight indicators, and EC in middle childhood. As such, 
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Aim 2a of the current dissertation estimated unique additive genetic, shared environmental and 

nonshared environmental influences on sleep, weight indicators and EC (Univariate Cholesky 

Decompositions), as well as tested whether the covariance between various sleep, weight, and 

EC indicators is primarily explained by additive genetic, shared environmental and nonshared 

environmental factors (Bivariate or Multivariate Cholesky Decompositions). Based on prior 

empirical studies with twin children (Breitenstein et al., 2018; Fernandez et al., 2012; Gregory et 

al., 2006; Moore et al., 2009; Saudino & Micalizzi, 2015; Wardle et al., 2008), I expected the 

greatest proportion of the variance in objective and subjective sleep duration, objective sleep 

efficiency, and child EC to be accounted for by additive genetic factors. I also predicted that the 

greatest proportion of the variance in parent-reported daytime sleepiness to be accounted for 

primarily by shared environmental factors, with some contribution from additive genetic factors. 

Finally, I expected that the greatest proportion of the variance in BMI, WC, and percent body fat 

to be accounted for by additive genetic factors. 

Furthermore, Aim 2b of the current dissertation tested whether there were shared and 

unique additive genetic, shared environmental, and nonshared environmental influences on child 

objective and subjective sleep, weight indicators, and EC at eight years of age using two 

multivariate quantitative behavioral genetic models (Multivariate Cholesky Decomposition and 

Independent Pathway Model; see Figures 3 and 4). I expected mostly shared additive genetic 

influences to account for links between sleep, weight indicators, and EC in children, given the 

moderate to strong additive genetic influence detected on various sleep problems, weight 

indicators, and EC in prior empirical studies of twins (Fernandez et al., 2012; Gregory et al., 2006; 

Wardle et al., 2008; Lemery-Chalfant et al., 2013). However, I also expected to find shared 

environmental associations between sleep, weight, and EC, given prior research in adults 

showing links between sleep duration and BMI scores are accounted for primarily by 

environmental effects (Watson et al., 2010; Watson et al., 2012). 

Aim 2c of the current dissertation used a third behavior genetic model, the Liability 

Threshold Model, to determine whether genetic and environmental influences on weight differed 

according to weight status groups at eight years of age (see Figure 5). Specifically, I tested 
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whether different weight status groups showed greater additive genetic influences (or shared or 

nonshared environmental contributions) by comparing children who are underweight, overweight, 

and obese to children who fell within the normal range of the population at eight years. At least 

one study showed that adult twins who reported shorter self-reported sleep duration were more 

likely to have higher BMI scores, as well as higher heritability of BMI scores particularly for adults 

who reported longer sleep duration (Watson et al., 2012). These findings and theory concerning 

gene by environment interactions suggest that genetic expression of traits and characteristics 

may be highly dependent on the environment in which the trait is expressed, with some 

environments (e.g., supportive, nurturing, environments with greater resources) allowing for 

greater expression of genetic influence on a particular trait and other environments restricting 

genetic expression of  the same trait (e.g., poorer, less supportive environments with fewer 

resources; Rutter, 2003; Price & Jaffee, 2008). Given this theory and prior findings, I predicted 

children who fell in the overweight and obese weight status groups would show higher heritability 

of obesity compared to children in the normal and underweight groups.  

CHAPTER 2 

METHOD 

Participants 

Participants were children from the Arizona Twin Project (ATP; Lemery-Chalfant, Clifford, 

McDonald, O’Brien, & Valiente, 2013), a large ongoing, longitudinal twin-panel study. Primary 

caregivers completed a questionnaire at the baseline assessment, which occurred when the twins 

were approximately 12 months old. The current dissertation included families who agreed to 

participate in two follow-up assessments: one when twins were approximately eight years old 

(data collected 2016-2018) and a second assessment when twins were nine years old (data 

collected 2017-2019). The full sample (12 months of age) consisted of 582 twins (291 families), 

including both monozygotic (MZ) and dizygotic (DZ) twin pairs (MZ = 26%, same-sex DZ = 35%, 

opposite-sex DZ = 33%; unknown zygosity = 6%). Twin group sizes were similar to that of what is 

found in the broader population. The sample was evenly split between males and females (male 

= 50.5%), and was ethnically diverse with 56.5% European American, 25.1% Latino, 5.2% Asian 
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American, 4.2% African American, 1.0% Native American, 1.6% Native Hawaiian families, and 

6.3% multiethnic or unknown ethnicity. Families in the sample also demonstrated a broad range 

of socioeconomic status (SES; range = under $20,000 to over $150,000) at all the baseline 

assessment (Median = $80,000-$100,000). Regarding income-to-needs, 10.4% of the sample 

was living in poverty (score of <1), 20.9% were near the poverty line (score of 1-2), 23.9% were 

lower middle class (score of 2-3), and 44.8% were middle to upper class (score of 3+). 

For the eight-year assessment, families from the full sample and new families with 

children born in the same years/cohort as the full sample were recruited into the study. Thus, the 

eight-year assessment included 608 twins (304 families; M = 8.52 years, SD = .63; data collected 

from 2016-2017). Of these families, 89 (29.6%) were MZ twin pairs, 117 (38.9%) were same-sex 

DZ twins, 95 (31.6%) were opposite-sex DZ families, and 3 (1.0%) were of unknown zygosity. 

Similar to the full sample, the eight-year sample was 49.2% male and ethnically diverse 

(approximately 56.6% European American, 24.8% Latino, 3.6% Asian American, 4.0% African 

American, 2.6% Native American, 1.0% Native Hawaiian families, and 8.0% multiethnic or 

unknown ethnicity). The majority of primary caregivers reported either completing college degree 

(36.8%; 33.3% for spouse/partner), two or more years of graduate school (3.3%; 3.5% for 

spouse/partner), or a completed graduate or professional degree (22.5%; 20.2% for 

spouse/partner), with the remaining reporting some college (27.5%; 26.7% for spouse/partner), a 

high school degree or equivalent (9.3%; 14.7% for spouse/partner), or less than a high school 

degree (.7%; 1.6% for spouse/partner) and unknown education level for .7% of primary 

caregivers (15.1% for spouse/partner). Like at the baseline assessment, families in the eight-year 

assessment showed a broad range of socioeconomic status (SES; range = under $20,000 to over 

$150,000), and had similar proportions of the sample in each income-needs-ratio category (living 

in poverty = 7.6% near the poverty line 19.4%; lower middle class = 13.2%; middle to upper class 

= 42.8%; 17.1% missing). 

Procedure 

Parents of twins were recruited through birth records in Arizona when the twins were 

approximately 12 months of age, and primary caregivers (94.6% mothers) completed interviews 
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via telephone regarding mother’s pregnancy and twins’ development, zygosity, temperament, and 

health. Primary caregivers were contacted again when twins were approximately eight years of 

age and offered the opportunity to participate in an intensive assessment of child sleep, physical 

and mental health, daily practices, cognitive functioning, and academic achievement, consisting 

of two home visits separated by a week-long study protocol. At eight years, over 70% of children 

completed the study week during the school year, with the remaining families completing 

procedures when children were out of school (e.g., vacation, summer break, etc.) 

At each home visit for the eight-year assessment, experimenters collected 

questionnaires, biological measures (height, weight indicators), conducted cognitive tasks with 

the twins, and administered a parent-child interaction and an interview assessing the home 

environment. At each family’s first home visit, study staff also trained the primary caregiver 

(94.1% mothers) for the week-long study protocol, in which the twins wore wrist-based 

accelerometers (actigraph watches) for seven nights and eight days, and primary caregivers 

completed online daily diaries via smartphone or computer (90.9%), paper (7.2%), or both (1.5%; 

.4% missing diary data). Primary caregivers also reported child bedtimes and wake times on a 

daily assessment table as an additional report of child sleep used for cross-validation when 

cleaning actigraphy sleep data.   

Primary caregivers were contacted approximately one year later when twins were nine 

years old and offered the opportunity to participate in one home visit consisting of assessments of 

child and parent pain as well as physical and mental health (N = 278). At home visits for the nine-

year assessment, experimenters collected questionnaires, biological measures (height, weight, 

WC, and percent body fat), conducted interviews with the twins regarding behaviors and 

emotions, and administered a cold-pressor task with parents and children to assess pain 

threshold and sensitivity. Sleep was not the focus of the nine-year assessment; as such, objective 

measures of sleep were not collected.  

Families part of the full sample (beginning at 12 months of age) who lived outside the 

state of Arizona were also invited to participate in the eight-year assessment (N = 40 families); 

however, materials and assessments that typically occurred in home visits, including sleep 
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assessment and biological measurements, were not collected from these families. Analyses were 

conducted including and excluding families who completed the out-of-state protocol, and results 

were similar such that significant main effects and interactions (and non-significant results) were 

the same across analyses. As such, families who completed the out-of-state protocol were 

included in the final analytic sample for the current dissertation.  

Measures  

Objective Sleep. Objective sleep indicators were assessed and scored using the Micro 

Motionlogger actigraph wrist watch (Ambulatory Monitoring, Inc., Ardsley, NY). The Micro 

Motionlogger contains an accelerometer, which captures even small movement throughout the 

waking day and during sleep periods. Each twin wore an actigraph watch on their non-dominant 

wrist for seven nights and eight days (M = 6.83 nights, SD = .62). Researchers and study staff 

scored objective sleep data using the Action-W2 program (version 2.7.1), which uses a validated 

algorithm to measure sleep (Oakley, 1997). Researchers used the Sadeh algorithm to assess 

sleep (Sadeh, Hauri, Kripke, & Lavie, 1995; Sadeh, Sharkey, & Carskadon, 1994), with 

movement measured in one-minute epoch using a zero-crossing mode. Utilizing one-minute 

epochs and based on significant movement after at least 20 minutes of inactivity, the Sadeh 

algorithm calculates a variety of sleep parameters. Research suggests that actigraphy is reliable 

when measuring five more nights of sleep (Acebo et al., 1999), and actigraphy sleep 

measurement has been validated against concurrent polysomnography (Sadeh et al., 1995). 

Three sleep variables were used in the current dissertation: sleep duration, sleep efficiency, and 

sleep midpoint time variability. Nighttime sleep duration represented the total number of hours 

and minutes asleep each night on average (not counting wake bouts). Sleep efficiency 

represented the percentage of time asleep each night (excluding wake bouts) based on the total 

amount of time in bed on average. Sleep midpoint time variability (or midpoint variability) was 

calculated as the within-person standard deviation estimate of sleep midpoint time of night (time 

halfway between bedtime and waketime) across the study week on average. 

Additionally, study staff cross-checked objective actigraphy sleep periods with parent-

reported bedtimes and wake times from daily assessment tables and daily sleep diaries that were 
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completed by the primary caregiver as an additional sleep-period compliance measure to identify 

significant outliers and equipment malfunction. Compliance for the eight-year assessment was 

high, with only 9.8% (N = 48) of actigraphy data missing due to loss of actigraph watch or water 

damage (N = 4), watch mechanical malfunction (N = 15), children not wearing the watch but 

participating in other parts of the study week (N = 7), and the number of families who participated 

only in the questionnaire and home visit portion of the study (N = 22). Furthermore, of the families 

who had actigraphy data, 87.3% (N = 428) wore the watch for seven or more nights, 9.6% (N = 

47) had six nights of data, .8% (N = 4) had five nights of data, 1.4% (N = 7) had four nights of 

data, and .8% (N = 4) had three nights of data. If an individual has fewer than five nights of 

actigraphy data, this may provide a poor estimation of regular sleep (Acebo et al., 1999). Thus, I 

conducted exploratory analyses excluding participants with fewer than five nights of sleep (N = 

11) to determine whether results were similar compared to analyses including all children with 

available objective sleep data. Results excluding children with fewer than five nights of sleep did 

not differ from results including all children with available objective sleep data; As such, all cases 

were included in analyses.  

Subjective Sleep. Subjective sleep duration and quality were measured using items from 

the primary caregiver-report of the Child Sleep Habits Questionnaire at eight years (CSHQ; 

Owens, Spirito, & McGuinn, 2000). The current dissertation used questions regarding total sleep 

duration (1 item) and daytime sleepiness (7 items; α = .35). Parent-reported sleep duration (i.e., 

Typically, Twin A/B sleeps ___ hours at night.) represented the total number of hours and 

minutes each twin slept at night on average. The daytime sleepiness scale assessed difficulty 

waking up in the morning and frequency of falling asleep during daytime activities (e.g., Twin A/B 

has a hard time getting out of bed in the morning). Daytime sleepiness items were summed to 

form a single score where higher scores reflected greater daytime sleepiness. Subjective sleep 

duration and quality served as predictors in phenotypic and behavior genetic models. 

Weight Indicators. BMI, WC, and percent body fat were used as outcomes in 

phenotypic and behavior genetic models. Height, weight, WC, and percent body fat were 

collected a home visits when twins were eight and nine years old. Height was measured twice 
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with a tape measure to the nearest half inch at eight years (one measure per visit) and once at 

nine years of age. At eight years, height measurements were averaged across the two visits to 

give a single measure of height for each child and the single assessment of height was used for 

each child at the nine-year assessment.  

Weight in pounds was measured using an FDA-approved full body composition scale for 

children (Tanita Child Scale; Tanita, 2016) at eight and nine years of age. Weight was measured 

twice at each home visit (four times across two visits) when twins were eight years old, and a 

third assessment was collected at each visit if the first two weight estimates showed any 

discrepancies (six possible total measures of weight per child). At nine years, weight was 

measured twice during the home visit, with a possible third assessment collected if the first two 

weight estimates showed discrepancies. At eight and nine years, weight estimates were 

averaged to give each child a single weight estimate at each time point. BMI scores were derived 

from measures of height and weight taken at home visits at eight and nine years. BMI scores 

were calculated using the Centers for Disease Control (2015) child BMI formula: weight (kg) / 

[height (m)]2.  

Percent body fat was also measured using Tanita Child Scale (2016), which utilizes a 

form of bio-electrical impedance analysis (BIA), a gold-standard in assessing body fat (Davis, 

2008). Percent body fat was collected when child weight was assessed, such that percent body 

fat was assessed up to three times per home visit at eight years (six possible total measures), 

and up to three times at the nine-year assessment. Percent body fat estimates were averaged 

across or within visits to provide a single percent body fat score for each twin at each time point.  

WC was assessed in inches once at each home visit (two measures total) using a Gulick 

tape measure (one of the recommended methods for estimating visceral adiposity) at the natural 

waistline approximately two inches below the lowest rib (Davis, 2008). The Gulick tape measure 

has a metal counterweight on one end that is activated when placing equal pressure around the 

body when assessing WC. Experimenters asked children to remove bulky clothing before 

assessing WC and were trained to have the Gulick tape measure resting directly on the child’s 

clothing with no space between the body or clothing and the tape measure (Davis, 2008). One 
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end of the Gulick tape measure was pulled around the body to meet the end of the tape with the 

counterweight, and the counterweight was pulled until it reached a marker signaling equal and 

constant pressure against the body. WC measures were averaged across visits for each twin to 

create a single WC score at each time point. 

Weight Status. Weight status at eight and nine years (underweight, healthy, overweight, 

and obese) was calculated using three weight indicators: BMI, WC and percent body fat. The 

current dissertation used age- and sex-specific centile cut-off scores for each weight indicator. 

For BMI, children were classified as underweight if scores were less than the 5th percentile, 

normal or health weight if scores were between the 5th and less than the 85th percentile, 

overweight if scores were between the 85th and less than the 95th percentile, and obese if scores 

were greater than the 95th percentile. Children were classified as underweight for WC if scores 

were less than the 3rd percentile, normal or health weight if scores were between the 3rd and less 

than the 85th percentile, overweight if scores were between the 85th and less than the 97th 

percentile, and obese if scores were greater than the 97th percentile. For percent body fat, 

children were classified as underfat for WC if scores were less than the 2nd percentile, normal or 

health fat percent if scores were between the 2nd and less than the 85th percentile, overfat if 

scores were between the 85th and less than the 95th percentile, and obese if scores were greater 

than the 95th percentile. 

Per practices in the pubertal literature (Davison, Susman, & Birch, 2003), children were 

assigned to a weight status group if they met criteria for a specific weight status category on at 

least two of the three weight indicators, allowing me to account for weight status using multiple 

indicators. When combining weight status groups for each child (if they met criteria for the 

category on at least two of the three weight indicators), 5.4% of children were underweight, 

73.8% of children were normal or healthy, 13.3% of children were overweight, and 7.5% of 

children were obese at eight years of age. At nine years of age, 11.2% of children were 

underweight, 69.2% of children were normal or healthy, 11.2% of children were overweight, and 

8.3% of children were obese. Weight status served as an outcome in phenotypic analyses and 

behavior genetic analyses (Aim 2b).  
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Child EC. Child EC at eight and nine years was assessed using the Temperament in 

Middle Childhood Questionnaire (TMCQ; Simonds, 2006; Putnam & Rothbart, 2006). The current 

dissertation used the attentional focusing (14 items; α = .90), inhibitory control (7 items; α = .68), 

and activation control (8 items; α = .69) scales of the TMCQ, which were used to create a higher-

order composite of EC (Putnam & Rothbart, 2006). All scale items are rated on a seven-point 

Likert scale, from 1 (Extremely Untrue) to 7 (Extremely True) (“NA” was also an option). Items 

were reverse scored if necessary, and higher scores on the scales indicated more of a certain 

behavior. In the current dissertation, EC was a moderator in phenotypic models and a predictor in 

behavioral genetic models. 

Zygosity. Zygosity was assessed at 12 months (α = .95) via primary-caregiver reports 

using the Zygosity Questionnaire for Young Twins (ZQYT; Goldsmith, 1991), a 32-item measure 

that differentiates between MZ and DZ twins using parent report of birth and observable 

differences in physical appearance between the twins. Studies have shown parent-reported 

zygosity (using the ZQYT) is between 93% and 98% accurate in characterizing twin zygosity 

compared to genotyping, making questionnaires a reliable alternative (Goldsmith, 1991; Forget-

Dubois et al., 2003). Families who did not report or participate at the 12-month assessment 

completed the ZQYT at eight or nine years of age.  Zygosity (or twin number) was included in 

models to account for twin interdependence, as well as to form groups for MZ and DZ twins in 

quantitative behavioral genetic analyses (i.e., additive genetic paths set to equal 1.0 within MZ 

cotwin pairs, and 0.5 for DZ cotwin pairs).  

Covariates. The following demographic variables at eight years were included in all 

phenotypic analyses: Age, sex (female = 1), twin ethnicity (European American = 1, all other 

ethnicities = 0), SES composite (includes income-to-needs ratio, primary caregiver education 

level, and secondary caregiver education level), whether the child completed the study week 

during the school year (school break = 1), and parent-reported pubertal development scores 

(Pubertal Development Scale; Petersen, Crockett, Richards, & Boxer, 1988; α = .96 for males 

and females). Relevant weight indicators from eight years of age (BMI scores, WC, and percent 

body fat) also served as covariates in phenotypic models predicting weight indicators at nine 
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years. Significant covariates (based on zero-order correlations) were included in phenotypic 

models, and the effects of sex and age were regressed out of variables in quantitative behavior 

genetic analyses.  

Statistical Approach 

Preliminary Analyses. Demographic information regarding the sample was collected, 

including percentages for participant sex, race/ethnicity, zygosity, diary completion, whether study 

week was completed during the summer or school year, primary caregiver education level, and 

income-to-needs ratio at eight years, and weight status groups at the eight- and nine-year 

assessments (See Table 1). Descriptive statistics including raw means, standard deviations, 

minimums, maximums, skew, and kurtosis for all objective and subjective sleep, weight 

indicators, EC, and covariates were conducted (See Table 2). Univariate outlier analyses, skew, 

and kurtosis were examined to determine whether any variables had significant outliers that may 

bias estimates. Variables with significant outliers and significant skew and/or kurtosis were first 

windorized to ± 3 SDs. If variables still exceeded the recommended cutoff for positive or negative 

skew (2.00) or kurtosis (7.00; Muthén & Kaplan, 1985), they were transformed either by squaring 

the scores of the variable (if negatively skewed) or logarithmically transforming the variable (if 

positively skewed) to approximate a normal distribution of the data for the variable. Parent-

reported daytime sleepiness at eight years, BMI at eight years, and WC at nine years all 

contained significant outliers, as well as skew and kurtosis that exceeded the recommended 

cutoffs (Muthén & Kaplan, 1985). As such, parent-reported daytime sleepiness at eight years, 

BMI at eight years, and WC at nine years were windorized at ± 3 SDs to approximate a more 

normal distribution of each variable and reduce skew and kurtosis. Windorizing variables 

successfully dispelled significant positive skew and kurtosis for BMI at eight years and WC at nine 

years; however, parent-reported daytime sleepiness remained positively skewed and kurtotic 

after windorizing at ± 3 SDs. Thus, parent-reported daytime sleepiness at eight years was also 

logarithmically transformed (after being windorized) to approximate a normal distribution of the 

data. Overall, windorized and/or transformed parent-reported daytime sleepiness at eight years, 
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BMI at eight years, and WC at nine years were used in phenotypic analyses, and raw forms of all 

other variables were used as they were normally distributed. 

Zero-order correlations between predictor, outcome, and covariate variables were 

conducted (See Table 3), and twin intra-class correlations (ICCs; see Table 4) were reported to 

show the extent to which sleep, weight indicators, and EC were heritable and provide a basis and 

context for the univariate, bivariate, and multivariate behavior genetic models (Aim 2). Twin ICCs 

were conducted in SPSS 24 (IBM), as twin ICCs are typically conducted in a twin-level file by 

testing bivariate correlations while excluding either Twin 1 or 2’s data from the bivariate 

correlation. If MZ twin ICCs are higher than DZ ICCs, this suggests a genetic influence on 

individual differences in particular traits (higher heritability). Approximately equal or similar MZ 

and DZ ICCs indicate influence of the shared and nonshared environment, as well as capturing 

measurement error, on a particular trait (lower heritability).  

Aim 1a and b.  Mixed model and multivariate logistic regression analyses were 

conducted in Mplus 7 (Muthén & Muthén, 1998-2012; version 7.11) using the complex command 

and full information maximum likelihood with robust standard errors (MLR; recommended when 

using complex command) to account for twin interdependence, non-normality, and missing data. 

