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ABSTRACT  

   

Being a remarkably versatile and inexpensive building material, concrete has found 

tremendous use in development of modern infrastructure and is the most widely used 

material in the world. Extensive research in the field of concrete has led to the development 

of a wide array of concretes with applications ranging from building of skyscrapers to paving 

of highways. These varied applications require special cementitious composites which can 

satisfy the demand for enhanced functionalities such as high strength, high durability and 

improved thermal characteristics among others.  

The current study focuses on the fundamental understanding of such functional 

composites, from their microstructural design to macro-scale application. More specifically, 

this study investigates three different categories of functional cementitious composites. First, 

it discusses the differences between cementitious systems containing interground and 

blended limestone with and without alumina. The interground systems are found to 

outperform the blended systems due to differential grinding of limestone. A novel approach 

to deduce the particle size distribution of limestone and cement in the interground systems is 

proposed. Secondly, the study delves into the realm of ultra-high performance concrete, a 

novel material which possesses extremely high compressive-, tensile- and flexural-strength 

and service life as compared to regular concrete. The study presents a novel first principles-

based paradigm to design economical ultra-high performance concretes using locally 

available materials. In the final part, the study addresses the thermal benefits of a novel type 

of concrete containing phase change materials. A software package was designed to perform 

numerical simulations to analyze temperature profiles and thermal stresses in concrete 

structures containing PCMs.  
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The design of these materials is accompanied by material characterization of 

cementitious binders. This has been accomplished using techniques that involve 

measurement of heat evolution (isothermal calorimetry), determination and quantification of 

reaction products (thermo-gravimetric analysis, x-ray diffraction, micro-indentation, 

scanning electron microscopy, energy-dispersive x-ray spectroscopy) and evaluation of pore-

size distribution (mercury intrusion porosimetry). In addition, macro-scale testing has been 

carried out to determine compression, flexure and durability response. Numerical 

simulations have been carried out to understand hydration of cementitious composites, 

determine optimum particle packing and determine the thermal performance of these 

composites. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Cement is a remarkable man-made material and has had a significant impact on human 

development in the last few decades. The ease of availability of raw materials, inexpensive 

cost of production, ability to gain strength over time and long-lasting service life has led to a 

revolution in the fast-growing infrastructure sector. It has been such an essential material 

that the growth of nations and economies has been found to be directly correlated with their 

cement consumption and demand (Davidson, n.d.). The GDP versus cement consumption 

graph is a striking visual representation of a country’s stage of development. The global 

volumes of cement consumption have doubled over the last decade from 1.8 bn tonne in 

2002 to 3.7 bn tonne in 2012 (Armstrong 2013). Cement is the major ingredient in concrete, 

which is used as the basic building material for construction. Concrete has been recognized 

as a great building material ever since the dawn of human civilization. The earliest known 

man-made structures made out of concrete were built in 6500 BC in the regions of modern 

day Syria and Jordan. Some of world’s most notable historic structures have been made out 

of concrete. The Great Pyramid of Giza and the Great Wall of China are examples of 

concrete structures that have stood the test of time. The Pantheon in Rome built around 

2600 years ago is still the largest unreinforced concrete dome structure in the world. In all of 

these structures, concrete developers used crude materials such as gypsum, limestone, 

crushed rice, clay etc. with minimal processing. With the advent of modern technology, it is 

now possible to make immense quantities of concrete with precision quality control and at 
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extremely affordable costs to make the modern concrete forms that we have in this day and 

age. Some of the modern concrete marvels include the Itaipu gravity dam located on the 

border of Brazil and Paraguay, Burj Khalifa, the tallest building in the world in Saudi Arabia, 

Millau Viaduct, the highest bridge in the world and the 102-mile-long Danyang–Kunshan 

Grand Bridge in China. 

Because of its versatile nature, concrete researchers often go out of their way to look for 

novel and more effective ways to make concrete better. Each of the projects described 

above used a different composition of concrete, where concrete is modified using several 

alternative materials to create a functional concrete composite that is best suitable for the 

application. The design of such a concrete composite depends on several factors – the 

availability of raw materials, architectural design of the structure, type of loading experienced 

by the structure, compressive and flexural strength required, environmental conditions, 

structural life expectancy, project cost etc. With several limiting factors on every 

construction project and a multitude of emerging uses of concrete, functional concrete 

composites have found their way into the scientific discussion most appropriately. These 

composite materials are cement-based materials with high volume replacement of cement by 

supplementary cementitious materials, cement-less materials with alternative replacement 

materials and non-hydraulic cementitious materials. 

The current study focuses on the replacement of cement with alternate cementitious 

materials including fillers such as limestone and supplementary cementitious materials such 

as fly ash, blast furnace slag, metakaolin and silica fume, in order to achieve certain 
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functional goals such as ultra-high strength and durability, improved thermal response of 

concrete infrastructure. 

1.2 Research Approach 

The early stages of the study began with exploring the effect of fineness in the reactivity of 

two commercial interground portland limestone cements having the same limestone content. 

The fineness effect was distinctly observed at early ages and the interground system with a 

higher fineness was able to reach higher early age strengths. The increase in consumption of 

limestone was evaluated using thermo-gravimetric analysis. Further, the performance of 

these interground cements was compared to those of blended limestone systems, where 

limestone of four different median sizes was mixed with ordinary portland cement to create 

blends in an attempt to match the particle size distribution of the PLCs. The interground 

systems were found to outperform the blended systems, which was hypothesized to be due 

to the differential grinding of cement and limestone in the interground systems. In order to 

determine the unknown PSDs of clinker and limestone in the interground PLCs, a novel 

method was proposed which helps in better design of blended mixtures to achieve 

performance equivalence as those of the PLCs.  

It was recognized that limestone is capable of chemically combining with the aluminate 

phases in the cementitious materials to form carboaluminates that further densify the 

microstructure and consequently improve the properties. Therefore, a combination of 

limestone and slag was utilized as OPC replacement in order to develop binders that contain 

higher levels of cement replacement, yet result in performance-equivalent concretes. In 

addition to the alumina content in slag (which is higher than that in OPC but significantly 



4 

 

lower than those in fly ash or metakaolin) that facilitates limestone-aluminate synergistic 

reactions, slag demonstrates cementitious (albeit slow) and pozzolanic reactivity. The 

synergistic effects of limestone and slag were explored in detail with respect to their 

contributions to the formation of hydration products and the development of strength and 

pore structure. The synergistic effect of slag and limestone was confirmed by the linear 

correlation between the consumption of carbonates and the formation of AFmc phase in the 

pastes. The presence of limestone resulted in an increased strength in ternary OPC mixtures 

containing slag and limestone as compared to the binary OPC-slag blends. 

The understanding of cement hydration and the chemistry of supplementary cementitious 

materials was used in the formulation of ultra-high performance concretes, a special class of 

cementitious materials that show very high mechanical properties and enhanced durability. 

The study was focused on designing the binder phase of ultra-high performance concretes 

(UHPC) from commonly available cement replacement (fly ash, slag, microsilica, metakaolin) 

and fine filler (limestone) materials. A packing algorithm was used to extract the number 

density, mean centroidal distance, and coordination number of the microstructure. Similarly, 

rheological studies on the pastes provided yield stress, plastic viscosity, and min-slump 

spread. Using a combination of strategically designed packing and flow criteria, a total of 8 

ternary and quaternary blends were selected for characterization out of 32 initial mixture 

compositions. The highly efficient microstructural packing in these mixtures and better 

workability that facilitated dispersion of particles to enhance the reactivity resulted in 

beneficial pore structure and mechanical properties. 28-day compressive strengths more than 

90 MPa were obtained for some mortars while all the mixtures showed strengths of more 
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than 80 MPa at 28 days. Proposed experimental works include (a) developing superior ultra-

high performance binders using metakaolin and silica fume in combination with fine 

limestone and (b) developing ultra-high performance concretes using locally available 

materials by using aggregate and paste optimization techniques.  

In addition to the experimental investigation, computer simulations were also carried out to 

model the early-age performance of special cementitious binders. When subjected to an 

increase in temperature, phase change materials (PCMs) transition from solid to liquid state, 

thus allowing them to act as a latent heat storage medium. This behavior presents a unique 

opportunity to utilize PCMs as a strategy to mitigate early- and later-age thermal cracking in 

concrete structures. A one-dimensional finite difference model was used for a hydrating 

concrete pavement with considerations of mixture proportions, member geometry, and 

structural and thermal (environmental) boundary conditions. Significant reductions in early-

age hydration heat release were observed when PCMs were incorporated in the pavement 

concretes, as replacement for the cement paste or fine aggregates. The simulations predicted 

a 6oC-to-10oC reduction in peak temperature when the concrete contained approximately 5% 

by volume of PCM, either as a replacement of fine aggregates or of the cement paste, 

therefore reducing the thermal stresses in the concrete and leading to a significant reduction 

in the probability of cracking. Curling stresses are a major concern in mature pavements 

which lead to thermal fatigue and cracking and ultimately reduction in the service life of 

pavements. Simulations on mature pavements containing PCMs showed a 4 oC to 6 oC 

reduction in the peak value of temperature differential in the pavement containing PCM 

when compared with a plain concrete pavement. This led to a comparable reduction in the 
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curling stress values. Simulations were run on concrete pavements located in hotter climate 

of Phoenix, Arizona and cooler climate of San Francisco, California and it was found that 

the selection of appropriate PCM transition temperature is extremely important to increase 

its effectiveness in different climatic conditions. PCM with a transition temperature of 35 oC 

was more effective in Phoenix, whereas PCM with a transition temperature of 24 oC was 

more appropriate for San Francisco.  

As a result of this work, it was identified that there are several variables that play a key role in 

determining the optimum amount and type of PCM to be used in a climatic condition. In 

addition, the incorporation of PCM would benefit all concrete structures by reducing the 

amount of thermal fatigue. Therefore, a software tool MATRICEs was developed to 

simulate the effect of PCMs in concrete structures. The software is in the early stages of 

development and currently MATRICEs version 1.0 is capable to modeling the thermal 

response of concrete bridge decks and pavements with variable climatic conditions 

considering the concrete mix design, hydration parameters and mechanical strength 

development. 

1.1.1 Research Objectives 

This study has been focused on understanding the fundamental early age behavior of 

composite cementitious binder systems, consisting of supplementary cementitious materials 

such as slag, fly ash, metakaolin, silica fume and inert fillers such as limestone. Experimental 

investigation techniques as well as computational modeling were employed to study the early 

age behavior. Experimental work was carried out using advanced microstructural 
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characterization techniques such as isothermal calorimetry, thermo-gravimetric analysis, 

mercury intrusion porosimetry, dynamic shear rheology and X-ray diffraction.  

The objectives of the study in these sections are:  

a. Comparative investigation of interground and blended limestone cements,  

b. Characterization of ternary binders containing slag and limestone, and exploring the 

synergy between limestone and aluminous source slag,  

c. First principles-based approach to the development of ultra-high-performance 

binders and concretes, and their characterization, and 

d. Exploring the significance of incorporating phase change materials in concrete for 

mitigation of early age thermal cracking in pavements and bridge decks. 

1.1.2 Research Significance 

With the rapid growth of economies over the past few decades, global cement consumption 

has risen four-fold in the last 30 years and is predicted to rise to about 4.4 billion metric tons 

in 2020. The production of ordinary portland cement is a highly energy intensive process 

which involves heating raw materials at temperatures as high as 1200ºC. Besides that, the 

calcination of limestone used to produce cement emits carbon dioxide, a greenhouse gas 

responsible for global warming. According to a 2016 report on global CO2 emissions 

(Olivier et al. 2016), the cement industry accounts for approximately 8% of the global 

carbon emissions. The environmental impact, particularly the significant emission of 

greenhouse gases associated with the manufacture of ordinary portland cement (OPC) 

(Worrell et al. 2001), has deemed it necessary to design concrete infrastructure using high-

volume replacement of cement with alternate cementitious materials including fillers such as 
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limestone and supplementary cementitious materials such as fly ash, blast furnace slag, 

metakaolin and silica fume. The research presented in this study dives into the realm of 

sustainable concrete design to introduce novel cementitious systems which provide the same 

or better properties than conventional OPC. The use of sustainable concrete in 

infrastructure, thus, not only reduces the environmental impact of the cement industry, but 

at the same time also has significant potential in reducing material costs in construction 

projects.  

1.1.3 Report Outline 

The dissertation consists of eight research papers that have been published, submitted or 

going to be submitted for publication. These papers are presented in Chapters 3-10. The 

overall report is divided into two major sections – (A) novel concrete mixtures and their 

early age performance, and (B) modeling of early age performance of novel concrete 

mixtures. Chapters 3-8 belong to the first section and Chapters 9 – 10 belong to the second 

section. The overall organization of the thesis is shown below. 

Chapter 1 gives a brief introduction about the study and presents the background on 

functional cementitious composites. The definition of functional cementitious composites is 

explained along with the relevance to the work done in this study. The research objectives 

are identified, and a chapter outline is presented.  

Chapter 2 presents a thorough literature review pertaining to all four objectives of the study. 

Chapter 3 reports a comparative investigation on blended and interground limestone 

cements. The effect of cement replacement using limestone in these two different ways is 
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brought out by studying the hydration, pore structure and strength development of the 

cement-limestone systems. 

Chapter 4 explores a novel methodology to extract the individual particle size distributions 

of limestone and cement from an interground cement/limestone composite cement. The 

hydration of binary cement-limestone systems is modeled using a three-dimensional cement 

hydration modeling tool.  

Chapter 5 brings out the limestone-aluminate synergy in slag containing high volume cement 

replacement binders. The chapter provides a characterization of the cement and cement-slag 

binders in the presence of limestone using several available techniques and discusses how a 

favorable limestone-alumina synergy can lead to performance equivalent binders.  

Chapters 6-8 present a series of studies to implement a novel multi-scale design strategy to 

design ultra-high performance concrete mixtures.  

Chapter 6 discusses the methodology to design ultra-high performance binders that 

incorporate conventional cement replacement materials, and achieve a high degree of 

microstructural packing and desirable rheology for flowable concrete.  

Chapter 7 presents a holistic material design of ultra-high performance concrete by coupling 

the efficient design for ultra-high performance binders with an optimized aggregate 

distribution to attain the maximum packing density.  

Chapter 8 presents the compression and flexural response of the ultra-high performance 

concretes designed in the previous chapter. It also discusses the evaluation of homogenized 

micro-mechanical response of ultra-high performance binder using micro-indentation. 
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Chapter 9 presents a numerical simulation study to evaluate the thermal response of 

concrete pavements that contain phase change materials. The study employs a one-

dimensional finite difference method to determine the spatio-temporal temperature profile 

of a concrete pavement and utilizes that to further analyze the thermal stresses and cracking 

probability in concrete pavements. 

Chapter 10 presents a comprehensive software package for modeling and analysis of thermal 

stresses in concrete structures. The chapter describes the software documentation and theory 

behind the computation of thermal strains and stresses in a diverse array of concrete 

structures. 

Chapter 11 goes over the conclusions and recommendations for future work beyond this 

thesis.  
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CHAPTER 2 

LITERATURE REVIEW 

This literature review is divided into two parts. The first part covers the multi-component 

cement replacement systems and goes over the research conducted in the field of 

supplementary cementitious materials and high-volume cement replacement using SCMs. It 

discusses ultra-high performance concretes and their design in terms of strength, durability 

and cost. The second part discusses briefly about the science of phase change materials and 

reviews the research conducted in the field of incorporation of phase change materials in 

concrete. 

2.1 Cement Replacement by SCMs 

2.1.1 Background 

As in any conventional cementitious system, ordinary portland cement (OPC) constitutes the 

major binding material in concrete. In addition to OPC, several waste/by-product materials 

containing reactive aluminosilicates (industrial by-products such as fly ash and slag, and 

natural pozzolans) are used because of their potential to enhance the mechanical and 

durability properties of concretes. Partial cement replacement materials such as fly ash, silica 

fume and metakaolin (Figure 2-1) are generally used in the cement and concrete industry in 

large amounts (Kosmatka et al., 2002). The mechanisms by which these materials improve 

the properties of cementitious systems is well known. These materials react with the soluble 

calcium hydroxide (CH) produced as a result of OPC hydration, resulting in secondary 

calcium silicate hydrate (C-S-H) gel. This increases the volume of solid products in the 



12 

 

material structure and refines the pore structure, thereby enabling strength enhancement and 

increased resistance to the passage of deleterious agents such as chlorides and sulfates.  

 

Figure 2-1: Micrographs of: (a) fly ash, (b) silica fume (Mitchell et al., 1998), and (c) 
metakaolin as supplementary cementitious materials (SCMs). 

 
These materials are referred to as supplementary replacement materials (SCMs). The 

common materials used to replace cement in concrete are described in this section. 

2.1.2 Fly Ash 

Fly ash (FA) is a by-product of coal fired electric power plants. Depending on the amount of 

calcium present in the fly ash, it can be classified as high calcium (Class C) or low calcium 

(Class F) fly ash. Class F fly ash is more common in Arizona. Due to their spherical shape 

(Figure 2-1 (a)), FA particles have been shown to improve the workability of concrete. FA is 

also a pozzolanic material, which means that it reacts with the by-product of cement 

hydration (i.e. calcium hydroxide) to form its own hydration product, thereby improving 

concrete properties. However, it is notable that the pozzolanic reaction of fly ash (in general, 

Class F FA) is a slow process, and thus the effects of FA on early age reaction kinetics, 

setting, and strength development becomes an important consideration in designing 

concrete systems. Fly ash blended with other cement replacement materials such as silica 
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fume and metakaolin has been shown to provide accelerated early age property development 

(Vance et al., 2013a). It has been well documented (Nochaiya et al., 2010; Richardson, 1999) 

that FA lowers the heat of hydration, enhances the amount of hydration products (C-S-H 

gel), and thus improves the mechanical properties and durability of concrete, when used as a 

partial cement replacement. In general, the replacement levels of cement by Class F FA in 

concrete ranges from 10-30% (by mass), while Class C FA can be used in higher amounts. 

The use of high volumes of fly ash in cementitious systems or the use of geo-polymeric 

systems (where OPC is not used at all; rather fly ash is the sole cementing medium, aided by 

high concentration of alkali hydroxides and silicates) (Garcia-Lodeiro et al., 2011) have also 

been studied.  

2.1.3 Silica Fume 

Silica fume (SF), one of the most popular pozzolanic materials used in concrete, is a by-

product of the manufacturing of silicon and silicon alloys (Malhotra et al., 1987). The fine 

particle size of silica fume (lower by an order or magnitude or more as compared to OPC) 

results in SF acting as nucleation sites for cement hydration, thereby enhancing the rates of 

reaction during the early stages of hydration (Cheng-yi and Feldman, 1985). Silica fume is 

available in densified and undensified states; the dry densified one being more common in 

use. Although densified silica fume increases the bulk density, researchers have shown there 

is some degree of agglomeration between the particles which influences the workability and 

properties of concrete (Boddy et al., 2000; Bonen and Diamond, 1992; Mitchell et al., 1998; 

Nagataki et al., 1994). The enhancement in mechanical properties when SF is used, is 

attributed to the matrix densification and pore size refinement as a result of consumption of 
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calcium hydroxide (Bayasi and Zhou, 1993; Igarashi et al., 2005; Mazloom et al., 2004; Poon 

et al., 2006; Rao, 2003; Yajun and Cahyadi, 2003). The very high reactivity of SF, aided by its 

small particle size and high amounts of reactive silica, results in faster property development 

than other partial cement replacement materials. This can be noticed from the strength 

activity indices of cementitious systems containing SF or FA as can be noticed from Figure 

2-2 (Neithalath et al., 2009). An even finer version of silica fume, termed as nano-silica is 

also used sometimes for special applications. While the very small particle sizes undoubtedly 

increase the reactivity in the system, the dispersion of mixtures containing such particles is a 

challenge, even when very high amounts of dispersion-helping chemical admixtures are used. 

The agglomeration of these particles sometimes causes undesirable effects in mechanical 

properties.  

Age, days

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

S
tr

e
n

g
th

 a
c
ti

v
it

y
 i

n
d

e
x

6% SF

9% SF

20% Fly ash

14 28 56

 

Figure 2-2: Strength activity indices of cementitious mortars containing SF or FA (Neithalath 
et al., 2009) 
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2.1.4 Metakaolin 

Metakaolin (MK) is a pozzolanic material produced by the thermal processing of kaolin clay 

(Gruber et al., 2001). Metakaolin has an amorphous structure (see Figure 2-1) consisting 

mostly of aluminosilicates, and forms C-S-H gel on reaction with calcium hydroxide 

produced from cement hydration. Metakaolin has been shown to be more reactive than fly 

ash and other similar pozzolanic materials due to its higher surface area and greater alumina 

content (Poon et al., 2001). The higher reactivity, along with the reduction in cement 

content, leads to increase in heat of hydration per unit mass of cement (Figure 2-3(a)) (Vance 

et al., 2013a). The enhanced pozzolanic activity consumes more calcium hydroxide and 

forms more C-S-H than what is typical with other cement replacement materials such as fly 

ash. This is shown through thermal analysis results in Figure 2-3(b) (Vance et al., 2013a). The 

net result is an increase in the amount of hydration products, refinement of the pore 

structure, and consequent improvement in the mechanical properties and durability of 

concrete (Antoni et al., 2012; Kadri et al., 2011; Paiva et al., 2012; Poon et al., 2001; 

Shekarchi et al., 2010; Vance et al., 2013a). 
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Figure 2-3: (a) Reduction in heat of hydration when cement is partially replaced by MK, (b) 
thermal analysis results showing reduction in CH and increase in C-S-H when MK replaces 

part of cement (Vance et al., 2013a) 

 

2.1.5 Limestone 

The use of limestone as a partial cement replacement material has been on the rise in recent 

years. Portland limestone cements are used in several countries including the U.S. ASTM C 

595 has defined a Type IL cement that can include up to 15% of limestone powder as a 

partial cement replacement material (Tennis et al., 2011). The use of appropriate size ranges 

of limestone powder results in better particle packing and thus improves the properties. 

Limestone powder can chemically interact with the aluminate phases in cement to form a 

carboaluminate phase (Arora et al., 2016b, 2016a; Das et al., 2015; Kumar et al., 2013; 

Puerta-Falla et al., 2016; Vance et al., 2013a, 2015a). Previous work (Vance et al., 2013a) has 

shown that fine limestone in the presence of metakaolin or fly ash, enhances the amount of 

C-S-H gel formed even as early as 28 days, and has a beneficial impact in strength 

(b) (a) 
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development as shown in Figure 2-4.  This is a significant result, since it provides the 

rationale for using fine limestone in combination with other SCMs, which has the potential 

to improve the sustainability of concrete.  

 
(a) 

 
(b) 

Figure 2-4: (a) Thermal analysis results showing reduction in CH and increase in C-S-H 
when MK or FA in combination with limestone replaces part of cement, and (b) strength 

development of limestone-metakaolin systems (Vance et al., 2013a) 

  

2.1.6 Microstructure Packing and Hydration Modeling 

The microstructure of a cementitious system plays a significant role in determining the 

hydration, porosity and strength development properties of the macro-scale concrete. As 

such, the particle size distribution and fineness of constituent materials can be used to 

construct virtual microstructures and study the interactions of particles. Improved 

mechanical and durability properties of cementitious systems are a result of proper mixture 

proportioning that includes a low w/b ratio and the use of several materials that help refine 

the pore structure. The pozzolanic materials provide increased hydration and refinement of 

the pore structure, causing the microstructure in these systems to densify, as explained in the 
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previous sections of this chapter. Use of a proper size distribution of solid particles can help 

increase the packing density of the microstructure, which beneficially influences the 

mechanical and durability properties of the material. This is schematically depicted in Figure 

2-5 (“Fillers in Action: How to Achieve High Particle Loadings” 2015). Since packing in the 

matrix can be controlled by judicious selection of powders with appropriate particle sizes, it 

is a better means to design and produce economical concrete mixtures, rather than the use of 

expensive high-reactivity materials. In this manner, a particle-packing based mixture 

proportioning ensures economy and sustainability.  

(Stovall, de Larrard, and Buil 1986) presented a model for packing density of multi-sized 

grains. The model expresses the packing density as a function of the fractional solid volume 

of each size of grain present. In many packing models, it is assumed that there is at least one 

dominant sized particle group (that has the highest packing density) among the various grain 

sizes present.  By sequentially considering each class of particles as dominant, a series of 

packing density functions can be obtained. The minimum packing density can then be 

conservatively taken to be the packing density of the mixture (De Larrard 1999; Lecomte 

2006a).  The packing density functions can be represented as:  
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where i is the virtual packing density of the mixture when class i is dominant, βi is the virtual 

packing density of grains of class i, vj is the volume fraction of grains of class j, and n is the 
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total number of grain classes. Refer to (De Larrard 1999) for more details including the 

formulation and mathematical expressions that define packing-based mixture design.  

 

Figure 2-5: Schematic illustration of packing density as a fraction of larger particles in the 
mix (“Fillers in Action,” 2015). 

 

Virtual packing density is defined as the maximum packing density, which can be achieved 

by placing each particle one by one, in appropriate positions in a representative volume. In 

reality, it is not possible to control the positions of the grains, and therefore the distribution 

of the particles is random. For any random packing arrangement, a value called the actual 

packing density can be calculated (De Larrard 1999). Previous research (Vance, Kumar, et al. 

2013) has indicated that packing densities can be calculated computationally by placing 
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spheres (that represent the actual particles1) in representative volume elements (RVEs) as 

shown in Figure 2-6. Virtual 3-dimensional (3D) microstructures can be created using the 

particle size distributions of the powders present in the mixture.  

 

Figure 2-6: A 3D system in which spheres of different sizes are packed 

 

Several microstructural parameters can be calculated from these microstructures to 

characterize and distinguish between different cementitious systems. The parameters include 

packing density, number density, contact fraction, mean centroidal distance, coordination 

                                                 

1 Though many of the cementitious materials, with the exception of fly ash, are not spherical, the spherical 
particle assumption is widely used in computational materials science. This is to ensure that the 
simulations run in a reasonable amount of time in a relatively high-powered computer or a cluster. 
Assigning realistic particle shapes require orders of magnitude larger computational time, and the 
refinement in the results have not justified that choice, in past studies.  
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number, cumulative averaged cumulative number among others. Packing density is referred 

to as the volume fraction occupied by particles in the representative volume. The packing 

density is a function of the water-to-binder ratio of the cement paste. Number density is 

calculated as the number of particles in a unit volume. The number density values increase as 

OPC is substituted by finer constituents such as microsilica, fine limestone and metakaolin. 

Mean centroidal distance is a measure of the degree of packing of the microstructure. It is 

calculated as the normalized average distance from the surface of a particle to the surface of 

its nearest neighbors. The calculated distance is normalized with respect to the packing 

fraction of the particles in the microstructure. This is essential when comparing 

microstructures with different packing fraction values. Nearest neighbors are considered as 

all the particles that lie partially or wholly in the radial field of a particle in the 

microstructure, defined as a sphere of radius (r + r50/2). Here ‘r’ is the radius of the particle, 

and r50 is the median radius of the microstructure obtained using the cumulative particle size 

distribution of the paste. The coordination number (CN) is an averaged quantity calculated 

as the number of neighbors as a function of the distance from the surface of any particle in 

the microstructure. The number of neighbors is counted as the particles that lie partially or 

wholly at a distance ‘d’ from the surface of a particle of radius ‘r’, where ‘d’ varies from 0 to 

r/2. Following with this definition, a particle with a higher radius will have a larger spatial 

field and therefore a higher number of particles as neighbors. Therefore, an averaged CN 

profile may be more useful to characterize the entire microstructure and compare between 

two different microstructures. Such a quantity is defined as the cumulative averaged 

coordination number (CACN). Quantification of the interactions through contact fractions 
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is useful to obtain a perspective on the reaction rates in the mixtures. The particle contact 

fraction is calculated as the fraction of nearest neighbor pairs in the microstructure. For 

instance, in a binary system containing cement and limestone, the cement-limestone contact 

fraction is calculated as the ratio of the total number of contacts between cement and 

limestone to the total number of contacts in the system (which includes cement-cement, 

limestone-limestone, and cement-limestone contacts). 

 

Figure 2-7: Evolution of hydration in OPC as a function of number of cycles. From the left, 
images correspond to 0, 100 and 400 cycles of hydration, corresponding respectively to t=0, 

t=4 hours and t=56 hours. 

 

The virtual microstructures developed can be used to study the evolution of hydration 

products in cementitious systems. While several models are available in literature 

(Williamson 1972; Pommersheim and Clifton 1979; Navi and Pignat 1996; Lothenbach and 

Winnefeld 2006; Thomas et al. 2011), this research uses a cellular automata-based cement 

hydration model (D. P. Bentz 2005) to study cement paste hydration. The powder 
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constituents are considered as spherical particles and assigned properties such as reaction 

rates, heat of hydration, dissolution rate according to values obtained in literature. When the 

virtual microstructure initiate the contact with water, hydration products are formed 

probabilistically based on the rules of cellular automata. Figure 2-7 shows three sectioned 

images of a 300-micron RVE containing OPC after 0, 4 and 56 hours of simulated 

hydration. The voids are shown in black and the hydration products can be identified in 

grey. The cement phases C3S,C2S, C3A and C4AF are indicated in white, maroon, purple and 

turquoise respectively. The blue and violet colors indicate gypsum content in form of 

hemihydrate and di-hydrate in the cement. 

2.2 Ultra-High Performance Concrete 

2.2.1 Background 

Ultra-High Performance Concrete (UHPC) is a special type of concrete designed to 

demonstrate exceptional strength, ductility, and durability properties. The high compressive 

strength of UHPC enables reduction in cross section and self-weight of reinforced concrete 

structures. UHPC is constituted by employing a well-defined size distribution of particles 

(both fine particles including cement replacement materials such as silica fume, and fine and 

coarse aggregates), fibers, and a very low water-to-binder ratio (w/b) (0.2-to-0.3). The very 

low w/b demands the use of higher-than-normal amounts of chemical admixtures including 

high range water reducers and viscosity modifiers. This complex mixture formulation, which 

is often proprietary in nature, leads to a significant increase in the cost of production of 

UHPC. Development of economical, yet optimally performing UHPC mixtures is a major 

challenge for many users including State Departments of Transportation. 
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While the 28-day compressive strength of conventional concrete ranges from 4000-7000 psi 

and that of high performance concrete lies between 7000 psi and 14000 psi, the compressive 

strength of UHPC is in the order of 20000-24000 psi. The significantly higher tensile 

strength (1000-1500 psi) and bending strength also set UHPC apart from conventional 

concrete, and even traditional high-performance concrete. In addition, the use of a high 

dosage rate (of the order of 1%-3% equivalent steel fibers) of fibers in UHPC increases the 

ductility of the member, in addition to allowing to withstand tension and bending loads 

without any passive or active reinforcement. The use of a low w/b, coupled with optimal 

particle packing, significantly increases the durability properties of UHPC by resisting the 

ingress of moisture and other deleterious ions such as chlorides and sulfates. These special 

properties of UHPC have been utilized for the construction of several transportation 

structures as well as the connections for precast elements in the U.S and Canada. Figure 2-8 

shows the first UHPC bridge in the U.S. which was built in Iowa, and the casting of 

longitudinal connections between precast bridge girders in the state of New York. 

 

Figure 2-8: (a) The first UHPC bridge constructed in the U.S (in Wapello County, IA), (b) 
casting of longitudinal connections between deck-bulb-tee girders (Route 31 Bridge, Lyons 

NY). Both figures courtesy of FHWA. 
(https://www.fhwa.dot.gov/publications/research/infrastructure/structures/11038/) 

 

https://www.fhwa.dot.gov/publications/research/infrastructure/structures/11038/
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Structural applications requiring enhanced mechanical performance are candidates for 

UHPC (Attar et al., 2000; Porteneuve et al., 2001; Schiessl et al., 2004; Schrefler et al., 2002). 

The precursors of UHPC include high performance concretes (HPC) (Ahlborn et al., 2011), 

polymer modified concretes (Birchall et al., 1983), and reactive powder concrete (Cheyrezy et 

al., 1995; Dugat et al., 1996; Feylessoufi et al., 1996; Philippot et al., 1996; Richard and 

Cheyrezy, 1995; Zanni et al., 1996) among others. While HPC has been, and still is, rather 

popular, its performance requirements are generally lower than those specified for UHPC. 

The Portland Cement Association defines UHPC as ‘a high-strength, ductile material 

formulated by combining portland cement, silica fume, quartz flour, fine silica sand, high-

range water reducer, water, and steel or organic fibers’. This is a rather prescriptive 

definition, which is not strictly correct since some of these components might not be needed 

to obtain desired performance levels.  ACI Committee 239 on UHPC defines it as ‘concrete 

that has a minimum specified compressive strength of 150 MPa (22,000 psi) with specified 

durability, tensile ductility and toughness requirements; fibers are generally included to 

achieve the specified requirement’. FHWA has a rather generic and inclusive definition of 

UHPC: ‘a cementitious composite material composed of an optimized gradation of granular 

constituents, a water-to-cementitious materials ratio less than 0.25, and a high percentage of 

discontinuous internal fiber reinforcement’. The mechanical properties of UHPC include 

compressive strength greater than 22,000 psi (150 MPa), and sustained post-cracking tensile 

strength greater than 720 psi (5 MPa) (B. Graybeal, 2011; Russell and Graybeal, 2013). 

2.2.2 Particle Packing-Based Mixture Proportioning of UHPC 
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 To gain extremely high compressive strengths, a dense particle packing of aggregates and 

cement paste is one of the most important considerations while designing UHPC mixtures. 

(Stroeven and Stroeven, 1999) showed that for dense mono-sized particles at two different 

grain fractions, the volumetric packing density exhibits an oscillatory phenomenon as shown 

in Figure 2-9. Note that the dashed lines in the top of Figure 2-9 at 2 and 14 mm from the 

interface, represent the simulated particle dispersion of the bottom images in Figure 2-9. It 

can be noted that there is an increase in the fractional density at the interface when binary 

particles are used. Such an understanding is useful in selecting particle sizes of aggregates for 

mixtures such as UHPC where packing must be increased for optimal performance. 
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Figure 2-9: Volume fraction of a bimodal particle mixture of sand and gravel as a function of 
the distance to a rigid interface (A. Kumar, Oey, Kim, et al. 2013) 

 

Other models for particle packing also exist. Yu et al. (2014) employed the Andreasen and 

Andreasen particle packing model to produce a dense UHPC with a binder content of about 

650 kg/m3. The Funk and Dinger packing theory was used by (Le et al. 2015) in order to 

determine the grading of aggregates for self-compacting high performance concrete.  While 

these models also provide adequate capabilities with respect to packing, they employ several 

assumptions (e.g., size distribution of all grain classes are the same, the ratio of largest to 

smallest particle size is limited to a certain value etc.). The virtual packing density-based 

model chosen for the present work eliminates many of those assumptions and provides a 

scientific methodology for mixture design, which is repeatable and robust.  

The degree of hydration is rather low in UHPC systems due to the low w/b ratios. It was 

suggested that filler materials (e.g. limestone, quartz powder) and nanoparticles (nano silica, 

for example) can be used to improve the workability of the mixture and accelerate the 

cement hydration process by acting as nucleation sites (Camiletti, Soliman, and Nehdi 2012; 

W. Li et al. 2015). (Sobolev 2004) proposed models for high performance concrete that 

calculate the appropriate water-to-cement ratio required for a specific compressive strength. 

This work suggests that the optimal water reducing admixture2-to-silica fume ratio for 

                                                 

2 High-range water reducing admixtures are also referred to as superplasticizers.  They are typically made from 
polycarboxylate polymers which act as dispersants to improve the flow characteristics of the concrete 
mixture. Not all superplasticizers provide efficient workability, as shown by Ghafari et al. (2015), who 
tested 7 different types of superplasticizers and determined that the ideal type of superplasticizer 
limits the formation of air voids. 
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achieving ultra-dense packing and high fluidity of the system is 1:10. Though there are 

concerns as to how this exact number was arrived at, it is reasonable to assume, based on the 

fineness of silica fume, that a higher water reducing admixture dosage would be warranted 

with higher silica fume content.  

Table 2-1 gives an overview of the constituents in UHPC and their amounts in a typical 

UHPC mixture design, as reported in  several studies (Yazıcı et al. 2008; Tafraoui et al. 2009; 

C. Wang et al. 2012; Elrahman and Hillemeier 2014; Yu, Spiesz, and Brouwers 2014a, 2015; 

Yoo and Yoon 2015; Kay Wille and Boisvert-Cotulio 2015; Alkaysi et al. 2016).  

Table 2-1 Typical proportions of materials used for UHPC 

Materials in UHPC Binder phase Amount (% by weight) 

Cement 25 – 45 

Silica Fume 5 – 15 

Metakaolin 0 – 10 

Fly Ash 5 - 25 

Sand 35 – 45 

Quartz 5 – 15 

Water 3 – 10 

Fiber 0 – 6 

 

2.2.3 Hydration and Microstructure 

It is important to evaluate the hydration of the binding materials in UHPC systems since the 

property development is intimately related to the degree of hydration and the resultant 
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microstructure. Understanding the hydration in these systems also provide indications of 

heat release and potential cracking probabilities, as well as degrees of reaction of the 

component materials.  

Reda et al. 1999) conducted microstructural investigations on carbon fiber reinforced UHPC 

using scanning electron microscopy (SEM) and X-ray diffraction (XRD). They detected a 

very dense and uniform microstructure in the UHPC pastes with a very small interfacial 

transition zone. XRD studies showed no trace of calcium hydroxide, which was attributed to 

the highly efficient pozzolanic reactions of silica fume/silica flour present in the mixtures.  

(Ghafari et al. 2012) also studied the microstructure of UHPC using SEM and quantified the 

density of the microstructure using sorptivity tests and porosity measurements. They found 

that the UHPC mixture containing nano-silica had a much-refined pore structure, resulting 

in a lower amount of water absorption as compared to the reference UHPC mixture. In 

addition, the incorporation of nano-silica also resulted in lower volume of capillary pores, 

which was measured using porosimetry, and confirmed with SEM analysis. 

2.2.4 Mechanical Properties 

The key mechanical property of interest for UHPC is its compressive strength, even though 

the need to consider many other important parameters have been laid out. All definitions of 

UHPC specifically state the need for high compressive strengths.  

Compressive strength testing of UHPC is generally carried out in accordance with ASTM 

C39/C39M or EN 12390-3. The modulus of elasticity is determined using ASTM 

C469/C469M or EN 12390-13. The specimen size has been found to have a significant 

influence on the strength of UHPC. For instance, (Magureanu et al. 2012) found that the 
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flexural strength of 40 x 40 x 160 mm (1.57 x 1.57 x 6.29 in.) prisms was 1.47 times higher 

than that of 100 x 100 x 300 mm (3.94 x 3.94 x 11.81 in.) prisms. Skazlić et al. (2008) also 

observed a 21 % increase in cylinder compressive strength for a specimen size of 

70 × 140 mm (2.75 × 5.50 in) compared to that of 100 × 200 mm (3.94 × 7.87 in). This was 

attributed to a higher probability of encountering larger size flaws in larger sized specimens. 

Further, it has been found that the addition of steel fibers changes the failure mode of 

UHPC specimens from complete damage or sudden explosion to a somewhat ductile 

behavior. The higher the fiber factor, Vf ℓf /df (Vf is the fiber volume fraction, ℓf is the fiber 

length, and df is the fiber diameter), the more pronounced is the change in the failure mode 

(Bencardino et al. 2008).  Wille et al. (2011a) investigated the direct tensile behavior of ten 

different fiber reinforced UHPC (also referred to as UHPFRC) mixtures containing either 

smooth, deformed, or twisted fibers. They found that the use of deformed fibers resulted in 

higher tensile strengths as compared to smooth fibers, which was attributed to an 

improvement in the fiber-matrix mechanical bond through fiber deformation.  

To compute the elastic modulus of the sample during a compression test, in addition to its 

post peak response, a closed loop strain-controlled test should be employed; however, the 

use of axial strain during the softening region may not result in good quality results because 

of energy release and snap back.  These features of the test would result in sudden failure of 

the specimen. It is recommended the complete stress-strain curve of UHPC be obtained 

using a two-stage process. During the first stage, the axial strain is used as the control 

parameter and prior to reaching the peak load, the mode of control is changed to the 

circumferential strain (Ariño and Mobasher 1999).   
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The tensile strength of UHPC, both before and after tensile cracking, is significantly higher 

than that of normal concrete (B. A. Graybeal 2006). The capacity to retain a non-negligible 

and reliable tensile resistance in the post-cracking regime is a distinct feature of fiber 

reinforced concrete. Wille et al. (2011b) showed that addition of 1.5% deformed fibers by 

volume results in a 60% higher post-cracking tensile strength than comparable UHPFRC 

with smooth steel fibers. Therefore, the experimental identification of post-cracking tensile 

behavior and defining parameters to suitably characterize UHPFRC from a design 

perspective is of the utmost importance. Many experimental tensile tests, direct or indirect, 

have been used; however, no tensile test standard has been established to date.  

Curing methods such as steam and heat curing have been found to enhance the compressive 

strength of UHPC. Prem et al. (2015) found that heat cured samples showed 1.5 times 

increase in 28-day compressive strengths as compared to steam cured and water cured 

samples, both of which had similar 28-day strengths. This was also confirmed in a different 

study (Magureanu et al. 2012) which found that the compressive strength of the steel fiber-

reinforced concrete at 371 days was 1.34 times higher for the heat-treated specimens stored 

in water as compared to the water-cured specimens. A FHWA study (B. A. Graybeal 2006) 

reported that steam based treatment of UHPC significantly enhances the material properties. 

Three steam-based treatments: steam, delayed steam, and tempered steam, were compared 

with a curing treatment that did not involve steam after casting.  

Flexural testing is carried out using ASTM C78/C78M or C1609/C1609M under four-point 

bending, or alternately by center-point loading using ASTM C293/C293M. If only maximum 

flexural strength is of interest, ASTM C78/C78M or C293/C293M can be used. If toughness 
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or load-deflection behavior after matrix failure is also of interest, ASTM C1609/C1609M is 

appropriate. Flexural strength results obtained in load-controlled testing according to ASTM 

C78/C78M may differ from those obtained using the deflection-controlled procedures of 

ASTM C1609/C1609M. A study by FHWA showed that the ASTM C1018 prism flexure 

test provided means of comparing the post-cracking tensile behavior of various UHPFRCs 

(B. A. Graybeal 2006). The European Standard EN 14651, specifies, for FRC with fibers up 

to 2.4 in. (60 mm) long, a 6 in. x 6 in. x 22 in. (150 mm x 150 mm x 550 mm) beam 

specimen, with a 1 in. (25 mm) deep notch at mid-span, with a test span of 20 in. (500 mm), 

and a center point loading configuration.  The test can be performed in displacement control 

mode but the CMOD is measured with a clip gauge. 

Two parameter fracture method (TPFM) can be used to characterize the fracture properties 

of UHPC. The fracture parameters such as the critical stress intensity factor (KIC
S) and the 

critical crack tip opening displacement (CTODC), can be calculated from three-point bend 

tests on notched beams as shown in Figure 2-10(a). TPFM involves the use of the loading 

and unloading compliances, peak load, specimen and notch geometry, and a geometry 

correction factor, to determine the values of KIC
S and CTODC. A typical load-CMOD plot is 

shown in Figure 2-10(b) with the loading and unloading compliances. 
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Figure 2-10: (a) Experimental setup for the notched beam fracture test, and (b) a typical 
load-CMOD plot showing loading and unloading compliances (Das et al. 2015) 

 

In addition to the ASTM and EN standards discussed, there are many other standards 

available to evaluate the flexural properties of fiber reinforced cementitious systems such as 

UHPFRCs. The Japan Concrete Institute standard, JCI-SF4, specifies a method of 

measuring the flexural strength and flexural toughness of unnotched beam specimens, which 

can be applied for UHPFRCs. 

Research also suggests that UHPC shrinks more than conventional concretes, attributed to 

the higher binder content in these mixtures, as well as the autogenous effects of very low 

water-to-binder ratios. It has been mentioned that the initiation of shrinkage in UHPC is 

affected by their delayed set times, and the majority of the shrinkage occurs in a short time 

just after the concrete has set (B. A. Graybeal 2006). Restrained shrinkage tests can provide 

indications of cracking susceptibility of UHPCs and potential means to mitigate those. The 
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influence of fibers on improving the shrinkage behavior of UHPC also needs to be 

considered.  

Although there are no ASTM or EN standards for testing procedures for fiber pullout in 

cement matrices to determine bond strength, there is literature that describes the test setup 

and how loading conditions can strongly affect test results. Single-sided test profiles have 

been carried out (Grünewald 2004; Markovic 2006; Naaman et al. 1991; Banthia and 

Nandakumar 2003; Macedo, e Silva, and Martins 2010). 

2.2.7. Durability 

The serviceability and life expectancy of civil structures depend on the environmental and 

service conditions they are subjected to. As such, durability of concrete used in infrastructure 

is one of the key aspects of every construction project. Concrete structures may be subjected 

to ingress by several aggressive ions present in the environment. These ions may react with 

aggregates in concrete (alkali-silica reaction) or with the reaction products formed in 

concrete due to hydration of cement/cementitious materials.  As a result, the strength of the 

structure could be severely compromised and service life drastically reduced. Many 

commonly advocated methods for durability enhancement of concretes rely on a reduction 

in the water-to-cement ratio of the mixture and the use of partial cement replacement 

materials that positively impact hydration. Thus, UHPC mixtures should inherently be more 

durable than conventional concretes. However, there are several factors that are less 

understood, which play a significant role in concrete deterioration. The commonly evaluated 

durability criteria for concrete include the resistance to abrasion, water permeation, freezing 

and thawing, alkali-silica reaction susceptibility, and ionic penetration.  
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2.2.7.1. Water Absorption 

Water absorption, measured in accordance with ASTM C1585 (ASTM C1585 2013), 

determines the rate of absorption (sorptivity) of water as a function of time, by determining 

the increase in the mass of the specimen when only one surface is exposed to water. (Abbas, 

Soliman, and Nehdi 2015) examined the water absorption of UHPC containing steel fibers. 

It was found that the fiber length did not have a significant effect on the sorptivity 

coefficient, however, a slight decrease was apparent in the initial and secondary sorptivity 

coefficients when the dosage of fibers increased. This points to fewer connected pores and a 

denser microstructure when steel fibers are used.  (Ghafari et al. 2014) showed that as the 

amount of nano silica in the UHPC was increased, up to 4% by mass of cement, there was a 

corresponding decrease in water absorption of up to 30%.  

2.2.7.2. Freeze Thaw Resistance  

Freeze thaw degradation, determined in accordance with ASTM C666 – 15  quantifies the 

resistance of concrete specimens to rapidly repeating cycles of freezing and thawing. 

(Benjamin Graybeal and Tanesi 2007) used the Procedure A of ASTM C 666, where UHPC 

prisms were submerged in a water bath while subjected to freezing and thawing. The lower 

and upper temperatures in the freezing and thawing environment were -18 and 4.4 °C. After 

9 months and over 690 cycles of freezing and thawing, they confirmed that UHPC is highly 

resistant to deterioration regardless of the curing treatments performed on the specimens 

prior to testing. They did discover that all specimens exhibited a mass increase throughout 

testing due to the absorption of water into the concrete, causing the unreacted cement 

particles to hydrate. 
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2.2.7.3. Alkali Silica Reaction (ASR) 

The susceptibility of alkali-silica reaction can be tested in accordance with ASTM C 1260 – 

14 (ASTM C1260 2014). Since their UHPC mixtures contained no coarse aggregates, 

Graybeal (Benjamin Graybeal and Tanesi 2007) was able to directly use mortar UHPC bars 

in tests conforming to ASTM C1260. The mortar bars were submerged in a 1 M sodium 

hydroxide solution maintained at 80°C, for an extended duration of 4 weeks. At 14 and 28 

days of testing, expansion of the UHPC mortar bars was an order of magnitude lower than 

the threshold for deleterious behavior prescribed by the standard. This study concludes that, 

due to the high reactive silica content that is utilized in the formation of a low Ca/Si ratio C-

S-H gel, and low permeability of UHPC, ASR is not likely to occur. After 600 days, (Moser, 

Pfeifer, and Stark 2009) showed a maximum ASR expansion of 0.02% for UHPC, which is 

lower than the threshold limit of 0.04%.  

