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ABSTRACT

Advanced material systems refer to materials that are comprised of multiple tra-

ditional constituents but complex microstructure morphologies, which lead to their

superior properties over conventional materials. This dissertation is motivated by the

grand challenge in accelerating the design of advanced material systems through sys-

tematic optimization with respect to material microstructures or processing settings.

While optimization techniques have mature applications to a large range of engi-

neering systems, their application to material design meets unique challenges due to

the high dimensionality of microstructures and the high costs in computing process-

structure-property (PSP) mappings. The key to addressing these challenges is the

learning of material representations and predictive PSP mappings while managing a

small data acquisition budget. This dissertation thus focuses on developing learn-

ing mechanisms that leverage context-specific meta-data and physics-based theories.

Two research tasks will be conducted: In the first, we develop a statistical generative

model that learns to characterize high-dimensional microstructure samples using low-

dimensional features. We improve the data efficiency of a variational autoencoder by

introducing a morphology loss to the training. We demonstrate that the resultant

microstructure generator is morphology-aware when trained on a small set of mate-

rial samples, and can effectively constrain the microstructure space during material

design. In the second task, we investigate an active learning mechanism where new

samples are acquired based on their violation to a theory-driven constraint on the

physics-based model. We demonstrate using a topology optimization case that while

data acquisition through the physics-based model is often expensive (e.g., obtaining

microstructures through simulation or optimization processes), the evaluation of the

constraint can be far more affordable (e.g., checking whether a solution is optimal or

equilibrium). We show that this theory-driven learning algorithm can lead to much
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improved learning efficiency and generalization performance when such constraints

can be derived. The outcomes of this research is a better understanding of how

physics knowledge about material systems can be integrated into machine learning

frameworks, in order to achieve more cost-effective and reliable learning of material

representations and predictive models, which are essential to accelerate computational

material design.
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Chapter 1

INTRODUCTION

Advanced materials are being widely studied to address energy, environment, and

security challenges. Such materials often comprise of novel structures and exhibit

superior properties over conventional materials (McDowell and Olson, 2008a). Ex-

amples include artificial photosynthesis materials for solar energy (Wool and Sun,

2011) and catalysts for the production of bio-fuels (Stöcker, 2008), light-weight pro-

tection materials and structures for security and defense purposes (Mallick, 2007),

and materials with high bio-compatibility for artificial organs (Hollister, 2005). In

order to achieve global competitiveness, there is a growing need for accelerating the

pace of discovery and deployment of advanced materials.

Traditional ways for material development mainly rely on scientific intuition and

trial-and-error experiments, which are time-consuming and computational expensive.

Typically this procedure takes about 10 to 20 years from initial research to deploy-

ment in industry (Wadia et al., 2009). Computational Material Design (CMD) has

been promoted by the Material Genome Initiative to fundamentally change the strate-

gies for developing and manufacturing advanced material systems to meet the urging

demands in the mentioned high tech fields. Pioneering work in CMD employs direct

gradient-based optimization techniques to explore the material microstructure space

and suggests relatively simple microstructures that can be subsequently realized in a

composite material system. Conventional definition of material microstructure “fea-

tures” include manually defined geometric and statistical measures, including grain

dimensions, dispersion, and correlation functions. These “features” have been used to

explain variance in material properties due to microstructural differences, and thus

1



used for computational material design. For advanced materials with complicated

microstructures, however, understanding what material “features” are important for

design still remains an unsolved puzzle, and the potentially large number of “features”

that can be used to represent the material render the optimization problem difficult

to solve.

Figure 1: Olson’s concept of ”Materials by Design”: Process-Structure-Property
relation of material system

The revealed lack of scalability of CMD tools to advanced materials with multiscale

and structured microstructures has led to the proposal of Integrated Computational

Material Engineering (ICME) (McDowell and Olson, 2008a; Panchal et al., 2013), with

an emphasis on the modeling of material Process-Structure-Property (PSP) mappings

through an integration between computation, machine learning, and material sciences

(Figure 1). Three core functionalities are needed to realize ICME: (1) a computa-

tional tool that is able to efficiently extract structural features of microstructures at

multiple length scales and reconstruct physically meaningful material microstructure

with the extracted features, (2) a cost-effective predictive model for microstructure

property prediction, and (3) an efficient way to search for new material designs within

the feature space. Both (2) and (3) rely on the successful learning of a feature repre-

sentation of the material system, which is ideally low-dimensional (to enable efficient

search of new designs) and representative (to offer high reconstruction and prediction

quality).

This dissertation thus focuses on developing a design methodology and solution

strategies to effectively and efficiently achieve feature learning from and reconstruc-

tion of material systems. We start by investigating generative models for learning
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features from microstructures with hierarchical patterns (Chapter 3, 4). We then

address the high data-dependency issue in feature learning (Chapter 5), which is

key to material design tasks with high data acquisition costs. Lastly, we look into

the lack of physical preservation of reconstructions produced by data-driven learning

models, and propose a theory-driven learning framework to significantly improve the

performance of microstructure reconstruction in a physical sense (Chapter 6). The

remaining of this chapter provides an overview of the challenges of the topic and the

corresponding research tasks.

1.1 Challenges in Material Design

1.1.1 Major scientific challenges

Considering the material structure design as an optimization problem, a general

problem formulation of material design is as follows: A material microstructure is

represented as a 2D or 3D image z ∈ Z, where Z is the image space. Each element of

z defines the composition or phase at its location. The image is called feasible when

some processing setting θ ∈ Θ exists, such that z = p(θ), with p(·) being the process-

structure mapping, e.g., a physics-based simulation, and Θ the set of all available

processing settings. Consider a material property of interest, e.g., an alloy fatigue

crack growth property, derived from a structure-property mapping f(·) : y = f(z).

Finding the optimal material property y∗ through an all-in-one approach, i.e., θ∗ =

argminθ∈Θf(p(θ)) may not be favorable for the following reasons: (1) Finding the

optimal θ∗ can be computationally intractable if the problem is combinatorial, e.g.,

a combination of multiple processing techniques is needed. (2) The mapping p(θ) is

often stochastic, i.e, a certain processing setting can lead to a set of microstructure

images. One solution is to perform a nested optimization by first finding target
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microstructure z∗ to optimize y, then searching for a processing setting θ∗ to match

z∗. The latter serves as a feasibility check for the former. Mathematically, we solve

the following structure design problem constrained by processing feasibility:

min
feasible z

y = f(z) (1.1)

Compared with an all-in-one approach, this approach can speed up the convergence

by parallelizing the search for the potentially optimal structures and their feasibility

check. The nested problem formulation in Eq. 1.1 allows these models be refined

and validated independently. For multiscale material systems, solving Eq. 1.1 will

encounter at least two following challenges: 1) the high resolution of material samples

required by material property simulations causes the microstructure set Z to be high

dimensional and 2) the high cost of evaluating the design f(·), making the overall

design process inefficient.

Learning low dimensional representations for high-dimensional multi-scale

material systems

The first challenge can be alleviated if the dimensionality of the design space is re-

duced. This is due to the common existence of structural patterns in the given

material system, indicating that there exists a feature representation that concisely

encodes the raw material images. Advantages of a feature representations were con-

firmed by recent studies for homogeneous nanoparticle composite designs tasks (Xu

et al., 2014), but this method mainly depends on designer’s understanding, which

make the robustness limited, Sec 2.1 will explain more about the limitation. Thus,

this dissertation will examine unsupervised feature extraction and generation mecha-

nisms. Informally, we use a large material structure-property set to learn a mapping

x = Φ(z) and its inverse z = Φ−1(x), where x is a learned feature representation
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from a low-dimensional space X. In addition, developing such feature extraction and

generation mechanism for material design usually requires a large number of input

samples, which is not always cheap. Existing studies have achieved limited success at

this challenge. In this dissertation, we will introduce morphology-aware constraints

derived from a small set of material samples to improve the efficiency for network

training (Chapter 5).

Improving accuracy and efficiency of model learning

The second challenge is typical to data-driven learning and in particular with deep

architecture. As is known that the performance of data-driven method always depends

on the data size,

i.e., the larger size the better model performance. However, preparing enough

data for model training is not always acceptable due to the limitation of compu-

tational budget, especially in industrial field. Thus increase the efficiency of the

computation usage is a crucial topic, which involves a good understanding about

the design representation, the key structure feature and a goodness measurement

method. To this end, the challenges to be tackled before achieving these points in-

clude, high-dimensional or ill-dened design spaces such as for topologies (Bendsøe

and Kikuchi, 1988; Guo et al., 2018), material microstructures (Cang et al., 2017b,

2018; Bostanabad et al., 2018), or complex geometries (Stiny, 1980; Hsiao and Chen,

1997), low level of data usage, e.g. lack of physical based theory in pure data-driven

design mechanisms, expensive evaluations of designs and their sensitivities, e.g., due

to model nonlinearity (Allaire et al., 2004; Jung and Gea, 2004), coupled materials

or physics (Sigmund, 2001; Wang and Wang, 2004; Zhu et al., 2017), or subjective

goodness measures (Ren and Papalambros, 2011; Orbay et al., 2015), or search in-

eciency due to the absence of sensitivities Xie and Steven (1993); Querin et al. (1998);
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Rao et al. (2011) or the existence of random variables (Kharmanda et al., 2004).

To this end, this dissertation is motivated to investigate new directions of solu-

tions on material design. Specifically, we will develop machine learning algorithms

that integrate data-augmented method with physics-based knowledge to speed-up the

design process. As discussed above, two steps are conducted to address the corre-

sponding issues: First, we train generative models that characterize high-dimensional

material microstructure into lower-dimensional ones, constraining the microstructure

space during material design; second, we train generative models by investigating an

active learning mechanism where physics-based theory is applied.

1.2 Research Tasks

1.2.1 Overview of the research activities

This dissertation proposes to accomplish two major tasks derived from the iden-

tified challenges: In Task 1 2a, the dissertation will investigate the methods that

transform s (or z for PS mapping) into and from a lower-dimensional representation

x ∈ X through an encoder-decoder pair: x = Φ(s) and s = Φ−1(x). In general some

generalizable statistical learning algorithms will be developed, consisting of some deep

networks for extracting material microstructure features and generative models for

characterizing structurual pattern distribution. We investigate algorithmic design to

achieve a forward network that is able to map the material microstructure images to

its low-dimensional feature representation, and realize reconstruction/generation from

the learned low dimensional features to physically meaningful material microstruc-

ture. In Task 2 2b, we investigate an active learning mechanism where new samples

are acquired based on their violation to a theory-driven constraint on the physics-

based model. We demonstrate using a topology optimization case that while data
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acquisition through the physics-based model is often expensive (e.g., obtaining mi-

crostructures through simulation or optimization processes), the evaluation of the

constraint can be far more affordable (e.g., checking whether a solution is optimal or

equilibrium). We show that this theory-driven learning algorithm can lead to much

improved learning efficiency and generalization performance when such constraints

can be derived.

Figure 2: (a) task 1, characterize the high dimensionality into a lower dimensional
space via a generative model with limited number of data; (b) task 2, accelerate the
accuracy and efficiency of representation learning strategy via a physics-based active
learning method

1.2.2 Task 1: Dimension reduction and reconstruction via generative model

Given samples {si}Ni=1 drawn from a distribution s ∼ pdata(s), we aim to learn

the transformations x = Φ(s) and s = Φ−1(x), such that (1) x has significantly lower
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dimensions than s; (2) both Φ and Φ−1 are inexpensive to compute and differentiable;

and most critically, (3) the generated data Φ−1(x) are ”similar” to those from the

samples {si}Ni=1, or mathematically, the model distribution pmodel(s) matches the data

distribution pdata(s). These requirements ensure dimension compression, affordable

overhead for the compression and generation, and minimal reconstruction loss to the

data. Together with these properties, the compression can be integrated into the

equilibrium search loop.

1.2.3 Task 2: Improving network representation learning efficiency and accuracy

Two directions are explored in the task. The first one is trying to find a data-

driven predictive model to mimic the structure-property mapping. The challenge for

this direction is known to be data demanding. The generator learned from task 1

will be used to address this use, so that the acceleration of the structure-property

mapping could be achieved. The assumption for this direction is that the evaluation

cost of the design from the generator can be neglected, however, this assumption does

not always hold. The second direction, different from pure data-driven model where

collects data without considering computational cost, we selectively pick the training

data with a very low computational cost by evaluating their violation to a physics-

based rule. In this case model is guided to learn the representation from the training

data in a much more efficient strategy. In this part, we try to develop a feed forward

neural network x = g(s,θ) as a generator, which is able to predict a solution x given

a low dimensional problem settings s and network parameters θ. We call this type of

network as a ”one-shot” generator, which means that computing x through g is much

less expensive than using an iterative algorithm. We also define the generalization

performance of the generator (denoted by F (θ)) as the expected performance of its

solutions over a distribution of problems specified by a probability density function
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p(s):

F (θ) = Ep(s)f(g(s,θ), s), (1.2)

where f(x, s) measures the performance of x under s. Once the generator get opti-

mized, an optimal solution can be produced given the low dimensional description of

the problem.

1.3 Outline of the Dissertation

The outline of this dissertation follows Fig 3. Chapter 2 provides an introduction

to background knowledge and existing work. Existing literature on microstructure

characterization and reconstruction, and the basic components and techniques in deep

learning are reviewed in Chapter 2. In Chapter 3, we describe a Deep Belief Net-

work based generative model, that is able to extract meaningful features, compress

the original high dimensional microstructure into a much lower dimension space and

also demonstrate the generation ability of the model via the learned low dimensional

latent space. In Chapter 4, we modify the structure of the Deep Belief Network

based generative model to realize scalable microstructure reconstruction. In Chapter

5, we demonstrate a statistical generative model that learns to characterize high-

dimensional microstructure samples using low-dimensional features. We improve the

data efficiency of a variational autoencoder by introducing a morphology loss to the

training. We demonstrate that the resultant microstructure generator is morphology-

aware when trained on a small set of material samples, and can effectively constrain

the microstructure space during material design. In Chapter 6, we demonstrate an ac-

tive learning mechanism where new samples are acquired based on their violation to a

theory-driven constraint on the physics-based model. We demonstrate using a topol-

ogy optimization case that while data acquisition through the physics-based model is

often expensive (e.g., obtaining microstructures through simulation or optimization
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processes), the evaluation of the constraint can be far more affordable (e.g., check-

ing whether a solution is optimal or equilibrium). We show that this theory-driven

learning algorithm can lead to much improved learning efficiency and generalization

performance when such constraints can be derived. Chapter 7 presents an overall

summary of the report and a discussion of future works.

Figure 3: Dissertation outline
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Chapter 2

TECHNICAL BACKGROUND

This chapter provides the technical background related to the two research tasks.

The first task mainly involves three parts: 1) the characterization method of material

microstructure representations, 2) the representations based reconstruction/generation

method and 3) the evaluation of material microstructure property. Thus a review of

existing stochastic microstructure and reconstruction algorithms is provided in Sec.

2.1; besides, in this dissertation, neural network based models are mainly used for

extraction, reconstruction and evaluation purpose, so in Sec. 2.2 and Sec. 2.3, basic

concepts of deep learning, its usual components and the idea of generative model are

introduced. The second task tries to improve the learning efficiency by introducing

an active learning framework, which is also known as meta-learning, so a review of

meta-learning is provided in Sec. 2.4.

2.1 Microstructure Characterization and Reconstruction

Conventional material representations can be categorized as physical, statistical,

and non-parametric. We briefly introduce the definition of these representations, and

their corresponding material generation methods.

Physical representations characterize a material structure using its composi-

tion (the percentage of each material constituent) (Broderick et al., 2008a; Ashby,

2005), dispersion (the shortest distance between inclusion pairs and the correlation

among different pairs (Steinzig and Harlow, 1999; Tewari and Gokhale, 2004; Rol-

lett et al., 2007; Borbely et al., 2004; Pytz, 2004; Scalon et al., 2003), and geometry

(the particles’ radius/size distribution, roundness, eccentricity, aspect ratio and oth-
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ers (Rollett et al., 2007; Steinzig and Harlow, 1999; Torquato, 2013; Sundararaghavan

and Zabaras, 2005; Basanta et al., 2005; Holotescu and Stoian, 2011; Klaysom et al.,

2011; Gruber et al., 2010)). Generating new material structures through physical rep-

resentations involves minimizing the difference between the target descriptor values

and those of the generated structure. While these manually defined representations

are physically interpretable, they are not universally applicable, especially to material

systems with complex structures (Cang and Ren, 2016).

Statistical representations are based on the N-point correlation functions and

are widely used in material characterization and reconstruction (Liu et al., 2013;

Borbely et al., 2004; Torquato, 2013; Sundararaghavan and Zabaras, 2005; Basanta

et al., 2005). Torquato et al. (Rintoul and Torquato, 1997; Yeong and Torquato, 1998;

Torquato, 2013) have shown that the microstructure of heterogeneous materials can

be characterized statistically via various types of N-point correlation functions (Ok-

abe and Blunt, 2005; Hajizadeh et al., 2011). Two-point correlation function and

lineal path function are widely used as descriptors (Yeong and Torquato, 1998; Øren

and Bakke, 2003). Another widely used representation is the two-point statistics

calculated based on the frequency domain of the image using fast Fourier transform

(FFT) (Fullwood et al., 2008a,b). Similar to physical representations, one can gen-

erate structures by matching the statistical descriptors of the generated image with

the target values with respect to the pixels of the structure. It has been shown

that statistical representations can be used to accurately generation heterogeneous

materials (Torquato, 2013; Borbely et al., 2004; Basanta et al., 2005), however, the

computational cost for the generation (an optimization through gradient (Fullwood

et al., 2008a; Xu et al., 2014) or non-gradient (Yeong and Torquato, 1998; Jiao et al.,

2008, 2009; Karsanina et al., 2015) methods) can be high.

Material structures can also be represented as random fields (Roberts, 1997;
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Bostanabad et al., 2016; Liu and Shapiro, 2015), where each pixel in the structure is

assumed to be drawn from a probability conditioned on other pixels. Of particular

interest are Markov random fields where only the neighboring pixels affect the con-

ditional probabilities. The representation can be parametric, when the conditional

probability is parameterized, e.g., through a generalized linear model or a neural

network, or non-parametric when it is modeled through, e.g., a SVM with nonlinear

kernel (Schölkopf and Smola, 2002) or a regression tree (Prasad et al., 2006). The

generation of new structures under this representation can be done by jointly search-

ing for a structure that maximizes the joint probability. However, it is shown that

sequentially sampling pixel values according to the conditional probability will lead

to reasonable generations (Bostanabad et al., 2016).

2.2 Neural Network

Deep learning allows computational models that are composed of multiple pro-

cessing layers to learn representations of data with multiple levels of abstraction and

these methods have dramatically improved lots of field, such as speech recognition,

visual object recognition, object detection and many other domains (LeCun et al.,

2015).

Representations are the key for various purpose, such as detection or classification.

Representation learning is a set of methods that allows us to feed raw data to the

machine, and the representations are discovered automatically and deep learning is

one of it. The difference between deep learning and ”shallow learning” is that, it

learns multiple levels of representations via several simple but non-linear modules

step by step, from low level representation to high, more abstract level. With the

composition of enough such transformations, very complex functions can be learned.

The representations at higher layers describe the common feature from the input
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data. Let’s take images as an example. Images can be considered as matrixes with

different, due to the value difference at each pixel, the patterns can be observed. The

first layer usually learns some basic features that compose the input images, such as

edges with different lengths and orientations. The second layer may detect a high level

of features composed by the basic edge features that are detected from the fist layer.

As the layer gets deeper, more complicated and abstract features could be derived

that represent the input image, such as an abstract representation of cars, if the

input is different vehicles, or an abstract representation of faces, if the idea is trying

to detect human faces. The key advantage of deep learning is that all these features

are not predefined by human, and they’re all learned in a data-driven way. Thus, such

mechanism is very beneficial at discovering some inner structure of complicated, high

dimensional, highly-structured data. That’s the very reason to take the advantages

of deep learning for the research about material design in this dissertation .

