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ABSTRACT 

Pipeline infrastructure forms a vital aspect of the United States economy and standard of 

living. A majority of the current pipeline systems were installed in the early 1900’s and 

often lack a reliable database reporting the mechanical properties, and information about 

manufacturing and installation, thereby raising a concern for their safety and integrity. 

Testing for the aging pipe strength and toughness estimation without interrupting the 

transmission and operations thus becomes important. The state-of-the-art techniques tend 

to focus on the single modality deterministic estimation of pipe strength and do not account 

for inhomogeneity and uncertainties, many others appear to rely on destructive means. 

These gaps provide an impetus for novel methods to better characterize the pipe material 

properties. The focus of this study is the design of a Bayesian Network information fusion 

model for the prediction of accurate probabilistic pipe strength and consequently the 

maximum allowable operating pressure.  A multimodal diagnosis is performed by 

assessing the mechanical property variation within the pipe in terms of material property 

measurements, such as microstructure, composition, hardness and other mechanical 

properties through experimental analysis, which are then integrated with the Bayesian 

network model that uses a Markov chain Monte Carlo (MCMC) algorithm. Prototype 

testing is carried out for model verification, validation and demonstration and data training 

of the model is employed to obtain a more accurate measure of the probabilistic pipe 

strength. With a view of providing a holistic measure of material performance in service, 

the fatigue properties of the pipe steel are investigated. The variation in the fatigue crack 

growth rate (da/dN) along the direction of the pipe wall thickness is studied in relation to 
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the microstructure and the material constants for the crack growth have been reported. A 

combination of imaging and composition analysis is incorporated to study the fracture 

surface of the fatigue specimen. Finally, some well-known statistical inference models are 

employed for prediction of manufacturing process parameters for steel pipelines. The 

adaptability of the small datasets for the accuracy of the prediction outcomes is discussed 

and the models are compared for their performance. 
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1 BACKGROUND AND MOTIVATION 

 

The present system of natural gas pipelines in the United States comprises of a network 

of gathering and transmission lines with more than 210 pipeline systems laid across 305000 

miles (“US Energy Information Administration Website” 2017). The pipeline systems 

which have been laid down for decades such as those installed in the early 1900’s are still 

in use, however, these do not have a widely available database on manufacturing & 

installation, inspection as well as for the mechanical properties. An accurate estimation of 

the pipe material properties is, thus, crucial for the integrity and risk assessment of such 

aging pipeline infrastructure systems. The existing techniques for measurement of pipe 

strength such as the hardness testers rely on surface based measurements of the entities, 

and do not incorporate the impact of inhomogeneity in the material properties from surface 

to the bulk of the pipe wall thickness. Many other non-destructive evaluation (NDE) 

techniques such as acoustic(Vary 1980) , micro-magnetic (G. Dobmann, Meyendorf, and 

Schneider 1997), etc. predict the mechanical properties based on single modality 

measurements (Gerd Dobmann et al. 1995) which can be limited by pipe geometries and 

hence these do not account for uncertainties in the system. These form the key gaps existing 

methods of mechanical properties estimation. A reliable estimate of the strength and 

remaining life of the pipelines is therefore often difficult to obtain. It is critical to develop 

a novel methodology based on mutli-modalistic approach to bridge the gaps from the 

existing methods for accurate prediction of pipe strength and ensure a safe operation of 

these structures. 
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In order to fully characterize the condition of the pipelines in service, it is required 

to analyze the responsiveness of such pipe systems to the defects in the form of mechanical 

dents, corrosion, cracks etc. Conventionally, smart PIGs (Pipeline Inspection Gauge) are 

employed that use non-destructive evaluation methods such as magnetic, ultrasonic etc. [2] 

for assessing the condition of a pipeline to identify such defects. In the present day, 

however, about 63 percent of these systems cannot be inspected via conventional PIGs due 

to them being either too old, or with turns and twists not allowing PIGs to operate in them 

(US news | NBC News 2010). Fatigue is a common phenomenon that can occur in the 

pipelines due to cyclic loadings during transportation (transit fatigue) and during service 

life, and are more common in the pipelines used to transport hydrogen. The fatigue cracks 

may initiate at the mechanical dents or anomalies, which if not enough to lead to a fracture, 

may severely affect the structural integrity of these entities(Mohtadi-Bonab et al. 2016). 

The effect of hydrogen gas on the fatigue properties of pipeline steels is not as well 

documented as tensile properties, however, because fatigue is not an uncommon 

contributor to failures observed in the operation of pipelines, fatigue properties may 

provide a better metric of the performance of a material in service. A detailed 

understanding of the fatigue crack propagation through the pipe wall thickness is, therefore, 

necessary. 

Although, constant efforts are made to establish the integrity of the aging pipe 

systems, the increasing demand for higher transportation efficiency of the gas pipelines 

requires a continuous evolution in the development of pipe steel grades with superior 

material properties(Rosado, Waele, and Vanderschueren 2013). The higher strength and 
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ductility are governed by a combination of alloy design and parameters of 

thermomechanical controlled processing (TMCP) and, therefore, optimization of the 

process parameters of the TMCP is vital in order to achieve the desired mechanical 

properties. In the present day, exhaustive production control and diverse simulation 

techniques are used to optimize the processing parameters for producing a desired 

microstructure, which tend to use a lot of resources and only achieve good results in an a 

posteriori fashion (Santos et al. 2009). This generates a need for a simplified and cost 

saving means that adds value to the prediction of TMCP process parameters. Figure 1.1 

shows the evolution of pipeline technology with time, and the modification in material 

properties and processing routes. 

 

Fig 1.1. Development of pipeline steels 

Based on the review, the goals of the study are: 

1. Development of a novel Bayesian network tool for information fusion from 

multimodality diagnosis results for the probabilistic pipe strength and toughness 

estimation  
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- Experimental testing and data analysis of material mechanical property variation with 

respect to basic chemical and metallurgical properties. 

- Development of an information fusion methodology based on Bayesian network 

inference using multimodality diagnosis and demonstration study using representative 

pipe specimens.  

2. Investigation of variation in the fatigue behavior of the steels through the pipe wall 

thickness  

- Estimation of crack growth characteristics of the pipe samples in relation to the 

microstructure.  

- Investigation of variation in fatigue crack growth parameters through the pipe 

thickness. 

3. Comparative study of statistical models for manufacturing properties prediction  

- Prediction using individual models of multivariate linear regression, ML-KNN (multi-

label k-nearest neighbor) and GP (Gaussian Process) model. 

- Analyzing the effect of model parameter variation on the prediction efficiency. 

- Demonstration of a model selection procedure depending on the length and quality of 

the dataset.  
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2 BAYESIAN NETWORK TOOL FOR INFORMATION FUSION FROM 

MULTIMODALITY DIAGNOSIS RESULTS FOR THE PROBABILISTIC PIPE 

STRENGTH ESTIMATION 

 

2.1 INTRODUCTION 

 

The United States comprises of a large network of aging natural gas pipeline 

infrastructure. Many pipelines may contain defects such as mechanical dents, corrosion 

damage and cracks due to aging, and thereby significantly affect the integrity of the gas 

pipeline systems.  Some NDE techniques are currently in place to identify such defects, 

however, in order to ensure correct responsiveness of the pipe to these defects, to be able 

to characterize the pipeline for the remaining life and the pressure rating, it is necessary to 

have a good estimate of the mechanical properties such as yield and tensile strength. As 

per the American Petroleum Institute (API) standards, the maximum allowable operating 

pressure (MAOP) can be directly related to the minimum yield strength, and the ratio 

specification of yield to tensile strength (Support et al., n.d.), whereas, many studies can 

correlate the shape and size of the defects to the remaining useful life of the pipelines 

Although several techniques are in place for estimation of such mechanical properties, a 

reliable estimate of accurate pipe strength is still not available. The techniques for 

estimation of pipe strength and toughness, such as the hardness testers, Automated Ball 

Indenter, (Haggag 2007) and others, rely on surface-based measurement of hardness and 

stress-strain measurements etc. Unlike the hardness-based strength estimation method, no 

ASME (American Society of Mechanical Engineers) standards exist for the ABI 

measurement method for pipe strength and toughness estimation (Amend, n.d.). Moreover, 

the Nondestructive evaluation (NDE) techniques such as acoustic (Vary 1980), micro-
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magnetic (G. Dobmann, Meyendorf, and Schneider 1997), acoustic emission (Merson et 

al. 2012) etc. predict the mechanical properties based on single modality 

measurements(Gerd Dobmann et al. 1995). The magnetic flux leakage technique, eddy 

current inspection, and ultrasound inspection are all based on analysis of the distorted 

signal pattern around the defect and are limited by the pipe wall thickness and the flaw size 

(Bickerstaff et al. 2002). Although some NDE techniques like Magnetic Flux Leakage have 

shown the capability to be able to correlate with hardness, and correspondingly with 

strengths, there is a large uncertainty in such type of estimation which, on one hand, may 

work well for some systems and not for others (Smart and Bond 2016). The above-listed 

techniques predict the strength based on the assumption that the material is homogenous, 

and do not provide a holistic measure of the properties. For the pipeline systems, a number 

of factors could contribute to the presence of material inhomogeneities, such as the 

manufacturing process or structure changes due to strain aging may due to the long-term 

operation of pipelines (Nykyforchyn et al. 2009). This may initiate a phenomenon such as 

decarburization, resulting in a varied chemical composition and deterioration in mechanical 

properties that would finally cause surface properties to be different from the bulk ones 

(Amend, n.d.). Uncertainties in the system are another gap in the prediction of the 

mechanical properties(Kamtornkiat Musiket; Mitchell Rosendahl; and Yunping Xi 2016). 

These can manifest in terms of material properties, pipe geometries, manufacturing 

process, operational conditions, etc. Therefore, it is well understood that single modality 

analysis, not accounting for material inhomogeneity and the various uncertainties are the 
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major gaps in the estimation of mechanical properties from the existing methods (Amend, 

n.d.) (Ersoy 2015). 