2.2.7.4. Chloride Permeability 

The resistance to chloride ion penetration is typically determined in accordance with ASTM 

C 1202 – 12 (“ASTM C1202 - 12. Standard Test Method for Electrical Indication of 

Concrete’s Ability to Resist Chloride Ion Penetration” 2012), which is a rapid test method. 

This test applies a 60 V electrical potential difference across a concrete specimen 50 mm in 

thickness and 100 mm in diameter, for a duration of 6 hours. (Benjamin Graybeal and 

Tanesi 2007) observed that the charge passed through the UHPC specimens cured for 28 or 

56 days were negligible when measured according to this standard, thereby indicating very 

high resistance to chloride penetration.  (Abbas, Soliman, and Nehdi 2015) also revealed that 
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after 28 and 56 days of hydration, UHPC specimens displayed negligible chloride 

permeation.  

2.3. Phase Change Materials 

2.3.1. Background 

The kinetics of phase change has been studied for years in thermodynamic systems. The 

concept of latent heat was introduced in 1762 by chemist Joseph Black as he noticed that the 

application of heat to boiling water does not result in a rise in temperature of a water/steam 

mixture, but rather an increase in the amount of steam. Today, we understand latent heat as 

the thermal energy released or absorbed by a body or a thermodynamic system, during a 

constant temperature process. It can also be understood as the thermal energy supplied to a 

material to change its state without a change in its temperature. Since all materials undergo 

change of phase at some thermodynamic conditions, the term ‘phase change materials’ is a 

generic term that applies to all materials. However, in modern usage, phase change material 

refers to a material with a high latent heat storage capacity or high heat of fusion. Phase 

change materials have emerged as an innovative solution to energy efficient urban systems 

over the past few years due their increased latent heat thermal storage capacity. The earliest 

studies on application of PCMs in infrastructure date back about 30 years (Collier and 

Grimmer 1979; Benson, Christensen, and Burrows 1985; Shapiro et al. 1987; Hariri and 

Ward 1988; Hawes, Banu, and Feldman 1990), when hydrated salts and hydrocarbons were 

used as phase change materials. PCMs were demonstrated to be useful as passive solar 

collectors in wall systems, however the extremely high cost associated with manufacturing 

PCMs on a large scale as well as unreliable long-term performance of those PCMs served as 
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roadblocks to a larger adaptation of PCM in the construction community. More recently, the 

development of different PCMs with improved thermodynamic, kinetic, chemical and 

economic properties have made PCMs more suitable to be utilized in infrastructure 

applications. Figure 2-11 shows the broad classification of PCMs available. 

 

Figure 2-11 Classification of PCMs available (Zhou, Zhao, and Tian 2012) 

 

2.3.2. PCMs in Concrete 

The incorporation of PCMs in concrete infrastructure is an optimization problem and the 

selection criteria for a particular application depends on a number of factors. Abhat (Abhat 

1983) in his review paper on low temperature latent heat storage materials listed out the 

following criteria for the selection of an appropriate PCM (Table 2-2). 

Table 2-2 Selection Criteria for PCM (Abhat 1983; Zhou, Zhao, and Tian 2012) 

A. Thermodynamic Criteria 

(1) Melting temperature in desired range 

(2) High latent heat of fusion per unit volume 
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(3) High thermal conductivity 

(4) High specific heat and high density 

(5) Small volume changes on phase transformation and small vapor pressure at operating 

temperatures to reduce the containment problems 

(6) Congruent melting 

B. Kinetic Criteria 

(1) High nucleation rate to avoid super cooling 

(2) High rate of crystal growth to meet demands of heat recovery from the storage system 

C. Chemical Criteria 

(1) Complete reversible freezing/melting cycle 

(2) Chemical stability 

(3) No degradation after a large number of freezing/melting cycle 

(4) No corrosiveness 

(5) No toxic, no flammable and no explosive material 

D. Economic Properties 

(1) Effective cost 

(2) Large-scale availabilities 

 

The chemical and kinetic criteria are the most important criteria that need to be satisfied to 

assess the suitability of any particular PCM for an application. Beyond that, the 

thermodynamic and economic criteria are the decision-making factors to select the desirable 

PCM. The melting temperature and enthalpy of commonly available PCMs is shown in 

Figure 2-12.  
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Figure 2-12 Melting temperature and phase change enthalpy of available PCMs (Zhou, Zhao, 
and Tian 2012) 

 

The transition range of the PCMs for infrastructural applications must be between 0°C and 

50°C. The enthalpy of phase change must be high enough to counter the daily temperature 

variations that a structure might experience. Beyond this, the thermal conductivity of the 

PCM must be high enough to facilitate internal heat transfer. The addition of the selected 

PCM in concrete then requires scrutiny about the type of impregnation (Hawes, Feldman, 

and Banu 1993; Castell et al. 2010) in construction materials (direct incorporation, 

immersion, macroencapsulation or macroencapsulation) and its effect on the mechanical and 

durability properties of concrete. Thus, the problem is multi-fold and requires several levels 

of validation. Experimental investigations have been carried out by several researchers to 

show the impact of different PCM types on concrete (Ahmad et al. 2006; Fernandes et al. 

2014; Aguayo et al. 2016). Since experimental field validation is difficult to carry out with 

such a variety of PCMs available, researchers have made efforts to simulate the effects of 

PCM in a concrete environment (Pasupathy et al. 2008; Xu et al. 2005; Šavija and Schlangen 
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2016). The numerical simulation of PCM in concrete has been dealt with primarily as a heat 

transfer problem.  

The temperature development in a concrete structure subjected to external variations in 

climate is modeled using the second-order ordinary differential equation known as the heat-

diffusion equation (Equation 2-1). 

 (Eq. 2-1) 

where k is the material thermal conductivity (W/m/K), T(x,y,z)  (°C) is the scalar 

temperature field, q’ (W) is the heat generation term, ρ (kg/m3) is the material density, cp 

(kJ/kg/°K) is the material specific heat, and t(s) is the time.  

 

Figure 2-13 Specific heat plot for a phase change material 
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The boundary conditions involve top and bottom surface temperature values at any time ‘t’ 

and the initial condition is the temperature profile of the concrete structure at t=0. This 

equation can be solved analytically or using standard finite element solvers when the values 

of thermal conductivity, heat generation, specific heat and material density are constants. 

However, discrete numerical solvers are required when these values are changing with time 

or are functions of internal variables. In case of PCMs in concrete, the specific heat capacity 

and thermal conductivity of PCMs vary with the temperature. Figure 2-13 shows a plot of 

the specific heat capacity of a phase change material. In addition to that, the boundary 

conditions for a concrete structure vary with time depending on the external climatic 

conditions. This discussion is presented in detail in Chapters 9-10 of this thesis. 
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CHAPTER 3 

COMPARATIVE INVESTIGATION OF INTERGROUND AND BLENDED 

LIMESTONE CEMENTS: HYDRATION, PORE STRUCTURE, AND STRENGTH 

3.1. INTRODUCTION 

The use of limestone as a partial cement replacement material is a topic of great interest in 

an effort to increase the sustainability of portland cement concrete.  As a portion of cement 

remains unhydrated even at late ages in low water-to-cement concretes, it has been proposed 

that the replacement of portland cement by limestone may allow for increased sustainability 

with minimal compressive strength losses (D.P. Bentz 2005; Matschei, Lothenbach, and 

Glasser 2007c; V. Bonavetti et al. 2003).  Several studies have investigated the influence of 

limestone on portland cement systems, including investigations of hydration and hydration 

product formation (Vance, Aguayo, et al. 2013; D. Bentz et al. 2009), setting time (Dhir et al. 

2007), strength development, rheology (Vance, Kumar, et al. 2013) and durability (D. Bentz 

et al. 2009).  The majority of recent studies have focused on the use of limestone which is 

finer than the cement it is replacing, as this has been shown to accelerate hydration reactions 

(Vance, Aguayo, et al. 2013; Darweesh 2004), decrease permeability through increased 

particle packing, and minimize the strength loss associated with limestone (Vance, Aguayo, 

et al. 2013).  However, use of fine limestone as cement replacement makes it difficult to 

distinguish filler effects resultant from inclusion of a fine filler from chemical effects 

resultant from limestone inclusion in these systems. 

Two methodologies are commonly used for limestone replacement: (i) intergrinding the 

limestone with the portland cement clinker, and (ii) blending the ground portland cement 
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with limestone powder.  Intergrinding of portland cement clinker with limestone results in a 

finer limestone phase in the composite system due to the fact that limestone is a softer 

material then the clinker.  Blending, on the other hand, would result in a limestone 

distribution that is controlled more directly by the cement producer.  Intergrinding of 

limestone with the clinker has been shown to have comparable mechanical properties at 

replacement ratios of up to 10% (Tsivilis et al. 1999). 

The current study aims to disconnect the physical influences of packing and surface area 

differences from the actual physicochemical influence of limestone inclusion in these 

systems, by blending limestone in cements with particle size distributions which match that 

of the parent cement (or comparative interground PLC).  This allows for a thorough 

exploration of potential benefits of limestone inclusions on strength, pore structure, and 

hydration product formation.  Further, comparing size-matched blended systems to 

interground systems will enable further exploration of the differences of these two systems 

from the perspectives of hydration, strength, and pore structure. 

3.2. EXPERIMENTAL PROGRAM 

3.2.1 Materials   

The materials used include: a commercially available Type I/II ordinary portland cement 

(OPC) conforming to ASTM C150 (“ASTM C150 / C150M - 12. Standard Specification for 

Portland Cement” 2012), and a nominally pure limestone powder (purity > 95% CaCO3, by 

mass) of four different median particle sizes denoted as 0.7 µm, 3 µm, 10µm and 15 µm, 

conforming to ASTM C568 (“ASTM C568 / C568M - 10. Standard Specification for 

Limestone Dimension Stone” 2012), as well as two different interground PLCs conforming 
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to ASTM C595 (“ASTM C305-13 Standard Practice for Mechanical Mixing of Hydraulic 

Cement Pastes and Mortars of Plastic Consistency” 2013) and ASTM C1157 (“ASTM 

C1157/C1157M-11 Standard Performance Specification for Hydraulic Cement” 2013) 

respectively.  Figure 3-1 shows the particle size distribution of these raw materials, and Table 

3-1 presents their respective chemical compositions.  It is noted that the C1157 interground 

cement is finer than OPC (denoted C150), while the C595 interground cement has a roughly 

comparable particle size distribution 

. 

   

Figure 3-1: Particle size distributions of raw materials used in this study. 

 

Table 3-1: Chemical Compositions of parent cements used in the study 

Material SiO2 Al2O3 Fe2O3 CaO MgO SO3 LOI LS 

C150 19.6 4.09 3.39 63.21 3.37 3.17 3.17 - 

C595 16.51 3.38 2.66 56.80 2.61 2.80 4.17 11.07 

(b) (a) 
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C1157 16.51 3.41 2.77 56.55 3.01 2.87 3.81 11.07 

 

Table 3-2: Median sizes of parent cements used in the study 

Material C150 C595 C1157 

Median Size (µm) 11.20 10.03 7.53 

 

In all, six different mixes were considered for the study. Mixture proportions per 100g of 

sample are shown in Table 3-3. It is noted for reference that the two interground PLCs (C1157 

and C595) are already interground with limestone, thus the quantity of limestone for mixture 

proportioning is shown as zero.  A volumetric water to powder ratio of 1.26 was used for all 

samples, corresponding to a mass-based water-to-powder ratio of 0.40 for the OPC mix. 

Limestone replaced OPC at a level of 12.68% by volume for all blended and interground 

cements. Three particle size distribution (PSD) matched portland cement-limestone blends 

were prepared, one each to match C150, C1157, and C595. The PSD matching was performed 

by blending the available sizes of limestone to minimize the square error in particle size 

distribution between the blend and the interground or plain cement powder.  Particle size 

matching these mixtures enables a more in depth look at the true behavior of limestone in 

portland cement systems by disconnecting the influence of particle packing and surface area.  

Figure 3-2 shows the final particle size distribution of the blended versus the interground or 

plain cement after matching their particle size distributions. It is noted from this figure that the 

blend corresponding to C1157, the finest interground PLC, does not match the particle size 

distribution of the interground cement as well as the other two blends and the interground 



47 

 

cement is notably finer. The available sizes of limestone for this study could not be mixed in 

order to achieve a better particle size distribution match than the one provided in this study.   

Table 3-3: Proportion of materials (in g) per 100g of sample 

Mix ID C595 C1157 OPC 
Total 

LS 

0.7µm 

LS 

3µm 

LS 

10µm 

LS 

15µm 

LS 

Water 

C150 - - 71.43 - - - - - 28.57 

C595 71.05 - - - - - - - 28.95 

C1157 - 71.05 - - - - - - 28.95 

C150 + LS = C595 - - 63.23 7.87 2.44 0.66 4.10 0.67 28.90 

C150 + LS = C1157 - - 63.23 7.87 0.00 7.87 0.00 0.00 28.90 

C150 + LS = C150 - - 63.23 7.87 0.00 0.49 3.80 3.58 28.90 

 

  

Figure 3-2 – Particle size distribution of OPC and interground limestone-cements (solid 
lines) as compared to blended mixes (dashed lines). 
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3.2.2 Experimental Parameters  

3.2.2.1. Isothermal Calorimetry 

The heat evolution of cement hydration was determined using isothermal calorimetry (TAM 

Air microcalorimeter 2700 Series) at constant temperature of 25 °C for 72 h. Samples were 

proportioned, and powders dry blended prior to adding water. To ensure accurate early age 

measurement and minimize the time to isothermal conditions, the blended powders and 

water were conditioned in an oven for 12 hours at 25°C. The pastes were then mixed using a 

kitchen mixer in accordance with ASTM C305 (“ASTM C305-13 Standard Practice for 

Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency” 2013, 

305). Approximately 10g of sample was extracted immediately, placed in a sealed sample vial 

to minimize evaporation and placed in the isothermal calorimeter. The heat flow response, 

determined in watts per gram cement was extracted using the TA Instruments TAM 

Assistant software package.  

3.2.2.2. Thermal Analysis (DTA/TGA) 

Simultaneous thermal analysis (STA) simultaneously measures the mass loss and heat flow 

associated with heating a sample over a defined temperature range. Powders were dry 

blended prior to adding water, and then samples were mixed in accordance with ASTM 

C305. Sample sizes of approximately 100g were prepared and cured under sealed conditions 

at a temperature of 23±1 °C until the desired testing age.  Samples were tested at ages of 1, 

3, 7, 14, and 28 days.  At the desired testing age, the sample was ground to a powder and 

approximately 80 mg of sample was placed in the instrument for analysis. Thermal analysis 

was completed using a Perkin Elmer STA 6000. Tests were carried out in a nitrogen 
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environment, at a gas flow rate of approximately 20 ml/s.  Samples were heated from 

ambient to 995°C at a heating rate of 15°C/min.  Heat flow curves resultant from thermal 

analysis of cementitious samples over this temperature range typically illustrate three distinct 

peaks: (i) loss of chemically bound water in C-S-H and ettringite, as well as decomposition of 

monocarbonate species, (ii) the deyhdroxylization of calcium hydroxide, and (iii) the 

decarbonation of calcium carbonate.  Calcium hydroxide and calcium carbonate contents are 

determined using the stoichiometric relationships associated with their respective 

decomposition reactions combined with the mass loss associated with their representative 

heat flow peaks.  The quantity of chemically bound water (wn), a measure of the degree of 

hydration of the portland cement, is determined by subtracting the mass loss associated with 

calcium carbonate from the loss on ignition of a dried sample (the mass at 110 °C), 

normalized by the initial sample mass as presented in Equation 3-1: 

   (Eq. 3-1) 

Where LOI is the total mass loss of a dried sample, md is the initial mass of the dried sample, 

and mCaCO3 is the mass of calcium carbonate determined from the mass loss associated with 

decarbonation, and wLS is the limestone mass fraction in the dried sample.   

The consumed carbonate content is the percentage of carbonates consumed during the 

hydration process relative to the amount of carbonates initially present as determined from 

mixture proportioning, the loss on ignition of the portland cement powder as listed in Table 

3-1 is assumed to be attributed primarily to pre-hydration and is thus neglected. It is 

calculated by the following relation:  
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  (Eq. 3-2) 

Here (CaCO3)i is the initial mass fraction of calcium carbonate present in the mix as 

determined from mixture proportions shown in Table 3-3, (CaCO3)t is the carbonate content 

present in the sample at time t, calculated using the mass loss attributed to carbonate 

decomposition in the TGA sample and (OPC)t is the weight fraction of carbonates present 

in a sample at time t due to the carbonation of portland cement in the sample. This as 

determined from the carbonate peak in a plain OPC sample at time t and the equivalent 

weight fraction of carbonates is taken using the mixture proportions in Table 3-3. 

3.2.2.3. Compressive Strength Testing 

Compressive strength tests were carried out in accordance with ASTM C109 (“ASTM C109 

/ C109M - 12 Standard Test Method for Compressive Strength of Hydraulic Cement 

Mortars (Using 2-in. or [50-Mm] Cube Specimens)” 2012) on 50mm mortar cubes cured in a 

humid environment at >95% relative humidity and a temperature of 23±2°C. Mortar cubes 

were prepared with a volume fraction of sand of 50%, and mixed in accordance with ASTM 

C109.  Cubes were cured for the first 24 hours covered to prevent ponding, after which the 

cubes were demolded and stored until the desired testing age in the environmental chamber.  

Cubes were tested at ages of 1, 3, 7, 28 and 56 days. A loading rate of approximately 900 

N/s was applied up to the point of failure.  

3.2.2.4. Mercury Intrusion Porosimetry 

Samples were prepared by dry blending powders prior to adding water and then mixed using 

a handheld mixer for approximately two minutes. Samples of approximately 100g were cured 
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for 3 and 28 days under sealed conditions at a constant temperature of 23±1 °C. At the 

desired age of testing, the samples were crushed to an approximate size of 2mm, and then 

dried in an oven for 2 hours at 60 °C, as this method was found to produce consistent 

results in a previous study (Vance, Kirk 2014).  Approximately 1g of material was selected 

and weighed using a high precision scale accurate to 0.1 mg. Testing was completed using a 

0.5 cc cell in a Quantachrome Instruments PoreMaster mercury intrusion porosimeter to a 

maximum testing pressure of approximately 410 MPa.  Mercury intrusion values were 

extracted from the Quantachrome Instruments PoreMaster software package and used for 

analysis.  The relationship between pore diameter and intrusion pressure was determined 

internally in the Quantachrome software package using the Washburn equation (Washburn 

1921a) (Equation 3-3), where d is the apparent diameter, P is the applied pressure, and γ is 

the surface tension of mercury and φ is the mercury contact angle which are assumed to be 

0.480 N/m and 117° respectively during intrusion.  The contact angle of 117° is typically 

used in oven dried cementitious specimens for the intrusion phase (Winslow and Diamond 

1970; Bager and Sellevold 1975; R. Kumar and Bhattacharjee 2003a), and thus was selected 

for this study. 

    (Eq. 3-3) 

Recent studies have noted potential inaccuracies in the determination of the pore size 

distribution via mercury intrusion (Diamond 2000; Moro and Böhni 2002a). To investigate 

the pore structure of these materials, several additional parameters have been determined 

using the intruded volume data. The critical, or percolation, pore diameter is the pore 
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diameter corresponding to the highest rate of volume intrusion into the specimen, indicated 

by the first, largest peak on a plot of differential volume intruded versus pore diameter as 

calculated using the Eq. 3-3 (Cook and Hover 1999; Winslow and Diamond 1970).  This 

term indicates the threshold pore size at which mercury percolates through surface pores 

into the sample and is thus thought to be a more direct indication of the permeability of a 

sample.  The porosity of the sample was determined by dividing the total volume intruded 

by the determined sample volume. 

Finally, the mercury volume retained after extrusion was determined using the methodology 

presented in (Zeng et al. 2012).  In a cementitious specimen, the intrusion and subsequent 

extrusion of mercury results in a hysteresis, where the extrusion curve lies above the 

intrusion curve, indicating mercury is retained in the sample.   

3.3. CEMHYD3D SIMULATION OF HYDRATION 

The hydration of pastes was studied using CEMHYD3D 3.0 (D. P. Bentz 2005) in addition 

to the experiments performed. OPC was modeled using the available particle size 

distribution for C150, whereas interground cements were modeled as 2-phase materials with 

contribution from both OPC and Limestone. However, only the composite particle size 

distributions were available for the interground cements and the details of the intergrinding 

process were unknown. There have been attempts at determining the individual PSD’s of 

components from the composite distribution experimentally [insert citations], however the 

accuracy of those methods is questionable. For the current study, it was found suitable to 

deduce the particle size distribution of limestone in C595 by making the assumption that 

cement in the composite distribution is the same as C150, which is not exactly true since 
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cement being harder than limestone should be ground coarser in the intergrinding process. 

However, considering that there is only 12.68 % of limestone in the interground cement and 

the median sizes of C150 and C595 are not that dissimilar, this occurs as a reasonable 

approximation. The limestone particle size distribution in C595 was then determined by 

calculating the median size of limestone using the rule of mixtures and constructing a normal 

distribution about the median size. This concept cannot be applied to C1157 where the 

median particle size is very different as compared to C150. It is expected that limestone will 

be ground much finer in case of C1157 with a median size much lower compared to C150. 

An interesting observation made in this regard was that the percentage difference between 

the finer portion of the differential curve for the particle size distribution of C1157 and 

C150 was the same as the percentage of limestone in the composite distribution of C1157. 

This difference was normalized to get the individual PSD for limestone and rest of it was 

accounted as distribution for the cement component. Getting the exact particle size 

distribution of limestone from the composite interground distribution theoretically is 

something to be thought of in future research. 

After obtaining individual PSD’s of limestone and cement, the distributions were discretized 

to get the number of particles in a representative volume element of size 100µ using a 

packing fraction calculated from the water-cement ratio of 1.26 by volume. Bogue’s 

calculations were used to get the volume fraction of individual phases in the parent cement. 

The hydration was simulated for 100 hours under isothermal conditions in a sealed 

environment. The cycles to time conversion factor of 0.0035 hours/cycles^2 was used to 

obtain results in real time. 
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The results for heat of hydration, degree of hydration and porosity are presented later in 

Section 3.4. CEMHYD3D was modified to calculate the mean spacing between nearest 

neighbors to better understand the interactions among the cement and the limestone 

particles. We define nearest neighbor as the particle with Table 3-4 presents a summary of 

the results obtained. 

Table 3-4: Contact percentage between nearest neighbors. C-C indicates cement-cement 
interaction, L-L is the % contact between limestone particles and C-L is the % contact 

between cement-limestone particles in the mixtures. 

Mix ID 
Average Centroidal 

Distance (in µm) 
C-C L-L C-L 

C150 6.507 / 5.594 93.02 - - 

C595 5.895/5.609 23.49 23.25 48.37 

C1157 6.473/5.567 10.93 38.98 46.44 

C150 + LS = 

C150 
6.437/5.711 67.18 1.85 22.35 

C150 + LS = 

C595 
6.318/6.748 58.20 4.14 32.22 

C150 + LS = 

C1157 
6.299/6.732 48.88 6.55 36.42 

 

The contact percentage between nearest neighbors is useful to get a perspective on the 

degree of reaction and the rate of hydration of the mixture. Since limestone is known to 

accelerate hydration of cement, the cement-limestone interaction is vital to understanding 
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the nucleation process in cement hydration. This is highly dependent on the particle size 

distribution of both limestone and cement in the mixture. It is noted from Table 3-4 that the 

cement-limestone and limestone-limestone interactions increase as the median particle size 

of the mix decreases. The proximity between cement and limestone particles leads to 

increased hydration rates, since limestone is known to accelerate the hydration of cement. 

The findings from Table 3-4 here are substantiated in detail in section 3.4.1. 

Figure 3-3 shows the initial microstructure of C150 at 100 cycles of hydration created using 

CEMHYD3D and Figure 3-4 shows three sectioned images of the center slice of C150 after 

100, 300 and 1000 cycles of hydration. The size of the microstructure is 100µm. The 

sectioned images show the evolution of hydration process as a function of time. The black 

area refers to the voids and the grey part refers to the products being formed as a result of 

the hydration process. The cement phases C3S, C2S, C3A and C4AF are indicated in white, 

maroon, purple and turquoise respectively, whereas blue and violet colors indicate gypsum 

content in form of hemihydrate and di-hydrate in the cement.  
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Figure 3-3: 3D microstructure of C150 at 100 cycles of hydration created using 
CEMHYD3D module. 

 

 

Figure 3-4: Evolution of hydration in C150 cement as a function of number of cycles. From 
the left, images correspond to 100, 300 and 1000 cycles of hydration respectively. 

 

3.4. RESULTS AND DISCUSSIONS 

3.4.1 Influence of limestone addition on early age hydration 

The early age hydration kinetics was measured using isothermal calorimetry at 25°C using 

procedures discussed previously. The heat flow and the cumulative heat curves obtained 

from calorimetry are shown in Figures 3-5 and 3-6 respectively. The peaks in the heat flow 

curves correspond to the formation of hydration products. A typical heat flow curve can be 

characterized into four main phases. The first phase is the dissolution phase related to the 

dissolution of portland cement grains characterized by the initial peak and which occurs in 

the first few minutes after addition of water. The second phase is the induction period with 

low rate of heat evolution. This period occurs in the first few hours after mixing. The third 

period is characterized by the rapid chemical reaction of C3S to form C-S-H and CH which 
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leads to high rate of heat evolution and final setting of cement. This period forms the main 

hydration peak and is called the acceleration stage. A secondary peak or shoulder on the 

main hydration is often visible after the C3S peak and is attributed to C3A hydration. The 

fourth period is the diffusion-controlled deceleration stage.  

From Figures 3-5 and 3-6, it is immediately evident that all limestone replacement cements 

resulted in an acceleration effect, as illustrated by a steeper acceleration phase and a higher 

main hydration peak.  In the limestone blended system which is PSD matched to OPC 

(Figure 3-5(a)), the influence of limestone in portland cement systems on heat evolution can 

be discerned.  The height of the main hydration peak and the slope of the acceleration phase 

is increased.  As limestone replaces portland cement, the quantity of OPC in the system is 

effectively diluted, which in turn provides an increased surface area per unit of reactive 

portland cement.  Further, calcium carbonate chemically reacts with the C3A phase in 

cement to form monocarboaluminates (V. L. Bonavetti, Rahhal, and Irassar 2001).  These 

effects result in an acceleration of portland cement hydration. 
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Figure 3-5 – Heat evolution of blended and interground Portland limestone cements, plotted 
as W/g binder. 

 

It is additionally noted from Figure 3-5 that the acceleration effect is more pronounced in 

interground versus blended cements, most significantly for the finest interground mix, 

C1157. It has been noted in the literature, that there is a significant influence of fineness on 

the heat of hydration of both cement and portland limestone cements. Increased fineness of 

portland cement results in acceleration of hydration primarily due to the increased surface 

area of cement particles (Dale P. Bentz, Sant, and Weiss 2008). The influence of limestone 

on cement hydration has similarly been shown to be dependent on the limestone fineness. 

Fine limestone increases the surface area and seed locations available for hydration product 
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nucleation, and as coarseness of the limestone is increased to that of OPC, the surface area 

effects are minimal, resulting in negligible change in hydration kinetics (Vance, Aguayo, et al. 

2013; Soroka and Setter 1977; Thomas, Jennings, and Chen 2009). Further, fine limestone 

has been shown to be more reactive, while coarser limestone is less reactive and acts more as 

a filler material (Vance, Aguayo, et al. 2013). When limestone is interground with portland 

cement clinker, the softer limestone phase is ground more readily than the harder portland 

cement clinker, resulting in a finer limestone phase.  The increased reactivity in interground 

PLCs as compared to blended PLCs and OPC can thus be explained as follows. The 

increased quantity of limestone fines significantly increases both the reactivity of the 

limestone and the surface area available for hydration product nucleation. In particular, 

increased limestone fines enhance the interactions with the C3A phase significantly 

sharpening the main hydration peak, while also decreasing the thickness of the initial 

hydration product shell forming on particles, enhancing C3S reactivity (Thomas, Jennings, 

and Chen 2009). The interaction with C3A can be confirmed by considering the steeper main 

hydration peak as compared to the blended mixes or OPC.  The enhanced C3A activity can 

be confirmed by noting the sharper main hydration peak, as C3A hydration has been shown 

to have a significantly steeper acceleration and deceleration phases (Minard et al. 2007).  

It is also noted from Figure 3-5 that the shape of the main hydration peak is different when 

the limestone is interground versus when it has been blended.  Blended limestone mixes 

result in a more traditional heat evolution curve, with a first initial peak corresponding to C3S 

hydration, and a second peak or shoulder corresponding to aluminate phase acceleration 

after depletion of sulfates resulting in secondary ettringite formation (Bullard et al. 2011; 
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Gallucci, Mathur, and Scrivener 2010). Whereas interground samples show a single sharp 

vertical peak which most likely corresponds to the C3A phase. Upon closer examination, it is 

noted that there is a shoulder on the left side of the main hydration peak in the interground 

samples.  This shoulder is likely the main silicate peak. The presence of an enhanced C3A 

peak can be further verified by considering the fact that a well sulfated C3A phase is known 

to have a distinctly sharp peak. As the blended cements use the same portland cement as the 

parent cement as the interground cements, the enhanced C3A peak can only be attributed to 

the presence of limestone.  The limestone phase resultant from intergrinding is likely to have 

enhanced fines, which results in enhanced early age hydration, perhaps more quickly 

depleting the gypsum present in the portland cement, enhancing the C3A peak. The reactivity 

of limestone in these systems will be further explored in the proceeding section. 

Comparing the blended samples, it is noted that the OPC matched blend has the lowest 

main hydration peak and the C1157 matched blend had the highest main hydration peak.  All 

blended samples show two distinctive peaks on the main hydration peak.  As noted in Table 

3-3, the fineness of the limestone replacing cement matches this trend.  The C1157 PSD 

matched blend has the largest quantity of limestone finer than the median particle size of 

portland cement (0.7 and 3 µm) while the C150 matched mix had the lowest quantity of 

these fines.  As discussed previously, the presence of limestone fines accelerates the 

hydration reaction by providing nucleation sites for hydration products, resulting in 

accelerated hydration.  
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Figure 3-6 – Cumulative heat curves for blended and interground portland limestone 
cements, plotted in W/g cement. 

 

Cumulative heat curves per gram of binder are presented in Figure 3-6 with OPC provided 

for comparison. It is evident from all the plots that OPC has the lowest cumulative heat of 

evolution per gram of binder among all the mixes considered up to 72 hours. It is also noted 

that blended cements have higher evolution of heat per gram of binder as compared to 

OPC, and the interground cements are further higher than the blends. As mentioned earlier, 
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this is due to the finer limestone content present in the size matched blends and the 

interground cements which accelerate the early hydration process. In case of C595 and its 

size matched blend, although there is a distinct difference in the heat flow peak in Figure 4, 

the cumulative heat plots look similar, which is because the peak is much sharper for C595 

and broader for its size matched blend. Cumulative heat flow indicates the degree of 

hydration of the mixes. The higher cumulative heat values of the interground cements as 

compared to their corresponding size-matched blends are indicative of the fact that at early 

ages interground cements have a higher degree of hydration as compared to their blended 

counterparts at early ages, however at later ages it is likely that the degree of hydration of all 

limestone replacement systems investigated here would be equivalent. 

Figure 3-7 illustrates the comparison of cumulative heat flow curves between experimental 

data obtained from the calorimetric measurements and those predicted by the CEMHYD3D 

hydration model. The subscript ‘b’ in Figure 3-7 (b) refers to the blended mix corresponding 

to the parent mix. 
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Figure 3-7: Comparison of cumulative heat flow curves between experimental data and 
CEMHYD3D simulation data for a) Interground cements and OPC, and b) Blended mixes. 

 

It can be observed from figure 3-7 that the experimental values of cumulative heat flow are 

in good agreement with the predicted values from the hydration model for both the 

interground and the blended mixes. This reaffirms the reliability of CEMHYD3D hydration 

model in reference to the incorporation of limestone in the cement mixes. It also confirms 

our initial assumption about the distribution of cement and limestone as stated in section 

3.3. 

3.4.2 Analysis of hydration product formation through thermal analysis 

The progress of the hydration reaction was investigated using thermal analysis techniques as 

described in Section 3.2.  The resultant mass fraction remaining, and heat flow curves are 

presented in Figures 3-8 and 3-9. The mass fraction remaining was normalized by the dry 

mass, as defined in this study as the mass of the sample at 110°C.  There are several 

distinctions that can be noted from these curves: (i) all samples show pronounced peaks at 

about 130 °C and 450 °C, heat flow peaks corresponding to evaporable water, C-S-H, and 

ettringite and the dehydroxylization of calcium hydroxide and (ii) all limestone blended 

samples show a peak at approximately 750 °C corresponding to the decarbonation of 

calcium carbonate.   

At three days (Figure 3-8), it is noted that the mass loss curves associated with C-S-H, 

ettringite, and evaporable water are equivalent for both the OPC and interground mixes.  

This indicates that despite the lower quantity of portland cement present in the interground 
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mixes, an equivalent quantity of hydration products is forming, confirming the analysis of 

the heat evolution curves above with respect to acceleration of the hydration reactions.  The 

blended samples show a more significant diversion from the OPC mixture at early age, likely 

attributed to the more limited reactivity of these samples as discussed previously. 

At later ages (Figure 3-9) a more significant divergence of early age weight loss is noted in 

the interground limestone mixes. This is likely attributed to the fact that the early age 

hydration acceleration associated with the fine limestone presence is mitigated by the sample 

age.  Additionally, it is noted that all blends show very similar mass loss profiles at the later 

ages. 
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Figure 3-8: Results of thermal analysis of samples at 3 days, mass % remaining and heat flow. 

 

  



66 

 

 

Figure 3-9: Results of thermal analysis of samples at 28 days, mass remaining and heat flow. 

 

Figure 3-10 illustrates the non-evaporable water content and calcium hydroxide content at 1, 

7 and 28 days, and the consumed calcium carbonate content at 7 and 28 days. The non-

evaporable water content is a measure of the degree of hydration of the sample, determined 

as presented in Section 3.2.  The calcium hydroxide and calcium carbonate contents were 

calculated based on the mass losses associated with the heat flow peaks as presented in 

Figures 3-8 and 3-9 and determined as discussed in Section 3.2.  
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  Figure 3-10 – Relative comparison of a) non-evaporable water content, b) calcium 
hydroxide content, and c) consumed calcium carbonate content at 1, 7 and 28 days. 

 

For all mixes, the bound water and CH content increases with time, as would be expected as 

the hydration reaction progresses in the diffusion-controlled regime.  The consumed CaCO3 

content shows a steady increase, indicating that calcium carbonate continues to participate to 

some extent in the hydration reactions. The bound water content is higher in the 

interground cements than all others tested as part of this study.  This indicates an enhanced 

(a) 

(b) 

(c) 
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degree of hydration in the interground cements. At early ages, this is attributed to fine 

limestone providing a nucleation site for hydration products, which accelerates the 

hydration.  Further, the presence of limestone as a nucleation site in hydration decreases the 

thickness of the hydration shell forming on the portland cement grains, allowing for easier 

diffusion of water through the hydration shell further enhancing the degree of hydration. 

However, at later ages, the increase in the bound water content and consequently increase in 

the degree of hydration is a result of the higher effective water-to-cement ratio due to 

limestone replacement. 

In case of CH content, at one day, the calcium hydroxide contents are roughly equivalent, 

however between one and 7 days the interground samples are seen to have a more 

significant increase in CH as compared to the other mixes, with the opposite effect noted 

between 7 and 28 days. This is likely attributed to the occurrence of two competing effects, 

firstly dilution due to the presence of limestone which leads to decrease in the amount of 

OPC present for hydration and secondly, the increase in effective water cement ratio in the 

mixes due to the consumption of calcium carbonate in the hydration reaction, which 

enhances the overall consumption of the cement phase thereby increasing the CH content. 

Inclusion of limestone enhances reactivity but also dilutes the OPC quantity. Further 

interground limestone mixes have a coarser phase of OPC as compared to the blends, thus 

the diffusion-controlled phase of hydration is slower for those than the blended cements.   

It is clearly evident from Figure 3-10(c) that the consumed carbonate content is highest 

among the interground cements, and is significantly higher than the size matched blends. 

This is due to the higher amount of limestone fines present in the interground cements due 
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to the grinding process with portland cement clinker. The increased consumption of 

limestone in the interground cements also results in higher strengths at all ages as compared 

to their blended counterparts. It is found that among the blends, the trend of carbonate 

consumption follows the distribution of limestone added to establish the size matching in 

these blends. The C1157 blend corresponding to the addition of the finest limestone content 

among all the size matched blends shows the maximum consumption of carbonates, whereas 

C150 blend having the largest fraction of coarse limestone shows the least consumption of 

carbonates relative to the other two blends.  These results further confirm the discussions of 

limestone reactivity presented in Section 3.4.1. 

3.4.3 Compressive Strength Development 

Compressive strengths of 50mm mortar cubes at ages of 1, 3, 7, 28 and 56 days were 

determined as presented in Section 3.2.2.  Figure 3-11 shows the development of 

compressive strength over these ages for comparing interground cements to their limestone 

blended counterparts.  
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Figure 3-11 – (a-c) Compressive strength development of mortar specimens tested, and (d) 
compressive strengths at 1 day. 

(a) (b) 

(c) 

(d) 
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Immediately noted from Figure 3-11 is the fact that OPC has greater strengths at later ages 

than its PSD matched limestone blended counterpart.  This result is consistent with what has 

been presented in the literature (Vance, Kumar, et al. 2013), where the inclusion of the 

generally non-reactive softer limestone phase results in an increased effective water-to-

powder ratio, decreases the quantity of hydration products, increases porosity, and decreases 

strength.  On the other hand, it is noted that the interground limestone mixes result in 

higher strengths at all ages than the both the PSD matched blended mixes and the OPC mix.  

This shift in behavior even with the same quantity of limestone present in the mixtures is 

likely attributed to the fineness effect of the interground limestone, where the limestone 

present in the interground system is likely to be finer than that which has been included in 

the blended system.  It has been shown that the limestone with increased fineness results in 

enhanced mechanical properties due to the increased packing associated with the fine 

limestone and enhanced reactivity (Kirk Vance, Neithalath, and Sant 2013).   

At early ages (Figure 3-11(d)), all PLC mixtures except the OPC particle size distribution 

matched mixture are shown to have increased strengths as compared to the OPC mixture.  

These results are consistent with the heat evolution data presented in Figures 4 and 5.  The 

interground mixtures show the highest early age strength of all mixtures, with the finest 

interground mix, C1157 having the highest strength overall. This effect can be understood 

due to increased participation of finer limestone content in reactions with C3A and acting as 

nucleation site for the formation of hydration products.  Upon examination of the 

cumulative heat curves, the trend in heat evolution at 24 hours coincides with the 
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compressive strength data at early ages. The interground limestone cements show 

significantly accelerated strength development as compared to the limestone blends or OPC, 

leading to higher early age strengths.  The accelerated hydration reaction results in more 

significant formation of hydration products. The blended cements generated to PSD match 

the C1157 and C595 interground PLCs similarly have an enhanced early age hydration, 

leading to higher early age strengths as compared to OPC.  The diminished strength at early 

ages for the PSD matched OPC limestone blend despite accelerated hydration as indicated in 

Figure 3-10 is likely due to the coarseness of the limestone replacing the OPC combined 

with the dilution of OPC due to limestone replacement. Though hydration is accelerated, the 

presence of a soft filler which is not participating extensively in the hydration reactions 

would lead to a strength reduction at all ages.   

3.4.4 Influence of limestone addition on pore structure 

The influence of limestone on the pore structure in these systems was determined using 

mercury intrusion porosimetry and the methodology presented in Section 3.2.2.4. The 

resultant intrusion curves at 3 and 28 days are presented in Figure 3-12. As previously noted, 

pore size distribution curves determined using mercury intrusion porosimetry have been 

shown to be prone to error due to the assumptions required in the Washburn equation, thus 

these figures are presented primarily for reference. However, it is noted that the pore 

structure development is generally as would be expected. At the later age investigation, the 

pore volume intruded decreases, and the pore structure becomes more refined. This is due 

to the progress of the hydration reaction, as more hydration products are incorporated into 

the paste and the degree of hydration increases, the pore volume decreases, and the pore 
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structure becomes more refined. Further, from Figure 3-12(a), it is noted that OPC has a 

lower intruded volume than the size matched limestone replacement cement at both ages 

tested. This is likely due to the decrease in volume of material which participates in the 

hydration reactions as well as an increase in effective water-to-cement ratio. The increase in 

the effective water-to-cement ratio would increase the pore solution as well as decrease the 

relative quantity of hydration products, resulting in an increase in porosity. From Figures 3-

12(b) and (c) it is noted that the blended limestone sample has a higher intruded volume at 

all ages and diameters than the interground limestone. It was previously noted that limestone 

is a softer material than portland cement clinker (R. Kumar and Bhattacharjee 2003a), thus 

as limestone is interground with cement the limestone will achieve a finer particle size 

distribution than the clinker. Thus, though the replacement volume is the same for both 

interground and blended limestone cements, the finer limestone present in the interground 

PLCs accelerate the hydration reaction more effectively (Kirk Vance, Neithalath, and Sant 

2013) in increase the particle packing in the system, leading to a decrease in porosity as 

compared to the blended system where the limestone particle size distribution matches that 

of portland cement. 
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Figure 3-12 – Intrusion curves comparing interground to blended PLCs, solid lines are 3 
days, dashed are 28 days for: (a) OPC, (b) C595, and (c) C1157 

 

To explore the influences of limestone on the pore structure of these systems, the porosity 

and critical pore diameters were determined as presented in Section 3.2.2.4.  The results of 

this analysis are presented in Figure 3-13.  Several key aspects of these samples are noted 

from the upper panel of this figure: (i) the OPC mixture has a lower porosity than all other 

mixtures at all ages, (ii) the interground mixes have lower porosities than their blended 

(a) (b) 

(c) 



75 

 

counterpart at all ages, and (iii) all mixes show approximately equivalent reduction in 

porosity between 3 and 28 days of about 25%.  The overall lower porosity for OPC 

compared to any of the PLC mixtures is attributed to the effects described above, the 

limestone filler raises the effective water-to-cement ratio resulting in a greater porosity within 

the cement paste. The lower porosity for interground samples as compared to blends is 

similarly attributed to the same effects as above.  This analysis is supported by the bound 

water quantities as shown in Figure 3-10.  The interground samples are noted to have higher 

bound water contents than the size matched blended samples, indicating an increase in 

reaction product formation, which would decrease the porosity of the sample. 

 

Figure 3-13 – Comparison of porosity and critical pore diameter for PLCs investigated, 
patterned fill is at 3 days, solid is at 28 days. 

 

From the lower panel in Figure 3-13, it is noted that the critical pore diameter is highest for 

the OPC and size matched limestone OPC blend samples at all ages, and lowest for the finer 

interground sample (C1157).  It can also be seen from the lower panel in Figure 3-13 that the 
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inclusion of size matched limestone has little influence on the critical pore diameter in the 

OPC system at early ages and results in only a slight increase at later ages. Further it is noted 

that the interground samples have a significantly lower critical pore diameter as compared to 

the blended samples at early ages, however at later ages the difference is seen to be much less 

significant. As noted previously, the critical pore diameter is the diameter at which the 

intrusion rate of mercury into the sample is the highest, represented the threshold diameter 

when mercury percolates through the sample.  Thus, it is thought to be representative of the 

permeability of the sample, where a lower critical pore diameter would indicate a lower 

permeability, a factor that is critical to the durability of concrete due to ion permeability and 

the resultant corrosion.  The lower critical pore diameter in interground samples as 

compared to their blended counterpart is likely due to the relative fineness of the limestone 

in the sample.  The increased fineness in interground samples accelerates hydration and 

more effectively acts as a nucleation site for hydration products (Thomas, Jennings, and 

Chen 2009). These two factors result in a more refined pore structure, particularly at early 

ages, resulting in a decrease in the critical pore diameter.  At later ages, the effect of 

limestone fineness is diminished as hydration proceeds, and the critical pore diameter 

becomes equivalent for all samples except the interground C1157 sample.  This discrepancy 

is likely due to the difference in fineness between the size matched blended sample and 

interground sample as noted in Figure 3-2, where the interground sample is noted to have an 

increased fineness as compared to the blended sample.  This increased fineness results in a 

comparatively more reactive sample, as again illustrated by the bound water contents in 

Figure 3-10, resulting in a more refined pore structure at both early and later ages. 



77 

 

Studies have noted a strong relationship between the strength and porosity of cementitious 

samples, a similar relationship is noted in this study and is presented in Figure 3-14. A 

reduction in porosity is seen to result in a corresponding increase in strength.  The increased 

scatter noted in this figure as opposed to that typically presented in strength-porosity 

relationships is likely due to the inclusion of soft limestone in the sample, a majority of 

which remains unreacted in the sample even at later ages as noted in Figure 3-10 and (Vance, 

Aguayo, et al. 2013).  Further, it is noted that the sample with the lowest porosity, OPC, has 

lower strength than the interground blends at both early and later ages, despite the fact that 

they have a higher porosity.  This effect is likely due to the interground blends having a 

greater pore volume, but a pore structure that is more refined due to the inclusion of a 

limestone that is finer than OPC as discussed above, enhancing hydration product 

nucleation and accelerating the hydration reactions, refining the pore structure while the 

effective water-to-powder ratio concurrently increases porosity. 

 

Figure 3-14 – Strength versus porosity relationships at 3 days (solid fill) and 28 days (no fill). 
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3.5. CONCLUSIONS 

This chapter explores the differences in hydration, reaction product formation, and 

microstructural features in interground and blended portland limestone cements.  The results 

of this study indicate several key features of these systems. 

• The influence of limestone is explored using PSD-matched limestone to replace 

portland cement, enhanced early age hydration, decreased compressive strength, and 

increased porosity is noted as limestone replaces portland cement. 

• The size distribution of limestone replacing portland cement is shown to significantly 

influence reaction kinetics, pore structure, strength, and carbonate reactivity. The 

finer limestone phase present in interground cements thereby more significantly 

increase reaction kinetics than size match blended PLCs. This in turn indicates more 

beneficial effects with respect to hydration product formation, carbonate reactivity, 

and compressive strength. 

• Interground limestone is seen to have a more refined pore structure than a size 

match blended limestone, as indicated by a relatively lower porosity, decrease in 

critical pore diameter, and decrease in volume intruded in mercury intrusion 

measurements. 

• Development of blended PLC systems with comparable properties to interground 

PLCs will require the use of limestone significantly finer than the parent OPC. 
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CHAPTER 43 

A METHODOLOGY TO EXTRACT THE COMPONENT SIZE DISTRIBUTIONS IN 

INTERGROUND COMPOSITE (LIMESTONE) CEMENTS 

4.1. INTRODUCTION 

The use of fine limestone as partial cement replacement is a topic of great interest since it 

improves the sustainability of portland cement-based concrete and provides comparable 

properties to that of conventional OPC concrete (Matschei, Lothenbach, and Glasser 2007c; 

V. Bonavetti et al. 2003). Two methodologies are commonly used to incorporate fine 

limestone in cementitious systems: (i) intergrinding the limestone with the portland cement 

clinker to produce portland-limestone cements (PLCs), or (ii) blending OPC with limestone 

powder in the concrete production process. Intergrinding of portland cement clinker with 

limestone results in a finer limestone phase in the composite system due to the fact that 

limestone is a softer material than the clinker.  Blending, on the other hand, would result in a 

limestone size distribution that can be controlled more directly by the cement or concrete 

producer. ASTM C595 cements, along with cements conforming to CSA A 3000 (Canada), 

AASHTO M 240 and EN 197-1 (Europe) among others are permitted to contain 5-15% (by 

mass) of fine limestone. In the U.S., cements conforming to ASTM C1157 (a performance 

based cement specification, as compared to ASTM C595 and C150 which prescribe limits on 

chemical composition) have also been manufactured with 5-15% of limestone.  

