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ABSTRACT

Mathematical models are important tools for addressing problems that exceed

experimental capabilities. In this work, I present ordinary and partial differential

equation (ODE, PDE) models for two problems: Vicodin abuse and impact crater-

ing.

The prescription opioid Vicodin is the nation’s most widely prescribed pain re-

liever. The majority of Vicodin abusers are first introduced via prescription, distin-

guishing it from other drugs in which the most common path to abuse begins with

experimentation. I develop and analyze two mathematical models of Vicodin use and

abuse, considering only those patients with an initial Vicodin prescription. Through

adjoint sensitivity analysis, I show that focusing efforts on prevention rather than

treatment has greater success at reducing the total population of abusers. I prove

that solutions to each model exist, are unique, and are non-negative. I also derive

conditions for which these solutions are asymptotically stable.

Verification and Validation (V&V) are necessary processes to ensure accuracy

of computational methods. Simulations are essential for addressing impact cratering

problems, because these problems often exceed experimental capabilities. I show that

the Free Lagrange (FLAG) hydrocode, developed and maintained by Los Alamos Na-

tional Laboratory, can be used for impact cratering simulations by verifying FLAG

against two analytical models of aluminum-on-aluminum impacts at different impact

velocities and validating FLAG against a glass-into-water laboratory impact exper-

iment. My verification results show good agreement with the theoretical maximum

pressures, and my mesh resolution study shows that FLAG converges at resolutions

low enough to reduce the required computation time from about 28 hours to about

25 minutes.

Asteroid 16 Psyche is the largest M-type (metallic) asteroid in the Main Asteroid
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Belt. Radar albedo data indicate Psyche’s surface is rich in metallic content, but

estimates for Psyche’s composition vary widely. Psyche has two large impact struc-

tures in its Southern hemisphere, with estimated diameters from 50 km to 70 km and

estimated depths up to 6.4 km. I use the FLAG hydrocode to model the formation of

the largest of these impact structures. My results indicate an oblique angle of impact

rather than a vertical impact. These results also support previous claims that Psyche

is metallic and porous.
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Chapter 1

INTRODUCTION

Mathematical models are an essential tool to understanding problems that exceed

experimental capabilities. Early models provided a general understanding but lacked

the complexity needed to capture all of the relevant dynamics. As the field of applied

mathematics grew, mathematical modeling techniques became more complex. Today,

mathematical models are capable of describing phenomena on much larger spatial and

temporal scales.

With the rise of supercomputing, complex problems can be solved numerically

at much less computational expense. Supercomputers allow modeling of individual

particles in fluid flows, shock wave propagation through a variety of materials, and

simulations of subatomic particles. Supercomputers can simulate these problems in

three dimensions, giving a much more accurate representation of these phenomena.

From the mid-1960 to the mid-1970s, computers were first able to perform one mil-

lion (1× 106) floating point operations per second (FLOPS). In the late 1990s, that

number was increased by six orders of magnitude to one trillion (1× 1012) FLOPS.

Today, supercomputers like Trinity at Los Alamos National Laboratory are capable of

speeds on the order of petaflops (1× 1015), one quadrillion floating point operations

per second [81].

This thesis consists of two primary subjects, ordinary differential equation (ODE)

modeling of Vicodin abuse in the United States and computational partial differential

equation (PDE) modeling of impact crater formation. Because of the difference in

subject matter, this introduction serves as an introduction to the thesis itself rather

than an introduction to each topic in this work. Subject-specific introductions precede
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each part to assist the reader in understanding the content that lies ahead.

1.1 Mathematical Biology

Problems in mathematical biology often exceed experimental capabilities because

of ethical constraints. To understand the spread of human immunodeficiency virus

(HIV), for example, it is unacceptable to infect select individuals with HIV and then

monitor how the infection spreads. Furthermore, to model in vivo processes, labora-

tory experiments would be unable to replicate the correct environment. For problems

like these, mathematical modeling has proven to provide valuable contributions to

the field without experimentation.

HIV models have been used to describe the infection process at the cellular level

by modeling both viral infection and clearance [108]. For some infectious diseases,

such as hepatitis and HIV, transmission can occur through contact with an infected

individual or from mother to offspring through the placenta [129]. For these diseases,

modeling can provide insight into when such diseases give rise to epidemics [129].

For physiology and biophysics applications, models have been used to describe

biological processes in vivo. Modeling of the giant muscular protein titin has shown

that its behavior in the body often mimics that of a spring [54]. Modeling of the squid

giant axon highlighted the role of sodium and potassium ions in the membrane [63].

Coupled oscillator models have been used in neuroscience applications to describe ax-

onal delay [40]. Mathematical models of photoreceptor interactions have contributed

to the understanding of the degenerative eye condition retinitis pigmentosa [31].

In addition to biological and biophysical applications, mathematical modeling has

been used to describe social and behavioral phenomena. Models describing substance

use and abuse have provided insight into these problems. Models have been used

to describe smoking tobacco [76], drinking alcohol [101, 118], and using heroin [145].
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Mathematical models have also been used to describe psychological conditions such

as bulimia [142] and bipolar disorder [41].

Mathematical models often have the benefit of providing results relatively imme-

diately, whereas awaiting experimental results and data can take from days to years.

Forecasting and nowcasting techniques coupled with computing capability have led

to forecasting models that can predict future epidemics with reasonable accuracy by

supplementing surveillance data with Internet data streams [13, 51, 60, 112, 116].

Providing meaningful predictions is one advantage of using mathematical models.

1.2 Planetary Science

Problems in planetary science often exceed experimental capabilities because of

spatial and/or temporal scales. Understanding the formation of the universe, for ex-

ample, would be both too large and would take billions of years. Models, however,

can provide insight into key processes. Many terrestrial objects in our solar system

contain silicate mantles, yet Mercury consists mostly of iron core material. Modeling

simulations have been able to demonstrate how Mercury was likely stripped of its

silicate material as a result of collisions [9]. For planetary systems with planets of

mass similar to Jupiter, modeling has shown how multiple planets in such a system

can develop vastly different orbits [89].

Models have also been used to predict the current state of bodies in the solar sys-

tem, such as the composition of Mars [80]. Modeling lightcurves from asteroids with

large light variations provided insight into relations for scattering properties [135].

Computer simulations were able to provide predictions for the Lunar Crater Obser-

vation and Sensing Satellite (LCROSS) mission by modeling both crater formation

and the resulting vapor plume [75]. Modeling the current status of solid bodies in the

solar system can provide meaningful predictions for expectations related to upcoming
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missions to these bodies.

1.3 Thesis Summary

Chapter 2 provides a more detailed introduction to the mathematical biology

modeling in this work. This chapter describes the familiar SIR (susceptible-infected-

recovered) compartmental ODE model that is widely accepted as the inaugural pop-

ulation model for infectious disease spread. This chapter provides an overview of how

these models are used to understand epidemiology, providing a foundation for the

following two chapters.

Chapter 3 introduces the U.S. drug abuse problem concerning the prescription opi-

oid Vicodin. In this chapter, I develop and analyze two mathematical models using

an extension of the SIR approach described in Chapter 2. Using sensitivity analysis,

I examine parameters associated with treatment and prevention to determine those

parameters that are the most effective in mitigating the Vicodin abuse problem. To

my knowledge, the models in this chapter are the first to address the prescription

drug epidemic using population-level ODEs, as well as the first models to address

Vicodin specifically.

Chapter 4 provides a detailed mathematical analysis of nonlinear SIAD model

presented in Chapter 3. In this chapter, I focus on demonstrating the biological rele-

vance of the model by proving that solutions to the model are non-negative and finite

for all finite positive time. I also prove that the model has a solution that exists and is

unique. Finally, I examine the positive steady state, including determining conditions

under which this steady state exists.

Chapter 5 provides a more detailed introduction to the impact cratering modeling

in this work. For these models, I rely on hydrodynamics code (hydrocode) modeling

to capture the important physics and solid mechanics in impact crater formation.
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This chapter introduces the components of hydrocode modeling, providing a founda-

tion for the following two chapters.

Chapter 6 contains the verification and validation study I use to demonstrate that

the FLAG hydrocode is capable of impact cratering simulations. In this chapter, I

consider two verification problems and one validation problem deemed to have accept-

able benchmarks by the planetary science community. In addition to following the

benchmark problem setup, I also use constitutive models in the verification problem

to demonstrate FLAG’s capability to model solid materials. I compare my results

to theoretical results in the verification problem and experiment results in the vali-

dation problem. I also include 3D results of the verification problem. The work in

this chapter demonstrates that FLAG is an acceptable hydrocode for modeling crater

formation.

Chapter 7 explores models of Asteroid 16 Psyche’s largest impact crater. In 2D,

I simulate the impact and resulting crater using a variety of materials for both Psy-

che and impactor. I compare these results to the estimated dimensions of the actual

crater. I then choose one material, the nickel alloy Monel, as both Psyche and im-

pactor in a porosity study. In this study, I vary the porosity of Psyche from 30%

to 80% to determine its effect on the crater size and dimensions. In 3D, I vary the

impact angle and porosity to simulate the formation of the crater.

Chapter 8 summarizes my conclusions from each chapter. In this chapter, I also

discuss ongoing work and possible future work.
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Chapter 2

INTRODUCTION TO SIR MODELING WITH ORDINARY DIFFERENTIAL

EQUATIONS

Mathematical models have long been used to describe natural phenomena, and or-

dinary differential equation models are particularly poignant for addressing research

questions about quantities that change over time. As the field of applied mathemat-

ics grew, mathematical modeling techniques became more complex. Mathematical

models are particularly useful when experiments are not feasible. Many factors affect

the ability of a problem to be explored through experimentation, among them ethical

concerns, legal limitations, and spatial and/or temporal scale.

2.1 Classic SIR Model

The classic SIR model, sometimes referred to as the Kermack-McKendrick model,

describes the flow of individuals through stages of susceptibility, infection, and recov-

ery [73]. In the familiar notation associated with this model, S represents the popula-

tion of individuals susceptible to a disease, I represents the population of individuals

infected with the disease, and R represents the population of individuals who have

recovered from the disease. The positive parameters β and γ represent the infection

and removal rates, respectively [73]. Thus, the standard model is [73, 102]:

dS

dt
= −βSI

dI

dt
= βSI − γI

dR

dt
= γI.
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The model transmission is considered mass action if S, I, and R are population den-

sities and pseudo mass action if these variables represent scalar quantities [52]. As

evident in the model equations, this model assumes a constant population, i.e.,

dS

dt
+
dI

dt
+
dR

dt
= 0,

and the total population N can be defined as

S + I +R = N.

Initial populations are often denoted with the subscript 0 and are assumed to be

non-negative to preserve the biological relevance of the model [102].

2.2 SEIR Models

Since introduced in 1927, the SIR model has been adapted to describe a variety

of epidemics. A common modification is the inclusion of a compartment of exposed

individuals E, which accounts for the latency period present in some infections [102].

In the common notation, the parameter σ represents the rate at which exposed indi-

viduals become infected. In the familiar notation, the SEIR model is [8]:

dS

dt
= −βSI

dE

dt
= βSI − σE

dI

dt
= σE − γI

dR

dt
= γI.

As in the common SIR model, the SEIR has a constant population, or, equivalently,

dS

dt
+
dE

dt
+
dI

dt
+
dR

dt
= 0,

and the total population N can be defined as

S + E + I +R = N.
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In these types of compartmental models, the average time an individual spends

in each compartment can be expressed as the reciprocal of the associated parameter.

For example, in the SIR and SEIR models, the average infective period for an in-

dividual is 1
γ

[59]. This property of these types of models provides a mechanism for

defining parameter values.

SIR-type models do not require constant populations. Endemic models that in-

corporate both births and deaths often have varying total populations. Incorporating

birth and death at the same rate µ, and using the same notation as in the previous

modeling examples, we have the following SEIR model with a non-constant total

population [78]:

dS

dt
= −βSI + µ− µS

dE

dt
= βSI − (σ + µ)E

dI

dt
= σE − (γ + µ) I

dR

dt
= γI − µR.

This type of model allows individuals to exit the population at various stages in the

epidemic process. For this model, the total population N can be defined as

S + E + I +R = N (2.1)

as before, but the change in N is no longer 0:

dS

dt
+
dE

dt
+
dI

dt
+
dR

dt
= µ(1− S − E − I −R) = µ(1−N) 6= 0. (2.2)

2.3 SIV D Model

Further modifications of the standard SIR model have included additional com-

partments for recovered individuals. Getz and Lloyd-Smith developed the SIV D
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model. In this model, recovery is divided into two compartments: V ;D. The V com-

partment contains recovered individuals who have recovered and are immune, which

Getz and Lloyd-Smith refer to as “naturally vaccinated” individuals, while the D

compartment contains the deceased population [52]. In the common notation, the

SIV D model is

dS

dt
= −βSI + ρV

dI

dt
= βSI − (γV + γD) I

dV

dt
= γV I − ρV

dD

dt
= γDI,

(2.3)

where γV and γD are the removal rates for the V and D compartments, respectively,

and ρ is the rate at which those in V lose their immunity and return to S [52]. The

SIV D model is noteworthy in that ρ can also be interpreted as a relapse rate. In

this model, as in the standard SIR and SEIR models, the total population N is

S + I + V +D = N,

and this population is constant, i.e.,

dS

dt
+
dI

dt
+
dV

dt
+
dD

dt
= 0.

2.4 SIR-type Model for Illicit Drug Use

SIR modeling techniques have been expanded further to include substance abuse.

White and Comiskey developed a three-compartment heroin use model [145]. In their

model, the infected compartment indicates users not in treatment, and the recovered
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compartment indicates users in treatment. In the common notation, the model is

dS

dt
= Λ− βSI − µS

dI

dt
= βSI − γI + ρIR− (µ+ δI) I

dR

dt
= γI − ρIR− (µ+ δR)R,

where δI and δR are removal rates that include drug-related deaths and recovery [145].

As usual, the total population N is

S + I +R = N.

As in the modified SEIR model, this model has a non-constant population [145]:

dS

dt
+
dI

dt
+
dR

dt
= Λ− µ (S + I +R)− δII − δRR = Λ− µN − δII − δRR 6= 0.

2.5 Basic Reproduction Number R0

In SIR-type models, an often analyzed value is the basic reproduction number,

the number of infections arising from a single infected individual [21]. This value,

denoted R0, indicates the number of secondary infections expected in a completely

susceptible population. The value of R0 is crucial to mathematical epidemiology

because it is the threshold at which an epidemic occurs. When R0 < 1, the disease

is contained. When R0 > 1, the disease becomes endemic [21].

2.6 SIR-type Modeling for Vicodin Abuse in the United States

In the following two chapters, I develop and analyze two SIR-type models for

Vicodin abuse in the United States. These models are, to my knowledge, the first

deterministic mathematical models to describe prescription drug abuse and the pre-

scription opioid epidemic as well as the drug Vicodin.

In Chapter 3, I present one linear model and one nonlinear model, and I perform
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adjoint sensitivity analysis on each of these models to determine whether treatment

or prevention plays a larger role in reducing the number of Vicodin abusers. I use

computer simulations to demonstrate how the populations associated with Vicodin

use, abuse, and treatment change over time, eventually reaching steady states.

In Chapter 4, I show these models are biologically relevant by proving the model

populations are positive and bounded for all positive time. I show that each of these

models has a unique solution. Finally, I examine the steady states and basic repro-

duction R0 to better understand the Vicodin abuse problem.
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Chapter 3

MODELING VICODIN ABUSE

3.1 Introduction

Vicodin is the most widely prescribed pain reliever in the United States [93]. Vi-

codin contains acetaminophen, the active ingredient in Tylenol, and hydrocodone, an

opioid analgesic [91]. The United States comprises 4% of the world’s population, yet

it uses 99% of the world’s hydrocodone supply [86]. An increase in Vicodin prescrip-

tions over the past two decades has resulted in a corresponding increase in Vicodin

abuse [91]. From 1993 to 2003, Vicodin abuse rates increased from 7% to 16% [37].

In 1999, approximately nine million Americans admitted to using prescription drugs

for non-medical reasons [44]. An estimated two million people are currently abusing

Vicodin [43].

The most common path to Vicodin abuse begins with a legal prescription and not

illegal experimentation, which distinguishes Vicodin from other drugs. Most abusers

obtain Vicodin from their own prescription or that of a friend or relative [97]. Vicodin

abuse can have a number of serious consequences, among them liver failure, slowed

heart rate, difficulty breathing, jaundice, seizure, and death [113]. Many prescribers

report being unaware of the drug’s potential for chemical and physical dependence,

and many patients are not informed of the risk of dependency when they begin taking

Vicodin [38, 106].

Educating medical professionals on the risks associated with Vicodin has proven

successful in limiting the number of prescriptions [106]. However, 40% of medical

professionals indicated they had received no training on these risks. Preventative
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measures focused on increasing awareness in physicians, pharmacists, and the general

public of the potential for Vicodin abuse have been largely neglected, although this

information can enhance the ability to recognize abuse and thus aid in preventing its

spread [85, 86]. A study of pharmacists in the United States and Canada indicated

that nearly 90% of pharmacists reported that they had refused to fill a prescription

when they had concerns of drug abuse, and more than 75% had attempted to contact

the prescribing physician when they had such concerns [12]. A program implemented

in California to educate prescribers on the risks associated with Vicodin led to a 95%

decrease in the number of Vicodin prescriptions at the end of the two-year study

[106].

Until late 2014, Vicodin was classified as a Schedule III narcotic [42, 91]. Since

then, the United States Drug Enforcement Administration (DEA) has classified Vi-

codin as a Schedule II drug, a class more heavily regulated [140]. However, the

available data since this change in scheduling are not yet sufficient for modeling. I

plan to revisit the parameter values after sufficient time since the new drug scheduling

has elapsed.

In the following sections, I develop two deterministic mathematical models for the

population introduced to Vicodin with a prescription. In each model, I study the

dynamics of the population as users transition between compartments representing

acute medical use, chronic use, abuse, and treatment. We also allow for re-entry

into the abuse compartment through relapse while in treatment. Relapse is an es-

sential component in substance abuse, and substance abuse models for alcohol and

heroin have included a relapse component as well [77, 118, 145]. We perform adjoint

sensitivity analysis on each model to determine whether parameters associated with

prevention or treatment have a greater effect on the population of Vicodin abusers.

Through these models, I gain insight into how to address the Vicodin abuse problem
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in the United States.

In Section 3.2, I outline the methods I used for this work. I explain the compart-

mental modeling approach used to develop both models. I also outline the purposes

of sensitivity analysis and its common uses. I introduce the adjoint method of sensi-

tivity analysis, which I use to further study both models.

Section 3.3 examines a linear model, the Compartmental Vicodin Transition (CVT)

Model, in which the monthly rate of new prescriptions and the relapse rate are con-

stant parameters. I describe the model with a system of ordinary differential equa-

tions. I identify ranges for each of the model’s parameters, which I derive in Appendix

B. Using the adjoint method, I derive the sensitivity equations for the model and plot

the sensitivity index of each parameter. Finally, I simulate the model and plot the

results.

Section 3.4 examines the Social Interaction with Abuse-Dependent Prescription

Rate (SIAD) Model, a nonlinear model in which the relapse term is affected by social

interaction between abusers and those in treatment. Additionally, I scale the monthly

rate of new prescriptions by a term containing a new awareness/intervention param-

eter. I believe this parameter can play a role in accounting for the new scheduling

of Vicodin. I identify a range for the new parameter and a modified range for the

relapse parameter, which I derive in Appendix B. I again employ the adjoint method

to derive the sensitivity equations, and I plot the sensitivity index for each parameter.

I then simulate the model and plot the results.

I discuss my results and highlight possible future work in Section 3.5. I include

details derivations of estimated parameter ranges in Appendix B.
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3.2 Methods

I used standard compartmental modeling techniques for the population of Vicodin

users introduced through prescription. I then employed adjoint sensitivity analysis

of the positive steady state to determine which parameter values have the greatest

influence on the size of the population of Vicodin abusers.

3.2.1 SIR Modeling Approach

I used a traditional SIR modeling approach with parameter values equal to the

transition rates between compartments [59]. The model considers only those individ-

uals with an initial Vicodin prescription; that is, I allow only one entry point into

the population. I divided the population of individuals with Vicodin prescriptions

into five compartments: acute (≤ 3 months) medical use M ; chronic (> 3 months)

medical use C1 and C2; abuse (use without prescription or inconsistent with prescrip-

tion instructions) A; treatment T . I used two compartments for chronic use for a

more realistic representation of the prolonged nature of chronic treatment. The ad-

ditional compartment prevents chronic users from leaving the compartment almost

immediately after entering it. Individuals can leave compartments M , C1, C2, and A

by transitioning to the next compartment. Individuals can exit the T compartment

either by successful treatment, in which case they exit the population entirely, or by

relapse, in which case they re-enter the A compartment. Individuals can exit the

population by ceasing Vicodin use from every compartment except for A. The only

way to exit the A compartment is by entering the T compartment.

I did not include the possibility of exiting the A compartment through death

from overdose for several reasons. Although there are data sources for drug overdose

death, many of these sources do not distinguish between prescription opioid overdoses
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and other types of drug overdoses. Furthermore, of those that do make such a dis-

tinction, the number of overdoses attributed solely to Vicodin, as opposed to other

prescription opioids or a combination of Vicodin and another substance, remains un-

reported. Additionally, while some data sources distinguish between intentional and

unintentional overdose, the majority do not. Thus, I excluded death from overdose

[11, 33, 34, 103, 107].

I described the population of Vicodin users with systems of ordinary differential

equations. I measured the population of Vicodin users in number of people. The time

steps were in increments of one month. For these models, for data reported in days,

I considered 30 days to be equal to one month.

3.2.2 Sensitivity Analysis

Sensitivity analysis is one of several methods used in quantifying uncertainties in

a given parameter space [88]. It involves examining partial derivatives of the system

with respect to each parameter to obtain a sensitivity index, a quantity used to de-

termine a parameter’s effect on the system. Mathematically, sensitivities are partial

derivatives of a model variable with respect to a model parameter [32]. The sensitivity

index of a variable with respect to a parameter quantifies how small changes in the

parameter value result in changes in the variable. Sensitivity analysis can be done

either globally or locally. Global sensitivity analysis can identify all uncertainties in

a multi-dimensional parameter space [88]. Common techniques include the partial

rank correlation coefficient (PRCC) and extended Fourier amplitude sensitivity test

(eFAST) methods [88]. Although global sensitivity analysis can offer many insights

into a model and its uncertainty, it is often computationally expensive.

Local sensitivity analysis focuses on small perturbations in parameter values and

how those changes propagate through the system and affect the final output [55]. Lo-
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cal sensitivity analysis is less computationally expensive than its global counterpart,

with the benefit of having the potential to provide answers to numerous sensitivity

questions in a short period of time [55]. Local sensitivity analysis can be performed

through two methods: forward sensitivity analysis and adjoint sensitivity analysis.

Forward sensitivity analysis is common with systems involving many variables and

relatively few parameters, but this method becomes less feasible with many parame-

ters [32]. Consider a vector of variables x ∈ Rn and vector of parameters p ∈ Rm. To

find the sensitivity index S of a variable xi with respect to a parameter pj, calculate

S = ∂xi
∂pj

[32].

3.2.2.1 Adjoint Method

Consider vectors x ∈ Rn and p ∈ Rm and an objective function f(x, p) : Rn×Rm →

R, and ODE system of a vector x of n variables and a vector p of m parameters [20].

Further consider a constraint function g(x, p) : Rn × Rm → Rn satisfying g(x, p) = 0

with ∂g
∂x

= gx nonsingular. The general approach to the adjoint method involves

calculating sensitivities of f with respect to p
(
∂fxi
∂pj

)
by minimizing f subject to the

constraint g [20, 32]. For ease of explanation, let x be a function of p so that f(x, p)

becomes f(x(p)). Note that ∇f = fxxp and ∇g = 0 [20]. Expanding,

∇g = gxxp + gp = 0,

which leads to

xp = −g−1
x gp

when taking advantage of the nonsingular nature of gx [20]. Substituting into the

definition of ∇f [20]:

∇f = −fxg−1
x gp.
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This results in the adjoint equation

gHx λ = −fHx (3.1)

where H denotes the (Hermitian) transpose and λ is a vector of adjoint variables [20].

Cao et al. present an integral derivation using the λ to represent the Lagrange

multiplier vector in [32]. The augmented objective function is [32]:

f −
∫ T

0

λHgdt.

Because g = 0, the sensitivity of f with respect to p becomes [32]:∫ T

0

(
ḟp + ḟxxp

)
dt−

∫ T

0

λH (gp + gxxp + gẋẋp) dt,

where

f(x, p) =

∫ T

0

ḟ(x, t, p)dt.