In a view of the above brief review, the focus of this work is to develop a 

methodology to aid in the accurate prediction of pipe strength. This study uses a 

probabilistic approach with rigorous uncertainty quantification, based on multimodal 

diagnosis to infer the strength of aging pipeline materials. The methodology involves using 

Bayesian network as a general information fusion framework, to derive the statistical 

inference and incorporate the multimodal measurements such as microstructure, chemical 

composition, and other material properties. Several analytical and characterization 

techniques such as SEM, EDS, EBSD, Hardness and Servo-Hydraulic Testers were 

adopted to capture the through-thickness multimodal measurements, each of them adding 

value when integrated through the Bayesian network model. Different pipe grades form 

industry collaborators and literature database have been utilized in prototype testing for 

model validation and demonstration.  

This model will be based on an updating principle based on Bayes' theorem. This 

provides a statistical rigorous way to infer posterior distribution (i.e., fused or updated 

information) using prior distribution (i.e., existing information or experiences) and 

likelihood function (i.e., new measurements). Let M  be a Bayesian model class and

( , )p M   denote the prior distribution of the parameter   in the model. Then, for a new 

observed evidence or system response 'x  , the posterior distribution, ( , )q M  is given 

as:   
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( , ) ( ' | ,M)p( ,M)q M p x            (1)    

Here, ( ' | ,M)p x   is referred to as likelihood function of  . The updated 

probability of each model in M  is given by the posterior PDF when the new information 

'x  is incorporated(Peng et al. 2013). The present model also includes an error term e which 

is a variable with 0 mean normal distribution which can be denoted as (0, )ee N   and is 

used to define the relationship between the model M and the updating variable 'x for 

updating the parameter,  , giving us with the following relation: 

 ' Mx e                                                      (2) 

The above shown information fusion is for a single modality/source of information. 

One major task in the study is to extend this idea to a generalized Bayesian network for 

multimodality diagnosis information fusion. A Bayesian network is a probability-based 

graphic tool to infer systems with stochastic parameters. A schematic of the network is 

illustrated in Figure 1.2 for the pipe strength and toughness estimation.   
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Fig 1.2. Schematic of the proposed Bayesian Network model 

 

2.2 INVESTIGATION AND ANALYSIS OF BASIC MATERIAL 

PROPERTIES 

Three samples from transmission pipelines were used in the present study 

belonging to the year of installation ranging from 1949 to1961. The pipe samples arrived 

with the installation year and Pipe grade information as listed in Table 1. The suspected 

grade and microstructure were deduced from the image analysis and year of installation 

information. 

Table 1. Pipe grades information 
 

Pipe 

Number 

Installation 

year 

Pipe grade Suspected grade Microstructural 

constituents 

45 (1) 1949 1525 X50 Ferrite-Pearlite 

47 (2) 1964 1025 X60 Ferrite-Pearlite 

44 (3) - 1513 - Ferrite-Pearlite 

 

2.2.1 Setup and Procedure 

2.2.1.1 Microstructure Characterization 

For the experimental analysis, a few samples were carved out along the thickness 

direction 10 um2 cross-section units and polished as per the guidelines for metallographic 

inspection. Etching was done using 2% Nital solution, holding the samples for 10-20 

seconds to reveal the grain and phase structures. The samples were viewed under 

Optical/Scanning Electron Microscope (SEM). Grain size of ferrite was studied along with 
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the volume fraction of the constituent phases with the use of a commercially available 

software ImageJ. 

2.2.1.2 Chemical composition analysis 

The chemical composition of the specimen was studied through semi-quantitative 

Energy Dispersive Spectroscopy (EDS) in an Electron probe micro analyzer (EPMA).  

Both point analysis and area analysis was carried out to determine the average composition 

across the phases. Polished and etched samples from microstructure analysis were used for 

composition testing. Figure 2 shows the spot analysis SEM image and spectrum. 

 

a)                                        b) 

Fig 2. Images of the EDS analysis: a) SEM image b) EDS Spectrum 

2.2.1.3 Hardness Test 

Hardness of the samples were examined with the Vickers Hardness tester, a tester 

for small area measurements [9]. 1kg small load was used for the purpose of testing as the 

samples were only 1mm thick. Blocks of 10mm X 10mm X 1mm were used. 
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2.2.1.4 Tensile Test 

The stress-strain characteristics were studied through tensile tests of flat strip test 

samples carved out from the pipe in the hoop orientation (Figure 3 a, b) (Hashemi 2011). 

The samples were tested both with the use of a Tensile Stage machine (along layers) and 

Servo-Hydraulic MTS machine (Figure 3 c),  (bulk analysis), and were custom made in as 

per the dimensions allowed by the machines.  

                  

 

a)                                                b)          c) 

Fig 3. a) Orientation of flat strip tensile specimen within the pipe sample (Hashemi 2011), 

b) Dimensions of flat strip tensile specimen c) Servo Hydraulic MTS machine 

The experiments were repeated for different depths along the pipe wall thickness 

in order to examine their variation along the thickness. The thickness at different depths 

was measured using an Ultrasonic thickness gauge.  
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2.2.2 Results from the experimental analysis  

2.2.2.1 Microstructure 

The microstructure of the two pipe samples was studied through Secondary 

Electron Microscope and is reported in Figure 4.  The microstructure was seen to be 

comprised to two phases, ferrite and pearlite, hence the likelihood model in the network 

takes into account effect of dual phase strength.   

 

 

 
 

                   a)                                                 b)                                             c) 

Fig. 4.1 SEM images showing the microstructure of Pipe 45; a) Outer pipe wall surface 

b) Middle surface c) Inner pipe wall surface 

 

 

 

 

 

 

 
 

                   a)                                                 b)                                             c) 

Fig. 4.2 SEM images showing the microstructure of Pipe 47; a) Outer pipe wall surface 

b) Middle surface c) Inner pipe wall surface 
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                   a)                                                 b)                                             c) 

 

Fig.4.3 Optical images showing the microstructure of Pipe 44; a) Outer pipe wall surface 

b) Middle surface c) Inner pipe wall surface 

 

The figures from left to right correspond to the different depths (along the pipe wall 

direction) within a sample; and are only shown for three consecutive depths.  

The pipe images pipe depict a prominent texture, potentially related to the 

manufacturing process parameters. Fine grains can also be observed from both the pipe 

samples that would aid in studying the grain size and volume fraction. These are used to 

derive the volume fraction of the constituent phases as well as the grain size, as stated in 

the next section. 

2.2.2.2 Volume fraction of the phases: 

The complete analysis was done for the distribution of phases in terms of the 

volume fraction with use of image analysis software Image J, as stated previously. The 

result is shown below in Figure 5.1; overlapped for comparison.  
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Fig 5.1. Plot showing change in the ferrite content across the pipe wall thickness 

The number of measurements for each pipe specimen are limited by the thickness 

of the specific pipes. Therefore, the depth is listed as a function of overall thickness in Fig. 

4, considering pipe sample 45 was about 8mm thick while pipe sample 2 was only 5.5mm 

in thickness. A total of 7-8 measurements were taken per sample. The figure shows the 

variation in the phase volume fraction with increasing depth from the surface. Pipe 45 

shows a decrease in the pearlite content in the middle region, whereas Pipe 47 shows a 

slight opposite behavior where the pearlite content being higher in the middle region and 

lower towards the surface. Pipe 44 shows a constant higher percentage of pearlite though 

the entire thickness. The predicted trend and the cause of variation is out of the scope of 

the study and hence not presented in detail here, instead the quantitative values along the 

thickness are used as input in the Bayesian Model. 
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2.2.2.3 Ferrite Grain Size 

 

Grain size analysis was done for the samples using the lineal intercept procedure as 

per the ASTM standards (Hashemi 2011). The measurements were done for each layer 

from outside to inside surface. The average grain size for both samples was observed to be 

24um for the first two samples, and 19 um for the Pipe 44. The observed values are listed 

in Table 2. 

Table 2. Grain size details for pipes a) Pipe 45 and 47, b) Pipe 44 

       a)  
 

 

S.No Pipe 45  Pipe 47 

Layers Grain Size (um)  Layers Grain size (um) 

1 Outer region     22.86  Outer region 24.13 

2 Middle region-1     21.8  Middle region-1 20.5 

3 Middle region-2     25.59  Middle region-2 27.44 

4 Inner region     27.69  Inner region 25.4 

 

                                    b) 
 

S.No Pipe 44 

Layers Grain Size (um) 

1 Outer region 17.35 

2 Middle region-1 22.14 

3 Middle region-2 25.13 

4 Inner region 12.39 
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Fig 5.2. Plot showing change in the grain size across the pipe wall thickness 

The grain size variation through the thickness is shown in Figure 5.2. The grain 

sizes for Pipe 45 and 47 seem to show a little increase towards the inner region, probably 

due to differential cooling during the manufacturing process. Pipe 44 appears to have 

smaller grain size at both surface zones and higher grain size in the middle regions, again 

asserting to the TMCP process and cooling process afterwards. The values are used for 

model training and prediction. 

2.2.2.4 Chemical composition 

The chemical constituent of the phases was analyzed using EDS, and was observed 

to be Ferrite + Pearlite system for all the specimens. The elements of interest were chosen 

based on their direct or indirect correlation to the Yield and Ultimate Tensile strengths, 

obtained from literature (Bramfitt and Corporation 1998). The primary elements of interest 
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were found to be Fe, Mn, Si, and N. Table 3 lists the values of composition of the pipe 

samples. 

Table 3. Composition (weight percentage) of the pipes a) Pipe 45 b) Pipe 47 c) Pipe 44 

a) 
 
 

Region Elements 

C N Si Mn Fe Ni 

Outer region 0.09 0.23 0.26 1.29 97.92 0.31 

Middle region-1 0.06 0.12 0.04 1.19 98.29 0.17 

Middle region-2 0.2 0.01 0.03 1.28 97.97 0.15 

Inner region 0.15 - 0.06 1.23 98.13 0.16 

 

 

b) 
 
 

Region Elements 

C N Si Mn Fe Ni 

Outer region 0.05 0.11 0.02 1.18 98.25 0.2 

Middle region-1 0.21 - 0.01 0.89 98.69 0.05 

Middle region-2 0.07 - 0.04 1.26 98.34 0.19 

Inner region 0.08 0.02 0.02 0.93 98.66 0.23 

 

c) 
 

Region Elements 

C N Si Cr Mn Fe Ni 

Top Layer - - 0.23 0.04 1.77 95.42 - 

Middle region-1 0.06 - 0.25 - 1.7 97.76 0.1 

Middle region-2 - - 0.27 0.05 1.8 97.41 0.11 

Inner region - - 0.26 - 1.73 97.33 0.19 

 

The composition for the elements of interest did not seem to vary too much along 

the thickness and therefore only the average values are listed here.   

