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ABSTRACT

Diophantine arithmetic is one of the oldest branches of mathematics, the search for
integer or rational solutions of algebraic equations. Pythagorean triangles are an
early instance. Diophantus of Alexandria wrote the first related treatise in the fourth
century; it was an area extensively studied by the great mathematicians of the sev-
enteenth century, including Euler and Fermat. The modern approach is to treat the
equations as defining geometric objects, curves, surfaces, etc. The theory of ellip-
tic curves (or curves of genus 1, which are much used in modern cryptography) was
developed extensively in the twentieth century, and has had great application to Dio-
phantine equations. This theory is used in application to the problems studied in
this thesis. This thesis studies some curves of high genus, and possible solutions in
both rationals and in algebraic number fields, generalizes some old results and gives
answers to some open problems in the literature. The methods involve known tech-
niques together with some ingenious tricks. For example, the equations y? = 2% + k,
k = —39, —47, the two previously unsolved cases for |k| < 50, are solved using alge-
braic number theory and the elliptic Chabauty method. The thesis also studies the
genus three quartic curves F(x?,y?, 2%) = 0 where F is a homogeneous quadratic form,
and extend old results of Cassels, and Bremner. It is a very delicate matter to find such
curves that have no rational points, yet which do have points in odd-degree extension
fields of the rationals. The principal results of the thesis are related to surfaces where
the theory is much less well known. In particular, the thesis studies some specific
families of surfaces, and give a negative answer to a question in the literature regard-
ing representation of integers n in the form n = (x+y+z+w)(1/z+1/y+1/2+1/w).
Further, an example, the first such known, of a quartic surface o* 4 7y* = 142* + 18w*
is given with remarkable properties: it is everywhere locally solvable, yet has no non-

zero rational point, despite having a point in (non-trivial) odd-degree extension fields



of the rationals. The ideas here involve manipulation of the Hilbert symbol, together

with the theory of elliptic curves.
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Chapter 1

INTRODUCTION

Chapter 2 resolves two unsolved cases of the equation y?> = 2% + k in rational
numbers, where k is an integer in the range |k| < 50. The two cases are k = —39 and
k = —47. This type of equation has been studied by Bremner and Tzanakis [6]. The
standard technique in this chapter is the elliptic curve Chabauty method. The main
results are

Theorem 1. The only rational solutions (x,y) to the equation
y? =25 — 39

are (£2,£5).

Theorem 2. The only rational solutions (x,y) to the equation
y? =% — 47

63 249953
are (I‘:m, :ET) .

Chapter 3 studies the equation F(z? y? 2%) = 0 in odd degree number fields
where F' is a nonsingular homogeneous irreducible polynomial with rational coeffi-
cients. Many examples were given, where F(z%,y% 22) = 0 has solutions in some
cubic extensions of QQ but does not have solutions in Q. For example, in Bremner,
Lewis and Morton [2], Cassels [I1], Bremner [3]. This chapter finds a necessary con-
dition (Theorem when F(2?,4?, 2?) = 0 has solutions in rational numbers or

odd degree number fields. The main results are



Theorem 3. Let p be an odd prime. Then the equation
ot oyt = 4p2t
does not have solutions in any odd degree number field except xyz = 0.

Theorem 4. Let n, D be non zero integers such that D is fourth power free, 2 —
n,n*>—4,(2+n)D, (4 —n?)D,(n* —4)D and D are not perfect squares. Assume that

the rank of the curve x + nay? + y* = Dz* is at most one. Then the equation
2 nay? +yt = D2

does not have solutions in any odd degree extension of Q except xyz = 0. In particular,

the equation z* + na’y? + y* = Dz* does not have rational solutions except v =y =

z=0.

Theorem [3] [4] extend some old results by Cassels [11] and Bremner [3].

Chapter 4 focuses on applications of p — adic analysis and elliptic curves to some
Diophantine problems. P — adic analysis gives us tools to study local information on
equations over rationals or integers, while elliptic curves give us tools to transform
complicated equations into simple equations. By combining these tools, we can solve

some hard problems. The main results are

Theorem 5. Let n be a positive integer such that n = 4m? or n = 4m? + 4, where

m # 2 mod 4. Then the equation

1 1 1 1
n=@+y+z+tw)(=+-+-+-—)
r Yy z w

does not have solutions x,y,w,z € Z™.

Theorem gives a negative answer to a conjecture by Bremner, Guy, Nowakowski [4].

Different homogeneous forms in three variables have been studied: (z+y+2) (%+%+§)
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by Bremner, Guy, Nowakowski [4]; M, %—l— Y 4 2 by Bremner, Guy [5]; (ety+2)

TYz TYz

by Brueggemen [10]; - + 7% + 25, by Bremner, Macleod [7]. Theorem 5| is the
first example on the four variable case. The proof uses p — adic analysis in a very

nontrivial way.

Theorem 6. Let p =1 or p be an odd prime such that p =1 mod 8. Then for every

positive integer n, the equation

Y

x z w
—+p=+—+p— =38pn
Yy Z o w x

does not have solutions x,y,z,w € 7.
Theorem [0] is an application of the techniques used to prove Theorem [5]

Theorem 7. Consider the surface S: x* + 7y* = 142* + 18w*. Then S is everywhere
locally solvable, and S has no rational points except (0,0,0,0). For every odd integer

n > 3, there is a number field K of degree n such that S has a nontrivial point in K.

The family of surfaces ax? + by* = cz* + dw*, where a,b,c,d € Z and abed € 72,
has been studied extensively by Swinnerton-Dyer and Bright [21] and Bright [8,9]. A
modern approach to show the non existence of rational points is to study the Brauer
groups of these surfaces, but we will prove Theorem [7] in a more classical way, only
using p — adic analysis and some algebraic curve theory. The proof is motivated by
a paper of Swinnerton-Dyer [21]. The surface z* + 7y* = 142% + 18w* has three
interesting properties: (i) unsolvable in the rational numbers, (ii) everywhere locally
solvable, (7i7) solvable in a cubic number field. None of the examples by Swinnerton-
Dyer and Bright is proved to have all three properties (i), (i4) and (iii). The surface

xt + Tyt = 142* + 18w? is the first known example with these properties.



Chapter 2

EQUATION Y2 = X¢ + K

2.1 Introduction

In their paper, Brenner and Tzanakis [6] studied the equation y* = z® + k in
rational numbers, where k is an integer in the range |k| < 50. They solved all the
equations except k = —39 and k = —47. The main approach used by Bremner and
Tzanakis is the elliptic curve Chabauty method. In this paper, we shall solve the
equation y? = 2% + k with k = —39 or k = —47. For k = —39, we shall present two
approaches which might be applicable to other values of k. For k = —47, we only
present one approach. The main tools are the elliptic curve Chabauty method and

algebraic number theory. In summary, we shall prove:

Theorem 8. The only rational solutions (x,y) to the equation
y? =2% -39

are (£2,£5).

Theorem 9. The only rational solutions (x,y) to the equation
y? =% — 47

are (£, £249953),

2.2 Equation y? = 2% — 39

In this section we shall present the proof of Theorem [§



Proof. The equation y* = 2° — 39 is equivalent to
Y?=X%-392° (2.2.1)
where XY, Z are coprime integers. We have
(X? = Y)(X?+Y)=39Y2

Let d = ged(X? — Y, X3 +Y). Then d| ged(2X3,2Y) = 2. We can choose the sign of
Y such that 13| X3 + Y.

Case d =1 : we have
X34y =39V° X®-Y=U% gdUV)=1,
or
X34+Y =13V X?’-Y =3U° gcd(U,V)=1.

So
2X3 =39VS +U® or 2X®=13VS 43U ged(U,V)=1.

In the former case, we have 3 + U. So U® = 1 mod 9, hence 2X3 = 3V°® + 1
mod 9. Thus X = —1 mod 3, so X = —1 mod 3. Therefore X? = —1 mod 9. So
V6 +1=0 mod 3, impossible.

In the latter case, we have
2X° =13V® +3U°, ged(U,V) = 1. (2.2.2)

We shall deal with this case later.

Case d = 2: we have
X34y =2.39V% X3-Y =2°.U% |gcd(UV)=1,

X34y =239V X} -Y =2-U% gedUV)=1,
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X34y =2-13V% X3 -y =2°.3U0° gcd(U,V) =1,
X34y =2".13V% X®-Y =2.3U0° @gcd(U,V)=1.

This gives
X3 =39V° + 16U°,

X? =624V° 4+ US,
X3 =13V° + 48U°,
X3 =208V° 4+ 3U°.

The first equation: £1,45 = 3U% = £3 mod 13, impossible.
The third equation: +1,4+5 = +4 mod 13, impossible.
The fourth equation: £1,4+5 = +3 mod 13, impossible.

There remains the second equation:
X3 =624Ve +US,  ged(U,V) = 1.
This gives
(624(X/U%))? = (624(V3/U?))* + 624°.

The elliptic curve 3? = 2® — 6243 has rank 0, so X3 = 624V° 4 U only has trivial
solutions.

We only need to deal with the case (2.2.2)
2X3 =3U° +13V°, gcd(U,V) = 1.

Observe that 2|X and 21U, V.
Solution 1: Let K = Q(6), where = +/39. K has the ring of integers O = Z[f]

and a fundamental unit € = 202 — 23 of norm 1.



Lemma 1. Consider the elliptic curve
E:v* =u® - 39,
let ¢ be a map E(Q) — K*/(K*)? given by
(u,v) =u—6 mod (K*)?
¢(00) = (K*)*.
Then ¢ is a group homomorphism with the kernel 2E(Q).
Proof. This is the standard 2-descent. See Silverman [I8].

We have
E(Q) =7Z(10,31) ® Z(4,5).

Because (X?/Z2,Y/Z%) € E(Q), Lemma [I] implies
(X?—-0Z°)=a mod (K*)?,

where a € {1,4—6,10—6,(4 —0)(10 — 9)}.

Because 10 — 6 = ¢(36% + 100 + 34)%, we have the following cases:
Case 1: X? —07% € K2

Because X? — 0Z% € Z[0] = Ok, we have

X% —07% = (a+ b0 + ch?)?

where a,b, c € Z. Comparing coefficients of 0°, 0, 6% gives:

(

X? = a% 4 78bc,

Z? = —2ab — 39¢2,

0 = 2ac + b2.
\



From ged(X, Z) = 1, we have ged(a,b,c¢) = 1. Because 2| X, from the first and the

third equations, we have 2|a, b. Thus 21 ¢. Let a = 2a;, b = 2b;. Then

(

(X/2)? = a? + 39b;c,

\ Z2 = —8Cl1b1 — 39C2,

0= ajc+ b3
\

Since ged(a, b, ¢) = 1, the third equation implies ged(aq,¢) = 1. Hence 3r, s € Z, r >
0 such that

a=7r, Cc=—=§, by = —-rs, ng(T> S) =1, (223)

or

ay = —T, c=s, bl = —-Trs, ng(T, S) =L (224)

Case ([2.2.3)) gives
(X/2)* = r(r® — 39s5°),

7* = s(8r% — 39s°).

Because ged(X, Z) = 1, we have ged(r, 39) = ged(s,2) = 1. Hence ged(r, r® —39s%) =
ged(s, 83 — 39s%) = 1. Because r > 0, we have 8% — 39s® > 13 — 39s% > 0. Thus

s > 0. It follows that
r=A% -39 =C? X =+AC,

s=DB% 8%—-39s>=D? Z=+BD.

Therefore D? = 8A4% — 39B%. So D? + A =0 mod 3. Hence A = D =0 mod 3.

Thus 3| X, Z, a contradiction.

Case ([2.2.4]) gives
(X/2)? = r(r® — 39s5%),

7* = —s(8r° + 39s°).

8



We have ged(r,39) = ged(s,2) = 1. Because r > 0, if s > 0, then Z? = —s(83 +

39s%) < 0, impossible. Therefore s < 0. Thus
r=A% r®-39s=C? X =+AC,

s=—-B% 8°+39s*=D* Z=+BD.

Thus D? = 8A% — 39B%. So D? + A% = 0 mod 3. Therefore A = D = 0 mod 3.
Hence 3| X, Z, a contradiction.
Case 2: (X2 —07?%) € eK>.

Because € is a unit and X? — 072 € O, we have
X2 —07% = (20> — 23)(a + b + ch*)?,

where a,b, c € Z. Comparing the coefficients of 0°, 0, 6% gives

;

X? = —23a® + 156ab — 1794bc + 30422,

7Z? = 46ab — 156ac — 78b* + 897¢2,

0 = 2a? — 46ac — 23b* + 156bc.
\

Because ged(X, Z) = 1, we have ged(a,b,¢) = 1. From the third equation, we have

2|b. 2|X. Thus the first equation implies 2|a. Hence 2 1 ¢. The first equation gives
X?2=22=2 mod 4,

impossible.
Case 3: X2 —07% € e(4 — 0)K*.

Let
a + bl + ch?

X2 —07% = €(4 —
02° = (4~ 0)(——

)27



where n,a,b,c € Z and ged(a, b, c) = 1. Comparing the coefficients of 6°, 0, 6% gives

(nX)? = —170a* + 624ab + 1794ac + 897b* — 13260bc + 12168¢2,

(nZ)? = —23a® + 340ab — 624ac — 312b* — 1794bc + 6630¢2,

0 = 8a? + 46ab — 340ac — 1700 + 624bc + 897c.
\

From the third equation, we have 2|c. Because 2|nX, from the first equation, we have

2|b. Therefore 2 t a. Then the first equation gives
(nX)?=2a*>=2 mod 4,

impossible.
Case 4: (X? —0Z%)(4—0) € K2
We have v = X/Z, y =Y/Z3, y* = (2* — 0)(2? + 02* + 6?), and (2? —0)(4 —0) € K*.
Thus
(4 —0)(z* + 02 + 0%) € K>

Let (4 — 0)(z* + 402> + 0*) = 3%. Then ((4 — 0)x?, (4 — 0)/3) is a point on
G:v? =u(u* +0(4—0)u+6*(4—0)>).

We have

46% — 39 200? — 195
4 8

The curve G has rank 1 over K, and [K : Q] = 3.

G(K) = Z/27(0,0) & Z(

).

The first approach is to use the elliptic curve Chabauty method. With the search
bound of 350 and the assumption of the Generalized Riemann Hypothesis, Pseudo-
MordellWeil returns " false”. The second approach is to use the formal group technique
as in Flynn [I5] which will almost guarantee the solution when rank(G(K)) < [K : Q.
If we follow this approach, then the smallest prime that might work is p = 7. The or-

der of the generator (49%39, 2092%) in () with -39 = 0is 86. In G(K), we shall
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need to compute the set {m(0, O)—i—n(‘wiT_?’g, 2092%) n=0,1,m=—-42,—41,....m =
43} and then compute the corresponding formal power series, see Flynn [I5] for more
details about this approach. This might work, but it shall take too much compu-
tation. We will take another approach which might possibly be applicable in case
rank(G(K)) > [K : Q).
We have

X2~ 07 = (4—0)(a+ b0+ ch*)?,

where a,b,c € Q. Thus

X? = 4a* — 78ac — 39b* + 312bc, (2.2.5)
7Z? = a® — 8ab + 78bc — 156¢2, (2.2.6)
0 = —2ab + Sac + 4b* — 39¢°. (2.2.7)

If 4c — b = 0, then from (2.2.7), we have 40? — 39¢*> = 0. So b = ¢ = 0. Therefore

_ 249
=7

If 4c — b # 0, then from ([2.2.7)), we have a = 329(‘3:;_41)”)2.

Let P =5c and () = 4c — b. Then

P* —5P3Q + 24P%Q? — 20PQ? — 23Q*
Q? ’
P* — 24P2Q? 4 40PQ? — 48Q*
402 '

Let P=dp, Q =dgq, X1 = £, Z; = 22 where d = ged(P, Q). Then

X% =

Z? =

X7 = p* —5p°q + 24p°¢* — 20pg® — 234",
(2.2.8)
Zf = pt — 24p*¢® + 40pg® — 48¢*.

We have ged(p,q) = 1 and X3, Z; € Z.

11



Lemma 2. In , we have
ged(X71,39) = ged(Zy,13) = ged(Z4,2) = 1.

Proof. First, we show that 2t Z;.

If ¢ fd, then 3 a prime I|g such that I|X; = £, Thus
l|p* — 5piq + 24p*¢* — 20pg® — 23¢*.

Because [|q, we have l|p. So [|ged(p,q) > 1, a contradiction. Therefore ¢g|d. Thus
X;1|X and Z;]2Z. From (2.2.2), we have ged(U, V) =1, 2|X and 21 Z. If 2|Z;. Then
from

7% = p* — 24p*¢* + 40pg® — 48q*,

we have 2|p. Thus 2t ¢. Hence 2 1 X;. From 2|X = (g)Xl, we have 2\%. So % €Z.
Because 21 Z = (%)Zl, we have 2 1 71, a contradiction. So 2t Z.
If 3| X, then
3|p* — 5p’q + 24p°¢* — 20pg°® — 23¢".
Thus
3lp* + ¢ + p’q + @’
Because ged(p, ) = 1, we have 3 1 p,q. Hence 3|2 + 2pg. So pg = —1 mod 3, thus

p+ ¢ =0 mod 3. Therefore
77 = p* — 24p*¢* + 40pg® — 48¢" = —3p" mod 9,

which is not possible. So 3 {1 Xj.
If 13| X,, then

13|p4 — 5pPq + 24p°¢* — 20pg® — 23¢".
Thus 13[p + 2¢. So
Z7 = p* — 24p°¢* + 40pg® — 48¢* = —39¢"  mod 13%,

12



which is not possible. Hence 13 1 X;.
If 13|Z1, then

13[p* — 24p*¢® + 40pg® — 48¢*.
Thus

13|(p + 2q)(p + 7q).

If 13|p + 2q or 13|p + 7q, then
72 = p* — 24p°¢% + 40pg® — 48¢* = —39¢* mod 132,

which is not possible. So 13t Z;.

O

Let L = Q(¢), where ¢, ~ 2.8502, is the largest real root of 24 — 622 — 52 —3 = 0.
L has class number 1, the ring of integers O = Z[¢], and two positve fundamental

units € = ¢+ 2, e = ¢ — ¢? — ¢ — 1 with Norm(e;) = Norm(eg) = —1.

Let
F(p,q) = p* = 5p’q + 24p°¢* — 20pq® — 234",
G(p,q) = p* — 24p*q* + 40pg® — 484",
Then
F(p,q) = (p+ (¢° — 79 — 5)q) A(p, q),
G(p,q) = (p+ 20q)B(p, q),
where

Alp,q) =p* + (=9 + To)p°q + (49> — 58)pg” + (4¢° — 59> — 12¢ — 5)¢°,
B(p,q) = p° — 20p°q + (4¢° — 24)pg® + (—8¢" + 48¢ + 40)¢’.

In Z[¢], let

pi=-20"+ ¢ +120+4, pp=¢, p3=0o+1, qa=¢"-60-4, @=9¢-1

13



Then

3=pipeps, 13=qg,
Norm(p;) = 1, Norm(p,) = Norm(ps) = —3,
NOI‘ITI((h) = Norm(qz) = —13.

We also have

Res(p + 2¢q, B(p, ) = —8p1p34s,
Res(p + (¢° — 76 — 5)q, A(p,q)) = (4¢° + 6¢° — 316 — 53)pap311 5.

Because ged(X7,39) = ged(Z1,39) = ged(Z1,2) = 1 and Norm(4¢3+6¢* —31¢p—53) =
1, we have

P+ (9P —T¢ —5)qg = (—1)"€elS?,  p+2pq = (—1)ete) T2,

Alp,q) = (D'’ SE, Blp,q) = (=1)"e "6 T,
where X1 = SSl and Zl = TT1
Taking norms gives

(X1)? = (=1)"" Norm(S)?, Z7 = (—1)""* Norm(T)>.

Thus 2]i + j and 2|i; + j;. Hence ¢ = j and i; = j;.
Let 8= €160 = ¢* + 3¢ +2¢ + 1 > 0. Then

P+ (8 =T —5)g = (“)'F'S%, p+26g = (—1)" 5T,

Alp,q) = (=1)"B7'S, B(p,q) = ()" g1 T}.

(2.2.9)

Lemma 3. We have

(p+ (¢° = 79 —5)q)(p + 269) > 0. (2.2.10)

14



Proof. Equation F'(z,1) = 0 has 2 real roots
1= —¢ +T¢+ 5~ 1.7976, 5 ~ —0.6206.
Equation G(z,1) = 0 has 2 real roots
x3 = —2¢ ~ —5.7004, x4 ~ 4.1399.

We have

P1y>0 and GE 1) >0

F
(Q q

So

]2<:1c3 or ]—9>x4.

Because x5 < 19 < 11 < x4, We have

(p+ 21q)(p + 239) > 0.

]

From Lemma [3| and (2.2.9), we have h = h;. So by mapping (p,q) — (—p, —q),

we can assume that h = hy = 0.
Case @ # 11:
Because ¢ — 1|¢> — 9¢ — 5, we have
(6= D[(¢* =96 —5)g = p'S* — g T*.
Because 1 — 7; = £1 and [ is a unit, we have

pS*—T?=0 mod ¢ — 1.

If p—1|S or ¢—1|T", then ¢—1|S, T. Hence 13 = — Norm(¢—1)| Norm(S), Norm(T').

Thus 13|X, Z, impossible. So ¢ — 11 S, T. Therefore S = T2 =1 mod ¢ — 1

(because Norm(¢ — 1) = —13). Also =7 mod ¢ — 1, therefore

0=p8"—T2=7-1 mod ¢ — 1.

15



So 13 = — Norm(¢ — 1)[(7% — 1)*. But 134175 — 1, so we have a contradiction.
Case i = iy:

If ¢ # 0, then
(p+ (6" = 79 = 5)q)(p* — 20p°q + 4(¢* — 6)pg® + 8(—¢* + 66 + 5)¢*) = (ST1)?,
which represents an elliptic curve
C: v = (u+7) (U’ = 20u® +4(¢° — 6)u + 8(—¢" + 66 + 5)),
where v = (ST1)/¢*, w = p/q. The minimal cubic model at (—v,0) is
y® = 2?4+ (—25"+25*+105+6) 27+ (—45°+85*+125) 2+ (14885 +17765° —111285—17160).

The elliptic Chabauty routine in Magma [I] works and returns v = 69/26. Hence
(p,q) = (69,26), (—69,—26). This gives no solutions (X7, Z).
Therefore ¢ =0, so X; = £2 and Z; = 1. Thus

X
-1 _ 49

I—Z—

So the only rational solutions to y* = 2% — 39 are (x,y) = (£2, +5).