2.2.1 Basic convolutional neural network components

Convolutional Neural Network is a well-known deep learning architecture inspired

by the natural visual perception mechanism of the living creatures. In 1959, Hubel

Wiesel (Hubel and Wiesel, 1968) found that cells in animal visual cortex are re-

sponsible for detecting light in receptive fields. Inspired by this discovery, Kunihiko

Fukushima proposed the neocognition in 1980 (Fukushima, 1979), which could be re-

garded as the predecessor of CNN. In 1990, LeCun et al (LeCun et al., 1990) published

the seminal paper establishing the modern framework of CNN.
There are numerous variants of CNN architecture for different purpose. However,

their basic components are very similar. Taking the famous LeNet-5 (Lee et al., 2009)

as an example, it consists of three types of layers, namely convolutional, pooling, and

fully-connected layers. The convolutional layer aims to learn feature representations
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Figure 4: (a) The architecture of the LeNet-5 netowrk, which works well on digit
classification tasks. (b) visualization of features in the LetNet-5 network. Each layer’s
feature maps are displayed in a different block.

of the inputs. As shown in Figure 4, convolutional layer is composed by a non-linear

activation over a convolving process between the kernel and the input data, whose

results are often considered as feature map. The feature map describes a connection

between the neuron at the current layer and its surrounded neurons in the previous

layer. The surrounded area is very similar to the idea of receptive filed as mentioned

before. There’s one import characters for CNN is that, the kernels at each layer,

people also refers as weights, are shared over all spatial locations of the input, which

reduces the model complexity and saves the computational cost . Mathematically,

the feature value at location k-th feature map of l-th layer, zli,j,k is calculated by:

zli,j,k = (wlk)
Txli,j + blk (2.1)

where w and b are the weight vector and bias term of the k-th filter of the l-th

layer respectively, and x is the input patch centered at location (i, j) of the l-th layer.

Note that the kernel w that generates the feature map zl:,:,k is shared. The activation

function introduces non-linearity to model, which makes the model able to fit different

target with different purpose by increasing its non-linearity. The activation value a

of convolutional feature z can be computed as:

ali,j,k = a(zli,j,l) (2.2)

Widely used activation functions are sigmoid, tanh and ReLU (Dahl et al., 2013).
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Another major component in CNN is pooling, which usually connects between two

convolutional layers, whose purpose is to reduce the overall resolution of the feature

map at the current layer. Popular pooling methods are mean pooling, max pooling

(LeCun et al., 2015), fractional max pooling (Graham, 2014) and etc, but their

common advantage is similar, shit-invariance. After several convolutional and pooling

layers, there may be one or more fully-connected layers which aim to dimension

reduction. They take all neurons in the previous layer and connect them to every

single neuron of current layer to generate global semantic information.

The last layer of CNNs is an output layer. For classification tasks, the softmax

operator is commonly used. Another commonly used method is SVM, which can be

combined with CNN features to solve different classification tasks ( (Tang, 2013)). Let

θ denote all the parameters of a CNN (e.g., the wiehgt vectors and bias terms). The

optimum parameters for a specific task can be obtained by minimizing an appropriate

loss function defined on that task. Suppose we have N desired input-ouput relations,

where x is the nth input data, y(n) is its corresponding target label and on is the

output of CNN. The loss of CNN can be calculated as follows:

L =
1

N

N∑
n=1

l(θ; yn, on) (2.3)

which will be used for back propagation 2.2.2. Training CNN is a problem of global

optimization. By minimizing the loss function, we can find the best fitting set of

parameters. Stochastic gradient descent is a common solution for optimizing CNN

network ( (Abadi et al., 2016; Wijnhoven and de With, 2010; Zinkevich et al., 2010))

2.2.2 Back propagation

The backpropagation procedure to compute the gradient of an objective func-

tion (5.5) with respect to the weights of a multilayer stack of modules is nothing

16



more than a practical application of the chain rule for derivatives. They key insight

is that the derivative (or gradient) of the objective with respect to the input of a

module can be computed by working backwards from the gradient with respect to

the output of that module. The backpropagation equation can be applied repeat-

edly to propagate gradients through all modules, starting from the output at the top

(where the network produces its prediction) all the way to the bottom (where the ex-

ternal input is fed). Once these gradients have been computed, it is straightforward

to compute the gradients with respect to the weights of each module.

2.3 Deep Generative Models

Different material microstructure has different microstructure features, and within

the same material system the microstructure looks similar and we can consider them

from the same data distribution. Generative model, put forward in recent years, is

designed for such purpose. It is a very powerful tool aiming at learning the data

distribution of the input samples, and with known of the data distribution, it will

be very easy and efficient for us to generate the new data that follows the similar

distribution. On the other word, if it’s a material system, we are able to generate

new microstructure with various properties.

But learning the exact distribution of the data is hard, no matter implicitly or

explicitly, and we are always trying to model a distribution which is as similar as

possible to the true data distribution. To this end, we take the advantage of neural

networks to learn a function which has the capability to approximate the true data

distribution and the model distribution.

Currently there are two most commonly used approaches for generative purpose,

Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN). The

idea of VAE is aiming at maximizing the lower bound of the data log-likelihood and
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GAN is aiming at achieving an equilibrium between Generator and Discriminator. In

the following paragraph, I will briefly explain the theory behind of VAE and GAN.

2.3.1 Variational Autoencoder

Variational autoencoders (VAE) (Kingma and Welling, 2013) are extensions of

autoencoders (Bengio, 2009). An autoencoder (Fig. 32a) is composed by two parts:

an encoder z = f(x) converts the input x to a hidden vector z, and a decoder produces

a reconstruction x̂ = g(z). An AE is trained to minimize the discrepancy between

inputs x and their corresponding reconstructions x̂.

Variants of autoencoders (e.g., Sparse (Ng, 2011), denoising (Vincent et al., 2008),

and contractive (Rifai et al., 2011)) have been proposed to improve the learning of

more concise representations from high-dimensional input data, and are widely used

for data compression (Le et al., 2015), network pre-training (Bengio et al., 2007), and

feature extraction (Xing et al., 2015). However, conventional autoencoders are prone

to generating implausible new outputs, see Fig. 36b for examples, as they do not at-

tempt to match the model distribution (the distribution of images generated from the

decoder) with the data distribution (the distribution of input images). VAE (Fig. 32b)

was introduced to address this issue (Kingma and Welling, 2013), by constraining the

distribution of the latent variables z encoded from the input data to that used for

output generation, thus indirectly forcing the match between the distributions of the

model outputs and the data.

The VAE model We start with the decoder, which defines the output distribution,

pθ(x|z), conditioned on the latent vector z, and is parameterized by θ. Let the input

data be X = {xi}Ni=1, which defines a data distribution p(x), and let p(z) be the

pre-specified sampling distribution in the latent space. The goal is to train a model
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that matches the marginal distribution pθ(x) to the data distribution p(x). In the

following, we show that this is indirectly achieved by matching the posterior pθ(z|x)

to p(z).

First, the marginal is defined as

pθ(x) =

∫
z

pθ(x|z)p(z)dz = Ez∼p(z)pθ(x|z). (2.4)

Matching the model and data distributions requires maximizing the likelihood Πx∈Xpθ(x)

with respect to θ. This maximization problem, however, is often intractable due to

the numerical integral and the complexity of the decoder network. Nonetheless, it is

noted that for a given x, most samples in the latent space will have pθ(x|z) ≈ 0, as

these latent samples do not generate outputs close to x. This leads to the idea of

introducing another distribution qφ(z|x) (the encoder) that takes an x and outputs

z values that are likely to reproduce x. Ideally, the space of z that are likely under q

will be much smaller than that under p(z), making the computation of Ez∼qpθ(x|z)

relatively cheap. However, Ez∼qpθ(x|z) is not the same as p(x), as qφ(z|x) does not

necessarily match to p(z). The relation between the two is derived below.

We start with the Kullback-Leibler divergence between the encoded latent distri-

bution qφ(z|x) and the posterior pθ(z|x):

DKL (qφ(z|x)||pθ(z|x)) =

∫
qφ(z|x) log

qφ(z|x)

pθ(z|x)
dz

= −Ez∼q[log p(z,x)]− Ez∼q[− log qφ(z|x)] + log p(x).

(2.5)

By rearranging Eq. (5.2), we arrive at

log p(x)−DKL (qφ(z|x)||pθ(z|x)) = Ez∼q[log pθ(x|z)]−DKL (qφ(z|x)||p(z)) . (2.6)

Note that the right hand side of Eq. (5.3) can be maximized through stochastic gra-

dient descent: The first term Ez∼q[log pθ(x|z)] measures the reconstruction error, i.e.,

the expected difference between an input x and its reconstructions drawn from the
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decoder conditioned on the latent variables, which are further drawn from the en-

coder conditioned on the input. The second term DKL(qφ(z|x)||p(z)) measures the

difference between the encoded distribution of z and the modeled latent distribution

p(z). Since the encoding and decoding processes involved in these terms are mod-

eled as feedforward networks, the gradients are readily available for backpropagation.

Specifically, we model qφ(z|x) = N (z|µ(x;φ),Σ2(x;φ)) as a normal distribution pa-

rameterized by the mean µ(x;φ) and the diagonal variance matrix Σ2(x;φ). µ and Σ

are the outputs of the encoder network. We similarly model pθ(x|z) = N (x|f(z;θ), σ2I)

with mean f(z;θ) and variance σ2. The function f(z;θ) is the decoder network; σ

determines the importance of the reconstruction of x during the training of a gener-

ative model, and is set to 1 in the proposed model. blueThe inputs to the decoder

are drawn from a normal distribution defined by µ and Σ. This connection between

the encoder and the decoder can be modeled as feedforward through a reparameter-

ization trick (Kingma and Welling, 2013), which enables gradient calculation of the

entire network. The prior of the latent distribution, p(z), is often assumed to be

standard normal. This is because the transformation from this simple distribution

to the potentially highly nonlinear data distribution p(x) can often be achieved by a

sufficiently deep decoder.

The left hand side of Eq. (5.3) contains the objective log pθ(x) that we want

to maximize, and the KL-divergence DKL(qφ(z|x)||pθ(z|x)) > 0 that should ideally

reach 0. Thus, minimizing

L(θ, φ,x) = −Ez∼q[log pθ(x|z)] +DKL(qφ(z|x)||p(z)) (2.7)

will maximize a lower bound of p(x).
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2.3.2 Generative Adversarial Networks

Generative adversarial network (GAN) is another way of learning the high-dimensional

data distribution via low dimensional representation. Proposed in (Ganin et al.,

2016), they can be characterized by training a pair of network in competition with

each other, there are two types of sub-networks in GAN and got trained simultane-

ously in competition. One good analogy is that one network behaves like an paint

forger, and the other one play as an paint expert. The forger tries his best to fake

some new paints that are as realistic as possible, which is the generator G. The ex-

pert, also known as discriminator D, tries to tell the real one and fake one apart. One

important note is that the generator has no direct clue about how the real paints

looks like, and the only access for measuring its goodness is from the score of the dis-

criminator, which will be used to train the generator to make the fake paint more real.

The discriminator will be fed with both fake samples and real samples. Usually both

generator and discriminator networks are composed by multi-layer convolutional and

fully connected layers. Generative network tries to map the data distribution from a

latent space, more formally we can express it as G : G(z)− > R|x|, where z ∈ R|z| is a

sample from latent space, x ∈ R|x| is an image and | · | denotes the number of dimen-

sions. In a basic GAN, the discriminator network, D, may be similarly characterized

as a function that maps from input data, such as images or other high dimensional

input, to a probability that the input is from the real data distribution, rather than

the generator distribution: D : D(x)− > (0, 1). For a fixed generator, G, the discrim-

inator, D, may be trained to classify images as either being from the training data

(real, close to 1) or from a fixed generator (fake, close to 0). When the discriminator

is optimal, it may be frozen, and the generator G, may continue to be trained so as

to lower the accuracy of the discriminator. If the generator distribution is able to
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match the real data distribution perfectly then the discriminator will be maximally

confused, predicting 0.5 for all inputs. In practice, the discriminator might not be

trained until it is optimal. Training of GANs is a min-max problem, which involves

find the parameters of a generator that maximize the cross-entropy to confuse the

discriminator, and meanwhile the discriminator tries to minimize the cross-entropy

to increase the classification accuracy for fake and real input. Mathematically:

max
D

min
G
V (G,D) (2.8)

where

V (G,D) = Epdata(x)logD(x) + Epg(x)log(1−D(x)) (2.9)

During the training, the parameters of one model are updated, while the parameters

of the other are fixed. (Goodfellow et al., 2014) show that for a fixed generator there

is a unique optimal discriminator, D∗(x) = pdata(x)
pdata(x)+pg(x)

. They also show that the

generator, G, is optimal when pg(x) = pdata(x), which is equivalent to the optimal

discriminator predicting 0.5 for all samples drawn from x. That is to say, the minimax

game converges when the discriminator can hardly distinguish between the real one

and the fake one. Ideally, network G and D should converge at the same time, so that

the generator is able to keep updating, but it is not always this case. GAN has great

performance but it is notorious know for the converging issue. Thus several other

techniques are applied to alleviate such issue, such as W-GAN (Venter et al., 2001),

EB-GAN (Zhao et al., 2016), BE-GAN (Berthelot et al., 2017) and etc.

2.3.3 Conclusion

Deep Learning models are really achieving human level performance in supervised

learning but the same is not true for unsupervised learning. Nevertheless, deep learn-

ing scientists are working hard to improve the performance of unsupervised models.
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In this section we briefly introduce about the two most famous unsupervised learning

frameworks of generative models actually work. We got to know the problems in Vari-

ational Autoencoders and why Adversarial networks are better at producing realistic

images. But there are problems with GANs such as stabilizing their training which is

still an active area of research. However GANs are really powerful and currently they

are being used in a variety of tasks such as high quality image and video generation,

text to image translation, image enhancement, reconstruction of 3D models of objects

from images, music generation, cancer drug discovery etc.

2.4 Meta Learning

The idea of meta learning has close connections to transfer learning (Caruana,

1995; Pan and Yang, 2010; Ganin et al., 2016) and life-long learning (Thrun, 1996).

While there exists a broad range of problem settings within the literature of meta-

learning, the setup commonly involves a student and a learning mechanism that

specifies how the student updates its way of learning or solving problems. The stu-

dent outputs a solution for every input problem, for example, the input can be a

labeled dataset and the output a classifier that explains the data, or the input an

optimization problem and the output an optimal solution. In the former case, the

student updates its way of learning a classifier (Ravi and Larochelle, 2016) or its

hypothesis space of classifiers (Vilalta and Drissi, 2002); in the latter, it updates its

gradient (Andrychowicz et al., 2016) or non-gradient (Chen et al., 2016) search strate-

gies. These updates are governed by the learning mechanism, the design of which is

driven by a goodness measure of the student, e.g., the generalization performance of

a classifier or the convergence rate of an optimization solver.

There are three types of approaches to meta-learning, first one is iterative, to train

a recurrent model such as a recurrent neural network (RNN) by taking training data
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as input and output the parameters of a learner model (Schmidhuber, 1987; Bengio

et al., 1992; Li and Malik, 2016; Andrychowicz et al., 2016). The second one is to

pass the training data and some test input into the model, and then outputs a cor-

responding prediction for the test example (Santoro et al., 2016; Wang et al., 2010;

Mishra et al., 2018). Both of the approaches have the capability to approximately

represent any mapping from dataset and test datapoint to label, but it may lack sta-

tistical efficiency (Finn and Levine, 2018). The last more recent one is usually called

model-agnostic meta-learning (MAML) (Finn and Levine, 2018), which optimizes

only for the initial parameters of the learner model by standard gradient descent as

the learner’s update rule and then the learner will be trained via the gradient descent,

which improves the statistical efficiency of meta-learners.
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Chapter 3

DEEP BELIEF NETWORK BASED FEATURE EXTRACTION AND

RECONSTRUCTION OF COMPLEX MATERIAL MICROSTRUCTURE

3.1 Introduction

Integrated Computational Materials Engineering (ICME) has been promoted by

the Material Genome Initiative to fundamentally change the strategies for developing

and manufacturing advanced material systems to meet the urging demands in energy,

health and national security. Pioneering ICME works based on gradient-based shape

and topological optimization and analytical processing-structure-property relations

have demonstrated successes in designing a variety of material systems, including

functional polymers (Sharma et al., 2014; Baldwin et al., 2015; Ma et al., 2015), al-

loys and ceramics (Kalidindi and De Graef, 2015; Kaczmarowski et al., 2015; Kirklin

et al., 2016), and polymer-matrix composites (Xu et al., 2014, 2015), to name a few.

Nonetheless, existing ICME methods lack scalability and have limited applications

to multiscale and high-resolution microstructures. To this end, this paper proposes

a computational tool for extraction and reconstruction of microstructure features on

multiple length scales. The developed methodology from this paper could lead to

better definition of the design space and enable computational design of complex

material systems. In the remainder of this section, we introduce the mathematical

formulation of the material microstructure design problem and review contemporary

feature extraction techniques. Specifications of the proposed model and demonstra-

tions of its performance can be found in Section 5.3. The advantages and limitations

of the proposed algorithm will be discussed in Section 5.12, followed by conclusions
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in Section 4.5.

3.1.1 Material design as an optimization problem

We start by providing an overview of ICME to justify the necessity of design at the

structure level. Computational material design can be mathematically formulated as

follows: A material microstructure is represented as a 2D or 3D image z ∈ Z, where Z

is the image space. Each element of z defines the composition or phase at its location.

The image is called feasible when some processing setting θ ∈ Θ exists, such that z =

p(θ), with p(·) being the process-structure mapping, e.g., a physics-based simulation,

and Θ the set of all available processing settings. Consider a material property of

interest, e.g., critical fracture force of alloy, derived from a structure-property mapping

f(·): y = f(z). Finding the optimal material property y∗ through an all-in-one

approach, i.e., θ∗ = argminθ∈Θ y = f(p(θ)), may not be favorable for the following

reasons: (1) Finding the optimal θ∗ can be computationally intractable if the problem

is combinatorial, e.g., a combination of multiple processing techniques is needed. (2)

The mapping p(θ) is often stochastic, i.e., a certain processing setting can lead to a

set of microstructure images. One solution is to perform a nested optimization by first

finding a target microstructure z∗ that optimizes y, then searching for a processing

setting θ∗ to match z∗. This approach can be mathematically formulated as the

following structure design problem constrained by processing feasibility:

min
feasible z

y = f(z). (3.1)

3.1.2 Scientific challenges in optimal material structure design

For complex material systems, solving Eq. (3.1) will encounter the following is-

sues: The high sensitivity of material properties on microstructure details requires

high-resolution microstructure images leading to high-dimensional Z; and the non-
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linear processing-structure mapping makes the feasible domain within Z costly to

be characterized. These issues can be alleviated if the dimensionality of the design

space can be reduced. Dimension reduction is possible due to the existence of com-

mon structural patterns in the given material system, indicating that there exists

a feature representation that concisely encodes the raw material images. Further,

since the structural patterns are often related to processing feasibility and mate-

rial properties, the encoding may lead to easier-to-construct predictive models for

the processing-structure-property mappings. Advantages of feature representations

were confirmed by recent studies for homogeneous nanoparticle composite design

tasks (Xu et al., 2014, 2015). However, current practices rely on the designer’s un-

derstanding of specific material systems to identify geometric (e.g., particle size and

orientation) and statistical descriptors (e.g., correlation functions) that are likely to

explain variances in material properties. Generating such quantitative features for

complex material systems could be difficult for human designers, or, the manually

defined feature set would be insufficient for reconstruction of physically meaningful

microstructures. Feature extraction methods through the use of deep convolutional

networks could potentially address this issue. Informally, this line of approaches use

sampled microstructures to learn a mapping x = Φ(z) and its inverse z = Φ−1(x)

(the unsupervised learning step), where x is a learned feature representation of z from

a feature space X , before mapping x to the performance y (the supervised learning

step).

A unique challenge in developing a feature extraction mechanism for (material)

design is the demanding quality of decoding (or called reconstruction), i.e., the recon-

struction Φ(Φ−1(z)) shall “match” z, so that any design searched in X can be correctly

validated through a physics-based simulation or an experiment. In Sec. 3.4.5, we ex-

amine both the visual appearances, the 2-point correlation functions, and the mean
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property values of Φ(Φ−1(z)) and z. Visually meaningful decoding is yet challeng-

ing for existing deep networks, which tends to neglect local details while preserving

key features during the reconstruction (Dosovitskiy and Brox, 2015; Mahendran and

Vedaldi, 2015; Nguyen et al., 2015). To illustrate, photos can be encoded as text labels

with a state-of-the-art deep network (e.g., (Krizhevsky et al., 2012; Simonyan and Zis-

serman, 2014a)) but image restoration from text labels is hard to be precise (Nguyen

et al., 2015; Yan et al., 2015). Existing studies have achieved limited success at

this challenge by imposing structures onto the image space, e.g., constraining the

smoothness of the reconstructed image (Dosovitskiy and Brox, 2015; Mahendran and

Vedaldi, 2015; Yan et al., 2015). This study first investigates a deep network model

and postprocessing steps to enable random reconstruction of the complex microstruc-

ture of Ti-6Al-4V alloy samples. We then show that the proposed model can be

applied to other material systems, including Pb-Sn (lead-tin) alloy, Pore structure of

Fontainebleau sandstone, and 2D suspension of spherical colloids.