Mixed model regression analyses examined associations between a) objective and subjective 

sleep at eight years and weight indicators at eight years of age, as well as whether EC moderated 

these associations, and b) objective and subjective sleep at eight years and weight indicators at 

nine years of age, as well as whether EC moderated these associations. Multivariate logistic 

regression analyses tested whether objective and subjective sleep at eight years predicted odds 

of being overweight or obese at both eight and nine years of age, and if links between sleep and 

weight indicators differed by child EC level at eight years. When used as predictors in mixed 

model or multivariate logistic regression analyses, objective and subjective sleep indicators and 

EC were centered at zero, and unstandardized beta estimates, standard errors, confidence 

intervals, and p-values were reported. For significant interactions in mixed model regression 

analyses, simple slopes were plotted at 1 SD below and above the mean of EC at eight years 
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using the simple slopes technique for 2-way interactions with nested data outlined by Preacher 

and colleagues (2006).  

Aim 2a. Univariate and Bivariate Cholesky Decomposition models (i.e., ACE models) 

were conducted in OpenMx (Boker et al., 2011), an R-based program that estimates genetic and 

environmental variance and covariance (e.g., between sleep duration and BMI scores) using 

structural equation models with maximum likelihood estimation and allowance for missing data. 

With all quantitative behavior genetic models, additive genetic influences on a phenotype were 

set to correlate 1.0 for MZ twins and .5 for DZ twins. Shared environmental influences affect MZ 

and DZ twins (reared together) to the same degree regardless of genetic relatedness and were 

set to correlate 1.0 across twins for both MZ and DZ groups. Nonshared environmental variance 

encompasses all non-genetic factors that reduce phenotypic covariance between cotwins, 

including measurement error, and were uncorrelated across MZ and DZ cotwins. Significance of 

all A and C parameters in each quantitative behavior genetic model were tested by systematically 

dropping the A parameter, C parameter, and then both A and C parameters from the model and 

comparing the fit of full and reduced models. Because the E parameter contains measurement 

error, it was not dropped from any models. Full and reduced models were compared using the -2 

log likelihood chi-squared test of fit (-2LL or χ2), as well as chi-square different tests (or log 

likelihood tests; indicated by ∆ -2LL) which compared model fit of nested models. Non-significant 

p-values for the -2LL difference test indicated that a reduced model did not fit the data significant 

worse compared to the full model with all paths estimated (better model fit). In contrast, significant 

p-values for the -2LL difference test indicated that the reduced model fit the data significantly 

worse compared to the full model with all paths estimated. Akaike’s Information Criterion (AIC; 

Akaike, 1974), which penalizes models with a larger number of parameters, was also used to 

assess model fit. Lower AIC values indicated better model fit. Overall, -2LL, degrees of freedom, 

AIC, change in degrees of freedom, change in -2LL and the p-value were reported for each full 

and best-fitting (full or reduced) behavior genetic model. 

Appropriate Univariate and Bivariate Cholesky Decompositions were conducted with 

various objective and subjective sleep variables, weight indicators, and EC at eight years to 
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decompose the covariance between three traits into unique and shared A, C, and E components 

by examining cross-twin cross-trait covariances separately for MZ and DZ twin groups 

(multivariate example, Figure 3). Univariate behavior genetic models were conducted (See Figure 

4) first with all sleep, weight, and EC variables at eight years of age to provide a basis for 

multivariate models. Second, Bivariate Cholesky Decompositions were estimated to demonstrate 

genetic and environmental contributions to the variance for individual phenotypes, as well as 

decompose any covariance shared between two phenotypes. Finally, if there was no phenotypic 

association or a weak association (correlations less than .20 will be reviewed) between sleep, 

weight indicators, and EC conducted in Aim 1, it may not be appropriate to conduct behavior 

genetic models. As such, zero-order correlations and phenotypic results from Aim 1 directed the 

total number and type of Univariate and Bivariate Cholesky Decompositions that were conducted 

in Aim 2a.  

Aim 2b. The Multivariate (trivariate) Cholesky Decomposition estimated unique additive 

genetic (A3), shared environmental (C3) and nonshared environmental (E3) influences on weight 

indicators such as BMI. In the same model, additive genetic (A1 and A2), common environmental 

(C1 and C2), and nonshared environmental (E1 and E2) influences on weight indicators like BMI 

that are shared with objective and subjective sleep parameters (e.g., sleep duration) and EC were 

also estimated. For comparison, Independent Pathway Models were fit to determine whether 

there was a common underlying set of genes (As), a single shared environmental factor (Cs) or a 

common nonshared environmental factor (Es) that accounts for associations among traits (Figure 

4). In the same model, unique additive genetic (A1, A2, and A3) and nonshared environmental 

factors (E1, E2, and E3) that contribute to a particular trait, independent of other traits or 

behaviors, was estimated. For example, we can test whether there is an underlying additive 

genetic factor that explains links between objective sleep duration, BMI, and EC (As), or whether 

a single shared environmental or psychosocial factor (Cs or Es) such as general dysregulation can 

explain associations between sleep duration, BMI, and EC. Multivariate behavior genetic models 

were only conducted for significantly correlated sleep variables and weight indicators to test the 

extent to which sleep or weight indicators share the same or different genetic etiologies.  
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Aim 2c. Finally, one Liability Threshold Model was fit to test the extent to which additive 

genetic and environmental influences on a weight status may differ across groups of individuals 

(Plomin et al., 2013; Figure 5). The Liability Threshold Model uses the same assumptions as the 

typical ACE model and estimates differences in additive genetic, shared environmental and 

nonshared environmental factors between weight status group (i.e., whether additive genetic 

influences are stronger or weaker for different groups). However, given that the Liability 

Threshold Model does not utilize continuous data, degrees of freedom are less than what is 

required to estimate model fit. To account for this, Liability Threshold Models traditionally 

constrain the total variance estimated (V) to 1, such that A + C + E = 1 allowing models to be 

estimated. This approach also assumes and estimates the data as normally distributed. Overall, 

the Liability Threshold Model was conducted in two major steps. First, the full univariate model 

was fit, including estimating and calculating thresholds and a predicted correlations matrix for MZ 

twins. For the univariate model, child weight status was obtained from Aim 1, and the liability 

threshold model contained cut points between each of the weight status groups, such that 

underweight to healthy weight = 0, healthy weight to overweight = 1, and overweight to obese = 

2. Thresholds and correlations were calculated in OpenMx when fitting the univariate model, and 

two thresholds were estimated given that there are three categories or groups in the data. 

Second, multiple submodels were tested by constraining thresholds across twins and zygosity 

groups and systematically dropping A parameters, C parameters, and then both A and C 

parameters, and the full model was compared to the reduced models to determine the best fitting 

model (just as with other quantitative behavior genetic models). 

CHAPTER 3 

RESULTS 

Preliminary Analyses  

Descriptive Statistics. Means, standard deviations, minimums, maximums, skewness 

and kurtosis for all key variables are presented in Table 2. On average, parents reported that 

children slept approximately nine hours and 39 minutes each night (SD = 52 minutes), whereas 

objective sleep duration measurement showed that children slept about eight hours and five 
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minutes each night (SD = 44 minutes). Children also showed adequate sleep quality, spending 

about 90% of their time in bed each night sleeping. Regarding weight indicators, children showed 

an average BMI score of about 16.86 (SD = 2.94 points; windorized BMI: M = 16.79, SD = 2.68 

points) at eight years and 17.40 at nine years of age (SD = 3.28 points), which falls within the 

normal or healthy range for both males and females at these ages. Children also demonstrated 

an average WC of 22.82 inches (SD = 3.00 inches) at eight years and 23.19 inches at nine years 

of age (SD = 4.08 inches; windorized WC: M = 23.09, SD = 3.61 inches), and an average percent 

body fat of 20.23 (SD = 6.45 percentage points) at eight years and 20.38 at nine years of age (SD 

= 7.36 percentage points).   

Correlations. Zero-order correlations for the analytic sample are presented in Table 3. 

Parent-reported sleep duration was negatively associated with daytime sleepiness, sleep 

midpoint variability, and BMI and percent body fat at eight years of age. Conversely, parent-

reported sleep duration was positively associated with objective sleep duration and EC at eight 

years. Objective nighttime sleep duration was positively associated with objective sleep 

efficiency, sleep midpoint variability, and EC at eight years. Both objective sleep duration and 

efficiency were significantly negatively correlated with BMI, WC, percent body fat, and weight 

status at eight and nine years of age. All weight indicators and weight status were significantly 

positively correlated with each other at eight and nine years of age, as well as correlated across 

time points suggesting high stability in weight estimates from eight to nine years of age for 

children. EC was negatively related to BMI at eight and nine years and WC at nine years of age.  

Regarding demographic variables, females showed longer objective sleep duration, 

greater sleep efficiency, greater percent body fat at eight and nine years of age, and greater EC 

at eight years compared to male children. European American/White participants in the study 

showed greater parent-reported and objective sleep duration, lower sleep midpoint variability, 

lower BMI and percent body fat at eight and nine years of age, and smaller WC at eight years 

compared to non-European American/White participants. Participant who completed their study 

week during a school break (rather than the school year) showed lower sleep midpoint variability. 

Children who demonstrated greater pubertal development or higher pubertal stage at eight years 
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of age showed longer objective sleep duration and greater efficiency, higher EC at eight years, 

and greater BMI, WC, percent body fat and were classified as overweight/obese at both eight and 

nine years compared to children who were not as far along in pubertal development. Finally, 

children from higher SES backgrounds at eight years also showed longer parent-reported and 

objective sleep duration, greater sleep efficiency, lower midpoint variability, greater EC, and lower 

BMI, WC, percent body fat, and were classified as underweight or normal weight (rather than 

overweight/obese) at both eight and nine years of age.  

Twin ICCs. Twin intra-class correlations (ICCs) were conducted to examine whether 

identical twins were more similar to each other than fraternal twins (see Table 4 for complete twin 

ICCs on key study variables). Twin ICCs indicated that MZ twins were more similar particularly on 

objective sleep duration (ICC = .84) and sleep efficiency (ICC = .84) at eight years compared to 

DZ twins (sleep duration: ICC = .46; sleep efficiency: ICC = .46). MZ twins were also more similar 

on EC at eight years (ICC = .73) than DZ twins (ICC = .43). Finally, MZ twins were considerably 

more similar on BMI (MZ = .92; DZ = .30), WC (MZ = .90; DZ = .35), and percent body fat 

estimates (MZ = .93; DZ = .29) compared to DZ twins at both eight and nine years of age (BMI at 

nine years: MZ = .81; DZ = .37; WC at nine years: MZ = .84; DZ = .48; Percent body fat at nine 

years: MZ = .85; DZ = .38).  

Aim 1a Results 

  Parent-reported Sleep Duration and Weight Indicators. The interaction between 

parent-reported sleep duration and EC at eight years was marginally significant in predicting 

concurrent BMI (b = .46, {95% CI, -.03, .96}, SE = .25, p = .07). Simple slopes were probed at ±1 

SD of EC at eight years to test the interaction, but there were no significant differences in 

associations between parent-reported sleep duration and BMI at eight years based on high, 

mean, and low levels of child EC (all ps > .05).  However, in the model with parent-reported sleep 

duration at eight years predicting concurrent BMI, greater EC (b = -.55, {95% CI, -1.04, -.07}, SE 

= .25, p = .03) and higher SES (b = -.49, {95% CI, -.92, -.05}, SE = .22, p = .03) were associated 

with lower BMI scores, and greater pubertal development was associated with higher BMI scores 

at eight years (b = 2.49, {95% CI, 1.23, 3.75}, SE = .64, p < .001).  
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 Parent-reported sleep duration and the interaction between parent-reported sleep 

duration and EC at eight years did not predict concurrent WC, percent body fat or weight status. 

However, there was as significant main effect of pubertal status in all models, with greater 

pubertal development was associated with larger WC (b = 2.94, {95% CI, 1.49, 4.39}, SE = .74, p 

< .001), greater percent body fat (b = 5.82, {95% CI, 2.95, 8.68}, SE = 1.46, p < .001), and a 

seven-fold increase in the odds of being classified as overweight/obese at eight years (b = 2.00, 

{95% CI, 1.11, 3.00}, SE = .48, p < .001). In the percent body fat model, higher SES was 

associated with lower percent body fat (b = -1.38, {95% CI, -2.40, -.36}, SE = .52, p < .01). 

European American/White participants also showed lower percent body fat compared to children 

from other racial/ethnic backgrounds (b = -1.65, {95% CI, -3.15, -.14}, SE = .77,  p = .03), and 

females showed significantly higher percent body fat at eight years (b = 1.69, {95% CI, .45, 2.93}, 

SE = .63,  p < .01).  

 Daytime Sleepiness and Weight Indicators. The interaction between parent-reported 

daytime sleepiness and EC at eight years marginally predicted concurrent percent body fat at the 

trend level (b = -2.48, {95% CI, -3.15, -.14}, SE = 1.51, p = .10). Simple slopes were probed at ±1 

SD of EC at eight years to test the interaction, but there were no significant differences in 

associations between parent-reported daytime sleepiness and percent body fat at eight years 

based on high, mean, and low levels of child EC (all ps > .05). However, in the percent body fat 

model, higher SES was associated with lower percent body fat (b = -1.37, {95% CI, -2.41, -.32}, 

SE = .53,  p = .01), and greater pubertal development was associated with greater percent body 

fat at eight years (b = 5.86, {95% CI, 2.97, 8.76}, SE = 1.48,  p < .001). European American/White 

participants also showed lower percent body fat compared to children from other racial/ethnic 

backgrounds (b = -2.00, {95% CI, -3.42, -.57}, SE = .73, p < .01), and females showed 

significantly higher percent body fat at eight years (b = 1.70, {95% CI, .44, 2.96}, SE = .64,  p < 

.01). 

Similar to parent-reported sleep duration, neither parent-reported daytime sleepiness nor 

the interaction between daytime sleepiness and EC at eight years predicted concurrent BMI, WC, 

or weight status. There was a significant main effect of pubertal status in all models, such that 
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greater pubertal development was associated with higher BMI (b = 2.49, {95% CI, 2.49, 3.76}, SE 

= .65, p < .001), larger WC (b = 2.92, {95% CI, 1.46, 4.39}, SE = .75,  p < .001), and a seven-fold 

increase in the odds of being classified as overweight/obese at eight years (b = 1.95, {95% CI, 

1.01, 2.89}, SE = .48,  p < .001). Additionally, greater SES was associated with lower BMI (b = -

.41, {95% CI, -.93, -.02}, SE = .30,  p = .04), completing the study week during a school break 

was associated with a 70% increase in the odds of being classified as overweight or obese (b = 

.53, {95% CI, .01, 1.05}, SE = .27,  p = .05), and greater daytime sleepiness was associated with 

72% reduced odds of being classified as overweight/obese at eight years (b = -1.33, {95% CI, -

3.15, -.14}, SE = .59,  p = .02).  

 Objective Sleep Duration and Weight Indicators. Longer objective nighttime sleep 

duration was associated with lower BMI (b = -.53, {95% CI, 2.49, 3.76}, SE = .18, p < .01), 

smaller WC (b = -.51,{95% CI, -.91, -.11}, SE = .20, p < .01), lower percent body fat (b = -1.42, 

{95% CI, -2.29, -.56}, SE = .44, p < .001), and 38% reduced odds of being classified as 

overweight/obese at eight years (b = -.49, {95% CI, -.86, -.11}, SE = .19,  p = .01). Greater 

pubertal development was associated with higher BMI (b = 2.67, {95% CI, 1.37, 3.97}, SE = .66, p 

< .001), larger WC (b = 3.12, {95% CI, 2.49, 3.76}, SE = .76,  p < .001), greater percent body fat 

(b = 6.34, {95% CI, 1.64, 4.60}, SE = 1.52,  p < .001), and over a seven-fold increase in the odds 

of being classified as overweight/obese at eight years (b = 2.10, {95% CI, 1.14, 3.07}, SE = .65,  

p < .001). 

Furthermore, the BMI model showed that greater EC (b = -.44, {95% CI, -.91, .03}, SE = 

.65, p = .06) and SES (b = -.43, {95% CI, -.88, .02}, SE = .65, p = .06) were marginally associated 

with lower BMI scores at eight years. Regarding percent body fat model, higher SES was 

associated with lower percent body fat (b = -1.21, {95% CI, -2.24, -.18}, SE = .53, p = .02). 

European American/White participants also showed lower percent body fat compared to children 

from other racial/ethnic backgrounds (b = -1.60, {95% CI, -2.99, -.20}, SE = .71, p = .03) and 

females showed significantly higher percent body fat at eight years (b = 1.87, {95% CI, .61, 3.14}, 

SE = .65, p < .01). Finally, completing the study week during a school break was associated with 
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a 71% increase in the odds of being classified as overweight or obese (b = .54, {95% CI, .01, 

1.07}, SE = .27, p = .05).  

 Objective Sleep Efficiency and Weight Indicators. Greater objective sleep efficiency 

was associated with lower BMI (b = -.07, {95% CI, -.12, -.02}, SE = .03, p < .01), smaller WC (b = 

-.08, {95% CI, -.13, -.03}, SE = .03, p < .01), lower percent body fat (b = -.16, {95% CI, .01, 1.07}, 

SE = .06, p < .01), and 5% reduced odds of being classified as overweight/obese at eight years 

(b = -.05, {95% CI, -.27, -.04}, SE = .02,  p = .02). Greater pubertal development was associated 

with higher BMI (b = 2.70, {95% CI, 1.40, 3.99}, SE = .66, p < .001), larger WC (b = 3.18, {95% 

CI, 1.71, 4.66}, SE = .75, p < .001), greater percent body fat (b = 6.37, {95% CI, 3.42, 9.32}, SE = 

1.51, p < .001), and an eight-fold increase in the odds of being classified as overweight/obese at 

eight years (b = 2.11, {95% CI, 1.14, 3.08}, SE = .49, p < .001). 

Furthermore, greater EC was associated with lower BMI (b = -.49, {95% CI, -.96, -.02}, 

SE = .24, p = .04). Higher SES (b = -.39, {95% CI, -.85, .07}, SE = .23,  p = .09) and older age at 

eight years (b = .46, {95% CI, -.01, .92}, SE = .24,  p = .06) were marginally associated with lower 

BMI scores at eight years. Greater EC was also associated with marginally smaller WC at eight 

years (b = -.47, {95% CI, -1.03, .09}, SE = .28, p = .10). Regarding percent body fat model, higher 

SES was associated with lower percent body fat (b = -1.15, {95% CI, -2.20, -.11}, SE = .53, p = 

.03). European American/White participants also showed lower percent body fat compared to 

children from other racial/ethnic backgrounds (b = -1.88, {95% CI, -3.30, -.47}, SE = .72,  p < .01) 

and females showed significantly higher percent body fat (b = 1.79, {95% CI, .52, 3.06}, SE = .65,  

p < .01), and marginally lower WC at eight years (b = -.58, {95% CI, -1.19, .02}, SE = .31,  p = 

.06). Finally, completing the study week during a school break was associated with a 71% 

increase in the odds of being classified as overweight or obese (b = .53, {95% CI, .01, 1.06}, SE = 

.27, p = .05) and marginally larger WC (b = .59, {95% CI, -.11, 1.29}, SE = .36,  p = .10). 

Objective Sleep Midpoint Variability and Weight Indicators. Neither objective sleep 

midpoint variability nor the interaction between midpoint variability and EC at eight years 

predicted concurrent BMI, WC, percent body fat or weight status. There was a significant main 

effect of pubertal status in all models, such that greater pubertal development was associated 
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with higher BMI (b = 2.40, {95% CI, 1.09, 3.71}, SE = .67, p < .001), larger WC (b = 2.86, {95% 

CI, 1.36, 4.37}, SE = .77, p < .001), greater percent body fat (b = 5.72, {95% CI, 2.74, 8.71}, SE = 

1.52, p < .001), and over a six-fold increase in the odds of being classified as overweight/obese 

at eight years (b = 1.87, {95% CI, .93, 2.81}, SE = .48,  p < .001). Greater EC predicted lower BMI 

(b = -.54, {95% CI, -1.02, -.05}, SE = .25, p = .03) and marginally smaller WC at eight years (b = -

.52, {95% CI, -1.09, .05}, SE = .29, p = .07). Older age was also associated greater BMI at eight 

years (b = .52, {95% CI, .07, .97}, SE = .23, p = .03). Higher SES was associated with lower BMI 

(b = -.53, {95% CI, -.99, -.08}, SE = .23, p = .02) and percent body fat at eight years of age (b = -

1.41, {95% CI, -2.48, -.35}, SE = .54, p < .01). European American/White participants also 

showed lower percent body fat compared to children from other racial/ethnic backgrounds (b = -

2.01, {95% CI, -3.48, -.54}, SE = .75, p < .01) and females showed significantly higher percent 

body fat (b = 1.68, {95% CI, .40, 2.97}, SE = .65, p = .01) and smaller WC at eight years of age (b 

=  -.63, {95% CI, -1.24, -.02}, SE = .31, p = .04). Finally, completing the study week during a 

school break was associated with a 71% increase in the odds of being classified as overweight or 

obese (b = .54, {95% CI, .01, 1.07}, SE = .27, p = .05). 

Aim 1b Results 

 Parent-reported Sleep Duration and Weight Indicators. The interaction between 

parent-reported sleep duration and EC at eight years predicted BMI at nine years (b = .34, {95% 

CI, .01, 67}, SE = .17, p < .05).  Simple slopes were probed at ±1 SD of EC at eight years to test 

the interaction (Figure 6), but there were no significant differences in associations between 

parent-reported sleep duration at eight years and BMI at nine years based on high, mean, and 

low levels of child EC (all ps > .05). In the same model, completing the study week during a 

school break predicted lower BMI at nine years (b = -.47, {95% CI, -.81, -.13}, SE = .17, p < .01), 

and greater BMI at eight years predicted greater BMI at nine years (b = 1.15, {95% CI, 1.05, 

1.25}, SE = .05, p < .001). However, parent-reported sleep duration and the interaction between 

parent-reported sleep duration and EC at eight years did not predict WC, percent body fat or 

weight status at nine years.  Rather, greater EC at eight years predicted smaller WC at nine years 

(b = -1.01, {95% CI, -1.55, -.48}, SE = .27,  p < .001), and greater WC (b = .80, {95% CI, .67, .93}, 
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SE = .07, p < .001) and pubertal development (b = 1.86, {95% CI, .46, 3.26}, SE = .71, p < .001) 

at eight years predicted greater WC at nine years. Similarly, greater percent body fat at eight 

years predicted greater percent body fat at nine years (b = 1.02, {95% CI, .94, 1.10}, SE = .04,  p 

< .001), and greater likelihood of being overweight/obese at eight years prospectively predicted 

overweight/obesity status at nine years of age (b = 4.61, {95% CI, 3.49, 5.74}, SE = .57, p < 

.001). Finally, completing the study week during a school break at eight years was associated 

with 69% reduced odds of being classified as overweight or obese (b = -1.18, {95% CI, -2.30, -

.06}, SE = .57, p = .04). 

