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ABSTRACT

Fraud is defined as the utilization of deception for illegal gain by hiding the true

nature of the activity. While organizations lose around $3.7 trillion in revenue due to

financial crimes and fraud worldwide, they can affect all levels of society significantly.

In this dissertation, I focus on credit card fraud in online transactions. Every online

transaction comes with a fraud risk and it is the merchant’s liability to detect and

stop fraudulent transactions. Merchants utilize various mechanisms to prevent and

manage fraud such as automated fraud detection systems and manual transaction

reviews by expert fraud analysts. Many proposed solutions mostly focus on fraud

detection accuracy and ignore financial considerations. Also, the highly effective

manual review process is overlooked. First, I propose Profit Optimizing Neural Risk

Manager (PONRM), a selective classifier that (a) constitutes optimal collaboration

between machine learning models and human expertise under industrial constraints,

(b) is cost and profit sensitive. I suggest directions on how to characterize fraudulent

behavior and assess the risk of a transaction. I show that my framework outperforms

cost-sensitive and cost-insensitive baselines on three real-world merchant datasets.

While PONRM is able to work with many supervised learners and obtain convincing

results, utilizing probability outputs directly from the trained model itself can pose

problems, especially in deep learning as softmax output is not a true uncertainty

measure. This phenomenon, and the wide and rapid adoption of deep learning by

practitioners brought unintended consequences in many situations such as in the in-

famous case of Google Photos’ racist image recognition algorithm; thus, necessitated

the utilization of the quantified uncertainty for each prediction. There have been

recent efforts towards quantifying uncertainty in conventional deep learning methods

(e.g., dropout as Bayesian approximation); however, their optimal use in decision

making is often overlooked and understudied. Thus, I present a mixed-integer pro-
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gramming framework for selective classification called MIPSC, that investigates and

combines model uncertainty and predictive mean to identify optimal classification and

rejection regions. I also extend this framework to cost-sensitive settings (MIPCSC)

and focus on the critical real-world problem, online fraud management and show that

my approach outperforms industry standard methods significantly for online fraud

management in real-world settings.
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Chapter 1

RESEARCH OVERVIEW

1.1 Introduction

Following the huge success of the recent advances in machine learning and deep

learning, developing strategies to make use of these models optimally becomes imper-

ative. The ability to abstain from making an automated decision when the model is

uncertain about an individual inference is essential to design these strategies. Con-

cisely, this dissertation presents novel methods operating in the intersection of several

areas such as selective classification, uncertainty representation, cost-sensitive learn-

ing, and operations research to make optimal decisions under uncertainty in real-

world applications. Rest of this dissertation is organized as follows. In Chapter 1, I

introduce the related work around uncertainty representation, selective classification,

mixed-integer programming, and cost-sensitive learning. Following this background,

I propose a cost-sensitive fraud management framework compatible with any super-

vised learning algorithm in Chapter 2. Then, Chapter 3 focuses on a generalizable

selective classification framework, its cost-sensitive extension, and its applications

to fraud management. Finally, in Chapter 4, I conclude the dissertation with key

findings and future research direction.
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1.2 Related Work

1.2.1 Cost-Sensitive Learning

Cost-sensitive learning is a largely studied data mining field in which models

consider different types of costs including asymmetric misclassification costs when

performing learning and prediction tasks. Cost-sensitive learning can treat the loss of

a false positive differently than a false negative whereas regular (cost-sensitive) meth-

ods cannot make a distinction directly. Costs are usually represented as by positive

values whereas benefits are denoted as negative in the cost matrix [Elkan (2001)].

Besides the misclassification costs, test costs such as feature retrieval and label acqui-

sition costs can be of high importance in the modeling of a problem [Turney (1995)].

Although many categorizations are possible, here, we first categorize two main veins

of cost-sensitive learning as “misclassification cost-sensitive learning” and “test cost-

sensitive learning” for simplicity; then we investigate the literature hierarchy deeper

within this categorization.

Misclassification cost-sensitive learning aims to handle different costs arising from

the application domain or class imbalance. For example, in the problem of medical

diagnosis not identifying a serious illness does not incur the same as falsely detecting

a false sickness. Similarly, in the fraud detection domain, transaction amount brings

a dynamic cost to each decision together with the costs of customer retention and

fraud management. There are two main approaches in the cost-sensitive literature to

handle different misclassification costs:

Direct approaches directly incorporate these costs in the loss function in the frame-

work. A pioneering work in these type of methods is Turney (1995). Misclassification

costs are utilized in the fitness of genetic algorithms by the ICET. Differently, Ling

et al. (2004) incorporate misclassification costs in the cost sensitive decision in de-
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cision tree framework. In another study, Drummond and Holte (2000) examine the

cost-sensitivity in relation to attribute selection criteria of decision tree learning and

argue that impurity models cost sensitivity the best. Work of Fan et al. (1999) is the

first study exploring cost-sensitive learning using boosting. Authors achieve this by

making cost-sensitive updates to the AdaBoost’s weak learners at each iteration. Sun

et al. (2007) develop another cost-sensitive boosting algorithm based on AdaBoost

and demonstrate the effectiveness on imbalanced datasets. Authors claim that their

method is more sensitive to cost aspects compared to Fan et al. (1999). Unlike these

studies, Masnadi-Shirazi and Vasconcelos (2011) propose a cost-sensitive boosting

framework based on boosting’s statistical interpretation. Authors modify several

boosting algorithms such as RealBoost, AdaBoost, and LogitBoost and show superi-

ority in terms of cost-minimization. The same authors later introduce a cost-sensitive

SVM framework in Masnadi-Shirazi et al. (2012).

Another approach is converting cost-insensitive learners into cost-sensitive ones by

performing pre-processing or post-processing. We refer to these methods as meta cost-

sensitive learners as in Ling and Sheng (2008). The well-known study by Domingos

(1999) introduces the method, MetaCost. As the name suggests, this method is

meta-cost sensitive learner that can be applied to any type of classifier. It uses a

bagging variant and works as follows. MetaCost bootstraps training examples and

learners multiple models. Then, using average voting it generates probabilities and

weights them with the cost matrix, finally relabels the instances with the expected

class labels to minimize cost. Sheng and Ling (2006) propose a similar meta-learning

method which does not require accurate probability estimates instead uses accurate

rankings. It relies on cross-validation to search for the best threshold of probability

to find the optimal cut-off point. As these can be seen as post-processing based

meta cost-sensitive learners, there also are pre-processors. Zadrozny et al. (2003)
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use sampling to modify class distributions with respect to costs associated with the

labels.

Cost-sensitive classification literature focuses on the problem of ”test costs” more

specifically than the cost-sensitive learning literature. These costs are explained as

the cost incurred for acquiring extra information in terms of features. Medical diagno-

sis problem is again a good analogy for explaining the concept of test costs. A doctor

may require additional tests to make a more confident diagnosis; however, it comes

with time and monetary costs. So, it is the doctor’s decision to make this investment

or not based on the expected benefit of acquiring the result of the tests. Similarly,

in the cost-sensitive classification domain, a framework could choose to ”invest” in

acquiring more information (features) if the expected benefit justifies the cost. In

Turney (1995), the essential problem of minimizing the cost of classification when

the tests are expensive is investigated. It argues that decision trees are the intuitive

structure for this problem and introduced a hybrid genetic decision tree induction

algorithm called ICET to generate low cost decision trees. Misclassification and test

costs are incorporated in the fitness function. Zubek and Dietterich (2002) model

cost-sensitive classification problem considering both misclassification and test costs

as Markov Decision Process (MDP). Each observed feature brings the model to a

new state and incurs a cost and changes the expected benefit of the model. Authors

develop and combine statistical pruning and systematic search techniques to find a

heuristic to the optimal solution in feasible time. Ling et al. (2004) also explore this

problem using a decision trees by combining test and misclassifications costs using

static cost structure. Authors interpret and scale misclassification costs in terms of

monetary value as in the test costs. In Chai et al. (2004), authors develop a test-cost

sensitive naive bayes learner unlike previous decision tree based approaches. In a

similar vein, Zhang et al. (2005) do not focus on developing new techniques but in-
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vestigates the effect of missing data in test-cost sensitive classification and concludes

that missing data notion can be useful for decisioning. These can be perceived similar

to obtaining a label in active inference literature but the costly information is not

the label but the feature itself. Attenberg and Provost (2011) develop techniques

for active cost-sensitive classification problem and investigates the effect of and the

optimal choice for obtaining a ground-truth label at prediction time. Authors aim

to estimate how many times they are likely to see the same instance in a streaming

setting and how they can incorporate this estimation when making a label acquisition

decision considering its cost and expected benefit. This is rather different from our

work as we do not see an instance multiple times and our decision of label acquisition

is based on uncertainty and monetary expectations.

Here, we move on to the extensions of the cost-sensitive learning frameworks.