2.2.2.5 Hardness 

Hardness was determined using the Vickers Hardness Tester for three pipe samples. 

The following tables show the results for the same for the two pipe samples; Outer region 
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represents the outermost surface exposed to the surrounding going towards the thickness 

being represented by middle region 1 and 2, and inner region being the one towards the 

inner surface of the pipe. The results are reported for reference in Table 4 and are plotted 

in Figure 5.3. 

Table 4. Hardness of the pipe samples a) Pipe 45 b) Pipe 47 c) Pipe 44 

    a)                                                                 b) 
 

Samples Mean Hardness (HV) Samples Mean Hardness (HV) 

Outer region 220.2 Outer region 208.17 

Middle region-1 178 Middle region-1 217.27 

Middle region-2 203.06 Middle region-2 221.73 

Inner region 219.3 Inner region 226.03 

                                       

                                      c) 
 

Samples Mean Hardness (HV) 

Outer region 188 

Middle region-1 188.2 

Middle region-2 206.5 

Inner region 200 

 

Fig 5.3. Plot showing change in Hardness across the pipe wall thickness 
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These values show that for pipe sample 45, the Hardness of the pipe walls, inside 

and outside is more than the middle regions. For pipe sample 47, the inside pipe wall 

appeared to have the highest hardness that correspondingly decreased towards the outer 

pipe wall surface. Pipe 44 appears to be stronger towards the inner regions. Although the 

trends observed are reported here, but they were not investigated being out of the scope of 

the paper, and only quantitative measures were used as input for the model.   

2.2.2.6 Tensile Properties 

The pipe specimen were tested using the Tensile-stage along the thickness, and the 

corresponding stress-strain curves were analyzed. The stress-strain plots are shown in 

Figure 6 and the values of yield strengths and tensile strengths through the pipe thickness 

are listed in Table 5.  

 

a) 
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b) 
 

 

 

c) 

Fig 6.1 Plot showing stress-strain behavior a) Pipe 45 b) Pipe 47 c) Pipe 44 

Table 5. Stress-Strain data for the pipe samples a) Pipe 45 b) Pipe 47 c) Pipe 44 

     a)         b)                  
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Samples YS (MPa) UTS (MPa) Samples YS  

(MPa) 

UTS (MPa) 

S1(Top Layer) 450 572.99  S1(Top Layer) 355.5 462.2 

S2(Layer 2) 425 538.4 S2(Layer 2) 358.4 479.4 

S3(Layer 3) 435 555.6 S3(Layer 3) 366.2 497.8 

S4(Layer 4) 506 637.5 S4(Layer 4) 371.08 508.4 

 

         c)          
 

Samples YS (MPa) UTS (MPa) 

S1(Top Layer) 406 524.2 

S2(Layer 2) 373 500.4 

S3(Layer 3) 367 489.6 

S4(Layer 4) 397 501.5 

 

Following the trend from the hardness study, the tensile properties of the two pipe 

specimens also showed similar behavior, appearing to be stronger on the pipe walls for 

pipe sample 1 and weaker on the inside. Also, for pipe sample 2, inside pipe wall seemed 

to be the strongest with middle regions being little weaker and the outermost pipe wall 

surface being the weakest. Once again, the reported trends are not investigated, but the 

values are used for model validation. 

2.2.2.7 Texture analysis 

 

Texture of the samples was studied using Electron Back Scatter Diffraction (EBSD) 

technique. The EBSD analysis was only extended to a few samples of the pipe in order to 

further establish the change in material properties through the thickness, and to account for 

the texture change resulting from material deformation. Pipe samples from outer surface 

region and middle region of pipe 45 is used for this demonstrative study. 
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Fig 6.2. EBSD maps for non-strained sample pipe 45 from the outer region a) IPF image 

b) Grain size distribution c) Grain boundary image d) Misorientation distribution 

The EBSD maps shown in Figure 6.2 is for an undeformed area of pipe 45 from the 

outer surface region. The average grain size was noted to be 9.1 um, average misorientation 

was evaluated as 28.5 degrees and the fraction of high angle grain boundaries (>150) was 

seen to be 0.63.  

 

 

a) b) 

c) d) 
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Fig 6.3. EBSD maps for deformed sample pipe 45 from the outer region a) IPF image b) 

Grain boundary image c) Misorientation distribution 

The EBSD maps shown in Figure 6.3 is for a deformed area of pipe 45 from the 

outer surface region. Many of the pixels could not be evaluated due to the severe plastic 

deformation in the region. The statistical data was obtained from the reconstructed image, 

however they may not be an accurate representation of the average distributions. The 

average grain size was noted to be 5.2 um, average misorientation was evaluated as 12.9 

degrees. The fraction of low angle grain boundaries and high angle grain boundaries could 

not be determined at this time. 

a) b) 

c) 
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Fig 6.4. EBSD maps for non-strained sample pipe 45 from the middle region a) IPF 

image b) Grain size distribution c) Grain boundary image d) Misorientation distribution 

The EBSD maps shown in Figure 6.4 is for an undeformed area of pipe 45 from the 

middle region. The average grain size was noted to be 9.3 um, average misorientation was 

evaluated as 22.3 degrees and the fraction of high angle grain boundaries (>150) was seen 

to be 0.48.  

 

 

a) b) 

c) d) 
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Fig 6.5. EBSD maps for deformed sample pipe 45 from the middle region a) IPF image 

b) Grain size distribution c) Grain boundary image d) Misorientation distribution 

The EBSD maps shown in Figure 6.5 is for a deformed area of pipe 45 from the 

middle region. The average grain size was noted to be 8.29 um, average misorientation was 

evaluated as 20.6 degrees and the fraction of high angle grain boundaries (>150) was seen 

to be 0.44.  

It can be seen that grain size did not appear to change significantly between the 

outer and the middle region, and very little variation was observed upon deformation (1 

um). The misorientation between the grains however, appeared to change by almost 5 

degrees between the non-strained regions of outer and middle areas and less than 3 degrees 

a) b) 

c) d) 
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between deformed and undeformed samples. The fraction of high angle grain boundaries 

was seen to vary by 0.15 in the non-strained regions from outside to the middle and changed 

very slightly upon deformation.  

 

2.3 BAYESIAN MODEL FORMULATION 
 

2.3.1 Model formulation 

 

The yield strength or ultimate tensile strength of pipeline specimen in service can 

be estimated in several indirect ways, through measurement of surface material properties 

and correlating them to strength through available literature data (Bramfitt and Corporation 

1998)(Li, Schmauder, and Dong 1999)(Hashemi 2011). The material properties such as 

hardness and composition can be obtained experimentally without interrupting the 

operation of the pipeline.  The current model makes use of this data and the available 

relationships to fuse them together and provide a more precise multimodal prediction of 

strength(Butz et al. 2009)(Liu, Yue, and Zhang 2009). The general model for yield strength 

prediction appears as follows, where YS prior is updated using data from Hardness, H, 

Chemical composition, C and Volume fraction, V. YS and σys have been used 

interchangeably. 

                                     M M Mp(YS | H,C,V, ) p(H,C,V |YS, )p(YS, )                            (3) 
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where, p( M)YS | H,C,V, is the posterior yield strength, ( ,M)p YS  is the prior yield 

strength, and  Mp(H,C,V |YS, )  is the likelihood function in the model. To start with, each 

of these nodes have been provided equal weightage, which can be modified later with a 

sensitivity analysis approach, currently outside the scope of this paper. More formally, the 

likelihood model of YS is given as, 

| |) A( ) B( ) C( )YS H|YS C YS V YSl                (4)     

where, )YSl  is the likelihood model with
|YSH  

|C YS and 
|V YS  as the individual 

yield strength values derived from Hardness, chemical composition and volume fraction, 

as stated above. Due to the equal weightage assignment, each of the coefficients A, B and 

C in the likelihood model are each equal to 1/3. Figure 7 depicts the general schematic of 

the model. 

 

 

 

 

 

 

 

  

 

Fig 7. General flow of the model prediction and validation 

 

Each of the individual relationships are described below. 
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The relationship between yield strength and material chemical composition as well 

as grain size is realized as follows: 

   
1/2

|C 53.9 32.34( ) 83.2( ) 354.2(X ) 17.4( )YS Mn Si NfX X d       (Bramfitt 

and Corporation 1998)                                                                          (5)       

where,
|CYS  is the yield strength of the material derived from the compositional 

parameters, 
MnX  is the weight percentage of Manganese, 

SiX is the weight percentage of 

Silicon, XNf
 is the weight percentage of Nitrogen, and d is the grain size of ferrite (mm).  

Similarly, for a two phase microstructure system, the overall yield strength is 

assumed as the weighted average of yield strength of the individual phases. 

YS|V (f) f (p) f(V ) (1-V )     (Li, Schmauder, and Dong 1999)          (6) 

      where, 
YS|V  is the yield strength of the dual phase material derived from volume 

fraction alone, 
(f) is the yield strength of the ferrite phase and 

(p)  is the yield strength of 

the pearlite phase and 
fV is the volume fraction of ferrite.  

Next, the yield strength of the low carbon steel is related to the hardness as:      

| 2* 105YS H H    (Hashemi 2011)                                                                                 (7) 

where, 
|YS H  is the yield strength derived from Hardness, and H is Vickers  

hardness. 
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The material ultimate tensile strength also have similar relationships. The ultimate 

tensile strength is related to average chemical composition, volume fraction and grain size 

as follows: 

               
1/2

| , 294.1 27.7( ) 83.2(X ) 3.9( ) 7.7( )UTS C V Mn Si pX V d       (Bramfitt and 

Corporation 1998)                                                                                             (8) 

where, 
| ,UTS C V is the ultimate tensile strength derived from compositional and 

microstructural parameters, 
pV  is the volume fraction of pearlite, and the other symbols 

have the usual meanings. 