 Daytime Sleepiness and Weight Indicators. Parent-reported daytime sleepiness and 

the interaction between parent-reported daytime sleepiness and EC at eight years did not predict 

BMI, WC, percent body fat or likelihood of being classified as overweight/obese at nine years of 

age. In the BMI model, completing the study week during a school break (b = -.44, {95% CI, -.78, 

-.10}, SE = .17, p = .01) and older age at eight years predicted marginally lower BMI at nine years 

(b = -.40, {95% CI, -.82, .02}, SE = .21, p = .06). Greater pubertal development at eight years was 

associated with larger WC at nine years (b = 1.92, {95% CI, .51, 3.33}, SE = .72, p = .01). In 

addition, greater BMI, WC, percent body fat, and likelihood of being overweight/obese at eight 

years predicted greater BMI, WC, percent body fat, and likelihood of being overweight/obese at 

nine years, respectively (BMI: b = 1.15, {95% CI, 1.06, 1.26}, SE = .05,  p < .001; WC: b = .79, 

{95% CI, .66, .93}, SE = .07, p < .001; Percent body fat: b = 1.03, {95% CI, .95, 1.11}, SE = .04,  

p < .001; Overweight/obesity status: b = 4.75, {95% CI, 3.58, 5.92}, SE = .60, p < .001).  

 Objective Sleep Duration and Weight Indicators. The interaction between objective 

sleep duration and EC at eight years predicted BMI at nine years (b = .46, {95% CI, .08, .84}, SE 

= .19, p = .02), such that greater objective sleep duration at eight years predicting lower BMI 

scores for children with low EC (b = -.29, SE = .13, p = .02), but not average (b = -.05, SE = .09,  

p = ns) or high EC at eight years (b = .20, SE = .15, p = ns; Figure 7). In the same model, greater 

BMI at eight years predicted greater BMI at nine years (b = 1.15, {95% CI, 1.05, 1.25}, SE = .05, 

p < .001). Older age (b = -.36, {95% CI, -.77, .05}, SE = .21, p = .09) and being female predicted 

marginally lower BMI scores (b = -.27, {95% CI, -.60, .05}, SE = .17, p < .10). However, objective 
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sleep duration and the interaction between objective sleep duration and EC at eight years did not 

predict WC, percent body fat or weight status at nine years. Completing the study week during a 

school break at eight years predicted lower BMI (b = -.44, {95% CI, -.79, -.10}, SE = .17, p = .01) 

and marginally lower odds of being overweight or obese at nine years (b = -1.04, {95% CI, -.2.14, 

.05}, SE = .56, p = .06). Greater EC at eight years predicted smaller WC at nine years (b = -1.00, 

{95% CI, -1.55, -.45}, SE = .28, p < .001), and greater pubertal development at eight years 

predicted greater WC at nine years (b = 1.94, {95% CI, .52, 3.37}, SE = .73,  p < .01). 

Additionally, greater WC, percent body fat, and likelihood of being overweight/obese at eight 

years predicted greater WC, percent body fat, and likelihood of being overweight/obese at nine 

years, respectively (WC: b = .79, {95% CI, .66, .92}, SE = .07, p < .001; Percent body fat: b = 

1.01, {95% CI, .93, 1.09}, SE = .04, p < .001; Overweight/obesity status: b = 4.70, {95% CI, 3.51, 

5.89}, SE = .61,  p < .001). 

 Objective Sleep Efficiency and Weight Indicators. Objective sleep efficiency and the 

interaction between sleep efficiency and EC at eight years did not predict BMI, percent body fat, 

or likelihood of being classified as overweight/obese at nine years of age. However, completing 

the study week during a school break predicted lower BMI (b = -.45, {95% CI, -2.19, .04}, SE = 

.18, p = .01) and marginally lower odds of being overweight or obese (b = -1.08, {95% CI, -.79, 

.06}, SE = .58, p = .06). Older age at eight years predicted marginally lower BMI at nine years (b 

= -.37, {95% CI, -.79, .06}, SE = .17, p = .09). Greater EC at eight years predicted smaller WC at 

nine years (b = -.99, {95% CI, -1.55, -.44}, SE = .28, p < .001), and greater pubertal development 

at eight years predicted greater WC at nine years (b = 2.01, {95% CI, .51, 3.52}, SE = .77,  p < 

.01).  In addition, greater BMI, WC, percent body fat, and likelihood of being overweight/obese at 

eight years predicted greater BMI, WC, percent body fat, and likelihood of being 

overweight/obese at nine years, respectively (BMI: b = 1.15, {95% CI, 1.05, 1.25}, SE = .05, p < 

.001; WC: b = .79, {95% CI, .65, .92}, SE = .07, p < .001; Percent body fat: b = 1.02, {95% CI, 

.93, 1.10}, SE = .04,  p < .001; Overweight/obesity status: b = 4.71, {95% CI, 3.15, 5.89}, SE = 

.61, p < .001).  
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 Objective Sleep Midpoint Variability and Weight Indicators. The interaction between 

objective sleep midpoint variability and EC at eight years marginally predicted BMI at nine years 

(b = -.86, {95% CI, .65, .92}, SE = .49, p = .08), such that greater objective midpoint variability at 

eight years predicted higher BMI scores for children with low EC (b = 2.19, SE = 1.08, p = .04), 

but not average (b = .49, SE = .81, p = ns) or high EC at eight years (b = -1.22, SE = 1.06, p = 

ns). In the same model, greater BMI at eight years predicted greater BMI at nine years (b = 1.16, 

{95% CI, .65, .92}, SE = .05, p < .001), and older age at eight years predicted marginally lower 

BMI at nine years (b = -.38, {95% CI, .65, .92}, SE = .22, p = .08).  Similarly, the interaction 

between sleep midpoint variability and EC at eight years predicted percent body fat at nine years 

(b = -3.15, {95% CI, -5.70, -.61}, SE = 1.30,  p = .02), such that greater midpoint variability at 

eight years predicted greater percent body fat for children with low EC (b = 2.26, {95% CI, .65, 

.92}, SE = .07, p = .05; Figure 8), but not average (b = .49, {95% CI, -1.10, 2.07}, SE = .81, p = 

ns) or high EC at eight years (b = -1.04, {95% CI, .65, .92}, SE = .07, p = ns). In the same model, 

greater percent body fat at eight years predicted greater percent body fat at nine years (b = 1.03, 

{95% CI, .95, 1.10}, SE = .04, p < .001). Objective sleep midpoint variability and the interaction 

between midpoint variability and EC at eight years did not predict WC or the of likelihood of being 

classified as overweight/obese at nine years of age. However, greater EC at eight years predicted 

smaller WC at nine years (b = -1.00, {95% CI, -1.55, -.45}, SE = .28, p < .001), and greater 

pubertal development at eight years predicted greater WC at nine years (b = 1.78, {95% CI, .35, 

3.22}, SE = .73,  p = .02). Completing the study week during a school break predicted marginally 

lower odds of being overweight/obese at nine years (b = -.96, {95% CI, -2.06, .14}, SE = .56, p = 

.09). Finally, greater WC and likelihood of being overweight/obese at eight years predicted 

greater WC and likelihood of being overweight/obese at nine years, respectively (WC: b = .80, 

{95% CI, .67, .93}, SE = .07,  p < .001; Overweight/obesity status: b = 4.68, {95% CI, 3.53, 5.83}, 

SE = .59, p < .001). 

Aim 2a Results 

Sleep Indicators. The full univariate ACE model for parent-reported sleep duration at 

eight years was a good fit for the data, -2LL(565) = 1112.35, AIC = -17.65 (see Tables 5 for full fit 
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statistics). Using the ACE model fit, the standardized variance components were estimated, such 

that the greatest proportion of the variance in parent-reported sleep duration was accounted for 

by the shared environmental factor (c2 = .66), with the little remaining variance accounted for by 

additive genetic (a2 = .21) and non-shared environmental contributions (e2 = .13; see Table 6 for 

full estimates).  

Similarly, the full univariate ACE model for parent-reported daytime sleepiness at eight 

years was a good fit for the data, -2LL(575) = -72.73, AIC = -1222.73 (see Tables 5 for full fit 

statistics). Using the ACE model fit, the greatest proportion of the variance in parent-reported 

daytime sleepiness was accounted for by the shared environmental factor (c2 = .66), with the little 

remaining variance accounted for by additive genetic (a2 = .27) and non-shared environmental 

contributions (e2 = .07; see Table 6 for full estimates).  

The full univariate ACE model for objective nighttime sleep duration at eight years was a 

good fit for the data, -2LL(455) = 889.95, AIC = -20.05 (see Tables 5 for full fit statistics). 

However, the reduced AE model did not fit significantly worse than the full ACE model, 

suggesting that the AE model may fit the data best, -2LL(456) = 897.03, AIC = -21.44, ∆ -2LL = 

.60, p = .44. The standardized variance components for nighttime sleep duration were estimated 

based on the reduced AE model, and showed that the greatest proportion of the variance in 

nighttime sleep duration was accounted for by additive genetic factors (a2 = .81), with remaining 

variance accounted for by the non-shared environmental contribution (e2 = .19; see Table 6 for 

full estimates).   

Likewise, the full univariate ACE model for objective sleep efficiency at eight years was a 

good fit for the data, -2LL(455) = 2819.34, AIC = 1909.22 (see Tables 5 for full fit statistics). 

However, the reduced AE model did not fit significantly worse than the full ACE model, 

suggesting that the AE model may also fit the data well, -2LL(456) = 2821.43, AIC = 1909.43, ∆ -

2LL = 2.21, p = .14. The standardized variance components for sleep efficiency were estimated 

based on the reduced AE model, and showed that the greatest proportion of the variance in sleep 

efficiency was accounted for by additive genetic factors (a2 = .79), with remaining variance 
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accounted for by the non-shared environmental contribution (e2 = .21; see Table 6 for full 

estimates).   

Finally, the full univariate ACE model for objective sleep midpoint variability at eight years 

was a good fit for the data, -2LL(455) = -41.80, AIC = -951.80 (see Tables 5 for full fit statistics). 

However, the reduced CE model did not fit significantly worse than the full ACE model, 

suggesting that the CE model may also fit the data well, -2LL(456) = -40.61, AIC = -952.61, ∆ -

2LL = 1.19, p = .27. The standardized variance components for sleep midpoint variability were 

estimated based on the reduced CE model, and showed that the greatest proportion of the 

variance in sleep midpoint variability was accounted for by shared environmental factors (c2 = 

.77), with remaining variance accounted for by the non-shared environmental contribution (e2 = 

.23; see Table 6 for full estimates).    

EC. The full univariate ACE model for EC at eight years was also a good fit for the data, -

2LL(513) = 723.29, AIC = -302.71 (see Tables 5 for full fit statistics). However, the reduced AE 

model did not fit significantly worse than the full ACE model, suggesting that the AE model may 

also fit the data well, -2LL(514) = 723.68, AIC = -304.32, ∆ -2LL = .39, p = .53. The standardized 

variance components for EC were estimated based on the reduced AE model, and showed that 

the greatest proportion of the variance in EC was accounted for by additive genetic factors (a2 = 

.76), with remaining variance accounted for by the non-shared environmental contribution (e2 = 

.24; see Table 6 for full estimates).   

Weight Indicators. Twin intra-class correlations for weight indicators suggest large 

differences between DZ same-sex twins and DZ opposite-sex twins, such that the magnitude of 

genetic or environmental effects (quantitative sex-limitation model) or the actual genetic and 

environment effects (i.e., variance accounted for by genetics or environment; qualitative sex-

limitation model) may differ between males and females on weight indicators. Given these 

estimates, multiple Univariate Cholesky Decomposition Sex-limitation Models were conducted for 

BMI, WC, and percent body fat at eight years of age to determine whether genetic and 

environmental influences on each weight indicators differed by sex and the best fitting model. 

Specifically, a general scalar sex-limitation model was conducted, which allows the proportion of 
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variance accounted for by A, C, and E components to change based on a scalar (i.e., k) for males 

and females and the total variance to differ across males and females (Bartels, 2016). The 

general scalar sex-limitation model also suggests differences in both the magnitude and nature of 

genetic and environmental influences on a trait for males and females. A non-scalar, sex-

limitation model was also conducted, which allows the proportion of variance accounted for by A, 

C, E, and the total variance to differ across males and females, so all parameters are estimated 

separately (Bartels, 2016). In contrast to the general scalar sex-limitation model, the non-scalar 

model specifically estimates magnitude differences in genetic effects between males and females 

(Bartels, 2016). Finally, A and C paths were dropped for scalar and non-scalar sex-limitation 

models to determine the best fit for the data.  

The full univariate general scalar sex-limitation ACE model for objective BMI scores at 

eight years was a good fit for the data, -2LL(465) = 2106.05, AIC = 1176.05 (see Tables 7 for full 

fit statistics). However, the reduced general scalar sex-limitation AE model did not fit significantly 

worse than the full ACE model, suggesting that the AE model may also fit the data well, -2LL(467) 

= 2108.77, AIC = 1174.77, ∆ -2LL = 2.72, p = .25. The standardized variance components for BMI 

for males were estimated based on the reduced AE model, and showed that the greatest 

proportion of the variance in BMI was accounted for by additive genetic factors (a2 = .95), with 

remaining variance accounted for by the non-shared environmental contribution (e2 = .05; see 

Table 8 for full estimates).  The standardized variance components for BMI for females estimated 

based on the reduced AE model showed that the greatest proportion of the variance in BMI was 

accounted for by additive genetic factors (a2 = .90), with remaining variance accounted for by the 

non-shared environmental contribution (e2 = .10; see Table 8 for full estimates).   

Similarly, full univariate general scalar sex-limitation ACE model for WC at eight years 

was a good fit for the data, -2LL(462) = 2217.20, AIC = 1293.20 (see Tables 7 for full fit 

statistics). However, the reduced general scalar sex-limitation AE model did not fit significantly 

worse than the full ACE model, suggesting that the AE model may also fit the data well, -2LL(464) 

= 2217.91, AIC = 1289.91, ∆ -2LL = .71, p = .07. The standardized variance components for WC 

for males were estimated based on the reduced AE model, and showed that the greatest 



	 	

	
 
46 

proportion of the variance in WC was accounted for by additive genetic factors (a2 = .95), with 

remaining variance accounted for by the non-shared environmental contribution (e2 = .05; see 

Table 8 for full estimates).  The standardized variance components for WC for females estimated 

based on the reduced AE model showed that the greatest proportion of the variance in WC was 

accounted for by additive genetic factors (a2 = .88), with remaining variance accounted for by the 

non-shared environmental contribution (e2 = .12; see Table 8 for full estimates).   

The full univariate general scalar sex-limitation ACE model for percent body fat at eight 

years was a good fit for the data, -2LL(441) = 2797.80, AIC = 1915.80 (see Tables 7 for full fit 

statistics). However, the reduced general scalar sex-limitation AE model did not fit significantly 

worse than the full ACE model, suggesting that the AE model may also fit the data well, -2LL(443) 

= 2799.83, AIC = 1913.83, ∆ -2LL = 2.03, p = .36. The standardized variance components for 

percent body fat for males were estimated based on the reduced AE model, and showed that the 

greatest proportion of the variance in percent body fat was accounted for by additive genetic 

factors (a2 = .95), with remaining variance accounted for by the non-shared environmental 

contribution (e2 = .05; see Table 8 for full estimates).  The standardized variance components for 

percent body fat for females estimated based on the reduced AE model showed that the greatest 

proportion of the variance in percent body fat was accounted for by additive genetic factors (a2 = 

.90), with remaining variance accounted for by the non-shared environmental contribution (e2 = 

.10; see Table 8 for full estimates).   

Given that best-fitting models indicate differences in the magnitude and nature of genetic 

and environmental effects between males and females for each weight indicator, DZ opposite-sex 

twins were excluded from all Univariate and Bivariate Cholesky Decomposition Models using 

weight indicators. When excluding DZ opposite-sex twins from analyses, the reduced AE model 

for BMI at eight years age did not fit significantly worse than the full ACE model, -2LL(322) = 

1429.27, AIC = 785.27, ∆ -2LL = .59, p = .44 (see Table 5 for full fit statistics). The standardized 

variance components for BMI were estimated based on the reduced AE model, and showed that 

the greatest proportion of the variance in BMI was accounted for by additive genetic factors (a2 = 

.93), with remaining variance accounted for by the non-shared environmental contribution (e2 = 
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.07; see Table 6 for full estimates). Similarly, the reduced AE model for WC at eight years age did 

not fit significantly worse than the full ACE model, -2LL(319) = 1501.95, AIC = 863.95, ∆ -2LL = 

1.13, p = .29 (see Table 5 for full fit statistics). The standardized variance components for WC 

were estimated based on the reduced AE model, and showed that the greatest proportion of the 

variance in WC was accounted for by additive genetic factors (a2 = .92), with remaining variance 

accounted for by the non-shared environmental contribution (e2 = .08; see Table 6 for full 

estimates). Finally, the reduced AE model for percent body fat at eight years age did not fit 

significantly worse than the full ACE model, -2LL(308) = 1925.67, AIC = 1309.67, ∆ -2LL = .01, p 

= .93 (see Table 5 for full fit statistics). The standardized variance components for percent body 

fat were estimated based on the reduced AE model, and showed that the greatest proportion of 

the variance in percent body fat was accounted for by additive genetic factors (a2 = .92), with 

remaining variance accounted for by the non-shared environmental contribution (e2 = .08; see 

Table 6 for full estimates). 

Objective Sleep Indicators Bivariate Models. A Bivariate Cholesky Decomposition of 

objective sleep duration and efficiency at eight years revealed the AE-ACE model to be the best 

fitting model, after also dropping the C contribution to the covariance between the two 

phenotypes (see Table 9 for fit statistics and Table 10 for standardized variance components). 

Objective sleep duration was primarily influenced by additive genetic factors (A11 = .80), with the 

remaining variance accounted for by the nonshared environmental contributions (E11 = .20). The 

covariance between objective sleep duration and efficiency was accounted for primarily by 

additive genetic factors, explaining 37% of the total variance in sleep efficiency, with the 

nonshared environment also explaining 14% of the total variance in sleep efficiency. After 

accounting for objective sleep duration, the variance in sleep efficiency was accounted for by 

additive genetics (A22 = .14), the shared environment (C22 = .26), and the nonshared 

environment (E22 = .08). Genetic and environmental correlations showed that genetic influences 

on objective sleep duration were highly correlated with genetic environmental influences on sleep 

efficiency at .85.  
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       The bivariate model for objective sleep duration and midpoint variability at eight years 

revealed the full ACE-ACE model to be the best fitting model, after also dropping the A 

contribution to the covariance between the two phenotypes (see Table 9 for fit statistics and 

Table 10 for standardized variance components). Objective sleep duration was primarily 

influenced by additive genetic factors (A11 = .72), with the remaining variance divided between 

the shared (C11 = .09) and nonshared environmental contributions (E11 = .19). The covariance 

between objective sleep duration and midpoint variability was accounted for primarily by the 

shared environment, explaining 26% of the total variance in parent-reported sleep duration, but 

the nonshared environment also explained 1% of the total variance in midpoint variability. After 

accounting for objective sleep duration, the variance in midpoint variability was accounted for by 

shared environmental (C22 = .44) and additive genetic factors (A22 = .11), with little contribution 

of the nonshared environment (E22 = .19). Genetic and environmental correlations showed that 

shared environmental influences on objective sleep duration were correlated with shared 

environmental influences on midpoint variability at .61, and nonshared environmental influences 

on objective sleep duration were correlated with nonshared environmental influences on midpoint 

variability at .08. 

       The bivariate model for objective sleep duration and parent-reported sleep duration at 

eight years revealed the full ACE-ACE model to be the best fitting model, after also dropping the 

A contribution to the covariance between the two phenotypes (see Table 9 for fit statistics and 

Table 10 for standardized variance components). Objective sleep duration was primarily 

influenced by additive genetic factors (A11 = .70), with the remaining variance divided between 

the shared (C11 = .10) and nonshared environmental contributions (E11 = .20). The covariance 

between objective and parent-reported sleep duration was accounted for primarily by the shared 

environment, explaining 65% of the total variance in parent-reported sleep duration, and the 

nonshared environment also explained 1% of the total variance in parent-reported sleep duration. 

After accounting for objective sleep duration, the variance in parent-reported sleep duration was 

accounted for by additive genetic factors (A22 = .21) and little remaining contribution of the 

shared (C22 = .01) and nonshared environment (E22 = .12). Genetic and environmental 



	 	

	
 
49 

correlations showed that shared environmental influences on objective sleep duration were 

correlated with shared environmental influences on parent-reported sleep duration at .59, and 

nonshared environmental influences on objective sleep duration were correlated with nonshared 

environmental influences on parent-reported sleep duration at .15. 

       The bivariate model for parent-reported sleep duration and objective sleep midpoint 

variability at eight years revealed the full ACE-ACE model to be the best fitting model, after also 

dropping the A and E contributions to the covariance between the two phenotypes (see Table 9 

for fit statistics and Table 10 for standardized variance components). Parent-reported sleep 

duration was primarily influenced by shared environmental factors (C11 = .62), with the remaining 

variance divided between additive genetic (A11 = .21) and nonshared environmental 

contributions (E11 = .17). The covariance between parent-reported sleep duration and objective 

midpoint variability was entirely accounted for by the shared environment, explaining 5% of the 

total variance in sleep midpoint variability. After accounting for parent-reported sleep duration, the 

variance in sleep midpoint variability was accounted for by shared environmental (C22 = .57), 

additive genetic, (A22 = .18), and nonshared environmental factors (E22 = .20). Genetic and 

environmental correlations showed that shared environmental influences on parent-reported 

sleep duration were correlated with shared environmental influences on sleep midpoint variability 

at .30.  