Reinforcement learning is utilized to make sequential cost-sensitive decisions to max-

imize long term profits in campaigns by Pednault et al. (2002). Margineantu (2005)

extends the cost-sensitive principles introduced by Elkan (2001) to active learning set-

tings using bagged probability estimation trees described in Provost and Domingos

(2003). Attenberg and Provost (2011) propose the first online active cost-sensitive

inference framework where the cost and benefit of encountering a labeled instance

multiple times is considered when making a label acquisition decision. In a similar

vein, Yang et al. (2009) use random forest based conformal prediction framework for

medical diagnosis. This is the first paper extending cost-sensitive learning to confor-

mal prediction settings which promise reliable confidence levels for each prediction.

Kim (2010) proposes cost-sensitive condition random fields for structured learning.

Authors demonstrate the framework’s effectiveness using three applications such as

human walking motion identification, oceanography biome characteristics prediction,
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and object recognition in hierarchy. Semi-supervised cost-sensitive learning is inves-

tigated in Wang et al. (2012). They claim that cost-sensitive learning frameworks

are effective in the existence of adequate labeled data but this is the first exten-

sion where a lot of unlabeled and a few labeled data are are available. Recently,

cost-sensitive classification is modeled using robust minimax approach to allow di-

rect minimization of the cost of mistakes as a convex optimization problem in Asif

et al. (2015). In contrast, previous methods minimize a convex heuristic of the loss

function. Experiments show their method’s effectiveness to be better or comparable

to the existing cost-sensitive boosting and SVM methods. One interesting study in

face recognition, Li et al. (2016) show that even an seemingly unrelated domain can

benefit from cost-sensitive learning. They minimize the misclassification cost instead

of the misclassification error to incur and model varying costs of not recognizing a

face accurately.

1.2.2 Fraud Detection using Machine Learning

Fraud detection has been an active area for data mining researchers since Ghosh

and Reilly (1994); however, it has not been extensively studied due to private and

confidential nature of financial data. Despite these limitations, researchers managed

to conduct studies with industry partners on proprietary datasets. While Fawcett and

Provost (1997) and Chan et al. (1999) propose techniques for specific fraud detection

applications, Fawcett and Provost (1999) formalize the class of activity monitoring

problems which includes fraud detection. They may not be directly applicable or

state-of-the-art today; however, they remain very relevant in terms of ideas they

introduce and foundation they provide for future development.

In the more recent years, major studies focused on credit card fraud detection such
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as Bolton and Hand (2002), Maes et al. (2002), and Van Vlasselaer et al. (2015). Due

to the popularity of social media and user-generated content, fraudulent or misleading

content detection became important. Recently, graph mining approaches have gained

more traction and the product review fraud detection by Hooi et al. (2016) have

received widespread attention. Theoretical contributions on graph mining focusing

on fraud detection applications such as studied in the work from Zhang et al. (2017)

and Zhou et al. (2017) are also made. For more comprehensive survey papers on

fraud detection methods please refer to the studies, Phua et al. (2010) and Ngai et al.

(2011).

Although fraud loss is an enormous problem for e-commerce merchants, there

is only a pair of studies by Halvaiee and Akbari (2014) and Carneiro et al. (2017)

investigating this problem from a merchant’s perspective. However, these works aim

to improve the accuracy of fraud detection alone, instead of a profit and loss aware

fraud management strategy.

Fraud prevention teams must take various complications that arise from allowing

or rejecting a transaction into account. Declining a legitimate transaction would

often result in a loss of that customer’s business whereas approving a fraudulent

transaction would force the merchant to cover the fraud costs. Simply training a

machine learning classifier by overlooking various costs leads to a less than optimal

fraud management strategy. Researchers have been developing cost-sensitive learning

frameworks and the literature in covered in detail in 1.2.1. However, none of cost-

sensitive learning frameworks in fraud detection domain approaches the problem from

a selective classification perspective. Being the closest study, Carneiro et al. (2017)

recognize the role of manual reviews in fraud prevention process; however, they do not

provide a systematic analysis on how to integrate machine learning based detection

with manual reviews under cost and capacity constraints. In Chapter 3, we develop
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a cost-sensitive fraud management framework incorporating all relevant capacities,

costs and evaluate its financial impact with multiple real-world merchant datasets.

1.2.3 Uncertainty Representation and Applications

Many practitioners and researchers make use of the probability outputs from the

trained model (i.e., softmax output in deep learning) as an uncertainty measure; how-

ever, many classifiers output distorted probabilities according to Niculescu-Mizil and

Caruana (2005) and this may lead to misleading actions. Moreover, even when cor-

rected by proposed probability calibration methods such as Isotonic Regression by

Kruskal (1964) or Platt Scaling by Platt et al. (1999), posterior probabilities as point

estimates lack the detail and information to provide a correct interpretation of the

model uncertainty. So, Bayesian approaches such as Polson et al. (2017); Rasmussen

(2006) are the intuitive methods to quantify and represent the model uncertainty cor-

rectly. Due to the computational complexity of the Bayesian methods, Gal proposes

using Monte Carlo sampling over dropout neural networks as an approximation to

Bayesian inference in Gal and Ghahramani (2016). This approach’s effectiveness is

demonstrated in a medical-domain application in Leibig et al. (2017). Our work in

Chapter 4 builds upon this framework by combining model uncertainty and predictive

mean optimally for classification with reject option or selective classification.

1.2.4 Selective Classification

Selective classification or classification with reject option has been studied since

the 1970’s and it has started gaining traction again in the recent decade. It is defined

as giving an option to the classifier to express uncertainty and to reject making a

certain prediction. Chow (1970), being the first study in the field, introduces the

concept and proposes a decision theoretic framework to find the Bayesian-optimal
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reject threshold. Tortorella (2000), and Santos-Pereira and Pires (2005) propose

cost-sensitive learning extensions to classification with reject option methods with

arbitrary cost-functions. Herbei and Wegkamp (2006) develop excess risk bounds for

the classification with a reject option for both cost-sensitive and cost-insensitive cases.

On the other hand, El-Yaniv and Wiener (2010) find these cost models unsuitable

as it is difficult to quantify the cost of rejection in many cases. Instead, authors

focus on theoretical risk-coverage (RC) trade-off without considering explicit costs.

Researchers have been adapting this idea to different classifiers and recently Geifman

and El-Yaniv (2017) modified deep neural networks for selective classification. Our

work differs fundamentally from Geifman and El-Yaniv (2017) by (1) not being built-

in within the deep neural network itself; so it becomes compatible with any existing

trained models and systems, and (2) utilizing dropout MC sampling for uncertainty

estimation.

1.2.5 Mixed-Integer Programming

Mixed-Integer programming (MIP) is a powerful modeling tool that has been

around for decades. MIP has been commonly utilized by the operations research

community; however, practitioners and researchers from other domains hesitated to

adopt it due to its computational and theoretical complexity Bixby (2010). During

the last three decades, algorithmic advances in integer optimization combined with

hardware improvements have enabled a 200 billion factor speedup in solving MIP

problems according to Bertsimas et al. (2016). Now, mixed integer linear techniques

are viewed as mature, fast, and robust; thus are applied to the problems with up to

millions of variables Geißler et al. (2012). Machine learning community also started

employing MIP techniques in several problems, such as for optimal feature selection as

in Bertsimas et al. (2016) and for deriving interpretable machine learning algorithms

9



as shown by Goh and Rudin (2014). The key factors for our decision to use an MIP

formulation are (1) its ability to naturally express the problem, the objective, and the

constraints, (2) its capability to provide an exact optimal solution, and (3) its ease

of extensibility to more specific settings.
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Chapter 2

COST-SENSITIVE DECISION MAKING FOR ONLINE FRAUD

MANAGEMENT

2.1 Introduction

According to Pickett and Pickett (2002), financial crime is the utilization of de-

ception for illegal gain by hiding the true nature of the activity. They use the terms

financial crime and fraud interchangeably since financial crime very often involves

fraud. Financial crime can be committed through many fraud schemes such as check

and credit card fraud, mortgage fraud, medical fraud, corporate fraud, bank account

fraud, and health care fraud. These types of crimes involve relevant illegal activi-

ties such as identity theft, cyber attacks, money laundering, and social engineering

according to Gottschalk (2010). While organizations lose around $3.7 trillion in rev-

enue due to financial crimes and fraud worldwide (ACFE (2016)), they can affect all

levels of society significantly (Interpol (2009)). Thus, fraud is a huge problem and its

detection, prevention, and management is critical.

In 2016, card fraud alone cost businesses over $20 billion and continues to grow dra-

matically (Nilson (2016)). Around 60% of this loss was caused by online transactions,

as e-commerce fraud rates doubled since last year. E-commerce fraud magnitude is

estimated to reach $71 billion during the next five years due to the steady rise in cost

per fraudulent transaction while fraud rates continue to increase (Juniper (2017)).

During fraud management, merchants are generally liable for paying for the fraud

costs in the e-commerce ecosystem. They suffer the losses arising from shipped mer-

chandise, shipping and handling costs alongside chargeback fees issued by the card
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processor (Montague (2010)). KS&R (2016) reports that for every dollar of loss, mer-

chants end up losing $2.40 on average as fraud management costs. When aggregated

they lose around 1.5 percent of their total revenue to fraud today - three times in-

crease during the last 3 years. So, they implement various strategies to fight fraud

from automated fraud prevention systems to manual order reviews by expert fraud

analysts (CyberSource (2016)).