Additionally, it is related to hardness as follows: 

| 1.3* 344UTS H H   (Hashemi 2011)                                (9)

       

where, 
|UTS H  is the ultimate tensile strength derived from Hardness and H is the 

Vickers hardness. Known priors were used for each of these, derived from the literature 

knowledge of the system of API Steels with ferrite-pearlite microstructure (Bramfitt and 

Corporation 1998)(Li, Schmauder, and Dong 1999)(Hashemi 2011). The prior values 

(means) of the composition were given as; XSi = 0.02 for weight percent of silicon, XMn=0.2 

for weight percent manganese,  XNf =0.02 as the weight percent of free nitrogen. Prior grain 

size, d was 10um, prior volume fraction of ferrite Vf was listed as 0.5 or 50% and prior 

Vickers hardness was assumed as 150 HV 
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The updating scheme makes use of Metropolis-Hastings algorithm to draw random 

samples form the probability distributions and perform updating by using the specified 

number of samples and allowing a margin for a burn-in period. All the priors and 

likelihoods follow a Gaussian distribution, for the purpose of simplicity and demonstration.  

2.3.2 Strength prediction through Bayesian updating 

 

The statistical averaging model for the yield strength being of the form as listed 

below: 

 YS= Ax + By + Cz + ε,                    (10)  

where, x, y and z are pdfs representative of the equations (5)…(9) and ε is the 

random error component in the system, and A, B and C are the model coefficients 

corresponding to the variables. The resultant model is depicted in Figure 8. YS and UTS 

represent the yield and ultimate tensile strength correspondingly.  

   

Fig 8. Schematic representation of the Bayesian Network Model for Yield and Ultimate 

Strength prediction 
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The above model for prediction of yield and ultimate strength depicts several nodes. 

Node FERRITE refers to volume fraction of ferrite, NF, SI and MN are the compositional 

parameters referring to weight percentages of free Nitrogen content, Silicon, and 

Manganese. Node GRAIN refers to the grain size and HARDNESS refers to Hardness of 

the material. The nodes VOL[i], NFC[i], SIC[i], MNC[i], SIZE[i] and HV[i] are all used 

for updating the corresponding primary nodes FERRITE, NF, SI, MN, GRAIN and 

HARDNESS, respectively, when a new observation is available. The model offers several 

unique features that are not available in most existing methodologies. First, continuous 

uncertainty reduction can be achieved if continuous observation from multimodality 

measurements is available for the interested material system. Another natural and 

important outcome from the proposed model is the node sensitivity. The predicted response 

could be more sensitive to one or more of the interconnected nodes, compared to the others, 

and this dictates the weightage assigned to the nodes. This information will be valuable for 

future optimization of inspection (i.e., only focusing on more sensitive node for 

information acquisition). Detailed the discussion on this topic is beyond the scope of the 

proposed study and needs further investigation.  

Another feature is that all the nodes in the model are co-dependent and updating 

can be performed in terms of data analysis for prediction as well as for the missing values, 

and hence all the nodes in the system can be updated, irrespective of a direct or indirect 

correlation with the updating node. This helps to converge the parameter values and 

quantifying the uncertainty of the system as the model is updated in the view of new 

information from various measurements.  
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The next section describes the experimental procedures utilized to gather data for 

performing training and validation of the Bayesian Network Model. The metrics analyzed 

here are the ones known to have a response in the present system, based on the equations 

(1.6) through (1.10).  

2.3.3 Model Validation for Prediction of Strength 

 

The data from Section 3, viz microstructure, hardness and composition are used as 

input for the model and are integrated to predict the corresponding Yield Strength and 

Ultimate Tensile Strength as shown in Figure 9. The predictions are done for likelihood 

models with just one node for each of hardness, composition and volume fraction, as well 

as model with the nodes combined together as a weighted average, and are then compared 

to the actual experimental results from the tensile testing of the samples to measure the 

closeness of the predicted values with the experimental ones. 
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8.81 % 
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d)             

e) 

12.5 % 

34 % 

33.3 % 

10.65 % 
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Fig 9. Plot for prediction of Yield strength from individual nodes as well as put together 

a) Pipe 45(1) b) Pipe 47(2) c) Pipe X42R d) Pipe X42N e) Pipe 44 (3) 

For the first case a), it appears that prediction with node Hardness is 488.78, 

showing an error of  7.4% with respect to the experimental value of 454 and the best 

prediction, followed by prediction from all nodes combined being 414 or 8.81% deviant 

from the experimental value and the prediction from chemical composition showing the 

largest error as 52.8%. For case b), the smallest deviation from true value was from all the 

nodes combined was 413.63, making it 14.08% from the true value of 362.79 and the 

largest one being 540.85 or 49.17% from node volume fraction.  

For c), the prediction from all nodes combined was 394.3 MPa or 10.65% deviant 

from the experimental value of 352 MPa being the closest prediction, whereas prediction 

from node volume fraction was 528.38 MPa showing the largest error of 33.3%. For case 

d), once again, the prediction from all nodes combined was 384.69 being the closest to the 

true experimental value of 370 MPa in the range of 3.97% and the farthest prediction was 

shown by node chemical composition, resulting in a value of 209.66 MPa or 43.51% 

deviant from the true value. 

 

2.3.4 Nodes codependency 

 

The Bayesian Network features codependency of the nodes that may or may not be 

directly correlated. This is demonstrated by changing the input value for node Hardness 

and observing a change in the posterior distribution of other nodes like Silicon and Ferrite, 

as depicted in Figure 10. 
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a) 

 

b) 

Fig 10. Ilustration of nodes co-dependency a) Change in node HARDNESS 

followed by a change in node SILICON b) Change in the node HARDNESS followed 

by change in the node FERRITE 

 

The extent of change in the posterior densities of the nodes may differ, as can be 

seen from the above figures. This codependency can be useful in in order to derive (predict) 

missing information about one or more nodes, in an event such information is hard to obtain 

experimentally. 
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2.3.5 Model Regression Coefficients Verification 

 

The various relationship between Yield Strength and material properties listed in 

the equations (5) through (9) were obtained from literature for different pipe systems 

composed of similar microstructure. As presented in section 4.1, these system of equations 

combined together predict a value of yield strength that can vary from 1.34 % to 14.01 % 

from the actual value of yield strength derived experimentally. Therefore, in an integrated 

form, these relationships may not be a holistic representative of the behavior of a particular 

system in view. In order to improve the prediction from the present Bayesian Network 

model, more information in terms of both data points and new metrics would have to be 

added in the model. Another way to improve prediction would be to update the relationship 

between yield strength and material properties derived from literature. This can be done by 

training the individual relationships with data for a specific system of pipes and then using 

the updated model coefficients for prediction. In this manner, if a complete data set 

(including tensile properties) is available for pipeline systems in a specific area, it could be 

used for training the model coefficients and improving the prediction of connected pipeline 

systems in a different region where destructive testing may not be available. In the present 

study, the data from X65 steels, obtained from literature (Tovee 2014), is used for a 

demonstration of the same. Data training and validation is performed by training the model 

and obtaining updated values of the model regression coefficients, and are validated by 

comparing the predictions of the tensile properties from both the initial and the updated 

model.  The procedure of this study is listed below: 
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This study is done for the correlation of Yield Strength to Hardness, Composition 

and Volume fraction of Ferrite.  

Original relation from literature:  

1/2(53.9 32.34( ) 83.2( ) 354.2(X ) 17.4( ) 2* 105) / 3YS Mn Si Nf (f) f (p) fX X d (V ) (1-V ) H             

                                                                                                                                         (11) 

of the form (a b c d e f g-1/ 2

Mn Si Nf fYS + * X + * X + * X + * d + *V + * H                    

                                                                                                                                         (12) 

Where, ε = N (0, σ2), is a model error term.  

In the general case, these coefficients based on the literature equation are reported 

as: 

a = 158.9, b = 32.34,c = 83.2, d = 354.2, e = 17.4, f = , g = 2 

Training of the model with the literature data for a system of X65 pipelines yielded 

the following results: 

a =266.67, b= 28.46, c= 33.05, d= 162.33, e= 5, f= -8.67, g= 0.7 

The two models were used to predict the yield strength for the other API X65 pipeline 

systems.  

The comparative prediction with the updated coefficients for the likelihood model 

are listed and shown with the help of Figure 11. 

 

 

 

 



39 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

b) 

Fig 11.1. Plot showing Yield Strength vs pdf values with the original and modified 

coefficients for the two samples a) Pipe X65 1 b) Pipe X65 2 

7.8 % 

14.53 % 

12.46 % 

16.39 % 
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Similar training was conducted for the pipe sample 47, as the complete data set was 

already available as presented before in experimental analysis section. The pipe 47 had 

four samples extracted from the thickness direction, as stated previously, the data points 

from two of which were used for training and the remaining two were used for prediction 

from the updated values of the coefficients. The modified coefficients were also used for 

prediction from Pipe 45. The original relation and the form remained the same as listed in 

eqn (7) and (8). The updated coefficients from the training of pipe 47 are listed below: 

a =688.7, b= 83.8, c= 913.6, d= 859.4, e= 15.48, f= 72.2, g= 1.31 

Fig. 10 c) shows the improved prediction from the updated coefficients. 
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d) 

Fig 11.2. Plot showing Yield Strength vs pdf values with the original and modified 

coefficients for the two samples c) Pipe 45 d) Pipe 47 

It can be seen that in all the three cases the prediction from the updated likelihood 

model shows a prediction value closer to the theoretical strength, and hence data training 

of the model can help improve prediction. It was also tested to predict the strength of other 

systems such as X52, X60 etc, but it was observed that the training for a particular system 

of pipelines is restricted to improve the prediction of the similar systems, and specific 

training needs to be performed for the other grades of the pipeline systems to improve their 

prediction. 