       Objective Sleep Duration and Weight Indicator Bivariate Models. A Bivariate 

Cholesky Decomposition (excluding DZ opposite-sex twins) of objective sleep duration and BMI 

at eight years revealed the ACE-AE model to be the best fitting model, after also dropping the C 

and E contributions to the covariance between the two phenotypes (see Table 11 for fit statistics 

and Table 12 for standardized variance components). Objective sleep duration was primarily 

influenced by additive genetic factors (A11 = .58), with the remaining variance accounted for by 

shared (C11 = .22) and nonshared environmental contributions (E11 = .20). The covariance 

between objective sleep duration and BMI was accounted entirely by additive genetic factors, 

explaining 6% of the total variance in BMI. After accounting for objective sleep duration, the 

variance in BMI was accounted for by additive genetics (A22 = .86) and the nonshared 
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environment (E22 = .08). Genetic and environmental correlations showed that genetic influences 

on objective sleep duration were correlated with genetic environmental influences on BMI at .26.  

       Similarly, the Bivariate Cholesky Decomposition (excluding DZ opposite-sex twins) of 

objective sleep duration and WC at eight years revealed the AE-AE model to be the best fitting 

model, after also dropping the E contribution to the covariance between the two phenotypes (see 

Table 11 for fit statistics and Table 12 for standardized variance components). Objective sleep 

duration was primarily influenced by additive genetic factors (A11 = .80), with the remaining 

variance accounted for by the nonshared environmental contributions (E11 = .20). The 

covariance between objective sleep duration and WC was accounted entirely by additive genetic 

factors, explaining 3% of the total variance in WC. After accounting for objective sleep duration, 

the variance in WC was accounted for by additive genetics (A22 = .89) and the nonshared 

environment (E22 = .08). Genetic and environmental correlations showed that genetic influences 

on objective sleep duration were correlated with genetic environmental influences on WC at .16.   

      Similarly, the Bivariate Cholesky Decomposition (excluding DZ opposite-sex twins) of 

objective sleep duration and percent body fat at eight years revealed the ACE-AE model to be the 

best fitting model, after also dropping the C and E contributions to the covariance between the 

two phenotypes (see Table 11 for fit statistics and Table 12 for standardized variance 

components). Objective sleep duration was primarily influenced by additive genetic factors (A11 = 

.58), with the remaining variance accounted for by shared (C11 = .22) and nonshared 

environmental contributions (E11 = .20). The covariance between objective sleep duration and 

percent body fat was accounted entirely by additive genetic factors, explaining 10% of the total 

variance in percent body fat. After accounting for objective sleep duration, the variance in percent 

body fat was accounted for by additive genetics (A22 = .83) and the nonshared environment (E22 

= .07). Genetic and environmental correlations showed that genetic influences on objective sleep 

duration were correlated with genetic environmental influences on percent body fat at .32. 

       Objective Sleep Efficiency and Weight Indicator Bivariate Models. A Bivariate 

Cholesky Decomposition (excluding DZ opposite-sex twins) of objective sleep efficiency and BMI 

at eight years revealed the ACE-AE model to be the best fitting model, after also dropping the C 
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and E contributions to the covariance between the two phenotypes (see Table 11 for fit statistics 

and Table 13 for standardized variance components). Objective sleep efficiency was primarily 

influenced by shared environmental factors (C11 = .47), with the remaining variance accounted 

for by additive genetic factors (A11 = .32) and nonshared environmental contributions (E11 = 

.21). The covariance between objective sleep efficiency and BMI was accounted entirely by 

additive genetic factors, explaining 14% of the total variance in BMI. After accounting for objective 

sleep efficiency, the variance in BMI was accounted for by additive genetics (A22 = .79) and the 

nonshared environment (E22 = .07). Genetic and environmental correlations showed that genetic 

influences on objective sleep efficiency were correlated with genetic environmental influences on 

BMI at .39.  

       Similarly, the Bivariate Cholesky Decomposition (excluding DZ opposite-sex twins) of 

objective sleep efficiency and WC at eight years revealed the ACE-AE model to be the best fitting 

model, after also dropping the C and E contributions to the covariance between the two 

phenotypes (see Table 11 for fit statistics and Table 13 for standardized variance components). 

Objective sleep efficiency was primarily influenced by shared environmental factors (C11 = .43), 

with the remaining variance accounted for by additive genetic factors (A11 = .36) and nonshared 

environmental factors (E11 = .21). The covariance between objective sleep efficiency and WC 

was accounted entirely by additive genetic factors, explaining 9% of the total variance in WC. 

After accounting for objective sleep efficiency, the variance in WC was accounted for by additive 

genetics (A22 = .83) and the nonshared environment (E22 = .08). Genetic and environmental 

correlations showed that genetic influences on objective sleep efficiency were correlated with 

genetic environmental influences on WC at .32.   

      Similarly, the Bivariate Cholesky Decomposition (excluding DZ opposite-sex twins) of 

objective sleep efficiency and percent body fat at eight years revealed the ACE-AE model to be 

the best fitting model, after also dropping the C and E contributions to the covariance between the 

two phenotypes (see Table 11 for fit statistics and Table 13 for standardized variance 

components). Objective sleep efficiency was primarily influenced by shared environmental factors 

(C11 = .46), with the remaining variance accounted for by additive genetic factors (A11 = .33) and 
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nonshared environmental contributions (E11 = .21). The covariance between objective sleep 

efficiency and percent body fat was accounted entirely by additive genetic factors, explaining 17% 

of the total variance in percent body fat. After accounting for objective sleep efficiency, the 

variance in percent body fat was accounted for by additive genetics (A22 = .76) and the 

nonshared environment (E22 = .07). Genetic and environmental correlations showed that genetic 

influences on objective sleep efficiency were correlated with genetic environmental influences on 

percent body fat at .43. 

       EC and Sleep Indicator Bivariate Models. A Bivariate Cholesky Decomposition of EC 

and objective sleep duration at eight years revealed the AE-ACE model to be the best fitting 

model, after also dropping the C and E contributions to the covariance between the two 

phenotypes (see Table 14 for fit statistics and Table 15 for standardized variance components). 

EC was primarily influenced by additive genetic factors (A11 = .75), with the remaining variance 

accounted for by the nonshared environment (E11 = .25). The covariance between EC and 

objective sleep duration was accounted entirely by additive genetic factors, explaining 3% of the 

total variance in sleep duration. After accounting for EC, the variance in objective sleep duration 

was accounted for by additive genetics (A22 = .67), shared environment (C22 = .10), and the 

nonshared environment (E22 = .20). Genetic and environmental correlations showed that additive 

genetic influences on EC were correlated with additive genetic environmental influences on 

objective sleep duration at .20. 

A Bivariate Cholesky Decomposition of EC and objective sleep efficiency at eight years 

revealed the AE-ACE model to be the best fitting model, after also dropping the C and E 

contributions to the covariance between the two phenotypes (see Table 14 for fit statistics and 

Table 15 for standardized variance components). EC was primarily influenced by additive genetic 

factors (A11 = .75), with the remaining variance accounted for by the nonshared environment 

(E11 = .25). The covariance between EC and objective sleep efficiency was accounted for 

primarily by additive genetic factors, explaining 1% of the total variance in sleep efficiency. After 

accounting for EC, the variance in objective sleep efficiency was accounted for by additive 

genetics (A22 = .57), shared environment (C22 = .20), and the nonshared environment (E22 = 
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.22). Genetic and environmental correlations showed that genetic influences on EC were 

correlated with genetic environmental influences on objective sleep efficiency at .15. 

A Bivariate Cholesky Decomposition of EC and parent-reported sleep duration at eight 

years revealed the ACE-ACE model to be the best fitting model, after also dropping the A 

contribution to the covariance between the two phenotypes (see Table 14 for fit statistics and 

Table 15 for standardized variance components). EC was primarily influenced by shared 

environmental factors (C11 = .16), with the remaining variance accounted for by additive genetic 

factors (A11 = .36) and the nonshared environment (E11 = .48). The covariance between EC and 

parent-reported sleep duration was accounted for by the shared environment, explaining 5% of 

the total variance in parent-reported sleep duration, as well as the nonshared environment, which 

explained 1% of the total variance in parent-reported sleep duration. After accounting for EC, the 

variance in parent-reported sleep duration was accounted for by additive genetics (A22 = .22), 

shared environment (C22 = .63), and the nonshared environment (E22 = .10). Genetic and 

environmental correlations showed that shared environmental influences on EC were correlated 

with shared environmental influences on parent-reported sleep duration at .28, and nonshared 

environmental influences on EC were correlated with nonshared environmental influences on 

parent-reported sleep duration at .12. 

EC and Weight Indicator Bivariate Models. A Bivariate Cholesky Decomposition of EC 

and objective BMI at eight years revealed the AE-AE model to be the best fitting model, after also 

dropping the C and E contributions to the covariance between the two phenotypes (see Table 14 

for fit statistics and Table 15 for standardized variance components). EC was primarily influenced 

by additive genetic factors (A11 = .73), with the remaining variance accounted for by the shared 

(C11 = .01) and nonshared environment (E11 = .26). The covariance between EC and BMI was 

accounted for entirely by additive genetic factors, explaining 2% of the total variance in BMI. After 

accounting for EC, the variance in BMI was accounted for by additive genetics (A22 = .91) and 

the nonshared environment (E22 = .07). Genetic and environmental correlations showed that 

genetic influences on EC were correlated with genetic environmental influences on BMI at .12. 
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       Weight Indicator Bivariate Models. A Bivariate Cholesky Decomposition (excluding DZ 

opposite-sex twins) of objective BMI and percent body fat at eight years revealed the AE-AE 

model to be the best fitting model, after also dropping the C contribution to the covariance 

between the two phenotypes (see Table 16 for fit statistics and Table 17 for standardized 

variance components). BMI was primarily influenced by additive genetic factors (A11 = .93), with 

the remaining variance accounted for by the nonshared environment (E11 = .07). The covariance 

between BMI and percent body fat was accounted for primarily by additive genetic factors, 

explaining 80% of the total variance in percent body fat, with the remaining covariance accounted 

for by nonshared environmental factors, which explained 5% of the total variance in percent body 

fat. After accounting for BMI, the variance in percent body fat was accounted for by additive 

genetics (A22 = .13) and the nonshared environment (E22 = .02). Genetic and environmental 

correlations showed that genetic influences on BMI were correlated with genetic environmental 

influences on percent body fat at .87. 

A Bivariate Cholesky Decomposition (excluding DZ opposite-sex twins) of objective BMI 

and WC at eight years revealed the AE-AE model to be the best fitting model, after also dropping 

the C contribution to the covariance between the two phenotypes (see Table 16 for fit statistics 

and Table 17 for standardized variance components). BMI was primarily influenced by additive 

genetic factors (A11 = .92), with the remaining variance accounted for by the nonshared 

environment (E11 = .08). The covariance between BMI and WC was accounted for primarily by 

additive genetic factors, explaining 70% of the total variance in WC, with the remaining 

covariance accounted for by nonshared environmental factors, which explained 5% of the total 

variance in WC. After accounting for BMI, the variance in WC was accounted for by additive 

genetics (A22 = .21) and the nonshared environment (E22 = .04). Genetic and environmental 

correlations showed that genetic influences on BMI were correlated with genetic environmental 

influences on WC at .93. 

 A Bivariate Cholesky Decomposition of objective WC and percent body fat at eight years 

revealed the ACE-AE model to be the best fitting model, after also dropping the C contribution to 

the covariance between the two phenotypes (see Table 16 for fit statistics and Table 17 for 
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standardized variance components). WC was primarily influenced by additive genetic factors 

(A11 = .76), with the remaining variance accounted for by the shared (C11 = .16) and nonshared 

environments (E11 = .08). The covariance between WC and percent body fat was accounted for 

primarily by additive genetic factors, explaining 79% of the total variance in percent body fat, with 

the remaining covariance accounted for by nonshared environmental factors, which explained 3% 

of the total variance in percent body fat. After accounting for WC, the variance in percent body fat 

was accounted for by additive genetics (A22 = .14) and the nonshared environment (E22 = .04). 

Genetic and environmental correlations showed that genetic influences on WC were correlated 

with genetic influences on percent body fat at .93, and nonshared environmental influences on 

WC were correlated with nonshared environmental influences on percent body fat at .60. 

Aim 2b Results 

 As specified, if there are no phenotypic associations or weak correlations between sleep, 

weight indicators, and EC conducted in Aim 1a, it may not be appropriate to conduct multivariate 

Cholesky decomposition models. Given that there were weak zero-order correlations and no 

significant phenotypic associations (from Aim 1a) among sleep, weight indicators and EC, 

Multivariate Cholesky Decompositions may be unstable and were not appropriate to fit within the 

current dissertation. 

Aim 2c Results 

Finally, one Liability Threshold Model was fit to test the extent to which additive genetic 

and environmental influences on a weight status may differ across groups of individuals (Plomin 

et al., 2013).  The Liability Threshold Model was conducted without DZ opposite-sex twins given 

significant differences between males and females in univariate sex-limitation models for all 

weight indicators. The best fitting model was one in which the thresholds were equated across 

twin 1 and twin 2 as well as across zygosity groups, and all of the variances were constrained to 

be 1. The full and best fitting model showed that overweight/obese status was primarily 

influenced by additive genetics (A11 = .46), but there were also significant contributions from the 

shared (C11 = .42) and nonshared environment (E11 = .12).  
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CHAPTER 4 

DISCUSSION 

The current dissertation supports a growing body of literature demonstrating associations 

between various objective and subjective sleep and weight indicators in middle childhood and 

addresses the need for understanding longitudinal associations and change over time in the links 

between sleep and weight indicators (Miller, Lumeng, & LeBourgeois, 2015). This dissertation 

also builds on the current literature by exploring how key person-level variables like EC may 

modulate associations between sleep and weight indicators, and the extent to which both genetic 

and environmental influences on associations among sleep, EC, and weight indicators in middle 

childhood. The findings are in concordance with aspects of developmental systems theories 

which hold that changes within and between individuals occur at multiple levels of organization 

over time (Damon & Lerner, 2008). These tenets are also entrenched in more specific theories 

regarding the development of sleep and weight problems across the lifespan (Becker et al., 2015; 

Fishbein, 2000; Greeno & Wing, 1994), as well as research that shows fluctuations in genetic and 

environmental influences on traits over time (Barclay et al., 2014; Plomin et al., 2013). In the 

current dissertation, I tested whether normative sleep problems and EC at eight years 

concurrently and prospectively predict weight indicators and status at nine years and estimated 

unique and shared covariance among non-clinical sleep problems, weight indicators, and effortful 

control at eight years of age. The current findings suggest that while there are no cross-sectional 

interactions between sleep and EC when predicting weight indicators at eight years of age, 

interactions between unique sleep and EC at eight years of age predict greater changes in 

various weight indicators from eight to nine years of age. Furthermore, the findings suggest 

differential genetic and environmental influences on objective and subjective sleep indicators, as 

well as considerable additive genetic contribution to each weight indicator that differed by sex. 

The current findings also indicate that most of the associations between sleep and weight 

indicators can be explained by additive genetic contributions and links between weight indicators 

are entirely explained by additive genetic influences. However, covariance between various 

aspects of sleep was dependent on whether sleep was parent-report or objectively collected.  
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Aim 1a Findings and Interpretation 

Prior studies have shown that shorter parent-reported and actigraphy-based sleep 

duration are associated with greater concurrent risk for obesity, higher BMI scores, greater WC, 

and higher percent body fat after accounting for multiple demographic and lifestyle factors, such 

as parent obesity, parent education, sex, age, screen time, physical activity level, eating 

behaviors, and birth height and weight (Chaput et al., 2006; Ekstedt et al., 2013; Martinez et al., 

2014; Nixon et al., 2008; von Kries et al., 2002). Furthermore, poor objective and subjective sleep 

quality have been concurrently linked with greater risk for being overweight or obese and higher 

zBMI (Bagley & El-Sheikh, 2013; Fatima et al., 2016), and greater objective sleep duration 

variability has been associated with obesity (Spryut et al., 2011). The current dissertation extends 

these findings in a number of ways. Regarding interactions between objective and subjective and 

EC predicting concurrent weight indicators and status, my hypotheses were not supported; there 

were no significant interactions between any objective and subjective sleep parameters and EC 

when predicting concurrent weight indicators or status. These null results suggest that cross-

sectional associations between objective and subjective sleep and weight indicators and status 

do not vary based on child level of EC, and that children with low EC do not show stronger links 

between sleep and weight indicators at eight years of age. 

Rather, the current findings suggest that there are associations between particular sleep 

and weight indicators across all children, regardless of their level of EC. Specifically, I found 

significant main effects of objective sleep duration and efficiency on concurrent BMI, WC, percent 

body fat, and risk for being classified as overweight or obese, which supports my hypotheses and 

numerous previous studies. Additionally, recent findings with a subsample of the population used 

in the current dissertation show that longer sleep duration at eight years was associated with 

lower BMI for all children, regardless of early-life SES level (Breitenstein et al., in press). These 

findings also fit within biological and endocrine models of weight gain and increased adiposity that 

suggest various stressors, including poor or restricted sleep, may prompt changes in hormones 

levels and glucose uptake and metabolism which may lead to increased body fat and weight gain 

(Miller & Cappuccio, 2007; Spiegel et al., 2004). These findings indicate that children who 
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experience shortened sleep duration and poorer sleep quality based on actigraphy may also 

demonstrate higher BMI, larger WC, greater percent body fat, and increase risk for being 

classified as overweight or obese (Breitenstein et al., in press), and changes in hormones and 

metabolism may be one possible mechanism that accounts for these links.  

However, I did not find significant main effects of parent-reported sleep duration, daytime 

sleepiness or sleep midpoint variability on any of the weight indicators at eight years. This was 

counter to my hypotheses and some prior literature showing relations between parent- or self-

reported sleep quantity and quality and various weight indicators and risk for obesity (Chaput et 

al., 2006; Fatima et al., 2016; Martinez et al., 2014; von Kries et al., 2002). Yet, these results 

align with some prior literature showing that there are differential associations between objective 

and subjective sleep and various outcomes (e.g., Shochat, Cohen-Zion, & Tzischinsky, 2014; 

Tremaine et al., 2010), as I found significant main effects of objective sleep duration and 

efficiency but not sleep midpoint variability or parent-reported sleep duration and quality. In the 

current dissertation, I observed an almost 1.5-hour difference in average parent-reported sleep 

duration and objective sleep duration, such that parents reported longer sleep duration than was 

detected by actigraphy. This finding replicates other studies comparing parent-reported sleep 

duration to actigraphy-based sleep duration that show parents tend to report significantly longer 

sleep duration compared to actigraphy estimates of sleep duration by as much as one hour 

(Martinez et al., 2014; Nixon et al., 2008).  

It is notable that child nighttime sleep duration is determined using a single item, which 

asked primary caregivers to report how many hours and minutes each child slept at night on 

average. It is likely that primary caregivers based their estimate of child sleep duration on the time 

each child gets into bed each night and gets out of bed each morning, but no clear guidelines or 

clarification was provided for primary caregivers when reporting average nighttime sleep duration. 

In comparison, actigraphy-based sleep duration estimates “true” sleep time, with bedtime marked 

when children are in bed and trying to go to sleep (i.e., no more active movement, lights are out) 

and waketime marked when children get out of bed, demonstrate moderate activity and lights are 

turned on (as recorded by the actigraphy watch). Actigraphy-based sleep estimates also exclude 
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waking periods throughout the night. As such, differential cross-sectional associations between 

objective and subjective sleep duration and weight indicators and status in middle childhood may 

be a result of parent overreporting of child nighttime sleep duration, but it is also possible that lack 

of main effects for parent-reported sleep duration is a product of how subjective sleep duration 

was assessed and conceptualized in the current dissertation.  

My hypothesis that greater sleep midpoint variability at eight years would be associated 

with higher scores on all weight indicators at eight years was also unsupported. This was also 

surprising, as prior studies show that earlier bedtimes and waketimes are associated with lower 

BMI scores and reduced risk for being classified as obese in middle childhood (Anderson, 

Sacker, Whitaker, & Kelly, 2017; Ekstedt et al., 2013). However, sleep midpoint variability 

accounts for variability in both bedtime and waketime from night to night across a week. It is 

possible that children have greater variability in bedtimes across a typical week or particularly on 

weekend days, but children experience much less variability in waketimes across a week, as 

waketimes in this developmental period are often restricted by early school start times and 

caregiver work schedules (Crowley et al., 2014). As such, estimates of midpoint variability in 

middle childhood are likely much lower and constrained by consistent waketimes compared to 

midpoint variability estimates that may be observed in infant, emerging adult or adult samples, 

and this may explain lack of concurrent significant findings.  

Similar to significant main effects for objective sleep indicators, greater EC at eight years 

was associated with lower BMI and marginally lower WC at eight years in multiple models. These 

findings suggest that children who demonstrate higher regulation of their thoughts, behaviors, 

emotions, and cognitions at eight years of age may be able to better able to regulate or modulate 

thoughts and behaviors related to weight gain and increased body fatness, resulting lower BMI 

and slightly less visceral body fat at eight years. Indeed, theory regarding sleep and emotion 

regulation suggests bidirectional links between the constructs such that sleep dysregulation and 

restriction lead to deficits in various domains of regulation, and poor regulation more broadly may 

predict subsequent sleep problems (Dahl, 1996). This theoretical framework may extend to links 

between regulation and weight indicators as well, given that some prior empirical studies that 
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lower eating self-regulation was associated with higher concurrent zBMI scores in preschoolers 

(Hughes et al., 2015). In the same study, however, broad self-regulation (measured with 

executive functioning, inhibitory control, and emotion regulation) was not related to zBMI scores 

(Hughes et al., 2015), suggesting that there may not be relations between EC and some aspects 

of weight; rather, it may depend which facet of self-regulation is being examined in relation to 

weight indicators. On the other hand, prior studies show longitudinal associations between EC 

and weight indicators (similar to findings from the current dissertation), such that greater broad 

and emotional self-regulation at two years predicted higher BMI scores and greater risk for 

obesity at 5.5 years (Graziano et al., 2010). A related study also found that lower self-regulation 

or difficulties at two years predicted higher BMI scores and obesity at 10 years, as well as more 

eating and body image concerns at 10 years (Graziano et al., 2013). Thus, I may have found 

significant main effects of self-regulation on weight indicators if I had examined other self-

regulation or EC scales (e.g., impulsivity, inhibitory control, activation control, attentional focusing) 

in relation to weight indicators in middle childhood. Furthermore, findings from prior empirical 

studies (and the current dissertation) suggest that relations between EC and weight may not be 

present in cross-sectional analyses (e.g., Hughes et al., 2015), but that EC earlier in development 

predicts scores on weight indicators and status later in development (e.g., Graziano et al., 2010; 

Graziano et al., 2013). 