One may think that manual reviews will be going away with advances in artifi-

cial intelligence; however, they remain very much relevant to the industry thanks to

their accuracy. According to CyberSource (2017), manual review is an established

mechanism for fraud prevention with adoption by 79% of North American businesses.

Despite all efforts to fight fraud, significant improvements can still be made by

investigating and answering following questions: What are the most important char-

acteristics of a fraudulent transaction that a merchant can capture without causing

friction? As state-of-the-art machine learning algorithms are not perfect how should

a merchant use them? What is the cost optimal role of expert manual reviews and

revisions in this process?

Improving fraud prevention is not as straightforward as increasing fraud detection

accuracy due to several factors: firstly, rejecting a legitimate order and approving

a fraudulent transaction do not incur the same cost, secondly, transaction amount

varies greatly by order, thus affecting profitability of a sale. Hence, merchants need

to implement cost and profit sensitive fraud prevention strategies.

In this chapter, we introduce Profit Optimizing Neural Risk Manager (PONRM),

a cost-sensitive decision maker for e-commerce fraud management. Our framework

infers the risk of a transaction being fraud and combines it with the transaction

amount to make an optimal decision regarding its fraud management strategy (i.e.

automated accept, reject or manual review). The main contributions of our work are:
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• A cost-sensitive decision making framework to manage fraud while maximizing

profits and minimizing costs;

• A transaction risk model incorporating fraud characteristics and financial con-

straints relevant to a merchant;

• An optimal collaboration strategy between human experts and machine learn-

ing models for fraud management

2.2 Problem Definition

Every online transaction comes with a risk of being fraudulent. As merchants are

responsible for detecting fraud, they must take this risk into account or they would

suffer from losses due to fraud. So, when a merchant receives an order it can accept,

reject or manually review that transaction based on their risk assessment of that

transaction. Brief explanation of each decision is as follows:

• Accept: Accepting a transaction means that merchant approves the trans-

action and processes the payment. Accepting a legitimate transaction yields

some profit. If the transaction turns out to be fraudulent, merchant becomes

responsible for the dispute handling and losses.

• Reject: Rejecting a transaction means that merchant declines the transaction

and payment does not go through. In this case, sale does not happen, so they

will not be earning a profit even if the order was legitimate. However, rejecting

a legitimate transaction may cause the loss of lifetime value of the customer.

• Review: In the case of sending the transaction to manual review, merchant

halts the order and sends the transaction details to an expert fraud analyst for
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investigation. Fraud analyst would confirm the legitimacy of the order by man-

ually analyzing the transaction details and by following-up with the consumer

directly before approving or rejecting it. For the sake of our modeling, we as-

sume that manual review always leads to correct decisions. However, expert

fraud analysts are scarce and expensive resources and should be utilized wisely.

We refer to these decisions made for a set of transactions as the fraud management

strategy. We define the task of finding an optimal fraud management strategy as fol-

lows: Given a streaming set of transactions, determine the accept, reject, and review

populations to maximize profits by accepting most of the legitimate transactions; and

achieve this objective by minimizing customer insults, fraud losses, and costly manual

reviews.

2.3 Methodology

Figure 2.1 presents an overview of our system. It consists of two learning and a

pair of data manipulation components. The workflow starts with a data preprocessing

and feature extraction task. 2nd component of the system carries out the task of

inferring the probability of each transaction being fraudulent. 3rd component of the

system generates cost-sensitive labels. 4th and final component of the system learns

a function to maximize the profit based on a criteria incorporating the transaction

amount and its fraud risk probability. We call this component as Profit Optimizing

Neural Risk Manager (PONRM). Each following subsection explains one component

of our system in detail and their order is aligned with the numbering in Figure 2.1.

2.3.1 Feature Extraction

Identifying consumer behavior to detect fraud is a delicate task. Businesses are

hesitant to implement multi-factor authentication systems since it can be a source
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Figure 2.1: System Overview

of friction and collecting invasive information such as cookie mining and device fin-

gerprinting may damage the merchant’s reputation. However, it may be possible to

develop fraud prevention models without above options since merchants already have

access to a rich source of information about their customers: the order form. Cus-

tomers provide their personal and contact information to ensure the delivery of their

order, so these can be leveraged by the fraud teams to build models. We present 4

types of patterns that merchants can reproduce:

Location Based Patterns: We measure the distance between IP geolocation

and physical addresses. We create risk profiles for zip codes based on historical fraud

behaviors observed from corresponding districts.

Phone Intelligence Patterns: Usage of VOIP, prepaid, spoofed, or invalid

phone number is detected and may indicate malicious intent. Area code of a phone

number is used to verify the (in-)consistency with the physical address.

IP Intelligence Patterns: An IP address coming through a proxy or an anony-

mous network could indicate risky behavior. We also profile the risk based on histor-

ical fraudulent behavior observed from blocks of IPs.
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Email Address Patterns: We create email domain related attributes such as

existence, disposability, anonymity, tenure, and category. Informed by Zafarani and

Liu (2015), we derive features directly from the email handle (i.e. different email

address characteristics such as character diversity, typing efficiency, proportion of

numbers, etc.) to determine if an email address was created with malicious intent.

By normalizing, profiling and combining these patterns, we come up with a set of

102 features that is used in our fraud classification model.

2.3.2 Fraud Classification Model & Risk Score Calculation

Risk score constitute the input of the proposed model, PONRM. It is composed

of a pair of elements: first element is the transaction amount ($) and second element

is a probability score of a transaction being fraud given its features. We propose

using any supervised learner (θ) providing a robust posterior probability for fraud

probability estimation such as:

fi = P (Yi2 = 1|Xi; θ) (2.1)

where f = {fi; fi ∈ [0, 1] ∧ i = 1 . . . N}. As given in Equation 2.1, f is assigned

with the probability of a transaction being fraudulent. Finally, the risk score matrix

R is built by concatenating f and the transaction amount ($) as;

R =
[
f , $
]

(2.2)

2.3.3 Cost-Sensitive Label Derivation

The 3rd component is concerned with the training labels that PONRM will use.

Cost-sensitive models require a pair of entities to be trained with: ground-truth deci-

sions and cost-sensitive incentives for those decisions Elkan (2001). Possible decisions
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are to accept, review, and reject a transaction. Incentives are determined based on

earnings and losses that may arise from accepting, reviewing, or rejecting.

From Binary Labels to Trinary Ground-Truth Decisions:

In the ideal binary decision making process, the model would accept all legitimate and

reject all fraudulent transactions. However, models often fall short in performance

compared to time consuming expert manual reviews in reality. To optimally inte-

grate highly accurate but costly manual reviews into a decision making framework, a

translation from binary to trinary decisions is necessary. Weight of the review deci-

sions should be manipulatable based on the review capacity of a merchant. Following

these constraints, we translate binary (legitimate,fraudulent) labels to trinary (ac-

cept,review,reject) decisions as [Zi1,Zi2,Zi3]. After the translation, legitimate trans-

actions become Zi = [1, r, 0] while fraudulent transactions become Zi = [0, r, 1] as

ground-truth decisions. r is a parameter for tuning the number of review decisions

compared to accept or reject decisions, proportionally.

Computing Cost-Sensitive Decision Incentives:

By following the fraud management strategy considerations from Section 2.2, we

incentivize our decisions with 4 parameters, namely: profit rate (pr), lifetime value

multiplier (ltv), fraud loss multiplier (flm), and review cost (rc). Profit rate is

defined as the percentage of the transaction amount the merchant is earning as profit.

lifetime value multiplier simply models the lost opportunity due to losing customer’s

future business when a legitimate transaction is rejected (customer insult). Fraud

loss multiplier weights the losses due to fraudulent activity to represent associated

legal and chargeback costs. Finally, review cost is the compensation expert manual

reviewers are paid per transaction. Derivation of the incentives for each decision is
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Table 2.1: Incentives for Accepting, Reviewing or Rejecting a Transaction

Decision Incentives

Accept Review Reject

Legitimate pr ∗ $i pr ∗ $i − rc −pr ∗ $i ∗ ltv

Legitimate - Offset (1 + ltv) ∗ pr ∗ $i (1 + ltv) ∗ pr ∗ $i − rc 0

Fraudulent −flm ∗ $i −rc 0

Fraudulent - Offset 0 flm ∗ $i − rc flm ∗ $i

presented in Table 2.1. Although rejecting a fraudulent transaction does not provide

any benefit, it is still the most desirable decision for a fraudulent transaction. From an

information theoretic perspective, there is a need for a positive scalar to incentivize

the learning process. To stay truthful to the initial incentives but represent most

desirable decisions we offset the incentives: we add the initial incentive of accepting a

fraudulent transaction to every decision incentive for fraudulent transactions. We add

the initial incentive of rejecting a legitimate transaction to every decision incentive

for legitimate transactions.