3.1.3 Contributions and limitations

To the authors knowledge, this is the first study that develops a deep network

model for both feature extraction and reconstruction of complex material systems.

In addition, our method preserves the statistical and the mechanical properties of

interest statistically. Two major limitations still exist: First, while computationally

inexpensive, the current reconstruction process is by nature non-scalable. A hybrid

approach that combines the proposed feature extraction network and a stochastic

material synthesis model will be discussed. Second, the mechanical properties of

individual samples are not preserved, demanding higher reconstruction quality and

better preservation of property-related microstructure features through the network

model.
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3.2 Related Work

Design at the microstructure level by changing the composition, phases and mor-

phologies could lead to the discovery of unprecedented material systems with ad-

vanced performance (McDowell and Olson, 2008b). The challenges, however, exist

in the modeling of interactions among multiple material constituents to predict the

properties, and the automation of material design at microstructure level. In the

following, we review existing studies that concern the latter challenge, and then in-

troduce background knowledge for the proposed approach based on Convolutional

Deep Belief Network (CDBN).

3.2.1 Microstructure parametrization and reconstruction

Conventional material design relies on choosing different material compositions

from material databases (Broderick et al., 2008b). For example, carbon-fibre rein-

forced epoxy are applied to replace the wooden oars for better performance (Ashby

and Cebon, 1993). This composition-based approach is often limited and cannot

be applied in the design of complex materials systems due to the existence of fea-

tures other than constituents that govern material properties. Such features include

morphology of microstructure, i.e., the spatial arrangement of local microstructural

features (Karasek and Sumita, 1996), the heterogeneity in microstructure (Xu et al.,

2014) and others. A quantitative representation of material systems is thus needed.

A review from (Xu et al., 2014) summarizes three categories of microstructure

representations: (1) physical descriptors (e.g., composition descriptors such as vol-

ume fraction, dispersion descriptors (Rollett et al., 2007; Borbely et al., 2004; Tewari

and Gokhale, 2004; Pytz, 2004; Steinzig and Harlow, 1999; Scalon et al., 2003) such

as average distance between fillers, and geometry descriptors (Rollett et al., 2007;
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Steinzig and Harlow, 1999; Torquato, 2013; Sundararaghavan and Zabaras, 2005;

Basanta et al., 2005; Holotescu and Stoian, 2011; Klaysom et al., 2011; Gruber et al.,

2010) such as the size of fillers), (2) 2-point or N -point correlation functions (Liu

et al., 2013; Borbely et al., 2004; Torquato, 2013; Sundararaghavan and Zabaras,

2005; Basanta et al., 2005), and (3) random fields (Torquato, 2013; Quiblier, 1984;

Jiang et al., 2013; Grigoriu, 2003). Accordingly, a variety of material reconstruction

schemes have been devised for different microstructure representations. Examples

include the Gaussian random field method(Roberts, 1997), stochastic optimization

method (Yeong and Torquato, 1998; Jiao et al., 2008, 2009; Karsanina et al., 2015),

gradient-based method (Fullwood et al., 2008a), phase-retrieval method(Fullwood

et al., 2008b), iterative methods based on multi-point statistics(Okabe and Blunt,

2005; Hajizadeh et al., 2011), Bayesian Network Method(Matthews et al., 2016) and

cross-correlation functions (Tahmasebi and Sahimi, 2013, 2015), and image synthe-

sis method (Sundararaghavan and Zabaras, 2005; Liu and Shapiro, 2015). Recently,

a new reconstruction method is proved to be efficient at synthesizing Markovian

microstructures (Bostanabad et al., 2016) where the probability distribution of the

material composition at each pixel (or voxel) is determined by its local surroundings

and the conditional probability model can be applied homogeneously across a mi-

crostructure sample, see Fig. 5a for examples. However, the Markovian assumption

may not hold for complex material systems. In fact, the algorithm from (Bostanabad

et al., 2016) produces less plausible synthesis results when trained on Ti-6Al-4V alloy

samples, see Fig. 5b and c, especially when high variances in grain directions and

sizes exist.

30



Figure 5: (a) Samples and random synthesis results of material systems that are
assumed to be Markovian (Bostanabad et al., 2016). (b-c) Random synthesis of the
Ti-6Al-4V alloy microstructure following the synthesis algorithm from (Bostanabad
et al., 2016). The synthesis is based on (b) a single sample and (c) 100 samples from
Fig. 47. Image courtesy of Dr. Ramin Bostanabad.

3.3 Introduction of Deep Belief Network

3.3.1 Convolutional deep network

Convolutional networks have long been used for feature extraction, with applica-

tions to object and voice recognition (Hinton et al., 2012) and detection (Krizhevsky

et al., 2012), reinforcement learning (Mnih et al., 2013; Schmidhuber, 2015; Levine

et al., 2015), analogy making (Reed et al., 2015) and many others. By stacking multi-

ple layers, a convolutional deep network can learn from input training data multi-scale

features that contribute to the explanation of the corresponding outputs, without nec-

essarily being guided by the outputs. For example, using a large set of human face

images, a network can extract various face elements, including basic edges from the

1st layer, eyes and noses from the 2nd, and partial faces from the 3rd, see Fig. 6a. A

forward pass of an image through the trained network essentially checks the existence

of these features in the image, and thus using the output of the network for predic-
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tion (e.g., face recognition) is more effective than using raw image pixel values (Lee

et al., 2009). While a deep network may involve a large number of model parameters,

the training is made tractable by using stochastic gradient descent( (Bousquet and

Bottou, 2008)) along with back-propagation (for deterministic models) (Rumelhart

et al., 1988) and contrastive divergence (for probabilistic models such as Restricted

Boltzmann Machines (RBM)) (Hinton, 2002).

Figure 6: (a) Three layers of human face features extracted at increasing length
scales (Lee et al., 2009). (b) A schematic comparison between an RBM and an
autoencoder. ai (bj) and vi (hj) are the bias and state values of visible (hidden) layer,
respectively. Wij indicates the weights between the visible and hidden layers.

The proposed Convolutional Deep Belief Network is one type of deep network that

consists of stacked RBM layers. By the nature of RBM, the network is generative,

meaning that it can perform both dimension reduction to map an input microstructure

to a low-dimensional feature space, and reconstruction of the microstructure for a

given sample in the feature space. It should be noted that other models could also

be developed for reconstruction purpose, including Autoencoder (Bengio, 2009) (see

Fig. 6b for an illustration and (Yumer et al., 2015) for an example), Variational

Autoencoder (VAE) (Kingma and Welling, 2013; Yan et al., 2015), and the Generative

Adversarial Network (GAN) (Goodfellow et al., 2014).
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3.3.2 Restricted Boltzmann Machine

A fully-connected RBM layer consists of visible (input) and hidden (output) nodes,

see Fig. 6b. With weighted edges connecting these two sets of nodes, it is a complete

bipartite graph. The set of edges connecting from all visible nodes to one hidden

node acts as a convolution filter applied to the input image. The output of the

convolution is transformed by a sigmoid function, and treated as the activation of the

corresponding hidden nodes. The state of each hidden node is a binary number drawn

from a Bernoulli distribution parameterized by the activation. A Convolutional RBM

(or CRBM) is a special type of RBM where all image batches in the input layer (of

the size of the filters) share K filters, so that the hidden layer forms a binary image

with K channels, each produced by convolving the input image with a filter. Thus, a

CRBM only has a subset of the visible nodes connecting to each of the hidden nodes

(see Fig. 7a).

Learning an RBM (and CRBM) model through an set of input images takes the

following procedure. Notations follow Fig. 6. Consider a model with n visible and m

hidden nodes, and let vi and hj be the states of the ith visible and the jth hidden

nodes, respectively. When visible units are binary-valued, the total energy of the

layer is defined as:

E(v,h;θ) = −
n∑
i=1

aivi −
m∑
j=1

bjhj −
n∑
i=1

m∑
j=1

viWijhj. (3.2)

In the above equation, θ := {W, a,b} is a set of model parameters to be estimated,

within which W is a matrix of network weights, and a and b are the biases in the

visible and hidden nodes, respectively. The joint probability of visible and hidden

states is defined based on this energy function as:

Pr(v,h|θ) =
exp(−E(v,h|θ))

Z(θ)
, (3.3)
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where Z(θ) =
∑
v,h

exp(−E(v,h|θ)) is a partition function to make Pr(v,h|θ) a valid

probability mass function. The marginal probability of the visible state is:

Pr(v|θ) =
1

Z(θ)

∑
e−E(v,h|θ). (3.4)

Thus, the log-likelihood of the model parameters θ, given training data at the vis-

ible layer, can be written as φ(θ; v) = log(Pr(v|θ)) = φ+ − φ−, where φ+ =

log
∑

h exp(−E(v,h)) and φ− = logZ = log
∑

v,h exp(−E(v,h)) are called the pos-

itive and negative parts. Finding the maximum likelihood estimator of θ requires

applying stochastic gradient descend to φ(θ; v). The gradient of the positive part

can be simply calculated as ∂φ+

∂Wij
= viPr(hj = 1|v), while the negative gradient

∂φ−

∂Wij
= Pr(vi = 1, hj = 1) is usually computationally expensive due to the calculation

of the partition function. This issue, however, can be resolved by using contrastive di-

vergence (Hinton, 2002) to provide an asymptotic approximation of ∂φ−

∂Wij
by iteratively

sampling from the conditional probabilities Pr(vi = 1|h) = sigmoid
(∑

jWijhj + ai

)
and Pr(hj = 1|v) = sigmoid (

∑
iWijvi + bj).

3.3.3 Probabilistic max-pooling

In a deep network, a max-pooling layer is often inserted after a convolution layer

to reduce the number of hidden nodes. This allows fewer network weights to be

computed in the follow-up layers and also allow features of larger length scales to be

extracted. Specific to CDBN, a probabilistic max-pooling layer segments the output

image of a hidden RBM layer into blocks (2×2 in this study) and assigns the associated

pooling node a binary value α by drawing from a Bernoulli distribution defined by

the activations of the hidden nodes. The activations for the four hidden nodes are

denoted by Ii for i = 1, 2, 3, 4. The probability for the pooling node to be activated

is Pr(α = 1) = 1− (1 +
∑4

i=1 Ii)
−1. For backward pooling during the reconstruction,
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we assign ones to all four nodes in the block if α = 1 or otherwise zeros. Fig. 7b

summarizes the pooling procedure.

Figure 7: (a) CRBM and pooling layers (b) Forward and backward probabilistic
max-pooling procedures with 2× 2 blocks

3.4 Proposed CDBN for Feature Extraction and Material Reconstruction

The proposed network has three CRBM layers and two fully-connected RBM

layers. Each of the first two CRBM layers is followed by a 2 × 2 probabilistic max-

pooling layer. The convolutional filters for the first three layers are set respectively

as follows: 6 × 6, 9 × 9, and 9 × 9 in filter size, 1, 24 and 40 in the number of
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channels, and 24, 40 and 288 in the number of filters. The size of the five hidden

layers are correspondingly 200 × 200 × 1, 97 × 97 × 24, 44 × 44 × 40, 36 × 36 × 288

and 30× 1. Notice that the image size shrinks along the depth of the network due to

the convolution operation. For example, convolving an image of 200 × 200 with the

filter of 6 × 6 will lead to an output of (200 − 6 + 1) × (200 − 6 + 1). This size will

further be divided by 4 after the max-pooling process, which makes the dimension

97 × 97. In addition, the number of filters corresponds to the number of channels

of the hidden layer. Table 1 summarizes the model and training parameters. One

typical measure to prevent the learning of trivial filters is to set a target sparsity for

the hidden nodes, so that on average a filter can only activate a limited number of

hidden nodes and thus represents a specific image pattern. For the first four layers,

a target sparsity of 0.1 is imposed on the hidden layer activations. The pλ values

specify the weights on the gradient of the sparsity penalty during the training. Both

target sparsity and pλ values are manually tuned so that the training of the network

can achieve low reconstruction error. During network training, we set the learning

rate to be 0.005, initial momentum to be 0.1, final momentum to be 0.9, and use one

iteration of contrastive divergence for gradient approximation. The network weights

are initialized by drawing from independent normal distributions with a standard

deviation of 0.02. In addition, with 2, 000 epochs training for the first four training

layer and 20, 000 for the last layer is applied in our cases. On a workstation withIntel

Xeon E5-1620 v3 @3.5GHz CPU, GeForce GTX Titan GPU and 64GB Memory, the

training takes 14134 seconds with 100 input images of size 200 × 200 for each and

1363130 network parameters.
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3.4.1 Orientation-invariant filters

One common trait of microstructure images is the existence of low-level features

that are similar under linear transformations. For example, grain boundaries of alloy

samples in Fig. 5b are only different by orientations (of elongated grains). Therefore

filters of the first CRBM layers can be parametrized by linear transformations, so

that training of a small set of filters will be sufficient to capture all features, thus

significantly accelerate the training process. Such as the material system of Ti64

Fig 8, which is composed by lines with different orientation visually, so the basic

features for these kinds of material system should be edges with various orientations.

In our proposed model, K = 2 rotation-invariant filters are incorporated, and S

= 12 mannually pre-defined orientations with an interval of 15 degrees are given.

This setting will result in 24 filters by training only 2(each one with 12 different

orientations). Let the rotation matrices be {Ts}Ss=1, thus the parameterized filter for

the sth orientation and the jth filter be TT
s Wj, where Wj is the jth column of W.

Following (Sohn and Lee, 2012), the energy function can be updated as:

E(v,h;θ) = −
K∑
j=1

S∑
s=1

(Tsv)TWjhj,s −
K∑
j=1

S∑
s=1

bj,shj,s − cTv. (3.5)

Note that among all S hidden nodes for the jth filter, at most one can be activated,

i.e.,
∑S

s=1 hj,s ≤ 1, for hj,s ∈ {0, 1}, j = 1, ..., K. This is achieved by considering hj,s

an outcome of a multi-class classifier, with

Pr(hj,s = 1|v) =
exp

(
(Tsv)TWj + bj,s

)
1 +

∑S
s′=1 exp((Ts′v)TWj + bj,s′)

. (3.6)

The conditional probability of the visible nodes will be kept the same as before.

With these updates, training of the rotation-invariant filters follows the discussion in

Sec. 3.3.2.

37



3.4.2 Explanation of the network model

The choice of the network configuration requires some explanation. The first four

layers are used to extract features at increasing length scales. The 5th layer is added

to further reduce the dimensionality of the data by learning the correlations among

the 4th layer activations, i.e., the co-existence of global features in the samples. The

number of nodes at layer 4th and 5th are manually configured to achieve a balance

between high dimension reduction and low reconstruction error. However, we did not

test all possibilities to confirm that our network design yields the best result.

Fig. 8 visualizes filters of the five layers, learned from 100 Ti-6Al-4V alloy samples

that are produced from the same laser sintering process. The visualization of each

filter is done by iteratively convolving the filter (the network weights) with filters from

the previous layers 1 . It is worth noting that the visualizations from the 5th layer

include images of almost all black pixels. This is because the output images from these

filters have almost uniform pixel values, appearing to be zeros after normalization.

Also note that these filters are non-trivial, as the effect of activating multiple nodes at

the output layer has nonlinear effect in the input space, i.e., the reconstructed image

is not a simple addition of filter visualizations, because of the sigmoid operations

throughout the network. To demonstrate, we show in Fig. 9(a)-(c) the reconstructions

when the 1st, the 2nd, and both filters are activated.

To further justify the network architecture, we observed through experiments that

the random microstructure reconstructions obtained using the 5-layer network have

larger variance than those from without the 5th layer, as illustrated in Fig. 10. This

result indicates that the 5th layer is effective for avoiding the creation of repetitive

microstructure samples.

1This procedure is different from microstructure reconstruction (see Sec. 3.4.3) in that the sigmoid
function is not applied to the convolution results.
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Figure 8: Input Images and Extracted Features. Visualizations of filters for the
5 layers: The 1st layer has two filters, each with 12 orientations (see Sec. 3.4.1).
Due to limited space, Only the first 144 and 25 filters from the 3rd and 4th layers,
respectively, are shown.
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Table 1: Network and algorithmic parameters

Layer #filter filter size sparsity pλ rotation

1st 2 6× 6 0.1 10 12

2nd 40 9× 9 0.1 10 N/A

3rd 288 9× 9 0.1 10 N/A

4th 1000 36× 36 0.1 10 N/A

5th 30 1000× 1 0 0 N/A

Figure 9: Activation on Different Filters. From left to right, reconstructions when
only the 1st, only the 2nd, and both nodes from the 5th layer are activated, respectively

Figure 10: Comparison between random reconstructions from (a) the 4th and (b)
the 5th layers, sampled from the corresponding design spaces ({0, 1}1000 in (a) and
{0, 1}30 in (b)).
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3.4.3 Reconstruction and postprocessing

Figure 11: Postprocessing steps: Column (a) shows the original reconstruction and
its 3rd layer activations (288 channels) with enlarged sample channels; Column (b)
shows the reconstruction after thresholding the 3rd layer activations at 0.5; Column
(c) shows the further improved reconstruction after skeletonization.

To reconstruct random microstructures, one starts by randomly assigning binary

values to the last layer of the trained CDBN, and inversely sample the previous layers

through deconvolution. To speed up the process, we directly treat activations (real

values between 0 and 1) as the states of hidden nodes, to avoid drawing from Bernoulli

distributions and eliminate randomness during the reconstruction. We discuss below

the necessity of post-processing steps to avoid undesirable reconstructions.

First, we observe that with the proposed reconstruction method, the 3rd hidden

layer (a 36×36×288 image) is overly saturated, see Fig. 11a. It happens because the

forward path of the proposed network has a Bernoulli sampling process, making the

41



activation hidden layer binaries. But during the reconstruction, the sampling process

is avoided in order to eliminate randomness. This causes the issue that the slightly

activated nodes in the 3rd layer across its 288 channels, which should have a high

chance to be sampled as zeros, to accumulatively affect the input layer, by creating

overlapped grain boundaries (as black pixels) and undesirably rendering such regions

as voids. Through experiments, we found that thresholding the activations of the 3rd

layer at τ = 0.5 achieves the lowest average reconstruction error from the original

Ti64 samples, see Fig. 11b. Some random reconstructions using this threshold are

shown in Fig. 12a. It is worth noting that this fixed threshold value may result in

invalid reconstructions for some binary combinations at the output layer, see Fig. 12a,

two rows of the reconstruction microstructures are processed with the same threshold

value 0.5, but the performance is very different. The four images in the second row

have more unexpected voids than the images in the first row. One potential solution

is to fine-tune the threshold for each individual reconstruction based on a heuristic

criterion, e.g., one can remove invalid voids in Ti64 reconstructions by thesholding

the hidden layer so that the volume fraction of the resultant microstructure falls into

a range calculated by valid reconstructions of the original samples, see Fig. 12b for an

example. Nonetheless, we are yet to identify thresholding criteria that are universal

across all material systems.

Secondly, we notice that the resultant grain boundaries are wider than those from

the original samples. This is due to the convolution and the max-pooling operations

in the first three layers of the proposed CDBN. Applying an existing skeletonization

method to the reconstruction results in the final outcome in Fig. 11c. Lastly, the

convolution operation tends to smear the reconstructed image towards its boundary.

The reported reconstruction results in this work are the cropped areas (143 × 143)

without the blurred margins, which are resultant from the convolution.
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Figure 12: (a) A threshold of 0.5 does not always guarantee valid reconstructions, see
the second row (b) Threshold can be fine-tuned based on a heuristic criterion: Here
we test a set of threshold values and pick the one that yields a volume fraction closest
to the average volume fraction of reconstructions of the original samples (ρ = 0.51).

3.4.4 Random reconstruction results

Here we demonstrate the reconstruction performance of the proposed CDBN on

four material systems: Ti-6Al-4V (100 images in Fig. 47), Pb-Sn(lead-tin) (60 images

in Fig. 48), Pore structure of Fontainebleau sandstone (60 images in Fig. 49) and

2D suspension of spherical colloids (80 images in Fig. 50). Methods used to generate

images of these four material systems are as follows: Ti64 are generated from physics-

based kinetic Monte Carlo simulations (Y. Jiao and Chawla, 2013) for beta to alpha

phase transition starting from beta phase field; Pb-Sn optical images are generated

from polished Pb-Sn solder ball surface (Jiao et al., 2013); sandstone images are

virtual 2D slices from 3D tomography reconstruction (Li et al., 2016); and random

sphere packing are generated using Monte Carlo simulations (Li et al., 2014).