                                                 

3 This chapter is derived from the publication: Arora, A., Vance, K., Sant, G., & Neithalath, N. (2016). A 
methodology to extract the component size distributions in interground composite (limestone) 
cements. Construction and Building Materials, 121, 328-337 (A. Arora et al. 2016). 
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Several studies have investigated the influence of fine limestone as a partial cement 

replacement material, blended or interground with OPC (Menéndez, Bonavetti, and Irassar 

2003; Ingram and Daugherty 1991). Limestone has also been used in conjunction with other 

cement replacement materials such as fly ash, slag, or metakaolin (Aashay Arora, Sant, and 

Neithalath 2016; Tsivilis et al. 2000; Vance, Aguayo, et al. 2013; De Weerdt, Kjellsen, et al. 

2011; Zelić, Jozić, and Krpan-Lisica 2009). The early age hydration response, reaction 

product formation, rheology, strength development, and durability of the binary and ternary 

systems containing limestone have been reported in detail. A number of studies have 

focused on the use of limestone which is finer than the cement it replaces, as this has been 

shown to accelerate hydration reactions (Vance, Aguayo, et al. 2013; Darweesh 2004), 

increase the packing of particles (Hawkins, Tennis, and Detwiler, n.d.), and minimize the 

strength loss associated with limestone (Vance, Aguayo, et al. 2013). The formation of 

carboaluminates in limestone bearing systems that reduces the overall pore volume has been 

reported in (Matschei, Lothenbach, and Glasser 2007c; De Weerdt, Haha, et al. 2011). A 

number of studies on the properties of interground limestone cements have also been 

reported (Sezera, Çopuroglu, and Ramyar 2010; Irassar et al. 2011; Barcelo et al. 2013). 

It is well known that the particle size distribution (PSD) of the cement (OPC or PLC) 

influences the early-age hydration, reaction product formation and consequently the 

performance (Dale P. Bentz et al. 1999; A. Wang, Zhang, and Zhang 1997). This chapter 

evaluates whether property equivalence between interground PLCs and OPC-limestone 

blends can be attained provided the blend is designed to have a similar solids surface area as 

that of the PLC and is constituted using the same OPC clinker that made up the PLC. This 
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is of significance for limestone suppliers interested in blending limestone with the cements 

they use because it is the ASTM C150 or equivalent cement that generally is available to 

them. Furthermore, a methodology to extract the PSDs of cement and limestone in an 

interground PLC is proposed, which will help to choose the parent OPC and limestone 

particle sizes that permit property equivalence. This methodology is generic enough so as to 

be implemented to extract the size classes of different particles in a wide array of powder 

mixtures such as in pharmaceutical, chemical, and food industries.  

4.2. EXPERIMENTAL PROGRAM 

4.2.1 Materials   

The materials used in this study are a commercially available Type I/II ordinary portland 

cement (OPC) conforming to ASTM C150 (“ASTM C150 / C150M - 12. Standard 

Specification for Portland Cement” 2012), nominally pure limestone powders (> 95% 

CaCO3, by mass) of four different median particle sizes (0.7 µm, 3 µm, 10µm, and 15 µm), 

and two different commercially available interground PLCs conforming to ASTM C595 

(“ASTM C595 / C595M - 16 Standard Specification for Blended Hydraulic Cements” n.d.) 

and ASTM C1157 (“ASTM C1157/C1157M-11 Standard Performance Specification for 

Hydraulic Cement” 2013). Figure 4-1 shows the particle size distribution of these raw 

materials, and Table 4-1 presents their respective chemical compositions and Blaine fineness. 

Both the interground cements are finer than the parent OPC (denoted as C150), with the 

C1157 cement being markedly finer. It is noted that the major difference between these 

C595 and C1157 cements is in their fineness alone since they are constituted from the same 

clinker used for the parent C150 cement. 
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Figure 4-1: Particle size distributions of: (a) three different cements, and (b) the limestone 
powders used in this study. 

 

Table 4-1: Chemical composition and fineness of the parent cements used in this study 

Cement type 

(ASTM) 

Chemical composition (% by mass)  Blaine 

Fineness 

(m2/kg) 
SiO2 Al2O3 Fe2O3 CaO MgO SO3 

Loss on 

ignition 

Limesto

ne 

C150 Type 

I/II 

19.60 4.09 3.39 63.21 3.37 3.17 3.17 - 452 

C595 Type IL 16.51 3.38 2.66 56.80 2.61 2.80 4.17 11.07 497 

C1157 Type 

HE 

16.51 3.41 2.77 56.55 3.01 2.87 3.81 10.51 594 

 

4.2.2 Experiments  

4.2.2.1 Compressive strength  

(a) (b) 
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Compressive strength tests were carried out in accordance with ASTM C109 (“ASTM C109 

/ C109M - 12 Standard Test Method for Compressive Strength of Hydraulic Cement 

Mortars (Using 2-in. or [50-Mm] Cube Specimens)” 2012). The mortar cubes were prepared 

with a sand volume fraction of 50%. The testing was carried out at ages of 1, 3, 7, 28 and 56 

days.  

4.2.2.2 Isothermal calorimetry  

The heat evolution from the hydration of cement was determined using isothermal 

calorimetry (TAM Air microcalorimeter™ 2700 Series) at a constant temperature of 25°C 

for 72 h. The powders were dry blended prior to adding water. To ensure accurate early age 

measurements and minimize the time required to attain isothermal conditions, the blended 

powders and water were conditioned in an oven for 12 hours at 25°C. The pastes were then 

mixed in accordance with ASTM C305 (“ASTM C305-13 Standard Practice for Mechanical 

Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency” 2013, 305). 

Approximately 10 g of sample was extracted immediately, placed in a sealed sample vial to 

minimize evaporation and placed in the calorimeter. Three samples per mixture were tested 

and average values are reported. 

4.2.2.3 Mercury Intrusion Porosimetry 

Paste samples of approximately 100 g were cured for 3 and 28 days under sealed conditions 

at a constant temperature of 23±1°C. At the desired age of testing, the samples were crushed 

to an approximate size of 2 mm, and then pre-treated in an oven for 2 hours at 60°C, as this 

method was found to produce consistent results in a previous study (Vance, Kirk 2014).  

Approximately 1 g of material was selected and weighed using a high precision scale. Testing 



84 

 

was completed using a 0.5 cc cell in a Quantachrome Instruments PoreMaster™ mercury 

intrusion porosimeter to a maximum testing pressure of approximately 410 MPa. The 

porosity of the sample was determined by dividing the total volume intruded by the 

determined sample volume. The relationship between pore diameter and intrusion pressure 

was determined using the Washburn equation. The surface tension of mercury and the 

mercury contact angle were assumed to be 0.480 N/m and 117° respectively during intrusion 

(Cook and Hover 1993; R. Kumar and Bhattacharjee 2003a). The potential inaccuracies in 

the determination of the pore size distribution through mercury intrusion have been detailed 

in (Diamond 2000; Moro and Böhni 2002a). Thus, to provide indications of the pore 

structure, the critical (percolating) pore diameter, which is the pore diameter corresponding 

to the highest rate of volume intrusion into the specimen alone is used (Cook and Hover 

1999; Winslow and Diamond 1970).   

4.3. RESULTS AND DISCUSSIONS 

4.3.1 Comparing the Properties of Interground PLCs (C595 and C1157) and 

Equivalent Size-Matched Blends 

OPC-limestone blends were prepared using the four different limestone PSDs (Figure 4-

1(b)) so that the overall PSD of the blend is similar to the PSD of the C595 or C1157 

cements. The mass fraction of limestone in the blend is also maintained at the same level 

(11%) as that in the PLCs. The individual fraction of limestone of each median size required 

in the blend was calculated using an iterative solver to minimize the mean square error of the 

final PSD of the blended and the interground mixtures. Size-matching in such a way ensures 

that the total solids surface area available for the reaction is similar for the corresponding 
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blended and interground mixtures. However, since OPC is used in the blended mixtures, this 

does not ensure that the clinker and limestone surface areas in the PLCs and the blends are 

similar, which likely results in differing reaction rates. The size-matched blends are identified 

with the letter ‘b’ after the corresponding parent cement designation (C595 or C1157) in the 

remainder of this chapter. For instance, C595b indicates a blend of C150 and 11% size-

matched limestone such that the final PSD is the same as that of C595 cement. 

Figure 4-2 shows the PSDs of the PLCs and the size-matched blended mixtures. As can be 

noticed from the figure, the PSD of the blend corresponding to C1157 PLC could not be 

accurately matched to that of its parent cement using the four available limestone sizes. This 

is predominantly because of the higher fineness of this cement as noted from Table 4-1. 

Thus, the blend that provided the closest approximation is used in this chapter. This blend is 

deficient in particles smaller than 20 µm and rich in particles larger than this size, as 

compared to C1157 PLC.  
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Figure 4-2: Particle size distribution of the PLCs (‘C595’ and ‘C1157’) and their equivalent 
size-matched blends (‘C595b’ and ‘C1157b’, respectively).  

The open and closed circles correspond to C595 PLC and the corresponding blend whereas 
the triangles correspond to C1157 PLC and the corresponding blend. Note that the use of 
four different limestone sizes along with the chosen OPC is unable to accurately replicate 

the PSD of C1157 PLC.  

 

In an attempt to compare and contrast the properties of the PLCs and the corresponding 

size-matched blends, the early age hydration, pore structure and compressive strength of 

these systems are investigated here. It should be noted that when OPC is blended with 

limestone of different particle sizes to simulate the PSD of PLCs, it is implicitly assumed that 

the PSD of the clinker fraction in the PLCs and that of the OPC in the blends are the same. 

The limestone sizes for the blended mixtures are then chosen to match the PSD of the 

PLCs. In reality, limestone is ground finer in the intergrinding process due to its softness, 

and the ground clinker fraction might be finer or coarser than that of OPC, depending on 

the grinding process and the desired composite cement fineness. This results in differences 

in properties between the interground and size-matched blended mixtures as will be 

explained in this section, even though the attempt is to provide similar equivalent solid 

surface areas.  

Figure 4-3 shows the isothermal calorimetric response of the parent cements (Figure 4-3(a)) 

and the corresponding blends (Figure 4-3(b)). From Figure 4-3(a), it can be noticed that the 

acceleration stage in the heat flow plots occur at earlier times, the acceleration phase is 

steeper, and the maximum heat released is higher for the PLCs, the effects being more 

prominent for the C1157 PLC. This can be attributed to the higher fineness of the PLCs as 



87 

 

compared to OPC and the chemical effects of limestone (Vance, Aguayo, et al. 2013). When 

limestone is interground with portland cement clinker, the softer limestone phase is ground 

more readily than the harder portland cement clinker, resulting in a finer limestone phase 

(Hawkins, Tennis, and Detwiler, n.d.). The clinker phase could also be ground finer in the 

composite cements depending on the desired ultimate fineness of the cement. Fine 

limestone increases the surface area and seed locations available for hydration product 

nucleation. In addition, an increase in the amount of limestone fines also enhances the 

interactions with the C3A phase, thus significantly sharpening the main hydration peak, while 

also decreasing the thickness of the initial hydration product shell that forms on particles 

thereby enhancing C3S reactivity (Thomas, Jennings, and Chen 2009). 

  

Figure 4-3: Isothermal calorimetric response of: (a) parent cement pastes (OPC and PLCs), 
and (b) the corresponding size-matched blends.  

 

For the size-matched blends, the calorimetric response is more in line with that of a 

conventional OPC paste. The heat evolution peak and the total heat released for the blended 

C595 system is almost comparable to that of the corresponding PLC (333.8 J/g for C595 

(a) (b) 
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cement and 331.7 J/g for C595b), except for the fact that the peak is sharper in the PLC 

paste. This is likely because of the enhanced aluminate reaction owing to the presence of 

much finer limestone particles in the PLC, as will be shown later. An increase in the slope of 

the acceleration phase attributable to the presence of fine limestone, as described in detail in 

(Vance, Aguayo, et al. 2013), is observed for the blended pastes as well.  The discrepancy 

between the heat release peaks of the blended and interground systems corresponding to 

C1157 can be attributed mainly to the inadequacy of size-matching. Note that the blend 

designed to match C1157 PLC was deficient in the finer fraction as depicted in Figure 4-2.   

Figure 4-4 shows the porosities and critical pore diameters of interground and size-matched 

blended systems after 3 and 28 days of hydration. At 28 days, as expected, the intruded pore 

volume decreases for all the pastes, and the pore structure becomes more refined as 

compared to 3 days. OPC has the lowest 28-day porosity among all the pastes while the 

blended and interground limestone containing pastes show slightly higher porosities because 

of the reduced clinker fraction in these pastes. Further, it is noted that the interground 

samples have lower porosities than the corresponding blended samples. This is a likely result 

of increase in the particle packing of these systems due to pore filling by the finer limestone 

particles. When the critical pore diameters are compared, the interground limestone paste 

(C1157) demonstrates the lowest pore size. This is because the limestone in this cement is 

much finer, along with a higher overall composite Blaine fineness of this cement (Table 4-1) 

that enables better particle packing and increased reactivity. Even though the total reaction 

product volume is slightly lower in this case than that of the OPC paste since limestone is 

not as reactive as that of the OPC, the finer particles result in pore size refinement. The 
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blended pastes are noted to have a larger critical pore size than the PLC pastes, and 

comparable to that of the OPC paste.      

  

Figure 4-4: Comparison of: (a) porosity and (b) critical pore diameter for the interground 
and size-matched blended cement pastes at 3 and 28 days. 

 

Figure 4-5 shows the compressive strengths of the PLC mortars (Figure 4-5(a)) and the 

corresponding blended mixtures (Figure 4-5(b)) as a function of time. It is noted that the 

PLC mortars result in higher strengths at all ages than the OPC and the size-matched 

blended mortars. This can be attributed to the higher fineness of the PLCs and the 

consequent increased packing and enhanced reactivity (Kirk Vance, Neithalath, and Sant 

2013). Comparing the early age strengths, it is seen that the finer PLC (C1157) shows the 

highest strength. This is because of the increased participation of the fine limestone in 

reactions with C3A and acting as nucleation site for the formation of hydration products. 

The compressive strength results are in line with the trends in porosity described above.  

 

(a) (b) 
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Figure 4-5: Compressive strength development with time for: (a) PLC mortars, and (b) size-
matched blended mortars. OPC is shown for comparison. 

 

To proportion blended systems that are performance-equivalent to PLCs, it is necessary to 

understand the size distribution of the components (clinker and limestone) in the PLCs. The 

need to understand the size distribution of components that constitute the final product 

exists in several critical industries such as pharmaceuticals, food processing, and chemical 

synthesis where the size distribution influences rates of heat and mass transfer or chemical 

reaction. The forthcoming section sheds more light on this aspect by developing an analysis 

method to separate the sizes of the component solids. The method is generic and versatile, 

though it has been implemented in this chapter only to separate the PSDs of clinker and 

limestone fractions in PLCs.  

4.3.2 Extracting the Component Size Distributions in Interground Systems  

As noted above, the disparity in the pore structure and properties between the PLCs and the 

corresponding blended mixtures is indicative of the fact that the OPC and limestone size 

(a) (b) 
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distributions in the blended systems are not true representations of the ground clinker and 

limestone PSD in the interground PLCs. The inherent assumption that the PSD of the 

ground clinker fraction of the PLCs is the same as that of C150 is incorrect (to varying 

degrees based on whether the comparison is with C595 or C1157 cement).   

An understanding of size distribution of components in multi-particle blends is important 

for several applications (Pötschke et al. 1999; Pedersen 1994). There have been attempts at 

determining the individual PSDs of components from the composite particle size 

distributions experimentally (Chiara F Ferraris 2011). Laser diffraction has been employed to 

obtain the PSDs of gypsum and cement based on the difference in the refractive indices of 

the two materials (Chiara F., Bullard, and Hackley, n.d.). For particulate blends with 

comparable refractive indices such as cement and limestone, this method is inapplicable. A 

sedimentation method using Andreasson apparatus has been used to obtain the independent 

PSD of two or more blended solid species (Farmer and Beckman 1984). This method, based 

on the steady-state settling of spherical particles according to Stoke’s law, employs periodic 

determination of concentration of solids at a given depth in a vertical settling tube. While 

useful for mixtures containing larger particles, the sedimentation technique is extremely 

tedious for determining PSDs with size fractions finer than 1 µm. This is because the 

quadratic relationship between settling time and particle diameter in Stokes’ equation makes 

the intervals between samples extremely long for sampling smaller (~1 µm) particles. Back-

scattered electron microscopy and thin section image analysis have also been used to identify 

the distributions of particle classes in a powder mixture (Nauman and Cavanaugh 1998). 

This method is rather tedious and demands adequate optical or microscopic contrast 
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between the particles imaged, which is not always achieved. In order to overcome these 

limitations, a novel optimization technique is discussed in this work, which has the potential 

to deconvolute the PSDs of the clinker fraction and limestone from that of the composite 

cement.   

4.3.2.1 The optimized Rosin-Rammler distribution-based PSD deconvolution 

technique  

Rosin-Rammler (R-R) distribution (which essentially is a Weibull distribution but called R-R 

because it was first applied by Rosin and Rammler to describe PSDs (Rosin and Rammler 

1933)), is widely accepted as a method to describe the PSDs of materials processed by 

grinding, milling, crushing, or comminution operations, such as in the cement manufacturing 

process (DELAGRAMMATIKAS and TSIMAS 2004; Voglis et al. 2005). R-R distribution is 

defined by the characteristic diameter and the shape parameter. The characteristic diameter 

(d0) represents the cumulative volume fraction that is finer than 63.2%, which makes it a 

measure of the fineness of the distribution, whereas the shape parameter (n) is a measure of 

spread of the distribution. The R-R cumulative distribution function, Q(d), where d is the 

particle size, is defined, as shown in Equation 4-1, as a function of d0 and n. The parameters 

of the R-R distribution can be obtained by re-factoring the distribution function to the form 

shown in Equation 4-2.  For the three parent cements used in this chapter (C150, C595, and 

C1157), the R-R parameters obtained are shown in Table 4-2.  

                 (Eq. 4-1) 

             (Eq. 4-2) 
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An optimization procedure was employed to obtain the values of the characteristic diameter 

(d0) and the shape parameter (n) of the clinker and limestone present in interground 

cements, from which their individual PSDs can be deduced. The constraint used in the 

optimization procedure was the equivalence of specific surface areas from the PSDs of the 

actual interground cements and their PSDs obtained using the R-R parameters of both 

clinker and limestone fractions. Specific surface area (SSA) can be calculated from the PSD 

using Equation 4-3 (Taylor 1997), where Fs is a constant that accounts for the shape of 

particles (considered as 1.0 assuming spherical particles), fd is the mass fraction of particles 

with size ‘d’ µm and ρ is the density of material.  

                (Eq. 4-3) 

Table 4-2: Rosin-Rammler parameters and SSA of the parent cements used in the study. 

Cement 

type 

R-R parameters SSA (m2/kg) 

d0 (m) n 
Predicted SSA 

using Eq. 3 

Experimental 

Blaine fineness 

C150 17.95 1.32 492.4 451.6 

C595 16.99 1.28 508.1 496.9 

C1157 12.48 1.32 604.1 593.9 
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The optimization function is defined as the summation of the absolute relative errors in the 

values of d0, n and SSA of the actual interground cement and the predicted distribution from 

the R-R parameters, as shown in Equation 4-4. 

                 (Eq. 4-4) 

A rigorous search was carried out to obtain the d0 and n values associated with each of the 

individual components in the composite material; in this case, the clinker and limestone. 

Multiple iterations were carried out using trial d0 and n values for clinker and limestone 

fractions selected from a pre-specified range and step interval. These trial combinations were 

used to calculate the respective PSDs using Equation 4-1. The composite distribution was 

then calculated knowing that these PLCs contain 12.7% of limestone by volume. 

Subsequently, d0 and n values of the composite distribution were determined using Equation 

4-2 and SSA was calculated using Equation 4-3. Finally, these values were used in Equation 

4-4 to calculate the optimization function. The optimization function was found to converge 

to a minimum for certain combinations of d0 and n for the clinker and limestone phases. 

The region of convergence was used to redefine the range for d0 and n values for the next 

iteration cycle. The step interval was reduced in order to explore the region of convergence 

in search of a better solution. The tolerance value for the optimization function was also 

subsequently refined so as to finally reach the value of ~ 0.5%. The values of d0 and n at the 

minima at an acceptable level of tolerance (~ 0.5% in this case) were taken as the optimized 

values. A flowchart describing this approach, which has been developed into a computer 

program, is shown in Figure 4-6. The optimized R-R parameters for the clinker and 
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limestone phases present in the PLCs are shown in Table 4-3. The median size (and d0) of 

the clinker particles in the C595 PLC is higher than that of OPC whereas for the C1157 

PLC, it is lower than that of OPC. The spread of the distribution of the clinker particles are 

rather invariant between the three parent cements. As expected, limestone is ground finer in 

the C1157 PLC than in the C595 PLC. Figure 4-7 shows the comparison between the actual 

PSDs of the C595 and C1157 cements and the composite distribution predicted using the 

optimization scheme that extracted the individual PSDs of clinker and limestone. The 

adequacy of the proposed optimization approach is evident from this figure.  
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Figure 4-6: Flowchart to demonstrate the steps for the optimized R-R method 

 

Table 4-3: Summary of the parameters of Rosin-Rammler distribution for clinker and 
limestone in the OPC and PLCs obtained using the optimization approach. d50 values are 

also shown for comparison 

Cement 

type 

Clinker fraction Limestone 

Error 

d0 (m) n 

d50 

(m) 
d0 (m) n d50 (m)  

C 150 17.95 1.32 11.20 -- -- -- -- 

C595 19.00 1.28 14.26 2.20 1.90 1.82 0.51% 

C1157 13.90 1.35 10.61 1.93 1.80 1.57 0.53% 
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Figure 4-7: Comparison of the actual PSDs of: (a) C595 PLC and (b) C1157 PLC with those 
obtained from the R-R parameters. 

 

4.3.3 Validation of the Proposed Model through Virtual Microstructure-and-

Hydration Modeling 

While Figure 4-7 established the correspondence between the PSDs of the interground 

cement and those extracted from individual clinker and limestone PSDs, it is onerous to 

experimentally generate blended mixtures of these PSDs separately for validation studies. 

Thus, virtual microstructures and a cement hydration model is used in this chapter to 

evaluate the efficiency of the PSD extraction approach. The individual PSDs of the clinker 

and limestone phases obtained using the R-R optimization approach were used to calculate 

the composite distributions as shown in Figure 4-7, which were used as inputs in 

microstructural modeling. The composite PSDs were discretized to get the number of 

particles of the different components in a representative volume element of side length 300 

µm.  The packing fraction corresponded to a water-solids ratio of 1.26 by volume 

(approximately 0.4 by mass). Figure 4-8 shows representative slices from the initial digitized 

microstructures of the blended mixtures (where OPC and four limestone sizes are used to 

match the PSD of the PLCs – Figure 4-2) and the composite mixtures after extraction of 

PSDs of individual components. An observation of these virtual microstructures indicates 

the drawbacks of the PSD-matching approach adopted in the first part of the study. While 

the clinker fraction particle sizes are taken to be similar for the blended mixtures (Figures 4-

8(a) and (c)) because of the use of parent OPC in the blends, simulation of the optimized 
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PSDs in Figures 4-8(b) and (d) show that the clinker fraction is much finer for the C1157 

cement. Similar, but subtler variations exist for the C595 cement also, which are elucidated in 

more detail using microstructural quantifiers described below.  

  

 

Figure 4-8: Comparison of virtual microstructures (in the unhydrated state) for the PSD-
matched blends corresponding to Figure 4-2 (Figure 4-8(a) and (c)) and the simulated PSDs 
based on R-R method and optimization (Figures 4-8(b) and (d)). Clinker fraction is indicated 
in red, gypsum in violet and limestone in green. Note the large discrepancy in particle sizes 

of both clinker fraction and limestone between the blended and simulated PSDs for the 
C1157 cement.  

 

(a) C595-Blended (b) C595- Simulated 

(c) C1157-Blended (d) C1157- Simulated 
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The interactions between the nearest neighbors in the random multi-component 

microstructure can be extracted from microstructural simulations such as the ones shown in 

Figure 4-8. Quantification of the interactions through contact fractions is useful to obtain a 

perspective on the reaction rates in the mixtures. The particle contact fraction is calculated as 

the fraction of nearest neighbor pairs in the microstructure. For instance, the cement-

limestone contact fraction is calculated as the ratio of the total number of contacts between 

cement and limestone to the total number of contacts in the system (which includes cement-

cement, limestone-limestone, and cement-limestone contacts). Since limestone is known to 

contribute both physically and chemically to the hydration of cement, albeit to a minor 

extent, the interaction between cement and limestone particles is vital towards understanding 

the nucleation process. As is well known, this is highly dependent on the PSDs of both 

limestone and cement in the mixture. Figure 4-9 shows the like and unlike particle contact 

fractions in the interground PLCs and the corresponding blended mixtures. The blended 

mixtures exhibit higher cement-cement interaction than the interground PLCs, indicating 

that the limestone particles are larger in this case (and thus more separated, given the same 

volume fraction). This results in the cement-limestone interactions being lower also. The 

proximity between the cement and limestone particles, coupled with the increased fineness 

of limestone leads to increased hydration rates since limestone is known to accelerate the 

hydration of cement. This aspect is evident when the C1157 and C595 PLCs are compared.  
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Figure 4-9: Percentages of contact between like and unlike particles obtained from the 
microstructure model. C-C indicates the % contact between cement particles, L-L between 

limestone particles and C-L cement and limestone particles. 

 

Cement hydration was modeled using the hydration and microstructure modeling tool 

CEMHYD3D (D. P. Bentz 2005). The process of hydration of a cement with known 

particle size distribution is simulated using a set of cellular automata rules. The model has 

been validated for a number of different types of portland cements as well as portland 

cements containing limestone (Dale P. Bentz et al. 1999; D. P. Bentz 2006). After the 

construction of virtual microstructures (Figure 4-8), the volume fractions of individual 

phases in the parent cements were obtained from Bogue’s calculations. The hydration was 

simulated for 72 hours under isothermal conditions in a sealed environment (D. P. Bentz 

2005). A cycles-to-time conversion factor of 0.00035 hours/cycles^2 was used to represent 

the hydration results as a function of time (D. P. Bentz 2005). Figure 4-10 shows the 
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simulated cumulative heat release curves based on the PSD-matched blends of OPC and 

limestone (labelled C595b-Sim or C1157b-Sim in the figures) as well as those based on the 

individual PSDs extracted from R-R optimization method (labelled C595-Sim or C1157-Sim 

in the figures). It is noted that the simulations based on the extracted PSDs match very well 

with the experimental data for both the PLCs. Since the PSD matching was rather 

satisfactory for the C595 PLC (Figure 4-2), the heat release responses are not very different. 

However, the adequacy of the PSD extraction process described earlier can be noticed from 

Figure 4-9(b) where the C1157 cement is simulated.  

 

      

Figure 4-10: Cumulative heat flow curves for the PSD-matched blends (C595b and C1157b) 
and the PLCs from hydration simulation and their comparison with experiments. Simulation 

data shown as continuous and dashed lines; experimental data shown as discrete symbols.  

 

Figure 4-11 shows the comparison between the porosities calculated at 3 days using the 

hydration model and the experimental porosity values obtained using MIP. The porosities 

calculated by the hydration model for the interground PLCs using the composite 
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distributions in Figure 4-7 are comparable to the experimental values obtained using MIP, 

whereas the simulated porosities for the blended mixtures are much higher in comparison. 

This further validates the composite PSDs calculated using the R-R optimization approach. 

  

Figure 4-11: Comparison of experimental and simulated porosities at after 72h of hydration 

 

4.4. CONCLUSIONS 

This chapter has compared the hydration response, pore structure, and strength of 

cementitious systems proportioned using two interground portland-limestone cements 

(conforming to ASTM C595 and C1157) to those of corresponding particle size-matched 

blends. The PSD-matched blends were proportioned using limestone powders of four 

different median sizes. The inability of blended systems to match the properties of 

interground PLCs even with similar or comparable overall solids surface area is brought out 
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in this chapter. This behavior is based on the difference in the relative size distribution of 

clinker and limestone in the interground PLCs as compared to the size-matched blends. In 

order to determine the unknown PSDs of clinker and limestone in the interground PLCs, a 

novel method was proposed which can aid in better design of blended mixtures to achieve 

performance equivalence to the PLCs. The approach uses Rosin-Rammler distributions for 

the clinker and limestone fractions in the interground PLCs and determines the 

corresponding characteristic diameter (d0) and shape parameter (n) using an optimization 

procedure. Such an approach will be of interest to other areas of particle and powder 

technology such as food processing, pharmaceuticals etc. The validation of the technique 

was carried out using CEMHYD3D based modeling of cement hydration and 

microstructure. 
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CHAPTER 54 

TERNARY BLENDS CONTAINING SLAG AND INTERGROUND/BLENDED 

LIMESTONE: HYDRATION, STRENGTH, AND PORE STRUCTURE 

5.1. INTRODUCTION 

The environmental impact, particularly the significant emission of greenhouse gases 

associated with the manufacture of ordinary portland cement (OPC) (Worrell et al. 2001), 

has catalyzed studies on the use of several environmentally benign alternate materials as 

partial OPC replacements. Fine limestone powder is one such material that has shown to be 

a viable partial OPC replacement material. Limestone can be interground with OPC clinker 

in the cement manufacturing process or blended with the cement during the concrete 

batching process. Improved particle packing, fine limestone acting as nucleation sites for 

reaction product formation, and consequently better properties are obtained with 

interground portland limestone cements (PLC) as well as blended systems where fine 

limestone is used (A. Kumar, Oey, Kim, et al. 2013; Vance et al. 2015; Vance 2014).  

Binary and ternary cementitious blends containing fly ash, slag, metakaolin or silica fume are 

being commonly used to produce sustainable high-performance concretes (Frohnsdorff 

1986; Osborne 1999; Vance, Aguayo, et al. 2013). Recently, significant work has been carried 

out on developing ternary blends based on the idea that limestone is capable of chemically 

combining with the aluminate phases in the cementitious materials to form carboaluminates 

                                                 

4   This chapter is derived from the publication: Arora, A., Sant, G., & Neithalath, N. (2016). Ternary blends 
containing slag and interground/blended limestone: Hydration, strength, and pore structure. 
Construction and Building Materials, 102, 113-124. 
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that further densify the microstructure and consequently improve the properties (Guillermo 

Puerta-Falla et al. 2015; Matschei, Lothenbach, and Glasser 2007b; Oey et al. 2013). 

Synergistic effects of limestone and fly ash or metakaolin have been elucidated in these 

studies. This has provided a methodology to realize increased OPC replacement without 

compromising the performance. 

In this chapter, a combination of limestone and slag is utilized as OPC replacement in order 

to develop binders that contain higher levels of cement replacement, yet result in 

performance-equivalent concretes. In addition to the alumina content in slag (which is 

higher than that in OPC but significantly lower than those in fly ash or metakaolin) that 

facilitates limestone-aluminate synergistic reactions, slag demonstrates cementitious (albeit 

slow) and pozzolanic reactivity (Lothenbach, Scrivener, and Hooton 2011).  Due to the 

latent hydraulicity of slag, slag-based cements show reduced early age strengths but they have 

been shown to attain significant compressive strengths at later ages (Bágel 1998; Hwang and 

Lin 1986). The presence of fine limestone is expected to accelerate the early-age hydration in 

slag containing blends.  The synergistic effects of limestone and slag are explored in detail 

with respect to their contributions to the formation of hydration products and the 

development of strength and pore structure.  Limestone powders of different size 

distributions are blended with OPC and slag to obtain similar particle size distribution (PSD) 

as the corresponding PLC-based mixture, which ensures that the total surface area available 

for the reaction is similar for all the mixtures. Up to 50% (by volume) of total OPC 

replacement is studied.  
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5.2. EXPERIMENTAL PROGRAM 

5.2.1 Materials and Mixtures 

Commercially available Type I/II ordinary portland cement (OPC) conforming to ASTM C 

150 and portland limestone cement (PLC) conforming to ASTM C 595 were the used in this 

chapter. The PLC has a limestone content of 11.07% by mass (12.68% by volume). A 

nominally pure limestone powder (purity > 95% CaCO3, by mass) of four different median 

particle sizes - 0.7 µm, 3 µm, 10 µm and 15 µm, conforming to ASTM C 568, and a ground 

granulated blast furnace slag (GGBFS, referred to in the remainder of this chapter as slag) 

conforming to ASTM C 989 were used as partial cement replacement materials. Figure 5-1 

shows the particle size distribution of these materials. The median particle sizes are shown in 

these figures. Table 5-1 presents their respective chemical compositions.  

 

  

Figure 5-1: Particle size distributions of: (a) parent OPC and PLC, and slag, and (b) 

limestone powders used in this chapter. The d50 values (in m) are shown in the figure 
legends. 

(a) (b) 
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Table 5-1: Chemical Compositions of materials (% by mass) used 

Material SiO2 Al2O3 Fe2O3 CaO MgO SO3 LOI LS 
SSA 

(m2/kg) 

(() 
OPC - C150 19.60 4.09 3.39 63.21 3.37 3.17 2.54 2.90 452 

PLC – C 595 16.51 3.38 2.66 56.80 2.61 2.80 4.17 11.07 497 

GGBFS – C 989 39.41 8.49 0.37 35.53 12.05 2.83 1.31 - 487 

 

The raw materials were proportioned by volume to obtain eleven different mixtures. Apart 

from the plain OPC paste, three mixtures were proportioned where 20, 40, or 50% of OPC 

by volume was replaced by slag. Similarly, PLC (with a limestone content of ~13% by 

volume) was used as the base material in pastes where 20, 40, or 50% of the clinker fraction 

in PLC was replaced using a combination of slag and limestone. For example, a mixture with 

a 40% replacement includes 31.29% of slag (externally added) and 8.71% of limestone 

(intrinsic to the PLC). In the next set of mixtures, 20, 40, or 50% of OPC was replaced by 

blending slag and limestone powder of four different sizes so as to match the PSD of the 

corresponding PLC-based binders. It should be noted that PLC has a limestone content of 

12.68% by volume (11.07% by mass), which is interground with the cement clinker during 

the manufacturing process. In this series, the limestone content was maintained at 12.68% by 

volume, which is the same as that of the PLC. The sample nomenclature and the amounts of 

the constituents in the mixture are shown in Table 5-2. These mixtures are indicated as 

OPC-x, INT-x and BLD-x respectively, where x represents the total replacement (by 

volume) of the cement clinker in the mixtures. A volume-based water-to-powder ratio 
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(w/p)v of 1.26, which is approximately equivalent to a water-to-powder ratio of 0.40 by mass 

for the plain OPC system, was used.  

 

Table 5-2: Volumetric percentages of the binder components for the mixtures considered 

Sample ID 
OPC 

(C150) 

PLC 

(C595) 
GGBFS 

Limestone 

(Total) 

LS 

0.7m 

LS 

3m 

LS 

10m 

LS 

15m 

OPC-0 100.00 0.00 0.00 0.00 - - - - 

OPC-20 80.00 0.00 20.00 0.00 - - - - 

OPC-40 60.00 0.00 40.00 0.00 - - - - 

OPC-50 50.00 0.00 50.00 0.00 - - - - 

BLD-20 80.00 0.00 7.32 12.68 3.63 1.05 6.57 1.43 

BLD-40 60.00 0.00 27.32 12.68 2.81 1.04 6.44 2.39 

BLD-50 50.00 0.00 37.32 12.68 2.40 1.03 6.38 2.87 

INT-13 0.00 100 0.00 12.68 - - - - 

INT-20 0.00 91.62 8.38 11.62 - - - - 

INT-40 0.00 68.71 31.29 8.71 - - - - 

INT-50 0.00 57.26 42.74 7.26 - - - - 

 

In the mixtures where limestone was blended, four available limestone size distributions as 

shown in Figure 5-1 (b) were used such that the overall PSD of the blend is similar to the 

PSD of the PLC-based mixture at the same level of total replacement. The individual 

fraction of each limestone size was calculated using an iterative solver to minimize the mean 

square error of the final PSD of the blended and the interground mixtures. Size-matching in 
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such a way ensures that the total surface area available for the reaction is similar for the 

corresponding blended and interground mixtures. However, intergrinding of portland 

cement clinker with limestone results in a finer limestone phase in the composite system due 

to the fact that limestone is softer than the clinker.  

The volume percentages of different limestone sizes as obtained by matching of the PSDs of 

the blended mixtures are also shown in Table 5-2. It should be noted that the size 

distribution available for PLC is a composite distribution of cement and limestone and that 

the volume percentages of OPC and limestone for PLC mixtures is expressed in terms of 

their relative contribution to the amount of PLC in the corresponding mixtures. Figures 5-

2(a), (b) and (c) show the cumulative PSDs of the blended and interground limestone 

cement mixtures containing slag, after particle size matching.  

 

 

Figure 5-2: Comparison of particle size distributions (PSDs) for the interground and blended 
mixtures with cement replacement by volume of: (a) 20%, (b) 40% and (c) 50% 

 

5.2.2 Experiments 

5.2.2.1. Isothermal Calorimetry 

(a) (b) (c) 
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The heat evolution during hydration was determined using isothermal calorimetry (TAM Air 

micro calorimeter 2700 Series) at a constant temperature of 25°C for 72 hours. To ensure 

accurate early age measurement and minimize the time to isothermal conditions, the blended 

powders and water were conditioned in an oven for 12 hours at 25°C. The pastes were then 

mixed using a laboratory mixer in accordance with ASTM C 305 (“ASTM C305-13 Standard 

Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic 

Consistency. ASTM International, West Conshohocken, PA; 2013.,” n.d., 305)  . 

Approximately 10 g of sample was extracted immediately, placed in a sealed sample vial to 

minimize evaporation and placed in the isothermal calorimeter to determine the heat release 

response.  

5.2.2.2. Compressive Strength Testing 

Compressive strength tests were carried out in accordance with ASTM C 109 (“ASTM C109 

/ C109M - 12 Standard Test Method for Compressive Strength of Hydraulic Cement 

Mortars (Using 2-in. or [50-Mm] Cube Specimens). ASTM International, West 

Conshohocken, PA; 2012.,” n.d., 109) on 50 mm size mortar cubes cured in a moist 

environment (>95% RH) and a temperature of 23±2°C. Mortar cubes were prepared with a 

sand volume fraction of 50%.  The cubes were stored in the molds for 24 hours in covered 

conditions, after which they were demolded and stored until the desired testing age (1, 3, 14, 

28, 56 and 90 days) in the moist-curing chamber.   

5.2.2.3. Thermal Analysis  

Simultaneous thermal analysis (STA) simultaneously measures the mass loss and heat flow 

associated with heating a sample over a defined temperature range. In this chapter, STA was 
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carried out at ages of 1, 3, 7, 14, and 28 days. Powders were dry-blended prior to adding 

water, and the samples were mixed in accordance with ASTM C 305. Paste samples were 

cured under sealed conditions at a temperature of 23±1°C until the desired testing age. 

Thermal analysis was completed using a Perkin Elmer STA 6000. Tests were carried out in a 

nitrogen environment, at a gas flow rate of 20 ml/s.  Samples were heated from ambient 

temperature to 995°C at a heating rate of 15°C/min.  Heat flow curves from thermal analysis 

over this temperature range typically illustrate three distinct peaks - (i) loss of evaporable 

water and chemically bound water in C-S-H and ettringite, (ii) the dehydroxylization of 

calcium hydroxide, and (iii) the decarbonation of calcium carbonate. A minor peak 

corresponding to the decomposition of mono/hemi-carboaluminate species was also 

observed. Calcium hydroxide and residual calcium carbonate contents were determined 

using the stoichiometric relationships associated with their respective decomposition 

reactions and the mass loss associated with their decomposition temperatures.  The 

chemically bound water (wn) is a measure of the degree of hydration of the portland cement 

and is determined by subtracting the mass loss associated with calcium carbonate from the 

loss on ignition of a dried sample (the mass at 110°C), normalized by the mass of the dried 

sample. The consumed carbonate content is the percentage of carbonates consumed during 

the hydration process relative to the amount of carbonates initially present as determined 

from the mixture proportions.  

5.2.2.4. Mercury Intrusion Porosimetry (MIP) 

Paste samples were cured for 28 days under sealed conditions at a constant temperature of 

23±1 °C.  The samples were crushed to an approximate size of 2 mm, and then dried in an 
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oven for 2 hours at 60 °C. This pre-treatment method was found to produce consistent 

results in a previous study (Vance 2014). A mercury intrusion porosimeter capable of 

exerting a maximum testing pressure of 414 MPa was used. The relationship between pore 

diameter and intrusion pressure was determined using the Washburn equation (Washburn 

1921b) (Equation 5-1), where ‘d’ is the apparent diameter and ‘P’ is the applied pressure. ‘’ 

is the surface tension of mercury and ‘φ’ is the mercury contact angle which are assumed to 

be 0.480 N/m and 117° respectively during intrusion.  The contact angle of 117° is typically 

used for the intrusion phase in oven dried cementitious materials (Windslow and Diamond 

1969; Bager and Sellevold 1975; R. Kumar and Bhattacharjee 2003b), and thus was selected 

for this chapter. 

     (Eq. 5-1) 

Studies have identified potential inaccuracies in the determination of the pore size 

distribution using MIP (Moro and Böhni 2002b; Diamond 2000). However, the 

determinations of the total volume of mercury intruded and the critical (percolating) pore 

diameter which corresponds to the highest rate of volume intrusion into the specimen, have 

been suggested to be reliable (Cook and Hover 1999; Windslow and Diamond 1969).  

5.3. RESULTS AND DISCUSSIONS 

5.3.1 Influence of Replacement Levels on Packing Characteristics in Simulated 

Microstructures 

The effect of particle packing on the properties of cement pastes and mortars has been well 

documented. Several studies have focused on optimizing particle packing arrangements to 
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obtain high performance mixtures (Lange, Mörtel, and Rudert 1997; Kwan and Fung 2009; 

Vance 2014). In the present study, the PSD of the component materials are used to 

determine packing characteristics, which can then be related to the early age hydration and 

strength development in cement-limestone-slag systems. In order to accomplish this, a 

microstructural stochastic packing model with periodic boundary conditions was 

implemented (D. P. Bentz 2005). The algorithm packs spherical particles in a 3D REV 

(representative element volume, chosen here as 300 x 300 x 300 µm3). The input volume 

fractions were determined based on the chosen (w/p)v and the number of particles of each 

class based on the respective particle size distributions. The key microstructural features such 

as the average number of nearest neighbors and the particle contact fractions were extracted 

from the microstructures for analysis. For any particle, the nearest neighbor is defined as a 

particle that lies either wholly or partially in the radial field of that particle, defined as a field 

with a radius of (r+5) µm, where ‘r’ is the radius of the particle. The particle contact fraction 

is calculated as the fraction of nearest neighbor pairs in the microstructure. For instance, the 

slag-limestone contact fraction is calculated as the ratio of the total number of contacts 

between slag and limestone to the total number of contacts in the system (which includes 

cement-cement, limestone-limestone, slag-slag, and the three unlike particle contacts). Figure 

5-3 shows representative 2D slices from 3D microstructures for the mixtures where OPC is 

replaced at a level of 50% by volume by slag and/or limestone.  
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Figure 5-3: 2D slices captured from 3D RVEs generated using the particle packing model for 
mixtures where 50% of OPC by volume is replaced by slag and/or limestone: (a) OPC-50, 

(b) BLD-50 and (c) INT-50. The edge length of the RVE is 300µm and w/p ratio by volume 
is 1.26. Cement is represented in red, slag in blue, and limestone in green.  

 

OPC was modeled using the available particle size distribution for C 150 cement, whereas 

the PLC was modeled as a two-phase material with contribution from both cement and 

limestone. However, only the composite particle size distribution was available for PLC and 

the details of the intergrinding process were not readily available. For the current study, the 

PSD of limestone in the PLC was determined by assuming that cement in the composite 

distribution has the same PSD as OPC (this is strictly not true since cement being harder 

than limestone, will be ground coarser in the intergrinding process; however, this is a 

necessary assumption). Considering that there is only 12.68 % of limestone in PLC and the 

median sizes of the OPC and PLC are not very different (11.2 and 10.03 µm), this can be 

considered to be a reasonable approximation. The limestone PSD in the PLC was then 

determined by calculating the median size of limestone using rule of mixtures and 

constructing a normal distribution about the median size. After obtaining individual PSDs of 

limestone and cement, the distributions were discretized to get the number of particles in a 

(a

) 

(b

) 

(c

) 
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RVE of size 300 µm using a packing fraction calculated from (w/p)v = 1.26. The results 

from the particle packing study are presented in Figure 5-4.   

 

 

     Figure 5-4: Key features extracted from microstructural packing models as a function of 
clinker replacement level: (a) average number of nearest neighbors, (b) fraction of particle 

contact between slag and limestone, and (c) fraction of particle contact between cement and 
limestone. 

 

Figure 5-4 (a) shows the average number of nearest neighbors for a particle in the 

microstructure.  This is an important factor that characterizes the proximity of the reacting 

species in the RVE which is useful to understand the early age hydration behavior. Replacing 

OPC with slag or slag and limestone increases the average number of nearest neighbors, and 

the increase is linear with the replacement level. For the PLC mixture, a slight reduction in 

the number of nearest neighbors is observed with increasing replacement levels because of 

the proportional decrease in the amount of finer limestone content. Figures 5-4(b) and 5-4(c) 

show the contact fraction between slag and limestone, and cement and limestone 

respectively in the blended and interground systems. Since limestone acts as a heterogeneous 

(a) (b) (c) 
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nucleation site as well as participates in the formation of carboaluminates in alumina-rich 

systems, the proximity of cement and alumina-bearing slag to limestone particles is an 

important microstructural parameter. 