Bradley presents an alternative derivation that also uses the Lagrange multiplier

vector in [20]. Define L := f + λHg = f because g = 0 [20]. Then

∇f = ∇L = fx∇x+∇λH g︸︷︷︸
=0

+λH (gx∇x+ gp)

= fxxp + λH (gxxp + gp) ,

which becomes
(
fx + λHgx

)
xp+λHgp [20]. Note that when Equation (3.1) holds, the

equation for ∇f becomes

∇f = λHgp.

Thus, the adjoint method eliminates the need to calculate xp and reduces the num-

ber of computations required to compute sensitivity indices, particularly when the p

vector of parameters is large compared to the x vector of variables [20, 32].

To further describe the process of computing the sensitivity indices, consider an

ODE of the form

ẋ = h̄(x, p, t),
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so that the implicit form is

h (x, ẋ, p, t) = ẋ− h̄(x, p, t)

with initial conditions of the form g(x(0), p) = 0 [20].

The adjoint sensitivity algorithm involves a three-step process for calculating the

sensitivity of a variable x with respect to a parameter p. The first step of the algorithm

is to integrate the implicit ODE h using initial conditions g [20]. The second step uses

initial conditions λ(T ) = 0 to cancel terms from the integrand of L and eliminate the

need to calculate xp explicitly [20]. The third step involves calculating the sensitivity

with a reduced integrand as a result of previous substitutions [20]. The three-step

algorithm in [20] is in Algorithm 1.

Algorithm 1 Adjoint Sensitivity Algorithm fot Sensitivity of Model Variable x with

Respect to Parameter p [20]

1. Integrate h = 0 for x from 0 to T using initial conditions g

2. Integrate fx+λH (hx −∇hẋ)− λ̇Hhẋ= 0 for λ from T to 0 with initial conditions

λ(T ) = 0

3. fp =
∫ T

0

(
fp + λHhp

)
dt+ λHhẋ

∣∣
0
g−1
x(0)gp

3.3 Compartmental Vicodin Transition Model

I developed and analyzed the Compartmental Vicodin Transition (CVT) model, a

linear model of the Vicodin abuse problem. I performed adjoint sensitivity analysis on

the model to determine which parameters had the greatest influence on the population

of Vicodin abusers. I ran simulations on the model using data-driven parameter

values. Table 3.1 lists the ranges for these parameter values. I derive these ranges in

Appendix B.
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3.3.1 Model Description

The linear model is a system of ordinary differential equations consisting of Equa-

tions (3.2)–(3.6). The model considers only those people introduced to Vicodin

through their own prescription. I assumed a constant number of new prescriptions per

month Λ. I defined the M compartment to have a maximum time of three months,

after which those still using Vicodin transition into C1 at rate α1. Acute users who

cease Vicodin treatment before this time exit the population at rate α2. There was

no maximum time for either chronic compartment. People can remain chronic users

of Vicodin indefinitely, they can stop using Vicodin and exit the population at rate

β, or they can transition into the next compartment at rate δ. While it is likely that

the β and δ values are different for the C1 and C2 compartments, available data are

not robust enough to assign different values in simulations (e.g. δ1, δ2). Once in the

A compartment, people can again stay indefinitely or seek treatment [138, 143]. I

considered only one means of exiting this compartment, seeking treatment at rate ε.

Once in the T compartment, an individual remains for at least one month and at

most 12 months. These durations were because of data that indicate relapses occur

overwhelmingly within the first year of treatment and that treatment should last at

least one month [22, 98]. Those individuals who successfully complete treatment and

stop abusing Vicodin exit the population at rate γ2. Those individuals who relapse
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re-enter the A compartment.

dM

dt
= Λ− (α1 + α2)M (3.2)

dC1

dt
= α1M − (δ + β)C1 (3.3)

dC2

dt
= δC1 − (δ + β)C2 (3.4)

dA

dt
= δC2 + γ1T − εA (3.5)

dT

dt
= εA− (γ1 + γ2)T (3.6)

For the purposes of this model, I considered relapse to be returning to pre-

treatment abuse levels and not isolated incidents such as taking one pill. Table 3.1

lists the model parameters. Λ has unit people, while all other parameters have unit

1/month. Figure 3.1 gives a visual representation of the model.

Figure 3.1: Diagram Depicting the CVT Model, a Linear Compartmental Model.
Users Transition through Acute Medical Use (M), Chronic Medical Use (C1, C2),
Abuse (A), and Treatment (T ), with the Possibility of Relapse.
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Parameter Definition Value Range

Unit

Λ new Vicodin prescriptions [2671212, 3303044]

per month people

α1 monthly rate at which acute users [0.0377, 0.362]

become chronic users month−1

α2 monthly rate at which acute users [0.0664, 0.962]

stop using Vicodin month−1

β monthly rate at which chronic users [0.051, 0.190]

stop using Vicodin month−1

δ monthly rate of chronic users transitioning [0.0177, 0.131]

to the next compartment month−1

ε monthly rate at which abusers [0.014, 0.042]

enter treatment month−1

γ1 monthly constant relapse rate of abusers [0.0375, 0.45]

in treatment month−1

γ2 monthly successful treatment rate [0.0458, 0.55]

month−1

Table 3.1: Parameter Value Ranges for the CVT Model. Detailed Derivations of
These Ranges are in Appendix B.

3.3.2 Derivation of Adjoint Equations

I considered the CVT model, using the familiar dot notation to represent the time

derivative and prime notation ′ to represent the transpose, to avoid confusion with

the T compartment. I used k as an indexing variable to indicate each compartment,

where k ∈ {M,C1, C2, A, T}. I began by rewriting the set of ODEs as a zero matrix
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by subtracting the right-hand side from the left-hand side in Equations (3.2)–(3.6):

~F
(
t, ~x, ~̇x, ~p

)
=



Ṁ − Λ + (α1 + α2)M

Ċ1 − α1M + (δ + β)C1

Ċ2 − δC1 + (δ + β)C2

Ȧ− δC2 − γ1T + εA

Ṫ − εA+ (γ1 + γ2)T


= 05×1,

where

~x =

[
M C1 C2 A T

]′
and

~p = [Λ α1 α2 δ βε γ1 γ2 uM uC1 uC2 uA uT ]′ ,

where uk represents initial condition parameters used for computing sensitivity indices

of compartment k. I then defined a vector ~y(0) that contained the uk percentage

changes of the initial population sizes in each compartment:

~y(0) =



M(0) (1− uM)

C1(0) (1− uC1)

C2(0) (1− uC2)

A(0) (1− uA)

T (0) (1− uT )


.

I defined the objective function using the integral definition of the population of

Vicodin abusers. While the conventional notation is to use T as the upper limit of

integration, I used S to represent the upper limit of integration to avoid confusion

with the T compartment:

A (~x, ~p) =

∫ S

0

g (~x, t, ~p) dt =

∫ S

0

Ȧdt.
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Following the derivation [20], I wrote the adjoint in terms of the Lagrange multiplier

λ =

[
λM λC1 λC2 λA λT

]′
, where prime (′) denotes the transpose. I used sub-

script notation to denote partial derivatives, I to denote the identity matrix, and

0n×n to denote the n× n 0 matrix. The adjoint is

gx + λ′
(
Fx − Ḟẋ

)
− λ̇′Fẋ = 0 , (3.7)

where

gx = Ȧx =

[
ȦM ȦC1 ȦC2 ȦA ȦT

]
=

[
0 0 δ −ε γ1

]
, (3.8)

Fx =



α1 + α2 0 0 0 0

−α1 δ + β 0 0 0

0 −δ δ + β 0 0

0 0 −δ ε −γ1

0 0 0 −ε γ1 + γ2


,

ẋ =

[
Ṁ Ċ1 Ċ2 Ȧ Ṫ

]′
,

Fẋ = I5×5,

and

Ḟẋ = 05×5.

Because Ḟẋ = 0, the λ′
(
Fx − Ḟẋ

)
term in (3.7) simplifies to λ′Fx. Thus,

λ′Fx =

[
ϕ ψ

]
, (3.9)

where

ϕ =

[
(α1 + α2)λM − α1λC1 (δ + β)λC1 − δλC2

]
and

ψ =

[
(δ + β)λC2 − δλA ελA − ελT γ1λA + (γ1 + γ2)λT

]
.
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Because Fẋ is the identity matrix, the λ̇′Fẋ term in (3.7) simplifies to

λ̇′ =

[
˙λM ˙λC1

˙λC2 λ̇A λ̇T

]
. (3.10)

Substituting (3.8) - (3.10) into (3.7), I obtained the adjoint equations:

(α1 + α2)λM − α1λC1 − ˙λM = 0

(δ + β)λC1 − δλC2 − ˙λC1 = 0

δ + (δ + β)λC2 − δλA − ˙λC2 = 0

−ε+ ελA − ελT − λ̇A = 0

γ1 − γ1λA + (γ1 + γ2)λT − λ̇T = 0,

with initial conditions λk(S) = 0. I simultaneously solved the initial value problem

F = 0, with initial compartment populations

~x(0) =

[
M(0) C1(0) C2(0) A(0) T (0)

]′
,

leading to the general sensitivity equation

Ap =

∫ S

0

(gp + λ′Fp) dt+ λ′Fẋ|t=0 y
−1
x(0)yp, (3.11)

where

gp = Ȧp =

[
01×3 C2 0 −A T 01×6

]
, (3.12)

Fp =



−1 M M 0 0

0 −M 0 C1 C1 03×3

C2 − C1 C2 05×5

03×3 −C2 0 A −T 0

0 0 −A T T


,
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yp =



−M(0) 0 0 0 0

0 −C1(0) 0 0 0

05×8 0 0 −C2(0) 0 0

0 0 0 −A(0) 0

0 0 0 0 T


,

and

y−1
x(0) =



1
1−uM

0 0 0 0

0 1
1−uC1

0 0 0

0 0 1
1−uC2

0 0

0 0 0 1
1−uA

0

0 0 0 0 1
1−uT


.

λ′ and Fẋ are as previously defined. The λ′Fp term in (3.11) is [X Y ], where

X =

[
−λM (λM − λC1)M λMM (λC1 − λC2)C1 + (λC2 − λA)C2 λC1C1 + λC2C2

]
and

Y =

[
(λA − λT )A (λT − λA)T λTT 0 0 0 0 0

]
. (3.13)

The Fẋ|t=0 y
−1
x(0)yp term is

−M(0)
1−uM

0 0 0 0

0 −C1(0)
1−uC1

0 0 0

05×8 0 0 −C2(0)
1−uC2

0 0

0 0 0 −A(0)
1−uA

0

0 0 0 0 −T (0)
1−uT


. (3.14)

Multiplying this by λ′ yields the λ′ Fẋ|t=0 y
−1
x(0)yp term from (3.11):

λ′ Fẋ|t=0 y
−1
x(0)yp =

[
01×8 −λM M(0)

1−uM
−λC1

C1(0)
1−uC1

−λC2

C2(0)
1−uC2

−λA A(0)
1−uA

−λT T (0)
1−uT

]
.

(3.15)
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Substituting (3.12) - (3.15) into (3.11), I obtained the sensitivity equations (using

subscripts to denote partial derivatives):

AΛ =

∫ S

0

−λMdt

Aα1 =

∫ S

0

(λM − λC1)Mdt

Aα2 =

∫ S

0

λMMdt

Aδ =

∫ S

0

[(λC1 − λC2)C1 + (λC2 − λA + 1)C2] dt

Aβ =

∫ S

0

[λC1C1 + λC2C2] dt

Aε =

∫ S

0

(λA − λT − 1)Adt

Aγ1 =

∫ S

0

(λT − λA + 1)Tdt

Aγ2 =

∫ S

0

λTTdt

AuM = −λM
M(0)

1− uM

AuC1
= −λC1

C1(0)

1− uC1

AuC2
= −λC2

C2(0)

1− uC2

AuA = −λA
A(0)

1− uA

AuT = −λT
T (0)

1− uT
.

3.3.3 Adjoint Sensitivity Analysis

To find the sensitivity index of compartment A at equilibrium with respect to each

parameter, I took the partial derivative of A with respect to the parameter and then

divided this result by the ratio of A to the parameter. The resulting quantity is the

percent change in A divided by the percent change in the parameter, or the elasticity

of A with respect to the parameter. The parameters I tested were those associated
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with prevention (δ and β) and treatment (γ1 and γ2), as well as the rate of seeking

treatment (ε). Table 3.2 lists these elasticities.

Parameter Elasticity Term

β −2β
δ+β

δ 2β
δ+β

ε −1

γ1
γ1

γ1+γ2

γ2
−γ1
γ1+γ2

Table 3.2: Elasticities of A with Respect to Treatment and Prevention Parameters at
Equilibrium. Note That the Prevention Parameters δ and β are Equal in Magnitude,
While the Treatment Parameters γ1 and γ2 are Also Equal in Magnitude.

Let λK represent the Lagrange multiplier for the K compartment, and let uK

represent the initial condition of compartment K. Then, solving the adjoint equation,

using S as the upper limit of integration to avoid confusion with the T compartment,

I have the following sensitivity equations:

∂A

∂β
=

∫ S

0

(λC1C1 + λC2C2) dt

∂A

∂δ
=

∫ S

0

[(λC1 − λC2)C1 + (λC2 − λA + 1)C2] dt

∂A

∂ε
=

∫ S

0

(λA − λT − 1)Adt

∂A

∂γ1

=

∫ S

0

(−λA + λT + 1)Tdt

∂A

∂γ2

=

∫ S

0

λTTdt.

Figure 3.2 shows the normalized sensitivity indices at equilibrium. I changed each

displayed parameter by 10% and plotted the corresponding changes in the Vicodin

abuser equilibrium population, denoted A∗. The prevention parameters δ and β are
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equal in magnitude and have the greatest effect on A∗. The treatment parameters γ1

and γ2 are also equal in magnitude and have the least effect on A∗. The treatment-

seeking parameter ε has a magnitude between that of the prevention and treatment

parameters.
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Figure 3.2: Sensitivity Indices of Prevention (δ, β), Treatment (γ1, γ2), and
Treatment-seeking (ε) Parameters of the CVT Model at Equilibrium. The Normal-
ized Sensitivity Indices of δ and β are Equal in Magnitude, While Those of γ1 and γ2

are Also Equal in Magnitude.

Figure 3.3 shows the magnitudes of the sensitivity indices over a period of 250

months (S = 250). The sensitivity indices of prevention parameters δ and β con-

verge to one another, and the sensitivity indices of treatment parameters γ1 and γ2

converge to one another. The prevention parameters have sensitivity indices of the

greatest magnitude, while the treatment parameters have sensitivity indices of the

least magnitude. The treatment-seeking parameter ε has a magnitude between those

of the prevention and treatment parameters. All of the indices do appear to stabilize

around 200 months, converging to their elasticity terms from Table 3.2 divided by

the percentage change (10%).
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Figure 3.3: Sensitivity Indices of Prevention (δ, β), Treatment (γ1, γ2), and
Treatment-seeking (ε) Parameters of the CVT Model over Time. δ and β Converge
to One Another, As Do γ1 and γ2. The Indices Stabilize around 200 Months.

3.3.4 Simulation Results

Using a built-in variable order method in MATLAB (ode15s), I simulated the

model over 250 one-month time steps. The simulation initial conditions are in Table

3.3, and the parameter values I used are in Table 3.4.

Compartment Initial Population

M 37,600,000

C1 5,640,000

C2 3,760,000

A 2,000,000

T 700,000

Table 3.3: Initial Populations of Acute Vicodin Users, Chronic Vicodin Users, Vi-
codin Abusers, and Individuals in Treatment for Vicodin Abuse Used in the CVT
Model Simulation. These Values Were Based on Available Data (See Appendix B).
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Parameter Simulation Value

Λ 3,000,000

α1 0.220

α2 0.45

β 0.140

δ 0.050

ε 0.030

γ1 0.240

γ2 0.293

Table 3.4: Parameter Values Used in the CVT Model Simulation.

The initial conditions were based on available data (see Appendix B). For the pa-

rameter values, I selected values from the ranges in Table 3.1. Figure 3.4 show the

simulation plot.
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Figure 3.4: Simulation of the CVT Model over 250 Months. Most of the Populations
Appear to Reach a Steady State by about 24 Months, with the Population of Vicodin
Abusers Stabilizing at a Population Approximately Double the Initial Population
after about 200 Months.
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Based on the simulation, most of the populations reach a steady state by about 24

months (two years). The number of Vicodin abusers in the steady state is higher than

the initial number of two million abusers and reaches slightly more than four million

abusers after about 200 months (16–17 years). The populations in each of the other

compartments decline to their steady states.

3.4 Social Interaction with Abuse-Dependent Prescription Rate Model

I modified the CVT model into a nonlinear model, the Social Interaction with

Abuse-Dependent Prescription Rate (SIAD) model. I again performed adjoint sen-

sitivity analysis to determine which parameters have the greatest influence on the

population of Vicodin abusers. I then ran simulations using data-driven parameter

values.

3.4.1 Model Description

The SIAD model differs from the CVT model in two ways. First, I introduced a

new parameter, ρ, a per capita awareness/intervention parameter with unit 1/people.

I scaled the entrance into the model population (Λ in the CVT model) by 1 + ρA.

If ρ is 0, then the entrance is the same as the CVT model. As ρ increases (i.e.,

prescribers become aware of Vicodin abuse), the number of new acute users each

month decreases. Studies of pharmacists and prescribers indicate that when abuse

is suspected, or when prescribers are educated on the risks of abuse, the number of

prescriptions written and filled decreases [12, 106].

For the second modification, I allowed social interaction between abusers and

those in treatment to drive relapse. While the relapse term in the CVT model is γ1T ,

the relapse term in this model is γ1AT , and the γ1 parameter has unit 1
people×month

.

This modification is based on research that indicates social interactions contribute
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to relapse rates [36]. The SIAD model is described by the system of ordinary dif-

ferential equations consisting of Equations (3.16)–(3.20). Figure 3.5 depicts a visual

representation of the model.

dM

dt
=

Λ

1 + ρA
− (α1 + α2)M (3.16)

dC1

dt
= α1M − (δ + β)C1 (3.17)

dC2

dt
= δC1 − (δ + β)C2 (3.18)

dA

dt
= δC2 + γ1AT − εA (3.19)

dT

dt
= εA− γ1AT − γ2T (3.20)

Figure 3.5: Diagram Depicting the SIAD Model, a Nonlinear Variation of the CVT
Model. The Entrance into the Acute Medical Use Compartment M is No Longer
Constant but Scaled by 1 + ρA, Where ρ is an Awareness/Intervention Parameter.
The Relapse Rate is No Longer Constant but Now Includes Social Interaction between
Individuals in Treatment and Individuals Abusing Vicodin.

Table 3.5 shows the parameter value ranges for the new ρ parameter the relapse

parameter γ1, which differs in units from the CVT model. Appendix B contains the

derivations of these ranges.
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Parameter Definition Value Range

Unit

ρ prescriber per capita [0, 9.5× 10−6]

awareness and intervention rate people−1

γ1 monthly social interaction-driven [7.545× 10−10, 9.054× 10−9]

relapse rate people−1 month−1

Table 3.5: Ranges for Parameters Differing from the CVT Model. Unlisted Param-
eters Remain Unchanged from the CVT Model and Are in Table 3.1.

3.4.2 Adjoint Sensitivity Analysis

Using the same notation in the CVT model, I solved the adjoint equation to obtain

the following sensitivity equations for our parameters:

∂A

∂β
=

∫ S

0

(λC1C1 + λC2C2) dt

∂A

∂δ
=

∫ S

0

[(λC1 − λC2)C1 + (λC2 − λA + 1)C2] dt

∂A

∂ε
=

∫ S

0

(λA − λT − 1)Adt

∂A

∂γ1

=

∫ S

0

(−λA + λT + 1)ATdt

∂A

∂γ2

=

∫ S

0

λTTdt.

Sensitivity equations for β, δ, ε, and γ2 remain the same for the SIAD model as in

the CVT model. The difference comes in the nonlinearity of the relapse term, which

appears in the integrand of the sensitivity equation for the relapse parameter γ1.

Figure 3.6 shows the magnitudes of the sensitivity indices over a period of 250

months (S = 250). The prevention parameters δ and β converge to one another after

about 50 months. The treatment parameters γ1 and γ2 have a negligible effect in

this model (see Appendix C). The treatment-seeking parameter ε has an effect less
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than that of the prevention parameters. The indices appear to stabilize around 100

months.
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Figure 3.6: Sensitivity Indices of Treatment (γ1, γ2), Prevention (δ, β), and
Treatment-seeking (ε) Parameters of the SIAD Model over Time. While the Treat-
ment Parameters are Non-zero, Their Effects Are Negligible Compared to Other Pa-
rameters.

3.4.3 Simulation Results

Using the same built-in variable order method in MATLAB, I simulated the model

over 250 one-month time steps. Table 3.6 lists parameter values that differ from

the CVT model. Other parameter values are identical to those listed in Table 3.4.

The new parameter ρ is included in this simulation, and γ1 has been scaled to ac-

commodate the change in units in the SIAD model. The initial conditions are the

same as in the CVT model (see Table 3.3 and Appendix B).
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Parameter CVT Simulation Value SIAD Simulation Value

γ1 0.240 8× 10−10

ρ N/A 1× 10−6

Table 3.6: Parameter Value Changes and Additions in the SIAD Model Simulations
Compared to the CVT Model Simulations.

Figure 3.7 shows the simulation plot. Based on the simulation, the populations

in each compartment appear to reach their steady states around the same time, after

about 100 months (8–9 years).

Time (Months)

0 50 100 150 200 250

P
o
p
u
la

ti
o
n

×106

0

1

2

3

4

5

6

7

8

M

C
1

C
2

A

T

Figure 3.7: Simulation of the SIAD Model over 250 Months. The Populations
Appear to Reach Their Steady States around 100 Months. The Population of Vicodin
Abusers Stabilizes at Slightly More than One Million Vicodin Abusers, a Decrease of
Almost 50% of the Original Two Million Abusers.

The population of Vicodin abusers decreases considerably in this model. After an

initial spike in the beginning of the simulation, the population then decreases to a

steady state of slightly more than one million Vicodin abusers. The simulation reaches

a steady state about 50 months (4–5 years) sooner than in the CVT model, which I
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attribute to the nonlinear model entrance and relapse terms. The CVT model holds

these values as constant, while they vary according to the population of abusers in

the SIAD model.

3.5 Discussion

The CVT model gave a linear representation of the population of Vicodin users.

Beginning with an initial prescription for acute medical use, the model allowed for pa-

tients to transition into compartments for chronic use, abuse, and treatment, with the

option of leaving the population along the way if Vicodin use ceased. Linear models

such as the CVT model provide a basic insight into an epidemiological problem. By

modeling the population as an epidemic, I captured the usual progression of Vicodin

abuse, beginning with an initial prescription. The possibility of relapse set this model

apart from typical SIR models and further illustrated the unique dynamics of the

prescription drug problem in the United States.

Finding the sensitivity index of each parameter with respect to the abuse com-

partment provided insight into addressing the Vicodin abuse problem. By examining

how changes in each parameter affect the overall population of Vicodin abusers, I de-

termined that focusing efforts on preventative measures is the most promising method

of reducing the number of Vicodin abusers in the United States.

The SIAD model gave a nonlinear representation of the Vicodin abuse population.

As in the CVT model, I considered only the typical path of Vicodin abusers: those

who were initially prescribed Vicodin. The nonlinearities of this model allowed for a

more realistic view of Vicodin abuse dynamics. By introducing an awareness/inter-

vention parameter, the model allowed for the number of new acute users to decrease

as awareness of abuse increased. The relapse rate, assumed constant in the CVT

model, was driven by social interactions between abusers and those in treatment. As
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more interaction occurred, relapse rates increased, whereas decreased social interac-

tion resulted in a decrease in relapses.

In both models, the parameters associated with prevention (δ, β) had the highest

sensitivity indices. Further, in both models, the indices of these parameters converged

to one another, showing an equal effect on the population of Vicodin abusers, after

200 months for the CVT model and 50 months for the SIAD model. Prior to converg-

ing, the δ parameter showed a slightly higher sensitivity index than the β parameter

in both models. Thus, I concluded that initially the focus should be on changing the

rate at which chronic Vicodin users become abusers, while afterward equal focus can

be applied to changing this rate and the rate at which chronic Vicodin users stop

Vicodin treatment. The change in DEA scheduling of Vicodin is a possible means of

changing these rates, and it is also possible that this change will cause an increase in

the value of ρ, the awareness/intervention parameter in the SIAD model. However,

more data are needed before drawing any such conclusions.

It is worth noting that in the SIAD model, treatment success and relapse rates

had no effect on the population of Vicodin abusers. Because social interaction often

plays a role in treatment and relapse, I believe that this model is the more accurate

of the two because it captures the important dynamics of social interaction.