The CDBN specifications follow Sec. 5.3: Its input and output are a 200-by-200

image and a 30-dimensional binary vector, respectively. To generate microstruc-
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tures, we can assign binary values to the 30 output neurons, and perform convolution

backwards using the learned features. Fig. 13 provides a visual comparison between

samples and the corresponding random reconstructions. The first three material sys-

tems follow almost the same network setting, with the exception for Ti-6Al-4V alloy

where the first layer is orientation-invariant. The network for spherical colloids is

slightly different than the other three, since its universal local feature, a sphere, can

be directly extracted from a single CRBM layer. Thus the rest four layers in this

case are all fully-connected RBMs. From the results, it is evident that the proposed

network has some general applicability across material systems.

Figure 13: A comparison between random reconstructions (bottom) and the original
samples (top) for four different material systems.

3.4.5 Deeper understanding of the proposed model

To further understand the performance and limitations of the proposed CDBN, we

conduct two additional studies: The first concerns the restoration of original samples,

and the second validates the reconstruction of the material property of interest, i.e.,

the critical fracture force computed using a recently developed volume-compensated
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lattice-particle (VCLP) method (Chen et al., 2014).

For the first study, samples of the original Ti-6Al-4V alloy microstructure images

and their corresponding reconstructions are shown in Fig. 15. A close examination

reveals discrepancies between the reconstructed and the original images. We believe

that such discrepancies are caused by the nature of the network: Similar local patterns

are learned as a single filter, and are replaced by this filter during reconstruction.

Increasing the number of filters to learn may alleviate this issue, yet will also increase

the computational cost for learning the network. Therefore a compromise is necessary.

For example, for Ti64, Pb-Sn and Sandstone, we use 2 filters with 12 orientations in

the first CRBM layer, and may fail to capture features (e.g., line segments) that do not

belong to these pre-set orientations. The use of probabilistic max-pooling may also

contribute to the discrepancies as forward and backward pooling do not preserve the

activations. Note that preservation of local microstructure patterns can be achieved

relatively easily for simple systems such as spherical colloids.

To quantitatively access the accuracy of the reconstructions, we computed the

two-point correlation function S2(r), which gives the probability of two randomly

selected points separated by distance r falling into the same phase of interest, for

both the samples and the associated reconstructions. Fig. 27 shows the comparison.

It can be seen that S2 for the reconstructed microstructures statistically match the

corresponding target structures well, except for the Ti64 system. We note that for

the Ti64 system, both S2 for the target and reconstruction exhibit clear oscillations

for small r values, indicating significant short range correlations due to the mutual

exclusion volume between the grains. The wavelengths associated with the oscillations

indicate the average grain width, and are the same in both functions. The oscillation

in the reconstructed S2 is apparently stronger, which is due to more uniform grain

size and shape distribution in the reconstructed microstructure, and the missing of
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local details from the samples.

Figure 14: The 2-point correlation functions for the four different materials.

Figure 15: Comparison between the samples (top) and their reconstructions (bot-
tom). Details of the two fail to match.

In addition, we investigate the performance-wise discrepancies introduced by the

reconstructions. Specifically, we calculate the critical fracture force of three sets of

samples: the original samples, their reconstructions, and 100 random reconstructions,

using VCLP. The simulation results from four material systems are summarized in

Fig. 16, with two findings: (1) the average fracture forces of the three groups are

statistically similar within each material system; and (2) discrepancies in the frac-

ture force are visible between the original samples and their reconstructions, due to

the aforementioned reconstruction error. We argue that finding (1) is a desirable re-

sult, while individual-wise property matching may not be necessary. This is because

each processing setting may produce various structures with small variance in their

property values. Thus, during the structural design, it is required that the set of

46



Figure 16: a) Comparison on critical fracture strength among the four material sys-
tems between the original samples (black), their corresponding reconstructions(gray)
and random reconstructions (white) (b) Comparison on critical fracture strength
among individual original images and the related reconstruction images.

reconstructions of all samples derived from the same processing parameters (as is the

case in this study) have statistically the same property as the original samples.

3.5 Discussion

Here we provide more discussions on the limitations and future directions of the

presented work.

3.5.1 Limitations

First, we note that the network is designed to only reconstruct images of a fixed

size, which is not desirable when scalable synthesis of material systems is needed.

One potential solution is to apply a conditional probability model (e.g., (Bostanabad

et al., 2016)) to the outputs of a hidden layer of the CDBN that represent the ac-

tivations of key microstructure patterns. The intuition is that while the Markovian

assumption may not directly hold at the image level (i.e., image pixels cannot be ho-

47



mogeneously inferred from their surroundings), the activations of local patterns may

still be captured by this assumption. Such a hybrid model could be used to produce

new microstructure patches given its surrounding patches, thus achieving synthesis

of complex material samples.

Secondly, identification of proper network specifications (e.g., the number of lay-

ers, the number of filters, and filter sizes) is non-trivial. In fact, an arbitrary choice

of these parameters could lead to abysmal feature extraction and reconstruction per-

formance. Due to the unknown sensitivity of the performance with respect to the

modeling parameters, the authors cannot claim that the presented model is univer-

sally applicable to all material systems, despite the fact that the model worked well

on the four demonstrated systems.

Thirdly, the size of training samples can significantly affect the reconstruction

performance. To show this, we learned three network models based on 10 and 50

training samples randomly drawn from the 100 Ti64 images. We then reconstruct

100 random images using each of the trained models and image-wise variances for

each model are calculated as 0.2644, 0.2863, and 0.4205 respectively. As expected,

the result shows that larger training data lead to more distinct filters, which leads to

the reconstructions with high variance Fig. 17.

Figure 17: (a-c) Sample reconstructions (without skeletonization) based on models
trained from 10, 50, and 100 samples, respectively. The variances among random
reconstructions for these three cases are 0.2644, 0.2863, and 0.4205, respectively. The
variance is calculated from 100 reconstructions in each case.
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Lastly, it is also worth noting that the proposed network essentially learns a lower-

dimensional manifold from the image space using limited samples. However, it does

not provide a feasible region within this manifold. As a result, random reconstructions

are not guaranteed to be physically meaningful, and a validation through processing-

structure mapping is needed. It is therefore desirable that certain known physics-

based rules (i.e., constraints on features) can be incorporated into the feature extrac-

tion process to eliminate or reduce the chance of creating infeasible reconstructions.

3.5.2 From material reconstruction to material design

As mentioned in the introduction, the feature learning method proposed in this

work has two potential contributions to computationally efficient material design: The

reduced design space will enable more tractable search for complex microsturcture

designs, and allows statistical models with better prediction performance to be built

for process-structure-property mappings. Achieving the latter, however, requires the

learned features to be able to explain variance in material properties (in the structure-

property mapping), and in processing settings (in the process-structure mapping).

While this study does not directly demonstrate the connection between features and

properties or processing parameters, successful reconstructions through the developed

model showed its potential at learning microstructure patterns, which could be fine-

tuned through a supervised model to statistically explain properties or processing

parameters.

3.6 Conclusions

This work presented a novel methodology for feature extraction and reconstruc-

tion of complex microstructures through a convolutional deep belief network. Using

four different material systems, we showed that the proposed 5-layer CDBN model,
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along with postprocessing techniques, can achieve significant dimension reduction,

visually and statistically plausible random reconstruction, and statistically preserve

the critical fracture strength values after reconstruction. Key limitations include (1)

the lack of scalability in reconstruction, (2) the individual discrepancies in fracture

strength between original and reconstructed images, and (3) the lack of guarantee of

the validity of the reconstructions, i.e., the threshold for the reconstruction is only

empirically chosen. Nonetheless, the demonstrated advantages over existing mate-

rial reconstruction approaches showed that our method could lead to more efficient

representations of complex microstructures, which is critical to accelerating ICME.
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Chapter 4

SCALABLE MICROSTRUCTURE RECONSTRUCTION WITH MULTI-SCALE

PATTERN PRESERVATION

4.1 Introduction

Last chapter we propose an automated feature learning techniques that is to iden-

tify an encoder that maps microstructure to a lower-dimensional feature space and a

decoder that creates a microstructure based on given features (Cang and Ren, 2016;

Coates et al., 2010; Boureau et al., 2008; Vincent et al., 2010). The two-way mapping

allows the optimization to be performed in the feature space, solutions from where

can be evaluated through the decoded microstructures. However, the proposed ap-

proach requires the generated images to have the same size as the training samples,

and thus are not scalable for designing microstructures of an arbitrary size. Alterna-

tively, Markovian Random Field (MRF) models have been applied to directly learn

the pixel value distribution of images (Bostanabad et al., 2016). MRF is complemen-

tary to feature learning, in that it allows scalable reconstruction yet may produce

undesired microstructures when the Markovian assumption fails to hold (e.g., when

complicated local patterns exist, see Fig. 1 in (Cang and Ren, 2016) for example).

It is thus natural to propose a hybrid model that combines the advantages of

feature learning and MRF. Specifically, we use a convolutional deep belief network

(CDBN) (Lee et al., 2009) to extract local microstructure patterns, and then use a

MRF model to learn the distributions of the activation of these patterns. We show

that the proposed model can generate random microstructure samples of arbitrary

sizes, that are statistically and visually similar to the training samples of complex
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material systems. Fig 18 presents the random generation of Ti-6Al-4V, Pb-Sn alloy,

Sandstone, and Spherical Colloids, along with their training samples.

Figure 18: Our hybrid method combines advantages from feature learning and
Markovian random field to enable scalable random reconstruction with local-pattern
preservation. Four material systems are tested: the larger images are random recon-
structions by learning from their corresponding samples shown on the right (multiple
samples are used for learning, only one is shown).

4.2 Learning Distributions of Local Microstructure Patterns

Following ( (Cang et al., 2016)), the proposed CDBN is composed by three stacked

CRBM layers, each followed by a probabilistic max-pooling layer that reduces the

height and the width of the output by a given factor. The outputs from the last

pooling layer is modeled to follow a random field, so that new microstructures can

be generated by first sampling an output layer of the CDBN using the random field,

and then performing convolutions backward through the CDBN. See Fig. 19.

4.2.1 Learning local microstructure patterns

We briefly introduce key elements of the CDBN and provide details of the proposed

CDBN settings.

Restricted Boltzmann Machine (RBM) A RBM is a bipartite graphical model

with visible (v) and hidden (h) nodes. The model is parameterized by the weight

matrix W for its edges and biases a and b for visible and hidden nodes, respectively.
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Figure 19: The proposed network with three convolutional RBM layers followed by
a random field model(causal model). Image generation is done by sampling from the
random field and performing backward convolution through the CDBN.

The joint probability of v and h is modeled as

p(v,h) =
exp (−E(v,h|θ))∑

v,h

exp (−E(v,h|θ))
, (4.1)

where

E(v,h|θ) = −
n∑
i=1

aivi −
m∑
j=1

bjhj −
n∑
i=1

m∑
j=1

viWijhj (4.2)

is the Boltzmann energy, and θ := {W, a,b} is the parameter set. Given a set of

inputs to the visible nodes (e.g., microstructure images), the network weights and

biases can be learned by maximizing the marginal probability

p(v) =

∑
h

exp (−E(v,h|θ))∑
v,h

exp (−E(v,h|θ))
. (4.3)

This optimization problem can be solved by stochastic gradient descent (Bottou,

2010) and contrastive divergence (Hinton, 2002). In a convolutional RBM, edges

share weights in such a way that the encoding (Wv + b) and the decoding (Wh + a)

are convolution operations.

Probabilistic max-pooling A probabilistic max-pooling layer((Lee et al., 2009))

is attached to each CRBM to reduce its size. This allows faster training and extraction
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of features of larger scales for the follow-up CRBMs, and builds into these follow-up

filters a degree of invariance to translations and distortions. In forward pooling,

hidden channels are divided into smaller blocks, each corresponding to a node in the

pooling layer. For max-pooling with factor α, the block is of size α × α. The states

of the pooling nodes are drawn from Bernoulli distributions with parameters defined

by the states of the corresponding block of hidden nodes. For backward pooling, all

nodes in the block are assigned the same state as the corresponding pooling node.

4.2.2 A Markov Random Field model for pattern activations

We introduce an existing MRF model( (Liu and Vadim, 2015; Sundararaghavan,

2014)), and its application to the output layer of the CDBN, instead of direct appli-

cation to the microstructure image. While we focus on 2D images, the extension of

this model to 3D images can be achieve with minor modification( (Bostanabad et al.,

2016)).

Model overview The model assumes that each pixel in a 2D image follows a

stationary MRF( (Bostanabad et al., 2015)), i.e., a pixel value Yij at location (i, j)

follows a distribution p(Yij|Xij;φ) that is conditioned on its neighboring pixels Xij

and parameterized by φ. When Yij is binary, the distribution is Bernoulli. The

parameters φ can be learned through a set of (Yij, Xij) pairs sampled from given

images through supervised learning. Therefore, this model offers both an encoder

and a decoder: An image (or a set of images) can be mapped to a single point φ in

the feature space; inversely, one can generate images by maximizing the log likelihood∑
ij log (p(Yij|Xij;φ)) with respect to the image, for a given φ. A greedy solution to

this inverse problem is stated in (Bostanabad et al., 2015): Starting from an empty

image, we draw Yij sequentially from the top-left to the bottom-right corner,using
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only those neighbouring pixels that have been drawn. See Fig. 20 for an illustration.

Figure 20: The pixel Yij is conditioned on its (h(2w + 1) + w) neighboring pixels
Xij

It is important to note that unlike CDBN, the encoder-decoder pair in this case

does not preserve specific images, i.e., the similarity between images is measured

only in the feature space. From a material design perspective, this model is useful for

material systems where the statistics (such as φ) rather than the image representations

is sufficient and effective at explaining the variances in properties and processing

parameters. We will elaborate on this point in Sec. 5.12.
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Setting boundary padding One may notice that there is a need to provide bound-

ary padding to images for both encoding and decoding. This is because the MRF

model requires each pixel to be dependent on its neighbors, including the ones on the

boundary. Boundary padding is thus created around the image to provides sufficient

preceding pixels to draw Yijs on the boundary. See Fig. 21 for an illustration. The

padding is set to black or white, whichever is dominating in the sample images.

Figure 21: The padding is shown in grey. Yij on the boundary depends on Xij in
the padding. Padding thickness is (2h+ 1).

Learning the conditional probability model We learn K conditional proba-

bility models, where K is the number of channels of the CDBN output layer of a

particular material system. To do so, we first randomly sample (Y
(k)
ij , X

(k)
ij ) pairs

from each channel across all sample images, where X
(k)
ij are preceding pixels in the

neighbour of Y
(k)
ij . As will be explained in Sec. 4.3.1, the best neighbouring win-

dow size (h + w + 1) varies with material systems. Note that in addition to the

neighboring pixels, we also include in X
(k)
ij an independent variable γ

(k)
ij that rep-

resents the percentage of activated nodes from the preceding channels at location
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(i, j): γ
(k)
ij =

∑k−1
k′=1 Y

(k′)
ij /(k− 1). For the first channel, this variable is omitted. This

treatment prevents overly activating one location across channels by accident. The

prepared data is then used to train K models using a classification tree algorithm

(fitctree) in MATLAB. The tree depth is n − 1 where n is the training sample size.

The minimal leaf size is 1, and the minimal parent size is 10.

Reconstruction with a consistent volume fraction Once trained, the classifiers

output the probabilities p
(k)
ij := p(Y

(k)
ij = 1|X(k)

ij ;φ) for given X
(k)
ij . Each channel is

generated using the corresponding classifier through the method described above. To

ensure volume fraction conservation in each channel, we use the iterative procedure

described in (Bostanabad et al., 2015): In each iteration, we calculate the volume

fraction gap (δ) between the current reconstruction and the training images. If δ >

0.0025, we adjust the conditional probability as p′ij
(k) = p

(k)
ij +c

√
p

(k)
ij (1− p(k)

ij ), where

the algorithmic parameter c is updated as c = c + 0.005sign(δ), initialized at c = 0.

This procedure reduces the probability of activating a node when the reconstructed

volume fraction is higher than that of the samples, and vice versa.

Addressing correlations among channels We noticed that the activations across

channels in the CDBN output layer are correlated. And the same correlation occurs

across images. See Fig. 22 for example. The proposed random field model, however,

does not capture this correlation, as the classification trees are trained almost inde-

pendently except for the consideration of γ. To enable correlations, we propose to

identify the clustering of channels based on their activation patterns from the training

samples. Specifically, we first calculate the channel-wise mean activation across all

samples, although the activation pattern is very different for every image, the same

correlation occurs across all the training samples, in this case K-means( (MacQueen
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Figure 22: Sample activation layer from sandstone. Clusters are also observed in
other material systems.

et al., 1967)) is applied to cluster these mean activation. The resultant clusters will

be applied during the reconstruction, where we use the same patterns for channels

within a cluster. The appropriate number of clusters is determined by calculating

the reconstruction error, i.e., image-wise difference, between the original samples and

the reconstructed ones with shared patterns. When calculating this difference, the

shared pattern for each cluster is chosen randomly from one of its channels.

4.2.3 Post-processing

Post-processing is needed to improve the quality of reconstructions for Ti64. As

discussed in ((Cang and Ren, 2016)), the third hidden layer of the CDBN can be

overly saturated, which leads to regions in the input layer with overlapped grain

boundary or undesirable voids. The same issue is observed in the hybrid model.

Our current solution is to set an upper bound on the activation rate of all channels.

Fig. 23 shows the activations of the CDBN output layer above and their corresponding
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reconstructions below. One can see that directly applying the generated activation

will lead to less desirable outcomes. Experiments show that reducing the activation

rate to 15% will sufficiently improve the reconstruction quality, because by reducing

the activation rate cross all the channels avoids the over-activation issue Fig 26.

Finally, skeletonization is used to further match the style of the generated images to

the original ones.

Figure 23: (Top) CDBN output activations generated by MRF for Ti64; (Bottom)
The corresponding generated images; (Left) No activation reduction after sampling;
(Middle) 85% reduction on the total activation; (Right) Result after skeletonization

4.3 Verification of the Proposed Method

This section elaborates on the algorithmic settings of the proposed hybrid model

for four material systems: Ti-6Al-4V alloy (Ti64), Pb-Sn alloy (Pb-Sn), sandstone

(SS), and spherical colloids (SC). Due to differences in their local patterns and distri-

butions of these patterns, the settings vary across these systems. We then compare
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the generation quality between the hybrid and the MRF models. Our data consists

of 100 samples for Ti64, 60 samples for Pb-Sn and SS, and 80 samples for SC. All

sample images used for model training are listed in the Appendix. We also show

generations of different image sizes using the proposed method.

4.3.1 Algorithmic settings

Settings of the MRF model We apply the MRF model directly to microstructure

images to produce benchmark images. Due to the sensitivity of the MRF approach

to the window size (as illustrated in Fig 24), we determine the optimal size for each

material system via cross-validation (CV) by starting with a relatively large window

size and reducing the size till the CV error of the model does not further decrease.

The CV errors are measured by the differences between the two-point correlation

functions of the generated images and those of the original samples. The optimal

sizes are thus derived as 7× 7, 17× 17, 19× 19, 15× 15, for Ti64, Pb-Sn, SS and SC,

respectively. The minimum CV errors are 7.7% for Ti64, 4% for Pb-Sn, 0.95% for

SS, and 2.2% for SC. This data indicates that Ti64 follows the Markov assumption

of MRF less strictly than the other material systems.

Settings of the hybrid model The configurations of the CRBM layers are tuned

according to each material in order to achieve good generation quality, as different

material systems may have patterns of different length scales. All models have three

CRBM layers followed by probabilistic max-pooling layers, except for SC due to its

simple spherical feature, in which case a single CRBM layer is used. For Ti64, Pb-Sn,

and SS, the convolutional filter sizes are 6× 6, 9× 9, and 9× 9 for the first, second,

and third CRBM layers, respectively; the number of filters for the first and second

layers are 24 and 40 respectively; The number of filters for the third layer varies
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Figure 24: (Left) 2-point correlation functions with window sizes: 5×5, 7×7, 9×9,
11× 11, 13× 13 and 15× 15 (Right) Corresponding generations

according to the microstructure complexity. Experiments showed that 288, 64, and

64 filters will be sufficient for Ti64, Pb-Sn and SS, respectively. We notice that using

these reduced amount of filters for Pb-Sn and SS leads to 6% of average pixel-wise

reconstruction error, compared with those with 288 filters. Max-pooling layers with

a factor of α = 2 is applied to Ti64, Pb-Sn, and SS, and α = 3 for SC.