2.3.4 Profit Optimizing Neural Risk Manager

Many of the off-the-shelf classification models are cost-insensitive; thus are sub-

optimal for our task. Cost of accepting a fraudulent transaction and cost of rejecting

a legitimate transaction can vary largely in different settings. While these costs differ

between legitimate and fraudulent cases, they are also dependent on the transaction

amounts. Moreover, off-the-shelf classification tools are not very adaptable for the

expert opinion to intervene when necessary.

Hence, we formally define Profit Optimizing Neural Risk Manager (PONRM)

which produces decisions as accept, review, or reject for transactions according to each
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transaction’s risk score. PONRM mostly mimics a multilayer perceptron structure

with sigmoid activation functions;

Ri = [fi, $i] (2.3)

H(0) = σ(W(0)R + b(0)) (2.4)

H(i) = σ(W(i)H(i−1) + b(i)) for i = 1, ..., l (2.5)

Ẑ = softmax(W(l+1)H(l) + b(l+1)) (2.6)

where R ∈ RN×2
+ is the risk score matrix. Each H(i) ∈ RN× i√L is a higher dimensional( i

√
L)

internal representation of the risk score in the multilayer perceptron. It outputs the

decisions for each transaction in the output layer Ẑ ∈ [0, 1]N×3. To learn the parame-

ters of the model, we use log loss multiplied by cost sensitive incentives and minimize

the loss function by tuning W(i),b(i):

Loss = − 1

N

[
N∑
i=1

3∑
c=1

log−loss︷ ︸︸ ︷[
Zic log Ẑic

] incentive︷︸︸︷
Bic

]
+

regularization︷ ︸︸ ︷
l∑

i=1

αi||W(i)||22 (2.7)

where N is the number of transactions. Zic quantifies the weight of assignment of

the ground-truth decision c to the transaction i. Ẑic is the predicted assignments by

the PONRM model for transaction i and decision c. B ∈ RN×3 and Bic quantifies the

incentive of assigning the ith transaction to decision c. We use L-BFGS quasi-newton

optimization implementation of ScipyOptimizer interface of Tensorflow to minimize

the proposed loss function Abadi et al. (2015).

2.4 Experiments

In this section, we evaluate the performance of our framework in various settings.

In the first experiment, we present the effectiveness of PONRM in comparison to other

cost-sensitive and cost-insensitive approaches. Next, we evaluate the performance of
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our system alongside baseline risk managers under different manual review capacities.

Finally, we explore how fraud classification models perform with and without risk

managers.

2.4.1 Evaluation Metrics

We introduce a new metric, named profit gain (PG), to measure the performance

of our framework and the baseline models in a financially sound way. We normalize

this metric using two extreme fraud management strategies:

No Fraud Management: A merchant can choose not to interfere with any

orders and accept all transactions as if they were legitimate. Then, it would suffer

the maximum loss from fraudulent orders but not from any customer insults. We

refer the total profit this company makes as $nofraudmanagement.

Oracle: If a merchant could model the fraud characteristics perfectly, it would

be accepting all legitimate orders and rejecting the fraudulent ones. In this case, its

fraud and customer insult loss would be zero. It would earn the profit from all the

legitimate transactions. We refer its total profit as $oracle.

To robustly measure the financial performance gain with a standardized scoring

mechanism, we introduce profit gain as:

profit gain =
$m − $nofraudmanagement

$oracle − $nofraudmanagement
(2.8)

where $m is the profit of the model under experimentation. While calculating the

profits, not-offset decision incentives in Table 2.1 is used. Also, we use F-measure

to evaluate our fraud detection performance. As we assume perfect decisions by re-

viewers, review decisions are treated as accept for legitimate and reject for fraudulent

transactions in calculation of F-measure. Each experiment is run 16 times and the

average performance is reported for each parameter setting. For each parameter con-
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Table 2.2: Descriptive Statistics

OTA PGS DGS

Transactions 22,203 36,783 39,784

Fraudulent Transactions 349 (1.57%) 253 (0.69%) 1,536 (3.86%)

Transaction Amount Mean (µ) $622.25 $177.22 $75.61

µfraudulent/µlegimate 1.06 0.84 0.87

Manual Review Capacity 30% 20% 10%

figuration, best performing setting in terms of PG is reported as the representative

performance of a model.

2.4.2 Dataset & Parameter Settings

We work with online transactions of three e-commerce merchants; an online travel

agency, a physical goods store, and a digital goods store. We sample 1 month of trans-

actional data for each company (October 2017), and remove transactions that do not

include a transaction amount. Since some of the transactions have different curren-

cies than USD, all the transaction amounts are converted to USD equivalent. Next,

features are extracted as described in Section 2.3.1 for all datasets. Categorical fea-

tures are one-hot encoded to ensure compatibility across different classifiers. Missing

values are imputed with mean-values for the numeric, with ’Category-other’ for the

categorical variables. We estimate each merchant’s manual review capacity according

to CyberSource (2017). Table 2.2 presents the datasets’ descriptive statistics.

We use the first 80% of the transactions as the training dataset, and the rest as

the test dataset. To calculate the decision incentives, we set profit rate(pr) to 5%,

lifetime value multiplier (ltv) to 3, fraud loss multiplier (flm) to 2.4, and review cost

to $3 based on estimates from the merchants. For fraud classification models, we ex-
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periment with logistic regression(LR), gradient boosting machine (GBM), multilayer

perceptron (MLP), and random forests (RF).

2.4.3 PONRM vs. Cost-Sensitive and Cost-Insensitive Baselines

In this experiment set, we investigate PONRM’s performance in different setting

in comparison with baseline cost sensitive and cost insensitive approaches.

Experimental Setup:

Among all fraud classification models multilayer perceptron (MLP) resembles a sim-

ilar structure to PONRM, hence, we report its performance characteristics alongside

PONRM.

Baselines:

We introduce following baseline architectures:

• MLP is the multilayer perceptron classifier. We train a cost insensitive MLP

classifier to detect legitimate and fraud detections. Transactions classified as

legitimate are given accept, and fraudulent are given reject decisions.

• CostMLP is a cost sensitive binary classification model. It uses MLP as its

learning component. Incentives of rejecting and accepting are given alongside

with binary transaction labels. As in MLP, transactions classified as legitimate

are given accept, and fraudulent are given reject decisions.

• CostMLPwithR is a cost sensitive trinary classification model. It uses MLP

as its learning component. Incentives are given alongside trinary ground-truth

decisions. Practically, it is same as feeding transaction features to PONRM

directly and bypassing the fraud classification model.

22



• MLP+PONRM is our proposed framework. It uses MLP as its fraud classi-

fication model component and PONRM as the risk manager.

We use profit gain (PG) and F-Measure to evaluate performances of above listed

models. A grid search with l = [0, 1, 2, 3] and α = [0, 0.0001] is performed for each

MLP based model. First layer’s layer size (L) is set to 300 in PONRM and other

MLP based models. Each consecutive layer’s size is calculated by square-rooting the

previous layer’s size.

Results:

MLP+PONRM framework shows superior performance in terms of both performance

metrics. Models with review decision options (CostMLPwithR, MLP+PONRM) also

achieves superior results than models without review decision (MLP, CostMLP). Cost

sensitive approaches (CostMLP, CostMLPwithR) performs better than their cost in-

sensitive counterpart (MLP) for maximizing the profit gain and increasing F-Measure.

One exception is the F-Measure performance in PGS dataset where having the small-

est average fraudulent transaction amount leads to lower gains in decision incentives

biased for rejecting fraudulent transactions. Thus, CostMLP performs worse than

MLP.

Our proposed framework MLP+PONRM consistently overperforms CostMLP-

withR. Even in CostMLPwithR’s best performing case, MLP+PONRM achieves 20%

greater profit gain and 24% better F-Measure overall.

2.4.4 PONRM vs. Risk Managers Under Different Review Capacities

In our third experiment set, we aim to show the efficacy of PONRM in compar-

ison with other baseline risk managers in maximizing profit gain. We also explore

the performance under different review capacities to ensure robust execution of our
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Table 2.3: Comparison between PONRM and Cost-Sensitive and Cost-Insensitive
Baselines

OTA PGS DGS

PG F-Meas PG F-Meas PG F-Meas

MLP 0.1207 0.2769 0.0170 0.3115 0.1727 0.4143

CostMLP 0.0325 0.2874 0.0673 0.3048 0.2100 0.4222

CostMLPwithR 0.5954 0.7599 0.5280 0.7110 0.4541 0.5021

MLP+PONRM 0.8113 0.8690 0.6514 0.8523 0.5876 0.6661

framework under various financial settings.

Baselines:

Coupled with RF fraud classification model, we introduce 2 baseline fraud manage-

ment strategies to compare with PONRM as follows:

• Naive Risk Manager (NRM): This model assigns accept/reject decisions

based on a fraud classification model. If fraud classification model classifies the

transaction as legitimate, it accepts, and if as fraudulent, it rejects. Next, it

selects transactions randomly based on the review capacity and converts their

decisions to review.