Remark 1. (i) From the system (2.2.8), we have a curve
F:w? = (A" =503 +24)% — 20\ — 23)(\* — 24A\% + 40\ — 48), (2.2.11)

where w = % and A = §. This curve has genus 3 and the Jacobian rank at most

3. We are unable to compute the Jacobian rank. Computer search reveals no rational
points on . It maight be possible to show F' has no rational points using the
partial descent on hyperelliptic curves as in Siksek and Stoll [19] but we have not
proceeded in this way.

i1) More generally, Solution 1 gives us an approach to the equation y* = x% + k in
(i)
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principle. We write y?> = 25+ k as Y? = X% + kZ°, then compute the generators of
the MordellWeil group of the elliptic curve Ej: v* = x® + k. Using 2-descent as in

Lemma [1, we shall need to solve a finite number of equations
X2 — ¢9Z2 = (IZ — 9)(&1 + bﬂ + Ci62)2,

where 6 = kY3 and the set {(x;,y;)}s is a finite set a;, b;,c; € Q.

Thus for each i, we have a system of equations:

;

X2 = So(ai, bs, Cz'),

7? = 51(%'7 bs, Cz’),

0= 53(6%'751‘,@)7

where Sy, S1, 99 are homogenous rational polynomials of degree 2 in a;,b;, c;.

Assume from Ss(a;,b;,¢;) = 0 that we can solve for one of a;,b;,c; in term of the
two other variables. Then from (X Z)? = So(a;, b, ¢;)S1(as, b;, ¢;), we have a genus 3
curve

Fy: w? = pi(N)ai(N),

where p;(A\), q;(N\) are rational polynomials of degree 4. The partial descent method

and the Chabauty method might help to find rational points on Fj.

Solution 2: In this section, we shall present another solution to y? = x® — 39.
The approach taken here is classical and is applied to the case k = —47. We shall

start from ([2.2.2)
2X°2 =3U° + 13V, Z=UV, gcd(UV)=1. (2.2.12)

Observe that U,V are odd and X is even. Let K = Q(6), where 6% = —39. The ring

of integers is Ox = Z[12].

: The class number is 4. The ideal (2) = paipee, where
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pa1 = (2, 12ﬁ) and p3, = (5T+9); the ideal (3) = p2, where p3 = (3,6); and (0) = p3pi3.

We write ([2.2.12]) as

(3U% + 6V3) (3U* — 6V3) X,
2 2 = 123"

A common ideal divisor J of the factors on the left divides (3U3) = p3(U)? and
pspis(V)?. J? divides (12(3)%) = p3,p3p3(5)®.  Certainly, ps divides J. Since

J|psp13(V)? and 3 1 V, we have p2 t J. Further pj3 1 J, otherwise 13| X, impossi-

ble. So J = ps.
Since p%ﬂ(%), we have
3U° 4 6V°
L P
3+46
= (oA

It follows that A is principal. Hence A = (A) for some element A € Ok. Further, any

unit in Q(6) is £1, so it can be absorbed into A. Let A = a + b%L, where a,b € Z.

Then
3U° +0V° 340 43
2 2
= #(a + bl——ge)3
3(a® — 18a%b —248ab2 + 44b3) N 6(a® + 6a*b —224ab2 — 28b3)

Thus
U? = a® — 18ab — 48ab* + 44b*,  V? = a® + 6a’b — 24ab® — 28b°. (2.2.13)

If 3|U, then a = b mod 3. Hence a® = v* mod 9. So 0 = 3ab* mod 9, leading to
a=b=0 mod 9, and hence ged(U, V) > 1, impossible. Therefore 31 U. If 3|V, then
a =b mod 3, implying 3|U, impossible. So 31U, V.

Let L = Q(¢), where ¢*> — 12¢ — 10 = 0. Then L has class number 3 and two

fundamental units
e1=1+¢, e=3+¢, Norm(e)=—1, Norm(e)=1.

18



Let q13 = (13,¢ —2) and pr = (7, ¢). Then

2) =p5; (3)=p (13) = piagis,

where
(24 ¢) =pops,
(44 ¢) =pap1s,
(=2 + &) =p2us,
(—¢* — 26 +2) =p3pn,
(¢* —2¢ — 6) =p3pr.
We have
¢»=9 modpz, ¢=2 mod qs,
and

U =(a+ (—¢* — 2¢ + 2)b)(a® + (¢* + 2¢ — 20)ab + (—6¢* + 14¢ + 32)b?),
V3 =(a+(¢° —2¢ — 6)b)(a® + (—¢* + 2¢ + 12)ab + (—2¢* — 26 + 8)b*).
The ged of (a+(—¢?—2¢+2)b) and (a®+(¢?+2¢—20)ab+(—6¢°+14¢+32)b?) divides
78(2+¢). The ged of (a+ (> —24—6)b) and (a?+(—¢>+2p+12)ab+(—2¢% —2¢+8)b?)
divides 18(2 — ¢).
Let
(a+ (=% — 20+ 2)b) = py PP X,

where & is an ideal in Op. Taking norms gives
U? = 21321387 X7,
where X; = Norm(X'). So

i1:i2:0, Z3+Z4EO mod 3.
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Thus
(a+ (—¢” — 26 + 2)b) = X°,
or
(a4 (—¢* — 29 + 2)b) = (13)X?,
or
(a+ (—¢” — 26 + 2)b) = (2¢” — 9¢ — 3)X°.
The later two cases cannot occur. Otherwise, a—6b =0 mod 13. Setting a = 6b+13c¢
gives
U? = 13%(4b* + 12b%c — 13¢*), V3 = 13(206% + 156b%c + 312bc* + 169¢°).
Then 13|U, V', contradicting ged(U, V') = 1. Thus

(a+ (—¢* — 2¢ + 2)b) =3,

(2.2.14)
(a® + (¢* +2¢ — 20)ab + (—6¢? + 14¢ + 32)b?) =X*,
where XX = (U).
Similarly
(a+ (¢ —2¢ — 6)b) =)°,
(2.2.15)
(@® + (=" + 2¢ + 12)ab + (—2¢° — 2¢ + 8)b%) =)°,
where YY = (V).
If X ~ 1, then from (2.2.14))
a+ (—¢* — 20 +2)b =€ 2 X?, X, € Oy,
(2.2.16)

a® + (¢ + 26 — 20)ab + (—6¢> + 146 + 32)b* =€, 6,2 X,°, X1 X; = UL
If X ~ po, then from ([2.2.14])
1. .
a+(—¢* —2¢+2)b :ZegleQQXg, X, € Oy,
1 . . _
a? + (¢ + 2¢ — 20)ab + (—64* + 14¢ + 32)b? :56;”6;2)(23, X5 Xy = 2U.

(2.2.17)
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If X ~ p3, then from ({2.2.14)
2 L i inys

1 . . _
a® + (¢ + 2¢ — 20)ab + (—6¢° + 14¢ + 32)b° :Zel_“e;”ng, X3 X5 = 2U.

(2.2.18)
Similarly:
If Y ~ 1, then from ([2.2.15))
a+ (¢ —20—6)b=el'?Y?, Y, e0,, 2.219)
a® + (—¢> + 2¢ + 12)ab + (=29 — 2¢ + 8)b* =€, 16,2y, ViVp = V.
If Y ~ py, then from ([2.2.15|)
1 . .
a+ (¢* —2¢ — 6)b 216{16%21/23, Y, € Op,
L . (2.2.20)
a® 4 (—¢* +2¢ + 12)ab + (—2¢* — 2¢ + 8)b? :56?165”1@ . oY, =2V
If Y ~ p3, then from (2.2.15)
1 . .
a+ (¢* —2¢ —6)b :561165%3, Y; € Oy,
(2.2.21)

1 . o _
a? + (—¢® 4+ 2¢ + 12)ab + (—2¢* — 2¢ + 8)b? :Z—le;ﬂegf%?’, Y3Y3 = 2V.

The equations (2.2.16) — (2.2.18) and (2.2.19)) — (2.2.21)) give the following equations

respectively in Op:
2 | —
a+ (—¢° —2¢+2)b :Eﬁfein ,
2 2 2 2 L
a®+ (¢° +2¢ —20)ab + (—6¢° + 14¢p + 32)b" = —€; "e; 2 X",
I
where (p, 1) = (1,1), (4,2), (2,4); and
1 . .
a+(¢* =20 —6)b=—e'elYy, Y; €0,
v

1 .
a® + (—¢? 4 2¢ + 12)ab + (=29 — 2¢ + 8)b° :Ue;ﬂe;ﬂ?s@f’, VY, =V,
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where (v,v") = (1,1), (4,2), (2,4).

We accordingly have equations in Oy, :

(a+ (=¢* =20+ 2)b)(a® + (—¢* + 2¢ + 12)ab + (—2¢° — 2¢ + 8)b*) = iegegxfyf’,
(2.2.22)

(a+(¢* =20 —6)b)(a” + (¢ +2¢ — 20)ab+ (—6¢° + 14¢ + 32)b?) = rlvel’“e;)‘(fyf,
(2.2.23)

where (=14, — j1) = 0, %1, s(=iy — j2) = 0, %1.

Now 31UV, so (X;), (X;), (Y;), (Y;) are coprime to ps. Then for o € Of, and p3 1 («),

we have ps|(a? — 1). Therefore 3 = p3|(a? — 1) = a® — 1 mod 3. Hence o® = +1

mod 3. It follows that Xf’Yj?’ = +1 mod 3. Since u, 1’ ,v,v" = £1 mod 3, equation

(12.2.22) gives
(a+b)(a® + ab+b*) + b(a® + ab + b*)¢* = £efe; mod 3, (2.2.24)
and equation gives
(a+b)(a® = b*) +b*(a — b)¢p — b(a* — b*)¢* = +€;"e;,* mod 3. (2.2.25)
We have

Table 2.1: Possible Values Of (r, s)

(r,5) €163 € €"
(-1-1) | —¢*+204+7 | ¢*+40+3
(-1,0) | —¢*+o+11 o+1
(-1,1) | =2¢* +2¢+23 | —2¢* + 60+ T
(0-1) | ¢*—3¢—3 ¢+ 3
(0,0) 1 1

(0,1) ¢+ 3 ¢* — 3¢ —3
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(1-1) | =20 +60+7 | -20*+ 20+ 23
(1,0) o+1 —*+ o+ 11
(1,1) ¢+ 4o+ 3 —¢?+20+ 7T

Comparing coefficients of ¢, equation (2.2.24)) eliminates all but (r, s) = (0, —1), (0,0), (1, —1),

with corresponding units ¢ = €}e§ = ¢* — 3¢ — 3,1, —2¢ + 6¢ + 7. It remains to treat

the nine pairs of equations at (2.2.22)), (2.2.23)):

Cr: (a+ (—¢? — 20+ 2)b)(a® + (—¢* + 2¢ + 12)ab + (—2¢* — 2¢ + 8)b?) :% - - cube,
Cy: (a+ (¢* — 26 — 6)b)(a® + (¢* + 2¢ — 20)ab + (—6¢* + 14¢ + 32)b%) :% - - cube,
(2.2.26)

where (A, \) = (1,1),(4,2),(2,4) and ¢ € {¢? — 36 — 3,1, —2¢ + 66 + T}.
For each pairs of equations in (2.2.26)), the elliptic curve Chabauty routine in Magma [I]
works on either O or C. The result is recorded in the following table, where () means

there are no solutions.

Table 2.2: Solutions Corresponding to the Values Of

(A, 1,8)
A | (r,s) | Curve | Rank Cubic model (a,b)
1](0-1)] O 1 y? = 2% + 9(—17¢% + 16¢ + 193) 0

1] (0,0) Cy 1 y* = 23 + (360802¢° — 64303209 — 7101783) | (£1,0)

1 (-1,1) | 0 | y?*=2®+(2168127¢? — 64303209 — 7101783) 0
41(0-1) | 0 y? = 23 + (9204¢% — 27144¢ — 30732) 0
41 (00) | & 0 y? = 2® + (—312¢° + 312¢ + 4212) 0
41 (1-1) | 1 y? = 23 + (28¢% — 68¢ — 83) 0
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21 (0,-1) | Oy 1 y? = 23 + (28¢* — 68¢ — 83) 0
2 (0,00 | O 0 y? = 23 + (64584¢2 + 247104¢ + 169533) 0
21 (1,-1) | Oy 1 y? =23 + (7¢* — 20 — 23) 0
So (a,b) = (£1,0). Hence |U| = |V| = 1. Thus X =2 and (x,y) = (£2, £5). O

2.3 Equation y? = 2% — 47
In this section, we will prove Theorem [9]
Proof. Equation y? = 2% — 47 is equivalent to
Y? = X% 4725,
where X, Y, Z are coprime. We have
(X2 —Y)(X?+Y)=472°

The ged(X? —Y, X3 +Y) divides ged(2X3,2Y), so divides 2. We can choose the sign
of Y such that 47| X3 + Y.

Case ged is 1:
X34Y =475 X3 -y =US gcd(U,V)=1.

So
2X° =47V0 4+ US,  ged(U,V) = 1.

If 13 4 UV, then 2X® = 41 £ 47 mod 13. Thus 4X% = (1 &£ 5)2 mod 13. So
+4 = 43 mod 13, impossible. Therefore 13|UV. If 13|U, then 2X3 = 47V°¢ = 45
mod 13. Thus 4X% =25= —1 mod 13. So 4 = —1 mod 13, impossible. If 13|V,
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then 2X? = U® mod 13. Thus 4X°% = U =1 mod 13. So £4 = +1 mod 13,
impossible.

Case ged is 2:

Then
X34Y =47-2.V% X3 -V =2°.U% ged(UV)=1,
or
X34Y =47-2°.V5 X?-Y =2.U% gcd(UV)=1;
So
X3 =47v°% 4 16U°, gcd(U,V) =1,
or

X3 =472 VO 1 U®  ged(U,V) = 1.

The latter case gives (X/V?)3 = 752 4+ (U?/V?3)?. The elliptic curve y* = 2% — 752
has rank 0, and the trivial torsion subgroup, implying V' = 0. So we only need to
consider the case

X3 =16U° + 47V°, (2.3.1)

From 63 = 16 - 5 + 47, we would like to show that X = 63, |U| = |V| = 1.

If 3|U, then from (£2.3.1)), we have X = 47V% =2 mod 9. Thus X® =4 mod 9, so
1 =4 mod 9, impossible. So 31 U. If 3|V, then X3 = 16U% = —2 mod 9. Thus
X%=4 mod 9, impossible. So 31 V. Therefore X* =0 mod 9, giving 3| X.

From (12.3.1)), we also have 21 X, V.

Let K = Q(0), where § = /—47. K has the class number 5, the trivial fundamental
unit group, and the ring of integers O = Z[lTJ“e]. The class group of K is generated

by the ideal I = (2, ). Now
(X)? = (4U? + 0V?)(4U> — oV?). (2.3.2)
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Let J be a common ideal dividing both factors on the right side. Then
JI(8U?), J|(20V?), J(X)>.
Taking norms gives
Norm(J)|64U°,  Norm(J)|4-47-V®  Norm(J)|X?.

But 2 1 X, so Norm(J)| ged(X?3,U%,47V%) = 1. Therefore (4U? + 0V?) and (4U3 —

0V3) are coprime ideals. Thus
(4U% 4+ 0V?) = A3,
where A is an ideal in Og. K has class number 5 with the trivial unit group, hence
AU +0V3 = A3 (2.3.3)
with A € Ok. Let A=u+ UGQLH), where u,v € Z. Then
A = (3/2u*v + 3/2uv® — 11/20*)0 + u® + 3/2u®v — 69/2uv® — 35/20°.

A3 € Z[0] implies u® + 3/2uv — 69/2uv* — 35/2v* € Z, hence M €Z. If2¢v,

then % € Z, impossible. So 2|v. Therefore A € Z[0]. Let

AU +0V3 = (a + bo)?,
where a,b € Z. Taking norms gives
X =a® + 470"
2|X implies 21 a, b; 3| X implies 31 a, b. Expanding (a + 00)3 gives

4U? = a(a® — 1410%),
(2.3.4)
V3 = b(3a® — 47b%).
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In the second equation, we have
ged(b, 3a® — 47b%) = ged(b, 3a%) = ged(b,3) = 1.

Further, V is odd so b is odd. 3a® — 470*|V3 so 3a® — 47b* is odd, hence a is even.
Thus a® — 141b% is odd, so 4|a. If 47|a, then 47|v* and 47|U%. So 47|ged(U, V),
contradicting ged(U, V) = 1. Hence 47 { a, so ged(a, a® — 1410*) = 1. Therefore from

(2.3.4), we have
a=4A% b= DB’ 3a®—47°=C? a®— 1416 = D,

where A, B,C,D € Z, AD=U,CB=1V.
Because ged(U, V') = ged(a, b) = ged(a, 141) = ged(b,3) = 1, we have A, B,C, D are
coprime. Further, 3,47t a, so 3,471 A, D; 2,3tbso 2,31 B,C. Now

48A% — 47B° = 3,
16A% — 141B% = D3,

We will show |A| = |B| =1and C =1, D = —5. Indeed, we have
3C% — D3 = 128A°,

C?® —3D3 = 376B°.

Note that C® = 3D3 mod 8 and 21 C, so
C =3D mod 8.
Also C? =3D3 mod 47 and 471 D, so
= —5C mod 47.

Let L = Q(¢), where ¢ = v/3. L has class number 1, the ring of integers O = Z[4)],

and a fundamental unit € = ¢?—2 of norm 1. The ideal (2) = pago, where py = (—1+9)
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and ¢ = (1 + ¢ + ¢?). The ideal (47) = pyrqur, where pyr = (2 + ¢ + 2¢%) and
Qa7 = (2 - 10@5 + 3¢2) Now

(C — D¢)(C* + CD¢ + D*¢*) = 2° - 47 - B°.
Because
ged(C — D¢, C* + CD¢ + D*¢?) = ged(C — D¢, 3D?*¢?*) = ged(C' — D¢, ¢°) = 1,

the two factors on the left are coprime.
We note that
C—Dp=C(1+5¢p) =0 mod pyr,

C—Dp=D(3—¢)=0 mod pj.
Thus
C' — D¢ = (—1)"e'ppl;; G°,
where G € Op, and 0 < h <1, 0 <4,k <5. Taking norms gives
23 .47 BS = (—=1)"2747"Norm(G)®.
So hiseven, j =3 mod 6, k=1 mod 6. Thus (h,j, k) = (0,3,1). Then
C' — D¢ = (13 — 10¢ 4 ¢*)GS.

We claim that ¢ = 5.

If i =0 mod 2, then
C —D¢=(13—-10¢ + ¢*)(M + Np + P¢*)>, M,N,P € Z.
Comparing coefficients of ¢? gives

M? —20MN + 13N? +26MP +6NP — 30P% =0,
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which is locally unsolvable at 2. Thus i is odd.
If © = 3, then

C — D¢ = (13— 10¢ + ¢*)(M + Nop + P¢?)®, M,N,P € Z.
Comparing coefficients of ¢? gives
M3—30M?*N+39M N2 +3N3+39M*P+18M NP—90N2P—90M P?*+117N P*4+9P3 = 0,

which is locally unsolvable at 3.

If i =1, then
C — D¢ = (=56 +23¢ + 11¢*)(M + No + P¢*)®, M,N,P € 7.
Comparing coefficients of ¢? gives
11M3+69M? N —168 M N2 +33N3—168 M2 P+198 M N P+207N?P+207M P?*—504N P?4+99P3 = 0,

which is locally unsolvable at 3. Therefore ¢ = 5, equivalently, on taking ¢ = —1, we
have
C — D¢ = (1+5¢)GS.
It follows that
(C — D¢)(3C* — D*) = 2(1 + 5¢)(24G)",
or
2(1+5¢)(z — 9)(32° — 1) = ¢,
where 2 = £ and y = 2(1 + 5¢)(2AG)?/D?, representing an elliptic curve over L.

The cubic model is

y? = 2*4-(—300*+174¢+36) 2%+ (9012¢*+50400—12708) 24-(207576 ¢ —409536¢+449064).

This curve has rank 2. The Chabauty routine in Magma [I] shows & = =1. Hence
C =1, D = -5, and |A| = |B| = 1. Therefore the only solutions to y* = 2% — 47 are
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Chapter 3

CUBIC POINTS ON QUARTIC CURVES

3.1 Introduction

This chapter studies the equation F(z?% 4%, 2?) = 0, where F(X,Y,Z) is a non-
singular, irreducible, rational homogeneous quadratic polynomial in three variables.
This equation defines a curve C of genus 3. The question of finding all rational points
on genus 3 curves is interesting, but currently there are no known algorithms to find
all rational points on such curves. We can ask if C has a point in an odd degree
extension of Q. Coray [13] showed that if C has a point in an odd degree extension
of Q, then C also has a point in Q or a cubic extension of Q ( which we shall call a
cubic point). Using algebraic number theory, Bremner, Lewis and Morton [2] gave
some examples of the form ax* + by* = cz* which have no rational solutions but
have cubic points where a, b, ¢ are positive integers. Cassels [I1] gave an algorithm
to find cubic points in C and some examples where C has no cubic points. Using a
different approach, Bremner [3] studied the equation x* + y* = Dz?. Based on the
techniques of Cassels [I1] and Bremner [3], I will prove a necessary condition for C
to have a cubic point, and then apply it to extend some old results on the equation

ot + na?y? +y* = D22
3.2 Cubic Points and Their Associated Curves

We are interested in the genus 3 curve

C: F(2%,y?, 2%) = 0.
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We make the following assumption:

if X,Y,Z € Q such that F(X,Y,Z)=0and XYZ =0then X =Y = Z = 0.
(3.2.1)

Consider three associated curves

;

Ei: F(X,y? 2%) =0,

Ey: F(2%Y,2%) =0,

E3: F(2?,y*, Z) = 0.

\

By definition, a point (zo : yo : z) € P?(Q) is a cubic point if Q(zo : yo : 2) is a
cubic number field. We need the following.

Lemma 3.2.1. If C has a point in Py(Q) then C also has a cubic point.

Proof. See Cassels [11]. O

Let P = (a, 3,7) be a cubic point on C, and G = Gal(Q/Q). G acts on P by

9(P) = (g(a) : g(B) : g(v)) Vg € G.