The MRF model is applied to the last activation layers. Similar to the direct

MRF models, the window size for training the models is chosen through CV. For all

materials, the optimal window size is found to be 5× 5.

Target sparsity for the hidden nodes are set during the training of the CRBM

network in order to prevent learning trivial features. This ensures that, during the

training, a filter can only activate a limited number of hidden nodes and thus represent

a specific image pattern. Table 2 summarizes the model and training parameters.

The number of clusters for the MRF applied to the CDBN output is tuned for

each material system. It is identified that 8 clusters work well for Pb-Sn and SS.

Fig. 25 compares the reconstructions from 4 to 64 clusters. Pb-Sn is shown as an
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Table 2: CDBN settings

example. Note that the reconstruction error decreases with more clusters. No cluster

is needed for SC since only one channel exists. Ti64 material system is not suitable

for clustering as doing so leads to undesirable reconstructions, as is demonstrated in

the top row of Fig. 26. By checking the summation of all the activation channels

(the bottom row of Fig. 26), we notice that the regions with high activations, due to

shared patterns within clusters, lead to voids in the reconstructions.

Figure 25: Different cluster number on the 64 channels’ activation layer based re-
construction for Pb-Sn alloy is shown, as the cluster number increases the final re-
construction gets close.

Settings of the similarity measure A similarity measure is needed for evaluating

the quality of reconstructions and random generations. In this work, we measure the

similarities between sample images and reconstructions both visually and through

2-point correlation functions (S2), which is a very effective choice of measurement

for homogeneous and isotropic materials (Liu et al., 2013; Jiao et al., 2008), such

as Pb-Sn, SS and SC. While commonly agreed similarity measure for complicated

material systems such as Ti64 is currently missing, the same measure is applied for
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Figure 26: Clustering the the activation channels for Ti64 into three different groups,
8, 16, 36, from left to right. None of them produce a good reconstruction as shown
in the upper row. The lower row presents the summation of their corresponding
activation channels.

consistency. To calculate 2-point correlation functions for bi-phase microstructures,

we sample all the possible pairs of points (x1, x2) for distances from 1 to half of the

length of the image. At each distance, the percentage of pairs with matched pixel

values is calculated.

4.3.2 Comparisons on random generations

Fig. 27 compares the performance between MRF, CDBN( (Cang and Ren, 2016))

and the proposed hybrid method, using the four material systems. For each system,

we present the original microstructures, and random generations by MRF (with the

best window size), hybrid and CDBN, from top to bottom. 2-point correlation func-

tions are calculated for 30 random generations from each method, in addition to the
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original samples. 1 Mean and standard deviations (as the shades) are reported.

Major findings are as follows: (1) The proposed method produces reconstructions

that are visually similar to the samples from CDBN, while MRF has less favorable re-

constructions particularly on Ti64 due to the existence of local patterns which breaks

the Markovian assumption. MRF also produces more white areas in Pb-Sn in com-

parison with the hybrid and the CDBN methods. In addition, a closer investigation

shows that MRF fails to constrain the filler particles in SC to be spherical. Nonethe-

less, MRF produces local patterns closer to the samples in SS. We believe that this is

due to the drawback of the current feature learning implementation that is less sen-

sitive to capturing sharp edges of local patterns. (2) None of the reconstructions for

Pb-Sn, SS, and SC are statistically different from the original samples with respect to

S2. For Ti64 however, the findings are intriguing: While MRF produces closer S2 to

the samples, these functions do not capture the critical characteristics of this mate-

rial system, as they monotonically decreases along the distance. To elaborate, S2 for

Ti64 should exhibit clear oscillations for small distance values, to reflect significant

short range correlations due to the mutual exclusion volume between the grains. The

wavelengths associated with the oscillations also indicate the average grain width.

The characteristics are preserved in reconstructions from the hybrid and the CDBN

methods, while their S2s have higher amplitudes in the oscillation than those from

the samples. This is due to the more uniform grain sizes and shape distributions in

the reconstructions and the missing of local details exist in the samples.

1The number of random generations is limited by the high cost of sampling the large number
(288) of channels for the hybrid method for Ti64.
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Figure 27: (Top) Comparison of the sample means and sample standard deviations of
2-point correlation functions of: the original samples, reconstructions from MRF with
the best window sizes, the hybrid method, and CDBN (Bottom) The corresponding
reconstructions (from top to bottom: original, MRF, hybrid, CDBN)

4.3.3 Generation at an arbitrary size

With the help of the MRF model on the CDBN output, we can produce recon-

structions with an arbitrary size. Fig. 28 shows samples for larger reconstructions:

288×288 for Ti64, Pb-Sn and SS, 378×378 for SC. Their 2-point correlation functions

are also calculated and compared with those of the original samples, and generations

of the original sizes (144 × 144 for Ti64, Pb-Sn and SS, and 189 × 189 for SC). The

result shows that characteristics of the 2-point correlation functions are preserved

across generation sizes.

4.4 Discussion

Limitations and future directions are summarized as follows.

Reconstruction quality We note that the proposed model is yet to achieve high

accuracy in reconstruction for complex material systems, especially when detailed fea-

tures (e.g., the connection of grain boundaries in Ti64) are critical for material prop-

erties, even when post-processing techniques are manually applied. The application of

post-processing also introduces additional human knowledge into the reconstruction

procedure, making the method not fully automated for all material systems. The lack
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Figure 28: Generations of size 288× 288 for Ti64, Pb-Sn, and SS, 378× 378 for SC,
and their 2-point correlation functions.

of reconstruction accuracy is largely due to the blurring effect of the convolutions.

We also note that neither VAE nor GAN in their original formulations( (Kingma and

Welling, 2013; Goodfellow et al., 2014)) produces high quality random generations for

complex material systems such as Ti64, as shown in Fig. 29, although the networks

can reconstruct the training samples well. Note that these generations are too blurred

to skeletonize. VAE suffers from its limitation of only allowing continuous features,

i.e., a real-valued weighting on various discrete local patterns does not produce mean-

ingful patterns. The GAN model may suffer from its intrinsic difficulty in balancing

the convergence of the generator and the descriminator.

The Markovian assumption It is also important to note that MRF relies on the

strong assumption that the image to be generated follows a stationary random field,

and each pixel value is only conditioned on its limited neighbors. In this work, we

used CDBN to remove local patterns, as an attempt to acquire the resulting activation
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Figure 29: Random generations from VAE and GAN.

images these MRF properties. This attempt will fail if a material system, after

abstracted by CDBN, cannot be considered as a MRF. CDBNs used in this work also

requires careful tuning, based on the designer’s understanding of the representative

length scales of local patterns. Compared with conventional procedures for hand-

picking features, our approach avoids asking for specifying details of human knowledge

during the construction of the decoder, yet still requires heuristic inputs from the

human designer.

Optimal material design in a statistical sense As we mentioned earlier, the

application of MRF allows a distribution of microstructures to be represented by the

same feature vector, i.e., the MRF parameters. This model is useful when the vari-

ances in the properties of interest can be effectively explained by these parameters.

This is, however, not always the case. For example, as is shown in ( (Cang et al.,

2016)), the fracture strength of Ti64 samples from the same processing setting is

sensitive to their microstructure details. Thus it is not meaningful to represent a dis-

tribution of designs with the same feature when the property is to be optimized with
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respect to a particular microstructure. Nonetheless, like other material properties,

the fracture strength of Ti64 exhibits correlation with laser sintering parameters, as

can be seen in Fig. 30. Therefore, using MRF parameters (with the help of CDBN) to

represent microstructures is meaningful when the goal is to identify a distribution of

microstructures from the same processing setting that has the optimal mean property.

Our future work will include microstructure samples from multiple processing settings

in training the hybrid model. We will examine if the resulting MRF parameters are

effective at explaining the properties and the processing parameters.

Figure 30: (Right) Two types for Ti64 samples from different processing parameters
(Left) Their corresponding fracture strengths

4.5 Conclusions

In this work we developed a method to enable random generation of 2D material

microstructure images of an arbitrary size that are visually and statistically similar

to the authentic ones, based on a given set of samples. This is achieved by learning

multiscale patterns through a convolutional deep belief network, and modeling the

distributions of these patterns through a Markov Random Field. Technical challenges
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in integration these two models are discussed in detail. Model parameters are tuned

by matching 2-point correlation functions to those of the training samples. We show

that the proposed hybrid method performs particularly well on Ti-6Al-4V alloy both

visually and statistically, in comparison with an existing MRF model.
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Chapter 5

IMPROVING DIRECT PHYSICAL PROPERTIES PREDICTION OF

HETEROGENEOUS MATERIALS FROM IMAGING DATA VIA

CONVOLUTIONAL NEURAL NETWORK AND A MORPHOLOGY-AWARE

GENERATIVE MODEL

5.1 Introduction

Direct prediction of material properties through predictive models has attracted

interests from both material and data science communities. Predictive models have

the potential to mimic highly nonlinear physics-based mappings, thus reducing depen-

dencies on numerical simulations or experiments during material design, and enabling

tractable discovery of novel yet complex material systems (Jain et al., 2013; Hautier

et al., 2010; Kondo et al., 2017). Nonetheless, the construction of predictive models

for nonlinear functions, such as material structure-property mappings, is known to

be data-demanding, especially when the inputs, e.g., material microstructures rep-

resented as 2D or 3D images, are high-dimensional (Huan et al., 2016). Thus, the

added value of predictive models quickly diminishes as the acquisition cost increases

for material samples. We investigate in this paper a computational approach to gen-

erate artificial material samples with negligible cost, by exploiting the fact that all

samples within one material system share similar morphology. More concretely, we

define morphology as a style vector quantified from a microstructure sample, and

propose a generative model that learns from a small set of authentic samples, and

creates an arbitrary amount of artificial samples that share the same distribution of

morphologies as the authentic ones.
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The key contribution of the paper is the introduction of a morphology constraint

on the generative model that significantly improves the morphological consistency

between the artificial and authentic samples from benchmark generative models. To

demonstrate the utility of the proposed model, we run a case study on the prediction

of the Young’s modulus, the diffusion coefficient and the permeability coefficient of

sandstone microstructures. We show that the generated artificial samples from the

proposed model can improve the prediction performance more effectively than those

from a state-of-the-art Markov Random Field (MRF) model.

As an overview, the proposed model follows the architecture of a variational au-

toencoder (Kingma and Welling, 2013) that learns to encode material microstructures

into a lower-dimensional latent space and to decode samples from the latent space back

into microstructures. Both the encoder and the decoder are composed of feed-forward

convolutional neural networks for extracting and generating local morphological pat-

terns, and are jointly trained to minimize the discrepancy between the artificial and

authentic samples. The target morphology is quantified from the authentic sam-

ples by an auxiliary network. The idea of quantifying material morphology through

a deep network is inspired by the style transfer technique originally developed for

image synthesis (Gatys et al., 2016).

The rest of the paper is structured as follows: In Sec. 5.2 we review related work on

material representations and reconstruction, based on which we delineate the novelty

of this paper. We then introduce background knowledge on variational autoencoder

and style transfer. Sec. 5.3 elaborates on the details of the proposed model. Sec. 5.11.4

presents a case study on the prediction of sandstone properties, where we demonstrate

the superior performance of the proposed model against the benchmarks, in both mi-

crostructure generation, and the resultant property prediction accuracy. In Sec. 5.12

we summarize findings from the case study and propose potential future directions.
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Sec. 5.6 concludes the paper.

5.2 Background

5.2.1 Data science challenges in computational materials science

Incorporating data science into material discovery (Jain et al., 2013) and de-

sign (Curtarolo et al., 2013) faces unique challenges with high dimensionality of ma-

terial representations and the lack of material data due to high acquisition costs. We

review existing work that address these challenges to some extent.

Challenge 1: Mechanisms for understanding material representations A

common approach to addressing the issue of high dimensionality is to seek for a

representation, i.e., an encoder-decoder pair, for a material system: The encoder

transforms microstructures to their reduced representations, and the decoder gener-

ates (i.e., reconstructs) them back from their representations. A good encoder-decoder

pair should both achieve significant dimension reduction, and good matching between

the data distribution (i.e., the distribution of authentic samples) and the model dis-

tribution (i.e., the distribution defined by the decoder). This is often feasible for

material systems with consistent and quantifiable morphologies among their samples,

as reviewed below.

Existing encoders for material representations can be categorized as physical and

statistical, some of which have led to accelerated design of various material sys-

tems (Torquato, 2013; Jiang et al., 2013; Grigoriu, 2003; Xu et al., 2014; Yu et al.,

2017). Among all, physical encoders characterize microstructures using compo-

sition (e.g., the percentage of each material constituent) (Broderick et al., 2008a;

Ashby, 2005), dispersion (e.g., inclusions’ spatial relation, pair correlation,the ranked

neighbor distance (Steinzig and Harlow, 1999; Tewari and Gokhale, 2004; Rollett
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et al., 2007; Borbely et al., 2004; Pytz, 2004; Scalon et al., 2003)), and geometry

features (e.g., the radius/size distribution, roundness, eccentricity, and aspect ratio

of elements of the microstructure (Rollett et al., 2007; Steinzig and Harlow, 1999;

Torquato, 2013; Sundararaghavan and Zabaras, 2005; Basanta et al., 2005; Holotescu

and Stoian, 2011; Klaysom et al., 2011; Gruber et al., 2010)). Among statistical

encoders are the N-point correlation functions (Liu et al., 2013; Borbely et al., 2004;

Torquato, 2013; Sundararaghavan and Zabaras, 2005; Basanta et al., 2005). Torquato

et al. (Rintoul and Torquato, 1997; Yeong and Torquato, 1998; Torquato, 2013) show

that the microstructure of heterogeneous materials can be characterized statistically

via various types of N-point correlation functions (Okabe and Blunt, 2005; Hajizadeh

et al., 2011). Similar descriptors include lineal path function (Øren and Bakke, 2003)

and statistics calculated based on the frequency domain using fast Fourier transfor-

mation (Fullwood et al., 2008a,b). Another type of statistical encoders are random

fields (Roberts, 1997; Bostanabad et al., 2016; Liu and Shapiro, 2015), which de-

fine joint probability functions on the space of microstructures. Typical probabil-

ity models include Gaussian random fields (Quiblier, 1984; Ostoja-Starzewski, 1998;

Torquato, 2013) which treats binary microstructure images as level sets, and Markov

random fields, where each pixel of the microstructure is assumed to be drawn from a

probability function conditioned on its neighbouring pixels (Bostanabad et al., 2016).

Decoding of representations, i.e., generation of microstructure through exist-

ing physical and statistical representations, involves optimization in the microstruc-

ture space: For physical representations and N-point correlation functions, a mi-

crostructure is searched to minimize its difference from the target descriptors. For

random fields, the generation can be done by maximizing the joint probability through

Markov chain Monte Carlo simulations (Bostanabad et al., 2016; Liu and Shapiro,

2015). While it is shown that material generation through these representations is
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feasible (Borbely et al., 2004; Basanta et al., 2005; Torquato, 2013; Xu et al., 2014),

the computational costs for the optimization through gradient (Fullwood et al., 2008a;

Xu et al., 2014) and non-gradient (Yeong and Torquato, 1998; Jiao et al., 2008, 2009;

Karsanina et al., 2015) methods are often high.

In addition to the difficulties in decoding, the existing encoders are not universally

applicable, especially to material systems with complex morphology. More specifi-

cally, matching in the representation space does not guarantee the match in the

microstructure space. An example can be found in Fig. 31, where we compare two-

point correlation functions of Ti64 alloy samples and three sets of artificial images

(see details from (Bostanabad et al., 2016; Cang et al., 2017b,a)). The visually more

plausible set has worse match to the target with respect to the Euclidean distance in

the discretized 2-point correlation space.

Figure 31: Comparison of two-point correlation functions among four sets of im-
ages. From left to right: Authentic microstructure samples, samples generated by a
Markov random field model (Bostanabad et al., 2016), samples generated by a hybrid
model with deep belief network and Markov random field (Cang et al., 2017a), and
samples generated by a deep belief network (Cang et al., 2017b). Better matching
in the discretized 2-point correlation space does not indicate better microstructure
generations.

These existing difficulties lead to the need for new mechanisms to define mate-

rial representations. We propose four metrics for evaluating the utility of a material

representation: interpretability, dimensionality, expressiveness, and generation cost:
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Physical descriptors and correlation functions are designed to be interpretable and

relatively low dimensional, yet may not be expressive enough to capture complex mor-

phologies and requires optimization during generation; random fields are relatively

expressive (and some permit fast generation (Bostanabad et al., 2016)), but are often

high-dimensional and less interpretable. Both categories of representations are mate-

rial specific, i.e., new representations need to be manually identified for new material

systems. Cang et al. (Cang et al., 2017b) proposed to learn statistical generative

models from microstructures to automatically derive expressive, low dimensional rep-

resentations that enables fast microstructure generation. They showed that a particu-

lar type of generative model, called Convolutional Deep Belief Network (CDBN) (Lee

et al., 2009), can produce reasonable microstructures for material systems with com-

plex morphologies, by extracting morphology patterns at different length scales from

samples, and decode an arrangement of these patterns (the hidden activation of the

network) back into a microstructure. Nonetheless, CDBNs are trained layer-by-layer,

and thus require additional material-dependent parameter tuning to achieve plausible

generations.

Different from (Cang et al., 2017b), this paper proposes a model that directly

enforces the matching of the artificial microstructures to the authentic ones, thus

avoiding additional parameter tuning. Our model is also fully differentiable, making

it much easier to train than CDBNs and scalable to deep architectures. Lastly, the

introduction of the morphology constraint further refines the artificial microstructures

under a small amount of training data. With all these improvements, the proposed

model is generally applicable to the extraction of low dimensional material represen-

tations, and is expressive for generating microstructures with morphologies of decent

complexity.
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Challenge 2: Effective material data acquisition methods Unlike scenarios

in contemporary machine learning where a large quantity of data is available, in com-

putational material design tasks we may only have a limited amount of microstructure

and property samples, and the acquisition cost for additional samples is usually high.

This challenge calls for the incorporation of active learning methods into the design.

The key idea of active learning is to minimize the data acquisition cost for learning

a model (e.g., generative models for capturing microstructure distributions, or dis-

criminative models for predicting process-structure-property mappings), by optimally

controlling the balance between data exploitation and exploration (Tong and Chang,

2001; Settles, 2010). In computational material science, such techniques have been

adopted to accelerate the process of material discovery for desired properties (Ling

et al., 2017; Lookman et al., 2016). While this paper does not focus directly on

active learning, we demonstrate that the quality of the microstructure data, along

with its quantity, can significantly influence the prediction performance of a statisti-

cal structure-property mapping, and thus justify the value of the proposed generative

model.

5.2.2 Preliminaries on predictive and generative models

This paper will involve three networks: The generative network for creating ar-

tificial material microstructures, the auxiliary convolutional network for quantify-

ing material morphologies, and another convolutional residual network (ResNet) for

structure-property prediction. We provide technical backgrounds for these models

below.

Generation through Variational Autoencoder Variational autoencoders (VAE) (Kingma

and Welling, 2013) are extensions of autoencoders (Bengio, 2009). An autoencoder
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(Fig. 32a) is composed by two parts: an encoder z = f(x) converts the input x to

a hidden vector z, and a decoder produces a reconstruction x̂ = g(z). An AE is

trained to minimize the discrepancy between inputs x and their corresponding recon-

structions x̂. Variants of autoencoders (e.g., Sparse (Ng, 2011), denoising (Vincent

Figure 32: (a) An autoencoder converts inputs to a latent space and reconstructs
outputs from samples in the latent space. It is trained to minimize the reconstruction
error. (b) A variational autoencoder converts inputs to a distribution in the latent
space. It is trained to minimize both the reconstruction error and the Kullback-
Leibler (KL) divergence between the latent distribution and a sample distribution
(often standard normal).

et al., 2008), and contractive (Rifai et al., 2011)) have been proposed to improve the

learning of more concise representations from high-dimensional input data, and are

widely used for data compression (Le et al., 2015), network pre-training (Bengio et al.,

2007), and feature extraction (Xing et al., 2015). However, conventional autoencoders

are prone to generating implausible new outputs, see Fig. 36b for examples, as they

do not attempt to match the model distribution (the distribution of images gener-

ated from the decoder) with the data distribution (the distribution of input images).