• Price Prioritized Risk Manager (PPRM): Similar to NRM, this risk

manager uses a fraud classification model to produce initial decisions as accept

or reject. Next, it assigns the transactions having highest transaction amounts

to review considering the capacity under experimentation. To achieve this, it

first finds a transaction amount threshold based on the observed historical data,

then sends the transactions exceeding this threshold until the specified review

capacity is filled.
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Experimental Setup:

To be able to compare the performance of different risk managers, we fix the fraud

classification model in each experiment. We explore different parameters of RF, GBM,

and MLP and report the best results.

We run experiments with review ratios of 10%, 20%, 30%, and 40% and report

their profit gain accordingly. Since there is no standard setting to enforce PONRM

to produce any of the review ratios of 10%, 20%, 30% or 40%, we experiment with

different values of the parameter review class weight (r) between 0.4 and 1.1 with

0.05 increments. According to the review ratio each PONRM experiment produces,

we chunk them into bins of 10%, 20%, 30% or 40% review rates. We pick the best

average performance of PONRM in the bins as the representative performance of the

corresponding bin. Setting the review ratios for NRM and PPRM is straightforward.

Results:

Figure 2.2, Figure 2.3, and Figure 2.4 show PONRM’s performance in terms of Profit

Gain when manual review capacity of the user is tweaked between 0.1 and 0.4. At first

sight, it is clear that PONRM almost always performs significantly superior to the

baseline methods regardless of the Fraud Classification Model used in the framework.

Some other key findings are given below:

• Profit gain improves when manual review capacity is increased in OTA Dataset.

For most of its transactions, review cost is negligible compared to the expected

loss or profit, thus, when given maximum capacity provided sending as much

transactions as possible to review makes sense.

• According to Figure 2.2(b), Figure 2.3(b), Figure 2.4(b), Figure 2.2(c), Figure

2.3(c), and Figure 2.4(c), sending most transactions for manual revision may
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(a) OTA (b) PGS (c) DGS

Figure 2.2: Performance of Risk Managers under Different Review Capacities Using
Random Forest as the Fraud Classification Model

not be a sound strategy for PHY and DGS datasets again due to the transaction

amount distribution. So, end-users could identify the optimal manual review

ratio and implement their model accordingly. This would also let them save

time and human resources as they would automating the process more.

• We observe the biggest performance differences when manual review ratio is 0.1

which is the most common capacity for larger merchants. PONRM performs

between up to 3 times better than PPRM and 4 times better than NRM in the

best case, however, PPRM slowly catches up when the manual review ratio is

unrealistically high.

• PPRM’s constantly superior performance compared to NRM asserts that con-

sideration of the transaction amount is crucial for risk management.

• Random Forest performs the best overall among all fraud classification models

when used with PONRM. We recommend using Random Forest as the Fraud

Classification Model if there is no capacity to experiment with several options.
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(a) OTA (b) PGS (c) DGS

Figure 2.3: Performance of Risk Managers under Different Review Capacities using
Multilayer Perceptron as the Fraud Classification Model

(a) OTA (b) PGS (c) DGS

Figure 2.4: Performance of Risk Managers under Different Review Capacities Using
Gradient Boosting as the Fraud Classification Model

2.4.5 Which Classifier to Use as the Fraud Classification Model?

Posterior probability distribution based on the selected classifier may greatly affect

the performance of PONRM. Thus, we experiment with four previously mentioned

supervised learners to demonstrate their effects in the framework. Experimental

setup and parameter settings are explored as in Section 2.4.4 and results with best

parameter combinations are reported here for the sake of brevity.
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2.4.6 Experimental Setup and Baselines

Similar to the previous experiment, Profit Gain is our primary metric in this set

of experiments. Precision, accuracy, and F-measure are also provided to enable ad-

ditional analysis and comparisons. These metrics are constructed using the ”Fraud”

outcome as the target value due to its appropriateness to the fraud detection con-

text. Accuracy, despite being a gold-standard measure, is not reported because of its

uninformativeness with imbalanced datasets and cost-sensitive nature of the problem.

First, we compare the performance of the Fraud Classification Models without in-

tegrating manual review process to observe their characteristics on all datasets. Then,

we compare different PONRM models to base fraud classifiers to reveal the neces-

sity of utilizing manual review process optimally to boost performance. Finally, we

investigate how the specified Fraud Classification Model and selected Cost-Sensitive

Decision Maker interacts.

As mentioned in Section 2.4.4, manual review capacity of vendors differ by rev-

enue. Here, we employ the expected manual review rates accordingly and assess the

effectiveness of our framework with different fraud classification models. So, OTA’s

manual review rate is assumed to be 0.3, while PGS’s being 0.2 and DGS’s 0.1 as

calculated by their reported revenue.

Results

Table 2.4, Table 2.5, and Table 2.6 demonstrate the performance of PONRM and

Fraud Classification Model itself. We report precision, recall and F-measure metric

scores alongside profit gain. Some major findings are given as follows:

• RF based fraud classification model with no risk manager often produce bet-

ter results than the others with no risk manager. Especially its effectiveness in
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terms of profit gain contributes significantly to the RF+PONRM’s performance,

hence RF+PONRM generally gives the best performance. In the detailed ex-

periments, we recognize that increasing the number of trees in the RF improves

the profit gain of RF+PONRM as it reduces the variance of the fraud classi-

fication model and smooths the posterior probability distribution. Hence, we

recommend the utilization of RF with higher number of trees if there is not

enough resources to experiment with various models.

• MLP+PONRM performs well on all datasets. Specifically on OTA, it is marginally

the best model where MLP uses only one hidden layer. There is a negative corre-

lation between MLP+PONRM performance and number of layers in the MLP

fraud classification model since it does not represent uncertainty accurately

when complex.

• GBM + PONRM does not perform well as Gradient Boosting is known to distort

its posterior probabilities in any dataset. As PONRM depends greatly on the

accuracy of posterior probabilities, Gradient Boosting is not an appropriate

choice for our purposes. Probability calibration using a method such as Isotonic

Regression can help remedy this problem and may be considered if a classifier

with distorted probabilities are desired to be used Niculescu-Mizil and Caruana

(2005).

• Logistic regression does not do an adequate job for our purposes as decision

boundaries often present non-linear patterns.

• We observe no correlation between Fraud Classification Model’s performance

based on gold-standard measures and PONRM’s profit gain. So, Fraud Classi-

fication Model selection based on F-measure, precision, or recall is not sensible
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Table 2.4: Classifier Performance - Online Travel Agency (OTA)

Profit Gain Precision Recall F-Measure

Risk Mgr None PONRM None PONRM None PONRM None PONRM

LR 0.118 0.743 0.669 0.9672 0.168 0.756 0.269 0.849

GBM 0.164 0.781 0.365 0.940 0.304 0.795 0.332 0.861

MLP 0.121 0.811 0.656 0.940 0.176 0.808 0.277 0.869

RF 0.097 0.744 0.805 1.000 0.107 0.767 0.188 0.868

Table 2.5: Classifier Performance - Physical Goods Store (PGS)

Profit Gain Precision Recall F-Measure

Risk Mgr None PONRM None PONRM None PONRM None PONRM

LR 0.017 0.650 0.386 1.000 0.100 0.746 0.159 0.855

GBM 0.069 0.633 0.329 0.697 0.319 0.777 0.324 0.735

MLP 0.017 0.651 0.308 0.9439 0.315 0.777 0.312 0.852

RF 0.091 0.776 0.943 1.000 0.143 0.854 0.249 0.921

for our purposes. We recognize that there is a need for a novel metric to define

the relationship between Fraud Classification Model performance and PONRM

effectiveness. As a heuristic, profit gain of the Fraud Classification Model can

be used since it is highly correlated with the profit gain of the PONRM.

• PONRM’s performance is noted to be positively correlated with the number of

layers in the PONRM component regardless of the utilized fraud classification

model. Thus, even deeper PONRM models may yield further promising results.
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Table 2.6: Classifier Performance - Digital Goods Store (DGS)

Profit Gain Precision Recall F-Measure

Risk Mgr None PONRM None PONRM None PONRM None PONRM

LR 0.005 0.393 0.364 0.927 0.044 0.313 0.079 0.468

GBM 0.069 0.489 0.696 0.9083 0.122 0.505 0.207 0.649

MLP 0.173 0.588 0.475 0.805 0.367 0.568 0.414 0.666

RF 0.174 0.724 0.993 1.000 0.201 0.694 0.335 0.820
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Chapter 3

LEVERAGING UNCERTAINTY IN DEEP LEARNING FOR SELECTIVE

CLASSIFICATION

3.1 Introduction

Machine learning classifiers are far from outputting perfect results due to several

reasons: data quality, feature informativeness, model selection, and hyper-parameter

tuning are just some of the factors contributing to the variability of the outcomes.

Although well-trained models offer high level of accuracy on the macro level, making

confident inferences for individual instances is difficult, nevertheless necessary.