2.3.6 Node Sensitivity analysis 

 

A parametric sensitivity analysis was carried out to determine the most influential 

factor governing the prediction of Yield Strength. Information on the nodes was varied by 

0.41 % 

14.01 % 
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+/- 30%, one at a time, and corresponding variation in the predicted results was noted. Two 

literature data (X65, X42) and two experimental data (Pipe 45 & 47) have been used for 

the demonstration of the same. The results are presented below: 

 
 

a)  

 
 

b)  
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c)  

 
 

d)  

 
e)  
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f)  

 
 

g)  
 

Fig 12. Demonstration of variable change on the prediction capability of the different 

pipe systems a) X45 b) X47 c) X42R d) X42N e) X65I f) X65II g) X65III 

 

As can be observed from Figure 12, hardness appears to be the most influential 

factor in prediction of Yield strength. The experimental Pipes 45 and 47 showed a variation 

close to 8% with hardness, and about 2.5% with both volume fraction and composition 

analysis. For the literature data of X42R and X42N, the change in the predicted yield 



45 
 

strength was about 3-4% with composition and volume fraction, and about 6.5% with 

Hardness. Finally with the system of X65 literature pipes, the variation in predicted yield 

strength was about 3% with volume fraction change, 6% with chemical composition 

change, and about 7.5% with Hardness change. The X65 was seen to be the only system 

with a high impact from the composition side. Overall hardness seemed to be the most 

influential parameter followed by composition and then volume fraction.  

2.4 CONCLUSION 

 

A novel approach to integrity assessment of the aging Natural gas pipeline system 

is proposed with the design of the Bayesian Network framework model, which integrates 

the different material properties derived from in-situ measurements and predicts the yield 

strength. The model is validated from the results of experimental measurements to show 

an improved accuracy of strength prediction. Several conclusions can be drawn based on 

the present study: 

1. Model validation performed by comparing the results of yield strength prediction from 

individual nodes versus prediction from all nodes together, showed an improved prediction 

with the latter. Yield strength prediction with the individual node Hardness showed an 

11.8-36.4 % variance from the true experimental value. Similarly, prediction with node 

Chemical composition showed a large deviance of 34-49.17%, prediction with node 

volume fraction showed a deviation of 27.34-49.14%, and finally, the combined prediction 

with all the nodes showed the smallest deviation of 1.34-14.8% from the true experimental 

value.  
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2. Another important feature extracted out of this model was the ability to update all the 

nodes by modifying one of the nodes (updating information on node Hardness resulted in 

a change in the probability distributions of nodes Silicon and Ferrite), signifying a 

systematic flow of information through the network.  This feature can be exploited in terms 

of obtaining a probabilistic estimate for any missing component.  

3. Next, the model was trained to modify the regression coefficients by making use of data 

points from the similar system and an improvement in the prediction capability of about 4-

13% on an average was observed. 

The present model is designed with an equal weightage of all nodes, which can be 

modified through extensive training with a large data set by performing sensitivity analysis 

to obtain a more precise prediction of the strength, or through numerical simulation 

approaches. The model can be further explored in terms of accommodating the acoustic 

and electromagnetic properties, to obtain a holistic prediction of strength from a complete 

set of material properties data.   
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3 COMPARATIVE STUDY OF STATISTICAL MODELS FOR 

MANUFACTURING PROPERTIES PREDICTION 

 

3.1 INTRODUCTION 

 

The increasing demand in the production and consumption of oil and natural gas 

requires continuous improvement in both the transportation efficiency and the performance 

of the steel pipes(Rosado, Waele, and Vanderschueren 2013). The properties at this 

expanse are higher strength accompanied with sufficient toughness and ductility which are 

determined by the proportion of multiple microstructures consisting of well-selected 

phases and refined grain sizes. For the currently used high-strength steels, the determining 

factors to achieve the above-listed superior properties relies in a combination of alloy 

composition design, metallurgical technology, thermomechanical processing or heat 

treatment(Zhao, Yang, and Shan 2002).  These steels are characterized by the low Sulphur 

content and reduced amount of detrimental second phases such as oxides, inclusions and 

pearlite(Rosado, Waele, and Vanderschueren 2013). As the composition is limited to a 

certain value, the improvement in the mechanical properties heavily depends on the 

complex thermomechanical controlled processing (TMCP) routes. The optimization of the 

process parameters of the TMCP is vital in order to achieve the desired mechanical 

properties. Nowadays, exhaustive production control and diverse simulation techniques are 

used to optimize the processing parameters for producing a desired microstructure, both of 

which are extremely expensive and only achieve good results in an a posteriori fashion 

(Santos et al. 2009). A lot of work has been reported on analyzing the effect of the TMCP  

processing parameters on the microstructure and mechanical properties such as the 
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evolution of microstructure and precipitation state of high- level pipeline steel through 

TMCP process, in which the effects of processing parameters of TMCP, such as finish 

cooling temperature (FCT), finish rolling temperature  (FRT) and coiling temperature on 

the microstructure and mechanical properties of low C-Mn steel were reported (Rosado, 

Waele, and Vanderschueren 2013).  

Thus, the manufacturing process parameters play an important role in the design 

and synthesis of new pipe grades with improved mechanical properties. In order to simplify 

the extensive need of process control and simulation techniques, the present work aims to 

utilize the pre-existing database of the effect of manufacturing process on the material 

properties to make a prediction of the required process parameters to obtain the desired 

microstructure design. Some well-known statistical models are employed for making such 

predictions and compared amongst themselves viz; Multivariate Linear Regression, 

Gaussian Process Modeling and multi-label K-nearest neighbors (ML-KNN) model and 

the efficiency of these models is compared. The input for these models can be the 

mechanical properties such as yield strength, fracture toughness required, whereas, the 

output will be process parameters such as cooling rate and coiling temperature. The 

classical linear regression is performed for multiple datasets using the generalized least 

square method, by minimizing the sum of squared error. The Gaussian process models are 

another way to perform Bayesian supervised learning. These are provided with a mean 

function, covariance function, and some hyperparameters for their prediction model. The 

final method is specifically known as ML-KNN or multi-label K-nearest neighbor, which 

is an extension of the traditional KNN method. This algorithm identifies k-nearest 
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neighbors from the training data, based on the proximity of closeness from the given 

unknown samples. 

3.2 MODEL FOR PREDICTION OF PROCESSING CONDITIONS 

 

The focus of this section is on the application of the different statistical models to 

predict the process conditions during pipeline manufacturing process such as cooling rate, 

cooling temperature etc. The input can be used as the desired mechanical properties such 

as Yield Strength, percentage elongation etc. Table 6 shows the input and the desired output 

[11]. 

Table 6. Process parameters and mechanical properties for steel pipes 

 

               Labels                   Features 

 

 

Rolling 

finish Temp 

(deg C) 

Cooling start 

Temp (deg 

C) 

Cooling End 

Temp (deg 

C) 

Cooling rate 

(deg C/sec) 

Elongation 

(%) 

Yield 

Strength 

(MPa) 

845 795 100 16 22 516 

845 795 200 19 28 523 

845 795 430 9.4 26 525 

735 700 240 14.5 21 533 

735 700 330 11 28 489 

735 700 420 9.3 22 561 

 

The prediction scheme used here are of three different types; Classical Linear 

Regression, Gaussian process model (Kocijan et al. 2004), and Multi-Label K-nearest 

neighbor method. The classical linear regression (Yamano, n.d.) is performed for multiple 

datasets using the generalized least square method, by minimizing the sum of squared error.  

The Gaussian process models are another way to perform Bayesian supervised learning 

(Kocijan et al. 2004) (Kocijan et al. 2004). These are essentially composed of mean 
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function, covariance function, and some hyperparameters for their prediction model. The 

most widely used functions in here are the meanConst mean function which has a constant 

mean that can be specified with a single value hyperparameter, and a covSEiso which is a 

Squared Exponental covariance function. It has been used for regression based problems 

as well(Qu Nonero-Candela et al. 2005)(Büche, Schraudolph, and Koumoutsakos 2005).   

The final method is specifically known as ML-KNN or multi-label K-nearest 

neighbor(Zhang and Zhou 2007) (Cheng and Hüllermeier 2009), which is an extension of 

the traditional KNN method. This algorithm identifies k-nearest neighbors from the 

training data, based on the proximity of closeness from the given unknown samples. Given 

an unknown sample and a training set, all the distances between the unknown sample and 

all the samples in the training set can be computed. The distance with the smallest value 

corresponds to the sample in the training set closest to the unknown sample. Different types 

of distances can be used, Euclidean distance being most widely used. Given a training set 

(x1,y1) (x2,y2)….the regression model can be built. 

The Euclidean distance,D is given as: 

𝐷(𝑥, 𝑝) = √(𝑥 − 𝑝)2 

Where, p is the unknown test instance. 

The prediction from the KNN model is the average of the outcome of the k-nearest 

neighbors: 

1 k

i iK
y y  , where yi is the ith case of the examples sample and y is the prediction 

(outcome) of the query point (Imandoust and Bolandraftar 2013). 
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3.3 PREDICTION FROM THE DIFFERENT MODELS 

 

Three small and different datasets were used for demonstration of prediction of the 

manufacturing conditions from the desired mechanical properties, and have been 

compared. At least 60% of the data was used for training and 40% used for prediction 

analysis for each dataset. For these comparison, Simple Linear regression follows the 

general scheme, the Gaussian process model uses meanConst as the mean function and 

covSEiso as the covariance function, and finally, the ML-KNN method uses the nearest 

neighbors value for k as 3, and a smoothing parameter, s as 1.  

The results have been shown for the first dataset in Figure 13. This is a small dataset 

with 12 data points, 7 of which are used for training, and the remaining 5 are used for 

prediction: 

 

 

 

 

 

 

 

 

 

 
 

                                      a)                                 b)  

Fig13. Plots for prediction of manufacturing process parameters for Dataset 1 a) Finish 

cooling temperature b) Cooling rate  

It is observed that the prediction capability of Gaussian process model and ML-

KNN work better than classical linear regression for this particular dataset. Some 

anomalies have been extracted to provide a better view of the model outcomes. This dataset 
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outcome shows a relatively large error for the best prediction model to be within 40% at 

some places which needs to be investigated.  

Dataset 2: 

This dataset consists of 15 points in total, 8 of which have been used for training, 

and the remaining 7 have been used for prediction. There are a total of four outcomes for 

this particular dataset, as shown in Figure 14. 

