
Connectivity in Complex Networks:

Measures, Inference and Optimization

by

Chen Chen

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved March 2019 by the
Graduate Supervisory Committee:

Hanghang Tong, Chair
Hasan Davulcu
Arunabha Sen

V.S. Subrahmanian
Lei Ying

ARIZONA STATE UNIVERSITY

May 2019

ABSTRACT

Networks naturally appear in many high-impact applications. The simplest model

of networks is single-layered networks, where the nodes are from the same domain

and the links are of the same type. However, as the world is highly coupled, nodes

from different application domains tend to be interdependent on each other, forming

a more complex network model called multi-layered networks.

Among the various aspects of network studies, network connectivity plays an im-

portant role in a myriad of applications. The diversified application areas have spurred

numerous connectivity measures, each designed for some specific tasks. Although ef-

fective in their own fields, none of the connectivity measures is generally applicable

to all the tasks. Moreover, existing connectivity measures are predominantly based

on single-layered networks, with few attempts made on multi-layered networks.

Most connectivity analyzing methods assume that the input network is static and

accurate, which is not realistic in many applications. As real-world networks are

evolving, their connectivity scores would vary by time as well, making it imperative

to keep track of those changing parameters in a timely manner. Furthermore, as

the observed links in the input network may be inaccurate due to noise and incom-

plete data sources, it is crucial to infer a more accurate network structure to better

approximate its connectivity scores.

The ultimate goal of connectivity studies is to optimize the connectivity scores

via manipulating the network structures. For most complex measures, the hardness

of the optimization problem still remains unknown. Meanwhile, current optimization

methods are mainly ad-hoc solutions for specific types of connectivity measures on

single-layered networks. No optimization framework has ever been proposed to tackle

a wider range of connectivity measures on complex networks.

In this thesis, an in-depth study of connectivity measures, inference, and optimiza-

i

tion problems will be proposed. Specifically, a unified connectivity measure model will

be introduced to unveil the commonality among existing connectivity measures. For

the connectivity inference aspect, an effective network inference method and connec-

tivity tracking framework will be described. Last, a generalized optimization frame-

work will be built to address the connectivity minimization/maximization problems

on both single-layered and multi-layered networks.

ii

This dissertation is dedicated to my beloved parents Jinxia Xu and Yuelong Chen.

iii

ACKNOWLEDGMENTS

First, I would like to express my deep gratitude to my advisor Dr. Hanghang Tong

for his guidance, patience, inspiration and great support. Five years ago, I was just

a layman to the data mining field and felt great uncertainty to my upcoming Ph.D.

study. Nourished by the unreserved help and advising from Dr. Tong, I started with

my baby steps by learning to write good papers and make good presentations; and

then began to make progress through discovering and conquering interesting research

problems. The past five years have revolutionized my life as my knowledge boundary

has been greatly expanded from time after time. Meanwhile, the encouragement and

support from Dr. Tong have also empowered me with the strong will to fight against

frustrations and the persistence to pursue tough goals.

I would also like to thank my committee members Dr. Hasan Davulcu, Dr. Arun-

abha Sen, Dr. V.S. Subrahmanian and Dr. Lei Ying for their insightful comments on

my research. Specifically, I would like to thank Dr. Ying for being a great collaborator

and sharing with me his sharp understanding of network connectivity.

It was a great experience to work as an Intern in Futurewei Technologies Inc. with

amazing mentors and colleges: Yinglong Xia, Hui Zang, Jiangsheng Yu, Zonghuan

Wu, Qingsong Wen, Yiming Kong, Tingyi Zhu, Ting Yang, Li Zhou, and Cheng

Bo. The diversity of the group has given me a great chance to learn from experts

in different domains and discover inspirational ideas. Special thank to Dr. Xia, who

was my mentor during the internship, for introducing me the challenges on large-scale

graph computation platforms.

As a member of Data and Star Labs, I am grateful for the consistent support

and encouragement from all other members: Liangyue Li, Xing Su, Si Zhang, Boxin

Du, Qinghai Zhou, Jian Kang, Zhe Xu, Lihui Liu, Scott Freitas, Haichao Yu, Ruiyue

Peng, Rongyu Lin, Xiaoyu Zhang, Dawei Zhou, Yao Zhou, Arun Reddy, Xu Liu, Xue

iv

Hu, Jun Wu, Lecheng Zheng, Dongqi Fu, Pei Yang, and Qi Tan. In addition, I would

like to thank all my friends for your company. You are all imperative parts of this

amazing journey.

Finally, I am so grateful to have the best parents, grandparents and the whole

family in the world. Your unconditional love, support, and patience is the motivation

for me to become a better me. Last but not least, I would like to thank my boyfriend

Jundong Li for standing by me through all the thick and thin.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Research Challenges . 2

1.2 Tasks Overview . 4

1.3 Organization . 4

2 LITERATURE REVIEW . 6

2.1 Multi-layered Network Modeling . 6

2.2 Network Connectivity Measures . 8

2.3 Network Connectivity Inference . 8

2.4 Network Connectivity Optimization . 9

2.5 Network Connectivity Applications . 10

3 NETWORK CONNECTIVITY MEASURES . 12

3.1 Single-Layered Network Measures . 12

3.2 Multi-layered Network Measures . 16

4 NETWORK CONNECTIVITY INFERENCE . 19

4.1 Eigen-functions Tracking in Dynamic Networks 19

4.1.1 Problem Definition . 21

4.1.2 Proposed Algorithms . 23

4.1.3 Experimental Evaluation . 33

4.2 Cross-layer Dependency Inference . 41

4.2.1 Problem Definition . 44

4.2.2 Proposed Algorithms for Code . 47

vi

CHAPTER Page

4.2.3 Proposed Algorithm for Code-ZERO . 60

4.2.4 Experimental Evaluation . 65

4.3 Incremental One-Class Collaborative Filtering . 77

4.3.1 Problem Definition . 79

4.3.2 Proposed Algorithm . 82

4.3.3 Experimental Evaluations . 89

5 NETWORK CONNECTIVITY OPTIMIZATION . 96

5.1 SubLine Connectivity Optimization . 96

5.1.1 Problem Definition . 99

5.1.2 Fundamental Limits . 103

5.1.3 Proposed Algorithm . 110

5.1.4 Experimental Evaluation . 122

5.2 Connectivity Optimization in Multi-layered Networks 130

5.2.1 Problem Definition . 132

5.2.2 Theoretical Analysis . 134

5.2.3 Proposed Algorithm . 146

5.2.4 Experimental Evaluation . 151

6 CONCLUSION AND FUTURE WORK . 161

6.1 Conclusion . 161

6.2 Future Work . 162

REFERENCES . 165

vii

LIST OF TABLES

Table Page

4.1 Symbols used in Trip-Basic and Trip. 22

4.2 Main Symbols Fascinate. 45

4.3 Statistics of Datasets. 65

4.4 List of Conferences in Each Domain. 66

4.5 Cross-Layer Dependency Inference on CITATION. 71

4.6 Cross-Layer Dependency Inference on INFRA-5 . 72

4.7 Cross-Layer Dependency Inference on INFRA-3. 72

4.8 Cross-Layer Dependency Inference on SOCIAL . 73

4.9 Cross-Layer Dependency Inference on Bio. 73

4.10 Main Symbols. 81

4.11 Statistics of Datasets. 91

5.1 Main Symbols for CONTAIN. 100

5.2 Statistics of Datasets. 123

5.3 Main Symbols for MuLaN. 133

5.4 Data Sets Summary. 152

viii

LIST OF FIGURES

Figure Page

1.1 An Illustrative Example of Multi-layered Networks. In Figure 4.25(b),

Each Ellipse Corresponds to a Critical Infrastructure Network in Fig-

ure 4.25(a) (I.E., Power Grid, as Network and Transportation Net-

work). The Arrows Between Two Ellipses Indicate Cross-layer Depen-

dency Relationships Between the Corresponding Two Networks (E.G.,

A Router in the as Network Depends on One or More Power Plants in

the Power Grid). 2

1.2 Tasks Overview. 5

3.1 An Illustrative Example Of MuLaN model . 17

4.1 Incremental Update for Eigen-pairs Tracking. 24

4.2 The Error Rate of First Eigenvalue Approximation. 35

4.3 The Error Rate of First Eigenvector Approximation. 36

4.4 The Error Rate of Number of Triangles Approximation. 36

4.5 The Error Rate of Robustness Score Approximation. 37

4.6 The Error Rate of Eigen-gap Approximation. 37

4.7 The Error Rate of First Eigenvalue Approximation. 38

4.8 The Error Rate of First Eigenvector Approximation. 38

4.9 The Error Rate of Robustness Score Approximation. 38

4.10 The Error Rate of Number of Triangles Approximation. 39

4.11 The Error Rate of Eigen-gap Approximation. 39

4.12 Average Precision over Time for the Attribution Analysis (Added Edges). 40

4.13 Average Precision over Time of the Attribution Analysis (Removed

Edges). 41

4.14 The Estimated Error of Trip-Basic and Trip on AS Data Set. 42

ix

Figure Page

4.15 The Running Time Speedup of Trip-Basic and Trip W.R.T. to k. . . . 42

4.16 The Error Rate Vs. Total Runtime of First Eigenvalue Approximation

in 100 Time Stamps. 42

4.17 A Simplified 4-layered Network for Biological Systems. 46

4.18 The Abstract Dependency Structure of Each Dataset. 66

4.19 Performance of Fascinate and Fascinate-Clust on INFRA-3 Dataset

under Different Missing Value Percentages. 74

4.20 The Effectiveness of Fascinate-Zero in Bio Network W.R.T. Differ-

ent Rank r. 74

4.21 The Parameter Studies of the Bio Dataset. 75

4.22 The Backtracking Line Search Parameter Study of the INFRA-5 Dataset.

. 76

4.23 Wall-clock Time vs. the Size of the Network. 76

4.24 Wall-clock Running Time of Fascinate and Fascinate-UN. 77

4.25 An Illustration of Online One-class Recommendation Problem with

Side Networks. Solid Lines Represent the Links in the Original System,

Dashed Lines Represent the Newly Emerged Links. (Best Viewed in

Color.) . 79

4.26 The Effectiveness Results on Ciao. Higher Is Better. Our Method

(Marked by Arrow) Perform Closely with Rerun Method. (Best Viewed

in Color.) . 93

4.27 The Effectiveness Results on Epinions. Higher Is Better. Our Method

(Marked by Arrow) Performs Closely with Rerun Method. (Best Viewed

in Color.) . 93

x

Figure Page

4.28 The Running Time of Rerun Vs. ENCORE for a Single Iteration. 94

4.29 The Running Time of ReRun Vs. ENCORE for One Time Stamp.. . . . 95

5.1 An Illustration of Polynomial Reduction from Max k-coverage Problem.107

5.2 Illustrations and Comparison of Random Perturbation Matrix (a), Which

Is Dense and Potentially Full-rank, Vs. Perturbation Matrices by Node

Deletion (b) and Edge Deletion (c), Both of Which Are Sparse and

Low-rank. 112

5.3 The Optimization Results on the Number of Local Triangles on the

chemical Dataset. 126

5.4 The Optimization Results on Leading Eigenvalue with Node-level Op-

erations. 126

5.5 The Optimization Results on the Number of Triangles with Node-level

Operations. 127

5.6 The Optimization Results on Natural Connectivity with Node-level

Operations. 127

5.7 The Optimization Results on Leading Eigenvalue with Edge-level Op-

erations. 127

5.8 The Optimization Results on the Number of Triangles with Edge-level

Operations. 127

5.9 The Optimization Results on Natural Connectivity with Edge-level

Operations. 128

5.10 The Effect of r on Optimizing the Number of Triangles on chemical

Dataset. 128

xi

Figure Page

5.11 The Quality Vs. Running Time Trade-off on Eucore. The Budget for

Node Operations Is k = 20, the Budget for Edge Operations Is k = 200.129

5.12 The Running Time Comparison Between CONTAIN and CONTAIN+

on the Chemical Dataset. The Budget for Both Node and Edge Op-

erations Is k = 20. 129

5.13 The Scalability of CONTAIN. The Budget for Both Node and Edge

Operations Is k = 20. 130

5.14 A Cyclic Dependency Multi-layered Network. 140

5.15 Constructed DAG for Figure 5.14. 144

5.16 Evaluations on the MultiAS Data Set, with a Four-layered Diamond-

shaped Dependency Network. The Connectivity Change Vs. Budget.

Larger Is Better. All the Four Instances of the Proposed Opera Al-

gorithm (in Red) Outperform the Baseline Methods. 154

5.17 Evaluations on the MultiAS Data Set, with a Three-layered Cyclic

Dependency Network. The Connectivity Change Vs. Budget. Larger

Is Better. Three out of Four Instances of the Proposed Opera Algo-

rithm (in Red) Outperform the Baseline Methods. 154

5.18 Evaluations on the InfraNet Data Set, with a Three-layered Triangle-

shaped Dependency Network. The Connectivity Change Vs. Budget.

Larger Is Better. All the Four Instances of the Proposed Opera Al-

gorithm (in Red) Outperform the Baseline Methods. 156

5.19 ∆λ W.R.T. k. Change the Average Number of Dependents Between

Power Grid and as from 5, 10 to 15 (Left to Right). 157

xii

Figure Page

5.20 Evaluations on the SocInNet Data Set, with a Two-layered Author-

paper Dependency Network. The Connectivity Change Vs. Budget.

Larger Is Better. Three out of Four Proposed Opera Algorithms (in

Red) Outperform the Baseline Methods. 158

5.21 Evaluations on the SocInNet Data Set, with a Two-layered Venue-

paper Dependency Network. The Connectivity Change Vs. Budget.

Larger Is Better. Three out of Four Proposed Opera Algorithms (in

Red) Outperform the Baseline Methods. 158

5.22 Evaluations on the BIO Data Set, with a Three-layered Triangle-

shaped Dependency Network. The Connectivity Change Vs. Bud-

get. Larger Is Better. All Four Proposed Opera Algorithms (in Red)

Outperform the Baseline Methods. 159

5.23 Wall-clock Time Vs. The Size of the Input Networks. The Proposed

Opera Algorithms Scale Linearly W.R.T. (N +M + L). 160

xiii

Chapter 1

INTRODUCTION

Networks are prevalent in many high-impact domains, including information dissem-

ination, social collaboration, infrastructure constructions, and many more. The most

well-studied type of networks is single-layered networks, where the nodes are collected

from the same domain and the links are used to represent the same type of connec-

tions. However, as the world is becoming highly connected, cross-domain interactions

are more frequently observed in numerous applications, catalyzing the emergence of a

new network model–multi-layered networks Buldyrev et al. (2010); Gao et al. (2012);

Parshani et al. (2010); Sen et al. (2014). One typical example of such type of network

is the critical infrastructure network as illustrated in Figure 4.25. In an infrastruc-

ture network system, the full functioning of the autonomous system network (AS

network) and the transportation network is dependent on the power supply from the

power grid. While for the gas-fired and coal-fired generators in the power grid, their

functioning is fully dependent on the gas and coal supply from the transportation

network. Moreover, to keep the whole complex system working in order, extensive

communications are needed between the nodes in the networks, which are supported

by the AS network. In addition to the infrastructure systems, multi-layered networks

also appear in many other application domains, such as organization-level collabora-

tion platform Chen et al. (2015) and cross-platform e-commerce systems Chen et al.

(2013); Li et al. (2009); Lu et al. (2013); Yang et al. (2015).

1

(a) Critical Infrastructure Network (b) Dependency Relations across the Layers

Figure 1.1: An Illustrative Example of Multi-layered Networks. In Figure 4.25(b),
Each Ellipse Corresponds to a Critical Infrastructure Network in Figure 4.25(a) (I.E.,
Power Grid, as Network and Transportation Network). The Arrows Between Two
Ellipses Indicate Cross-layer Dependency Relationships Between the Corresponding
Two Networks (E.G., A Router in the as Network Depends on One or More Power
Plants in the Power Grid).

1.1 Research Challenges

Connectivity Measures. Among the various network properties studied in the

literature, network connectivity is the one that plays a crucial role in applications

like disease control, network robustness analysis, community detection, etc. Corre-

spondingly, different connectivity measures are designed for each of the applications.

Examples include epidemic threshold Chakrabarti et al. (2008) for disease dissemina-

tion analysis, natural connectivity Jun et al. (2010) for robustness measurement and

triangle capacity for social network mining. Empirical analysis has demonstrated the

effectiveness of those connectivity measures in their own tasks, but none of them can

be used as a common measure across different domains. Furthermore, most, if not all,

of the existing connectivity measures are defined on single-layered networks, leaving

the problem of measuring multi-layered network connectivity unexplored.

Connectivity Inference. Existing network connectivity research predominantly

2

assumes that the input network is static and accurate, which does not fit into the

dynamic and noisy real-world settings. Real-world networks are evolving over time.

In some cases, subtle changes in the network structure may lead to huge differences

on some of the connectivity measures. For example, in websites like Facebook and

Twitter, new connections between users emerge all the time, which would, in turn,

change the influential individuals in the network. Thus, it is crucial for online mar-

keting companies to keep track of those changes since their advertisements targeting

strategies may need to be modified accordingly. On the other hand, in multi-layered

networks, it remains a daunting task to know the exact cross-layer dependency struc-

ture due to noise, incomplete data sources and limited accessibility issues. For ex-

ample, an extreme weather event might significantly disrupt the power grid, the

transportation network and the cross-layer dependencies in between at the epicenter.

Yet, due to limited accessibility to the damaged area during or soon after the dis-

ruption, the cross-layer dependency structure might only have a probabilistic and/or

coarse-grained description.

Connectivity Optimization. The crucial task for network connectivity studies

is to optimize (minimize/maximize) the connectivity score by adjusting the underlying

network structure. Previous literature has proved that the optimization problem

on epidemic threshold and triangle capacity on single-layered networks is NP-hard.

However, for some complex connectivity measures (e.g., natural connectivity), the

hardness of the corresponding optimization problems still remains unknown. Most

importantly, existing connectivity optimization methods are mainly based on single-

layered networks. Compared to single-layered networks, multi-layered networks are

more sensitive to disturbance since its effect may be amplified through cross-layer

dependencies in all the dependent networks, leading to a cascade failure of the entire

system. To tackle the connectivity optimization problem in multi-layered networks,

3

great efforts have been made from different research area for manipulating two-layered

interdependent network systems Buldyrev et al. (2010); Parshani et al. (2010); Sen

et al. (2014); Gao et al. (2012). Although much progress has been made, challenges

are still largely open. First, as the connectivity measures are highly diversified, the

ad-hoc optimization algorithms that are effective for specific measures may not work

well on other measures. Thus, the problem of how to design a generic optimization

strategy for a wide range of network connectivity measures is in need of investigation.

Second, existing optimization strategies tailored for two-layered networks might be

sub-optimal, or even misleading for arbitrarily structured multi-layered networks,

because it can not effectively unravel the nested dependency structure in the network.

1.2 Tasks Overview

The main problems studied in this thesis are focused on measures, inference,

and optimization of network connectivity in complex networks. The relationship

between those problems is shown in Figure 1.2. Generally speaking, a well defined

connectivity measure serves as the objective to inference and optimization tasks; The

inference results, in turn, provide a good approximation on the connectivity measure

and improve the accuracy of the input network for optimization tasks; Last, the

optimization methods are used to find optimal strategies to manipulate the network

structure, which can effectively change the connectivity of the network and influence

the inference results from task 2.

1.3 Organization

The remainder of the thesis is organized as follows. In Chapter 2, I will review

the related literature on network connectivity measures, inference methods, and op-

timization algorithms. In chapter 3, I will introduce the generalized definition for

4

Figure 1.2: Tasks Overview.

connectivity measures in single-layered networks and its extension on multi-layered

networks. In Chapter 4, I will address the eigen-functions (connectivity) tracking

problem in dynamic networks and the cross-layer dependence inference problem in

multi-layered networks. In Chapter 5, I will study the fundamental limits and effi-

cient algorithms for the network connectivity optimization problem in single-layered

networks and its extension on multi-layered networks. Finally, in Chapter 6, I will

conclude the thesis and discuss future work.

5

Chapter 2

LITERATURE REVIEW

In this section, we organize the related research about network connectivity in complex

networks into four parts: (1) multi-layered network modeling; (2) network connectiv-

ity measures; (3) network connectivity inference; (4) network connectivity optimiza-

tion and (5) network connectivity applications.

2.1 Multi-layered Network Modeling

Multi-layered networks have attracted a lot of research attention in recent years.

Different models have been proposed to formulate the multi-layered network data

structure. In De Domenico et al. (2013), multi-layered networks are represented

as a high-order tensor, which is coupled by a second-order within-layer networks

tensor and a second-order cross-layer dependency tensor. While in Sánchez-Garćıa

et al. (2014), the corresponding data structure is represented as a quadruplet M =

{VM , EM , V,L}, in which each distinct nodes in V can appear in multiple elementary

layers in L = {L1, . . . , Ld}. Then, VM ⊆ V × L1 × . . . × Ld represents the nodes in

each layer, and EM = VM × VM represents both within-layer and cross-layer links

in the entire system. In Boccaletti et al. (2014), the model is simplified into a pair

M = (G, C), where G gives all the within-layer networks and C provides all the

cross-layer dependencies. Different from the above models, the formulation used in

our study gives more emphasis on the abstracted dependency network structure G,

which makes it easier to unravel the impact path for a set of nodes from a given

layer. In Kivelä et al. (2014), Kivela et al. presented a comprehensive survey on

6

different types of multi-layered networks, which include multi-modal networks Heath

and Sioson (2009), multi-dimensional networks Berlingerio et al. (2011), multiplex

networks Battiston et al. (2014) and interdependent networks Buldyrev et al. (2010).

The problem addressed in our study is most related to the interdependent networks.

In Rinaldi et al. (2001) and Gao et al. (2011), the authors presented an in-depth

introduction to the fundamental concepts of interdependent multi-layered networks

as well as the key research challenges. In a multi-layered network, the failure of a small

number of nodes might lead to catastrophic damages on the entire system as shown

in Buldyrev et al. (2010) and Vespignani (2010). In Buldyrev et al. (2010); Parshani

et al. (2010); Shao et al. (2011); Sen et al. (2014); Gao et al. (2012), different types of

two-layered interdependent networks were thoroughly analyzed. In Gao et al. (2011),

Gao et al. analyzed the robustness of multi-layered networks with the star- and loop-

shaped dependency structures. In De Domenico et al. (2015), De Domenico et al.

proposed a method to identify versatile nodes in multi-layered networks by evaluating

their eigenvector centrality and PageRank centrality. The selected versatile nodes are

fundamentally different from our high impact nodes for network connectivity in three

aspects. First is that their centrality measures can not capture the collective impact

of a node set on the network. Second is that our proposed network connectivity is

directly related to only within-layer links, while cross-layer dependency is the trigger

for connectivity changes. The two types of links should be treated differently rather

than mixed up for a unified centrality calculation. Last, the globally crucial nodes

in the entire system may not be able to provide an optimal solution to minimize the

connectivity in specific target layer(s).

7

2.2 Network Connectivity Measures

Connectivity is a fundamental property of networks and has been a core research

theme in graph theory and mining for decades 1 . At the macro-level, network con-

nectivity can be viewed as a measure to evaluate how well the nodes are connected

together. Depending on the specific applications, many network connectivity mea-

sures have been proposed in the past. Examples include the size of giant connected

component (GCC), graph diameter, the mixing time Jerrum and Sinclair (1988), the

vulnerability measure Albert et al. (2000), and the clustering coefficient Wasserman

(1994), each of which often has its own, different mathematical definitions. At the

micro-view level, network connectivity measures the capacity of edges, paths, loops,

some complex motifs Milo et al. (2002) or even the centrality of the nodes. Some

well-known examples from this category include the epidemic threshold Chakrabarti

et al. (2008), the natural connectivity (i.e., the robustness) Jun et al. (2010), degree

centrality Freeman (1978), etc.

2.3 Network Connectivity Inference

The research on network connectivity inference can be categorized into two parts:

(1) network property tracking in single-layered networks and (2) inference in multi-

layered networks.

Various network properties have been studied under dynamic settings. In Leskovec

et al. (2007b), Leskovec et al. discovered the growth pattern of network density and

diameter in real networks. In Tong et al. (2008), two online algorithms were provided

1In this thesis, ‘graph’ and ‘network’ are interchangeably equivalent.

8

for tracking node proximity and centrality on bipartite graphs. In Li et al. (2015b),

a graph kernel tracking algorithm was proposed for dynamic networks. The other

area of research that is related to our work is evolutionary spectral clustering on

graphs. In Ning et al. (2010), Ning et al. proposed an incremental spectral clustering

algorithm based on iterative update on the eigen-system of the network. In Chen

and Tong (2017), Chen et al. proposed an efficient online algorithm to track some

important network connectivity measures (e.g., the leading eigenvalue, the robustness

measure) on a temporal dynamic network. For the multi-layered network inference

problem, a collaborative filtering based method is proposed to infer the missing cross-

layer dependencies in Chen et al. (2016c). Other remotely related studies include

cross-network ranking Ni et al. (2014) in multi-layered networks, and multi-view data

analysis Li et al. (2016); Xu et al. (2013); Zhou et al. (2015).

2.4 Network Connectivity Optimization

From the algorithmic perspective, network connectivity optimization aims to maxi-

mize or minimize the corresponding connectivity measures by manipulating the un-

derlying topology (e.g., add/remove nodes/edges). Earlier work, either explicitly

or implicitly, assumes that nodes/edges with higher centrality scores would have a

greater impact on network connectivity. This assumption has led to many research

efforts on finding good node/edge centrality measures (or node/edge importance mea-

sure in general). Some widely used centrality measures include shortest path based

centrality Freeman (1977), PageRank Page et al. (1998), HITS Kleinberg (1998), core-

ness score Moody and White (2003), local Fiedler vector centrality Chen and Hero

(2014) and random walks based centrality Newman (2005). Different from those

node centrality oriented methods, some recent work aims to take one step further by

9

collectively finding a subset of nodes/edges with the highest impact on the network

connectivity measure. For example, Tong et al. (2010, 2012); Chen et al. (2016b,a)

proposed both node-level and edge-level manipulation strategies to optimize the lead-

ing eigenvalue of the network, which is the key network connectivity measure for a

variety of cascading models. In Chan et al. (2014), Chan et al. further general-

ized these strategies to manipulate the network robustness scores Jun et al. (2010).

In Chen et al. (2018), Chen et al. showed that the connectivity optimization problem

is generally NP-hard and proposed an efficient algorithm for both node and edge level

optimization tasks.

2.5 Network Connectivity Applications

The connectivity of the network has played an important role in many applications.

For the applications that focus on system-level studies, global connectivity measures

are more commonly used. In the immunization studies Cohen et al. (2003), it is critical

to select a group of nodes/edges to effectively contain the propagation process Chen

et al. (2016b); Chen and Tong (2017). In the biomedical domain, antibiotic drugs

are developed to kill the bacteria by disrupting their molecular network to the max

extend Kohanski et al. (2010). While in the critical infrastructure networks, facilities

that may cause large-scale failures are retrieved and protected proactively to ensure

the full-functioning of the entire system Chen et al. (2017). It is worth to note

that finding a group of nodes/edges that have high impact on the connectivity of the

network is similar to the influence maximization problem Kempe et al. (2003); Morone

and Makse (2015); Chen et al. (2009) and its variations (e.g., viral marketing Leskovec

et al. (2007a); Chen et al. (2010), outbreak detection Leskovec et al. (2007c), etc). The

main difference between the two problems is that the influence maximization problem

is highly dependent on the underlying diffusion model (e.g., independent cascade,

10

linear threshold Kempe et al. (2003)), while the connectivity optimization problem

is directly based on the backbone (i.e., the underlying topology) of the network. In

addition to the global connectivity measures, the local connectivity of the network

has also been applied to some critical tasks like graph clustering Yin et al. (2017,

2019), link prediction Benson et al. (2018), etc.

11

Chapter 3

NETWORK CONNECTIVITY MEASURES

Various connectivity measures have been designed for different applications. In

our work, we propose two unified frameworks to evaluate the connectivity in both

single-layered networks and multi-layered networks.

3.1 Single-Layered Network Measures

In this section, we study the connectivity measures in single-layered networks from

two perspectives.

Eigen-Function Based Connectivity Measures

In this section, we first introduce the definition of eigen-function based connectivity

measures, and then give several prevalently used examples in the category.

The main idea here to define the connectivity of the network as a function of its

eigen-pairs. Formally, let Λ,U be the eigenvalue and eigenvector matrices of network

G, then the connectivity of G can be defined as

C(G, g) = g(Λ,U) (3.1)

where g : (Λ,U) → R+ is a function that maps the eigen-pair of the network to a

non-negative connectivity attribute or attribute vector.

Important Eigen-Functions:

Eigenvalues and Eigenvectors. Since the eigen-pairs of a graph are important

12

attributes themselves, the simplest eigen-function is therefore an identity function as

follows:

g(Λ,U) = (Λ,U) (3.2)

The eigenvalues of a graph’s adjacency matrix can be used to measure the epidemic

threshold of a network Harary and Schwenk (1979), while the eigenvectors can be

used to evaluate the centrality of nodes Newman (2008), or to detect interesting

subgraphs Prakash et al. (2010).

Triangle Capacity. The number of triangles in a graph plays an important role

in calculating clustering coefficient and related attributes. The brute-force algorithm

for solving this problem is of complexity O(n3). The state-of-the-art algorithm has

reduced the complexity to O(n2.373) Williams (2011), but this is still not a scalable

algorithm on real-world large datasets. In Tsourakakis (2008), Tsourakakis showed

that the number of triangles in a graph(4(G)) can be calculated using Eq. (3.3).

g(Λ,U) = 4(G) =
1

6

n∑
i=1

λ3
i (3.3)

By Eq. (3.3), the triangle capacity 4(G) therefore becomes a function of eigenvalues.

In real-world graphs, usually, we only need top k eigenvalues to achieve a good ap-

proximation for triangle counting. For example, experiments in Tsourakakis (2008)

showed that picking top 30 eigen-pairs can achieve an accuracy of at least 95% in

most graphs.

Natural Connectivity. The natural connectivity of a network evaluates its toler-

ance under random failure and external attacks. The definition of natural connectivity

(S(G)) Chan et al. (2014) is shown in Eq. (3.4).

g(Λ,U) = S(G) = ln(
1

n

n∑
i=1

eλi) (3.4)

Once again, in Chan et al. (2014), Chan et al. found that top k (k = 50 in their

study) eigen-pairs are sufficient for estimating the connectivity score.

13

Eigen-Gap. The eigen-gap of a graph is an important parameter in expander graph

theory and is defined as the difference between the largest and second largest (in

module) eigenvalues of the graph (as shown in Eq. (3.5)).

g(Λ,U) = Gap(G) = λ1 − λ2 (3.5)

In expander graph theory, a graph is considered to have a good expansion property if

it is both sparse and highly connected Hoory et al. (2006). By Cheeger inequality, the

expansion property of a graph is strongly correlated to its eigen-gap Chung (1997). As

a result, the eigen-gap of the graph can be used as a measurement for its robustness.

SubLine Connectivity Measures

Here, we introduce another perspective to model network connectivity.

The key of SubLine is to view the connectivity of the entire network as the

aggregation over the connectivity measures of its sub-networks (e.g., subgraphs), that

is

C(G, f) =
∑
π⊆G

f(π) (3.6)

where π is a subgraph of G. The non-negative function f : π → R+ maps any

subgraph in G to a non-negative real number and f(φ) = 0 for empty set φ. In other

words, we view the connectivity of the entire network (C(G, f)) as the sum of the

connectivity of all the valid subgraphs (f(π)). The definition in Eq. (3.6) can be

used to measure the connectivity of the entire network. It can be further extended

to measure the local connectivity of a subset of nodes T , where we define f(π) > 0

iff π is incident to the node set T , i.e.,

CT (G, f) =
∑

π∩T 6=φ

f(π) (3.7)

14

It is worth to mention that motifs (defined in Milo et al. (2002)) are subgraphs

as well. By setting function f as non-negative constants, many eigen-function based

network connectivity measures can be reduced to SubLine connectivity measures;

and we give three prominent examples below, including (1) the path capacity; (2) the

triangle capacity and (3) the loop capacity.

Path Capacity. A natural way to measure network connectivity is through path

capacity, which measures the total number of (weighted) paths in the network. In

this case, the corresponding function f() can be defined as follows.

f(π) =


βlen(π) if π is a valid path of length len(π)

0 otherwise.

(3.8)

where β is a damping factor between (0, 1/λG) to penalize longer paths. With such

an f() function , the connectivity function C(G, f) defined in Eq. (3.6) can be written

as

C(G, f) = 1′(
∞∑
t=1

βtAt)1 = 1′(I− βA)−11 (3.9)

Remarks. We can also define the path capacity with respect to a given path length

t as C(G, f) = 1′At1. When t = 1, C(G, f) is reduced to the edge capacity (density)

of the graph, which is an important metric for network analysis. On the other hand,

the ‘average’ path capacity (1′At1)1/t of a network converges to the leading eigenvalue

of its adjacency matrix, i.e., (1′At1)1/t t→∞−−−→ λG, which is exactly an eigen-function

based connectivity measure—epidemic threshold Tong et al. (2010).

Triangle Capacity. By the definition of SubLine connectivity, triangle capacity

can be modeled by setting the function f() as

f(π) =


1 if π is a triangle

0 otherwise.

(3.10)

15

Eq. (3.3) indicates that triangle capacity can be calculated as an eigen-function as

well.

Loop Capacity. Another important way to measure network connectivity is through

the loop capacity, which measures the total number of (weighted) loops in the network.

In this case, the corresponding function f() can be defined as follows.

f(π) =


1/len(π)! if π is a valid loop of length len(π)

0 otherwise.

(3.11)

Then, the connectivity function C(G, f) can be written as

C(G, f) =
∞∑
t=1

1

t!
trace(At) =

n∑
i=1

eλ<A,i> (3.12)

It is clear to see that the natural connectivity in the previous section is equivalent

to the loop capacity in SubLine family where we have S(G) = ln(1
n
C(G, f)).

3.2 Multi-layered Network Measures

To extend the connectivity measures in single-layered networks to multi-layered net-

works, we first give the formal definition of multi-layered networks as follows.

Definition 1. Multi-layered Network Model (MuLaN). Given (1) a binary

g× g abstract layer-layer dependency network G, where G(i, j) = 1 indicates layer-j

depends on layer-i (or layer-i supports layer-j), G(i, j) = 0 means that there is no

direct dependency from layer-i to layer-j; (2) a set of within-layer networks {Gi}gi=1

with adjacency matrices A = {A1, . . . , Ag}; (3) a set of cross-layer node-node depen-

dency matrices D, indexed by pair (i, j), i, j ∈ [1, . . . , g], such that for a pair (i, j), if

G(i, j) = 1, then Di,j is a ni×nj matrix; otherwise Di,j = φ (i.e., an empty set); (4)

θ is a one-to-one mapping function that maps each node in layer-layer dependency

16

network G to the corresponding within-layer adjacency matrix Ai (i = 1, ..., g); (5) ϕ

is another one-to-one mapping function that maps each edge in G to the correspond-

ing cross-layer node-node dependency matrix Di,j. We define a multi-layered network

as a quintuple Γ =< G,A,D, θ, ϕ >.