If v # 0 then we can take v = 1 and P = (a, 3,1). Without loss of generality, we
can assume « ¢ Q. Then 5 = p(«), where p(z) is a polynomial of degree at most 2
with rational coefficients. The set of orbits of P is {(a;,p(c),1),7 = 1,2,3}, where
a;,1 = 1,2,3 are all Galois conjugates of a. Each set of orbits of a cubic point on C
is called a rational triplet.

Let T be a triplet {(a, 5i,7i),7 = 1,2,3} on C. Then we have a triple of points
{(a2, Bi,7:),i = 1,2,3} on Ej. Because o?, 32,72, Biy; are linearly dependent over Q,

there are 7, s,t € QQ such that

af =B} + 5By + 7]

32



for i = 1,2,3. This holds for 7 = 1,2, 3 because the triple {(a?, 8;,7:),7 = 1,2,3} is

invariant under G. The curve
X =ry® + syz +t2°

intersects E at the triplet {(a?, 8;,7:),7 = 1,2,3} and a fourth point which is neces-
sarily a rational point. Denote this point by v;(7T"). So v; maps each rational triplet
T on C to a rational point v1(T") on E;. See Cassels [L1].

Similarly, we have maps vy, v3 from the set of rational triplets on C to the set of
rational points on F,, F5 respectively. Thus for each rational triplet 7" on C we have
a triple (vi(T), v2(T), v3(T)) € E1(Q) X E2(Q) x E3(Q).

Denote the groups of rational points on Fy, Es, F5 by Gy, Gs, and G5 respectively.

Let (Py, Py, P3) € G1 X Go x G3. We want to find a rational triplet T such that
’Ul(T) = Pla UQ(T) = P2 ,’Ug(T) = P3.

Cassels [11] and Bremner [3] showed that it is enough to find triplets T" such that
v;(T') is in the coset reprentatives of G;/2G; for i = 1,2, 3.
The map vy sends a rational triplet to a rational point on FEj; thus there is a non

trivial rational point on E;. So F(X,Y, Z) = 0 has non trivial solutions. Let
X:Y:Z=X(m):Y(l,m): Z(l,m) (3.2.2)

be a parameterization of F'(X,Y, Z) = 0, where X(I,m),Y (l,m), Z(l,m) are degree
2 homogeneous polynomials in [, m with rational coefficients.

Because P = (a : 3 : 7) is a cubic point on C, we have (o? : 8% : 4?) is a point on
F(X,Y,Z) =0. Let (a®: 3% : 4%) be parameterized by \ : p.

Let f(x) = Ax®+ Bx*+Cx+ D be the defining polynomial of %L, where A, B,C, D € Z
and ged(A, B,C, D) = 1.
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Let 2—1, %, f;—i be all conjugates of % Then f(x) has the factorization

Assume that vy (T) = (X1, y1,21) and let (X; : y? : z¥) be parameterized by
X1 : y% : Z% = X(lhml) : Y(llam1> : Z(llvml)a (323)

where [, m; € Q.
Assume that in (3.2.2)

Z(l,m) = al®> + blm + cm?, (3.2.4)
where a, b, c € Q.

The following lemma is due to Cassels [11]

Lemma 3.2.2. Let d = y; then there are u,v,w,q € Q and g # 0 such that

(

qA = miu? + 2aduw + gaw?,

qB = —l1u* + 2myuv + 2bduw + 2advw + (gb + ha)w?,

) (3.2.5)
qC = —2luv + myv? + 2cduw + 2bdvw + (ge + hb)w?,
qD = —11v? + 2cdvw + hew?,
\
where Y2 Z(1,m) — 22Y (I, m) = (mql — lym)(gl + hm).
Proof. Lemma 2.1, Cassels [11]. O

Lemma 3.2.3. If Z(I,m) = al®> + ecm? in (3.2.4), then

Z(l;,m1)((a(cB — aD)? 4 c¢(cA — aC)?) € (Q*)%
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Proof. Substituting b = 0 in (3.2.5)), we have

;

gA = mu® + 2aduw + gaw?,
qB = —lLu® + 2myuv + 2advw + haw?,

qC = —2luv + mv? + 2cduw + gew?,

gD = —1,v? + 2cdvw + hew?.

\

From the first and the third equations, we have

q(cA —aC) = my(cu® — av?) + 2l auw.
From the second and the fourth equations, we have

q(cB — aD) = I (av* — cu®) + 2mycuv.

Combining the above two equations, we have
*(c(cA —aC)? + a(eB — aD)?) = (em] + al?)(av? — cu?)? + 4ia’cuv® + 4miac’u®v?
= (em? + al})((av?® — cu?)? + 4acuv?)
= (alz + cm?)(av® + cu?)?.
(3.2.6)
If ¢(cA — aC)? + a(cB — aD)?* = 0, then Z(cB — aD,cA — aC) = 0.
Let ¢ = cA—aC and p = ¢B — aD. Then ((X(p,q),Y (p,q), Z(p,q)) is a solution of

F(X,Y,Z) =0 with Z(p,q) = 0. By (3.2.1]), we have
X(p,q) =Y (p,q) = Z(p,q) = 0. (3.2.7)

If p#0orq+# 0, then from (3.2.7), X(I,m),Y (l,m), Z(l,m) has a common factor
lg — mp, thus F(X,Y, Z) = 0 has a parameterization (X;(l,m) : Y1(,m) : Z1(I,m)),

where X (I, m), Y1(l,m), Z1(l, m) are linear polynomials in [, m. Therefore every point
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in F(X,Y,Z) = 0 is a rational point, which contradicts the existence of a cubic point,

2

for example the point (a?, 3%,72).

Therefore

So
cA—aC =cB —aD =0.

The polynomial f(z) is now reducible with a factorization
B,
f(z) = (Cx+ D)(ﬁx +1).

So
c(cA —aC)? + a(cB — aD)* # 0.

From (3.2.6)), we have

Z(l;,m1)((a(cB — aD)? + c¢(cA — aC)?) € (Q*)%

O
We consider the case where
Z(l,m) = al®> + blm + cm® where a#0 or c#0. (3.2.8)
By homogeneity, we assume that a = 1. Then
Z(l,m) = 1> + blm + cm?. (3.2.9)

Let




Then

;

X1<l + %mvm) = X(lvm)v
Yill + Lm,m) = Y (1, m),

Zy(l+ 2m,m) = Z(l,m).

\

For example, because Z(I,m) = [* + blm + cm?, we have Z;(I,m) = * + (c — %)m?
We have
b b b

In other words, if FI(X,Y, Z) = 0 has a parameterization X (I,m) : Y (I,m) : Z(I,m),

then it has a parametrization

b b b
Xq(l,m) :Yi(l,m): Zy(I,m) = X(I — §m,m) Y (- §m,m) CZ(l— §m,m).

Conversely if F'(X,Y,Z) = 0 has a parametrization (Xy(l,m) : Yi(I,m) : Z1(I,m)),

then it also has a parametrization
b b b
X(I,m):Y({,m): Z(,m)=X1(l+ §m,m) Yl + ém,m) s Z1 (L + §m,m).

Because (a? : 32 : 4?) is a solution of F(X,Y,Z) =0, (a? : 32 : 4?) has a parameter-

ization
o B% % = Xy (Ly, My) : Yi(Ly, My) : Zi(Ly, My),
where
Li  A+5p A WP
M, % I

% is a root of f(z) = Az® + Bz* + Cz + D, so J\L/I—ll is a root of

b 1 1 1
flz — 5) = Ax® + (—gAb + B)z? + (ZAbZ — Bb+ C)x — gAbf5 + ngﬂ —5Cb+D.
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Let

;

A = A,
B, =-3Ab+ B,

C, =3AR—Bb+C,

Dy =—L1Ab+ 1By —10b+ D.

\

The intersection of the curve E; and the curve X = ry?+syz+tz? contains a rational
point (X, y?, 2%) satisfying
X1yl 2t =X(,my) Y (l,ma) s Z(1, my)
=Xq(l + gmhml) Yi(h + gmhmﬂ 2y (b + gm1)
— Xy (L, M) s Yi(L, M) : Zy(L, M),
where L = [, + %ml, and M = m;.

Let Hi(A,B,C,D) = (¢;B; — D1)* + ¢1(c;A; — C1)?, where a; = 1 and ¢; = ¢ — %.

Then

H,\(A,B,C,D) = —b*AD + b*cAC + b*BD — bc* AB + 3bcAD — beBC — bC'D
+ A% —2¢2AC + 2B* — 2¢BD + ¢C? + D?.

(3.2.10)

By applying Lemma to Zi(l,m) = 2+ (c — ¥)m? = a1l? + eym?, where a; =

2
1, and ¢; = ¢ —

7> we have

Zy(L, M)H,(A, B,C, D) € (Q")"
Because Z1(L, M) = Z(l;,my), we have

Z(ly,m1)H,(A, B,C, D) € (Q*)*. (3.2.11)
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Lemma 3.2.4. Assume that in (3.2.2) Z(l,m) = al®> + blm + cm?. Let
H(A,B,C,D) = —b*AD + b*cAC + ab*BD — bc* AB + 3abcAD — abcBC — a*bC' D
+ A A? — 2ac* AC + ac* B* — 2a*cBD + a*cC? 4 a®* D
Then
Z(ly,m)H(A, B,C, D) € (Q)?,

where (I3, my) is in (3.2.3)).

Proof. If a # 0 or ¢ # 0, then we can assume that a # 0. By replacing b by g and ¢

by £ in (3.2.9) , (3.2.10) and (3.2.11]), we have

Z(ly,m)H(A, B,C, D) € (Q*)%

If @ = c¢ =0, then from the first and the fourth equations in (3.2.5)), we have

qA = mlu27
(3.2.12)
qD = —l1U2.
So
AD = —myly (uv)?.

Moreover, because H(A, B,C, D) = —b*AD and Z(ly,m;) = blymy, we have
*Z(l,,m)H(A, B,C, D) = b*(Iymyuv)>. (3.2.13)

From a = ¢ = 0, we have b # 0. Because f(z) = Az + Bx? + Cx + D has no linear
factor over Q, we have A # 0 and D # 0. In addition ¢ # 0. So from (3.2.12)), we
have

my, by, u,v # 0.

Therefore

Q7u7vvl17m1 7& 0. (3214)
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From (3.2.13) and (3.2.14]), we have

Z(ll,ml)H(A, B,C, D) S (@*)2

On Es, let vo(T) = (9, Ya, 22) be parameterized by
.%'% . sz . Zg = X(lz,mg) . Y(lQ,?TLQ) . Z(lg,mg),

where [y, ms € Q.

On Es, let v3(T) = (x3,ys, Z3) be parameterized by
x5y Zy = X(Is,ms) : Y(l3,m3) : Z(I3,m3),

where [3,ms € Q.
From Lemma [3.2.4]
Z(l,m)H(A, B,C, D) € (Q°)2.

Hence H(A, B,C, D) € Q*.
Similarly, we have

Z(ly,my)H (A, B,C, D) € (Q*)*.

Therefore
Z(ll,TTLl)Z(lg,mg) < (@*)2

By symmetry, we have
X(lg,mg)Xag,mg), Y(ll,m1>Y(l3,m3) < (Q*)Q

Thus we have the following theorem
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Theorem 3.2.1. Let (X (I;,m;) : Y (l;,my;) : Z(l;,m;)) be a parameterization of v;(T)

fori=1,2,3 respectively. Then
X (I, mo) X (I3, m3), Y(Iy,m)Y (Is,ms), Z (11, m1) Z (I, my) € (Q*)%
Remark 3.2.1. Bremner [3] proved Theoremfor the family of curves
ot 4yt = D2t

The approach in the paper is computational. The above proof of Theorem takes

a different approach and works for the general equation F(z?%,y?, 2%) = 0.
3.3 Some Applications
3.3.1 Equation z* + y* = 4p2*

Theorem 3.3.1. Let p be an odd prime then the equation

ot oyt = 4p2?
does not have solutions in any odd degree number field except xyz = 0.
Proof. Consider the genus 3 curve

at + oyt = dp2t. (3.3.1)

By Corollary 6.6, Coray [13], we only need to show has no rational points or
cubic points.

Because p is an odd prime, has no nontrivial rational points by considering
mod 2. So we only need to show has no cubic points.

We consider the curve

Dy: 2® 4yt = dpz*,
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Assume ([3.3.1]) has a non-trivial cubic point then D; has a non-trivial rational point.
Let (xo,%0,1) be a rational point on the curve D;. Then the corresponding elliptic

curve is

Ey:y? = (2 + 16p). (3.3.2)

Let r be the rank of E; over Q.
If » <1, then by Theorem 4, Bremner [3], C' has no cubic points.

If > 2, then by Proposition 6.2, Chapter X, Silverman [18], we have
r=2and p=1 mod 8.

A point on 22 +y* = 4pz* gives a point on u?+1 = 4pv*. By Proposition 6.5, Chapter

X, Silverman [I§], we have

where (—) , denotes the bi-quadratic residue symbol.

Because p =1 mod 8, there are A,B in Z* such that
p=A®+ B
where 21 A and 2|B.
In addition, because (%)4 = 1, from Proposition 6.6, Chap X, Silverman [I8], we have

AB =0 mod 8.

Therefore 8| B.
Now, let (x,y, z) be a non trivial rational point in D;. We can assume that z,y, z € Z*
and ged(z,y,z) = 1. We have
2 4yt = 4dpzt.
Thus 2|x,y. Let z = 2s, y = 2t. Then
s2 4+ 4tt = p2t.
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Because 4p = A? + B?, we have
(pz® + 2Bt?)? = p(Bz* + 2t%)* + A%

Thus
(pz* + 2Bt* + As)(pz* + 2Bt* — As) = p(Bz* + 2t*)°.
We need the following lemma

Lemma 3.3.1. (Silverman [18]) With the above notations, we have the following

cases
Case 1:
pz? 4+ 2Bt? + As = pu?,
pz? 4+ 2Bt? — As = v?,
Case 2:
pz? +2Bt? + As = u?,
pz? + 2Bt? — As = pv?,
Case 3:
pz? 4 2Bt? + As = 2pu?,
pz? + 2Bt? — As = 202,
Case 4:
pz? 4 2Bt? + As = 2u?,
pz? + 2Bt? — As = 2pv?.

Proof. In this section, we denote v,(z) the highest power of a prime number ¢ dividing

an integer x.
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We show that ged(pz? + 2Bt? + As, p2? + 2Bt? — As) is either a square or 2 times a
square.

Indeed, let d = ged(pz? + 2Bt? + As, pz? + 2Bt? — As).

Let n be the square-free part of d. We want to show that n =1 or n = 2.

We have
p 2B A

det | p 2B —A | =4A(p— B?) = 44°.
B 2 0

Thus d|4A3. Hence n|4A3.
If n > 1, then let ¢ be a prime divisor of n. We want to show that ¢ = 2.
Assume that ¢ > 2, then from n|4A3, we have g|A.
Thus

2 =p2t —4tt = (A2 + B — 4 =B —4* =0 mod q.
So qls.
Let v,(d) = 2r + 1, then ¢*"*1|B2? + 2t2.

From
¢ p2? + 2Bt? + As = B*2* 4+ 2Bt? + A%2* + As = B(B2* + 2t%) + A(AZ% + 5),

we have ¢*" 1| A(Az? + s). Because q|s, ¢ f z, we have ¢*" | A.

If v,(B2z% + 2t*) > 2r + 1, then from q|s, ¢* T!| A, we have
g7 2| ged(pz? + 2Bt + As, pz® + 2Bt* — As).

Thus v,(d) > 2r + 1, a contradiction.

Therefore v, (Bz? + 2t?) = 2r + 1.

From ¢ > 2, ged(A, B) = 1, ged(s, 2) = ged(s, t) = 1 and q|A, s, we have ¢ { Bz%+2t2.
Therefore ¢* 1| A%2* + (Bz? + 2t?)(B2z? — 2t?) = 5%, which is a contradiction.

Son=1orn=2. O
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Now if 4p = g% + h?, then the equation X2 + Y2 = 4pZ? has a parameterization
XY : Z=gl>=2hlm — gm?: hi®> 4+ 2glm — hm? : 1> + m>.
Point (x,y? 2%) in X% + Y? = 4pZ? is parameterized by a pair (I,m) satisfying

l:m=gx+hy*+Dz*: —ha+ gy> = —ha + gy* : —gx — hy* + D2>.

Let )
a = gz + hy? + D22,
B =—hz + gy?,
\’Y = —qgr — hy? + D22
Then
ay =5,
and
l:m=a:8=0:7.
Thus

P+m?=a®+ 5> mod (Q*)?

o? + ay mod (Q)?
=a(a+7v) mod (Q*)? (3.3.3)
= a(2Dz*) mod (Q*)?
=2pa mod (Q*)2
Now, we have p = A% + B2, where 8|B.
Let g =2A,h =2B, r = 2s and y = 2t. Then
a = gr + hy* + D2* = 4(As + 2Bt* + p2?).
Therefore
> +m? = 2pa = 2p(As + 2Bt* + pz?) mod (Q*)% (3.3.4)
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Now 52 + 4t* = pz* and ged(z,y,2) =1, 2 and s are odd.
Consider Case 1 in Lemma [3.3.1]
pz? + 2Bt? + As = pu?,
pz? +2Bt? — As = 1.

Taking modulo 8, we have

1+ As=v> mod 8§,

1 - As=v?> mod 8.
A and s are odd, thus u,v are both even, thus 4|1 + As and 4|1 — AS which is
impossible.
So Case 1 is impossible.

Similarly, Case 2 is impossible.

Case 3:
pz? + 2Bt? + As = 2pu?,

pz? +2Bt? — As = 202,
Then from ((3.3.4))
I? 4+ m® = 2p(As 4 2Bt* 4+ pz*) = 4p°u®> =1 mod (Q*)*.

Case 4:
pz? + 2Bt? + As = 2u?,

pz? + 2Bt? — As = 2pv.

Then from (|3.3.4)),

> +m? = 2p(As + 2Bt* + pz*) = 4pu®* = p  mod (Q*)*.
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So for the curve D;: 22 + y* = 4pz*, we have
P+m?>=1orp mod (Q*)>

Now, we consider the curve
Dy: 2t +y? = 4p2*.
We still have
4p = g* + h?,
where g = 2A, h = 2B, and
p=A*+B?

where B =0 mod 8.

In this case, because x = 2t,y = 2s, we have
4t + 52 = p2t.
Now the pair (I, m) satisfies
l:m=gz*+hy+Dz*: —ha® + gy = —ha® + gy : —gz® — hy + D2
By symmetry to the curve Dy, we also have
> 4+ m? = 2p(pz® 4+ 2At> + Bs) mod (Q*)2.
A similar argument shows that
pz? + 2At* + Bs = pu?® or u*.

Thus

P+m?>=2 or 2p mod (Q*)%
Now, for the curve D;: 22 + y* = 4pz*, we get a pair (I;,m) in which
P4+mi=1orp mod (Q%)?
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and for the curve Dy: 2t + y? = 4pz*, we get a pair (lo, my) in which
I54+m3=2or2p mod (Q")>.
Thus
(Z+m2)(3+m3)=2o0r2p mod (Q*)?
hence (12 + m?)(I3 + m3) is not a square.
So (3.3.1)) has no nontrivial points in any cubic extension of Q. O

3.3.2 Equation x* + nax?y? + y* = Dz*

This section studies the equation
ot + na*y® +y* = D2
Bremner [3] proved

Theorem 3.3.2. Let D be a fourth power free integer such that D and 2D are not

perfect squares. If the rank of the curve x?+y* = Dz is at most one then the equation
4yt = DA
does not have any point in any cubic extension of Q.
We prove the following theorem

Theorem 3.3.3. Let n, D be non-zero integers such that D is fourth power free,
2—n,(2+n)D,(4—n*)D, and D are not perfect squares. Assume that the rank of

the curve 2% + nxy? + y* = Dz* is at most one. Then the equation
vt + na*y® +y* = D2* (3.3.5)

does not have any nontrivial solution in any odd degree extension of Q except xyz = 0.
In particular, the equation x* + nx*y® + y* = Dz* has no rational solutions except

r=y=2z=0.
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Proof. Consider the curve
C: x* +na*y® +y* = D2

By Corollary 6.6, Coray [13], if C' has a non-trivial point in an odd degree extension
of Q then C has a non trivial rational point or a cubic point. By Lemma [3.2.1] we
only need to show that C' has no cubic points.

Because n? — 4 ¢ Z2, the equation X2 + nXY + Y? = DZ? has no rational solution
(X,Y, Z) with XYZ = 0 except X =Y = Z = 0; therefore the condition is
satisfied.

Assume that C' has a nontrivial cubic point. Then the curve
By X? 4+ nXy* +y* = D2*

has a nontrivial rational point. There are g, h € Q* such that D = ¢? + ngh® + h*.
The equation

X2 +nXY +Y?=DZ? (3.3.6)

has a parameterization

XY : Z = (g+nh®)?+2h%m — gm?* : —h*I*> +2glm + (ng + h*)m? : I* +nlm +m?,
(3.3.7)

where

l:m=X+gZ:Y +h*Z (3.3.8)

Let A=1—" and (a,b) = (g + 2h%h).

Lemma 3.3.2. The curve Cy: X% + Ay* = Dz* has the elliptic curve model

E:v? = u(u® + 4AD)
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via the following maps ¢: C1 — E with ¢(X,y, z) = (u,v), where

2(D22—b%y?2 A+aX)
(bz—y)? ’

4(aDz3+DX z—b3 Xy—aby3 A)
(bz—y)? ’

u =

v =

and ¥: E — Cy with ¢(u,v) = (X, vy, 2), where

(

\

X = a’ud — 12ab* ADu? — 4a3 ADu + 8bAD(D + Ab*)v — 16ab*A2D?
y = abv — 2uD + 4ADb?,

2= —2Ab% + av — 4bAD.

Proof. By using Magma [1], we can check that ¢ and 1) are inverses of each other and

;

\

¢(a,b,1) =(0:1:0),

¢(—a,b, 1) = (4482 —4AD(a;3+2Ab4)b)’ »
d(a,—b, 1) = (4, A2y (3.3.9)
¢(—a,=b,1) = (0,0).

O

We need the following

Lemma 3.3.3. Let d be a non-zero integer such that d # 4 and —d is not a rational

square. Then the group

Proof. Prop 6.1, Chapter X, Silverman [18].

of torsion points on y* = z(x? +d) is {(0,0),(0,1,0)}.