 

 

 

 

 

 

 

a)      b) 

 

 

 

 

 

 

    c)      d) 

Fig 14. Plot for prediction of manufacturing process parameters for Dataset 2 a) Start 

Rolling Temperature b) Finish Rolling Temperature c) Cooling Rate d) Finish Cooling 

Temperature 
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It can be seen that for three of the four outcomes, the ML-KNN works either equally 

best or better than the classical regression (SL) model or the gaussian process (GP) model. 

The exception in the prediction of cooling rate may be as the data set were not normalized 

initially; where GP model works the best. In general, for this dataset, the error value can 

be kept below 15%, which is a helpful aid in the prediction of these manufacturing 

conditions. 

Data set 3: 

This is a small dataset with only 8 datapoints in total,therefore, 5 points have been 

used for training, and the prediction outcome is shown in Figure 15. The prediction is 

shown for 3 points initially, and the other graph shows the prediction for training data size 

4 as well. 

 

 

 

 

 

 
 

      a)                     b) 

Fig 15. Plot for prediction of Finish Rolling Temperature with two different training sizes 

a) Training data size 5 b) Training data size 4 

Similar to the above assessments, it can also be observed in this case that the ML-

KNN and GP model work well for both training size of the data, although in this case GP 
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works slightly better or comparable to ML-KNN. The error for this dataset can be within 

10% margin which also works well for prediction. 

It can be seen from all the three datasets that these methods provide a good 

capability in the prediction of the manufacturing conditions for the desired mechanical 

properties. For the last two datasets, with the best prediction model, the error value can be 

controlled to be less than 10-15% at the maximum. In general ML-KNN works well for the 

three datasets. 

3.4 MODEL PARAMETER VARIATION FOR THE DIFFERENT 

DATASETS 

 

The parameters of the ML-KNN and the GP model have been varied, and the effect 

on the prediction has been reported. 

The results in Figure 16 are for Dataset 1 for variation of k in ML-KNN method 

 

 

 

 

 

 

 

          a)                   b)    

   

Fig 16. Plots showing impact of N on prediction outcomes for dataset 1 a) Finish cooling 

temperature b) Cooling rate 
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The above figures represent the impact of the variation of the number of nearest 

neighbors, N in the prediction outcome. It appears that N value of 3, 4 work well for Y1 

prediction, whereas N values of 1 & 4 work well for Y2. 

Next, the results are shown in Figure 17 for Dataset 1 for GP model parameter 

variation. 

 

 

 

 

 

 

 

 

 

 
 

           a)                           b) 

 

Fig 17. Plots showing impact of variation in the covariance function on the prediction 

outcome for Dataset 1 a) Finish cooling Temperature prediction   b) cooling rate prediction 

The variation in the covariance function in Figure 18 shows that covRQiso works 

well for Y1, and most of the other covariance functions work well for Y2. 

 

    

 

 

 

 

 

 

 

      
 

      a)                  b) 
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Fig 18. Plot showing impact of mean function variation on the prediction outcome of 

Dataset 1 a) Finish cooling Temperature   b) Cooling rate 

The mean function variation shows opposite trends for both Y1 and Y2 and hence 

no conclusion could be drawn for better mean function. 

The next results are shown for Data set 2. Figure 19 shows the ML-KNN parameter 

variation. 

 

 

 

 

 

 

 

a)               b) 

 

 

 

 

 

 

c)       d) 

Fig 19. Plots showing impact of N on prediction outcomes for dataset 2 a) Start Rolling 

Temperature b) Finish Rolling Temperature  c) Cooling Rate d) Finish Cooling 

Temperature 
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The N value was varied between 1 to 4. It appears that a N value of 3 and 4 works 

well for all the predictive outcomes. 

Next, the smoothing parameter, s, was varied between 1 to 10, and no significant 

change was observed, as indicarted below in Table 7. 

Table 7. Smoothing parameter variation for different data sets 

 

 

 

 

 

 

 

 

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411

Y1 -0.8123 -0.0307 -2.458 0.9932 0.975 0.6184 1.4386

Y2 -2.4664 2.0377 -0.6608 0.6696 -5.3289 2.6166 -0.3867

Y3 6.6667 21.5686 8.3333 -3.7037 -25 23.8095 -16

Y4 0.1287 -1.4103 1.3123 2.1164 -0.4575 -0.0647 1.9411 S=10

N=3 

S=1

S=2

S=3

S=4

S=5
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GP model parameter variation: 

 

 

 

 

 

 

                                  a)        b) 

 

 

 

 

 

 

                                  c)        d) 

Fig 20. Plot showing the variation of mean function, and its impact on the prediction 

outcome of Dataset 2 a) Start Rolling Temperature b) Finish Rolling Temperature c) 

Cooling Rate d) Finish Cooling Temperature 

It appears from Figure 20 that MeanLinear and Meanconstant both work well for 

most of the predictive outcomes for this data set for the mean function variation. 
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 a)              b)  

 

 

 

 

 

 

c)                d)  

Fig 21. Plots showing impact of variation in the covariance function on the prediction 

outcome for Dataset 2 a) Start Rolling Temperature b) Finish Rolling Temperature c) 

Cooling Rate d) Finish Cooling Temperature 

It can be seen from Figure 21 that for the covariance function variation, covRQard 

and covRQiso work well for atleast three out of four prediction outcomes. 

Predictions for Dataset 3: 

ML-KNN parameter variation:  

The number of nearest neighbor was varied from 1 to 3 for this dataset. There is 

only a single outcome for this dataset as indicated earlier. 
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Fig 22. Plots showing impact of N on the prediction of Finish Rolling Temperature 

It appears from Figure 22 that k value of 2 works best to keep the error below 10% 

for this particular dataset. 

GP model parameter variation: 

 

 

a)       b) 

 

 

Fig 23. Impact of parameter variation on prediction of Finish rolling temperature a)  

Mean function variation b) Convariance function variation 

It can be observed from Figure 23 that meanConst works well for meanfunction 

and covRQiso covariance function works well for this particular dataset to keep the error 

value to be about 10%. 
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It can be inferred from the above results that the value of number of nearest 

neighbor depends on the number of points in the dataset, and in general a value of N=3 

would work for smaller datasets upto 15-20 points.  

Also, the covariance function covRQiso works well for similar smaller datasets, 

whereas meanConst mean function works well for the model parameters of Gaussian 

process. 

The indiscrepency in the prediction of cooling rate (Y3) can be noted for majority 

of the cases. This can be attributed to cooling rate being dependent of a number of variables 

such as the metallurgical phase transformation temperature, the resultant phases and the 

fraction of the phases. 

3.5 CONCLUSION 

 

In this work, different statistical models were employed to aid in the prediction of 

manufacturing process parameters to provide simplicity and cost-saving advantages to the 

complex methods that are currently in use and the impact of the parameter variation was 

studied for each model and dataset. Three different small datasets of varying length were 

used for demonstration. The following conclusions were drawn: 

1. The model comparison for the three datasets indicated that GP and ML-KNN better than 

classical multivariate regression since the former can pick up the local instance based 

variation in the data, compared to latter that is not designed for very small datasets. In 

general, it was seen that ML-KNN works well  
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2. The individual datasets appeared to show a mixed model preference for prediction, and 

in general, ML-KNN seemed to be suitable.  

3. The performance of KNN model depends on the number of nearest neighbors which in 

turn depends on the number of points in the dataset. A value of N=3 seemed to work for 

smaller datasets up to 15-20 points, whereas variation in the smoothing parameter didn’t 

seem to affect the prediction outcome.  

4. For the Gaussian process model, the covariance function covRQiso appears to work 

better for such smaller datasets, whereas mean function that works well for the same is 

meanConst.  

The present study can be explored in terms of other datasets to obtain a more 

accurate measure of the generic model for best prediction. Some analysis can also be done 

to analyze the impact of the size of training data on the prediction outcome by adapting 

somewhat larger datasets up to 30-40 data points. A model selection procedure can also be 

explored to automatically ascertain the best prediction model for the datasets. 
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4 INVESTIGATION OF VARIATION IN THE FATIGUE BEHAVIOR OF THE 

STEELS THROUGH THE THICKNESS OF THE PIPE SAMPLE 

 

4.1 INTRODUCTION 

 

The pipelines used in the oil and gas exploration suffer from significant fatigue 

damage from cyclic loadings during transportation (transit fatigue) and during service life. 

The fatigue damage in the pipe may occur even before they enter in service due a 

mechanism called transit fatigue. During transportation, pipes are subjected cyclic stresses, 

related to inertial and gravitational forces which are responsible for the nucleation and 

growth of fatigue cracks inside them, which compromise their structural integrity. The 

offshore line pipes may also suffer from fatigue damage during their service life due to the 

structures being subjected to cyclic loading originated from: cyclic pressure and thermal 

expansion loads and waves movement induced loads. Another way to have fatigue failures 

is in the pipelines used to transport hydrogen, especially at lower frequencies(Korsunsky, 

Dini, and Walsh 2008). The resulting hydrogen embrittlement results in a loss of ductility 

and therefore the ASME codes impose the use of pipe with specified minimum yield 

strengths less than 360 MPa (52 ksi) for the transportation of hydrogen. This leaves steels 

with an API grade of X52 or lower for the same purpose, which are the steel grades 

associated with the present research work(Drexler and Amaro 2017). The existing NDE 

techniques of fatigue damage detection may be limited by the pipe geometries as stated 

earlier, therefore is important to quantify the fatigue crack growth properties by taking into 

account the inhomogeneity in the material properties across different region of the pipe. 