Finally, the current findings generally show that a number of demographic and lifestyle 

factors are also associated with childhood weight indicators. Specifically, children further along in 

pubertal development demonstrated greater BMI, larger WC, greater percent body fat and 

increased risk of being classified as overweight or obese is supported by some empirical work on 

pubertal timing and weight gain (Daniels, 2006; Davison et al., 2003). European American/White 

participants also demonstrated lower percent body fat similar to past research showing that 

Latino and African American children have greater adiposity and poorer sleep compared to their 

European American/White counterparts (Biggs et al., 2013; Wisniewski & Chernausek, 2009). 

Females showed higher percent body fat in multiple models, which supports a host of literature 

showing that females show greater adiposity both before and after the onset of puberty (Daniels, 
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2006; Davison et al., 2003; Wisniewski & Chernausek, 2009). Completing the study week during 

a school break (rather than during the school year) was linked with about a 70% increase in odds 

of being classified as overweight or obese. Finally, greater SES was associated with lower BMI 

and percent body fat, which mirror findings showing that children from low SES backgrounds 

experience shorter sleep duration (Biggs et al., 2013; Breitenstein et al., in press; O’Dea et al., 

2014). Interactive effects of SES with objective and subjective sleep on weight indicators have 

also been established with a subsample of the population used in the current dissertation, 

showing that associations between sleep and weight indicators differed based on children’s early 

level of SES (Breitenstein et al., in press). Specifically, greater sleep duration predicted lower 

percent body fat for children with low early SES, greater sleep efficiency predicted lower BMI, 

smaller WC and lower percent body fat for children with low and average early SES, and greater 

parent-reported sleep problems predicted larger WC specifically for children with low early SES 

(Breitenstein et al., in press). Importantly, greater sleep duration and efficiency predicted the 

lowest odds of being classified as overweight or obese particularly for children from low early 

SES backgrounds (Breitenstein et al., in press). These findings also highlight the importance of 

various demographic and lifestyle factors on health behaviors across development and 

demonstrate that it may be critical to test some of these demographic and lifestyle factors as 

moderating and mediating factors when examining links between sleep and weight indicators.  

Overall, there were no significant interactions between objective and subjective sleep and 

EC when predicting concurrent weight indicators and status, suggesting no differences in 

associations between sleep and weight indicators based on child EC levels. Alternatively, I may 

not have detected significant interactions between sleep and EC on weight indicators and status 

because there is significant contributions from or variability that was accounted for by other 

contextual factors (or demographic/lifestyle factors; Biggs et al., 2013; Breitenstein et al., in press; 

Daniel, 2006; Davison et al., 2003; Wisniewski & Chernausek, 2009). However, there were 

numerous main effects for objective sleep quantity and quality, EC, and demographic and lifestyle 

factors that support prior literature and indicate that better sleep and self-regulation as associated 
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with lower BMI, WC, percent body fat, and risk for being classified as overweight or obese 

(Breitenstein et al., in press; Hughes et al., 2015; Martinez et al., 2014; Nixon et al., 2008).  

Aim 1b Findings and Interpretation 

 Longitudinal research suggests children who obtain longer parent-reported and objective 

sleep at night on average, have earlier bedtimes, and later wake times showed lower BMI scores, 

percent body fat, and lower risk of being obese (Bagley & El-Sheikh, 2015; Carter et al., 2011; 

Snell et al., 2007). Additionally, children who demonstrated short parent-reported sleep in early 

childhood showed higher BMI scores and greater risk of being overweight or obese children in 

middle childhood (Touchette et al., 2008). Some of the longitudinal phenotypic findings from the 

current dissertation support these previous studies, as a number of my hypotheses regarding 

interactions between objective sleep duration, midpoint variability and EC at eight years 

predicting weight indicators at nine years were supported. Specifically, greater objective sleep 

duration at eight years predicted greater decreases in BMI from eight to nine years, particularly 

for children who showed low EC at eight years. This finding indicates that when children obtain 

greater sleep quantity, children with lower EC showed the greatest decreases in BMI from eight to 

nine years of age. Furthermore, this suggests that children with low EC may experience the 

greatest benefit from obtaining longer sleep duration, and that obtaining more hours of sleep per 

night on average may lead to greater decreases in BMI across middle childhood. Importantly, 

relations between objective sleep duration at eight years and changes in BMI from eight to nine 

years were not significant for children with average or high EC levels, suggesting that higher 

levels of EC may protect against the negative effects of short sleep and children with high EC 

may better regulate themselves even when obtaining fewer hours of sleep at night. 

 I also found that greater sleep midpoint variability at eight years predicted greater 

increases in percent body fat at nine years, particularly for children with low EC, which supported 

my hypothesis. This finding suggests that when children show greater variability in bedtimes and 

waketimes on average, children with lower EC showed the greatest increases in percent body fat 

from eight to nine years of age. Furthermore, children with low EC may experience the greatest 

risk from varying bedtimes and waketimes, and that having greater fluctuation in bedtimes and 
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waketimes on average may lead to greater increases in percent body fat across middle 

childhood. As noted earlier, children waketimes are more restricted by early school start times 

and caregiver work schedules (Crowley et al., 2014), so it is possible that high variability in 

bedtimes from night to night on average may be driving effects on percent body fat. Furthermore, 

these findings suggest that broad, underlying dysregulation may account for links between sleep 

midpoint variability, percent body fat and low EC, such that children with low EC may have more 

difficulty regulating their sleep (including falling asleep and staying asleep), their eating behaviors, 

and their thoughts, emotions, and behaviors. Indeed, one study showed that poor self-regulation 

in middle childhood was linked to greater eating and greater percent body fat concurrently (Faith 

et al., 2012). Another study showed that children with average to high levels of self-regulation in 

middle childhood also exhibited fewer parent-reported sleep problems over time, whereas 

children with lower self-regulatory skills experienced increases in sleep problems across early 

and middle childhood (Williams et al., 2016). Thus, higher levels of EC may protect against the 

negative effects of short sleep and more variability in sleep schedules and increases in BMI and 

percent body fat.  

Collectively, these interactive effects fit with some literature showing that children who 

demonstrate greater sleep duration variability and shorter sleep duration are more likely to 

consume sugar, sugary drinks, energy-dense foods, and fewer vegetables (Franckle et al., 2015; 

Kjeldsen et al., 2014), indicating that when children experiencing greater variability in sleep 

schedules more broadly, these children also tend to eat more calorie-dense and sugary foods 

that are likely to increase body fatness. Specifically, it is possible that shorter sleep and greater 

variability in bedtimes and waketimes (and a less regular sleep schedule more generally) at eight 

years of age acts as a stressor for children, which leads to increases in ghrelin (hormone 

signaling hunger) and reduction in leptin (hormone signaling satiety), glucose uptake, and 

metabolism (Miller & Cappuccio, 2007; Spiegel et al., 2004). These changes in hormones that 

signal hunger and satiety may lead children to eat more food, specifically high calorie or sugar 

foods, which may lead to increased body fat over time (Miller & Cappuccio, 2007; Spiegel et al., 

2004). It is also likely that children with restricted sleep and greater variability in bedtime and 
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waketime on average are awake more hours of the day compared to children with more rigid 

sleep schedules, and that being awake more hours of the day provides some children additional 

opportunities to eat many types of food including foods that may increase percent body fat.  

Another possible explanation for associations between longer sleep duration and lower 

BMI and greater sleep midpoint variability and increased percent body fat is increased autonomy 

and decision-making regarding sleep schedules, exercise, eating, and other lifestyle factors 

during middle childhood. Regarding sleep duration and timing, research shows that autonomy at 

bedtime and more broadly may be associated with higher sleep quality, lower sleep duration 

variability, and lower odds of having a late bedtime (e.g., Doane et al., 2019; Erath & Tu, 2011; 

Spilsbury et al., 2005). Thus, while parents may still primarily dictate sleep schedules, food 

choice, activity and other day to day activities during middle childhood, children are increasingly 

expected to take on more responsibility and are allowed to make some decisions for themselves 

during this developmental period and this responsibility may impact their sleep quantity and 

timing. As such, greater autonomy and decision-making may account for associations among 

longer sleep duration, lower BMI, and low EC, as well as links between high sleep midpoint 

variability, increased percent body fat and low EC.  

Finally, it is also possible that increases in midpoint variability and percent body fat for 

children with low EC detected in the study stem from other stressors not assessed in the current 

dissertation (see Figure 1). For example, variability in bedtime and waketime, as well as 

increases in adiposity, may be driven by aspects of parenting and the home environment such as 

parenting styles, family schedules (daily and related to mealtime), food choices, whether children 

share rooms or beds with other family members, and level of engagement in physical activity. 

Indeed, studies have shown that children with fathers whose parenting styles were characterized 

as either permissive or disengaged had greater odds of being in a higher weight status (e.g., 

overweight or obese; Wake, Nicholson, Hardy, & Smith, 2007). Regarding sleep, one study found 

that for every one-hour decrease in parent-reported sleep duration, there was a 40% increase in 

risk or odds or being obese and that greater parenting stress was linked with shorter subjective 

sleep duration, but not with increased risk of being obese (Ievers-Landis, Storfer-Isser, Rosen, 



	 	

	
 
65 

Johnson, & Redline, 2008). Other studies have shown that families who were more engaged with 

one another during mealtimes, who had more positive communication during mealtimes, and who 

placed greater value on mealtimes tended to have children who were considered healthy or 

normal weight, compared to families with children who were classified as having overweight or 

obese status (per zBMI scores; Fiese, Hammons, & Grigsby-Toussaint, 2012). Similarly, 

Anderson (2012) showed that eating meals at consistent times, eating meals as a family and 

having household rules regarding television watching were all related to lower probability of 

children being obese. Thus, other psychosocial factors may explain longitudinal links between 

midpoint variability and percent body fat.   

Despite a number of significant interactions between unique sleep indicators and EC at 

eight years when predicting BMI and percent body fat at nine years, there were no significant 

interactions between sleep and EC at when predicting risk for being overweight or obese cross-

sectionally or longitudinally. This finding did not support my hypothesis and was surprising, as 

many numerous meta-analyses have shown cross-sectional association between short sleep 

duration and increased risk for obesity (Chen et al., 2008; Marshall, 2008; Patel & Hu, 2008). The 

null longitudinal finding regarding relations between sleep indicators and risk for being classified 

as overweight or obese adds to the current literature and suggests that poor sleep may not incur 

increased risk for obesity over short time spans such as one year. However, if longitudinal 

associations between sleep and risk for obesity were measured over longer periods of time or 

across developmental periods, it is possible that poor sleep may predict increased risk for 

obesity. Further, given that the measure of overweight/obesity in analyses accounts for 

percentiles and scores on BMI, WC, and percent body fat, we would expect this variable to be the 

most robust assessment of weight and body fatness in the current dissertation. However, recent 

findings with a subsample of the population used in the current dissertation demonstrated greater 

sleep duration and efficiency predict the lowest odds of being classified as overweight or obese 

particularly for children from low early SES backgrounds (Breitenstein et al., in press). These 

significant findings occurred in addition to individual links between objective and subjective sleep 

and weight indicators (Breitenstein et al., in press). Differences in these findings and results from 



	 	

	
 
66 

the current dissertation may be a function of sample size or the fact that overweight/obesity status 

was calculated accounting for BMI, WC, and percent body fat in the current dissertation, rather 

than just BMI centile cutoffs like is used in most prior studies (e.g., Breitenstein et al., in press). 

Thus, the lack of significant interactions and main effects on risk for being classified as 

overweight or obese suggest that we must be cautious when interpreting and making broad 

conclusions about the phenotypic findings in the current dissertation, as they may represent 

relations that are significant only for small groups of children or individuals or may depend on 

sample size and how overweight/obesity status is computed.   

 Finally, similar to cross-sectional findings, there were a number of consistent main effects 

of various demographic and lifestyle factors on weight indicators at nine years of age. First, 

greater BMI, WC, percent body fat, and likelihood of being classified as overweight or obese at 

eight years each predicted BMI, WC, percent body fat, and likelihood of being classified as 

overweight or obese at nine years of age, respectively. These significant main effects indicate 

high stability in weight indicators and status over time and are expected. Greater EC at eight 

years predicted smaller WC at nine years, suggesting that greater self-regulation may promote 

better health and lower visceral body fat. Being further along in pubertal development at eight 

years predicted greater WC at nine years, which corresponds with some literature showing links 

between pubertal timing and increased adiposity (Davison et al., 2003).  Children who completed 

the study week during a school break at eight years of age had lower BMI and reduced odds of 

being overweight or obese at nine years.  

 Overall, longer objective sleep duration at eight years predicted greater decreases in BMI 

from eight to nine years, and greater sleep midpoint variability at eight years predicted increases 

in percent body fat from eight to nine years of age. Importantly, both of these associations were 

only significant for children who show low EC at eight years, suggesting that when children 

experience short sleep duration and greater variability in bedtimes and waketimes, children with 

low EC may also show the greatest increases in BMI and percent body fat from eight to nine 

years of age. On the other hand, these findings indicate that children with low EC may experience 

the greatest benefits from attaining longer sleep duration and more stable bed and waketimes 
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from day to day. However, it is still unclear which aspects of sleep and health to target for 

intervention, as well as who may benefit most from these interventions, given that findings show 

no significant association between specific facets of sleep and risk for being classified as 

overweight or obese.  

Aim 2a Findings and Interpretation 

Prior research indicates moderate to high heritability for various sleep parameters 

(Breitenstein et al., 2018; Gregory et al., 2006; Moore et al., 2009), weight indicators (Maes, 

Neale, & Eaves, 1997; Fernandez et al., 2012; Wardle et al., 2008), and EC (Lemery-Chalfant et 

al., 2008; Lemery-Chalfant et al., 2013; Mullineaux et al., 2009) in twin samples of children in 

middle childhood. These strong additive genetic influences on sleep, weight indicators and EC 

reported in other twin samples, as well as prior evidence of phenotypic links between sleep, 

weight indicators and self-regulation (e.g., Graziano et al., 2010; Graziano, et al., 2013; Hughes 

et al., 2015; Williams & Sciberras, 2016), indicates that there may be shared underlying additive 

genetic influences on various aspects of sleep, weight indicators, and EC in middle childhood. 

Numerous quantitative behavior genetic findings from the current dissertation support and 

contribute new information to the literature regarding genetic and environmental influences on 

various sleep and weight indicators, as well as their associations.  

First, I found that the greatest proportion of the variance in parent-reported sleep duration 

and daytime sleepiness at eight years of age were accounted for by shared environmental 

factors, with the remaining variance accounted for by additive genetic and nonshared 

environmental factors. Specifically, I found that only about 20% of the reason why individuals 

differ from one another on parent-reported sleep duration during middle childhood can be 

explained by additive genetics. Similarly, about 27% of the reason why individuals differ from one 

another on daytime sleepiness during middle childhood can be explained by additive genetics. 

While my hypothesis regarding daytime sleepiness was supported, my hypothesis that most of 

the variance in parent-reported sleep duration would be explained by additive genetic factors was 

not supported. However, some prior studies have reported slightly lower additive genetic 

influences on parent-reported sleep duration similar to what was detected in the current 
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dissertation (see Brescianini et al., 2011; Gregory et al., 2009; 30-46%). Greater shared 

environmental influence on parent-reported sleep duration and daytime sleepiness may capture 

high similarity in parent reports of sleep duration and sleep quality for each child (parent-report 

bias) but may also represent numerous factors in twins’ home or sleep environment that make 

them more alike on sleep duration. For example, twins in the same family may have similar daily 

and sleep schedules and may share a room or even a bed, all of which may make their sleep 

duration and level of daytime sleepiness more similar to their co-twin. 

In contrast with parent-reported sleep duration and quality, the greatest proportion of the 

variance in actigraphy-based sleep duration and efficiency was accounted for by additive genetic 

factors, with the remaining variance attributed to nonshared environmental factors. Thus, findings 

suggest that objective sleep quantity and quality are highly heritability during middle childhood in 

the current sample, with the estimates for sleep duration (.81) and efficiency (.79) being slightly 

higher than those reported in prior studies with this age group (e.g., Gregory et al., 2006; Moore 

et al., 2009). These findings also suggest that I found that about 80% of the reason why 

individuals differ from one another on objective sleep duration and efficiency during middle 

childhood can be explained by additive genetics, indicating that sleep quantity and quality hold 

strong genetic underpinnings. Interestingly, objective sleep midpoint variability demonstrated no 

additive genetic influence; the greatest proportion of the variance in sleep midpoint variability was 

accounted for by shared environmental factors similar to parent-reported sleep duration and 

daytime sleepiness. As previously noted, child bedtimes and waketimes are heavily influenced 

and restricted by school start times, parent work schedules, and family routines more broadly in 

middle childhood (Anderson, 2012; Crowley et al., 2014; Fiese et al., 2012). As such, it is likely 

that these environmental factors contribute to high similarity in bedtime and waketime variability 

from night to night. However, this is the first study to my knowledge to test the heritability of sleep 

midpoint variability, which contributes to a growing body of literature that calls for the examination 

of other sleep indicators beyond sleep duration (e.g., Patel & Hu, 2008).  

My hypothesis that the greatest proportion of the variance in EC would be accounted for 

by additive genetic factors was supported, with the higher heritability estimate for EC (.72) falling 
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within the same range as estimates reported in other studies on children during middle childhood 

(e.g., Lemery-Chalfant et al., 2008; Lemery-Chalfant et al., 2013; Mullineaux et al., 2009). 

Furthermore, about 72% of the reason why individuals differ from one another on parent-reported 

EC duration during middle childhood can be explained by additive genetics.  Finally, my 

hypothesis that the greatest proportion of the variance in BMI, WC, and percent body fat would be 

accounted for by additive genetic factors was supported. Twin intra-class correlations for weight 

indicators were quite different between DZ same-sex twins and DZ opposite-sex twins, 

suggesting that there may be sex differences for weight indicators during middle childhood. When 

testing genetic and environmental influences on each weight indicator separately for males and 

females, I found that the greatest proportion of the variance in BMI, WC, and percent body was 

accounted for by additive genetic factors for both males and females, but that additive genetic 

contributions to each weight indicator were slightly higher for males compared to females. 

Overall, my findings suggest that over 90% of the reason why both males and females differ from 

one another on BMI, WC, and percent body fat during middle childhood can be explained by 

additive genetics, highlighting strong genetic influences and underpinnings for weight indicators 

that have been reported in the literature (Plomin et al., 2013). While not initially predicted, 

significant sex differences in the magnitude and nature of the genetic influences on BMI, WC, and 

percent body fat may fit with some literature showing phenotypic differences between male and 

females on weight indicators. Specifically, prior studies show that males tend to have reduced 

adiposity and fat mass across at the end of middle childhood (and as they progress through 

puberty), while females show greater free-fat, fat mass, likelihood of being overweight or obese, 

and greater percent body fat in middle childhood (Daniels, 2006; Davison et al., 2003). Further, 

research shows that females tend to have earlier timing in terms of pubertal development (e.g., 

Davison et al., 2003), which may account for difference in weight indicators. However, additive 

genetic estimates for all weight indicators across male and females were still slightly higher than 

those reported in prior studies for BMI and WC (Maes et al., 1997; Fernandez et al., 2012; Wardle 

et al., 2008).  
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Overall, I found that many key variables in the current dissertation showed high additive 

genetic influence, including objective sleep quantity and quality, all weight indicators, and parent-

reported EC, which supports and extends the current literature. However, parent-reported sleep 

duration and quality, as well as objective sleep midpoint variability, demonstrated greater 

environmental influences suggesting that factors in the home or sleep environment (e.g., family 

routines and schedules, parent report bias) may explain why children show similarities to one 

another on these aspects of sleep rather than underlying genetic factors.  

Bivariate Sleep Models. While numerous studies have documented univariate genetic 

and environmental contributions to sleep, weight indicators, and EC in middle childhood (e.g., 

Breitenstein et al., 2018; Gregory et al., 2006; Lemery-Chalfant et al., 2013; Wardle et al., 2008), 

far fewer studies have tested genetic and environmental influences on associations between 

various sleep, weight indicators and EC. Two recent studies of adults have found that shorter 

self-reported sleep duration was associated with higher BMI scores, with these associations 

accounted for entirely by common environmental effects and higher heritability of BMI scores for 

participants obtaining short sleep compared to participants who reported longer sleep duration 

(Watson et al., 2010; Watson et al., 2012). However, no studies to my knowledge have examined 

genetic and environmental influences on associations between sleep, weight indicators and EC in 

children or during middle childhood. As such, findings from the current dissertation provide 

considerable new information and address a number of gaps in the literature.  

First, my hypothesis that additive genetics would primarily explain links between sleep 

duration and efficiency was supported. I found that the covariance between objective sleep 

duration and efficiency at eight years of age was primarily accounted for by shared additive 

genetic factors, with nonshared environmental factors also partially explaining links between 

objective sleep quantity and quality. Furthermore, additive genetic influences on sleep duration 

were highly correlated with additive genetic influences on sleep efficiency (rg = .85), suggesting 

that some of the same genes may be influencing objective sleep duration and efficiency. Indeed, 

it is possible that common sets of genes may contribute to multiple aspects of sleep and drive 

similarity between aspects of sleep like sleep duration and quality, as other previous studies have 
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also shown that sleep duration and efficiency are highly correlated (phenotypically) in middle 

childhood (e.g., Bagley & El-Sheikh, 2013; Bagley, Kelly Buckhalt, & El-Sheikh, 2015). However, 

it is notable that objective sleep duration is used to compute sleep efficiency in the current 

dissertation, which may also contribute to high correlations and overlap between sleep quantity 

and quality both genetically and phenotypically. 

In contrast and contrary to my hypothesis, almost all of the covariance between objective 

sleep duration and sleep midpoint variability and between parent-reported sleep duration and 

midpoint variability was accounted for by shared environmental contributions. While there were 

strong, unique additive genetic contributions for sleep duration and high common environmental 

influences on sleep midpoint variability in the bivariate model, shared environmental factors still 

primarily explained links between sleep duration and midpoint variability. Mirroring univariate 

models, parent-reported sleep duration and midpoint variability showed high unique shared 

environmental influence, and all of the covariance between parent-reported sleep duration and 

midpoint variability can be accounted for by factors in the common environment. Thus, some 

aspect(s) of the twins’ shared environment accounts for the association between objective and 

parent-reported sleep duration and midpoint variability. Indeed, genetic and environmental 

correlations also suggest that the common environmental factors influencing sleep duration are 

shared with the common environmental factors influencing sleep midpoint variability (rc = .61). 