From Figure 5-4(b), it is noticed that the particle contact fraction between slag and limestone 

increases with increasing clinker replacement level. The particle contact fraction is noted to 

be much higher in the interground mixtures containing slag compared to the blended ones 

containing slag. The difference between the particle contact fractions of the interground and 

blended mixtures increases with the clinker replacement level, even though the fraction of 

limestone in the blended mixtures is constant at 12.68% and the fraction of limestone in the 

PLC-slag mixtures decreases in proportion to the clinker content. This is firstly because the 

limestone in the interground mixtures is much finer compared to the limestone in the 

blended mixtures and secondly, higher amount of relatively fine slag (d50 = 7.61 µm) replaces 

the cement in the interground mixtures (Table 5-2). This difference in the particle contact 

fractions is a possible reason for higher initial reactivity of the interground mixtures and the 

greater synergy between limestone and slag in the interground mixtures, as will be shown 

later. From Figure 5-4(c), it is observed that the cement-limestone contact fraction decreases 

with increasing clinker replacement level, as expected.  However, the cement-limestone 

contact fraction in interground mixtures always remains higher than those in the blended 

mixtures. With increasing replacement level, the difference in particle contact fraction 

between the blended and interground mixtures reduces. This is because, in both cases, the 

dominant replacement material (slag) is finer than both the parent cements which are being 

replaced.  
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5.3.2 Early Age Hydration Kinetics 

The early age hydration kinetics was determined using isothermal calorimetry at a 

temperature of 25°C as described earlier. The heat flow plots normalized per gram of 

cement (i.e., the clinker fraction) obtained from isothermal calorimetry are shown in Figures 

5-5(a)-(c) for the mixtures shown in Table 5-2. The parent cements in each category of 

mixtures are represented using solid lines and the samples with partial replacements are 

represented using dashed lines. Two major peaks, corresponding to the hydration of the 

silicate and aluminate phases are found in all the calorimetric signatures, as expected. Figure 

5-5(a) shows the isothermal calorimetric response of binary OPC-slag mixtures. It is 

observed that with increasing level of slag replacement, the secondary peak corresponding to 

the hydration of the aluminate phase becomes more dominant in comparison to the primary 

peak. This change in the trends is most likely due to the enhanced rate of formation of 

AFm/AFmc phases (Guillermo Puerta-Falla et al. 2015) and is clearly noticeable in Figures 

5-5 (a) – (c) as we go from the parent cement paste to the paste with 50% overall 

replacement. In the case of binary OPC-slag mixtures in Figure 5-5(a), the reaction follows a 

more conventional pathway as that of OPC and leads to the formation of AFm phase from 

the reaction of ettringite with the aluminates. The additional reactive alumina from slag 

results in a steeper slope of the acceleration curve, and the slope increases with increasing 

slag content in the paste. Figure 5-5(b) shows the heat evolution for the pastes containing 

size-matched limestone and slag as OPC replacement. It should be noted that all mixtures in 

Figure 5-5(b) have the same amount of blended limestone. Therefore, the increase in the 

slope of the acceleration phase (which is higher than those in binary OPC-slag pastes) 
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indicates the synergistic effect of slag and limestone (note the increasing slag-limestone 

particle contacts in Figure 5-4(b)), where the formation of a monocarbonate (AFmc) phase is 

preferred due to an increase in the overall alumina content in the mixture. Studies have 

indicated that the formation of AFmc phase is favored over the formation of AFm phase for 

limestone containing mixtures (Matschei, Lothenbach, and Glasser 2007a). From Figures 5-

5(a) and (b), it can also  be observed that the primary heat flow peak is higher than the 

secondary peak for OPC, while for mixtures containing slag and/or limestone,  the opposite 

trend is observed. This is due to the enhanced aluminate hydration in the pastes containing a 

combination of limestone and slag. The peak also shifts towards earlier times with increasing 

cement replacement level in both OPC and the limestone blended mixtures, as is noticed in 

the heat flow plots.  
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  Figure 5-5: Heat flow plotted as W/g cement for: (a) Slag replaced OPC mixtures, (b) Slag 
and blended limestone replaced OPC mixtures, and (c) Slag-replaced interground mixtures.  

 

Figure 5-5(c) depicts the heat flow response of the parent PLC paste and PLC-slag mixtures.  

It is noticed that the plain PLC paste and the PLC-slag blends show higher heat flow peaks 

as compared to other pastes at the same overall replacement level shown in Figures 5-5(a) 

and (b). Of particular importance among these samples is the parent PLC, which has ~13% 
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limestone by volume interground with cement clinker. This paste shows a steeper 

acceleration curve and a higher heat flow peak value as compared to the plain OPC paste. 

When limestone is interground with portland cement clinker, the softer limestone phase is 

ground more readily than the harder portland cement clinker, resulting in a finer limestone 

phase. The increased quantity of limestone fines significantly increases both the reactivity of 

the limestone and the surface area available for hydration product nucleation (Vuk et al. 

2001; A. Kumar, Oey, Falla, et al. 2013), which is observed in the enhanced hydration rates. 

In the samples where PLC has been partially replaced with slag, beyond a 20% replacement 

level, it is noted that the rate of the heat flow as well as the peak heat flow increases, in 

relation to the plain PLC paste. Although the limestone content in the pastes proportionally 

decreases with increase in the replacement, the increasing slope of the acceleration phase 

leads to discern that there is an increase in reactivity of limestone in the presence of slag. 

This synergistic effect of slag and limestone is attributed to the presence of reactive alumina 

in slag which along with the more reactive PLC, increases the consumption of limestone by 

the formation of AFmc phase as will be shown later.  

It is observed from Figure 5-5 that in the deceleration phase and beyond, the heat flow rate 

is higher for the mixtures containing slag as compared to plain OPC and PLC pastes. It is 

also noted that the difference in heat flow response in this phase between the parent 

cements and the ones containing slag increases with increasing replacement level. This is 

attributed to the hydration of slag which takes place at a slower pace than cement.  The 

hydration of slag is a slow process and the activity of slag in blended cement systems is 

predominantly pozzolanic in nature, controlled by the amount of alkali (calcium hydroxide) 
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produced from cement hydration (Pal, Mukherjee, and Pathak 2003; Odler 2003). Thus, as 

the cement hydration progresses, it initiates the pozzolanic activity of slag which is 

noticeable from the deceleration phase in the heat flow rate plots. 

 

Figure 5-6: The derivative of the heat flow response of OPC and blended/interground 
mixtures to demonstrate the tertiary peak corresponding to the hydration of slag and 

accelerated hydration of slag in the presence of limestone.  

 

The characteristic nature of the heat flow curves for all binary and ternary mixtures remains 

generally similar to that of their parent cement pastes except for a tertiary peak in the slag-

containing mixtures, corresponding to slag hydration at about 14 hours (X. Wu, Roy, and 

Langton 1983; Xuequan Wu, Jiang, and Roy 1990; Lothenbach, Scrivener, and Hooton 

2011). This peak, demonstrated as a hump in the deceleration portion of the heat flow 

curves, can also be identified on close observation of the heat flow plots in Figures 5-5(a – 

c). This is readily shown in the derivative of the heat flow peak shown in Figure 5-6 for the 

mixtures containing 50% slag. Similar results are obtained for other replacement levels (not 
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shown in the figure) as well. The earlier appearance of this peak in the heat flow response of 

the interground mixture containing limestone and slag as compared with the binary OPC-

slag mixture indicates an acceleration in the hydration of slag in the presence of limestone. 

This could be due to the finer limestone acting as nucleation sites for the hydration of slag.  

 

  

Figure 5-7: (a) Maximum heat flow, and (b) slope of acceleration phase for blended OPC-
slag and OPC-limestone-slag pastes, and PLC-slag pastes as a function of clinker 

replacement level. 

 

To better characterize the hydration behavior and the slag-limestone interaction in these 

systems, the heat flow peaks for the aluminate phase and the slope of the acceleration phase 

of the heat of hydration plots are shown in Figure 5-7 as a function of clinker replacement 

level. The heat flow peak values and the slopes of the acceleration phase generally increase as 

OPC is replaced by slag in OPC-slag systems until a replacement level of 40%, indicating the 

influence of a finer (than OPC) replacement material on early age hydration. Beyond that, 

the dilution effect dominates. At 50% total replacement level, the heat flow peak value as 

(a) (b) 
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well as the slope of the acceleration phase are highest for the PLC containing pastes, 

followed by the blended mixture. This is attributed to the increase in the reaction rates due 

to the reactive alumina from slag and the finer limestone from the PLC.  The rate of heat 

flow in the acceleration phase as well as the peak heat flow value is positively influenced by 

acceleration due to the fine filler effect in the presence of limestone and the slag-limestone 

interaction, and negatively influenced by dilution effect due to the presence of limestone and 

slag fillers. The latter is better understood from the cumulative heat flow plots plotted per 

gram of binder (cement + slag) in Figure 5-8. 
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Figure 5-8: Cumulative heat of hydration in W/g of binder (cement + slag) for: (a) 
volumetric replacement of OPC by slag, (b) OPC replaced by limestone-slag blends, and (c) 

interground portland limestone cement (PLC) replaced by slag 

 

The cumulative heat content is an indication of the degree of hydration of the overall binder. 

A combination of cement and slag is considered as the binder. It is observed from Figure 5-

8 that the cumulative heat released for all the mixtures is generally lower than that of the 

OPC paste at all times. This has important implications in early age thermal cracking of 
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concretes. The cumulative heats are, though, not proportional to the cement content in the 

mixtures, which is due to the enhanced formation of the AFmc phase resulting in the 

consumption of limestone, and the hydration of slag. However, the contribution from the 

latter is not quite significant at 72 hours due to the latent hydraulicity of slag. On closer 

observation, it is found that the cumulative heat flow values for the blended limestone 

mixtures containing slag are higher than those of the OPC pastes containing slag alone at the 

same total replacement levels. This once again is an indication of the increased limestone 

reactivity in the presence of slag.  

5.3.3 Compressive Strength Development 

Compressive strengths of 50 mm mortar cubes at ages of 1, 3, 7, 28, 56 and 90 days were 

determined as described in Section 2.2.2.  Figure 5-9 shows the evolution of compressive 

strength over these ages for the mixtures considered in this chapter.  
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Figure 5-9: Compressive strength development of mortars with time: (a) volumetric 
replacement of OPC by slag, (b) OPC replaced by limestone-slag blends, and (c) interground 

portland limestone cement (PLC) replaced by slag 

 

With respect to early age strengths, it can be immediately observed from all plots in Figure 5-

9 that increasing cement (OPC or PLC) replacement levels decrease the compressive 

strengths as expected. This is attributed to the higher volume of hydration products 

(a) (b) 

(c) 
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produced in the mixtures with lower overall cement replacement at early ages. It is also 

observed from Figure 5-9(a) that the 1 and 3-day strengths are rather proportional to the 

OPC content in the mixtures, indicating the effect of dilution in the early stages of hydration 

even though some slag hydration has been noticed in the isothermal calorimetry curves. It is 

well known that the hydration of slag is minimal at early ages (Beushausen, Alexander, and 

Ballim 2012; Menéndez, Bonavetti, and Irassar 2003). However, in mixtures containing 

blended limestone (Figure 5-9(b)), the compressive strength values at early ages are slightly 

higher than when dilution is dominant as in the case of OPC-slag blends. This is because of 

the presence of fine limestone particles which act as nucleation surfaces and enhance the 

hydration process, and the increase in the activity of limestone in the presence of slag which 

was explained earlier. It should be noted that the silicate and aluminate components of slag 

have different rates of reaction, and the aluminate phase reacts more rapidly as compared to 

the silicate phase (24). For the slag-PLC blends in Figure 5-9(c), the 3-day strengths are 

independent of the replacement levels. This is likely attributed to the dilution effect being 

compensated by the hydration of slag and the increased reactivity of cement in the presence 

of finer limestone. The hydration of slag occurs earlier in the PLC-slag blends, more 

particularly in the mixtures containing 40% or 50% as discussed in the previous section. 

The compressive strength values increase rapidly between 3 and 14 days of hydration. This is 

due to the formation of secondary C-S-H as a result of hydration and pozzolanic reaction of 

slag during this period. The extent of increase is more evident in the mixtures with higher 

replacement levels. From Figures 5-9 (a-c), it can be clearly seen that the rate of increase in 

strength for mixtures with 40% and 50% replacement levels is much higher as compared to 
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the mixtures with 20% replacement. This is because of the pozzolanic activity of slag in 

these mixtures. The pozzolanic behavior is due to the reaction of the glassy phase which 

corresponds to the silicates present in the slag, whereas the increase in the reactivity of 

limestone at early ages is attributed to the presence of aluminates. Comparing between the 

OPC-limestone-slag blended mixtures in Figure 5-9(b) and the PLC-slag mixtures in Figure 

5-9(c), it can be noticed that the difference in strengths for the parent cement paste and the 

blended mixtures containing slag are higher for the PLC-slag system. This can be attributed 

to the much higher early age strength of the parent PLC mortar owing to its increased 

fineness.  

For the OPC-slag blends, the later age strengths (56 days and beyond) are comparable to 

that of the parent OPC mixture. The hydration of slag and its pozzolanicity is responsible 

for this behavior as will be shown using thermal analysis results later. A similar observation 

is noted for the OPC-limestone-slag blends. For the PLC-slag blends, the strengths are 

slightly lower than that of the plain PLC mortar, attributed to the increased fineness and 

reactivity of the PLC. Comparing Figures 5-9(a-c), it is observed that the mixtures with 40% 

or 50% replacement levels obtain later-age strengths higher than those of the mixtures with 

20% replacement level at different times depending on the mixture constitution. For the 

OPC-slag mixtures, this happens between 56 and 90 days whereas for the OPC-limestone-

slag blends, this occurs between 10 and 14 days. For the PLC-slag mixtures, this occurs 

before 7 days, suggesting increased synergistic performance between limestone and slag. 

Since limestone is ground much finer in PLC, its reactivity with aluminates from slag is 

expected to be higher, which is represented in increased carbonate consumption for these 
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systems as shown later. In most cases, the later age strengths at 56 days and 90 days for all 

the mixtures approach the strength of mixtures made solely using their parent cements – 

OPC or PLC. 

The lower rate of strength gain in the binary OPC-slag mixtures as compared to the ternary 

mixtures containing limestone can be explained using the difference in reactivity of slag in 

the two systems. It is known from previous studies (W. Chen 2007, 2; Kolani et al. 2012) 

that the hydration of slag in slag-blended systems is proportional to the amount of alkalis 

(CH).  The production of CH, which is a result of the hydration of OPC, is lower in the case 

of the OPC-slag mixtures as compared to the mixtures containing limestone. Vance et al. 

(Vance, Aguayo, et al. 2013) showed that hydration kinetics of OPC is positively influenced 

in the presence of fine limestone and therefore, in absence of fine limestone, lower relative 

quantities of CH have a detrimental effect on the reaction of slag in the binary OPC-slag 

mixtures. 

To obtain a better understanding of the influence of limestone and slag on the early and later 

age strengths, the compressive strengths at 3 and 56 days are represented as a function of the 

clinker factors in Figures 5-10(a) and (b) respectively. Clinker factor is defined as the ratio of 

the volume of cement (OPC) in the dry mixture to the total volume of the powder. It is 

therefore an effective criterion which indicates the sustainability of the mixture. From Figure 

5-10 (a), it is noted that the 3-day compressive strengths of both the blended and 

interground mixtures containing limestone are higher than those of the OPC-slag blends at 

all clinker factors, signifying the influence of limestone in the early-age strength development 

process. Even at such an early age, below a clinker factor of 0.6, there is no strength 
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reduction for both the blended and interground systems containing limestone, which is 

attributable to the limestone-slag interaction as well as the particle packing in these systems, 

as discussed in an earlier section. It is noted that the slag-limestone interaction increases 

(Figure 5-4(b)) as the total level of replacement increases in these systems, which leads to 

increased slag reaction, with limestone acting as a heterogeneous nucleation site. The average 

number of nearest neighbors also increases as shown in Figure 5-4(a), which leads to 

increase in the probability of formation of reaction products and therefore increases the 

degree of reaction. The two factors mentioned above play an important part in counteracting 

the effect of dilution at early ages and lead to increase in strength at higher level of 

replacement. At later ages, as observed from Figure 5-10(b), the compressive strengths 

remain rather unchanged irrespective of the clinker factor for all the mixtures.   

 

   

Figure 5-10: Compressive strength of all the binder systems studied as a function of clinker 
factor at: (a) 3-days and (b) 56-days 

 

(a) (b) 
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5.3.4 Hydration Products 

The progress of the hydration reaction was investigated using thermal analysis techniques. 

Representative differential thermogravimetric (DTG) curves are shown in Figure 5-11. 

These curves show several distinguishable features: (i) all pastes show pronounced peaks at 

about 130°C and 450°C, corresponding to the decomposition of C-S-H and ettringite, and 

the dehydroxylization of calcium hydroxide respectively, (ii) all pastes containing limestone 

show peaks at about 180°C corresponding to decomposition of hemi/mono-

carboaluminates (Damidot et al. 2011) and at approximately 750°C corresponding to the 

decarbonation of calcium carbonate.  

 

Figure 5-11: 28-day representative DTG profiles of pastes 

 

5.3.4.1. Non-evaporable water contents  

Figures 5-12 illustrates the evolution of non-evaporable water (wn) content for all the pastes 

after 3 and 28 days of hydration. Non-evaporable water content is considered to be one of 

the key indicators of the progress of the hydration reaction process in hydraulic cements.  
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An increase in wn with time is noticeable between 3 and 28 days. In case of pastes containing 

slag, especially after 28 days, wn denotes the contribution of the cement and the slag 

fractions in the paste. Here, the progress of hydration in all the blended and interground 

mixtures studied is evaluated as a function of the overall clinker replacement level, the 

amounts of limestone and slag, and the process of intermixing (intergrinding vs. blending). 

 

      

Figure 5-12: Non-evaporable water content normalized with respect to clinker factor as a 
function of the clinker replacement level at: (a) 3 Days and (b) 28 Days 

 

As the slag content in the OPC-slag mixture increases, the normalized wn also increases at 

early ages (Figure 5-12(a)). However, this increase is not proportional to the clinker content 

in the mixes. This can be explained based on the fact that slag has slower reaction kinetics 

than cement, and it behaves mostly as inert filler at early ages. It may be argued that the filler 

effect of slag should lead to a higher cement hydration at higher replacement values; 

however, that is compensated by the dilution effect. It is also noted that the 3-day values for 

(a) (b) 
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wn are higher for the PLC-slag mixtures in comparison to the OPC-slag and OPC-slag-

limestone blended mixtures. This is attributed to the enhanced hydration at early ages in the 

interground mixtures due to the presence of finer limestone particles acting as nucleation 

sites, as also suggested from the particle packing model with respect to the increased 

cement-limestone interaction (Figure 5-4(c)). At later ages, the hydration of cement 

continues to produce increased quantities of CH, which  enhances the hydration of slag 

(Kolani et al. 2012). Thus, when the 28-day wn values are considered, they increase more 

significantly with increasing slag content as can be noticed in Figure 5-12(b). Here, it is also 

noticed that the wn values at a particular replacement level are relatively invariant of the type 

of intermixing or the presence/absence of limestone.   

5.3.4.2. CH contents 

Figure 5-13 presents the CH contents normalized by the clinker fraction for all the pastes. A 

cursory look at the figures will result in the deduction that the actual CH contents (non-

normalized) reduce with increase in replacement level as expected, primarily attributed : (i) at 

early ages to the reduced clinker fraction in the mixture, and (ii) at later ages to their 

consumption by slag to produce secondary C-S-H. Between 3 and 28 days, the normalized 

CH contents do not change appreciably, showing that the additional CH produced by the 

cement hydration during this period is consumed by the pozzolanic reaction of slag to 

produce additional C-S-H gel. This is apparent in the increase in wn values ranging between 

15% and 50% between 3 and 28 days, depending on the replacement level.  
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Figure 5-13 – CH content normalized with respect to clinker factor plotted as a function of 
the clinker replacement level at: (a) 3 Days and (b) 28 Days 

 

5.3.4.3. Carbonate consumption  

A quantification of the consumption of carbonate is essential to establish the reactivity of 

limestone in the cementitious systems and identify conditions under which this can be 

maximized to produce performance-equivalent low cement content concretes. Figures 5-

14(a) and (b) respectively show the carbonates consumed after 3 and 28 days of reaction in 

the blended and interground systems containing slag. From Figure 5-14 (a), it is observed 

that more than 10% of the carbonates are consumed in the PLC-slag mixtures within the 

first 3 days while for the blended OPC-slag-limestone mixtures, the consumption is around 

5%.  This is mostly attributed to the finer limestone present in the interground (PLC-based) 

mixtures. However, for both the cases, the consumption of carbonates at 28 days is similar 

which indicates an increased rate of consumption of limestone in the blended systems at 

(a) (b) 
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later ages, possibly due to the slower reactivity of coarser limestone in the blended pastes 

with the available aluminates. It is also noticed from Figure 5-14 (b) that the consumption of 

carbonate increases with the clinker replacement level, which is due to the formation of 

AFmc phase as will be quantified below.  

 

   

Figure 5-14: Consumed carbonate content normalized with respect to clinker factor plotted 
as a function of the clinker replacement level at: (a) 3 Days and (b) 28 Days 

 

The higher reactive alumina content present in slag (8.68%) alters the reaction pathway and 

leads to the formation of carboaluminates instead of monosulfoaluminates. As a result of 

this, all mixtures containing limestone and slag show an accelerated secondary peak in the 

isothermal calorimetry plots in the initial hydration phase corresponding to the formation of 

carboaluminates. To quantify the synergistic effect of slag and limestone, the amounts of 

AFmc phase were determined from the TGA plots in the temperature range between 150 ºC 

(a) (b) 
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and 200 ºC (Damidot et al. 2011). Figure 5-15 shows the relationship between consumed 

carbonate content and the AFmc phase content in these mixtures after 3 and 28 days of 

hydration. An increasing amount of AFmc phase corresponds rather linearly to an increase 

in carbonate consumption (or reduction in carbonates detected by thermogravimetry), which 

is explained by the fact that the carbonate reacts with the alumina present in cement and slag 

to form mono/hemi carboaluminates. However it should also be noted that not all alumina 

present in slag reacts with the carbonate to form the AFmc phase and is also bound in the 

denser pozzolanic C-S-H phase formed by the hydration of slag (Lothenbach, Scrivener, and 

Hooton 2011).  

 

Figure 5-15: Plot showing positive correlation between the fraction of consumed calcium 
carbonate and AFmc phase in interground and blended mixtures. The solid symbols 

correspond to 3-day values and the empty symbols correspond to 28-day values. 

 

The blended limestone in the OPC-slag-limestone mixtures and the interground limestone in 

the PLC mixtures are the only major source of carbonate in the respective pastes. There is a 



137 

 

small amount of limestone in the OPC, and the residual carbonate contents in the blended 

pastes are adjusted with the amount of residual carbonate content of OPC at the same 

hydration age. It has been noted in previous studies that limestone participates to a limited 

extent in the cement hydration process by providing nucleation sites for the formation of 

hydration products and forming carboaluminates and hemi-carboaluminates by reacting with 

alumina phases present in the mixture and thereby stabilizing ettringite (Kim et al. 2013). In 

alumina-bearing pozzolanic material incorporated cement systems, the effect of limestone in 

stabilizing ettringite is much more obvious, which is noticeable in the results shown in 

Figure 5-15.  

5.3.5 Pore Structure  

The pore structure of the pastes was determined using MIP. Even though the pore size 

distribution determined using MIP have been shown to be prone to error (Diamond 2000; 

Moro and Böhni 2002b), they are useful for relative comparison.  

To explore the influences of the addition of slag and limestone on the pore structure of 

these systems, the porosity and critical pore diameters are presented in Figure 5-16. Several 

key aspects are noted from Figure 5-16 (a). The OPC paste has a lower porosity than all the 

other mixtures. The PLC-slag mixtures have comparable or slightly lower porosities than 

their blended counterparts at the same total level of replacement. This is likely due to the 

enhanced nucleation effect of finer limestone from the interground cement, which 

accelerates the cement hydration as well as slag hydration process as was explained in the 

previous sections. The slag-OPC binary blends have the least porosity as compared to all 

mixtures at the same clinker replacement level. In other words, from a total pore volume 
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standpoint, the absence of limestone results in lower porosities because both the cement and 

slag are capable of hydrating and producing reaction products. However, as the overall 

replacement level increases, it is noted that the porosity increases for all the pastes, with the 

highest value noted for the pastes with 50% overall replacement level in each of the 

categories. This is due to the reduction in the cement content of the paste. Thus, although 

the total binder content remains the same, the decrease in the cement content decreases the 

total volume of hydration products, since slag does not achieve the same degree of hydration 

as compared to cement after 28 days of hydration (Escalante et al. 2001). On the other hand, 

it should also be noted that the increase in porosity is not substantial in relation to the 

cement replacement level. This is because the decrease in cement content is balanced to an 

extent by the pozzolanic activity of slag (Kolani et al. 2012; Richardson and Groves 1992) 

and the limited participation of limestone in the reactions. 

 

  

(a) (b) 
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Figure 5-16 – (a) Porosity and (b) critical pore diameter for blended OPC-slag and OPC-
limestone-slag pastes, and PLC-slag pastes at 28 days as a function of clinker replacement 

level. 

 

Figure 5-16 (b) shows the critical pore diameter in all the mixtures. The critical pore diameter 

is representative of the permeability of the sample, which is critical to the durability of 

concrete. It is noted that the critical pore diameter decreases with increasing level of 

replacement, indicating pore size refinement which is commonly reported with the use of 

pozzolanic materials (Courard and Michel 2014). For the PLC-slag mixtures and the OPC-

limestone-slag blended pastes, the critical pore diameters at higher replacement levels are 

similar to or lower than those of companion mixtures at a lower cement replacement level 

even when the corresponding porosities are higher. In addition, for all the pastes, the critical 

pore diameter varies within a small range (between 0.025 and 0.04 µm) demonstrating that 

the reduction in clinker factor does not adversely influence the transport-controlling pore 

sizes in systems containing limestone and slag.  

5.4. CONCLUSIONS 

The development of high volume cement replacement using a combination of slag and 

limestone was discussed in this chapter. The influence of blending limestone and slag with 

OPC or using slag along with PLC where limestone is interground during the manufacturing 

process, was evaluated in detail. The overall clinker replacement levels varied from 20% to 

50% by volume. A particle packing model was utilized to quantify the changes in the number 

of nearest neighbors and particle contacts, which have a bearing on the hydration and 

reaction product formation in these systems. The heat flow peak values and the slope of the 
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acceleration phase from isothermal calorimetry were found to be highest for the interground 

limestone-slag systems, followed by the blended ternary systems, indicating the synergistic 

effect of limestone and slag in these mixtures. The slag hydration was also noted to be 

accelerated in the presence of limestone, with the finer limestone in interground systems 

providing increased acceleration than the blended ones.  

The compressive strengths were found to be lower for the binary and ternary systems at 

early ages than their parent OPC or PLC counterparts because of the dilution effect. 

However, the presence of limestone resulted in an increased strength than the OPC-slag 

blends, in both the blended and interground states. The later age strengths, even at 50% total 

replacement were similar for the blended limestone-slag, and OPC-slag mixtures. The 

strength gain between 3 and 28 days was found to be the highest in PLC-slag mixtures, 

followed by the OPC-limestone-slag blends, and it was the lowest for the OPC-slag binary 

mixtures. This further indicates the influence of limestone in these systems. As a function of 

the clinker factor in the mixtures, the later age compressive strengths remained invariant of 

the limestone and slag addition or method of addition. The synergistic effect of slag and 

limestone was also confirmed by the linear correlation between the consumption of 

carbonates and the formation of AFmc phase in the pastes. The presence of finer limestone 

in the PLC containing pastes led to increased carbonate consumption and thereby increase in 

the formation of carboaluminates. Although the total porosity in the pastes at later ages 

increased with cement replacement levels due to the incomplete reaction of slag, the critical 

pore diameters decreased, indicating pore size refinement in the presence of slag and 

limestone.  
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CHAPTER 65 

MICROSTRUCTURAL PACKING- AND RHEOLOGY-BASED BINDER 

SELECTION AND CHARACTERIZATION FOR ULTRA-HIGH PERFORMANCE 

CONCRETE (UHPC) 

6.1. INTRODUCTION  

Ultra-high performance concrete (UHPC) belongs to a special class of cementitious 

materials that shows very high mechanical properties and enhanced durability. Compressive 

strengths in excess of 120-150 MPa are generally reported for UHPC mixtures (Yoo and 

Banthia 2016; B. Graybeal 2011). When reinforced with high volumes of steel fibers (in the 

order of 2-3% by volume), these composites exhibit high tensile strengths and strain 

hardening (Gesoglu et al. 2016), making them useful for many high-end structural 

applications. For example, the U.S Federal Highway Administration and several state 

Departments of Transportation have been investigating the use of UHPC for deck-level 

connections between modular precast components that are heavily stressed in service 

(Saleem et al. 2011; B. A. Graybeal 2011). Use of UHPC for blast protection has also been 

reported (Yi et al. 2012). While immense efforts have focused on the use of UHPC for such 

special applications, the downside is the high cost of these mixtures. Thus it is critical to 

develop cost-effective UHPC using commonly available materials and conventional concrete 

                                                 

5 This chapter is derived from the publication: Arora, A., Aguayo, M., Hansen, H., Castro, C., Federspiel, E., 
Mobasher, B., & Neithalath, N. (2018). Microstructural packing-and rheology-based binder selection 
and characterization for Ultra-high Performance Concrete (UHPC). Cement and Concrete Research, 
103, 179-190. 
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production methods (C. Wang et al. 2012; Kay Wille, Naaman, and Parra-Montesinos 2011; 

Kay Wille and Boisvert-Cotulio 2015).   

Several studies in the recent past have elucidated the mixture design of UHPC, to achieve 

high mechanical properties and high durability. This is generally accomplished through a 

combination of a high cement content, low water-to-binder ratio (w/b), high admixture 

dosage (water reducing and viscosity modifying admixtures), elimination of coarse 

aggregates, and incorporation of high volumes of steel fibers (C. Wang et al. 2012; Bakhshi, 

Barsby, and Mobasher 2014; Yang et al. 2009; Yoo and Yoon 2015). However, the very high 

cement content poses durability- and sustainability-related challenges (Randl et al. 2014; 

Aldahdooh, Muhamad Bunnori, and Megat Johari 2013). This has led to the use of a variety 

of cement replacement materials in UHPC, including commonly used materials such as fly 

ash, slag, silica fume, and metakaolin (Yu, Spiesz, and Brouwers 2014a, 2015; Sobuz et al. 

2016; Alsalman, Dang, and Micah Hale 2017; Tafraoui, Escadeillas, and Vidal 2016; W. 

Huang et al. 2017a). However, contrary to high performance concretes (HPC) that generally 

limit silica fume or metakaolin contents to less than 10% by mass of the cementing materials, 

UHPCs can contain much higher proportions of these materials for enhanced mechanical 

performance. This increases both the material and processing cost of UHPC. Moreover, the 

presence of large amounts of fine materials enhances chemical and autogenous shrinkage, 

resulting in increased early-age cracking (Schachinger et al. 2002). The use of fine limestone 

powder as a cement replacement/filler material in UHPC has also been investigated (W. 

Huang et al. 2017b). The use of an inert filler like limestone is a particularly attractive 

strategy since the very low w/b used in UHPC results in only a fraction of the cement 
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getting hydrated. Other less common cement replacement materials and additives such as 

nanosilica (Yu, Spiesz, and Brouwers 2014a; W. Li et al. 2015), nano metakaolin (Muhd 

Norhasri et al. 2016), rice husk ash (Van Tuan et al. 2011), glass powder (N. A. Soliman and 

Tagnit-Hamou 2016), and graphite and carbon nanofibers (Meng and Khayat 2016) have 

also been incorporated in the formulation of UHPC.  

Along with the selection of raw materials, it is also important to ensure adequate packing of 

particles (both fine and coarse) to achieve a dense microstructure, which is crucial towards 

mechanical and durability properties. Several analytical packing tools have been used in the 

formulation of UHPC  (de Larrard and Sedran 1994a). In this chapter, binders for UHPC 

are selected based on microstructural packing-based and rheology-based criteria. Packing is a 

function of particle sizes and their distribution, while sizes and distribution along with 

particle surface characteristics influence the rheology. A microstructural packing algorithm is 

used to determine parameters relevant to particle packing. Yield stress, plastic viscosity, and 

mini-slump spread are used as the rheological parameters. Mixture selection is based on 

either individual considerations of the microstructural and rheological parameters, or on 

combinations of the parameters. The proposed method relies on the premise that, for low 

w/b concretes where only a fraction of the cement hydrates,: (i) improved packing through 

the use of cement replacement materials and fine fillers is a better means of strength 

enhancement than increasing cement content, and (ii) better rheology helps better dispersion 

of the grains, aiding in mixture placement as well as hydration in the presence of low 

amounts of water, and consequently better mechanical properties. The hydration product 
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formation, pore structure, and the strength of the selected binders are investigated in detail 

to establish their applicability to UHPCs.    

6.2. EXPERIMENTAL PROGRAM 

6.2.1 Materials and Mixtures 

The materials used in this chapter include a Type I/II ordinary portland cement (OPC) 

conforming to ASTM C 150, Class F fly ash and metakaolin conforming to ASTM C 618, 

slag conforming to ASTM C 989, limestone powder conforming to ASTM C 568, and micro 

silica (silica fume) conforming to ASTM C 1240. Limestone powders with two different 

median particle sizes (1.5 µm and 3.0 µm) were used to ensure improved particle packing. 

The particle size distribution (PSD) curves of these materials are shown in Figure 6-1. The 

chemical compositions and physical characteristics of these materials are shown in Table 6-1. 

 

Figure 6-1: Particle size distribution curves for cement, fly ash, slag, metakaolin, and 
limestone powders. The median size in microns is shown in parentheses. 
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Table 6-1: Chemical composition of the materials used. 

Components of 

the binder 

Chemical composition (% by mass)  

SiO2 Al2O3 Fe2O3 CaO MgO SO3 LOI 

OPC 19.60 4.09 3.39 63.21 3.37 3.17 2.54 

Slag (S) 39.41 8.49 0.37 35.53 12.05 2.83 1.31 

Fly Ash (F) 58.40 23.80 4.19 7.32 1.11 3.04 2.13 

Metakaolin (K) 51.70 43.20 0.50 - - - 0.16 

Micro silica (M) > 90.0 - - < 1.0 - - - 

 

Binary, ternary and quaternary blends were proportioned by mixing different amounts of 

these replacement materials with OPC. The total cement replacement level generally varied 

between 20 and 30% by mass of OPC. Binary mixtures consisted of commonly employed 

cement replacement materials including fly ash, slag, micro silica or metakaolin. In the 

ternary and quaternary blends, the replacement levels of fly ash or slag were varied between 

10 and 25%, while those of silica fume or metakaolin were varied between 7.5 and 10%. Fly 

ash or slag were considered to be the primary cement replacement materials in ternary and 

quaternary blends because of their abundance and the larger OPC replacement levels that 

can be accomplished. Limits to the amounts of micro silica and metakaolin were necessary to 

ensure adequate dispersion of these materials within the paste. Limestone powders of two 

different median sizes, either individually, or in equal parts, were used to supplement the 

binary and ternary mixtures with even finer sizes that they were deficient in, to enhance 

particle packing. The limestone content varied between 5 and 10%. Table 6-2 shows the 

proportions of all the 33 different mixtures (one UHP-control, one HP-control, and 31 UHP 
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pastes) evaluated in the initial phase of this work. All the ultra-high performance (UHP) 

pastes were proportioned using a volumetric water-to-powder ratio, (w/p)v, of 0.63 

(corresponding to a mass-based (w/p)m of 0.20; 0.22 when the water in the HRWR is also 

added). In addition to the control UHP paste ((w/p)m of 0.20), a high performance OPC 

paste with a (w/p)m of 0.32 was also proportioned. A commercially available high range 

water reducer (HRWR) (Master Glenium 7500, manufactured by BASF6) was used at 5% by 

mass of the powder to improve the workability of the UHP pastes. In Table 6-2, UHP-

control refers to the control mixture made using OPC alone and a (w/c)m of 0.20, and HP-

control refers to the mixture made using a (w/c)m of 0.32.The HRWR dosage for the HP-

control mixture was 2% by mass of the powder. Fly ash is represented as F, Slag as S, 

limestone as L, micro silica as M, and metakaolin as K.  

Table 6-2: Mixture proportions for pastes evaluated in this study. All the pastes except HP-
Control were proportioned using a (w/p)m of 0.20. 

Mixture composition 

Replacement material (% by mass of cement) 

Fly Ash (F)/ 

Slag (S) 

Metakaolin 

(K) 

Microsilica 

(M) 

Limestone (L); d50 

of 1.5 or 3 µm# 

UHP-control 0 0 0 0 

HP-control 0 0 0 0 

OPC + F/S 20, 30 0 0 0 

OPC + M 0 0 10, 20 0 

                                                 

6 Certain commercial products are identified in this paper. However such references do not indicate 
endorsement of the product, nor does it imply that there are no other commercial products that can 
satisfy these requirements.  
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OPC + K 0 10 0 0 

OPC + F/S + M 10, 20 0 10 0 

OPC + F/S + K 10, 20 10 0 0 

OPC + F/S + L 20 0 0 10a, 10b 

OPC + F/S + L 25 0 0 5a, 5b 

OPC + F/S + M + L 17.5 0 7.5 5b,5c 

OPC + F/S + K + L 17.5 7.5 0 5b,5c 

#The subscripts ‘a’, ’b’ and ‘c’ along with the dosage of limestone powder indicate the type of 

limestone used in the mixture: ‘a’ – 1.5 µm limestone, ‘b’ – 3 µm limestone and ‘c’ – 50% 1.5 

µm + 50% 3 µm limestone. 

6.2.2 Experimental Methods 

All dry powders were thoroughly mixed prior to wet mixing. Paste mixing was performed in 

accordance with ASTM C 1738 using a M7000 high speed shear mixer. The following 

mixing sequence was used: (i) all water and HRWR was added to the mixer, (ii) the blended 

dry powders were then added as the mixer was run at 4000 rpm for approximately 30 s, (iii) 

the mixer was then run at 12,000 rpm for 30 s, (iv) the paste was allowed to rest for two 

minutes, and (v) final mixing of the paste was carried out at 12,000 rpm for 90 s.  

6.2.2.1. Rheological studies 

The rheological characteristics of all the pastes were determined using TA instruments AR 

2000EX rotational rheometer with a vane in cup geometry. This geometry eliminates issues 

with slip in rheological measurements. All experiments were carried out with the set up 

maintained at a temperature of 25 ± 0.1 °C. Approximately 40 mL of paste is placed in the 
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rheometer geometry using a disposable syringe. The amount of time between the addition of 

mixing water and beginning the rheological experiment was approximately 5 min.  

Two different rheological experiments were conducted. First, a shear rate ramp study (strain-

controlled) was used to evaluate the yield stress and plastic viscosity of all the pastes. The 

rheological procedure consisted of a ramp-up pre-shear phase from 10-to-100/s lasting 

around 75 s to homogenize the paste, followed immediately by a ramp-down to 0.005/s. 

This phase is followed by a ramp-up phase from 0.005-to-100/s, and a ramp-down phase 

from 100-to-0.005/s. Figure 6-2(a) graphically represents this procedure. Excluding the pre-

shear phase, data is acquired every second until three consecutive torque measurements are 

within 8% of each other, at which time the experiment advances to the next shear rate.  

 

Figure 6-2: (a) Representation of the strain-controlled rheological procedure and (b) 
representative flow curves to illustrate model-less estimation of yield stress. 

 

The wide shear rate range (0.005-to-100/s) is used to enable extraction of yield stress 

without the use of models (e.g. Bingham model). The inconsistencies in the extracted yield 

(a) (b) 
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stress when such models are used have been elucidated in detail in (Vance, Sant, and 

Neithalath 2015). When a wide shear rate range is used, a stress plateau which corresponds 

to the yield stress is obtained, as shown in Figure 6-2(b). This method was shown to be more 

consistent than using any of the commonly used rheological models (such as Bingham or 

Herschel-Buckley) for cementitious suspensions.  The slope of the rising portion of the 

curve is the plastic viscosity of the paste, which is independent of the shear rate range 

(Vance, Sant, and Neithalath 2015). Replicate measurements on at least two separately mixed 

pastes were carried out for each mixture.  

Second, small amplitude oscillatory shear study (stress controlled) was used to determine the 

storage and loss moduli of selected UHP pastes. An oscillatory stress was applied from 0.5 

Pa to 100 Pa at a frequency of 10 Hz. This stress range was found to capture the linear 

viscoelastic regime in cementitious suspensions. The experiment duration was minimized in 

order to limit the effects of hydration.  

In addition to rheometry, a simple method to estimate the flow properties of different pastes 

using a mini-slump was also carried out (Choi et al. 2016; Roussel, Stefani, and Leroy 2005). 

Paste was filled in the mini-slump cone (Figure 6-3) resting on a polymeric sheet. The cone 

is slowly lifted directly upwards to allow the paste to spread as shown in Figure 6-3. Multiple 

measurements of flow diameter are taken and the corresponding areas of spread averaged.  

 

 

 

(a) (b) 
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Figure 6-3: (a) Mini-slump cone, and (b) mini-slump flow of different pastes. 

 

6.2.2.2. Thermal analysis 

Isothermal calorimetry was carried out in accordance with ASTM C 1702 using a TAM Air 

micro calorimeter 2700 Series for a duration of 72 hours on pastes maintained at 25°C. To 

ensure accurate early age measurement and minimize the time to isothermal conditions, the 

powders and water were conditioned in an oven for 12 hours at 25°C. The pastes were then 

mixed using a laboratory mixer in accordance with ASTM C 305.  

Simultaneous thermal analysis was performed on hardened cement pastes after 1, 3, 7, 14, 

and 28 days of hydration to determine the non-evaporable water (wn) and calcium hydroxide 

(CH) contents. The tests were performed in an inert N2 environment at a gas flow rate of 20 

ml/s. The samples were heated from ambient temperature to 800oC at a heating rate of 

15oC/min. The non-evaporable water contents (wn) were determined as the difference in 

mass when the sample was heated from 105°C to 800°C, normalized by the mass at 800°C. 

CH contents at different ages were determined based on the change in mass over the 

temperature range of decomposition of CH (400oC to 450oC) (Pane and Hansen 2005).  

6.2.2.3. Pore structure 

The pore volume fractions and the critical pore diameters of the paste samples were 

determined using mercury intrusion porosimetry (MIP) after 28 days of hydration. Small 
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samples, approximately 2-3 mm in size were pre-treated in an oven at 60oC for 2 hours. This 

methodology provides consistent results for cementitious samples (Vance 2014). The test 

was performed in two steps – a low pressure step that evacuates vapors, fills the sample 

holder with mercury, and carries out pressurization up to 345 kPa, and a high pressure step 

which achieves pressures of up to 414 MPa. The relationship between pore diameter and 

intrusion pressure given by the Washburn equation (Washburn 1921b) was used to 

determine the pore sizes. The contact angle and surface tension values used were 117o and 

0.485 N/m respectively, as these values are reported to be typical for oven dried samples 

(Shi and Winslow 1985; Liabastre and Orr 1978). The critical (percolation) pore size is 

defined as the size at which the maximum rate of mercury intrusion occurs, given by the first 

peak in the plot of derivative of volume intruded vs. diameter curve. While the shortcomings 

of MIP are well reported, this method enables determination of the total volume of mercury 

intruded and the critical (percolating) pore diameter.  

6.2.2.4. Compressive strength 

Compressive strength at desired ages were determined in accordance with ASTM C 109  on 

50 mm mortar cubes cured in a moist environment (>98% RH) and a temperature of 

23±2°C. Two different fine aggregates, one with a d50 of 0.5 mm and another with d50 of 0.6 

mm were blended in equal proportions to constitute the fine aggregate for the mortar since 

such a combination was found to achieve higher strengths. The paste volume fraction was 

maintained at 65%. 

6.3. METHODS OF BINDER SELECTION  
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From a large matrix of paste mixtures (Table 6-2), a smaller sub-set needs to be chosen for 

detailed studies. In this chapter, a comprehensive method of binder selection is adopted, 

which relies on a combination of computational microstructural packing and experimental 

paste rheology, along with considerations for maximizing OPC replacement. This 

methodology eliminates the traditional trial-and-error method of mixture design for UHP 

binders and provides a rational process to select candidate mixtures from a large set of 

potential raw materials.  

6.3.1 Microstructural Packing 

Microstructural models were created for all the paste mixtures, based on the particle size 

distribution and proportion of the component powders, to analyze different aspects of 

particle packing that are important in influencing both the flow of the pastes as well as their 

mechanical properties. A microstructural stochastic packing model with periodic boundary 

conditions was developed in MATLAB® to create virtual 3D microstructures. The 

algorithm digitally packs spherical particles in a 3D RVE (representative volume element, 

chosen here as 300 x 300 x 300 µm3).  The total volume of particles in the RVE is 

determined based on the (w/p)v. The cumulative particle size distributions of the component 

powders (Figure 6-1) were discretized to obtain the number of particles of the individual 

components required to satisfy the desired solid volume fraction. Figure 6-4(a) shows a 

representative virtual 3D microstructure and Figures 6-4(b-d) show the 2D slices 

corresponding to binary, ternary, and quaternary mixtures respectively. 

The digital microstructures allow the extraction of several features that are influential in 

early- and later age paste response. The mean centroidal distance (MCD), coordination 
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number (CN), and the number density (Nd) are the key parameters that are chosen in this 

chapter. The mean centroidal distance is a measure of the packing density of the 

microstructure. It is calculated as the average distance to the center of a particle from the 

centroid of the microstructure. The coordination number is defined as the average number 

of nearest neighbor pairs in the microstructure. For any particle, the nearest neighbor is 

defined as a particle that lies either wholly or partially in the radial field of that particle, 

defined as a field with a radius of (r+5) µm, where ‘r’ is the radius of the particle. By virtue 

of this, the coordination number represents the inter-particle contacts.  The number density 

is defined as the number of particles in a unit volume. It is directly related to the overall 

fineness of the powders in the paste. Other parameters, similar in nature to those 

represented here (e.g., particle contact fraction, which is similar to CN) have been used in 

the past to define the microstructure (Aashay Arora, Sant, and Neithalath 2016; Vance et al. 

2015).  

  

 

 

 

 

 

 

 

(a) 

(b) (c) (d) 
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Figure 6-4: (a) Representative volume element (RVE) for a quaternary OPC-fly ash-
metakaolin-limestone system. 2-D slices from the simulated 3D microstructures of: (b) 

binary OPC-fly ash system, (c) ternary OPC-fly ash-metakaolin system, and (d) quaternary 
OPC-fly ash-metakaolin-limestone system. 

OPC is indicated in white, fly ash in blue, metakaolin in red, and limestone in green. 

 

Figure 6-5 shows the relationships between the microstructural parameters of the UHP 

pastes. As the number density increases, the mean centroidal spacing between the particles 

decreases and the coordination number increases. The coordination number as well as the 

number density indicates the interparticle contacts in the microstructure and thus can be 

related to the yield stress of the paste and its degree of hydration at early ages. Moreover, 

plastic viscosity has been stated to be dependent heavily on the solid volume fraction (and 

thus the surface contacts) in the paste, thereby relating to the above-mentioned parameters. 

These microstructural parameters can therefore be considered to influence both the rheology 

and hydration in cementitious materials. The influence of improved particle packing of the 

paste on the mechanical and durability properties of cementitious mixtures, as well as their 

role in economizing concrete mixtures is well documented (de Larrard and Sedran 1994a; 

Lange, Mörtel, and Rudert 1997). 
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Figure 6-5: Relationships between the number density, mean centroidal distance and 
coordination number for the UHP pastes. The values for the UHP-control paste are shown 

using filled symbols. 

6.3.2 Rheological Parameters 

Rheological evaluation of cementitious suspensions helps in understanding the flow 

characteristics and early-age structure development in pastes. Cement pastes are yield stress 

fluids, where the yield stress (y) is a consequence of interparticle forces. The interparticle 

forces are influenced by the particle-scale properties and the packing of particles. The yield 

stress is generally defined as the non-zero (finite) stress at a “zero” strain rate, and depends 

on time and previous shear history. The plastic viscosity (p) of particulate suspensions is 

considered to be primarily influenced by inter-particle friction and surface contacts, wherein 

decreasing the inter-particle (friction) forces by increasing the particle spacing (or by 

decreasing surface contacts) results in a decrease in plastic viscosity. Attempts have been 

made to relate the rheological and microstructural packing parameters (Vance et al. 2015; 

Flatt and Bowen 2006, 2007; Olhero and Ferreira 2004). A simpler way to characterize the 
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flowability of cementitious suspensions is the mini-slump test which measures the radius (or 

area) of spread of the fresh paste, as described earlier. The radius of spread of the paste has 

been related to the yield stress using the volume of the sample and a constant related to the 

liquid-vapor interfacial energy and wetting angle of the material on the horizontal base plate 

(Roussel, Stefani, and Leroy 2005).  

Figures 6-6(a) and (b) show the yield stress, plastic viscosity, and the normalized mini-slump 

spread area (Ams) for all the pastes in which fly ash and slag respectively are the dominant 

cement replacement materials. The areas of the mini-slump spread are shown by normalizing 

them with respect to the spread area for the UHP-control paste.  The numbers as subscripts 

in the mixture labels indicate the OPC replacement level with that material. Note that all the 

mixtures shown here contain 5% of HRWR by mass of the powder.  
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Figure 6-6: Yield stress, plastic viscosity and normalized mini slump values for pastes 
containing: (a) fly ash as the primary cement replacement material, and (b) slag as the 

primary cement replacement material. The subscript numbers represent the % by mass of 
the corresponding material replacing cement.  