In both models, ε, the rate at which abusers seek treatment, had a measurable

effect. Although this effect is not as strong as that of the prevention parameters, my

sensitivity analyses showed that this parameter can affect the population of abusers

and thus should not be neglected. I therefore recommend that at least some efforts

to combat the Vicodin abuse problem target this rate so that more abusers enter

treatment programs.

Although these models focused specifically on Vicodin, they could be adapted

to include other prescription drugs. Parameter values could be reassessed to reflect
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other prescription drugs that have risks of physical and chemical dependency. These

models provide a foundation for modeling substance abuse of pharmaceuticals. Sub-

stances for which the most common path to abuse arises from a medical reason could

be better understood by modeling in this manner.

3.5.1 Future Work

Both models considered only the population of Vicodin users with an initial pre-

scription. While the majority of Vicodin users begin using with a prescription, the

models could be further adapted to include those who were first introduced to Vicodin

through other means, such as experimentation.

There are many aspects that affect an individual’s likelihood to become an abuser.

The demographics with the highest abuse rates include men between the ages of 20

and 64 and those living in poor and rural populations [107]. Introducing an age-

structured model could help better represent the populations most at risk of becom-

ing abusers. A spatial component to determine the rurality of an individual (distance

from a larger city) could also capture these dynamics.

Monte Carlo simulations could be used to span the parameter space to better

understand the effects of parameter values on each compartment, as could global

sensitivity analysis. I could further adapt these models to allow parameter values

to change over time rather than remain constant, which I anticipate may be a more

realistic interpretation of the parameter values.

As more robust data sets become available, we plan to re-examine parameter val-

ues and adjust them as needed. If new data sets suggest that another means of exiting

the abuse compartment is necessary, we can modify the model to include death from

overdose and the cessation of Vicodin abuse caused by the abuse of another substance

(a gateway drug effect).
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Finally, a cost-benefit analysis could be useful, especially when informing policy

change. These models indicate that prevention parameters have the greatest effect

on the population of Vicodin abusers. However, I have not determined the cost of

affecting these parameters. Given a fixed budget, the sensitivity analysis could be

used to determine which combination of parameters would have the greatest effect on

reducing Vicodin abusers while maintaining certain fiscal constraints.
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Chapter 4

ANALYSIS OF VICODIN ABUSE MODELS

Chapter 3 introduced two deterministic mathematical models for Vicodin abuse in

the United States. In that chapter, I relied on computational methods to solve the

systems of ordinary differential equations. In the current chapter, I focus on the

mathematical analysis of the nonlinear SIAD model, with a summary of the results

from the linear CVT model. Section 4.1 summarizes these results.

For SIR-type models that describe populations, solutions must be non-negative

for all model time in order to be considered biologically relevant (i.e., no compartment

has a negative population). Likewise, solutions must be bounded above for all model

time (i.e., no compartment has a population that grows to∞). Section 4.2.2 contains

proofs that solutions to each model equation are non-negative for all positive time if

initial conditions and parameter values are positive. Section 4.2.3 contains proofs that

solutions to each model equation are bounded for all positive time if initial conditions

and parameter values are positive.

Relying on computational methods for solutions can pose an issue if a particular

method always converges to a certain solution. For example, computing the square

root of 4 with a calculator will always produce a result of 2, yet another solution (-2)

exists. For this reason, it is important to know whether or not a particular problem

has a unique solution, and, for more complicated problems, whether or not a solution

exists. Section 4.2.1 contains proofs that the model has a unique solution.
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4.1 Summary of Compartmental Vicodin Transition Model Results

The Compartmental Vicodin Transition (CVT) model [29] consists of five com-

partments representing various stages in the path from acute medical use (M), chronic

medical use (C1, C2), abuse (A), and treatment (T ) (with possible relapse); this path

is the most common for people abusing Vicodin [97]. The model equations are

Ṁ = Λ− (α1 + α2)M (3.2)

Ċ1 = α1M − (δ + β)C1 (3.3)

Ċ2 = δC1 − (δ + β)C2 (3.4)

Ȧ = δC2 + γ1T − εA (3.5)

Ṫ = εA− (γ1 + γ2)T. (3.6)

Parameter definitions are in Table 3.1 in Chapter 3.

Simulations of the CVT model showed the population of Vicodin abusers had

approximately doubled after about 200 months, at which point the population appears

to reach a steady state. The other compartments in the model appear to reach their

steady states after approximately 24 months.

Adjoint sensitivity analysis showed that δ and β, the parameters associated with

prevention, had the greatest (in magnitude) sensitivity indices with respect to changes

in the population of A∗. γ1 and γ2, the parameters associated with treatment, had the

lowest (in magnitude) sensitivity indices, and ε, the treatment-seeking parameter, had

a sensitivity index greater (in magnitude) than the treatment parameters but lower

(in magnitude) than the prevention parameters. The sensitivity results indicate that

prevention is the most effective means of reducing the number of Vicodin abusers.
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4.2 Social Interaction with Abuse-Dependent Prescription Rate Model

I consider the Social Interaction with Abuse-Dependent Prescription Rate (SIAD)

model, a nonlinear Vicodin abuse model with relapse [29], with positive initial con-

ditions and positive parameter values:

Ṁ =
Λ

1 + ρA
− (α1 + α2)M (3.16)

Ċ1 = α1M − (δ + β)C1 (3.17)

Ċ2 = δC1 − (δ + β)C2 (3.18)

Ȧ = δC2 + γ1AT − εA (3.19)

Ṫ = εA− γ1AT − γ2T (3.20)

4.2.1 Local Existence and Uniqueness of Solutions

Theorem 4.2.1. Local solutions to the SIAD model with initial data in the region

Ω := {(M,C1, C2, A, T ) : M > 0, C1 > 0, C2 > 0, A > 0, T > 0} ⊂ R5 exist and are

unique.

Proof. The proof requires applying the Fundamental Existence-Uniqueness Theorem

for nonlinear systems from [109], analogous to the Picard-Lindelöf Theorem [79]. To

apply the theorem, it is sufficient to show the right-hand side of each model equation

is C1 in Ω, which implies local Lipschitz continuity [109]. Note that the only potential

discontinuity in the model equations and their derivatives occurs in Equation (3.16)

if A = −1
ρ
. However, this value does not lie in Ω and can thus be excluded. Then the

right-hand side of each model equation is continuously differentiable. Applying the

Fundamental Existence and Uniqueness Theorem to the SIAD model, there exists an
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interval [−a, a] with a > 0 on which the SIAD model has a unique solution, as desired

[109].

4.2.2 Non-negativity of Solutions

To show that solutions to the SIAD model with non-negative initial data and

parameter values remain non-negative for all positive time, consider Proposition A.1

defined in [137]. This proposition guarantees non-negativity of solutions on the inter-

val of existence to systems of differential equations with non-negative initial data given

that solutions exist and are unique (see Theorem 4.2.1) for all t ≥ 0 and provided that

each differential equation in the system is non-negative when the differential equation

variable is set to 0 and all other variables are assumed non-negative [137].

Theorem 4.2.2. Given non-negative initial conditions and parameter values, solu-

tions to the SIAD model are non-negative on the interval of existence.

Proof. To verify the Ṁ equation satisfies the conditions of Proposition A.1 in [137],

let M = 0, and assume A ≥ 0. Then

Ṁ =
Λ

1 + ρ A︸︷︷︸
≥0

− (α1 + α2) M︸︷︷︸
=0

=
Λ

1 + ρA
≥ 0. (4.1)

To verify the Ċ1 equation satisifes the conditions of Proposition A.1 in [137], let

C1 = 0, and assume M ≥ 0. Then

Ċ1 = α1 M︸︷︷︸
≥0

−(δ + β) C1︸︷︷︸
=0

= α1M ≥ 0. (4.2)
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To verify the Ċ2 equation satisfies the conditions of Proposition A.1 in [137], let

C2 = 0, and assume C1 ≥ 0. Then

Ċ2 = δ C1︸︷︷︸
≥0

−(δ + β) C2︸︷︷︸
=0

= δC1 ≥ 0. (4.3)

To verify the Ȧ equation satisfies the conditions of Proposition A.1 in [137], let A = 0,

and assume C2, T ≥ 0. Then

Ȧ = δ C2︸︷︷︸
≥0

+γ1 A︸︷︷︸
=0

T − ε A︸︷︷︸
=0

= δC2 ≥ 0. (4.4)

To verify the Ṫ equation satisfies the conditions of Proposition A.1 in [137], let T = 0,

and assume A ≥ 0. Then

Ṫ = ε A︸︷︷︸
≥0

−γ1A T︸︷︷︸
=0

−γ2 T︸︷︷︸
=0

= εA ≥ 0. (4.5)

Combining (4.1–4.5), Proposition A.1 in [137] applies to the SIAD model, and solu-

tions are non-negative on the interval of existence, as desired.

4.2.3 Solutions to the SIAD Model Are Bounded Above by a Constant on Any

Finite Interval [0, S]

Recall from Theorem 4.2.2 that solutions to the SIAD model are non-negative on

the interval of existence given non-negative initial conditions and parameter values.

We wish to show that solutions to the SIAD model are bounded above by a constant

on the interval [0, S] for any finite S > 0.
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Lemma 4.2.3. M is bounded above by a constant on any finite interval [0, S].

Proof. Using the model equation for Ṁ :

Ṁ =
Λ

1 + ρA
− (α1 + α2)M

≤ Λ

1 + ρA
because M ≥ 0

≤ Λ because A ≥ 0 .

Thus, Ṁ ≤ Λ. Integrating both sides from with respect to t:∫ S

0

Ṁdt ≤
∫ S

0

Λdt

M (S)−M(0) ≤ ΛS

M(S) ≤M(0) + ΛS.

Define KM := M(0) + ΛS. Then, for t ∈ [0, S], M ≤ KM , as desired.

Lemma 4.2.4. C1 is bounded above by a constant on any finite interval [0, S].

Proof. Using the model equation for Ċ1:

Ċ1 = α1M − (δ + β)C1

≤ α1M because C1 ≥ 0

≤ α1KM because M ≤ KM .

Thus, Ċ1 ≤ α1KM . Integrating both sides with respect to t:∫ S

0

Ċ1dt ≤
∫ S

0

α1KMdt

C1 (S)− C1(0) ≤ α1KMS

C1(S) ≤ C1(0) + α1KMS .

Define KC1 := C1(0) + α1KMS. Then, for t ∈ [0, S], C1 ≤ KC1 , as desired.
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Lemma 4.2.5. C2 is bounded above by a constant on any finite interval [0, S].

Proof. Using the model equation for Ċ1:

Ċ2 = δC1 − (δ + β)C2

≤ δC1 because C2 ≥ 0

≤ δKC1 because C1 ≤ KC1 . (4.6)

Thus, Ċ1 ≤ δKC1 . Integrating both sides with respect to t:∫ S

0

Ċ2dt ≤
∫ S

0

δKC1dt

C2(S)− C2(0) ≤ δKC1S

C2(S) ≤ C2(0) + δKC1S .

Define KC2 := C2(0) + δKC1S. Then, for t ∈ [0, S], C2 ≤ KC2 , as desired.

Lemma 4.2.6. A and T are bounded above by constants on any finite interval [0, S].

Proof. Define Z := A + T , and note that Ż = Ȧ + Ṫ . Because A and T are non-

negative, it is sufficient to show that Z is bounded above by a constant. Using the

model equations for Ȧ and Ṫ :

Ż = δC2 − γ2T

≤ δC2 because T ≥ 0

≤ δKC2 because C2 ≤ KC2 .

Thus, Ż ≤ δKC2 . Integrating both sides with respect to t:∫ S

0

Żdt ≤
∫ S

0

δKC2

Z(S)− Z(0) ≤ δKC2S

Z(S) ≤ Z(0) + δKC2S .
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Define KZ := Z(0) + δKC2S. Then, for t ∈ [0, S], Z ≤ KZ , as desired. Further,

because Z = A+ T and A, T ≥ 0, A, T ≤ KZ .

Theorem 4.2.7. Solutions to the SIAD model are bounded above on any finite inter-

val [0, S].

Proof. The theorem follows from combining Lemmas (4.2.3–4.2.6).

From Theorem 2 in Section 2.4 of Perko [109], because the condition in Theorem

4.2.7 holds for any positive S, solutions are defined for all t ≥ 0.

4.2.4 Steady State Analysis

Theorem 4.2.8. The positive steady state of the SIAD model is locally asymptotically

stable provided the eigenvalues of the associated Jacobian matrix are real.

Proof. I first find the positive steady state E∗ = (M∗, C∗1 , C
∗
2 , A

∗, T ∗) by setting each

model equation equal to 0.

Ṁ =
Λ

1 + ρA∗
− (α1 + α2)M∗ = 0

=⇒ M∗ =
Λ

(1 + ρA∗) (α1 + α2)
, (4.7)

which is positive because ρ, α1, α2 > 0 and A ≥ 0.

Ċ1 = α1M
∗ − (δ + β)C∗1 = 0

=⇒ C∗1 =
α1M

∗

δ + β
, (4.8)

which is positive because M∗, α1, δ, β > 0. Substituting the definition of M∗:

C∗1 =
α1Λ

(1 + ρA∗) (α1 + α2) (δ + β)
. (4.9)

Ċ2 = δC∗1 − (δ + β)C∗2 = 0

=⇒ C∗2 =
δC∗1
δ + β

, (4.10)
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which is positive because C∗1 , δ, β > 0. Substituting the definition of C∗1 :

C∗2 =
α1δΛ

(1 + ρA∗) (α1 + α2) (δ + β)2 . (4.11)

Ȧ = δC∗1 + γ1A
∗T ∗ − εA∗ = 0

=⇒ A∗ =
δC∗2

ε− γ1T ∗
, (4.12)

which is positive provided

ε− γ1T
∗ > 0. (4.13)

Ṫ = εA∗ − γ1A
∗T ∗ − γ2T

∗

=⇒ T ∗ =
εA∗

γ1A∗ + γ2

, (4.14)

which is positive provided A∗ is positive. Substituting the definitions of C∗2 and T ∗

into A∗:

A∗ =
δC∗2

ε− γ1T ∗

A∗ =

α1δ2Λ
(1+ρA∗)(α1+α2)(δ+β)2

ε− γ1εA∗

γ1A∗+γ2

A∗ =

α1δ2Λ
(1+ρA∗)(α1+α2)(δ+β)2

εγ2
γ1A∗+γ2

A∗ =
α1δ

2Λ (γ1A
∗ + γ2)

εγ2 (1 + ρA∗) (α1 + α2) (δ + β)2

A∗εγ2 (1 + ρA∗) (α1 + α2) (δ + β)2 = α1δ
2Λ (γ1A

∗ + γ2)
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ρεγ2 (α1 + α2) (δ + β)2A∗2 +
[
εγ2 (α1 + α2) (δ + β)2 − γ1α2δ

2Λ
]
A∗ − α1δ

2γ2Λ = 0.

(4.15)

The coefficient of A∗2 is positive, and the constant term is negative. Regardless of

whether the coefficient of A∗ is positive or negative, there is exactly one sign change.

By Descartes’ Rule of Signs, there is one positive real root. Substituting −A∗ for A∗,

the only sign change occurs in the coefficient of A∗. In this case, there is exactly one

sign change and thus one negative real root by Descartes’ Rule of Signs. Because each

value in E∗ can be expressed in terms of A∗, and because there is only one biologically

relevant value for A∗, the positive steady state is unique. Substituting the positive

solution of Equation (4.15) into each component of E∗ results in the steady state

expressed solely in parameter values (see Appendix D).

To determine the stability of E∗, I examine the eigenvalues of the Jacobian matrix

of the system at E∗. The Jacobian matrix at E∗ is

− (α1 + α2) 0 0 − Λρ

(1+ρA∗)2
0

α1 − (δ + β) 0 0 0

0 δ − (δ + β) 0 0

0 0 δ − (ε− γ1T
∗) γ1A

∗

0 0 0 ε− γ1T
∗ − (γ1A

∗ + γ2)


.

I find the eigenvalues by setting the following equal to 0:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− (α1 + α2 + λ) 0 0 − Λρ

(1+ρA∗)2
0

α1 − (δ + β + λ) 0 0 0

0 δ − (δ + β + λ) 0 0

0 0 δ − (ε− γ1T
∗ + λ) γ1A

∗

0 0 0 ε− γ1T
∗ − (γ1A

∗ + γ2 + λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Following the procedure for finding the determinant of a 5× 5 matrix, find the char-
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acteristic polynomial P (λ) = ϕψ − ζη = 0, where

ϕ = − (α1 + α2 + λ) [−(δ + β + λ)][−(δ + β + λ)]

ψ = (ε− γ1T
∗ + λ) (γ1A

∗ + γ2 + λ)− (ε− γ1T
∗) γ1A

∗

ζ = α1δ
2

η =
Λρ

(1 + ρA∗)2 (γ1A
∗ + γ2 + λ) .

Expanding, I have:

ϕ = −λ3 − [α1 + α2 + 2(δ + β)]λ2 −
[
2 (α1 + α2) (δ + β) + (δ + β)2

]
λ

−
[
(α1 + α2) (δ + β)2

]
(4.16)

ψ = λ2 + (ε− γ1T
∗ + γ1A

∗ + γ2)λ+ γ2 (ε− γ1T
∗) (4.17)

ζη =

[
α1δ

2Λρ

(1 + ρA∗)2

]
λ+

α1δ
2Λρ (γ1A

∗ + γ2)

(1 + ρA∗)2 . (4.18)

Define

A := α1 + α2 + 2(δ + β) > 0

B := 2 (α1 + α2) (δ + β) + (δ + β)2 > 0

C := (α1 + α2) (δ + β)2 > 0

D := ε− γ1T
∗ + γ1A

∗ + γ2 > 0 because ε− γ1T
∗ > 0

E := γ2 (ε− γ1T
∗) > 0 because ε− γ1T

∗ > 0

F :=
α1δ

2Λρ

(1 + ρA∗)2 > 0

G :=
α1δ

2Λρ (γ1A
∗ + γ2)

(1 + ρA∗)2 > 0.

Then

ϕ = −
[
λ3 + Aλ2 + Bλ+ C

]
ψ = λ2 + Dλ+ E

ζη = Fλ+ G,
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and the characteristic polynomial becomes

P (λ) = ϕψ − ζη = 0

= −λ5 − (A + D)λ4 − (AD + B + E)λ3 − (AE + BD + C)λ2

−(BE + CD)λ−CE− Fλ−G

= −λ5 − (A + D)λ4 − (AD + B + E)λ3 − (AE + BD + C)λ2

−(BE + CD + F)λ− (CE + G). (4.19)

The Routh-Hurwitz criterion for stability was inconclusive in this case, and in gen-

eral, fifth-degree polynomials have no formula for solutions [1]. However, Descartes’

Rule of Signs can lead to a condition for which E∗ is locally asymptotically stable.

White and Comiskey also used this method to analyze the stability of the steady state

of their heroin epidemic model in [145].

Because the coefficients of P (λ) have no sign changes, from Descartes’ Rule of

Signs, I can conclude there are 0 possible positive real roots. I next examine P (−λ)

to determine the possible number of negative real roots:

P (−λ) = λ5 − (A + D)λ4 + (AD + B + E)λ3 − (AE + BD + C)λ2

+(BE + CD + F)λ− (CE + G). (4.20)

From Descartes’ Rule of Signs, from the five sign changes, I know I have 5, 3, or 1

negative real root. If all eigenvalues are real numbers, then I must have five negative

eigenvalues, and E∗ is a stable node, as desired.

Conjecture 4.2.9. The positive steady state of the SIAD model is asymptotically

stable.

Numerical analysis suggests the steady state is asymptotically stable. However,

in the case of complex eigenvalues, the stability of the steady state is indeterminable

at present.
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4.2.5 Basic Reproduction Number

Consider the steady state E∗ from Section 4.2.4:

E∗ =

(
Λ

(1 + ρA∗) (α1 + α2)
,
α1M

∗

δ + β
,
δC∗1
δ + β

,
δC∗2

ε− γ1T ∗
,

εA∗

γ1A∗ + γ2

)
. (4.21)

Note that for an epidemic to be present, E∗ must exist and be biologically relevant

(i.e., E∗ ≥ 0, with A∗ > 0). Because all populations and parameters are non-negative,

E∗ exists and is biologically relevant provided A∗ > 0. Because populations and

parameter values are assumed non-negative, A∗ > 0 when ε− γ1T
∗ > 0:

ε− γ1T
∗ > 0

ε > γ1T
∗

ε

γ1T ∗
> 1.

Thus, for the SIAD model,

R0 =
ε

γ1T ∗
.

Substituting the definition of T ∗ into R0:

R0 =
ε

γ1

(
εA∗

γ1A∗+γ2

)
=
εγ1A

∗ + εγ2

γ1εA∗

= 1 +
γ2

γ1A∗
.

Note that R0 > 1, so the positive steady state E∗ always exists.
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Chapter 5

INTRODUCTION TO HYDROCODE MODELING

5.1 Components of Hydrocodes

Hydrodynamics codes (hydrocodes) are computer codes that model continuous

media. Initially developed for fluid flow modeling, hydrocodes have evolved to in-

clude additional features that allow hydrocode modeling to address a broader set

of problems. Hydrocode simulations are necessary for problems that exceed experi-

mental capabilities because they can handle multi-physics simulations and large com-

ponents. These computer codes have three primary components: laws of motion;

equation of state; and constitutive model [35].

The laws of motion involve equations for the conservation of momentum (5.1),

mass (5.2), and energy (5.3) [96].

ρDu

Dt
= −∇P (5.1)

Dρ

Dt
+ ρ∇ · u = 0 (5.2)

dE

dt
+ P

dV

dt
= 0, (5.3)

where u is velocity, ρ is density, P is pressure, E is internal energy (per unit mass),

and V is volume [96]. D is the Lagrangian differential
(
∂
∂t

+ u · ∇
)
, ∇ is the gradient,

and ∇· is the divergence [95].

The equation of state (EOS) is included to relate pressure, density, and internal

energy. The EOS accounts for compressibility effects such as shock heating and

density changes. The constitutive model expresses the stress tensor as a function of

strain, strain rate effects, internal energy, and damage [35].
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5.2 Discretization Methods

Hydrocodes can be discretized by several methods: finite-difference, finite-element,

finite-volume, and Smooth Particle Hydrodynamics (SPH) [35, 46, 96]. In the finite-

different method, forward (5.4), backward (5.5), or central (5.6) difference equations

replace the spatial derivatives [35]:

∂f

∂x
(xn) =

fn+1 − fn
∆x

(5.4)

=
fn − fn−1

∆x
(5.5)

=
fn+1 − fn−1

2∆x
. (5.6)

Thus, the finite-different discretization is pointwise.

In contrast, the finite-element discretization method employed rectilinear or curved

elements rather than points to divide the space [35]. Futhermore, unlike the struc-

tured finite-difference discretization, the finite-element method does not require a

structured grid [35]. Each element has an associated set of nodes, and interpolation

methods are used to calculate physical quantities at the nodes [15, 35].

Like finite-element methods, finite-volume methods do not require a structured

grid. These methods compute fluxes between cells and are locally conservative. The

finite-volume method can be used on triangular meshes in addition to rectilinear grids

[46].

Finally, the SPH method divides the problem into sets of points, with each point

having known velocity, thermal energy, and mass [35]. Hence, the points are called

particles. The particles are not connected and are thus able to move freely [35].

5.3 Eulerian, Lagrangian, and ALE Approaches

In addition to different discretization methods, hydrocodes can also solve prob-

lems with Eulerian, Lagrangian, or Arbitrary Lagrangian-Eulerian (ALE) approaches
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[15, 35, 96]. Eulerian methods track materials through a rigid mesh, allowing for a

Lagrangian time step in which the mesh may deform in then implementing a remap-

ping step that returns each point in the computational mesh to its original location

[35]. This process can give rise to mixed-material cells that are often averaged over

materials, creating the potential for reduced accuracy for quantities in mixed-material

cells [35]. Advantages of the Eulerian approach include allowing for arbitrarily large

deformations and turbulent flow [15].

Lagrangian codes consist of a mesh that moves and deforms with the material

[35]. One advantage of the Lagrangian approach is that it allows for modeling solid

material properties such as strain and stress evolution because this approach allows

for tracking material history within a given cell [35]. The Lagrangian approach can

become problematic when cells undergo intense deformation, leading to cells that can

change shape but not volume and mesh tangles [35].

ALE codes remap the solution from the Lagrangian mesh to a fixed Eulerian mesh

in a manner defined by the user [15]. The ALE approach combines the benefits of

the Eulerian and Lagrangian approaches and thus has many of the same advantages

and disadvantages associated with each.