However, environmental correlations between parent-reported sleep duration and midpoint 

variability were much lower (rc = .30) and the covariance between (.05) between parent-reported 

sleep duration and midpoint variability was weak and indicates less overlap between factors in 

the shared environment linking the two sleep indicators. Yet, parent-imposed bedtimes and 

waketimes and school start times are strong, possible explanations for links between sleep 

duration and midpoint variability. As previously noted, family routines and schedules may 

influence bed and wake times, which contribute to both sleep midpoint variability and sleep 

duration (Anderson, 2012; Fiese et al., 2012). It is also notable that correlations indicate that 

longer objective and parent-reported sleep duration are associated with lower sleep midpoint 

variability. This inverse associations also suggests that consistency or regularity of daily 
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schedules (or sleep schedules) in particular may explain associations between sleep duration and 

midpoint variability. Finally, genetic and environmental variance and covariance between sleep 

indicators does not account for potential gene x environment interactions. It is possible that 

environmental factors (like family routines and schedules) increase or decrease additive genetic 

influences on (or genetic expression related to) objective and parent-reported sleep, midpoint 

variability and associations between these sleep indicators. Thus, despite all of the covariance 

between a) objective and parent-reported sleep duration and b) parent-reported sleep duration 

and midpoint variability being accounted for by shared environmental factors, it is possible that 

gene x interactions exist for these links between different aspects of sleep. 

I also found that while there were strong, unique additive genetic contributions for 

objective sleep duration and high common environmental influences on parent-reported sleep 

duration, shared environmental factors primarily explained links between objective and parent-

reported sleep duration at eight years of age, with some of the covariance between objective and 

parent-reported sleep duration explained by nonshared environmental factors. This finding 

suggests that some aspect(s) of the twins’ shared and nonshared environments accounts for the 

association between objective and parent-reported sleep duration, with genetic and 

environmental correlations also indicating that the common environmental factors influencing 

objective sleep duration are shared with the common environmental factors influencing parent-

reported sleep duration (rc = .59). As expected, nonshared environmental factors contributing to 

objective sleep duration were weakly correlated with nonshared environmental factors influencing 

parent-reported sleep duration (re = .15). As with associations between sleep duration and 

midpoint variability, it is likely that links between objective and parent-reported sleep duration are 

driven by parenting practices and family schedules, with similarity in daily schedules driving high 

shared environmental covariance. Additionally, although objective and parent-reported sleep 

duration represent slightly different constructs (based on how they were measured) in the current 

dissertation and constitute different reporters, it is logical that they should be influenced by similar 

factors in the environment and demonstrate a positive correlation. 
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Bivariate Sleep and Weight Models. My hypotheses regarding genetic and 

environmental associations between objective sleep duration and weight indicators were all 

supported. All of the final, best fitting Bivariate Cholesky Decomposition models linking objective 

sleep duration and BMI, WC, and percent body fat at eight years of age were highly similar and 

showed that all of the covariance between objective sleep duration and each weight indicator was 

explained by shared additive genetic factors, although the magnitude of the covariance differed 

across these models. Specifically, 10% of the total variance in percent body fat was explained by 

objective sleep duration, whereas only 3% of the variance in WC and 6% of the variance in BMI 

was explained by objective sleep duration. Further, additive genetic influences on sleep duration 

were highly correlated with additive genetic influences on BMI (rg = .26), WC (rg = .16), and 

percent body fat (rg = .32), suggesting that some of the same genes may be influencing objective 

sleep duration and weight indicators or adiposity. Importantly, these findings differ from at least 

two prior studies that show associations between sleep duration and BMI in particular are 

accounted for entirely by common environmental effects (Watson et al., 2010; Watson et al., 

2012). However, these prior studies were conducted with a sample of adult twins that was 

primarily Caucasian (89%), whereas our findings apply to ethnically diverse, young twins living in 

the same home. Additionally, prior studies assessed self-reported sleep duration, while significant 

correlations in our study called for examining links between objective sleep duration and weight 

indicators. Thus, variation in developmental stage, context (i.e., living in the same home or not) at 

the time of assessment, and measurement of sleep duration (subjective vs. objective) between 

prior studies and the current dissertation may explain differences in results.  

Similarly, my hypotheses regarding genetic and environmental associations between 

objective sleep efficiency and weight indicators were supported. Bivariate Cholesky 

Decomposition models linking objective sleep efficiency and BMI, WC, and percent body fat at 

eight years of age demonstrated that the covariance between objective sleep duration and each 

weight indicator was solely explained by shared additive genetic factors, with the magnitude of 

the covariance slightly shifting across these models. Specifically, 17% of the total variance in 

percent body fat was explained by objective sleep efficiency, whereas 9% of the variance in WC 
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and 14% of the variance in BMI was explained by objective sleep efficiency. Further, additive 

genetic influences on sleep efficiency were highly correlated with additive genetic influences on 

BMI (rg = .39), WC (rg = .32), and percent body fat (rg = .43), suggesting that some of the same 

genes may be influencing objective sleep efficiency and weight indicators or adiposity. It is also 

noteworthy that the additive genetic covariance and correlations between sleep efficiency and 

weight indicators were larger than additive genetic covariance and correlations between sleep 

duration and each weight indicator in bivariate models, suggesting slightly stronger genetic links 

between sleep efficiency and weight indicators compared to relations between sleep duration and 

weight indicators. While much of the current literature reports links between sleep duration and 

weight indictors like BMI, these findings highlight the importance of sleep quality and other weight 

indicators like WC and percent body fat that may more directly measure adiposity. Specifically, no 

prior studies have examined possible genetic links between sleep quality and weight indicator. 

Additionally, these findings show that sleep quantity and quality are associated with multiple 

measures of adiposity at a genetic or biological level, not just a phenotypic or behavioral level.  

Indeed, theory outlines biological and endocrine links between short sleep and increased 

adiposity (Miller & Cappuccio, 2007; Spiegel et al., 2004). However, beyond theoretical 

hypotheses, new lines of research suggest that specific genes such as the Clock gene are 

responsible for maintaining circadian rhythms and sleep patterns as well as alterations in 

metabolism (Laposky, Bass, Kohsaka, & Turek, 2007; Vitaterna, 1994). Studies with mice have 

demonstrated that mutations in the Clock gene lead to significant alterations in sleep, activity and 

eating that result in less sleep, increased eating, lower leptin levels, and obesity (Laposky et al., 

2008; Naylor et al., 2000; Turek, 2005). Importantly, genes like the Clock gene that regulate both 

sleep and metabolism may not be present only in the brain, but have also been documented in 

various areas of the body such as adipose tissue, suggesting wide spread effects of this gene on 

multiple aspects of health (Laposky et al., 2007). Thus, this line of research and findings from the 

current dissertation suggest that there are common, underlying genetics that may contribute to 

and explain links between various aspects of sleep and weight indicators. These findings also 

provide a foundation for future studies to examine candidate genes like the Clock gene, and its 
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influence on circadian patterns, sleep, and metabolism in humans at different stages of 

development, such as childhood, to determine how specific genes or sets of genes modulate 

multiple aspects of health and well-being like sleep and weight.  

Bivariate EC, Sleep, and Weight Models. My hypotheses that additive genetics would 

primarily explain links between EC and sleep duration and efficiency were supported. I found that 

the covariance between EC and objective sleep duration, as well as between EC and objective 

sleep efficiency at eight years of age, was entirely accounted for by shared additive genetic 

factors. However, the additive genetic covariance (sleep duration A21 = .03; sleep efficiency A21 

= .01) and correlations between EC and sleep duration and efficiency were relatively small (sleep 

duration rg = .20; sleep efficiency rg = .15), suggesting that while common, underlying genes may 

explain links between EC and sleep quantity and quality, these findings should not be given much 

weight and genetic links between EC and weight indicators may be weak. Bivariate findings for 

associations between EC and BMI were similar to genetic and environmental links between EC 

and sleep duration and efficiency; the covariance between EC and BMI at eight years of age was 

solely accounted for by additive genetic factor, although additive genetic covariance (A21 = .02) 

and correlation between EC and BMI (rg = .12) was quite small. This again indicates that while 

common, underlying genes may explain links between EC and BMI, these findings should be 

interpreted cautiously.  

In terms of genetically-influenced factors that may account for links between EC and 

sleep, as well as between EC and BMI, there are a number of possibilities. Regarding genetic 

links between EC and sleep quantity and quality, it is possible that general dysregulation (as 

influenced by multiple genes) may explain associations between EC and objective sleep. Prior 

studies show that self-regulation and sleep regulation or dysregulation both have moderate to 

high additive genetic influence (Lemery-Chalfant et al., 2013; Saudino & Micalizzi, 2015); thus, it 

is possible that one set of genes regulates multiple aspects of behavior and/or contributes to both 

of these characteristics or qualities.  

In contrast, my hypothesis that additive genetics would primarily explain links between 

EC and parent-reported sleep duration was not supported, as I found that the covariance 
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between EC and parent-reported sleep duration, primarily accounted for by shared environmental 

factors (A21 = .05) with a small contribution of nonshared environmental factors (E21 = .01). 

While counter to my hypothesis, these findings may fit with at least one study of twins assessed 

during middle childhood that found that greatest proportion of the variance in poor self-regulatory 

eating was accounted for by shared environmental factors, with the remaining variance primarily 

attributed to nonshared environmental influences (Faith et al., 2012). Thus, the current findings 

and those from Faith et al. (2012) suggest that some aspect(s) of the twins’ shared and 

nonshared environments may account for links between EC and parent-reported sleep duration. 

As with links between EC and objective sleep duration, it is possible that general regulation or 

dysregulation may explain associations between EC and parent-reported sleep duration. For 

example, children who are able to better regulate their thoughts, behaviors and emotions more 

broadly are likely able to better regulate their sleep, including falling asleep, staying asleep, or 

going to bed when instructed, whereas children who have difficulty with regulating thoughts, 

behaviors and emotions may struggle to regulate various aspects of sleep (Dahl, 1996). At least 

one study has shown that increased emotional intensity and lower emotional regulation before 

bedtime predicts shorter sleep duration and greater sleep disturbances in middle childhood 

(including sleep duration; El-Sheikh & Buckhalt, 2005). Additionally, research shows that EC in 

toddlerhood is linked to children’s ability to regulate other emotions such as anger, joy, and 

restraint (Kochanska, Murray, & Harlan, 2000), suggesting that emotion regulation ability or 

parents’ fostering of emotion regulation may serve as a common environmental factor that links 

EC and parent-reported sleep duration in middle childhood. Furthermore, household schedules 

and routines may explain links between EC and parent-reported bedtime in middle childhood. At 

least one recent study found that toddlers whose parents reported that they had regular bedtimes 

and mealtimes also showed higher emotional self-regulation (Anderson et al., 2017). 

Furthermore, the same study found that lower emotional self-regulation and less regular bedtimes 

in toddlerhood predicted increased odds of obesity in middle childhood, suggesting links new 

links between EC, sleep timing and scheduling and weight status.  
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Bivariate Weight Models. My hypotheses regarding genetic and environmental 

associations between various weight indicators were all supported. All of the final, best fitting 

Bivariate Cholesky decomposition models linking a) BMI and WC, b) WC and percent body fat, 

and c) BMI and percent body fat at eight years of age were highly similar and showed that all of 

the covariance between weight indicators in each model was explained by shared additive 

genetic factors, although the magnitude of the covariance slightly differed across these models. 

Specifically, 80% of the total variance in percent body fat was explained by BMI, whereas only 

70% of the variance in WC was explained by BMI and 79% of the variance in percent body fat 

was explained by WC. Further, additive genetic influences on BMI were highly correlated with 

additive genetic influences on WC (rg = .87) and percent body fat (rg = .93), and additive genetic 

influences on WC were highly correlated with additive genetic influences on percent body fat (rg = 

.93), suggesting that some of the same genes may be influencing BMI, WC, and percent body fat. 

Indeed, I expected high shared additive genetic influence on associations between all weight 

indicators in the current dissertation given that all three weight indicators were proxy measures 

for adiposity and should be highly related to one another given that some of the same 

measurements contribute to scores on BMI, WC, and percent body fat. For example, a form of 

body mass is used to score both BMI and percent body fat, and WC and percent body fat both 

estimate some form of actual body fatness rather than just overall body mass. As such, common 

sets of genes almost certainly contribute to links between weight indicators. However, remaining 

differences between individuals on weight indicators and associations between various weight 

indicators can be attributed to nonshared environmental factors, or characteristics that make 

twins more different from one another. Thus, associations between weight indicators in the 

current dissertation may also be explained by differences in lifestyle factors like activity level, food 

intake (both amount and type), sedentary time and behavior, and other factors like metabolism 

possibly. These findings also support results from an adult twin study that show moderate 

nonshared environmental influences on bivariate associations between self-reported sleep 

duration and BMI (Watson et al., 2010; Watson et al., 2012); however, these results have not 

been examined or shown in child samples before the current dissertation.  
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 Overall, my findings show that many of the associations between sleep indicators, sleep 

and weight indicators, and among weight indicators can be attributed to shared additive genetic 

factors, suggesting that common, underlying sets of genes explain these relations. Further, links 

between EC and objective sleep indicators and BMI were explained by additive genetic factors, 

although these relations were weak and should be interpreted with caution. Parent-reported sleep 

duration and sleep midpoint variability showed strong shared environmental covariance with other 

sleep indicators and EC suggesting that factors in twins’ shared environments like family and 

daily schedules may contribute to associations between sleep duration and sleep midpoint 

variability, and their links with other sleep parameters and EC. Finally, it is critical to note that 

while many bivariate associations between sleep, weight indicators and EC are explained by 

additive genetic influences, these models and associations do not capture gene x environment 

interactions, which further elucidate under which environmental conditions genes are more or less 

likely to be expressed. As such, associations among sleep, weight and EC indicators may change 

depending on the context or environment, as well as the extent to which these health behaviors 

are influenced by sets of genes.  

Aim 2b Findings and Interpretation 

Given that there were not significant correlations or phenotypic associations among 

sleep, weight indicators and EC at eight years of age, Multivariate Cholesky Decompositions 

were not fit and do not warrant interpretation.  

Aim 2c Findings and Interpretation 

Finally, my hypothesis that children classified as overweight or obese at eight years of 

age would show higher additive genetic influence on weight status compared to children 

classified as normal/healthy weight or underweight was not supported. Rather, the best-fitting 

Liability Threshold Model constrained all paths and cut points to be the same across twin and 

zygosity groups. Thus, the model showed that contributions to overweight or obesity status was 

almost evenly split between additive genetic and shared environmental influences, suggesting 

lower heritability than BMI, WC, or percent body fat alone, and much lower heritability for obesity 

than has been reported in other samples of children and adults in previous literature (see Plomin 
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et al., 2014). These findings suggest that when children demonstrate greater weight status and 

more adiposity, genetic influences on weight may actually be restricted or have less genetic 

expression. This finding is counter to results with adult samples of twins showing that restricted 

sleep may provide an opportunity or environment that allows for greater genetic expression of 

BMI or weight more broadly, whereas longer sleep duration may restrict genetic expression of 

BMI or weight (Watson et al., 2010; Watson et al., 2012). Additionally, aspects of twins’ shared 

environment may heavily contribute to their weight status, holding just as much importance as 

additive genetic influences. As previously noted, lifestyle factors like activity level, food intake 

(both amount and type), and sedentary time and behavior may all serve as common factors in the 

home and family environment that contribute to weight status in middle childhood.  

Strengths, Limitations, and Future Directions  

The current dissertation is characterized by a number of strengths both conceptually and 

methodologically. The current dissertation utilized a longitudinal sample of twins recruited through 

state birth records, making this a community sample of socioeconomically and ethnically diverse 

families. This is highly valuable as many twin studies have been conducted with ethnically 

homogeneous samples of European American children or adults and estimates of genetic and 

environmental influences on traits likely vary according to population or sample composition 

(Plomin et al., 2013). The current dissertation also employs multimethod assessment of multiple 

aspects of sleep and repeated assessment of objective weight indicators, allowing me to control 

for prior scores on weight indicators in models and show change in weight over time and control 

for the high stability of weight indicators over time. Furthermore, the use of a twin sample allows 

for elucidating genetic and environmental influences on particular traits, as well as genetic and 

environmental influences on associations between traits and behaviors, which can help identify 

where to best direct intervention efforts for traits like sleep and weight.  

Despite addressing numerous gaps in the current literature, the current dissertation has a 

number of limitations. First, only partial data were available at the nine-year assessment. As 

such, the sample size at the nine-year assessment was not large enough to allow for longitudinal 

analyses to be conducted within quantitative behavior genetic models, limiting all quantitative 
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behavior genetic models to the eight-year assessment. Additionally, with more complete data 

from the nine-year assessment, it is possible that phenotypic analyses may slightly change and 

reveal different associations between sleep, EC, and weight indicators. Thus, analyses should be 

examined again with the larger sample to determine whether results hold with additional data. 

Second, sleep was only assessed at the eight-year assessment, making it difficult to characterize 

the actual direction of effects between sleep and weight indicators. The current dissertation draws 

on theoretical and prior empirical findings that show sleep problems likely precede increase in 

weight and body fat, but without multiple longitudinal measurements of sleep and weight, 

direction of effects and bidirectional associations cannot be determined. Furthermore, longitudinal 

relations between sleep, EC, and weight indicators were only assessed across one year, making 

this a short-term longitudinal study. While the phenotypic analyses in the current dissertation 

provide valuable information, it is still unclear how sleep, weight, and EC are associated with one 

another over longer periods of time and into early adolescence.  

Additionally, the current dissertation relied on multivariate regression tests for phenotypic 

analyses. While regression analyses fit the aims of the current dissertation, they assume linear 

associations between sleep, EC, and weight over time. Testing moderation and mediation of 

psychosocial (i.e., EC) and other demographic factors in the current dissertation would further 

clarify pathways and mechanisms in associations between sleep and weight indicators. Further, 

utilizing longitudinal growth modeling with these analyses would allow modeling of sleep and 

weight trajectories over time and give a more nuanced picture of changes in sleep and weight 

across middle childhood. In addition, while I was able to conduct univariate and bivariate 

quantitative behavior genetic models in the current dissertation to estimate genetic and 

environmental influences on associations between sleep, EC, and weight, phenotypic correlations 

were not high enough or significant to warrant more conducting more complex behavior genetic 

links among sleep, EC, and weight.  

Finally, the current dissertation examined specific associations between unique sleep and 

weight indicators. While I was able to detect significant associations between various sleep and 

weight indicators, high correlations among some aspects of sleep in the sample and all of the 
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weight indicators may warrant creating a latent variable to characterize optimal or poor sleep, as 

well as a single indicator of weight. Using this approach may make findings more robust and 

provide a clearer, overall picture of associations between sleep and weight in childhood. On the 

other hand, other sleep parameters and weight indicators may also be important to test when 

considering broad associations between sleep problems and weight, such as sleep latency (time 

taken to fall asleep), sleep start time (bedtime) variability, wake time variability, and total body 

composition. Future studies should test these points in an effort to provide a more complete 

picture regarding the associations between sleep problems and weight in childhood. 

Conclusions 

When children experience short sleep duration and greater variability in bedtimes and 

waketimes, children with low EC may also show the greatest increases in BMI and percent body 

fat (respectively) from eight to nine years of age. Further, these findings suggest that children with 

low EC may experience the greatest benefits from attaining longer sleep duration and greater 

regularity in bed and waketimes from day to day. My findings also showed greater environmental 

influences on parent-reported sleep duration and quality, as well as objective sleep midpoint 

variability, suggesting that factors in the home or sleep environment (e.g., family routines and 

schedules, parent report bias) may explain why twins’ similarities on various aspects of sleep. 