For simplicity, we restrict the within-layer adjacency matrices Ai to be simple (i.e.,

no self-loops), symmetric and binary; and the extension to the weighted, asymmetric

case is straightforward. In our work, we require cross-layer dependency network G to

be an un-weighted graph with arbitrary dependency structure. Notice that compared

with the existing pair-wise two-layered models, MuLaN allows a much more flexible

and complicated dependency structure among different layers. For the cross-layer

node-node dependency matrix Di,j, Di,j(s, t) = 1 indicates that node s in layer i

supports node t in layer j.

(a) A four-layered network (b) The dependency network G

Figure 3.1: An Illustrative Example Of MuLaN model

Figure 3.1(a) presents an example of a four-layered network. In this example,

layer-1 (i.e., the control layer) is the supporting layer (i.e., the root node in the layer-

layer dependency network G). Layer-2 and layer-3 directly depend on layer-1 (i.e.,

one represents a communication layer by satellites and the other represents another

communication layer in landlines, respectively), while layer-4 (i.e., the physical layer)

17

depends on both communication layers (layer-2 and layer-3). The abstracted layer-

layer dependency network (G) is shown in Figure 3.1(b). A = {A1,A2,A3,A4}

denotes the within-layer adjacency matrices, each of which describes the network

topology in the corresponding layer. In this example, D is a set of matrices containing

only four non-empty matrices: D(1,2), D(1,3), D(2,4), and D(3,4). For example, D(3,4)

describes the node-node dependency between layer-3 and layer-4. The one-to-one

mapping function θ maps node 1 in G (i.e., Layer 1) to the within-layer adjacency

matrix of layer-1 (A1); and the one-to-one mapping function ϕ maps edge 〈3, 4〉 in

G to the cross-layer node-node dependency matrix D(3,4) as shown in Figure 3.1(b).

With the above definition, the connectivity of a multi-layered network Γ can be

defined as a weighted summation over the connectivity scores from all the layers

C(Γ) =

g∑
i=1

αiC(Gi, fi) (3.13)

where αi is the weight for layer i.

18

Chapter 4

NETWORK CONNECTIVITY INFERENCE

In real-world applications, networks are evolving over time. Moreover, the input

network structure is often incomplete due to noise and accessibility issues. To address

those issues, we propose to study the following two problems: (1) eigen-function based

connectivity measures tracking in dynamic networks, and (2) cross-layer dependence

inference in multi-layered networks.

4.1 Eigen-functions Tracking in Dynamic Networks

To better understand the node centrality and connectivity of graphs, many differ-

ent graph parameters have been invented for different tasks. Though different in

their definitions, many of those parameters can be well approximated by some well-

defined eigen-functions. For example, in node centrality analysis, one commonly used

parameter is eigenvector centrality Newman (2008), which is defined with the lead-

ing eigenvector of the graph. As for graph connectivity, frequently used parameters

include epidemic threshold (Wang et al. (2003); Chakrabarti et al. (2008); Prakash

et al. (2012)), clustering coefficient Wasserman (1994), graph robustness (Albert et al.

(2000); Frank and Frisch (1970); Chan et al. (2014)), eigen-gap, etc. For epidemic

threshold, Prakash et al. found that the tipping point for the dissemination process

in arbitrary graphs is controlled by the leading eigenvalue of certain system matrix

associated with the graph Prakash et al. (2012). For clustering coefficient calcula-

tion, the most time-consuming part is counting the number of triangles in the graph,

which is of O(n3) complexity. In Tsourakakis (2008), Tsourakakis proved that the

19

number of triangles in a graph can be accurately estimated with its top eigenvalues.

Similar to clustering coefficient, Chan et al. showed that natural connectivity Wu

et al. (2010), a good measurement for graph robustness, can also be approximated

with the top eigenvalues of the graph. Moreover, as shown in Chung (1997), the

expansion property of a graph can be measured with its eigen-gap between first and

second eigenvalues Hoory et al. (2006).

Most of the graph parameters mentioned above are all based on static graphs.

However, in real-world applications, the graph structure evolves over time. In some

cases, subtle changes in the graph structure may lead to huge differences on some of

its properties. For example, when Ebola virus was first brought to the US continent,

some emerging connections in the contact network would greatly reduce the epidemic

threshold of the graph, and eventually cause the outbreak of the disease. By moni-

toring those key parameters as graph evolves and analyzing the attribution for sharp

parameter changes timely, we would be able to get prepared for emergent events at

an early stage. Another application scenario is the social network. In websites like

Facebook and Twitter, new connections between users emerge all the time, which

would, in turn, change the influential individuals in the network. It is crucial for

online marketing companies to keep track of those changes since their ads targeting

strategies may need to be modified accordingly.

For eigen-functions tracking problem, simply re-computing the eigen-pairs when-

ever the graph structure changs is computationally costly over fast-changing large

graphs. The popular Lanczos method for computing top-k eigen-pairs would require

O(mk+ nk2) time, where m and n are the numbers of edges and nodes in the graph.

Although the complexity seems acceptable for one-time calculation in static graphs, it

would be too expensive for large dynamic graphs. To address this challenge, we con-

sider a way of updating the eigen-pairs incrementally instead of re-computing them

20

from scratch at each time stamp. In this work, we propose two online algorithms to

track the eigen-pairs of a dynamic graph efficiently, which bear linear time complex-

ities w.r.t. the number of nodes n in the graph and the number of changed edges s

at the current stamp. Based on these algorithms, we introduce a general attribution

analysis framework for identifying key connection changes that have the largest im-

pact on the graph. Last, to control the accumulated tracking error of eigen-functions,

we propose an error estimation method to detect sharp error increase timely so that

the accumulated error can be eliminated by restarting the tracking algorithms.

In addition to the problem definition, the main contributions of this work can be

summarized as follows:

• Algorithms. We propose two online algorithms to track the top eigen-pairs of a

dynamic graph, which in turn enable us to track a variety of important network

parameters based on certain eigen-functions. In addition, we provide a frame-

work for attribution analysis on eigen-functions and a method for estimating

tracking errors.

• Evaluations. We evaluate our methods with other eigen-pair update algorithms

on real-world datasets, to validate the effectiveness and efficiency of the pro-

posed algorithms.

4.1.1 Problem Definition

In this section, we introduce the notations, followed by a formal definition of

eigen-functions tracking problem.

The symbols used in this work is shown in Table 5.3. We consider the graph

in each time stamp Gt(V,E) is undirected and unipartite. Consistent with standard

notation, we use bold upper-case for matrices (e.g., B), and bold lower-case for vectors

(e.g., b). For each time stamp, the graph is represented by its adjacency matrix At.

21

∆At denotes the perturbation matrix from time t to t + 1. (λtj,uj
t) is the jth eigen-

pair of At. The number of triangles and robustness score of the graph at time t are

represented as 4(Gt) and S(Gt), respectively.

With the above notations, the eigen-function is defined as a function that maps

eigen-pairs of the graph to certain graph attribute or attribute vector, which can be

expressed as

g : (Λk,Uk)→ Rx(x ∈ N) (4.1)

Table 4.1: Symbols used in Trip-Basic and Trip.

Symbol Definition and Description

Gt(V,E) undirected, unipartite network at time t

m number of edges in the network

n number of nodes in the network

B,C, . . . matrices (bold upper case)

b, c, . . . vectors (bold lower case)

At adjacency matrix of Gt(V,E) at time t

∆At perturbation matrix from time t to t+ 1

4(Gt) number of triangles in Gt

S(Gt) robustness score of Gt

Gap(Gt) eigen-gap of Gt

(λj
t,uj

t) jth eigen-pair of At

[∆At]t=t1...t2 perturbation matrices of dynamic graph from time t1 to t2

[(Λk
t,Ut

k)]t=t1...t2 top k eigen-pairs from time t1 to t2

[4(Gt)]t=t1...t2 4(G) from time t1 to t2

[S(Gt)]t=t1...t2 S(G) from time t1 to t2

The simplest eigen-function is the eigenvalues and eigenvectors themselves. Specif-

ically, the eigenvalues of a graph’s adjacency matrix can be used to measure the epi-

demic threshold or path capacity of a graph as mentioned in Chapter 3, while the

eigenvectors can be used to evaluate the centrality of nodes Newman (2008), or to

22

detect interesting subgraphs Prakash et al. (2010). Some more sophisticated eigen-

functions include the number of triangles, network robustness (i.e., natural connec-

tivity), eigen-gap, etc.

For all the above-mentioned network parameters (e.g., epidemic threshold, eigen

centrality, number of triangles, robustness measurement, eigen-gap), it is often suffi-

cient to use top-k eigen-pairs to achieve a high accuracy estimation of these param-

eters. Therefore, in order to track these parameters on a dynamic graph, we only

need to track the corresponding top-k eigen-pairs at each time stamp. Formally, the

eigen-function tracking problem is defined as follows. Once the top-k eigen-pairs are

estimated, we can use Eq. (3.2) to (3.5) to update the corresponding eigen-functions.

Problem 1. Top-k Eigen-Pairs Tracking

Given: (1) a dynamic graph G tracked from time t1 to t2 with starting matrix At1

, (2) an integer k, and (3) a series of perturbation matrices [∆At]t=t1,...t2−1;

Output: the corresponding top-k eigen-pairs at each time stamp [(Λk
t,Ut

k)]t=t1,...,t2.

4.1.2 Proposed Algorithms

In this section, we present our solutions for Problem 1. We start with a baseline so-

lution (Trip-Basic), and then present its high-order variant (Trip), followed by the

attribution analysis framework for different eigen-functions and an error estimation

method.

Key Idea

The key idea for Trip-Basic and Trip is to incrementally update the eigen-pairs

with corresponding perturbation terms at each time stamp. By matrix perturbation

23

theory Stewart and Sun (1990), we have the following perturbation equation

(At + ∆At)(uj
t + ∆uj) = (λtj + ∆λj)(uj

t + ∆uj) (4.2)

As the perturbation matrix is often very sparse, it is natural to assume that graphs in

two consecutive time stamps share a fixed eigen-space. Therefore, the perturbation

eigenvector ∆uj can be expressed as ∆uj =
∑k

i=1 αijui
t, which is the linear combi-

nation of old eigenvectors. Taking the 2-dimensional eigen-space in Figure 4.1 as an

example, the old eigenvectors are u1
t and u2

t marked in orange; the new eigenvectors

u1
t+1 and u2

t+1 (in green) can be decomposed into old eigenvectors u1
t, u2

t and

perturbation eigenvectors ∆u1, ∆u2 in the same plane.

Figure 4.1: Incremental Update for Eigen-pairs Tracking.

Expanding Eq. (4.2), we get

Atuj
t + ∆Atuj

t + At∆uj + ∆At∆uj

=λtjuj
t + ∆λjuj

t + λtj∆uj + ∆λj∆uj

By the fact that Atuj
t = λtjuj

t, the perturbation equation can be simplified as

∆Atuj
t + At∆uj + ∆At∆uj (4.3)

=∆λjuj
t + λtj∆uj + ∆λj∆uj

Multiplying the term uj
t′ on both sides; as eigenvectors are of unit length, we have

uj
t′∆Atuj

t + uj
t′∆At∆uj = ∆λj + uj

t′∆λj∆uj (4.4)

As we assume that ∆uj � uj and ∆λj � λj, the high-order terms uj
t′∆At∆uj

and uj
t′∆λj∆uj in Eq. (4.4) can be discarded without losing too much accuracy.

24

Therefore, ∆λj can be estimated as

∆λj = uj
t′∆Atuj

t (4.5)

The difference between Trip-Basic and Trip lies in their ways of estimating

perturbation eigenvectors, which will be discussed below.

Trip-Basic

The Trip-Basic algorithm is a first-order eigen-pair tracking method, which ignores

the high-order terms in the perturbation equation when updating eigenvectors at each

time stamp. By removing the high-order terms, the perturbation equation Eq. (4.3)

can be written as

∆Atuj
t + At∆uj = ∆λjuj

t + λtj∆uj

Replacing all ∆uj terms with
∑k

i=1 αijui
t and multiplying the term up

t′ (p 6= j)

on both sides, by applying the orthogonality property of eigenvectors to the new

equation, we can solve the coefficient αpj as

αpj =
up

t′∆Atuj
t

λtj − λtp

Therefore ∆uj can be estimated as

∆uj =
k∑

i=1,i 6=j

(
ui
t′∆Atuj

t

λtj − λti
ui
t) (4.6)

Suppose At is perturbed with a set of edges ∆E = 〈p1, r1〉, . . . , 〈ps, rs〉 where s is

the number of non-zero elements in perturbation matrix ∆A. In Eq. (4.6), the term

uj
t′∆Auj

t can be expanded as

uj
t′∆Atuj

t =
∑

〈p,r〉∈∆E

∆At(p, r)upj
turj

t (4.7)

25

Algorithm 1 Trip-Basic: First-Order Eigen-Pairs Tracking

Input: Dynamic graph G tracked from time t1 to t2, with starting eigen-pairs

(Λk
t1 ,Ut1

k), series of perturbation matrices [∆At]t=t1,...t2−1

Output: Corresponding eigen-pairs [(Λk
t,Ut

k)]t=t1+1,...t2

1: for t = t1 to t2 − 1 do

2: for j = 1 to k do

3: Initialize ∆uj ← 0

4: for i = 1 to k,i 6= j do

5: ∆uj ← ∆uj +
ut
i
′
∆Atut

j

λtj−λti
ut

i

6: end for

7: Calculate ∆λj ← ut
j
′
∆Atut

j

8: Update λt+1
j ← λtj + ∆λj

9: Update uj
t+1 ← uj

t + ∆uj

10: end for

11: end for

12: Return [(Λk
t,Ut

k)]t=t1+1...t2

Eq. (4.6) and Eq. (4.7) naturally lead to our base solution (Trip-Basic) for solving

Problem 1 as follows.

The approximated eigen-pairs for each time stamp is computed from step 2 to 10.

Each ∆λj and ∆uj is calculated from step 3 to 7 by Eq. (4.6) and (4.7). At step

8 and 9, λtj and uj
t is updated with ∆λj and ∆uj. Note that after updating the

eigenvector in step 9, we normalize each of them to unit length.

Complexity Analysis. The efficiency of proposed Algorithm 1 is summarized in

Lemma 1. Both time complexity and space complexity is linear w.r.t. the total

number of the nodes in the graph (n) and total number of the time stamps (T).

26

Lemma 1. Complexity of First-Order Eigen-Function Tracking. Suppose T

is the total number of the time stamps, s is the average number of perturbed edges in

[∆At]t=t1,...t2−1, then the time cost for Algorithm 1 is O(Tk2(s + n)); the space cost

is O(Tnk + s).

Proof. In each time stamp from time t1 to t2 − 1, top k eigen-pairs are updated in

steps 2-10. By Eq. (4.7), the complexity of computing term uj
t′∆Atuj

t is O(s), so

the overall complexity of step 5 is O(s+n). Therefore calculating ∆uj from step 4 to

6 takes O(k(s+ n)). In step 7, computing ∆λj takes another O(s). Updating λtj and

uj
t in step 8 and 9 takes O(1) and O(n). Therefore updating all top-k eigen-pairs Uk

t

and Λt
k takes O(k2(s+ n)) and O(ks) respectively. Thus the overall time complexity

for T iterations is O(Tk2(s+ n)).

For space cost, it takes O(k) and O(nk) to store Λt
k and Uk

t at each time stamp.

In the update phase from step 2 to 10, it takes O(s) to store ∆At, O(1) to update λtj

and O(n) to update uj
t. However, the space used in the update phase can be reused

in each iteration. Therefore the overall space complexity for T time stamps takes a

space of O(Tnk + s).

Trip

The baseline solution in Algorithm 1 is simple and straight-forward, but it has the

following limitations. First, the approximation error of first-order matrix perturbation

is in the order of ‖∆At‖. In other words, the quality of such approximation might

decrease quickly w.r.t. the increase of ‖∆At‖. Second, the approximation quality is

highly sensitive to the small eigen-gap of At as indicated by Eq. (4.6). In order to

address these limitations, we further propose Algorithm 2 by adopting the high-order

matrix perturbation to update the eigen-pairs of At+1. The main difference between

Algorithm 2 and Algorithm 1 is that we take high-order terms in the perturbation

27

equation (Eq. (4.3)) into consideration while updating eigenvectors. Similar to Trip-

Basic we replace all ∆uj terms with
∑k

i=1 αijui
t and multiplying the term up

t′

(for 1 ≤ p ≤ k, p 6= j) on both sides. By applying the orthogonality property of

eigenvectors to the new equation, we have

Xt(p, j) + αpjλ
t
p +

k∑
i=1

Xt(p, i)αij = αpjλ
t
j + αpj∆λj

where Xt = Ut
k
′
∆AtUt

k. Reorganizing the terms in the above equation, we have

Xt(p, j)− αpj(λtj + ∆λj − λtp) +
k∑
i=1

Xt(p, i)αij = 0

By defining v = λtj + ∆λj − λtp for p = 1, . . . , k, Dt = diag(v) and αj = [α1j, . . . , αkj]

, the above equation can be expressed as

Xt(:, j)−Dtαj + Xtαj = 0

Solve the above equation for αj, we have

αj = (Dt −Xt)−1Xt(:, j)

In Algorithm 2, the top-k eigen-pairs at each time stamp is updated from step 2

to 11. In step 2, matrix Xt is calculated for computing ∆Λk and ∆Uk. In step 4,

all top-k eigenvalues Λk are updated by ∆Λk. From step 6 to 10, each uj
t is updated

according to the derivations of the eigen-update rule in mentioned above. Again,

after we update the eigenvector in step 9, we normalize each of them to unit length.

Complexity Analysis. The efficiency of Algorithm 2 is given in Lemma 2. Com-

pared with Trip-Basic, both time and space complexity are still linear w.r.t. total

1Here the diag function works the same with the one in Matlab. When applying to a matrix,

diag returns a vector of the main diagonal elements of the matrix; when applying to a vector, it

returns a square diagonal matrix with the elements of the vector on the main diagonal.

28

Algorithm 2 Trip: High-Order Eigen-Pairs Tracking

Input: Dynamic graph G tracked from time t1 to t2, with starting eigen-pairs

(Λk
t1 ,Ut1

k), series of perturbation matrices [∆At]t=t1,...t2−1

Output: Corresponding eigen-pairs [(Λk
t,Ut

k)]t=t1+1,...t2

1: for t = t1 to t2 − 1 do

2: Calculate Xt ← Ut
k
′
∆AtUt

k

3: ∆Λk ← diag(X t)1

4: Update Λt+1
k ← Λt

k + ∆Λk

5: for j = 1 to k do

6: Calculate v← λtj + ∆λj − λtp for p = 1, . . . , k

7: Dt ← diag(v)

8: Calculate αj ← (Dt −Xt)−1X(:, j)

9: Calculate ∆uj ←
∑k

i=1 αijui
t

10: Update uj
t+1 ← uj

t + ∆uj

11: end for

12: end for

13: Return [(Λk
t,Ut

k)]t=t1+1...t2

number of nodes in the graph and the total number of time stamps, with a slight

increase in k, which is often very small.

Lemma 2. Complexity of High-Order Eigen-Function Tracking. Suppose T

is the total number of time stamps, s is the average number of perturbed edges in

[∆At]t=t1,...t2−1, then the time cost for Algorithm 2 is O(T (k4 + k2(n+ s))); the space

cost is O(Tnk + k2 + s).

Proof. In each time stamp from time t1 to t2 − 1, top k eigen-pairs are updated in

steps 2-11. Using the update rule provided in Eq. (4.7), calculating Xt in step 2 takes

29

O(k2s). Updating top eigenvalues in step 3-4 takes O(k). From step 5-11, eigenvectors

are updated. It takes O(k3) in to do matrix inversion and multiplication in step 8

and O(nk) to calculate ∆uj in step 9. Therefore updating Ut
k takes O(k4 + nk2)).

Thus the overall time complexity for T iterations takes O(T (k4 + k2(n+ s))).

For space cost, it takes O(k) and O(nk) to store Λt
k and Uk

t, O(s) to store ∆At

for each time stamp. In the update phase from step 2 to 11, it takes O(k2) to store

and calculate Xt, Dt; O(k) to store v and αj; O(k2) to calculate αj. However the

space cost in the update phase can be reused in each iteration. Therefore the overall

space complexity for T time stamps takes a space of O(Tnk + k2 + s).

Attribution Analysis

Based on our Trip algorithms, we can effectively track the corresponding eigen-

functions of interest. In reality, we might also be interested in understanding the

key factors that cause these changes in dynamic graphs. For example, among all the

changed edges in ∆A, which edge is most important in causing the increase/decrease

of the epidemic threshold, or the number of triangles, etc. The importance of an

edge 〈p, r〉 ∈ ∆E can be measured as the change it can make on the corresponding

eigen-functions, which can be written as

score(〈p, r〉) ∼ ∆g〈p,r〉 = gG∪〈p,r〉 − gG

where g(.) is one of the eigen-functions we define Section 4.1.1.

In Algorithm 3, all removed edges and added edges are extracted from ∆A in step

1 and step 2. The impact score of each removed edge at time t is calculated from

step 3 to 5. Similarly, the score of each added edge is calculated from step 6 to 8. In

the end, top l removed edges and l added edges are returned as high impact edges at

time t.

30

Algorithm 3 Dynamic Attribution Analysis

Input: Dynamic graph G and eigen-pairs (Λk
t,Ut

k) at time t, perturbation matrix

∆At, eigen-function g(.), number l

Output: top l added edges and removed edges at time t that have the largest impact

on eigen-function g(.)

1: removed← extract all removed edges in ∆At

2: added← extract all added edges in ∆At

3: for each edge 〈p, r〉 in removed do

4: score(〈p, r〉)← gGt − gGt\〈p,r〉

5: end for

6: for each edge 〈p, r〉 in added do

7: score(〈p, r〉)← gGt∪〈p,r〉 − gGt

8: end for

9: Return top l edges in removed and added with highest scores respectively

Complexity Analysis. Assume that the complexity of calculating ∆g〈p,r〉 is h(n, k, s),

where h is a function of number of nodes n, number of eigen-pairs k and number of

changed edges s. Then the complexity of calculating the impact scores of all changed

edges (from step 3 to 8) is O(sh(n, k, s)). Given the impact score of each changed

edges, the complexity of picking out top l edges from removed and added set using

heap structure is O(|removed|logl)+O(|added|logl) = O(slogl). Therefore the overall

complexity for attribution analysis at time t is O(s(h(n, k, s) + logl)).

Error Estimation

The core mechanism for both Trip-Basic and Trip is to incrementally update the

eigen-pairs at each time stamp. With this scheme, the tracking error of eigen-pairs

would accumulate as time goes by. Therefore, finding a proper time to restart the

31

algorithm is of key importance to keep the tracking error within a reasonable range.

For simplicity, we only estimate the error of leading eigenvalue since it is the key part

for most of the eigen-functions. Here we denote err(λt) as the estimated error on λ

introduced at time t. Intuitively, err(λt) would be strongly correlated to the impact

of ∆At on the original eigen-space. As the original eigen-space is defined by the top-k

eigenvectors Ut1
k at the first time stamp t1, to measure the impact of ∆At on Ut1

k , we

can project ∆At into this space and take the Frobenius norm of the projection as its

actual impact. Eq. (4.8) formalizes the impact function of ∆At on eigen-space Ut1
k .

err(λt) ∼ impact(∆At,Ut1
k) =‖ Ut1

k Ut1
k

′
∆At ‖Fro (4.8)

We denote the summation of the perturbation impacts from the first time stamp t1 to

current stamp t as erracc(λ
t). This number can be viewed as a good approximation

of accumulated tracking error on leading eigenvalue from t1 to t. In other words, the

curve of erracc(λ
t) from t = t1, . . . , t2 would have a similar shape with real tracking

error curve of Trip algorithms.

Algorithm 4 Error Estimation for Eigen-function Tracking

Input: Dynamic graph G tracked from time t1 to t2, with starting eigen-pairs

(Λk
t1 ,Ut1

k), series of perturbation matrices [∆At]t=t1,...t2−1

Output: Corresponding estimated error erracc(λ
t) for t = t1 + 1, . . . t2

1: Initialize erracc(λ
t1)← 0

2: Initialize P ← Ut1
k Ut1

k

′

3: for t = t1 + 1 to t2 do

4: Calculate impact(∆At,Ut1
k)←‖ P∆At ‖Fro

5: Calculate erracc(λ
t)← erracc(λ

t−1) + impact(∆At,Ut1
k)

6: end for

7: Return erracc(λ
t) for t = t1 + 1, . . . t2

32

In Algorithm 4, erracc(λ
t1) is initialized as 0 in step 1 and P is initialized as the

projection matrix in step 2. From step 3 to 6, the impact of each perturbation matrix

is calculated and accumulated to erracc(λ
t). In step 7, the estimated error array

erracc(λ
t) for t = t1 + 1, . . . t2 is returned.

Complexity Analysis. The complexity of initializing projection matrix P isO(n2k).

Since ∆At is often very sparse, the complexity of calculating impact(∆At,Ut1
k) can

be reduced to O(ns) where s is the number of changed edges at current time stamp.

The complexity of accumulating erracc(λ
t) at each time stamp is O(1). Therefore the

overall time complexity for error estimation over time series of length T is O(n2k +

Tns).

4.1.3 Experimental Evaluation

In this section, we evaluate Trip-Basic and Trip on real datasets. All the

experiments are designed to answer the following two questions

• Effectiveness: how accurate are our algorithms in tracking eigen-functions, an-

alyzing corresponding attributions and estimating the tracking errors?

• Efficiency: how fast are the tracking algorithms?

Experiment Setup

Machine. We ran our experiment in a machine with 2 processors Intel Xeon 3.5GHz

with 256GB of RAM. Our experiment is implemented with Matlab using single thread.

Datasets. Here we use three real datasets for evaluations.

AS The first dataset we use for the evaluation is Autonomous system graph, which is

available at http://snap.stanford.edu/data/. The graph has recorded communi-

cations between routers in the Internet for a long period of time. Based on the data

33

http://snap.stanford.edu/data/

from http://www.routeviews.org, we constructed an undirected dynamic commu-

nication graph that contains 100 daily instances with time span from Nov 8 1997 to

Feb 16 1998. The largest graph among those instances has 3,569 nodes and 12,510

edges. The dataset shows both the addition and deletion of nodes and edges over

time.

Power Grid The second dataset is power grid network. It is a static, undirected,

un-weighted network representing the topology of the Western States Power Grid of

the United State Watts and Strogatz (1998), which has 4,941 nodes and 6,594 edges.

To simulate the evolving process, we randomly add 0.5%m (m is the number of edges

in the graph) new edges to the graph at each time stamp as perturbation edges. We

have changed different percentages of perturbation edges, and experimented several

runs on each of the settings. As the results are similar, we only report the results

from one run for brevity.

Airport The third dataset is a static, undirected, un-weighted airport network, which

represents the internal US air traffic lines between 2,649 airports and has 13,106

links (available at http://www.levmuchnik.net/Content/Networks/NetworkData.

html). Again, similar synthetic evolving process was done on this dataset. With

similar experiment results, we only report those from one run of simulation for brevity.

Evaluation Metrics. For the quality of eigen-functions tracking, we use the error

rate ε. For eigenvalues, number of triangles and robustness measurement, their error

rate are computed as ε = |g−g∗|
g∗

, where g and g∗ are the estimated and true eigen-

function values, respectively. For eigenvector, the error is computed as ε = 1− uu∗

‖u‖‖u∗‖ ,

where u is the estimated eigenvector and u∗ is the corresponding true eigenvector. For

attribution analysis, we use the top-10 precision. For efficiency, we report the speedup

of our algorithms over the re-computing strategy which computes the corresponding

eigen-pairs from scratch at each time stamp.

34

http://www.routeviews.org
http://www.levmuchnik.net/Content/Networks/NetworkData.html
http://www.levmuchnik.net/Content/Networks/NetworkData.html

Effectiveness Results

Effectiveness of Eigen-Function Tracking. Figure 4.2 to 4.6 compare the effec-

tiveness of Trip-Basic and Trip using different number of eigen-pairs (k). We have

the following observations. First, for all of the four eigen-functions, both algorithms

could reach an overall error rate below 20% at the end of the tracking process. Second,

when k is increased from 50 to 100, Trip-Basic could get a relatively more stable

approximation over the tracking process. Third, Trip is more stable and overall

reaches a smaller error rate compared with Trip-Basic. For example, as time goes

by, Trip-Basic starts to fluctuate sharply when k = 50 on all four eigen-functions.

Finally, the error on the number of triangles is relatively higher. This is probably

because the number of triangles is the sum of cubic eigenvalues, and small errors on

eigenvalues would therefore be magnified on the final result.

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time Stamp

F
ir

s
t

E
ig

e
n

v
a

lu
e

 E
rr

o
r

R
a

te

k=50

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time Stamp

F
ir

s
t

E
ig

e
n

v
a

lu
e

 E
rr

o
r

R
a

te

k=100

Trip−Basic

Trip

(a) k=50 (b) k=100

Figure 4.2: The Error Rate of First Eigenvalue Approximation.

In addition, we also compared our algorithms with three different eigen-pair esti-

mation methods, which include (1) “QR Decom”, a QR decomposition based eigen-

pairs updating method Li et al. (2015b); (2) “SVD delta”, simple SVD decompo-

sition on ∆A; and (3) “Nystrom”, a sampling-based eigen-pair estimation method

35

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time Stamp

F
ir

s
t

E
ig

e
n

v
e

c
to

r
E

rr
o

r
R

a
te

k=50

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time Stamp

F
ir

s
t

E
ig

e
n

v
e

c
to

r
E

rr
o

r
R

a
te

k=100

Trip−Basic

Trip

(a) k=50 (b) k=100

Figure 4.3: The Error Rate of First Eigenvector Approximation.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Time Stamp

#
T

ri
a

n
g

le
s

 E
rr

o
r

R
a

te

k=50

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Time Stamp

#
T

ri
a

n
g

le
s

 E
rr

o
r

R
a

te

k=100

Trip−Basic

Trip

(a) k=50 (b) k=100

Figure 4.4: The Error Rate of Number of Triangles Approximation.

derived from Nystrom algorithm Drineas and Mahoney (2005). For better effective-

ness/efficiency trade-off, we sample 2,000 nodes for Nystrom algorithm to calculate

eigen-pairs in our experiment. To better illustrate the results, we take the error rates

of all methods for every 15 days on the AS data set. As “SVD delta” method causes

large tracking errors compared to other methods, we only report the error rates from

other comparing methods as shown from Figure 4.7 to Figure 4.11. We can see that

36

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Time Stamp

R
o

b
u

s
tn

e
s

s
 S

c
o

re
 E

rr
o

r
R

a
te

k=50

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Time Stamp

R
o

b
u

s
tn

e
s

s
 S

c
o

re
 E

rr
o

r
R

a
te

k=100

Trip−Basic

Trip

(a) k=50 (b) k=100

Figure 4.5: The Error Rate of Robustness Score Approximation.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time Stamp

E
ig

e
n

−
G

a
p

 E
rr

o
r

R
a

te

k=50

Trip−Basic

Trip

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time Stamp

E
ig

e
n

−
G

a
p

 E
rr

o
r

R
a

te

k=100

Trip−Basic

Trip

(a) k=50 (b) k=100

Figure 4.6: The Error Rate of Eigen-gap Approximation.

the performance of Trip-Basic and Trip are among the best methods though their

error rates keep increasing as time accumulates.

Effectiveness of Attribution Analysis. For attribution analysis, we divided the

changed edges at each time stamp into two classes: edges being added and edges

being removed. And among these two classes, we rank those edges according to their

attribution score defined in Section 4.1.2. As a consequence, the top-ranked edges

are the ones that have largest impact on the corresponding eigen-functions. Here we

37

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

>=0.2

F
ir

s
t

E
ig

e
n

v
a

lu
e

 E
rr

o
r

R
a

te

First Eigenvalue

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.004

 0.008

 0.012

 0.016

 0.02

 0.024

 0.028

 0.032

 0.036

>=0.04

F
ir

s
t

E
ig

e
n

v
a

lu
e

 E
rr

o
r

R
a

te

First Eigenvalue

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.001

 0.002

 0.003

 0.004

>=0.005

F
ir

s
t

E
ig

e
n

v
a

lu
e

 E
rr

o
r

R
a

te

First Eigenvalue

Trip−Basic

Trip

QR Decom

Nystrom

(a) AS (b) Power Grid (c) Airport

Figure 4.7: The Error Rate of First Eigenvalue Approximation.

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

>=0.2

F
ir

s
t

E
ig

e
n

v
e

c
to

r
E

rr
o

r
R

a
te

First Eigenvector

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.004

 0.008

 0.012

 0.016

 0.02

 0.024

 0.028

 0.032

 0.036

>=0.04

F
ir

s
t

E
ig

e
n

v
e

c
to

r
E

rr
o

r
R

a
te

First Eigenvector

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.0002

 0.0004

 0.0006

 0.0008

>=0.001

F
ir

s
t

E
ig

e
n

v
e

c
to

r
E

rr
o

r
R

a
te

First Eigenvector

Trip−Basic

Trip

QR Decom

Nystrom

(a) AS (b) Power Grid (c) Airport

Figure 4.8: The Error Rate of First Eigenvector Approximation.

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

>=0.2

R
o

b
u

s
tn

e
s

s
 S

c
o

r
e

 E
r
r
o

r
 R

a
te

Robustness Score

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

>=0.2

R
o

b
u

s
tn

e
s

s
 S

c
o

r
e

 E
r
r
o

r
 R

a
te

Robustness Score

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.0004

 0.0008

 0.0012

 0.0016

>=0.002

R
o

b
u

s
tn

e
s

s
 S

c
o

re
 E

rr
o

r
R

a
te

Robustness Score

Trip−Basic

Trip

QR Decom

Nystrom

(a) AS (b) Power Grid (c) Airport

Figure 4.9: The Error Rate of Robustness Score Approximation.

scored and ranked those edges with our approximated eigen-pairs and true eigen-pairs

respectively and then compare the similarity between the two ranks. The precision of

attribution analysis therefore is defined as the precision at rank 10 in approximated

38

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0.24

 0.28

 0.32

 0.36

>=0.4

#
T

ri
a

n
g

le
 E

rr
o

r
R

a
te

#Triangle

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0.24

 0.28

 0.32

 0.36

>=0.4

#
T

ri
a

n
g

le
 E

rr
o

r
R

a
te

#Triangle

Day15 Day30 Day45 Day60 Day75 Day90
 0

0.002

0.004

0.006

0.008

>0.01

#
T

ri
a

n
g

le
 E

rr
o

r
R

a
te

#Triangle

Trip−Basic

Trip

QR Decom

Nystrom

(a) AS (b) Power Grid (c) Airport

Figure 4.10: The Error Rate of Number of Triangles Approximation.

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

>=0.2

E
ig

e
n

−
G

a
p

 E
rr

o
r

R
a

te

Eigen−Gap

Day15 Day30 Day45 Day60 Day75 Day90
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

>=0.2

E
ig

e
n

−
G

a
p

 E
rr

o
r

R
a

te

Eigen−Gap

Day15 Day30 Day45 Day60 Day75 Day90
 0

0.002

0.004

0.006

0.008

>0.01

E
ig

e
n

−
G

a
p

 E
rr

o
r

R
a

te

Eigen−Gap

Trip−Basic

Trip

QR Decom

Nystrom

(a) AS (b) Power Grid (c) Airport

Figure 4.11: The Error Rate of Eigen-gap Approximation.

rank list. As similar results are observed in all three data set, we only report those on

AS dataset as shown in Figure 4.12 and 4.13. For the analysis on both added edges

and removed edges, Trip overall outperforms Trip-Basic.