 

(a) 

(b) 
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From Figure 6-6, it can be noted that, in general, the yield stress and plastic viscosity values 

are directly related, with an increase in one causing the other also to increase, even if not 

proportionally.  The mini-slump spread is inversely related to the yield stress and plastic 

viscosity.  It can also be noticed that the binary pastes containing fly ash or slag demonstrate 

relatively lower yield stress and plastic viscosity values as compared to the UHP-control 

paste. This is due to the lower inter-particle frictional forces in these pastes; a result of 

particle sizes and surface characteristics. It is also seen that the ternary mixes containing 

metakaolin show high yield stress values; however, incorporation of fine limestone reduces 

the yield stress in quaternary mixtures. The presence of fine limestone improves the overall 

packing and reduces the inter-particle friction (Vikan and Justnes 2007; Vance, Aguayo, et al. 

2013) in the quaternary mixtures thus lowering the yield stress and plastic viscosity, thereby 

leading to increased flowability of these mixtures.  

6.3.3 Strategies to Select Potential UHP Pastes 

The primary goal of this work is to determine paste compositions with the optimum 

rheological parameters and a densely packed microstructure, such that they aid in the 

formulation of economical and sustainable UHPC. The microstructural packing and 

rheological studies described above provide preliminary indicators as to the applicability of 

these paste systems for UHPC. Packing influences rheology and mechanical/durability 

properties, while rheology influences placeability and early-age structure development, which 

in turn influences the later age properties. In a composite binder consisting of particles of 

different size distributions and surface characteristics, along with admixtures to control the 

rheological features, well-defined strategies are needed to select optimal and sustainable (e.g. 
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low cement content) compositions for beneficial properties. Two such strategies are 

presented, based on the 31 UHP paste mixtures considered for preliminary evaluation (Table 

6-2).  

6.3.3.1. Selection based on independent consideration of microstructural and 

rheological parameters  

This straightforward approach directly uses results from the microstructural packing (Section 

3.1) and rheology (Section 3.2) studies to select paste mixtures that satisfy the criteria with 

respect to both packing and rheology. From Section 3.1, it is obvious that that a lower mean 

centroidal distance, a higher coordination number, and a higher number density will lead to a 

densely packed microstructure. The control UHP paste is used as the baseline case, since the 

intention of using several cement replacement materials is not just to reduce the cement 

content, but to result in a paste that demonstrates improved properties than the control 

mixture. Hence, the potential UHPC binders should satisfy all the three following packing-

based criteria: 

    (Eq. 6-1) 

For better workability, a lower yield stress and plastic viscosity and a higher mini-slump 

spread are desired. However, an examination of Figure 6-6 suggests that the yield strengths 

and plastic viscosities of the UHP control paste are already quite low due to the use of high 

amounts of HRWR; thus enforcing a criterion that requires y and µp of the pastes to be 

lower than that of the UHP control paste would result in few to no pastes being selected. 
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Considering that even 2-to-3 times higher yield stress and/or plastic viscosity than that of 

the UHP-control would not detrimentally influence the workability, a subjective rheology-

based selection criterion as shown below is imposed. This criterion can be modified based 

on the rheological parameters that the user is comfortable with, since the requirements of 

workability vary between different applications.  Here also, the potential mixture should 

satisfy all the three criteria. Absolute values of the rheological parameters, as opposed to 

those relative to UHP control paste, can also be used if the user decides so. 

 (Eq. 6-2) 

Figures 6-7(a) and (b) show the Venn diagrams depicting the number of mixtures that satisfy 

the microstructural packing and rheology criteria respectively. From Figure 6-7(a), it can be 

seen that 30 mixtures satisfy the CN and Nd criteria while 24 satisfy the MCD criterion. 22 

of the 31 UHP mixtures satisfied all the three packing criteria, and 23 of the 31 mixtures 

satisfied all the rheology criteria.  Figure 6-7(c) shows that 17 mixtures satisfied both the 

packing- and rheology-based criteria. These criteria can be modified to further refine the 

mixture selection, as mentioned earlier. Figure 6-8 shows the matrix of 31 mixtures among 

which the selected ones are highlighted.  

 

 

 

 

(a) (b) (c) 
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Figure 6-7: Venn diagrams showing the number of mixtures selected based on: (a) 
microstructural criteria, (b) rheology criteria, and (c) the intersection of both the criteria. 
Note that Venn diagrams could not be drawn to scale because of the presence of zeros.   

 

 

Figure 6-8: Matrix of mixtures with the highlighted cells showing the mixtures selected based 
on independent consideration of microstructural and rheological parameters. The subscript 

numbers represent the % by mass of the corresponding material replacing cement.  

 

6.3.3.2. Selection based on packing and flow coefficients 

In this model, rather than considering the individual microstructural and rheological 

parameters as in the previous case, they are combined into a packing coefficient () and flow 

coefficient (𝜅) respectively, as defined in Equations 6.3 and 6.4.   

[m-4] (Eq. 6-3) 

  [m.Pa-1.s-1/2] (Eq. 6-4) 
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A higher value for  indicates better packing whereas a higher value for 𝜅 indicates better 

workability for the UHP paste.  The subjective criteria adopted for mixture selection are:   

         (Eq. 6-5)  

     (Eq. 6-6) 

As in the previous model, the user can change the multiplicative constants for selection 

based on desired applications. Here, constants of 1.0 and 0.25 are adopted for packing and 

flow criteria respectively. It is desirable to have a packing that is better than that of the 

control UHP paste, which justifies the presence of the multiplier 1.0. Higher values will be 

needed for requirements that are more stringent. A constant of 0.25 is chosen for the flow 

coefficient based on the experience that even when the flow coefficient as defined in 

Equation 6-4 was four times lower than that of the control UHP paste, the considered paste 

demonstrated adequate workability. Out of the 31 UHP mixtures, 23 satisfied Equation 6-5, 

and 28 satisfied Equation 6-6. 22 mixtures satisfied both the criteria and are highlighted in 

Figure 6-9.  
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Figure 6-9: Matrix of mixtures with the highlighted cells showing the mixtures selected based 
on packing and flow coefficients. Mixtures in the dark shaded cells were chosen for detailed 

studies  

 

As can be noted from Figure 6-9, the chosen packing and flow coefficients yield a large 

number of mixtures. The selection criteria could be made more rigorous to eliminate further 

mixtures to make the final selection manageable. However, this study favors implementing 

additional constraints based on multiple considerations: (i) only ternary and quaternary 

mixtures are considered in view of their better packing, with limestone included only in the 

quaternary mixtures, (ii) a total cement replacement level of 30% is used to ensure 

sustainable UHP binders, (iii) limestone is considered only in mixtures containing metakaolin 

or microsilica since its size range is in between those of fly ash/slag and 

microsilica/metakaolin, and its low reactivity (Vance, Aguayo, et al. 2013) limits the dosage 

to 5%  (even though a recent study has shown increasing strengths with increasing limestone 

content in UHPC (W. Huang et al. 2017b)), and (iv) when limestone is used, equal 

proportions of those with d50 values of 1.5 µm and 3 µm are preferred for improved packing. 

This resulted in final eight mixtures which are shown in the dark shaded cells in Figure 6-9.  

Either of the two methods presented here can be employed along with user-defined 

constraints to select optimal pastes for UHP mixtures. The methodologies reported here are 

flexible enough to also allow weighting of the packing or rheology criteria as per the users’ 

demands.  

6.4. CHARACTERIZATION OF SELECTED BINDERS 

6.4.1 Oscillatory Rheology 
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Yield stress and plastic viscosity, the fundamental rheological properties of suspensions, 

have been used in the past for binder selection, mixture qualification, and quality control. In 

this section, results of small amplitude oscillatory stress growth experiments to determine the 

storage modulus (G’) and loss modulus (G”) are reported. The oscillatory shear response 

enables the identification of solid-like behavior at stresses lower than the yield stress. The 

changes in dynamic moduli can be observed without disturbing the microstructure. 

Oscillatory rheology was performed on the eight selected ternary and quaternary UHPC 

mixes along with the control mixtures. As a function of applied stress within a viscoelastic 

material, the storage and loss moduli represent the elastic and viscous response respectively. 

The stress-moduli relationships typically shows a horizontal modulus plateau at lower 

stresses, followed by a reduction in modulus as the stress increases, indicating structural 

breakdown (Wallevik 2009). A low modulus plateau at higher stress levels follows. The 

dynamic modulus is dependent on the water-to-powder ratio, type of mixing (i.e., hand 

mixed or high shear mixing), and amount of HRWR in the paste.  
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Figure 6-10: Relationship between shear stress and storage or loss moduli for the control and 
UHP pastes 

 

Figure 6-10 shows the relationship between the shear stress and storage or loss moduli for 

the ternary and quaternary UHP pastes and the UHP and HP control pastes (w/c of 0.20 

and 0.32 respectively, with admixture dosages of 5% and 2% respectively). The plateau 

region for most pastes is generally limited to shear stresses smaller than 1 Pa, which is typical 

for pastes containing HRWR. The corresponding stresses for a conventional OPC paste at a 

higher w/c (of 0.40) was found to be 3 to 5 Pa (Vance et al. 2015). The storage and loss 

moduli for all the UHP pastes examined in this study ((w/p)m=0.20; HRWR = 5% by mass 

of powder) are lower than 10 Pa, which is about three orders of magnitude lower than those 
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of conventional OPC pastes (w/c=0.40; no HRWR) (Vance et al. 2015). This is not 

surprising since the interparticle attraction that gives rise to solid-like response (yield stress, 

storage modulus) is almost neutralized by the high concentration of dispersing admixtures 

such as HRWR. The HP-control paste ((w/p)m=0.32; HRWR = 2% by mass of powder) 

shows much lower moduli as compared to the UHP-control paste. Although the UHP-

control paste contains twice the amount of HRWRA than the HP-control paste, the higher 

fraction of cement in the UHP pastes leads to reduced interparticle spacing and increased 

particle-to-particle contacts, thereby increasing the moduli. The slag-based ternary blends 

containing metakaolin or microsilica shows the highest moduli, attributable to the higher 

number density in these mixtures. The fly ash-based ternary blends, even with similar 

amounts of metakaolin or microsilica show reduced moduli than those of slag-based binders 

because of the spherical nature of fly ash particles. This effect is also amplified by the slightly 

larger particle sizes in fly ash (Figure 6-1) which enhances the separation between particles. 

When limestone is added to produce quaternary mixtures, the moduli reduces as compared 

to those of corresponding ternary mixtures without limestone. The interparticle attractive 

forces between limestone and cement are shown to be lower than those between the cement 

grains (Vance et al. 2015). More limestone-cement contacts and the consequent reduction in 

interparticle forces help reduce the moduli.  

6.4.2 Early Age Hydration Kinetics 

Isothermal calorimetry was carried out on the selected binders at a temperature of 25ºC. The 

heat flow curves normalized by the mass of cement are plotted in Figure 6-11. Figures 6-

11(a) and (b) show the heat flow curves for the mixtures with fly ash and slag respectively as 
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the dominant cement replacement materials. The heat flow curves for the UHP-control and 

HP-control mixtures are also shown for comparison. It is noticed that the HP-control 

mixture (w/c of 0.32) has the highest heat release rate among all the mixtures studied, 

attributable to the higher water content in this mixture as well as a lower HRWR content 

than the other UHP mixtures. The higher HRWR content in the UHP pastes slows down 

the acceleration phase for these mixtures. Most of the UHP mixtures demonstrate heat 

release rates that are comparable to that of the control UHP paste. The ternary UHP 

mixtures containing fly ash show slightly high peak heat flows as compared to the 

corresponding quaternary mixtures, while the peak heat flow in quaternary mixtures is 

slightly depressed (Figure 6-11(a)). The combination of limestone and fly ash results in an 

increase in heat flow per unit mass of cement for conventional cement pastes (Vance, 

Aguayo, et al. 2013). The lack of sufficient amount of water for chemical reactions in very 

high surface area mixtures might be a contributing factor. For the mixtures containing slag, 

the heat flow responses are similar to those containing fly ash as can be observed from 

Figure 6-11(b). However, the quaternary slag-metakaolin-limestone paste has a higher peak 

heat flow, which likely is attributable to the early reactivity of limestone in the presence of 

higher amounts of reactive alumina from slag and metakaolin (Aashay Arora, Sant, and 

Neithalath 2016; Menéndez, Bonavetti, and Irassar 2003). The synergy between limestone 

and slag is also evident from the fact that the quaternary slag-microsilica-limestone paste also 

shows a similar peak heat flow as compared to the corresponding ternary blend. The 

quaternary mixtures, in general, demonstrate a broader heat flow peak, which is indicative of 

the enhanced aluminate phase reactivity in the presence of limestone.  
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Figure 6-11: Heat flow for UHP pastes containing: (a) fly ash as the primary cement 
replacement material, and (b) slag as the primary cement replacement material.  

 

6.4.3 Hydration Products  

Thermo-gravimetric analysis was carried out to quantify the reaction products in the selected 

UHP pastes. Representative mass loss and differential thermogravimetric (DTG) curves are 

used for reaction product identification and quantification. The DTG curves show several 

distinguishable peaks attributable to the decomposition of: (i) C-S-H and ettringite around 

120-130ºC, (ii) CH around 450ºC, and (iii) calcium carbonate around 750ºC. In the presence 

of limestone and reactive alumina (as in the case of quaternary mixtures), carboaluminates 

are formed in place of monosulfoaluminates, which decomposes in the temperature range of 

150-200oC. To keep the discussions succinct, the evolution of non-evaporable water 

contents (wn) and CH contents in the selected mixtures are only reported.   

Figures 6-12 (a) and (b) show the wn and CH contents after 1, 3, and 28 days of hydration. 

Figure 6-12(a) shows the highest amount of non-evaporable water content for the HP-

control paste at all ages, because of the higher w/c that enhances cement hydration. Among 
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the UHP pastes, the control mixture shows the highest wn at 1 day, because of the higher 

cement content in this mixture. Considering that complete hydration results in a wn of 0.23 

(Molina 1992), the degree of hydration of the HP-control paste at 28 days is calculated as 

0.61. For the UHP-control paste, the 28-day degree of hydration is 0.46. As expected for a 

very low w/c paste, the cement grains stay partly hydrated, justifying the use of cement 

replacement materials and fine fillers to improve particle packing and thus enhance the 

properties. Even with an overall cement replacement level of 30%, all the other UHP 

mixtures show comparable 28-day wn values as that of the UHP-control paste. It is also 

important to note that, between 3 and 28 days, the increase in wn of UHP-control paste is 

much lower as compared to the ternary and quaternary blend pastes. The benefits of 

reactivity of cement replacement materials is evident here.  From Figure 6-12 (b), it can be 

noted that the CH contents increase from 1 to 28 days for the UHP-control and HP-control 

mixtures, similar to the wn contents. However, between 3 and 28 days, CH contents do not 

increase at the same rate as wn for the ternary and quaternary UHP pastes. This is 

attributable to the consumption of CH by the replacement materials to form secondary C-S-

H. The hydration product quantification of UHP pastes shows that it is indeed beneficial to 

incorporate significant amounts of cement replacement materials in low w/c systems since a 

considerable part of cement remains unhydrated.  
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Figure 6-12: (a) Non-evaporable water, and (b) CH contents of the UHP pastes at different 
ages. Error bars indicate one standard deviation from the average of duplicate specimens 

 

6.4.4 Porosity and Pore Sizes 
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The pore structure of the UHP pastes was investigated using mercury intrusion porosimetry 

(MIP). Figure 613(a) shows the porosity and critical pore diameters of the selected UHP 

pastes. The HP-control paste made using a w/c of 0.32 has the highest porosity (0.21) and 

the largest critical pore size (0.031 µm) among the mixtures presented owing to the higher 

w/p used. Porosity and critical pore size of the 0.20 w/c UHP-control paste (0.16 and 0.02 

µm) are much lower than that of the HP-control, and significantly lower than that of a 

conventional OPC paste of w/c 0.40 (0.28 and 0.036 µm) (Aashay Arora, Sant, and 

Neithalath 2016). The ternary blends show overall porosities that are similar to that of UHP-

control mixture, while the quaternary blends show slightly higher porosities than the ternary 

blends. However, segmentation of total pore volume into three size ranges as per IUPAC 

recommendations: 0.0036-to-0.05 μm, 0.05-to-0.2 μm, and > 0.2 μm (Rouquerol et al. 1994) 

shown in Figure 6-13(b) reveals that, for the quaternary mixtures, there is a higher 

proportion of pores present in the 0.0036-to-0.05 μm range. This corresponds to the pores 

in the hydration products (i.e., gel pores), which indicates increased formation of reaction 

products, which is also corroborated by the non-evaporable water content measurements. 

The reaction of fine limestone with aluminates result in the formation of carboaluminates 

that occupy space and reduce the porosity (Aashay Arora, Sant, and Neithalath 2016; Puerta-

Falla et al. 2015; V. L. Bonavetti, Rahhal, and Irassar 2001). The synergistic use of small 

amounts of limestone with aluminate bearing cement replacement materials thus is a 

beneficial strategy both from performance and sustainability viewpoints.  
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Figure 6-13: (a) Porosities and critical pore sizes of UHP pastes after 28 days of hydration, 
and (b) segmentation of total pore volume after 28 days of hydration into three size ranges. 

Error bars indicate one standard deviation from the average of duplicate specimens  

 

The critical pore diameter is an important determinant of the durability of concrete. As can 

be noticed from Figure 6-13(a), the critical pore diameter is similar for both the ternary and 
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quaternary mixtures, and lower than the UHP-control paste. The pore size refinement is 

once again a result of the reactivity of the cement replacement materials. The blends 

containing slag show slightly reduced porosities and pore sizes as compared to those 

containing fly ash, by virtue of their better early reactivity.    

 

6.4.5 Compressive Strength  

Figure 6-14 shows the compressive strengths of mortars made using the selected UHP 

pastes after 14 and 28 days of moist curing.  Note that (fine) aggregate gradation 

optimization was not carried out for the mortar. Even with a clinker factor reduction of 

30%, most of the UHP mortars, especially the quaternary blends demonstrate 28 day 

strengths that are comparable to, or higher than that of the control UHP mortar. This is 

consistent with the pore structure features for those mixtures. The mixtures containing slag 

demonstrate higher strengths than those containing fly ash at 28 days, but it is conceivable 

that the pozzolanic reaction of fly ash and its later synergy with the other replacement 

materials could improve the strength with further curing. It is important to note that 

strengths in excess of 90 MPa have been obtained through the use of standard cement 

replacement materials and effective packing to enhance the reactivity of the paste phase 

(Figure 6-14). When combined with densely packed strong aggregates, and an insignificant 

fraction of metallic fibers (2-2.5% by volume), compressive strength of 150 MPa has been 

achieved, which is in line with those reported for similar UHPC mixtures (Yu, Spiesz, and 

Brouwers 2014a, 2014b). The development of ultra-high performance blends as 
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demonstrated in this chapter will result in economical and durable UHPCs, as indicated by 

the improvements in reaction products and the pore structure.  

 

Figure 6-14: 14-day and 28-day compressive strengths of selected UHP mortars. Error bars 
indicate one standard deviation from the average of at least three replicate specimens  

 

6.5. SUMMARY AND CONCLUSIONS 

This chapter has described rational methodologies for selection of the paste phase in 

UHPCs using fundamental microstructural and flow characteristics of the paste that are 

influenced by the component materials. Commonly available cement replacement and fine 

filler materials were used.  A microstructural packing algorithm was used to extract the mean 

centroidal spacing, number density, and the coordination number for binary, ternary, and 

quaternary blends of potential UHP pastes. The rheological parameters extracted include 

yield stress, plastic viscosity, and the mini-slump spread. Better packing allows improved 

utilization of cement replacement and filler materials, while better rheology facilitates better 

dispersion of particles and consequently improved mechanical properties. The 
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microstructural and rheological parameters were utilized to create two different selection 

criteria. The first one was based on the individual microstructural or rheological parameters, 

and the second through the definition of packing and flow coefficients that expressed the 

combined effect of the chosen microstructural and rheological parameters. No relative 

weights were assigned for the microstructural and rheological parameters here, though it can 

be applied if needed. The proposed methodology allows the user to select mixtures based on 

acceptable ranges of microstructural packing and rheological parameters demanded by the 

application. For instance, a UHP mixture used for closure pours in a bridge deck connection 

would require very high workability and high strength, whereas a UHP used for a precast 

application would not require such high degree of flowability. In this chapter, emphasis was 

also given to clinker factor reduction; hence paste formulations containing more than 70% 

of cement by mass of the powder were not chosen.  

The selected UHP paste formulations were thoroughly characterized. The selected UHP 

pastes showed non-evaporable water contents that were comparable to or higher than that 

of the UHP-control paste after 28 days, even with a 30% reduction in clinker factor. The 

ternary and quaternary blended UHP pastes demonstrated significantly lower pore sizes as 

compared to the UHP-control paste. The efficient microstructural packing in these mixtures 

coupled with reaction product formation resulted in this outcome, which is known to 

translate into better long-term durability. 28-day compressive strengths in excess of 90 MPa 

were obtained for some mortars while all the mixtures showed strengths of more than 80 

MPa at 28 days. The inclusion of fibers and maximum density packing of strong aggregates 
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in these selected mixture designs allow 28-day compressive strengths in excess of 150 MPa, 

while still maintaining the workability of the concrete at acceptable levels. 
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CHAPTER 77 

MATERIAL DESIGN OF ECONOMICAL ULTRA-HIGH PERFORMANCE 

CONCRETE (UHPC) AND EVALUATION OF THEIR PROPERTIES 

7.1. INTRODUCTION  

Ultra-high performance concrete (UHPC) is an emerging cement-based material with high 

compressive and tensile strengths, ductility, and long-term durability (B. Graybeal 2011; 

Russell and Graybeal 2013; C. Wang et al. 2012; Kay Wille and Boisvert-Cotulio 2015). Some 

of the applications for which UHPC is well suited for are bridge piers, decks and deck-level 

connections between modular precast components, blast protection elements, and high 

ductility designs (B. A. Graybeal 2012; Maya and Graybeal 2017; Tazarv and Saiidi 2015; 

Vítek, Coufal, and Čítek 2013). Compressive strengths in the range of 150 MPa are generally 

reported for UHPCs, aided by careful selection of cementitious materials considering their 

particle sizes and reactivity, and a low water-to-powder ratio, w/p (0.15 < w/b < 0.23) to 

ensure a dense microstructure (Reda, Shrive, and Gillott 1999). The use of non-standard 

cement replacement materials such as quartz (silica) flour, rice husk ash, and nanoparticles 

(nano-silica, nano-metakaolin) to achieve high strengths, in additional to common high-

performance replacement materials such as silica fume and metakaolin, has been reported 

(Muhd Norhasri et al. 2016; Ghafari et al. 2015; Z. Li, Venkata, and Rangaraju 2015; 

Shafieifar, Farzad, and Azizinamini 2017; H. Huang et al. 2017; Ghafari et al. 2014; Van 

                                                 

7 This chapter is derived from the following publication under review: Arora, A., Almujaddidi, A., Kianmofrad, 
F., Mobasher, B., & Neithalath, N. (2018). Material Design of Economical Ultra-High Performance 
Concrete (UHPC) and Evaluation of their Properties. 
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Tuan et al. 2011). Limestone powder has also been used in several UHPC formulations (W. 

Huang et al. 2017b; W. Li et al. 2015; Burroughs et al. 2017; Aashay Arora et al. 2018). 

Recently, the use of calcium aluminate cement for UHPC has been explored, with a focus on 

high temperature applications (Lee et al. 2017). Higher strength and durability are direct 

consequences of microstructure densification, while the use of discontinuous steel fibers 

(generally greater than 3% by volume) provides sustained post-cracking strengths and 

ductility (Le Hoang and Fehling 2017).  

The material design of UHPC binders need to be governed by an efficient particle packing 

process since the low w/p in these mixtures will result in sub-optimal levels of hydration of 

cement. High material and processing costs and energy implications of UHPC can partly be 

attributed to the use of large amounts of cement that acts as an expensive filler. Thus, 

improved packing of the binder phase through the use of cement replacement materials and 

fine fillers is a better means of strength enhancement than increasing cement content. A 

recent work by the authors (Arora et al. 2018) has explained a methodology to design 

economical and efficient UHP binders that incorporate only conventional cement 

replacement materials (at an overall replacement level upwards of 30%), that achieves a high 

degree of microstructural packing and desirable rheology for flowable concrete. Similarly, the 

importance of aggregate packing to ensure desirable concrete properties has also been well 

documented. A well-designed aggregate component in mixtures such as UHPC also helps to 

lower the cost and improve volumetric stability, in addition to providing enhanced 

performance. Aggregate packing strategies to design UHPC mixtures have been reported (de 
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Larrard and Sedran 1994b; Nancy A. Soliman and Tagnit-Hamou 2017; Yu, Spiesz, and 

Brouwers 2014a; Chan and Kwan 2014).    

This chapter describes an aggregate (size and amounts) selection method based on the 

compressible packing model (De Larrard 1999; Roquier 2016), that is implemented alongside 

the binder selection method based on microstructural packing and rheology described in 

(Arora et al. 2018), to develop strong and economical UHPC mixtures. The binder 

component is designed to be sustainable and economical, with 30% to 50% replacement of 

portland cement (mass-based) by commonly available fine materials including fly ash, silica 

fume, metakaolin, and limestone powder. Contrary to many UHPC mixtures that contain 

only fine aggregates, the material design reported in this chapter considers coarse aggregates 

(passing 9.5 mm sieve) also. The effect of fibers on aggregate packing is also accounted for. 

The mechanical (compressive and flexural strengths) and durability (moisture and ion 

transport resistance) performance of the designed UHPC mixtures are also reported, along 

with the material cost of these mixtures. The methodology is designed in such a manner for 

implementation in a computer program to optimize the UHPC mixtures from both the 

performance and cost perspectives.      

7.2. MATERIALS AND TEST METHODS 

7.2.1 Materials 

The components of the binder phase of UHPC mixtures studied here include a Type I/II 

ordinary portland cement (OPC) conforming to ASTM C 150, Class F fly ash and 

metakaolin conforming to ASTM C 618, ground granulated blast furnace slag (GGBFS) 

conforming to ASTM C 989, limestone powder conforming to ASTM C 568, and micro 
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silica (silica fume) conforming to ASTM C 1240. Limestone powders with two different 

median particle sizes (1.5 µm and 3.0 µm) are used to ensure improved particle packing. The 

particle size distribution (PSD) curves of the powders are shown in Figure 7-1, while their 

chemical compositions and physical characteristics are shown in Table 7-1. The water-to-

powder ratios (w/p) varied between 0.165 and 0.20 depending on the starting materials used. 

A polycarboxylate ether (PCE)-based superplasticizer was used, with a solids content of 

43%. The ratio of solids content of the superplasticizer to the binder content was maintained 

between 1% and 2%.  

 

Figure 7-1: Particle size distribution curves for cement, fly ash, slag, metakaolin, and 
limestone powders. The median size in microns is shown in parentheses. 

 

Table 7-1: Chemical composition and physical properties of the starting materials used for 
the binders 
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Components of the 

binder 

Chemical composition (% by mass) BET Specific 

surface area 

(m2/kg)8 

SiO2 Al2O3 Fe2O3 CaO MgO SO3 LOI 

OPC 19.60 4.09 3.39 63.21 3.37 3.17 2.54 1318 

Slag (S) 39.41 8.49 0.37 35.53 12.05 2.83 1.31 1282 

Fly Ash (F) 58.40 23.80 4.19 7.32 1.11 3.04 2.13 3021 

Metakaolin (K) 51.70 43.20 0.50 - - - 0.16 14915 

Micro silica (M) > 

90.0 

- - < 1.0 - - - 18253 

Limestone (L), 1.5 

µm  

> 97% CaCO3 
7518 

Limestone (L), 3 µm 1860 

 

Fine and coarse aggregates conforming to ASTM C 33 were used. Smaller coarse aggregates 

are required to proportion UHPC mixtures, and thus only those passing a 3/8” sieve (9.5 

mm) was used. The aggregates were then classified into three nominal maximum sizes: ¼” 

(6.25 mm), #4 (4.75 mm), and #8 (2.36 mm). Due to the relatively high proportion of 6.25 

mm particles in the sourced aggregates, they were crushed using a laboratory pulverizer to 

obtain the requisite amounts of 4.75 mm and 2.36 mm size particles. The aggregates were 

washed and dried to remove impurities on the surface that might interfere with water 

demand and strength. Their bulk specific gravity and absorption were determined as 2.65 

g/cc and 0.94% respectively. Coarse and fine silica sands with median sizes of 0.6 mm and 

0.2 mm respectively were used as fine aggregates. The mortar mixtures had both sand types 

                                                 

8 BET is a direct and more appropriate method to determine specific surface area since it does not make any 
assumptions on particle shapes. BET method measures a monolayer of N2 molecules covering the 
surface area. BET is also able to interrogate the small pores in the particles, which makes the specific 
surface areas of materials like fly ash very different from the Blaine’s measurements. The BET specific 
surface areas of the source materials reported here are in line with generally reported values for such 
materials. 
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in equal amounts. The mortar cubes and the cylindrical concrete specimens were 

proportioned using a paste volume fraction of 65%. The fiber reinforced UHPCs employed 

straight high-strength steel microfibers having a length of 13 mm and a diameter of 0.5 mm. 

The aggregates and fibers used are shown in Figure 7-2. 

The aggregates were washed and dried to remove impurities on the surface that might 

interfere with water demand and strength. Their bulk specific gravity and absorption were 

determined as 2.65 g/cc and 0.94% respectively. Coarse and fine silica sands with median 

sizes of 0.6 mm and 0.2 mm respectively were used as fine aggregates. The mortar mixtures 

had both sand types in equal amounts. The mortar cubes and the cylindrical concrete 

specimens were proportioned using a paste volume fraction of 65%. The fiber reinforced 

UHPCs employed straight high-strength steel microfibers having a length of 13 mm and a 

diameter of 0.5 mm. The aggregates and fibers used are shown in Figure 7-2. 
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Figure 7-2 – Coarse aggregates (6.25mm, 4.75mm and 2.36mm), fine aggregates (coarse 
sand, fine sand) and steel fibers used in the study. 

 

7.2.2 Mixing and Curing Procedure 

Two different mixing methods were adopted in this chapter, one for small volumes, and 

another for a larger volume. For smaller volumes, a mixing bucket made of HDPE was used. 

A 12.5 mm DewaltTM spade drill attached to a spiral drill bit was used as the mixing tool for 

better shearing of particles. This is required to disperse the finer components of the binder – 

micro-silica and metakaolin in particular. Coarse and fine aggregates were initially blended 

together. If the aggregates were dry, mixing water corresponding to their absorption values 

was added.  The aggregates were then blended with micro-silica for 5 minutes. This allowed 

for shearing between the hard quartz particles and micro-silica to de-agglomerate the micro-

silica particles and disperse them adequately. Next, limestone powder was added and mixed 

until it was uniformly dispersed in the mixture. Fly ash or slag and OPC were subsequently 

added and mixed for a minimum of 3 minutes until the mixture became homogenous. After 

all the dry powders and fine aggregate were mixed, half the amounts of desired mixing water 

and superplasticizer were added and mixed for another 5 minutes. Care was taken to ensure 

that the mixture did not adhere to the sides of the mixer. The remaining water and 

superplasticizer were added and mixing was continued for an additional 5 minutes. The final 

stage of mixing lasted between 5-10 minutes (depending on the type of the mixture) until the 

mixture became very fluid and cohesive. In the case of fiber reinforced UHPC, fibers were 

slowly added during the final stage of mixing.  
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To evaluate the effects of scaling the size of the mixture and to evaluate if proper mixing can 

be accomplished under field conditions, one selected UHPC mixture was mixed in a Croker 

RP100XD Rotating Pan Mixer with a capacity of 0.14 m3 (5 ft3). The mixer consists of two 

shearing paddles which are held-in-place while the pan containing the concrete rotates at a 

pre-defined speed of 74 rpm. This mixing arrangement simulates more closely, the mixing of 

concrete in a truck. A fixed scraper blade attached to the assembly helps remove any paste 

sheared to the sides and provides a uniform mixing environment. A 0.06 m3 (2 ft3) UHPC 

mixture was mixed in the large mixer following the same mixing sequence, and mixing-and-

rest times described earlier. Figure 7-3 shows the self-consolidating UHPC mixture thus 

obtained. The slump flow was measured on a non-absorbent polycarbonate plate in 

accordance with ASTM C 1611 (“ASTM C1611/C1611M-14 Standard Test Method for 

Slump Flow of Self-Consolidating Concrete” 2014). A slump flow of 355 mm was obtained, 

which is comparable to those of conventional self-consolidating concretes (Khayat 1999; Su, 

Hsu, and Chai 2001).  

 

  
(a

) 

(b

) 
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Figure 7-3 – (a) Image showing the self-consolidating UHPC mixture in the Croker 
RP100XD rotating pan mixer, and (b) slump flow test conducted on fresh UHPC, showing 

no segregation 

 

Immediately after mixing, the mixture was poured into the cube, beam and cylinder molds 

resting on a vibrating table. The molds were filled, rodded, and then vibrated (~0.5-2 

minutes). Care was taken while vibrating so that any entrained air is removed, and 

segregation prevented. Once the molds were filled, they were tightly covered with a plastic 

wrap, and then loosely covered with a plastic sheet for 24 hours, after which they were 

demolded and stored in a moist chamber (>95% RH) maintained at a constant temperature 

of 23 ± 2 ºC until the desired age of testing. 

7.2.3 Determination of Compressive and Flexural Strengths 

The compressive strength of 50 mm mortar cubes was determined in accordance with 

ASTM C 109 and that of the 75 mm x 150 mm cylindrical concrete specimens in accordance 

with ASTM C 39. The flexural response of the specimens after 28 days of curing was 

evaluated using four-point bending tests in accordance with ASTM C 1609 in a closed-loop, 

servo-controlled testing system. Prismatic concrete beam specimens (50 mm x 65 mm x 380 

mm) were tested in flexure. Six beams were tested for each mixture. 

7.2.4 Determination of Moisture and Ionic Transport Properties 

The moisture transport tests were carried out in this chapter after 28 days of curing, in 

accordance with ASTM C 1585. 50 mm thick discs cut from 200 mm long and 100 mm 

diameter cylindrical specimens were used for these tests after conditioning them in KBr 

solution first, and then in a sealed container to equilibrate the internal humidity. The 
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specimens were then completely sealed on their sides and bottom, leaving only the top 

surface exposed. The exposed surface of the specimen was placed face down on plastic 

supports inside the pan containing water filled up to 3 mm above the top of the supporting 

device. The mass of the specimens was measured at regular intervals in accordance with the 

specification and the initial and final sorptivities calculated.   

The resistance of UHPC to chloride ion penetration was measured using the Rapid Chloride 

Permeability test (RCPT, ASTM C 1202) and Non-Steady State Migration test (NSSM, NT 

Build 492). Both tests are carried out on 100 mm diameter and 50 mm long concrete discs 

that are cut from 200 mm long cylinders. RCPT provides an indication of the resistance of 

the concrete to chloride ion penetration under an externally applied potential of 60 V. The 

test records the total charge passed through the specimen during the 6 hour testing duration. 

NSSM test facilitates the determination of the ionic migration coefficient typically under 

lower applied potentials (based on the initial value of the current when a 30 V potential is 

applied; for highly resistive samples, a higher potential might be required). Each specimen 

was enclosed in a test cell containing 2 N NaCl in the catholyte chamber and 0.3 N NaOH 

in the anolyte chamber. After the specified test duration (generally, 24 hours), the specimen 

was axially split and a 0.1 N silver nitrate solution sprayed on the split surfaces to determine 

the chloride penetration depth. Five to seven measurements of penetration depth were made 

on each split surface.  The NSSM coefficients, (Dnssm) were calculated using the average 

values of the penetration depths (xd) and Equations 7-1 and 7-2.  

    (Eq. 7-1) 
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     (Eq. 7-2) 

Here,  R is the molar gas constant (8.314 J/(K·mol)), Z is the absolute value of ion valence, 

(1, for  chloride ions), F is the Faraday’s constant (9.648 ×104 J/(V·mol)), U is the absolute 

value of the applied voltage, T is the average value of the initial and final temperatures in the 

anolyte solution (K), L is the thickness of the specimen (m), t is the test duration (s), Cd  is 

the chloride concentration at which white silver chloride precipitates, and C0 is the chloride 

concentration in the catholyte solution (C0≈ 2N).  

7.3. BINDER SELECTION FOR UHPC 

The cementitious paste is a major component of UHPCs, ranging in volume from 50% to 

75% (Park et al. 2008; Kay Wille et al. 2011; Russell and Graybeal 2013). Thus, developing 

economical and efficient UHPC mixture design involves optimal design of the paste phase. 

Using commonly available binding materials (fly ash, slag, silica fume, metakaolin and 

limestone), several carefully designed combinations with cement replacement levels (mass-

based) ranging from 20% to 50% were evaluated for microstructural packing and paste 

rheology. The mass-based w/p for the paste studies was around 0.20. A regular high-

performance plain cement paste (w/c = 0.32) was also formulated for comparison. The 

microstructural packing was evaluated using a stochastic packing model with periodic 

boundary conditions, developed in MATLAB®. The algorithm digitally packs spherical 

particles in a 3D representative volume element (RVE), chosen here as 300 x 300 x 300 µm3. 

Microstructural models were created for the paste mixtures based on the particle size 

distribution and relative proportions of the component powders. The packing parameters 
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extracted from the microstructural models were the coordination number (CN) and mean 

centroidal distance (MCD) of particles, and the number density of the microstructure (Nd) 

while the rheological parameters included yield stress (y), plastic viscosity (µp) and mini-

slump flow area (Ams). The microstructural and rheological parameters individually, or their 

combinations to define packing and flow coefficients, were used in binder selection as 

shown in Figure 7-4. The preset values for packing and flow coefficients were arrived at 

based on detailed analysis of microstructural packing and rheological parameters, and their 

comparison with similar values for control mixtures. This algorithm for binder selection 

based on both the microstructural packing and rheological parameters has been described in 

detail in (Arora et al. 2018).  

 

(a) 

(b) 
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Figure 7-4 – Binder selection strategy based on: (a) microstructural parameters (coordination 
number, number density and mean centroidal distance) from virtual RVEs, and (b) 

rheological parameters (yield stress, plastic viscosity and area of mini slump) 

 

Based on the algorithms shown in Figure 7-4 and the 28-day compressive strength results, a 

smaller sub-set of binders were selected for the second stage study. Consideration was also 

given to the clinker factor of the binders, so that sustainable UHPC mixtures can be 

formulated. Thus, three different binder combinations are chosen as matrices for economical 

UHPCs in this chapter, and are shown in Table 7-2. Two of the binders are quaternary 

blends of cement, silica fume, limestone, and fly ash/slag with an overall cement 

replacement of 30% by mass, and the third is a ternary blend of cement, silica fume, and 

limestone with an overall cement replacement of 50% by mass. The mixtures were initially 

composed of a low w/p, and then incremental amounts of water and superplasticizer were 

added in stages to achieve the desired workability. Hence the w/p and superplasticizer 

dosage are different for the three mixtures detailed in Table 7-2. Owing to the spherical 

nature of its particles, the mixture containing fly ash as the dominant cement replacement 

material required the least amount of water and superplasticizer for desired workability. The 

higher water demand for metakaolin and microsilica-bearing mixtures are attributed to the 

high surface area of these particles.  

Table 7-2 – Selected binders and their compositions 

Mixture 

composition 

Mixture 

ID* 

Replacement material (% by mass of cement) 
w/p 

Superplasticizer 

content (% Fly Ash Metakaolin Microsilica Limeston
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(F)/ 

Slag (S) 

(K) (M) e (L)** solids content 

by mass of the 

binder) 

OPC + S + 

M + L 
S17.5M7.5L5 17.5 0 7.5 5 0.194 1.5 

OPC + F + 

M + L 
F17.5M7.5L5 17.5 7.5 0 5 0.166 1.2 

OPC + M + 

L 
M20L30 0 0 20 30 0.188 1.4 

*The mixtures containing fibers are labeled in the graphs with ‘-f’ after the mixture ID 
specified in this table. 
**Equal amounts of limestone powder with d50 of 3 µm and 1.5 µm are used in these 
mixtures. 
 

Mortars were cast using the mixture proportions reported in Table 7-2. As mentioned earlier, 

the fine aggregate used was an equal mixture of coarse sand (d50 = 0.6 mm) and fine sand 

(d50 = 0.2 mm) since this combination was found to provide higher strengths for several trial 

mixtures. The volumetric ratio of paste-to-aggregate was selected to be 0.65:0.35, again 

based on improved strength results that were obtained for this combination as opposed to a 

0.50:0.50 paste-to-aggregate ratio that was employed in several trial mixtures. The mixing 

procedure as specified in Section 2.2 was followed to cast 75 mm x 150 mm cylinders. Figure 

7-5 shows the compressive strengths of these mortars as a function of the age determined in 

accordance with ASTM C 109. At 90 days, all the mixtures attained a compressive strength 

of 150 MPa or higher, with the quaternary fly ash-based mixture showing the highest 
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strength. Better workability of the mixture, along with a lower w/p contributed to this 

response. Even with a 50% clinker factor reduction, the ternary silica fume-limestone blend 

shows a 90-day strength of 150 MPa. This demonstrates the utility of a proper binder design 

procedure based on microstructural packing and rheology in obtaining high compressive 

strengths without resorting to trial-and-error based mixture proportioning strategies. It is 

thus shown that UHPC can be proportioned using commonly available starting materials 

without having to resort to specially processed materials or nanoparticles that significantly 

increase the material and processing cost associated with UHPC.  

 

Figure 7-5 – Compressive strength of UHP mortar samples as a function of age. 

 

7.4. PARTICLE PACKING-BASED DESIGN OF UHPC 

7.4.1 Packing of Aggregates: An Overview of the Compressible Packing Model and 

its Application to UHPC 
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Adequate particle packing is extremely important in economical design of UHPCs because 

of the extreme performance requirements. Existing methods account for desirable packing 

either using packing parameters of some components (generally the coarse aggregates), or by 

approximating an ‘ideal’ grading curve that is expected to lead to maximum solid volume in a 

unit volume. The mixture proportioning approach for UHPC must ensure appropriate 

selection of the paste and the aggregate phases. The methodology for the selection of paste 

phase, governed by paste rheology and microstructural packing of powders has been 

described in detail in (Arora et al. 2018), and summarized earlier in this chapter for clarity. 

The selection of aggregates is governed by aggregate packing at the meso-scale since average 

aggregate sizes are about 100 times larger than the average sizes of the powders in the pastes. 

The use of a proper size distribution of aggregate particles can help increase the overall 

packing density of the concrete mixture in combination with the use of a properly chosen 

paste phase.  

Virtual packing density, in a random packing model (Fu and Dekelbab 2003; Stroeven and 

Stroeven 1999) is defined as the maximum packing density which can be achieved by placing 

each particle one by one in appropriate positions in a representative volume. Yu et.al (Yu, 

Spiesz, and Brouwers 2014a) employed the Andreasen and Andreasen particle-packing 

model to produce a dense UHPC with a binder content of about 650 kg/m3. Stovall and de 

Larrard (Stovall, de Larrard, and Buil 1986) modified the suspension viscosity model by 

Mooney (Mooney 1951) to derive the linear packing density model, which considers the 

packing of solids as a suspension of infinite viscosity. The Funk and Dinger packing theory 

was used by Le (Le et al. 2015) in order to determine the grading of aggregates for self-
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compacting high performance concrete. Several other related particle packing models that 

can be used for concrete mixture proportioning are reported (Toufar, Born, and Klose 1976; 

Dewar 2002; Goltermann, Johansen, and Palbøl 1997). This chapter employs a compressible 

packing model (Stovall, de Larrard, and Buil 1986) to select appropriate combinations of 

aggregate sizes and amounts in order to maximize the packing density of a poly-disperse 

mixture. The compressible packing model for multi-sized grains expresses the packing 

density as a function of the fractional solid volume of each grain size present in the mixture. 

It is assumed that there is at least one dominant component (that has the highest packing 

density) among the various grain sizes present in the mixture. By sequentially considering 

each class of particles as dominant, a series of packing density functions are obtained. The 

minimum packing density obtained by considering each of the aggregate sizes as the 

dominant size, can conservatively considered as the packing density of the mixture (De 

Larrard 1999; Lecomte 2006b).  

For the UHPCs in this study, only three separate size ranges of coarse aggregates with 

nominal maximum sizes of 6.25 mm, 4.75 mm and 2.36 mm were considered. Two size 

ranges of fine aggregates – with d50 of 0.6 mm and 0.2 mm, were also chosen. In order to 

select the proportions of particles of different sizes, several combinations were considered 

and the particle packing density for each combination was obtained using the compressible 

packing model. A scalar index, termed the compaction index, ‘K’, is defined as shown in 

Equation 7-3, to define the physical effort involved in packing these particles. A higher 

compaction index implies a lower amount of voids and a higher packing fraction of 
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aggregates. A ‘K’ value of 9 can be used when the particles are extremely well packed (De 

Larrard 1999). The packing density φ of the mixture is related to the compaction index K as: 

     (Eq. 7-3) 

Here, yi represent the individual packing fractions of the aggregates in the mixture. The 

residual packing density βi represents the packing density of a mixture containing only the 

aggregate class ‘i’. The values for residual packing density can be determined experimentally 

using the dry rodded unit weight (DRUW) test. The virtual packing density γi is the 

theoretical value of packing density for the aggregate mixture when aggregate class ‘i’ is 

dominant. A dominant aggregate class is the one with the maximum volume fraction 

amongst all the other aggregate classes. Equation 7-3 can be numerically solved (the 

Newton-Raphson method was used in this work) to obtain the packing density φ once all the 

other parameters are determined using Equations 7-4 to 7-6.  

    (Eq. 7-4) 

Equation 7-4 is a linear formulation for the calculation of virtual packing density, which 

considers the interactions encountered by aggregate class ‘i’ due the presence of other 

aggregate classes in the mixture. These interactions generally manifest in the form of 

loosening effect aij and wall effect bij for aggregate class ‘i’ due to the influence of aggregate 

class ‘j’ (Stovall, De Larrard, and Buil 1986). Loosening and wall effects interfere with the 

overall packing densities. While calibration of the model can be done by determining the 

coefficients aij and bij using experiments, simplified empirical formulations which are 
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functions of the diameters di and dj of aggregate classes ‘i’ and ‘j’ respectively, are available 

for these parameters (De Larrard 1999; Lecomte 2006a).  

7.4.2 Accommodating Fibers using a Perturbation Model 

High fiber volume fractions used in UHPC enhances its post-cracking performance and 

provides strain hardening response. Fibers are also beneficial in cementitious mixtures to 

control microcracking and restrain shrinkage cracking. Discrete steel fiber reinforcement 

included in UHPC allows the concrete to maintain tensile capacity beyond the cracking 

strain of matrix. However, the inclusion of fibers, which are essentially volumes with one 

dimension significantly larger than the other two dimensions, increases the fraction of voids 

in a poly-disperse mixture of aggregates. A perturbed volume approach was proposed by 

Ben-Aim (Aim and Le Goff 1969) to account for the effect of fibers. The perturbed volume 

(Vp) encompasses a region where the distance between the wall and each point is less than 

d/2, where d is the fiber diameter. In this perturbed volume, the mean packing density is 

reduced to kwα with kw < 1, whereas α is the packing density in the rest of the container. The 

mean value of packing density for the whole system φ’ is then given by Equation 7-5. Here φ 

is the packing density determined using Equation 7-1. 

    (Eq. 7-5) 

7.4.3 Selecting Aggregate Combinations and Amounts for UHPC Mixtures 

Several studies on UHPC predominantly consider it as a mixture of paste and fine aggregates 

with an extremely low w/p (Kay Wille, Naaman, and Parra-Montesinos 2011; Park et al. 