Bayesian literature offers a rich set of classification techniques (Polson et al. (2017);

Rasmussen (2006)) for jointly quantifying uncertainty and prediction at inference

level. A recent application of dropout neural networks as Bayesian approximation of

deep Gaussian Process by Gal et al. open a new avenue of quantifying uncertainty

in traditional deep learning settings where a simple dropout mechanism is applicable

(Gal and Ghahramani (2016)).

The gained ability to effectively represent the uncertainty within existing deep

learning architectures has been an important step for democratizing AI safety (Amodei

et al. (2016)). Nevertheless, the following question still remains open: how can one

make use of the model uncertainty to make optimal decisions? The approach we focus

on in this study is called selective classification also known as classification with reject

option where the classifier rejects making a decision when uncertain.

Selective classification is critical for many applications, and the concept of “rejec-

tion” can have different meanings in various contexts. In medical diagnosis, a doctor
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might order diagnostic tests before making a decision. In fraud management, an

expert human analyst would start a manual investigation. In self-driving cars, the

human driver would be given control to operate the vehicle. In all cases, rejecting

most of the instances would defeat the purpose and being inaccurate could result in

fatal consequences. Hence, a practical framework for selective classification must be

able to operate accurately under defined rejection capacity constraints.

A recent study in the medical domain by Leibig et al. (2017) has demonstrated the

potential of the model uncertainty for selective classification. However, the authors’

utilization of the measure is solely based on a simple ranking of it, which makes their

work unsuitable for many online or streaming settings. To the best of our knowledge,

how model uncertainty compares to or interacts with the more traditional ways of

conducting selective classification such as using Bayes risk introduced by Chow (1970)

has not been explored.

Hence, we propose a Mixed-Integer Programming (MIP) formulation for selective

classification called MIPSC to address these requirements. MIPSC finds optimal

classification and rejection regions by investigating the relationship between the model

uncertainty and predictive mean with the desired rejection capacity without having to

define arbitrary rejection costs. Furthermore, we develop cost-sensitive extensions to

our MIP model and exhibit the framework’s extensibility and usability in real-world

problems such as fraud management, where defining domain-specific and example-

dependent costs are necessary.

Main contributions of this chapter are:

1. Introducing the first mixed integer programming solution for selective classifi-

cation,

2. Utilizing predictive mean and model uncertainty of dropout NNs for optimal
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decision making,

3. Presenting an online fraud management case in a real-world setting.

3.2 Proposed Models

In this work, we propose a mixed integer programming model which finds optimal

regions in deep neural network classifier output to reject making a classification. To

take not only the output of the deep neural network classifier but also its uncertainty

into consideration we choose to use dropout NNs (DNN) Gal (2016) throughout our

modeling and experiments. Dropout NNs have been proven to approximate deep

Gaussian processes which generate predictive mean(µ) and model uncertainty(σ) in

the form of standard deviation. In the following sections, we explain how we make

use of both outputs (predictive mean and model uncertainty) of dropout NNs for

selective classification.

3.2.1 Mixed-Integer Programming based Selective Classification

Here, we define a mixed-integer programming model for selective classification

to make optimal decisions of classifications and rejections under uncertainty in deep

learning. Equivalent to other selective classification models, the aim is to ”reject”

making an automated classification for certain instances to increase the performance

on non-rejected samples. Similar to many supervised algorithms, our MIP model has

two main workflows: training and inference. In the training phase, given an already

trained dropout neural network (DNN), we learn the optimal criteria to reject samples

by minimizing the number of mistakes made after rejections. Besides, we design our

model in a way that it does not reject the samples without increasing the accuracy

in the non-rejected sample space. These properties give rise to our objective function
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as follows:

minimize
φD,φR

∑
i∈φD

[f(xi) 6= yi] + λ
∑
i∈φR

1

where xi ∈ IRn is the set of features for an instance i, yi ∈ {0, 1} is the label for

that instance, and f : IRn → {0, 1} is the previously trained deep neural network, φR

is the set of rejected instances, and φD is the set of non-rejected instances.

So, what does our model use to determine the rejection population, φR and the

decision population, φD? As introduced by Gal and Ghahramani (2016), our model

uses the concept ”model uncertainty” and enhances it with predictive mean to express

when the DNN is not confident with its prediction.

For every instance in the training set, we calculate the predictive mean (µi) and

the model uncertainty (σi) and map the points (µi,σi) to a 2D space. One intuitively

expects more homogeneous regions to be near lower values of the model uncertainty

and extremes of the predictive mean. This intuition can also be observed in Fig-

ure 3.1. Hence, our formulation aims to exploit and optimize upon this structure

and identifies the thresholds that define our model’s classification and rejection re-

gions. Before formally defining our model, we introduce the notation that we refer

to throughout this section in Table 3.2.2. We characterize five decision areas of clas-

sification and rejection and graphically demonstrate these areas in Figure 3.1. A1

defines the decision region for positive classification while A4 represents the decision

region for negative classification. A2 and A5 are rejection regions due to their high

model uncertainty. Thresholds to determine these regions are not tied together for

the purpose of handling imbalance or class specific patterns in the data. Finally, A3

is another rejection region housing instances having predictive means close to 0.5. In

this region, model uncertainty becomes trivial due to its context: it does not matter

how ”certain” the model is when making a decision similar to a coin toss.
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Variable Definition

yi Ground truth label of instance i

pi Positive classification indicator for instance i

ni Negative classification indicator for instance i

ri Rejection indicator for instance i

µi Predictive mean for instance i

σi Uncertainty for instance i

µL Left boundary for rejection

µR Right boundary for rejection

σL Upper uncertainty boundary for positive decisions

σR Upper uncertainty boundary for negative decisions

Li Left area indicator for instance i

Ri Right area indicator for instance i

DLi
Down-left area indicator for instance i

DRi
Down-right area indicator for instance i

rCap Rejection capacity

Table 3.1: Notation Table for MIPSC

Boundaries for these regions (σL, σR, µL, µR) are determined by the following set

of constraints operating in a supervised fashion through the objective. This is the

essential process executed by solving our MIP formulation.

Here, we start describing our constraints formally. The following constraint reg-

ulates the samples which do not reside in the rejection region A3 based on their

predictive means but on the right hand side of A3 such that i ∈ A4 ∪ A5:

µi > 0.5 + µR iff Ri = 1 (3.1)
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Figure 3.1: Graphical Illustration of the MIPSC Model

Now, we would like to distinguish the instances between A4 and A5 optimally such

that our model would make a negative classification decision only when DNN is certain

enough. The following constraints characterize the samples that conform to A4 such

that i ∈ A4:

σi < σR iff DRi
= 1 (3.2)

Ri +DRi
> 1 iff ni = 1 (3.3)

Similarly, the following constraint define the samples which do not reside in the rejec-

tion region A3 based on their predictive means but on the left hand side of A3 such

that i ∈ A1 ∪ A2:

µi < 0.5− µL iff Li = 1 (3.4)
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Further, we would like to distinguish the instances between A1 and A2 optimally

such that our model would make a positive classification decision only when DNN is

certain enough. The following constraints characterize the samples that conform to

A1 such that i ∈ A1:

σi < σL iff DLi
= 1 (3.5)

Li +DLi
> 1 iff pi = 1 (3.6)

As we have constrained our positive and negative classification decision regions, we

reject the remaining instances covered by the constraint below:

pi + ni + ri = 1 (3.7)

where the reject decision is assigned when our model cannot a make positive or

negative classification decision for instance i due to DNN uncertainty or predictive

mean.

Finally we would like to enforce a certain number of rejections based on our

application needs. This is given as:

( m∑
i=1

ri
)
≤ rCap (3.8)
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Combining our objective function and constraints together, then, setting M to be

a very large positive constant and fixing ε to be a very small positive constant give

rise to the formal definition of our model as follows:

minimize
µL,µR,σL,σR

m∑
i=1

(piyi + ni(1− yi)) + λ
m∑
i=1

ri s.t. (3.9)

µR − ε+MRi ≥ µi − 0.5 ≥ µR −M(1−Ri),∀i (3.10)

M(1− Li)− µL ≥ µi − 0.5 ≥ ε− µL −MLi,∀i (3.11)

σL +M(1−DLi
) ≥ σi ≥ σL + ε−MDLi

,∀i (3.12)

σR +M(1−DRi
) ≥ σi ≥ σR + ε−MDRi

,∀i (3.13)

DLi
+ Li ≥ 2pi ≥ DLi

+ Li − 1,∀i (3.14)

DRi
+Ri ≥ 2ni ≥ DRi

+Ri − 1,∀i (3.15)

pi + ni + ri = 1,∀i (3.16)( m∑
i=1

ri
)
≤ rCap (3.17)

∀pi, ri, ni, Ri, Li, DLi
, DRi

∈ {0, 1} (3.18)

∀i ∈ {1...m}, and µL, µR, σL, σR, λ ∈ IR (3.19)

In this formulation, constraint (3.10) is derived from (3.1), (3.11) is derived from

(3.4), (3.12) is derived from (3.5), (3.13) is derived from (3.2), (3.14) is derived from

(3.6), and (3.15) is derived from (3.3) following the Big-M method as shown in Griva

et al. (2009).