Effectiveness of Error Estimation. To show the effectiveness of Algorithm 4, we

compare the curve shapes between true errors of Trip and accumulative estimated

errors erracc(λ
t) on AS data set with k = 50. Ideally, the two curves should overlap

with each other when erracc(λ
t) is properly scaled with some elaborately picked factor.

Figure 4.14 shows that the estimated error erracc(λ
t) can effectively catch sharp error

increases in the tracking process as marked in red circle. Therefore, it can be used as

a trigger to restart the tracking process so that the accumulative error can always be

39

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 A

d
d

e
d

 E
d

g
e
s
 P

re
c
is

io
n

First Eigenvalue

Trip−Basic

Trip

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 A

d
d

e
d

 E
d

g
e
s
 P

re
c
is

io
n

Number of Triangles

Trip−Basic

Trip

(a) First Eigenvalue (b) Number of Triangles

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 A

d
d

e
d

 E
d

g
e
s
 P

re
c
is

io
n

Robustness

Trip−Basic

Trip

 5 10 20 50 100 200
0

0.2

0.4

0.6

0.8

1

1.2

Number of Eigen−Pairs

T
o

p
 1

0
 A

d
d

e
d

 E
d

g
e
s
 P

re
c
is

io
n

Eigen−Gap

Trip−Basic

Trip

(c) Robustness (d) Eigen-gap

Figure 4.12: Average Precision over Time for the Attribution Analysis (Added
Edges).

kept within a low range.

Efficiency Results

Figure 4.15 shows the average speed up w.r.t. different k values on AS dataset. We

see that both Trip-Basic and Trip can achieve more than 20× speed up when k is

small. As k increases, the speedup decreases.

To further demonstrate the efficiency of the proposed algorithms, we also com-

40

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 R

e
m

o
v
e
d

 E
d

g
e
s
 P

re
c
is

io
n

First Eigenvalue

Trip−Basic

Trip

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 R

e
m

o
v
e
d

 E
d

g
e
s
 P

re
c
is

io
n

Number of Triangles

Trip−Basic

Trip

(a) First Eigenvalue (b) Number of Triangles

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 R

e
m

o
v
e
d

 E
d

g
e
s
 P

re
c
is

io
n

Robustness

Trip−Basic

Trip

 5 10 20 50 100 200
0

0.2

0.4

0.6

0.8

1

1.2

Number of Eigen−Pairs

T
o

p
 1

0
 R

e
m

o
v
e
d

 E
d

g
e
s
 P

re
c
is

io
n

Eigen−Gap

Trip−Basic

Trip

(c) Robustness (d) Eigen-gap

Figure 4.13: Average Precision over Time of the Attribution Analysis (Removed
Edges).

pare their effectiveness/efficiency trade-offs with those of the alternative methods.

Figure 4.16 shows that our algorithms can keep the average error rate very small on

all three data sets while consuming least amount of time.

4.2 Cross-layer Dependency Inference

The interactions observed across different domains have facilitated the emergence

of multi-layered network. Examples of such complicated network systems include

41

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time Stamp

E
s
ti

m
a
te

d
 E

rr
o

r
(F

ir
s
t

E
ig

e
n

v
a
lu

e
)

Error Estimate

Trip

Estimated

Figure 4.14: The Estimated Error of Trip-Basic and Trip on AS Data Set.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Number of Eigen−Pairs k

S
p

e
e
d

u
p

Trip−Basic

Trip

Figure 4.15: The Running Time Speedup of Trip-Basic and Trip W.R.T. to k.

0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

>=0.8

Total Runtime (s)

F
ir

s
t

E
ig

e
n

v
a

lu
e

 E
rr

o
r

R
a

te

k=50

Trip−Basic

Trip

QR Decom

SVD delta

Nystrom

0 5 10 15
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

>=0.8

Total Runtime (s)

F
ir

s
t

E
ig

e
n

v
a

lu
e

 E
rr

o
r

R
a

te

k=50

Trip−Basic

Trip

QR Decom

SVD delta

Nystrom

0 2 4 6 8 10
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

>=0.8

Total Runtime (s)

F
ir

s
t

E
ig

e
n

v
a

lu
e

 E
rr

o
r

R
a

te

k=50

Trip−Basic

Trip

QR Decom

SVD delta

Nystrom

(a) AS (b) Power Grid (c) Airport

Figure 4.16: The Error Rate Vs. Total Runtime of First Eigenvalue Approximation
in 100 Time Stamps.

critical infrastructure network mentioned in Chapter 1, collaboration platforms, and

biological systems. One crucial topological structure that differentiates multi-layered

network to other network models is its cross-layer dependency, which describes the

42

associations/dependencies between the nodes from different layers. For example, in

infrastructure networks, the full functioning of the AS network depends on the suffi-

cient power supply from the power grid layer, which in turn relies on the functioning

of the transportation network (e.g., to deliver the sufficient fuel). Similarly, in the

biological systems, the dependency is represented as the associations among diseases,

genes, and drugs. In practice, the cross-layer dependency often plays a central role in

many multi-layered network mining tasks. For example, in the critical infrastructure

network, the intertwined cross-layer dependency is considered as a major factor of

system robustness. This is because a small failure on the supporting network (e.g.,

power station malfunction in power grid) may be amplified in all its dependent net-

works through cross-layer dependencies, resulting in a catastrophic/cascading failure

of the entire system. On the other hand, the cross-layer dependency in the biolog-

ical system is often the key to new discoveries, such as new treatment associations

between existing drugs and new diseases.

In spite of its key importance, it remains a daunting task to know the exact cross-

layer dependency structure in a multi-layered network, due to noise, incomplete data

sources, limited accessibility to network dynamics. For example, an extreme weather

event might significantly disrupt the power grid, the transportation network and the

cross-layer dependencies in between at the epicenter. Yet, due to limited accessibility

to the damaged area during or soon after the disruption, the cross-layer dependency

structure might only have a probabilistic and/or coarse-grained description. On the

other hand, for a newly identified chemical in the biological system, its cross-layer

dependencies w.r.t. proteins and/or the diseases might be completely unknown due

to clinical limitations. (i.e., the zero-start problem).

In this work, we aim to tackle the above challenges by developing effective and

efficient methods to infer cross-layer dependency on multi-layered networks. The

43

main contributions of the work can be summarized as

• Problem Formulations: We define the cross-layer dependency inference problem

as a regularized optimization problem. The key idea behind this formulation is

to collectively leverage the within-layer topology and the observed cross-layer

dependency to infer a latent, low-rank representation for each layer, which can

be used to infer the missing cross-layer dependencies in the network.

• Algorithms and Analysis: We propose an effective algorithm—Fascinate to

infer the cross-layer dependency on multi-layered networks, and analyze its op-

timality, convergence and complexity. We further present its variants and gen-

eralizations, including an online algorithm to address the zero-start problem.

• Evaluations: We perform extensive experiments on five real datasets to substan-

tiate the effectiveness, efficiency, and scalability of our proposed algorithms.

Specifically, our experimental evaluations show that the proposed algorithms

outperform their best competitors by 8.2%-41.9% in terms of inference accuracy

while enjoying linear complexity. Moreover, the proposed Fascinate-ZERO

algorithm can achieve up to 107× speedup with barely any compromise on ac-

curacy.

4.2.1 Problem Definition

In this section, we give the formal definitions of the cross-layer dependency infer-

ence problems. The main symbols used in this work are listed in Table 5.3. Following

the convention, we use bold upper-case for matrices (e.g., A), bold lower-case for vec-

tors (e.g., a) and calligraphic for sets (e.g., A). A′ denotes the transpose of matrix

A. We use the ˆ sign to denote the notations after a new node is accommodated to

the system (e.g., Ĵ , Â1), and the ones without the ˆ sign as the notations before the

44

new node arrives.

Table 4.2: Main Symbols Fascinate.

Symbol Definition and Description

A,B the adjacency matrices (bold upper case)

a,b column vectors (bold lower case)

A,B sets (calligraphic)

A(i, j) the element at ith row jth column in matrix A

A(i, :) the ith row of matrix A

A(:, j) the jth column of matrix A

A′ transpose of matrix A

Â the adjacency matrix of A with the newly added node

G the layer-layer dependency matrix

A within-layer connectivity matrices of the network A = {A1, . . . ,Ag}

D cross-layer dependency matrices D = {Di,j i, j = 1, ..., g}

Wi,j weight matrix for Di,j

Fi low-rank representation for layer-i (i = 1, ..., g)

mi, ni number of edges and nodes in graph Ai

mi,j number of dependencies in Di,j

g total number of layers

r the rank for {Fi}i=1,...,g

t the maximal iteration number

ξ the threshold to determine the iteration

While several multi-layered network models exist in the literature (See Chapter 2

for a review), we will focus on a recent model proposed in Chen et al. (2015), due

to its flexibility to model more complicated cross-layer dependency structure. We

refer the readers to Chapter 3 for its full details. For the purpose of this work, we

mainly need the following notations to describe a multi-layered network with g layers.

First, we need a g × g layer-layer dependency matrix G, where G(i, j) = 1 if layer-j

depends on layer-i, and G(i, j) = 0 otherwise. Second, we need a set of g within-layer

45

Figure 4.17: A Simplified 4-layered Network for Biological Systems.

connectivity matrices: A = {A1, ...,Ag} to describe the connectivities/similarities

between nodes within the same layer. Third, we need a set of cross-layer dependency

matrices D = {Di,j i, j = 1, ..., g}, where Di,j describes the dependencies between the

nodes from layer-i and the nodes from layer-j if these two layers are directly dependent

(i.e., G(i, j) = 1). When there are no direct dependencies between the two layers (i.e.,

G(i, j) = 0), the corresponding dependency matrix Di,j is absent. Taking the multi-

layered network in Figure 4.17 for an example, the abstract layer-layer dependency

network G of this biological system can be viewed as a line graph. The four within-

layer similarity matrices in A are the chemical network (A1), the drug network (A2),

the disease network (A3) and the protein-protein interaction (PPI) network (A4).

Across those layers, we have three non-empty dependency matrices, including the

chemical-drug dependency matrix (D1,2), the drug-disease interaction matrix (D2,3)

and the disease-protein dependency matrix (D3,4) 2 .

As mentioned earlier, it is often very hard to accurately know the cross-layer de-

pendency matrices {Di,j i, j = 1, ..., g}. In other words, such observed dependency

2More complicated dependency relationships may exist across the layers in real settings, which
can be addressed with our model as well.

46

matrices are often incomplete and noisy. Inferring the missing cross-layer dependen-

cies is an essential prerequisite for many multi-layered network mining tasks. On

the other hand, real-world networks are evolving over time. Probing the cross-layer

dependencies is often a time-consuming process in large complex networks. Thus, a

newly added node could have no observed cross-layer dependencies for a fairly long

period of time since its arrival. Therefore, inferring the dependencies of such kind of

zero-start nodes is an important problem that needs to be solved efficiently. Formally,

we define the cross-layer dependency inference problem (Code) and its corresponding

zero-start variant (Code-ZERO) as follows.

Problem 2. (Code) Cross-Layer Dependency Inference

Given: a multi-layered network with (1) layer-layer dependency matrix G; (2) within-

layer connectivity matrices A = {A1, ...,Ag}; and (3) observed cross-layer dependency

matrices D = {Di,j i, j = 1, ..., g};

Output: the true cross-layer dependency matrices {D̃i,j i, j = 1, ..., g} .

Problem 3. (Code-ZERO) Cross-Layer Dependency Inference for zero-

start Nodes

Given: (1) a multi-layered network {G,A,D}; (2) a newly added node p in the lth

layer; (3) a 1× nl vector s that records the connections between p and the existing nl

nodes in layer l;

Output: the true dependencies between node p and nodes in dependent layers of layer-

l, i.e., D̃l,j(p, :) (j = 1, ..., g, G(l, j) = 1).

4.2.2 Proposed Algorithms for Code

In this section, we present our proposed solution for Problem 2 (Code). We

start with the proposed optimization formulation, and then present our algorithm

47

(Fascinate), followed by some effectiveness and efficiency analysis.

Fascinate: Optimization Formulation

The key idea behind our formulation is to treat Problem 2 as a collective collaborative

filtering problem. To be specific, if we view (1) nodes from a given layer (e.g., power

plants) as objects from a given domain (e.g., users/items), (2) the within-layer con-

nectivity (e.g., communication networks) as an object-object similarity measure, and

(3) the cross-layer dependency (e.g., dependencies between computers in the commu-

nication layer and power plants in power grid layer) as the ‘ratings’ from objects of

one domain to those of another domain; then inferring the missing cross-layer depen-

dencies can be viewed as a task of inferring the missing ratings between the objects

(e.g., users, items) across different domains. Having this analogy in mind, we propose

to formulate Problem 2 as the following regularized optimization problem

min
Fi≥0(i=1,...,g)

J =
∑

i,j: G(i,j)=1

‖Wi,j � (Di,j − FiFj
′)‖2

F︸ ︷︷ ︸
C1: Matching Observed Cross-Layer Dependencies

(4.9)

+ α

g∑
i=1

tr(Fi
′(Ti −Ai)Fi)︸ ︷︷ ︸

C2: Node Homophily

+ β

g∑
i=1

‖Fi‖2
F︸ ︷︷ ︸

C3: Regularization

where Ti is the diagonal degree matrix of Ai with Ti(u, u) =
∑ni

v=1 Ai(u, v); Wi,j is

an ni × nj weight matrix to assign different weights to different entries in the corre-

sponding cross-layer dependency matrix Di,j; and Fi is the low-rank representation

for layer i. For now, we set the weight matrices as follows: Wi,j(u, v)

= 1 if Di,j(u, v) is observed, and Wi,j(u, v) ∈ [0, 1] if Di,j(u, v)

= 0 (i.e., unobserved). To simplify the computation, we set the weights of all unob-

served entries to a global value w. We will discuss alternative choices for the weight

matrices as the variants of Fascinate later this section.

48

In this formulation (Eq. (4.9)), we can think of Fi as the low-rank representa-

tions/features of the nodes in layer i in some latent space, which is shared among

different layers. The cross-layer dependencies between the nodes from two depen-

dent layers can be viewed as the inner product of their latent features. Therefore,

the intuition of the first term (i.e., C1) is that we want to match all the cross-layer

dependencies, calibrated by the weight matrix Wi,j. The second term (i.e., C2) is

used to achieve node homophily, which says that for a pair of nodes u and v from

the same layer (say layer-i), their low-rank representations should be similar (i.e.,

small ‖Fi(u, :) − Fi(v, :)‖2) if the within-layer connectivity between these two nodes

is strong (i.e., large Ai(u, v)). The third term (i.e., C3) is to regularize the norm of

the low-rank matrices {Fi}i=1,...,g to prevent over-fitting.

Once we solve Eq. (4.9), for a given node u from layer-i and a node v from layer-j,

the cross-layer dependency between them can be estimated as D̃i,j(u, v) = Fi(u, :

)Fj(v, :)
′.

Fascinate: Optimization Algorithm

The optimization problem defined in Eq. (4.9) is non-convex. Thus, we seek to find a

local optima by the block coordinate descent method, where each Fi naturally forms

a ‘block’. To be specific, if we fix all other Fj(j = 1, . . . , g, j 6= i) and ignore the

constant terms, Eq. (4.9) can be simplified as

Ji
Fi≥0

=
∑

j: G(i,j)=1

‖Wi,j � (Di,j − FiFj
′)‖2

F + αtr(Fi
′(Ti −Ai)Fi) + β‖Fi‖2

F (4.10)

The derivative of Ji w.r.t. Fi is

∂Ji
∂Fi

=2(
∑

j: G(i,j)=1

[−(Wi,j �Wi,j �Di,j)Fj + (Wi,j �Wi,j � (FiFj
′))Fj] (4.11)

+ αTiFi − αAiFi + βFi)

49

A fixed-point solution of Eq. (4.11) with non-negativity constraint on Fi leads to

the following multiplicative updating rule for Fi

Fi(u, v)← Fi(u, v)

√
X(u, v)

Y(u, v)
(4.12)

where

X =
∑

j: G(i,j)=1

(Wi,j �Wi,j �Di,j)Fj + αAiFi (4.13)

Y =
∑

j: G(i,j)=1

(Wi,j �Wi,j � (FiFj
′))Fj + αTiFi + βFi

Recall that we set Wi,j(u, v) = 1 when Di,j(u, v) > 0, and Wi,j(u, v) = w when

Di,j(u, v) = 0. Here, we define IOi,j as an indicator matrix for the observed entries

in Di,j, that is, IOi,j(u, v) = 1 if Di,j(u, v) > 0, and IOi,j(u, v) = 0 if Di,j(u, v) =

0. Then, the estimated dependencies over the observed data can be represented as

R̃i,j = IOi,j � (FiFj). With these notations, we can further simplify the update rule in

Eq. (4.13) as follows

X =
∑

j: G(i,j)=1

Di,jFj + αAiFi (4.14)

Y =
∑

j: G(i,j)=1

((1− w2)R̃i,j + w2FiFj
′)Fj + αTiFi + βFi (4.15)

The proposed Fascinate algorithm is summarized in Algorithm 5. First, it ran-

domly initializes the low-rank matrices for each layer (step 1 - step 3). Then, it

begins the iterative update procedure. In each iteration (step 4 - step 10), the algo-

rithm alternatively updates {Fi}i=1,...,g one by one. We use two criteria to terminate

the iteration: (1) either the Frobenius norm between two successive iterations for

all {Fi}i=1,...,g is less than a threshold ξ, or (2) the maximum iteration number t is

reached.

50

Algorithm 5 The Fascinate Algorithm

Input: (1) a multi-layered network with (a) layer-layer dependency matrix G, (b)

within-layer connectivity matrices A = {A1, ...,Ag}, and (c) observed cross-layer

node dependency matrices D = {Di,j i, j = 1, ..., g}; (2) the rank size r; (3)

weight w; (4) regularized parameters α and β;

Output: low-rank representations for each layer {Fi}i=1,...,g

1: for i = 1 to g do

2: initialized Fi as ni × r non-negative random matrix

3: end for

4: while not converge do

5: for i = 1 to g do

6: compute X as Eq. (4.14)

7: compute Y as Eq. (4.15)

8: update Fi as Eq. (4.12)

9: end for

10: end while

11: return {Fi}i=1,...,g

Proof and Analysis

Here, we analyze the proposed Fascinate algorithm in terms of its effectiveness as

well as its efficiency.

Effectiveness Analysis. In terms of effectiveness, we show that the proposed Fas-

cinate algorithm indeed finds a local optimal solution to Eq. (4.9). To see this, we

first give the following theorem, which says that the fixed point solution of Eq. (4.12)

satisfies the KKT condition.

Theorem 1. The fixed point solution of Eq. (4.12) satisfies the KKT condition.

51

Proof. The Lagrangian function of Eq. (4.10) can be written as

Li =
∑

j: G(i,j)=1

‖Wi,j � (Di,j − FiFj
′)‖2

F (4.16)

+ αtr(Fi
′TiFi)− αtr(Fi

′AiFi) + β‖Fi‖2
F − tr(Λ′Fi)

where Λ is the Lagrange multiplier. Setting the derivative of Li w.r.t. Fi to 0, we get

2(
∑

j: G(i,j)=1

[−(Wi,j �Wi,j �Di,j)Fj + (Wi,j �Wi,j � (FiFj
′))Fj] (4.17)

+ αTiFi − αAiFi + βFi) = Λ

By the KKT complementary slackness condition, we have

[
∑

j: G(i,j)=1

(Wi,j �Wi,j � (FiFj
′))Fj + αTiFi + βFi︸ ︷︷ ︸

Y

(4.18)

− (
∑

j: G(i,j)=1

(Wi,j �Wi,j �Di,j)Fj + αAiFi)︸ ︷︷ ︸
X

](u, v)Fi(u, v) = 0

Therefore, we can see that the fixed point solution of Eq. (4.12) satisfies the above

equation.

The convergence of the proposed Fascinate algorithm is given by the following

lemma.

Lemma 3. Under the updating rule in Eq. (4.12), the objective function in Eq. (4.10)

decreases monotonically.

Proof. By expending the Frobenius norms and dropping constant terms, Eq. (4.10)

52

can be further simplified as

Ji =
∑

G(i,j)=1

(−2tr((Wi,j �Wi,j �Di,j)FjF
′
i)︸ ︷︷ ︸

T1

+ tr((Wi,j �Wi,j � (FiF
′
j))FjF

′
i))︸ ︷︷ ︸

T2

(4.19)

+ αtr(F′iTiFi)︸ ︷︷ ︸
T3

−αtr(F′iAFi)︸ ︷︷ ︸
T4

+ βtr(FiF
′
i)︸ ︷︷ ︸

T5

Following the auxiliary function approach in Lee and Seung (2001), the auxiliary

function H(Fi, F̃i) of Ji must satisfy

H(Fi,Fi) = Ji, H(Fi, F̃i) ≥ Ji (4.20)

Define

F
(t+1)
i = arg min

Fi
H(Fi,F

(t)
i) (4.21)

by this construction, we have

J
(t)
i = H(F

(t)
i ,F

(t)
i) ≥ H(F

(t+1)
i ,F

(t)
i) ≥ J

(t+1)
i (4.22)

which proves that J
(t)
i decreases monotonically.

Next, we prove that (1) we can find an auxiliary function that satisfies the above

constraints and (2) the updating rule in Eq. (4.12) leads to global minimum solution

to the auxiliary function.

First, we show that the following function is one of the auxiliary function of

Eq. (4.19).

H(Fi, F̃i) =
∑

G(i,j)=1

(T ′1 + T ′2) + T ′3 + T ′4 + T ′5 (4.23)

53

where

T ′1 =− 2

ni∑
u=1

r∑
k=1

[(Wi,j �Wi,j �Di,j)Fj](u, k)F̃i(u, k)(1 + log
Fi(u, k)

F̃i(u, k)
) (4.24)

T ′2 =

ni∑
u=1

r∑
k=1

[(Wi,j �Wi,j � (F̃iF
′
j))Fj](u, k)F2

i (u, k)

F̃i(u, k)
(4.25)

T ′3 =

ni∑
u=1

r∑
k=1

[αTiF̃i](u, k)F2
i (u, k)

F̃i(u, k)
(4.26)

T ′4 =−
ni∑
u=1

ni∑
v=1

r∑
k=1

αAi(u, v)F̃i(v, k)F̃i(u, k)(1 + log
Fi(v, k)Fi(u, k)

F̃i(v, k)F̃i(u, k)
) (4.27)

T ′5 =

ni∑
u=1

r∑
k=1

βF2
i (u, k) (4.28)

Here, we prove that T ′i ≥ Ti for i = 1, . . . , 5 term by term.

Using the inequality z ≥ 1 + log z, we have

T ′1 ≥ −2

ni∑
u=1

r∑
k=1

[(Wi,j �Wi,j �Di,j)Fj](u, k)Fi(u, k) = T1 (4.29)

T ′4 ≥ −
ni∑
u=1

ni∑
v=1

r∑
k=1

αAi(u, v)Fi(v, k)Fi(u, k) = T4

Expanding T ′2, we can rewrite it as

T ′2 =

ni∑
u=1

nj∑
v=1

r∑
k=1

r∑
l=1

W2
i,j(u, v)F̃i(u, l)F

′
j(l, v)Fj(v, k)F2

i (u, k)

F̃i(u, k)
(4.30)

Let Fi(u, k) = F̃i(u, k)Qi(u, k), then

T ′2 =

ni∑
u=1

nj∑
v=1

r∑
k=1

r∑
l=1

W2
i,j(u, v)F′j(l, v)Fj(v, k)F̃i(u, l)F̃i(u, k)Q2

i (u, k) (4.31)

=

ni∑
u=1

nj∑
v=1

r∑
k=1

r∑
l=1

W2
i,j(u, v)F′j(l, v)Fj(v, k)F̃i(u, l)F̃i(u, k)(

Q2
i (u, k) + Q2

i (u, l)

2
)

≥
ni∑
u=1

nj∑
v=1

r∑
k=1

r∑
l=1

W2
i,j(u, v)F′j(l, v)Fj(v, k)F̃i(u, l)F̃i(u, k)Qi(u, k)Qi(u, l)

=

ni∑
u=1

nj∑
v=1

r∑
k=1

r∑
l=1

W2
i,j(u, v)Fi(u, l)F

′
j(l, v)Fj(v, k)Fi(u, k)

=T2

54

For T ′3, by using the following inequality in Ding et al. (2006)

n∑
i=1

k∑
p=1

[AS∗B](i, p)S2(i, p)

S∗(i, p)
≥ tr(S′ASB) (4.32)

where A ∈ Rn×n
+ , B ∈ Rk×k

+ , S ∈ Rn×k
+ , S∗ ∈ Rn×k

+ , and A, B are symmetric, we have

T ′3 ≥ αtr(F′iTiFi) = T3 (4.33)

For T ′5, we have T ′5 = T5. Putting the above inequalities together, we have H(Fi, F̃i) ≥

Jsi (Fi).

Next, we find the global minimum solution to H(Fi, F̃i). The gradient of H(Fi, F̃i)

is

1

2

∂H(Fi, F̃i)

∂Fi(u, k)
=− [(Wi,j �Wi,j �Di,j)Fj](u, k)F̃i(u, k)

Fi(u, k)
(4.34)

+
[(Wi,j �Wi,j � (F̃iF

′
j))Fj](u, k)Fi(u, k)

F̃i(u, k)

+
[αTiF̃i](u, k)Fi(u, k)

F̃i(u, k)
− [αAiF̃i](u, k)F̃i(u, k)

Fi(u, k)
+ βFi(u, k)

From the gradient of H(Fi, F̃i), we can easily get its Hessian matrix, which is a

positive diagonal matrix. Therefore, the global minimum of H(Fi, F̃i) can be obtained

by setting its gradient Eq. (4.34) to zero, which leads to

F2
i (u, k) = F̃2

i (u, k)
[(Wi,j �Wi,j � (F̃iF

′
j))Fj + αAiF̃i](u, k)

[(Wi,j �Wi,j �Di,j)Fj + αTiF̃i + βF̃i](u, k)
(4.35)

Recall that we have set F
(t+1)
i = Fi and F

(t)
i = F̃i. The above equation proves that

the updating rule in Eq. (4.10) decreases monotonically.

According to Theorem 1 and Lemma 3, we conclude that Algorithm 5 converges

to a local minima solution for Eq. 4.10 w.r.t. each individual Fi.

Efficiency Analysis. In terms of efficiency, we analyze both the time complexity

as well as the space complexity of the proposed Fascinate algorithm, which are

55

summarized in Lemma 19 and Lemma 20. We can see that Fascinate scales linearly

w.r.t. the size of the entire multi-layered network.

Lemma 4. The time complexity of Algorithm 5 is O([
g∑
i=1

(
∑

j: G(i,j)=1

(mi,jr + (ni +

nj)r
2) +mir)]t).

Proof. In each iteration in Algorithm 5 for updating Fi, the complexity of calculating

X by Eq. (4.14) is O(
∑

j: G(i,j)=1

mi,jr + mir) due to the sparsity of Di,j and Ai. The

complexity of computing R̃i,j in Y is O(mi,jr). Computing Fi(F
′
jFj) requires O((ni+

nj)r
2) operations and computing αTiFi + βFi requires O(nir) operations. So, it is

of O(
∑

j: G(i,j)=1

(mi,jr + (ni + nj)r
2)) complexity to get Y in step 7. Therefore, it

takes O(
∑

j: G(i,j)=1

(mi,jr + (ni + nj)r
2) +mir) to update Fi. Putting all together, the

complexity of updating all low-rank matrices in each iteration is O(
g∑
i=1

(
∑

j: G(i,j)=1

(mi,jr + (ni + nj)r
2) + mir)). Thus, the overall complexity of Algorithm 5

is O([
g∑
i=1

(
∑

G(i,j)=1

(mi,jr + (ni + nj)r
2) + mir)]t), where t is the maximum number of

iterations in the algorithm.

Lemma 5. The space complexity of Algorithm 5 is O(
∑g

i=1(nir+mi)+
∑

i,j: G(i,j)=1

mi,j)

.

Proof. It takes O(
∑g

i=1 nir) to store all the low-rank matrices, and O(
∑g

i=1mi +∑
i,j: G(i,j)=1

mi,j) to store all the within-layer connectivity matrices and dependency

matrices in the multi-layered network. To calculate X for Fi, it costs O(nir) to

compute
∑

j: G(i,j)=1

Di,jFj and αAiFi. For Y, the space cost of computing R̃i,j and

Fi(F
′
jFj) is O(mi,j) and O(nir) respectively. Therefore, the space complexity of

calculating
∑

j: G(i,j)=1

((1−w2)R̃i,j+w
2FiFj

′)Fj is O(max
j: G(i,j)=1

mi,j+nir). On the other

hand, the space required to compute αTiFi+βFi is O(nir). Putting all together, the

space cost of updating all low-rank matrices in each iteration is of O(max
i,j: G(i,j)=1

mi,j +

56

maxi nir). Thus, the overall space complexity of Algorithm 5 is O(
∑g

i=1(nir+mi) +∑
i,j: G(i,j)=1

mi,j).

Variants

Here, we discuss some variants of the proposed Fascinate algorithm.

Collective One-Class Collaborative Filtering. By setting w ∈ (0, 1), Fasci-

nate can be used to address one class collaborative filtering problem, where implicit

dependencies extensively exist between nodes from different layers. Specifically, in

two-layered networks, Fascinate is reduced to wiZAN-Dual, a weighting-based, dual-

regularized one class collaborative filtering algorithm proposed in Yao et al. (2014).

Multi-layered Network Clustering. By setting all the entries in the weight matrix

Wi,j to 1 in Eq. (4.9), we have the following objective function

min
Fi≥0(i=1,...,g)

J =
∑

i,j: G(i,j)=1

‖Di,j − FiFj
′‖2
F + α

g∑
i=1

tr(Fi
′(Ti −Ai)Fi) + β

g∑
i=1

‖Fi‖2
F

(4.36)

where Fi can be viewed as the cluster membership matrix for nodes in layer-i). By

following similar procedure in Fascinate, we can get the local optima of the above

objective function with the following updating rule

Fi(u, v)← Fi(u, v)

√
Xc(u, v)

Yc(u, v)
(4.37)

where

Xc =
∑

j: G(i,j)=1

Di,jFj + αAiFi (4.38)

Yc =
∑

j: G(i,j)=1

FiFj
′Fj + αTiFi + βFi (4.39)

Although in the above updating rule, we do not need to calculate R̃i,j for Yc com-

paring to Y in Eq. (4.15), the overall time complexity for the algorithm is still

57

O([
g∑
i=1

(
∑

j: G(i,j)=1

(mi,jr + (ni + nj)r
2) +mir)]t). If we restrict ourselves to two-layered

networks (i.e., g = 2), the above variant for Fascinate becomes a dual regularized

co-clustering algorithm Liu et al. (2015).

Unconstrained Fascinate. In Fascinate, we place an non-negative constraint on

the latent features {Fi}1=1...g in Eq. (4.9) to pursue good interpretability and effi-

ciency. By discarding the non-negative constraint, we have Fascinate-UN, an un-

constrained variant of Fascinate, which can be solved with gradient descent method

as shown in Algorithm 6. It first randomly initializes the low-rank matrices for each

Algorithm 6 The Fascinate-UN Algorithm

Input: (1) a multi-layered network with (a) layer-layer dependency matrix G, (b)

within-layer connectivity matrices A = {A1, ...,Ag}, and (c) observed cross-layer

node dependency matrices D = {Di,j i, j = 1, ..., g}; (2) the rank size r; (3) weight

w; (4) regularized parameters α and β; (5) parameters a ∈ (0, 0.5), b ∈ (0, 1)

Output: low-rank representations for each layer {Fi}i=1,...,g

1: for i = 1 to g do

2: initialized Fi as ni × r random matrix

3: end for

4: while not converge do

5: for i = 1 to g do

6: compute ∂Ji
∂Fi

with Eq. (4.11)

7: τ ←step size from backtracking line search

8: Fi ← Fi − τ ∂Ji∂Fi

9: end for

10: end while

11: return {Fi}i=1,...,g

58

layer (step 1 - step 3) and then begins the iterative update procedure. In each iteration

(step 4 - step 10), the algorithm alternatively updates {Fi}i=1,...,g with gradient de-

scent method one by one. Similar to Fascinate, the two criteria we use to terminate

the iteration are: (1) either the difference of the objective function (J in Eq. (4.9))

between two successive iterations is less than a threshold ξ, or (2) the maximum it-

eration number t is reached. The complexity of computing ∂Ji
∂Fi

is the same with the

complexity of computing X and Y in Algorithm 5. However, in the backtracking line

search procedure in step 7, calculating the value of the objective function Ji is re-

quired to find step size τ with complexity O(
∑

j: G(i,j)=1 ninjr+n2
i r). This quadratic

complexity would increase the overall complexity of Algorithm 6 significantly in large

systems.

Collective Matrix Factorization. Instead of exploiting node homophily effect

from each layer, we can view the with-in layer networks as additional constraints for

matrix factorization problem as modeled in the following objective function

min
Fi≥0(i=1,...,g)

∑
i,j: G(i,j)=1

‖Wi,j � (Di,j − FiFj
′)‖2

F + α

g∑
i=1

‖Ai − FiFi
′‖2
F + β

g∑
i=1

‖Fi‖2
F

(4.40)

where Fi is the latent features for nodes in layer-i).

Again, the above problem can be solved with similar procedure in Fascinate.

The updating rules are as follows.

Fi(u, v)← Fi(u, v)

√
Xcol(u, v)

Ycol(u, v)
(4.41)

where Xcol and Ycol are defined as

Xcol =
∑

j: G(i,j)=1

Di,jFj + 2αAiFi (4.42)

Ycol =
∑

j: G(i,j)=1

((1− w2)R̃i,j + w2FiFj
′)Fj + 2αFiFi

′Fi + βFi (4.43)

59

The complexity of the above method is of the same order with Fascinate. In par-

ticular, when the within-layer connectivity matrices A = {A1, . . . ,Ag} are absent,

the proposed Fascinate can be viewed as a collective matrix factorization method

in Singh and Gordon (2008).

While the proposed Fascinate includes these existing methods as its special

cases, its major advantage lies in its ability to collectively leverage all the available

information (e.g., the within-layer connectivity, the observed cross-layer dependency)

for dependency inference. As we will demonstrate in the experimental section, such

a methodical strategy leads to a substantial and consistent inference performance

boosting. Nevertheless, a largely unanswered question for these methods (including

Fascinate) is how to handle zero-start nodes. That is, when a new node arrives with

no observed cross-layer dependencies, how can we effectively and efficiently infer its

dependencies without rerunning the algorithm from scratch. In the next section, we

present a sub-linear algorithm to solve this problem (i.e., Problem 2).