O

Because 4AD # 4 and —4AD = (n* — 4)D is not a square, by Lemma [3.3.3] the

torsion subgroup of E is Z/27 and is generated by (0,0). So if the rank of E; is 0,

then there are only finitely many points on E7; thus there are only also many finitely
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many points on (] via the map

CI By — Cl,
(3.3.10)

C(r,y,2) = (x + 59,9, 2).
The only torsion points on E are (0,0) and (0 : 1 : 0); therefore C has only 2 rational
points, but C; has at least 4 points (+a, b, 1). So if the rank of Ej is 0, then E; has
no rational points except (0,0,0). Therefore C' has no point in any cubic extension
of Q.
Now consider the case when the rank of F; is 1. Then the ranks of both € and F
are one.
Two curves

Ei: 2* + nxy? + y* = D24,

Ey: 2t + na?y +y* = D2*
have rank 1.
A rational triplet 7" on C' gives a pair (vy(7T),v2(T)) on E1(Q) x Ey(Q).
By following Bremner [3], Cassels [I1], we only need to find 7" such that v;(7") is in
the set of the coset reprentatives of E;(Q)/2E;(Q) for i = 1,2.

Point ¢(—a,b,1) = (440< a(“2Jg32Ab4)) is of infinite order because the only non-zero

torsion point on E is (0,0). We also have ¢(—a, b, 1) is not divisible by 2 because if
¢(—G, ba 1) - Z(UO, /UO) then

1ADK  (4AD — up)?
a? (2v9)?

which is impossible because AD = (1 —n?/4)D is not a square. Therefore
E(Q)=ZxZ/27Z and E(Q)/2E(Q) =Z/2Z,
so the coset representatives of £(Q)/2E(Q) are (0:1:0) and ¢(—a,b,1).
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From ((3.3.9) and ({3.3.10]), we have

<¢ o C)il(oa 170) = Cil((bil(ov LO)) = Cil(% b? 1) = (CL - gb27bv 1) = (gv h: 1)5
(Qs o C)il(oa 0, 1) = Cil(gbil(oa L, O)) = Cil(_a’ bv 1) = (a - %b27 b? 1) = (_g - nhQa hv 1)'

So the pull backs of (0 : 1:0) and (0,0,1) on E; are (g,h,1) and (—g — nh? h,1).

Thus we only need to find triplet 7" such that
vi(T) € {(g, h,1),(—g — nh* h,1)}. (3.3.11)
Similarly, on Es we only need to consider triplet 7" such that
UF®’ Mo 2
U2(T) € {(b7 a— §b aba 1)a (b7 —a— §b ) 1)} = {(hvga 1)a (hv —g— nh ’ 1)} (3312)

The point (g, h, 1) on E; corresponds to the point (g: h?:1) on X2+ NXY +Y? =
DZ?. From (3.3.8), (g : h?: 1) is parameterized by

L:mi=(g+g): (h*+h*=g:h%
Similarly, point (—g—nh?, h,1) on E; corresponds to point (—g—nh?, h? 1) on (3.3.6).
From (3.3.8)), (—g — nh? : h: 1) is parameterized by

Li:my=(—g—nh*>+g): (K*+h*)=-n:2

Because

Z(g,h?) = D and Z(—n,2) =4 —n?,

we have

Z(ly,m;) mod (Q*)* € {D,4 —n?}. (3.3.13)

Similarly, points (h, g,1), and (h, —g — nh? 1) on E, correspond to points (h?,g,1)

and (h?, —g — nh? 1) on (3.3.6) which are parameterized by

loomeye{l:1, R*+g:—g— (n—1)R*}.
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Because
Z(la 1) =n+2,
Z(W* +g,—g — (n — Dh*) = (2 = n)(¢* + ngh® + h*) = (2 — n)D,

we have

Z(ly,my) mod (Q*)* € {n+2,(2—n)D}. (3.3.14)

From (3.3.13) and (3.3.14)), we have

Z(l,m1)Z(ly,my) mod (Q*)* € {(n+2)D,2—n, (n+2)(4—n?),(2—n)(4—n*)D}.

Because (n +2)(4—n?) = (2—n)(2+n)* and (2 —n)(4 —n?) = (2 —n)*(2+n), we
have

Z(ly,m1)Z(ly,my) mod (Q*)* € {(n+2)D,2 —n}.

By the assumption on n, D then (n + 2)D, 2 — n are not perfect squares. Therefore,

Z(l1,m1)Z(ly, ms) € (Q*)2, which contradicts Theorem [3.2.1] O
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Chapter 4

THE HILBERT SYMBOL AND APPLICATIONS

4.1 Introduction

Let p be a rational prime or the infinite prime and let a,b € Q,. The Hilbert sym-

1 if 2* = az® + by® has a non-zero solution (z,y, z) € Q;
bol (a, b), is defined as (a, b), =

—1 if not.

Theorem 4.1.1. For all a,b and c € Q,, we have the following
1, (a,b),(c,b), = (ac,b),

2, I1,(a,0), =1

37 (Cl, _a’)p =1

4, if a = p*u and b = pPv, where p{u,v, then

a,b), = —1“5%3696“
(a,b)p = (=1)*"= ( p) (p)
or p > 2, where (=) denotes the quadratic residue mod p, and
p
(a,b); = (—1)"T Frrarstrost
forp=2.
Proof. See Chapter 111, Serre [17]. ]

We also need some knowledge about p — adic analysis. See Cassels [12].
In this chapter, we denote both v,(n) and ord,(n) the highest power of a prime p

dividing an integer n.
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4.2 Equation (z+y+z+w)(l/z+1/y+1/z+1/w)=n

At the end of their paper Bremner, Guy and Nowakowski [4] conjectured that every
positive integer n > 15 can be presented in the form (:U—i—y—i—z—i—w)(%—l—é—i—%%—i), where
x,1, z,w are positive integers. But using computer search, Macleod and Bremner did
not find solutions in the case n = 4m? or n = 4m? + 4 when m # 2 mod 4. In this

section, we will prove the following theorem

Theorem 4.2.1. Let n be a positive integer, n = 4m? or n = 4m? + 4 with m # 2
mod 4. Then the equation

1 1 1 1
n=(@+y+z+w)(=+-+-+-)
r Yy z w

does not have solutions x,y,w,z € Z™.

Remark 4.2.1. If we allow one of x,y, z,w to be negative then the equation

1 1 1 1
n=@+y+z+w)(-+-+-+-—)
r Yy z w

always has a solution, for example:

Remark 4.2.2. In their paper Bremner and Macleod [7] proved that the equation

x Y z
n = + +
y+z z+xr x4y

does not have positive integer solutions when n is a positive odd integer. Michael
Stoll [20] gave a different proof for this result using the Hilbert symbol. We will
develop Michael Stoll’s idea to prove Theorem [4.2.1]

The main idea is the following

Lemma 4.2.1. Let X, D € Q such that D < 0 and (X, D), =1 for all finite primes
p. Then X > 0.
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Proof. From Theorem 4.1.1}, we have

(X, D) ] x.D)=1

p prime, p < 00
Therefore (X, D) = 1. Thus the equation Xu? + Dv? = w? has nonzero solutions

in R3. Because D < 0, we have X > 0.

First we need the following theorem

Theorem 4.2.2. Let n,y, z be positive integers such that n = 4m? or n = 4m? + 4

with m # 2 mod 4. Consider the curve
E:Y?=X(X*+ AX + B),
where
A=y* =20z + (n? — 8n — 2)y*2* — 2ny2® + 24,
B = 16ny*2*(y + 2)*.

Let (X,Y) € E(Q) withY # 0. Then
(i)for all odd primes p

(X,y* = (n—2)yz+2%), = 1,
(i1 )in addition,

(X%~ (n— 2z + ) =1

in the following cases

n=4m? 4m and 4ty+z,

n=4m? 2{m and 4ty-— =z,

o6



n=4m*+4, 4m and 4ty-—z,

n=4m*+4, 2{m and 4{y+ z;

furthermore, if y* — (n — 2)yz + 2° < 0 and (X, y? — (n — 2)yz + 2%)y = 1, then
X >0.
Proof. Let

D =y*—(n—2yz+ 2%

L=y*+2*— 2n+4)yz(y* + 2%) + (n* — 12n + 6)y*22

Then
A% — 4B = D?L.

Let (X,Y") be a rational point on
Y?=X(X?+ AX + B) (4.2.1)

with Y # 0.

Lemma 4.2.2. If Theorem is true when ged(y, z) = 1, then it is true when

ged(y, z) > 1.

Proof. Let d = ged(y, z). Then y = y1d, z = z1d with ged(yp, 21) = 1.

Let Y] = %, X = C)f—4. Then from (4.2.1), we have

Y2=X1 (X2 + A X, + By),
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where

A =yt + 21 = 2nap 2 (Y + 21) + (n° — 8n — 2)y5 27,

By =16ny}z{ (y1 + 21)°,

Let Dy = y? — (n — 2)y121 + z7. Then for every prime p, we have

(X, D), = (d*X,,d*D), = (X1, D1),.

Therefore if (X, Dy), = 1 then (X, D), = 1.

Now we assume that ged(y, z) = 1.
(i)We want to show

(X,D), =1 V¥ odd primes p.
The equation
Bu? + Dv* = 6?

has a non-trivial solution (u,v,0) = (1,4yz(y + 2), 4yz(y + 2)?); thus
(B,D), =1 V primes p.

If v ¢ Z,, then let X = p~"X, with p{ Xo,r > 0.
From (4.2.1)) we have
X()(Xg =+ pTAXO —f-pQTB)

2 __
Ve = p3r

Thus r is even and

|:| = X[)(Xg +pTAX0 —|—p2rB)

o8
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Here [J means a square in the field we are working in. Taking mod p, we have

U= Xy, mod p.
Thus X, € Z.. Therefore
(X, D), = (p"Xo, D), = 1.

Now we consider the case X € Z,.

Lemma 4.2.3. Theorem holds when n = 4m?.

Proof.

Case 1:
prX.

Case 1.1: pt D, then X, D are units in Z,. Thus (X, D), = 1.

Case 1.2: p|D, we have

A, LD? A
X2+AX+B:(X+§)2— 1 E(X+§)2 mod p.

(4.2.3)

e p|A then pt X + é, thus from {) we have X2+ AX 4+ B € ZZ; therefore

(X,D), = (X*+ AX + B,D), = 1.

et A
If pf X + 4, then from (4.2.3), X? + AX + B € Z2. Thus

(X,D), = (X*+ AX + B, D), = 1.
If p|X + 4, then from p|D, we have

y* 4+ 2 = (n—2)yz mod p.
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Thus
A= (P + 25 = 2nyz(y* + 2°) + (n* — 8n — 4)y*2?
=((n—2)?—2n(n —2) + (n® — 8n — 4))y?2?
= —8ny?z* mod p.
A
= X = —5 = dny*2* = (4myz)® mod p.

2
= X €Z, (becausepfX ).

= (X,D), =1
Case 2:
plX.
Case 2.1:
ptyz(y+ 2).

The equation

(X% + AX + B)u® + Dv* = 6°

has a nontrivial solution (1,4yz(y + 2),4yz(y + 2)?) mod p, thus it has a nontrivial
solution in Q.

= (X*+ AX +B,D), = 1.
= (X,D), = (X*+AX +B,D), =1.

Case 2.2:

plyz(y + 2).
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Case 2.2.1: plyz.

Because ged(y, z) = 1, we have
D=y*+22—~(n—2yz=9" orz>#0 mod p.

Thus D € Z2 and (X, D), = 1.

Case 2.2.2: p{yz, then p|ly + z. Therefore
D=vy*+2—(n—2yz=—nyz=4m?y*> mod p. (4.2.4)

We only need to consider p|m; otherwise D € Z2 and hence (X, D), = 1.
Let r = vy(m), s = v,(y + 2), m = p"my, y + z = p°t, where r,s > 0, pt my, .

¢ r > s, then
D= (y+2)* —nyz = p>(t* — 4p> *miyz).

Because p { t, we have D € Z3. Thus (X, D), = 1.

¢ r < s, then

D = p2r<p25—2'rt2 o 4mfyz) — p2rD1’

where

Dy = p* ¥ — 4m2yz = 4m3y* mod p.
Because p f my,y, we have D; € Zi. Thus
(XvD)p = <X>p2rD1)p =1

¢ r = s, then

B = 16ny*2%(y + 2)* = 64p* m3 (y2)*t*

= v,(B) = 4r.

61



A= (y? —2%)? — 8mPyz(y* + 2%) + (16m* — 32m?)y*2>
= (y+2)*(y — 2)* = 8m’y2(y + 2)° + 16m*(m* — 1)y*2*
= ¥t (y — 2)? — Smiy2t*p* + 16m2 (p*'m? — 1)pry*2?

= p” (t*(y — 2)* — 8miyzt*p” + 16m3 (p*'mi — 1)y*z*)

— pQTAh
where
Ay =y — 2)? — 8miyzt*p™ + 16mi(p*'m] — 1)y?2
(4.2.5)
=t*(y — 2)® — 16m3y*2*> mod p.
Thus

vp(A) > 2r.

Let a = v,(X), B8 = v,(A), By = 64m3(yz)3t>. Then A = p’4Ay, X = p*X, with
a>0,3>2r and pt Xy, Ao, Bo.
We have

Y2 — pOéXO(pQOng +pa+BXOAO + p4TBO)- (426)
If , then from 1} we have
Y2 — p3aX0(X§ +pﬂ—aA0XO +p47‘—2aB0)'

Because 3 > 2r > « and 4r — 2a > 0, we have 3a = v,(X(X? + AX + B)). Thus
2|a.. Therefore o < 2r — 2.
Now we have

0= Xo(X2 + p"*XoAo + "2 By). (4.2.7)

Taking mod p, we have X§ = mod p. Thus X, € Z2, hence X = p*X, € Z;.
Therefore (X, D), = 1.
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If [ = 2r], then v,(X) = 2r.
We have D = p*"(t* — 4miyz) = p*" D;.

o If p{ Dy, then v,(D) = 2r = v,(X). Because Xy, Dy are units in Z,, we have

(X, D), = (p*" Xo,p”" D1), = (X0, Dy), = 1.

e If p|D;, then because z = —y mod p, we have
t* = 4m?yz = —4m3y* mod p. (4.2.8)

From (4.2.5)), we have

Ay =By — 2)* — 16m3y?2? = 4t?y* — 16miy*
(4.2.9)
= —32m?y* mod p.
Because p { y and p { my, we have p{ A;. Thus Ay = Ay, so 8 = v,(A) = 2r.
From (4.2.6)), we have

O = Xo(X§ + XoAo + Bo).

o pfXo+ 4. We have

p"DiL = D’L = A* — 4B = p'" (A} — 4By).

Thus
D?L = A2 — 4B,.
Therefore
p|A; — 4B.
Thus

A
X2+ AoXo+ By = (Xo + 70)2 mod p.
Because p {1 X, + %, we have X2 + AgXo+ By € ZZQ). Hence X, € Zg
= (X,D), = (pQTXO, D), = 1.
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o p|Xo + %, then Xy = —% mod p.
Because Ay = Ay, from (4.2.9)), we have

, then from , we have

Y2 _ p4r+aXO(p2a—4rX§ +pa+ﬁ—4rA0X0 + BO)

Because 2 — 41 > 0 and a+ 8 — 4r > 0, we have 4r + a = v,(X(X* + AX + B)).

Therefore 2|, hence o« > 2r + 2. So XoBy =0 mod p. Now
0= Xo(p** " X2 + p*tP=1 Ay X + By).
Therefore XoBy € Q7. Thus
(XB,D), = (p™ X¢By, D), = 1.
From (4.2.2), we have (B, D), =1. So (X, D), = 1. O
Lemma 4.2.4. Theorem is true when n = 4m? + 4.

Proof.

Case 1:
pfX.

If p1 D, then X, D are both units in Z,, thus (X, D), = 1. We only need to consider
pID.

OpJ(X—i-é,then

X2+AX+B:(X+§)2—

LD2:
1=
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Thus X? + AX + B € Q2, therefore (X, D), = (X*+ AX + B, D), = 1.

¢ p|X + 4, then p { A. Because p|LD? = A? — 4B and p|A, we have p { B =

16ny32%(y + 2)%. So pfy=.

From p|D, we have y*> + 22 = (n — 2)yz mod p. Thus

A= (P + 25 = 2nyz(y* + 2°) + (n® — 8n — 4)y*2?
=((n—2)?—2n(n —2) + (n® — 8n — 4))y?2*
= —8ny?*2? mod p.

Therefore

X

Yy = dny?z*  mod p.

A —8ny?2?
2

Because p 1 A, we have p { nyz.
e pt2m.

Because p { yz, p|D = (y — 2)? — 4m?yz, we have p{y — z. Thus

(B

5 )>=0 mod p.
m

Yz =

Furthermore, because

(y+2)?=nyz#0 mod p,

we have

n =0 mod p.

Therefore

X =4ny*2 =0 mod p.
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So X € Q2. Thus (X,D), = 1.

e p|2m, then n = 4m? + 4 =4 mod p, thus
X =4ny*2* = (4y2)* mod p

So X is a p-adic square, and (X, D), = 1.
Case 2
plIX.

Case 2.1

plyz(y + 2).

The equation

(X?+ AX + B)u® + Dv* = 6°

has a nontrivial solution (1,4yz(y + 2), 4yz(y + 2)?) mod p, thus it has a nontrivial

solution in Q,. Therefore (X? + AX + B, D), = 1.

Because (X, D), = (X?+ AX + B, D),, we have (X, D), = 1.

Case 2.2

plyz(y + 2).

¢ plyz, then ply and p 1 2, or p|z and p 1 y.
Then

D=y*+22—(n—2yz=0#0 modp

Therefore D € Z2. Hence (X, D), = 1.

¢ p1yz, then ply + z.
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Case 2.2.1: pt D.

Because y = —z mod p, we have
D= (y+2)? —nyz=ny* mod p.
Thus p { n. We have

A=yt + 24 = 2yz(y® + 22) + (n® — 8n — 2)y22?
= 2" + 4ny* + (" —8n — 2)y* mod p (4.2.10)
=n(n —4)y* = n(4m*y*) mod p.

¢ p/m,then n = 4m? +4 =4 mod p. Thus

Therefore D € Q2 and (X, D), = 1.
¢ p{m, then from (4.2.10) we have p 1 A.

Let y + z = p*t with p{¢. Then
B = 16ny°2°(y + 2)* = p** By,

where p 1 By.
Let X = p° Xy with pt Xy. Then

Y2 = p*Xo(p* X5 + p° XoA + p*“By).
e s < 2a, then 2s = v, (X (X? 4+ AX + B)), and we have
0= Xo(p*XZ + XoA + p**~%).
Therefore XA =0 mod p. Thus

A=0 mod p. (4.2.11)
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From (4.2.10) and (4.2.11]), we have

n =0 mod p.
Therefore
D=ny* =0 mod p.

Hence D € 72, and (X, D), = 1.
e s > 2, then s + 2a = v, (X (X? + AX + B)). Thus s is even.
So

Up(X) =v,(D) =0 mod 2.

Therefore

(X,D), =1
e s = 2q, then because Xy, D are units in Z,, we have
(X7 D)P = (pzaX(]? D)p = (XUaD)p =1

Case 2.2.2: p|D.
Because p{yz, p|D = (y + z)? — nyz. By the assumption, p|n and ply + 2.

Let y + z = p*s and n = 4p"t, where p{ s,t. Then
D = p*s* — 4p°tyz. (4.2.12)

If v > 2u, then D = p*(s* — 4p"~*“tyz). Because p t s> — 4p**“tyz, D € Q2.

Therefore (X, D), = 1. So we only need to consider the case v < 2u.

Then

D = pv(p2u—v82 o 4ty2) — vaO,
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where

Do = p**'s* —dtyz = —4tyz = 4ty* 20 mod p. (4.2.13)
We have

A= (y+2)%(y - 2)" = 2ny2(y + 2)* + n(n — 4)(y2)°

= (y — 2)°p™'s” = 8p"t.p™s%yz + 16(tp” — 1)p"t(yz)*

=p"((y — 2)*p*" Vs* — 8tp*“s*yz + 16(tp* — 1)(yz)?).
Thus A = p¥ Ay, where

Ay = (y — 2)*p™7"s* = 8tp™s”yz + 16t(tp" — 1)(y2)?

(4.2.14)
= —16t(yz)* mod p.

We also have
B = 16n(y2)*(y + 2)* = 64p""?t(y2)*s*> = p"“T*"By with pt By = 64t(yz)*s>.

Let X = anO Wlth P f Xo.
Then

Y2 = p* Xo(p** X7 + p* T Ag X + p** T By). (4.2.15)
olf o < v, then 3a = v, (X (X? + AX + B)). Thus 2|a and
0 = Xo(X2 + p"@Ap Xy + p2utv=22),
Therefore Xo =0 mod p. Thus X, € Z2. o is even, so
(X, D), = (3°Xo, D), = 1.

o If o = v, then
V? = p3UX0<X§ + Ao Xo + p%ﬂ)). (4.2.16)
If o is even then v is even. Because Xy, Dy are units in Zf,, we have
(X, D)y = (p"Xo,p" Do) = 1.
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If « is odd, then 3v is odd. Because 2u — v > 0, from (4.2.16)), we have
pIX§ + Ao Xo.

Therefore

Xo=—-4Ap mod p. (4.2.17)

From (4.2.13), (4.2.14]), (4.2.17), we have

XoDy = 64t*(yz)*y* mod p.

Therefore

2030 Boja _ (ya 2ol

(X, D)y = (0" Xo,p" Do)y = (1) (=1)"(Z2)" (= p

=1,

olf v < o < 2u, then 2, v+2u > a+v. From (4.2.15)), we have v,(X (X?*+AX+B)) =

2a 4 v. Thus 2|v. We now have
= Xo(paing -+ AoX() +p2u*aB0).

Taking mod p, we have

= A mod p.
From (4.2.14), Ay = —16t(yz)? mod p, thus
—t=0 mod p.
Because p/m? + 1, we have —1 = mod p. Therefore
Dy = —4ty? =0 mod p.

Thus Dy € Z]%. 2|v, s0 D =p“D, € @f,. Hence (X, D), = 1.
olf o = 2u, then

Y2 = pt T (p* TV X 4 Ao Xo + Bo).
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o pt AgXo + By, then 4u + v = vo(X (X% + AX + B)). Thus v is even.
= 1,(X) =v,(D) =0 mod 2
= (X,D), =1
o plAoXo + By. Because

Ay = —16t(yz)*> mod p,
By = 64t(yz)*s*> mod p,

we have

64t(y2)s* — 16t(y2)*Xo =0 mod p.