5.4 Equations of State

The EOS component of a hydrocode defines a relationship between the physical

properties of a material. The simplest form of an EOS is the ideal gas law

PV = nRT,

where V is the volume, n is the number of moles, R is the ideal gas constant, and T

is the temperature [96]. Another common analytic EOS is the Mie-Grüneisen EOS

P − P0 =
γ

V
(E − E0) ,

56



where the subscript 0 denotes the reference state. γ is the Grüneisen constant

γ = −
(
∂ ln(ν)

∂ ln(V )

)
, (5.7)

where ν represents the vibration frequency [96].

For metals undergoing shocks, a linear EOS is

Us = C0 + S1Up, (5.8)

where Us is the shock velocity, C0 is the material sound speed at 0 pressure, S1 is the

linear EOS coefficient, and Up is the particle velocity [96].

Tabular equations of state are derived from experimental data and are a useful tool

for hydrocode simulations [83]. Like analytic equations of state, they relate material

quantities like pressure, temperature, and energy. The experimental values are often

from experiments in which the materials undergo considerable deformation, making

them a good EOS choice when an analytic option is unavailable or when the modeled

materials experience extreme conditions, such as shock loading and phase transitions

[83].

5.5 Constitutive Models

Constitutive models describe how stress and strain evolve in a material as it un-

dergoes loading. These models can account for elastic and plastic deformation as well

as degradation from damage evolution. Constitutive models often calculate stress as

a function of strain, which is particularly useful in velocity-driven hydrocodes because

the total strain rate is known [96]. Hooke’s Law, which states that stress is propor-

tional to strain, is one of the earliest observations of the stress-strain relationship [96].

Chapter 6 describes in detail the constitutive models used in this work.
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5.6 Hydrocode Modeling of Impact Craters in FLAG

In the following two chapters, I used the Free Lagrange (FLAG) hydrocode to

model impact crater formation. FLAG is a finite-volume ALE code developed by and

maintained at Los Alamos National Laboratory. FLAG has been used for a variety of

physics applications [5, 50, 121], and this work presents a novel use for this hydrocode.

In Chapter 6, I verify and validate (V&V) FLAG for impact cratering simulations

using problems defined and accepted by the planetary science community [110]. For

verification, I simulate an 1-km diameter aluminum sphere impacting an aluminum

target at impact velocities of 5 km/s and 20 km/s. I describe five constitutive models

that I use in the verification problems, and I also use strengthless materials to allow

for a direct comparison to previously published literature. I perform a mesh resolu-

tion study of the verification problem, and I show both convergence and simulation

time to demonstrate the varied computational cost associated with each resolution.

For validation, I simulate a 2-mm diameter glass sphere impacting a water target

at an impact velocity of 4.64 km/s. I compare my results to experimental data and

to previously published literature. This work demonstrates that FLAG can indeed

be used for impact cratering simulations. Although a number of hydrocodes have

previously been tested for such work, FLAG has the capability to model not only

material strength properties but also to evolve damage in cells, a vital component to

the late stages of crater formation. Demonstrating that FLAG is an acceptable tool

for impact cratering models introduces a novel use of this code and lays a foundation

for further impact cratering work in FLAG.

Following the successful V&V of FLAG for impact cratering, I go on to model

Asteroid 16 Psyche in Chapter 7. Psyche is the largest M-type (metallic) aster-

oid in the Main Asteroid Belt [82]. Estimates for Psyche’s material properties vary
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considerably, and an upcoming NASA mission to Psyche is scheduled for a 2022

launch date [82, 90, 141]. I use FLAG to simulate the 70-km diameter crater on

the southern hemisphere of Psyche. I perform 2D scoping simulations using various

material compositions (silicon dioxide, nickel, iron, and Monel) and constitutive mod-

els (Preston-Tonks-Wallace, Steinberg-Guinan, perfect plasticity) to represent Psyche

and the impactor in order to determine the likely composition of Psyche. Using the

nickel alloy Monel for both impactor and Psyche, I perform a porosity study by vary-

ing the porosity of Psyche from 30% to 80%. These 2D simulations provide insight

into the likely material composition of Psyche, and the resulting crater depths from

these runs indicate that the impact was likely oblique. Using the results from my

2D simulations, I select materials and porosities for 3D simulations. In the 3D sim-

ulations, I vary the angle of impact from 45 degrees to 60 degrees from vertical. My

3D results showed the various stages of impact crater formation, including the latter

modification stage, sometimes referred to as crater collapse. By using solid material

models in FLAG, my simulations were able to capture how the terrain surrounding

the impact crater was affected by the impact.

59



Chapter 6

VERIFICATION AND VALIDATION OF THE FLAG HYDROCODE FOR

IMPACT CRATERING SIMULATIONS

6.1 Introduction

Impacts have had a lasting impression on the solar system since its beginning.

Evidence of impacts exists in the numerous craters that cover the solid bodies in the

solar system [64]. Closer to home, approximately 50 meteroids with diameters greater

than 10 cm enter Earth’s atmosphere daily, while those with diameters greater than

2 m enter the atmosphere several times per year [19]. Most of these smaller objects

disintegrate in the atmosphere [19]. Objects with diameters larger than 20 m have

the potential to cause substantial damage through megaton-scale airbursts. These

objects enter the atmosphere about once per century [19]. Objects with the potential

to have catastrophic effects occur less frequently: every 1000 years for objects with

diameters around 100 m; every 100,000 years for objects with diameters around 1

km; every 100 million years for objects with diameters around 10 km [4, 94]. Artifi-

cial impact missions such as Deep Impact and the Lunar Crater Observation Sensing

Satellite (LCROSS) have provided insight into the impact cratering process, allowing

observations of ejecta, impact plumes, temperature, and crater dimensions [3, 58].

The forthcoming Double Asteroid Redirection Test (DART) mission will test kinetic

impactor asteroid deflection by striking Didymos-B with a 500 kg impactor at an

impact velocity of about 6 km/s and measuring the resulting change in orbital period

[132]. However, missions of this nature are infrequent, and the spatial scale of large

impacts prohibits experimentation. As a result, scientists must rely on numerical
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methods to study impact cratering.

Impact crater formation can be divided into three stages: contact and compres-

sion; excavation; modification. The initial stage involves the impact of the projectile

with the surface, resulting in a transfer of energy and momentum. The materials in

the target and projectile compress, resulting in shock waves [95]. During excavation,

the shock wave expands through the target material, weakening into an elastic wave.

Target material may be vaporized, creating a vapor plume affecting any surrounding

atmosphere, or projected out of the crater, creating an ejecta blanket [95]. During

the modification stage, debris ceases to flow up and out of the crater and instead

flows downward toward the center of the crater, known as crater collapse [95]. The

ability to accurately model these stages opens the door to investigate many outstand-

ing questions about the universe such as the ages of target surfaces, erosion on target

surfaces, relative ages of different geologic features, and duration of crater retention

[56, 111]. However, one of the only measures of accuracy I have to compare model

results is through comparison to the geometry of the craters left following impacts

from solid projectiles, although mineral phases can provide insight into pressure his-

tory if samples are available. As seen from the formation process, crater size and

geometry depend on many factors, among them the size, velocity, and composition

of the impactor, the composition of the target, and local gravity [64]. The impact

cratering process includes a strength-gravity transition for many large craters. The

circumstances surrounding the impact determine whether crater formation is dom-

inated by gravity or by material strength [104]. Housen and Holsapple define the

strength-gravity transition as a function of gravity, impactor radius, and impact ve-

locity, which they also express in terms of crater dimensions, density, mass density,

strength, and impact velocity [66]. For craters in the strength regime, solid material

properties are essential to understanding how impact craters form. Hence, accurate
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numerical simulations of impacts and the resulting craters require codes that are able

to capture shock dynamics as well as model how materials react under shock condi-

tions.

The Free Lagrange (FLAG) hydrodynamics code (hydrocode) [24, 25, 26], main-

tained and developed at Los Alamos National Laboratory, is a multiphysics research

code with access to various physics models and a diverse set of numerical methods.

Recall that hydrocodes like FLAG use numerical methods to solve the equations for

momentum, mass, and energy introduced in Chapter 5:

ρDu

Dt
= −∇P (5.1)

Dρ

Dt
+ ρ∇ · u = 0 (5.2)

dE

dt
+ P

dV

dt
= 0 . (5.3)

FLAG relies on a finite volume formulation to compute continuum mechanics solu-

tions (namely through approximating solutions to the Euler equations) using either a

staggered-grid or cell-centered hydrodynamics algorithm. FLAG uses a fully unstruc-

tured grid, allowing an arbitrary polyhedral mesh, that can accommodate physical

processes in 1, 2, and 3 spatial dimensions [61]. Several mesh optimization methods

are available such as adaptive mesh refinement (AMR), and advection through arbi-

trary Langrangian-Eulerian (ALE) techniques [27]. FLAG is a fully parallel code, so

the user can indicate the number of processors per dimension or allow FLAG to make

this determination [61].

FLAG has an extensive library of tools and models to account for material be-

havior under various loading conditions allowing it to model gases, viscous materials,

and solids. One important feature of FLAG is that it incorporates material equations

of state (EOS) in both analytical and tabular forms [61]. The EOS relates pressure,

density, and internal energy. A material’s EOS accounts for compressibility effects
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such as shock heating and density changes and is a critical component for accurately

modeling shock wave propagation through materials [35]. FLAG has been previously

used to study a variety of shock physics problems such as multiphase effects in shock-

driven particle-gas instabilities [18], free-surface spallation and transport [50], and

Rayleigh-Taylor instabilities and spallation in simulated plate impact experiments

[39, 139]. FLAG has been verified and validated for a number of applications with

simulations of the Noh problem [27], the Sedov problem [27], the Sod shock tube [27],

and comparison to flyer plate experiments [121]. However, FLAG has not yet been

used to model impact craters. In this work, I demonstrate that FLAG can be used for

such problems through use of two V&V problems common to the planetary science

community. These problems were first presented by Pierazzo et al. to test several

hydrocodes used for impact cratering simulations [110]. These V&V problems test

both the early stages of impact cratering, dominated by thermodynamic properties

rather than material properties, and crater evolution over time, which is affected by

the impactor and target materials along with gravity.

Code verification problems demonstrate that an algorithm solves the problem as

intended, while code validation problems test its ability to match experimental data.

The verification problem that I rely on here models an aluminum sphere impacting

an aluminum target at 5 km/s and 20 km/s [110]. These aluminum-aluminum im-

pact problems test a code’s capability to capture key processes in the early stages of

impact cratering, namely the contact and compression, and initial parts of the exca-

vation stages that are driven by shock wave propagation. How well a code captures

shock physics occurring during these early stages of impact cratering can be deter-

mined by calculating quantities such as the maximum shock pressure, shock pressure

decay, temperature, and internal energy [110]. The verification simulations are run

as strengthless to remain consistent with Pierazzo et al., who attribute the choice of
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strengthless materials to the early stages of crater formation that are studied with

this problem [110]. In addition to replicating the verification problem in the same

manner as Pierazzo et al. [110], I also performed the verification using FLAG’s ca-

pability of modeling material strength, which plays a role in lower-velocity impacts.

The validation problem involves a laboratory experiment of a glass sphere impacting

a water target, with data points measuring the evolution of the resulting crater radius

and depth over time [110]. This validation problem tests a code’s ability to model

the kinematics of impact cratering, in addition to processes active in the later stages

of crater formation such as material flow and ejection [110]. Although water does

not display stress and damage in the same way as solid materials, the crater forma-

tion process is evident in the water’s displacement. Water impacts are necessarily

strengthless, and I use a strengthless impactor to remain consistent with Pierazzo

et al. [110]. Together, these V&V problems allow for evaluation of both early and

late stages of impact cratering, involving thermodynamic properties and material be-

havior under shock conditions. In addition to the V&V analysis, I conduct a mesh

resolution study on FLAG using the aluminum-on-aluminum verification problem. I

discuss the mesh resolution in terms of cells per projectile radius (cppr), following

the same method used by Pierazzo et al. [110].

As mentioned previously, these V&V problems were first used to test hydrocodes

by Pierazzo et al. [110]. In this work, several hydrocodes that have been and continue

to be used for impact cratering simulations were tested. Several of the previous codes

studied were purely Eulerian formulations. While there are advantages of this method

such as handling vorticity and shear without the risk of mesh tangling, it is more dif-

ficult to account for material strength, damage, and deformation than in Lagrangian

approaches. ALE frameworks, as that used in FLAG, can be quite advantageous for

impact cratering simulations because they can accommodate both vorticity and solid
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material properties. Of the eight codes tested by Pierazzo et al., half are multidimen-

sional (1D, 2D, and 3D) Eulerian approaches: SOVA [127], ZEUS-MP2 [57], CTH

[92], and RAGE [53]. These codes have different features valuable to cratering prob-

lems including frameworks that can accommodate multi-material problems, radiation

hydrodynamics, and AMR. More similar to FLAG, iSALE [6, 68], ALE3D [123], and

AUTODYN [10, 17] are all ALE codes. iSALE, however, is limited to 2D and was

developed primarily to model fluid flows at a wide range of speeds. ALE3D is based

on a finite element formulation rather than finite volume, and can address problems

in 2 and 3 spatial dimensions. AUTODYN is perhaps the most similar in approach

to FLAG as it is a coupled finite difference code with 2D and 3D capabilities with

Lagrangian, Eulerian, and ALE. AUTODYN additionally has smooth particle hydro-

dynamics (SPH) techniques, but it is expensive, and the source code is unavailable

to users. Finally, SPH [16] was also included by [110] and is a multidimensional (1D,

2D, and 3D) SPH code without an underlying grid. For the verification problem, the

hydrocodes tested by Pierazzo et al. [110] had an average peak shock pressure of 40.4

GPa in the 5 km/s vertical impact, with a low of 28.4 GPa (ZEUS-MP) and a high

of 48 GPa (SOVA). In the 20 km/s vertical impact, the codes had an average peak

shock pressure of 379 GPa, with a low of 335 GPa (ZEUS-MP) and a high of 411 GPa

(SOVA) [110]. For the validation problem, the tested hydrocodes mostly had errors

less than 15% in early time (less than 3.5 ms), with the exception of SOVA (25%) and

ZEUS-MP (50%) [110]. Codes run at resolutions of 5 cppr underestimated the radius

by 11% and depth by 14%, while codes run at resolutions of 10 cppr underestimated

the radius by 7% and depth by 10% [110].

In this work I add FLAG to the list of hydrocodes that have been verified and

validated for impact cratering simulations. FLAG combines many of the desirable

features found in other codes commonly used in planetary science. For example,
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FLAG is massively parallel, conservative because of its finite volume approach, and is

capable of solving problems in 1D, 2D, and 3D. Because of its parallelization, FLAG

provides accurate results at reduced computational cost, lending itself to solving large

problems like those found in planetary science [61]. Furthermore, FLAG has AMR

capabilities, radiation hydrodynamics, allows the user to select the unit set, and can

accommodate multi-material cells. Beyond these features, FLAG allows the user to

choose from a variety of material models including a diverse set of EOS, both analyti-

cal and tabular, and various strength models describing plastic flow, work hardening,

and damage in solid materials under shock conditions. Hence, FLAG offers a wide

range of methods to capture the important physics at play in impact cratering.

6.2 Material Models

Using strengthless materials was important to allow for a direct comparison with

previously published results. However, solid aluminum was used as the material for

both target and impactor. Material properties associated with solid metals can af-

fect crater formation, and laboratory experiments indicate that as impact velocity

increases, material strength plays a decreasing role. At lower impact velocities, the

impactor remains rigid and only penetrates the target to a depth up to 1 projectile

radius. With sufficiently high impact velocities, the impactor undergoes intense shat-

tering and deformation, rendering the material essentially strengthless [28, 95]. For

this reason, I also performed the verification problems using five constitutive mod-

els, described in this section. I expect that using constitutive models in the 5 km/s

impacts will lead to better results. In the 20 km/s impacts, I expect strengthless

materials to be a better match.

Modeling with solid materials presents its own set of challenges that must be ad-

dressed. Solid materials are inherently different from fluids and thus have additional
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properties to consider. The strength of a solid refers to its ability to resist changing

shape [95]. Strain measures deformation, and stress refers to the force over a given

area that causes deformation [95]. Constitutive models provide a means of account-

ing for the mechanical properties of materials by describing the relationship between

stress and strain [122].

One of the earliest observations of the relationship between stress and strain comes

from Hooke’s Law, which states that stress (σ) is proportional to strain (ε): σ = Eε,

where E is the proportionality pressure constant [95]. Considering a stress tensor

(σijk) and a stiffness tensor (Cijk), this relationship can be expressed as

σijk = Cijk |εk| .

However, the relationships between stress and strain are often more complex. Solid

metals have both elastic and plastic properties. An ideal elastic material deforms

under forces but returns to its original state once the deforming forces are removed,

while an ideal plastic material resists strain until a certain threshold limit is reached

[95]. Consequently, the material responses of solid metals in hydrocodes is often mod-

eled using both elastic and plastic attributes. The transition between the elastic and

plastic regimes occurs at the yield point for the material [7]. Once in the plastic

regime, materials can exhibit constant deformation or deformation that incorporates

hardening behavior [122]. Constitutive models capture these properties, typically by

calculating material flow stress as a function of material properties such as temper-

ature and strain rate. Figure 6.1 shows schematic stress-strain curves for perfectly

plastic materials, materials that exhibit linear hardening behavior, ductile materials,

and brittle materials.
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Figure 6.1: Sample Stress-strain Curves for Perfectly Plastic Materials, Materials
That Harden Linearly, Ductile Materials, and Brittle Materials.

In the verification problem, I use five constitutive models for the aluminum target

and the aluminum impactor: perfect plasticity; linear hardening; Johnson-Cook (JC)

[71]; Steinberg-Guinan (SG) [130]; Preston-Tonks-Wallace (PTW) [115]. The perfect

plasticity (pp), linear hardening (lh), and Johnson-Cook models assume a constant

shear modulus, while the Steinberg-Guinan and Preston-Tonks-Wallace models cal-

culate the shear modulus as a function of temperature and pressure. This section

describes each of these models. In this chapter, I adopt the following unified notation

for all models presented here:

Notation Description Unit Models

A quasistatic room temperature flow stress Pa JC

B strain hardening effect Pa JC

b material exponent – PTW
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C strain-rate coefficient – JC

G shear modulus Pa SG, PTW

G0 reference shear modulus Pa SG, PTW

K̄ hardening parameter – lh

M atomic mass kg PTW

m temperature exponent – JC

n hardening exponent – JC, SG

P pressure Pa SG

p Voce hardening law constant – PTW

s0 dimensionless saturation stress at 0 K – PTW

s∞ dimensionless saturation stress near melt – PTW

T temperature K SG, PTW

T̂ homologous temperature
(

T
Tm

)
– JC, PTW

T0 reference temperature K SG

Tm melt temperature K PTW

v specific volume m3

kg
SG

v0 reference specific volume m3

kg
SG

Y flow stress Pa SG

Y0 reference yield stress Pa pp, lh, SG

Ymax upper bound for work hardening Pa SG

y0 dimensionless saturation stress at 0 K – PTW

y1 material parameter – PTW

y2 material parameter – PTW

y∞ dimensionless yield stress near melt – PTW
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α temperature parameter – PTW

β work-hardening coefficient – SG

γ strain dependence constant – PTW

ε equivalent plastic strain – lh, JC,

SG, PTW

ε̇ plastic strain rate s−1 PTW

ˆ̇ε dimensionless plastic strain rate – JC

εi initial ε – SG

η compression
(
v0
v

)
– SG

θ initial strain hardening – PTW

κ material constant – PTW

ρ density kg
m3 PTW

σ von Mises flow stress Pa JC

τ material stress Pa pp, lh

τ̂s dimensionless work-hardening saturation stress – PTW

τ̂y dimensionless yield stress – PTW

Table 6.1: Table of Notation Used in Material Models.

6.2.1 Perfect Plasticity

The perfect plasticity model assumes no work hardening, so that the material

stress τ remains constant once it has reached the flow stress Y0 [128]:

τ = Y0.
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6.2.2 Linear Hardening

In linear hardening, a material exhibits linear work hardening behavior once it

meets the yield criterion:

τ = Y0 + K̄ε,

where τ is the stress, Y0 is the flow stress, K̄ is the isotropic hardening modulus, and

ε is the equivalent plastic strain [122, 128].

6.2.3 Johnson-Cook

The Johnson-Cook model includes effects of both strain hardening and strain-rate

hardening as well as thermal softening [71]. To understand the Johnson-Cook model,

it is important to understand the role of the von Mises flow stress. Consider the

deviatoric stress tensor 
σ1 0 0

0 σ2 0

0 0 σ3

 .
The second principal invariant, denoted J2, is

J2 = σ1σ3 + σ2σ3 + σ1σ2 =
1

2

(
σ2

1 + σ2
2 + σ2

3

)
.

The von Mises yield criterion states that when J2 reaches some critical value, a

material undergoes plastic yield. The von Mises effective stress can be calculated in

terms of J2 :
√

3J2 [122]. The Johnson-Cook model calculates the von Mises flow

stress σ as a function of equivalent plastic strain ε, dimensionless plastic strain rate

ˆ̇ε, and temperature T :

σ = [A+Bεn]
[
1 + C ln ˆ̇ε

] [
1− T̂m

]
,

where A describes the yield stress (Pa in SI units), B describes the effects of strain

hardening (Pa in SI units), n is an exponent that describes the effects of strain
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hardening, C is a unitless strain-rate constant, T̂ is the homologous temperature(
T
Tm

)
, and m is a unitless temperature exponent [71]. Each factor used in calculating

σ can be further described as follows [71]:

A+Bεn : stress as a function of strain, with ˆ̇ε = 1, T̂ = 0

1 + C ln ˆ̇ε : effects of strain rate

1− T̂m : effects of temperature.

6.2.4 Steinberg-Guinan

The Steinberg-Guinan model describes the shear modulus and flow stress for met-

als at high-strain rates [130]. The model assumes a reference state with temperature

T0 = 300 K, pressure P = 0, and equivalent plastic strain ε = 0. The model calculates

the shear modulus G as

G = G0

[
1 +

(
G′P
G0

)
P

η
1
3

+

(
G′T
G0

)
(T − 300)

]
,

where G0 represents the shear modulus at the reference state, G′P represents the pres-

sure derivative of G at the reference state, G′T represents the temperature derivative

of G at the reference state, and

η =
v0

v

represents the compression, where v0 is the initial specific volume and v is the specific

volume [130].

The model calculates the yield stress Y as

Y = Y0 [1 + β (ε+ εi)]
n

[
1 +

(
Y ′p
Y0

)
P

η
1
3

+

(
G′T
G0

)
(T − 300)

]
,

subject to the constraint

Y0 [1 + β (ε+ εi)]
n ≤ Ymax,
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where Y0 is the yield stress at the reference state, Y ′P is the pressure derivative of Y

at the reference state, β is the work-hardening coefficient, n is the work-hardening

exponent, εi is the initial equivalent plastic strain, and Ymax is the saturation value

for the hardening term [130].

6.2.5 Preston-Tonks-Wallace

The Preston-Tonks-Wallace (PTW) model describes the flow stress required to

plastically deform metals at high strain rates and temperatures close to melt [115].

The model considers the thermal activation regime, in which dislocation movement

is driven by energy from thermal vibrations, and the overdriven-shock regime, in

which dislocation movement is hindered by drag [115]. The thermal activation regime

covers strain rates up to 104, and the overdriven-shock regime covers strain rates in

the [109, 1012] range. The PTW model describes a link between these two regimes

for strain rates not covered by either thermal activation or overdriven-shocks [115].

The model calculates the dimensionless work hardening saturation stress τ̇s and yield

stress τ̇y:

τ̇s = max

{
s0 − (s0 − s∞) erf

[
κT̂ ln

(
γξ̇

ε̇

)]
, s0

(
ε̇

γξ̇

)b}
,

τ̇y = max

{
y0 − (y0 − y∞) erf

[
κT̂ ln

(
γξ̇

ε̇

)]
,min

[
y1

(
ε̇

γξ̇

)y2
, s0

(
ε̇

γξ̇

)b]}
,

where s0 and s∞ represent the respective saturation stresses at 0 temperature and

high (near melt) temperature, y0 and y∞ represent the respective yield stresses at 0

temperature and high (near melt) temperatures, and y1, y2, and b are dimensionless

material parameters [115]. κT̂ ln
(
γξ̇
ε̇

)
is the dimensionless analog of kBT ln

(
ε̇0
ε̇

)
,
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where:

kB : Boltzmann constant,

κ : dimensionless material constant,

T : temperature,

T̂ : T normalized with respect to melt as a function of density

(
T

Tm(ρ)

)
,

γ : dimensionless material constant,

ε̇

ξ̇
: dimensionless strain rate variable,

ε̇ : plastic strain rate as a function of ε̇0, kB, and activation energy [115].