4.2.3 Proposed Algorithm for Code-ZERO

A multi-layered network often exhibits high dynamics, e.g., the arrival of new

nodes. For example, for a newly identified chemical in the biological system, we might

know how it interacts with some existing chemicals (i.e., the within-layer connectiv-

ity). However, its cross-layer dependencies w.r.t. proteins and/or diseases might be

completely unknown . This section addresses such zero-start problems (i.e., Problem

2). Without loss of generality, we assume that the newly added node resides in layer-

1, indexed as its (n1 + 1)th node. The within-layer connectivity between the newly

added node and the existing n1 nodes is represented by a 1× n1 row vector s, where

s(u) (u = 1, ..., n1) denotes the (within-layer) connectivity between the newly added

node and the uth existing node in layer-1.

60

We could just rerun our Fascinate algorithm on the entire multi-layered network

with the newly added node to get its low-rank representation (i.e., a 1×r row vector f),

based on which its cross-layer dependencies can be estimated. However, the running

time of this strategy is linear w.r.t. the size of the entire multi-layered network. For

example, on a three-layered infrastructure network whose size is in the order of 14

million, it would take Fascinate 2, 500+ seconds to update the low-rank matrices

{Fi} for a zero-start node with rank r = 200, which might be too costly in online

settings. In contrast, our upcoming algorithm is sub-linear, and it only takes less

than 0.001 seconds on the same network without jeopardizing the accuracy.

There are two key ideas behind our online algorithm. The first is to view the

newly added node as a perturbation to the original network. In detail, the updated

within-layer connectivity matrix Â1 for layer-1 can be expressed as

Â1 =

 A1 s′

s 0

 (4.44)

where A1 is the within-layer connectivity matrix for layer-1 before the arrival of the

new node.

Correspondingly, the updated low-rank representation matrix for layer-1 can be

expressed as F̂1 = [F̂′1(n1×r) f ′]′, where F̂1(n1×r) is the updated low-rank representation

for the existing n1 nodes in layer-1. Then the new objective function Ĵ in Eq. (4.9)

61

can be reformatted as

Ĵ =
∑

i,j: G(i,j)=1

i,j 6=1

‖Wi,j � (Di,j − F̂iF̂
′
j)‖2

F +
∑

j: G(1,j)=1

‖Ŵ1,j � (D̂1,j − F̂1F̂
′
j)‖2

F (4.45)

+

g∑
i=2

α

2

ni∑
u=1

ni∑
v=1

Ai(u, v)‖F̂i(u, :)− F̂i(v, :)‖2
2

+
α

2

n1∑
u=1

n1∑
v=1

A1(u, v)‖F̂1(u, :)− F̂1(v, :)‖2
2

+ β

g∑
i=2

‖F̂i‖2
F + β‖F̂′1(n1×r)‖

2
F + α

n1∑
v=1

s(v)‖f − F̂1(v, :)‖2
2 + β‖f‖2

2

Since the newly added node has no dependencies, we can set

Ŵ1,j =

 W1,j

0(1×nj)

 , D̂1,j =

 D1,j

0(1×nj)


Therefore, the second term in Ĵ can be simplified as∑

j: G(1,j)=1

‖W1,j � (D1,j − F̂1(n1×r)F̂
′
j)‖2

F (4.46)

Combining Eq. (4.45), Eq. (4.46) and J in Eq. (4.9) together, Ĵ can be expressed as

Ĵ = J + J1 (4.47)

where J1 = α
∑n1

v=1 s(v)‖f−F̂1(v, :)‖2
2+β‖f‖2

2, and J is the objective function without

the newly arrived node.

The second key idea of our online algorithm is that in Eq. (4.47), J is often orders

of magnitude larger than J1. For example, in the BIO dataset used in Section 4.2.3,

J is in the order of 103, while J1 is in the order of 10−1. This naturally leads to

the following approximation strategy, that is, we (1) fix J with {F∗i }i=1,...,g (i.e., the

previous local optimal solution to Eq. (4.9) without the newly arrived node), and

(2) optimize J1 to find out the low-rank representation f for the newly arrived node.

That is, we seek to solve the following optimization problem

62

f = arg min
f≥0

J1 subject to: F̂1(n1×r) = F∗1 (4.48)

with which, we can get an approximate solution {F̂i}i=1,...,g to Ĵ .

To solve f , we take the derivative of J1 w.r.t. f and get

1

2

∂J1

∂f
= βf + α

n1∑
v=1

s(v)(f − F∗1(v, :)) (4.49)

= (β + α

n1∑
v=1

s(v))f − αsF∗1

Since α and β are positive, the Hessian matrix of J1 is a positive diagonal matrix.

Therefore, the global minimum of J1 can be obtained by setting its derivative to zero.

Then the optimal solution to J1 can be expressed as

f =
αsF∗1

β + α
∑n1

v=1 s(v)
(4.50)

For the newly added node, f can be viewed as the weighted average of its neighbors’

low-rank representations. Notice that in Eq. (4.50), the non-negativity constraint on

f naturally holds. Therefore, we refer to this solution (i.e., Eq. (4.50)) as Fascinate-

ZERO. In this way, we can successfully decouple the cross-layer dependency inference

problem for the zero-start node from the entire multi-layered network and localize it

only among its neighbors in layer-1. The localization significantly reduces the time

complexity, as summarized in Lemma 6, which is linear w.r.t. the number of neighbors

of the new node (and therefore is sub-linear w.r.t. the size of the entire network).

Lemma 6. Let nnz(s) denotes the total number of within-layer links between the

newly added node and the original nodes in layer-1 (i.e., nnz(s) is the degree for the

newly added node). Then the time complexity of Fascinate-ZERO is O(nnz(s)r).

Proof. Since the links between the newly added node and the original nodes in layer-1

are often very sparse, the number of non-zero elements in s (nnz(s)) is much smaller

63

than n1. Therefore, the complexity of computing sF∗1 can be reduced to O(nnz(s)r).

The multiplication between α and sF∗1 takes O(r). Computing
∑n1

v=1 s(v) takes

O(nnz(s)). Thus, the overall complexity of computing f is O(nnz(s)r).

Remarks. Following the similar procedure in Fascinate-ZERO, it is easy to extend

the zero-start problem to the scenario where a new within-layer edge is added to

two existing nodes. Suppose in layer-1, a new edge 〈u, v〉 is added between node u

and node v. To find out the updated low-rank matrices {F̂i} efficiently after the

perturbation, we can partition the nodes in the multi-layered network into two parts:

(1) nodes that can be affected by either node u or node v (denoted as N {u,v}) and (2)

nodes that are irrelevant to both node u and node v (denoted as N \{u,v}). Specifically,

we define that node w can be affected by node u if and only if there exists a path

from u to w, and the links in the path can be either within-layer edges or cross-layer

dependencies; otherwise, node w is viewed as irrelevant to u. By this definition, we

have N {u,v} ∩N \{u,v} = Φ and the new objective function Ĵ can be decomposed into

two parts as

Ĵ = Ĵ{u,v} + Ĵ\{u,v} (4.51)

where Ĵ{u,v} only contains the optimization terms for the latent features of the affected

nodes ({F̂i}{u,v}), while Ĵ\{u,v} contains the terms for latent features of irrelevant

nodes ({F̂i}\{u,v}). As the newly added edge 〈u, v〉 in layer-1 would not cause any

changes in Ĵ\{u,v}, {F̂i}\{u,v} would remain the same with the previous local optima

solution {F∗i }\{u,v}. Therefore, the only terms we need to optimize is Ĵ{u,v} w.r.t. the

affected latent features {F̂i}{u,v}.

64

4.2.4 Experimental Evaluation

In this section, we evaluate the proposed Fascinate algorithms. All experiments

are designed to answer the following questions:

• Effectiveness. How effective are the proposed Fascinate algorithms in inferring

the missing cross-layer dependencies?

• Efficiency. How fast and scalable are the proposed algorithms?

Experimental Setup

Datasets Description. We perform our evaluations on five different datasets, in-

cluding (1) a three-layer cross-domain paper citation network in the academic research

domain (CITATION); (2) a five-layer Italy network in the critical infrastructure do-

main (INFRA-5); (3) a three-layer network in the critical infrastructure domain

(INFRA-3); (4) a three-layer CTD (Comparative Toxicogenomics Database) net-

work in the biological domain (BIO); and (5) a three-layer Aminer academic network

in the social collaboration domain (SOCIAL). The statistics of these datasets are

shown in Table 4.11, and the abstract layer-layer dependency graphs of these four

datasets are summarized in Figure 4.18 In all these four datasets, the cross-layer

dependencies are binary and undirected (i.e., Di,j(u, v) = Dj,i(v, u)).

Table 4.3: Statistics of Datasets.

Dataset # of Layers # of Nodes # of Links # of CrossLinks

CITATION 3 33,249 27,017 4,589

INFRA-5 5 349 379 565

INFRA-3 3 15,126 29,861 28,023,500

SOCIAL 3 125,344 214,181 188,844

BIO 3 35,631 253,827 75,456

65

(a) CITATION (b) INFRA-5 (c) INFRA-3 (d) SOCIAL (e) BIO

Figure 4.18: The Abstract Dependency Structure of Each Dataset.

CITATION. The construction of this publication network is based on the work

in Li et al. (2015a). It contains three layers, which correspond to the paper cita-

tion networks in AI (Artificial Intelligence), DB (Database) and DM (Data Mining)

domains. The cross-domain citations naturally form the cross-layer dependencies in

the system. For example, the cross-layer dependency between AI layer and DM layer

indicates the citations between AI papers and DM papers. The papers in the system

are from the top conferences in the corresponding areas as shown in Table 4.4. The

number of nodes in each layer varies from 5, 158 to 18, 243, and the number of within-

layer links ranges from 20, 611 to 40, 885. The number of cross-layer dependencies

ranges from 536 to 2, 250. The structure of the entire system is shown in Figure 4.18

(a).

Table 4.4: List of Conferences in Each Domain.

Domain AI DM DB

IJCAI KDD SIGMOD

Conferences AAAI ICDM VLDB

ICML SDM ICDM

NIPS PKDD PODS

INFRA-5. The construction of this critical infrastructure network is based on

the data implicated from an electrical blackout in Italy in Sept 2003 Rosato et al.

66

(2008). It contains five layers, including four layers of regional power grids and

one Internet network Rosato et al. (2008). The regional power grids are partitioned

by macroregions 3 . To make the regional networks more balanced, we merge the

Southern Italy power grid and the Island power grid together. The power transfer lines

between the four regions are viewed as cross-layer dependencies. For the Italy Internet

network, it is assumed that each Internet center is supported by the power stations

within a radius of 70km. Its abstract dependency graph is shown in Figure 4.18(b).

The smallest layer in the network has 39 nodes and 50 links; while the largest network

contains 151 nodes and 158 links. The number of dependencies is up to 307.

INFRA-3. This dataset contains the following three critical infrastructure net-

works: an airport network 4 , an autonomous system network 5 and a power grid Watts

and Strogatz (1998). We construct a three-layered network in the same way as Chen

et al. (2015). The three infrastructure networks are functionally dependent on each

other. Therefore, they form a triangle-shaped multi-layered network as shown in Fig-

ure 4.18(c). The construction of the cross-layer dependencies is based on geographic

proximity.

SOCIAL. This dataset contains three layers, including a collaboration network

among authors, a citation network between papers and a venue network Tang et al.

(2008). The number of nodes in each layer ranges from 899 to 62, 602, and the

number of within-layer links ranges from 2, 407 to 201, 037. The abstract layer-layer

dependency graph of SOCIAL is shown in Figure 4.18(d). The collaboration layer

is connected to the paper layer with the authorship dependency, while the venue

layer is connected to the paper layer with publishing dependency. For the Paper-

3https://en.wikipedia.org/wiki/First-level NUTS of the European Union

4http://www.levmuchnik.net/Content/Networks/NetworkData.html

5http://snap.stanford.edu/data/

67

Author dependency, we have 126,242 links across the two layers; for the Paper-Venue

dependency, we have 62,602 links.

BIO. The construction of the CTD network is based on the works in Davis et al.

(2015); Razick et al. (2008); Van Driel et al. (2006). It contains three layers, which

are chemical, disease and gene similarity networks. The number of nodes in these

networks ranges from 4, 256 to 25, 349, and the number of within-layer links ranges

from 30, 551 to 154, 167. The interactions between chemicals, genes, and diseases

form the cross-layer dependency network as shown in Figure 4.18(e). For Chemical-

Gene dependency, we have 53,735 links across the two layers; for Chemical-Disease

dependency, we have 19,771 links; and for Gene-Disease dependency, we have 1,950

links.

For all datasets, we randomly select 50% cross-layer dependencies as the training

set and use the remaining 50% as the test set.

Comparing Methods. We compare Fascinate with the following methods, in-

cluding (1) Fascinate-Clust - a variant of the proposed method for the purpose of

dependency clustering, (2) Fascinate-UN - a variant of Fascinate without non-

negative constraint, (3) MulCol - a collective matrix factorization method Singh and

Gordon (2008), (4) PairSid - a pairwise one-class collaborative filtering method pro-

posed in Yao et al. (2014), (5) PairCol - a pairwise collective matrix factorization

method degenerated from MulCol (6) PairNMF - a pairwise non-negative matrix

factorization (NMF) based method Lin (2007), (7) PairRec - a pairwise matrix fac-

torization based algorithm introduced in Koren et al. (2009), (8) FlatNMF - an

NMF based method that treats the input multi-layered network as a flat-structured

single network (i.e., by putting the within-layer connectivity matrices in the diagonal

blocks, and the cross-layer dependency matrices in the off-diagonal blocks), and (9)

FlatRec - a matrix factorization based method using the same techniques as PairRec

68

but treating the input multi-layered network as a single network as in FlatNMF.

For the experimental results reported in this work, we set rank r = 100, maximum

iteration t = 100, termination threshold ξ = 10−8, weight w2 = 0.1, regularization

parameters α = 0.1, β = 0.1 and backtracking line search parameters a = 0.1, b = 0.8

unless otherwise stated.

Evaluation Metrics. We use the following metrics for the effectiveness evaluations.

• MAP. It measures the mean average precision over all entities in the cross-layer

dependency matrices Li et al. (2010). A larger MAP indicates better inference

performance.

• R-MPR. It is a variant of Mean Percentage Ranking for one-class collaborative

filtering Hu et al. (2008). MPR is originally used to measure the user’s satisfac-

tion of items in a ranked list. In our case, we can view the nodes from one layer

as users, and the nodes of the dependent layer(s) as items. The ranked list there-

fore can be viewed as ordered dependencies by their importance. Smaller MPR

indicates better inference performance. Specifically, for a randomly produced

list, its MPR is expected to be 50%. Here, we define R-MPR = 0.5−MPR, so

that larger R-MRP indicates better inference performance.

• HLU. Half-Life Utility is also a metric from one-class collaborative filtering.

By assuming that the user will view each consecutive items in the list with

exponential decay of possibility, it estimates how likely a user will choose an

item from a ranked list Pan et al. (2008). In our case, it measures how likely

a node will establish dependencies with the nodes in the ranked list. A larger

HLU indicates better inference performance.

• AUC. Area Under ROC Curve is a metric that measures the classification

accuracy. A larger AUC indicates better inference performance.

69

• Prec@K. Precision at K is defined by the proportion of true dependencies

among the top K inferred dependencies. A larger Prec@K indicates better

inference performance.

Machine and Repeatability All the experiments are performed on a machine with

2 processors Intel Xeon 3.5GHz with 256GB of RAM. The algorithms are programmed

with MATLAB using single thread.

Effectiveness

In this section, we aim to answer the following three questions, (1) how effective is

Fascinate for Problem 1 (i.e., Code)? (2) how effective is Fascinate-ZERO for

Problem 2 (i.e., Code-ZERO)? and (3) how sensitive are the proposed algorithms

w.r.t. the model parameters?

Effectiveness of Fascinate. We compare the proposed algorithms and the existing

methods on all the five datasets. As Fascinate-UN is not scalable to large net-

works, we only evaluate its performance on two small datasets—CITATION and

INFRA-5. The results are shown in Table 4.5 through Table 4.6. There are several

interesting observations. First is that our proposed Fascinate algorithm and its

variants (Fascinate-Clust and Fascinate-UN) consistently outperform all other

methods in terms of all the five evaluation metrics. Second, by exploiting the struc-

ture of multi-layered network, Fascinate, Fascinate-Clust, Fascinate-UN, and

MulCol can achieve significantly better performance than the pairwise methods in

most datasets. Third, among the pairwise baselines, PairSid and PairCol are bet-

ter than PairNMF and PairRec. The main reason is that the first two algorithms

utilize both within-layer connectivity matrices and cross-layer dependency matrix for

matrix factorization, while the latter two only use the observed dependency matrix.

Finally, the relatively poor performance of FlatNMF and FlatRec implies that simply

70

Table 4.5: Cross-Layer Dependency Inference on CITATION.

Methods MAP R-MPR HLU AUC Prec@10

Fascinate 0.1389 0.3907 19.1264 0.8523 0.0428

Fascinate-Clust 0.1347 0.3882 19.8367 0.8487 0.0407

Fascinate-UN 0.1873 0.2685 25.1961 0.7423 0.0532

MulCol 0.1347 0.3882 19.8367 0.8487 0.0459

PairSid 0.1623 0.3868 21.8641 0.8438 0.0480

PairCol 0.1311 0.3838 19.1697 0.8388 0.0446

PairNMF 0.0338 0.1842 4.4397 0.6009 0.0103

PairRec 0.0351 0.2582 5.3407 0.6527 0.0129

FlatNMF 0.0811 0.3539 12.1835 0.8084 0.0284

FlatRec 0.0032 0.3398 0.0608 0.8113 0.0001

flattening the multi-layered network into a single network is insufficient to capture

the intrinsic correlations across different layers.

We also test the sensitivity of the proposed algorithms w.r.t. the sparsity of

the observed cross-layer dependency matrices (i.e., the ratio of the missing values)

on INFRA-3. The results in Figure 4.19 demonstrate that both Fascinate and

Fascinate-Clust perform well even when 90%+ entries in the dependency matrices

are missing.

Effectiveness of Fascinate-ZERO. To evaluate the effectiveness of Fascinate-

ZERO, we randomly select one node from the Chemical layer in the BIO dataset as

the newly arrived node and compare the inference performance between Fascinate-

ZERO and Fascinate. The average results over multiple runs are presented in

Figure 4.20. We can see that Fascinate-ZERO bears a very similar inference power

as Fascinate, but it is orders of magnitude faster. We observe similar performance

when the zero-start nodes are selected from the other two layers (i.e., Gene and

71

Table 4.6: Cross-Layer Dependency Inference on INFRA-5

Methods MAP R-MPR HLU AUC Prec@10

Fascinate 0.5040 0.3777 67.2231 0.8916 0.2500

Fascinate-Clust 0.4297 0.3220 56.8215 0.8159 0.2340

Fascinate-UN 0.4354 0.3631 60.2393 0.8575 0.2412

MulCol 0.4523 0.3239 59.8115 0.8329 0.2413

PairSid 0.3948 0.2392 49.5484 0.7413 0.2225

PairCol 0.3682 0.2489 48.5966 0.7406 0.2309

PairNMF 0.1315 0.0464 15.7148 0.5385 0.0711

PairRec 0.0970 0.0099 9.4853 0.5184 0.0399

FlatNMF 0.3212 0.2697 44.4654 0.7622 0.1999

FlatRec 0.1020 0.0778 11.5598 0.5740 0.0488

Table 4.7: Cross-Layer Dependency Inference on INFRA-3.

Methods MAP R-MPR HLU AUC Prec@10

Fascinate 0.4780 0.0788 55.7289 0.6970 0.5560

Fascinate-Clust 0.5030 0.0850 49.1223 0.7122 0.4917

Fascinate-UN - - - - -

MulCol 0.4606 0.0641 49.3585 0.6706 0.4930

PairSid 0.4253 0.0526 47.7284 0.5980 0.4773

PairCol 0.4279 0.0528 48.1314 0.5880 0.4816

PairNMF 0.4275 0.0511 48.8478 0.5579 0.4882

PairRec 0.3823 0.0191 38.9226 0.5756 0.3895

FlatNMF 0.4326 0.0594 45.0090 0.6333 0.4498

FlatRec 0.3804 0.0175 38.0550 0.5740 0.3805

72

Table 4.8: Cross-Layer Dependency Inference on SOCIAL

Methods MAP R-MPR HLU AUC Prec@10

Fascinate 0.0660 0.2651 8.4556 0.7529 0.0118

Fascinate-Clust 0.0667 0.2462 8.2160 0.7351 0.0108

Fascinate-UN - - - - -

MulCol 0.0465 0.2450 6.0024 0.7336 0.0087

PairSid 0.0308 0.1729 3.8950 0.6520 0.0062

PairCol 0.0303 0.1586 3.7857 0.6406 0.0056

PairNMF 0.0053 0.0290 0.5541 0.4998 0.0007

PairRec 0.0056 0.0435 0.5775 0.5179 0.0007

FlatNMF 0.0050 0.0125 0.4807 0.5007 0.0007

FlatRec 0.0063 0.1009 0.6276 0.5829 0.0009

Table 4.9: Cross-Layer Dependency Inference on Bio.

Methods MAP R-MPR HLU AUC Prec@10

Fascinate 0.3979 0.4066 45.1001 0.9369 0.1039

Fascinate-Clust 0.3189 0.3898 37.4089 0.9176 0.0857

Fascinate-UN - - - - -

MulCol 0.3676 0.3954 42.8687 0.9286 0.0986

PairSid 0.3623 0.3403 40.4048 0.8682 0.0941

PairCol 0.3493 0.3153 38.4364 0.8462 0.0889

PairNMF 0.1154 0.1963 15.8486 0.6865 0.0393

PairRec 0.0290 0.2330 3.6179 0.7105 0.0118

FlatNMF 0.2245 0.2900 26.1010 0.8475 0.0615

FlatRec 0.0613 0.3112 8.4858 0.8759 0.0254

73

0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

Missing Value Percentage

M
A

P

 Fasc

Fasc−Clust

0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

Missing Value Percentage

A
U

C

 Fasc

Fasc−Clust

(a) MAP (b) AUC

Figure 4.19: Performance of Fascinate and Fascinate-Clust on INFRA-3
Dataset under Different Missing Value Percentages.

Disease).

10
−2

10
0

10
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

M
A

P

Bio Chemical

FASC−ZERO

FASC

r=20

r=10

r=200

r=50

r=100

Figure 4.20: The Effectiveness of Fascinate-Zero in Bio Network W.R.T. Dif-
ferent Rank r.

Parameter Studies. There are three parameters α, β, and r in the proposed Fas-

cinate algorithm. α is used to control the impact of node homophily, β is used to

avoid over-fitting, and r is the number of columns of the low-rank matrices {Fi}.

We fix one of these parameters, and study the impact of the remaining two on the

inference results. From Figure 4.21, we can see that MAP is stable over a wide range

74

of both α and β. As for the third parameter r, the inference performance quickly

increases w.r.t. r until it hits 200, after which the MAP is almost flat. This suggests

that relatively small size of the low-rank matrices might be sufficient to achieve a

satisfactory inference performance.

 0

0.01

 1

 100 0

200

400

600

800

1000
0

0.2

0.4

0.6

0.8

rα

M
A

P

 0

0.01

 1

 100 0

200

400

600

800

1000
0

0.2

0.4

0.6

0.8

rβ

M
A

P

 0

0.01

 1

 100

 0

0.01

 1

 100

0

0.2

0.4

0.6

0.8

βα

M
A

P

(a) Impact of α and r. (b) Impact of β and r. (c) Impact of α and β .

(fixing β = 0.1) (fixing α = 0.1) (fixing r = 100)

Figure 4.21: The Parameter Studies of the Bio Dataset.

For Fascinate-UN, we study the impact of the backtracking line search param-

eters on its performance. By fixing α, β and rank r to 0.1, 0.1 and 100 respectively,

we examine a wide range of a and b within their domains as shown in Figure 4.22.

We can see that the inference performance is sensitive to the combination of a and b

because subtle parameter changes may affect the convergence speed in Algorithm 6

greatly, which would have impact on the inference performance within limited itera-

tions consequently.

Efficiency

The scalability results of Fascinate and Fascinate-ZERO are presented in Fig-

ure 4.23. As we can see in Figure 4.23(a), Fascinate scales linearly w.r.t. the overall

network size (i.e.,
∑

i(ni+mi)+
∑

i,jmi,j), which is consistent with our previous anal-

ysis in Lemma 19. As for Fascinate-ZERO, it scales sub-linearly w.r.t. the entire

network size. This is because, by Lemma 6, the running time of Fascinate-ZERO is

75

0

0.2

0.4

0.6

0.8

1

0
0.1

0.2
0.3

0.4
0.5

0.42

0.43

0.44

0.45

ba

M
A

P

Figure 4.22: The Backtracking Line Search Parameter Study of the INFRA-5
Dataset.

only dependent on the neighborhood size of the newly added node, rather than that of

the entire network. Finally, we can see that Fascinate-ZERO is much more efficient

than Fascinate. To be specific, on the entire INFRA-3 dataset, Fascinate-ZERO

is 10, 000, 000+ faster than Fascinate (i.e., 1.878×10−4 seconds vs. 2.794×103 sec-

onds).

0 5 10 15

x 10
6

0

500

1000

1500

2000

2500

3000

Network Size

R
u

n
n

in
g

 T
im

e
 (

s
)

r=10

r=20

r=50

r=100

r=200

0 5 10 15

x 10
6

0

1

2

3

4
x 10

−4

Network Size

R
u

n
n

in
g

 T
im

e
 (

s
)

r=10

r=20

r=50

r=100

r=200

Linear

(a) Fascinate (b)Fascinate-ZERO

Figure 4.23: Wall-clock Time vs. the Size of the Network.

In addition, we compare the running time of Fascinate and Fascinate-UN on

76

CITATION and INFRA-5 networks. The results are as shown in Figure 4.24. As

we can see, Fascinate-UN is orders of magnitude slower than Fascinate to achieve

similar inference results, which is consistent with our complexity analysis.

INFRA−5 Citation
10

0

10
1

10
2

10
3

10
4

10
5

Dataset

R
u

n
n

in
g

 T
im

e
 (

s
)

FASC

FASC−UN

Figure 4.24: Wall-clock Running Time of Fascinate and Fascinate-UN.

4.3 Incremental One-Class Collaborative Filtering

The past decade has witnessed the prosperity of recommender systems in var-

ious applications, ranging from e-commerce platforms to online service providers.

Among the numerous recommendation algorithms in the literature, collaborative fil-

tering based methods are widely adopted in many applications due to its superior

effectiveness. Traditional collaborative filtering algorithms are typically designed to

provide recommendations based on users’ explicit, multi-scale feedback (e.g., rating

1-5). However, in many real applications, the preferences might only be inferred from

users’ implicit, one-class feedback (e.g., actions or inactions). For example, it is rea-

sonable to infer that a user likes a song if s/he listened to it from the beginning to

the end; otherwise, s/he may not be into the song. Such applications are generally

77

formulated as one-class collaborative filtering (OCCF) problems Pan et al. (2008).

The key challenges for OCCF lie in the sparsity of positive feedback (preferences)

and the ambiguity of missing preferences. A promising way to address those issues

is to exploit side information from the social networks of users and/or similarity

networks of items as in Ma et al. (2011) and Yao et al. (2014). The key idea behind

those methods is that socially connected users tend to share similar tastes on items;

while similar items are more likely to impose similar impact to users.

Most of the existing OCCF algorithms are focused on static systems, despite

the fact that both user preferences and side networks are evolving over time. For

example, in the e-commerce platform shown in Fig. 4.25, new friendship relations

(black dashed lines) and user preferences (red dashed lines) are emerging over time.

Meanwhile, as new products are being released to the market, similarity links between

newly released products and existing products would appear in the system as well. In

such a coupled system, the emergence of new connections and preferences may cause

a ripple effect on the platform, hence affect the preferences of a large proportion of

users. Consequently, it is necessary to update the latent features of users and items

obtained in the previous time stamp to accommodate changes. A straightforward way

to update the latent features is to rerun the OCCF algorithm from scratch whenever

the system changes. However, for large-scale applications, such a strategy may take

an unaffordable long time, which would compromise user experience.

In this work, we propose an efficient algorithm to incrementally update one-class

collaborative filtering results with co-evolving side networks. To efficiently accommo-

date the changes in the system, we propose to model the evolution of latent features

based on the following observations: the system often evolves smoothly between two

consecutive time stamps such that a large number of observed preferences and net-

work links remain unchanged. Thus, we can view the new latent features as a subtle

78

Item Network

User Network

!

"

User Preference
#

u1
u2
u3
u4
u5

i1
i2
i3
i4
i5
i6

$

%

Item Network

User Network

User Preference
&# = # + ∆#

u1
u2
u3
u4
u5

i1
i2
i3
i4
i5
i6

&! = !+ ∆!

&" = " + ∆"
time* *+1

+$ = $ × -$

&% = % × -%

Figure 4.25: An Illustration of Online One-class Recommendation Problem with
Side Networks. Solid Lines Represent the Links in the Original System, Dashed
Lines Represent the Newly Emerged Links. (Best Viewed in Color.)

linear transformation from the previous features. This would in turn allows us to

incrementally solve the OCCF problem in a timely manner without re-solving it from

scratch.

The main contributions of this work can be summarized as follows:

• Problem Formulation. We formally define the problem of incremental OCCF

with co-evolving side networks.

• Algorithms and Analysis. We propose an incremental OCCF algorithm (i.e.,

ENCORE) that can efficiently accommodate system dynamics, and analyze

its optimality and complexity.

• Evaluations. We empirically evaluate the proposed method on real-world datasets

to verify its effectiveness and efficiency.

4.3.1 Problem Definition

In this section, we first give a formal definition of the studied problem of incremen-

tal OCCF with co-evolving side networks. After that, we provide the preliminaries

79

to facilitate the understanding of the proposed algorithm.

The main symbols used in this work are summarized in Table 5.3. We use bold

uppercase for matrices (e.g., A) and ∆A for the perturbation matrix of A. ˜ sign

denotes the notations after adding the perturbations into the system (i.e., Ã = A +

∆A). ′ sign denotes the matrix transpose.

With the above notations, we first define the static OCCF problem with side

networks as follows.

Definition 2. The problem of static OCCF problem with side networks.

Given: Γ =< M,N,R > where M is an nu×nu social network between users; N is

an ni×ni similarity network between items; and R is an nu×ni user preference matrix,

in which R(i, j) = 1 if user i shows preference on item j, otherwise R(i, j) = 0.

Output: The inferred preference between user u and item i.

Based on the above definition, we give the formal definition of incremental OCCF

problem with co-evolving side networks.

Problem 4. The problem of incremental OCCF with co-evolving side networks.

Given: (1) The original system Γ =< M,N,R >; (2) the perturbation of the system

∆Γ =< ∆M,∆N,∆R >; (3) the nu × r latent feature matrix F for users in the

original system Γ; and (4) the ni× r latent feature matrix G for items in the original

system Γ.

Output: The inferred preference between user u and item i in Γ̃ =< M̃, Ñ, R̃ >.

Preliminaries

Under static settings, OCCF problem with side networks can be solved with the

following optimization problem Yao et al. (2014)

80

Table 4.10: Main Symbols.

Symbol Definition and Description

A,B adjacency matrices

∆A perturbation matrix of A

Ã updated matrix of A

A(i, j) the element at ith row jth column in A

A′ transpose of matrix A

M the adjacency matrix of user network

N the adjacency matrix of item network

DM ,DN the diagonal degree matrices for M and N

R the preference matrix for users w.r.t. items

Γ the recommendation problem with side

networks Γ =< M,N,R >

W the weight matrix for R

F the latent feature matrix for users

G the latent feature matrix for items

nu, ni number of users and items

mu,mi number of edges in M and N

mr number of observed links in R

r the rank for F and G

t the number of iterations

min
F,G≥0

‖W � (R− FG′)‖2
F︸ ︷︷ ︸

Matching Observed Ratings

+ β(‖F‖2
F + ‖G‖2

F)︸ ︷︷ ︸
Regularization

(4.52)

+ α(tr(F′(DM −M)F) + tr(G′(DN −N)G))︸ ︷︷ ︸
Node Homophily

81

where � is the Hadamard product with [A �B](i, j) = A(i, j)B(i, j). In the above

objective function, R is the user preference matrix; F and G are the low-rank latent

feature matrices for users and items, respectively; DM and DN are the diagonal degree

matrices for user network M and item network N (i.e., DM(u, u) =
∑nu

k A(u, k),

DN(i, i) =
∑ni

k A(i, k)), respectively. W is an nu × ni weighting matrix, in which

W(i, j) = 1 if R(i, j) = 1 (i.e., positive preference observed between user i and item

j), otherwise W(i, j) ∈ (0, 1) if R(i, j) = 0 (i.e., no preference observed between user

i and item j). It is worth to mention that the weight for unobserved links is used to

mitigate its uncertainty between potential positive preferences and negative examples.

Consequently, different weighting strategies can be applied in different scenarios. In

this work, we set the weight of all unobserved entries to a global value w for the ease

of computation.

In Eq. (4.52), the first term is used to match the preferences in matrix R; the

second term is to prevent overfitting of the model; and the third term is used to

exploit node homophily in side networks. The intuition behind this term is that

similar users would hold similar preferences to items (i.e., small ‖F(u, :)−F(v, :)‖2
2).

Correspondingly, similar items would possess similar attractiveness to users (i.e., small

‖G(i, :) − G(j, :)‖2
2). The entire optimization problem in Eq. (4.52) can be solved

by non-negative matrix factorization techniques Lee and Seung (2001) with time

complexity O(((mu +mi +mr)r+ (nu + ni)r
2)t) (t is the number of iterations). The

inferred preference between user u and item i can be estimated by F(u, :)G(i, :)′,

where F and G are the local optimal solutions of Eq. (4.52).

4.3.2 Proposed Algorithm

In this section, we first introduce the proposed algorithm for incremental OCCF

with co-evolving side networks. Then we analyze its effectiveness and efficiency.

82

The proposed Algorithm

Given a static recommendation input Γ =< M,N,R >, we can find its low-rank

feature matrices F and G by solving Eq. (4.52) as shown in the previous section.

However, in real applications, networks are evolving over time with perturbation

∆Γ =< ∆M,∆N,∆R > from the previous time stamp. Consequently, the low-

rank feature matrices should be updated accordingly to provide a more accurate

preference estimation. In real applications, systems are often changing smoothly,

hence we can assume that the updated user features F̃ and item features G̃ still

reside in the same feature space with F and G, but are subtly transformed by the

system perturbations. In this way, the updated feature matrices F̃ and G̃ can be

viewed as a linear transformation from F and G as shown in the example in Fig. 4.25

(i.e., F̃ = FTF , G̃ = GTG). Therefore, Problem 4 is equivalent to finding the

transformation matrices TF and TG for the new time stamp. Hence, the new objective

function under perturbation ∆Γ can be written as

min
TF ,TG

‖W̃ � (R̃− FTFT′GG′)‖2
F (4.53)

+ α(trT′FF′(DM̃ − M̃)FTF)

+ αtr(T′GG′(DÑ − Ñ)GTG) + β(‖FTF‖2
F + ‖GTG‖2

F)

s.t. FTF ,GTG ≥ 0

Notice that the above objective function imposes a linear constraint on TF and TG

in FTF ,GTG ≥ 0, which would inevitably increase the computational complexity.