VAE (Fig. 32b) was introduced to address this issue (Kingma and Welling, 2013), by

constraining the distribution of the latent variables z encoded from the input data
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to that used for output generation, thus indirectly forcing the match between the

distributions of the model outputs and the data.

The VAE model We start with the decoder, which defines the output distribution,

pθ(x|z), conditioned on the latent vector z, and is parameterized by θ. Let the input

data be X = {xi}Ni=1, which defines a data distribution p(x), and let p(z) be the

pre-specified sampling distribution in the latent space. The goal is to train a model

that matches the marginal distribution pθ(x) to the data distribution p(x). In the

following, we show that this is indirectly achieved by matching the posterior pθ(z|x)

to p(z).

First, the marginal is defined as

pθ(x) =

∫
z

pθ(x|z)p(z)dz = Ez∼p(z)pθ(x|z). (5.1)

Matching the model and data distributions requires maximizing the likelihood Πx∈Xpθ(x)

with respect to θ. This maximization problem, however, is often intractable due to

the numerical integral and the complexity of the decoder network. Nonetheless, it is

noted that for a given x, most samples in the latent space will have pθ(x|z) ≈ 0, as

these latent samples do not generate outputs close to x. This leads to the idea of

introducing another distribution qφ(z|x) (the encoder) that takes an x and outputs

z values that are likely to reproduce x. Ideally, the space of z that are likely under q

will be much smaller than that under p(z), making the computation of Ez∼qpθ(x|z)

relatively cheap. However, Ez∼qpθ(x|z) is not the same as p(x), as qφ(z|x) does not

necessarily match to p(z). The relation between the two is derived below.

We start with the Kullback-Leibler divergence between the encoded latent distri-
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bution qφ(z|x) and the posterior pθ(z|x):

DKL (qφ(z|x)||pθ(z|x)) =

∫
qφ(z|x) log

qφ(z|x)

pθ(z|x)
dz

= −Ez∼q[log p(z,x)]− Ez∼q[− log qφ(z|x)] + log p(x).

(5.2)

By rearranging Eq. (5.2), we arrive at

log p(x)−DKL (qφ(z|x)||pθ(z|x)) = Ez∼q[log pθ(x|z)]−DKL (qφ(z|x)||p(z)) . (5.3)

Note that the right hand side of Eq. (5.3) can be maximized through stochastic gra-

dient descent: The first term Ez∼q[log pθ(x|z)] measures the reconstruction error, i.e.,

the expected difference between an input x and its reconstructions drawn from the

decoder conditioned on the latent variables, which are further drawn from the en-

coder conditioned on the input. The second term DKL(qφ(z|x)||p(z)) measures the

difference between the encoded distribution of z and the modeled latent distribution

p(z). Since the encoding and decoding processes involved in these terms are mod-

eled as feedforward networks, the gradients are readily available for backpropagation.

Specifically, we model qφ(z|x) = N (z|µ(x;φ),Σ2(x;φ)) as a normal distribution pa-

rameterized by the mean µ(x;φ) and the diagonal variance matrix Σ2(x;φ). µ and Σ

are the outputs of the encoder network. We similarly model pθ(x|z) = N (x|f(z;θ), σ2I)

with mean f(z;θ) and variance σ2. The function f(z;θ) is the decoder network; σ

determines the importance of the reconstruction of x during the training of a gener-

ative model, and is set to 1 in the proposed model. The inputs to the decoder are

drawn from a normal distribution defined by µ and Σ. This connection between the

encoder and the decoder can be modeled as feedforward through a reparameterization

trick (Kingma and Welling, 2013), which enables gradient calculation of the entire

network.

The prior of the latent distribution, p(z), is often assumed to be standard normal.

This is because the transformation from this simple distribution to the potentially
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highly nonlinear data distribution p(x) can often be achieved by a sufficiently deep

decoder.

The left hand side of Eq. (5.3) contains the objective log pθ(x) that we want

to maximize, and the KL-divergence DKL(qφ(z|x)||pθ(z|x)) > 0 that should ideally

reach 0. Thus, minimizing

L(θ, φ,x) = −Ez∼q[log pθ(x|z)] +DKL(qφ(z|x)||p(z)) (5.4)

will maximize a lower bound of p(x).

Prediction through Residual Network (ResNet) We build a predictive structure-

property model using the frame work of a ResNet (He et al., 2016). A conventional

feed-forward neural network models the function f(x) = y directly, while a ResNet

models the residual f(x) = y − x between inputs x and outputs y. The operation

of y = f(x) + x is performed by a shortcut connection and element-wise addition as

shown in Fig. 33c. ResNet has shown to resolve the degradation problem effectively,

i.e., the problem that deeper networks often introduce challenges in convergence and

lead to worse prediction performance (He et al., 2016). In this study, we applied an

18-layer ResNet to learn the structure-property mappings of interest.

Style transfer (ST) ST was first introduced to integrate the content of one image

with the style of another (Gatys et al., 2016). To perform ST, a “style vector” is

first computed for an image, that consists of the variance-covariance matrices of the

hidden states of a pre-trained CNN (we use a VGG Net (Simonyan and Zisserman,

2014a) in this paper) activated by the input image. A new image can then be created

by minimizing the difference between its style vector and the target one. One can also

preserve the image content, i.e., the hidden states of the deepest layers, by adding an

additional loss on the content difference.
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As will be discussed in Sec. 5.3, the proposed method extends ST to a genera-

tive setting, by directly adding a style (morphology) penalty to the training loss of

a VAE. There are two major difference in comparison: First, the standard ST gen-

erates images by minimizing the style loss with respect to a high-dimensional image

space, while our model is learned to directly generate style-consistent images, thus

is significantly faster than standard ST; second, the standard ST uses a single style

vector as a target, while our model can encode a distribution of styles in its latent

space, and thus is more expressive as a generator.

5.3 Proposed Models

5.3.1 Network specifications

The generative model The proposed generative model is composed of two net-

works, a VAE for image encoding and decoding, and an auxiliary network for com-

puting the style vector (G). See model summary in Fig. 33a. For the VAE, its

encoder has convolutional layers of a fixed filter size (4× 4), max-pooling layers after

each other convolutional layers, and two fully-connected layers of sizes 256 and 16,

respectively. Each pooling layer is of stride 2, i.e., it is composed with filters of size

2× 2 applied to the hidden layers, down-sampling these layers by a factor of 2 along

both width and height. Together, the encoder reduces the dimension of the input

from 128 × 128 to 16 × 1. The architecture of the decoder is almost symmetric to

that of the encoder, except that the representation (after sampling) is expanded to

32 dimensions through a fully connected layer.

The predictive model An 18-layer ResNet is built to predict material properties

from microstructures. A schematic of this predictive model is shown in Fig. 33b.

The network is composed by one convolutional block, two max pooling layers, four
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Figure 33: (a) The VAE encoder architecture. (b) The 18-layer ResNet architecture.
The circled part represent a residual block and is explained in (c).

residual block and two fully connected layers. The number and the size of the weights

for every individual layer are listed in the figure. Max pooling and convolutional layers

are used to progressively reduce the spatial dimensions of the hidden layers.

The morphology model To acquire a rich set of morphology patterns and make

this acquisition process general, we propose to use a VGG network (Simonyan and

Zisserman, 2014b) to quantify morphology. The VGG net is pre-trained on over a

million images (Deng et al., 2009) to learn a rich set of basic feature representations,

and is then integrated into the generative model. The schematic for the resultant

morphology-aware VAE is shown as Fig. 34.

Figure 34: Schematic of the proposed morphology-aware VAE
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5.3.2 Model training

The loss function of the generative model Training the generative model in-

volves minimizing a loss function with four components:

L(θ,φ;X ) = LRECON + LKL + LST + LMC, (5.5)

where LRECON + LKL are the standard reconstruction and KL divergence losses for

VAE (see Sec. 5.2.2), LST is the style loss, and LMC is an additional loss to prevent

mode collapse (introduced below).

The reconstruction loss

LRECON = −
∑
xi∈X

Eqφ(z|xi)[log pθ(xi|z)] (5.6)

measures the reconstruction error of all pairs of authentic microstructures (xi ∈ X )

and their reconstructions. The KL divergence loss

LKL =
∑
xi∈X

DKL(qφ(z|xi)||p(z)) (5.7)

measures the difference between the encoder distribution qφ(z|xi) and the prior p(z).

The style loss

LST =
N∑
s=1

N∑
p=1

∑
l

||Gs,l −Gp,l||2F (5.8)

measures the total style difference between two sets of N images with indices s and p,

representing the generated and the authentic ones, respectively. Given a morphology

style model, the Gram matrix Gs,l of image s at the lth hidden layer is defined

through elements Gs,l
i,j =

∑
k f

s,l
i,kf

s,l
j,k, where feature element f s,li,k represents the hidden

activation corresponding to the ith convolutional filter at spatial location k. || · ||F

is the Frobenius normal. We note that the definition of feature maps will affect the

outcome of style transfer. In general, deeper layers capture styles at larger length
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scales. We use the first four layers of a standard VGG net. This definition of features

is empirical.

Lastly, the mode collapse loss is introduced to prevent the model from producing

clustered samples (Zhao et al., 2016), by forcing the generated samples to be different

in terms of their activations in the style network. The loss is defined as:

LMC =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

(
sTi sj
‖si‖‖sj‖

)2, (5.9)

where the style vector s contains the concatenated and vectorized Gram matrices as

defined above.

The training of the generative model The generative model is trained to

minimize the loss defined in Eq. (5.5) with respect to model parameters θ and

φ through stochastic gradient descent. To approximate the gradient of the loss,

∇θ,φ(LRECON + LKL + LST + LMC), we randomly sample 20 authentic material mi-

crostructures from X and generate another 20 artificial microstructures in each train-

ing iteration. The artificial microstructures are needed to calculate ∇θ,φ(LST +LMC).

To prevent neighbouring latent samples to be matched to drastically different style

(morphology) targets, we propose to create artificial microstructures by the follow-

ing procedure: We take each authentic sample x and pass it through the encoder to

get µ(x;φ) and Σ(x;φ). We then draw a random sample z from the latent space

following the normal distribution N (z|µ(x;φ),Σ(x;φ)), and derive its decoded mi-

crostructure x′ = f(z;θ) to pair with x. By matching the style of x and x′, we ensure

that samples close to each other in the latent space will have similar morphologies. We

demonstrate the necessity of this treatment in Fig. 35, where we show the generation

results from an alternative method where microstructures from a standard normal

distribution are randomly paired with the authentic ones for style loss calculation,

leading to averaged morphology across all random generations (Fig. 35b).
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We use Adam optimizer (Kingma and Ba, 2014) for training, with 200K iterations,

a learning rate of 0.001, and a batch size of 20. The Adam parameters β1 and β2 are

set as 0.9 and 0.999, respectively.

Figure 35: (a) Samples of authentic microstructures (b) Artificial microstructures
when random samples are drawn from a standard normal distribution during the
training (c) Artificial microstructures when random samples are drawn to pair with
the authentic ones

The training of the ResNet We divide the raw data into training, validation,

and test sets. The loss function for training the predictive structure-property model

is the mean square error of the predicted properties of the training data. Prediction

performance of the model on the validation set is monitored to prevent the model

from overfitting. The performance of the model is then measured by R-square value

of the test data. We use Adam for training with a learning rate of 0.001, and a batch

size of 20. The Adam parameters are the same as in training the generative model.

Batch normalization (Ioffe and Szegedy, 2015) is used.

5.4 Case Study and Results

In this section, we demonstrate key contributions of the proposed model through a

case study: (1) By incorporating the style loss, the proposed generative model creates

material microstructures with better visual and statistical similarity to the authentic

ones than a state-of-the-art Markov random field (MRF) approach; and (2) we can
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improve the prediction of material properties more effectively by using the artificial

data generated from the proposed model than by those generated from a MRF. The

case study uses a set of sandstone microstructures and their properties, including

Young’s modulus, diffusivity, and fluid permeability. Details of this material system

are introduced as follows.

5.4.1 A case study on the sandstone system

Sandstones are a class of important geological porous materials in petroleum engi-

neering. In the simplest form, a mono-mineral sandstone is composed of a solid (rock)

phase and a pore (void) phase, both of which are typically percolating. Extensive re-

search work has been carried out to model the microstructure and physical properties

of such porous materials (Sahimi, 2011; Radlinski et al., 2004; Milliken and Laubach,

2000; Blair et al., 1996; Coker et al., 1996; Antonellini et al., 1994; Al-Raoush and

Willson, 2005; Appoloni et al., 2002; Li et al., 2017; Hajizadeh et al., 2011). For

example, a fast and independent architecture of artificial neural network has been

developed for accurately predicting fluid permeability (Tahmasebi and Hezarkhani,

2012).

We will focus on three different material properties: Young’s modulus (stiffness)

E, diffusivity D and fluid permeability k. These properties are respectively sensitive

to distinct microstructural features of the materials. In particular, E is mainly deter-

mined by the morphology and volume fraction of the rock phase. The diffusivity D

is most sensitive to the local pore size distribution. The fluid permeability k depends

on the degree of connectivity of the pore phase as well as the pore/rock interface

morphology. Thus, successfully improving the prediction accuracy for all three mate-

rial properties poses a stringent test for our morphology-aware generative model for

effectively populating the microstructure sample space.
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Physics-based material property calculations The material properties used to

train the network model are first computed using the effective medium theory (Torquato,

2013). The Young’s modulus can be written as

E =
9KeGe

3Ke +Ge

, (5.10)

where Ke and Ge are respectively the bulk and shear modulus of the materials. We

use analytical approximations of Ke and Ge obtained by truncating the associated

strong-contrast expansions after the third order term (Torquato, 1997), which are

respectively given by

φ2
κ21

κe1
= 1− (d+ 2)(d− 1)G1κ21µ21

d(K1 + 2G1)
φ1χ (5.11)

and

φ2
µ21

µe1
= 1− 2G1κ21µ21

d(K1 +G1)
φ1χ−

2G1κ21µ21

d(K1 + 2G1)
φ1χ−

1

2d
[
dK1 + (d− 2)G1

K1 + 2G1

]2µ2
21φ1η2,

(5.12)

where φ1 and φ2 are respectively the volume fraction of the rock phase and void

phase (i.e., porosity); d is the spatial dimension of the material system; Kp and Gp

are respectively the bulk and shear modulus of phase p; and the scalar parameters

κpq and µpq (p, q = 1, 2, e) are respectively the bulk and shear modulus polarizability,

i.e,

κpq =
Kp −Kq

Kq + 2(d−1)
d

Gq

(5.13)

and

µpq =
Gp −Gq

Gq

1

1 +
d
2
Kq+

(d+1)(d−2)
d

G1

Kq+2Gq

. (5.14)

The quantities χ and η2 are the microstructural parameters associated with the void

(pore) phase involving the three-point correlation functions S3 and two-point corre-

lation functions S2 of the pore phase, i.e.,

χ =
9

2φ1φ2

∫ ∞
0

dr

r

∫ ∞
0

ds

s

∫ 1

−1

d(cos θ)P2(cos θ)[S3(r, s, t)− S2(r)S2(t)

φ2

] (5.15)
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and

η2 =
5

21
χ+

150

7φ1φ2

∫ ∞
0

dr

r

∫ ∞
0

ds

s

∫ 1

−1

d(cos θ)P4(cos θ)[S3(r, s, t)− S2(r)S2(t)

φ2

],

(5.16)

where t = (r2 + s2 − 2rs cos θ)1/2, and P2 and P4 are respectively the Legendre

polynomials of order two and four, i.e.,

P2(x) =
1

2
(3x2 − 1), P4(x) =

1

8
(35x4 − 30x2 + 3). (5.17)

In our system, the void phase possesses zero elastic moduli, i.e., K2 = G2 = 0, and the

moduli of the rock phase are respectivelyK1 = 4.3 GPa andG2 = 3.8 GPa. The three-

point parameters χ and η2 are computed by first evaluating the correlation functions

S3 and S2 of the void phase from the microstructure data and then evaluating the

integrals. In the reported results, the overall Young’s modulus of the sandstone is

re-scaled with respect to that of the rock phase.

Similar to the elastic moduli, we use an analytical approximation (Torquato, 1985;

Jiao and Torquato, 2012) obtained by truncating the strong-contrast expansion of the

effective diffusion coefficient D after the third order term:

D

D2

=
1 + 2φ1β12 − 2φ2χβ

2
12

1− φ1β12 − 2φ2χβ2
12

, (5.18)

where φ1 and φ2 are respectively the volume fraction of the rock and pore phases.

The polarization parameter β12 is given by

β12 =
D2 −D1

D2 + 2D1

, (5.19)

where D1 and D2 are respectively the diffusivity of the rock and pore phases. In

our sandstone system, the rock diffusivity is typically negligibly small compared with

the pore phase diffusivity, and thus D1/D2 ≈ 0. The three-point parameter χ for

the rock phase is given by Eq. (5.15), in which the correlation function S3 and S2
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are computed from the microstructural data for the rock phase (instead of the pore

phase as in the case of elastic moduli). The computed D values are normalized with

respect to D2 in the reported data.

Finally, the fluid permeability is computed using the approximation (Torquato

and Lu, 1990)

k =
2

3(1− φ2)2

∫ ∞
0

[S2(r)− φ2
2]rdr, (5.20)

where φ2 is the volume fraction of the pore phase and S2 is the associated two-point

correlation function.

5.4.2 Results

The effect of style loss on material generation In Fig. 36, we show that

a standard VAE has undesirable generation performance with a small training set

(200 samples), and that the incorporation of the style loss can effectively improve

the generation quality under the same sample size. Further, the proposed approach

also produces more plausible microstructures than the MRF method (Bostanabad

et al., 2016), as one can observe the scattering of unrealistically small particles of the

“stone” phase from the latter. We also tested the scalability of the proposed method

by increasing the input image size. Fig. 36g shows that our method can robustly

learn high-quality generations when the image size is increased from 128-by-128 to

256-by-256, while keeping the same sample size.

Structure-property predictions Here we investigate how the prediction accuracy

of a structure-property model improves with the additional training data, acquired

through the proposed method and the MRF. To do so, we start by deriving baseline

models (for all three structure-property mappings) using 100 data points for training

and another 100 for validation. The baseline prediction performance is evaluated
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Figure 36: (a) The authentic sandstone microstructure samples (b) Generations
from a standard autoencoder (c) Generations from a standard VAE (d) Generations
from the MRF method in (Bostanabad et al., 2016) (e) Generations from the pro-
posed method (f) An enlarged example of MRF generation with artificial defects (g)
Generations from the proposed method based on authentic samples four times larger
than in (e)

using a third set of 100 test data points. The true property values are calculated

following Sec. 5.4.1, and normalized for training.

Two sets of artificial microstructures, 1000 samples each, are created using the

proposed method and the MRF, respectively. The true properties of these samples

are computed. We then use these additional samples to improve the performance of

the predictive models. Specifically, an increasing number of additional data points

(from 50 to 1000) from the two sets are randomly added to the original training set

to update the predictive model. We perform 10 independent random draws for each

size of the additional data, and report the means and variances of the resultant test

R-squares. The exception is with data size 1000, where all data points are used all
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together.

Results are presented in Fig. 37 and summarized as follows. (1) Microstructures

generated from the proposed method have property distributions similar to those of

the authentic samples, while those generated from MRF have significantly smaller

variances (Fig. 37a). While the MRF method ensures variance in the microstructure

space, as is evident from Fig. 36, the lack of variance in the volume fraction of its

generations may cause the observed small variances in the properties. It is worth not-

ing that while a modified MRF approach that considers variance in volume fraction

may improve its generation quality, our approach does not require human identifi-

cation or design of such features, as variances in morphology are directly learned

through the generative model. (2) The statistical difference in properties observed

in (1) may explain the significant gap in the prediction performance of the resultant

structure-property models, as seen in Fig. 37b.

The narrow distribution of properties of the MRF method also explains the drop

in model performance from 800 to 1000 samples: By feeding the network data from

one distribution while asking it to predict on those drawn from another, we may

encounter deteriorated performance even with an increased training data size.