Therefore
Xo = dyzs® = —4y*s* = 4m*y*s*> mod p ( because pjm?* +1).

Thus Xy € Z;, so X = p* X, € Q2. Therefore (X, D), = 1.

o If a > 2u, then 2a > a + v > 2u + v. We have
Y2 — pa+v+2uX0(p2a7'L)72uX§ _i_pozfQquXO 4 Bo>

Thus 2| + v.

If v is even, then « is even. Thus

(X, D), = (p" Xo,p" Do), = (Xo, Do) = 1.
If v is odd, then « is odd. We have

0= Xo(p** " 2 X7 + p* 2" Ao Xy + By).

Taking mod p, we have X¢By =0 mod p, thus (XoBy, D), = 1.
We have X B = p*™**2“ X By and 2|« + v, thus (BX, D), = 1.
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From (4.2.2), we have (B, D), = 1. Therefore (X, D), = 1.

If
v =2u|
then
D = p*(s® — 4tyz) = p*™ Dy,
where
Dy = s* — 4tyz.
We have

A=(y =2y +2)° = 2ny2(y + 2)* +n(n — 4)(y2)°
= p™((y — 2)%s* — 8tp™yz + 16tm*(y2)?).
Thus A = p** Ay, where

Ay = (y — 2)?s* — 16ty* mod p

(4.2.18)
= 4y%(s* — 4ty*) mod p
(because 2 = —y mod p and m?» = —1 mod p).
We also have
B = p4uBOJ
where By = 64m;(yz)3s?, pt Bo.
Let X = p*Xy, pt Xo. Then
Y2 = p*Xo(p** X3 + p* T Ag X + p*“By). (4.2.19)

If a < 2u, then v,(X(X? + AX + B)) = 3. Thus 2|a. We have
0= Xo(X2 + p™ Ao Xy + p™*By).
Taking mod p, we have Xy = mod p, thus X, € Z2. Thus X € Q2. Hence
(X,D), =1.
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If a = 2u, then from (4.2.19)), we have
|:| = X(](Xg + A()X() + Bo)
O pftDy=s*—4tyz, then v,(D) = v,(X) = 2u. Thus

(X, D), = (p*Xo,p*"Dy), = 1.

O p|Do, then
s? = 4tyz mod p.
We have
p*(A§ —4By) = A* —4B = D°L = p* D{ L.
Thus
A —4By=0 mod p.
Therefore

A
X2+ AoXo+ By = (Xo + 70)2 mod p.

If pt Xo+ 42, then pt X¢+ Ao Xo+ By. Thus X3+ Ao X, + By € Z2, hence X, € Z2.
Thus (Xo, D), =1, s0 (X,D), = 1.

If p|Xo + 42, then

We have z = —y mod p, so
2 _ — 2
s* =4tyz = —4ty® mod p.
Thus from (4.2.18)), we have

Ay = (y — 2)%s* — 16ty* = —32ty* mod p.
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Therefore

Ao
2

= 16ty* = —4(4ty*)y* mod p

X(]E

= —45%% = 4m?s*t> mod p

2 mod p and —1 =m? mod p).

(because ty* = s
Thus X, € Z2. So (X, D), = (p**Xo, D), = 1.
If o > 2u, then 2a > o + 2u > 4u.

From (4.2.19), we have 4u + a = v,(X (X? + AX + B)), thus « is even and
= X0<p2a—4qu +pa—2uA1X0 + B())

Taking mod p, we have

XOBO =0 mod p.

Thus XoBy € Zz. Hence XB = p*™X,B, € @12,, thus (XB, D), = 1. From (4.2.2)
we have (B, D), = 1, therefore (X, D), = 1.

(i)
First we show that (X, D) = 1 in each case.

Case 1:

n=4m? 4m and 4ty-+z.

We have

D = (y+ 2)* — 4m?yz.

If 24y +z, then D=1 mod 8.
If 2|y +z and 41y + 2, then D = 4(1 mod 8).
Thus D € Q3% and hence (X, D)y = 1.
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Case 2:

n=4m? 2fmand 4t{y—z.

We have
D= (y—2)* —4(m* — 1)yz.

If 24y — 2, then D=1 mod 8.

If 2|y — 2z, then D = 4(1 mod 8).
Thus D € Q3% and hence (X, D)y = 1.
Case 3:

n=4m?*+4, 4m and 4{y— =z

We have

D= (y — 2)? — 4m?yz.

If 2fy — 2z, then D=1 mod 8.

If 2|y — 2z, then D = 4(1 mod 8).
Thus D € Z2, and hence (X, D), = 1.
Case 4:

n=4m*+4, 2tm and 4{y+z.

We have

D= (y+2)°—4(m*+ 1)yz.

If 21y + 2, then because 2/m? +1, D=1 mod 8.
If 2|y + z and 4 { y + z, then we have 2 subcases:
Case 4.1: 1y, z are odd.

Because 4 1y + z, we have y = 2 mod 4. Thus yz =1 mod 4, thus

D =4Dy, where Dy= -1 mod 8.
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Let m? +1=2my, y+ 2z = 2t, 24 my,t. Then

B = 64(m? 4+ 1)(y2)*(y + 2)* = 2°B,,

where By = my(yz)3t2.

We have
A= (y* = 2% = 2nyz(y + 2)* + n(n — 4)(yz)*
= (y—2)*(y + 2)* = 8(m* + 1)(y + 2)* + 16(m* + 1)(m?)(y2)*.
Let y — z = 4s. Then
A= (45)*(24)* — 8(2ma)(2t)* + 16(2ma ) (m?) (y2)*

= 2°(25%% — 2myt* + mym?(yz)?) (4.2.20)

= 2% A,
where

Ag = 25°t% — 2mqt* + mym?(yz)*

If £ <0, then we have

Xo(X2 +257F X Ao + 2272 B,
2—3k !

Y2 =
Thus 2v5(Y) = =3k = 2|k, and
0= Xo(X2 +2°7 XA +2°72%By).

Taking mod 8, we have
Xo=0O mod38
= X =2FX,€Q?

= (X,D)Q - 1
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We now assume that £ > 0.
We have

V2 =28 X, (22 X5 + 2R A X + 2°By). (4.2.21)

e k < 4, then from (4.2.21)), we have 3k = vo( X (X% + AX + B)), so 2|k. Thus
k < 2. Now
0= Xo(X2+2°%A; + 2772 By).

Because k£ < 2, taking mod 8, we have
O=Xy, mod 8.

Thus X, € Z3, hence X = 28X, € Q3, therefore = (X, D)y = 1.
olf £k =4, then
O = Xo(Xg + 240X + 2By)

Taking mod 4, we have
1= XO + 2A0 + 2XOBO mod 4.
Because Ay + XoBy =0 mod 2, we have

1=X, mod 4.

So X =2*X, and D = 22Dy, where Xy =1 mod 4 and D, = —1 mod 8. Thus

2 2
0—1Dg—1, ,D§g—1 X5-1
+4=0— 420

X
(X,D)Q = (24X0, 22D0)2 =22 2 8 =1.
olf k> 5, then 9+ k = vy( X (X? + AX + B)). Thus 21 k.
We have
0= Xo(2* X3 + 2" Ay + By). (4.2.22)
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olf £ =5, then
O = Xo(2Xg + 2A40Xo + Bo).

Taking mod 4, we have
1= XoBy+2Xy+24; mod 4.
Because Xy + Ay =0 mod 2, we have
XoBy=1 mod 4.
Because Dy = —1 mod 8, we have

Xp—1 Dg—-1

(X()BQ,DD)Q = (—1) 2 T2 =1

= (4XOB(),D0>2 =1. (4223)
On the other hand
1= (B, D)y = (2°By,2°Dy)2 = (2By, Dy)a,

thus

(2Bo, Do)z = 1. (4.2.24)

From (|4.2.23) and (4.2.24]), we have

(QX(), Do)g — 1

Therefore

(X, D)y = (2°X,2%Dy)s = 1.
o If £ > 5, then because 2t k, we have k > 7. Taking mod 8 in (4.2.22)) gives
1=XyBy, mod 8.

Thus XoBy € Z3. Hence XB = 29"k X By € Q3. Thus (XB, D), = 1. Further,
(B, D), =1 for all primes p, we have (B, D)y = 1. So (X, D), = 1.
When D < 0, from Lemma |4.2.1, we have X > 0. n
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Now we will prove our Theorem [£.2.1]

Proof. Assume (z,y, z,w) is a positive integer solution to

11 1 1
n=@+y+z+w)(—+-+-+-—) (4.2.25)
Ty zoow

with ged(z,y, z,w) = 1.

Lemma 4.2.5. (n —2)yz —y? — 22 > 0.

Proof. Using the Cauchy-Schwarz inequality (see Sedrakyan and Sedrakyan [16]), we

SIS

= (Vn—20yz =2y +=2

have

= (n—4v/n+2)yz > y*> + 2°
= (n—2)yz > (n —4v/n +2)yz > y* + 2°

= (n—2)yz—y*— 22> 0.

Write (4.2.25) as

(y+2)(z+w)zw+yz (2 +w?)+(y° — (n—4)yz+22) vw+yz(y+2) (v+w) = 0. (4.2.26)

Regarding (4.2.26]) as an affine curve in z,w over Q(y, z). Then (4.2.26) has a pro-

jective model (z : w : d)

C: (y+2)(z+w)zw+yz(2* +w?)d+ (y* — (n—4)yz+22)zwd +yz(y+2) (r+w)d* = 0.
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Lemma 4.2.6. C is birationally isomorphic to the curve
F: V2T = U3+ AU?T + BUT?,
where
A =y* + 2 = 2nyz(y® + 22) + (n® — 8n — 2)y27,
B =16ny°2*(y + 2)?,
via the following maps
o: F'— C,

dU:V:T)=(V+DU:-V+DU:2(y+2)(U— 4ny*2*T)),

Vv: C — F,
r+w rz—w (z+w)(y+z)—dD
cy o d) = : : :
Ple:y:d)=( 2D 2 8nD(y + z)y?2? )
Proof. We can check ¢ and 1 are inverses of each other using Magma [I]. O]

We seek rational points (U : V' : T) on F such that ¢(U : V : T) satisfies
d#0,z/d > 0,w/d > 0, thus

(

U — 4ny?2°T # 0,

V-DU
2(y+2)(U—4ny?22T) >0,
—V-DU > 0.

L 2(y+2)(U—4ny?22T)
Point (0 : 1: 0) does not satisfy U — 4ny?2*T # 0; thus T # 0. When T # 0, F has

the affine model

E:Y?=X(X*+ AX + B), (4.2.27)
where
x=2 v=1
T T

A=yt 4+ 2t —2nyz(y? + 22 + (n® — 8n — 2)y2?,

B =16ny°2*(y + 2)*.
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Lemma 4.2.7. Let (X,Y) be a point on (4.2.27) such that

(

2(y + 2)(X — 4ny?2?) # 0,

Y-DX (4.2.28)

2(y+z)(X —4ny?22?)

-Y-DX

| Torax-ty > O

Then X < 0.
Proof. From (4.2.28)), we have
0<D?’X?—Y?=—-X(X —4dny®2*) (X — dyz(y + 2)?). (4.2.29)
Because D = y? — (n — 2)yz + 2% < 0, 4ny?2% > 4yz(y + 2)?, implies that
X <0 or dyz(y+2)?*<X <dny*2’

If X >0, then 4yz(y + 2)? < X < 4ny?2?; then from ([4.2.28)), we have Y — DX < 0
and =Y — DX < 0. Thus —2DX < 0, impossible because X > 0, D < 0.
Therefore, X < 0.

Case 1:

n =4m? and 4|m.

If

r+y=r+z=z4tw=y+z=y+w=z+w=0 mod 4,

then

Further, 4tz + y, so



Therefore ged(z, y, z,w) > 1, which is not possible.

Without loss of generality, we can assume that 4 1y + z.

Now applying Theorem ton =4m?, 4/m, 4{y+z, we have Y = 0.
Because

r+w rv—w (z+w)(y+z)—dD

vy ) = (S 5D Dy 1 o)

),

Y =0 implies z = w.
So when 4ty + z, then z = w.

e If 41z + y, then from the above argument, we have z = w. Therefore y = z = w.

(4.2.25)) becomes
2, 2
. (z +3y)(y +3x) _ 104 3(x* 4y ).
Ty Ty

Because ged(z,y, z,w) = 1, we have ged(z,y) = 1. Therefore ged(z? + 3%, xy) = 1.
So zy|3. Thus (z,y) = (1,3) or (3,1), and n = 16 or n = 20.

o If 44z + z, then similarly we get n = 16 or n = 20.

o If 4|z + y and 4|x + z, then 4]2x + y + 2.

Because 4 1 y + z, we have 4 1 2z = z + w. Applying Theorem again for (z,w)
in the stead of (y, z), we have y = z.

Therefore
4(z +y)?
Ty

Thus zy|4(x + y)?>. Because ged(x,y) = 1, we have ged(zy, (z + y)?) = 1. thus
xy|4. From 4|z + y, we have v = y = 2, so v = y = z = w = 2, which contradicts
ged(x,y, z,w) = 1.

So there are no solutions in positive integers of .

Case 2:

n=4m? and 2{m.
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If

r=y=z=w mod 4,

then because ged(z,y, z,w) = 1, we have

From

nxyzw = (x +y + z + w)(xyz + ryw + rzw + yzw),

we have

nryzw =0 mod 16,

so 2|m, which is not possible.

Without loss of generality, we assume that 4 { y — z. Applying Theorem to
n=4m? 2tm and 4ty — z, we have r = w.

olf 44z —y (or 41z — 2), then by a similar argument, we have z = w or y = w.

If 2z =w, then x = z = w. We have

(3x 4+ y)(z + 3y)
Ty '

Similar to Case 1, n = 16 or 20.

If y =w then z = w =y. Thus n = 16 or 20.

o If 4|x — y and 4|z — 2, then 4|y — z, which contradicts 4ty — z.
Case 3:

n=4m*+4 and 4|m.

Similar to Case 2, we can assume 4 { y — z. Applying Theorem ton = 4m?+4
and 4 1y — z we have z = w, which leads to n = 16 or 20.
Case 4:

n=4m*+4 and 2{m.
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Similar to Case 1, we can asusme 4 1 y + z. Applying Theorem ton = 4m? and

4ty + z, we have x = w, which leads to n = 16 or 20. ]
4.3 Equation ¥ + p% + = +p% =8pn

In this section, we will prove the following theorem

Theorem 4.3.1. Let p =1 or p be an odd prime such that p=1 mod 8. Then for
every positive integer n, the equation

Y

x z w
—+p=+—+p— =8 (4.3.1)
Y z  w x

does not have solutions x,y, z,w € Z™.

Proof. Assume that (z,y, z, w) is a positive integer solution of (4.3.1)) with ged(z, y, 2z, w) =
1.

Write the equation as
222w + py*wx + ey + pwyz — Snpryzw = 0. (4.3.2)
We fix z, z then is an affine curve F'(y,w) in Q(z, z) with the projective model
C': prwy? + pwyz + (22%y + v*2w)d* — Snprzywd = 0.
We need the following lemma

Lemma 4.3.1. Let p =1 or p be a prime and p =1 mod 8. Let n,x,z € Z* and
(u,v) € Q* with v # 0 such that

E:v? =u(u®+ Au+ B), (4.3.3)
where
A =prz(16n’prz — 2% — 2%),

B =p*z*z*.
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Let D(x,z) = 2* + 2% — 222(8pn* — 1) and H(z,z) = 2* 4+ 2% — 222(8pn* + 1). Then
(D,u)g=(H,u)y=1 Y primes q> 2.

In addition:

(D,u)e = (D,u)oo =1 if 4412+ 2,

and

(Hyu)s = (H,u)oo =1 if 442 — 2.

Proof. In this section, we denote ord,(z) the highest power of a prime number g
dividing an integer x.

Let d = ged(z, 2). Then x = dxy, y = dy;, where x1, 21 € Z" and ged(z1,21) = 1.

U

Let u1 = 4

and v; = z5. From (4.3.3), we have

v? = up(u? + 1121 (16pnPe 2 — 22 — 22)),

and for all ¢ prime

(D,u)q = (dz(x% + Z% - 2(8]97”62 = z121), d4u1)q = (D1, u1)q,
and

(H,u)g = (d2($% + Zf - 2(8pn2 + 1)w121, d4u1)q = (Hy,u1)q,

where Dy = 23 + 2§ — 2(8n? — 1)zy2; and Hy = 2% + 27 — 2p(8pn? + 1)z 2.

Also if 4tz + z, then 41 21 + 21, and if 4t = — 2, then 4 1 x; — z;; therefore we only
need to prove Lemma when ged(z, z) = 1.

If D(x,2z) = 0, then (8pn? — 1)®> — 1 is a perfect square. Equation a?> — 1 = b* in
integers has only solution |a| = 1 and b = 0, but 8pn*—1 # =41, therefore H(x, z) # 0.

Similarly, H(z,z) # 0. Let ¢ be an odd prime. We want to show

(u,D), = 1.
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If u g Z, then u = ¢ "up with r € Z* and wug is a unit in Z,,. From (4.3.3), we have

2 _ Uo(ug + ¢ Aug + ¢*'B)
q37" ’

3r = ord, (v?) = 2ord,(v).

Thus r is even and

ug(ug + ¢ Aug + ¢’ B) =0 € Z2.

Taking mod ¢ gives ug = 0 mod ¢, thus ug € Z. 2Jv, so u € Q2. Hence (D, u), =
1.

We only need to consider u € Zj.

Case 1: ptu.

If ¢ t D, then both w, D are units in Z,, thus (u, D), = 1.

If g| D, then
? + 22 =2(8pn® — 1)az mod q.
= (z+2)*=16pn°zz mod q.
We have
u’ 4+ Au+ B = (u+§)2 —w = (u~|—§)2 mod gq.

Iquu%—é, then u* + Au+ B € Z. Thus from v* = u(u®+ Au+ B), we have u € ZZ,
so (u, D), = 1.

If glu + %, then u = —g mod ¢. Thus ¢t A. ¢q|D, so

A = prz(16pn’sz — 2° — 2°) = prz(—D + 222) = 2pr*2* mod q.

Because ¢ {u, ¢t A, we have q { 2pz?22.

From v? = u(u® + Au+ B) and ¢ { u, we have 2|ord,(u* + Au + B). Now ¢t 2pzz, so
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ged(D, H) = 1.
Let k = ord, (D). If 2|k, then D = ¢*D; with ¢t Dy, so

(u, D)y = (u, qul)q = (u,Dy), = 1.

If 24k thenlet S =u+ 4 and T = Z2. Because ged(H, D) = 1 and ¢|D, we have
ord,(T) = ord,(D) = k. Let S = ¢'S;, T = ¢"T} with ¢t S;,T1. Then from

2|ord, (u? + Au+ B) = ord,(S* + T) = ord, (¢*S? + ¢"T1),

we have 2/ < k. Thus u® + Au+ B = ¢* (S} + ¢" %T) € Q2. Hence u = S;’—iT € Q.
So (u,D), = 1.

Case 2: qlu.

Case 2.1: ¢ {pzxz.

Equation (u? + Au + B)a? + D% = +? has a solution (1,0,pz?*2%) mod ¢g. Thus it

has a nontrivial solution in @Q,. Therefore
(u* + Au+ B, D), = 1.

Because u(u? + Au + B) = v* # 0, we also have (u, D), = 1.

Case 2.2: ¢|pz=.

If g|zz, then because ged(x,2) = 1, we have ¢ f D = 22 + 2% — 2p(8n? — 1)yz and
D =0 mod ¢, hence D € Z2; therefore (u, D), = 1.

If gfxz, then ¢ =p and p{ zz.

Let uw = p®, where s > 0 and p{ uy. Then
v? = pPuy (p*ui + ApPuy + pPatzt). (4.3.4)
If s > 2, then from (4.3.4), we have 2ord,(v) = s + 2. Thus 2|s. We now have

O = w (p* %0} + Ap® uqg + 2'2%).
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p|A, so taking mod p gives (0 = u;xtz*. Therefore u; € Zg. Thus
(u, D)p = (281,61, D)p =1.

If s =1, then
v? = pul(pQU% + pAu; + p2x4z4).

> 7 = (el + 22(16pn’az — o — s + ')
Sl ar(—a? — Py 4 2t = (g — 2%2) (g — 7).
Thus

3

up =x°2 mod p or u; = x2°

mod p. (4.3.5)

We have

D = (z+ 2)* — 16pn*rz = (v + 2)* mod p,

so if pta + 2, then D € Z2, hence (u, D), = 1.

If plx + 2, let x + 2 = p"f, where 7 > 0 and p1 f, then
D = p(p* ' f* — 16n*x2).

If ptn, then D = p(0 mod p). So D = pD?, where D; € Z,.

From (4.3.5)), if u; = 232 mod p, we have

p—1,U
(u, D)p = (pur,pD})p = (pus, p)p = (=1) = (;1)
, \ (4.3.6)
Gl R G (__1) = (-7 =1
p p p
Similarly,if u; = z2* mod p, then (u, D), = 1.
If p|n, let n = p'ny, where ¢ > 0 and p t ny, then
D =p* 2 — 16p*" a2 (4.3.7)

If r <t, then

D = p2r<f2 o 16p2t+172Tn%:L‘z)
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Thus D € Z2, and (u, D), = 1.
If » > t, then

D = p= 1 (p¥ 21 f2 _ 16n202).

Because —16n?zz = 16ni2? mod p, we have D = p**™' D2 where Dy € Z,. Therefore
(u, D), = (pur, p ' D3), = (pur, p)y.

Similar to (4.3.6), we have (pui,p), = 1, thus (u, D), = 1.

Now we prove that if 41z + z then (D, u), = 1.
We have D = (z + 2)? — 16pn®xz.
If 24z + 2, then D=1 mod 8, so D € Z2, hence (D,u), = 1.
If 2|z + 2, then because 4t z + 2, we have x + z = 2h, 24 h. So D = 4(h? — 4pn’zz).
If 2|n, then h? — 4pn’rz =1 mod 8, thus D € Z3.
If 21 n, then pn®rz =1 mod 4, so h? — 4pn*zz =5 mod 8.
Thus D = 4D, where D; =5 mod 8.
Let u = 2"uy. Then

v? = 2"y (2% uf + 2" Auy + B).
If r > 3, then
22 +2"Auy + B= B =p’z*2* =1 mod 8.

Thus r = 2ords(v). Now
O = uy (24} + 2" Auy + B).