Following the training, inference is rather straightforward. After acquiring the

predictive mean and model uncertainty from DNN for the new sample, a user of our

model can arithmetically decide the region the new sample belongs to and make the

decision based on the optimal thresholds identified.
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3.2.2 Cost-Sensitive Selective Classification

Many classification with reject option problems are cost-sensitive by nature. For

instance, in medical diagnosis, consequences from a false negative decision can be

fatal if the diagnosis in question is cancer but not as critical if it is the common

cold. Within the same context, a doctor can order more tests with varying costs if

uncertain depending on the severity of the illness under study. We follow Elkan’s

definition Elkan (2001) and extend our model to ”example and class-dependent cost

sensitive” settings where each instance belonging to each class has a different cost

or benefit of making a correct or incorrect classification. Since the value add an-

other dimension to our problem, we extend the previously introduced five decision

regions to three dimensions and use simple thresholds for the value dimension for

each region. A graphical interpretation of this extension can be viewed in Figure 3.2.

Retaining our decision variables (σL, σR, µL, µR), we introduce five more thresholds

(tDR, tUR, tDL, tUL, tM ,) based on the third dimension, value (cost/benefit). Finally,

we assign the cost of rejection c to every reject decision, thus remove the rejection

regularizer from the objective function.

Inheriting constraints (3.1), (3.2), (3.4), (3.5), and (3.8); we extend our constraints

with the following statements:

The following constraint focuses on the region A1 and finds the value threshold

for that region. If the transaction corresponds to A1 region and its value is less than

the region’s value threshold, then our model makes a positive decision.

ti < tDL iff SDLi
= 1 (3.20)

Li +DLi
+ SDLi

> 2 iff pi1 = 1 (3.21)
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Figure 3.2: Graphical Illustration of the MIPCSC Model

Now, we would like to find our decision threshold for A2. Similarly to the previous

constraints, if the transaction corresponds to A2 region and its value is less than the

region’s value threshold, then our model makes a positive decision.

ti < tUL iff SULi
= 1 (3.22)

Li + (1−DLi
) + SULi

> 2 iff pi2 = 1 (3.23)

Similar to the positive decision regions, now, we focus on the negative decision

regions: A4 and A5. The following constraint focuses on the region A4 and finds

the value threshold for that region. If the transaction corresponds to A4 region and

its value is less than the region’s value threshold, then our model makes a negative

decision.
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Variable Definition

ti Value for instance i

pij Positive classification indicator for instance i and area j

nij Negative classification indicator for instance i and area j

ri Rejection indicator for instance i

tDL Down-left area value boundary for rejection

tUL Upper-left area value boundary for rejection

tM Middle area value boundary for rejection

tDR Down-right area value boundary for rejection

tUR Upper-right area value boundary for rejection

SDLi
Surface-down-left area indicator for instance i

SDRi
Surface-down-right area indicator for instance i

SULi
Surface-up-left area indicator for instance i

SURi
Surface-up-right area indicator for instance i

SMi
Surface-down-middle area indicator for instance i

Table 3.2: Additional Notation Table for MIPCSC

ti < tDR iff SDRi
= 1 (3.24)

Ri +DRi
+ SDRi

> 2 iff ni1 = 1 (3.25)

Now, we would like to find our decision threshold for A5. Similarly to the previous

constraints, if the transaction corresponds to A5 region and its value is less than the

region’s value threshold, then our model makes a negative decision.
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ti < tUR iff SURi
= 1 (3.26)

Ri + (1−DRi
) + SURi

> 2 iff ni2 = 1 (3.27)

Finally, we move onto our middle region, A3. Here, we would like our model to

make a positive or negative decision using the predictive mean of 0.5 as the threshold

and considering the value threshold we optimally determine by solving the problem,

tM .

µi > 0.5 iff Qi = 1 (3.28)

ti < tM iff SMi
= 1 (3.29)

(2− Li −Ri) + SMi
+ (1−Qi) > 3 iff pi3 = 1 (3.30)

(2− Li −Ri) + SMi
+Qi > 3 iff ni3 = 1 (3.31)

As we have constrained our positive and negative classification decision regions,

we reject the remaining instances covered by the constraint below:

3∑
j=1

[pij] +
3∑
j=1

[nij] + ri = 1,∀i (3.32)

where the reject decision is assigned when our model cannot a make positive or

negative classification decision for instance i due to DNN uncertainty, predictive mean,

or it does not make financial sense to spend money on a reject decision.

Following our definition and our constraints, we propose our cost-sensitive frame-

work called Mixed-Integer Programming based Cost-Sensitive Selective Classification

(MIPCSC) formally as follows:
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maximize
µL,µR,σL,σR,

tDL,tUL,tM ,tDR,tUR

ωtp(
n∑
i=1

3∑
j=1

pij(1− yi)ti +
n∑
i=1

ri(1− yi)ti)

+ωtn(
m∑
i=1

3∑
j=1

nijyiti +
m∑
i=1

riyiti)

−ωfn(
m∑
i=1

3∑
j=1

nij(1− yi)ti)

−ωfp(
m∑
i=1

3∑
j=1

pijyiti)− c
m∑
i=1

ri (3.33)

µR − ε+MRi ≥ µi − 0.5 ≥ µR −M(1−Ri),∀i (3.34)

M(1− Li)− µL ≥ µi − 0.5 ≥ ε− µL −MLi,∀i (3.35)

σL +M(1−DLi
) ≥ σi ≥ σL + ε−MDLi

,∀i (3.36)

σR +M(1−DRi
) ≥ σi ≥ σR + ε−MDRi

,∀i (3.37)

0.5 + ε+MQi ≥ µi ≥ 0.5 +M(Qi − 1),∀i (3.38)

tDL +M(1− SDLi
) ≥ ti ≥ tDL + ε− SDLi

,∀i (3.39)

tUL +M(1− SULi
) ≥ ti ≥ tUL + ε− SULi

,∀i (3.40)

tM +M(1− SMi
) ≥ ti ≥ tM + ε− SMi

,∀i (3.41)

tDR +M(1− SDRi
) ≥ ti ≥ tDR + ε− SDRi

,∀i (3.42)

tUR +M(1− SURi
) ≥ ti ≥ tUR + ε− SURi

,∀i (3.43)
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DLi
+ Li + SDLi

≥ 3pi1, ∀i (3.44)

DLi
+ Li + SDLi

− 2 ≤ 3pi1, ∀i (3.45)

(1−DLi
) + Li + SDLi

≥ 3pi2, ∀i (3.46)

(1−DLi
) + Li + SDLi

− 2 ≤ 3pi2,∀i (3.47)

DRi
+Ri + SDRi

≥ 3ni1, ∀i (3.48)

DRi
+Ri + SDRi

− 2 ≤ 3ni1, ∀i (3.49)

(1−DRi
) +Ri + SDRi

≥ 3ni2, ∀i (3.50)

(1−DRi
) +Ri + SDRi

− 2 ≤ 3ni2, ∀i (3.51)

(1− Li) + (1−Ri) + SMi
+ (1−Qi) ≥ 4pi3, ∀i (3.52)

(1− Li) + (1−Ri) + SMi
+ (1−Qi)− 3 ≤ 4pi3,∀i (3.53)

(1− Li) + (1−Ri) + SMi
+Qi ≥ 4ni3,∀i (3.54)

(1− Li) + (1−Ri) + SMi
+Qi − 3 ≤ 4ni3,∀i (3.55)

3∑
j=1

[pij] +
3∑
j=1

[nij] + ri = 1,∀i (3.56)

∀pij, ri, nij, Ri, Li, DLi
, DRi

, SDLi
, SULi

, SMi
, SDRi

, SURi
∈ {0, 1} (3.57)

∀i ∈ {1...m}, and µL, µR, σL, σR ∈ IR (3.58)

In this formulation, constraint (3.40) is derived from (3.28), (3.41) is derived from

(3.20), (3.42) is derived from (3.22), (3.43) is derived from (3.29), (3.44) is derived

from (3.24), and (3.45) is derived from (3.26).

Next, (3.46) and (3.47) are derived from (3.21), (3.48) and (3.49) are derived from

(3.23), (3.50) and (3.51) are derived from (3.25), and (3.52) and (3.53) are derived

from (3.27).

Finally, (3.54) and (3.55) are derived from (3.30), and (3.54) and (3.55) are derived

from (3.31) following the Big-M method as shown in Griva et al. (2009).
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Inference using MIPCSC also follows similar steps to MIPSC. After predictive

mean, model uncertainty, and the cost/benefit for the new sample are obtained, a

user can arithmetically decide the region the new sample belongs to and make the

decision based on the optimal thresholds identified.

3.3 Experiments

3.3.1 Experimental Setup

We develop two sets of experiments for classification with reject option and its

cost-sensitive extension. For both tasks, we divide the dataset into four distinct

sets; the first to train the dropout neural network(DNN), the second to find optimal

dropout rate and regularization coefficient to quantify uncertainty, the third to train

the proposed MIP models, and the fourth to test the performance of the proposed

MIP models.