2008; Alkaysi et al. 2016). The volumetric ratio of paste-to-aggregate in UHPC is about 1.5:1, 
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as reported in several studies (Reda, Shrive, and Gillott 1999; Russell and Graybeal 2013; Yu, 

Spiesz, and Brouwers 2015). This is considerably different from ordinary concrete where the 

paste-to-aggregate ratio is nearly 0.4:1 and coarse and fine aggregates together make up for 

about 70% of the total concrete volume. These predominantly fine aggregate-based mixture 

designs are suitable for small volumes of UHPCs (e.g. bridge connections) or for 

applications where larger aggregates are a hindrance (grouting and shotcreting). They are also 

suitable in applications where shrinkage is not a critical issue. However, for UHPC to be 

used in larger volumes such as in bridge decks and piers, the use of coarser particles need to 

be considered to minimize volume changes and to reduce cost.  Therefore, in this study, 

coarse aggregates, (smaller than 6.25 mm) are employed in addition to fine aggregates to 

form a stable backbone for the paste phase. The dimensionally stable aggregate network 

comprises of size ranges from 0.2 mm (fine sand) to 6.25 mm (larger coarse aggregate). The 

packing density for any given combination of aggregate classes can be determined by solving 

Equation 7-3. The optimum fraction of individual aggregate classes required to achieve the 

maximum packing density was obtained by solving Equation 7-3 for multiple aggregate 

combinations. The volume fraction of each aggregate class was varied from 0.0 to 1.0 in 

increments of 0.1. This resulted in a total of 885 different aggregate combinations. A 

computer program written in MATLAB was developed to automatically choose the 

aggregate combinations and input them into the algorithm for packing density 

determination. The methodology for packing density determination accounts for the wall 

and loosening effects.   
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The distribution of packing density as a function of the fraction of aggregate classes is 

shown in Figures 7-6 (a-f). In Figure 7-6 (a), the volume fraction of the coarse aggregate 

refers to the combined volume fraction of aggregates whose nominal maximum size exceeds 

2.36 mm, and includes the 6.25 mm, 4.75 mm and 2.36 mm nominal maximum size 

aggregates. Similarly, in Figure 7-6 (b), fine aggregate refers to the two sands of median sizes 

0.6 mm and 0.2 mm. In Figure 7-6(a), for each value of volume fraction of coarse aggregate 

on the x-axis, one can notice multiple values of the calculated packing density. These values 

correspond to the packing densities obtained by using different combinations of the chosen 

aggregates that result in a net coarse aggregate volume fraction equal to that shown on the x-

axis. For instance, a coarse aggregate volume fraction of 0.60 may be achieved using multiple 

aggregate combinations of coarse aggregates (nominal maximum sizes of 6.25mm, 4.75mm, 

and 2.36 mm). Similarly, the fine aggregate volume fraction of 0.40 can be composed of 

different combinations of the two selected sizes of fine aggregates (d50 of 0.6 mm and 0.2 

mm). As examples, the volume fractions of particles in a combined mixture containing 60% 

coarse aggregates and 40% fine aggregates, in the order of decreasing sizes, can be listed as 

(0.2,0.2,0.2,0.2,0.2), (0.4,0.1,0.1,0.2,0.2), (0.4,0.1,0.1,0.3,0.1) etc. Each of these combinations 

would result in a unique aggregate packing and therefore present a unique value of packing 

density. It can be observed from Figure 7-6(a) that maximum packing density occurs when 

the volume fraction of coarse aggregates is 60%. The plot of packing density as a function of 

aggregate size combinations helps understand the combined effect of coarse and fine 

aggregates on the packing density of the mixture.  



199 

 

Figures 7-6(c-e) show the packing density determined as a function of the amount of 

individual coarse aggregate sizes. These plots help discern the effect of aggregate sizes on the 

total packing density. It is noticed that maximum packing densities occur when the amounts 

of 6.25 mm, 4.75 mm and 2.36 mm size aggregates in the mixture are 40%, 10% and 10% 

respectively, thereby providing an overall coarse aggregate content of 60%, which is the 

same as that obtained from Figure 7-6(a). Figure 7-6(f) compares the packing densities 

predicted by the model when two different volume fractions of fibers are introduced into the 

aggregate mixture. The perturbation model described earlier was used to determine the 

influence of fibers. To keep the figure concise, only the maximum packing density obtained 

for each volume fraction of coarse aggregate in the total aggregate mixture is plotted. Since 

fibers disrupt the packing of the mixture due to their elongated shape, an increase in the 

fiber content is observed to reduce the maximum packing density; however, the locations of 

the packing density maxima are unchanged irrespective of the fiber content. Thus, the 

combination of aggregates to achieve the maximum packing density can be considered to be 

independent of the fiber volume fractions commonly employed in UHPC mixtures.  
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(a) (b) 

(c) (d) 

(e) (f) 
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Figure 7-6 – Packing density as a function of volume fractions of: (a) coarse aggregate, (b) 
fine aggregate, (c) 6.25mm aggregate, (d) 4.76mm aggregate and (e) 2.36mm aggregate. (f) 

Maximum packing fraction as a function of volume fraction of coarse aggregates for 
different fiber volume fractions. 

 

From the simulation results of 855 combinations of aggregates, the maximum value of 

packing density of aggregates, ø, was obtained as 0.696 for a mixture with 40% of fine 

aggregates and 60% coarse aggregates as shown in Figure 7-6(a). The packing density values 

for a few aggregate proportions solved using CPM are shown in Table 7-3, with the 

proportion corresponding the maximum packing fraction highlighted. The simulated packing 

density values were also verified for a few selected blends using the DRUW method and are 

shown in Figure 7-7. 

Table 7-3 – Packing density values for a few aggregate proportions obtained using CPM 

#4 #8 #10 
Concrete 

Sand 

Fine 

Sand 

Packing 

Density 

0.4 0.1 0.1 0.2 0.2 0.696 

0.3 0.1 0.2 0.2 0.2 0.685 

0.1 0.3 0.1 0.3 0.2 0.675 

0.5 0.1 0.1 0.2 0.1 0.671 

0.1 0.3 0.2 0.3 0.1 0.657 

0.2 0.1 0.4 0.1 0.2 0.634 

0.1 0.1 0.1 0.2 0.5 0.599 

0 0 0 0.6 0.4 0.591 
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0.2 0.1 0.5 0.1 0.1 0.587 

0.4 0.1 0.5 0 0 0.546 

0.1 0.1 0.8 0 0 0.494 

 

 

Figure 7-7 – Comparison of experimental packing fractions obtained from DRUW test and 
predicted packing fractions obtained from CPM 

 

7.4.4 Practical Guidelines for Choosing Aggregates for UHPC 

Figure 7-8 shows the PSD for the optimized aggregate gradation obtained and compares it 

with the PSD of aggregate gradations commonly used in the construction industry in the 

U.S., and specified in ASTM D 448 for road and bridge construction. The optimized 

aggregate proportion obtained here is finer than any of the conventional aggregate PSD. 

Therefore, in order to obtain the optimized aggregate proportion, existing stockpiles must be 

screened to obtain higher volume proportions of the finer aggregate sizes. An alternative to 
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this is to blend the available aggregate stockpiles together in different proportions to 

maximize the fractions of the desired aggregate sizes, and then sieve the resultant aggregate 

blend. It is observed that aggregate stockpiles #89 is the closest to the optimized packing 

gradation.  

 

Figure 7-8 – Comparison of PSDs of commercially available aggregate gradations and 
optimized gradation obtained from this study. Refer to ASTM D 448 for details on sizes 

(#58, #68, #78, and #89). 

 

The packing density values for the existing aggregate stockpile gradations were also 

calculated using CPM. The results are presented in Table 7-4. It is observed that since the 

individual aggregate proportions in the standard stockpile gradations allows a range (see 

ASTM D 448), the results also show a wide range of packing density values that could be 

obtained for these stockpiles. In such a case, quality control becomes extremely important to 

maximize the packing density of such aggregates. It is observed that aggregate stockpile #89 

gives the highest packing density, whereas #68 stockpile gives the lowest density. 
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Table 7-4 – Comparison of packing densities obtained 

Aggregate Type #57 #68 #78 #89 φmax 

Packing Density 0.55-0.62 0.54-0.63 0.55-0.65 0.56-0.66 0.696 

 

A dense packing obtained from the optimized aggregate gradation as described in this 

chapter, coupled with an optimized paste phase is expected to lead to a concrete 

microstructure that has a low porosity and consequently, higher strength and durability. The 

aggregate combination with the highest packing density was further selected towards the 

design of UHPC mixtures.  

7.5. PROPERTIES OF SELECTED UHPC MIXTURES 

7.5.1 Compressive and Flexural Strengths 

Since all the three selected binders detailed in Table 7-2 showed comparable mortar 

compressive strengths as was shown in Figure 7-5, two out of the three mixtures were 

selected for casting concrete cylinders and beam specimens for further mechanical and 

durability property evaluation. Two concrete batches were prepared for each binder mixture, 

one without any steel fiber reinforcement and the other incorporating 1% of steel fiber by 

volume. While fiber-reinforced UHPC mixtures require 3% (or more) by volume of fibers in 

order to demonstrate strain-hardening behavior, the fiber content is limited to 1% in this 

study to obtain economical mixtures that show appreciable post-peak response, if not strain-

hardening. The mixture proportions chosen for the concrete mixtures are given in Table 7-5. 

 

Table 7-5 – Mixture proportions for concrete mixtures. All the starting material contents, 
except the fiber content are relative masses with respect to that of the OPC. 
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Mixture components F17.5M7.5L5 F17.5M7.5L5-f M20L30 M20L30-f 

OPC 1.0 1.0 1.0 1.0 

Fly Ash (FA) 0.175 0.175 - - 

Silica Fume (SF) 0.075 0.075 0.20 0.20 

Limestone (LS) 0.05 0.05 0.30 0.30 

Superplasticizer 0.0125 0.0125 0.0127 0.0127 

Steel Fibers (% by 

volume) 

- 1.0 - 1.0 

w/b (mass-based) 0.165 0.168 0.180 0.185 

Aggregate/Binder 0.7 0.7 0.7 0.7 

 

The compressive strengths of concrete cylinders were determined using a 2670 kN load 

frame. Three cylinders each were tested after 7, 14 and 28 days of curing in a moist chamber 

and the average values are reported in Figure 7-9 (a). It was found that the compressive 

strength of all the specimens exceeded 140 MPa at 28 days. The mixture containing fly ash, 

silica fume, and limestone, with an overall cement replacement level of 30%, was found to 

have the highest 28-day strength, of 153 MPa.  Based on the mortar strength results shown 

in Figure 7-5, this mixture can be expected to provide compressive strength in excess of 175 

MPa after 56 or 90 days. The mixtures with fibers show comparable strengths as that of the 

mixtures without fibers, which is expected since 1% by volume of fibers do not contribute 

significantly to the compressive strength. Moreover, the reduction in overall packing density 

because of the incorporation of fibers also impacts the compressive strength. The 28-day 
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flexural strength results shown in Figure 7-9 (b) also reveal similar trends. However, 

companion load-deflection studies of UHPC beams under closed-loop testing brought out 

with more clarity, the beneficial post-peak influence of fibers.   

  

Figure 7-9 – (a) Compressive strength of UHPC mixtures after 7, 14 and 28 days of curing, 
and (b) 28-day flexural strength of UHPC mixtures 

 

7.5.2 Moisture and Ionic Transport through UHPC 

The durability properties of the selected UHPCs were evaluated using moisture and ionic 

transport tests after 28 days of moist curing in accordance with procedures mentioned in 

Section 2.4. Figure 7-10(a) shows the absorption, I, as a function of square root of time. The 

absorption (in units of length) is calculated as the change in mass of the specimen divided by 

the product of its cross-sectional area and the density of water. It is observed from Figure 7-

10(a) that both the UHPC mixtures show a very low value of absorption as compared to the 

plain OPC concrete. Among the two UHPC mixtures, the ternary silica fume-limestone 

(a) (b) 
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mixture (with an overall cement replacement level of 50%) shows a lower value of 

absorption as compared to the quaternary fly-ash mixture. This is expected because of the 

high volume of extremely fine silica fume and limestone particles present in the mixture, 

which helps in pore refinement and reduction of overall porosity. The initial sorptivity is 

calculated as the slope of the linear fit of the data in Figure 7-10(a) for the first six hours and 

the secondary sorptivity is the slope of the linear fit of the absorption data from days 1 to 7. 

Figure 7-10(b) shows the initial and secondary sorptivities of the selected UHPCs and 

compares those to the sorptivities of a conventional OPC concrete proportioned with a w/c 

of 0.40. The initial sorptivity has been found to be related to the porosity of the paste phase 

and the threshold diameter of the pores, and the secondary sorptivity to the critical pore 

diameter in the paste (Cam and Neithalath 2010). Figure 7-10(b) shows that the initial and 

final sorptivities for the UHPCs are much lower than those of the conventional OPC 

concrete, as expected. The secondary sorptivities of UHPCs show a much more dramatic 

reduction (about 5 times lower), which is not surprising since the critical pore diameter of 

UHP pastes showed much larger reductions than the porosities when compared to a 

conventional OPC paste (Arora et al. 2018).   



208 

 

          

Figure 7-10 – (a) Water absorption as a function of time for UHPCs, and (b) initial and 
secondary sorptivity values of UHPCs and their comparison to a conventional OPC 

concrete with w/c of 0.40. 

 

RCP and NSSM tests were used to determine the resistance of the UHP mixtures to chloride 

ion transport. Since both are electrically accelerated tests, the steel fiber reinforced mixtures 

were not considered. RCP test is one of the most commonly used chloride transport tests, 

even though it is not without serious limitations (Neithalath and Jain 2010). In practice, it is 

generally used to prequalify concrete mixtures or to ascertain the effectiveness of cement 

replacement materials. Figure 7-11(a) compares the results for total charge passed for the 

UHPC mixtures during the RCP test with known values for regular OPC concrete (w/c = 

0.40) and high-performance concrete (HPC; w/c = 0.32) obtained from previous studies 

(Poon, Kou, and Lam 2006; Neithalath and Jain 2010). The total charge passed during the 

RCP test is extremely low for the UHPC mixtures selected, attributable to the refinement of 

the pore structure through the use of a very low w/p and cement replacement materials, and 

(a) (b) 



209 

 

the changes in pore solution conductivity primarily brought about by the use of silica fume. 

This is more evident in the case of the mixture with 20% of silica fume by mass replacing 

OPC, the reasons for which have been extensively detailed in (Neithalath and Jain 2010). As 

per ASTM C 1202 classification, both the UHPC mixtures designed here fall under the “very 

low” rapid chloride permeability category.  

The non-steady state migration (NSSM) test overcomes some of the drawbacks of RCP test, 

and provides a migration coefficient (Dnssm) that is more realistically related to chloride ion 

transport through concrete. A lower Dnssm value indicates better chloride ion penetration 

resistance under electrically accelerated conditions. The non-steady state migration 

coefficient (Dnssm) was calculated based on Equations 7.1 and 7.2 described in Section 2.4. It 

is important to note that the NSSM test carried out in accordance with NT Build 492 

specifies different voltage values to be applied to the specimens based on the initial value of 

current under an applied voltage of 30 V (potential of 600 V/m). For UHPCs, because of 

the very dense microstructure, the initial current was very low, and thus a higher applied 

voltage of 60 V (1200 V/m potential) was needed. The NSSM coefficients for both the 

UHPC mixtures are shown in Figure 7-11(b) along with the corresponding values for OPC 

concrete and HPC. Note that the UHPCs demonstrate much lower migration coefficients 

even under a higher applied voltage that accelerates ionic transport. The selected UHPCs 

have migration coefficients that are an order of magnitude lower than that of conventional 

OPC concrete. This has considerable implications in service-life of concrete structures 

designed using UHPCs.  
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Figure 7-11 – (a) Charge passed during the RCP test, and (b) non-steady state migration 
coefficients (m2/s) of the studied mixtures. 

 

7.5.3 Cost and Other Impacts of Selected UHPC Mixtures 

The cost per m3, and the strength-normalized cost (cost normalized by the 28-day 

compressive strength) of the selected UHPC mixtures are shown in Table 7-6. The material 

cost is alone considered here, which was obtained from published literature (Kay Wille and 

Boisvert-Cotulio 2015) as well as from manufacturers/suppliers. Compared to proprietary 

UHPC mixtures that are reported to cost between $1500 and $3000 per m3, the UHPC 

mixtures designed as part of this study can be proportioned at a fraction of the cost, making 

it a viable alternative for transportation and infrastructural agencies interested in high-

strength and high-performance mixtures. From a compressive strength-normalized cost 

perspective, the fiber-reinforced mixtures appear less attractive, but realistically, they should 

(a) (b) 
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be compared based on ductility or post-cracking tensile strength-normalized cost to ensure 

fair comparisons.  

Figure 7-12 (a) shows the cost of raw materials required to proportion the selected UHPC 

mixtures, with and without fibers, while Figure 7-12 (b) provides the relative cost of each of 

the mixture constituent as a fraction of the total cost of the mixture9. In conjunction with 

the material design strategy described in this chapter, an understanding of the material costs, 

their local availability, and energy-and-emission implications can be used to conduct life cycle 

cost and impact analyses which help decision makers choose the appropriate material 

combinations for respective UHPC applications. Note that this analysis does not address the 

capital investment necessary for equipment upgrade to crush, separate, and proportion large 

volumes of aggregates. These figures clearly demonstrate that, from a cost perspective, 

superplasticizer and fibers comprise the major portion of the cost of UHPC, followed by 

OPC. Note that in mixtures where the paste fraction is not optimized, the OPC cost can be 

further higher. A higher OPC content leads to other environmental impacts associated with 

such mixtures, reinforcing the importance of a mixture selection strategy as explained in this 

chapter.  

Table 7-6 – Material costs for each mixture considered in study 

Mixture ID Cost ($) per m3 
Cost ($) per 

MPa per m3 

Proprietary UHPC 2616 15.85 

                                                 

9 The cost of water is not accounted for in these calculations 
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(Berry 2015) 

M20L30-f 868 6.53 

M20L30 618 4.72 

F17.5M7.5L5-f 788 5.32 

F17.5M7.5L5 545 3.56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 7-12 – (a) Cost of raw materials per m3 of selected UHPC mixtures, and (b) relative 
cost of the individual components in the UHPC mixtures. 

 

7.6. CONCLUSIONS 

This chapter reports a particle-packing based methodology for the design of UHPC 

mixtures. This approach follows a procedure for the selection and optimization of the binder 

phase of UHPC using microstructural packing and rheology considerations and scales it to 

address the proportioning of the aggregates. The focus of the binder selection and 

optimization process was on the use of commonly available cement replacement materials 

and fillers (fly ash, silica fume, metakaolin, and limestone) to proportion economic and 

sustainable UHP binders (~30-50% replacement of OPC, mass-based) without having to 

resort to special materials (e.g., nanoparticles) that significantly increase the material and 

processing cost associated with UHPC. From a large family of binders, three systems – two 

quaternary binders containing fly ash or slag, microsilica, and limestone (for an overall 

cement replacement level of 30%), and one ternary binder containing microsilica and 

limestone (for an overall cement replacement level of 50%), were identified for detailed 

studies on UHPCs. These binders demonstrated 90-day compressive strengths in the range 

of 145-165 MPa.  

While many UHPC studies only consider fine aggregates, this study considered three 

different sizes of coarse aggregates: nominal maximum size of 6.25 mm, 4.75 mm, and 2.36 
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mm, in addition to two different median sizes of fine aggregate: 0.6 mm and 0.2 mm.  A 

compressible packing model was used for the packing of coarse and fine aggregates in 

UHPC. The influence of loosening and wall effects in poly-disperse mixtures were 

considered, as was the effect of fibers in perturbing the particle packing. A computer 

program analyzed 885 combinations of the three coarse and two fine aggregate sizes, and 

arrived at the combination with the densest packing (of 0.696). This combination consisted 

of 60% of coarse aggregates comprising of 40% of 6.25 mm size and 10% each of 4.75 mm 

and 2.36 mm aggregates. Highly flowable concretes (slump flow > 350 mm) were 

proportioned using the chosen aggregate combination and two of the selected binders, with 

and without 1% of steel fibers by volume. 28-day compressive strengths in excess of 150 

MPa and flexural strengths in excess of 10 MPa were obtained. Significantly improved 

resistance to moisture and ionic transport as compared to conventional or high performance 

concretes was also observed, validating the material design procedure.  

A preliminary cost analysis suggested that these mixtures could be proportioned at a fraction 

of the cost of proprietary UHPC mixtures. The use of conventional binder and filler 

materials, and high levels of OPC replacement through microstructural packing and rheology 

optimization also facilitates reduction in material cost. Moreover, the UHPC mixtures with 

optimized binder and aggregate combinations are also expected to fare well in a life cycle 

cost and impact analysis, attributable to the large reduction in OPC content as well as the use 

of common cement replacement materials rather than ones with larger economic and 

environmental impacts for production.  
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CHAPTER 810 

FUNDAMENTAL INSIGHTS INTO COMPRESSIVE AND FLEXURAL RESPONSE 

OF BINDER- AND AGGREGATE-OPTIMIZED ULTRA-HIGH PERFORMANCE 

CONCRETE 

8.1. INTRODUCTION  

Ultra-high performance concrete (UHPC) is a multi-scale microstructure-designed material, 

tailored for very high compressive strength in excess of 150 MPa, high flexural and tensile 

strengths, and high ductility (Habel et al. 2006; Kay Wille, Naaman, and Parra-Montesinos 

2011; Ben Graybeal 2011; Yoo and Yoon 2015). UHPCs use a very low water-to-

cementitious materials ratio and a high fraction of fine reactive particles that reduce the pore 

sizes and volume in the matrix. This ensures that the resistance of UHPCs against common 

deterioration drivers including moisture and ionic penetration is very high, as has been 

reported in several studies (El-Dieb 2009; Abbas, Soliman, and Nehdi 2015; Alkaysi et al. 

2016a). UHPCs are used in several applications including bridge decks (Ahlborn, Peuse, and 

Misson 2008; Honarvar et al. 2016), deck-level connections between modular precast bridge 

components (B. A. Graybeal 2010), blast protection (Yi et al. 2012; Aoude et al. 2015), and 

repair and rehabilitation of infrastructural components (Brühwiler and Denarié 2013). One 

of the major impediments to large scale commercial adoption of UHPC in infrastructural 

applications is its high cost, due to the use of high volumes of conventional and special 

                                                 

10 This chapter is derived from the following publication under review: Arora, A., Yao, Y., Kianmofrad, F., Al 
Bannai, K., Mobasher, B., & Neithalath, N. (2018). Fundamental insights into compressive and 
flexural response of binder- and aggregate-optimized ultra-high performance concrete. 
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binder materials and fine fillers (including, but not limited to micro- and/or nano-silica, 

nano-alumina, ground quartz, metakaolin, limestone etc.), specialty admixtures (including 

high-range water reducers, hydration enhancers, and viscosity modifiers), and specialty fibers 

comprise additional cost drivers (W. Huang et al. 2017b; Yu, Spiesz, and Brouwers 2014b; 

Muhd Norhasri et al. 2016; Meng and Khayat 2016).  

Consumption of energy-and-CO2 intensive, and expensive components such as ordinary 

portland cement (OPC) can be reduced using higher volumes of alternative binding materials 

having lower energy and CO2 footprints. The proprietary nature of many competing blends 

available on the market has prompted a focused development of economical and sustainable 

UHPCs with locally sourced and waste/by-product materials (C. Wang et al. 2012; Alsalman, 

Dang, and Micah Hale 2017). In addition, performance specifications for an extended 

service life by means of a dense microstructure, which in the case of mixtures with very low 

water content, cannot be fully accomplished by enhancing the degrees of reaction of the 

constituent particles alone. Efficient physical packing of binder particles in the 

microstructure is required, which demands careful selection of materials not just from the 

viewpoints of availability and reactivity but based on synergistic size distributions. Moreover, 

it is also important that high volumes of fine particles do not contribute to adverse 

rheological performance. Lack of proper dispersion of the components in the matrix, which 

detrimentally influences the rheology, also contributes to non-optimal properties in the 

hardened state.  

A methodology to determine the binder constitution for UHPC by considering all these 

aspects was recently published by the authors (Arora et al. 2018). This binder selection 



218 

 

method employs a few conventional cement replacement materials and fine fillers, and is 

robust enough to allow customization by the user to satisfy the desired performance 

requirements. Recently, the authors augmented the UHPC binder selection method with a 

compressible packing model for coarse and fine aggregates (> 6.3 mm nominal maximum 

size) to develop UHPCs optimized at multiple length-scales (Arora et al., n.d.).  

This chapter examines in detail, the fundamental responses of such optimized UHPCs when 

tested in compression and flexure. The development of compressive stress in UHPCs as a 

function of axial and radial strains, along with the calculated volumetric strain are used to 

extract critical stress states that are of relevance in UHPC performance. The flexural 

response of UHPCs are examined through a combination of mechanical tests and digital 

image correlation (DIC). The influence of UHPC matrix type and fiber volume on strain 

localization and crack propagation is also brought out. 

8.2. MATERIALS, OPTIMIZING MIXTURE PROPORTIONS, AND TEST 

METHODS 

8.2.1 Materials 

The binder phase of UHPC mixtures was composed primarily of Type I/II Ordinary 

Portland Cement (OPC) conforming to ASTM C 150. Since UHPC mixtures rely on very 

low water-to-powder ratios (w/p) (typically < 0.23), the hydration degree of cement is rather 

low. Thus, better particle packing through a variety of reactive or filler particles is an efficient 

method of UHPC binder design, as has been illustrated in detail in (Arora et al. 2018). In this 

study, we employ a Class F fly ash conforming to ASTM C 618, microsilica (silica fume) 

conforming to ASTM C 1240, and fine limestone powder conforming to ASTM C 568 as 
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partial cement replacement materials in the UHPC mixtures.  Limestone powders with two 

different median particle sizes (1.5 µm and 3.0 µm) were used to ensure efficient packing. 

While several studies on UHPC consider the use of finely ground quartz or nanoparticles 

(Ghafari et al. 2014; W. Li et al. 2015) to enhance the strength of the mixtures, our study 

uses only commonly available source materials in order to keep the material and processing 

costs low. The particle size distribution (PSD) curves of the powders are shown in Figure 8-

1. The chemical compositions and physical characteristics of the materials used are shown in 

Table 8-1. A polycarboxylate ether (PCE)-based superplasticizer with a solids content of 

43% was used to ensure workability at the very low w/p used (< 0.20 for all the UHPC 

mixtures in this study).  

 

Figure 8-1: Particle size distribution curves for cement, fly ash and limestone powders. The 
median size in microns is shown in parentheses. The PSD of microsilica is not shown. 

 

Table 8-1: Chemical composition of the materials used in this study. 
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Components of the 

binder 

Chemical composition (% by mass)  Density 

(g/cm3) SiO2 Al2O3 Fe2O3 CaO MgO SO3 LOI 

OPC 19.60 4.09 3.39 63.21 3.37 3.17 2.54 3.15 

Fly Ash (F) 58.40 23.80 4.19 7.32 1.11 3.04 2.13 2.34 

Microsilica (M) > 90.0 - - < 1.0 - - - 2.20 

Limestone (L), 1.5 

µm  

> 97% CaCO3 2.70 
Limestone (L), 3 

µm 
 

The UHPC mixture blends contained coarse aggregates passing 3/8” sieve (9.5 mm). The 

aggregates were sieved into three nominal maximum size classes: ¼” (6.3 mm), #4 (4.75 

mm), and #8 (2.36 mm). The measured bulk specific gravity and absorption of the 

aggregates were 2.65 g/cm3 and 0.94% respectively. Coarse and fine silica sands median sizes 

of 0.6 mm and 0.2 mm respectively were used as fine aggregates. The fiber reinforced 

UHPCs contained straight high-strength steel microfibers (L=13 mm & dia.=0.5 mm). 

8.2.2 Binder and Aggregate Optimization  

Achieving economical and sustainable UHPCs demand a first principles-based approach in 

material selection and proportioning. For the design of the UHPC pastes, an integrated 

microstructure packing and rheology-based procedure developed earlier was used (Arora et 

al. 2018). Virtual microstructures of binder systems at a mass-based w/p of 0.20 and 

containing several combinations of cement replacement materials were developed in 

consideration to the particle size distribution, a desired microstructural packing coefficient 

(γ) and relative proportions of the components. The packing coefficient accounted for the 

mean centroidal distance between the particles, the nearest neighbors number density, and 
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coordination number of the microstructure (Wolfsdorf, Bender, and Voorhees 1997; A. 

Kumar, Oey, Kim, et al. 2013). Using experimentally measured yield stress, plastic viscosity, 

and mini slump area of the pastes, a flow coefficient (κ) was developed. These parameters 

were designed such that high values for both γ and κ would result in a paste with high 

strength as well as desirable rheological properties for flowable UHPC mixtures.  

Using OPC, fly ash, microsilica, and limestone as the source materials, and ensuring at least a 

30% replacement (mass-based) of OPC, several feasible UHPC pastes were designed (Arora 

et al. 2018). Among those pastes, two were chosen for this study based on their superior 

properties: (i) a quaternary binder containing 17.5% by mass of fly ash, 7.5% silica fume, and 

5% limestone (all mass-based) replacing OPC for an overall cement replacement level of 

30%, and (ii) a ternary binder containing 20% microsilica and 30% limestone (mass-based) 

replacing cement, for an overall cement replacement level of 50%. Note that, from a cost 

standpoint, the binder with a higher microsilica content might be more expensive, even 

though it has a lower cement content. The limestone in both the mixtures is composed of 

equal amounts of 1.5 µm and 3 µm median size particles.  

Aggregate optimization for UHPC was carried out using a compressible packing model, with 

the intention of obtaining the aggregate blending proportions that result in maximum 

packing density. Both coarse and fine aggregates were considered in the optimization 

scheme. This resulted in five distinct aggregate classes: coarse aggregates with nominal 

maximum sizes of 6.3 mm, 4.75 mm, and 2.36 mm, and fine aggregates with median sizes of 

0.6 mm and 0.2 mm. A custom computer program in MATLAB was used to choose the 

aggregate combinations and determine their packing density. A total of 855 aggregate blends 
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were evaluated. The volume fraction of each aggregate class was varied from 0 to 1.0 in 

increments of 0.10. A coarse aggregate volume fraction of 0.60 and a fine aggregate volume 

fraction of 0.40 was found to provide the maximum packing density. The volume fractions 

of individual classes of coarse aggregates in the total (coarse + fine) aggregate blend were 

0.40, 0.10, and 0.10 for nominal maximum sizes of 6.3 mm, 4.75 mm, and 2.36 mm 

respectively. The volume fractions of both the fine aggregate classes in the total aggregate 

blend were 0.20. More details on the aggregate packing methodology, determination of 

packing densities, and the algorithms can be found in (Arora et al., n.d.).  

UHPC mixtures were proportioned based on the paste and aggregate design described 

above. Two different binder compositions (one quaternary and one ternary binder) as 

described above, along with the aggregate sizes and contents as obtained from the 

compressible packing model, were used to produce the UHPC mixtures. Both the UHPC 

mixtures were produced with and without 1% of fibers by volume. Furthermore, the UHPC 

made using quaternary blend binder was also proportioned using 3% of fibers by volume, 

since many commercial UHPCs use such high volume fractions to obtain higher levels of 

ductility.  Table 8-2 provides the details of the UHPC mixtures for detailed mechanical 

property evaluations. The mass-based w/p for all the concrete mixtures varied from 0.17 to 

0.19. A higher w/p was required for the mixtures with a higher amount of microsilica 

because of its large surface area. Since fibers disrupt the packing of the microstructure, 

mixtures containing a higher fiber content required a higher HRWR dosage. Table 8-2 also 

shows the unit cost of these mixtures, calculated based on the individual material costs 
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obtained from published literature (K. Wille and Boisvert-Cotulio 2013) as well as from local 

suppliers/manufacturers.   

 

Table 8-2: Mixture proportions of the UHPCs used in this study 

Content of materials 

(kg/m3) 
F17.5M7.5L5 M20L30 F17.5M7.5L5 – 1f* M20L30 – 1f* F17.5M7.5L5 – 3f* 

OPC 946 784 937 777 913 

Fly ash (F)  166 0 164 0 160 

Microsilica (M)  71 157 70 155 68 

Lime stone (L) 47 235 47 233 46 

Coarse aggregate (6.3 mm) 344 329 341 326 332 

Coarse aggregate (4.75 mm) 86 82 85 82 83 

Coarse aggregate (2.36 mm) 86 82 85 82 83 

Fine aggregate (0.6 mm) 172 165 170 163 166 

Fine aggregate (0.2 mm) 172 165 170 163 166 

Water 166 171 164 169 157 

Fibers 0 0 75 75 225 

Superplasticizer (% solids 

content by mass of binder) 
1.25 1.45 1.30 1.50 1.37 

Material cost ($/m3 of 

concrete) 
565 626 808 868 1312 

*1f or 3f in the mixture nomenclature denotes either 1% or 3% by volume of fibers 

8.2.3 Mixing, Specimen Preparation, and Curing  
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Successful UHPC mixtures rely heavily on a well-devised mixing plan. The UHPC mixtures 

were mixed in a Croker RP100XD rotating pan mixer with a capacity of 0.28 m3 (10 ft3).  

The mixer consists of two shearing paddles which are held-in-place, while the pan containing 

the concrete rotates at a pre-defined speed of 74 rpm. This mixing arrangement simulates 

the mixing of concrete in a truck mixer. A fixed scraper blade attached to the assembly 

removes the paste adhering to the sides of the wall and provides a uniform mixing 

environment. All aggregates were washed and dried to eliminate surface impurities prior to 

mixing.  This treatment enhanced the water demand and compromise the mechanical 

properties. Aggregates were first mixed with the pre-determined amount of mixing water to 

a saturated surface-dry condition. Powders were incrementally introduced into the mixture in 

decreasing order of fineness (microsilica, limestone, cement, and fly ash, in that order). This 

helps ensure adequate shearing of powders and restricts agglomerations that might occur 

otherwise. Every successive powder addition was followed by a mixing time of 

approximately 3-4 minutes. Finally, a mixture of water and superplasticizer was introduced in 

one-third increments and mixed for 5 minutes after every addition. During the last stage, 

fibers were added after the other components were uniformly mixed. A further mixing for 3-

4 minutes was carried out to ensure that the fiber dispersion is uniform. As evident from this 

description, the mixing procedure of UHPC is very intense, but is essential to obtaining a 

flowable and consistent mixture at the low w/p employed. UHPC cylinders (50 mm/75 mm 

diameter and 100 mm/150 mm long for compressive strength, 100 mm diameter and 200 

mm long for moisture and ionic transport tests), and beams (50 mm x 65 mm x 380 mm and 

100 mm x 100 mm x 457 mm) were prepared for mechanical property testing and stored in a 
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moist chamber at >98% RH and 23  2oC until the age of testing, after removal from the 

molds after 24 hours.  

8.2.4 Constitutive Response and Pulse Velocity Determination under Compression  

The compressive strengths of the selected UHPC mixtures after 7, 14 and 28 days of moist 

curing were determined on 75 mm diameter x 150 mm long cylindrical specimens in 

accordance with ASTM C 39. The stress-strain response of the UHPC specimens in 

compression was obtained on 50 mm diameter x 100 mm long cylindrical specimens cored 

from 100 mm diameter x 200 mm long cylinders (Figure 8-2(a)), since the 75 mm diameter 

cylinders exceeded the load capacity of the available test equipment. The ends of the 

specimens were ground to a surface roughness of less than 200 µm using successively finer 

grits to ensure smooth load transfer between the loading head of the test machine and the 

specimen surface. The stress-strain response of the UHPC specimens was determined using 

a 450 kN load frame after 28 days of moist curing. Figure 8-2(b) shows the test setup to 

determine the constitutive response, with the corresponding instrumentation.  
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Figure 8-2 – (a) 50 mm diameter cylinders cored from 75 mm diameter specimens, and 
prepared for compression testing, and (b) test setup to determine compressive stress-strain 
response of UHPC cylinders. The instrumentation includes LVDT to measure change in 

length of the specimen, radial strain gage to measure radial deformation, and ultrasonic pulse 
velocity transducers.  

 

Prior to the testing, the specimen was jacketed in a polymer sleeve to prevent the debris 

from damaging the instruments (Figure 8-2(a)). The confining pressure applied on the 

specimens by the sleeve can be considered to be minimal and does not influence the test 

results. Two axial strain gauges and one circumferential displacement gauge were attached to 

the sample prior to testing. The axial strain was calculated from the average output of two 

axial strain gauges. The testing procedure involved three phases: (a) a load controlled mode 

up to a normal stress of 1 MPa, (b) an axial strain-controlled mode at a rate of 0.025% axial 

strain/min from a stress of 1 MPa to 30 MPa, and (c) a radial strain-controlled mode at a 

rate of -0.01% radial strain/min until a radial strain of 1.5% or failure.  

(b) (a) 
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I The ultrasonic pulse velocitythrough the sample can be used to determine the damage-

dependent elastic modulus and Poisson’s ratio during the test.  Using an internal transducer 

assembly inside the loading platens ed of the P-wave (compression wave) and S-wave (shear 

wave) velocities were measured continuously during the loading Sets of Two transducers 

were embedded in the top and bottom platens  to measure each of the P and S wave 

velocities. Figure 8-3 shows the typical P-wave and S-wave response of a UHPC specimen 

under compression.  

 

  

Figure 8-3 – Typical raw voltage signal profile for: (a) P-Wave and (b): S-Wave, for a 50 mm 
x 100 mm UHPC cylindrical specimen. The time of first arrival of the wave is quantified as 

the time when the first significant change in the slope of the raw signal is detected. 

 

The raw voltage signal is used to determine the time of flight of the wave, defined as the 

time taken for the first arrival of the wave from one transducer to the other. This is indicated 

by a measurable change in the slope of the temporal voltage signal, as shown in Figure 8-3. 

The wave velocity can be calculated, given the transducer spacing (specimen length) and the 

signal arrival time. The elastic constants (Poisson’s ratio, ‘’ and Elastic modulus, ‘E’) of the 

(a) (b) 
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material are calculated from the P-Wave velocity (Vp) and the S-Wave velocity (Vs) using the 

following relations (Jones and Fącąoaru 1969; Komlos̆ et al. 1996). Here ‘ρ’ corresponds to 

the density of the specimen. 

   (Eq. 8-1) 

  (Eq. 8-2) 

Since the specimen undergoes axial and radial deformation under compressive loading, a 

dynamic correction factor (FCD) is introduced to account for the change in the distance 

between the transducers during the test and used to evaluate the wave velocities. FCD is a 

function of the engineering strain (εe) and given in Equation 8-3. The corrected length, 

shown in Equation 8-4, is used to obtain the wave velocity at different stress or strain levels.  

     (Eq. 8-3) 

     (Eq. 8-4) 

8.2.5 Flexural Response under Four-Point Bending  

The flexural response of the fiber-reinforced UHPC specimens after 28 days of moist curing 

was evaluated using four-point bending tests in accordance with a modified ASTM C 1609 

protocol in a closed-loop, servo-controlled testing system as shown in Figure 8-4(a). The 

modification was based on the size of the beam and the loading span used.  Two different 

beam sizes were tested: 50 mm x 65 mm x 380 mm, and 100 mm x 100 mm x 457 mm. Six 
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beams were tested for each UHPC mixture. The mid-span deflection was experimentally 

measured using an LVDT placed in contact with a steel plate glued to the center of the rear 

of the beam. The test procedure consisted of three phases: (a) an initial load-controlled 

phase up to a contact load of 134 N, (b) actuator displacement-controlled mode at the rate 

of 0.5 mm/min up to an actuator displacement of 3.5 mm, which was close to the peak load 

experienced by the beam, and (c) actuator displacement-controlled mode at the rate of 0.1 

mm/min until a displacement of 19 mm or failure. The actuator displacement rates were 

selected to maintain the rate of mid span deflection in compliance with ASTM C 1609. For 

the unreinforced specimens, only the peak load at failure was noted.  

  

Figure 8-4 – (a) Flexural test setup showing the control station, digital image correlation 
(DIC) unit and the load frame, and (b) beam specimen (100 mm x 100 mm x 457 mm) under 

four-point flexural test with LVDT mounted at the rear of the beam to measure mid-span 
deflection. The area in the center marks the area to be analyzed by the DIC technique. 

 

(a) 

(b) 

(a) 

(b) 
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8.2.6 Digital Image Correlation (DIC) to Analyze Flexural Response of UHPC 

Beams 

Digital image correlation (DIC) is a reliable non-destructive method based on speckle 

tracking, to analyze the full displacement field on the surface of a specimen using digital 

images taken at specific intervals during the test (Chu, Ranson, and Sutton 1985; Pan et al. 

2009). The beams were painted using a speckle pattern of white and fine random black dots 

on the side facing the camera, to improve image correlation. Two Charge-Coupled Device 

(CCD) cameras were used to capture images of the beam every 2 seconds during testing. The 

cameras captured the rectangular region between the two load points (see Figure 8-4(b)), for 

further analysis to determine the displacement fields. The DIC technique determines the 

horizontal and vertical displacement fields in the analysis region by minimizing the 

correlation coefficient computed between the subset of images in the deformed and the 

undeformed state (Das et al. 2014). The displacement fields u(x,y) and v(x,y) in the x and y 

directions are calculated using Equations 8-5 and 8-6, when a point (x,y) in the undeformed 

state transforms to (x*,y*) in the deformed state. The displacement fields are given as:  

    (Eq. 8-5) 

    (Eq. 8-6) 

The correlation coefficient (C), the minimization of which gives the displacement fields, is 

given as (Chu, Ranson, and Sutton 1985; Vendroux and Knauss 1998): 
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   (Eq. 8-7) 

Here, G and H are grey scale light intensities corresponding to the point in the subset. Image 

analysis for DIC was carried out using VIC-2D softwareTM from Correlated Solutions. The 

displacement fields were used to derive the Lagrangian strain fields to evaluate the localized 

cracking zone in the beams. The strain profile along the bottom fiber of the beam was 

averaged to calculate the flexural strain in the beam. The DIC technique also helps monitor 

the mid-span deflection of the beam and helps to verify the LVDT measurements. The 

curvature of the analysis region was evaluated using the VIC-2D software and used to 

extrapolate the deflection of the end point of the beam. The net mid-point deflection of the 

beam (Δcenter-net) is calculated using Equation 8-8, where Δendpoint-top represents the upward 

displacement of the top surface of the beam and Δcenter-bottom represents the downward 

displacement of the mid-span of the beam. 

  (Eq. 8-8) 

The load- crack opening displacement (COD) response was evaluated for the major crack in 

all the UHPC beams studied. Since the beams were unnotched, the precise location of the 

major crack was identified using the last image captured before ending the test in the post-

peak region at a pre-defined axial strain. A virtual extensometer was then placed parallel to 

the beam length in the undeformed state, along the extreme tension fiber. The time-

dependent deformation of the extensometer was determined along the crack opening 
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direction and denoted as the crack opening displacement, which was then plotted along with 

the time-stamped load response to obtain the load-COD curve for the beam.  

8.2.7 Determination of Micro-Mechanical Properties using Micro-indentation 

Micro-indentation was carried out on paste samples of UHPC binders. All dry powders were 

thoroughly mixed prior to wet mixing. Paste mixing was performed in accordance with 

ASTM C 1738 using a M7000 high speed shear mixer. The following mixing sequence was 

used: (i) all water and HRWR was added to the mixer, (ii) the blended dry powders were 

then added as the mixer was run at 4000 rpm for approximately 30 s, (iii) the mixer was then 

run at 12,000 rpm for 30 s, (iv) the paste was allowed to rest for two minutes, and (v) final 

mixing of the paste was carried out at 12,000 rpm for 90 s. Specimens were placed in sealed 

containers until 28 days. At the age of testing, specimens were removed from the sealed 

containers and cut into half-inch thick disks using a diamond saw. The disks were polished 

manually on a Buehler EcoMetTM 250 at a speed of 400 rpm. The polishing protocol began 

with using coarse alumina pads of grit sizes varying from 240 to 1200. Further polishing was 

done using fine alumina pads of particle sizes 9, 3 and 1 micron to obtain a smooth and 

reflective surface suitable for micro-indentation. The samples were ultra-sonicated in iso-

propyl alcohol at each stage of polishing to remove any excess debris from the surface. The 

overall polishing regime took about 2 hours for every sample. 

Micro-indentation was carried out on half inch disk samples using an Anton Paar Micro 

Combi Scratch Tester. Tests were conducted using a Berkovich indenter with a half angle of 

65.35° and a tip radius of 20 nm. The load cell in the instrument was set to 30 N. A force 

controlled loading protocol limited to a max penetration depth (h) of 20 microns was 
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implemented. Previous studies have shown that the interaction volume for the material 

response is three to four times the indentation depth for a Berkovich indenter. Therefore, 

selecting a penetration depth of 20 microns ensures homogeneity of material response within 

the paste, since all the paste features are expected to be smaller than the size of the 

interaction volume and satisfies the scale separability condition: (h>>D/10, where D is the 

size of the largest heterogeneity). A square grid of size 1.26 mm x 1.26 mm [Figure 8-5] was 

selected on the paste sample to obtain a 10 x 10 grid with a spacing of 140µm between 

consecutive indents. Thee grid spacing was selected as seven times the maximum penetration 

depth to avoid any interference between adjacent indents.  

 

Figure 8-5 – Schematic of indentation grid on the sample 

 

For every indent, the loading and unloading rates were specified to be 7500 nm/min and 

10000 nm/min respectively with a dwell time of 3 seconds at the point where max depth was 
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attained. The pause duration after rapid loading is small enough to avoid any creep effects 

and at the same time allows the material to stabilize before the unloading stage begins. The 

force and indenter displacement data were acquired at 15 Hz. The indented sample profile 

and a typical indentation plot is shown in Figure 8-6.  

 

 

Figure 8-6 – (a) Indent impression on QFA sample, (b) Typical force versus penetration 
depth plot 

The unloading part of the force-displacement plot obtained from each indent is fitted in a 

power law expression using an in-built software package which is used to determine the 

unloading stiffness (S) at 98% of the peak load. The indentation parameters, hardness (H) 
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and indentation modulus (M) or the reduced elastic modulus (Er) are obtained as shown in 

equations 8-9 and 8-10. 

   (Eq. 8-9) 

    (Eq. 8-10) 

Here, S is the measured unloading stiffness, Pmax is the peak load and Ac is the area shape 

function, which is a function of the indenter geometry and the penetration depth. For a 

Berkovich indenter, Ac is given by equation 8-11.   

    (Eq. 8-11) 

8.3. RESULTS AND DISCUSSIONS  

8.3.1 Compressive Strengths of UHPC Mixtures and Constitutive Response in 

Compression 

8.3.1.1. 90-day compressive strengths of selected UHPC mixtures 

The compressive strengths of the 75 mm diameter x 150 mm long UHPC specimens with 

and without 1% fiber volume are shown in Figure 8-7. It is observed that 90-day 

compressive strengths of at least 150 MPa are obtained for all the UHPC mixtures 

developed in this study. The material cost (Table 8-2) of these mixtures are among the 

lowest for UHPC mixtures reported, which demonstrates the beneficial effects of carrying 

out a first principles-based packing analysis at both the binder and the aggregate level. The 
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influence of 1% by volume of fibers on the compressive strength is negligible. Though high 

volumes of fibers provide some confinement effect, thereby increasing the apparent 

compressive strengths, they also detrimentally interfere with the packing of particles in the 

mixture as has been quantified in (Arora et al., n.d.). The compressive strength evolution 

depends to a great extent on the volume of reaction products formed in the microstructure 

and the packing density of aggregates. The microstructural packing and reactivity of these 

microstructures were studied in (Arora et al. 2018), and it was found that low w/p and the 

pozzolanic activity of microsilica and fly ash in these mixtures leads to a densely packed 

microstructure, even though a significant amount of cement remains unhydrated. Coupled 

with an optimized aggregate gradation, it leads to an extremely low paste and concrete 

porosity, and thus high strengths. 
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Figure 8-7 – Compressive strength evolution of 75 mm x 150 mm cylindrical UHPC 
specimens. The error bars correspond to one standard deviation from the mean of three 

replicate specimens. 