So u; =1 mod 8. Thus uy € Z3, so u = 2"uy € Z3, hence (u, D)y = 1.

If r <0, then

L,z W (u? +27"Au; +27*"B)
- 9—3r ’
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So 2|3r, hence 2|r. Thus r < —2. Taking mod 8 givesu; =1 mod 8. Thus u; € Z,,
sou € Z3. Thus (u, D)y = 1.

So we only need to consider r € {0, 1,2}.

If r =2, then

v? = 2%uy (2%} + 2% Auy + B).

Taking mod 8 gives u; =1 mod 8. So u = 2*(1 mod 8) € Z3, hence (u, D), = 1.
If r =1, then

v® = 2uy (4us + 2Au; + B).

So 1 = 2ords(v), impossible.
If r =0, then u = u; and D = 22D, where D; =5 mod 8. Therefore

w—1D-1

(U, D)2 = (u1,22D1)2 = (ul, D1>2 = (—1) 2 z =1.

So if 41z + z, then (D, u), = 1.
Because

(D7u)00 H = 17

q prime, g<oo

we also have (u, D)y = 1.
Next we show that if ¢ is an odd prime, then (H,u), = 1.

Because A% — 4B = p?a?22DH, we have

2 _ Al prz. o
v —u((u—l—E) _DH(T) ).

So
wo® —uDHB? = v?,

Wherea:u—f—%andﬂzz%. So

(u,—uHD), = 1.
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But (u, —u), =1 and (u, D), = 1, therefore
(u, H)y = 1.

Now we will show that (u, H)s = 1if 4tz — 2.
If 242 — 2, then

H=(x—2)?—16pn*rz=1 mod 8.

Thus H € Z3, hence (u, H), = 1.
If 2|x — 2z and 4 x — 2, then x — 2 = 2k and H = 4(k?® — 4pn®xz), where 21 k.
If 2|n, then

k> —4pn’zz =1 mod 8.

Thus H € Z3 and (u, H); = 1.
If 2 4 n, then
E—4pn’zz=1—4=5 mod 8§,

so H =4H,, where H; =5 mod 8.
Let u = 2"uy. Then

v? = 2"uy (27 ui + 2" Auy + B).

If r > 3, then

2y? 42" Au; + B=1 mod 8.

Hence € Z3, thus u = 2"u; € Z3. So (u, H)s = 1.

If r <0, then

2]2 Uy (U% + 27TAU1 + 272743)
- 2—3r ’

Therefore 2|r. Thus r < —2. Taking mod 8 gives u; = 1 mod 8, thus u; € Z,, so

u € Z3. Thus (u, H)y = 1.
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So we only need to consider r € {0, 1,2}.
If r =2, then

v? = 2%y (2% + 22 Auy + B).

Taking mod 8, we have u; =1 mod 8, so u € Z32, hence (u, H)y = 1.
If r = 1, then v? = 2uy (4u? + 2Au; + B), impossible mod 2.

If =0, then u = u; and H = 22H,, where H; =5 mod 8, therefore

(u, H)s = (u1,2°Hy)s = (uy, Hy)a = (=1)" 7 ~z =1.

From
(u’ H)OO H(u’ H)Q prime, g<oco — L,

we have (u, H)y = 1.
From%—l—%%—%—i—’%zé%np, we have
22w + py*wx + 2oy + pwiyz — Snpryzw = 0.
Lemma 4.3.2. 2% — 2(8pn? — 1)zz + 22 < 0 and y* — 2(8pn? — 1)yw + w? < 0.

Proof. Using the AM-GM inequality, we have

=  An/pyw >y +w
= y? —2(8pn® — Dyw +w* <0.
Similarly, we have

T z w X Z pw
sp= =+ 2+ E+ B > o[22 4+ 2B
Y z w x Yy z w x

T+ =z

:2\/23\/%
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= 4dn/prz > x4+ 2
= 2> —2(8pn® — 1)zz +2* <0.

Because (8pn? — 1)? — 1 is not a square, so y*> — 2(8pn? — 1)yw + w? < 0 and z? —

2(8pn? — 1)xz + 2% < 0. O

Fix z, z and consider the equation F, , = 0, where
F,.(Y,W,d) = ptWY? + pW?Y 2 + (22°Y + 2°2W)d* — SnprzY Wd.

Then F, . has points (y,w,1) and (0, 1,0).

Lemma 4.3.3. F, . is birationally isomorphic to the curve
E,.: v =u(u®+ Au+ B),

where

A = prz(16n’prz — 2 — 2?),
B = p2x4z4,

via the following maps

(

Qbi Fx,z — Ex,zv @Z): Ex,z — Fac,zy

—x222 2322W (dnxzd—xY —2W
Jo(Y W2 d) = (Z5-22, e ),

P(u,v) = (pr?22(dnxzu + pv) : —u(dnzznu + pv) : zu(u — pr3z)),
\
where p(0:1:0)=(0:1:0).

Proof. We can check that ¢ and ¢ are inverses of each other using Magma [1]. O

We seek for point (u,v) on E, . such that ¢ (u,v) = (Y : W : d) satistying d # 0,
Y'>0and ¥ > 0. If u =0, then v = 0. Because (0,0) = (1:0: 0), we have u # 0.
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Therefore )

u # 0,

__4zznu+tpv
U*I)ISZ > O .

\

From (4.3.8)) and pz?z > 0, we have u < 0.

Let
—222%wp P22w(dnzz — 1y — 2w)

(up,vo) = p(y :w: 1) = ( — ; ). (4.3.9)

Let D(I,m) = 1> + m? — 2lm(8pn® — 1) and H(I,m) = I> + m? — 2lm(8pn® + 1).

Then because (8pn? — 1)%> — 1 and (8pn? + 1)? — 1 are not perfect squares, we have
G(l,m),H(l,n) # 0 for all m,n € Q*.

If vy # 0, then

e if 4{x+ 2, from the Lemma [4.3.1] we have (D(z, 2),uo)e = 1. But D(z, z) < 0 by
Lemma [4.2.5] so ug > 0, contradicting uy < 0.

eif 41z — z, from the Lemma [4.3.1] we have (H(z, z),uo)os = 1. Because H(z, z) <
D(z,z) < 0, we have ug > 0, contradicting ug < 0.

So there are no solutions to (4.3.1) if 4tz + zor 44z — z.

We now consider the case 4|z + z and 4|z — z. Then = = 2z, and z = 2z, where

2t @y, 2. Then 44y + 21 or 44 21 — z;. From v = up(u2 + Aug + B), we have

Vo
26

Ug

Ug
_? -

() = 2o((52

(51 + Ay + By),

where A = pz121(16pn2x12; — 23 — 2}) and By = p?xiz].

Now 4 {2y — 2 or 41 x1 + 21, so we have (D(x1,21), 53)2 = 1 or (H(z1,21), 57)2 = L.

But we also have

Uop

(D(ﬂf, Z), UQ)Q = (22D<£L'1, 21>, 24§

)2 = (D(1,21), 57 )2,
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and similarly
U
(H(x,2),u0)2 = (H(x1,21), 2—2)2-

So we have (D(z,2),up)s = 1 or (H(z,2),up)2 = 1, which implies ug > 0, contradict-

ing ug < 0.
Therefore vg = 0 . From (4.3.9)), we have

dnzz — xy — zw = 0.

= =+ — =4n.

= — + — =4np.

RPN
Elw g |8

Now fix y,w and consider the equation Fy (X, Z,d) = 0, where

F,w(X, Z,d) = X*yZ + py* Zwd® + Z*wX + pw* Xyd* — 8npX Zdyw

Then F,,,(0,1,0) = F,,(z, 2,1) = 0.

Lemma 4.3.4. F,,, is birationally isomorphic to the curve

Eyw: v* = u(u® + Au+ B),

where
A = pyw(16n°pyw — y* — w?),

B = p*ytw?,

via the following maps

(

Vi Eyw — Fyaw,

Oé(X -7 d) _ (—wi;t(JZy27 fprwQZ(Xj{;rdwa4npywd))’

a: Iy — By,

\

where «(0:1:0)=(0:1:0) and 5(0,0) =(1:0:0).
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(4.3.11)

(4.3.12)

B(u,v) = (pw?*(dnpywu + v) : —u(dnpywu + v) : wu(u — pyw)),



Proof. We can check that o and 8 are inverses of each other using Magma [I]. O]

We seek for point (u,v) on E, ,, such that ¢(u,v) = (X : Z : d) satisfying d # 0,
% > (0 and % > 0. If d =0, then from (4.3.12)), we have

X*yZ 4+ Z*wX = 0.

Thus (X : Z:d)=(1:0:0)or (X:Z:d)=(0:1:0).

Using Magma [1], we have a(1:0:0)=(0:0:1) and «(0:1:0)=(0:1:0). So in
order for 1(u,v) = (X : Z : d) to satisfy d # 0, & > 0 and £ > 0, we have

(
u # 0,

{ pwtinpont) (4.3.13)

u(u—py>w)

Anpywu+v
—— s > 0.
w(u—py>w)

\

From (4.3.13)), we have u < 0.

Let

2,,,2 2,,,2
- - —4
(un,00) = a2 1) = (CPW2 Zpywialyr £ wz — dnpyw), gy
x xr

If v; # 0, then
e if 41 y+w, from the Lemma[d.3.1 we have (D(y, w), u1)eo = 1, thus u; > 0 because
D(y,w) < 0 by Lemma [£.2.5] This contradicts u; < 0.
e if 4y — w, from the Lemma [1.3.1] we have (H(y,w),u1)s = 1, thus u; > 0,
because H(y,w) < D(y,w) < 0. This contradicts u; < 0.
Therefore there are no solutions to ifdty+wordty—w.
We now consider the case 4|y + w and 4|y — w. Then y = 2y; and w = 2w;,where
21y, w;. Then 4 1 y; + wy or 4 1 y; — wy. By the same argument, we still have

(D(y,w),u1)00 = 1 or (H(y,w),u1)s = 1. This implies u; > 0, which contradicts

96



u; < 0.

Therefore v; = 0. From (4.3.14)), we have

xy + 2w — dnpyw = 0. (4.3.15)

From (4.3.10) and (4.3.15]), we have

dnrz = dnpyw.
TZ_, (4.3.16)
yw

From (4.3.11)) and (4.3.16]), we have

(4np)* — 4p = (

Thus 4n?p? —p € Q?, hence 4n?p? —p € Z*. This is not possible because p? { 4n?p*—p.
Therefore, there are no positive integer solutions to (4.3.1)).

O
The above proof still works when p = 1, therefore we have the following theorem

Theorem 4.3.2. Let n be a positive integer then the equation

T
_+y

Z o w
=+ —+—=238n
y z w x

does not have solutions (z,y, z,w) in positive integers.

Remark 4.3.1. Theorem[].3.1 was suggested by Professor Andrew Bremner. It gives
an infinite family of surfaces which does not have positive integer solutions. We can

wnvestigate the family

F G H
— 4 — + —
z w

E
(Ax+By+Cz+Dw)(;+ ) =n,
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where A, B,C,D,E, F,G, and H are positive integers. The conjecture here is that
for each tuple (A,B,C,D,E,F,G,H) € (Z%)® there is a polynomial function n =

n(A,B,C,D,E,F,G,H) such that the equation

E F H
(Ax+By+Cz+Dw)(—+—+€—|——):n(A,B,C,D,E,F,G,H)
r Yy oz w

does not have positive integer solutions. (v +y + z + w)(% + ll/ + % + i) = n with

n=4m? orn=4m?*+4, m #2 mod 4 and § + p? + = +py =8pn withp =1 orp

1s a prime =1 mod 8 are apparently the only known two examples.
4.4 Equation x* + 7y* = 142* + 18w*

The family of surfaces ax? + by* = cz* + dw*, where a,b,c,d € Z and abed € 72,
has been studied extensively by Swinnerton-Dyer [2I] and Bright [9] [§]. The only

known examples which are everywhere locally solvable but have no rational points
are apparently

221 + 6yt = 92 + 12w, 42t 4+ 9" = 821 + 8w
and the family
4 Ayt = d (2t + wh),

where d > 0, d = 2 mod 16, no prime p = 3 mod 4 divides d, no prime p = 5
mod 8 divides d to an odd power, and r = £3 mod 8, where d = r? + s2. The other

known examples when abcd is not a perfect square given by Bright [9] are

eyt =624 1200, 2t ATyt = 10324 + 17.47.103w",

It is unknown whether these surfaces have non-trivial points in cubic extensions of
Q or not. In this section, we will show that the surface z* + 7y* = 142* + 18w*

is unsolvable in the rational numbers, everywhere locally solvable, and solvable in a
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cubic and other odd degree number fields. The example was suggested by Professor

Andrew Bremner and the proof uses the ideas from Swinnerton-Dyer [21].

Lemma 4.4.1. There are infinitely many pairs (P, Q) of positive integers satisfying
the following condition

1, every prime factor of PQ is congruent to 1 mod 24,

it, if p is a prime divisor of P then 2Q? is a quadratic residue mod p,

iii, if ¢ is a prime divisor of Q then —7P? is a quadratic residue mod q.

Proof. Take @ = 1. By Theorem 9.1, Cox [14] there are infinitely many primes p of the
form p = 9u?+64v%. Now we take P to be products of primes p of form p = 9u?+64v>.
Let p|P, then p = 9u® + 64v2. So p = 1 mod 24. Also p = (3u)? + (8v)®. By
Proposition 6.6, Chapter X, Silverman [18], 2 is a biquadratic residue mod p.
Therefore 2Q? is a biquadratic residue mod p.

]

Theorem 4.4.1. Let (P, Q) be a pair of positive integers satisfying the conditions of
Lemmal{.4.1. Then the equation

4+ 7Pyt = 14P*Q% 2" 4+ 18Q%w! (4.4.1)

1s locally solvable for every prime number p, but has only integer solution x = y =

z=w=0.

Proof. First we show that is everywhere locally solvable. By Lemma 5.2,
Bright []], it is enough to show this for p = 2,3,5,7 and p|PQ.

In Q,, we have the point (z,v, z,w) = (0,0, 3, v/ —63P2).

In Q3, we have the point (z,y, z, w) \/m, 1,1,0).

In Qs, we have the point (z,y, z,w) = (0, /2Q%*(7TP2 +9)/(7P?%),1,1) when (P? Q?) =

99



(1,1) mod 5, the point ({/14P2Q% + 18Q% — 7P2,1,1,1) when (P? Q%) = (1,4) or
(4,1) mod 5, and the point ({/2Q?(7P%+9),0,1,1) when (P? Q*) = (4,4) mod 5.
In Q7, we have the point (z,y, z, w) \/_F 0,0,1).

In Q,, where p|P, we have the point (z,y, z, w) \/TQQ\/_ 0,0,1).

In Q,, where ¢|Q, we have the point (z,y, z,w) = (v—7P%1,0,0).

Let (zg,x1, 22, x3) be an integer solution of (3.4.1) with ged(zo, x1, z2, x3) = 1.

If 29 = 0 then by considering mod 3, gives 3|z} + x3. Thus 3|z, T, hence
3|z3. Therefore 3| ged(xo, 21, g, x3).

So xg # 0. Similarly, we have xy, xq, x3 # 0.

Now has the form
T(x3+27 —4PQx3) (x5 + Prt +4PQx3) + (73 — TPx3 +12Qx3) (12 — TPx% —12Qx3) =
So there exist non zero, coprime integers u, v such that
u(zy — TPxT 4+ 12Q3) + Tv(zf + Pri — 4PQx3) =
u(zy + Pl + 4PQx3) — v(xy — TPx: — 12Qx3) =
Eliminating xq, x1, 9, 3 respectively, we get
(u? — 2uv — Tv*)x] + (u? + Lduv — Tv?) Pa + 4(u* + T0*) PQxs = 0, (4.4.2)
(u? + 14uv — Tv*) 22 — 7(u? — 2uv — Tw?) P23 + 12(u? + Tv*)Q3 = 0, (4.4.3)
2(u® + Tv*)zf + 7(u® — 2uv — Tv*) PQx3 + 3(u® + lduv — T0°)Qxs =0,  (4.4.4)
—2(u* + Tv*) Pz} — (u® + 14uv — Tv*) PQxs + 3(u® — 2uv — Tv*)Qzs = 0. (4.4.5)
Let A =u? —2uv — 7Tv?, B = u? + 14uv — Tv?, C = u® + 7v?. Then we have
Az} + BPx? +4CPQx; = 0, (4.4.6)
Bri — TAPx] +120Qzx; = 0, (4.4.7)
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2Cx3 + TAPQx3 + 3BQx3 = 0, (4.4.8)
— 20 Pz} — BPQz3 + 3AQx3 = 0. (4.4.9)

Notice that A, B, C # 0.

The only prime divisors of Disc(ABC') are 2 and 7.
Let S ={2,3,7,00}.

Write in the form

—ABPx — BCQ(2Px,)* = (BPx,)*.

Thus for every prime p, then (-ABP,—BCQ), = 1.
For p ¢ S and p|C, then p is odd and p ¥ A, B because p 1 Disc(ABC). Therefore
(—~ABP,—BQ), = 1. Thus

(—ABP,C),=1Vp|C,p & 5. (4.4.10)

Similarly, writing (4.4.9) in the form (3ABP)(Qx3)* — (2BCQ)(Pz1)? = (BPQx,)?,

it follows that for p ¢ S and p|C, then
(3ABP, —2BCQ), = 1,

and

(3ABP,C), = 1. (4.4.11)

From (4.4.10) and (4.4.11)), Vp &€ S, p|C

(-3,0), =1.
Let p ¢ S and p /C. Then both —3 and C are units in Z,, thus

(=3,0), = 1.
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From the product formula of the Hilbert symbol

[1-3.0), [[(-3.0), = 1.

peS PES

Therefore
(=3, 0% + Tv?)a(=3,u® + Tv?)3(=3,u® + Tv?)7(=3,u* + Tv*) s = 1. (4.4.12)

Let u? + 7v? = 2™a, where m € N and « is odd.

We have the following lemma

Lemma 4.4.2. 3|luv and 2 fm.

Proof. If 3 fuv, then u?> = v*> =1 mod 3. Reducing (4.4.3) mod 3 gives
—uvzy —uvr; =0 mod 3

thus 3|z, 1.

Now 3|zg, reducing (4.4.4) mod 3 gives

wvry =0 mod 3.

So 3|zy. Reducing (4.4.5) mod 3 gives 9|3z, thus 3|x3. From (4.4.1)), 3|z;. Therefore

ged(xg, 1, g, x3) > 1, a contradiction. So 3|uv.

Assume that 2|m then m = 2n with n € N.

If 2|u and 2 { v, then by looking at mod 4, we have 22 + 22 = 0 mod 4, thus
2|xq, 1.

Now 2|z, by looking at mod 4, we have —z3 — 22 = 0 mod 4, thus 2|z, z3.
So 2| ged(xg, x1, 2, x3), a contradiction.

If 2 4 w and 2|v, then by looking at (4.4.2)) and (4.4.4]) mod 4, we have 2| ged(xq, 1, z2, x3),

a contradiction.

So 2 { uw.

102



Case 1: u # v (mod 4). Let u — v = 2, where a odd.
Then u? — 2uv — 7Tv? = (u — v)? — 8v? = 4(a® — 2v?) = 4(—1 mod 8). Thus

u? — 2uv — Tv? = — 32, (4.4.13)

where 5 € Q3.
u? 4+ 1duv — Tv? = (u — v)? + 16uv — 8v? = 4(a® + 4uv — 2v%) = 4(3 mod 8), so

u? + 14uv — Tv* = 4(8k + 3), (4.4.14)

where k € Z.

From (4.4.2), (4.4.13)) and (4.4.14)), we have

—B2xg + 4(8k + 3) Pxi + a2*" 2 PQux; = 0.

= (8k+3)P(2z1)* + aPQ(2" 1 xy)? = (Bxo)?.
Because P =@ =1 mod 8, so P, ) are squares in Q5. Hence
(8k +3,a)2 = ((8k + 3) P, aPQ)2 = 1.

8k+3—1 a—1 a—1
2z = (—1)z , we have

Because (8k + 3, )2 = (—1)
a=1 mod 4. (4.4.15)
In (4.4.3), we have —7 =1 mod 8. So —7 = 72, where v € Q5. So (4.4.3) becomes

4(8k + 3)x3 + v (—B*) Pa? + 3aQ2?" 22 = 0.

= (8k +3)(220)" + (3aQ) (2" 23)" = P(yfz1)”.

P, () are squares in Q3, so
(8k + 3,3a)2 = (8k + 3,3aQ)2 = 1.
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Thus

3a=1 mod 4,

which contradicts (4.4.15)).

Case 2: w =v mod 4.

If 8|u — v, then u — v = 8[, where [ € Z. Thus
u? 4+ Tv? = (v + 81)% + Tv® = 8(81% 4 2lv +v?) = 8(1 mod 2).

So m = 3 is an odd number, hence 8 fu — v.

Let u — v = 4b, where 2 fb. Then
u? — 2uv — 70 = (u—v)* — 8 = 8(2b* —v?) = 2*(1 mod 8).
So u? — 2uv — Tv? = 23¢%, where ¢ € Q.
u? + 1duv — Tv* = (u — v)? + 16uv — 8v* = 8(2b* + 2uv — v?) = 8(3 mod 8),

so u? + 14uv — Tv? = 8(8h + 3) with h € Z.

(4.4.2) becomes
8c2ri + 8(8h + 3)Px] + a2*" 2 PQux3 = 0.

=  —(8h+3)P(4x1)* — 2aPQ(2" ' x4)? = (4cmp)?.
P, () are squares in Q3, so
(—8h — 3, —2a)9 = 1.

On the other hand

2
—8h—3—1 —a— 8h+3)“—1
8h—3—1 —a—1, ( +8)

—8h — 3, —2a)y = (—1)" = 3 — (_1)8h*H6htl _ g
( , —2a)y = (=1) (—1)

?

a contradiction.
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We have —3 = 2% (mod 7), thus —3 € (Q%)?. Hence
(=3,u® + Tv*); = 1.

Also u? + 7v? > 0, thus

(=3, u* + Tv*) s = 1.
From 3|uv and ged(u,v) = 1, we have u? + 7v? € (Q%)?, hence
(—3, U2 + 71)2)3 = 1.