The strain rate in the thermal activation regime ε̇ is defined as

ε̇ = ε̇0 exp

[
−∆Φ(τ)

kBT

]
,

where ε̇0 is proportional to the dislocation vibration frequency and ∆Φ(τ) represents

the activation energy as function of the flow stress τ , equal to 1
2

the von Mises equiv-

alent deviatoric stress σ [115]. The model defines ξ̇−1 as the time for a transverse

wave to cross an atom, and the model calculates ξ̇ as follows:

ξ̇ =
1

2

(
4πρ

3M

) 1
3
[
G(ρ, T )

ρ

]
,

where M is the atomic mass [114].

The dimensionless stress variable in the model is

τ̂ =
τ

G(ρ, T )
,

where

G(ρ, T ) = G0(ρ)
(

1− αT̂
)
.
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G represents the shear modulus as a function of temperature T and density ρ [115].

The model calculates τ̂ =

τ̂s +
1

p
(s0 − τ̂y) ln

1−
[
1− exp

(
−p τ̂s − τ̂y

s0 − τ̂y

)]
exp

− pθε

(s0 − τ̂y)
[
exp

(
p τ̂s−τ̂y
s0−τ̂y

)
− 1
]
 ,

where p is a dimensionless material parameter [115].

In the overdriven-shock regime, the model assumes saturation of work hardening

[115]:

τ̂s = τ̂y ∝
(
ε̇

ξ̇

)b
.

6.3 Verification

To verify FLAG, I consider an aluminum impactor striking an aluminum target

at impact velocities of 5 km/s and 20 km/s. The aluminum impactor is a sphere of

diameter 1 km. Because the same material comprises both impactor and target, the

particle velocity for the target and impactor are the same, and this value is equal

to one-half the impact velocity [96]. I use Al-6061 for both the target and impactor

material, and I determine the maximum pressure analytically for such an impact in

one dimension to be 58.725 GPa for an impact velocity of 5 km/s and 506.25 GPa

for an impact velocity of 20 km/s using Equation (6.1):

P = ρ0 (C0 + SUp)Up, (6.1)

where P is the maximum pressure in GPa, ρ0 is the initial density
(
2.7 g/cm3), C0 is

the sound velocity at 0 pressure (5.35 mm/µs), S is the linear EOS coefficient (1.34),

and Up is the particle velocity (1/2 impact velocity)[96].

I use FLAG to simulate these impacts in 1D, 2D, and 3D using Al-6061 (see

Appendix F for simulation details). For 1D simulations, I use a Mie-Grüneisen linear

EOS for both target and impactor to better match the 1D analytic solution. For 2D
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and 3D simulations, I use a SESAME tabular EOS for both impactor and target [83]

to stay consistent with the verification simulations in Pierazzo et al. [110]. I choose a

resolution of 40 cppr, equivalent to a cell side length of 12.5 m. I use Eulerian (static)

tracer particles located 200 m into the target for the 5 km/s impact and 685 m into

the target for the 20 km/s impact. For artificial viscosity, I use a Barton model [87]

with quadratic coefficient 2 and linear coefficient 0. I use free boundary conditions.

For the 1D simulations in FLAG, I use a projectile of 1 km and a target of 10 km,

which allows us to measure peak pressure and shock pressure decay while avoiding

boundary effects. For the EOS, I use 2700 kg/m3 for the reference density, 890 J/kg/K

for the specific heat, 5350 m/s for the sound speed, 2.0 for γ, and 1.34 as the linear

coefficient [96]. I initialize the aluminum with density 2.7 g/cm3 and an energy of 0

J. I use a pure Lagrangian approach for these simulations. For the 5 km/s impact,

I obtain a maximum pressure of 63.68 GPa at the point of impact with a relative

error of 8.44% with respect to the analytical solution. For the 20 km/s impact at

the tracer particle, I obtain a maximum pressure of 521.93 GPa with a relative error

of 3.01%. I attribute these deviations from the analytical solution to the effects of

artificial viscosity, not included in Equation (6.1) but required by the hydrocode to

spread the shock over multiple time steps to avoid discontinuities. Figure 6.2 shows

the pressure wave in the FLAG simulation 0.7 seconds after the 20 km/s impact.

Similarly in 2D, the aluminum projectile is a circle of diameter 1 km, and the

Figure 6.2: Pressure Wave for FLAG Simulation of 1D Al-Al 20 km/s Impact 0.7
Seconds after Impact.
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aluminum target is a rectangle of length 25 km and width of 10 km. The surrounding

material is air with length and width of 25 km and 23.5 km, respectively. The air is

treated as a γ-law gas, with γ = 1.4. I initialize the air with a density of 1.2922×10−3

g/cm3 at 273 K. For these simulations, I use FLAG’s ALE capabilities to relax the

mesh by geometry. Whenever a zone has an angle measure less than or equal to the

specified threshold (15 degrees at first and 30 degrees when needed), I relax the mesh

at that zone and up to three zones away. Simulated results for the stages of contact

and compression, and excavation are shown in Figure 6.3a for the 5-km/s impact.

In this case, I obtain maximum pressures at the tracer particle 200 m below impact

ranging from 51.02 GPa to 55.77 GPa depending on mesh resolution, with deviations

from the 1D analytic solution ranging from -13.12% to -5.15%. In comparison, the

mean maximum pressure from the results of the eight codes tested by Pierazzo et

al. [110] was 40.4 GPa with a mean deviation from the analytic solution of -33.3%.

I also examined the maximum pressure at a tracer particle at the point of impact,

with values ranging from 56.29 GPa to 61.16 GPa and deviations from the analytic

solution ranging from -4.15% to 4.15%, with a best case of 59.58 GPa and deviation

of 1.46%. The cases with the smallest (in magnitude) errors in peak shock pressure

at impact and 200 m into the target are listed in Table 6.2. Figure 6.3b shows the

pressure wave of the FLAG simulation 0.161265 seconds after the 5-km/s impact.

For the 20-km/s impact, I obtain maximum pressures at tracer particles located

685 m into the target ranging from 388.64 GPa to 407.99 GPa depending on mesh

resolution, with deviations from the 1D analytic solution ranging from -23.23% to

-19.41%, which can be compared to a mean maximum pressure of 379.0 GPa with

mean deviation from the analytic solution of -27.5% obtained by Pierazzo et al. [110].

I also measured the maximum pressure at impact and 200 m into the target, as in

the 5 km/s impact, and found the highest pressure value 200 m into the target. At
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(a)

s

(b)

Figure 6.3: (a) Stages of Impact Cratering in 2D FLAG Simulation of an Aluminum
Projectile (Brown) Impacting an Aluminum Target (Green) at 5 km/s, Zoomed in to
Show Detail. (b) Pressure Wave for FLAG Simulation of 2D Al-Al 5 km/s Impact
0.161265 Seconds after Impact, Zoomed in to Show Detail.

this point, the maximum pressure of FLAG simulations ranged from 466.98 GPa to

494.81 GPa, depending on mesh resolutions, with deviations from the analytic solution

ranging from -7.76% to -2.26%. The maximum pressure does not occur at the point

of impact because I am measuring pressure with a static tracer particle. The higher

impact velocity in this simulation results in the crater forming more quickly, and after

the first time step, the static tracer particle no longer contains any target material. In

order to more accurately capture the maximum pressure, I used a Lagrangian tracer

particle located at the point of impact at time zero, after which the particle moves

with the material throughout the simulation. From this tracer particle, I obtain the

maximum pressure of 559.44 GPa, with a deviation from the 1D analytic solution

of 10.51%, at the tracer particle initialized at the point of impact. The cases with

the smallest (in magnitude) errors in peak shock pressure 200 m and 685 m into the

target are listed in Table 6.2 to allow for a direct comparison with the results from

Pierazzo et al. [110]. To allow for a more direct comparison between the 5 km/s and

20 km/s impact velocities, the maximum pressures from both simulations 200 m into
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the target and at the point of also appear in Table 6.2.

For the 3D FLAG simulations, the projectile is an aluminum sphere of diameter

1 km, and the target is an aluminum rectangular prism of length 25 km, width 10 km,

and height 10 km. The surrounding material is air with length 25 km, width 23.5 km,

and height 10 km. I simulated impact velocities of 5 km/s and 20 km/s and impact

angles normal to the target surface and at a 45-degree angle. I ran all 3D simulations

using a resolution of 5 cppr, resulting in approximately 8.3 million zones. I used

FLAG’s ALE capabilities to relax the mesh by geometry. I set the angle threshold to

be 30, 45, or 60 degrees, as needed, and relaxed up to five zones away. For the 5 km/s

normal impact, the maximum pressure occurred at the point of impact and measured

52.39 GPa with a deviation from the analytic solution of -10.79%. For the 20 km/s

normal impact, the maximum pressure occurred 200 m into the target and measured

555.74 GPa with a deviation from the analytic solution of 9.78%. The 45-degree

angle impacts do not have an associated analytic solution. Nevertheless, FLAG was

able to complete these simulations, producing results consistent with impact craters.

For these oblique impacts, the impactor breaks apart, with pieces of the impactor

ending up more than 5 km outside the crater. The 5 km/s oblique impact simulation

is shown in Figure 6.4. Figure 6.5 shows the pressure wave 0.732070 seconds after

impact for the same simulation. These simulations ran on 360 processors. The 5

km/s normal impact took about 5.75 hours for the pressure wave to propagate 10 km

into the target, and the 20 km/s normal impact took about 6.5 hours.

One possible explanation for the lower percent deviation from the analytic solution

with FLAG is its ALE capability, which reduces advection between cells. FLAG’s

interface reconstruction prevents numerical diffusion, which may also contribute to the

lower errors in 1D and deviations from the 1D analytic maximum pressure in 2D and

3D. FLAG’s Lagrange step also conserves internal energy [24, 25]. The advancement
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2D FLAG 1D Analytic FLAG Pierazzo et al.

Simulation Solution Mean[110]

Maximum Pressure, 5 km/s 58.725 GPa 55.77 GPa 40.4 GPa

200 m into target

Percent Deviation – -5.15% -33.3%

from 1D Analytic

Maximum Pressure, 5 km/s 58.725 59.58 GPa –

point of impact

Relative Error – 1.46% –

Maximum Pressure, 20 km/s 506.25 407.99 GPa 379.0 GPa

685 m into target

Percent Deviation – -19.41% -27.5%

from 1D Analytic

Maximum Pressure, 20 km/s 506.25 479.10 –

200 m into target

Percent Deviation – -5.36% –

from 1D Analytic

Maximum Pressure, 20 km/s 506.25 492.63 GPa –

impact point, Lagrangian tracer

Percent Deviation – -2.69% –

from 1D Analytic

Table 6.2: Maximum Pressure of FLAG Simulation of Aluminum Impacting Alu-
minum from Eulerian (Static) Tracer Particles Located in the Target. The Results
Shown are from the Tracer Particle Locations Used by Pierazzo et al. [110] As Well
As the Location of the Maximum Pressure Obtained from 20 Tracer Particles Ap-
proximately Evenly Spaced in the Target.
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Figure 6.4: Visualization of 3D FLAG Simulation of an Aluminum Sphere (Brown)
Impacting an Aluminum Target (Green) at 5 km/s at an Impact Angle of 45 Degrees
Relative to the Surface of the Target.

Figure 6.5: Pressure Wave for FLAG Simulation of 3D Aluminum-on-Aluminum
5 km/s 45-Degree Impact 0.732070 Seconds after Impact, Shown Looking into the
Crater from Above.

of interface reconstruction algorithms since the results from Pierazzo et al. [110] were

first reported may help reduce such deviations. In the hydrocodes tested by Pierazzo

et al [110], the best result for the maximum pressure was 48 GPa for the 5 km/s

impact and 411 GPa for the 20 km/s impact, resulting in respective deviations of

-18.26% and -18.82% relative to the 1D analytic solution. Running these simulations

in FLAG resulted in respective errors of 8.44% and 3.01% in 1D and deviations from

the 1D analytic solution of 1.46% and -2.26% in 2D and -10.79% and 9.78% in 3D. I

attribute the higher error in the 1D 5 km/s simulation to artificial viscosity, which has

a greater effect in lower velocity impacts. The different EOSs used by Pierazzo et al.
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[110] likely contributed to the differences in results among the codes. One hydrocode

tested by Pierazzo et al. [110], RAGE, also used a SESAME tabular EOS. Comparing

these two codes, both implementing the SESAME EOS, I see a maximum pressure of

35.5 GPa in RAGE and 55.7 GPa in FLAG. The RAGE maximum pressure deviates

from the 1D analytic by -39.55%, while the FLAG maximum pressure deviates from

the 1D analytic by -5.15%. Thus, variations in the results among the codes are

unlikely to be solely because of the choice of EOS.

6.3.1 Mesh Resolution Study

I conducted a mesh resolution study to determine at what resolutions FLAG

converges for both impact velocities in the 2D aluminum-on-aluminum verification

problem. To do this study, I measured the shock pressure decay 10 km into the alu-

minum target by placing 20 approximately evenly spaced static tracer points normal

to the target surface, with the first located at the point of impact and the last located

10 km into the target. I recorded the pressure at each tracer point and plotted the

maximum at each point. Mesh resolutions 5, 10, 20, and 40 cppr were tested, and

the results are shown in Figure 6.6.

The shock pressure decay convergence of the hydrocodes tested by Pierazzo et

al. [110] ranges from 20 cppr to 80 cppr for both impact velocities (see Figure 6.7),

while FLAG appears to converge at 10 cppr for the 5 km/s impact velocity. For the

20 km/s impact velocity, FLAG performs well at 10 cppr, but the difference between

the 10 cppr resolution and higher resolutions is evident. This difference may be a

result of the increased material deformation that occurs at higher impact velocities,

which requires more precise physics modeling. From this study, I can expect rea-

sonable results using a 10 cppr resolution for lower impact velocities. For higher

impact velocities, a higher resolution may be necessary, although 10 cppr may be suf-
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ficient in some cases. The convergence at coarser resolutions could be a result of how

FLAG handles multi-material zones. FLAG keeps interfaces sharp so numerical dif-

fusion is not an issue at interfaces. FLAG also does not enforce pressure-temperature

equilibrium (PTE), which allows zones to have two distinct materials with distinct

pressures and temperatures. These properties aide in the implementation of the EOS,

as multi-material zones will deform based on the bulk moduli of the materials in the

zone. These features allow FLAG to run a coarser mesh without numerical smearing,

heating, and cooling [24, 25].

(a) (b)

Figure 6.6: Shock Pressure Decay of Aluminum-on-Aluminum Verification Problem
with Resolutions Ranging from 5 to 40 cppr. (a) For an Impact Velocity of 5 km/s,
FLAG Appears to Converge at a Resolution of 10 cppr. (b) For an Impact Velocity
of 20 km/s, FLAG Appears to Converge at a Slightly Higher Resolution, Although
at 10 cppr, Results May Be Sufficient in Some Cases.

The lower resolution required for FLAG simulations means the computational cost

of these simulations can be greatly reduced. Figure 6.8 shows the computation time

for the pressure wave to propagate 10 km into the aluminum target. The highest

resolution, 40 cppr, ran for approximately 28 hours, while the 10 cppr resolution

simulation ran for approximately 25 minutes. For the 5 km/s impact, which converged
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Figure 6.7: Fig. 1 from Pierazzo et al. [110], Showing the Shock Pressure Decay for a
Variety of Tested Hydrocodes for the Aluminum-on-Aluminum Verification Problem.
As Indicated by the Figures, the Majority of Hydrocodes Tested Converged at 20
cppr or Higher for the 5 km/s Impact and at 20 cppr for the 20 km/s Impact. This
Figure was Approved for Reproduction in This Dissertation by John Wiley and Sons
under License Number 4518410513813.

at 10 cppr, using FLAG reduces the computational cost considerably. All 5 km/s

impact simulations ran on 108 processors, and all 20 km/s impact simulations ran on

144 processors.

6.3.2 2D Strength Results

To further demonstrate FLAG’s modeling capabilities, I simulate the verification

problems with material strength. At high impact velocities, the target material is

analogous to a strengthless material. At lower impact velocities, target strength af-

fects the final crater. Because Pierazzo et al. [110] did not consider material strength

for the verification problems presented here, I compare the maximum pressures from

the FLAG simulations with material strength to my strengthless FLAG simulations.

I simulated the verification problem in 2D using five constitutive models for mate-
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Figure 6.8: Computational Times for FLAG Simulations of the Pressure Wave
Propagation 10 km into Target in an Aluminum-on-Aluminum Verification Problem.
Simulations of the 5 km/s Impact Ran on 108 Processors, and Simulations of the 20
km/s Impact Ran on 144 Processors.

rial strength (described in Section 6.2) to account for the material response. Using

constitutive models should result in lower maximum pressures because solid metals

undergo reversible deformation until the yield threshold is reached. Prior to reaching

the yield threshold, the material remains in the elastic regime, where energy is not

required for deformation. My results were consistent with expectations, with lower

maximum pressures in the strength runs than in the strengthless runs. Maximum

pressures for the 20 km/s were considerably lower when using strength, consistent

with my expectations that impacts at such high velocities render the material es-

sentially strengthless for the purposes of modeling. Furthermore, the constitutive

models I used may not account for the material physics at high strain rates. In addi-

tion, the 1D analytic solution depends on density and sound speed. At higher impact

velocities, the compression stage of impact cratering results in an increase in material

density, leading to a reduction in the material sound speed. The results from these

runs are listed alongside results from the strengthless FLAG runs in Tables 6.3 and
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6.4. As in Table 6.2, the maximum pressures listed in the table were measured at the

point of impact using a static Eulerian tracer particle for the 5 km/s impacts and a

Lagrangian tracer particle for the 20 km/s impacts. All of the strength runs had a

resolution of 40 cppr. A complete list of parameter values for each material model

can be found in Appendix E.

Impact Velocity: 5 km/s

Strength Model Maximum Pressure Deviation from 1D Analytic

Strengthless 59.58 GPa 1.46%

Perfect Plasticity 57.96 GPa -1.30%

Linear Hardening 57.96 GPa -1.30%

Johnson-Cook 57.86 GPa -1.47%

Steinberg-Guinan 57.86 GPa -1.47%

Preston-Tonks-Wallace 57.84 GPa -1.51%

Table 6.3: Maximum Pressures at the Point of Impact Obtained from 2D FLAG Sim-
ulations of the Aluminum-on-Aluminum Verification Problem Using Strength Models
for the 5 km/s Impact.

Impact Velocity: 20 km/s

Strength Model Maximum Pressure Deviation from 1D Analytic

Strengthless 494.81 GPa -2.26%

Perfect Plasticity 483.90 GPa -4.41%

Linear Hardening 483.90 GPa -4.41%

Johnson-Cook 483.91 GPa -4.41%

Steinberg-Guinan 483.91 GPa -4.41%

Preston-Tonks-Wallace 483.90 GPa -4.41%

Table 6.4: Maximum Pressures from a Lagrangian Tracer Particle Initialized at the
Point of Impact Obtained from 2D FLAG Simulations of the Aluminum-on-Aluminum
Verification Problem Using Strength Models for the 20 km/s Impact.
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6.4 Validation

To validate FLAG for impact cratering, I use the same validation problem as in

Pierazzo et al. [110], a laboratory experiment of glass impacting water (see Appendix

F for simulation details). In this experiment, a 2-mm-diameter glass sphere impacts

a rectangular target of dimension 76 cm × 38 cm × 23 cm. The target as a 1.25 cm

aluminum liner, with the remaining volume filled with water. The impact velocity is

4.64 km/s.

Table 3 in Pierazzo et al. [110] shows the experimental data for crater radius

and depth over time. The first data point occurs 0.191 ms after impact, and the last

occurs 83.187 ms after impact. The crater obtains its maximum radius of 14.357 cm

at the last data point and its maximum depth of 12.1 cm at the penultimate data

point, 65.335 ms after impact. These experimental data are displayed in Table 6.5.

In order to avoid boundary effects in the validation problem, I use a computational

mesh extending from 0 cm to 36.75 cm in the x direction and 1.25 cm to 1000 cm in

the y direction. Because of the relatively small size of the glass impactor compared to

the water target, I vary the mesh resolution, using a finer mesh around the impactor

and a coarser mesh far from impact. The zone sizes range from 0.02 cm, equivalent

to 5 cppr, at impact and 0.5 cm, equivalent to 0.2 cppr, at the boundaries. To fur-

ther reduce the computational cost, I omit the aluminum liner and only include the

right half of the water, choosing a 2D axisymmetric mesh. The glass impactor is a

semicircle of radius 1 mm, positioned at the top of the water at initialization. The

surrounding air extends to a height of 10 m to avoid top boundary effects. The 10

km boundary is high enough to prevent the ejected water from contacting the top

boundary and splashing down into the crater while the crater is forming. I use a

constant gravity of -9.8 m/s2 in the y direction. Figure 6.9 shows the problem at
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Time (ms) Radius (cm) Depth (cm)

0.191 1.608 2.35

0.382 2.297 2.6

0.764 2.963 3.32

1.146 3.423 3.85

1.91 4.112 4.61

3.436 5.031 5.39

5.72 6.064 6.41

9.516 7.098 7.514

15.18 8.316 8.83

22.666 9.487 9.7

31.9 10.636 10.602

44.553 11.807 11.46

65.334 13.3 12.1

83.187 14.357 12.054

Table 6.5: Experimental Data of Crater Radius and Depth over Time for the Glass-
on-Water Validation Problem [110].

initial time.

This problem was considerably more computationally expensive than the alu-

minum verification problem. The small size of the impactor relative to the target

limited the resolution size. Many of the hydrocodes tested by Pierazzo et al. [110]

did not run to completion, and, instead, the authors displayed the crater dimen-

sions that coincided with the first several experimental data points. Because of the

computational intensity of the problem, I ran the simulation up to 9.516 ms, which

encompasses eight experimental data points. The hydrocodes tested by Pierazzo et
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(a) (b)

Figure 6.9: Glass into Water Validation Problem at Initial Time of FLAG Simulation
Showing the Glass Impactor (White), Water Target (Blue), and Surrounding Air
(Grey). (a) The Entire Computational Space for the Glass into Water Validation
Problem. (b) Glass into Water Computational Space, Zoomed to Show Detail.

al. [110] used resolutions ranging from 5 cppr to 20 cppr for this validation problem.

I used a resolution of 5 cppr at the point of impact, which is the coarsest resolution

tested in the verification problem. I chose such a coarse resolution because of the

computational cost as well as the relative size of the impactor when compared to the

target. Finer resolutions cause the adaptive time step to become arbitrarily small,

prohibiting the simulation from providing meaningful results in an acceptable time

frame. I ran the simulation in blocks of 10 hours on 360 processors. The first 10-hour

run resulted in seven data points. The second 10-hour run provided the 8th data

point. An additional eleven 10-hour runs produced no additional data points. In ad-

dition to the coarse resolution, I chose to run this simulation using FLAG’s Eulerian

mesh relaxer to prevent tangling during the excavation stage of crater formation.

Because I used a coarse mesh, I anticipated that the FLAG simulations results

would underestimate crater dimensions as had hydrocodes tested by Pierazzo et al.
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[110] when run with the 5 cppr resolution. At this resolution, these codes underesti-

mated the crater radius by about 11% on average and underestimated the the depth

by about 14% [110], while FLAG overestimated the crater depth by an average of

2.44% and underestimated the radius by an average of 6.2%. The overestimation of

the depth could be a result of the axisymmetric boundary condition, which tends to

result in jets that are too thin and penetrate too far because movement is allowed in

only one direction and will be dominated by gravity. I measured the crater radius

at 0.1 cm below the initial water line, and I measured the crater depth 0.3 cm to

the right of the crater’s center. The results of the FLAG simulation as well as the

corresponding experimental data are listed in Table 6.6 and shown in Figure 6.10.
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Figure 6.10: Experimental Data and FLAG Simulation Results for the Glass-on-
Water Validation Problem for Crater Radius (Left) and Crater Depth (Right) over
Time. The FLAG Simulation Had an Average Relative Error of about -6.2%, and
the Depth Had an Average Relative Error of 2.44%.

The depth-to-radius ratios of both the FLAG simulations and experimental data

are listed in Table 6.7 and shown in Figure 6.11a. The resulting FLAG simulation

crater 1.146 ms after impact, reflected about the axis of symmetry, is shown in Figure

6.11b.
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Time Experimental FLAG Relative Experimental FLAG Relative

(ms) Radius (cm) Radius (cm) Error Depth (cm) Depth (cm) Error

0.191 1.608 1.68713 4.92% 2.35 2.23934 -4.71%

0.382 2.297 2.20879 -3.84% 2.6 2.7669 6.42%

0.764 2.963 2.81574 -4.97% 3.32 3.44335 3.72%

1.146 3.423 3.30393 -3.48% 3.85 3.91973 1.81%

1.91 4.112 3.87845 -5.68% 4.61 4.57374 -0.79%

3.436 5.031 4.62491 -8.07% 5.39 5.52639 2.53%

5.72 6.064 5.12498 -15.49% 6.41 6.03864 5.79%

9.516 7.098 6.179 -12.95% 7.514 7.868 4.71%

Table 6.6: FLAG Simulation Results of Glass-on-Water Impact Validation Problem
with Relative Errors, Rounded to Two Decimal Places. The Codes Tested by Pierazzo
et al. Had an Average Error of about -11% for Radius and -14% for Depth [110].