Similarly, associations between parent-reported sleep duration and sleep midpoint variability and 

other sleep indicators and EC were primarily accounted for by shared environmental factors, 

suggesting that factors in twins’ shared environments like family and daily schedules explain 

these links. In contrast, I found high additive genetic influence on objective sleep quantity and 

quality, all weight indicators, and parent-reported EC. Further, many of the associations between 

sleep indicators, sleep and weight indicators, and among weight indicators were entirely 

accounted for by shared additive genetic factors, suggesting that common, underlying sets of 

genes explain these relations. 
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Table 1 
 
Summary of Demographic Information for Full Analytic Sample  
 

Demographic Summary n % 
Sex   

     Male 299 49.2% 
     Female 309 50.8% 

Twin ethnicity    

     European American   342 56.6% 

     Hispanic/Latino 150 24.8% 

     Asian American 22 3.6% 

     African American 24 4.0% 

     Native American 16 2.6% 

     Native Hawaiian 6 1.0% 

     Multiethnic or Unknown 48 8.0% 

Zygositya   

     Monozygotic (MZ) 178 29.6% 

     Same-sex dizygotic (DZss) 234 38.9% 

     Opposite-sex dizygotic (DZos) 190 31.6% 

Diary completionb   

     Paper 44 7.2% 

     Electronic 553 91.9% 

     Both  9 1.5% 

Summer participationc   

     Completed study week during school year 372 71.0% 

     Completed study week during summer or break 152 29.0% 

Primary caregiver education leveld   

     Some or less than high school 4 0.7% 
     High school graduate/GED 56 9.3% 
     Some college 166 27.5% 

     College degree 222 36.8% 

     Some graduate education 20 3.3% 

     Graduate or professional degree  136 22.5% 

Secondary caregiver education levele   

     Some or less than high school 8 1.6% 

     High school graduate/GED 76 14.7% 

     Some college 138 26.7% 



	 	

	
 
93 

     College degree 172 33.3% 

     Some graduate education 18 3.5% 

     Graduate or professional degree 104  20.2% 

Income-to-needs Ratiof   

     Living in poverty (score of < 1) 46 7.6% 

     Near the poverty line (score of 1-2) 118 19.1% 

     Lower middle class (score of 2-3) 80 13.5% 

     Middle to upper class (score of 3+) 260 42.8% 

Weight status at 8-year assessmentg   

     Underweight 26 5.4% 

     Normal/Healthy weight 354 73.8% 

     Overweight 64 13.3% 

     Obese 36 5.9% 

Weight status at 9-year assessmenth   

     Underweight 31 11.2% 

     Normal/Healthy weight 191 69.2% 

     Overweight 31 11.2% 

     Obese 23 8.3% 

Note. N = 608. Primary caregivers reported on twin sex, ethnicity, zygosity, primary caregiver 
education, secondary caregiver education, and total household income before taxes. Daily diaries 
were completed during a week-long study protocol. Zygosity was collected using the Zygosity 
Questionnaire for Young Twins (Goldsmith, 1991). Whether participants completed their study 
week during week during an extended school break (i.e., summer or winter break) was 
determined by cross-checking study participation dates with school calendars for each twin pair. 
Income-to-needs ratios were computed by dividing total household income before taxes by the 
federal household income threshold (based on the number of individuals supported by the 
household income) for 2016-2017. Weight status at eight and nine years was computed by 
determining whether each participant met criteria for a specific weight status group on at least two 
of the three weight indictors: BMI scores, waist circumference, and percent body fat. aZygosity 
unknown for 1.0% of participants (N = 6). bDaily diaries not completed by .4% of participants (N = 
2). cSummer participation unknown for 13.8% of participants (N = 84). dPrimary caregiver 
education level unknown for .7% of participants (N = 4). eSecondary caregiver education level 
unknown for 15.1% of participants. (N = 92). fIncome-to-needs ratio unknown for 17.1% of 
participants (N = 104). gWeight status at 8 years unknown for 21.1% of participants (N = 128). 
hWeight status at 9 years unknown for 54.6% of participants (N = 332). 
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Table 2 

Raw Means, Standard Deviations, Ranges, Skewness, and Kurtosis for Key Study Variables in 
Full Analytic Sample 

Note. N = 608. Primary caregivers reported on child average nighttime sleep duration, daytime 
sleepiness, effortful control, pubertal status, total household income before taxes, and primary 
and secondary caregiver education levels. Parent-reported nighttime sleep duration and daytime 
sleepiness were assessed using the Child Sleep Habits Questionnaire (Owens et al., 2000); 
nighttime sleep duration was assessed with a single item and daytime sleepiness was sum score 
of 7 items. Nighttime sleep duration, sleep efficiency, and sleep midpoint variability were collected 
from each twin using wrist-based accelerometers during a week-long study protocol. BMI, WC, 
and percent body fat were collected at two home visits at eight and nine years of age. Effortful 
control was a composite of three scales from the Temperament in Middle Child Questionnaire 
(Simonds, 2006; Putnam & Rothbart, 2006): activation control, inhibitory control, and attentional 
focusing. Pubertal status was assessed with the Pubertal Developmental Scale (Petersen et al., 
1988) and mean scores were computed for each twin based on sex. Socioeconomic status was a 
standardized mean composite of primary caregiver highest level of education, secondary 
caregiver highest level of education, and income-to-needs ratio.  aGiven significant skew and 
kurtosis, parent-reported daytime sleepiness was windorized at 3 SDs and logarithmically 
transformed to estimate a more normal distribution. The windorized and logarithmically 
transformed variable was used for analyses. Raw scores for the non-windorized and transformed 
variable are reported here. bGiven significant skew and high kurtosis, BMI (8 years) was 
windorized at 3 SDs to estimate a more normal distribution. The windorized variable was used for 

Study Variables M SD Min Max Skewness Kurtosis 
Parent-reported sleep duration 
(hours; 8 year) 9.65 .86 6.33 13.00 -.24 .61 

Parent-reported daytime sleepiness 
(8 year)a 2.69 2.75 1.00 23.00 5.13 27.86 

Nighttime sleep duration (hours; 8 
year) 8.08 .74 4.46 10.26 -.72 1.83 

Sleep efficiency (%; 8 year) 89.89 5.91 55.90 99.45 -1.37 3.75 

Sleep midpoint time variability (8 
year) .58 .30 .08 1.91 1.24 2.48 

Body mass index (BMI; 8 year)b 16.86 2.94 12.62 34.92 2.07 6.37 

Waist circumference (WC; 8 year) 22.82 3.00 17.50 36.40 1.53 2.92 

Percent body fat (8 year) 20.23 6.45 8.42 50.68 1.43 2.57 

Effortful control composite (8 year) 3.30 .54 1.81 4.45 -.20 -.48 

Body mass index (BMI; 9 year) 17.40 3.28 12.65 34.21 1.74 4.58 

Waist circumference (WC; 9 year)c 23.19 4.08 16.00 48.50 2.17 9.90 

Percent body fat (9 year) 20.38 7.36 4.10 45.83 .97 .93 

Age (8 year) 8.52 .63 6.97 9.97 -.21 -.09 

Pubertal status (8 year) 1.32 .27 1.00 2.40 .73 .46 

Socioeconomic status composite 
(SES; 8 year) .00 .66 -1.20 3.08 1.12 2.01 
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analyses. Raw scores for the non-windorized variables are reported here. cGiven significant skew 
and kurtosis, WC (9 years) was windorized at 3 SDs to estimate a more normal distribution. The 
windorized variable was used for analyses. Raw scores for the non-windorized variable are 
reported here.   
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Table 4 
 
Twin Intraclass Correlations (ICC to Show MZ and DZ Twin Similarity on Predictor, Moderator, 
and Outcome Variables 
 
Sleep, Effortful Control and Weight Variables MZ Same-sex DZ Opposite-sex DZ 
Parent-reported sleep duration (8 year) .87 .81 .78 
Daytime sleepiness (8 year)a .93 .88 .62 
Objective sleep duration (8 year) .84 .47 .44 
Objective sleep efficiency (8 year) .84 .50 .43 
Objective sleep midpoint variability (8 year) .83 .83 .69 
Child effortful control (8 year) .73 .43 .42 
Child body mass index (BMI; 8 year)b .92 .59 .01 
Child waist circumference (8 year) .90 .60 .10 
Child percent body fat (8 year) .93 .53 .04 
Child body mass index (BMI; 9 year) .81 .64 .10 
Child waist circumference (9 year)c .84 .68 .28 
Child percent body fat (9 year) .85 .65 .11 

 Note. N = 608. Heritability estimates were calculated assuming full ACE models. aParent-
reported daytime sleepiness at 8 years was windorized to 3 SDs for analyses; raw scores and 
statistics are presented here. bBMI scores at 8 years were windorized to 3 SDs for analyses; raw 
scores and statistics are presented here. cWaist circumference at 9 years were windorized to 3 
SDs for analyses; raw scores and statistics are presented here.  
 
.  
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Table 5 
 
Full and Best-fitting Univariate Cholesky Decomposition Model Fit Statistics for Sleep, Weight 
Indicators, and Effortful Control 
 

Scale Model -2LL df AIC ∆ df ∆ -2LL p 
Parent-reported sleep 
duration (8 year) ACE 1112.35 565 -17.65 -- -- -- 

Parent-reported daytime 
sleepiness (8 year) ACE -72.73 575 -1222.73 -- -- -- 

Nighttime sleep duration (8 
year) ACE 889.95 455 -20.05 -- -- -- 

 AE 890.56 456 -21.44 1 .60 .44 
Sleep efficiency (8 year) ACE 2819.34 455 1909.22 -- -- -- 

 AE 2821.43 456 1909.43 1 2.21 .14 
Sleep midpoint time 
variability (8 year) ACE -41.80 455 -951.80 -- -- -- 

 CE -40.61 456 -952.61 1 1.19 .27 
Body mass index (BMI; 8 
year)a ACE 1428.69 321 786.69 -- -- -- 

 AE 1429.27 322 785.27 1 .59 .44 
Waist circumference (WC; 
8 year)a ACE 1500.83 318 864.83 -- -- -- 

 AE 1501.95 319 863.95 1 1.13 .29 
Percent body fat (8 year)a ACE 1925.66 307 1311.66 -- -- -- 
 AE 1925.67 308 1309.67 1 0.01 .93 
Effortful control composite 
(8 year) ACE 723.29 513 -302.71 -- -- -- 

 AE 723.68 514 -304.32 1 .39 .53 
Note. Bolded models denote the best fitting models for each predictor, moderator, and outcome 
variable. The -2LL is the chi-squared measure of model fit, and the AIC is the Akaike’s 
Information Criterion, which is an additional measure of model fit. ∆ df shows the change in the 
degrees of freedom, which occurs when model parameters are dropped. ∆ -2LL is the change in -
2 log likelihood values when dropping model parameters. p denotes the p-value level of 
significance for the chi-squared test. aBMI, WC, and percent body fat variance components were 
estimated for the sample by excluding opposite-sex DZ twin pairs.  
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Table 6 
 
Full and Best-fitting Univariate ACE Model Estimates for Sleep, Weight Indicators, and Effortful 
Control  

 
 
 

Scale Model A C E 
Parent-reported sleep duration 
(8 year) 
 

ACE .21 (.16-.39) .66 (.47-.83) .13 (.07-.13) 

Parent-reported daytime 
sleepiness (8 year) 
 

ACE .27 (.02-1.29) .66 (.55-.83) .07 (.05-.09) 

Nighttime sleep duration (8 
year) 

ACE .69 (.45-1.00) .12 (.00-.50) .19 (.13-.27) 

 
AE .81 (.67-.97) -- .19 (.13-.26) 

Sleep efficiency (8 year) ACE .58 (.35-.88) .20 (.03-.53) .22 (.15-.30) 

 AE .79 (.65-.95) -- .21 (.15-.28) 

Sleep midpoint time variability 
(8 year) 

ACE .10 (.00-.34) .71 (.53-.92) .19 (.13-.27) 

 CE -- .77 (.62-.94) .23 (.19-.27) 

Effortful control composite (8 
year)  ACE .67 (.41-1.00) .09 (.02-.52) .26 (.17-.33) 

 AE .76 (.61-.93) -- .24 (.17-.31) 

Body mass index (BMI; 8 
year)a ACE .92 (.57-1.11) .00 (.00-.00) .08 (.05-.10) 

 AE .93 (.76-1.11) -- .07 (.05-.10) 

Waist circumference (WC; 8 
year)a ACE .91 (.53-1.05) .00 (.00-.00) .09 (.05-.11) 

 AE .92 (.75-1.10) -- .08 (.06-.11) 

Percent body fat (8 year)a ACE .92 (.65-1.23) .00 (.00-.00) .08 (.05-.10) 

 AE .92 (.76-1.12) -- .08 (.03-.10) 

Note. A = additive genetic components, C = shared environmental component, and E = 
nonshared environmental component. Bolded models denote the best fitting model. A, C and E 
are standardized variance components or estimates according to the total variance for that 
phenotype. Variance-based confidence intervals are presented in parentheses and are based 
on standardized path estimates. aBMI, WC, and percent body fat variance components were 
estimated for the sample by excluding opposite-sex DZ twin pairs.  
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Table 7 
 
Univariate Scalar Sex-limitation Cholesky Decomposition Fit Statistics for Weight Indicators at 
Eight Years of Age 
 

BMI Models -2LL df AIC ∆ df ∆ -2LL p 

ACE – Full Scalar Model   2106.05 465 1176.05 -- -- -- 

      ACE Non-scalar Model 2109.92 466 1177.92 1 3.87 <.01 

      AE Scalar Model 2108.77 467 1174.77 2 2.72 .25 

      E Scalar Model 2273.50 470 1333.50 5 167.45 <.001 

      AE Non-scalar Model 2128.46 470 1188.46 5 22.41 <.001 

      E Non-scalar Model 2277.52 471 1335.52 6 171.47 <.001 

WC Models -2LL df AIC ∆ df ∆ -2LL p 

ACE – Full Scalar Model   2217.20 462 1293.20 -- -- -- 

      ACE Non-scalar Model 2220.29 463 1294.29 1 3.09 <.01 

      AE Scalar Model 2217.91 464 1289.91 2 .71 .07 

      E Scalar Model 2378.34 467 1444.34 5 161.15 <.001 

      AE Non-scalar Model 2234.03 467 1300.03 5 16.83 <.01 

      E Non-scalar Model 2379.80 468 1443.80 6 162.60 <.001 

Percent Body Fat Models -2LL df AIC ∆ df ∆ -2LL p 

ACE – Full Scalar Model   2797.80 441 1915.80 -- -- -- 

      ACE Non-scalar Model 2801.77 442 1917.77 1 3.98 <.01 

      AE Scalar Model 2799.83 443 1913.83 2 2.03 .36 

      E Scalar Model 2937.46 446 2045.46 5 139.67 <.001 

      AE Non-scalar Model 2814.80 446 1922.80 5 17.00 <.01 

      E Non-scalar Model 2941.57 447 2047.57 6 143.77 <.001 
Note. Bolded models denote the best fitting models for each weight indicator. Scalar models allow 
the proportion of variance accounted for by A, C, and E components to change based on a scalar 
(i.e., k) and the total variance to differ across males and females. Non-scalar sex-limitation 
models allow the proportion of variance accounted for by A, C, E, and the total variance to differ 
across males and females. The -2LL is the chi-squared measure of model fit, and the AIC is the 
Akaike’s Information Criterion, which is an additional measure of model fit. ∆ df shows the change 
in the degrees of freedom, which occurs when model parameters are dropped. ∆ -2LL is the 
change in chi-squared values when dropping model parameters. p denotes the p-value level of 
significance for the chi-squared test. 
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Table 8 
 
Full and Best-fitting Scalar Sex-limitation Univariate ACE Model Estimates for Weight Indicators 

 
 
 
 
 
 
 
 
 
 
 
 

Scale Model A C E 
Body mass index (BMI) – 
Males  
 

ACE .95 (.04-3.25) -- .05 (.02-.06) 

AE .95 (.91-.97) -- .05 (.03-.09) 

Body mass index (BMI) – 
Females  
 

ACE .58 (.01-2.74) .32 (.01-1.16) .10 (.03-.24) 

 AE .90 (.83-.94) -- .10 (.06-.17) 

Waist circumference 
(WC) - Males 

ACE .89 (.07-2.96) .06 (.02-.07) .05 (.01-.06) 

 
AE .95 (.91-.97) -- .05 (.03-.09) 

Waist circumference 
(WC) - Females 

ACE .72 (.06-2.81) .16 (.01-.31) .12 (.02-.21) 

 AE .88 (.80-.93) -- .12 (.07-.20) 

Percent body fat - Males ACE .95 (.45-1.76) -- .05 (.01-.06) 

 AE .95 (.91-.97) -- .05 (.03-.09) 

Percent body fat - 
Females ACE .62 (.32-1.54) .28 (.03-.40) .10 (.01-.12) 

 AE .90 (.83-.94) -- .10 (.06-.17) 
Note. Best fitting full and reduced ACE models for males and females were scalar models which 
allow the proportion of variance accounted for by A, C, and E components to change based on 
a scalar (i.e., k) for males and females and the total variance to differ across males and females. 
A = additive genetic components, C = shared environmental component, and E = nonshared 
environmental component. Bolded models denote the best fitting model. A, C and E are 
standardized variance components or estimates according to the total variance for that 
phenotype. Variance-based confidence intervals are presented in parentheses and are based 
on standardized path estimates.  
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Table 9 
 
Full and Best-fitting Bivariate Cholesky Decomposition Fit Statistics for Associations between 
Objective and Subjective Sleep Indicators 
 

Scale Model -2LL df AIC ∆ 
df 

∆ -
2LL p 

Objective Sleep Duration and 
Sleep Efficiency (8 year) 

ACE-
ACE 3335.25 909 1517.25 -- -- -- 

 AE-ACE 3331.78 911 1509.78 2 3.47 .99 
Objective Sleep Duration and 
Sleep Midpoint Time Variability 

ACE-
ACE 839.09 909 -978.91 -- -- -- 

(8 year) ACE-
ACE 839.09 911 -980.91 2 .00 .99 

Objective Sleep Duration and 
Parent -reported Sleep 

ACE-
ACE 1973.29 1019 -64.71 -- -- -- 

Duration (8 year) ACE-
ACE 1973.30 1020 -66.70 1 .01 .94 

Parent-reported Sleep Duration 
and Sleep Midpoint Time 

ACE-
ACE 1057.88 1019 -980.12 -- -- -- 

Variability (8 year) 
 

ACE-
ACE 1058.60 1021 -983.40 2 .72 .70 

Note. All models exclude DZ opposite-sex twins from models to account for sex differences in 
weight indicators. Sex and age were regressed out of variables prior to conducting models. 
Bolded models denote the best fitting models for each predictor and outcome variable. The -2LL 
is the chi-squared measure of model fit, and the AIC is the Akaike’s Information Criterion, which is 
an additional measure of model fit. ∆ df shows the change in the degrees of freedom, which 
occurs when model parameters are dropped. ∆ -2LL is the change in chi-squared values when 
dropping model parameters. p denotes the p-value level of significance for the chi-squared test. 
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Table 10 
 
Full and Best-fitting Bivariate Cholesky Decomposition Estimates for Correlated Objective and 
Subjective Sleep Indicators 

Scales Model A11 C11 E11    
Objective 
Sleep 
Duration 
and  

ACE- 
ACE 

.80 
(.45-.93) 

-- 
 

.20 
(.13-.27) 

   

Objective 
Sleep 
Efficiency 

 A21 
.34 

(.21-.65) 
 

C21 
-- 
 

E21 
.15 

(.08-.22) 

A22 
.14 

(.07-.25) 

C22 
.30 

(.06-.52) 

E22 
.07 

(.05-.11) 

  A11 C11 E11    

 
AE-

ACEa 
.80 

(.59-.97) 
-- 
 

.20 
(.16-.32) 

   

 

 A21 
.37 

(.28-.57) 

C21 
-- 

E21 
.14 

(.08-.21) 

A22 
.14 

(.07-.25) 

C22 
.26 

(.12-.34) 

E22 
.08  

(.05-.11) 

  
A11 C11 E11 

   
Objective 
Sleep 
Duration 
and 

ACE- 
ACE 

.72 
(.47-1.01) 

.08 
(.01-.51) 

.19 
(.13-.26)    

Sleep 
Midpoint 
Variability  

A21 
-- 
 

C21 
.26 

(.09-1.94) 

E21 
.01 

(.01-.22) 

A22 
.11 

(.01-.41) 

C22 
.44 

(.01-1.88) 

E22 
.18 

(.15-.31) 

  

ACE- 
ACEb 

A11 
.72 

(.47-1.01) 

C11 
.09 

(.01-.51) 

E11 
.19 

(.13-.26) 

   

 

 A21 
-- 
 

C21 
.26 

(.09-1.94) 

E21 
.01 

(.01-.22) 

A22 
.11 

(.01-.41) 

C22 
.44 

(.01-1.88) 

E22 
.19 

(.15-.31) 

  A11 C11 E11 
   

Objective 
Sleep 
Duration 
and 

ACE- 
ACE 

.71 
(.46-1.00) 

.09 
(.01-.50) 

.20 
(.13-.27)    

Parent-
reported 
Sleep 
Duration 

 

A21 
-- 
 

C21 
.66 

(.01-1.11) 

E21 
.01 

(.01-.02) 

A22 
.21 

(.14-.36) 

C22 
-- 
 

E22 
.12 

(.07-.13) 

 

ACE- 
ACEc 

A11 
.70 

(.46-1.00) 

C11 
.10 

(.01-.50) 

E11 
.20 

(.13-.27) 
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Note. All models exclude DZ opposite-sex twins from models to account for sex differences in 
weight indicators. Sex and age were regressed out of variables prior to conducting models. A11 = 
additive genetic components for first phenotype, C11 = shared environment component for first 
phenotype, E11 = nonshared environment component for first phenotype.  A21 = additive genetic 
component shared between first and second phenotypes, C21 = shared environment component 
shared between first and second phenotypes, E21 = nonshared environment component shared 
between first and second phenotypes. A22 = additive genetic components for second phenotype, 
C22 = shared environment component for second phenotype, E22 = nonshared environment 
component for second phenotype. Bolded models denote the best fitting models. Variance-based 
confidence intervals (CIs) are presented in parentheses and are based on standardized path 
estimates. CIs and estimates for A21, C21 and E21 in the full and reduced models correspond 
with the percent of the variance in the second phenotype accounted for by the first phenotype. 
aC11 and C21 paths were dropped it the best fitting model. bA21 path was dropped in the best 
fitting model. cA21 path was dropped it the best fitting model. dA21 and E21 paths were dropped 
in the best fitting model.  
 

 

 

A21 
-- 
 

C21 
.65 

(.01-1.11) 

E21 
.01 

(.01-.02) 

A22 
.21 

(.14-.36) 

C22 
.01 

(.05-1.12) 

E22 
.12 

(.07-.13) 

  A11 C11 E11    
Parent-
reported 
Sleep 
Duration 
and 

ACE- 
ACE 

.22 
(.16-.39) 

.61 
(.47-.83) 

.17 
(.07-.13)    

Sleep 
Midpoint 
Variability 

 
A21 
-- 
 

C21 
.03 

(.01-.16) 

E21 
-- 
 

A22 
.18 

(.01-.34) 

C22 
.59 

(.47-.86) 

E22 
.20 

(.13-.26) 

  

ACE- 
ACEd A11 

.21 
(.16-.39) 

C11 
.62 

(.47-.83) 

E11 
.17 

(.07-.13) 
 

  

 
 A21 

-- 
 

C21 
.05 

(.01-.16) 

E21 
-- 
 

A22 
.18 

(.01-.34) 

C22 
.57 

(.47-.86) 

E22 
.20 

(.13-.26) 
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Table 11 
 
Full and Best-fitting Bivariate Cholesky Decomposition Fit Statistics for Associations between 
Objective Sleep and Weight Indicators 

Note. All models exclude DZ opposite-sex twins from models to account for sex differences in 
weight indicators. Sex and age were regressed out of variables prior to conducting models. 
Bolded models denote the best fitting models for each predictor and outcome variable. The -2LL 
is the chi-squared measure of model fit, and the AIC is the Akaike’s Information Criterion, which is 
an additional measure of model fit. ∆ df shows the change in the degrees of freedom, which 
occurs when model parameters are dropped. ∆ χ2 is the change in chi-squared values when 
dropping model parameters. p denotes the p-value level of significance for the chi-squared test. 
 