From 2 { m, we have

) a2
m—1 —5—1+m(( Eé) 1)

(=3,u + 70%)y = (=3,2"a), = (—1)"7 2 B
Therefore,
H (=3, u® + 7U2)p = -1,
pe{2,3,7,00}
which contradicts to (4.4.12]). O

In Theorem [£.4.7] let P = @ = 1. Then we have the following theorem

Theorem 4.4.2. Consider the surface S: x* + Ty* = 142* + 18w*. Then S is every-
where locally solvable, and S has no rational points except (0,0,0,0). For every odd

integer n > 3, there is a number field K of degree n such that S has a nontrivial point

m K.

Proof. The proof in Theorem works when P = () = 1 so we only need to show
for each odd integer n > 3, there is a number field K of degree n such that S has a
nontrivial point in K. S has a point (zg, yo, 20, wo) = (20°+260,20,6%+1,6*—1), where
0 satisfies 62 +60*—1 = 0. The point (g, Yo, 20, wo) lies in the plane L : x = y+ 2z +w.
L cuts S in an absolutely irreducible quartic curve C' of genus 3, having points in

a cubic field, giving rise to a positive divisor of degree 3 on C'. By Theorem 6.1,
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Coray [13], C contains positive divisors of every odd degree at least 3; and then the

second statement in Theorem [4.4.1] follows. O
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I would like to thank Professor Andrew Bremner for allowing me to use his com-
putation tables.

Table A.1: Solutions Of (z4+y+z+w)(1/z+1/y+1/2+

1/w)=n
6 [(L1LL1) 17 1(233,4) 8 [(1,122)
19 |(5812,15) |20 |(1,1,1,3) 21 | (8,14, 15,35 )
22 | (1,1,2,4) 23 | (76, 220, 24 | (1,2,3,6)
985, 385 )
25 1,1,4,4) 26 | (20,27,39,130) | 27 | (3, 7,8, 24)
2% | (2,9,10,15) |20 |(1,1,4,6) 30 | (2 3,10,15)
31 | (1,4,510) |32 |(L269) 33 | (12, 35, 51,
140 )
34 | (6,35,40,63) |35 | (8 4563,84) |36 |«
37 | (1,3,812) |38 |(231520) |39 | (4 18,20,63)
40 | = 41| (1,512,12) |42 |(1,1,4,12)
43 | (5,14,44,77) |44 | (2, 14,15,35) |45 |(1,1,6,12)
46 | (6,35 78,01) |47 | (6,28 51,119) |48 |(1,1,3,15)
49 [ (1,2,5,20) |50 | (1,29 18) |51 | (35, 77, 480
528 )
52 [ (1,3,4,24) |53 | (24,9,45) |54 |(1,3,824)
55 | (9, 44,77,234) | 56 | (6,78,91,105) | 57 | (3,6, 40, 56 )
58 | (2,11,20,55) | 59 | (6,65, 104, 60 | (3,56, 70)
120 )
61 | (2,7,15,60) |62 |(3,16,45,80) |63 |(3, 12 50,75)
64 | 65 | (20,44, 44) |66 |(2 2 5 45)
67 | (1,4,20,25) |68 |= 69 | (24, 140,
561, 595 )
70 | (1,6,21,28) |71 |(1,10,21,28) |72 |(1,4,21,28)
73 | (544,45 198) | 74 | (28,33,209, |75 | (4,778 91)
756 )
76 (1,7,10,42) 7 (1,5,18,36) 78 | (1,6, 28,28)
79 | (1,3,24,28) |8 |(1,50945) |81 |(36,20,116)
82 | (7,24, 112, 83 | (8,78, 129, 84 | (1,35, 45)
273 ) 344 )
85 | (1,18,20,36) |86 | (5, 28,30,252) | 87 | (2 4, 15,84)
88 |(2.9,22,09) |89 |(1,1,12,28) |90 |(3,21,80,120)
o1 | (20,21,261, |92 |(1,3,12,48) |93 | (3,7, 30,140)
580 )
94 | (1,5,856) |95 |(3,88%99) |96 | (1,7, 30,42)
97 | (520,21,276) | 98 | (1,18,33,36) |99 | (1,4, 20,50)
100 | 101 | (7, 15, 220, 102 | (5,9, 16, 240 )
220 )
103 | (5,92, 110, 104 | « 105 | (2, 44, 44, 99 )

253 )

111



106
109
112
115
118
121
124
127
130
133
136
139

142
145

148

151
154

157

160
163

166

169

172
175

178

181

184
187

(1,9, 20,60)
(5,12, 63, 280 )

(1,14, 35, 50)

(3,7, 24, 238 )
(3, 10, 156,
156 )

(5,7, 13,325)

(4,13, 85, 340 )
(1,2, 24,72)

(1,14, 25, 100 )

(2,49, 54, 189 )
( 5,195, 256,
312 )
(1,21, 66, 66 )

(1,4, 25,100 )

(1,24, 45, 90 )
(2, 24, 136,

153 )
(8,24, 55, 870)

(1,4, 30, 105)
(4, 6,75, 340 )

(2, 56, 104,
189 )

107
110
113
116
119
122
125
128
131
134
137
140

143
146

149

152
155

158

161
164

167

170

173
176

179

182

185
188

(3,11, 35, 231 )
(7, 15, 60, 492 )
(5,8, 65 312 )
(2,13, 57, 156 )

7, 160, 189,
40 )

1, 3, 40, 60 )
45 126

, 180 )

) )

4,15, 152,
85 )

2,7, 18, 189)
8, 28, 315,

85 )

5, 11, 192,

20 )

5, 9, 210, 280 )
1.6, 15, 110 )

5, 12, 165,
90 )

11, 15, 352,
72)

4, 20, 27, 459 )
3, 25, 207,

25 )

12, 165,

90, 1180 )

1, 5, 18,120 )

(
5
(
(
(
2
(
(
5
(
3
(
(
(
3
(
6
(
(
2
(
5
(
(1,18, 76, 76 )
(7,217, 264,
744 )

112

108
111
114
117
120
123
126
129
132
135
138
141

144
147

150

153
156

159

162
165

168

171

174
177

180

183

186
189

(3, 40, 105,
140 )
(45, 60, 385,
2156 )
(7,102, 231,
374 )
(1,3,24,56)
(1,2 12,60)
(3, 36, 136,
153 )

(1,2, 10,65)

(3,8, 88,198)

(1,21,33,77)
(1,14, 33, 84)

(1,14, 36, 84 )

4, 4,102, 187 )
6, 42, 95, 627 )

2,7, 54, 189)
(2,3, 75,120 )

4,19, 342)
3, 315,

Y

3
6,

6
1

O O

(
(
5
(1,8, 56,91)

(7, 160, 240,
777 )

(2, 35,95, 210 )
(5,195, 312,
384 )




190
193
196
199
202
205
208

211
214

217
220

223
226

229

232

235

238

241
244

247

250

253

256

259

262

265

268

(2,518,225 )

(4, 35, 40, 553 )

(2,15, 68, 255 )
(1,4, 14, 133)
(1,1,28,70)

(2, 54, 147,
1
(
(

2, 15, 63, 280 )
2, 5,42, 245 )

(4, 210, 245,
441 )
(2,10, 13, 325)

(1, 40, 69, 120 )
(4,21, 175,

600 )

(5,22, 341,

620 )

(2,5, 98,245 )

(1,6, 20, 180)
*

(2,11, 104,
312 )
(1,7, 48, 168)

( 5, 231, 420,
616 )
(13, 15, 336,
1456 )

191
194
197
200
203
206
209

212
215

218
221

224
227

230

233

236

239

242
245

248
251
254
257
260
263
266

269

(5, 36, 369,
410 )
(12, 35, 188,
1410 )
(1,7, 48, 112)

1, 10, 52, 117 )
3, 8, 165, 264 )
4, 189, 297,

08 )

1,1, 15, 85)
2, 27, 147,

216 )
(1,15, 16, 160 )
(4, 184, 312,
345 )

(3, 5,42, 350)
(1,13, 34, 156 )

A~ W SN X

(1,242, 105 )

(113, 405,

660, 1782 )

( 4, 100, 259,
525 )

(4, 135, 351,
420 )
(1,5,72, 120 )
(1,9, 20, 180 )

(1,18, 38,171 )

(2,21, 105,
320 )
(3,114, 247,
364 )
( 6, 287, 364,
819 )

*

(3, 184, 228,
345 )
(3, 195, 286,
286 )
(1, 20, 105,
126 )

113

192
195
198
201
204
207
210

213
216

219
222

225
228

231

234

237

240

243
246

249

252

255

258

261

264

267

270

(3, 42, 200,

280 )

( 4, 40, 264,

385 )

(9, 34, 45,

1122 )

(5, 20, 84, 654)
(1, 10, 39, 130 )
(1,5, 42, 120 )
(5,6, 77, 462 )
(
(

1,10, 13, 156 )
3, 28, 69, 460 )

(3,8, 220, 264 )
(1,48, 70, 105 )
(3,35, 90, 504 )
(29,10, 315 )

(5,35, 88, 830 )
(2, 55, 90, 315 )

(5,12, 352,

495 )
(1,14, 84, 132)
(4,39, 87, 754 )
(5, 36, 246,

820 )
(3,40, 42, 595 )
(1, 35,90, 126 )
(3,16, 33, 572 )

(3,39, 98, 588 )




271

274

277

280

283

286

289

292

295

298

301

304

307

310

313

316

319

322
325

328

331

334

337

340

(4, 45, 441,
490 )
(1,28, 91,140 )

( 191, 836,
1463, 36290 )
(1,3,30,170 )

(1,3,48, 156 )

(6, 275, 555,
814 )
(1,12, 22, 220)

(5,8, 187, 630 )
(1, 10, 88, 165 )

(8, 170, 561,
1496 )

(4,11, 130,
715 )

(1,9, 11,231)

(5,19, 32,

1064 )
(4,15, 93, 868 )
(1,72, 88,154 )

*
(1,6, 105, 168 )

(3,11, 126,

630 )
(1, 34, 136,

152 )

(1, 10, 34, 255 )

272

275

278

281

284

287

290

293

296

299

302

305

308

311

314

317

320

323
326

329

332

335

338

341

(6,9,34,833)
(1,3, 28,168 )

(10, 21, 360,
1449 )
(10, 27, 80,
1755 )
(3,5, 96, 416 )

(1,9, 44, 198 )

(3,10, 91, 546 )

(3, 220, 316,
330 )

(4, 168, 273,
712 )

(4, 15, 399
532 )

(4, 69, 460,
615 )
(1,8, 45, 216 )

(2, 45, 185,

360 )

(6,115, 135,
1472 )

(6, 105, 820,
861 )
(1,4, 100, 150 )
(1,56, 90, 168 )

(12, 92, 182,
3003 )

(3, 100, 220,
627 )

(1, 10, 85, 204 )

(4, 13, 340
663 )
(1,56, 105,
168 )

114

273

276

279

282

285

288

291

294

297

300

303

306

309

312

315

318

321

324
327

330

333

336

339

342

(3, 115, 204,
460 )
(2,76, 165,
285 )

(7, 380, 570,
924 )

(6, 35, 259,
1110 )

(3, 84, 290,
435 )

(1,8, 18,216 )

(11, 200,
300, 2409 )
(1,8, 27,216 )

(2, 33, 253,
264 )
(2,78, 91,399 )

(5,70, 72,

1176 )

(6, 57, 665,

910 )

(1,48, 72,176 )

(9, 91, 990,
1430 )

(2, 11, 160,

352 )
(1,24, 75, 200 )

(118, 117,

1860, 2945 )

*

(1,21, 132,

154 )

('3, 60, 340,

527 )
(2,24, 39, 520)

(1,20, 84, 210)
(2,9, 69,460 )

(1, 9,126, 168 )




343

346

349

352

353

358

361

364

367

370

373

376

379

382

385

388

391

394

397

400

403
406

409

412

(1, 10, 132,
165 )
(1,20, 104,
200 )

(118, 204,
1036, 4403)
(3, 176, 416,
429 )

(7, 352, 416,
1612 )
(2,21, 266,
357 )

(2, 55, 132,
495 )
(1,3, 16, 240)

(3, 65, 432,
540 )
(17, 21, 492,
2870 )

( 4, 40, 43,
1160 )

(3, 65, 212,
780 )

(3, 40, 129,
860 )

(1,2, 28,217)

(7, 300, 700,
1590 )

(1,77, 135,

165 )

(4, 5,116, 725 )

(8, 377, 840,
1820 )

( 140, 1365,
1980, 43758 )

(3, 39, 299,

759 )
(3,4, 180, 495 )
(9, 11, 420,
1540 )

(2, 35, 252,

A76 )

(1, 14, 66, 297)

344

347

350

353

356

359

362

365

368

371

374

377

380

383

386

389

392

395

398

401

404
407

410

413

(2,6,33, 451 )

(3,13, 192,

624 )

(1,21, 154,

154 )

(1, 45, 90, 204 )

(6, 77, 825,
1050 )

( 20, 111,

814, 4995 )
(2,27, 259,
378 )
(1,5, 84, 210 )

(1, 15, 40, 280 )

(3, 65, 104,
860 )

(2, 65, 180,
468 )

(3,22, 220,
735 )

(3, 85, 400,
600 )
(7,259, 1110,
1204 )
(5,24, 213,
1320 )

(4, 84, 330,
1045 )

(3, 16, 465,
496 )

(1, 24, 150,
200 )

(9, 20, 580,
1827 )

(3, 39, 140,
910 )
(1,9,25 315 )
(1, 13, 156,
204 )

(2, 60, 93, 620 )

(5,145, 696,
1128 )

115

345

348

351

354

357

360

363

366

369

372

375

378

381

384

387

390

393

396

399

402

405
408

411

414

(3, 120, 187,
680 )

(3,138, 391,
476 )
(1,3, 96, 160 )

(1, 66, 66, 209 )
(1, 5,120, 168 )

(2,21, 175,
450 )

(5, 285, 672,
798 )
(4, 45, 294,
980 )
(5,7, 56, 952 )

(2, 25, 108,

540 )

(4, 57, 660,

665 )

(3, 35, 190,

798 )

(5, 378, 385,
1080 )
(1,21, 65, 273 )

(8, 264, 924,
1771 )

(6, 420, 645,
1204 )

(6, 36, 100,
1775 )

(5, 51, 238,
1470 )
(1,12, 117,
234 )
(1,1, 42, 154 )

(4,5, 420, 462 )
(2, 114, 247
429 )

(5,60, 117,
1638 )

(5, 210, 258,
1505 )




415

418

421

424

427

430

433

436

439

442

445

448

451

454

457

460

463

466

469

472

475

478
481

484

(21, 80, 2132,
4592 )
(1,26, 33, 330)

(3, 44, 55,
1020 )

(5,17, 140,
1428 )

(3,23, 112,
966 )

(3,110, 132,
980 )

(44, 126, 2035,
11655 )

(1, 40, 50, 325 )

( 105, 700,
13754, 25116 )
(1, 35, 48, 336 )

(2, 140, 341,
385 )
(1, 15, 35, 357)

(5, 32, 480,
1410 )

(5, 90, 665,
1368 )

(3,19, 36,

1044 )

(5,17, 300,
1428 )
(1,11, 52, 352 )

(5,9, 196,
1260 )

('8, 25, 264,
2475 )

(1,9, 66,342 )

(3, 112, 210,
1040 )
(2,5, 105, 560 )
(8,27, 945,
1960 )

*

416

419

422

425

428

431

434

4370

440

443

446

449

452

455

458

461

464

467

470

473

476

479
482

485

(1,20, 33, 330 )

(3,133, 504,
576 )
(7,24, 248,
1953 )

(4, 68, 81,
1377 )

(1, 45, 138,
230 )
(3,13, 384,
640 )
(9,68, 112,
3024 )

(1, 6,57, 304 )

(4,7,165,924 )

(9, 35, 264,
2772 )

(1231, 434,
4275, 59850 )
(4, 170, 276,
1275 )

(2, 45, 94, 705 )

(1, 56, 96, 288 )

(5, 60, 493,
1530 )

(3, 12, 140,
930 )
(35, 38, 896,
7296 )
(2,84, 301,
516 )

(2, 120, 305,
488 )

(1, 24, 200,
225 )

(39, 238, 360,
13923 )
(1,260,252 )
( 4, 460, 621,
805 )

( 84, 7315,

14345, 18120 )

116

417

420

423

426

429

432

435

438

441

444

447

450

453

456

459

462

465

468

471

474

477

480
483

486

(4, 36, 510,
935 )

(2, 57, 60, 665 )
(2,7, 20,530 )
(35, 52, 1209,
7440 )
(2,28, 33, 693 )
(5, 420, 533,
1148 )

(1, 7,16, 336 )
(5,10, 72,
1305 )

(75, 114, 6251,
13300 )

(1,6, 33,330 )
(7, 224, 1056,
1716 )

(2, 85, 290,
493 )

(4, 30, 35,
1380 )
(1,14, 90, 315 )
(5, 136, 1020,
1032 )

(6, 344, 840,
1505 )

(5, 170, 561,
1496 )

(1,8, 36,360 )
(77, 168, 7880,
16500 )

( 4, 323, 399,
1122 )

(1,58, 144,
261 )
(3,5, 14, 770 )
(1,5, 60, 330 )
(2, 25, 264,
600 )




487

490

493

496

499

502

205

208

011

014

017

520

923

226

529

932

935

538

041

044

247

250

253

(1,8, 156, 264)
(1,76, 76, 323 )

(4, 209, 513,
1188 )

(4, 231, 390,
1300 )

(3, 34, 315,
1008 )
(2,2, 45, 441)

(1, 110, 144,
240 )

( 4, 415, 660,
013 )
(7,20, 1071,
1530 )

(2, 231, 280,
495 )
(2, 65, 140,
780 )

(3, 184, 363,
968 )

(9, 309, 1442,
2772 )
(2,11, 187,
680 )
(2, 65, 165,
780 )
(3,72, 680,
765 )

(2, 152, 264,
627 )
(4, 30, 645,
1204 )

(5, 525, 636,
1484 )
(2,11, 182,
715 )
(4,27, 155,
1674 )

(8, 25, 792,
2475 )

(2, 35, 259,
740 )

488

491

494

497

200

503

206

209

012

015

018

021

024

227

530

233

236

539

042

245

548

251

254

*

(8, 495, 1122,
2200 )

(5, 18, 129,
1720 )
(1,34, 84, 357 )

(1,12, 78, 364 )

(7,87, 690,
2436 )

( 5, 740, 740,
999 )
(1,1, 70, 180 )

(2, 45, 47, 846 )

(7,87, 770,
2436 )

(5,90, 209,
2090 )

(1, 28, 70, 396 )

( 40, 1015,
7105, 11832 )
(7,32, 1248,
1716 )

(2,3, 175, 450 )

(1,42, 172,
301 )

(2, 35, 308,
660 )

(11, 15, 902,
2460 )

(3, 55, 680,
792 )

( 119, 420,
550, 42075 )
(1, 42, 236,
252 )

( 219, 660,
5110, 81620 )
(1,12, 156,
338 )

117

489

492

495

498

501

504

507

510

513

516

519

522

525

228

531

534

237

540

043

246

549

952

255

(1,21, 132,
308 )

(3, 68, 252,
1071 )
(3,104, 504,
819 )

(2, 180, 325,
468 )
(5, 54, 564,
1645 )
(2,21, 29, 812)

(3, 26, 504,
819 )
(31, 70, 1030,
9579 )
(3,88, 196,
1176 )
(3,34, 63
1260 )
(5,129, 618,
1720 )
(3,4, 140, 735 )

(1,4, 36, 369 )

(5, 30, 799,
1410 )

(3, 25, 196,
1176 )

(1, 3,84, 308 )

(1, 72, 200,

252 )
(18, 19, 1683,
3230 )
(1,21, 68, 420 )

(3, 168, 665,
760 )
(4,9, 68, 1377)

(1, 84, 140,
315 )

(9, 58, 1885,
2340 )




256

259

562

265

268

571

574

27T

580

283

286

589

992

295

598

601

604

607

610

613

616

619

622

(3,112, 225,
1260 )

( 12, 686,
1311, 4508 )
(5, 609, 812,
1334 )
(15, 27, 350,
4900 )
(1, 15, 160,
352 )
(1, 21, 140,
378 )

(5, 62, 705,
1860 )
(7,105, 720,
2912 )

*

(5, 87, 112,
2436 )

(8, 111, 140,
3885 )
(1,32, 45, 480 )

(1,9, 48, 464 )

( 4, 145, 530,
1566 )
(1,72, 192,
320 )
(10, 55, 112,
4543 )
(20, 84, 679,
8730 )
(5,22, 245,
2156 )
(1, 10, 154,
385 )

(3, 336, 678,
791 )
(4, 39, 144,
1989 )

(3, 65, 88,
1560 )
(4,13, 172,
1677 )

557

260

563

266

269

572

575

578

581

584

o287

590

293

296

599

602

605

608

611

614

617

620

623

4,9, 80, 1395 )
1,9, 175, 315 )
, 290, 660 )

4, 494, 585,
1140 )

(4, 117, 484,
1573 )
(1,2,105, 270 )

(
(
(3,4
(

(3, 56, 630,
936 )
(1,9, 50, 450 )

(7, 88, 280,
3300 )

(7, 300, 1708,
1950 )

( 5, 245, 504,
2088 )
(2,28, 105,
045 )

(5, 36, 820,
1722 )

(3, 36, 720,
880 )
(1,32, 57, 480 )

(3,252, 442,
1071 )

(1, 21, 130,

420 )
(6, 88, 231,
3003 )

(4, 84, 162,
2025 )
(1,54, 77, 462 )

(3,20, 418,
1155 )
(88, 621, 11891,
34776 )
(190, 561, 16380,
30940 )

118

958

261

564

567

570

573

576

579

582

285

288

591

594

297

600

603

606

609

612

615

618

621

624

(1,77, 182,
286 )
(1,8, 216, 270 )

(6, 261, 530,
2420 )

( 20, 105,
174, 8372 )
(3, 114, 608,
928 )

( 4, 20, 333,
1530 )

*

(7,228, 437,
3192 )

(1, 54, 224,
288 )

(1,4, 30,420 )

(1, 30, 69, 460 )

(117, 1428,
4100, 4305 )
(2, 84, 161,

897 )

(9, 126, 1540,
3300 )

(1,10, 115,

414 )

(1, 10, 69, 460 )

(7, 35, 1326,
2142 )
(1,12, 56, 483)

(1, 48, 210,
336 )

( 35, 187,
1890, 15708)
(2, 33, 280,
840 )

(2, 220, 444,
555 )

(2, 28, 300,
825 )