We propose to simplify the constraint by replacing it with a non-negative constraint on

TF and TG. As F and G are non-negative in the first place, their non-negative linear

combinations FTF and GTG are guaranteed to be non-negative as well. Therefore,

83

we can rewrite the above objective function as follows

min
TF ,TG≥0

‖W̃ � (R̃− FTFT′GG′)‖2
F (4.54)

+ αtr(T′FF′(DM̃ − M̃)FTF)

+ αtr(T′GG′(DÑ − Ñ)GTG) + β(‖TF‖2
F + ‖TG‖2

F)

As the objective function in Eq. (4.54) is not jointly convex w.r.t. TF and TG due

to the term FTFT′GG′, it is hard to find the global optimal solution for the problem.

Instead, we seek to obtain its local optimal solution by alternatively updating TF

and TG while fixing the other one.

When TG is fixed, the objective function w.r.t. TF is reduced to

JTF =‖W̃ � (R̃− FTFT′GG′)‖2
F (4.55)

+ αtr(T′FF′(DM̃ − M̃)FTF) + β‖TF‖2
F

Then the derivative of JTF w.r.t. TF is

1

2

∂JTF

∂TF

= F′(W̃ � W̃ � (FTFT′GG′))GTG (4.56)

− F′(W̃ � W̃ � R̃)GTG + αF′(D̃M̃ − M̃)FTF + βTF

Therefore, we can update TF with

TF (i, j) = TF (i, j)

√
XF (i, j)

YF (i, j)
(4.57)

where

XF =F′(W̃ � W̃ � R̃)GTG + αF′M̃FTF (4.58)

YF =F′(W̃ � W̃ � (FTFT′GG′))GTG (4.59)

+ αF′D̃M̃FTF + βTF

84

Note that the brute force way to update YF requires to calculate a large dense matrix

W̃ � W̃ � (FTFT′GG′) (i.e., W̃ � W̃ � (F̃G̃′)). This step will take O(nunir) which

is time-consuming in large-scale systems. Recall that we have set W̃(i, j) = 1 if

R̃(i, j) = 1 and W̃(i, j) = w if R̃(i, j) = 0, then the above term can be rewritten as

(1 − w2)R̃e + w2F̃G̃′ where R̃e = R̃ � (F̃G̃). In other words, the entries in R̃e are

the reconstructed preferences of observed links in the updated preference matrix R̃,

which is very sparse in real applications. Moreover, the term W̃�W̃�R̃ in Eq. (4.58)

is equivalent to R̃ itself. Therefore, the updating rule for TF can be simplified as

XF =(F′R̃G)TG + α(F′M̃F)TF (4.60)

YF =(1− w2)F′R̃eGTG + w2(F′F)TFT′G(G′G)TG (4.61)

+ α(F′D̃M̃F)TF + βTF

Similarly, TG can be updated with

TG(i, j) = TG(i, j)

√
XG(i, j)

YG(i, j)
(4.62)

where

XG =(G′R̃′F)TF + α(G′ÑG)TG (4.63)

YG =(1− w2)G′R̃′eFTF + w2(G′G)TGT′F (F′F)TF (4.64)

+ α(G′D̃ÑG)TG + βTG

The proposed algorithm is summarized in Alg. 7. It first gets r, the dimension of

latent features F and G in step 1, and then initializes the transformation matrices

TF and TG randomly in step 2 and 3. From step 4, the algorithm begins to update

TF (step 5) and TG (step 6) alternatively until convergence.

85

Algorithm 7 ENCORE: The Incremental OCCF Algorithm with Co-Evolving Side

Networks
Input: (1) the original recommendation input Γ =< M,N,R >; (2) the perturba-

tions on the system ∆Γ =< ∆M,∆N,∆R >; (3) the original latent features F

and G; (4) weight w; and (5) regularized parameters α and β;

Output: (1) Transformation matrix for user latent features TF and (2) transforma-

tion matrix for item latent features TG

1: r ← rank of F and G

2: initialize TF as r × r non-negative random matrix

3: initialize TG as r × r non-negative random matrix

4: while not converge do

5: update TF as Eq. (4.57)

6: update TG as Eq. (4.62)

7: end while

8: return TF , TG

Algorithm Analysis

We analyze the effectiveness and efficiency of Alg. 7. In terms of the effectiveness of

the algorithm, we first show that the fixed point solutions of Eq. (4.57) and Eq. (4.62)

satisfy the KKT condition.

Theorem 2. The fixed point solutions of Eq. (4.57) and Eq. (4.62) satisfy the KKT

condition.

Proof. As TF and TG are solved in the same way, we only need to show that the

fixed point solution for TF in Eq. (4.57) satisfy the KKT condition, the other one

can be proved in the same procedure.

86

First, the Lagrangian function for Eq. (4.55) is

LJF =‖W̃ � (R̃− FTFT′GG′)‖2
F + tr(T′FF′DM̃FTF) (4.65)

− αtr(T′FF′M̃FTF) + β‖TF‖2
F − tr(Λ′TF)

where Λ is the Lagrange multiplier. By setting the derivative of LJF w.r.t. TF to 0,

we get

2(F′(W̃ � W̃ � (FTFT′GG′))GTG (4.66)

− F′(W̃ � W̃ � R̃)GTG

+ αTFF′D̃M̃F− αTFF′M̃F + βTF) = Λ

By the KKT slackness condition, we have

[−F′(W̃ � W̃ � R̃)GTG − αTFF′M̃F (4.67)

+ F′(W̃ � W̃ � (FTFT′GG′))GTG

+ αTFF′D̃M̃F + βTF](i, j)TF (i, j) = 0

At the fixed point of Eq. (4.57), we have XF (i, j) = YF (i, j), which implies that

[F′(W̃ � W̃ � R̃)GTG + αTFF′M̃F](i, j) (4.68)

= [F′(W̃ � W̃ � (FTFT′GG′))GTG

+ αTFF′D̃M̃F + βTF](i, j)

Clearly, the above equation satisfies the KKT slackness condition in Eq. (4.67). There-

fore, the fixed point solution of Eq. (4.57) satisfies the KKT condition.

Theorem 2 states that the updating rules in Eq. (4.57) lead to a local optimal

solution to Eq. (4.55) at convergence. Also, it can be proved that by following the

updating rule in Eq. (4.57), the objective function in Eq. (4.55) decreases monotoni-

cally.

87

Combining Theorem 2 with the monotonic decreasing property, we can conclude

that Alg. 7 converges to the local optimal solution TF for the objective function in

Eq. (4.55). Similarly, we have the local optimal solution TG. The two matrices TF

and TG form the local optimal solution for Eq. (4.54).

For efficiency of the algorithm, we analyze the time complexity and space com-

plexity of Alg. 7 in Lemma 4.3.2 and Lemma 4.3.2 respectively. The time complexity

of proposed algorithm is O((m̃u + m̃i)r + ((nu + ni + r)r2 + m̃rr)t).

Proof. In Alg. 7, as term M̃, Ñ, R̃, F, and G remain the same during the iterations,

we can pre-compute related constant terms to avoid redundant computations. The

complexities of computing constant terms in Eq. (4.60) - (4.64) are O(nir
2 + m̃rr)

for F′R̃G; O(nur
2 + m̃ur) for F′M̃F; O(nur

2) for F′DM̃F; O(nur
2) for F′F; O(nir

2)

for G′G; O(nir
2 + m̃ir) for G′ÑG; and O(nir

2) for G′DÑG. Thus, the complexity

for pre-computing is O((nu + ni)r
2 + (m̃u + m̃i + m̃r)r). In each iteration, it takes

O(nur
2) and O(nir

2) to compute FTF (i.e., F̃) and GTG (i.e., G̃) respectively. The

complexity of computing F′R̃eGTG is O(nir
2 + m̃rr), the rest of the computations

for updating TF and TG are both O(r3). Therefore, the overall complexity for Alg. 7

is O((m̃u + m̃i)r + ((nu + ni + r)r2 + m̃rr)t), where t is the number of iterations in

the algorithm.

Compared with the complexity of static OCCF algorithm in the previous section

(O(((mu + mi + mr)r + (nu + ni)r
2)t)), the proposed ENCORE is more efficient,

with an O((m̃u + m̃i)r) reduction in the time complexity in each iteration.

The space complexity of proposed algorithm is O((nu+ni+r)r+ m̃u+ m̃i+ m̃r).

Proof. The algorithm requires a space of O(nur + nir) to store F and G, O(r2) to

store transformation matrices TF and TG, and O(m̃u+m̃i+m̃r) to store the updated

rating matrix and side networks. The space needed to compute and store the constant

88

terms are O(nir+r2) for F′R̃G; O(nur+r2) for F′M̃F and F′DM̃F; O(r2) for F′F and

G′G; O(nir + r2) for G′ÑG and G′DÑG. Therefore, the space costs for computing

constant terms is O((nu+ni)r+r2). In each iteration, it takes a space of O((nu+ni)r)

to compute F̃ and G̃, O(m̃r) to compute R̃e, O(nir+r2) to compute F′R̃eGTG, O(r2)

for the rest of the matrix multiplications to update TF and TG. Putting all together,

the overall space complexity for Alg. 7 is O((nu + ni + r)r + m̃u + m̃i + m̃r).

Variations

In this section, we discuss some of the variants of ENCORE. First, when the weight-

ing matrix W is an all-one matrix, ENCORE becomes a dynamic clustering al-

gorithm, in which TF and TG can be viewed as the cluster membership transition

matrix. Second, when one or both sides networks are missing, the corresponding

regularization term would be removed from the objective function. In particular,

when both side of the networks were removed, ENCORE is reduced to a dynamic

algorithm for classic one class collaborative filtering problem.

4.3.3 Experimental Evaluations

In this section, we evaluate the proposed ENCORE algorithm on two real datasets.

The experiments are designed to answer the following two questions.

• Effectiveness . How effective is ENCORE for OCCF problem with co-evolving

side networks?

• Efficiency . How fast is ENCORE compared with batch-mode static counter-

part?

89

Experimental Setup

We first introduce the datasets used, comparing methods, evaluation metrics, and

experimental settings before presenting the details of the experiments.

Datasets Description. We use two real datasets Ciao Tang et al. (2012a) and

Epinions Tang et al. (2012b) to evaluate the proposed ENCORE method. Ciao and

Epinions are two popular online product review websites in which users are allowed

to build connections and share experiences on the products with each other. To fit

the one-class collaborative filtering problem, all missing links and ratings that are no

greater than 3 are viewed as negative examples (i.e., labeled as 0); while ratings that

are greater or equal to 4 are marked as positive examples (i.e., labeled as 1). The user

side network contains the trust relations between users, while the item side network

describes the similarity between items based on their reviews 6 . Both datasets have

been preprocessed and used in Yao et al. (2014) and are publicly available. The

statistics of the datasets are summarized in Table 4.11.

In our evaluation, the datasets are partitioned into three groups. The first group is

the original training system which contains 50% of the ratings and the corresponding

side network links; the second group is the incremental system, which adds 1% links

to rating matrix and the side network connections at each time stamp; the last group

is the testing system, which contains the rest of the data.

Comparing Methods. We compare ENCORE with the following baseline methods

to demonstrate its effectiveness.

• ReRun. ReRun is the batch-mode static counterpart for ENCORE. At each

time stamp, it takes the current system snapshot as input networks and solves

the optimization problem in Eq. (4.52) from scratch. As ReRun does not impose

6Similarity between items is calculated by the cosine similarity between TF-IDF word vectors
constructed from item reviews.

90

Table 4.11: Statistics of Datasets.

Dataset Ciao Epinions

of users 6,102 33,725

of items 12,082 43,542

of user links 151,722 656,910

of items links 283,284 498,794

of preferences 117,731 500,478

any transformational constraints on the latent features in two consecutive time

stamps, it can be used to validate the effectiveness of the transformation model

in ENCORE.

• M+R. M+R is a variant of ENCORE, which only contains user side network

and preference matrix in the system.

• N+R. N+R is another variant of ENCORE, which only contains item side

network and preference matrix.

• R-MF. R-MF is a simple method for OCCF proposed in Pan et al. (2008),

which only utilizes the preference matrix in the system for the recommendation.

• R-SGD. R-SGD shares the same objective function with R-MF. Instead of cal-

culating the latent features at each time stamp, R-SGD modifies related latent

features with newly emerged ratings by stochastic gradient descent method.

Evaluation Metrics. In our experiments, we assess the effectiveness of ENCORE

with MAP and R-MPR as evaluation metrics.

91

• MAP. MAP (Mean Average Precision) is originally used to evaluate ranked

documents over a set of queries. Here it computes the mean average precision

over all users in the test set Pan et al. (2008). The larger the MAP is, the

better the performance is.

• R-MPR. R-MPR (Reverse Mean Percentage Ranking) is a variation of MPR,

which is originally used to evaluate users’ satisfaction of items by a ranked list.

A randomly generated item list can achieve an MPR of 50% Li et al. (2010).

The smaller the MPR is, the better the performance is. Here we set R-MPR to

be 0.5-MPR, thus a larger R-MPR indicates better performance.

Machine. The experiments are performed on a machine with 2 Intel Xeon 3.5GHz

processors and 256GB of RAM. The algorithms are implemented with MATLAB

using a single thread.

Effectiveness Results

We compare the proposed algorithm with other methods on both Ciao and Epinions

datasets. The results are shown in Fig. 4.26 and Fig. 4.27. We make the following

observations from these two figures.

• In both datasets, ENCORE achieves close performance with ReRun. Such re-

sults demonstrate that ENCORE can effectively accommodate newly emerged

links in the dynamic system for the recommendation.

• Side networks between users and items are both important for improving the

quality of recommendation results. As we can see from Fig. 4.26 and Fig. 4.27,

user network or item network alone with the preference matrix cannot boost the

recommendation quality compared with the methods that use preference matrix

92

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Day 2 Day4 Day6 Day 8 Day10

M
A
P

Ciao
ReRun ENCORE M+R

N+R R-MF R-SGD

ENCORE

0

0.05

0.1

0.15

0.2

0.25

0.3

Day 2 Day4 Day6 Day 8 Day10

R
-M

P
R

Ciao
ReRun ENCORE M+R

N+R R-MF R-SGD

(a) MAP (b) R-MPR

Figure 4.26: The Effectiveness Results on Ciao. Higher Is Better. Our Method
(Marked by Arrow) Perform Closely with Rerun Method. (Best Viewed in Color.)

0

0.005

0.01

0.015

0.02

Day 2 Day4 Day6 Day 8 Day10

M
A
P

Epinions
ReRun ENCORE M+R

N+R R-MF R-SGD

ENCORE

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Day 2 Day4 Day6 Day 8 Day10

R
-M

P
R

Epinions
ReRun ENCORE M+R

N+R R-MF R-SGD

(a) MAP (b) R-MPR

Figure 4.27: The Effectiveness Results on Epinions. Higher Is Better. Our Method
(Marked by Arrow) Performs Closely with Rerun Method. (Best Viewed in Color.)

only. However, when both networks are added to the model, the performance

can be improved significantly.

Efficiency Results

We evaluate the efficiency of ENCORE on both Ciao and Epinions. As the results

are similar, we only report the one on Ciao for brevity. It can be seen from Fig. 4.28

93

0.1

0.2

0.3

0.4

0.5

0.6

5 10 20 50 100

Si
n

gl
e

 It
e

ra
ti

o
n

 T
im

e
 (

s)

Rank r

Ciao
ReRun ENCORE

Ciao
Figure 4.28: The Running Time of Rerun Vs. ENCORE for a Single Iteration.

that the average running time of ENCORE for a single iteration is shorter than

the ReRun method. Specifically, as rank r increases, the speed-up of ENCORE

compared to ReRun becomes larger accordingly. This observation is consistent with

our time complexity analysis in the previous section that the proposed ENCORE

algorithm has an O(r) factor speed-up over its static counterpart (ReRun). Moreover,

as shown in Fig. 4.29, the average running time of ENCORE for one time stamp is

much shorter than ReRun (with around 75% improvement). This is mainly due to

the fact that ENCORE has much fewer variables to optimize at each time stamp

compared to ReRun (i.e., 2r× r vs. (m+ n)× r), which makes it converges faster in

a small number of iterations.

94

Rank r

0

100

200

300

400

500

600

5 10 20 50 100

R
u

n
n

in
g

Ti
m

e
 (

s)

Rank r

Ciao
ReRun ENCORE

Figure 4.29: The Running Time of ReRun Vs. ENCORE for One Time Stamp.

95

Chapter 5

NETWORK CONNECTIVITY OPTIMIZATION

In this section, we introduce the optimization strategies for SubLine connectivity

measures and its extension to multi-layered networks.

5.1 SubLine Connectivity Optimization

As we have discussed in Chapter 3, the connectivity of the network may take

different forms depending on the types of the application. Despite the various forms,

the connectivity minimization problem has always been a fundamental task in most

of the applications, in which a less connected network or subnetwork is more pre-

ferred Kovacs and Barabasi (2015). The primary goal for connectivity minimization

is to find a set of nodes/edges whose removal may lead to the destruction of the

underlying network. For example, in the critical infrastructure construction scenario,

the high impact facilities and links identified by the connectivity minimization algo-

rithms can be viewed as the backbone of the network, which is essential to ensure

the full functioning of the entire system. While in the immunization scenario, disease

control centers need to vaccine high impact entities and cut down highly contagious

connections to prevent the prevalence of the disease.

The main computation obstacle for the connectivity minimization problems lies in

its combinatorial nature. Specifically, for the global connectivity minimization prob-

lem, suppose the number of nodes and edges in the network is n and m respectively,

then the number of all possible node sets of size k would be
(
n
k

)
and the number of all

possible edge sets is
(
m
k

)
. Such exponential complexity would make exhaust search

intractable even in mid-sized networks.

96

To reduce the exponential time complexity, existing algorithms predominantly

rely on the greedy scheme. Taking the node deletion based connectivity minimiza-

tion problem for an example, the greedy scheme would iteratively collect the node

that has the largest impact on the pre-defined connectivity in the network until the

budget is used up. In virtue of the diminishing returns property on a wide-range

of the connectivity minimization problems Chen et al. (2015), the greedy scheme

can secure a near-optimal approximated solution with an approximation ratio of

1 − 1/e Nemhauser et al. (1978). A key step in the greedy scheme is to calculate

the impact of each candidate node/edge on the given connectivity measure, which

often involves eigen-decomposition operations with polynomial complexity w.r.t. the

size of the network. Obviously, a polynomial algorithm still can not handle large-scale

networks efficiently. To further accelerate the algorithm, matrix perturbation based

methods are frequently used to approximate the impact of a node/edge Chen et al.

(2016a). Such approximation algorithms have been proved to scale linearly w.r.t. the

network size, while exhibiting empirical superiority over other alternative methods.

Although the above-mentioned methods are empirically effective for some specific

connectivity minimization problems, two main challenges for the general connectivity

minimization problem still remain largely open. On the theoretical side, the hardness

of the general connectivity minimization problem has never been systematically jus-

tified except for a few special instances (e.g., epidemic threshold Chen et al. (2016b)

and triangle capacity Li and Yu (2015)). Furthermore, although the greedy scheme

can guarantee a 1− 1/e approximation ratio for the connectivity minimization prob-

lem, it still remains unknown if a better approximation ratio can be achieved within

polynomial time. On the algorithmic side, exact greedy algorithms often bear polyno-

mial time complexity, which is not scalable in large-scale networks. Although matrix

perturbation based approximation methods can simplify the complexity down to the

97

linear scale, their optimization quality is highly dependent on the spectrum of the

underlying network (the optimization quality would deteriorate quickly in networks

with small eigen-gaps Chen and Tong (2017); Le et al. (2015)).

In this work, we address the theoretical and algorithmic challenges of the connec-

tivity minimization problem. The main contributions of this work can be summarized

as follow.

• Revealing the Fundamental Limits. We prove that for the connectivity mini-

mization problem on a wide range of connectivity measures, (1) is NP-complete

and (2) (1−1/e) is the best approximation ratio for any polynomial algorithms,

unless NP ⊆ DTIME(nO(log logn)) 1 .

• Developing New Algorithms. We propose an effective algorithm (CONTAIN)

for network connectivity optimization. The centerpieces of the proposed method

include (a) an effective impact score approximation method and (b) an efficient

eigen-pair update method. The proposed CONTAIN algorithm bears three

distinct advantages over the existing methods, including (1) effectiveness, being

able to handle small eigen-gap networks, consistently outperforming the state-

of-the-art methods over a diverse set of real networks; (2) scalability, with a

linear complexity w.r.t. the network size; and (3) generality, applicable to a

variety of different network connectivity measures (e.g., leading eigenvalue, tri-

angle capacity, and natural connectivity) as well as network operations (node

vs. edge deletion). In addition, we also propose a variation of CONTAIN

(CONTAIN+) which can further simply the computational complexity by de-

riving a closed-form approximation on node/edge impact scores.

1DTIME(t(n)): the collection of languages that are decidable by O(t(n)) time deterministic
Turing machineSipser (1997).

98

5.1.1 Problem Definition

In this section, we formally introduce the network connectivity optimization prob-

lem and review the general strategy of greedy algorithms.

Table 5.3 gives the main symbols used in this work. Following the convention,

we use bold upper-case for matrices (e.g., A), bold lower-case for vectors (e.g., a)

and calligraphic for sets (e.g., A). We use ˜ to denote the notations after node/edge

deletion, and ∆ to denote the perturbations (e.g., ∆A = Ã−A). C(G) 2 represents

the network connectivity measure to be optimized in G; o indicates an element (a

node/edge) in network G; I(o) denotes the impact score of element o on C(G); Λ and

U denote the eigenvalue matrix and eigenvector matrix for the adjacency matrix A

of the network.

Recall that in Chapter 3, we define the SubLine connectivity as

C(G) =
∑
π∈G

f(π) (5.1)

where π is a subgraph of G, f is a non-negative function that maps any subgraph in

G to a non-negative real number (i.e., f : π → R+). Specifically, we have f(φ) = 0

for empty set φ; when f(π) > 0, we call subgraph π as a valid subgraph. In other

words, the network connectivity C(G) can be viewed as a weighted aggregation of the

connectivities of all valid subgraphs in the network. When the valid subgraphs are

defined on a subset of nodes T , the connectivity measure defined in Eq. (5.1) can also

be extended to measure the local connectivity of a subset of nodes T , where we define

f(π) > 0 iff π is incident to the node set T . Moreover, by choosing an appropriate

f() function (refer to 3 for details), Eq. (5.1) includes several prevalent network

connectivity measures, e.g., path capacity, triangle capacity, and natural connectivity.

2C(G) is the abbreviation for C(G, f), which is related to both the network structure and con-
nectivity function f .

99

Table 5.1: Main Symbols for CONTAIN.

Symbol Definition and Description

G(V,E) an undirected network

A,B the adjacency matrices (bold upper case)

a,b column vectors (bold lower case)

A,B sets (calligraphic)

A(i, j) the element at the ith row and the jth column in A

a(i) the ith element of vector a

A′ transpose of matrix A

∆A perturbation of A

Ã the adjacency matrix after node/edge deletion on A

m,n number of edges and nodes in network G

C(G) connectivity measure of network G under mapping function f

CT (G) the local connectivity of subgraph T on network G

F (Λ(r)) associated eigen-function for C(G)

o a network element in G (a node/edge)

I(o) connectivity impact score of o on C(G)

IT (o) local connectivity impact score of o on CT (G)

λ,u the leading eigenvalue and eigenvector of A (in magnitude)

Λ,U the eigenvalue and eigenvector matrix of A

Λ(r),U(r) the top-r eigen-pairs of A (in magnitude)

k the budget

In terms of computation, it is often much more efficient to either approximate or

compute these connectivity measures by the associated eigen-function F (Λ(r)), where

Λ(r) represents the top-r eigenvalues of A.

Network Connectivity Minimization

With the network connectivity measure in Eq. (5.1), we formally define the network

connectivity optimization problem as follows.

100

Problem 5. Network Connectivity Minimization (NETCOM)

Given: (1) a network G; (2) a connectivity mapping function f : π → R+ which

defines C(G); (3) a type of network operation (node deletion vs. edge deletion) and

(4) an integer budget k with 1 < k < min {|Sπ|, K} where Sπ = {π|f(π) > 0} denotes

the set of valid subgraphs and K denotes the number of valid network elements.

Output: a set of network elements X of size k, whose removal from G would minimize

connectivity C(G).

It is worth noting that depending on the definition of C(G), the valid subgraphs

in Sπ may have various structures. In the triangle minimization scenario, Sπ contains

all the triangles in the network. When the valid subgraph shares the same form as

the operation type (i.e., a valid subgraph is a single node in node-level operation

scenario, or a valid subgraph is an edge in edge-level operation scenario), we call this

kind of valid subgraphs as singletons. In Problem 5, we also require that the budget

1 < k < min {|Sπ|, K}. This is a fairly generic constraint which can be easily met. For

example, for the node deletion operation, the set of valid network elements is simply

the entire node set of the input network (i.e., K = n); for a connected network with

its connectivity measure C(G) defined as the path capacity, we have that |Sπ| > n.

Therefore, the above constraint simply means that we cannot delete all the nodes

from the input network, which would make the problem trivial. On the other end of

the spectrum, we require that the budget k > 1. Otherwise (with k = 1), the problem

can be easily solved in polynomial time (e.g., by choosing the valid network element

with the largest impact score). Problem 5 provides a general definition of the network

connectivity optimization problem, which can be in turn instantiated into different

instances, depending on (1) the specific choice of the connectivity measure C(G) (or

equivalently the choice of the f() function), and (2) the type of network operation

101

(node deletion vs. edge deletion). For example, in the robustness analysis of the power

grid, we might choose the natural connectivity as C(G) to evaluate the robustness of

the system, and we are interested in identifying k most critical power transmission

lines whose failure would cause a cascading failure of the entire grid. To abstract it as

a network connectivity optimization problem, we have the input network set as the

topological structure of the power grid; the connectivity to optimize as the natural

connectivity; the operation type as edge deletion; and the valid network elements as

all the edges (i.e., K = m in this case).

The NETCOM problem can be easily extended to local connectivity measures.

Specifically, the local connectivity minimization problem can be defined as follows.

Problem 6. Local Connectivity Minimization

Given: (1) a network G; (2) a subset of target nodes T ; (3) a connectivity mapping

function f : π → R+ which defines the local connectivity measure CT (G); (3) a type of

network operation (node deletion vs. edge deletion) and (4) an integer budget k with

1 < k < min {|Sπ|, K} where Sπ = {π|f(π) > 0} denotes the set of valid subgraphs

and K denotes the number of valid network elements.

Output: a set of network elements X of size k with X ∩ T = Φ, whose removal from

G would minimize connectivity CT (G).

Note that in Problem 6, the restriction X ∩ T = Φ on X is used to avoid the

trivial solution under node deletion operations, in which target nodes T are removed

for local connectivity minimization.

Greedy Strategy for NETCOM

Due to the combinatorial nature of Problem 5, it is computationally infeasible to

solve it in a brute-force manner. Thanks to the diminishing returns property of

102

NETCOM, the greedy strategy has become a prevalent choice for solving Problem 5

with a guaranteed (1−1/e) approximation ratio. For the ease of following discussions,

we present the outline of such greedy strategy in Algorithm 8. In Algorithm 8, the

solution set X is initialized with an empty set. At each iteration (step 2 to step 8),

the element (a node or an edge) with the highest impact score is added to the solution

set X until the budget is reached. The returned solution set X in step 9 guarantees

a (1 − 1/e) approximation ratio. For more details and proofs, please refer to Chen

et al. (2015).

Algorithm 8 A Generic Greedy Strategy for NETCOM Chen et al. (2015)

Input: (1) A network G; (2) a connectivity mapping function f : π → R+ which

defines C(G); (3) a type of network operation and (4) a positive integer k

Output: a set of network elements X of size k.

1: initialize X to be empty

2: for i = 1 to k do

3: for each valid network element o in G do

4: calculate I(o)← C(G)− C(G \ {o})

5: end for

6: add the element õ = argmaxoI(o) to X

7: remove the element {õ} from network G

8: end for

9: return X

5.1.2 Fundamental Limits

In this section, we start with detailing the theoretic challenges of the network

connectivity optimization (NETCOM) problem, and then reveal two fundamental

limits, including its hardness and its approximability.

103

Theoretic Challenges of NETCOM

The first theoretic challenge of NETCOM lies in its hardness. Since the NETCOM

problem has various instances, intuitively, the hardness of those instances might vary

dramatically from one to another. For example, if the elements in the valid subgraph

set Sπ are all singletons w.r.t. the corresponding operation type (i.e., Sπ is the node

set of the input network for the node-level optimization problem, or Sπ is the edge set

for the edge-level optimization problem), we can simply choose the top–k nodes/edges

with the highest f(π) scores, which immediately gives the optimal solution. However,

if NETCOM is instantiated as an edge minimization problem under node deletion

operations (i.e., the valid subgraph Sπ consists of all the edges, the valid network

element set is the entire node set) , the problem would become the (weighted) max-k

vertex cover problem, which is known to be NP-hard. Such observations naturally

give rise to the following question, what is the key intrinsic property of valid subgraph

set Sπ in conjunction with the network operation type that determines whether or

not the corresponding NETCOM instance is polynomially solvable? To date, the

hardness of the general NETCOM problem has largely remained unvalidated, except

for a few special instances. The second theoretic challenge of NETCOM lies in

its approximability. The greedy algorithm outlined in Section 5.1.1 has a provable

(1 − 1/e) approximation ratio Chen et al. (2015). However, we still do not know if

such an approximation ratio is optimal. In other words, it remains unknown if there

exists any polynomial algorithm with an approximation ratio better than (1 − 1/e)

for NETCOM.

104

Fundamental Limit #1: NP-Completeness

We reveal the hardness result of the NETCOM problem in Theorem 3. It states

that the NETCOM problem defined in Problem 5 is in general NP-complete, unless

the valid subgraphs in set Sπ are mutually independent to each other 3 .

Theorem 3. NP-Completeness of NETCOM. The NETCOM problem with

non-independent valid subgraphs in Problem 5 is NP-complete.

Proof. As the NETCOM problem admits two possible network operations, including

node deletions and edge deletions, we present our proof for each scenario in the

following two lemmas. Lemma 7 together with Lemma 8 would prove that NETCOM

problem is NP-complete.

Lemma 7. The k-node connectivity minimization problem is NP-complete.

Proof. By Eq. (5.1), the connectivity of network G is defined as C(G) =
∑

π∈G f(π).

We set function f as

f(π) =


wπ > 0 if π is a valid subgraph

0 otherwise.

(5.2)

Hence, we formulate the k-node minimization problem as follows.

Problem 7. k-Node Minimization Problem: NodeMin(G, k)

Given: (1) A network G =< V,E >; (2) the connectivity function f as defined in

Eq. (5.2); and (3) the budget k.

Output: A set with k nodes V ′ ⊆ V , such that C(G \ V ′) (i.e., the connectivity in

G \ V ′) is minimized.

3Two valid subgraphs are independent to each other if they do not have any common valid
network element.

105

Here we first prove that NodeMin(G, k) is NP-hard by constructing a polynomial

reduction from a well-known NP-hard problem, the max k-coverage problem (i.e.,

MaxCover(n,m, k)) Kleinberg and Tardos (2006). The MaxCover(n,m, k) problem

is defined as follows.

Problem 8. Max k-Coverage Problem: MaxCover(n,m, k)

Given: (1) the universal set of n elements U = {e1, e2, . . . , en}; (2) a collection S =

{B1, . . . ,Bm} of m distinct subsets of U , which are not mutually exclusive; (3) the

non-negative weights W = {wi, . . . , wn} associated to the corresponding elements in

U ; and (4) a positive integer k.

Output: A set S ′ ⊆ S with |S ′| ≤ k, s.t.
∑

ei∈U ′ wi is maximized, where U ′ is the set

of elements covered by the sets in S ′.

We aim to prove that MaxCover(n,m, k) is polynomially reducible to the k-node

minimization problemNodeMin(G, k) (i.e., MaxCover(n,m, k) ≤p NodeMin(G, k)).

Without loss of generality, we assume that 1 < k < m. The rationality behind

this assumption is that when k = 1, MaxCover(n,m, 1) can be trivially solved by

picking the set in S that contains the elements with the largest weight sum (i.e.,

S’={arg maxB∈S
∑

ei∈B wi}); while for k ≥ m, we may just take all the subsets in S

into S’ to guarantee a maximum coverage.

Given an instance of MaxCover(n,m, k) with 1 < k < m, we can construct a

network G with m nodes, each corresponds to one subset in S. For each element

ei in MaxCover(n,m, k), we construct a valid subgraph Gi as follows. First, we

scan set S and obtain all the sets {Bi1, . . . ,Bil} ⊆ S that contain element ei. Then

we map {Bi1, . . . ,Bil} into the nodes in G and get the corresponding l nodes. By

connecting those l nodes with edges, we get a subgraph Gi in G with connectiv-

ity score f(Gi) = wi. In this way, removing any nodes from Gi would break the

106

Figure 5.1: An Illustration of Polynomial Reduction from Max k-coverage Problem.

subgraph completeness. Repeating the above process for all the elements in U , the

final graph we get is G = G1 ∪ . . . ∪ Gn, and the connectivity function is defined as

f(Gi) = wi. Since the sets in S are distinct and not mutually exclusive, the resulting

valid subgraphs are guaranteed to be non-independent. Therefore, the solution of

MaxCover(n,m, k) would be equivalent to the solution of NodeMin(G, k), which

proves that NodeMin(G, k) is NP-hard.

On the other hand, given a candidate solution set of k node, we can verify its

optimality by comparing to the
(
n
k

)
all possible solution sets of size k. As calculating

the impact of each set take polynomial time w.r.t. the network size and
(
n
k

)
is also

polynomial to the size of the network, the overall complexity to verify the optimality

of the candidate solution is also polynomial to the size of the network, which indicates

that NodeMin(G, k) is in NP.

Therefore, the NodeMin(G, k) problem is NP-complete.

Figure 5.1 gives an illustration of the reduction from an instance of max k-coverage

problem MaxCover(n,m, k) to k-node minimization problem NodeMin(G, k), in

which different valid subgraphs are marked with different colors. Edges with mul-

tiple colors indicate that they are involved in multiple valid subgraphs.

Lemma 8. The k-edge connectivity minimization is NP-complete.

107

Proof. We still use the connectivity measure defined Eq. (5.2) to complete the proof.

The corresponding k-edge minimization problem can be defined as follows.

Problem 9. k-Edge Minimization Problem (EdgeMin(G, k))

Given: (1) A network G =< V,E >; (2) the connectivity function f as defined in

Eq. (5.2); and (3) the budget k.

Output: A set with k edges E ′ ⊆ E, such that C(G \ E ′) (i.e., the connectivity in

G \ E ′) is minimized.

We first prove that EdgeMin(G, k) is NP-hard by constructing a polynomial

reduction from MaxCover(n,m, k) problem. Similar to the rationale in the previous

proof, we assume that 1 < k < m.