The research works therefore aims to investigate how the fatigue growth rates of cracks 

vary in the circumferential direction along the pipe wall thickness(Lu and Liu 2009). The 
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specimens are drawn from different depths and  growth rates has been done through the 

analysis of da/dN x ΔK curves, focusing on their Region II (Figure 24.1) where the cyclic 

growth of the fatigue crack is linear (on a log-log plot) and can be predicted by the Paris-

Erdogan Law (Korsunsky, Dini, and Walsh 2008): 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 

                (13)

 where da/dN is the fatigue crack growth rate, C and m are scaling constants and ΔK 

is the stress intensity factor range. The Paris-Erdogan Law only considers the ΔK 

increasing for the fatigue crack growth rate evaluation, and ignores the effect of the other 

parameters such as the load ratio and load frequency which also may impact the values of 

C and m (Kim et al. 2011). Therefore, for a given material, the evaluation of crack growth 

rates are to be done when the environmental conditions, temperature as well the load ratio 

and frequency are fixed, to reduce the influence on C and m.  
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Fig 24.1. Typical fatigue crack growth curve for metals showing its Regions I, II and 

III(Korsunsky, Dini, and Walsh 2008) 

4.2 TEST SET UP FOR FATIGUE PROPERTY ANALYSIS  

    
The fatigue behavior of five pipe steels have been analyzed here. The experimental 

investigation of fatigue behavior was conducted in the Servo-hydraulic MTS machine. A 

single edge notch specimen SE(T) (Blatt, John, and Coker 1994) was used for the study, a 

schematic of the SE(T) geometry is shown in Figure 24.2. The experiment was conducted 

at room temperature with a pre-crack, and the load levels varied from 1000~1700N 

depending on the strength of the different pipes. An interrupted testing was conducted to 

enable the observation of crack growth with respect to the cycles. The R-ratio used was 

0.1, and the frequency was 10 Hz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 24.2. Dimension of fatigue test specimen with notch 
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The notch is sharpened further prior to the experiment to ease in crack initiation. 

The samples are extracted from different region along the pipe to capture the variation in 

the fatigue crack growth parameters along the thickness. The fatigue property analysis 

includes studying the crack growth rate of the specimen with respect to the number of 

cycles, and are not tested till complete failure. The images for the crack initiation are 

presented here: 

4.3 CRACK GROWTH BEHAVIOR OF THE PIPE STEEL 

 

The crack growth is assessed in terms of Number of cycles and crack length. The 

results are shown below for the five pipe specimen. Figure 25 shows the da/dN curves for 

Pipe 47. 

Pipe 47: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 
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Fig 25. Fatigue crack growth, da/dN curves for Pipe 47 along the depth; a) Outer surface 

b) Middle region-1 c) Middle region-2 d) Inner surface 

The crack growth for the pipe samples showed slight variation with thickness but 

generally appeared to increase steadily with respect to the number of cycles across all the 

regions. The grain structure of the samples are presented next.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 26. Grain structure after deformation of Pipe 47 a) Outer region 1 b) Middle region-2 

c) Inner region-1 d) Inner region-2 

The microstructure images depicted in Figure 26 are taken from 100 um radius 

around the crack. The grain structure appear deformed near the crack zone, and the average 

grain size for the deformed specimen was found to be 21.77 um, which is about 3 ASTM 

grain sizes lesser than the undeformed specimen with a grain size of 24.36 um.  

 

a) b) 

c) d) 
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Fig 27. Fatigue crack growth rate versus stress intensity factor range (da/dN versus ΔK) 

for four different specimens corresponding to the different regions along the pipe 

thickness for Pipe 47 

The da/dN vs ΔK curve for the pipe 47 is depicted in Figure 27. It appears that the 

curve shifts a little for the top and bottom regions, however, the middle regions tend to 

somewhat overlap.   

In order to investigate the pattern of crack growth (intergranular or transgrannular), 

etching was done on the sample and the crack was viewed under SEM. The images in 

Figure 28 show the crack growth pattern for Pipe 47. 
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Fig 28. Crack growth pattern of Pipe 47 a) Outer region 1 b) Middle region-2 c) Inner 

region 

It can be observed that the crack cuts directly through the phase boundaries of the 

pearlite zone and in general is seen to follow a transgrannular pattern. 

Pipe 44: 

 

The crack growth curves for Pipe 44 are: 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) 
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Fig 29. Fatigue crack growth, da/dN curves for Pipe 44 along the depth; a) Outer surface 

b) Middle region c) Inner surface 

The crack growth for the pipe samples appeared steady with respect to the number 

of cycles across all the regions, as per Figure 29.  

 

 

 

 

 

 

a) b) 

c) 
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Fig 30. Crack growth pattern of Pipe 44 a) Outer region 1 b) Middle region c) Inner 

region 

It can be seen from Figure 30 for Pipe 44 that the crack follows a transgranular 

pattern of growth and cuts through the phases, similar to pipe 47. 

 

 

 

 

 

a) b) 

c) 
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Fig 31. Grain structure after deformation of Pipe 44 a) Outer region b) Middle region c) 

Inner region 

The images from the optical microscope are reported in Figure 31 for Pipe 44 after 

deformation. The images are used for measuring the grain sizes and phase volume fraction. 

The average grain diameter after deformation was seen to be 19.9 um, compared to the 

undeformed grain size of 21.5 um, thereby reflecting a change of less than 2 ASTM grain 

sizes. 

a) b) 

c) 
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Fig 32. Fatigue crack growth rate versus stress intensity factor range (da/dN versus ΔK) 

for three different specimens corresponding to the different regions along the pipe 

thickness for Pipe 44 

The da/dN versus ΔK graph for pipe 44 is depicted in Figure 32. A very significant 

shift can be seen in the graph for the different regions.  

Pipe 35: 

 

 

 

 

 

 

 

 

 

 

b) a) 
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Fig 33.1. Fatigue crack growth, da/dN curves for Pipe 35 along the depth; a) Outer 

surface b)Middle region-1 c) Middle region-2 d) Inner surface 

A generic trend is expressed by the graph between crack length and the number of 

cycles for pipe 35, as shown in Figure 33.1. 

 

The fatigue crack growth characteristics are presented in Figure: 
 

 

 
 

Fig 33.2. Crack growth pattern of Pipe 35 a) Outer region b) Inner region 

The crack can be seen to follow a transgranular pattern of propagation for pipe 35, 

as seen in Figure 33.2. It is seen to be mostly composed of ferrite grains which have lower 

strength. 
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Fig 34. Fatigue crack growth rate versus stress intensity factor range (da/dN versus ΔK) 

for two different specimens corresponding to the different regions along the pipe 

thickness for pipe 35 

The graph for crack growth rate versus stress intensity factor range is shown in 

Figure 34. The two regions of crack growth seem to be overlapping and hence not a lot of 

change is observed in the fatigue crack growth parameters.  
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Pipe 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 35. Fatigue crack growth, da/dN curves for Pipe 32 along the depth; a) Outer surface 

b) Middle region c) Inner surface 

The crack growth for the pipe samples appeared to be staedy with respect to the 

number of cycles across all the regions for pipe 32, similar to the other pipe systems as 

seen from Figure 35.  

 

 

 

a) b) 

c) 
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Fig 36. Crack growth pattern of Pipe 32 a) Outer region 1 b) Middle region c) Inner 

region 

Pipe 32 interestingly shows an intergranular pattern of crack growth for the top 

layer, whereas it tends to follow the grain and phase boundary for the bottom region. The 

middle region appears to pass through the pearlite phase, as seen from Figure 36. 

a) b) 

c) 
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Fig 37. Fatigue crack growth rate versus stress intensity factor range (da/dN versus ΔK) 

for three different specimens corresponding to the different regions along the pipe 

thickness for pipe 32 

The graph with da/dN versus ΔK for pipe 32 as shown in Figure 37 shows only a 

slight variation across the different regions.  
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Pipe 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 38. Fatigue crack growth, da/dN curves for Pipe 45 along the depth; a) Outer surface 

b) Middle region c) Inner surface 

Similar to all the other pipe systems, the crack length appears to increase steadily 

after the initial phase for pipe 45 as well, this can be seen in Figure 38.  

 

 

 

 

 

 

a) b) 

c) 
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Fig 39. Crack growth pattern of Pipe 32 a) Outer region 1 b) Middle region-2 c) Inner 

region 

The crack growth pattern for pipe 45 is observed to be transgranular for all the 

regions from Figure 39, since this is a stronger pipe. The crack is also seen to bifurcates 

the pearlite phase easily.  

a) b) 

c) 
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Fig 40. Fatigue crack growth rate versus stress intensity factor range (da/dN versus ΔK) 

for three different specimens corresponding to the different regions along the pipe 

thickness for pipe 45 

Figure 40 shows that the crack growth rate changes between the different regions 

of the pipe 45. In general the behavior from the middle region shows a considerable 

difference from the surface regions. 

The parameters of fatigue crack growth are depicted in Table 8. 
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Table 8. Constants m and C for the five pipe specimen 

 

Pipe Layers Pipe 44 Pipe 47 Pipe 35 

m C m C m C 

Outer region 2.56 10-11.07 2.34 10-10.15 3.2 10-11.5 

Middle region-1 3.2 10-11.91 2.43 10-10.49   

Middle region-2  10-13.4 3.52 10-11.99   

Inner region 3.47 10-11.92 2.38 10-10.52 3.19 10-11.29 

Pipe Layers Pipe 45 Pipe 32 

m C m C 

Outer region 2.71 10-11.08 2.9 10-11.2 

Middle region-1 2.3 10-10.3 2.89 10-11.06 

Inner region 2.56 10-10.7 2.14 10-10.2 

 

A mixed behavior is observed in the variation of the fatigue crack growth parameters 

through the thickness of the pipe sample. This is a combined function of the pipe wall 

thickness, composition, other material properties such as grain size, distribution of the 

phases, and the presence of inclusions. The variation of the fatigue constant m is studied 

with respect to the material properties; grain size, ferrite volume fraction and hardness.  
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Fig 41. Variation of fatigue crack growth parameter, m, with respect to the content of the 

ferrite phase 

The plot shown in Figure 41 shows the variation of m with respect to the ferrite content. 

Ideally, with the increase in the content of ferrite phase distribution, the material becomes 

softer and stronger at the same time which should result in reducing the rate of crack 

growth and the corresponding parameter of crack growth, m. However, since a number of 

factors are controlling the crack growth rate in here, an ideal behavior is certainly not 

observed; instead a scattered pattern can be observed.  

 

Fig 42. Variation of fatigue crack growth parameter, m, with respect to grain size 

The variation in the constant m with respect to the ferrite grain size is shown in Figure 42. 

With the increase in grain size, the strength of the material reduces and enables crack 

growth, thereby increasing m. This trend can be seen from the figure. 
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Fig 43. Variation of fatigue crack growth parameter, m, with respect to Hardness 

Figure 43 depicts the variation in fatigue crack growth constant m with respect to Hardness 

through the pipe wall thickness. Although a scattered behavior is seen by the combined 

plot, individually, the pipes somewhat depict an increase in m with increasing the hardness. 