625

628

631

634

637

640

643

646

649

652

655

658

661

664

667

670

673

676

679

682

685

688

691

(4, 81, 84,
2106 )

(6, 80, 91,
3120 )

(5, 240, 1240,
1584 )

( 19, 1260,
1386, 9020 )
(3,32, 837,
864 )

(1,76, 220,
330 )

(11, 836,
1547, 4522 )
(17, 30, 1245,
5644 )

(3, 336, 560,
1015 )
(1,19, 56, 532 )

(2,57, 84,
1092 )

(6, 49, 225,
3150 )

( 5, 20, 884,
1717 )
(17, 87, 3944,
5336 )
(7,48, 1452,
2541 )

( 4, 20, 405,
1782 )

(37, 168, 620,
18600 )

*

(4, 31, 616,
1736 )
(1, 10, 220,
385 )

(88, 425, 6732,
42075 )
(3,16, 171,
1520 )

(5,21, 518,
2220 )

626

629

632

635

638

641

644

647

650

653

656

659

662

665

668

671

674

677

680

683

636

689

692

(1, 16, 208,

360 )

( 35, 1110,
1628, 18095 )

(4, 39, 405,
1820 )

(7,16, 385,
2640 )
(1,9, 180, 380 )

(139, 1144,
3504, 19184 )
(5,72, 371,
2520 )
(1,30, 124,
465 )

(1,21, 198,
396 )

(5,28, 111,
2520 )

(39, 364, 4340,
18135 )
(2,31, 84,
1092 )

(1, 90, 234,
325 )

( 4, 318, 420,
1855 )

( 26, 2070,
5895, 9039 )
(7,8, 360,
2100 )

(3, 150, 716,
1100 )
(1,3, 140, 360 )

*

(33, 176, 2091,
16400 )

(21, 1295,
3420, 9324 )
(3,3, 130, 884 )

(21, 2847,
3796, 7644 )

119

627

630

633

636

639

642

645

648

651

654

657

660

663

666

669

672

675

678

681

684

687

690

693

(1,4, 70, 420 )

(7,18, 875,
2250 )

( 19, 399,
3528, 7448 )
(5, 12, 564,
1645 )

(5, 377, 592,
2146 )

(2, 20, 23,
1035 )
(2,207, 264,
792 )
(1,68, 85, 476 )

(122, 225,
2780, 9900 )
(1, 14, 60, 525 )

(8,21, 145,
3480 )

(4, 209, 504,
1848 )

(17, 52, 1716,
6630 )
(1,21, 56, 546 )

(4, 48, 784,
1617 )

(4, 476, 969,
1197 )

( 19, 126,
1740, 9135 )
(7,55, 576,
3520 )

( 40, 1060,
1749, 22792 )
( 104, 1107,
29848, 33579 )
(1, 15, 240,
384 )

( 10, 972,
1215, 4563 )
(5,52, 62,
2821 )




694

697

700

703

706

709

712

715

718

721

724

727

730

733

736

739

742

745

748

751

754

757

760

(15, 1703,
1950, 6550 )
( 4, 56, 696,
1827 )
(3,75, 372,
1550 )
(2,12, 364,
819 )
(13, 28, 1365,
4810 )

(6, 455, 819,
2880 )
(1,56, 132,
504 )
(5,184, 221,
2990 )

(7, 1200,
1800, 1953 )
(2, 40, 504,
819 )
(1,22, 33, 616 )

( 20, 455, 2964,
10374 )

(11, 594,
2295, 4930 )
(3, 220, 310,
1612 )

(5, 6, 108,
1836 )

(11, 209,
1508, 5928 )
(1,77, 236,
364 )

(2, 28, 315,
1035 )

(4, 265, 420,
2226 )

( 36, 3510,
10244, 12805 )
(2, 168, 357,
052 )

(2,9, 528, 693)

(6, 215, 595,
3570 )

695

698

701

704

707

710

713

716

719

722

725

728

731

734

737

740

743

746

749

752

755

758

761

( 29, 5661,
6660, 7540 )

( 126, 420,
5915, 59995 )

(2, 299, 299,
780 )

(1,18, 63,574 )

(9, 280, 1666,
4165 )

(1, 45, 230,
414 )

( 4, 665, 1005,
1140 )

(7, 116, 1740,
2835 )
(3,175, 372,
1550 )

(1, 4,99, 468 )

(1, 15, 96, 560 )

(11, 210,

715, 6552 )
(2,20, 132,
1155 )

(1, 28, 58, 609 )

(1,24, 222,
456 )

( 21, 210,
4235, 9570 )
(31, 60, 684,
13950 )

(1, 35, 180,
504 )

(4, 25, 225,
2286 )

(2, 3,50, 825 )

(1, 155, 168,
420 )

(18, 2392,
5405, 5640 )
(3, 52, 660,
1430 )

120

696

699

702

705

708

711

714

717

720

723

726

729

732

735

738

741

744

747

750

753

756

759

762

(3, 121, 690,
1210 )

(11, 525,
1320, 5600 )

(2, 63, 468,
819 )

(60, 175, 517,
28200 )

(1, 24, 200,
450 )

( 120, 1240,
6479, 68541 )
(2, 3,195, 650 )

(3, 175, 620,
1302 )

(5, 72, 742,
2520 )

( 69, 588,
12719, 30968)

(1, 120, 234,
360 )
(1,6, 44, 561 )

(3,27, 248,
1674 )

(15, 74, 780,
8140 )
(1,12, 156,
507 )

( 5, 16, 420,
2352 )
(3,91, 416,
1632 )
(3,28, 39
1820 )
(3,99, 682,
1386 )
(2, 85, 204,
1164 )

(3, 186, 280,
1736 )

(4, 231, 658,
2068 )

( 70, 1925,
5700, 43092 )




763

766

769

72

775

778

781

784

787

790

793

796

799

802

805

808

811

814

817

820

823

826

829

(2, 95, 380,
1007 )
(12, 42, 55,
5995 )
(1,35, 112,
592 )

('3, 650, 660,
975 )
(1,84, 171,
504 )
(1,30, 93, 620 )

('8, 665, 2520,
2945 )

(1, 33, 209,
513 )

(3, 408, 822,
1096 )
(5, 36, 820,
2583 )
(19, 28, 3948,
4935 )
('3, 44, 660,
1515 )
(1,22, 184,
552 )

(3, 84, 282,
1927 )

(1,2, 92,437)

(1,18, 171,
570 )

( 15, 540,
1708, 9455 )
( 23, 1130,
4068, 12995 )
(34, 2457,
11908, 12852 )
(1, 51, 340,
408 )
(4,29, 212,
2597 )

(4, 140, 585,
2457 )

(6, 32, 555,
3552)

764

767

770

773

776

779

782

785

788

791

794

797

800

803

806

809

812

815

818

821

824

827

830

(1,8, 216, 450 )

(12, 37, 126,
6300 )
(1,21, 88, 616 )

(49, 834, 973,
32248 )

(1, 20, 294,
420 )

(3, 55, 870,
1276 )

(2, 95, 266,
1155 )

( 105, 2788,
22176, 53856 )
(3,217, 385,
1705 )
(3,70, 567,
1620 )

(3, 39, 858,
1300 )

(3, 247, 380,
1710 )

( 78, 1155,
3014, 52745)

( 104, 561,
595, 60060 )
(45, 755, 4032,
28992 )

(63, 124, 279,
28892 )

(1, 32, 270,
480 )

(9, 1270,
2540, 3420 )
(45, 63, 3220,
17940 )

( 60, 603, 1615,
41004 )

( 5, 1170,
1261, 1638 )
(21, 86, 1712,
11984 )
(5,8, 105,
2360 )

121

765

768

771

774

T

780

783

786

789

792

795

798

801

804

807

810

813

816

819

822

825

828

831

(3, 231, 616,
1400 )

( 4, 425, 1020,
1575 )

(3, 104, 143,
1950 )
(1,2,65, 442)

(6,91, 644,
3588 )

(1, 10, 165,
528 )

( 34, 3575,
3927, 18564 )
(2, 75, 175,
1260 )

(12, 812,
986, 7395 )
(1,39, 312,
416 )

(1, 4, 100, 525 )

(1, 20, 315,
420 )

(1, 33, 120,
616 )
(3,110, 195,
2002 )
(1, 48, 147,
588 )

(2, 210, 265,
1113 )

(114, 132,
2409, 7665 )
(3,7, 325,
1365 )
(16, 33, 490,
8085 )

(4, 264, 737,
2211 )
(3,98, 315,
1960 )

( 20, 3289,
3588, 9438 )
(141, 1640,
2120, 28779 )




832

835

838

841

844

847

850

853

856

859

862

865

868

871

874

877

880

883

886

889

892

895

898

(2,99, 385,
1134 )

(129, 1092,
3689, 18564 )
(64, 960, 19425,
29575 )

(3, 140, 910,
1404 )
(5,492, 777,
2870 )

(1,8, 84,651 )

(1, 9,180, 570 )

( 105, 280,
16058, 48285 )
(15, 602, 1435,
10332 )
(8,176, 187,
5936 )

( 12, 364,
1326, 8211 )

( 10, 611,
2340, 5499 )
(3,8, 129,
1720 )

('8, 1643,
2015, 3224 )
(2, 315, 400,
1008 )
(1,4, 72, 616)

(18, 70, 1155,
11187 )

( 20, 3589,
5994, 7857 )
(1,32, 342,
480 )

(3, 462, 616,
1551 )

(2, 45, 235,
1410 )
(66, 280, 18165,
29064 )

('35, 5060,
6020, 19866 )

833

836

839

842

845

848

851

854

857

860

863

866

869

872

875

878

881

884

887

890

893

896

899

(1, 90, 260,
468 )

(3, 351, 621,
1495 )

( 80, 1008,
8449, 52020 )
(1,92, 252,
483 )

(2, 63, 300,
1260 )

(1, 90, 156,
585 )

( 60, 2041,
22765, 24492 )
(3, 16, 276,
1840 )
(1,16, 55, 720 )

(3, 11, 616,
1386 )
(35, 54, 540,
16983 )

( 75, 2599,
20566, 39550 )
(1, 18, 280,
520 )
('3, 14, 595,
1530 )

(4, 87, 798
2436 )
(20, 24, 141,
8695 )

(122, 168,
17400, 44225 )
(9, 1332,
1406, 5092 )

(65, 494, 1505,
46956 )
(2,11, 155,
1320 )

(3, 329, 420,
1880 )

(9, 10, 1595,
2610 )

(1, 84, 357
442 )

122

834
837
840
843
846
849
852
855
858
861
864
867
870
873
876
879
882
885
888
891
894
897

900

(1, 21, 308,
462 )

(3,8, 484,
1320 )

(2, 100, 255,
1275 )

( 1560, 637,
8, 4410 )

('3, 210, 568,
1704 )
(7,165, 1176,
4312 )

(1, 84, 248,
504 )
(1,11, 352,
416 )

(8, 115, 360,
5796 )

(7, 1071,
1122, 3740 )
(1,6, 140, 538 )

('8, 475, 2100,
4200 )

(6, 296, 888,
3885 )

(2, 195, 364,
1155 )

( 792, 12760,
20, 3393 )

(1, 65, 132,
660 )

(3, 660, 935,
1020 )
(1,42, 301,
516 )
(3,130, 819,
1638 )

(1, 144, 315,
420 )

(1, 96, 288,
495 )
(2,273, 572,
924 )

*




901

904

907

910

913

916

919

922

925

928

931

934

937

940

943

946

949

952

955

958

961

964

967

( 4, 35, 690,
2484 )

*

(1,51, 208,
624 )

(3,70, 532,
1995 )

( 5439, 37,

12, 2744 )
(84, 445, 7476,
56035 )

(23, 189, 616,
17388 )

(5, 308, 1892,
2310 )
(3, 44, 846,
1692 )

(2, 175, 450,
1197 )
(2, 44, 460,
1265 )
(2,52, 81,
1620 )

(113, 1428,
4774, 5797 )
(13, 16, 611,
6016 )
(11, 63, 2016,
6688 )
(1,5, 48, 720 )

(2,41, 85,
1640 )
(1,14, 153,
714 )

(3, 390, 624,
1808 )

( 10, 265,
649, 8162 )

( 10, 204,
1605, 7276 )
(14, 18, 1683,
5831 )
(1,23, 160,
736 )

902

905

908

911

914

917

920

923

926

929

932

935

938

941

944

947

950

953

956

959

962

965

968

(8, 104, 1911,
4641 )

(5, 594, 1705
2160 )

(2, 33, 105,
1540 )

(9, 180, 2660,
4921 )
(21, 57, 1196,
12558 )
(2,21, 184,
1449 )
(1,48, 231,
616 )

(2, 68, 735,
980 )

(1,12, 225,
612 )

(2,48, 51,
1616 )
(2,33, 82,
1599 )

(3, 220, 627,
1900 )

(3, 52, 440,
2145 )
(17, 493, 1740,
13050 )

(2, 165, 246,
1435 )

( 6052, 1869,
17, 7938 )
(3,9, 828,
1288 )
(199, 172, 24390,
34959 )

(17, 135,
4522, 9690 )

('8, 315, 2850,
4275 )
(1, 44, 297,
594 )

(3, 507, 660,
1690 )

(2, 25, 405,
1350 )

123

903

906

909

912

915

918

921

924

927

930

933

936

939

942

945

948

951

954

957

960

963

966

969

(6,11, 40

3135 )

(3,8, 110,

1815 )

(111, 440,

2365, 6380 )
(1,5, 225,525 )

(5,222, 280,
3885 )

(3, 25, 1100,
1320 )

(29, 534, 812,
23100 )
(5,75, 1932,
2300 )

( 39, 2812,
3515, 28860 )
(1, 35, 360,
504 )

(17, 29, 170,
9180 )
(1, 42, 357,
510 )

(1, 60, 122,
732 )

(1, 33, 330,
546 )
(3,156, 371,
2226 )

(1, 40, 60, 808 )

(7, 48, 1320,
4400 )

(3,77, 528,
2128 )

(7, 408, 1938,
4199 )

(1, 3,13, 663 )

(5, 765, 990,
2992 )
(3, 15, 140,
2212 )
(8,90, 175,
6552 )




970

973

976

979

982

985

988

991

994

997

1000

We computed solutions of the title equation for n = 4m? m = 2 (mod 4), in the
range n < 20000, and found solutions in all cases except n = 10000 and n = 15376;
see Table A.2. Further, for n = 4m? + 4, m = 2 (mod 4), we were able to find

(11, 1155,
1908, 7420 )
(3,115, 132,
2530 )
(1, 84, 350,
525 )
(35, 59, 3920,
17346 )

(194, 4756,
9541, 75153 )
(3, 112, 240,
2485 )

(3, 165, 440,
2280 )

( 40, 1265,
0867, 27048 )
(1,112, 272,
595 )

(1, 88, 178,
712 )
(1,10, 24, 840 )

971

974

977

980

983

986

989

992

995

998

(1, 4, 105, 660 )

(118, 177,
204, 54929 )
(117, 1295,
6720, 8288 )
(1,17, 135,
765 )
(16, 83, 360,
12240 )

( 11, 440,
984, 9020 )

(2, 175, 180,
1575 )

(2, 69, 860,
989 )

(3, 200, 1200,
1525 )

( 76, 1368,
7301, 62328 )

solutions in all cases where n < 20000; see Table A.3.

972

975

978

981

984

987

990

993

996

999

(1,14, 34, 833)

(14, 99, 2296,
0471 )

(5,69, 1242,
3220 )

(3,195, 242,
2420 )

(1, 20, 36, 855 )

( 66, 2604,
9548, 50809 )
(11, 231,

3990, 6118 )
(13, 21, 2808,
5096 )

(2, 75, 805,
1050 )

(2,9, 693,924 )

Table A.2: Solutions Of (z4+y+z+w)(1/z+1/y+1/2+
1/w) =4m? m =2 (mod 4)

n m | (x,y,z,w) n m | (x,y,z,w)

44 [ 6 [ (1,21,33,77) 100 [ 10 [ (3, 39, 209, 759)

784 | 14 | (1,33,209,513) 1296 | 18 | (47, 55, 1095, 30879)
1936 | 22 | (17, 1813, 2205, 28305) || 2704 | 26 | (3, 651, 2415, 4991)
3600 | 30 | (45, 133, 3605, 116109) || 4624 | 34 | (1, 25, 169, 4225)
5776 | 38 | (1, 81, 1325, 4293) 7056 | 42 | (1235, 2639, 735315, 5189223)
8464 | 46 | (1, 121, 385, 7865) 10000 | 50
11664 | 54 | (5, 561, 4245, 52921) 13456 | 58 | (13, 16245, 53361, 105105)
15376 | 62 17424 | 66 | (65, 4305, 5265, 1092609)
19600 | 70 | (9, 589, 1833, 170469)
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Table A.3: Solutions Of (z+y+z+w)(1/z+1/y+1/z+
1/w) =4m*+4, m =2 (mod 4)

n m | (z,y,z,w) n m | (z,y, z,w)

148 6 | (5,7,13,325) 404 | 10 | (1,9,25,315)

788 | 14 | (3, 217, 385, 1705) 1300 | 18 | (5, 637 1615, 4165)
1940 | 22 | (1, 11, 51, 1683) 2708 | 26 | (7, 759, 2479, 15477)
3604 | 30 | (1, 91, 161, 3289) 4628 | 34 | (13, 21, 285, 35815)
5780 | 38 | (5, 29, 1653, 22895) 7060 | 42 | (43, 121 88451 135235),
8468 | 46 | (35, 2171, 54275, 234969) || 10004 | 50 | (1, 51, 1131 8619)
11668 | 54 | (25,41475,45899,203931) 13460 | 58 | (55, 189 70455 502335)
15380 | 62 | (1, 3219, 4995, 7155) 17428 | 66 (27 125307 155601 189371)
19604 | 70 | (123, 459, 2425, 1825443)
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APPENDIX B

EQUATION X* + Y* = DZ*
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In both Theorem and Theorem [3.3.3] we require the condition that the rank
of some curves is at most 1. We give a table where cubic points are found when the
rank of the curve z* + y? = Dz* is at least 2. Finding solutions to z* 4+ y* = Dz* in
cubic number fields is not easy. Our approach here is to find the cubic number field
of the form at® + bt? + xt + d, which was proposed in Bremner [3] and Cassels [11].
We looked for cubic fields at® + bt? + ct +d = 0, where the equation z* +y* = Dz* has
solutions. To proceed in this way, we searched for rational points in some 64 degree
homogeneous variables. Computational results support the conjecture that when the
rank of z* + y? = Dz* is at least 2, then there always exists a cubic point, but this
seems every difficult to prove. The computation is recorded in the following table.

Table B.1: Solutions Of 2* +y* = Dz, 2 =12 +1

D | Cubic equations defining t | x y
__ 9532068713 124131742 _1 ([ 2 1 2
1777 2390 t° + 605320 t° + 53098( 8RKR723t + 191( 764t + 5102t +
ot + 1 1558403t + 117662) | 788)
1873 — 833076238522319807 3 T | _ GOGISTISZI001IS ;2 | 1A9980407,2 T
4350827579604821674 103858567341425 82089865
868069163214966164 12 | 128177543406547 4 | 1608906352, _ 2946041588
4350827579604821674 103858567341425 82089865 82089865
5030676841258403279 4 4 520523869513673
4350827579604821 674 103858567341425
1889 34046414692147881138306 t3 + _346527660909507688 t2 + _ 3508429512 t2 _
7601169982050224925503377 77363288673972050 604901640
3739208627236469973839401 42 | 16956213317318848357, | 1943705195747, +
30404679928200899702013508 77363288673972050 604901640
5358841821246864376216483 4 | | 44941517494280046162 5514042765442
7601169982050224925503377 T7363288673972050 604901640
9753 1432652495661 43 T [ — 201021435 [ _5r2936,2 _ 5041589,
40800233234177 12653550 204620 204620
3270738115376 12 4 | 437879971, 31092181 6361759
40800233234177 12653550 12653550 204620
59802385215158 4 | |
4089942;59232151&?0 3 14760380 12 5086835 12
2801 _5214612456061t + | = 11613750t T | T 455835 t +
6219693961004 42 4| 200447838, 27372889 15189576, | 15663158
5214612456061 11613750 11613750 455835 455835
1669679283964 4 4
AL Aga006] 949533 12 3199956 12 | 4088495 54022 | 4301 179
3137 — 96557 t + 06557 t — | T 137160 =+ 137160 t—1 = 254 o+ 254 t+ 254
2788124 4 | 826609
5763 23004361 12 L o065 38350 80,2 _ 4751 1151
3229 2137801 + 2137801t + _1283t + 1283 t+ 1283 _%t T 736 t— 36
13652618
21?g5§9§8t3+ 12()1475 2 3508 13334 42 35251 4641 15373 412 11447 0648
5019 mpan] L C et | o T e T
4001 29393679t + 1799613 =+ = 56433t T 756433 t—| - 507 "= 507 t— 507
13710244 1 366516
t+ 56433
4993 13625408059306986314693496 t3 + _5337783616859087394 t2 + _ 3467773873328 t2 _
6660935679148294493212515953 813010109053557850 177348640510
621752052630026 146518287916 42 | 75441100718406199434, | 26045264170212 +
6660935679148294493212515953 813010109053557850 177348640510
4255 7453773896 7050506507788, | 1 | 116159796282063498531 81613818831463
g 0 YO I T i) P V7 LR
6353 _674441021t + 674441021t T | T 82123770 t + | = 483650 t +
177475748y 4 7103733136, _ 4114661791 30633054, _ 10160939
8 (1% (R BT WY R YA TS A o 240 ARIGA0 483030
6481 — 7569 t°+ ’41 "= 7569 t+1 _Wt + ]00 t— 200 —3t" + Et"' 20
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7529 17610219152463405625 t3 + [ = 10145220196827t2 + | = 6282377092855625 t2
34652659401694 3898921 2307626943028 647248491480800
1737862275421434926875 t2 300937570118302 t _ | 47530814249370002 t +
346526594016943898921 2307626943028 647248491480800
138833387475741406719t +1 131724269039407 21414917567843063
OSSR SRS

7537 140014628 t+ 70007314t + - 7738 =+ 7738 t+ _1065t + 1065 t+ 1065
852368421 80442

140014628 t+1

7738
3 1203890058645726357372127

]]89 _ 1253189307829367 19022501 71996107 12 D00Z5936235T50094T 42—
85720904955406048842162472733317 | 159902332875541342451838 141938281994105982
45525186231023714041794586462583 42| 3669576842245099752164778 | 1326247943951450118;
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