Scale Model -2LL df AIC ∆ 
df 

∆ -
2LL p 

Objective Sleep Duration and 
BMI 

ACE-
ACE 1999.69 629 741.69 -- -- -- 

 (8 year) ACE-AE 2001.17 631 739.16 2 1.47 .48 
Objective Sleep Duration and 
Waist 

ACE-
ACE 2077.01 626 825.01 -- -- -- 

Circumference (8 year) AE-AE 2077.40 630 817.40 4 .39 .98 

Objective Sleep Duration and   ACE-
ACE 2492.14 615 1262.14 -- -- -- 

Percent Body Fat (8 year) ACE-AE 2492.38 618 1256.38 3 .24 .97 
Objective Sleep Efficiency and 
BMI 

ACE-
ACE 3314.73 629 2056.73 -- -- -- 

 (8 year) ACE-AE 3316.88 632 2052.88 3 2.15 .54 

Objective Sleep Efficiency and  ACE-
ACE 3389.97 626 2137.97 -- -- -- 

Waist Circumference (8 year) ACE-AE 3392.36 629 2134.36 3 2.39 .50 

Objective Sleep Efficiency and   ACE-
ACE 3809.74 615 2579.74 -- -- -- 

Percent Body Fat (8 year) ACE-AE 3810.36 618 2574.36 3 .62 .89 
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Table 12 
 
Full and Best-fitting Bivariate Cholesky Decomposition Estimates for Correlated Objective Sleep 
Duration and Weight Indicators 

Scales Model A11 C11 E11    
Objective 
Sleep 
Duration 
and BMI 

ACE- 
ACE 

.58 
(.27-.95) 

.22 
(.02-.70) 

.20 
(.13-.27) 

   

  A21 
.06 

(.03-2.16) 
 

C21 
-- 
 

E21 
-- 
 

A22 
.70 

(.54-1.20) 

C22 
.17 

(.09-.18) 

E22 
.07 

(.05-.12) 

  A11 C11 E11    

 
ACE- 
AEa 

.58 
(.27-.95) 

.22 
(.02-.70) 

.20 
(.13-.27) 

   

 

 A21 
.06 

(.03-.18) 

C21 
-- 
 

E21 
-- 
 

A22 
.87 

(.71-1.04) 

C22 
-- 
 

E22 
.07  

(.05-.10) 

  
A11 C11 E11 

   
Objective 
Sleep 
Duration 
and Waist 

ACE- 
ACE 

.80 
(.61-1.02) 

-- 
 

.20 
(.13-.29)    

Circumfere
nce 

 

A21 
.03 

(.01-.15) 

C21 
.18 

(.01-.88) 

E21 
-- 
 

A22 
.71 

(.25-1.42) 

C22 
 -- 

E22 
.08 

(.05-.11) 

  

AE- 
AEb 

A11 
.80 

(.45-.81) 

C11 
-- 
 

E11 
.20 

(.13-.28) 

   

 

 A21 
.03 

(.01-.11) 

C21 
-- 
 

E21 
-- 
 

A22 
.89 

(.71-1.06) 

C22 
-- 
 

E22 
.08 

(.06-.11) 

  A11 C11 E11 
   

Objective 
Sleep 
Duration 

ACE- 
ACE 

.58 
(.27-.95) 

.22 
(.02-.70) 

.20 
(.13-.27)    

and 
Percent 
Body Fat  

A21 
.08 

(.01-.39) 

C21 
-- 
 

E21 
-- 
 

A22 
.86 

(.49-1.10) 

C22 
.07 

(.07-.64) 

E22 
.07 

(.05-.09) 

  A11 C11 E11    

 ACE- 
AEa 

.58 
(.27-.95) 

.22 
(.02-.70) 

.20 
(.13-.27)    

 

 

A21 
.10 

(.02-.21) 

C21 
-- 
 

E21 
-- 
 

A22 
.83 

(.68-1.02) 

C22 
--  

E22 
.07 

(.05-.10) 
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Note. All models exclude DZ opposite-sex twins from models to account for sex differences in 
weight indicators. Sex and age were regressed out of variables prior to conducting models. 
Bolded models denote the best fitting models. Variance-based confidence intervals (CIs) are 
presented in parentheses and are based on standardized path estimates. A11 = additive genetic 
components for first phenotype, C11 = shared environment component for first phenotype, E11 = 
nonshared environment component for first phenotype.  A21 = additive genetic component 
shared between first and second phenotypes, C21 = shared environment component shared 
between first and second phenotypes, E21 = nonshared environment component shared between 
first and second phenotypes. A22 = additive genetic components for second phenotype, C22 = 
shared environment component for second phenotype, E22 = nonshared environment component 
for second phenotype. CIs and estimates for A21, C21 and E21 in the full and reduced models 
correspond with the percent of the variance in the second phenotype accounted for by the first 
phenotype. aC21, C22, and E21 paths were dropped it the best fitting model. bC211, C21, C22, 
and E21 paths were dropped it the best fitting model. 
 
  



	 	

	
 
108 

Table 13 

Full and Best-fitting Bivariate Cholesky Decomposition Estimates for Correlated Objective Sleep 
Efficiency and Weight Indicators 

Scales Model A11 C11 E11    
Objective 
Sleep 
Efficiency 
and BMI 

ACE- 
ACE 

.32 
(.12-.63) 

.47 
(.23-.80) 

.21 
(.14-.29) 

   

  A21 
.15 

(.11-.52) 
 

C21 
-- 
 

E21 
-- 
 

A22 
.57 

(.30-.95) 

C22 
.21 

(.03-.55) 

E22 
.07 

(.04-.10) 

  A11 C11 E11    

 
ACE- 
AEa 

.32 
(.12-.63) 

.47 
(.23-.80) 

.21 
(.14-.29) 

   

 

 A21 
.14 

(.01-.41) 

C21 
-- 
 

E21 
-- 
 

A22 
.78 

(.56-1.03) 

C22 
-- 
 

E22 
.08  

(.05-.09) 

  
A11 C11 E11 

   
Objective 
Sleep 
Efficiency     
and Waist 

ACE- 
ACE 

.36 
(.14-.68) 

.43 
(.19-.78) 

.21 
(.15-.78)    

Circumfere
nce 

 

A21 
.10 

(.01-.41) 

C21 
-- 
 

E21 
-- 
 

A22 
.70 

(.35-.93) 

C22 
.22 

(.03-.56) 

E22 
.08 

(.05-.11) 

  

ACE- 
AEa 

A11 
.36 

(.32-.82) 

C11 
.43 

(.07-.55) 

E11 
.21 

(.15-.29) 

   

 

 A21 
.09 

(.01-.16) 

C21 
-- 
 

E21 
-- 
 

A22 
.83 

(.71-1.00) 

C22 
-- 
 

E22 
.08 

(.06-.12) 

  A11 C11 E11 
   

Objective 
Sleep 
Efficiency 

ACE- 
ACE 

.33 
(.12-.63) 

.46 
(.22-.77) 

.21 
(.06-.29)    

and 
Percent 
Body Fat  

A21 
.17 

(.01-.58) 

C21 
-- 
 

E21 
-- 
 

A22 
.65 

(.34-1.05) 

C22 
.11 

(.01-.56) 

E22 
.07 

(.05-.09) 

  A11 C11 E11    

 ACE- 
AEa 

.33 
(.12-.63) 

.46 
(.22-.77) 

.21 
(.06-.29)    

 

 

A21 
.17 

(.02-.46) 

C21 
-- 
 

E21 
-- 
 

A22 
.76 

(.53-1.03) 

C22 
-- 
 

E22 
.07 

(.05-.10) 



	 	

	
 
109 

Note. All models exclude DZ opposite-sex twins from models to account for sex differences in 
weight indicators. Sex and age were regressed out of variables prior to conducting models. 
Bolded models denote the best fitting models. Variance-based confidence intervals (CIs) are 
presented in parentheses and are based on standardized path estimates. A11 = additive genetic 
components for first phenotype, C11 = shared environment component for first phenotype, E11 = 
nonshared environment component for first phenotype.  A21 = additive genetic component 
shared between first and second phenotypes, C21 = shared environment component shared 
between first and second phenotypes, E21 = nonshared environment component shared between 
first and second phenotypes. A22 = additive genetic components for second phenotype, C22 = 
shared environment component for second phenotype, E22 = nonshared environment component 
for second phenotype. CIs and estimates for A21, C21 and E21 in the full and reduced models 
correspond with the percent of the variance in the second phenotype accounted for by the first 
phenotype. a C21, C22, and E21 paths were dropped it the best fitting model.  
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Table 14  
 
Full and Best-fitting Bivariate Cholesky Decomposition Fit Statistics for Associations between 
Effortful Control, Sleep, and Weight Indicators 
 

Scale Model -2LL df AIC ∆ df ∆ -2LL p 
EC and Objective Sleep 
Duration (8 year) ACE-ACE 1606.08 967 -327.92 -- -- -- 

 AE-ACE 1606.61 970 -333.39 3 .53 .91 
EC and Objective Sleep 
Efficiency (8 year) ACE-ACE 3539.89 967 1605.89 -- -- -- 

  AE-ACE 3543.68 970 1603.68 3 3.79 .29 
EC and Parent-reported 
Sleep Duration (8 year) ACE-ACE 1840.64 1077 -313.36 -- -- -- 

 ACE-ACE 1840.64 1078 -315.36 3 2.00 .99 
EC and BMI (8 year)a ACE-ACE 1901.15 663 575.15 -- -- -- 
  ACE-AE 1901.64 666 569.64 3 .49 .92 

Note. Bolded models denote the best fitting models for each predictor and outcome variable. The 
-2LL is the chi-squared measure of model fit, and the AIC is the Akaike’s Information Criterion, 
which is an additional measure of model fit. ∆ df shows the change in the degrees of freedom, 
which occurs when model parameters are dropped. ∆ -2LL is the change in chi-squared values 
when dropping model parameters. p denotes the p-value level of significance for the chi-squared 
test. aEC and BMI model excludes DZ opposite-sex twins from models to account for sex 
differences in BMI. Sex and age were regressed out of variables prior to conducting the model. 
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Table 15 

Full and Best-fitting Bivariate Cholesky Decomposition Estimates for Correlated Effortful Control, 
Sleep and Weight Indicators 

Scales Model A11 C11 E11    
EC and 
Objective 
Sleep 
Duration  

ACE- 
ACE 

.66 
(.41-1.00) 

.08 
(.02-.52) 

.26 
(.17-.33) 

   

  A21 
.02 

(.01-.15) 
 

C21 
-- 
 

E21 
-- 
 

A22 
.70 

(.43-.97) 

C22 
.10 

(.01-.50) 

E22 
.20 

(.13-.27) 

  A11 C11 E11    

 
AE- 

ACEa 
.75 

(.61-.93) 
-- 
 

.25 
(.17-.32) 

   

 

 A21 
.03 

(.01-.08) 

C21 
-- 
 

E21 
-- 
 

A22 
.67 

(.43-.96) 

C22 
.10 

(.01-.49) 

E22 
.20 

(.13-.27) 

  
A11 C11 E11 

   
EC and 
Objective 
Sleep 
Efficiency      

ACE- 
ACE 

.75 
(.63-.96) 

-- 
 

.25 
(.17-.32)    

 

 

A21 
.01 

(.01-.16) 

C21 
-- 
 

E21 
-- 
 

A22 
.57 

(.34-.85) 

C22 
.20 

(.02-.54) 

E22 
.22 

(.15-.29) 

  

AE- 
ACEa 

A11 
.75 

(.61-.93) 

C11 
-- 
 

E11 
.25 

(.17-.32) 

   

 

 A21 
.01 

(.001-.05) 

C21 
-- 
 

E21 
-- 
 

A22 
.57 

(.34-.87) 

C22 
.20 

(.03-.53) 

E22 
.22 

(.03-.30) 

  A11 C11 E11 
   

EC and 
Parent- 
reported 
Sleep 
Duration 

ACE- 
ACE 

.16 
(.01-.81) 

.36 
(.09-.82) 

.48 
(.39-.60)    

 

 

A21 
-- 

C21 
.05 

(.01-.31) 

E21 
.01 

(.01-.02) 

A22 
.17 

(.08-.44) 

C22 
.61 

(.33-.84) 

E22 
.16 

(.13-.21) 

  A11 C11 E11    

 ACE- 
ACEa 

.16 
(.01-.81) 

.36 
(.09-.82) 

.48 
(.39-.60)    
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Note. All models exclude DZ opposite-sex twins from models to account for sex differences in 
weight indicators. Sex and age were regressed out of variables prior to conducting models. 
Bolded models denote the best fitting models. Variance-based confidence intervals (CIs) are 
presented in parentheses and are based on standardized path estimates.  A11 = additive genetic 
components for first phenotype, C11 = shared environment component for first phenotype, E11 = 
nonshared environment component for first phenotype.  A21 = additive genetic component 
shared between first and second phenotypes, C21 = shared environment component shared 
between first and second phenotypes, E21 = nonshared environment component shared between 
first and second phenotypes. A22 = additive genetic components for second phenotype, C22 = 
shared environment component for second phenotype, E22 = nonshared environment component 
for second phenotype. CIs and estimates for A21, C21 and E21 in the full and reduced models 
correspond with the percent of the variance in the second phenotype accounted for by the first 
phenotype. aC11, C21, and E21 paths were dropped it the best fitting model. bC11, C21, C22, 
and E21 paths were dropped it the best fitting model. 
  

 

 

A21 
-- 

C21 
.05 

(.01-.31) 

E21 
.01 

(.01-.02) 

A22 
.22 

(.08-.44) 

C22 
.63 

(.33-.84) 

E22 
.16 

(.13-.21) 

  A11 C11 E11    
EC and 
Objective 
BMI 

ACE- 
ACE 

.73 
(.40-1.16) 

.02 
(.02-.52) 

.25 
(.17-.33)    

 

 

A21 
.01 

(.01-.09) 

C21 
.02 

(.01-.09) 

E21 
-- 
 

A22 
.82 

(.56-1.09) 

C22 
.11 

(.05-.12) 

E22 
.07 

(.05-.09) 

  A11 C11 E11    

 AE- 
AEb 

.74 
(.40-1.16) 

-- 
 

.26 
(.17-.33)    

 

 

A21 
.02 

(.01-.12) 

C21 
-- 
 

E21 
-- 
 

A22 
.91 

(.74-1.09) 

C22 
-- 
 

E22 
.07 

(.05-.10) 



	 	

	
 
113 

Table 16 
 
Full and Best-fitting Bivariate Cholesky Decomposition Fit Statistics for Associations between 
Objective Weight Indicators 
 

Scale Model -2LL df AIC ∆ df ∆ -2LL p 
BMI and Percent Body Fat (8 
year) ACE-ACE 2794.70 627 1540.70 -- -- -- 
 AE-AE 2796.23 630 1536.23 3 1.54 .67 
BMI and Waist 
Circumference ACE-ACE 2531.08 638 1255.08 -- -- -- 

(8 year) AE-AE 2533.30 641 1251.30 3 2.23 .53 
Waist Circumference and 
Percent Body Fat (8 year) ACE-ACE 3090.55 624 1842.55 -- -- -- 
 ACE-AE 3090.58 626 1838.58 2 .04 .98 

Note. All models exclude DZ opposite-sex twins from models to account for sex differences in 
weight indicators. Sex and age were regressed out of variables prior to conducting models. 
Bolded models denote the best fitting models for each predictor and outcome variable. The -2LL 
is the chi-squared measure of model fit, and the AIC is the Akaike’s Information Criterion, which is 
an additional measure of model fit. ∆ df shows the change in the degrees of freedom, which 
occurs when model parameters are dropped. ∆ -2LL is the change in chi-squared values when 
dropping model parameters. p denotes the p-value level of significance for the chi-squared test. 
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Table 17 

Full and Best-fitting Bivariate Cholesky Decomposition Estimates for Correlated Objective Weight 
Indicators 

Note. All models exclude DZ opposite-sex twins from models to account for sex differences in 
weight indicators. Sex and age were regressed out of variables prior to conducting models. 

Scales Model A11 C11 E11    

Objective BMI 
and Percent 

ACE- 
ACE 

.80 
(.57-1.07) 

.13 
(.01-.50) 

.07 
(.05-.09) 

   

Body Fat  A21 
.76 

(.54-1.01) 
 

C21 
.05 

(.03-.40) 

E21 
.05 

(.03-.07) 

A22 
.12 

(.08-.16) 

C22 
-- 
 

E22 
.02 

(.01-.03) 

  A11 C11 E11    

 
AE- 
AEa 

.93 
(.77-1.12) 

-- 
 

.07 
(.05-.09) 

   

 

 A21 
.80 

(.63-.93) 

C21 
-- 
 

E21 
.05 

(.03-.07) 

A22 
.13 

(.10-.16) 

C22 
-- 
 

E22 
.02 

(.01-.03) 

  
A11 C11 E11 

   
Objective BMI 
and Waist 

ACE- 
ACE 

.93 
(.76-1.10) 

-- 
 

.07 
(.05-.09)    

Circumference 

 

A21 
.69 

(.47-.95) 

C21 
.08 

(.02-.48) 

E21 
.04 

(.02-.07) 

A22 
.15 

(.12-.23) 

C22 
-- 
 

E22 
.04 

(.03-.06) 

  

AE- 
AEb 

A11 
.92 

(.76-1.10) 

C11 
-- 
 

E11 
.08 

(.05-.19) 

   

 

 A21 
.70 

(.55-.88) 

C21 
-- 
 

E21 
.05 

(.02-.07) 

A22 
.21 

(.17-.27) 

C22 
-- 
 

E22 
.04 

(.03-.05) 

  A11 C11 E11 
   

Objective 
Waist 
Circumference 

ACE- 
ACEc 

.76 
(.53-1.05) 

.16 
(.01-.55) 

.08 
(.05-.11)    

and Percent 
Body Fat 

 

A21 
.78 

(.51-1.10) 

C21 
-- 
 

E21 
.02 

(.01-.05) 

A22 
.13 

(.06-.23) 

C22 
.02 

(.00-.00) 

E22 
.05 

(.03-.06) 

  A11 C11 E11    

 ACE- 
AEc 

.76 
(.60-.94) 

.16 
(.09-.25) 

.08 
(.05-.11)    

 

 

A21 
.79 

(.62-.99) 

C21 
-- 
 

E21 
.03 

(.01-.05) 

A22 
.14 

(.07-.23) 

C22 
-- 
 

E22 
.04 

(.03-.06) 



	 	

	
 
115 

Bolded models denote the best fitting models. Variance-based confidence intervals (CIs) are 
presented in parentheses and are based on standardized path estimates. A11 = additive genetic 
components for first phenotype, C11 = shared environment component for first phenotype, E11 = 
nonshared environment component for first phenotype.  A21 = additive genetic component 
shared between first and second phenotypes, C21 = shared environment component shared 
between first and second phenotypes, E21 = nonshared environment component shared between 
first and second phenotypes. A22 = additive genetic components for second phenotype, C22 = 
shared environment component for second phenotype, E22 = nonshared environment component 
for second phenotype. CIs and estimates for A21, C21 and E21 in the full and reduced models 
correspond with the percent of the variance in the second phenotype accounted for by the first 
phenotype. aC11, C21, and C22 paths were dropped it the best fitting model. bC11, C21, and C22 
paths were dropped it the best fitting model. cC21 and C22 paths were dropped it the best fitting 
model. 
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APPENDIX B 
 

FIGURES 
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Figure 1. Proposed Conceptual Model. The proposed conceptual model highlights 
biopsychosocial and contextual influences on associations between child sleep problems and 
weight across child development, accounting for direct and indirect influences of lifestyle and 
demographic factors on links between child sleep and weight. Of interest to the current 
dissertation, Path 1 delineates genetic influences, Path 2 demonstrates environmental and 
contextual influences, Path 3 outlines possible influences of effortful control, Path(s) 4 describe 
the influence of various demographic, lifestyle and health factors, and Path 5 shows change 
within and across individuals over time in associations between child sleep problems and weight 
indicators. 
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Figure 2. Example Univariate ACE Model. The model demonstrates genetic and environmental 
contributions on sleep duration for cotwins (Twin A on left, Twin B on right). A represents additive 
genetic contributions (path between MZ twins constrained to 1.0, path between DZ twins 
constrained to .5), C represents shared or common environmental contributions (path constrained 
to 1.0 for MZ and DZ twins), and E represents nonshared or unique environmental influences on 
a particular trait or behavior (sleep duration in this example).  
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Figure 3. Example Multivariate Cholesky Decomposition Model. The model demonstrates genetic 
and environmental contributions on sleep duration for a single twin. A1, A2, and A3 represent 
possible shared additive genetic contributions between traits (after accounting for additive genetic 
influence in other traits), C1, C2, and C3 represent possible shared environmental contributions 
among traits (after accounting for common environmental influences in other traits), and E1, E2, 
and E3 represent possible unique environmental influences shared between traits or behaviors 
(after accounting for unique environmental influences in other traits). 
  



	 	

	
 
120 

 
 
Figure 4. Example Independent Pathway Model. The model demonstrates genetic and 
environmental contributions on sleep duration for a single twin. As delineates shared additive 
genetic influences that may account for associations among traits, whereas A2 and A3 represent 
unique additive genetic contributions for specific traits. Cs delineates shared environmental 
factors common among traits or behaviors, whereas C2 and C3 represent unique shared 
environmental contributions to specific traits. Es delineates nonshared environmental 
contributions (including measurement error) that may account for associations among traits, 
whereas E2 and E3 represent unique nonshared environmental contributions for specific traits. 
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Figure 5. Example Liability Threshold Model. The model demonstrates genetic and environmental 
contributions on weight status for cotwins. A represents additive genetic contributions (path 
between MZ twins constrained to 1.0, path between DZ twins constrained to .5), C represents 
shared or common environmental contributions (path constrained to 1.0 for MZ and DZ twins), 
and E represents nonshared or unique environmental influences on a particular trait or behavior 
(sleep duration in this example). L represents a latent variable represents the liability or 
susceptibility of being classified as overweight or obese (i.e., usually represents being affected or 
having a disorder or diagnosis).   
  

	

MZ= 1.0/DZ = 0.5 

MZ/DZ = 1.0 

Weight Status 
Twin A 

Weight Status 
Twin B 
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Figure 6. Simple Slopes Plot for Interaction Between Parent-reported Sleep Duration and EC at 
Eight Years Predicting BMI at Nine Years. The plot shows simple slope associations between 
parent-reported sleep duration at eight years and BMI scores at high and low levels of child EC. 
No simple slopes were significant (all p > .05.). 
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Figure 7. Simple Slopes plot for Interaction Between Objective Sleep Duration and EC at Eight 
Years Predicting BMI at Nine Years. The plot shows simple slope associations between sleep 
duration and BMI scores were significant for children with low EC (b = -.29, p < .05). Region of 
significance analyses indicate that simple slopes were significant for about 16.3% of children with 
low EC. Asterisk indicates significant simple slope at p < .05.  
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Figure 8. Simple Slopes Plot for Interaction Between Objective Sleep Midpoint Variability and EC 
at Eight Years Predicting Percent Body Fat at Nine Years. The plot shows simple slope 
associations between sleep midpoint variability and percent body fat were significant for children 
with low EC (b = 2.26, p = .05). Region of significance analyses indicate that simple slopes were 
significant for about 19% of children with low EC. Asterisk indicates significant simple slope at p = 
.05. 
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