I used FLAG’s subcycling capability on this validation problem in order to ob-
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Figure 6.11: (a) Depth/Radius Ratio of Experimental Data and FLAG Simulation
for the Glass-on-Water Validation Problem. (b)

FLAG Simulation Crater 1.146 ms after a 2 mm Diameter Glass Sphere Impacts a

Water Target at 4.64 km/s, Reflected about the Axis of Symmetry.
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Time Experimental FLAG Relative Error

(ms) Depth/Radius Depth/Radius

0.191 1.461 1.327 -9.17%

0.382 1.132 1.253 10.69%

0.764 1.120 1.223 9.20%

1.146 1.125 1.186 5.42%

1.91 1.121 1.179 5.17%

3.436 1.071 1.195 11.58%

5.72 1.057 1.178 11.45%

9.516 1.059 1.273 20.21%

Table 6.7: FLAG Simulation Results of the Depth-to-Radius Ratio Compared to
Experimental Data for the Glass-on-Water Validation Problem.

tain more accurate results without increasing the mesh resolution, which proved too

computationally intensive. Subcycling allows for extra iterations during the mesh

remapping process. This method provided fewer data points for the same computa-

tional time, but the results for the early simulation time resulted in errors as low as

-0.17%. The average error for the crater radius was -5.04%, and the average error for

the crater depth was -5.03%. Subcycling resulted in a nearly identical average error

for both the crater radius and crater depth.

6.5 Conclusions

Based upon the verification and validation problems, I conclude that the FLAG

hydrocode can be used for impact cratering simulations. I have shown through the ver-

ification problem that FLAG captures the important shock dynamics in early stages

of crater formation, and I have shown through the validation problem that FLAG
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matches experimental data with a low relative error. These problems have been ac-

cepted by the planetary science community as adequate tests for hydrocodes. FLAG

simulated the verification problem of aluminum into aluminum producing maximum

pressure values close to the analytical solutions, with errors as low as 4.2% com-

pared to a mean error of 33.3% in results from the hydrocodes tested by Pierazzo

et al. [110]. The mesh resolution study demonstrated FLAG’s potential to handle

impact cratering problems at coarser resolutions than other hydrocodes, reducing the

computational time from 28 hours to 25 minutes. The validation problem of a glass

impactor and water target was used to measure FLAG’s ability to match experimen-

tal data. The FLAG simulation of this problem gave promising results despite a very

coarse resolution, with errors an order of magnitude better than other hydrocodes

tested at the same resolution [110]. The results from Pierazzo et al. [110], which I

used for comparison with FLAG results, are from 2008. Although it is likely that

many of these codes have undergone improvements since these results were first pub-

lished, I was only able to compare to results available in the literature for these V&V

problems. Accounting for material strength in the verification problems resulted in

lower errors compared to the strengthless simulations for the lower velocity impact,

indicating FLAG is able to correctly model material properties that play a key role

in crater formation. FLAG’s variety of EOS options, multiple material models, ALE

capabilities, and relatively good run times contribute to its accurate modeling for

both theoretical and experimental physical problems. These V&V problems tested

FLAG’s Lagrange, ALE, and Eulerian features, demonstrating FLAG’s reliability for

a variety of problem approaches.
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Chapter 7

MODELING IMPACT STRUCTURES ON ASTEROID 16 PSYCHE

7.1 Introduction

Asteroid 16 Psyche is the largest M-type (metallic) asteroid in the Main Asteroid

Belt (MBA) [82]. The upcoming NASA mission Psyche: Journey to a Metal World,

set to launch in 2022, will reach Psyche in 2026 and orbit the asteroid for 21 months

[69, 105]. Psyche is the largest exposed metallic body in the MBA, and the mission

will be the first of its kind to visit a metallic body rather than one composed of rock

or ice [45]. Psyche is likely the remnant of a differentiated planet core from a time

when planetary accretion was disrupted by frequent solid-body collisions [45]. Hence,

the mission to Psyche will provide an opportunity to explore a planetary core and

provide insight into formation of the solar system [45]. The mission will be able to

collect data to answer important questions about planetary formation and metallic

bodies, including questions about crater formation in metallic bodies, topography of

the asteroid, alloys present in the core, and how the once-molten body cooled to its

current state [45].

Until this mission launches, our current means for collecting information about

Psyche include radar, Infrared Astronomical Satellite (IRAS), and lightcurve inversion

[72, 82, 124]. Hence, even basic information about Psyche is under debate. For

example, estimates of Psyche’s diameter range from 213 km to 264 km [82]. Estimates

on Psyche’s material properties vary considerably, particularly for bulk density and

porosity. Radar albedo data indicate Psyche’s surface is rich in metallic content [90].

Bulk density estimates typically range from 1.4± 0.3 g/cm3 to 4.5± 1.4 g/cm3, with
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some as high as 7.6 g/cm3, resulting in porosity estimates typically ranging from 30%

to 70%, with some as low as 0% [74, 82, 124, 141]. M-type asteroids like Psyche have

historically been viewed as differentiated planet cores [90]. Thus, information about

Psyche could provide information into the early stages of the universe and planetary

formation. Because estimates concerning Psyche are widely varied, there is a need for

additional predictions leading up to the mission launch. More accurate predictions on

the compositions of Psyche can ensure the mission is equipped with the appropriate

tools for analyzing Psyche.

Psyche has two large impact structures in its Southern hemisphere [124]. These

structures are estimated to be about 50 km to 70 km in diameter and up to 6.4 km

deep [124]. The smaller of the two craters is the deepest location on Psyche, with an

estimated depth of about 6.4 ± 0.64 km and estimated diameter of 53 ± 15 km, and

the larger crater is estimated to be slightly less deep with an estimated diameter of

67 ± 15 km [124]. Modeling the formation of Psyche’s craters can provide additional

predictions for Psyche’s material composition and bulk density by testing multiple

compositions and densities and comparing the simulation results to the estimated

crater dimensions. Because shock waves play a key role in crater formation, and

because shock waves propagate differently through different material compositions,

the resulting craters from varied compositions should also vary, and compositions

closer to Psyche’s actual composition should result in craters that better match the

actual crater dimensions. The FLAG hydrocode, previously shown to be effective in

modeling impact craters [30], is an ideal choice to model this crater. The probable

impact velocities involving Psyche are between 4.434 km/s and 4.639 km/s [47]. In

the previous chapter, I showed that FLAG converges at relatively low resolutions

for velocities of 5 km/s. Velocities in this range indicate that material strength is a

factor in crater formation, which FLAG is able to model well [30, 95]. Based upon the
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probable impact velocity, local gravity, and bulk density estimates, the formation of

Psyche’s largest crater was dominated by strength rather than gravity [47, 65, 82, 124].

The transition between target strength and target local gravitational acceleration as

the dominant effect that determines impact crater size and shape is a function of

gravitational acceleration, impactor radius, and impact velocity [66]:

Y =
ga

U2
,

where g is the gravitational constant, a is the impactor radius, and U is the impact

velocity. The transition Y is analogous to the π2 scaling constant [95]:

π2 =
1.61g(2a)

U2
,

with the same notation. Using 0.29 m/s2 for Psyche’s gravity, 5 km for the impactor

radius, and 4.5 km/s for the impact velocity [47, 65, 66], the strength to gravity

transition occurs at Y = .323. Calculating π2 with the same values, π2 = 2.31×10−4.

Thus, the crater is in the strength regime.

7.2 Estimating Psyche’s Largest Crater Profile in 2D

Crater classification involves many factors, including the size of the crater, the

geographic features of the crater, and the body on which the crater exists [95]. Simple

craters are bowl-shaped and typically have diameters less than 15 km on the moon and

less than 3 km on Earth. The crater floor consists of broken rock, known as breccia,

the result of debris falling into the crater after impact. Meteor Crater in Arizona in an

example of a terrestrial simple crater [95]. Complex craters typically have diameters

greater than 20 km on the moon and greater than 3 km on Earth. Complex craters

are thought to be the result of the collapse of an initial bowl-shaped crater. The crater

floor consists of highly shocked and melted debris, with the possibility of melt pools
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[95]. The transition between simple and complex craters scales as the inverse of the

gravitational acceleration g [95]. Using k to represent the proportionality constant,

the transition can be expressed as k
g
. Using Earth’s gravitational acceleration of

9.8 m/s2 converted to km/s2, k = 0.029. To verify against the lunar gravitational

acceleration of 1.6 m/s2 converted to km/s2, the transition to complex craters occurs

when crater diameter reaches about 18 km, which is consistent with the expected

transition [95]. Using this same process and Psyche’s gravitational acceleration of

0.29 m/s2 convert to km/s2, the transition to complex craters on Psyche occurs when

crater diameter reaches about 100 km.

Psyche’s largest crater is estimated to be about 70 km in diameter, so I expect

this to be a simple crater [124]. Psyche’s deepest point is estimated to be about 6.4

km [124]. However, there is no information about the curvature of the crater profile.

Using these depth and diameter estimates, I created two possible crater profiles. The

first assumes that the crater is part of a circle, and the second assumes the crater

is part of an ellipse. The impact angle plays a key role in crater shape. The most

probable impact angle is 45o relative to vertical [95]. A crater that results from an

oblique impact has bilateral symmetry with an asymmetric ejecta blanket. This effect

becomes more pronounced as angle obliquity increases [95]. Circular impact craters

result from high-velocity impacts with low obliquity [95]. I expect these profiles to

be overestimates because Psyche’s largest crater is slightly more shallow than the

smaller crater [124].

For the circular profile, I assume the crater is a portion of circle cut by a chord

having the same length as the crater’s diameter, 70 km. The resulting crater has a

depth of 6.4 km, the deepest possible estimate for the actual crater. To determine

the radius, I let r represent the circle’s radius, and I define the angle between the the

radius bisecting the crater and the radius intersecting the end of the chord to be a.
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The resulting right triangle has sides of length 3.2 km (half of the chord length) and

r− 6.4 km (length from center of circle to chord) and hypotenuse of length r. Figure

7.1 shows a schematic of such a circle. Using the Pythagorean Theorem, I determine

the circle’s radius (all units are in km):

(r − 6.4)2 + 352 = r2

r2 − 12.8r + 40.96 + 1225 = r2

1265.96 = 12.8r

r ≈ 98.903125 km.

Thus, the equation for the circular crater profile is

x2 + y2 = 9781.82813,

where

x ∈ [−35, 35] and y < 0.

rr - 6.4 km

6.4 km

a

Figure 7.1: Depiction of Psyche’s Largest Crater As Part of a Circle. The Dashed
Black Line Is a Chord of Length 70 km, the Crater’s Estimated Diameter. The Dotted
Blue Line Has Length 6.4 km, the Maximum Depth on Psyche. The Crater is the
Area Within the Circle Below the Dashed Black Chord.
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For the elliptical profile, I assume the major axis is the crater diameter (70 km)

and the minor axis is twice the crater depth (12.8 km). Using the formula for an

ellipse, the equation of the crater profile is

x2

352
+

y2

6.42
= 1,

where

x ∈ [−35, 35] and y < 0.

Figure 7.2 shows these two crater profiles.
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Figure 7.2: Crater Profiles of Psyche’s Largest Crater As Part of a Circle (Solid)
and Part of an Ellipse (Dashed). The Transient Crater Estimate Is In Black with
Triangles, and the Shape Model Profile Is Shown with Error Bars (Green).

7.3 2D Simulations

I began with a series of 2D axisymmetric simulations in order to investigate a

variety of materials with reduced computational resources (see Appendix F for sim-

ulation details). For these runs, I modeled Psyche as a circle of radius 125 km and
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the impactor as a circle of radius 5 km, consistent with estimates in the literature

[65, 124], and I modeled the surrounding material as a void. The choice of using a

circle for Psyche has several benefits in 2D. If Psyche is the remnant of a differenti-

ated planetessimal, the gravity of the parent body could have hydrostatically pulled

the core into a round shape. Because these 2D simulations are primarily to explore

material aspects of Psyche, I chose to run them axisymmetric to make better use of

computational resources while still allowing meaningful predictions from simulation

results. These 2D simulations will indicate whether future simulations should include

different shapes for Psyche. I chose an impact velocity of 4.5 km/s, consistent with

the probable impact velocities of collisions involving Psyche, and an impact angle

normal to Psyche’s surface [47]. The computational domain ranged from 0 to 500 km

in both the x and y dimensions, and the resolution was about 15 cells per projectile

radius, for a total of 2301285 zones. I used an Eulerian remap after each time step.

7.3.1 Strengthless Results

In Chapter 6, I discussed when material strength is expected to play an important

role in impact crater formation. For an impact velocity of 4.5 km/s, I expect results

incorporating material strength to be a better match for the crater dimensions than

results using strengthless materials.

To verify that strength indeed plays a role, and to rule out very high impact veloc-

ities, I ran strengthless simulations with three materials for both target and impactor:

nickel; iron; silicon dioxide. I chose nickel and iron because M-type asteroids are as-

sumed to be rich in these metals [90]. I chose silicon dioxide (SiO2) because silicon

and oxygen may be present in liquid core, and SiO2 crystalizes as the core cools [62].

As I expected, these simulations resulted in craters much larger than the estimates

for the actual crater, with depths around 65 km and radii around 42–43 km. Figure
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7.3 shows the crater profiles from these strengthless simluations plotted alongside the

circular and elliptical profiles based on crater dimension estimates.

0 10 20 30 40 50 60 70
Radius (k )

(70

(60

(50

(40

(30

(20

(10

0

D
e
p
th
 (
k 
)

Elliptical Profile
Circular Profile
Shape Model Data
Transient Crater Esti ate
Strengthless Fe
Strengthless Ni
Strengthless SiO2

Figure 7.3: Crater Profiles from 2D Strengthless Simulations Using Iron, Nickel,
and Silicon Dioxide Compared to Crater Profiles Created from Crater Dimension
Estimates.

7.3.2 Solid Material Results

Because I expect strength to play a role in the formation of Psyche’s largest crater,

and because my strengthless results supported this hypothesis, I ran simulations using

a variety of materials and models for both impactor and Psyche. A detailed descrip-

tion of the materials models is located in Chapter 6, Section 6.2. The materials I used

for Psyche were iron, nickel, and Monel, a nickel-copper alloy that contains titanium,

aluminum, silicon, and iron [126]. Monel was modeled after ore from Sudbury basin,

a large impact structure in Canada [117, 126]. The location of the metal in an impact

structure indicates it could have come from the impactor that formed the structure

and is likely to have similar properties to extraterrestrial metallic bodies. Table 7.1
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lists the materials and models used in each simulation. The material models are

abbreviated as follows: Preston-Tonks-Wallace (PTW) [115]; Steinberg-Guinan (SG)

[130]; perfect plasticity (pp) [128]. The Mie-Grüneisen EOS is abbreviated MG (see

Chapter 5, Section 5.4). The material model equations are in Chapter 6, Section 6.2.

Parameter values are listed in Appendix E. Figure 7.4 shows the crater profiles of

these simulations.

Impactor Impactor Impactor Psyche Psyche Psyche

Material Material Model EOS Material Material Model EOS

Monel SG MG Monel SG MG

Iron PTW SESAME Iron PTW SESAME

Silicon pp SESAME Iron PTW SESAME

dioxide

Silicon pp SESAME Monel SG MG

dioxide

Silicon pp SESAME Nickel SG SESAME

dioxide

Table 7.1: Material Information for Simulations of the Formation of Psyche’s Largest
Impact Crater.

Figure 7.5 shows the crater formation in the simulation using silicon dioxide as

the impactor and Monel as Psyche. The images in the figure show the progression of

crater formation as material is ejected from the crater. As this happens, the material

that follows the excavation trajectory but is not ejected results in an overturned flap

with inverted stratigraphy [125].
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Figure 7.4: Crater Profiles from Simulations Run with Material Models. The First
Listed Material Indicates the Impactor Material, and the Second Listed Material
Indicates the Material Used for Psyche.

(a) (b)

(c) (d)

Figure 7.5: Images from the SiO2-Monel Simulation Showing the Eventual Over-
turned Flap.(a) Ejected Material Follows Expected Trajectory out of Crater; (b)
Hinge Forms During Crater Excavation; (c) Material Collapses at Hinge; (d) Flap of
Hinged Ejected Material Has Overturned.
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7.3.3 EOS Effects

I chose the alloy Monel because of its probable extraterrestrial origin. However,

unlike the other materials used in these models, there is not an associated SESAME

EOS for Monel. Instead, I used a Mie-Grüneisen analytical EOS using parameters

available in the literature [131]. This EOS, however, does not account for phase tran-

sitions. Thus, there is neither melted nor vaporized material in the Monel-Monel

impact, while other simulations have a noticeable vapor plume. The Monel-Monel

simulation does not reach melt temperature, while simulations using SESAME EOSs

do in a small portion of the crater. In the later times of these simulations, the hot

material has very low density and has either been ejected from the crater or exists

in the vapor plume. In impact velocities below 12 km/s, which is the regime of these

simulations, the melt mass is very low [95]. Thus, melted or vaporized material is

unlikely to play a large role in the crater formation.

To better understand the effects of the EOS, I examined the pressures in these

simulations at the same time step for several times during the simulation. The pres-

sures in simulations model Psyche as iron with a SESAME EOS versus Monel with

a Mie-Grüneisen EOS were comparable, varying on the order of 10−2 GPa. Because

these simulations used distinct yet similar materials, I concluded that the EOS was

unlikely to be affecting the shock wave from the impact in a significant way.

When zones have mixed materials in FLAG, a volume fraction tolerance is imple-

mented to remove materials below tolerance. In my simulations, I set this value to be

1e-13 so that the maximum material removed from any one cell would be 1 part in

10 trillion. This tolerance ensures that the amount of energized low-density material

removed does not adversely affect the energy conservation of the simulation. I verified

this by using FLAG’s built-in energy check at a simulation time of 4 seconds, which
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is sufficient for the pressure wave to have passed through the crater area and lessened

in intensity. For the Monel-Monel simulation, the amount of energy lost was slightly

less than 0.01%.

7.3.4 Porosity Study

After running simulations of strictly solid materials, I chose Monel for a porosity

study. I chose Monel because of its origin from an impact structure, indicating it

is likely similar to metallic solid bodies in the solar system. Another justification

for Monel is that solid simulations ran well, showing an overturned flap, and did so

in relatively short computational time. For the porosity study, I initialized Psyche

with 30%, 50%, 60%, 70%, and 80% porosity. I kept the impactor as solid. In

these simulations, pore collapse was not accounted for. Hence, the pores in the

target material deform consistently with the solid target material, resulting in a stiffer

material. I expect this additional stiffness to affect crater modification and result in

a smaller crater. Figure 7.6 shows the crater profiles from the porosity simulations.
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Figure 7.6: Crater Profiles from Monel-Monel Simulations with Porosity.

7.3.5 Conclusions from 2D Simulations

Based on these simulations, I predict that Psyche’s composition is indeed highly

metallic. I also predict that Psyche’s composition is porous rather than solid. From

the resulting craters in these simulations, I predict that the impact angle that formed

the crater was oblique rather than normal. This prediction is based largely on Psyche’s

reported crater dimensions as well as the V&V results from Chapter 6, which indicate

a depth-to-radius ratio close to 1 for normal impacts. Because I predict an oblique

impact, 3D simulations are the next logical step. In order to ensure the 3D simulations

provide more realistic results than the 2D simulations, I will use a shape model for

Psyche to better capture it’s geometric features.
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7.4 3D Simulations

The 2D axisymmetric scoping tested a variety of materials, material models, and

porosities. Based on the solid runs, a Monel target with either a silicon dioxide im-

pactor or a Monel impactor showed the most promising results. The Monel-Monel

solid impact showed an overturned flap, and the SiO2-Monel impact showed good

agreement with crater depth. However, it is important to note that impact gardening

— continued impacts over time — affect the shape of the crater. On Earth, crater

evidence erodes through natural processes such as volcanic activity, water flow, and

wind erosion. On bodies without these processes, and without atmosphere, crater

evidence erodes through continued impacts, which can deposit new material into an

existing crater.

My porosity study indicated that increased porosity resulted in increased crater di-

mensions, consistent with experimental results of vertical impacts into porous targets.

In several such experiments, crater depth increased as porosity increased [23, 119, 120].

This depth increase could be the result of the increased ejected mass in such impacts,

which can result in a vapor plume of mass 5–6 times the mass of the impactor [119].

For both solid and porous runs, the crater shape did not match well, because the

actual crater is estimated to be considerably wider than it is deep. The crater shapes

from the 2D simulations were similar to those from the 2D validation problem pre-

sented in Chapter 6, which was a normal impact. For this reason, I expect the impact

angle that formed the crater was not a normal (vertical) impact but rather an oblique

one. Thus, my 3D simulations incorporated oblique impact angles.

To set up my 3D simulation, I used a shape model of Psyche [70]. I added a

spherical cap to cover the existing craters. This cap contained the same material

composition that I used to model Psyche in each simulation so that the target com-
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position remained constant. I ran 3D simulations of SiO2 impacting Monel and Monel

impacting Monel at impact angles of 30o and 60o relative to vertical (see Appendix

F for simulation details). I used solid materials for the impactor, and I used solid,

30% porous, and 50% porous materials for Psyche. All material models in the 3D

simulations were the same as in the 2D simulations. Table 7.2 lists the dimensions

of the craters in these simulations as well as the estimated dimensions of the actual

crater.

Crater Dimension 6.4 ± 0.64 km [124] 67 ± 15 km [124]

Impactor Psyche Porosity Angle Depth Diameter

Monel Monel Solid 45o 7 km ∗ 35.1438 km

Monel Monel Solid 60o 5.3 km 36.8 km

SiO2 Monel Solid 45o 0.1 km 41.0122 km

SiO2 Monel Solid 60o 1.1 m 28.5 km

Monel Monel 30% 45o 5.5 km 39.598 km

Monel Monel 30% 60o 10.4 km 51.5 km †

Monel Monel 50% 45o 14.5 km 42.4264 km

Monel Monel 50% 60o 12 km 60 km ∗

Table 7.2: Crater Dimensions from 3D Simulations. ∗ Indicates the Simulation
Value Was within the Error Bar of the Actual Crater Dimensions. † Indicates That
the Simulation Value Lies within the Error Bar of the Actual Crater Dimensions
after Correcting for the Expected Numerical Error from the Validation Simulation in
Chapter 6 (up to 15.5% Underestimation for Radius and up to 6.5% Overestimation
for Depth). The Material Models and EOSs Are the Same As in Table 7.1.

As expected, the porosity simulations resulted in crater dimensions closer to the

actual estimates. The 3D simulations showed the crater formation as well as ejected

material leaving the body of the asteroid. Figure 7.7 shows the Monel-Monel simula-

tion with a 45-degree impact angle and no porosity about 92 seconds after impact.
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Figure 7.7: Simulation of Crater Formation from a Monel-Monel 45-Degree Impact
about 92 Seconds after Impact, Colored by Velocity.

Figure 7.8 shows the crater formation over time for the Monel-Monel 60-degree

impact with 50% porosity. The images show the contact and compression, excavation,

and crater modification stages.
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(a) t = 0 s (b) t = 4.5137 s

(c) t = 9.0033 s (d) t = 14.0193 s

(e) t = 19.0237 s (f) t = 40.0089 s

(g) t = 65.0055 s (h) t = 90.0183 s

Figure 7.8: Crater Formation from a Monel-Monel 60-Degree Impact with a 50%
Porous Target.
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From the V&V of the FLAG hydrocode in Chapter 6, I expect that my simulations

may overestimate the depth by about 1.8% to 6.5%, and I expect the radius to be

underestimated by about 3.4% to 15.5%. Considering the 67 ± 15 km crater diameter

estimate, several of the simulations had acceptable crater diameters. The 6.4 ± 0.64

km depth estimate is likely to be an overestimate because this crater is shallower

than the smaller crater [124]. The diameter of the Monel-Monel 60o impact with 50%

porosity was within the error bars of the data, and the depth of the Monel-Monel

45o solid impact was within the error bars from the data as well. When accounting

for expected numerical errors from the validation problem in Chapter 6, the Monel-

Monel 60o impact with 30% porosity had a diameter within the error bars from the

data. I predict that a silicon dioxide impactor was unlikely at the tested impact

angles because the resulting craters were far too shallow. Several of the Monel-Monel

impacts were very near the error bars and may match better at different impact

angles.

7.5 Conclusions

I modeled the formation of Psyche’s largest impact crater in order to determine

Psyche’s likely material composition using the FLAG hydrocode. I determined that

silicon dioxide and Monel were the two materials that resulted in craters with the

closest match to the actual estimated crater dimensions through 2D solid simulations.