5.5 Discussion

Applications of the proposed method The proposed generative model captures

low-dimensional representations of data points distributed in high-dimensional spaces,

and uniquely refines the manifolds through morphology constraints. Such capability

of learning hidden data structures through limited samples is largely desired, and we

demonstrated in the paper its application to improving material structure-property

prediction. The value of this application is particularly significant when the bottleneck

of the material design task is in the high acquisition cost of microstructure samples.
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Figure 37: (a) Property distributions of microstructures generated from the pro-
posed and the MRF (Bostanabad et al., 2016) models. (b) Test R-square values at
an increasing number of additional data points

Since the generative model essentially approximates the feasible set of microstruc-

tures (e.g., for a given set of processing parameters), it is also be used to effectively

constrain the design space during microstructure optimization. To show this, we

use a pseudo design case where the Young’s modulus of a sandstone sample is to

be optimized with respect to its microstructure, as is shown in Fig. 38: Gradient

descent is applied to both the representation and the image space, with gradients

computed from the predictive model for Young’s modulus derived in Sec. 5.11.4 (with

all artificial samples). This preliminary case shows that the generative model of-

fers a computationally tractable way (due to its differentiable nature and its induced

low-dimensional representation) to constrain the design space during microstructure

optimization, leading to more morphologically reasonable solutions.

The connection between material representations and property prediction

In this study we created separate models for microstructure generation and structure-
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Figure 38: Applying gradient descent on the structure-property mapping derived in
Sec. 5.4.2 (with all artificial samples included) to (a) the representation space learned
through the proposed generative model and (b) the image space

property mapping. While it has been speculated that microstructure representation

learned through a generative model may help improve the prediction performance

of a structure-property mapping by treating the representation as inputs to the pre-

dictive model, we decided not to test this hypothesis in this paper. The rationale

is as follows: From a theoretical perspective, the training of a representation that

encodes microstructure data is not designed to improve the accuracy of structure-

property predictions. In fact, it is possible that a low-dimensional microstructure

representation that offers low reconstruction error may encode two microstructures

with drastically different properties similarly in the representation space, making it

difficult to create high-accuracy predictive models directly from the representations.
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Nonetheless, we note that it is possible to learn representations that are both useful

for reconstruction and for property prediction. This requires formulating the learning

problem to include both the losses from a generative model and those for a discrimi-

native (predictive) model, see (Sabour et al., 2017) as an example. Our findings along

this direction will be reported through other venues.

Physics-based generative models The successful application of morphology loss

in this paper inspires an important question: If simple morphology constraints can

be used to improve the generation quality of microstructures, can we leverage other

knowledge about material systems to further improve the generation quality of their

structures? For example, would it be possible to learn to generate microstructures

for given processing parameters directly based on a physics-driven process-structure

mapping, rather than through the data created by the mapping? Such theory-driven,

as opposed to data-driven, generative models can potentially reach higher generation

qualities, as their outputs are calibrated to be coherent with physical laws instead of

through numerical interpolation among data points. Again, our findings in this vein

will be reported through follow-up papers.

5.6 Conclusions

This paper proposed a method for generating an arbitrary amount of artificial

microstructure samples with low computation cost and a small amount of training

samples. The key contribution is the incorporation of a style loss into the training

to significantly improve the quality of the artificial microstructures. For verification,

we applied the proposed method to generating sandstone samples. Results showed

that our method is more data-efficient at improving the prediction performance of a

structure-property mapping than a state-of-the-art Markov Random Field method.
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The findings from this paper suggests that integration of material specific knowledge

into generative models can be a promising direction towards data-efficient generation

of complex microstructures and accelerated microstructure-mediated material design.
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5.7 Introduction

This paper is motivated by the observation that experienced human engineers

can quickly generate solutions based on accumulated knowledge, while algorithms are

only programmed to solve individual problems from scratch, even when the problems

are structured similarly. The lack of ability to generalize from experience makes algo-

rithms often too slow to respond to real-world challenges, especially when a stringent

time or cost budget is in place. For example, the design of vehicle body-in-white is

often done by experienced structure engineers, since topology optimization (TO) on

full-scale crash simulation is not yet fast enough to respond to requests from higher-

level design tasks, e.g., geometry design with style and aerodynamic considerations,

and thus may slow down the entire design process 1 .

Research exists in developing deep neural network models that learn to create

structured solutions in a one-shot fashion, circumventing the need of iterations (e.g.,

in solving systems of equations (Tompson et al., 2016), simulating dynamical sys-

tems (Chu and Thuerey, 2017), or searching for optimal solutions (Giryes et al.,

2018; Sosnovik and Oseledets, 2017; Ulu et al., 2016)). Learning of such models

through data, however, is often criticized to have limited generalization capability,

especially when highly nonlinear input-output relations or high-dimensional output

spaces exist (Szegedy et al., 2013; Kurakin et al., 2016; Huang et al., 2017). In the

context of TO, this means that the network may create structures with unreasonably

poor physical properties when it responds to new problem settings. More concretely,

consider a topology with a tiny crack in one of its trusses. This design would be

far from optimal if the goal is to lower compliance, yet standard data-driven learning

mechanisms do not prevent this from happening, i.e., they don’t know that they don’t

1The authors learned about this challenge through personal communication with an engineer at
a major car manufacturer.
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know (physics).

Our goal is to create a learning mechanism that knows what it does not know,

and thus can self-improve in an effective way. Specifically, we are curious about

how physics-based knowledge, e.g., in the forms of dynamical models, theoretical

bounds, and optimality conditions, can be directly injected into the learning of net-

works that perform one-shot solution generation. We call this type of learning mecha-

nisms “theory-driven”. This idea is particularly enchanting as such knowledge widely

exists in engineering disciplines and is often differentiable, which is important for

gradient-based learning algorithms.

As an initial attempt in this direction, this paper will focus on TO, and uses

a compliance minimization problem (Wu et al., 2018) as a running example. To

overview, we introduce an interaction between a student (the neural network) and

a teacher (the optimality conditions underlying the TO): The student learns from

existing data and is tested on unseen problems. Deviation of the student’s solutions

from the optimality conditions is quantified, and used to choose new data points for

the student to learn from. We use this mechanism to learn a solution generator from

a distribution of compliance minimization problems with different load settings. We

show that the proposed method has significantly better performance in predicting

the optimal topologies for unseen loads, than using a static data collection, under the

same computational cost for data acquisition.

The proposed method will enable learning of solution generators for engineering

problems that need to be solved repetitively with variations in their settings, e.g.,

optimal design (structures, networks, geometries, etc.) as an inner loop of a larger-

scale system design, or real-time optimal control with context-dependent parameters.

The generated solutions kick-start iterative solvers with good initial guesses and thus

shorten the design (solution searching) processes.
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The rest of the paper is structured as follows: In Sec. 5.8 we review related work

at the intersection of generative design and machine learning, and highlight the new

contributions from this paper. We then revisit in Sec. 5.9 the compliance minimization

problem, which will be used as a running example throughout the paper, and explain

the need for learning one-shot solution generators. Sec. 5.10 introduces the proposed

learning mechanism, which will then be validated in Sec. 5.11 against two benchmark

methods on the running example. Sec. 5.12 discusses the connection between the

proposed method and recent developments in machine learning, and suggests future

directions. Sec. 5.13 concludes the paper.

5.8 Related Work

Existing research on generative design answer three types of questions: (1) What is

the design representation? (2) What is the goodness measure of a design? And based

on these two, (3) how do we search for a good design? Challenges in answering these

questions include high-dimensional or ill-defined design spaces such as for topolo-

gies (Bendsøe and Kikuchi, 1988; Guo et al., 2018), material microstructures (Cang

et al., 2017b, 2018; Bostanabad et al., 2018), or complex geometries (Stiny, 1980;

Hsiao and Chen, 1997), expensive evaluations of designs and their sensitivities, e.g.,

due to model nonlinearity (Allaire et al., 2004; Jung and Gea, 2004), coupled materi-

als or physics (Sigmund, 2001; Wang and Wang, 2004; Zhu et al., 2017), or subjective

goodness measures (Ren and Papalambros, 2011; Orbay et al., 2015), or search inef-

ficiency due to the absence of sensitivities (Xie and Steven, 1993; Querin et al., 1998;

Rao et al., 2011) or the existence of random variables (Kharmanda et al., 2004).

This paper takes a different angle by focusing on design tasks for which answers

to the above three questions exist, yet applying them to real-world design tasks is

computationally unaffordable, thus the need for algorithms that learn to improve
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their efficiency through problem solving. Below we review related work, and explain

how this paper is similar and different from them.

To start with, the task of improving learning efficiency through experience is

known as meta-learning (Vilalta and Drissi, 2002; Hochreiter et al., 2001) (with close

connections to transfer learning (Caruana, 1995; Pan and Yang, 2010; Ganin et al.,

2016) and life-long learning (Thrun, 1996)). While there exists a broad range of

problem settings within the literature of meta-learning, the setup commonly involves

a student and a learning mechanism that specifies how the student updates its way

of learning or solving problems. The student outputs a solution for every input

problem, for example, the input can be a labeled dataset and the output a classifier

that explains the data, or the input an optimization problem and the output an

optimal solution. In the former case, the student updates its way of learning a

classifier (Ravi and Larochelle, 2016) or its hypothesis space of classifiers (Vilalta

and Drissi, 2002); in the latter, it updates its gradient (Andrychowicz et al., 2016)

or non-gradient (Chen et al., 2016) search strategies. These updates are governed by

the learning mechanism, the design of which is driven by a goodness measure of the

student, e.g., the generalization performance of a classifier or the convergence rate of

an optimization solver.

The problem of learning to generate designs can be cast as a meta-learning prob-

lem, where the student is the generator that takes in settings of the design problem

(e.g., the distribution and magnitude of loads, the material properties, or the bound-

ary conditions for a topology optimization problem) and outputs a design solution,

whereas the learning mechanism updates the architecture or parameters of the gen-

erator.

It is worth noting two differences between the proposed method and contemporary

meta-learning. First, typical mechanisms proposed in meta-learning literature are
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iterative, e.g., in forms of recurrent neural networks (Ravi and Larochelle, 2016;

Andrychowicz et al., 2016; Wang et al., 2016). This choice of model is due to the

iterative nature of problem solving and the need of memory in decision making during

the iteration. In contrary, we model the transition from problem settings to solutions

using a feedforward neural network, which is one-shot in nature. We made this choice

based on the finding that optimal solutions to a distribution of TO problems often

form a continuous manifold (see Sec. 5.9 for details), which suggests that directly

learning the manifold through a feedforward network might be achievable, in which

case we circumvent the challenges from modeling iterative solvers.

Secondly, we note that existing meta-learning tasks are often set in contexts where

large data acquisition is affordable. This does not hold in our case, since finite element

analysis and design sensitivity analysis are costly yet necessary for training the neu-

ral network. This requires us to focus on adaptively choosing data points to improve

the generator, thus rendering our approach somewhat more similar to active learn-

ing (Tong and Koller, 2001; Settles, 2012), where the goal is to improve data efficiency

of learning by querying data based on the learned model. Nonetheless, active learning

strategies are usually statistics-based. For example, in the context of classification,

new data points are chosen based on uncertainty of their predicted labels (Lewis and

Catlett, 1994) or their predicted contribution to the prediction error of the learned

model (Roy and McCallum, 2001). These methods, however, are not suitable for our

case since we care about the physical optimality of the generated topologies, rather

than the pixel-wise matching between the generated topologies and the corresponding

true optima (e.g., l2-norm or cross-entropy defined on image differences often used as

metrics of prediction error). The method we introduce is thus distinctively different

from active learning, as we choose data based on the optimality conditions of TO,

which are problem-dependent and theory-driven.
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Lastly, the proposed learning method is aligned with the recent surge of machine

learning techniques with integrated physics knowledge. Among this body of work,

(Wu et al., 2016) proposes to learn a neural network for predicting intrinsic physical

properties of objects with the assistance of a physical simulator that computes object

interactions based on the predicted properties. (Jonschkowski et al., 2017) developed

an encoder that computes object positions and velocities from images of objects, by

enforcing these properties to be compliant with common sense. Similarly, (Stewart

and Ermon, 2017) proposed a physics-based regularization to learn object trajecto-

ries and human movements from videos. Instead of being taught physics, (Denil

et al., 2016) demonstrated a grounded way for machines to acquire an intuition of the

physical world through reinforcement learning. Our paper is similar to those learn-

ing mechanisms with injected physics constraints, while employing adaptive sampling

rather than batch-mode training to avoid expensive simulations.

5.9 Problem Statement

5.9.1 One-shot solution generator

We define a one-shot solution generator as a feedforword neural network x =

g(s,θ) that computes a solution x (e.g., a topology) given problem settings s (e.g.,

loads) and network parameters θ. It is one-shot in the sense that computing x

through g is much less expensive than using an iterative algorithm. We also define

the generalization performance of the generator (denoted by F (θ)) as the expected

performance of its solutions over a distribution of problems specified by a probability

density function p(s):

F (θ) = Ep(s)f(g(s,θ), s), (5.21)

where f(x, s) measures the performance of x under s.
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5.9.2 The compliance minimization problem

We now review the mechanical compliance minimization problem introduced in

(Wu et al., 2018) to substantiate f(x, s). In this context, a solution x is a N -by-

1 vector with values between 0 and 1, elements of which control a density vector,

denoted as ρ, of the corresponding physical elements of a meshed structure through

the following relation:

ρe =
tanh(β/2) + tanh(β(x̃e − 0.5))

2 tanh(β/2)
, (5.22)

where xe and ρe are the elements of x and ρ, respectively, for e = 1, · · · , N . The

shape parameter β controls the sharpness of the transition to the density ρe from a

filtered variable x̃e, which is a weighted average of neighbours of xe:

x̃e =

∑
i∈Me

ωi,exi∑
i∈Me

ωi,e
, (5.23)

where Me is the set of neighbours of element e, and weights ωi,e are defined as

ωi,e = 1− ||zi − ze||2/re, (5.24)

with zi the coordinates of meshed element i, and re the filter radius. In TO, this

filter (Eq. (5.23)) is used to prevent convergence to impractical checkerboard topolo-

gies (Wu et al., 2018).

The connection from x to the global stiffness matrix of the topology (denoted as

K) can be established through the density vector ρ. Given loads s and boundary

conditions, the displacement u of the structure can be found by solving Ku = s,

under the assumption that K is independent of u (e.g., linear elastic material and
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small displacement). The compliance minimization problem can be formulated as

min
x

f(x, s) =
1

2
uTKu

subject to Ku = s,

xe ∈ [0, 1], ∀e ∈ {1, · · · , N},

g0(x) =
1

N

∑
e

ρe − α ≤ 0,

g1(x) = ||ρ̄||p − α ≤ 0.

(TO)

Here the constraint g0 (g1) limits the global (local) density of the structure to be lower

than a threshold α. ||x||p = ( 1
N

∑
e x

p
e)

1/p is the p-norm defined on RN . p is set to 16

following (Wu et al., 2018) so that ||x||p approximately computes the maximum of |x|

while being differentiable. The averaged local density ρ̄e = (
∑

i∈Ne
ρi)/(

∑
i∈Ne

1) is

defined on the neighborhood Ne = {i| ||xi−xe||2 ≤ Re} with radius Re. Note that Re

for the local density constraint is different from the filter radius re. The optimality

conditions of (TO) are listed as follows

∇xL := −uT
∂K

∂x
u + µ0∇xg0 + µ1∇xg1 + µT

u − µT
l = 0T

xe ∈ [0, 1], ∀e ∈ {1, · · · , N},

g0 ≤ 0, g1 ≤ 0, µ0g0 = 0, µ1g1 = 0,

µT
l x = 0,µT

u (x− 1) = 0

µ0 ≥ 0, µ1 ≥ 0, µu ≥ 0, µl ≥ 0,

(5.25)

where ∇xy(x, ·) is the partial derivative of function y with respect to variables x,

and is defined as a row vector. Finding a solution to comply with Eq. (5.25) can be

done through a gradient-based solver, e.g., an augmented Lagrangian algorithm (see

Sec. 6.3.3). However, we need to note that the computational cost for converging to

an optimal solution usually does not scale well. In particular, solving Eq. (5.25) with

a problem size N = 4800 requires on average around 5000 finite element analyses
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(i.e., computing u from Ku = s).

5.9.3 Learning a solution generator

With the above setup, the problem of learning a one-shot solution generator can

be formulated as follows:

min
θ

F (θ) = Ep(s)f(x, s)

subject to x = g(s,θ),

Ku = s,

f(x, s) =
1

2
uTKu

g0(x) =
1

N

∑
e

ρe − α ≤ 0,

g1(x) = ||ρ̄||p − α ≤ 0.

(P)

We will force network outputs to be within (0, 1)N by attaching sigmoid activations

to its output layer.

5.10 Learning with a Physics-based Criterion

(P) can be solved by matching the input-output pairs of the generator to a dataset

D = {xDi , sDi }ni=1 where xDi are optimal for sDi . This leads to the data-driven learning

formulated as follows:

min
θ

∑
D

||g(sDi ,θ)− xDi ||22. (P1)

As we reviewed in the last section, collecting D can be costly due to the iterative na-

ture of solving the topology optimization problem (TO). On the other hand, checking

the compliance of an arbitrary topology x to the optimality conditions (Eq. (5.25))

only requires solving Ku = s once. This finding indicates that the optimality condi-

tions may offer affordable means to identify new data point that will most effectively
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improve the generalization performance of g. Specifically, we define the deviation of

solution x from the optimality conditions as

d(x,µ) = ||∇xL||22 + w0g
2
0 + w1g

2
1 (5.26)

where the algorithmic parameters w0 and w1 weight the penalties on constraints g0

and g1, respectively. One issue in evaluating d is that we do not know the values

of the Lagrangian multipliers (which are denoted by µT = [µ0, µ1,µ
T
l ,µ

T
u ]) before

solving the problem. To this end, we propose to find µ∗ that minimizes the deviation

of ∇xL from 0 subject to their constraints from (P):

min
µ

||∇xL||22

subject to µ ≥ 0, µTg = 0.

(P2)

By solving (P2) for all s in a validation set Sv, we can then choose a new training

data point (s∗,x∗) for which the minimal deviation d(g(s∗,θ),µ∗) is the largest among

Sv. It is worth noting that (P2) is a (2N + 2)-dimensional quadratic programming

problem and can be solved efficiently using standard solvers (e.g., sequential quadratic

programming).

The learning algorithm can now be summarized in Alg. 1. Details on setting the

initial training set S0, the validation set Sv, the computational budget B, and the

budget lower bound b will be introduced along the case studies in Sec. 5.11.

5.11 Case Studies

This section presents two case studies where we demonstrate the superior learning

efficiency of the proposed algorithm in comparison with two benchmark mechanisms.

The first benchmark uses a static dataset (Dstatic) for training, and is denoted as

Benchmark I. The second benchmark, denoted as Benchmark II, is similar to the

proposed approach, but chooses data points using a different heuristic. For all three
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Algorithm 1: Theory-driven learning

input : Problem distribution p(s)

output: Learned model parameters θ∗

1 Draw initial problem set S0 from p(s);

2 Find optimal xi for each si in S0;

3 Initialize dataset D = D0 = {(xi, si)}|S0|i=1;

4 Draw validation problems Sv from p(s);

5 Set computation budget B = B0 and budget lower bound b;

6 while B > b do

7 Update θ∗ by solving (P1) based on D;

8 Calculate µ∗i and d(g(si,θ
∗),µ∗i ) for all si in Sv based on Eq. (5.26);

9 Find s∗ ∈ Sv with the highest d value;

10 Derive x∗ for s∗ by solving (TO);

11 Record δB as the number of Ku = s solved in solving (TO) and computing

Eq. (5.26);

12 Update the budget B = B − δB;

13 D = D + (x∗, s∗), Sv = Sv − s∗;

14 end

learning mechanisms (Benchmarks I, II, and ours), the topology optimization problem

is solved by an Augmented Lagrangian algorithm, details of which is deferred to the

appendix.

5.11.1 The heuristic of Benchmark II

In Benchmark II, we evaluate the performance of the generator g by measuring

the difference between the compliance produced by g and the predicted compliance
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based on the training data D:

dh(g(si,θ
∗)) = |f(g(si,θ

∗), si)− f̂(si)|, (5.27)

where si comes from the validation set Sv, and f̂ is an ordinary least square model

that fits to {(s∗i , f(x∗i , s
∗
i ) | (x∗i , s

∗
i ) ∈ D}. In this study, polynomial models are used

for curve fitting. The validation data point with the highest value of dh is chosen,

and its true optimal topology is then computed and used to improve the generator.

5.11.2 Study setups

The topology optimization problems to be solved follow (TO). Two cases are

created to demonstrate the scalability of the proposed method. In Case 1, the input

s represents a single load applied to a 2D structure represented by a 40-by-120 mesh,

see Fig. 39a. In this case, the input to the generator is the angle of the load, uniformly

distributed in between 0 and π, i.e., p(s) = 1/π. In Case 2, s encodes (1) the x- and y-

coordinates of the loading, which is drawn uniformly from all nodes in the highlighted

area in Fig. 39b, and (2) the direction of the point load uniformly drawn from 0 to

2π.