Given an instance of MaxCover(n,m, k), we construct an m-edge star-shaped

network G (i.e., all the m edges share one common endpoint). Specifically, each

subset in S corresponds to an edge in G and each element ei in U represents a valid

subgraph Gi in the connectivity function. To construct subgraph Gi, we first locate

all the subsets in S that contain element ei, and map them into the corresponding

edges in G. Then the sub-star formed by those edges can be viewed as a valid

subgraph Gi with f(Gi) = wi. The removal of any edge from Gi would destroy the

completeness of the valid subgraph. Consequently, we have n valid subgraphs in

G. Similarly, as the sets in S are distinct and not mutually exclusive, the resulting

valid subgraphs are guaranteed to be non-independent. Therefore, the solution of

MaxCover(n,m, k) would be equivalent to the solution of EdgeMin(G, k), which

proves that EdgeMin(G, k) is NP-hard.

Again, given a candidate solution set of k node, we can verify its optimality by

comparing to the
(
m
k

)
all possible solution sets of size k. As calculating the impact

of each set take polynomial time w.r.t. the network size and
(
m
k

)
is also polynomial

108

to the size of the network, the overall complexity to verify the optimality of the

candidate solution is also polynomial to the size of the network, which indicates that

EdgeMin(G, k) is in NP.

Therefore, the EdgeMin(G, k) problem is NP-complete.

Figure 5.1 gives an illustration of the reduction from an instance of max k-coverage

problemMaxCover(n,m, k) to k-edge minimization problemEdgeMin(G, k). Again,

edges with multiple colors indicate their participation in multiple valid subgraphs.

Fundamental Limit #2: Approximability

Based on the hardness result of NETCOM, we further reveal the approximability of

NETCOM in Theorem 4, which says that (1−1/e) is indeed the best approximation

ratio a polynomial algorithm can achieve unless NP ⊆ DTIME(nO(log logn)).

Theorem 4. Approximability of NETCOM. (1− 1/e) is the best approximation

ratio for the NETCOM problem in polynomial time, unless NP ⊆ DTIME(nO(log logn)).

Proof. We prove this by contradiction. In the proof of Theorem 3, we show that max

k-Coverage problem is polynomially reducible to the NETCOM problem, which

implies that if there is an α-approximation algorithm that can solve NETCOM in

polynomial time with α > (1− 1/e), there will be an α-approximation algorithm for

max k-Coverage as well. However, it has been proved in Khuller et al. (1999) that

the maximum k-coverage problem can not be approximated with a factor better than

(1 − 1/e) unless NP ⊆ DTIME(nO(log logn)), which contradicts with our assumption.

Hence, we conclude that there is no polynomial algorithm for the NETCOM problem

with an approximation ratio greater than (1−1/e), unless NP ⊆ DTIME(nO(log logn)).

109

Since the greedy strategy in Algorithm 8 guarantees a (1 − 1/e) approximation

ratio, Theorem 4 implies that the greedy algorithm is the best polynomial algorithm

for NETCOM in terms of its approximation ratio unless NP ⊆ DTIME(nO(log logn)).

5.1.3 Proposed Algorithm

In this section, we start with detailing the algorithmic challenges of the network

connectivity optimization (NETCOM) problem, and then present an effective algo-

rithm, followed by some analysis in terms of its effectiveness and efficiency.

Algorithmic Challenges of NETCOM

In the greedy strategy (Algorithm 8), a key step is to calculate the impact score of

each network element, i.e., I(o) = C(G)−C(G\{o}) (Step 4). As we have mentioned

in Chapter 3, the network connectivity measures C(G) studied in this thesis can be

calculated or well approximated by a function of top-r eigenvalues of its adjacency

matrix (i.e., C(G) = F (Λ(r)), where F () is the function of eigenvalues). Therefore,

the core step of calculating I(o) is to compute Λ(r) on G\{o}, which takes O(m) time

(say using the classic Lanczos method). Consequently, simply recomputing C(G\{o})

for each network element from scratch would make the entire algorithm O(mn) for

node-level optimization problems and O(m2) for edge-level optimization problems,

neither of which is computationally feasible in large networks. To address this issue,

existing literature often resorts to matrix perturbation theory. Its key idea is to

view the deletion of a network element o as a perturbation to the original network

(i.e., Ã = A + ∆A). Thus, the new eigenvalues (and hence the new connectivity

measure C(G\{o})) can be approximated from the eigenvalues and eigenvectors of the

original network in constant time, making the overall algorithm linear w.r.t. the size

of the input network Chen et al. (2016b,a). However, for networks with small eigen-

110

gaps, the approximation accuracy of matrix perturbation theory based methods might

deteriorate quickly, if not collapse at all. This issue might persist even if we switch to

computationally more expensive high-order matrix perturbation theory Chen et al.

(2016b,a). Thus, the main algorithmic challenge is how to accurately approximate

the top-r eigenvalues of the input network after a node/edge deletion.

CONTAIN: The Proposed Algorithm

We propose a new updating algorithm for the top-r eigenvalues after node/edge dele-

tion. In order to maintain the linear complexity of the entire greedy algorithm, we

seek to update the top-r eigenvalues in constant time for each node/edge deletion

operation.

Our key observation is as follows. In classic matrix perturbation theory (whether

the first-order matrix perturbation theory or its high-order variants), a fundamental

assumption is that the perturbation matrix ∆A is a random matrix whose spectrum is

well-bounded as illustrated in Figure 5.2(a). However, such assumption does not hold

in the node/edge deletion scenario (Figure 5.2(b) and (c)), in which the perturbation

matrix ∆A is sparse and low-rank. Armed with this observation, we propose an

effective eigen-pair update algorithm for node/edge deletion based on partial-QR

decomposition. Unlike matrix perturbation based methods, which would inevitably

introduce approximation error in the procedure, the proposed algorithm does not

introduce any additional error when computing the impact score I(o), and it runs in

constant time for each node/edge operation.

The proposed CONTAIN algorithm is presented in Algorithm 9. Overall, it

follows the greedy strategy (Algorithm 8). In detail, We first compute the top-r

eigen-pairs of the network and compute the connectivity score of the original network

(step 2-3). From step 4 to step 19, we iteratively select the element with the highest

111

100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500
100 200 300 400 500

100

200

300

400

500

(a) Random (b) Node Deletion (c) Edge Deletion

Figure 5.2: Illustrations and Comparison of Random Perturbation Matrix (a),
Which Is Dense and Potentially Full-rank, Vs. Perturbation Matrices by Node Dele-
tion (b) and Edge Deletion (c), Both of Which Are Sparse and Low-rank.

impact score. When evaluating the impact of each valid element, we first construct

the perturbation matrix ∆A for the corresponding element and then perform eigen-

decomposition on it (step 6-7). Particularly, for node deletion operation, suppose the

removed node v has a set of neighbor nodes Nv. Then the resulting perturbation

matrix ∆A has ∆A(v,Nv) = ∆A(Nv, v) = −1, which is a rank-2 sparse matrix.

Therefore, U∆ and Λ∆ can be directly expressed as an n × 2 matrix and a 2 × 2

matrix respectively. Moreover, let nv = |Nv|, the non-zero entries in the eigenvector

matrix of ∆A are

U∆(v, 1) =
1√
2
, U∆(v, 2) =

1√
2

U∆(Nv, 1) = − 1√
2nv

, U∆(Nv, 2) =
1√
2nv

(5.3)

and the eigenvalue matrix of ∆A is

Λ∆ =

 √nv 0

0 −√nv

 (5.4)

In the edge deletion scenario, the perturbation matrix ∆A corresponding to the

removal of edge 〈u, v〉 has only two non-zero entries ∆A(u, v) = ∆A(v, u) = −1 and

112

Algorithm 9 The CONTAIN Algorithm

Input: (1) The adjacency matrix of the network A; (2) the associated eigen-function

F () for connectivity C(G); (3) rank r; (4) the network operation (node vs. edge

deletion); and (5) a positive integer k.

Output: a set of network elements X of size k.

1: initialize X to be empty

2: compute [U(r),Λ(r)]←top-r eigen-pairs of matrix A

3: compute C(G)← F (Λ(r))

4: for i = 1 to k do

5: for each valid element o in G do

6: ∆A← the perturbation matrix by element o’s deletion

7: [U∆,Λ∆]←eigen-pairs of ∆A

8: R←upper triangular matrix from [U(r),U∆]’s partial-QR decomposition

9: Λz ← eigenvalues of Z = R[Λ(r),0; 0,Λ∆]R′

10: compute I(o)← C(G)− F (Λz)

11: end for

12: add õ = argmaxoI(o) to X

13: update C(G)← C(G)− I(õ) and set I(õ)← −1

14: ∆A← the perturbation matrix by element õ’s deletion

15: [U∆,Λ∆]← eigen-pairs of ∆A

16: [Q,R]← partial-QR decomposition of [U(r),U∆]

17: [Uz,Λz]← eigen-pairs of Z = R[Λ(r),0; 0,Λ∆]R′

18: update U(r) ← (QUz)
(r), Λ(r) ← Λ

(r)
z , A← A + ∆A

19: end for

20: return X

113

u 6= v, which is also a rank-2 matrix. Then, the only non-zero entries in U∆ are

U∆(u, 1) =
1√
2
, U∆(u, 2) =

1√
2

U∆(v, 1) = − 1√
2
, U∆(v, 2) =

1√
2

(5.5)

And the eigenvalue matrix Λ∆ is

Λ∆ =

 1 0

0 −1

 (5.6)

With the eigenvector matrix of ∆A, we proceed to perform partial-QR decomposition

on [U(r),U∆] in step 8. As U(r) is already orthonormal, the Q matrix in the decom-

position can be written as the concatenation of U(r) and two orthogonal vectors in

unit length as follows

Q = [U(r),
q1

‖q1‖
,

q2

‖q2‖
] (5.7)

By the Gram-Schmidt process, we have

q1 = U∆(:, 1)−U(r)r1

q2 = U∆(:, 2)−U(r)r2 + r′1r2
q1

‖q1‖2
(5.8)

where r1 = U(r)′U∆(:, 1) and r2 = U(r)′U∆(:, 2).

For node-level operations, we have

r1 = U(r)′U∆(:, 1) =
1√
2

(U(r)(v, :)− 1
√
nv

∑
u∈Nv

U(r)(u, :))′

r2 = U(r)′U∆(:, 2) =
1√
2

(U(r)(v, :) +
1
√
nv

∑
u∈Nv

U(r)(u, :))′ (5.9)

While for edge-level operations, we have

r1 = U(r)′U∆(:, 1) =
1√
2

(U(r)(u, :)−U(r)(v, :))′

r2 = U(r)′U∆(:, 2) =
1√
2

(U(r)(u, :) + U(r)(v, :))′ (5.10)

114

Correspondingly, the upper-triangular matrix R can be written as

R =


I r1 r2

0 ‖q1‖ − r′1r2
‖q1‖

0 0 ‖q2‖

 (5.11)

By the definition of q1,q2 in Eq. (5.8) together with the orthonormal property of

the eigenvectors, the norms of q1 and q2 can be computed indirectly with two r × 1

vectors r1 and r2 as

‖q1‖ =
√

1− ‖r1‖2

‖q2‖ =

√
1− ‖r2‖2 − (r′1r2)2

1− ‖r1‖2
(5.12)

This enables us to compute ‖q1‖ and ‖q2‖ without explicitly constructing q1 and

q2, which reduces the cost of step 8 from O(nr) to O(r). It can be proved that by

setting Z = R[Λ(r),0; 0,Λ∆]R′, the eigenvalues of Z are just the top eigenvalues of

the perturbed matrix A+∆A, and the top eigenvectors of A+∆A can be calculated

by QUz (step 18). Therefore, we only need Λz to compute the impact score of

element o (step 10). After scanning all the valid elements in the current network,

we choose the one with the largest impact score and add it to the element set X

(step 12-13). Then, we update the network and its eigen-pairs (step 14-18). The

procedure to update eign-pairs is similar to that of computing the impact score for

a given network element (step 6-9), with the following subtle difference. In order to

just compute the impact score of a given network element, we only need the updated

eigenvalues. This is crucial as it saves the computation of (1) constructing q1 and q2,

(2) finding the eigenvectors of Z, and (3) updating the eigenvectors of the perturbed

matrix A + ∆A, which in turn helps maintain constant time complexity for each

inner for-loop (step 5-11).

115

Algorithm 9 can be easily extended to address the local connectivity minimization

problem by properly approximate the local connectivity impact score at step 10. It

is worth to note that for some complex local connectivity measures like local natural

connectivity or local length-t path capacity, it is often time-consuming to directly

calculate local connectivity CT (G) and element impact IT (o) on CT (G) than the

global connectivity C(G) and I(o). This is mainly because that CT (G) and IT (o) can

not be directly calculated with the eigen-pairs of the network. To efficiently address

this problem, we propose the following heuristic to measure CT (G) and IT (o).

Lemma 9. Local Impact Computation. Let C(G\T) and IG\T (o) denotes the global

connectivity of graph G \ T and impact of element o on C(G \ T), then CT (G) =

C(G)− C(G \ T), and IT (o) = I(o)− IG\T (o).

Proof. The first equation naturally holds by the definition of connectivity measures.

Here we proceed to prove the second part. By the definition of IT (o), we have

IT (o) = CT (G)− CT (G \ {o})

By the fact that CT (G) = C(G)− C(G \ T), the above equation can be re-write as

IT (o) = (C(G)− C(G \ T))− (C(G \ {o})− C(G \ {o} ∪ T) (5.13)

= (C(G)− C(G \ {o}))− (C(G \ T)− C(G \ {o} ∪ T)

= I(o)− IG\T (o)

Proof and Analysis

In this section, we analyze the proposed CONTAIN algorithm w.r.t. its effectiveness

and efficiency.

116

Effectiveness. The effectiveness of CONTAIN is summarized in Lemma 10, which

says that the computation of the impact score for each valid network element in the

inner for-loop does not introduce any extra approximation error.

Lemma 10. Effectiveness of CONTAIN. Suppose A is approximated with its

top-r eigen-pairs with error E (i.e., A = U(r)Λ(r)U(r)′ + E), then the Λz and QUz

returned in Algorithm 9 can be used to approximate Ã as its top eigen-pairs with no

extra error.

Proof. As A = U(r)Λ(r)U(r)′ + E and ∆A = U∆Λ∆U′∆, then Ã can be expressed as

Ã = U(r)Λ(r)U(r)′ + U∆Λ∆U′∆ + E

= [U(r),U∆]

 Λ(r) 0

0 Λ∆

 [U(r),U∆]′ + E (5.14)

Perform partial-QR decomposition on [U(r),U∆] as [U(r),U∆] = QR, we get or-

thonormal basis for Ã and an upper triangular matrix R. Then the perturbed matrix

Ã can be rewritten as

Ã = QR

 Λ(r) 0

0 Λ∆

R′Q′ + E (5.15)

Let Z = R[Λ(r),0; 0,Λ∆]R′ and perform eigen-decomposition on Z as Z = UzΛzU
′
z,

Ã is now equivalent to

Ã = QUzΛzU
′
zQ
′ + E = (QUz)Λz(QUz)

′ + E (5.16)

Since both Q and Uz are orthonormal, we have (QUz)(QUz)
′ = I. Thus, Λz and

QUz can be viewed as the top eigen-pairs of Ã. As the approximation error remains

to be E in Eq. (5.16), it implies that no extra error is introduced in the procedure,

which completes the proof.

117

As the eigenvalues in real networks are often skewed Faloutsos et al. (1999), the

above impact scores can be approximated with top-r eigenvalues. Analysis in exist-

ing literature (Tsourakakis (2008) and Chan et al. (2014)) show that the truncated

approximations for triangle capacity and natural connectivity can achieve high accu-

racy with only top-50 eigenvalues, which enables a great acceleration on impact score

approximation.

Efficiency. The complexity of the proposed CONTAIN algorithm is summarized in

Lemma 11, which says it is linear in both time and space.

Lemma 11. Complexity of CONTAIN. The time complexity of CONTAIN

for node-level connectivity optimization is O(k(mr + nr3)). The time complexity of

CONTAIN for edge-level connectivity optimization is O(k(mr3 + nr2)). The space

complexity of CONTAIN is O(nr +m).

Proof. In the CONTAIN algorithm, computing top-r eigen-pairs and connectivity

C(G) would take O(nr2+mr) and O(r) respectively. To compute the impact score for

each node/edge (step 5-11), it takes O(dvr) (dv is the degree of node v) for node v, and

O(r) for each edge to get the upper triangular matrix R in step 8. Since performing

eigen-decomposition on Z at step 9 takes O(r3), the complexity to collect impact

scores for all the nodes/edges are O(nr3 + mr) and O(mr3) respectively. Picking

out the node/edge with highest impact score in current iteration would cost O(n) for

node level operations and O(m) for edge level operations. At the end of the iteration,

updating the eigen-pairs of the network takes the complexity of O(nr2 + r3). As we

have r � n, the overall time complexity to select k nodes would be O(k(mr + nr3));

and the complexity to select k edges would be O(k(mr3 + nr2))

For space complexity, it takes O(n + m) to store the entire network, O(nr) to

calculate and store the top-r eigen-pair of the network, O(n) to store the impact

118

scores for all the nodes in node level optimization scenarios and O(m) to store the

impact scores for all the edges, the eigen-pair update requires a space of O(nr).

Therefore, the overall space complexity for CONTAIN is O(nr +m).

CONTAIN+: The Closed-form Heuristics

Here we provide the heuristics for the triangle capacity and natural connectivity

optimization problems, which can be easily extended to other similar connectivity

measures.

Impact Approximation. For triangle capacity optimization problem, the impact

of a node/edge is the number of triangles that the node/edge participates in, which

can be directly approximated with the eigen-pairs of the current network.

Lemma 12. Closed-Form Impact Score for Triangle Capacity. Given a network

G with adjacency matrix A and eigen-pair (U,Λ). The number of triangles that

node v participates in is I(v) =
∑n

i=1
λ3iu

2
i (v)

2
; the number of triangles that edge 〈u, v〉

participates in is I(〈u, v〉) =
∑n

i=1 λ
2
iui(u)ui(v).

Proof. The first part of the lemma has been proved in Tsourakakis (2008). Here we

proceed to prove the second part.

The number of triangles that edge 〈u, v〉 involves in equals to the number of

length-2 paths from node u to node v, which equals A2(u, v). As A = UΛU′, we

have A2 = UΛ2U′. Therefore, A2(u, v) =
∑n

i=1 λ
2
iui(u)ui(v).

Lemma 13. Closed-Form Impact Score for Natural Connectivity. Given a network

G with adjacency matrix A and eigen-pair (U,Λ). The impact of node v on nat-

ural connectivity is I(v) =
∑n

i=1 e
λiu2

i (v); the impact of edge 〈u, v〉 is I(〈u, v〉) =∑n
i=1

eλi−1
λi

ui(u)ui(v).

119

Proof. Natural connectivity can be viewed as an aggregation of weighted closed-

walks Jun et al. (2010). For node v, its impact on the number of length-t closed-walks

is proportional to At(v, v), so its overall impact on natural connectivity can be ex-

pressed as I(v) =
∑∞

j=0
Aj(v,v)

j!
. As we have A = UΛU′ and Aj(v, v) =

∑n
i=1 λ

j
iu

2
i (v),

we have

I(v) =
∞∑
j=0

1

j!

n∑
i=1

λjiu
2
i (v) =

n∑
i=1

∞∑
j=1

1

j!
λjiu

2
i (v) (5.17)

=
n∑
i=1

eλiu2
i (v)

For edge 〈u, v〉, the number of length-t closed-walks it participates in equals to

the number of length-(t − 1) walks from node u to node v, which can be expressed

as At−1(u, v). Therefore, its overall impact on natural connectivity can be written as

I(〈u, v〉) =
∑∞

j=1
Aj−1(u,v)

j!
. Let T =

∑∞
j=1

Aj−1

j!
, then we have

AT =
∞∑
j=1

Aj

j!
=
∞∑
j=0

Aj

j!
− I = eA − I

Based on the above equation, we have

T = A−1(eA − I) = UΛ−1U′(U(eΛ − I)U′) (5.18)

= UΛ−1(eΛ − I)U′

Thus, I(〈u, v〉) = T(u, v) =
∑n

i=1
eλi−1
λi

ui(u)ui(v)

Effectiveness of CONTAIN+. As we have mentioned, the impact score of a

node/edge is often approximated with the top-r eigen-pairs of the network. Let

(U,Λ) be the eigen-pairs of network G, (Ũ, Λ̃) be the eigen-pairs of network G\{v}.

To estimate the impact of node v on the connectivity of the network, CONTAIN

needs to utilize the eigenvalues from both the original network (i.e., Λ) and the

perturbed network (i.e., Λ̃) for the calculation (Algorithm 9 step 10); while CON-

TAIN+ only relies on the eigen-pairs in the original network (i.e., (U,Λ)). Take

120

triangle capacity optimization under node operations as an example. the impact of

node v can be approximated as I(v)CONTAIN =
∑r

i=1
λ3i
6
−
∑r

i=1
λ̃3i
6

by CONTAIN; or

it can be approximated as I(v)CONTAIN+ =
∑r

i=1
λ3iu

2
i (v)

2
by CONTAIN+. Suppose

the exact impact of node v is I(v)Exact, then we can define the approximation error of

CONTAIN as errCONTAIN = I(v)Exact− I(v)CONTAIN and the error of CONTAIN+

as errCONTAIN+ = I(v)Exact − I(v)CONTAIN+. In Lemma 14, we give the analysis on

errCONTAIN and errCONTAIN+.

Lemma 14. The error of CONTAIN for triangle capacity impact approximation

is errCONTAIN =
∑n
i=r+1 λ

3
i−λ̃3i

6
; and the approximation error for CONTAIN+ is

errCONTAIN+ =
∑n

i=r+1
λ3iu

2
i (v)

2
.

Proof. As we have I(v)Exact =
∑n

i=1
λ3iu

2
i (v)

2
=

∑n
i=1 λ

3
i−λ̃3i

6
, Lemma 14 naturally holds

when I(v)CONTAIN and I(v)CONTAIN+ are subtracted from I(v)Exact respectively.

Lemma 14 implies that when the removed node has small effect to the bottom-

(n−r) eigenvalues of the underlying network, CONTAIN is preferred as errCONTAIN

would be small. While in networks with very skewed eigenvalue distributions, CON-

TAIN+ is preferred as the bottom-(n−r) eigenvalues are small in magnitude. Similar

analysis can be derived for edge-level operation scenarios and natural connectivity op-

timization scenarios, which is omitted for brevity.

Complexity of CONTAIN+. In Theorem 5, we give the time and space complex-

ity of CONTAIN+.

Theorem 5. The time complexity of CONTAIN+ for node level connectivity op-

timization is O(nr2 + mr + knr2). The time complexity for edge level connectivity

optimization is O(k(mr+nr2)). The space complexity of CONTAIN+ is O(nr+m).

Proof. The CONTAIN+ algorithm is generally similar to the CONTAIN algorithm

except for the node/edge impact calculation part. Therefore, CONTAIN+ also need

121

to take O(nr2 + mr) to compute the top-r eigen-pairs. In each iteration, it takes

CONTAIN+ O(nr) time to get all the impact scores for each node or O(mr) for the

scores of each edge. After picking out the highest impact node/edge with O(n) or

O(m) complexity, we update the eigen-pairs of the network with the method used in

CONTAIN with O(nr2 + r3) complexity. Therefore, the overall complexity for node

level connectivity minimization is O(nr2 + mr + knr2) and the complexity for edge

level connectivity minimization is O(nr2 +mr+k(mr+nr2)), which can be simplified

as O(k(mr + nr2)).

As for the space complexity, CONTAIN+ also need space to store all the top-r

eigen-pairs and the impact scores for nodes/edges. Since no extra computation space

is introduced in CONTAIN+ compared to CONTAIN, the overall space complexity

for CONTAIN+ is still O(nr +m).

5.1.4 Experimental Evaluation

In this section, we evaluate the proposed CONTAIN algorithm. All experiments

are designed to answer the following two questions:

• Effectiveness. How effective is the proposed CONTAIN algorithm in mini-

mizing various connectivity measures?

• Efficiency. How efficient and scalable is the proposed CONTAIN algorithm?

Experiment Setup

Datasets. We perform experiments on 10 different datasets from 4 different domains,

including Airport: an air traffic network that represents the direct flight connections

between internal US airports 4 ; Oregon: an autonomous system network which de-

4http://www.levmuchnik.net/Content/Networks/NetworkData.html.

122

http://www.levmuchnik.net/Content/Networks/NetworkData.html

picts the information transferring relationship between routers from Leskovec et al.

(2005); Chemical: a network based on Davis et al. (2015) that shows the simi-

larity between different chemicals; Disease: a network that depicts the similarity

between different diseases Davis et al. (2015); Gene: a protein-protein interaction

network based on Davis et al. (2015); Astrph: a collaboration network between

authors whose papers were submitted to Astro Physics category on Arxiv Leskovec

et al. (2007b); Hepth: a collaboration network between authors whose papers were

submitted to High Energy Physics (Theory category) on Arxiv Leskovec et al. (2005);

Aminer: a collaboration network between researchers in the Aminer datasets Tang

et al. (2008); Eucore: the email correspondence network from a large European

research institution Leskovec et al. (2007b); and Fb: a social circle network collected

from Facebook Mcauley and Leskovec (2014). The statistics of those datasets are

listed in Table 5.2.

Table 5.2: Statistics of Datasets.

Domain Dataset #Nodes #Edges Avg Degree

Infrastructure
Airport 2,833 7,602 5.37

Oregon 5,296 10,097 3.81

Biology

Chemical 6,026 69,109 22.94

Disease 4,256 30,551 14.36

Gene 7,604 14,071 3.7

Collaboration

Astrph 18,772 198,050 21.1

Hepth 9,877 25,985 5.26

Aminer 1,211,749 4,756,194 7.85

Social
Eucore 1,005 16,064 31.97

Fb 4,039 88,234 43.69

123

Comparing Methods. We compare the proposed algorithm with the following

methods. (1) Degree: selecting top–k nodes (edges) with the largest degrees; specifi-

cally, for edge 〈u, v〉, let du and dv denote the degrees for its endpoints respectively,

the score for 〈u, v〉 is min{du, dv} 5 . (2) PageRank : selecting top–k nodes (edges)

with the largest PageRank scores Page et al. (1998) (the corresponding edge score is

the minimum PageRank score among its two endpoints); (3) Eigenvector : selecting

top–k nodes (edges) with the largest eigenvector centrality scores Newman (2008)

(the corresponding edge score is the minimum eigenvector centrality score among

its endpoints); (4) Netshield/Netmelt : selecting top–k nodes (edges) that minimize

the leading eigenvalue of the network Chen et al. (2016b,a); (5) MIOBI : a greedy

algorithm that employs first-order matrix perturbation method to estimate element

impact score and update eigen-pairs Chan et al. (2014); (6) MIOBI-S : a variant of

miobi that selects top–k nodes (edges) in one batch without updating the eigen-pairs

of the network; (7) MIOBI-H : a variant of miobi that employs high-order matrix per-

turbation method to update eigen-pairs Chen and Tong (2017); (8) Exact : a greedy

algorithm that recomputes the top-r eigen-pairs to estimate the impact score for each

candidate node/edge. For the results reported here, we set rank r = 80 for all the

top–r eigen-pairs based approximation methods (methods (5)-(8) and the proposed

CONTAIN method).

Evaluation Metrics. The performance of the algorithm is evaluated by the impact

of its selected elements I(X) = C(G)− C(G \ X). The larger the I(X) is, the more

effective the algorithm is. For a given dataset, connectivity measure and network

operation, we normalize I(X) by that of the best method, so that the results across

different datasets are comparable in the same plot.

5We use min{du, dv} as edge score to ensure that both ends of the top-ranked edges are high
degree nodes.

124

Machine and Repeatability All the experiments in this work are performed on a

machine with 2 processors (Intel Xeon 3.5GHz) with 256GB of RAM. The algorithms

are programmed with MATLAB using a single thread.

Effectiveness

Effectiveness of CONTAIN and CONTAIN+. We compare the proposed algo-

rithm and the baseline methods on three connectivity measures (leading eigenvalue,

number of triangles, and natural connectivity) by both node-level operations and

edge-level operations on all datasets in our experiment. Since the Exact method

needs to recompute the top-r eigen-pairs for each candidate node/edge which is very

time-consuming, its results would be absent on some large datasets (e.g., Aminier

and Astrph) where it does not finish the computation within 24 hours. In our ex-

periment, the budget for node-level operations is k = 20, the budget for edge-level

operations is k = 200. The results are shown from Figure 5.4 to Figure 5.9. We

can see that the proposed CONTAIN (the red solid bar) and CONTAIN+ (the red

hollow bar) (1) are very close to the Exact method (the black hollow bar); and (2)

consistently outperforms all the other alternative methods. In the meanwhile, the

proposed CONTAIN and CONTAIN+ algorithms are much faster than Exact, as

will be shown later.

To study the effectiveness of CONTAIN and CONTAIN+ for the local connec-

tivity minimization problem. We experiment on the Chemical data and compare

the performance of different methods for minimizing the local triangle capacity in

the network. From Figure 5.3, it is obvious to see that both CONTAIN and CON-

TAIN+ can achieve similar performance with the Exact algorithm and outperform

all other heuristic methods.

Effect of Rank r. The main parameter that affects the performance of CONTAIN

125

0 50 100 150 200
0

0.5

1

1.5

2

2.5
x 10

5

k node (budget)

Im
p

a
c
t

T
ri

a
n

g
le

Degree

PageRank

Eigenvector

Netshield

MIOBI

MIOBI−S

MIOBI−H

Exact

CONTAIN

CONTAIN+

0 200 400 600 800 1000
0

2

4

6

8

10

12
x 10

4

k edge (budget)

Im
p

a
c
t

T
ri

a
n

g
le

Degree

PageRank

Eigenvector

Netmelt

MIOBI

MIOBI−S

MIOBI−H

Exact

CONTAIN

CONTAIN+

(a) Node Operations. (b) Edge Operations.

Figure 5.3: The Optimization Results on the Number of Local Triangles on the
chemical Dataset.

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb

Degree PageRank Eigenvector Netshield Miobi Miobi-S Miobi-H Exact CONTAIN

Figure 5.4: The Optimization Results on Leading Eigenvalue with Node-level Op-
erations.

is the rank r. To study the effect of r, we change r from 5 to 80 to minimize the number

of triangles on the chemical dataset and compare them with the Exact method.

The results are shown in Figure 5.10. From Figure 5.10, it is obvious to see that as r

increases, the performance of CONTAIN increases accordingly, which is consistent

with our effectiveness analysis. With r = 80, the performance of CONTAIN is very

close to the Exact method with different k.

Efficiency

Efficiency of CONTAIN. Figure 5.11 presents the quality vs. running time trade-

off of different methods for optimizing the natural connectivity (the most complicated

connectivity measure) on the Eucore dataset. In both node-level and edge-level

126

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb

Degree PageRank Eigenvector Netshield Miobi Miobi-S Miobi-H Exact CONTAIN CONTAIN+

Figure 5.5: The Optimization Results on the Number of Triangles with Node-level
Operations.

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb

Degree PageRank Eigenvector Netshield Miobi Miobi-S Miobi-H Exact CONTAIN CONTAIN+

Figure 5.6: The Optimization Results on Natural Connectivity with Node-level
Operations.

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb

Degree PageRank Eigenvector Netmelt Miobi Miobi-S Miobi-H Exact CONTAIN

Figure 5.7: The Optimization Results on Leading Eigenvalue with Edge-level Op-
erations.

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb

Degree PageRank Eigenvector Netmelt Miobi Miobi-S Miobi-H Exact CONTAIN CONTAIN+

Figure 5.8: The Optimization Results on the Number of Triangles with Edge-level
Operations.

127

0

0.2

0.4

0.6

0.8

1

airport oregon chemical disease gene astrph hepth aminer eucore fb

Degree PageRank Eigenvector Netmelt Miobi Miobi-S Miobi-H Exact CONTAIN CONTAIN+

Figure 5.9: The Optimization Results on Natural Connectivity with Edge-level
Operations.

0 10 20 30 40 50
1000

1500

2000

2500

3000

3500

4000

k node (budget)

Im
p
a
c
t
T

ri
a
n
g
le

r = 5

r = 10

r = 20

r = 50

r = 80

Exact

0 100 200 300 400 500
1000

1500

2000

2500

3000

3500

4000

k edge (budget)

Im
p
a
c
t
T

ri
a
n
g
le

r = 5

r = 10

r = 20

r = 50

r = 80

Exact

(a) Node Operations. (b) Edge Operations.

Figure 5.10: The Effect of r on Optimizing the Number of Triangles on chemical
Dataset.

optimization scenarios, the proposed CONTAIN achieves very similar performance

as Exact. In terms of the running time, CONTAIN is orders of magnitude faster than

Exact. Although the running time of other baseline methods is similar to CONTAIN,

their performance (y-axis) is not as good as CONTAIN.

Efficiency of CONTAIN+. To justify the efficiency of CONTAIN+, we com-

pare the running time of CONTAIN and CONTAIN+ on the Chemical dataset

in Figure 5.12. We can see that the running time of CONTAIN+ is orders of mag-

nitudes faster than the CONTAIN algorithm. Moreover, as rank r increases, the

running time of CONTAIN would increase in polynomial order due to the eigen-

128

(a) Node Operations (b) Edge Operations

Figure 5.11: The Quality Vs. Running Time Trade-off on Eucore. The Budget
for Node Operations Is k = 20, the Budget for Edge Operations Is k = 200.

 5 10 20 50 80
0

5

10

15

20

Rank

R
u

n
n

in
g

 T
im

e
 (

s
)

CONTAIN

CONTAIN+

 5 10 20 50 80
0

50

100

150

200

Rank

R
u

n
n

in
g

 T
im

e
 (

s
)

CONTAIN

CONTAIN+

(a) Node Operations (b) Edge Operations

Figure 5.12: The Running Time Comparison Between CONTAIN and CON-
TAIN+ on the Chemical Dataset. The Budget for Both Node and Edge Operations
Is k = 20.

decomposition operation for node/edge impact score approximation; while the run-

ning time of CONTAIN+ only shows a slightly linear increase across different rank

settings.

Scalability of CONTAIN. The scalability results of CONTAIN are presented in

Figure 5.13. As we can see, the proposed CONTAIN algorithm scales linearly w.r.t.

the size of the input network (i.e., both the number of nodes and edges), which is

129

0 0.5 1 1.5 2 2.5

x 10
5

0

5

10

15

20

25

30

35

40

Network Size (n+m)

R
u
n
n
in

g
 T

im
e
 (

s
)

Node-NC

r = 5

r = 10

r = 20

r = 50

r = 80

0 0.5 1 1.5 2 2.5

x 10
5

0

50

100

150

200

250

300

350

400

Network Size (n+m)

R
u
n
n
in

g
 T

im
e
 (

s
)

Edge-NC

r = 5

r = 10

r = 20

r = 50

r = 80

(a) Node Operations (b) Edge Operations

Figure 5.13: The Scalability of CONTAIN. The Budget for Both Node and Edge
Operations Is k = 20.

consistent with Lemma 11.