To quantify model uncertainty and predictive mean, we train a dropout neural

network of 2 hidden layers with relu activations and dropout applied before each

layer. For the implementation of DNN, we make use of the source codes of the

original authors made publicly available at their website 1 . We apply a grid search

among dropout rates of (0.05, 0.01, 0.02) and regularization coefficients (0.1, 0.25) to

achieve optimal DNN configuration.

3.3.2 Evaluation Metrics

Conventional measures of performance introduced for supervised classification

tasks do not represent the performance of a model with reject option under study,

comprehensively Condessa et al. (2017). Here we present four recently introduced

1https://github.com/yaringal/DropoutUncertaintyExps
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metrics for classification with reject optionCondessa et al. (2017) and cost sensitive

learningYildirim et al. (2018). Ideally, a classifier with reject option should classify

as many instances as possible correctly and reject to classify the ones that it would

misclassify. A cost-sensitive classifier with reject option makes these decisions based

on the profit or loss it would get from each instance. We use c for accurately clas-

sified and non-rejected samples, c for misclassified and non-rejected samples, r for

misclassified and rejected samples, r for accurately classified and rejected samples.

Non-rejected Accuracy measures the performance of classification of the model

on non-rejected samples. It is defined as c/(c+ c).

Classification Quality measures the performance of both classification and re-

jection of the model. It is defined as (c+ r)/(c+ r + c+ r)

Rejection Quality measures the relative performance of rejection to the overall

performance of classification. It is defined as (r/r)/
(
(c+ r)/(c+ r)

)
Profit Gain measures the level of gained profit from the model outcome rela-

tive to perfectly classifying every instance without any rejection and assigning every

instance to the majority class. Let $model be the profit gain of model under study,

$oracle be the profit gain of perfect model, and $majority be the profit gain of majority

class assigning model, we define profit gain as;

(
$model − $majority

)
/
(
$oracle − $majority

)
3.3.3 Experiments with UCI Datasets

In this section, we discuss how the performance of our framework is on several publicly

available datasets. We experiment with 11 datasets from UCI classification repository and

report our performance.

We setup experiments of binary classification with reject option on datasets coming

from various application areas. We refer readers to Table 3.3 for simple statistics of

datasets. They span applications of credit card applications(australian), medical diagno-
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Instances Features Majority Class

australian 689 14 67%

breast 699 19 65%

diabetic 1151 19 54%

heart 303 20 54%

sonar 208 60 53%

ionosphere 351 34 64%

german 208 60 70%

haberman 208 60 74%

seismic 208 60 93%

pima 208 60 65%

house 208 60 62%

Table 3.3: UCI Dataset Statistics

sis(breast,diabetic,heart), and discriminating the bouncing source of sonar signals(sonar).

The variety of imbalance from 53% to 93% among our datasets also helps us to stress our

framework to label imbalances.

Baselines

We compare the MIPSC with three other baselines.

Random baseline chooses samples to reject randomly.

Predictive mean baseline chooses the closest samples to have 0.5 predictive mean to

be rejected (Chow (1970); Grandvalet et al. (2009)).

Model uncertainty baseline chooses the samples with the highest standard deviation

to be rejected (Gal and Ghahramani (2016); Leibig et al. (2017)).

Comparison with random baseline helps us to investigate if using predictive mean or

model uncertainty adds any value to find optimal decisions when rejecting. Comparing
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Figure 3.3: Performance of the MIPSC and Other Baselines under Varying Rejection
Capacities. Notice the Superior Performance of MIPSC over the Recent State-of-the-
art and Other Baselines in All of the Three Performance Metrics for Publicly Available
Datasets: Australian, Breast, Diabetic, Heart, Sonar

Figure 3.4: Performance of the MIPSC and Other Baselines under Varying Rejection
Capacities. Notice the Superior Performance of MIPSC over the Recent State-of-the-
art and Other Baselines in All of the Three Performance Metrics for Publicly Available
Datasets: Ionosphere, German, Seismic, Pima, House, Haberman

MIPSC with predictive mean and model uncertainty separately allows us to investigate if

they are complementary in optimal decision making for classification with reject option.

Results

Figure 3.3 and Figure ?? show the performance of MIPSC, and the other baselines. We

make the following observations;
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Store Transactions Fraud-Ratio Avg. Amount($)

Digital Goods 67,215 8.1% $79.29

Office Supplies 10,678 17.2% $330.10

Sporting Goods 6,968 3.5% $296.34

Table 3.4: Online Purchase Transactions Dataset Statistics

• In all datasets and three evaluation metrics, MIPSC achieves a consistent superior

performance compared to the baselines.

• Higher rejection capacities yield higher non-rejected accuracy, as expected.

• Model uncertainty baseline consistently performs the second best signaling a better

characterization of rejection than predictive mean.

• Predictive mean can be a complementary in classification with rejection task as ev-

idenced by MIPSC higher performance than model uncertainty baseline. By itself,

predictive mean baseline achieves similar performances to the random baseline.

3.3.4 Online Fraud Management

In this section, we discuss the contribution of our cost-sensitive framework MIPCSC over

industry-standard baselines in online fraud management tasks. We design our experiments

with three real-world e-commerce online transaction datasets coming from digital goods,

office supplies, and sporting goods stores. Summary statistics of our datasets can be seen

in Table 3.4.

In online fraud management, our base task is to classify each transaction instance as

legitimate or fraudulent. Different than a standard classification task, benefits and costs

of each true and false classification vary with the transaction amount of each transaction

instance. Moreover, true classification of a legitimate transaction and a fraudulent transac-

tion do not bring same amount of benefit. False classification of legitimate transaction and

a fraudulent transaction incurs different costs as well (i.e., customer insult, fraud loss).
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Our task also involves rejecting making classification when uncertain. In online fraud

management domain, ”rejecting to make a decision” equates to sending the transaction

instance to an expert to be reviewed. This process of rejecting to make a decision also

comes with a cost. By taking all these aforementioned costs and benefits of the task into

consideration, here we present the final profit gain that our framework and several other

fraud management strategies achieve on three real-world datasets.

Baselines

We compare the MIPCSC with four other baselines. We adopt two of them from the previous

section (model uncertainty and random) and introduce two new cost-sensitive baselines.

Transaction amount baseline rejects to classify the instances with the largest trans-

action amounts. Majority of the transaction processors follows this conservative strategy.

Risk baseline rejects to classify the instances based on both model uncertainty and

transaction amount. It multiplies the model uncertainty and transaction amount and rejects

to classify the ones with the highest value.

Comparing MIPCSC with transaction amount baseline helps to assess whether our ap-

proach performs better than the most conservative fraud management strategy. Comparing

MIPCSC with risk baseline assist with understanding if our approach is capable of making

better assessments of cost-sensitive decisions than a simple arithmetic cost-sensitive risk

measurement.

Results

Figure 3.5 shows the performance of MIPCSC compared to the other baselines. Our key

observations are given as follows:

• Under varying capacities of rejection, MIPCSC always achieves the highest profit

gain.

• In the Digital Goods dataset, underlying DNN performs worse than outputting a
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Figure 3.5: Profit Gain of MIPCSC vs. Baselines for Fraud Management.

trivial solution, thus causes uncertainty based baselines to obtain negative profit gain

at various rejection capacities. It is clear that MIPCSC is robust to the underlying

DNN performance giving the highest profit gain in all cases.

• Constant inferior performance of the Risk baseline suggests that simply combining

uncertainty with a value aspect does not help making a cost-optimal decision. The

necessity of a framework like MIPCSC becomes apparent observing its constant ef-

fectiveness.
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Chapter 4

CONCLUSION

In this dissertation, I proposed novel cost-insensitive and cost-sensitive methods for

selective classification and demonstrated their effectiveness in online fraud management

domain. Here, I briefly summarize these methods and the contributions.

First, I provided a brief introduction to the selective classification problem in fraud

management and gave a detailed literature survey in cost-sensitive learning, in Chapter 1

and Chapter 2.

In Chapter 3, I proposed a cost-sensitive decision making framework and demonstrate its

effectiveness in fraud management. I revealed how human expertise can be combined with

machine learning to make decisions under risk and cost considerations. Future work includes

developing a novel metric to characterize the relationship between fraud classification models

and PONRM performances. Also, investigating our framework’s generalizability in other

domains such as loan evaluation and healthcare decision support might be of interest.

In Chapter 4, I introduced MIPSC: a novel and extensible selective classification model

that effectively utilizes uncertainty in deep learning and combines it with predictive mean

to make optimal decisions. I demonstrated MIPSC’s effectiveness using state-of-the-art

selective classification metrics in publicly available datasets from various domains. I found

that predictive mean is complementary to model uncertainty for making optimal reject

decisions. Furthermore, I showcased a real-world use-case of online fraud management

using our cost-sensitive extension, MIPSCS. Future work includes (1) experimenting with

other Bayesian frameworks and (2) optimizing the MIP performance by designing novel

column generation techniques.
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