Figure 39: Sample solutions for (a) Case 1, where a point load is applied to the
middle node at the tip of the cantilever beam, with directions uniformly distributed
in [0, π], and (b) Case 2, where the point load is applied to a node in the highlighted
area which occupies one-third of the design space, with its direction drawn from [0, 2π]

To compare the three learning mechanisms, each is executed 10 times to account

for the randomness in the sampling of the initial dataset D0 (and Dstatic in the case

of Benchmark I) and the validation set Sv at each iteration. The generalization
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performance is measured by

F (θ∗) =
∑
si∈St

f(g(si,θ
∗), si), (5.28)

where St is a separate test set drawn from p(s). For Case 1, the sample sizes are

|S0| = 5, |Sv| = 100, |St| = 100, and |Dstatic| = 16. For Case 2, since the problem

space is much larger, the sample sizes are set to |S0| = 1000, |Sv| = 100, |St| = 1000,

and |Dstatic| = 7000. In addition, since validating a large number of inputs becomes

expensive, we uniformly sample 100 validation points from |Sv| to perform active

learning in each iteration. For both cases, the computational budget B0 is set as

bmin|Dstatic|, where bmin is the minimal solution cost among all problems sampled for

Benchmark I. The budget lower bound b is set to the maximal cost among the same set

of problems. This setting ensures that the adaptive methods (Benchmark II and the

proposed method) will always use less computational resource than the static method

for topology optimization, thus creating a comparison in favor of the latter. For the

following results, we set w0 = w1 = 1 for the proposed method. A full parametric

study on these hyper-parameters has not been conducted, yet the effectiveness of the

current setting is validated (Sec. 5.11.4).

5.11.3 Architectures of the solution generators

The architectures of the solution generators are summarized in Fig. 40. For Case

1, we use a two-dimensional input to represent the x- and y-components of the point

load. For Case 2, we use a three-dimensional input to represent the x, y location and

the orientation of the point load. The choice of these input representations are based

on empirical tests of the generalization performance of the learned models.
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Figure 40: Architectures of the solution generators

5.11.4 Results

Case 1 results For Case 1, Fig. 41a compares the compliance of the topologies

generated by all three learning mechanisms with the ground truth for all test inputs;

Fig. 41b reports the corresponding compliance gaps produced by these mechanisms.

The generalization performance of a learning mechanism is measured by the mean

and the standard deviation of the average compliance gaps across all test inputs. The

result shows that the proposed mechanism outperforms the benchmarks at predicting

optimal topologies for unseen loading conditions in a low-dimensional case. To further

demonstrate the difference between the three mechanisms, we visualize and compare

generations for four test loads in Fig. 39. The loading directions are marked in the

last row of the figure, which are 0.3π, 0.4π, 0.45π,0.55π respectively. The resultant

compliance values are shown at the bottom of each topology.

Challenges in Case 2 Case 2 examines the performance of the proposed mecha-

nism under a higher-dimensional and larger input space. We notice that the learning

becomes significantly more challenging in this case. see Sec 5.12). Specifically, for all
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Figure 41: (a) Comparison between the compliance of the ground truth topologies
(red curve) and those from the generated solutions from all three learning mechanisms.
10 independent experiments are conducted for each learning mechanism. The means
and the standard deviations are reported. (b) The absolute compliance gaps.

three algorithms under the same budget (which is equivalent to solving 7000 TO prob-

lems), there exist inputs for which the generated topologies have significantly larger

compliance than the ground truth. We mark test data points with a compliance gap

of over 1000 as failed designs. For Benchmark I, II and the proposed method, the

mean failure rates over the entire test are 14%, 0.8%, and 0.6% respectively. Some

failed generations are shown in Fig. 43 along side the corresponding ground truth.

An augmented learning objective To alleviate this issue, we introduce design

sensitivity ∇xf at the optimal solution as a weighting factor of the learning loss in

(P1), based on the insight that structural elements with higher sensitivity contribute

more to the compliance and thus should have higher priority during model training.

Concretely, the training problem at each iteration of the active learning process is

now formulated as

min
θ

∑
(si,xi)∈D

||g(si,θ)− xi||2Λi
, (5.29)

where Λi = diag([λi,1, · · · , λi,N ]) is a diagonal weighting matrix, λi,e = ∇xf−min(∇xf)
max(∇xf)−min(∇xf)

,

and ||x||2Λ = xTΛx. It is important to note that Λi is a byproduct of computing xi
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Figure 42: Case 1 topologies predicted by (a) Benchmark I, (b) Benchmark II, (c)
the proposed method. (d) Ground truth computed using the Augmented Lagrangian
solver. Compliance values are shown at the bottom of each topology. Loading direc-
tions are marked as red arrows.
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Figure 43: Example of failed generations with significant larger compliance than
the corresponding ground truth. Loading conditions are marked at the top and com-
pliance at the bottom. Some generations are close to the ground truth in the pixel
space but miss critical elements, such as the first three. Some of the generations are
simply off, such as the last one.

Table 3: Comparisons on the mean count of failures from 1000 test data points and
the median compliance gaps for Case 2

Failure rate: mean (std) Median compliance gap: mean (std)

Benchmark I 5.12% (1.2%) 22.12 (3.34)

Benchmark II 0.64% (0.42%) 6.64 (0.87)

Propose method 0.16% (0.09%) 5.2 (0.6)

and does not cost extra budget.

Case 2 results By introducing this augmentation, the mean rate of failures drops to

5.12%, 0.64%, and 0.16% for Benchmark I, II, and the proposed method, respectively.

Since the compliance distributions are far from normal due to the failed designs,

we report the means and standard deviations of the median compliance gaps from

all experiments and learning mechanisms instead. These results are summarized

in Table 3. As a demonstration, we compare in Fig. 44 the generations from all

mechanisms under four test settings. The proposed method has the closest compliance

to the ground truth.

Validity of hyper-parameter settings For both case studies we set the weights

for the local and global constraints (w0 and w1 in Eq. 5.26) to be w0 = 1 and w1 = 1.
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Figure 44: Case 2 optimal topologies predicted by (a) Benchmark I, (b) Benchmark
II, and (c) the proposed method. (d) The ground truth topologies with design sensi-
tivity information: cold (warm) color indicates lower (higher) design sensitivity. The
point loads are marked as arrows with detailed input values reported at the top of
the figure. The compliance values are shown at the bottom of each topology.

To validate this setting, we monitor the violation to the constraints by solutions

generated for all test inputs. For a proper measure of constraint satisfaction, test

cases where constraints are satisfied will be ignored in the calculation of the mean

violation. It is noted that ground truth topologies have none-zero violation due to

the non-zero error thresholds set in the augmented Lagrangian algorithm. In Case 1

(Case 2), the mean violation to the global volume fraction constraint is g0 = 4.89%

(3.0%) for the ground truth and g0 = 8.76% (1.6%) for the generated solutions. In

both cases, no violation to the local constraints are observed for either the ground

truth or the generated solutions. This result indicates that the setting of the hyper-

parameters leads to the learning of a generator with reasonable compliance to the

global and local volume fraction constraints. A parameteric study is yet needed to

fully characterize the tradeoff between the learning of effective topologies and that of

constraint compliance by tuning the hyper-parameters.
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Comparison on solution generation speed Lastly, we shall note that the time

required for generating solutions through the learned model is negligible (in the order

of 10−2 seconds per topology) compared with that through a TO solver (in the order

of 102 to 103 seconds per topology).

5.12 Discussion

We now discuss the remaining issues related to learning manifolds of optimal

solutions using neural networks.

5.12.1 Curse of dimensionality and potential solutions

So far we assumed that the pre-defined network architecture is able to capture

the underlying manifold in high-dimensional spaces. As we see from the two cases,

increasing the latent dimension of the manifold from one to three already raised the

data demand significantly, indicating that the manifold of optimal topologies under-

lying Case 2 is much more “complex” than that of Case 1. Indeed, from Narayanan

and Mitter (Narayanan and Mitter, 2010), the sampling complexity of learning a

manifold (to within a specified tolerance) is exponential on the intrinsic dimension

(the dimension of the input), linear on the intrinsic volume (the size of the input

space), and polynomial on the curvature of the manifold.

This leads to two legitimate concerns. The first regards model sufficiency: pre-

defining the network architecture of the generator could be a stab in the dark when a

new manifold is to be learned, as we do not know whether the network is sufficiently

flexible to fit to the manifold. The second regards data sufficiency: real-world design

problems may have solution manifolds that are too data-demanding for active learning

alone to handle.

Lei et al. (Lei et al., 2018) recently proposed an approach to the first concern
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in the context of piecewise linear networks (with ReLU activations). It is shown

that both the manifold and the network complexity can be measured by the number

of polyhedral cells induced respectively by the geometry of the manifold and the

architecture of the network. Further studies following these complexity measures

may lead to protocols for determining the network architecture of the generator before

learning of generator weights takes place, essentially by computing an upper bound

on the number of planes needed to locally and linearly approximate the underlying

manifold. An efficient algorithm for doing so, however, is yet to be developed.

The second concern, however, is more critical to the application of the proposed

method. One potential solution is based on the insight that the governing equations

for training can be derived at arbitrary spatial resolution of the structure. While

the intrinsic dimension and volume do not change across resolutions, we hypothesize

that lowering the resolution will reduce the manifold curvature, and thus reduce the

sampling complexity. In the context of TO, with lower resolution of the structure

(i.e., less elements), we expect an easier learning problem. Based on this hypothesis,

it is possible that a hierarchical network architecture can be learned progressively

to alleviate the curse of dimensionality: At each spatial resolution level, we learn a

generator that predicts the transition from coarse solutions to the ones that satisfy

the optimality conditions at this level. The coarse solutions are proposed by the

generator learned from the lower-level resolution. The investigation of this approach

will be reported in a separate paper. It should be reiterated that despite the inevitable

scalability challenge, the value of learning models through domain-specific theories is

clearly demonstrated in this study.
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5.12.2 From theory-driven data selection to full theory-driven learning

Another direction to explore is based on the note that the proposed method does

not solve the learning problem (P) directly. Rather, we collect true solutions and fit a

generator (i.e., a neural network) to it, with the hope that by intelligently collecting

true solutions on fly, the fit model will effectively converge to the true solution mani-

fold governed by the optimality conditions. An interesting question is whether solving

(P) directly through a gradient-based method can be achieved and will be more ef-

fective than the presented method. If we consider the presented learning mechanism

as theory-driven data selection, then solving (P) directly will be full theory-driven

learning. More concretely, in each iteration of the learning, we would need to solve

a batch of TO problems partially, i.e., finding feasible topologies that reduce the vi-

olation to the optimality conditions, and use the resultant changes in topologies to

update the solution generator. The key difference between the presented method and

a full theory-driven learning mechanism is that while the former guarantees optimal-

ity of known solutions as long as the network is flexible enough to fit through these

solutions, the latter does not have such a guarantee at any time during the training;

instead, it requires less cost per iteration (since it does not completely solve TO prob-

lems), and may afford more iterations (batches of TO problems). Fig. 45 visualizes

the difference between the two using a simple 2D illustration, where the circle is the

unknown solution manifold, the curve represents a solution generator, and the dots

are sampled solutions.

5.12.3 Interpretability of the generators

One additional challenge we face is the interpretation of the learned generator.

Given the fact that the generators perform reasonably well in the two cases, one

116



Figure 45: (a) Full theory-driven learning: In each iteration, random inputs are
picked to compute the improvement directions of the model towards the ground truth.
(b) Theory-driven adaptive sampling (this paper): Sample inputs are selected based
on their violation to the optimality conditions. The corresponding ground truth (the
crosses) are revealed, which informs the improvement directions of the model.

would like to visualize what they learn, e.g., local structural features that serve as

puzzle pieces and lead to low-compliance structures when assembled. However, an

investigation into the learned generators shows that such interpretable knowledge are

not evident from the visualization of the network parameters. One potential reason

is that the arbitrarily chosen network architecture may introduce confounding hidden

nodes that decompose interpretable features that could have existed. One solution

could be to impose regularization on all network parameters to be learned. Yet this

will introduce more hyper-parameter tuning as a result.

5.12.4 Value of learning manifolds of optimal designs to designers

Last but not least, we shall come back to discuss and reiterate why and when

learning manifolds of optimal designs has a value to designers. As we discussed in the

introduction, there are cases where a large number of topology optimization problems

(or other forms of optimization problems) need to be solved with only parametric

differences. Such cases include when the TO is nested in a larger-scale system-level

optimization, or when problem settings of the TO are required to be explored by
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human designers. In addition, designers may solve problems without knowing that

similar ones have been previously solved by others. The proposed learning mechanism

would not only allow a machine to accumulate and learn from solutions to similar

problems, but also effectively practice by itself to reinforce its intuition at quickly

solving common sets of problems, and thus may reduce the computational and energy

cost of design tasks of growing complexity.

On the other hand, the learning itself requires solving more problems during adap-

tive sampling. Hence, it would be ideal to understand whether the expected total cost

of solving a set of problems in the future surpasses the potential cost of learning. If

so, the learning mechanism would have a value. The comparison between these two

costs, however, will not be straight forward, as we do not know the learning cost

beforehand for a certain performance threshold of the resultant generator. Therefore,

a performance bound of the generator along the sample size will need to be developed

to guide the decision on whether the learning has a practical value or not.

5.13 Conclusion

We were motivated by the lack of knowledge accumulation capability of exist-

ing computational solvers for design problems. This drawback of machines hampers

them from quickly creating good solutions in response to changing requirements in

real-world design processes. Our solution to this end was to create a solution gener-

ator that adaptively learns from true solutions from a distribution of problems and

predicts solutions to other unseen problems from the same distribution. The gen-

erator was modeled by a feedforward neural network, and thus produces solutions

in one-shot, as opposed to through iterations as in conventional approaches. Our

key contribution was the introduction of problem-specific optimality conditions as a

tractable validation measure to enable more effective learning. We highlight that com-
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puting the violation of a generated solution to the optimality conditions requires only

a single FEA, while comparing the generated solution with the ground truth would

require an entire TO process, which requires thousands of FEAs for the problems we

studied. We showed through two case studies that the proposed learning algorithm

achieves significantly better generalization performance than the benchmarks under

the same computational cost.
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Chapter 6

CONCLUSION

6.1 Summary

In this dissertation, two types of major issues in accelerating the design in the mi-

crostructure level of advanced material systems are explored - 1) the high resolution

of material samples required by material property simulations causes the high dimen-

sional design space and 2) the high cost of evaluating the design, making the searching

and learning inefficient. As been discussed in Chapter 1, the key to addressing these

two challenges is a). the learning of material representations and b). improve the

learning and searching efficiency while staying in a small computational budget. Two

corresponding tasks aim on the challenges showing that the material representations

and the material microstructure distribution can be learned via convolutional neural

network based generative model and a physics-based active learning framework can

improve the network learning efficiency.

6.2 Contribution

Through the research, following contributions have been achieved. For task 1, 1)

we showed that microstructure patterns can be learned and used to generate new

material samples via CNN based generative model, such as the proposed Deep Belief

Network and the VAE based Morphology Aware Network. 2) We showed that a low

dimensional latent space can be characterized from the given high dimensional input

with the learned feature. 3) We showed that generative models can be trained from

the reduced latent space, and can produce morphologically and statistically similar
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samples compare to the limited given samples, which describes the distribution of in-

put data. 4) We showed that the generated samples from the generative model can be

applied to train predictive models to mimic the highly non-linear structure-property

mapping, which allow us to bootstrap the limited material samples to improve model

accuracy. For task 2., 1) We showed that a physics-based optimality condition can be

used as a performance metric to evaluate the prediction by generative model. 2) We

showed that the physics-based evaluation metric is able to guide the learning strategy

to find an efficient way of searching and learning.

6.3 Future work

6.3.1 Improving the capability of microstructure representation learning

The built morphology-aware network is very efficient in characterizing and recon-

structing heterogeneous material microstructure systems, reducing large microstruc-

ture dimensions (128× 128 in the demonstrated case) to significantly smaller spaces

(16 in the demonstration) from where similar material microstructures can be quickly

generated. Two questions remain: 1) What has been learned by the low dimensional

latent space? To figure out this problem, a physical property-based model should be

applied to further tune the decoder to see whether the latent space is physically mean-

ingful. 2) The proposed network is efficient on heterogeneous material microstructure

systems, but for some other types of material systems such as Ti64, the generation

quality remains unsatisfactory.

6.3.2 Reducing the computational cost in structure-property mapping

Predictive models for structure-property mapping is developed, which are very

efficient in accelerating the the design process. Some remaining issues still need to be
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considered in the future: 1) the data-driven method is not applicable for all the mate-

rial microstructure-property mapping. For example in Fig. 46, data-driven predictive

results for the normalized fracture value of Ti64 alloy are shown. Three different

regression models are applied: support vector regression model, VGG Net and the

state-of-the-art Residual Network are trained on 1000 training data, but the predic-

tion performance is still very poor according to the R2 value; 2) the interpretation

of the learned generator proposed in Chapter 6 requires more investigation. While

the generator performs well, it is yet difficult to produce meaningful visualization of

what it actually learned.

Figure 46: Data-driven predictive method on evaluating the normalized fracture
value of Ti64 alloy; support vector regression (SVR), VGG Net and state-of-the-art
Residual Network are used, but none of them can produce a good R2 value

6.3.3 Interpretability of the meta-learner

Given the fact that the generators perform reasonably well in the topology opti-

mization cases, so what do the learners learn from the problem would be very inter-

esting. One would like to visualize what they learned, e.g., local structural features
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that serve as puzzle pieces and lead to low-compliance structures when assembled.

However, an investigation into the learned generators shows that such interpretable

knowledge is not evident from the visualization of the network parameters. One

potential reason is that the arbitrarily chosen network architecture may introduce

confounding hidden nodes that decompose interpretable features that could have ex-

isted.
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Appendix A

Four different material systems input samples (Chapter3, Data collected in 2016)
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There are four different material systems are tested with the proposed Convolu-
tional Deep Belief Network. The training samples are provided:

Figure 47: Ti-6Al-4V alloy
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Figure 48: Pb-Sn (lead-tin) alloy

Figure 49: Pore structure of Fontainebleau sandstone
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Figure 50: 2D suspension of spherical colloids
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Appendix B

Topology optimization through augmented Lagrangian (Chapter 6)
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The topology optimization problem of Eq. (TO) in Chapter6 is solved using Alg. 2.
We choose this algorithm because it can be readily implemented in TensorFlow. Note
that other algorithms, such as the method of moving asymptotes Svanberg (1987),
are also applicable.
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Algorithm 2: Topology optimization through Augmented Lagrangian (AL)

input : Problem parameters α, β, p, re, Re, βt, s
output: Design variable x

1 Set algorithmic parameters εal = 1, εopt = 10−3, initial guess x = α1;
2 Pre-compute neighbourhood Me and Ne, and filter weights ωi,j;
3 while β < βt do

/* gradually change the problem */
4 Set AL parameters: r0 = 1, r1 = 1, µ0 = µ1 = 0, η0 = η1 = 0.1, ε = 1,

δx = 1061;
5 Compute x̃, ρ, ρ̄, K, u, f , g0, and g1;
6 while max |δx| > εal or g0 > 0 or g1 > 0 do

/* solve the constrained problem */

7 Set δx = 1061;
8 while max |δx| > ε do

/* solve the unconstrained problem */

9 Set learning rate a = 10−3;
10 Compute ∇xf , ∇xg0, ∇xg1, and

δx = ∇xf + (µ0 + 2g0/r0)∇xg0(g0 > 0) + (µ1 + 2g1/r1)∇xg1(g1 > 0);
11 while 1 do

/* line search */
12 Set ∆x = −aδx, clip each element of ∆x to [−0.1, 0.1];
13 Set x′ = x + ∆x;
14 Compute ρ′, ρ̄′, K′, u′, f ′, g′0, and g′1 based on x′;
15 Compute L = f + µ0g0 + 0.5g2

0/r0 + µ1g1 + 0.5g2
1/r1;

16 Compute L′ = f ′ + µ0g
′
0 + 0.5g′20 /r0 + µ1g

′
1 + 0.5g′21 /r1;

17 if L′ − L > 0 then
/* if learning rate is too high */

18 Set a = 0.5a;
19 else
20 x = x′;
21 end
22 end
23 end

/* update augmented Lagrangian parameters */
24 for i = 0, 1 do
25 if gi < ηi then
26 Set µi = µi + 2gi/ri, ηi = 0.5ηi;
27 else
28 Set ri = 0.5ri;
29 end
30 end
31 end
32 Set β = 2β;
33 end
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