5.2 Connectivity Optimization in Multi-layered Networks

The multi-layered networks are fundamentally different from the single-layered

networks due to the cross-layer dependencies between different networks. Such de-

pendency has made multi-layered networks are more vulnerable to external attacks

because their nodes can be affected by both within-layer connections and cross-layer

dependencies. That is, even a small disturbance in one layer/network may be ampli-

fied in all its dependent networks through cross-layer dependencies, and cause cascade

failure to the entire system. For example, when the supporting facilities (e.g., power

stations) in a metropolitan area are destroyed by natural disasters like hurricanes or

earthquakes, the resulting blackout would not only put tens of thousands of people

in dark for a long time, but also paralyze the telecom network and cause a great

interruption on the transportation network. Therefore, it is of key importance to

identify crucial nodes in the supporting layer/network, whose loss would lead to a

catastrophic failure of the entire system, so that the countermeasures can be taken

130

proactively. On the other hand, accessibility issues extensively exist in multi-layered

network mining tasks. To manipulate the connectivity in layers with limited acces-

sibility, one can only operate via the nodes from accessible layers that have large

impact to target layers. Taking the multi-layered network depicted in Figure 3.1(a)

for example, assume that the only accessible layer in the system is the control layer

and the goal is to minimize the connectivity in the satellite communication layer and

physical layer simultaneously under k attacks, the only strategy we could adopt is

to select a set of k nodes from the control layer, whose failure would cause largest

reduction on the connectivity of the two target layers.

To tackle the connectivity optimization 6 problem in multi-layered networks,

great efforts have been made from different research area for manipulating two-layered

interdependent network systems Buldyrev et al. (2010); Parshani et al. (2010); Sen

et al. (2014); Shao et al. (2011); Gao et al. (2012). Although much progress has

been made, the optimization strategies used in two-layered networks may still be

sub-optimal or even misleading in multi-layered network settings, where we want

to simultaneously optimize the connectivity in multiple layers by manipulating one

common supporting layer. On the theoretic side, the optimality of the connectivity

optimization problem of generic multi-layered networks is largely unknown.

This work aims to address the above challenges, and the main contributions can

be summarized as

• Connectivity Optimization. We show that for any network connectivity mea-

sures in the SubLine family, the connectivity optimization problem with the

proposed MuLaN model enjoys the diminishing returns property, which natu-

rally lends itself to a family of provable near-optimal optimization algorithms

6In this work, connectivity optimization problem is defined as minimizing the connectivity of a
target layer by removing a fixed number of nodes in the control layer.

131

with linear complexity.

• Empirical Evaluations. We perform extensive experiments based on real data

sets to validate the effectiveness and efficiency of the proposed algorithms.

5.2.1 Problem Definition

In this section, we start with the main symbols used in this work (Table 5.3) and

then give the formal definition of multi-layered network connectivity optimization

problem. We use bold upper case letters for matrices (e.g., A, B), bold lower case

letters for column vectors (e.g., a, b) and calligraphic font for sets (e.g., A, B). The

transpose of a matrix is denoted with a prime, i.e., A′ is the transpose of matrix A.

With the above symbols 7 and the definition of multi-layered networks in Chap-

ter 3, We formally define the connectivity optimization problem (Opera) on the

proposed MuLaN model for multi-layered networks as follows.

Problem 10. Opera on MuLaN

Given: (1) a multi-layered network Γ =< G,A,D, θ, ϕ >; (2) a control layer Al;

(3) an impact function I(.); and (4) an integer k as operation budget;

Output: a set of k nodes Sl from the control layer (Al) such that I(Sl) (the overall

impact of Sl) is maximized.

In the above definition, the control layer Al indicates the sources of the ‘attack’;

and the g×1 vector α indicates the target layer(s) as well as their relative weights. For

instance, in Figure 3.1(a), we can choose layer-1 as the control layer (indicated by the

strike sign); and set α = [0 1 0 1]′, which means that both layer-2 and layer-4 are the

target layers (indicated by the star signs) with equal weights between them. In this

7In this section, we use the adjacency matrix Ai to represent the corresponding network. Thus,
the Ai here is equivalent to the Gi in Section 3.

132

Table 5.3: Main Symbols for MuLaN.

Symbol Definition and Description

A,B the adjacency matrices (bold upper case)

a,b column vectors (bold lower case)

A,B sets (calligraphic)

A(i, j) the element at ith row jth column in matrix A

A(i, :) the ith row of matrix A

A(:, j) the jth column of matrix A

A′ transpose of matrix A

G the layer-layer dependency matrix

A adjacency matrices at each layers A = {A1, . . . ,Ag}

D cross-layer node-node dependency matrices

θ, ϕ one to one mapping functions

Γ multi-layered network MuLaN Γ =< G,A,D, θ, ϕ >

Si, Ti, . . . node sets in layer Ai(calligraphic)

Si→j nodes in Aj that depend on nodes S in Ai

N (Si) nodes and cross-layer links that depend on Si

mi, ni number of edges and nodes in layer Ai

λ<A,j>,u<A,j> jth largest eigenvalue (in module) and eigenvector A

λA,uA first eigenvalue and eigenvector of network A

C(Ai, f) connectivity of network Ai under mapping function f

IA(Si) impact of node set Si on network A

I(Si) overall impact of node set Si on MuLaN

example, once a subset of nodes S in layer-1 are attacked/deleted (e.g., shaded circle

nodes), all the nodes from layer-2 and layer-3 that are dependent on S (e.g., shaded

parallelogram and triangle nodes) will be disabled/deleted, which will in turn cause

the disfunction of the nodes in layer-4 (e.g., shaded diamond nodes) that depend on

133

the affected nodes in layer-2 or layer-3. Our goal is to choose k nodes from layer-1

that have the maximal impact on both layer-2 and layer-4, i.e., to simultaneously

decrease the connectivity C(A2, f) and C(A4, f) as much as possible.

5.2.2 Theoretical Analysis

In this section, we present the major theoretical results of the connectivity opti-

mization problem (Opera) on multi-layered networks defined in Problem 1. It says

that for any connectivity function C(A, f) in the SubLine family (Eq. (3.6)), for

any multi-layered network in the MuLaN family (Definition 1), the connectivity

optimization problem (Opera, Problem 1) bears diminishing returns property.

Let us start with the base case, where there is only one single input network.

In this case, Γ =< G,A,D, θ, ϕ > in Problem 1 degenerates to a single-layered

network A, which is both the control layer as well as the sole control target (i.e.,

α = 1, and l = 1). With such a setting, Lemma 15 says that Opera enjoys the

diminishing returns property, that is, the overall impact function I(S1) (which in this

case degenerates to I(S), i.e., the impact of the node set S on network G itself) is

(a) monotonically non-decreasing; (b) sub-modular; and (c) normalized.

Lemma 15. Diminishing Returns Property of a Single-layered Network.

Given a simple undirected, un-weighted network A, for any connectivity function

C(A, f) in the SubLine family, the impact function I(S) is (a) monotonically non-

decreasing; (b) sub-modular; and (c) normalized, where S ⊆ A.

Proof. By the definition of the connectivity function C(A, f) (Eq. (3.6)), we have

I(S) =
∑
π⊆A

f(π)−
∑

π⊆A\S

f(π) =
∑

π⊆A, π∩S6=Φ

f(π)

where Φ is the empty set. Apparently, we have I(Φ) = 0 since f(Φ) = 0. In other

words, the impact function I(S) is normalized.

134

Let I,J ,K be three sets and I ⊆ J . We further define three sets as follows:

S = I ∪ K, T = J ∪ K, R = J \ I.

We have

I(J)− I(I) =
∑

π⊆A, π∩J 6=Φ

f(π)−
∑

π⊆A, π∩I6=Φ

f(π)

=
∑

π⊆A, π∩(J\I)6=Φ

f(π) =
∑

π⊆A, π∩R6=Φ

f(π)

≥ 0

which proves the monotonicity of the impact function I(S).

Let us define another set P = T \ S. We have that P = (J ∪ K) \ (I ∪ K) =

R \ (R∩K) ⊆ R = J \ I. Then, we have

I(T)− I(S) =
∑

π⊆A, π∩P6=Φ

f(π) ≤ I(J)− I(I)

which completes the proof of the sub-modularity of the impact function I(S).

In order to generalize Lemma 15 to an arbitrary, generic member in the MuLaN

family, we first need the following lemma, which says that the set-ordering relationship

in a supporting layer is preserved through dependency links in all dependent layers

of MuLaN.

Lemma 16. Set-ordering Preservation Lemma on DAG. Given a multi-layered

network Γ =< G,A,D, θ, ϕ >, and the dependency network G is a directed acyclic

graph (DAG). For two node sets Il,Jl in Al such that Il ⊆ Jl, we have that in any

layer Ai in the system, Il→i ⊆ Jl→i holds, where Il→i and Jl→i are the node sets in

layer Ai that depend on Il and Jl in layer Al respectively.

Proof. If l = i, we have Jl→i = J ⊆ Il→i = I and Lemma 16 holds.

Second, if layer-i does not depend on layer-l either directly or indirectly, we have

Jl→i = Il→i = Φ, where Φ is an empty set. Lemma 16 also holds.

135

If layer-i does depend on layer-l through the layer-layer dependency network G,

we will prove Lemma 16 by induction. Let len(l i) be the maximum length of the

path from node l to node i on the layer-layer dependency network G. Since G is a

DAG, we have that len(l i) is a finite number.

Base Case. Suppose len(l i) = 1, we have that layer-i directly depends on

layer-l. Let Rl = Jl \ Il. We have that

Jl→i = Il→i ∪Rl→i ⊇ Il→i (5.19)

which complete the proof for the base case where len(l i) = 1.

Induction Step. Suppose Lemma 16 holds for len(l i) ≤ q, where q is a positive

integer. We will prove that Lemma 16 also holds for len(l i) = q + 1.

Suppose layer-i directly depends on layer-ix (x = 1, ..., d(i), where d(i) is the in-

degree of node i on G). Since G is a DAG, we have that len(l ix) ≤ q. By the

induction hypothesis, given Il ⊆ Jl, we have that Il→ix ⊆ Jl→ix .

We further have Il→i = ∪x=1,...,d(i) (Il→ix)ix→i.

Let Rl→ix = Jl→ix \ Il→ix for x = 1, . . . , d(i). We have that

Jl→i = [∪x=1,...,d(i) (Il→ix)ix→i] (5.20)

∪ [∪x=1,...,d(i) (Rl→ix)ix→i]

= Il→i ∪Rl→i ⊇ Il→i

which completes the proof of the induction step.

Putting everything together, we have completed the proof for Lemma 16.

Notice that in the proof of Lemma 16, it requires the layer-layer dependency

network G to be a DAG so that the longest path from the control layer Al to any

target layer At is of finite length. To further generalize it to arbitrary dependency

structures, we need the following lemma, which says that the dependent paths from

136

control layer to target layer in any arbitrarily structured dependency network can be

reduced to a DAG.

Lemma 17. DAG Dependency Reduction Lemma. Given a multi-layered net-

work Γ =< G,A,D, θ, ϕ > with arbitrarily structured layer-layer dependency network

G, a control layer Al, and a target layer At, the dependent paths constructed by Al-

gorithm 10 can be reduced to a DAG.

Proof. In Algorithm 10, Tarjan Algorithm is first used to find out all strongly con-

nected components V = {SC1,SC2, . . . ,SCf} in layer-layer dependency network G.

The cross-component dependency edges are denoted as E = {Ei,j}i,j=1,...,f,i 6=j where

〈u, v〉 ∈ Ei,j iff G(u, v) = 1 and Au ∈ SCi, Av ∈ SCj. Based on the node set V

and the edge set E , a directed meta-graph G can be constructed where G(u, v) = 1 iff

Ei,j 6= φ. The meta-graph G is acyclic. Otherwise, the cycle in G would be merged

into a large strongly connected component by Tarjan Algorithm in the first place.

Suppose the control layer Al and the target layer At are located in strongly con-

nected component SCi and SCj respectively, then a set of acyclic paths P from SCi

and SCj can be extracted from G. To show that the dependent paths from Al to At

is DAG, we only need to show that each meta-path P ∈ P can be unfolded into a

DAG.

Here we proceed to show how a meta-path P can be represented with a DAG.

As the nodes in P are strongly connected components that contain cycles, and the

edges in P contain corresponding cross-component edges that would not introduce

any cycles, representing P with a DAG can be converted to a problem of unfolding the

cyclic dependent paths in a strongly connected component into a DAG. As described

in Algorithm 13, a strongly connected componentQ can be partitioned into two parts:

(1) a DAG that contains all acyclic links (denoted as GQ,0) and (2) links that enclose

137

cycles in Q (denoted as EQ,0). Therefore, given a strongly connected component Q

and a set of dependent nodes {Tv}Av∈Q in Q, the dependent cycle can be replaced

by a chain of GQ,0’s replicas, where the two adjacent replicas are linked by EQ,0 until

the number of the dependent nodes in the connected component converges (step 5

to 23 in Algorithm 12). As the number of dependent nodes keeps increasing in each

iteration and is upper bounded by the total number of nodes in Q, the repetition is

guaranteed to stop at a stable state within finite iterations. Since GQ,0 is a DAG, the

links (EQ,0) between each replicas {GQ,1, . . . ,GQ,L} would not introduce any cycle,

the resulting graph GQ is also a DAG. Therefore, the dependent paths constructed

by Algorithm 10 from Al and At can be represented as a DAG.

A complete DAG reduction algorithm is summarized from Algorithm 10 to 13.

In Algorithm 10, step 1 runs Tarjan Algorithm Tarjan (1972) to find out all

the strongly connected components in layer-layer dependency network G. Step 2

collects all cross-component edges into set E . In the following step, a meta-graph G

is constructed based on V and E . In step 4 and 5, the connected components that

contain control layer and target layer are located (SCi and SCj). Step 6 finds out all

meta-paths from SCi to SCj. In step 7, the final DAG GD and dependent node set

Sl→t are initialized as empty sets. From step 8 to step 11, the DAG GP
D and dependent

node set SP
l→t for each path P in P are calculated by function unfoldPath, and are

used to update GD and Sl→t in step 10.

To illustrate how Algorithm 10 works, we present a simple example in Figure 5.14.

In the example, the dependency network G contains three layers, where A1 is the

control layer and A3 is the target layer. Specifically, A2 is a dependent layer of A1;

while A2 and A3 are inter-dependent to each other. The toy example has two strongly

8A widely used strongly connect component detection algorithm in Tarjan (1972).

138

Algorithm 10 DAG Reduction Algorithm

Input: (1) A multi-layered network Γ, (2) a control layer Al, (3) a set of node Sl in

layer Al and (4) a target layer At

Output: (1) a DAG GD that contains all the dependent paths from Sl in layer Al

to At and (2) Sl→t.

1: find out all strongly connected components in G as V ← {SC1,SC2, . . . ,SCf}

with Tarjan Algorithm8

2: set E ← {Ei,j}i,j=1,...,f , where 〈u, v〉 ∈ Ei,j iff G(u, v) = 1 and Au ∈ SCi, Av ∈ SCj

3: construct meta-graph G from V s.t. G(i, j) = 1 iff Ei,j 6= φ

4: SCi ← connected component that contains Al

5: SCj ← connected component that contains At

6: find out all paths P from SCi to SCj in G

7: initialize GD ← φ, Sl→t = φ

8: for each path P in P do

9: [GP
D,SP

l→t]← unfoldPath(P,G,Sl,Γ,V , E)

10: GD ← GD ∪GP
D, Sl→t ← Sl→t ∪ SP

l→t

11: end for

12: return [GD, Sl→t]

connected components {SC1,SC2} and one cross-component edge set E1,2 = {〈1, 2〉}.

The meta-graph G is a link graph with just two nodes.

Algorithm 11 UnfoldPath: Construct DAG from meta-path

Input: (1) A meta-path P = SCi → . . . → SCj, (2) a meta-graph G, (3) a set of

nodes Sl in Al ∈ SCi, (4) a multi-layered network Γ, (5) all strongly connected

components V and (6) all cross-component edges E

Output: (1) a DAG GP
D and (2) SP

l→t.

139

Figure 5.14: A Cyclic Dependency Multi-layered Network.

1: append φ to the end of meta-path P

2: set Q = SCi

3: iq ← index of connected component Q in meta-graph G

4: i′′q ← −1

5: for each layer Av in Q do

6: initialize Tv ← φ

7: end for

8: Tl ← Tl ∪ Sl

9: set root R← Al

10: while true do

11: [GP
Q, {SP

l→v}Av∈Q]← unfoldSC(Q, {Tv}Av∈Q,R)

12: if i′′q = −1 then

13: GP
D ← GP

Q

14: else

15: for each 〈u, v〉 ∈ Ei′′q ,iq do

16: link layer A
Li′′q
u ∈ GP

D to layers {Ax
v}x=1,...,Liq

∈ GP
Q

140

17: end for

18: end if

19: Q′ ← Q.successor()

20: if Q′ = φ then

21: break

22: else

23: i′q ← index of Q′ in meta-graph G

24: for each layer Av in Q′ do

25: initialize Tv ← φ

26: end for

27: for each edge 〈u, v〉 ∈ Eiq ,i′q do

28: Tv ← Tv ∪ (SP
l→u)u→v

29: end for

30: R← Ar, where Ar is a randomly picked layer from Q′ with Tr 6= φ

31: Q ← Q′

32: i′′q ← iq

33: iq ← i′q

34: end if

35: end while

36: return GP
D, SP

l→t

In Algorithm 11, the first connected component Q is initialized as the connected

component that contains control layer Al in step 2, the dependent nodes are initialized

as Sl from step 5 to 8 and the root layer R is initialized as the control layer Al. From

step 10 to 36, the DAG GP
Q and the final dependent nodes in Q are calculated by

function unfoldSC in step 11; GP
Q is then added to the final DAG GP

D via cross-

component links Ei′′q ,iq from step 15 to 17. The initial dependent nodes for the next

141

connected component SCi′q are computed through cross-component links Eiq ,i′q from

step 27 to 29. Step 30 is used to pick a root layer with non-empty dependent node

set for SCi′q .

Algorithm 12 UnfoldSC: Construct DAG from strongly connected component

Input: (1) A strongly connected component Q, (2) a set of initial nodes for each

layer {Tv}Av∈Q, (3) a root layer R

Output: (1) a DAG GQ (2) {Sl→v}Av∈Q.

1: extract DAG and cycle edges [GQ,0, EQ,0]← extractDAG(Q,R)

2: set GQ,1 ← GQ,0, denote the layers in GQ,1 as {A1
v}

3: set c← 1

4: initialize GQ ← GQ,1

5: while true do

6: {T cv }Av∈Q ← dependents of {Tv}Av∈Q in GQ,c

7: update {Tv}Av∈Q ← {Tv ∪ T cv }Av∈Q

8: set GQ,c+1 ← GQ,0, layers in GQ,c+1 are denoted as {Ac+1
v }

9: extend GQ ← GQ ∪GQ,c+1

10: for each edge 〈u, v〉 ∈ EQ,0 do

11: Tu→v ← all dependents of Tu in layer Av

12: if Tu→v * Tv then

13: add edge 〈Ac
u,A

c+1
u 〉 to GQ

14: update Tv ← Tv ∪ Tu→v

15: end if

16: end for

17: if no edge added between GQ,c and GQ,c+1 then

18: remove GQ,c+1 from GQ

19: break

142

20: else

21: c← c+ 1

22: end if

23: end while

24: return [GQ, {Tv}Av∈Q]

Algorithm 12 is used to unfold a strongly connected component into a DAG. In step

1, the input connected component Q is partitioned into a DAG GQ,0 and a set of cycle

links EQ,0. In step 2, the DAG GQ is initialized by GQ,1, which is a replica of GQ,0.

From step 5 to 23, the algorithm keeps appending replicas of GQ,0 (GQ,c+1) onto GQ

(step 8 to 16) until no new nodes are added to the dependent node set {Tv}Av∈Q (step

17-19).

For the example in Figure 5.14, SC1 is unfolded as G1 with one node A1
1 in

Figure 5.15. The initial dependent node set T2 for layer A2 can be calculated through

E1,2 as T1→2. For SC2, it is first partitioned into a DAG G2,0 and a cycle edge

set E2,0 = {〈A3,A2〉} as shown in Figure 5.14. Suppose that the dependent node

set in SC2 converges in L2 iterations, then the DAG for SC2 can be presented with

L2 replicas of G2,0 linked by edges {〈Ac
3,A

c+1
2 〉}c=1,...,L2−1 as shown in Figure 5.15.

Putting all together, the final DAG GD can be constructed by linking A1
1 in G1 with

{Ax
2}x=1,...,L2 in G2.

Algorithm 13 is used to partition a strongly connected component Q into a DAG

GQ and an edge set EQ,0 that contains all cycle edges. The basic idea is to use

Breadth-First-Search algorithm to traverse all the edges in the graph. In step 1 and

2, GQ,0 and EQ,0 are initialized as Q and φ respectively. For each edge 〈Au,Av〉 in

Q, if Av appears in Au’s ancestor list Lu, then 〈Au,Av〉 would be removed from GQ,0

and added to EQ,0 (step11 to 13).

The algorithms used in Lemma 17 together with Lemma 16 guarantee that set-

143

Figure 5.15: Constructed DAG for Figure 5.14.

ordering preservation property also holds in multi-layered networks with arbitrarily

structured dependency graph G.

Now, we are ready to present our main theorem as follows.

Theorem 6. Diminishing Returns Property of MuLaN. For any connectivity

function C(A) in the SubLine family (Eq. (3.6)) and any multi-layered network in

the MuLaN family (Definition 1); the overall impact of node set Sl in the control

layer l, I(Sl) =
∑g

i=1 αiI(Sl→i), is (a) monotonically non-decreasing; (b) sub-modular;

and (c) normalized.

Proof. We first prove the sub-modularity of function I(Sl). Let Il,Jl,Kl be three

node sets in layer Al and Il ⊆ Jl. Define the following two sets as: Sl = Il ∪ Kl and

Tl = Jl ∪ Kl. We have that

I(Sl)− I(Il) =

g∑
i=1

αiI(Sl→i)−
g∑
i=1

αiI(Il→i) (5.21)

=

g∑
i=1

αi(I(Sl→i)− I(Il→i))

144

Algorithm 13 ExtractDAG: extract DAG from strongly connected component

Input: (1) A strongly connected component Q and (2) a root layer R in the con-

nected component

Output: (1) a DAG GQ,0 (2) edge set EQ,0 that contains all cycle edges.

1: initialized GQ,0 ← Q

2: initialized EQ,0 ← φ

3: for each layer Av ∈ Q do

4: initialize its ancestor list Lv ← φ

5: end for

6: initialize a queue T ← φ

7: T .enqueue(R)

8: while T 6= φ do

9: Au ← T .dequeue()

10: for each dependent layer Av of A do

11: if Av ∈ Lu then

12: remove edge 〈Au,Av〉 from GQ,0

13: EQ,0 ← EQ,0 ∪ 〈Au,Av〉

14: else

15: T .enqueue(Av)

16: Lv ← Lv ∪ Lu ∪ {Au}

17: end if

18: end for

19: end while

20: return [GQ,0, EQ,0]

145

I(Tl)− I(Jl) =

g∑
i=1

αiI(Tl→i)−
g∑
i=1

αiI(Jl→i) (5.22)

=

g∑
i=1

αi(I(Tl→i)− I(Jl→i))

∀i = 1, . . . , g, it is obvious that Sl→i = Il→i∪Kl→i, Tl→i = Jl→i∪Kl→i. By Lemma 16,

we have Il→i ⊆ Jl→i. Furthermore, by the sub-modularity of I(Si) on Ai (Lemma 15),

we have that

I(Sl→i)− I(Il→i) ≥ I(Tl→i)− I(Jl→i)

Since for ∀i, we have αi ≥ 0. Therefore

g∑
i=1

αi(I(Sl→i)− I(Il→i)) ≥
g∑
i=1

αi(I(Tl→i)− I(Jl→i)) (5.23)

Putting Eq. (5.21), (5.22) and (5.23) together, we have that

I(Sl)− I(Il) ≥ I(Tl)− I(Jl)

which completes the proof that I(Sl) is sub-modular.

Notice that the connectivity function C(A) in the SubLine family is monotoni-

cally non-decreasing. By Eq. (5.21), we have that

I(Sl)− I(Il) =

g∑
i=1

αi(C(Ai \ Il)− C(Ai \ Sl)) ≥ 0

which completes the proof that I(Sl) is monotonically non-decreasing.

Finally, notice that for each dependent layer, the impact function I(Si) is normal-

ized (Lemma 15); and for i = 1, . . . , g, Φl→i = Φ (an empty set). Therefore we have

that I(Φ) = 0. In other words, I(Sl) is also normalized.

5.2.3 Proposed Algorithm

In this section, we introduce our algorithm to solve Opera (Problem 1), followed

by some analysis in terms of the optimization quality as well as the complexity.

146

A Generic Solution Framework. Finding out the global optimal solution for

Problem 10 by a brute-force method would be computationally intractable, due to

the exponential enumeration. Nonetheless, the diminishing returns property of the

impact function I(.) (Theorem 6) immediately lends itself to a greedy algorithm for

solving Opera with any connectivity function in the SubLine family and arbitrary

member in the MuLaN family, as summarized in Algorithm 14.

In Algorithm 14, step 2-4 calculate the impact score I(v0) (v0 = 1, 2, ...) for each

node in the control layer Al. Step 5 selects the node with the maximum impact score.

In each iteration in step 7-19, we select one of the remaining (k − 1) nodes, which

would make the maximum marginal increase in terms of the current impact score (step

12, margin(v0) = I(S ∪ {v0})− I(S)). In order to further speed up the computation,

the algorithm admits an optional lazy evaluation strategy (adopted from Leskovec

et al. (2007c)) by activating an optional ‘if’ condition in Step 11.

Note that it is easy to extend Algorithm 14 to the scenario where we have multiple

control layers. Suppose Al = {Al1 ,Al2 , . . . ,Alx} is a set of control layers, to select

best k nodes from Al, we only need to scan over all the nodes in Al in step 2 and

step 9 respectively, and pick the highest impact node from the entire candidate set in

step 5 and 18. Consequently, the resulting set S returned from the algorithm would

contain the k highest impact nodes over Al.

Algorithm Analysis. Here, we analyze the optimality as well as the complexity of

Algorithm 14, which are summarized in Lemma 18-20. According to these lemmas,

our proposed Algorithm 1 leads to a near-optimal solution with linear complexity.

Lemma 18. Near-optimality. Let Sl and S̃l be the sets selected by Algorithm 14

and the brute-force algorithm, respectively. Let I(Sl) and I(S̃l) be the overall impact

of Sl and S̃l. Then I(Sl) ≥ (1− 1/e)I(S̃l).

147

Algorithm 14 Opera: A Generic Solution Framework

Input: (1) A multi-layered network Γ, (2) a control layer Al, (3) an overall impact

function I(Sl) and (4) an integer k

Output: a set of k nodes S from the control layer Al.

1: initialize S to be empty

2: for each node v0 in layer Al do

3: calculate margin(v0)← I(v0)

4: end for

5: find v = argmaxv0margin(v0) and add v to S

6: set margin(v)← −1

7: for i = 2 to k do

8: set maxMargin← −1

9: for each node v0 in layer Al do

10: /*an optional ‘if’ for lazy eval.*/

11: if margin(v0) > maxMargin then

12: calculate margin(v0)← I(S ∪ {v0})− I(S)

13: if margin(v0) > maxMargin then

14: set maxMargin← margin(v0) and v ← v0

15: end if

16: end if

17: end for

18: add v to S and set margin(v)← −1

19: end for

20: return S

Proof. As proved in Theorem 6, the overall impact function I(S) (S ⊆ Al) is mono-

tonic, sub-modular and normalized. Using the property of such functions in Nemhauser

148

et al. (1978), we have I(Sl) ≥ (1− 1/e)I(S̃l).

Lemma 19. Time complexity. Let h(ni,mi, |Sl→i|) be the time to compute the

impact of node set Sl on layer i. The time complexity for selecting S of size k from

the control layer Al is upper bounded by O(k(|N (Al)| + nl
∑g

i=1 h(ni,mi, |Sl→i|)))

where N (Al) denotes the nodes and cross-layer links in Γ that depends on Al.

Proof. The greedy algorithm with lazy evaluation strategy needs to iterate over all

the nodes in layer Al for k time. At each time, the worst case is that we need to

evaluate the marginal increase for all unselected nodes in Al. The overall complexity

of finding dependents of every nodes in Al is equal to the size of the sub-system that

rooted on Al, which is |N (Al)|. And for each unselected node, finding out its current

impact to the system as shown in step 3 and step 12 can be upper bounded by the

complexity of
∑g

i=1 h(ni,mi, ni) + g because there are at most g non-zero weighted

layers that depend on Al. Taking these all together, the complexity of selecting set S

from Al with Algorithm 14 is O(k[|N (Al)|+nl
∑g

i=1 h(ni,mi, |Sl→i|)]), where |N (Al)|

is upper bounded by N + L, which is the sum of total number of nodes and total

number of dependency links in Γ. If given that function h is linear to ni,mi and |Sl→i|,

as |Sl→i| is upper bounded by ni, and nl can be viewed as a constant compared to

N,M and L, it is easy to see that the complexity of the algorithm is linear to N , M

and L.

Remarks. Lemma 19 implies a linear time complexity of the proposed Opera al-

gorithm w.r.t. the size of the entire multi-layered network (N + M + L), where

N,M,L are the total number of nodes, the total number of within-layer links and

the total number of cross-layer links in Γ under the condition that the function h is

linear w.r.t. ni,mi and |Sl→i|. This condition holds for most of the network connec-

149

tivity measures in the SubLine family, e.g., the path capacity, the truncated loop

capacity, and the triangle capacity. To see this, let us take the most expensive trun-

cated loop capacity as an example. The time complexity for calculating truncated

loop capacity in a single network is O(mr + nr2), where r is the number of eigen-

values used in the calculation and it is often orders of magnitude smaller compared

with m and n. On the other hand, we have |N (Al)| ≤ N + L. Therefore, the

overall time complexity for selecting set S of size k from control layer Al is upper

bounded by O(k(N + L + nl
∑g

i=1(mir + nir
2))) = O(k(N + L + nl(rM + r2N))) =

O(k(L+ nl(rM + r2N))).

Lemma 20. Space complexity. Let w(ni,mi, |Sl→i|) be a function of ni, mi and

|Sl→i| that denotes the space cost to compute I(Sl→i). The space complexity of Algo-

rithm 14 is O(N + M + L) under the condition that the function w is linear w.r.t.

ni, mi and |Sl→i|.

Proof. As defined in 19, N,M,L are the total number of nodes, total number of

within-layer links and total number of cross-layer links in Γ. Then storing multi-

layered network Γ would take a space of O(N + M + L). In Algorithm 14, it takes

O(nl) to save the marginal increase vector (margin) and O(k) to save result S. As

space for computing I(Sl→i) can be reused for each layer i, then computing I(Sl→i)

is bounded by argmaxiw(ni,mi, |Sl→i|). If function w is linear w.r.t. ni, mi and

|Sl→i|, then the space complexity of Algorithm 14 is of O(N + M + L + k + nl) +

O(argmaxi(ni)) +O(argmaxi(mi)) = O(N +M + L).

Remarks. The condition that the function w is linear w.r.t. ni, mi and |Sl→i| holds

for most of the network connectivity measures in the SubLine family, which in turn

implies a linear space complexity for the proposed Opera algorithm. Again, let

150

us take the truncated loop capacity connectivity as an example. Storing the input

MuLaN (Γ) takes O(N +M +L) in space. The space cost to calculate the truncated

loop capacity in a single-layered network is O(m + nr), where r is the number of

eigenvalues used for the computation. Again, r is usually a much smaller number

compared with m and n, and thus is considered as a constant. Therefore, the overall

space complexity for Opera with the truncated loop capacity is O(N +M + L).

5.2.4 Experimental Evaluation

In this section, we empirically evaluate the proposed Opera algorithms. All

experiments are designed to answer the following two questions:

• Effectiveness : how effective are the proposed Opera algorithms at optimizing

the connectivity measures (defined in the proposed SubLine family) of a multi-

layered network (from the proposed MuLaN family)?

• Efficiency : how fast and scalable are our algorithms?

Experimental Setup

Data Sets Summary. We perform the evaluations on four different application

domains, including (D1) a multi-layered Internet topology at the autonomous sys-

tem level (MultiAS); (D2) critical infrastructure networks (InfraNet); (D3) a

social-information collaboration network (SocInNet); and (D4) a biological CTD

(Comparative Toxicogenomics Database) network Davis et al. (2015) (BIO). For the

first two domains, we use real networks to construct the within-layer networks (i.e., A

in the MuLaN model) and construct one or more cross-layer dependency structures

based on real application scenarios (i.e., G and D in the MuLaN model). For the

data sets in SocInNet and BIO domains, both the within-layer networks and cross-

151

layer dependency networks are based on real connections. A summary of these data

sets is shown in Table 5.4. We will present the detailed description of each application

domains in Section 5.2.4.

Table 5.4: Data Sets Summary.

Data Sets Application Domains # of Layers # of Nodes # of Links

D1 MultiAS 2∼4 5,929∼24,539 11,183∼50,778

D2 InfraNet 3 19,235 46,926

D3 SocInNet 2 63,501∼124,445 13,097∼211,776

D4 BIO 3 35,631 253,827

Baseline Methods. To our best knowledge, there is no existing method which

can be directly applied to the connectivity optimization problem (Problem 1) of

the MuLaN model. We generate the baseline methods using two complementary

strategies, including forward propagation (‘FP’ for short) and backward propagation

(‘BP’ for short). The key idea behind the forward propagation strategy is that an

important node in the control layer might have more impact on its dependent networks

as well. On the other hand, for the backward propagation strategy, we first identify

important nodes in the target layer(s), and then trace back to its supporting layer(s)

through the cross-layer dependency links (i.e., D). For both strategies, we need a

node importance measure. In our evaluations, we compare three different measures,

including (1) node degree; (2) PageRank measure Page et al. (1998); and (3) Netshield

values Tong et al. (2010). In addition, for comparison purpose, we also randomly select

nodes either from the control layer (for the forward propagation strategy) or from the

target layer(s) (for the backward propagation strategy). Altogether, we have eight

baseline methods (four for each strategy, respectively), including (1) ‘Degree-FP’, (2)

‘PageRank-FP’, (3) ‘Netshield-FP’, (4) ‘Rand-FP’, (5) ‘Degree-BP’, (6) ‘PageRank-

152

BP’, (7) ‘Netshield-BP’, (8) ‘Rand-BP’.

Opera Algorithms and Variants. We evaluate three prevalent network connec-

tivity measures, including (1) the leading eigenvalue of the (within-layer) adjacency

matrix, which relates to the epidemic threshold of a variety of cascading models;

(2) the loop capacity (LC), which relates to the robustness of the network; and (3)

the triangle capacity (TC), which relates to the local connectivity of the network.

As mentioned in Chapter 3, both the loop capacity and the triangle capacity are

members of the SubLine family. Strictly speaking, the leading eigenvalue does not

belong to the SubLine family. Instead, it approximates the path capacity (PC),

and the latter (PC) is a member of the SubLine family. Correspondingly, we have

three instances of the proposed Opera algorithm (each corresponding to one specific

connectivity measures) including ‘Opera-PC’, ‘Opera-LC’, and ‘Opera-TC’. Re-

call that there is an optional lazy evaluation step (step 11) in the proposed Opera

algorithm, thanks to the diminishing returns property of the SubLine connectivity

measures. When the leading eigenvalue is chosen as the connectivity function, such

diminishing returns property does not hold anymore. To address this issue, we intro-

duce a variant of Opera-PC as follows. At each iteration, after the algorithm chooses

a new node v (step 18, Algorithm 1), we (1) update the network by removing all the

nodes that depend on node v, and (2) update the corresponding leading eigenvalues

and eigenvectors. We refer to this variant as ‘Opera-PC-Up’. For each of the three

connectivity measures, we run all four Opera algorithms.