While silicon dioxide as an impactor had a good match with crater depth in 2D, the

crater diameter was much smaller than the actual crater. Monel impacting Monel

led to the only instance of the overturned flap in 2D, indicating the models in that

simulation better matched the actual physics involved in cratering. However, the

Monel-Monel impact was too deep as well as too small in diameter. My porosity study

in 2D showed that increased porosity in Psyche led to larger craters. I concluded that
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Psyche is likely porous because the solid material simulations had craters that were

too small in diameter, porosity is likely present in Psyche. The overestimate of the

depth in most of the 2D simulations indicated that the impact itself was likely oblique

rather than normal.

I set up 3D full scale simulations using the results from my 2D scoping runs. I

chose Monel for the material of Psyche, and I varied the porosity. I used a silicon

dioxide impactor as well as a Monel impactor, and I used two different impact angles.

Several of my 3D simulations matched well with the estimated crater dimensions.

One simulation achieved a crater diameter of 60 km compared to the estimated 70

km, and another had a depth of 7 km compared to an estimate of 6.4 km.

From my simulations, I predict that Psyche is indeed likely mostly metallic with

a porosity of about 50%. These predictions are consistent with the idea that M-type

asteroids such as Psyche are differentiated planet cores. I also predict that the impact

angle that led to Psyche’s largest crater was likely an oblique impact of at least 45o

from vertical, possibly more. Future work will include modeling the smaller of the

two impact structures, estimated to be smaller in diameter but slightly deeper than

the larger counterpart.
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Chapter 8

CONCLUSIONS

The purpose of this work was to demonstrate the important role of differential equa-

tion models when addressing problems beyond experimental capabilities. In this work,

I addressed two different types of problems by developing and analyzing ordinary

differential equation models and using computer simulations of partial differential

equation models.

In Chapter 3, I used an SIR modeling approach for a novel use: prescription drug

abuse. In this chapter, I developed two ODE models to describe the most common

path to Vicodin abuse in the United States. Through adjoint sensitivity analysis, I

determined that prevention is more effective than treatment at mitigating the num-

ber of people abusing Vicodin. The work in this chapter introduces a novel tool to

address the prescription drug abuse epidemic. While the models presented in this

chapter concerned Vicodin specifically, they could be adapted to include a number of

substances for which the most common path to abuse begins with a prescription.

In Chapter 4, I proved that solutions to the SIAD model are non-negative and

exist for all non-negative time. I also proved that both models have unique solu-

tions. For the SIAD model, I found a condition for which the positive steady state

is asymptotically stable. I used the R0 value to determine when an epidemic could

occur. The work presented in this chapter strengthens the results from Chapter 3 by

showing the biological relevance. The work in this chapter presents the first rigorous

mathematical analysis of the Vicodin abuse models.

In Chapter 6, I presented a novel use for the FLAG hydrocode by demonstrat-

ing its ability to model impact cratering. My results in FLAG matched well with
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both theoretical and experimental results, with agreement considerably better than

previously published results testing hydrocodes commonly used for impact cratering

problems. The work in this chapter verifies and validates FLAG for impact cratering

and provides information on expected errors in crater dimensions and maximum pres-

sures based on mesh resolution and problem set up. FLAG’s success for these V&V

problems indicates FLAG can be an additional tool for impact cratering problems.

In Chapter 7, I used 2D and 3D FLAG simulations of the formation of the largest

impact crater on Asteroid 16 Psyche to determine its likely material composition and

porosity. This novel method for predicting material properties of Psyche corrobo-

rated other predictions in the literature that indicate Psyche is likely composed of a

large portion of metallic content and is porous. My models also indicated that the

impact angle that formed the crater was likely at least 45o from vertical, possibly 60o

or greater. The models confirmed that hardening behavior and damage played a role

in the crater’s formation.

8.1 Ongoing and Future Work

The SIAD model for Vicodin abuse is being modified to include an undesirable

exit from abuse, either from overdose death or as a gateway effect to another sub-

stance. This modified model will explore the interesting dynamics of a system in

which the goal is to reduce the population in one compartment in a favorable manner

rather than through death or another substance. This work will be the subject of an

undergraduate honors thesis project.

I have combined the CVT and SIAD Vicodin abuse models into one model, the

Multiple Relapse Vicodin Abuse (MRVA) model, for which the CVT and SIAD mod-

els are special cases. For the MRVA model, I am working on the same type of analysis

presented in Chapter4.
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I am currently working on validating FLAG for explosion cratering and compar-

ing these results to results from the HOSS code, a code used strictly for modeling

solid materials. The validation will evaluate how FLAG’s solid material modeling

compares to that of a code developed for geologic applications. This work will also

test FLAG’s capability to model geologic materials and help to determine if different

material models should be implemented in FLAG for terrestrial cratering problems.

I am modeling the smaller of Psyche’s two largest impact craters, beginning with

2D scoping runs as I did for the larger crater in Chapter 7. When the scoping runs

are complete, I plan to model the crater formation in 3D using the same shape model

that I used for the larger crater. I will also vary the angle of impact and materials if

the 2D scoping runs indicate that is necessary.
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[46] Eymard, R., T. Gallouët and R. Herbin, “Finite Volume Methods”, Handbook
of Numerical Analysis 7, 713–1018 (2000).

[47] Farinella, P. and D. R. Davis, “Collision Rates and Impact Velocities in the
Main Asteroid Belt”, Icarus 97, 1, 111–123 (1992).

[48] Fishbain, D. A., B. Cole, J. Lewis, H. L. Rosomoff and R. S. Rosomoff, “What
Percentage of Chronic Nonmalignant Pain Patients Exposed to Chronic Opioid
Analgesic Therapy Develop Abuse/Addiction and/or Aberrant Drug-Related
Behaviors? A Structured Evidence-Based Review”, Pain Medicine 9, 4, 444–
459 (2008).

[49] Fugate, M., D. Higdon, B. Williams, K. M. Hanson, T. Wallstrom, W. Blu-
menthal and S.-R. Chen, “Calibration of the Preston-Tonks-Wallace (PTW)
Plastic Deformation Model: Fiscal Year 2008”, Tech. Rep. LA-UR-08-5866,
Los Alamos National Laboratory, Los Alamos, NM (2008).

[50] Fung, J., A. K. Harrison, S. Chitanvis and J. Margulies, “Ejecta source and
transport modeling in the FLAG hydrocode”, Computers & Fluids 83, 177–186
(2013).

[51] Generous, N., G. Fairchild, A. Deshpande, S. Y. Del Valle and R. Priedhorsky,
“Global disease monitoring and forecasting with wikipedia”, PLoS Comput Biol
10, 11, e1003892 (2014).

119

http://drugabuse.com/library/vicodin-abuse


[52] Getz, W. M. and J. O. Lloyd-Smith, “Basic Methods for Modeling the Invasion
and Spread of Contagious Diseases”, in “Disease Evolution: Models, Concepts,
and Data Analyses”, pp. 87–112 (Citeseer, 2006).

[53] Gittings, M., R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker,
E. Dendy, R. Hueckstaedt, K. New, W. R. Oakes et al., “The RAGE radiation-
hydrodynamic code”, Computational Science & Discovery 1, 1, 015005 (2008).

[54] Granzier, H. L. and S. Labeit, “The Giant Muscle Protein Titin is an Adjustable
Molecular Spring”, Exercise and Sport Sciences Reviews 34, 2, 50–53 (2006).

[55] Gustafson, P., C. Srinivasan and L. Wasserman, “Local Sensitivity Analysis”,
Bayesian statistics 5, 197–210 (1996).

[56] Hartmann, W. K. and G. Neukum, “Cratering Chronology and the Evolution of
Mars”, in “Chronology and Evolution of Mars”, pp. 165–194 (Springer, 2001).

[57] Hayes, J. C., M. L. Norman, R. A. Fiedler, J. O. Bordner, P. S. Li, S. E.
Clark, M.-M. Mac Low et al., “Simulating Radiating and Magnetized Flows in
Multiple Dimensions with ZEUS-MP”, The Astrophysical Journal Supplement
Series 165, 1, 188 (2006).

[58] Hayne, P. O., B. T. Greenhagen, M. C. Foote, M. A. Siegler, A. R. Vasavada
and D. A. Paige, “Diviner Lunar Radiometer Observations of the LCROSS
Impact”, Science 330, 6003, 477–479 (2010).

[59] Hethcote, H. W., “The Mathematics of Infectious Diseases”, SIAM review 42,
4, 599–653 (2000).

[60] Hickmann, K. S., G. Fairchild, R. Priedhorsky, N. Generous, J. M. Hyman,
A. Deshpande and S. Y. Del Valle, “Forecasting the 2013–2014 influenza season
using wikipedia”, PLoS Comput Biol 11, 5, e1004239 (2015).

[61] Hill, J. L., User’s Manual for FLAG version 3.6.0, The Lagrangian Applications
Project, Los Alamos National Laboratory, LA-CP-17-20057 (2017).

[62] Hirose, K., G. Morard, R. Sinmyo, K. Umemoto, J. Hernlund, G. Helffrich and
S. Labrosse, “Crystallization of silicon dioxide and compositional evolution of
the Earth?s core”, Nature 543, 7643, 99 (2017).

[63] Hodgkin, A. L. and A. F. Huxley, “Currents carried by sodium and potassium
ions through the membrane of the giant axon of Loligo”, The Journal of phys-
iology 116, 4, 449–472 (1952).

[64] Holsapple, K., “The Scaling of Impact Processes in Planetary Sciences”, Annual
Review of Earth and Planetary Sciences 21, 1, 333–373 (1993).

[65] Holsapple, K. A., “Impact and Explosion Effects”, URL http://keith.aa.
washington.edu/craterdata/scaling/index.htm (2018).

120

http://keith.aa.washington.edu/craterdata/scaling/index.htm
http://keith.aa.washington.edu/craterdata/scaling/index.htm


[66] Housen, K. R. and K. A. Holsapple, “Ejecta from impact craters”, Icarus 211,
1, 856–875 (2011).

[67] IMS Institute for Healthcare Informatics, “The Use of Medicine in the United
States: Review of 2010”, IMS Institute for Healthcare Informatics p. 33 (2011).

[68] Ivanov, B., D. Deniem and G. Neukum, “Implementation of dynamic strength
models into 2D hydrocodes: Applications for atmospheric breakup and im-
pact cratering”, International Journal of Impact Engineering 20, 1-5, 411–430
(1997).

[69] Jet Propulsion Laboratory, “Mission to a Metal World psyche”, URL https:
//www.jpl.nasa.gov/missions/psyche/ (2018).

[70] Jet Propulsion Laboratory, “Psyche shape model”, URL https://echo.jpl.
nasa.gov/asteroids/shapes/shapes.html (2018).

[71] Johhson, G. R. and W. H. Cook, “A Constitutive Model and Data for Met-
als Subjected to Large Strains, High Strain Rates and High Temperatures”,
in “Proceedings Seventh International Symposium on Ballistics”, pp. 541–547
(The Hague, The Netherlands, 1983).

[72] Kaasalainen, M. and J. Torppa, “Optimization Methods for Asteroid Lightcurve
Inversion: I. Shape Determination”, Icarus 153, 1, 24–36 (2001).

[73] Kermack, W. O. and A. G. McKendrick, “A Contribution to the Mathematical
Theory of Epidemics”, Proceedings of the Royal Society 115A, 5, 700–721
(1927).

[74] Kochetova, O., “Application of New Criteria for the Selection of Perturbed
Minor Planets to the Determination of the Masses of Perturbing Minor Planets
by the Dynamical Method”, Soobshch. In-ta Prikladnoi Astronomii RAN , 165,
42 (2003).

[75] Korycansky, D., C. S. Plesko, M. Jutzi, E. Asphaug and A. Colaprete, “Predic-
tions for the LCROSS mission”, Meteoritics & Planetary Science 44, 4, 603–620
(2009).

[76] Lahrouz, A., L. Omari, D. Kiouach and A. Belmaâti, “Deterministic and
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newald, “Drinking as an Epidemic–A Simple Mathematical Model with Recov-
ery and Relapse”, Therapist’s Guide to Evidence-Based Relapse Prevention p.
353 (2007).

[119] Schultz, P. H., C. A. Eberhardy, C. M. Ernst, M. F. A’Hearn, J. M. Sunshine
and C. M. Lisse, “The Deep mpact oblique impact cratering experiment”, Icarus
191, 2, 84–122 (2007).

124

https://www.prescriptiondrugabuse.org/Effects-of-Vicodin-Abuse.htm
https://www.prescriptiondrugabuse.org/Effects-of-Vicodin-Abuse.htm


[120] Schultz, P. H., C. M. Ernst and J. L. B. Anderson, “Expectations for crater
size and photometric evolution from the deep impact collision”, Space Science
Reviews 117, 1-2, 207–239 (2005).

[121] Scovel, C. A. and R. Menikoff, “A verification and validation effort for high
explosives at Los Alamos National Lab”, in “AIP Conference Proceedings”,
vol. 1195, pp. 169–172 (AIP, 2009).

[122] Shabana, A. A., Computational Continuum Mechanics (Cambridge University
Press, 2008).

[123] Sharp, R., “Users Manual for ALE3D: An Arbitrary Lagrange/Eulerian 3D
Code System”, Lawrence Livermore National Laboratory (2005).

[124] Shepard, M. K., J. Richardson, P. A. Taylor, L. A. Rodriguez-Ford, A. Conrad,
I. de Pater, M. Adamkovics, K. de Kleer, J. R. Males, K. M. Morzinski et al.,
“Radar observations and shape model of asteroid 16 Psyche”, Icarus 281, 388–
403 (2017).

[125] Shoemaker, E. M., “Penetration mechanics of high velocity meteorites, illus-
trated by Meteor Crater, Arizona”, Meteorite Craters, Benchmark Papers in
Geology p. 170 (1977).

[126] Shoemaker, L. E. and G. D. Smith, “A Century of Monel Metal: 1906–2006”,
JOM 58, 9, 22–26 (2006).

[127] Shuvalov, V., “Multi-dimensional hydrodynamic code SOVA for interfacial
flows: Application to the thermal layer effect”, Shock Waves 9, 6, 381–390
(1999).

[128] Simo, J. C. and T. J. R. Hughes, Computational Inelasticity, vol. 7 (Springer
Science & Business Media, 2006).

[129] Smith, H. L., L. Wang and M. Y. Li, “Global Dynamics of an SEIR Epidemic
Model with Vertical Transmission”, SIAM Journal on Applied Mathematics
62, 1, 58–69 (2001).

[130] Steinberg, D., S. Cochran and M. Guinan, “A constitutive model for metals
applicable at high-strain rate”, Journal of Applied Physics 51, 3, 1498–1504
(1980).

[131] Steinberg, D. J., “Equation of State and Strength Properties of Selected Materi-
als”, Tech. Rep. UCRL-MA-106439, Lawrence Livermore National Laboratory,
Livermore, CA (1996).

[132] Stickle, A., E. Rainey, M. B. Syal, J. Owen, P. Miller, O. Barnouin and C. Ernst,
“Modeling impact outcomes for the Double Asteroid Redirection Test (DART)
mission”, Procedia Engineering 204, 116–123 (2017).

125



[133] Substance Abuse and Mental Health Services Administration, “Results from the
2011 National Survey on Drug Use and Health: Summary of National Findings”,
NSDUH Series H-44, HHS Publication No. (SMA) 12-4713. Rockville, MD:
Substance Abuse and Mental Health Services Administration (2012).

[134] Sullivan, M. D., M. J. Edlund, M.-Y. Fan, A. DeVries, B. Braden et al., “Trends
in use of opioids for non-cancer pain conditions 2000–2005 in commercial and
Medicaid insurance plans: The TROUP study”, Pain 138, 2, 440–449 (2008).

[135] Surdej, J. and A. Surdej, “Asteroid Lightcurves Simulated by the Rotation of
a Three-axes Ellipsoid Model”, Astronomy and Astrophysics 66, 31–36 (1978).

[136] Szalavitz, M., “FDA Action on Vicodin May Mean More Pain, Not Less Ad-
diction or Overdose”, TIME (2013).

[137] Thieme, H. R., Mathematics in Population Biology (Princeton University Press,
2003).

[138] Tobler, N. S. and H. H. Stratton, “Effectiveness of School-Based Drug Preven-
tion Programs: A Meta-Analysis of the Research”, Journal of Primary Preven-
tion 18, 1, 71–128 (1997).

[139] Tonks, D., D. Paisley, P. Peralta, S. Greenfield, D. Byler, S. Luo, D. Swift
and A. Koskelo, “Spallation damage in copper with columnar grains”, AIP
Conference Proceedings 955, 605–608 (2007).

[140] United States Drug Enforcement Administration, “Drug scheduling”, United
States Drug Enforcement Administration, https://www.dea.gov/druginfo/
ds.shtml (2018).

[141] Viateau, B., “Mass and density of asteroids (16) Psyche and (121) Hermione”,
Astronomy and Astrophysics 354, 725–731 (2000).

[142] Viken, R. J., T. A. Treat, R. M. Nosofsky, R. M. McFall and T. J. Palmeri,
“Modeling Individual Differences in Perceptual and Attentional Processes Re-
lated to Bulimic Symptoms.”, Journal of Abnormal Psychology 111, 4, 598
(2002).

[143] Volkow, N. D., “Prescription Drugs: Abuse and Addiction”, National Institute
on Drug Abuse, U.S. Department of Health and Human Services, National
Institutes of Health (2005).

[144] Volkow, N. D., T. A. McLellan, J. H. Cotto, M. Karithanom and S. R. B.
Weiss, “Characteristics of opioid prescriptions in 2009”, JAMA: The Journal of
the American Medical Association 305, 13, 1299–1301 (2011).

[145] White, E. and C. Comiskey, “Heroin epidemics, treatment and ODE modelling”,
Mathematical Biosciences 208, 1, 312–324 (2007).

126

https://www.dea.gov/druginfo/ds.shtml
https://www.dea.gov/druginfo/ds.shtml


APPENDIX A

PERMISSION

127



Portions of Chapter 3 are included in the manuscript “The Vicodin Abuse Prob-
lem: A Mathematical Approach,” which is in revision at Journal of Theoretical Bi-
ology as of April 4, 2019. This manuscript was co-authored by Benjamin Freedman,
Luke Settles, Michael M. Thomas, Erika T. Camacho, and Stephen Wirkus.

Portions of Chapter 6 are included in the manuscript “Verification and Valida-
tion of the FLAG Hydrocode for Impact Cratering Simulations,” which has been
accepted at Journal of Verification, Validation and Uncertainty Quantification. This
manuscript was co-authored by Abigail Hunter, Catherine S. Plesko, and Stephen
Wirkus.

A manuscript containing the results presented in Chapter 7 in is preparation as
of April 4, 2019. This manuscript is co-authored by Abigail Hunter, Catherine S.
Plesko, and Stephen Wirkus.

I certify that I have obtained permission from all of my co-authors to include the
content of these manuscripts in my dissertation.

Wendy K. Caldwell, April 4, 2019

128



APPENDIX B

ESTIMATION OF PARAMETER VALUES AND INITIAL CONDITIONS

129



B.1 CVT Model Parameter Values

Using information concerning Vicodin use in the United States, I was able to es-
tablish estimated ranges for each of our parameters, listed in Table 3.1.

To estimate the number of people receiving new Vicodin prescriptions each month,
I first considered the number of Vicodin prescriptions written each year, 131.2 mil-
lion [67]. I assumed the same number of prescriptions each month and divide this
number by 12, indicating 10.93333 million Vicodin prescriptions each month. I then
determined the number of new prescriptions by multiplying by the percentage of new
prescriptions, 43% [144]. Because the CVT model only considered initial prescrip-
tions of three or fewer months, I divided by the average supply per person, which
ranges from 42.7 days to 52.8 days [134]. Converting this average supply to months,
assuming 30 days to be one month, led to an average supply of 1.423̄ to 1.76 months.
I used these supply ranges to find the upper and lower bounds for Lambda:

Λlower ≈
(

131.2 million

12

)
︸ ︷︷ ︸

monthly Rx

(0.43)︸ ︷︷ ︸
new Rx

 1

1.76︸︷︷︸
average supply in months


Λlower ≈ 2.671212 million

Λupper ≈
(

131.2 million

12

)
︸ ︷︷ ︸

monthly Rx

(0.43)︸ ︷︷ ︸
new Rx

 1

1.423̄︸ ︷︷ ︸
average supply in months


Λupper ≈ 3.404044 million.

This led to the estimated range for Λ: [2671212, 3404044].
I estimated the rate at which acute medical users become chronic users (α1) and

the rate at which acute medical users stop using Vicodin (α2) by considering the
average time for acute medical use (less than or equal to three months). For the
model, this is the average time an individual is in the M compartment, 1

α1+α2
. Thus,

1 ≤ 1
α1+α2

≤ 3, which is equivalent to

1

3
≤ α1 + α2 ≤ 1. (B.1)

To further determine this value, I considered multiple studies that estimate the
average percentage of all opioid users with prescriptions for three or fewer months.
This estimate is between 63.8% and 88.7% [134]. In the model, this percentage is
α2

α1+α2
. Equating these values led to the following inequality for α2:

0.638︸ ︷︷ ︸
% of acute users, lower bound

≤ α2

α1 + α2︸ ︷︷ ︸
model % of acute users

≤ 0.887︸ ︷︷ ︸
% of acute users, upper bound

.
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Considering each side of the inequality leads to the following bounds for α2:

α2 lower : α2 = 0.638α1 + 0.638α2

0.362α2 = 0.638α1

α2 lower ≈ 1.762α1

α2 upper : α2 = 0.887α1 + 0.887α2

0.113α2 = 0.887α1

α2 upper ≈ 7.850α1

1.762α1 ≤ α2 ≤ 7.850α1. (B.2)

I found an inequality for α1 by substituting the bounds for α2 from (B.2) into (B.1):

1

3
≤ α1 + α2 ≤ 1

1

3
− α2 ≤ α1 ≤ 1− α2.

Considering each side of the inequality leads to the following bounds for α1:

α1 lower : α1 =
1

3
− α2︸︷︷︸
≤7.850α1

8.85α1 =
1

3
α1 lower ≈ 0.0377

α1 upper : α1 = 1− α2︸︷︷︸
≥1.762α1

2.762α1 = 1

α1 upper ≈ 0.362. (B.3)

This led to the estimated range for α1: [0.0377, 0.362]. Substituting these bounds
into (B.1) and (B.2), I found the bounds for α2:

α2 lower = 1.762α1

α2 lower = 1.762 (0.0377)︸ ︷︷ ︸
lower bound for α1

α2 lower ≈ 0.0664

α2 upper = 1− α1

α2 upper = 1− 0.0377︸ ︷︷ ︸
lower bound for α1

α2 upper ≈ 0.962.

These bounds led to the estimated range for α2: [0.0664, 0.962].
To estimate the rate at which chronic users become abusers (δ) and the rate at

which chronic users cease Vicodin treatment (β), I began by considering the average
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treatment time for chronic pain patients. It is important to note that for the purposes
of these models, I considered chronic pain to be chronic non-cancer pain. The available
data make this distinction. The average opioid exposure time for chronic pain patients
is estimated between 10.8 and 26.2 months [48]. I subtracted the initial three months
spent in the M compartment, and I had the average time for chronic Vicodin use to be
between 7.8 and 23.2 months. By model construction, the average time an individual
is in the chronic use (C1, C2) compartments is 2

δ+β
. Combining these chronic use

upper and lower bounds with the model average time for chronic use, I arrived at an
inequality for β:

7.8 ≤ 2

δ + β
≤ 23.2,

where the left-hand side represents the lower bound of average number of months in
chronic use from data [48], the right-hand side represents the upper bound of average
number of months in chronic use from data [48], and the center term represents the
model average number of months in chronic use. From this inequality, I found the
bounds for β:

3.9 ≤ 1
δ+β

≤ 11.6

0.08621 ≤ δ + β ≤ 0.25641

0.08621− δ ≤ β ≤ 0.25641− δ. (B.4)

To further solidify the bounds for δ and β, I considered the percentage of chronic
opioid patients who become opioid abusers, which is estimated to be between 2.9% and
11.5% [44, 48]. Because the model assumes individuals in the A compartment have

passed through both the C1 and C2 compartments, I concluded 0.029 ≤
(

δ
δ+β

)2

≤
0.115. Using these bounds, I arrived at an inequality for δ:

0.029︸ ︷︷ ︸
% of chronic users to abusers, lower

≤
(

δ

δ + β

)2

︸ ︷︷ ︸
model % of chronic users to abusers

≤ 0.115︸ ︷︷ ︸
% of chronic users to abusers, upper

√
0.029 ≤ δ

δ + β
≤
√

0.115

δ
√

0.029 + β
√

0.029 ≤ δ ≤ δ
√

0.115 + β
√

0.115

β
√

0.029

1−
√

0.029−
√

0.115
≤ δ ≤ β

√
0.115

1−
√

0.029−
√

0.115
.