This is more clearly seen in Pipe 44 compared to the other two pipes. 

A combination of the material properties is seen to be contributing to the crack 

growth rate and the corresponding parameters m and C and hence no generic trend is 

observed when m is plotted with respect to the material properties (Elwazri et al. 2005). 

4.4 FRACTURE SURFACE INVESTIGATION OF THE BROKEN 

SAMPLES 

 

The fracture surface of the specimen was studied through SEM imaging and some 

inclusions were seen on the surface. These were analyzed using EPMA to test for their 

composition. The images for the fracture surfaces and their EDS spectrums are shown 
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Fig 44. Fracture surface images and EDS spectrum for pipe 44 a) Fracture surface b) Fe-

Cu-Zn inclusion c) Ca-Mn inclsuion 

The fracture surface images for pipe 44 are shown in Figure 44. The fracture region 

shows a typical ductile failure characterized with dimples for a majority of the fracture 

surface area. Some areas also show the presence of fatigue ridges. 

Inclusions are also seen on the fracture surface and likely to have interacted with 

the crack and caused a failure. One inclusion appears to be a compound of Fe-Cu-Zn, 

whereas the other shows a Ca-Mn compound. 

Pipe 45 
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Fig 45. Fracture surface and EDS spectrum images for pipe 45 a) Fracture surface b) 

MnS elongated inclusion 

The fracture surface for pipe 45 depicted in Figure 45 is also seen to be comprised 

of dimples, a characteristic of ductile fracture. Some other regions show fracture ridges 

which are dominated by the inclusions, instead of dimples. MnS inclusions can be seen to 

be elongated along the crack path, signifying their interaction. 

Pipe 47: 
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Fig 46. Fracture surface and EDS spectrum fracture surface images for pipe 47 a) 

Fracture surface b) Elongated Mn inclusions 

The fracture surface of pipe 47 as shown in Figure 46 shows the absence of dimples 

and presence of ridges. This is likely due to the dominance of inclusions contained within 

the fracture surface which are composed of Mn. 

The size of the Ca-rich inclusion was seen to be about 10 um, whereas the Mn-based 

inclusions appeared larger as much as 80 um. It is safe to say that such a large size of 

inclusions resting in the voids and broken along the crack path have appeared to have an 

impact on the crack growth rate and in some cases completely dominated the same 

(Mohtadi-Bonab et al. 2016). As such, the direct impact of each material property on the 

rate of crack growth is hard to see and can be derived by combining a number of 

contributing factors, some more dominant than the others. 

4.5 CONCLUSION 

 

The fatigue crack growth analysis was done for five different steel pipe specimen, 

which are composed of similar microstructure (ferrite and pearlite).The values for the 

constants or parameters for fatigue crack growth were identified and studied for a variation 

along the thickness. Some major conclusions from the study are listed here: 

1. The fatigue crack growth pattern was observed to be transgranular through the specimen. 

The microstructural features such as the grain size and volume fraction of ferrite depicted 

a slight change after deformation, compared to the base metal.  
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2. The parameters of fatigue crack growth depicted a slight change through the thickness 

of the pipe sample relating to the microstructure. The constant m was found in the range of 

2.5~4.5, whereas the constant C was observed to be in the range of 10-9 ~ 10-13 

3. Elongated and broken inclusions were observed on the fracture surface and seen to be 

resting on the voids. These were composed of Mn, Mn-S, Ca-Mn and Fe-Cu-Zn and varied 

from 10 um diameter to 80 um. The inclusions appear to have contributed to the variation 

in the crack growth rate for the different pipe specimen with similar microstructure, and 

possibly through the bulk of their thickness. 

It can be concluded that different damage mechanisms are active at different regions along 

the pipe wall, pertaining to the metallurgical technology used in their production. A 

surface-level assessment of the material properties is therefore, not a complete 

representative of the bulk properties. This is further backed by the differential data in 

hardness and tensile properties along the thickness, presented in section 2. An in-situ 

testing with the real time monitoring of the microstructural damages is desired as it can 

provide more detailed insight of the damage progression through the bulk of the pipes. 
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5 3-D STOCHASTIC RECONSTRUCTION MODEL 

 

5.1 INTRODUCTION 

 

This reduction in the data volume will be achieved through the development of a 3-

D reconstruction model, of the stochastic type, from the 2-D morphological information 

available from the surface depths, primarily for a two phase system, to be a representative 

of the bulk structure of the material. 

The methodology used for this is based on the stochastic reconstruction scheme 

developed by Yeong and Torquato (Yeong and Torquato 1998).  Key structural features, 

known as statistical descriptors are extracted from the 2D images that can contain various 

correlation functions. A typical 2-point correlation function for a statistically 

inhomogeneous system is; 

                                𝑆2
(𝑖)(𝑥1, 𝑥2) = 〈𝐼(𝑖)(𝑥1)𝐼

(𝑖)(𝑥2)〉 = 𝑆2
(𝑖)(|𝑥1 − 𝑥2|)                  (14)                         

where x1 and x2 are two arbitrary points and S2
(i)(x1,x2) is the probability of finding 

the two points in the same phase. A state of minimum “energy” is then computed from the 

given set of local minima, by the phase pixel interchange procedure in the digitized media. 

                                                                𝐸 = ∑ [𝑓𝑠(𝑟𝑖)−𝑓𝑠(𝑟𝑖)]
2

𝑖                               (15)                           

where, f0(r) is the known two-point correlation function of the reference system, 

and fs(r) of the reconstructed digitized system, with r being the distance between two points 

in the system. The resultant energy from the phase interchange method is obtained as E’, 
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with the energy difference as E-E’. The probability of the phase interchange given by the 

Metropolis method is given as: 

                                       𝑃 (𝐸𝑜𝑙𝑑
 
→𝐸𝑛𝑒𝑤) = {

         1,                         ∆𝐸 < 0     

 

exp (−
∆𝐸

𝑇
) ,           ∆𝐸 ≥ 0

               (16)                   

where T represents temperature, and is adjusted with the simulation annealing 

method to converge the energy to a global minimum, the schematic of this is shown in 

Figure 47. 

 

Fig 47. The local minima, with the arrow towards the global minimum 
 

5.2 3-D STOCHASTIC RECONSTRUCTION MODEL FOR PIPE 45 

 

The 3-D reconstruction was performed for two surface layers of Pipe 45, outer and 

middle region using a 2-D correlation function in perpendicular directions. The 

reconstructed images are presented below: 
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Fig 48. 3-D reconstruction for outer surface of Pipe 45 

The reconstruction representation has the base image, followed by the cropped 

image fed for reconstruction. The extracted 2-D correlation function is presented and the 

final obtained reconstructed slices and 3-D image are presented in Figure 48. 
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Fig 49 3-D reconstruction for middle surface region of Pipe 45 

It can be seen from Figure 49 that there is a considerable difference in the features 

of the outer and the middle region, which can be very well picked up by the reconstruction 

algorithm as well. This is used to extract linear elastic properties from these reconstructed 

segments using techniques such as Finite Element Method and compare them against the 

true properties for validation. This can be followed by plastic properties depending on the 

performance of the elastic properties prediction.  
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Fig.15 a): Raw Images Fig.15 b): 2D Correlation 

function 

Fig.15 c): 2D slices Fig.15 d): 3D Reconstruction 
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6 CONCLUSION AND FUTURE WORK 

 

The integrity assessment of the aging Natural gas pipeline system is proposed 

through the design of the Bayesian Network framework model, which integrates the 

different material properties derived from in-situ measurements. The model is validated 

from the results of experimental measurements to show an improved accuracy of strength 

prediction. Three field samples and a few literature databases were investigated to obtain 

the data for the model prediction and training. Several imaging, analytical and mechanical 

testing techniques were employed for macro assessment of material properties. Next, a 

comparative study of different statistical models were employed to aid in prediction of 

manufacturing process parameters and the impact of the parameter variation was studied 

for each dataset. Finally, fatigue behavior of five pipe specimen was investigated for 

variations in crack growth rate. The crack growth rate appeared to vary through the bulk 

for majority of the samples. The failed samples were analyzed using Scanning Electron 

Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), and the presence of 

inclusions on the fracture surface was noted. The major conclusions from the present study 

are depicted here: 

1. The integrated Bayesian network model showed a significant improvement in accuracy 

compared to prediction with individual nodes, signifying the impact of multi-modal 

approach on strength prediction of the pipeline systems.  

2. Data training for modification of the likelihood model also resulted in a significant 

improvement of prediction accuracy. The parametric studies for the nodes indicated a 
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higher impact by certain nodes compared to others, which is linked to their weight 

distribution. 

3. The performance of the statistical models showed a preference for ML-KNN approach 

for the major part to obtain the best prediction for the process parameters. The parametric 

analysis for the individual models helped identify the best values resulting in best 

predictions. 

4. The fatigue analysis showed a variation in the crack growth rate along the pipe thickness 

for the major part. The parameters of crack growth C and m appeared to differ among the 

different pipe specimen with similar microstructure. The pipe specimen were seen to be 

strong for the crack to propagate through the grains. 

Several future studies are suggested based on the current investigation 

1. As the current system is mainly focused on the prediction of Yield strength, the same 

can be replicated for the ultimate tensile strength for all the samples. This study, overall, 

can be extended to a larger volume of data to improve the prediction capability of the model 

system, and training and validation can also be performed on specific grades of interest 

2. Larger datasets can be employed for the comparative assessment of the statistical 

models. For the present study, 60 percent of the data was used for training and the 

remaining was used for prediction. An interesting thing to analyze would be the 

performance of these models to varying sizes of training data (limited due to the small 

datasets).  
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3. Texture of the deformed samples can be studied using Electron backscatter diffraction 

(EBSD) analysis and compared to the base metal. The same can also be evaluated for 

variability along the pipe wall thickness direction. 

4. The current study for fatigue analysis focuses on the macro level study of the material 

behavior. In order to understand the failure mechanics at the grain level, a micro-level 

investigation with TEM and X-ray tomography studies can be conducted. 
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