Machines and Repeatability. All the experiments are performed on a machine

with 2 processors Intel Xeon 3.5GHz with 256GB of RAM. The algorithms are pro-

grammed with MATLAB using single thread. All the data sets used in this work are

publicly available.

153

Figure 5.16: Evaluations on the MultiAS Data Set, with a Four-layered Diamond-
shaped Dependency Network. The Connectivity Change Vs. Budget. Larger Is Bet-
ter. All the Four Instances of the Proposed Opera Algorithm (in Red) Outperform
the Baseline Methods.

Figure 5.17: Evaluations on the MultiAS Data Set, with a Three-layered Cyclic
Dependency Network. The Connectivity Change Vs. Budget. Larger Is Better.
Three out of Four Instances of the Proposed Opera Algorithm (in Red) Outperform
the Baseline Methods.

Effectiveness Results

D1 - MultiAS. This data set contains the Internet topology at the autonomous

system level. The data set is available at http://snap.stanford.edu/data/. It

has 9 different network snapshots, with 633 ∼ 13, 947 nodes and 1, 086 ∼ 30, 584

edges. In our evaluations, we treat these snapshots as the within-layer adjacency

matrices A. For a given supporting layer, we generate the cross-layer node-node

dependency matrices D by randomly choosing 3 nodes from its dependent layer as

the direct dependents for each supporting node. For this application domain, we

have experimented with different layer-layer dependency structures (G), including

154

http://snap.stanford.edu/data/

a three-layered line-structured network, a three-layered tree-structured network, a

four-layered diamond shaped network and a three-layered cyclic network. As the

experimental results in the first three networks follow similar pattern, we only present

the results on diamond-shaped network and cyclic network in Figure 5.16 and 5.17

due to page limits. Overall, the four instances of the proposed Opera algorithm

perform better than the baseline methods. Among the baseline methods, the backward

propagation methods are better than the forward propagation methods under acyclic

dependency networks (5.16). This is because the length of the backtracking path

on the dependency network G (from the target layer to the control layer) is short.

Therefore, compared with other baseline methods, the node set returned from the

BP strategy is able to affect more important nodes in the target layer. While for

the cyclic dependency network in Figure 5.17, the backtracking path is elongated by

the cycle. Then the nodes selected by BP strategy are not guaranteed to affect more

important nodes in the target layer than FP strategy.

D2 - InfraNet. This data set contains three types of critical infrastructure net-

works, including (1) the power grid, (2) the communication network; and (3) the

airport networks. The power grid is an undirected, un-weighted network represent-

ing the topology of the Western States Power Grid of the United State Watts and

Strogatz (1998). It has 4,941 nodes and 6,594 edges. We use one snapshot from

the MultiAS data set as the communication network with 11,461 nodes and 32,730

edges. The airport network represents the internal US air traffic lines between 2,649

airports and has 13,106 links (available at http://www.levmuchnik.net/Content/

Networks/NetworkData.html). We construct a triangle-shaped layer-layer depen-

dency network G (see the icon of Figure 5.18) based on the following observation.

The operation of an airport depends on both the electricity provided by the power

grid and the Internet support provided by the communication network. In the mean-

155

http://www.levmuchnik.net/Content/Networks/NetworkData.html
http://www.levmuchnik.net/Content/Networks/NetworkData.html

while, the full-functioning of the communication network depends on the support of

power grid. We use similar strategy as in MultiAS to generate the cross-layer node-

node dependency matrices D. The results are summarized in Figure 5.18. Again,

the proposed Opera algorithms outperform all the baseline methods. Similar to

the MultiAS network, the backtracking path from the airport layer to the power

grid layer is also very short. Therefore, the backward propagation strategies perform

relatively better than other baseline methods. In addition, we change the density

of the cross-layer node-node dependency matrices and evaluate its impact on the

optimization results in Figure 5.19. We found that (1) across different dependency

densities, the proposed Opera algorithms still outperform the baseline methods; and

(2) when the dependency density increases, the algorithms lead to a larger decrease

of the corresponding connectivity measures with the same budget.

Figure 5.18: Evaluations on the InfraNet Data Set, with a Three-layered Triangle-
shaped Dependency Network. The Connectivity Change Vs. Budget. Larger Is Bet-
ter. All the Four Instances of the Proposed Opera Algorithm (in Red) Outperform
the Baseline Methods.

D3 - SocInNet. This data set contains three types of social-information net-

works Tang et al. (2008), including (1) a co-authorship network; (2) a paper-paper

citation network; and (3) a venue-venue citation network. Different from the pre-

vious two data sets, two types of cross-layer node-node dependency links naturally

exist in this data set, including who-writes-which paper, and which venue-publishes-

which paper. In our experiment, we use the papers published between year 1990 to

156

Figure 5.19: ∆λ W.R.T. k. Change the Average Number of Dependents Between
Power Grid and as from 5, 10 to 15 (Left to Right).

1992. In total, there are 62,602 papers, 61,843 authors, 899 venues, 10,739 citation

links, 201,037 collaboration links, 2,358 venue citation links, 126,242 author-paper

cross-layer links, and 62,602 venue-paper cross-layer links.

We evaluate the proposed algorithms in two scenarios with this data set, including

(1) an author-paper two-layered network; and (2) a venue-paper two-layered network.

For both scenarios, we choose the paper-paper citation network as the target layer.

Figure 5.20 presents the results on the author-paper two-layered network. We can

see that three out of four Opera algorithms outperform all the baseline methods

in all the three cases. Opera-PC does not perform as well as the remaining three

Opera instances due to the gap between the leading eigenvalue and the actual path

capacity. However, the issue can be partially addressed with Opera-PC-Up by in-

troducing an update step. Among the baseline methods, the backward propagation

strategy is better since the target layer is directly dependent on the control layer,

which makes it possible to trace back the high-impact authors given the set of high-

impact papers. The poor performance of the forward propagation methods implies

that a socially active author does not necessarily have high-impact papers. The re-

sults on the venue-paper network is similar as shown in Figure 5.21. Different from

the author-paper network, the backward propagation strategies perform worse than

the forward propagation strategies. This is probably due to the fact that not all the

157

important (high-impact) papers appear in the important (high-impact) venues.

Figure 5.20: Evaluations on the SocInNet Data Set, with a Two-layered Author-
paper Dependency Network. The Connectivity Change Vs. Budget. Larger Is Better.
Three out of Four Proposed Opera Algorithms (in Red) Outperform the Baseline
Methods.

Figure 5.21: Evaluations on the SocInNet Data Set, with a Two-layered Venue-
paper Dependency Network. The Connectivity Change Vs. Budget. Larger Is Better.
Three out of Four Proposed Opera Algorithms (in Red) Outperform the Baseline
Methods.

D4 - BIO. This data set contains three types of biological networks Davis et al.

(2015) including (1) a chemical similarity network with 6,026 chemicals, 69,109 links;

(2) a gene similarity network with 25,394 genes, 154,167 links; and (3) a disease

similarity network with 4,256 diseases, 30,551 links. The dependencies between those

layers depict which chemical-affects-which gene, which chemical-treats-which disease,

and which gene-associates-which disease relations, each of which contains 53,735,

19,771 and 1,950 dependency links respectively. The evaluation results are as shown

in Figure 5.22. Despite the fact that the proposed Opera algorithms outperform

158

all other baseline methods, there are two interesting observations that worth to be

mentioned. First is that the impact of chemical nodes on disease networks become

saturated at a small budge value for all connectivity measures, which implies that only

a few chemicals are effective in treating most of the diseases in the given data set.

Second, the ineffectiveness of forward propagation methods indicates that chemicals

with various compounds (high within-layer centrality nodes) may have little effects

in disease treatment.

Figure 5.22: Evaluations on the BIO Data Set, with a Three-layered Triangle-
shaped Dependency Network. The Connectivity Change Vs. Budget. Larger Is
Better. All Four Proposed Opera Algorithms (in Red) Outperform the Baseline
Methods.

Efficiency Results

Figure 5.23 presents the scalability of the proposed Opera algorithms. We can see

that all four instances of Opera scale linearly with respect to the size of the input

multi-layered network (i.e., N + M + L), which is consistent with our complexity

analysis. The wall-clock time for Opera-PC-Up is the longest compared with the

remaining three instances, due to the additional update step.

159

Figure 5.23: Wall-clock Time Vs. The Size of the Input Networks. The Proposed
Opera Algorithms Scale Linearly W.R.T. (N +M + L).

160

Chapter 6

CONCLUSION AND FUTURE WORK

In this chapter, we summarize our key research results and discuss future research

directions for network connectivity.

6.1 Conclusion

In this dissertation, we propose three main tasks for network connectivity studies,

which includes (1) connectivity measures, (2) connectivity inference and (3) connec-

tivity optimization.

Measures. For connectivity measures, our main finding is that various task-oriented

connectivity measures in the literature can be unified into a generalized model — the

SubLine connectivity model. The key idea of SubLine model is to view the connec-

tivity of the network as the aggregation of the connectivity of some valid subgraphs.

By restricting the valid subgraphs to a subset of nodes, the SubLine connectivity

can be used to measure the local connectivity of a subnetwork. Moreover, we also

show that the proposed model can be easily extended to multi-layered networks.

Inference. For connectivity inference, we addressed the eigen-functions/connectivity

tracking problem in dynamic networks and the cross-layer dependency inference prob-

lem in multi-layered networks. To efficiently track the eigen-functions in the network,

we propose Trip-Basic and Trip. In addition, we provide a framework for attribu-

tion analysis on eigen-functions and a method to effectively estimate tracking errors.

Our experiments show that both Trip-Basic and Trip can effectively and efficiently

track the changes of eigen-pairs, number of triangles, robustness score and eigen-gap

in dynamic graphs, while Trip is more stable over time. In both cases, the accumu-

161

lated error rate inevitably keeps increasing as time goes by. As for the dependency

inference problem, we propose to formulate the inference problem as a collective

collaborative filtering problem and introduce Fascinate, an algorithm that can ef-

fectively infer the missing dependencies with provable optimality and scalability. In

particular, by modeling the impact of zero-start node as a perturbation in the multi-

layered network, we derive Fascinate-ZERO, an online variant of Fascinate that

can approximate the dependencies of the newly added node with sub-linear complex-

ity w.r.t. the overall system size. The experimental results on five real-world datasets

demonstrate the superiority of our proposed algorithm both by its effectiveness and

efficiency.

Optimization. For the connectivity optimization task, we first prove that for

any network connectivity measures in the SubLine family, the connectivity opti-

mization problem with the MuLaN model enjoys the diminishing returns property,

which naturally lends itself to a family of provable near-optimal algorithms using

greedy scheme. Then we show that a wide range of network connectivity optimiza-

tion (NETCOM) problems are NP-complete and (1 − 1/e) is the best approxima-

tion ratio that a polynomial algorithm can achieve for NETCOM problems unless

NP ⊆ DTIME(nO(log logn)). On the algorithmic aspect, we propose a series of ef-

fective, scalable and generalizable optimization algorithms CONTAIN and Opera

that can be applied to both single-layered networks and multi-layered networks.

6.2 Future Work

Network connectivity is a powerful graph parameter which may lead to many

interesting findings. Below we present some promising research directions:

• Multi-layered Network Connectivity. In our work, we model the connec-

tivity of a multi-layered network as an aggregation over the connectivity on each

162

layers. This method omits the dependency structure across the domains, which

includes rich information to be exploited. To start with, the dependency be-

tween nodes may bear different types. For example, the functioning of a node

may require the functioning of all its supporting node (the dependency type

used in our work), or the functioning of only one of its supporting node. The

robustness scores of two networks with the same structure but different depen-

dency types would vary a lot from each other. Thus, how to effectively model

the connectivity in such more informed multi-layered networks is an interesting

direction to discover.

• Dynamic Network Inference. Real-world networks are evolving over time.

In the infrastructure system, new power stations are constantly being added to

the system to fulfill the increasing need for electricity supply. Similar expanding

process can be observed in autonomous systems and transportation networks

as well. Simultaneously, new cross-layer dependencies across those layers would

be established in the system as well. The changing structure would inevitably

affect the inference results from the old system. Therefore, it is necessary to

re-calibrate the inference results timely to accommodate system changes. The

naive way to solve the dynamic network inference problem is to re-run the static

inference algorithms whenever the system changes. However, such strategy

would be very inefficient when the system is changing fast. Although numerous

dynamic algorithms have been proposed single-layered networks, few attempts

have been made on multi-layered networks.

• Connectivity Optimization and Adversarial Attack. The adversarial

attack on networked data has become a trending topic in recent years. Its main

idea is to alter the network structure and node attributes to affect the results of

163

subsequent tasks to the maximum extent. We speculate that the connectivity

optimization algorithms may be helpful on some of the adversarial attack tasks

as the nodes/edges selected by our algorithm are the ones that have largest

impact on the overall network connectivity, which is an important parameter in

many graph mining tasks.

164

REFERENCES

Albert, R., H. Jeong and A.-L. Barabási, “Error and attack tolerance of complex
networks”, Nature 406, 6794, 378–382 (2000).

Battiston, F., V. Nicosia and V. Latora, “Structural measures for multiplex net-
works”, Physical Review E 89, 3, 032804 (2014).

Benson, A. R., R. Abebe, M. T. Schaub, A. Jadbabaie and J. Kleinberg, “Simplicial
closure and higher-order link prediction”, arXiv preprint arXiv:1802.06916 (2018).

Berlingerio, M., M. Coscia, F. Giannotti, A. Monreale and D. Pedreschi, “Foundations
of multidimensional network analysis”, in “Advances in Social Networks Analysis
and Mining (ASONAM), 2011 International Conference on”, pp. 485–489 (IEEE,
2011).

Boccaletti, S., G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardenes, M. Ro-
mance, I. Sendina-Nadal, Z. Wang and M. Zanin, “The structure and dynamics of
multilayer networks”, Physics Reports 544, 1, 1–122 (2014).

Buldyrev, S. V., R. Parshani, G. Paul, H. E. Stanley and S. Havlin, “Catastrophic cas-
cade of failures in interdependent networks”, Nature 464, 7291, 1025–1028 (2010).

Chakrabarti, D., Y. Wang, C. Wang, J. Leskovec and C. Faloutsos, “Epidemic thresh-
olds in real networks”, ACM Transactions on Information and System Security
(TISSEC) 10, 4, 1 (2008).

Chan, H., L. Akoglu and H. Tong, “Make it or break it: manipulating robustness in
large networks”, in “Proceedings of 2014 SIAM International Conference on Data
Mining”, pp. 325–333 (SIAM, 2014).

Chen, C., J. He, N. Bliss and H. Tong, “On the connectivity of multi-layered networks:
Models, measures and optimal control”, in “Data Mining (ICDM), 2015 IEEE 15th
International Conference on”, pp. 715–720 (IEEE, 2015).

Chen, C., R. Peng, L. Ying and H. Tong, “Network connectivity optimization: Funda-
mental limits and effective algorithms”, in “Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining”, pp. 1167–1176
(ACM, 2018).

Chen, C. and H. Tong, “On the eigen-functions of dynamic graphs: Fast tracking
and attribution algorithms”, Statistical Analysis and Data Mining: The ASA Data
Science Journal 10, 2, 121–135 (2017).

Chen, C., H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos and C. Faloutsos,
“Eigen-optimization on large graphs by edge manipulation”, TKDD 10, 4, 49, URL
http://doi.acm.org/10.1145/2903148 (2016a).

165

http://doi.acm.org/10.1145/2903148

Chen, C., H. Tong, B. A. Prakash, C. E. Tsourakakis, T. Eliassi-Rad, C. Faloutsos
and D. H. Chau, “Node immunization on large graphs: Theory and algorithms”,
IEEE Transactions on Knowledge and Data Engineering 28, 1, 113–126 (2016b).

Chen, C., H. Tong, L. Xie, L. Ying and Q. He, “FASCINATE: fast cross-layer
dependency inference on multi-layered networks”, in “Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, San Francisco, CA, USA, August 13-17, 2016”, pp. 765–774 (2016c), URL
http://doi.acm.org/10.1145/2939672.2939784.

Chen, L., X. Xu, S. Lee, S. Duan, A. G. Tarditi, S. Chinthavali and B. A. Prakash,
“Hotspots: Failure cascades on heterogeneous critical infrastructure networks”,
in “Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management”, pp. 1599–1607 (ACM, 2017).

Chen, P.-Y. and A. O. Hero, “Local fiedler vector centrality for detection of deep and
overlapping communities in networks”, in “Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on”, pp. 1120–1124 (IEEE, 2014).

Chen, W., W. Hsu and M. L. Lee, “Making recommendations from multiple domains”,
in “Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining”, pp. 892–900 (ACM, 2013).

Chen, W., C. Wang and Y. Wang, “Scalable influence maximization for prevalent
viral marketing in large-scale social networks”, in “Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining”, pp.
1029–1038 (ACM, 2010).

Chen, W., Y. Wang and S. Yang, “Efficient influence maximization in social net-
works”, in “Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining”, pp. 199–208 (ACM, 2009).

Chung, F. R., Spectral graph theory, vol. 92 (American Mathematical Soc., 1997).

Cohen, R., S. Havlin and D. Ben-Avraham, “Efficient immunization strategies for
computer networks and populations”, Physical review letters 91, 24, 247901 (2003).

Davis, A. P., C. J. Grondin, K. Lennon-Hopkins, C. Saraceni-Richards, D. Sciaky,
B. L. King, T. C. Wiegers and C. J. Mattingly, “The comparative toxicogenomics
database’s 10th year anniversary: update 2015”, Nucleic acids research 43, D1,
D914–D920 (2015).

De Domenico, M., A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M. A. Porter,
S. Gómez and A. Arenas, “Mathematical formulation of multilayer networks”,
Physical Review X 3, 4, 041022 (2013).

De Domenico, M., A. Solé-Ribalta, E. Omodei, S. Gómez and A. Arenas, “Ranking
in interconnected multilayer networks reveals versatile nodes”, Nature communica-
tions 6 (2015).

166

http://doi.acm.org/10.1145/2939672.2939784

Ding, C., T. Li, W. Peng and H. Park, “Orthogonal nonnegative matrix t-
factorizations for clustering”, in “Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining”, pp. 126–135 (ACM,
2006).

Drineas, P. and M. W. Mahoney, “On the nyström method for approximating a
gram matrix for improved kernel-based learning”, The Journal of Machine Learning
Research 6, 2153–2175 (2005).

Faloutsos, M., P. Faloutsos and C. Faloutsos, “On power-law relationships of the in-
ternet topology”, in “ACM SIGCOMM computer communication review”, vol. 29,
pp. 251–262 (ACM, 1999).

Frank, H. and I. Frisch, “Analysis and Design of Survivable Networks”, Communica-
tion Technology, IEEE Transactions on 18, 5, 501–519 (1970).

Freeman, L. C., “A set of measures of centrality based on betweenness”, Sociometry
pp. 35–41 (1977).

Freeman, L. C., “Centrality in social networks conceptual clarification”, Social net-
works 1, 3, 215–239 (1978).

Gao, J., S. V. Buldyrev, S. Havlin and H. E. Stanley, “Robustness of a network of
networks”, Physical Review Letters 107, 19, 195701 (2011).

Gao, J., S. V. Buldyrev, H. E. Stanley and S. Havlin, “Networks formed from inter-
dependent networks”, Nature physics 8, 1, 40–48 (2012).

Harary, F. and A. Schwenk, “The spectral approach to determining the number of
walks in a graph”, Pacific Journal of Mathematics 80, 2, 443–449 (1979).

Heath, L. S. and A. A. Sioson, “Multimodal networks: Structure and operations”,
Computational Biology and Bioinformatics, IEEE/ACM Transactions on 6, 2, 321–
332 (2009).

Hoory, S., N. Linial and A. Wigderson, “Expander graphs and their applications”,
Bulletin of the American Mathematical Society 43, 4, 439–561 (2006).

Hu, Y., Y. Koren and C. Volinsky, “Collaborative filtering for implicit feedback
datasets”, in “Data Mining, 2008. ICDM’08. Eighth IEEE International Confer-
ence on”, pp. 263–272 (Ieee, 2008).

Jerrum, M. and A. Sinclair, “Conductance and the rapid mixing property for markov
chains: the approximation of permanent resolved”, in “Proceedings of the twentieth
annual ACM symposium on Theory of computing”, pp. 235–244 (ACM, 1988).

Jun, W., M. Barahona, T. Yue-Jin and D. Hong-Zhong, “Natural connectivity of
complex networks”, Chinese Physics Letters 27, 7, 078902 (2010).

167

Kempe, D., J. Kleinberg and É. Tardos, “Maximizing the spread of influence through
a social network”, in “Proceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining”, pp. 137–146 (ACM, 2003).

Khuller, S., A. Moss and J. S. Naor, “The budgeted maximum coverage problem”,
Information Processing Letters 70, 1, 39–45 (1999).

Kivelä, M., A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno and M. A. Porter,
“Multilayer networks”, Journal of Complex Networks 2, 3, 203–271 (2014).

Kleinberg, J. and E. Tardos, Algorithm design (Pearson Education India, 2006).

Kleinberg, J. M., “Authoritative sources in a hyperlinked environment”, in “ACM-
SIAM Symposium on Discrete Algorithms”, (1998).

Kohanski, M. A., D. J. Dwyer and J. J. Collins, “How antibiotics kill bacteria: from
targets to networks”, Nature Reviews Microbiology 8, 6, 423 (2010).

Koren, Y., R. Bell and C. Volinsky, “Matrix factorization techniques for recommender
systems”, Computer , 8, 30–37 (2009).

Kovacs, I. A. and A.-L. Barabasi, “Network science: Destruction perfected”, Nature
524, 7563, 38–39 (2015).

Le, L. T., T. Eliassi-Rad and H. Tong, “Met: A fast algorithm for minimizing prop-
agation in large graphs with small eigen-gaps”, in “Proceedings of the 2015 SIAM
International Conference on Data Mining”, pp. 694–702 (SIAM, 2015).

Lee, D. D. and H. S. Seung, “Algorithms for non-negative matrix factorization”, in
“Advances in neural information processing systems”, pp. 556–562 (2001).

Leskovec, J., L. A. Adamic and B. A. Huberman, “The dynamics of viral marketing”,
ACM Transactions on the Web (TWEB) 1, 1, 5 (2007a).

Leskovec, J., J. Kleinberg and C. Faloutsos, “Graphs over time: densification laws,
shrinking diameters and possible explanations”, in “Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining”,
pp. 177–187 (ACM, 2005).

Leskovec, J., J. Kleinberg and C. Faloutsos, “Graph evolution: Densification and
shrinking diameters”, ACM Transactions on Knowledge Discovery from Data
(TKDD) 1, 1, 2 (2007b).

Leskovec, J., A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen and N. Glance,
“Cost-effective outbreak detection in networks”, in “Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining”, pp.
420–429 (ACM, 2007c).

Li, B., Q. Yang and X. Xue, “Can movies and books collaborate? cross-domain
collaborative filtering for sparsity reduction.”, in “IJCAI”, vol. 9, pp. 2052–2057
(2009).

168

Li, J., X. Hu, L. Wu and H. Liu, “Robust unsupervised feature selection on net-
worked data”, in “Proceedings of the 2016 SIAM International Conference on Data
Mining”, pp. 387–395 (SIAM, 2016).

Li, L., H. Tong, N. Cao, K. Ehrlich, Y.-R. Lin and N. Buchler, “Replacing the
irreplaceable: Fast algorithms for team member recommendation”, in “Proceedings
of the 24th International Conference on World Wide Web”, pp. 636–646 (ACM,
2015a).

Li, L., H. Tong, Y. Xiao and W. Fan, “Cheetah: Fast graph kernel tracking on
dynamic graphs”, in “SDM”, (SIAM, 2015b).

Li, R.-H. and J. X. Yu, “Triangle minimization in large networks”, Knowledge and
Information Systems 45, 3, 617–643 (2015).

Li, Y., J. Hu, C. Zhai and Y. Chen, “Improving one-class collaborative filtering by in-
corporating rich user information”, in “Proceedings of the 19th ACM international
conference on Information and knowledge management”, pp. 959–968 (ACM, 2010).

Lin, C.-b., “Projected gradient methods for nonnegative matrix factorization”, Neural
computation 19, 10, 2756–2779 (2007).

Liu, J., C. Wang, J. Gao, Q. Gu, C. C. Aggarwal, L. M. Kaplan and J. Han, “Gin: A
clustering model for capturing dual heterogeneity in networked data”, in “SDM”,
pp. 388–396 (SIAM, 2015).

Lu, Z., W. Pan, E. W. Xiang, Q. Yang, L. Zhao and E. Zhong, “Selective transfer
learning for cross domain recommendation”, in “SDM”, pp. 641–649 (SIAM, 2013).

Ma, H., D. Zhou, C. Liu, M. R. Lyu and I. King, “Recommender systems with social
regularization”, in “Proceedings of the 4th ACM International Conference on Web
Search and Data Mining”, pp. 287–296 (2011).

Mcauley, J. and J. Leskovec, “Discovering social circles in ego networks”, ACM Trans-
actions on Knowledge Discovery from Data (TKDD) 8, 1, 4 (2014).

Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii and U. Alon, “Network
motifs: simple building blocks of complex networks”, Science 298, 5594, 824–827
(2002).

Moody, J. and D. R. White, “Social cohesion and embeddedness: A hierarchical
conception of social groups”, American Sociological Review pp. 1–25 (2003).

Morone, F. and H. A. Makse, “Influence maximization in complex networks through
optimal percolation”, Nature 524, 7563, 65 (2015).

Nemhauser, G. L., L. A. Wolsey and M. L. Fisher, “An analysis of approximations for
maximizing submodular set functionsi”, Mathematical Programming 14, 1, 265–
294 (1978).

169

Newman, M. E., “A measure of betweenness centrality based on random walks”,
Social networks 27, 1, 39–54 (2005).

Newman, M. E., “The mathematics of networks”, The new palgrave encyclopedia of
economics 2, 2008, 1–12 (2008).

Ni, J., H. Tong, W. Fan and X. Zhang, “Inside the atoms: ranking on a network of
networks”, in “Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining”, pp. 1356–1365 (ACM, 2014).

Ning, H., W. Xu, Y. Chi, Y. Gong and T. S. Huang, “Incremental spectral cluster-
ing by efficiently updating the eigen-system”, Pattern Recognition 43, 1, 113–127
(2010).

Page, L., S. Brin, R. Motwani and T. Winograd, “The PageRank citation rank-
ing: Bringing order to the web”, Tech. rep., Stanford Digital Library Technolo-
gies Project, URL http://dbpubs.stanford.edu/pub/1999-66, paper SIDL-WP-
1999-0120 (version of 11/11/1999) (1998).

Pan, R., Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz and Q. Yang, “One-class
collaborative filtering”, in “Data Mining, 2008. ICDM’08. Eighth IEEE Interna-
tional Conference on”, pp. 502–511 (IEEE, 2008).

Parshani, R., S. V. Buldyrev and S. Havlin, “Interdependent networks: reducing
the coupling strength leads to a change from a first to second order percolation
transition”, Physical review letters 105, 4, 048701 (2010).

Prakash, B. A., D. Chakrabarti, N. C. Valler, M. Faloutsos and C. Faloutsos, “Thresh-
old conditions for arbitrary cascade models on arbitrary networks”, Knowledge and
information systems 33, 3, 549–575 (2012).

Prakash, B. A., A. Sridharan, M. Seshadri, S. Machiraju and C. Faloutsos, “Eigen-
spokes: Surprising patterns and scalable community chipping in large graphs”, in
“Advances in Knowledge Discovery and Data Mining, 14th Pacific-Asia Confer-
ence, PAKDD 2010, Hyderabad, India, June 21-24, 2010. Proceedings. Part II”,
pp. 435–448 (2010).

Razick, S., G. Magklaras and I. M. Donaldson, “irefindex: a consolidated protein
interaction database with provenance”, BMC bioinformatics 9, 1, 1 (2008).

Rinaldi, S. M., J. P. Peerenboom and T. K. Kelly, “Identifying, understanding, and
analyzing critical infrastructure interdependencies”, Control Systems, IEEE 21, 6,
11–25 (2001).

Rosato, V., L. Issacharoff, F. Tiriticco, S. Meloni, S. Porcellinis and R. Setola, “Mod-
elling interdependent infrastructures using interacting dynamical models”, Inter-
national Journal of Critical Infrastructures 4, 1-2, 63–79 (2008).

Sánchez-Garćıa, R. J., E. Cozzo and Y. Moreno, “Dimensionality reduction and spec-
tral properties of multilayer networks”, Physical Review E 89, 5, 052815 (2014).

170

http://dbpubs.stanford.edu/pub/1999-66

Sen, A., A. Mazumder, J. Banerjee, A. Das and R. Compton, “Multi-layered network
using a new model of interdependency”, arXiv preprint arXiv:1401.1783 (2014).

Shao, J., S. V. Buldyrev, S. Havlin and H. E. Stanley, “Cascade of failures in coupled
network systems with multiple support-dependence relations”, Physical Review E
83, 3, 036116 (2011).

Singh, A. P. and G. J. Gordon, “Relational learning via collective matrix factor-
ization”, in “Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining”, pp. 650–658 (ACM, 2008).

Sipser, M., Introduction to the theory of computation (PWS Publishing Company,
1997).

Stewart, G. W. and J.-G. Sun, Matrix Perturbation Theory (Academic Press, 1990).

Tang, J., H. Gao and H. Liu, “mtrust: discerning multi-faceted trust in a connected
world”, in “Proceedings of the 5th ACM International Conference on Web Search
and Data Mining”, pp. 93–102 (2012a).

Tang, J., H. Gao, H. Liu and A. Das Sarma, “etrust: Understanding trust evolution
in an online world”, in “Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining”, pp. 253–261 (2012b).

Tang, J., J. Zhang, L. Yao, J. Li, L. Zhang and Z. Su, “Arnetminer: extraction and
mining of academic social networks”, in “Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining”, pp. 990–998
(ACM, 2008).

Tarjan, R., “Depth-first search and linear graph algorithms”, SIAM journal on com-
puting 1, 2, 146–160 (1972).

Tong, H., S. Papadimitriou, P. S. Yu and C. Faloutsos, “Fast monitoring proximity
and centrality on time-evolving bipartite graphs”, Statistical Analysis and Data
Mining 1, 3, 142–156 (2008).

Tong, H., B. A. Prakash, T. Eliassi-Rad, M. Faloutsos and C. Faloutsos, “Gelling,
and melting, large graphs by edge manipulation”, in “Proceedings of the 21st ACM
international conference on Information and knowledge management”, pp. 245–254
(ACM, 2012).

Tong, H., B. A. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos and D. H. Chau,
“On the vulnerability of large graphs”, in “Data Mining (ICDM), 2010 IEEE 10th
International Conference on”, pp. 1091–1096 (IEEE, 2010).

Tsourakakis, C. E., “Fast counting of triangles in large real networks without count-
ing: Algorithms and laws”, in “Data Mining, 2008. ICDM’08. Eighth IEEE Inter-
national Conference on”, pp. 608–617 (IEEE, 2008).

171

Van Driel, M. A., J. Bruggeman, G. Vriend, H. G. Brunner and J. A. Leunissen, “A
text-mining analysis of the human phenome”, European journal of human genetics
14, 5, 535–542 (2006).

Vespignani, A., “Complex networks: The fragility of interdependency”, Nature 464,
7291, 984–985 (2010).

Wang, Y., D. Chakrabarti, C. Wang and C. Faloutsos, “Epidemic spreading in real
networks: An eigenvalue viewpoint”, in “Reliable Distributed Systems, 2003. Pro-
ceedings. 22nd International Symposium on”, pp. 25–34 (IEEE, 2003).

Wasserman, S., Social network analysis: Methods and applications, vol. 8 (Cambridge
university press, 1994).

Watts, D. J. and S. H. Strogatz, “Collective dynamics of small-world networks”,
nature 393, 6684, 440–442 (1998).

Williams, V. V., “Breaking the coppersmith-winograd barrier”, (2011).

Wu, J., B. Mauricio, Y.-J. Tan and H.-Z. Deng, “Natural connectivity of complex
networks”, Chinese Physics Letters 27, 7, 78902 (2010).

Xu, C., D. Tao and C. Xu, “A survey on multi-view learning”, arXiv preprint
arXiv:1304.5634 (2013).

Yang, D., J. He, H. Qin, Y. Xiao and W. Wang, “A graph-based recommendation
across heterogeneous domains”, in “Proceedings of the 24rd ACM International
Conference on Conference on Information and Knowledge Management”, pp. 463–
472 (ACM, 2015).

Yao, Y., H. Tong, G. Yan, F. Xu, X. Zhang, B. K. Szymanski and J. Lu, “Dual-
regularized one-class collaborative filtering”, in “Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Manage-
ment”, pp. 759–768 (ACM, 2014).

Yin, H., A. R. Benson and J. Leskovec, “The local closure coefficient: A new per-
spective on network clustering”, networks 26, 41, 44 (2019).

Yin, H., A. R. Benson, J. Leskovec and D. F. Gleich, “Local higher-order graph
clustering”, in “Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining”, pp. 555–564 (2017), URL http://
doi.acm.org/10.1145/3097983.3098069.

Zhou, D., J. He, K. S. Candan and H. Davulcu, “MUVIR: multi-view rare category
detection”, in “Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015”,
pp. 4098–4104 (2015), URL http://ijcai.org/Abstract/15/575.

172

http://doi.acm.org/10.1145/3097983.3098069
http://doi.acm.org/10.1145/3097983.3098069
http://ijcai.org/Abstract/15/575

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Research Challenges
	1.2 Tasks Overview
	1.3 Organization

	2
	2.1 Multi-layered Network Modeling
	2.2 Network Connectivity Measures
	2.3 Network Connectivity Inference
	2.4 Network Connectivity Optimization
	2.5 Network Connectivity Applications

	3
	3.1 Single-Layered Network Measures
	3.2 Multi-layered Network Measures

	4
	4.1 Eigen-functions Tracking in Dynamic Networks
	4.1.1 Problem Definition
	4.1.2 Proposed Algorithms
	4.1.3 Experimental Evaluation

	4.2 Cross-layer Dependency Inference
	4.2.1 Problem Definition
	4.2.2 Proposed Algorithms for Code
	4.2.3 Proposed Algorithm for Code-ZERO
	4.2.4 Experimental Evaluation

	4.3 Incremental One-Class Collaborative Filtering
	4.3.1 Problem Definition
	4.3.2 Proposed Algorithm
	4.3.3 Experimental Evaluations

	5
	5.1 SubLine Connectivity Optimization
	5.1.1 Problem Definition
	5.1.2 Fundamental Limits
	5.1.3 Proposed Algorithm
	5.1.4 Experimental Evaluation

	5.2 Connectivity Optimization in Multi-layered Networks
	5.2.1 Problem Definition
	5.2.2 Theoretical Analysis
	5.2.3 Proposed Algorithm
	5.2.4 Experimental Evaluation

	6
	6.1 Conclusion
	6.2 Future Work

	REFERENCES