Rounding down for the lower bound and rounding up for the upper bound, I concluded

0.347β ≤ δ ≤ 0.692β. (B.5)
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Substituting the bounds for δ from (B.5) into the bounds for β in (B.4), I found upper
and lower bounds for β:

βlower : β ≈ 0.08621− 0.692β︸ ︷︷ ︸
δ upper bound

βlower ≈
0.08621

1.692
βlower ≈ 0.051.

βupper : β ≈ 0.25641− 0.347β︸ ︷︷ ︸
δ lower bound

βupper ≈
0.25641

1.347
βupper ≈ 0.190.

These bounds led to the estimated range for β: [0.051, 0.190]. Using these values with
the δ bounds from (B.5), I found upper and lower bounds for δ:

δlower ≈ 0.347 (0.051)︸ ︷︷ ︸
β lower bound

δlower ≈ 0.0177

δupper ≈ 0.692 (0.190)︸ ︷︷ ︸
β upper bound

δupper ≈ 0.131.

This result led to the estimated range for δ: [0.0177, 0.131].
I estimated the rate at which Vicodin abusers seek treatment (ε) by considering

the average time in abuse before entering treatment. The average time a person
remains an abuser before seeking treatment is estimated to be between 24 and 72
months [84]. Thus, 24 ≤ 1

ε
≤ 72. This produced the range of ε to be [0.014, 0.042].

I estimated the relapse rate (γ1) successful treatment (γ2) rates using data on
treatment success as well as the duration of treatment, which I defined to last from
1 to 12 months. Thus, I concluded 1 ≤ 1

γ1+γ2
≤ 12. Equivalently,

1

12
≤ γ1 + γ2 ≤ 1. (B.6)

The percentage of those in treatment who return to pre-treatment abuse levels within
one year is estimated to be 45% [99]. I categorized the remaining 55% as having
successfully completed treatment. In the model, this percentage is γ2

γ1+γ2
. Equating

these two, I defined γ2 in terms of γ1:
γ2

γ1 + γ2︸ ︷︷ ︸
model successful treatment %

= 0.55︸︷︷︸
successful treatment %

γ2 = 0.55γ1 + 0.55γ2

0.45γ2 = 0.55γ1

γ2 = 1.2̄γ1. (B.7)
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Substituting the definition of (B.7) into (B.6), I found upper and lower bounds for
γ1:

1

12
≤ γ1 + 1.2̄γ1︸ ︷︷ ︸

=γ2

≤ 1

1

12
≤ 2.2̄γ1 ≤ 1

0.0375 ≤ γ1 ≤ 0.45.

This result led to the estimated range for γ1: [0.0375, 0.45].
To find the range for γ2, I substituted the bounds for γ1 into Equation (B.7):

γ2lower = 1.2̄γ1

γ2lower = (1.2̄) (0.0375)︸ ︷︷ ︸
lower bound for γ1

γ2lower ≈ 0.0458

γ2upper = (1.2̄) (0.45)︸ ︷︷ ︸
upper bound for γ1

γ2upper = 0.55.

This result led to the estimated range for γ2: [0.0458, 0.55].

B.2 SIAD Model Parameter Values

The parameter values in the SIAD model take on the same values as in the CVT
model, with two exceptions. In the SIAD model, the relapse parameter γ1 has unit

1
month×people

. Thus, I scaled the γ1 range from the CVT model by the total model

population at initial time, 49.7 million people, to obtain the range for the SIAD
model:

(0.0375)︸ ︷︷ ︸
CVT lower bound

 1

49.7 million︸ ︷︷ ︸
initial model population

 ≤ γ1 ≤ (0.45)︸ ︷︷ ︸
CVT upper bound

 1

49.7 million︸ ︷︷ ︸
initial model population


7.545× 10−10 ≤ γ1 ≤ 9.054× 10−9.

This led to the estimated range for γ1: [7.545× 10−10, 9.054× 10−9].
To find the range of ρ, we consider studies that indicate how prescribers respond

when they suspect prescription drug abuse. In the study with the greatest reduction
in new prescriptions, Vicodin prescriptions dropped by 95% when prescribers were
educated on the risks over a two-year period [106]. I used this value to determine the
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upper bound for ρ:

ρupper :
Λ

1 + ρA︸ ︷︷ ︸
monthly new prescriptions with ρ6=0

= 0.05Λ︸ ︷︷ ︸
monthly new prescriptions with ρ=0

Λ

0.05Λ
= 1 + ρA

20 = 1 + ρA

19 = ρA

ρ =
19

A︸︷︷︸
initial value = 2 million

ρupper = 9.5× 10−6.

I set the lower bound to be 0 to accommodate the case of a constant new prescription
rate, which led to the estimated range for ρ: [0, 9.5× 10−6].

B.3 Initial Conditions

About 47 million patients receive prescriptions for drugs containing hydrocodone
each year [136]. Thus, M + C1 + C2 ≈ 47 million. About nine million people report
long-term medical use of opioids [107]. Thus, C1 +C2 ≈ 9 million. There are approx-
imately two million Vicodin abusers in the United States [43], so A ≈ 2 million. Data
sources suggest the percentage of opioid users in acute medical use could be as high
as 86.6%–88.7% or could have a more conservative representation from 63.8%–72.2%
[134]. For the initial population of acute medical users, I considered 80% of the total
47 million, 37.6 million. This leaves a total of 9.4 million between the two chronic
compartments, which is consistent with data source estimates of approximately nine
million. I divided this population into the two chronic compartments, placing 60%
(5.64 million) in C1 and 40% (3.76 million) in C2. Initially, there are two million
people in the A compartment. Finally, for treatment, the most recent available data
suggest 726,000 people in treatment for all pain relievers [133]. Because this includes
all pain relievers (not only Vicodin), and because this number is lower than the pre-
vious year’s, I began the simulations with 700,000 people in the T compartment.
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Recall Equation (4.15):

ρεγ2 (α1 + α2) (δ + β)2A∗2 +
[
εγ2 (α1 + α2) (δ + β)2 − γ1α2δ

2Λ
]
A∗ − α1δ

2γ2Λ = 0.

To further explore the sensitivities of the treatment parameters γ1 and γ2, I find the
partial derivative of A∗ with respect to both γ1 and γ2 separately. Define

W1 := ρε (α1 + α2) (δ + β)2

W2 := ε (α1 + α2) (δ + β)2

W3 := −γ1α2δ
2Λ

W4 := −α1δ
2Λ ,

so that
W1γ2A

∗2 + (W2γ2 +W3)A∗ +W4γ2 = 0. (C.1)

Using implicit differentation by taking ∂
∂γ2

of both sides:

W1A
∗2 +W1γ2 · 2A∗

∂A∗

∂γ2

+W2A
∗ +W2γ2

∂A∗

∂γ2

+W3
∂A∗

∂γ2

+W4 = 0

∂A∗

∂γ2

(2AW1γ2 +W2γ2 +W3) = −W1A
∗2 −W2A

∗ −W4

∂A∗

∂γ2

=
−W1A

∗2 −W2A
∗ −W4

2AW1γ2 +W2γ2 +W3

γ2

A∗
∂A∗

∂γ2

=
−W1γ2A

∗2 −W2γ2A
∗ −W4γ2

2A∗2W1γ2 +W2γ2A∗ +W3A∗

=
−W3

2A∗W1γ2 +W2γ2 +W3

from Equation (C.1) .

Solving Equation (4.15), A∗|γ2=0.293 ≈ 999997.719837. Varying over the γ2 values in
the plots gives numbers approximately:

γ2

A∗
∂A∗

∂γ2

∣∣∣∣
γ2=0.293

≈ −4.23323415779× 10−9 .

Now consider the sensitivity with respect to γ1. Define

K1 := ρεγ2 (α1 + α2) (δ + β)2

K2 := εγ2 (α1 + α2) (δ + β)2

K3 := α2δ
2Λ

K4 := α1δ
2γ2Λ ,

so that
K1A

∗2 + [K2 − γ1K3]A∗ −K4 = 0 .
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Using implicit differentiation by taking ∂
∂γ1

of both sides:

K1 · 2A∗
∂A∗

∂γ1

+K2
∂A∗

∂γ1

−
(
K3A

∗ + γ1K3
∂A∗

∂γ1

)
= 0

∂A∗

∂γ1

=
K3A

∗

2A∗K1 +K2 − γ1K3

γ1

A∗
∂A∗

∂γ1

=
K3γ1

2K1A∗ +K2 − γ1K3

.

Substituting the value for A∗ and varying over the γ1 values in the plots give numbers
approximately:

γ1

A∗
∂A∗

∂γ1

∣∣∣∣
γ1=8e−10

≈ 4.2332413575× 10−9 .

These low sensitivities indicate why the treatment parameters appear to have sensi-
tivities of 0.
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A∗ DEFINED IN TERMS OF PARAMETER VALUES
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E∗ = (M∗, C∗1 , C
∗
2 , A

∗, T ∗)

M∗ =
Λ (α1 + α2)−1(

1 +

[
−[εγ2(α1+α2)(δ+β)2−γ1α1δ2Λ]+

√
[εγ2(α1+α2)(δ+β)2−γ1α1δ2Λ]2−4ρεγ2(α1+α2)(δ+β)2α1δ2γ2Λ

2εγ2(α2+α2)(δ+β)2

])
C∗1 =

α1Λ (α1 + α2)−1 (δ + β)−1(
1 +

[
−[εγ2(α1+α2)(δ+β)2−γ1α1δ2Λ]+

√
[εγ2(α1+α2)(δ+β)2−γ1α1δ2Λ]2−4ρεγ2(α1+α2)(δ+β)2α1δ2γ2Λ

2εγ2(α2+α2)(δ+β)2

])
C∗2 =

α1δΛ (α1 + α2)−1 (δ + β)−2(
1 +

[
−[εγ2(α1+α2)(δ+β)2−γ1α1δ2Λ]+

√
[εγ2(α1+α2)(δ+β)2−γ1α1δ2Λ]2−4ρεγ2(α1+α2)(δ+β)2α1δ2γ2Λ

2εγ2(α2+α2)(δ+β)2

])
A∗ = − [εγ2 (α1 + α2) (δ + β)2 − γ1α1δ

2Λ]

2ρεγ2 (α1 + α2) (δ + β)2

+

√
[εγ2 (α1 + α2) (δ + β)2 − γ1α1δ2Λ]2 − 4ρεγ2 (α1 + α2) (δ + β)2α1δ2γ2Λ

2ρεγ2 (α1 + α2) (δ + β)2

T ∗ =

ε

(
− [εγ2(α1+α2)(δ+β)2−γ1α1δ2Λ]+

√
[εγ2(α1+α2)(δ+β)2−γ1α1δ2Λ]2−4ρεγ2(α1+α2)(δ+β)2α1δ2γ2Λ

2ρεγ2(α1+α2)(δ+β)2

)
γ1

(
− [εγ2(α1+α2)(δ+β)2−γ1α1δ2Λ]+

√
[εγ2(α1+α2)(δ+β)2−γ1α1δ2Λ]2−4ρεγ2(α1+α2)(δ+β)2α1δ2γ2Λ

2ρεγ2(α1+α2)(δ+β)2

)
+ γ2
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MATERIAL MODEL PARAMETER VALUES
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This appendix contains the parameter values for the material models used in each
simulation. Each table lists the FLAG parameter notation, the parameter description
and notation used in the related dissertation chapter, the parameter value, and units.
Sources are listed in the table captions. If multiple sources were used for a model,
citations appear within the table as well.

E.1 Chapter 6

E.1.1 Perfect Plasticity Parameters

FLAG Parameter Description Value Units
sm0 shear modulus (G) 2.8e10 [131] Pa
yf material flow stress (σy) 2.9e8 [100] Pa

tmelt melt temperature (Tm) 1220. [131] K

Table E.1: Perfect Plasticity Simulation Parameters for Al-6061 [100, 131].

The material saturation flow stress was not altered, and the default value is 1099

dyne/cm2 [61].

E.1.2 Linear Hardening Parameters

FLAG Parameter Description Value Units
sm0 shear modulus (G) 2.8e10 [131] Pa
yf initial yield stress (σy) 2.9e8 [100] Pa

tmelt melt temperature (Tm) 1220 [131] K
yh hardening parameter

(
K̄
)

0.1 [131] –

Table E.2: Linear Hardening Simulation Parameters for Al-6061 [100, 131].

The material flow stress was not altered, and the default value in FLAG is 1099

dyne/cm2 [61].
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E.1.3 Johnson-Cook Parameters

FLAG Parameter Description Value Units
sm0 shear modulus (G) 2.76e10 Pa

a quasistatic room temperature 2.44e8 Pa
flow stress (A)

b strain hardening effect (B) 4.88e8 Pa
c strain-rate coefficient (C) 0. –

x m temperature exponent (m) 3. –
x n hardening exponent (n) 0.5 –

t melt melt temperature (Tm) 1220. K
t ref reference temperature (T0) 800. K

Table E.3: Johnson-Cook Simulation Parameters for Al-6061 [110].

No temperature-dependent specific heat was enabled. The material saturation
flow stress was not listed and was thus not altered, and the default value in FLAG is
1099 Mbar [61].

E.1.3.1 Steinberg-Guinan Parameters

FLAG Parameter Description Value Units
r0 reference density (ρ0) 2700. kg/m3

sm0 reference shear modulus (G0) 2.76e10 Pa
y0 reference yield strength (Y0) 0.29 Pa
xn work-hardening exponent (n) 0.1 –
yb work-hardening coefficient (β) 125. –
yx upper limit on hardening term (Ymax) 6.8e8 Pa
au pressure-dependence 6.52e-13 Pa−1

parameter
(
G′P
G0

)
bu temperature-dependence 6.16e-4 K−1

parameter
(
G′T
G0

)
Table E.4: Steinberg-Guinan Simulation Parameters for Al-6061 [130].

The relative heat capacity, initial plastic strain, minimum compression, melt shap-
ing parameter for the shear modulus, and melt shaping parameter for the flow stress
were not altered, and their default values in FLAG are 0. The maximum compression
was not altered, and it’s default value in FLAG is 1099 [61].
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E.1.4 Preston-Tonks-Wallace Parameters

FLAG Parameter Description Value Units
r rate smoothing parameter (r) 0. –
p Voce hardening law constant (p) 3.0 –

theta0 initial strain hardening (θ) 1.84e-2 –
kappa temperature dependence constant κ 0.2 –

gamma strain dependence constant 5.e-5 –
alpha temperature parameter (α) 0.475 –

g0 reference shear modulus (G0) 2.8e10 Pa
tm melt temperature (Tm) 932. K
am average mass per atom (M) 4.4967e-26 kg
s0 maximum τ̂s (at 0 K) (s0) 1.42e-2 –

sinf minimum τ̂s (near Tm) (s∞) 8.56e-3 –
y0 maximum τ̂y (at 0 K) (y0) 8.98e-3 –
y1 material parameter y1 1.42e-2 –
y2 material parameter y2 0.4 –

yinf minimum τ̂y (near Tm) (y∞) 5.96e-3 –
beta material exponent (b) 0.23 –

Table E.5: Preston-Tonks-Wallace Simulation Parameters for Al-6061 [49].

The PTW parameter γdrag was not altered, and the FLAG default value is 0 [61].

E.2 Chapter 7

E.2.1 Monel Steinberg-Guinan

FLAG Parameter Description Value Units
r0 reference density (ρ0) 8810. kg/m3

sm0 reference shear modulus (G0) 6.88e10 Pa
y0 reference yield strength (Y0) 8.3e8 Pa
xn work-hardening exponent (n) 0.23 –
yb work-hardening coefficient (β) 36. –
yx upper limit on hardening term (Ymax) 1.92e9 Pa
au pressure-dependence 2.47e-11 Pa−1

parameter
(
G′P
G0

)
bu temperature-dependence 1.45e-4 K−1

parameter
(
G′T
G0

)
Table E.6: Steinberg-Guinan Simulation Parameters for Monel [131].

The relative heat capacity, initial plastic strain, minimum compression, melt shap-
ing parameter for the shear modulus, and melt shaping parameter for the flow stress
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were not altered, and their default values in FLAG are 0. The maximum compression
was not altered, and it’s default value in FLAG is 1099 [61].

E.2.2 Iron Preston-Tonks-Wallace

FLAG Parameter Description Value Units
r rate smoothing parameter (r) 0. –
p Voce hardening law constant (p) 3.0 –

theta0 initial strain hardening (θ) 1.5e-2 –
kappa temperature dependence constant κ 0.35 –

gamma strain dependence constant 1.e-5 –
alpha temperature parameter (α) 0.23 –

g0 reference shear modulus (G0) 8.72e10 Pa
tm melt temperature (Tm) 1810. K
am average mass per atom (M) 9.27e-26 kg
s0 maximum τ̂s (at 0 K) (s0) 1.e-2 –

sinf minimum τ̂s (near Tm) (s∞) 2.5e-3 –
y0 maximum τ̂y (at 0 K) (y0) 6.625e-3 –
y1 material parameter y1 6.625e-3 –
y2 material parameter y2 0.265 –

yinf minimum τ̂y (near Tm) (y∞) 7.5e-4 –
beta material exponent (b) 0.265 –

gam drag drag coefficient (sdrag) 0.01 –

Table E.7: Preston-Tonks-Wallace Simulation Parameters for Iron [14].

E.2.3 Silicon Dioxide Perfect Plasticity

FLAG Parameter Description Value Units
sm0 shear modulus (G) 2200. Pa
yf material flow stress (σy) 1.108e8 Pa

tmelt melt temperature (Tm) 1933.15 K

Table E.8: Perfect Plasticity Simulation Parameters for Al-6061 [2].

The material saturation flow stress was not altered, and the default value is 1099

dyne/cm2 [61].
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E.2.4 Nickel Steinberg-Guinan

FLAG Parameter Description Value Units
r0 reference density (ρ0) 8900. kg/m3

sm0 reference shear modulus (G0) 8.55e10 Pa
y0 reference yield strength (Y0) 0.14 Pa
xn work-hardening exponent (n) 0.53 –
yb work-hardening coefficient (β) 46. –
yx upper limit on hardening term (Ymax) 1.2e9 Pa
au pressure-dependence 1.6e-13 Pa−1

parameter
(
G′P
G0

)
bu temperature-dependence 3.3e-4 K−1

parameter
(
G′T
G0

)
Table E.9: Steinberg-Guinan Simulation Parameters for Nickel [130].

The relative heat capacity, initial plastic strain, minimum compression, melt shap-
ing parameter for the shear modulus, and melt shaping parameter for the flow stress
were not altered, and their default values in FLAG are 0. The maximum compression
was not altered, and it’s default value in FLAG is 1099 [61].
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F.1 Chapter 6 Simulations

F.1.1 Al-Al Verification: 1D

Impactor: 1 km
Target: 10 km

Simulation
Zone size 12.5 m (40 cppr)

Number of zones 882
Number of processors 1

ALE strategy Lagrangian
EOS Mie-Grüneisen

reference density 2700 kg/m3 [96]
specific heat 890 J/kg/K [96]
sound speed 5350 m/s [96]

γ 2. [96]
linear coefficient 1.34 [96]

q2 2.
q1 0.

Boundary conditions free
Initialization

ρ0 2700 kg/m3

E0 0 J

Table F.1: Simulation Details for Al-Al 1D Verification Problem

F.1.2 Al-Al Verification: 2D

Impactor: Circle, diameter 1 km
Target: Rectangle, 10 km x 25 km
Air: Rectangle\impactor, 23.5 km x 25 km

5 cppr 10 cppr 20 cppr 40 cppr
Zone size 100 m 50 m 25 m 12.5 m

Number of zones 84,920 337,340 1,344,680 5,369,360

Table F.2: Resolution Details for Al-Al 2D Mesh Resolution Study
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Simulation
Number of processors (5 km/s) 108
Number of processors (20 km/s) 144

ALE strategy geometry
Al EOS SESAME

Al SESAME ID 3317
Air EOS γ-law gas

reference density 1.2922 kg/m3

γ 1.4
T0 273 K

q2 (strengthless) 2.
q1 (strengthless) 0.
q2 (strength) 1.3
q1 (strength) 0.3

Boundary conditions free
Initialization

Al (impactor and target) ρ0 2700 kg/m3

Al (impactor and target) E0 0 J
Air ρ0 1.2922 kg/m3

Air E0 0 J

Table F.3: Simulation Details for Al-Al 2D Verification Problem

F.1.3 Al-Al Verification: 3D

Impactor: Sphere, diameter 1 km
Target: Rectangular prism, 10 km x 25 km x 10 km
Air: Rectangular prism\impactor, 23.5 km x 25 km x 10 km
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Simulation
Zone size 100 m (5 cppr)

Number of zones 8,659,500
Number of processors 360

ALE strategy geometry
Al EOS SESAME

Al SESAME ID 3317
Air EOS γ-law gas

ρ0 1.2922 kg/m3

γ 1.4
T0 273 K
q2 2.
q1 0.

Boundary conditions free
Initialization

Al (impactor and target) ρ0 2700 kg/m3

Al (impactor and target) E0 0 J
Air ρ0 1.2922 kg/m3

Air E0 0 J

Table F.4: Simulation Details for Al-Al 3D Verification Problem

F.1.4 Glass-Water Validation

Impactor: Semicircle, 2 mm diameter
Target: Rectangle, 36.75 cm x 21.75 cm
Air: Rectangle\impactor, 36.75 cm x 1000 cm
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Simulation
Zone size min 0.2 mm (5 cppr)
Zone size max 5 mm (0.2 cppr)

Number of zones 626,720
Number of processors 360

ALE strategy Eulerian
Glass EOS SESAME

Glass SESAME ID 3811
Water EOS SESAME

Water SESAME ID 7153
Air EOS γ-law gas

ρ0 0.0012922 g/cm3

γ 1.4
T0 273 K
q2 2.
q1 0.

Boundary conditions (top) fixed
Boundary conditions (bottom) fixed in y

Boundary conditions (left, right) fixed in x
Initialization

Glass ρ0 2.24254 g/cm3

Glass P0 1.e6 Barye
Water ρ0 0.9998 g/cm3

Water P0 1.e6 Barye
Air ρ0 0.0012922 g/cm3

Air P0 1.e6 Barye

Table F.5: Glass-Water Validation Simulation Details

F.2 Chapter 7 Simulations

F.2.1 2D Psyche

Psyche: Semicircle, 125 km radius
Impactor: Semicircle, 5 km radius
Void: Rectangle\(Psyche ∪ Impactor), 500 km x 500 km
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Simulation
Zone size 330 m (∼15 cppr)

Number of zones 2,301,285
Number of processors 180

ALE strategy Eulerian
Fe EOS SESAME

Fe SESAME ID 02140
Monel EOS Mie-Grüneisen

ρ0 8810 kg/m3 [131]
c 4190 m/s [131]
b 0.49 [131]
γ 1.95 [131]

linear coefficient 1.54 [131]
Ni EOS SESAME

Ni SESAME ID 3101
SiO2 EOS SESAME

SiO2 SESAME ID 7386
q2 (strengthless) 2.
q1 (strengthless) 0.
q2 (strength) 1.3
q1 (strength) 0.3

Boundary conditions axisymmetric (left), free
Initialization

Fe ρ0 7795.08121657211 kg/m3

Fe E0 7.1761341305098e8 erg
Monel ρ0 8800.
Monel T0 273.0010219214762

Ni ρ0 8900 kg/m3

Ni T0 298.15033511
SiO2 ρ0 2200.
SiO2 P 0 Pa
SiO2 T0 298 K

Table F.6: 2D Psyche Simulation Details

F.2.2 3D Psyche

Psyche: Shape model, spherical cap 110 km radius
Impactor: Sphere, 5 km radius
Void: Rectangular prism\(Psyche ∪ Impactor), 500 km x 500 km x 500 km
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Simulation
Zone size min 1000 m (5 cppr)
Zone size max 10,000 m (0.5 cppr)

Number of zones 33,382,400
Number of processors 1080

ALE strategy Eulerian
Monel EOS Mie-Grüneisen

ρ0 8810 kg/m3 [131]
c 4190 m/s [131]
b 0.49 [131]
γ 1.95 [131]

linear coefficient 1.54 [131]
SiO2 ρ0 2200.
SiO2 P 0 Pa
SiO2 T0 298 K

q2 (strengthless) 2.
q1 (strengthless) 0.
q2 (strength) 1.3
q1 (strength) 0.3

Boundary conditions fixed
Initialization

Monel ρ0 8800.
Monel T0 273.0010219214762
SiO2 P 0 Pa
SiO2 T0 298 K

Table F.7: 3D Psyche Simulation Details
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