 

8.3.1.2. Compressive stress-strain relationships 

Figure 8-8 shows the unconfined compressive stress as a function of axial and radial strains 

for the 50 mm diameter x 100 mm long UHPC cylinders without fiber reinforcement. The 

specimens were tested after 40 days of moist curing. The non-fiber reinforced UHPC is very 

brittle, but the stable radial displacement control allowed for the post peak response to be 

captured for these specimens as can be seen in Figure 8-8. It is observed that the response of 

the unreinforced specimens is similar to that reported in (Zohrevand and Mirmiran 2011; 

Hassan, Jones, and Mahmud 2012). The initial elastic modulus begins to degrade as internal 

damage increases with the stress approaching the peak stress. Both the unreinforced UHPC 

specimens are able to withstand as much as 50% of their ultimate capacity at axial strains of 

around 0.0015. The ultimate axial strains are in the range of 0.0035 to 0.004 for both the 

UHPC mixtures.  
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Figure 8-8 – Representative axial and radial stress-strain responses in compression for the 50 
mm diameter x 100 mm long unreinforced UHPC cylinders. 

 

Figure 8-9 shows the relationships between compressive stress and axial and radial strains 

for the UHPC mixtures containing fibers. The difference in post-peak ductility contributed 

by the higher volume of fibers (1% vs. 3% by volume) can be easily noticed from this figure. 

The elastic modulus of the fiber reinforced and unreinforced UHPCs are found to be 

comparable. This is expected since the range of fiber volume fraction considered does not 

significantly contribute to increase in compressive strength or elastic stiffness. While the 

peak stress occurs at similar axial and radial strains (~0.35% and 0.2% respectively) for the 

fiber-reinforced and unreinforced UHPCs, the post peak behavior is significantly enhanced 

due to the presence of fibers. The fiber-reinforced UHPC mixtures show stable post-peak 

response and retain almost 50% of their peak strength at 1% radial strain (equivalent to 

~0.5% axial strain). For the quaternary blend UHPC, there is more than a 50% increase in 

axial and radial strain capacities at ~50% of peak stress in the post-peak regime when the 

fiber volume fraction is increased from 1% to 3%.  
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Figure 8-9 – Representative axial and radial stress-strain responses in compression for the 50 
mm diameter x 100 mm long fiber-reinforced UHPC cylinders. 

 

8.3.1.3. Critical stress states of UHPC in compression 

The representation of axial stress as a function of axial and radial strains provides an 

opportunity to extract critical stress states in UHPC undergoing uniaxial compression. 

Previous studies on rocks and brittle materials (Matti Hakala and Heikkilä 1997; Martin and 

Chandler 1994; Cai et al. 2004; M. Hakala, Kuula, and Hudson 2007) have identified four 

characteristic phases until the peak load is reached, followed either by a marked post-peak 

behavior or sudden failure, based on the material constitution. The existence and the 

duration of the different phases are a function of the material microstructure and the density 

and orientation of microcracks within the specimen. Figure 8-10 shows the stress-strain 

response of a typical UHPC specimen and describes the different phases. The initial phase, 

Phase I, corresponds to the closing of pre-existing microcracks in the sample when a 

compressive stress is applied, and can be considered to extend to about -0.01% radial strain. 
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This phase is dependent on the distribution of inherent internal flaws viewed in the context 

of initial crack density in the material and the crack geometry. Phase II is the elastic region 

where the material behaves in a linear elastic manner. The elastic parameters, i.e., Young’s 

modulus and Poisson’s ratio are evaluated in this region. Traditionally, the elastic parameters 

are taken based on the secant value from -0.01% radial strain to half of peak strength (Matti 

Hakala and Heikkilä 1997). The elastic region ends when damage starts accumulating and 

new cracks are formed in the material. The location of the crack initiation may be attributed 

to positions where internal stiffness mismatch exists at the interfaces.  Such initiations may 

occur at orientations that are random with respect to the direction of applied stress.  This 

need not exactly correspond to half the peak strength, and thus a crack initiation stress is 

defined later in this chapter. Cracks begin to grow, and orient parallel to the direction of 

applied load and this marks the onset of Phase III or the stable crack growth regime. Phase 

IV corresponds to unstable crack growth. The determination of stress states corresponding 

to Phases III and IV are explained below

The beginning of Phase III can be considered to correspond to crack initiation under 

uniaxial compressive stress.  The crack initiation stress (σci) is defined as the axial stress when 

the crack volumetric strain (v,cr) starts to deviate from the zero value in the axial-volumetric 

strain relationship as shown in Figure 8-10. The crack volumetric strain (v,cr) is calculated 

from the measured total volumetric strain (v) and its elastic component (v,e) as shown in 

Equations 8-12 to 8-14. The curve for v,cr is adjusted in Figure 8-10 such that its maximum 

value is zero for the calculation of σci (Matti Hakala and Heikkilä 1997). 
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    (Eq. 8-12) 

   (Eq. 8-13) 

    (Eq. 8-14) 

Here, axial and radial are the axial and radial strains, and  is the Poisson’s ratio. E is the elastic 

modulus, taken as the slope of the axial stress-strain curve between axial stress values 

corresponding to -0.01% radial strain and half of the peak stress. The volumetric and crack 

volumetric strains are also shown in Figure 8-10. Beyond a certain axial stress level, the 

cracks begin to open up and the volumetric strain (v) reverses from compaction to dilation. 

This point denotes the crack damage stress (σcd), which represents the beginning of Phase 

IV, which is the unstable crack growth phase. The crack density is found to increase 

significantly (~ 2-7 times) in this phase, as noticed from a rapid increased in the crack 

volumetric strain in Figure 8-10 (Hallbauer, Wagner, and Cook 1973; Ngab, Slate, and 

Nilson 1981; Hearn 1999). σcd can also be considered as the true strength of the material, and 

any stress value observed beyond that to be a result of temporary strain-hardening, 

influenced by factors such as the loading rate (Martin and Chandler 1994).  The crack 

initiation and crack damage stresses are referred to as the critical stress states. Phase IV 

terminates at the maximum load bearing capacity or the peak stress (σp), which is the onset 

of the post-peak response.   
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Figure 8-10 – Characteristic phases in the stress-strain response of UHPC and identification 
of critical stress states 

 

Figures 8-11(a) and (b) show the relationship between axial strain and volumetric strain for 

the unreinforced and fiber-reinforced UHPC mixtures respectively, used in this study. An 

increase in volumetric strain with axial strain indicates compaction of the specimen. The 

volumetric strain in compression increases until the crack damage stress (cd) and starts 
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dropping until it becomes zero at the peak stress. The stress corresponding to the peak in 

the volumetric strain, after which dilation begins, can realistically be considered as the true 

strength of the specimen, as described earlier. While the unreinforced beams fail around the 

peak stress, the fiber-reinforced specimens undergo significant post-peak dilation, as the 

radial strain increases at a much higher rate as compared to the axial strain. The data in 

Figure 8-11 is only until the peak load is achieved, to ensure fair comparisons, even though 

the fiber-reinforced specimens show much higher radial strain post-peak, and thus dilation. 

The ternary blend UHPC containing microsilica and limestone shows a significantly higher 

volumetric strain as compared to the quaternary blend, plausibly attributed to the higher 

amounts of softer limestone in the former mixture. When the mixtures containing 1% and 

3% fiber volume fractions are compared, it is found that the overall volumetric strain is 

higher for the mixture with higher fiber volume, as expected. This is contributed by a more 

stable pre-peak crack growth in this mixture due to the presence of a large amount of fibers.  

   

(a) 
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Figure 8-11 – Relationship between axial strain and volumetric strain for: (a) unreinforced, 
and (b) fiber-reinforced UHPC specimens under compression. 

 

Figure 8-12 shows the different critical stress state parameters obtained for the UHPC 

mixtures based on the analysis scheme described earlier.  It is noticed that the ternary blend 

UHPC containing microsilica and limestone shows a lower crack initiation stress as 

compared to the quaternary blend UHPC. This is attributed to the lower amounts of 

hydration products in this mixture due to the higher OPC replacement level (50% by mass 

compared to 30% for the quaternary blend) and the higher amounts of low-reactive 

limestone filler. The ultimate strength of the ternary blend is not significantly lower than the 

quaternary blend because of the improved particle packing, but the lower matrix strength 

results in a lower ci.  The crack initiation stresses lie between 40% and 60% of the peak 

strength for all the mixtures. The true peak strength, which is the crack damage stress (σcd), is 

about 10% lower than the measured peak stress. Specimens deteriorate very quickly beyond 

the crack damage stress (σcd) because the crack volumetric strain and crack density 

significantly increase beyond σcd. Based on the aforementioned observations, crack damage 

(b) 
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stress is suggested as a more conservative design parameter than the ultimate compressive 

strength for UHPC mixtures. 

 

Figure 8-12 – Critical stress state parameters of the UHPC mixtures. The error bars 
correspond to one standard deviation from the corresponding mean values for three 

replicate specimens. 

 

8.3.2 Elastic Constants of UHPC mixtures  

As mentioned in Section 8.2.4, ultrasonic pulse velocity (UPV) was determined in 

conjunction with the uniaxial compression tests on the 50 mm diameter x 100 mm long 

cylindrical UHPC specimens. The P- and S-wave velocities obtained from UPV were 

analyzed to obtain E and  at applied stress intervals of 10 MPa, as per Equations 8-3 to 8-6. 

It was observed that the velocities remain fairly consistent throughout the test until the peak 

stress is attained, after which the specimen undergoes large deformation in the form of 

matrix cracking. Beyond the peak stress, a noticeable change in the stiffness was observed, 
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indicated by a decrease in the P- and S-wave velocities. Table 8-3 shows the E and  values 

computed from the wave velocities and from the compression stress-strain plots (Figures 8-8 

and 8-9). Eσ-ε and σ-ε are calculated from the stress-strain plots, based on the secant values 

from -0.01% radial strain to 50% of the peak stress (Matti Hakala and Heikkilä 1997). Einitial 

corresponds to the elastic modulus calculated using the P- and S-wave velocities measured at 

a low axial stress (10 MPa in this case), and Epost-peak corresponds to the elastic modulus 

computed at the end of the test when the sample fails, or when a maximum radial strain of 

0.3% or 1.5% is reached for the unreinforced and fiber-reinforced mixtures respectively. 

initial and post-peak are calculated at the same stress/strain levels as Einitial and Epost-peak. The E 

values obtained from both methods are generally similar, with those determined from wave 

velocities slightly higher, the reasons for which have been extensively discussed (Han and 

Kim 2004; Popovics, Zemajtis, and Shkolnik 2008). The values are comparable to those 

obtained in literature (Alsalman et al. 2017).The Poisson’s ratios of fiber-reinforced UHPC 

specimens determined from the compressive stress-strain response are higher than those 

obtained from wave velocities. 

 

Table 8-3 - Elastic constants of UHPC mixtures determined from P- and S-wave velocities, 
and from quasi-static stress-strain relationships 

Elastic 

constant 
M20L30 F17.5M7.5L5 M20L30-1f F17.5M7.5L5-1f F17.5M7.5L5-3f 

Eσ-ε (GPa) 43.10 47.53 46.26 49.84 42.25 

Einitial (GPa) 44.56 48.24 44.05 51.55 52.79 
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Epost-peak (GPa) 43.57 48.16 41.75 47.22 50.87 

 σ-ε 0.19 0.27 0.32 0.29 0.30 

initial 0.22 0.26 0.22 0.19 0.19 

post-peak 0.23 0.23 0.23 0.24 0.24 

 

8.3.3 Flexural Response of UHPC Mixtures 

8.3.3.1. Load-deflection response, flexural strengths, and toughness 

Four-point flexural tests on UHPC beams were carried out after 28 days of curing as 

described in Section 8.2.5. The fiber-reinforced specimens were subjected to the load-

deflection tests. Six beams were tested for each UHPC mixture and the representative load-

midspan displacement (P-) plots are shown in Figures 8-13(a) and (b). Midspan deflections 

were measured using an LVDT. Figure 8-13(a) shows the P- plots for both the ternary and 

quaternary blend binder UHPC beams 50 mm x 65 mm x 380 mm in size, containing 1% 

fiber by volume, while Figure 8-13(b) compares the P- response for the quaternary blend 

UHPC beams of size 100 mm x 100 mm x 457 mm, containing 1% or 3% volume fraction 

of fibers. The LVDT data was not available for the unreinforced mixtures and only the peak 

loads were recorded. From Figure 8-13(a), it is noted that the P- response in the pre-peak 

region is very similar for the ternary and quaternary blend UHPCs with 1% fiber volume, 

even though the quaternary blend sustains a slightly higher load, which is in line with their 

compressive strength results shown in Figure 8-7.  The quaternary blend UHPC also shows 

a higher post-peak load retention capacity. A comparison between the quaternary blend 
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UHPCs containing 1% or 3% fiber volume shown in Figure 8-13 (b) conveys the expected 

trend of significantly increased load capacity – a two-fold increase when fiber volume is 

increased from 1% to 3%.  A closer view of the P- response at small  values (in the inset 

of Figure 8-13(b)) shows that the response is linear until a deflection of ~0.1mm for both 

the UHPCs. This corresponds to the peak load for the specimen with 1% fiber volume 

fraction. The specimen containing 3% fiber volume shows a strain hardening-like response 

between 0.1 mm and 0.5 mm deflection, attributable to the larger volume of fibers that 

bridge the microcracks generated in the matrix (Mobasher and Cheng Yu Li 1996; Yoo, Lee, 

and Yoon 2013). 

 

(a) 
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Figure 8-13 – Relationship between force and mid-span deflection for fiber-reinforced 
UHPC mixtures: (a) ternary and quaternary blend UHPCs containing 1% fiber volume 

(50mm x 65 mm), and (b) comparison between quaternary blend UHPCs containing 1% and 
3% fiber volume (100 mm x 100 mm). 

 

The 28-day flexural strengths of the UHPC mixtures are shown in Figure 8-14. The flexural 

strengths of the UHPCs with 1% fiber volume are similar to those of the corresponding 

unreinforced mixtures. It is likely that the particle packing is disturbed by the presence of 

fibers (Arora et al., n.d.), thereby slightly weakening the overall composite.  However, at a 

higher fiber loading, significantly increased flexural strengths (~22 MPa) are achieved. The 

higher strength of the high volume fiber reinforced UHPC should be taken into account in 

conjunction with its higher ductility as observed in Figure 8-13(b), for structural design 

purposes.  

 

(b) 
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Figure 8-14 – Flexural strengths of UHPC mixtures after 28 days of moist curing. The error 
bars correspond to one standard deviation from the mean value of six replicate specimens. 

 

The toughness of the UHPC mixtures is determined by numerically integrating the area 

under the load-deflection plots such as those shown in Figure 8-13. The toughness values 

are calculated for the peak load (also denoted as resilience), and at mid-span deflections of 

L/600 and L/150, where L is the effective beam span, and are shown in Figure 8-15. The 

influence of increase in fiber volume fraction on toughness can be easily observed from 

these figures.  
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Figure 8-15 –Toughness of UHPC mixtures: (a) 50 mm x 65 mm x 380 mm beams, and (b) 
100 x 100 x 457 mm beams. Toughness calculated as the area under the load displacement 

plot at peak load, and at mid-span deflections of L/600 and L/150. The error bars 
correspond to one standard deviation from the mean of six replicate specimens. 

 

8.3.3.2. Strain field analysis using DIC 

Digital image correlation (DIC) was carried out on beams subjected to flexure, as described 

in Section 8.2.6. Detailed discussions are limited to the strain fields in fiber-reinforced 

UHPCs, since the unreinforced specimens fail in a brittle manner, and the crack propagation 

could not be effectively monitored without a pre-defined crack (notch). However, the strain 

fields in the unreinforced mixtures just before failure (peak load) show well-dispersed tensile 

and compressive strains in the bottom and top of the beams respectively, as can be seen in 

Figure 8-16. 

(a) (b) 
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Figure 8-16 – Surface strain fields obtained by DIC for unreinforced beams just before 
failure 

 

The load- crack opening displacement (COD) response was evaluated for the primary and 

secondary cracking in the fiber-reinforced UHPC beams studied. For the fiber-reinforced 

UHPCs, the location of the major crack was identified using the last image prior to stopping 

the DIC testing, in the post-peak zone. Section 8.2.6 has detailed the methodology to 

determine the load-COD response. Figure 8-17 (a) shows the load-crack opening 

displacement (COD) relationship for the fiber-reinforced UHPCs, where the COD was 

extracted from the DIC data. 50 mm x 65 mm x 380 mm beams were used, with a fiber 

volume fraction of 1%.  As expected, the COD is negligible prior to the peak load for both 

the UHPC mixtures. The rate of crack opening beyond the peak is lower in the quaternary 

blend with fly ash than in the ternary blend. Since both of these mixtures contain the same 

amount of fibers, the increased ductility can likely be attributed to a more ductile matrix in 

case of the quaternary blend mixture. In fact, higher amounts of microsilica (as is the case in 

the ternary blend) has been reported to increase the brittleness of the binder (Dubey and 
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Banthia 1998), and the softening effect of limestone is likely compensated to some extent by 

this response. Figure 8-17 (b) shows the effect of fiber volume fraction on the load-COD 

response of 100 mm x 100 mm x 457 mm beams of the quaternary blend UHPC. 

Unsurprisingly, the flexural strength and ductility enhancements as a function of fiber dosage 

is brought out in a manner very similar to the load-deflection relationships.  

 

  

Figure 8-17 – (a) Load-COD response for 1 % fiber reinforced mixtures (50 mm x 65 x 380 
mm), and (b) Load-COD response for UHPCs with 1% and 3% fiber volume fraction (100 

mm x 100 mm x 457 mm) 

 

The strain field analysis of fiber-reinforced UHPC is shown for five different load values 

marked from A to E in a typical load-COD relationship shown in Figure 8-18. A and B 

correspond to 50% and 90% of the peak load in the pre-peak region. C corresponds to the 

peak load. D and E correspond to 90% and 50% of the peak load in the post-peak region.  

(a) (b) 
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Figure 8-18 – Normalized load-COD response showing the regions A-E used for the DIC 
strain field analysis 

 

Figure 8-19 shows the Lagrangian strain fields evaluated from the displacement fields 

calculated by DIC for the specimens containing 1% fiber volume. The images correspond to 

the points marked in Figure 8-18. It is clearly noticeable that that the beams experience no 

significant localized strains up to about 50% of the peak load. Strain localization is noticed 

generally close to the peak load. The quaternary blend UHPC shows multiple regions of 

localized strains before the peak load, while such a behavior is observed only at or close to 

the peak load for the ternary blend UHPC. This is indicative of the fundamental differences 

in the matrix behavior, brought about by the constituent materials (Das et al. 2015).  As 

noted in Figure 8-12, the ternary blend UHPC has a lower crack initiation stress (σci) as 

compared to the quaternary blend UHPC. This leads to a longer crack growth phase for the 

former, which is reflected in the more intense strain fields that accumulate at or close to the 

peak load. Surface cracking is not evident until the peak load. The first crack appears in the 
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ternary blend UHPC beam near the peak load whereas it does not make an appearance until 

90% of the peak load in the post-peak regime for the quaternary blend UHPC. In the post-

peak region, the strain fields are more dispersed for the quaternary blend UHPC, and the 

strains continue to grow in other regions of the beam along with strain at the major crack. 

This ultimately results in a higher value of residual strength and a higher toughness for the 

quaternary blend UHPC as was shown earlier. 

Figure 8-20 shows the representative Lagrangian strain fields for the quaternary blend 

UHPC beams (100 mm x 100 mm x 457 mm) containing 1% and 3% steel fibers. The 

presence of higher volume of fibers result in a better dispersion of strains, and multiple 

cracking as noted in Figure 8-20.  The increased amount of fibers help bridge micro-cracks 

and arrest crack growth in the post-peak region. This response is also related to the higher 

ductility and higher toughness of the beam containing 3% fiber volume.  

 

Location in 

P-COD 

curve  

M20L30-1f F17.5M7.5L5-1f 
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Figure 8-19 – Lagrangian strain fields in the pre-peak and post-peak regions of ternary and 
quaternary blend UHPC beams (50 mm x 65 mm x 380 mm) with 1% fiber volume 

 

Location in 

P-COD curve 
F17.5M7.5L5-1f  F17.5M7.5L5-3f  

A 

  

B 

  



257 

 

C 

  

D 

  

E 

  

Scale 
 

Figure 8-20 - Lagrangian strain fields in the pre-peak and post-peak regions for beams (100 
mm x 100 mm x 457 mm) with 1% and 3% fiber volume. The DIC results on the right have 

more contrast due to a relatively low pixel resolution. 

8.3.4 Indentation Response and Inverse Calculation 

The indentation response was determined by post-processing the force versus penetration 

depth data for the 100 indents performed on each of the non-fiber reinforced UHPC 

samples. Approximately 5% of the plots were discarded from the final analysis of each of the 

pastes since they exhibited sudden jump during either the unloading or the loading part 

indicative of micro-cracks or pores at the location of indentation. The results for the 

indentation modulus (M) and hardness (H) obtained from the indents are shown in Figure 8-

21.  
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Figure 8-21 – Results of indentation – Indentation Modulus (M) versus Hardness (H) 

A summary of the indentation results is given in Table 8-4. It is noted that the standard 

deviation lies within 10% of the average values of both hardness as well as indentation 

modulus. This gives a reasonable indication of a homogenized paste response been obtained 

from the indentation. It is observed that the indentation modulus of the ternary silica fume 

paste is higher than that of the quaternary fly ash paste. This is likely because of the presence 

of a large volume fraction of very stiff micro-silica particles (Emicro-silica ~ 50 GPa) present in 

the mixture. The hardness modulus of quaternary fly ash paste is 30% higher than that of the 

ternary silica fume mixture, which is a likely result of the increased amount of hydration 

product formed in the quaternary fly ash system (Vance, Aguayo, et al. 2013; Guillermo 

Puerta-Falla et al. 2015; Arora et al. 2018). 

Table 8-4 -Hardness and modulus results from micro-indentation testing of UHPC paste 
samples 
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Sample ID Hardness (H) [GPa] Indentation Modulus (M) [GPa] 

F17.5M7.5L5 0.865 ± 0.106 32.33 ± 1.504  

M20L30 0.655 ± 0.027 35.15 ± 0.915 

 

The parameters for the constitutive response of the specimen can be deduced from the 

statistical analysis of the hardness and indentation modulus data obtained using a simple 

fitting algorithm formulated by Franz et al. (Sorelli et al. 2008; Cariou, Ulm, and Dormieux 

2008; Bobko et al. 2011). The Young’s modulus of the material can be calculated using 

equation 8-15 assuming isotropic material behavior.  

  (Eq. 8-15) 

Here, Er is the indentation modulus (M) determined from the experiment, E is the Young’s 

modulus of the paste, Ei is the Young’s modulus of the indenter, ν is the Poisson’s ratio of 

the paste and νi is the Poisson’s ratio of the indenter. The Poisson’s ratio of the UHPC 

specimens was determined from the compression stress-strain test as 0.20 for QFA and 0.19 

for the ternary silica fume sample. 

A detailed analysis was carried out by Cheng and Cheng (Cheng and Cheng 2004) and later 

Cariou (Cariou, Ulm, and Dormieux 2008) using the Buckingham Pi-theorem to derive 

dimensionless expressions for hardness and indentation modulus for a porous composite. In 
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their derivation, Cariou et al. assumed that hardness and modulus values obtained as outputs 

from the indentation curve (‘P’ vs ‘h’) are representative of the properties of the porous 

composite at every point of indentation, which are tied to the properties of the solid phase 

as well as the pore morphology. Assuming UHPC to be a granular material with a cohesive-

frictional solid phase, the solid phase is composed of particles with particle hardness hs, 

particle stiffness ms, friction coefficient α and locally packed with a packing density of η (η = 

1 - φ). Equations 8-16 and 8-17 show the relations for the modulus and hardness measured 

at the nth indent. Here, Cs is the stiffness matrix of the material, and η0 is the solid 

percolation threshold and θ is the cone angle of the indenter. 

    (Eq. 8-16) 

    (Eq. 8-17) 

For a Berkovich indenter, θ is known to be 65.35°. Assuming isotropic material behavior, Cs 

is reduced to E. The percolation threshold η0 can vary between zero and one depending on 

the pore-solid morphology of the composite material. The linear self-consistent scheme 

applicable to granular materials of high packing density provides the value for η0 = ½. 

Applying these known values in equation 8-16, we obtain a simplified equation 8-18. 

    (Eq. 8-18) 
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The particle hardness (hs) in the above equation is a function of the cohesion (cs) and friction 

angle (α). In other words, hs is defined as the hardness of an ideal composite with a zero 

porosity ( ). For a Drucker-Prager solid, Cariou et al. (Cariou, Ulm, 

and Dormieux 2008) and Bobko et al. (Bobko et al. 2011) simulated the indentation 

response using a Limit Analysis Solver for different packing densities of clay (a cohesive-

frictional solid) and obtained a polynomial fitting function to relate material hardness and its 

cohesion and friction angle (equation 8-19). The value of the fitting parameters (A,B,C and 

D) of equation 8-19 can be found in (Bobko et al. 2011). Using these constants, the value of 

particle hardness can be determined given the value of friction and cohesion.  

   (Eq. 8-19) 

Since the percolation threshold is known (η0 = 1/2), the hardness function on the right-hand 

side of equation 8-18 becomes a function of the friction angle and packing density. It can be 

written as a summation of two dimensionless functions Π1 and Π2 as given in equation 8-20, 

where the first part is independent of the friction coefficient α.  

   (Eq. 8-20) 

The two functions Π1 and Π2 were fitted to the simulation results to obtain polynomial 

expressions in terms of α and η [Equations 8-21,8-22]. The fitted parameters can be found in 

(Bobko et al. 2011). 
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(Eq. 8-21) 

(Eq. 8-22) 

Now, for a linear isotropic material, the indentation modulus assumes the same value as that 

of the plane stress elastic modulus (Equation 8-23). Here, K and G correspond to the bulk 

modulus and shear modulus of the indented material. 

   (Eq. 8-23) 

 The expressions for K and G are formulated for a porous composite in terms of the solid 

phase bulk and shear properties and the packing density using microporomechanics theory 

(Constantinides and Ulm 2007). Finally, the expression for the dimensionless function ΠM in 

equation 8-24 is derived under the self-consistent scheme (η0 = 0.5) as: 

    (Eq. 8-24) 

Now, knowing the values for H and M at each of the ‘N’ number of indents, we have 2N 

equations to solve for N+4 unknowns (ηi,ms,cs,α). An inverse analysis is carried out using a 

MATLAB program to arrive at the unknown values using a minimization algorithm coupling 

both H and M values (Bobko et al. 2011). Since the minimization function is not convex, the 
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algorithm gives several allowable values for the unknown parameters from which the ideal 

set of values must be derived by applying certain constraints.  

In this case, we refer to the work done by Pichler and Hellmich (Pichler and Hellmich 2011), 

who predicted the evolution of uniaxial compressive strength of cement pastes as a function 

of the water-cement ratio corresponding to their hydration degree. The maximum attainable 

degree of hydration for a cement paste sample of a known water-to-cement ratio is given in 

Equation 8-25. 

   (Eq. 8-25) 

This relationship works well in the case of pure cement paste and for a UHPC specimen 

containing 100% cement at a w/c = 0.20, the maximum degree of hydration, . 

The UHPC specimens in this study are composed of SCMs, that form secondary hydration 

products and therefore a measure of the degree of hydration may be obtained by 

quantification of the reaction product using statistical EBSD experiments. The water-to-

cement ratio for the quaternary fly ash sample is 0.26 and for the ternary silica fume sample 

is 0.3. In both cases, assuming 80% hydration at 90 days, the value for the dimensionless 

compressive strength is approximately equal to 0.7 (Equation 8-26).  is the uniaxial 

compressive strength of the cement paste, and  is the deviatoric hydrate strength 

which is related to the cohesion of the cement paste using equation 8-27. 
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   (Eq. 8-26) 

   (Eq. 8-27) 

Solving the above equations, we obtain the relationship between cohesion and the 

compressive strength of the UHPC paste (Equation 8-28).  is the compressive strength of 

UHPC concrete. Since UHPC mixes are primarily composed of paste (~70%), the factor 

1.25 is assumed to be the scaling factor between paste and concrete strength.  

   (Eq. 8-28) 

Based on the value of cohesion obtained here, we go back to the minimization problem 

described earlier and determine the solution for the material constants that is nearest to the 

cohesion value calculated. The results of the analysis are shown in Table 8-5. 

Table 8-5 – Material properties obtained from micromechanical analysis 

Sample ID ms (GPa) hs (GPa) cs (MPa) α (°) 

F17.5M7.5L5 54.93 2.37 155 24.20 

M20L30 45.66 1.12 145 11.35 

 

8.4. CONCLUSIONS 
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This chapter provides fundamental insights into the mechanical response of UHPCs 

proportioned using optimized binder proportions and aggregate gradation. Two different 

UHPC mixtures, a quaternary blend binder (OPC, fly ash, limestone and microsilica), and a 

ternary blend binder (OPC, microsilica and limestone) were proportioned using an 

optimized aggregate gradation predicted by the compressible packing model and 

experimentally validated. For some of the mixtures, steel fibers were used at volume 

fractions of 0.01 or 0.03. All the mixtures demonstrated a 90-day compressive strength of 

more than 150 MPa, with no significant changes in strength between unreinforced and fiber-

reinforced specimens.   

The stress-strain response of UHPC mixtures in compression was brought out using radial 

strain-controlled compression tests on 50 mm x 100 mm cylinders. The influence of fiber 

reinforcement on the post-peak response in compression were adequately quantified using 

these tests. The critical stress states under compression were extracted from the relationships 

between axial stress and axial/radial strain, and axial strain-volumetric strain relationships. 

Crack initiation stress (σci) and crack damage stress (σcd) are the major parameters of interest 

extracted from these relationships, which are indicators of change in the internal structure of 

the material under uniaxial compression. Differences in σci and σcd between the ternary and 

quaternary blend binders were attributed to differences in composition that influence the 

matrix strength. Beyond the crack damage stress, unstable cracking was observed to begin, as 

noticed by a significant increase in the crack volumetric strain. Thus, σcd is suggested as a 

more accurate measure of the true unconfined compressive strength of UHPC, which is 

around 10% lower than the peak stress. The material parameters, E and ν, were extracted 
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using the compression stress-strain response as well as ultrasonic pulse velocity 

measurements.  

The influence of steel fibers on the UHPC response was brought out using flexural tests on 

beams of two different sizes under four-point bending. The UHPC mixture with 3% fiber 

volume showed a significantly higher flexural strength (~22 MPa) than the unreinforced and 

1% fiber volume mixtures (~12 MPa). The toughness calculated based on the load-

deflection response also showed the beneficial influence of fibers bridging the matrix micro-

cracks, especially when calculated at a larger deflection, which included the post-peak 

response. The Lagrangian surface strain fields under flexure were evaluated from 

displacement fields mapped using DIC, from which load-crack opening displacement 

relations were extracted. The influence of matrix characteristics and fiber reinforcement on 

dispersion and localization of strains, and crack propagation were accurately captured by the 

DIC measurements. The studies described in the paper have thus elucidated the fundamental 

response of economical UHPC mixtures in both compression and flexure, concurrently 

providing insights into the microstructural changes occurring under the respective loading 

regimes, either through the determination of critical stress states or strain fields.   
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CHAPTER 911 

NUMERICAL SIMULATIONS TO QUANTIFY THE INFLUENCE OF PHASE 

CHANGE MATERIALS ON EARLY AND LATER-AGE THERMAL RESPONSE OF 

CONCRETES 

9.1. INTRODUCTION 

The use of phase change materials (PCMs) as components of building systems has been 

steadily increasing because of their capacity to store and release energy in the form of heat, 

thereby facilitating energy efficient envelope systems  (Baetens, Jelle, and Gustavsen 2010; 

Khudhair and Farid 2004; Shilei, Neng, and Guohui 2006; Cabeza et al. 2007; Schossig et al. 

2005).  PCMs are combined (sensible and latent) thermal energy storage (TES) materials. 

When subjected to an increase in temperature, PCMs act as sensible energy storage media 

until their phase transition temperature is reached. When the temperature exceeds their 

melting temperature, phase transition of PCMs from solid to liquid state occurs, thus 

allowing them to act as a latent heat storage medium. During the latent heat storage phase, 

the system temperature is maintained constant. In other words, the energy provided to the 

system is used in the change of phase of PCMs, by which they provide an auto-adaptive 

capability to a system like concrete in which they are embedded, to maintain the 

temperature. In addition to the well-researched avenue of building energy efficiency, this 

behavior presents a unique opportunity to utilize PCMs as a strategy to mitigate early- and 

                                                 

11 This chapter is derived from the publication: Arora, A., Sant, G., & Neithalath, N. (2017). Numerical 
simulations to quantify the influence of phase change materials (PCMs) on the early-and later-age 
thermal response of concrete pavements. Cement and Concrete Composites, 81, 11-24. 
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late-age thermal cracking in concrete structures. Solid-liquid PCMs broadly belong to three 

categories: organic compounds such as paraffins and fatty acids, inorganic compounds such 

as salt hydrates, and eutectic compounds (Zalba et al. 2003). Paraffins are the most 

commonly used PCMs in building applications. They are either encapsulated in the form of 

micro or macro capsules (Schossig et al. 2005; Fernandes et al. 2014; Aguayo et al. 2016), 

impregnated into porous materials such as lightweight aggregates (Aguayo et al. 2017), or 

directly added to the host material. The former two methods are more applicable to cement-

based materials since paraffins generally interfere with the hydration of cement when added 

directly.  

The heat released during the hydration of cement at early-ages is well understood to be a 

reason for early-age cracking of restrained concrete elements such as pavements and bridge-

decks, while diurnal changes in temperature can cause thermal fatigue and associated 

cracking in mature concrete at later ages (Springenschmid 1994; Emborg and Bernander 

1994). A previous study has experimentally shown that the use of microencapsulated PCMs 

in concrete effectively reduces the adverse effects of heat of hydration by reducing the peak 

temperature rise and the rate of heat evolution/release during cement hydration (Fernandes 

et al. 2014). It has also been shown that small volume fractions (in the range of 5-to-10% by 

volume of concrete) of such PCMs can be well dispersed in concrete with little influence on 

the resulting mechanical properties (Aguayo et al. 2016).  

In this study, a numerical modeling approach is implemented to evaluate the influence of 

microencapsulated PCMs in reducing the early-age temperature evolution in concrete 

pavements, as well as to quantify the benefits in terms of reducing the propensity of the 
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member to early-age cracking through an analysis of stress development. A finite difference 

model is used for the hydrating concrete pavement with considerations of mixture 

proportions, member geometry, and structural and thermal (environmental) boundary 

conditions. PCMs with two different phase transition temperatures are considered since the 

effectiveness of the PCMs in reducing temperature gradients is an intrinsic function of the 

local climate. The influence of PCMs in dictating the long-term response of the pavement 

with respect to reducing temperature gradients and stresses are elucidated using year-long 

simulations of virtual pavements located in Phoenix, AZ (hot, dry environment), and San 

Francisco, CA (cool, humid environment). The numerical simulations shown in this chapter 

demonstrate the effectiveness of PCMs in reducing the risks of thermal cracking in concrete 

pavements at both early- and later-ages, and serves as a tool to enable designers/engineers 

devise strategies for crack-resistant material design of concrete based on the environmental 

conditions.  Note that the analysis presented in this chapter considers only the temperature 

development and associated thermal stresses. Moisture movement that causes drying and 

associated shrinkage, which is also a function of early-age temperature development, and 

creep that consequently reduces the stresses, are not considered here. 

9.2. EARLY-AGE RESPONSE MODELING 

9.2.1 Model Formulation and Boundary Conditions 

A brief overview of the model formulation and boundary conditions is provided here, 

considering that the latent heat storage/release capacity of PCMs result in perceptible 

changes in the temperature (and consequently the early-age thermal stress) profiles in 

hydrating concrete. The simulation methodology detailed below has been programmed using 
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Matlab© with the capability to read climatic data from a national climate database, allowing 

the simulations of concrete pavements in any geographic location.  

The temperature development in a concrete pavement section subjected to external 

variations in climatic conditions is generally modeled using the second-order heat-diffusion 

equation (Reynolds and Perkins 1977; Springenschmid 1994) given as: 

  (Eq. 9-1) 

where k is the thermal conductivity of the concrete (W.m-1K-1), T(x,y,z) is the scalar 

temperature field (K), q’ corresponds to the heat generated from the cement hydration 

reactions (W), ρ is the density of concrete (kg.m-3), cp is the specific heat capacity of concrete 

(J.kg-1K-1), and t is the time (s). For hydrating cementitious systems (i.e., at early ages), the 

thermal conductivity and specific heat capacity are dependent on the degree of hydration. 

Equations 9-2 and 9-3 have been used to represent the hydration-dependent thermal 

conductivity and heat capacity (Reinhardt, Blaauwendraad, and Jongedijk 1982).   

   (Eq. 9-2) 

  (Eq. 9-3) 

where kuc is the ultimate (i.e., at 100% hydration) thermal conductivity of concrete (taken as 

0.612 W.m-1K-1), cp-uc is the ultimate heat capacity of concrete (910 J.kg-1K-1) (Lamond and 

Pielert 2006) and α is the degree of hydration of the system. The degree of hydration α is a 

function of temperature and time, which is expressed as (Pane and Hansen 2002): 
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   (Eq. 9-4) 

where α(te) is the degree of hydration at equivalent age te (given in Equation 9-5), αu is the 

ultimate degree of hydration, τ is the hydration time parameter (hours), and β is the slope 

parameter. These parameters have been shown to be adequately represented as functions of 

the chemical composition of the binding materials (Anton K. Schindler and Folliard 2005). 

The equivalent age te represents the effect of temperature on the degree of hydration (ASTM 

2011; Carino and Lew n.d.). The actual age of concrete ‘t’ was converted to an equivalent age 

te at the reference temperature using Equation 9-5. 

        (Eq. 9-5) 

Here, Tr is the reference temperature (298 K), Ea is the activation energy (J.mol-1), and R 

(J.mol-1K-1) is the universal gas constant. 

When the cementitious mixture contains PCMs, suitable adjustments are needed in the 

thermal conductivity and heat capacity terms of Equation 9-1. The specific heat capacity of 

PCM is a function of the temperature as shown in Figure 9-1 (a) for two different 

microencapsulated PCMs used for the simulations reported in this study, having phase 

transition temperatures in the neighborhood of 24oC and 35oC.  During the phase transition, 

the PCM stores latent heat energy, helping to maintain a constant system temperature as 

shown in Figure 9-1(b). The heat capacity and thermal conductivity of PCM-incorporated 
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concrete depend on the volume fraction of the PCM in concrete, and are calculated using a 

rule of mixtures approach as shown in Equations 9-6 and 9-7. 

 

 

 

 

 

 

 

 

Figure 9-1 – (a) Differential scanning calorimetry (DSC) plot for two different PCMs 
showing specific heat as a function of the temperature, and (b) representation of the latent 

heat capacity of both the PCMs. 

 

  (Eq. 9-6) 

   (Eq. 9-7) 

where vconc is the volume fraction of concrete and vpcm is the volume fraction of PCM in the 

PCM-incorporated concrete. In Equation 9-6, cp,comp(T) is the specific heat capacity of the 

PCM incorporated concrete, cp,conc(T)  is the specific heat capacity of plain concrete (given in 

Equation 9-3), and cp,pcm(T) is the specific heat capacity of the PCM (from Figure 9-1 (a)). 

Similarly, in Equation 9-7, kcomp(T), kconc(T) and kpcm(T) respectively are the thermal 

(a) (b) 
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conductivities of PCM incorporated concrete, plain concrete (given in Equation 9-2) and the 

PCM. The thermal conductivity of PCM, kpcm(T) is a function of temperature and is taken to 

be as 0.25, 0.20 and 0.15 W/m/K respectively when PCM is in the solid phase, latent 

transition phase, and liquid phase (Zalba et al. 2003; Abhat 1983; Sarı and Karaipekli 2007). 

The heat generated from cement hydration (q’ in Equation 9-1) is given as (Anton K. 

Schindler and Folliard 2003):  

  (Eq. 9-8) 

where Hu is the heat generated at complete hydration (J.kg-1), Cc is the amount of 

cementitious materials in the mixture (kg.m-3), Ea is the activation energy (J.mol-1), R is the 

universal gas constant (J.mol-1K-1), and Tr is the reference temperature (298 K). β and τ were 

defined before. Hu and Ea can be calculated using the chemical composition of the binding 

materials as described elsewhere (Anton K. Schindler and Folliard 2005). For a Type I/II 

OPC concrete with the composition chosen for simulations (explained in Section 2.3), Hu, 

Ea, u,  and  were obtained as 460 kJ.kg-1, 36.2 kJ.mol-1, 0.78, 12.9 hours, and 0.77 

respectively. For concrete containing PCM as cement paste replacement, the amount of 

cementitious materials (Cc) is adjusted based on the composition of the mixture. Since PCM 

has no effect on the heat generation during hydration, all other parameters remain 

unchanged. 

Equation 9-1 was solved to calculate the temperature in the pavement as a function of depth 

and time using an explicit finite difference approach. The pavement model consisting of the 
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hydrating concrete layer and the base/sub-base was discretized into a number of layers. The 

number of layers and time step were selected to obtain convergence in results. In this study, 

50 layers each were considered for the concrete pavement as well as the base/sub-base, 

which translated into layer thicknesses of 6 mm and 30 mm respectively for these 

components. The time step used was 10 seconds. Figure 9-2 shows a schematic of the finite 

difference model with the environmental factors that influence the early-age temperature 

development in a hydrating concrete pavement.  

 

Figure 9-2 – Schematic model of a concrete pavement subjected to environmental effects at 
early ages 

 

Equations 9-9, 9-10 and 9-12 depict the top, bottom, and the concrete-base/sub-base 

boundary conditions adopted for the model. The top surface boundary condition (Equation 

9-9) captures the effects of the environmental phenomena such as evaporative cooling, 

incident solar radiation, irradiation, and convection to-and-from the surface. These are 
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functions of the temperature, wind speed, cloud cover and relative humidity (Anton Karel 

Schindler 2011). 

 (Eq. 9-9) 

The first term on the RHS of the top surface boundary condition represents the convective 

heat transfer. Here, h0 is the surface convection coefficient, which is a function of the wind 

speed and the concrete curing method adopted in the field (ASTM Standard, n.d., 680; 

Riding et al. 2007). T0 is the ambient temperature and T(0,t) represents the concrete surface 

temperature. The second term corresponds to the radiative heat transfer, where ε is the 

surface emissivity of concrete and σ is the Stefan-Boltzmann constant. The final term 

characterizes the solar absorption through the solar absorptivity βs and the instantaneous 

solar radiation qs. 

The bottom surface boundary condition (in this case, at a depth of 1800 mm from the 

surface of the concrete pavement) can be stated as: 

     (Eq. 9-10) 

where Tg is the constant ground temperature (oC). Also, the initial temperature across the 

pavement as well as the base/sub-base is assumed to be equal to Tg, which is calculated using 

the average annual temperature Taa (°C) from the climatic data for the specific region as 

(Yoshitake et al. 2002): 

                           (Eq. 9-11) 
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The continuity of heat flux through the pavement and base/sub-base leads to the third 

boundary condition at the pavement-base/sub-base interface (Equation 9-12).  

   (Eq. 9-12) 

The numerical simulations reported in this study were carried out using climate datasets 

from 2010 for Phoenix AZ, and San Francisco, CA, obtained from the website of the 

National Centers for Environmental Information (“Welcome to National Centers for 

Environmental Information (NCEI)” n.d.). These two locations were chosen to highlight the 

importance of PCM type/dosage as a function of the local climate. Phoenix has a hot and 

dry weather around the year with average annual temperature of 24oC (highs up to 50oC), 

whereas San Francisco is located in a colder and humid region with an average annual 

temperature of 14oC (“Climate Phoenix - Arizona and Weather Averages Phoenix” n.d.; 

“Climate San Francisco - California and Weather Averages San Francisco” n.d.). The climate 

data used for the simulations included hourly averages of temperature, cloud cover, relative 

humidity and wind speed. Since the least count for the finite difference model is 10 s, the 

required values were obtained using linear interpolation from the hourly averages.  

 

9.2.2 Predicting Strength Development 

Since thermal stresses are responsible for early age cracking of concrete pavements, it is 

important to understand the time when the stress exceeds the material strength, which is a 

function of the mixture composition and exposure conditions. As is generally implemented, 

the compressive strength of hydrating concrete is modeled as a function of the ultimate 
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compressive strength fc-ult, as shown in Equation 9-13 (Springenschmid 1994). τs and βs are 

the fit parameters. 

    (Eq. 9-13) 

The tensile strength and elastic modulus at time te are functions of the compressive strength 

at the particular time (Raphael 1984; Committee, Institute, and Standardization 2008, 318–

08) and are represented using Equations 9-14 and 9-15.  

    (Eq. 9-14) 

    (Eq. 9-15) 

‘l’ and ‘m’ are parameters that obtained by fitting the experimental tensile strength and 

compressive strength data for the chosen mixture proportion. For an ultimate compressive 

strength fc-ult of 40 MPa, the different fit parameters have been obtained as: s = 27.8 hours, 

s = 0.72, l = 0.35, m = 0.67, and k = 3.88 x 106 Pa0.5. 

9.2.3 Mixture Compositions Containing PCMs 

PCMs can be incorporated in concretes either by replacing a fraction of the fine aggregate 

(sand) or a fraction of cement (i.e., cement paste). Both these strategies are evaluated in the 

simulations. Previous studies have shown that replacing a small fraction of sand by 

microencapsulated PCM does not result in strength reductions, even though the elastic 

modulus is reduced owing to the replacement of stiff material (quartz sand) by a soft 

inclusion (PCM) (Aguayo et al. 2016). However, when a fraction of the cement paste is 
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replaced by PCM, both strength and elastic modulus are compromised. In the simulations 

performed here, 5% to 20% of sand or cement paste by volume are replaced in the concrete 

mixture. That translates to 1.2% to 5.5% by volume of the concrete, as shown in Figure 9-3. 

The plain concrete used in the simulations has a cement content of 341 kg.m-3, a fine 

aggregate content of 666 kg.m-3, a coarse aggregate content of 1121 kg.m-3 and a water 

content of 148 kg.m-3. A 20% replacement of cement paste by PCM (by volume) is 

equivalent to a 13.5% replacement of cement (by mass) by the PCM, whereas a 20% volume 

replacement of sand is equivalent to a 14.7% of replacement of sand (by mass) by the PCM.  

 

Figure 9-3 – Relating replacement levels of cement paste or fine aggregates by PCM (by 
volume) to the total PCM content in the concrete (by volume) 

 

9.3. NUMERICAL SIMULATION OF EARLY AGE RESPONSE: RESULTS 

AND ANALYSIS  

9.3.1 Pavement Temperature Profile at Early Ages 
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The hydration of cementitious materials generates heat for several days after placement of 

the concrete members. The exothermic hydration reaction, coupled with the imposed daily 

temperatures induce temperature differentials across the pavement section. While the surface 

heats up or cools rapidly in response to the ambient temperature variation, the internal 

temperature changes at a slower rate. The early age temperature development is predicted by 

solving the one-dimensional heat diffusion equation (Equation 9-1). The simulated 

pavement is located in Phoenix, AZ, and the placement is considered to occur either in the 

month of March or July. The corresponding ambient 8-day temperatures are shown in 

Figure 9-4. In order to keep the discussions succinct, this section discusses primarily the 

cases where the pavement was placed in March, where a PCM with a phase transition 

temperature of 24oC was used.  

 

Figure 9-4 – Ambient 8-day temperature profiles for pavements cast in March and July in 
Phoenix, AZ 
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The temperature profile for a plain OPC concrete pavement located in Phoenix, AZ, placed 

in the month of March, is shown in Figure 9-5 (a), at different depths from the surface of 

the pavement. The temperature differential between the ambient and the interior of the 

concrete is higher for the first 48 hours due to significant internal heat generated from 

cement hydration. After 48 hours, the heat generation reduces significantly, resulting in the 

calculated temperature profile for the first layer being similar to the imposed external 

temperature. The temperature differentials for the internal layers also reduce with time. 

Figure 9-5(b) shows the maximum and minimum temperature profiles for the pavement 

section along with the temperature profile at the center of the pavement. The maximum 

temperature in the pavement section is critical, since it has a direct bearing on the internal 

stresses, and consequently the propensity of the pavement to crack at early ages. 

 

  

Figure 9-5 - (a) Predicted temperature profile for a plain OPC concrete pavement. Layer 1 
corresponds to the top surface exposed to the atmosphere and Layer 50 corresponds to the 
bottom surface, which is in contact with the base, and (b) temporal variation of maximum, 

minimum and mean temperatures for the plain OPC concrete pavement. 

(a) (b) 
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When microencapsulated PCMs of appropriate phase transition temperature are 

incorporated into the mixture, their latent heat storage capacity results in reduced section 

temperatures. The maximum temperature in the pavement as a function of time, where PCM 

inclusions replace either a part of the cement paste or fine aggregates, are plotted in Figures 

9-6 (a) and (b) respectively. The phase transition temperature of the PCM is 24oC. Both the 

replacement scenarios are designed to result in a PCM volume fraction between 1.25% and 

5.5% in concrete. As noticed from Figure 9-6, the early age surge in the temperature 

development in concrete is significantly reduced by the incorporation of PCMs. The 

magnitude of temperature reduction increases with increasing PCM content as expected. 

When the concrete contains 5% of PCM by volume, there is an approximately 10oC 

reduction in the peak hydration temperature under the exposure conditions chosen, when 

cement paste is replaced by the PCM, and an approximately 6oC reduction when a similar 

volume of PCM replaces sand. These are significant in reducing the cracking propensity of 

the concrete, as elucidated in a later section. The latent heat storage by the PCM also delays 

the occurrence of the peak temperature, and slows down the cool down rate, both of which 

are instrumental in regulating the thermal strains within the hydrating concrete member. 

When PCM replaces part of the cement paste, the latent heat storage by PCM is 

supplemented by the reduced rate of heat generation (which depends on the replacement 

level), whereas when PCM replaces part of the fine aggregate, the thermal storage capacity of 

the PCM is solely responsible for reduction in maximum section temperatures.  
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Figure 9-6 – Comparison of maximum section temperatures: (a) PCM replacing cement 
paste, and (b) PCM replacing fine aggregates. The volume fraction of PCMs in concrete is 

shown in the graphs. 

 

A commonly adopted approach to reduce excessive early age temperature rise in hydrating 

concrete members is the use of fly ash as a partial cement replacement. Fly ash incorporation 

reduces the peak temperature in concrete at early ages due to the dilution effect. Figure 9-7 

compares the predicted temperature profiles when 20% of cement (mass-based) is replaced 

by fly ash (which translates to 2.34% of fly ash by volume of concrete) or 10% by volume of 

sand is replaced by PCM (which translates to 2.8% of the volume of concrete). Note that at 

early ages, fly ash does not react in a cementitious system and can be considered as a filler 

material. This enables rational comparison of the early-age response of systems containing 

similar volumes of fly ash or PCM. A similar reduction in maximum section temperatures, as 

compared to the plain OPC pavement, is noticed. However, when fly ash replaces cement in 

concrete, the effectiveness in reducing the temperature differential is limited to early ages 

since the dilution effect dominates during this period. Hence, the presence of fly ash 
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primarily influences the heat generation term in Equation 9-1. On the other hand, there is no 

dilution in the cement content when PCM replaces fine aggregate, and the temperature 

reduction is solely attributed to the latent heat storage capacity of the PCM.  

 

Figure 9-7 – Comparison of maximum section temperature as a function of time at early 
ages for concretes containing comparable volumes of fly ash or PCM. 

 

While the maximum section temperatures shown in Figure 9-7 reflect the temperature 

difference between the systems during very early periods of hydration, it is instructive to 

examine the temperature profiles at the mid-section of the pavement during the first 8 days. 

This is shown in Figure 9-8 for all the three concrete compositions discussed in Figure 9-7, 

for the same imposed temperature profile. The temperature profiles at the mid-section are 

used here, since, for the imposed temperature loading and the PCM type chosen, the mid-

section temperatures during early ages lie in the phase transition region of the chosen PCM, 

thereby allowing for a clear understanding of the influence of the PCM. It can be observed 

that the temperature profiles for concrete containing fly ash or PCM are similar for the first 
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48 hours. In other words, the heat storage capacity of 10% of PCM (by volume) that 

replaces sand in concrete is equivalent to the reduction in heat generation accomplished by a 

replacement of 20% (mass-based) of cement by fly ash, during the initial 48 hours. Beyond 

this time, the rate of heat generation from cement hydration decreases significantly, 

consequently decreasing the effectiveness of fly ash in reducing section temperatures. This is 

shown in the magnified region in Figure 9-8. However, the concrete containing PCM shows 

a lower temperature at the mid-section, attributed to the fact that there is thermal energy 

storage by PCM, which increases the heat capacity of the concrete mixture.  Also significant 

is the change in slope of the heating and cooling rates of concrete containing PCM (cool 

down rates, in particular), in addition to the reduced magnitude of temperature peaks, which 

is influential in reducing the thermal cracking risk of concrete.  

 

Figure 9-8 –Temperature profiles at the center of the concrete pavement, for fly ash and 
PCM containing mixtures 
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9.3.2 Early Age Stress Development 

The influence of PCM incorporation on the thermal stress development in pavements is 

discussed in this section. The axial thermal strains are calculated using the average 

temperature difference between the current temperature of the pavement layer and the 

temperature of the layer at final set (Saetta, Scotta, and Vitaliani 1995). 

   (Eq. 9-16) 

Here, ‘h’ is the total thickness of the slab, Tz,current is the temperature of the slab at depth ‘z’ at 

the given time step, Tz,final-set is the temperature of the slab at depth ‘z’ at time of final set and 

‘Δz’ is the increment at which the temperature is calculated. The calculation for axial thermal 

strain (axial) and axial thermal stress (σaxial) is given as: 

   (Eq. 9-17) 

    (Eq. 9-18) 

αcomp is the coefficient of thermal expansion of the composite concrete (i.e., PCMs 

embedded into the conventional concrete), calculated using a series rule of mixtures by 

accounting for the coefficients of thermal expansion and volume fractions of the concrete 

and PCM phases in the composite concrete.  

The coefficient of thermal expansion (CTE) of hardened concrete is a function of the CTE 

of the constituent materials in concrete. The CTE of concrete changes as the hydration 

progresses, and it has been found that the CTE of fresh concrete is 8-10 times that of 
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hardened concrete (Schöppel and Springenschmid 1995). However, the CTE attains a stable 

value post final-set (Hashida and Yamazaki 2002). Therefore, a constant value for CTE of 

concrete (conc) is used in the calculation of axial thermal strains at early ages, and is given as: 

   (Eq. 9-19) 

Here, αca is the CTE of coarse aggregate (10 x 10-6 oC-1), αfa is the CTE of fine aggregate (11 x 

10-6 oC-1), αp is the CTE of cement paste (10.8 x 10-6 oC-1) (Emanuel and Hulsey 1977), and 

vca, vfa, vp are the volume fractions of the corresponding concrete constituents, as obtained 

from the mixture proportions. 

Figure 9-9 shows the axial thermal stress profiles for the plain OPC concrete, and the 

concrete mixtures containing 20% by volume of fly ash or 10% by volume of PCM 

(replacing either the cement paste or sand) at different times during the early hydration 

period. The axial stresses shown here are the elastic stresses, obtained as the product of the 

axial thermal strains and the time-dependent elastic modulus (Equation 9-15) of the 

hydrating concrete. It is found that there is significant reduction in the early age axial thermal 

stresses when fly ash (as a cement replacement material) or PCMs (as paste or sand 

replacement) are incorporated in the concrete. Further, it is also observed that even at low 

replacement levels, concrete pavements containing PCM demonstrate reduced axial tensile 

stresses as compared to those containing fly ash as a cement replacement material. For cases 

where PCM replaces cement paste or sand, the stresses are generally comparable. The 

significant reduction in axial tensile stresses in the pavement provides justification for the 
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use of PCMs in concrete even if the early age property development must be marginally 

compromised.  

 

 

Figure 9-9 – Axial stress profiles at different times during early hydration for plain OPC 
concrete pavement, and those containing fly ash or PCM (as cement paste or sand 

replacement): (a) 1 day of hydration, (b) 3 days of hydration, and (c) 7 days of hydration. 

 

The top surface of a pavement is exposed to a wide range of temperatures while the bottom 

surface is relatively insulated. The resulting temperature gradient across the cross section 

causes the cooler portions to contract more as compared to warmer portions that restrain 

the contraction, thereby resulting in curling. The curling stress calculation in this study is 

based on a modified form of Westergaard’s equation (Westergaard 1927; Bradbury 1938). 

The temperature gradient for curling stress calculation (ΔTcurl) is given in Equation 9-20.  

 (Eq. 9-20) 

(a) (b) (c) 
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Here, Ttop,current and Tbottom,current are the temperatures at the top and bottom surface of the 

concrete pavement respectively at the considered time. Similarly, Ttop,final-set and Tbottom,final-set 

are respectively the temperatures at the top and bottom surface at the time of final set.  The 

curling stress is calculated as: 

  (Eq. 9-21) 

Here, Cmax and Cmin are maximum and minimum values of Bradbury’s coefficient, which is a 

function of the slab geometry, and calculated using the approach given in (Bradbury 1938). 

The restraint factor represents the level of axial restraint due to slab-base friction (Xin, 

Zollinger, and James 1992). The upper bound for restraint factor is 1.0 which represents a 

base course with infinite friction, i.e., no free movement would occur in this case. The strain 

would fully translate into an internal stress in this case, equal to the product of the free strain 

and the modulus of elasticity. Lower bound for the restraint factor is 0, which represents a 

frictionless base, in which case no stresses would develop. These conditions are never 

experienced in reality and the actual values lie somewhere in between, varying non-linearly 

through the thickness of the pavement. However, for simplicity in stress calculation, the 

restraint factor is considered to vary from a value of 1.0 at the bottom of the subbase to 0 at 

the top of the concrete pavement. Since the objective of this analysis is to compare the 

influence of PCMs on stress development, the choice of restraint factors is not very 

consequential.  

The critical stress is calculated as the maximum tensile stress using a combination of the free 

strains, restraint factor, elastic modulus and the curling stresses as shown in Equation 9-22 
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(HIPERPAV, n.d.). The location of critical stress changes during early ages due to the 

combined effects of imposed temperature and cement hydration. Although, it would be in 

the interior of the slab, the position of critical stress along the depth of the slab varies with 

time as the slab curls upward or downward through the daily temperature cycles.  

 

(Eq. 9-22) 

Here RF(z) represents the restraint factor at depth ‘z’ in the pavement. 

The early age critical thermal stress development, along with the tensile strength 

development for the four different pavement mixtures considered earlier in Figure 9-9, are 

shown in Figures 9-10 and 9-11. When the pavement is placed in the month of March in 

Phoenix, AZ, the critical stresses never exceed the tensile strength of the mixtures during the 

first week of hydration (Figure 9-10). Note that the tensile strength development has been 

adjusted based on the composition of the mixture. When placed in the month of July, it can 

be observed that the critical stress in a plain OPC pavement exceeds its tensile strength at 

about 4 days, thereby presenting a very high risk of early age cracking (Figure 9-11). The 

impact of increased ambient placement temperatures on thermal stress development can also 

be quantified through a comparison of Figures 9-10 and 9-11. The effectiveness of PCMs or 

fly ash in reducing the cracking risk can be inferred from Figures 9-11(b)-(d).  
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Figure 9-10 – Critical thermal stress and tensile strength development for: (a) OPC concrete, 
(b) concrete with 10% PCM replacing cement paste, (c) concrete with 10% PCM replacing 

fine aggregate, and (d) concrete with 20% fly ash replacing cement paste. The monotonically 
increasing curve corresponds to the strength development. The pavement is placed in 
Phoenix, AZ in the month of March, and the PCM has a phase transition temperature 

around 24°C. 

 

 

Figure 9-11 - Critical thermal stress and tensile strength development for: (a) OPC concrete, 
(b) concrete with 10% PCM replacing cement paste, (c) concrete with 10% PCM replacing 

fine aggregate, and (d) concrete with 20% fly ash replacing cement paste. The monotonically 
increasing curve corresponds to the strength development. The pavement is placed in 

Phoenix, AZ in the month of July, and the PCM has a phase transition temperature around 
35°C. 

 

9.3.3 Predicting the Likelihood of Early Age Cracking 

The likelihood of thermal cracking at any time depends on the ratio of the calculated thermal 

stress at that time to the corresponding tensile strength of concrete. The stress-to-strength 
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ratio of the member depends on the ambient temperature that the member is subjected to, 

as well as the degree of hydration of concrete. To calculate the probability of cracking (Pc), 

different weights were assigned for different thermal stress-to-tensile strength ratios (Sr) as 

shown in Equation 9-23. The stress-to-strength ratios were determined based on Figures 9-

10 and 9-11. For instance, a Sr less than 0.1 indicates a very low probability of cracking with 

a weighting factor of 0, whereas a Sr greater than 0.75 indicates severe cracking probability, 

which is assigned a weight of 1.0. Such an approach has been employed in previous studies 

(Riding et al. 2014).  

 (Eq. 9-23) 

 

The cracking probabilities at different times during the first 8 days of hydration (0 < Pc  1) 

were averaged to determine an average cracking probability for the considered concrete 

mixtures. Figure 9-12 shows the average cracking probabilities under the two different 

imposed temperature scenarios considered for Phoenix, AZ (moderate weather in March, 

and hot conditions in July), along with the ratios of the maximum thermal stress to the 

tensile strength at the corresponding age. The cracking probabilities for all the four mixture 

types (plain OPC concrete, concretes where fly ash replaces 10% or 20% of the cement by 

mass, or concretes where PCM replaces 10% or 20% of fine aggregate or cement paste by 
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volume) are shown in this figure. The incorporation of PCMs, either as a replacement for 

cement paste or fine aggregates, significantly reduces the early age cracking probability of 

concrete pavements, which scales with the PCM content in the concrete. For the simulation 

conditions and PCM types chosen, it is noticed that the use of PCMs with phase transition 

temperature lying within the range of the imposed temperature (see Figure 9-4) will 

significantly reduce the propensity of early-age cracking when used at a dosage rate of 5% by 

volume of the concrete (or approximately 20% by volume of sand or cement paste). The 

ratios of the maximum thermal stress to the corresponding tensile strength, also plotted in 

Figure 9-12 as symbols, provide an additional means of evaluating the efficiency of the 

PCMs in reducing early age thermal cracking. Cracking is certain if this ratio reaches or 

exceeds 1.0. This representation overcomes the averaging effects in calculating probabilities 

(such as the case of OPC placed in July, where the averaged Pc is only ~0.85, but cracking is 

certain since there are multiple occurrences where Sr is equal to or greater than 1.0 as seen in 

Figure 9-12).  

While replacing a part of the cement paste with PCM is the most effective strategy to reduce 

cracking probability based on this analysis because of the added advantage of reduction in 

cement content (and consequently heat of hydration), partially replacing sand with PCM is 

likely a better strategy to ensure desirable early-age property development and mitigate any 

potential strength loss at later ages (Aguayo et al. 2016). However, an economic analysis 

favors the cement paste replacement approach.  
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Figure 9-12 – Maximum stress-to strength ratios and cracking probabilities of pavement 
concrete mixtures placed in Phoenix, AZ: (a) concrete placement in March, and PCM with a 
phase transition temperature of 24oC is used, and (b) concrete placement in July and PCM 
with a phase transition temperature of 35oC is used. The X-axis is common for the top and 

bottom plots. 

 

9.4. SIMULATING LONG TERM THERMAL RESPONSE 

Beyond 28 days, cement hydration can be considered to have reached a steady state and the 

heat generation term in Equation 9-1 can be neglected. For plain OPC concrete, it can be 

safely assumed that the thermal conductivity and specific heat attain their ultimate values at 

complete hydration, i.e., at 28 days. For concrete containing PCM, the specific heat and 

thermal conductivity values of the composite material at later ages are determined using the 

same approach mentioned in Section 2.0. It has been reported that concrete gains 10-to-20% 

strength between 28 days and 3 years (Neville 1995). This strength development depends on 

(a) (b) 



294 

 

the type of cement, mixture composition, and exposure conditions. The strength 

development beyond 28 days is accounted for in this study by applying a time dependent 

multiplier, βt(t), to the 28-day strength ft(28) as shown in Equation 9-24 (HIPERPAV, n.d.). 

The multiplier βt(t) is expressed as shown in Equation 9-25, where ‘s’ is a constant which is a 

function of the cement type (0.25 for normal and rapid hardening cements), and ‘t’ is the 

time in days. 

     (Eq. 9-24) 

    (Eq. 9-25) 

The concrete pavement is subjected to an imposed climate data for one year (obtained from 

the national climate database) for a given location (here, Phoenix AZ, or San Francisco, CA 

with very different climate patterns) and the spatial and temporal variation in the pavement 

temperature is determined using the finite difference approach. The boundary conditions 

and initial conditions used are the same as reported in Section 2.1 for early-age response.  

Figure 9-13 shows a one-year temperature profile calculated for a plain OPC concrete 

pavement subjected to thermal loading in Phoenix, AZ, during the time period Jan 1 2010 – 

Dec 31 2010. 
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Figure 9-13 – Maximum and minimum temperatures in a plain OPC concrete pavement in 
Phoenix, AZ for a thermal loading duration of one year (Jan 1 2010 to Dec 31 2010). The 

magnified plot shows the actual variation in the imposed daily temperature. 

 

The daily variation of external temperature is sinusoidal in nature, and that coupled with the 

overall seasonal variation during the year causes the imposed annual temperature to appear 

as a band as shown in Figure 9-13. A magnified view of a small time period is also shown to 

demonstrate the actual daily temperature variation. The seasonal variation over a period of 

several years will also follow this pattern. It is noted that the calculated maximum daily 

temperature in the concrete pavement is usually about 5oC-to-10oC higher than the 

maximum imposed daily temperature, as has been reported in other studies also (Ge 2005; 

A. K. Schindler et al. 2004). Since the incorporation of fly ash in the concrete mixture has 

minimal influence on the thermal response of the pavement at later ages, as demonstrated in 

Figure 9-8, only a plain OPC concrete and concrete in which PCM replaces cement paste 

(for a total volume fraction of 5% in concrete) are the only compositions considered for 
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later age thermal analysis. Concrete where PCM replaces fine aggregate also would behave 

similar in later age modeling to the one where cement paste is replaced, provided the volume 

fractions of the PCM are the same. Hence only the former is used in this section for detailed 

analysis.   

9.4.1 Annual Concrete Temperature Profiles 

Figures 9-14 and 9-15 show the comparison between temperature profiles at different depths 

for an OPC concrete pavement and one containing 5% of PCM by volume. For both cases, 

the pavement is subjected to the same externally imposed temperature as shown in Figure 9-

13. In Figure 9-14, 5% of the overall volume of concrete contains a PCM with a phase 

change temperature of 24oC whereas in Figure 9-15, the results are for the pavement 

containing PCM with a phase change temperature of 35oC. The height of the temperature 

profiles at different depths in the pavement is indicative of the temperature range that the 

pavement is subjected to, at that particular depth. The temperature differential (difference 

between maximum and minimum) decreases with increasing depth, which is attributed to the 

constant boundary condition at the bottom of the pavement. It is noted from Figure 9-14 

that the PCM with a phase change temperature of 24oC reduces the amplitude of the daily 

temperature variation within the concrete pavement over a certain range of temperatures 

that lie in the latent heat storage/release range of the PCM, particularly between 15oC and 

27oC. This is the active temperature range for the 24oC PCM, as can be identified from the 

DSC plot shown in Figure 9-1(a). When used in Phoenix, AZ, this PCM is particularly 

effective from November through April (when the ambient and concrete temperature is in 

this range), as can be observed from Figure 9-14. Similarly, it is noted from Figure 9-15 that 
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the 35oC PCM is active in the temperature range of 30oC to 44oC. This renders this PCM 

highly efficient in reducing the concrete pavement temperature and gradient in the hot 

summer months of May through September in Phoenix, AZ. The simulations shown here 

establish the influence of PCMs in reducing the peak temperature and temperature 

differentials in concrete pavements, thereby facilitating an increase in thermal fatigue life.  

 

 

Figure 9-14 - Comparison of temperature profiles over a year (Jan 1 2010 to Dec 31 2010) 
for plain OPC and 24oC PCM-incorporated concrete pavements located in Phoenix, 

Arizona. 

 

 

Figure 9-15 - Comparison of temperature profiles over a year (Jan 1 2010 to Dec 31 2010) 
for plain OPC and 35oC PCM-incorporated concrete pavements located in Phoenix, 

Arizona. 
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The temperature profiles shown in Figures 9-14 and 9-15 provide a strong case for using a 

combination of both the 24oC and 35oC PCMs in the same concrete mixture when placed in 

Phoenix, AZ. This choice, indeed, depends on the climatic conditions of the region in which 

the PCMs are used. Since both PCMs have different latent heat transition phases, 

incorporating both in the concrete mixture would ensure reduced temperature differentials 

for most part of the year for a concrete pavement in Phoenix. Simulations were carried out 

on concrete mixtures containing 2.5% by volume of each of these PCMs, adding to a total of 

5% of PCM by volume of concrete. Figure 9-16 shows the temperature profiles of plain 

OPC concrete and the hybrid PCM concrete mixture. Beneficial temperature differential 

reduction is observed for most part of the year. 

 

Figure 9-16 - Comparison of temperature profiles over a year (Jan 1 2010 to Dec 31 2010) 
for plain OPC and hybrid (24oC and 35oC) PCM-incorporated concrete pavements located in 

Phoenix, Arizona. 

 

Since thermal stresses are strongly related to the temperature gradient in the concrete 

members, a reduced temperature profile would certainly give rise to lower stresses, thereby 
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increasing the life of the pavement. The maximum temperature differential at any location 

along the depth of the pavement is calculated as the difference between the maximum and 

the minimum temperatures at that particular depth during a given 24-hour cycle. Figure 9-17 

shows a comparison of the daily maximum temperature differentials experienced at different 

depths along the pavement for the plain OPC concrete and the one containing 5% by 

volume of either the 24oC or the 35oC PCM. The figure is a result of simulations carried out 

for a year corresponding to the imposed temperatures in Phoenix, AZ, and San Francisco, 

CA. Of particular note is the fact that, for San Francisco, the use of a 35oC PCM is not 

beneficial at all since the ambient temperature hardly gets to that level. The 24oC PCM is 

capable of providing year round reductions in temperature differentials for San Francisco as 

can be noticed from Figure 9-17. Regarding Phoenix, each of the PCMs are effective during 

certain times of the year, as discussed earlier. Simulations such as this can be implemented 

for local climates, providing the possibility to use individual or hybrid PCMs in order to gain 

maximum benefit towards thermal fatigue life cycle enhancement of concrete pavements.  
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Figure 9-17 – Maximum daily temperature differentials at different depths for plain OPC 
concrete and concrete containing 5% of PCM by volume. The simulations were carried out 

for a year (Jan 1 2010 to Dec 31 2010). 

 

9.4.2 Annual Stress Profiles 

The temperature gradient between the top and bottom of the pavement causes it to curl 

upwards or downwards. For rigid pavements, curling stresses due to thermal gradients are a 

major concern since they are significantly higher compared to the axial thermal stresses 

(Belshe et al. 2011; Tutumluer, Al-Qadi, and others 2009). Therefore, the axial thermal 

stresses are neglected here for simplicity. The external restraint on the pavement due to the 

base friction causes temperature-induced tensile stresses, which may lead to cracking of the 

pavement. While Westergaard’s theory (Westergaard 1927) considers curling stress in the 

pavement as a function of the temperature of the top and bottom surface, it has been shown 

that the shape of the temperature profile is also important in dictating the internal stresses. 

Since the temperature profile is a non-linear function of the depth, the temperature gradient 

is calculated using the approach suggested in (Mohamed and Hansen 1997). The equivalent 

temperature gradient, Teq is defined as:  

     (Eq. 9-26) 

Here  , where h is the depth of the pavement, and ε(z) is the strain at 

distance z from the center of the pavement. αcomp is the coefficient of thermal expansion of 
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the concrete. The calculated equivalent temperature gradient is then used in Equation 9-21 

to calculate the curling stresses in the pavement. Figure 9-18 shows the comparison of 

curling stresses experienced by a plain OPC concrete pavement and one containing 5% PCM 

by volume, for a one-year exposure in Phoenix, AZ. Since the objective here is to compare 

curling stresses for a concrete pavement with and without PCM inclusions, only thermal 

loading on the pavement was considered (i.e., no traffic loading was considered). It is 

assumed here, for the sake of comparison, that the stresses caused by thermally induced 

curling strains and traffic loading are independent. It is observed from Figure 9-18 that the 

inclusion of PCM causes the curling stresses in the pavement to reduce. It is also noted that 

both the PCMs are effective at different times of the year depending on the internal 

temperature profile of the pavement, as expected. It should also be noted that a part of the 

reduction in the stresses in the PCM-incorporated concrete is also due to a slight reduction 

in the stiffness of the pavement. In both these cases, the tensile stresses due to curling alone 

are not sufficient to cause fatigue cracking, however, they are likely to be significant when 

considered along with the traffic loading. 

 

(a) (b) 
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Figure 9-18 – Curling stresses in a plain OPC concrete pavement and one containing 5% 
PCM, in Phoenix, Arizona: (a) 24oC PCM, and (b) 35oC PCM. 

 

9.5. CONCLUSIONS 

A detailed numerical simulation approach to quantify the early- and later-age benefits of 

using PCMs in concrete pavements was outlined in this chapter. Concrete pavement 

mixtures containing microencapsulated PCMs (of phase change temperatures in the vicinity 

of 24oC and 35oC) replacing either a fraction of the cement paste or fine aggregate (1.25% to 

5.5% of the total volume of concrete) were simulated under exposure conditions 

corresponding to Phoenix, AZ or San Francisco, CA. The temporal change of temperature 

inside the pavement under imposed environmental loading was calculated by solving the 

second-order heat diffusion equation.  The temperature profiles along the pavement depth, 

and the corresponding stress development were extracted based on the data obtained from 

the model and are used to quantify the efficiency of PCMs in mitigating thermal cracking 

risks in concrete. Well-reported time-dependent models were used for concrete property 

development. Significant reductions in early-age hydration heat release were observed when 

PCMs were incorporated in the pavement concretes, either as replacement for the cement 

paste or fine aggregates. The simulations predicted a 6oC-to-10oC reduction in peak 

temperature when the concrete contained approximately 5% by volume of PCM, either as a 

replacement of fine aggregates or of the cement paste. The cement dilution effect when 

PCM replaces cement paste is supplemented by the latent heat storage of the PCM, which 

resulted in enhanced peak temperature reductions. The PCMs were also found to influence 
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the slopes of the heating and cooling rates, which enhances their efficiency in mitigating the 

risk of thermal cracking. The axial and curling strains due to the temperature gradients were 

calculated and combined with a restraint factor, to determine the critical stress in the 

pavement slab during hydration. The early-age critical stress development, along with the 

tensile strength development was used to determine the probability of cracking. Using the 

specific examples of concrete placement in the months of March and July in Phoenix, AZ, 

the influence of PCMs of appropriate phase transition temperatures in significantly reducing 

the cracking probabilities were elucidated.      

The numerical model was also used to predict the pavement temperatures and curling 

stresses for a longer duration, well after the major effects of cement hydration had subsided. 

The ambient annual temperature history for Phoenix, AZ resulted in a combination of 

PCMs with phase transition temperatures of 24oC and 35oC being more effective for year-

round reduction in pavement temperatures whereas for San Francisco, CA, only the 24oC 

PCM was needed. The reduction in pavement temperature reduces cracking probability and 

improves the durability of concrete pavements. The simulations reported in this chapter, 

when implemented for local climates, help engineers and designers choose the appropriate 

type and quantity of PCMs (individual or hybrid) in order to gain maximum benefits towards 

thermal fatigue life cycle enhancement of concrete pavements. 

 

 



304 

 

CHAPTER 10 

MATRICES - A SOFTWARE PACKAGE FOR ANALYSIS AND MODELING OF 

THERMAL STRESSES IN CONCRETE STRUCTURES 

10.1. Overview 

MATRICEs (Modeling and Analysis of Thermal stResses In ConcrEtes) version 1.0 is a 

software package designed to model and analyze heat flow in concrete members subjected to 

climatic conditions in the form of solar radiation, cloud cover, wind currents and relative 

humidity. The software is a one-dimensional numerical heat flow solver which is equipped to 

consider the internal heat generated in a newly cast concrete member because of the 

hydration process, in addition to the analysis of a mature concrete member which has 

already achieved a certain level of hydration. Version 1.0 of MATRICEs is suitable to 

analyze two different types of concrete member geometries – Pavements and Bridge Decks. 

The model considers the basic material properties and mixture proportions in concrete and 

couples them with the weather conditions to solve for the internal temperature and stress 

profile of the concrete member. The software is particularly useful owing to its capability to 

simulate the temperature and stress profile of a concrete member containing thermal energy 

storage materials or phase change materials (PCMs). 

The heat released during the hydration of cement at early-ages is well understood to be a 

reason for early-age cracking of restrained concrete elements such as pavements and bridge-

decks, while diurnal changes in temperature can cause thermal fatigue and associated 

cracking in mature concrete at later ages. Previous studies have shown that the use of 

microencapsulated PCMs in concrete effectively reduces the adverse effects of heat of 
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hydration by reducing the peak temperature rise and the rate of heat evolution/release 

during cement hydration (Fernandes et al. 2014; Arora, Sant, and Neithalath 2017). It has 

also been shown that small volume fractions (in the range of 5-to-10% by volume of 

concrete) of such PCMs can be well dispersed in concrete with little influence on the 

resulting mechanical properties (Aguayo et al. 2016). 

10.2. Model Description 

MATRICEs version 1.0 evaluates the temperature development in a concrete member 

subjected to external variations in climatic conditions using the second-order heat-diffusion 

equation (Reynolds and Perkins 1977; Springenschmid 1994) given as: 

   (Eq. 10-1) 

Here k is the thermal conductivity of the concrete (W.m-1K-1), T(x,y,z) is the scalar 

temperature field (K), q` corresponds to the heat generated from the cement hydration 

reactions (W), ρ is the density of concrete (kg.m-3), cp is the specific heat capacity of concrete 

(J.kg-1K-1), and t is the time (s). For hydrating cementitious systems (i.e., at early ages), the 

thermal conductivity and specific heat capacity are dependent on the degree of hydration.  

10.2.1 Boundary Conditions Implementation 

The temperature development in concrete is calculated as a function of time and depth by 

numerically solving equation 10-1. The temperature profile is used to calculate the evolution 

of thermal stresses in concrete with time. The coefficient of thermal expansion (CTE) of 

hardened concrete is a function of the CTE of the constituent materials in concrete. The 
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CTE of concrete changes as the hydration progresses, and it has been found that the CTE of 

fresh concrete is 8-10 times that of hardened concrete (Schöppel and Springenschmid 1995). 

However, the CTE attains a stable value post final-set (Hashida and Yamazaki 2002). 

Therefore, a constant value for CTE of concrete (conc) is used in the calculation of axial 

thermal strains at early ages. The development of mechanical properties of concrete in 

tension and compression is modeled using the concrete maturity model (Springenschmid 

1994). The simulated thermal stress profile is compared with the modeled strength 

development of concrete to determine the likelihood of early age cracking in the concrete 

member. 

10.3. MATRICEs Implementation 

10.3.1 Software Architecture 

MATRICEs version 1.0 has been built as a standalone Java desktop application in Java 

8.0.45. It is a one-dimensional explicit numerical heat flow solver which evaluates the spatio-

temporal temperature profile in a concrete member. MATRICEs has a six-step framework 

with which it takes the user input regarding the materials, mix design and property 

development models/parameters. The framework is shown in Figure 10-1.  
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Figure 10-1 – Six-step software architecture framework  

 

10.3.2 Member Geometry 

Version 1.0 of MATRICEs is equipped to handle two concrete geometries – Bridge deck 

and Pavement. Both the geometries have distinct boundary conditions that will be described 

later. For either type of concrete member, user input is required for the dimensions of the 

member. In case of a concrete bridge deck, the dimensions required are the length, width 

and depth of the bridge deck. For a concrete pavement, dimensions required are length, 

width and depth of the concrete section, as well as the depth of the subgrade below the 

concrete pavement. The two geometries are shown in Figure 10-2.  
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Figure 10-2 – Member geometries available in MATRICEs version 1.0 (a) Bridge Deck (b) 
Pavement 

 

The finite difference analysis is carried out spatially along the depth of the member, so the 

number of finite elements required depends on the depth of the member. The top surface of 

the concrete member is taken as the reference (z = 0) for the numerical model. The length 

and width of the pavement are used to evaluate the moment of inertia and the radius of 

relative stiffness for the member. These quantities are used to capture the influence of 

curling of the concrete member due to the presence of a temperature gradient between the 

top and bottom surface. 

10.3.3 Environmental Conditions 

Temperature, wind speed, cloud cover and relative humidity are imported from a climate 

database as inputs for the climate model in MATRICEs. Hourly values of these parameters 

are obtained and linearly interpolated as necessary depending on the time step of the solver. 

These conditions control the top and bottom boundary conditions for the concrete member. 

Figure 10-3 shows the software user interface to obtain these inputs.  
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Figure 10-3 – Screenshot of MATRICEs v1.0 showing the environmental conditions step 

Figure 10-4 shows the schematic models of concrete members defined in MATRICEs v1.0 

highlighting the different processes that govern the boundary conditions.  

 

  

Figure 10-4 - Schematic model of (a) concrete pavement and (b) concrete bridge deck 
subjected to climatic factors  

 

(a) (b) 
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The incident solar energy on the member is a function of the percent cloud cover (Equation 

10-2). Here, βs is the solar absorptivity and qs (W/m2) is the instantaneous incident solar 

radiation and CC is the percent cloud cover.  

   (Eq. 10-2) 

The irradiation because of the difference in the surface temperature of the concrete member 

and the ambient temperature is given by Equation 10-3. Here, ε is the surface emissivity of 

concrete, σ is the Stefan-Boltzmann constant, T0(t) is the ambient temperature at time ‘t’ and 

T(0,t) represents the concrete surface temperature at any time ‘t’. 

   (Eq. 10-3) 

The convective heat transfer is given by Equation 10-4. Here, h0 is the surface convection 

coefficient, which is a function of the wind speed (‘w’ m/s) and the concrete curing method 

adopted in the field given by the empirical relationship (Riding et al. 2007) in Equation 10-5. 

    (Eq. 10-4) 

   (Eq. 10-5) 

The boundary condition of the top and bottom surface is given by Equation 10-6 and 10-7 

respectively. Here kcomp is the thermal conductivity (W/m/K) of the concrete member. 

   (Eq. 10-6) 

 (Eq.10-7) 
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For modeling a concrete member such as a concrete pavement, the annual average 

temperature of the climatic region is used to define the constant ground temperature of the 

soil. A similar assumption would be valid for modeling a concrete foundation as well. The 

temperature profile at time (t=0) is the initial condition required to solve the heat equation. 

This is considered as the ambient temperature at the time of the start of analysis for any 

concrete member. While this is perfectly appropriate for a freshly cast concrete member, it 

needs some time (3-4 days) to equilibrate for analysis of a concrete member at later ages. 

10.3.4 Mixture Proportions and Material Properties 

The chemical and physical properties of the concrete member are evaluated based on the 

properties of its constituents – cement paste and aggregate. Figure 10-5 shows the software 

user interface to obtain inputs for the concrete mix design.  

 

Figure 10-5 – Screenshot of MATRICEs v1.0 showing the mixture proportions step 
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Supplementary cementitious materials and admixtures used, if any, may be specified as well. 

The software then calculates and displays the water to cement ratio and the water to binder 

ratio. A pie-chart description of cementitious components is also provided to provide visual 

aid and enhance user experience. 

For a fresh concrete member, the time dependent parameters - internal heat generated as a 

result of the hydration of cement paste, activation energy and the degree of hydration are 

calculated as a function of the constituents using empirical relationships established in 

(Anton K. Schindler 2004; Anton K. Schindler and Folliard 2005; Pane and Hansen 2002; 

Anton K. Schindler and Folliard 2003). Figure 10-6 shows the software user interface to 

obtain inputs for material properties of cement and SCMs.  

 

Figure 10-6 – Screenshot of MATRICEs v1.0 showing the material properties step for 
cement and SCMs 
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Equation 10-8 shows the calculation of the heat of hydration Hcem (J/kg). All quantities in 

the RHS of Equation 10-8 are the volume fractions of constituents in cement powder 

obtained from the Bogue formulation.  

 

(Eq. 10-8) 

In the presence of supplementary cementitious materials such as Fly Ash, Slag, Silica Fume, 

the ultimate heat of hydration Hu (Anton K. Schindler and Folliard 2003) is calculated using 

Equation 10-9. The volume fractions of cement, slag, fly ash class F, fly ash class C and silica 

fume are given by vcem, vslag, vFFA, vCFA and vSF respectively. vFFA-CaO and vCFA-CaO are the 

volume fractions corresponding to calcium oxide in class F and class C fly ash respectively. 

 

(Eq. 10-9) 

The degree of hydration is calculated as a function of time and temperature using equation 

10-10 (Pane and Hansen 2002). α(te) is the degree of hydration at equivalent age te, αu is the 

ultimate degree of hydration, τ is the hydration time parameter (hours), and β is the slope 

parameter. These parameters may be determined using calorimetric techniques by fitting the 

experimental degree of hydration to equation 10-10.  

   (Eq. 10-10) 
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Alternatively, the hydration parameters may be calculated as a function of the mix 

composition using equations 10-11 to 10-13. All quantities on the RHS in equations 10-11 to 

10-13 are volume fractions. The effect of admixtures has also been considered and the 

subscripts ACCL, LRWR, MRWR, CHRWR, NHRWR refer to accelerator, low range water 

reducer, mid-range water reducer, polycarboxylate high range water reducer and naphthalene 

high range water reducer respectively. ‘wc’ is the effective water to binder ratio of the 

mixture.  

 

(Eq. 10-11) 

 

(Eq. 10-12) 

 

(Eq. 10-13) 

The equivalent age te in equation 10-10 considers the effect of temperature on the degree of 

hydration. A higher temperature would shift the degree of hydration plot to the left and vice 

versa. Equation 10-14 defines the equivalent age (te) of concrete in terms of the activation 

energy (Ea), the reference temperature (298 K) and concrete temperature ‘T’. 

  (Eq. 10-14) 
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The activation energy Ea in the equation 10-14 is calculated using the empirical relationship 

given in equation 10-15.  

 

(Eq. 10-15) 

After calculation of all these parameters, the time dependent heat generated during cement 

hydration is given by Equation 10-16. 

 (Eq. 10-16) 

For a Type I/II OPC concrete Hu, Ea, u,  and  were calculated as 460 kJ.kg-1, 36.2 kJ.mol-

1, 0.78, 12.9 hours, and 0.77 respectively. In addition to the hydration parameters, thermal 

properties of concrete significantly affect the heat transfer. The effective thermal 

conductivity (kc) and specific heat capacity (cp-c) of the concrete member are key inputs to 

the governing heat transfer equation within concrete and depend on the degree of hydration 

(α) of concrete (Equation 10-17 and 10-18) (Reinhardt, Blaauwendraad, and Jongedijk 1982). 

kuc is the ultimate thermal conductivity of concrete at maximum hydration (αu) (taken as 

0.612 W.m-1K-1) and cp-uc is the ultimate heat capacity of concrete (910 J.kg-1K-1). The values 

for kuc and cp-uc are modified in the presence of SCMs and admixtures and may be 

determined using ASTM C1470 (“Standard Guide for  Testing the Thermal Properties of 

Advanced Ceramics” 2013).  

    (Eq. 10-17) 
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   (Eq. 10-18) 

In the presence of PCMs in concrete, the thermal conductivity and specific heat capacity 

depend significantly on the concrete temperature. The above equations are then modified to 

include the volume fraction of concrete (vconc) and PCM (vpcm).  

  (Eq. 10-19) 

 (Eq. 10-20) 

Figure 10-7 shows the software user interface to obtain inputs for the properties of PCMs. 

The specific heat capacity and thermal conductivity of PCM may be specified either as a step 

function or in the form of a continuous plot. Both quantities are plotted as a xy-line plot in 

the same window as user input is received. 
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Figure 10-7 – Screenshot of MATRICEs v1.0 showing the material properties step for PCM 

The coefficient of thermal expansion of concrete is used in post-processing to calculate the 

thermal stresses from the measured thermal strains and is calculated using Equation 10-21.  

   (Eq. 10-21) 

Figure 10-8 shows the software user interface to obtain inputs for the properties of coarse 

and fine aggregates in the concrete mix design. 

 

Figure 10-8 – Screenshot of MATRICEs v1.0 showing the material properties step for 
aggregates 

10.3.5 Mechanical Properties 

Several models are available to evaluate the development of strength and elastic modulus in 

fresh concrete as a function of time.  
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Figure 10-9 – Screenshot of MATRICEs v1.0 showing the mechanical properties step 

Two models are available in MATRICEs v1.0 – maturity-based model (Carino and Lew 

n.d.), and ACI 318 empirical model (Committee, Institute, and Standardization 2008). 

Equations 10-22 to 10-23 show both the calculation of compressive strength, elastic 

modulus and tensile strength using the maturity-based model. This model relies on a linear 

relationship between the mechanical properties and the degree of hydration of the concrete. 

 

 (Eq. 10-22) 

   (Eq. 10-23) 

Maturity 
Based 
Model 
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Equations 10-24 to 10-26 show the calculation of mechanical properties based on the ACI 

318 model. As opposed to the maturity-based model, this model is empirical in nature and 

several constants used here are only valid for regular concrete mixes. For specialized 

concrete mixture compositions including SCMs, non-traditional aggregates, low water-

cement ratio, the exponents may need to be adjusted in the formulation based on 

experimental results. Such capability is provided in MATRICEs (see Figure 10-9). 

 

The time dependent Poisson’s ratio is computed using Equation 10-27 (De Schutter and 

Taerwe 1996).  

  (Eq. 10-27) 

Since concrete develops strength even beyond 28 days, therefore a time-dependent model 

has been implemented in MATRICEs to account for later age mechanical strength 

development (Equation 10-28). Here, ‘s’ is a constant that depends on the cement type (s = 

0.25 for normal and rapid hardening cements) and ft(28) is the tensile strength at 28 days 

which may be calculated using either of the methods described in equations 10-23 and 10-26.  

 (Eq. 10-24) 

   (Eq. 10-25) 

   (Eq. 10-26) 

ACI 318 
Model 
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   (Eq. 10-28) 

10.3.6 Finite Difference Model 

MATRICEs has an in-built one-dimensional finite difference model which solves for the 

temperature profile of the concrete member at every time step using the heat diffusion 

equation. The user software interface for the model is shown in Figure 10-10. The 

computation speed is related to the time step selected internally to solve the finite difference 

scheme. Three standard options are provided to the user to control the time required for 

computation. For running large scale simulations (for example simulations for one year or 

longer), the user also has an option to select the frequency at which data is stored in order to 

generate output file and for post-processing.  
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Figure 10-10 – Screenshot of MATRICEs v1.0 showing the FD model parameters step 

The simplified version of the diffusion equation in one-dimension is given in Equation 10-

29. Here ‘κ’ is the diffusivity of the concrete member. 

     (Eq. 10-29) 

Equation 10-29 is discretized using an explicit finite difference scheme, where the 

temperature of the concrete member at time step ‘n+1’ is dependent explicitly on the 

temperature at time step ‘n’. The discretized heat equation is given in Equation 10-30. 

    (Eq. 10-30) 

For equation 10-30, Ti
n+1 can be calculated, since all other values are known. Here, it is 

important that the spatial and time steps are selected such that the stability criteria given in 

Equation 10-31 are satisfied.  

    (Eq. 10-31) 

For hydrating concrete, the constant terms in the above equation κ, ρ, cp and q are also 

functions of time and are evaluated at each time step for every element in the finite 

difference scheme. 

10.3.7 Solver and Post-Processing 

The solver integrates the six-step framework and solves the finite difference scheme to 

generate the spatio-temporal temperature profile of the concrete member. The user software 

interface showing the output from MATRICEs solver is shown in Figure 10-11. The result 
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here shows the temperature profile corresponding to all the elements in the finite difference 

scheme. The user has the option to select/de-select certain layers and output selected data to 

a file. For a fresh concrete system containing PCM, the simulation takes about 60 seconds to 

run for seven days on a 3.5 GHz 8-core processor. For a later age concrete system 

containing PCM, the simulation takes about 10-20 minutes to run for 365 days. The 

temperature profile for every finite difference element is recorded and can be output from 

MATRICEs into an excel sheet for further analysis. The specific heat capacity pertaining to 

each layer can also be mapped for every finite difference element. 

 

Figure 10-11 – Temperature and Specific Heat profiles 
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The temperature profile obtained is used to calculate the thermal stress development in the 

concrete member. The axial thermal strain is computed for a finite difference element using 

the difference between the temperature of the concrete member at time ‘t’ and the 

temperature at the time of final set (Equation 10-32). For later age analysis, when the 

temperature at the time of final set is not known, it is replaced by the temperature at the time 

of the beginning of the analysis and relative thermal strains are computed. 

    (Eq. 10-32) 

Here, ΔTaxial is the temperature gradient computed as described above (Equation 10-33). 

   (Eq. 10-33) 

Here, ‘h’ is the total thickness of the slab, Tz,current is the temperature of the slab at depth ‘z’ at 

the given time step, Tz,final-set is the temperature of the slab at depth ‘z’ at time of final set and 

‘Δz’ is the increment at which the temperature is calculated. 

The temperature gradient across the top and bottom of the concrete member results in a 

curling stress (σcurl) (Belshe et al. 2011) in the member which is computed using a modified 

Westergaard formulation (Equation 10-34 and 10-35) (Westergaard 1927). Here, E and ν are 

the elastic constants for the concrete member, αcomp is the concrete composite coefficient of 

thermal expansion, Cmax and Cmin are the maximum and minimum values of the Bradbury’s 

coefficients (Bradbury 1938) derived from the the radius of relative stiffness of the concrete 

member, which is a function of the Poisson’s ratio, elastic modulus, and geometry of the 

member.  
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   (Eq. 10-34) 

 

(Eq. 10-35) 

Finally, the overall thermal stress component is calculated as a combination of the curling 

and axial stress (Equation 10-36). Here, RF is a restraint factor imposed on the thermal strain 

component to evaluate the thermal stress (Mohamed and Hansen 1997). In the absence of 

any restraint in the member, there would be no stresses and the member would be able to 

expand and contract freely under the imposed temperature. However, due to differential 

strength development along the depth as well as boundary constraints, every layer in the 

concrete member experiences a certain degree of restraint which leads to the presence of 

axial thermal stresses. The value of restraint factor can vary from 0.0 to 1.0, with a value of 

zero representing no restraint and consequently no stresses and a value of unity representing 

infinite restraint and complete stress transfer. A linear variation for the restraint factor is 

considered in MATRICEs starting from an initial value given by the user at the bottom of 

the member (bridge deck or pavement) and a value of zero at the top of the member.  

   (Eq. 10-36) 

The overall thermal stress is compared to the tensile strength of fresh concrete to determine 

the probability of thermal cracking at early ages. For concrete members at later ages, the 

value of the total thermal stress may be added to the value of mechanical stresses generated 

as a result of live loads acting on the member. Figure 10-12 shows the post-processed stress 

versus time plot for two different fresh concrete compositions – (a) regular OPC concrete, 
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and (b) concrete containing 2.80% PCM. It is observed that thermal stresses in the concrete 

containing PCM are significantly lower than the tensile strength which contributes to a low 

cracking probability. On the other hand, the regular concrete member is prone to high 

degree of cracking since the thermal stresses exceed the tensile strength.  

 

Figure 10-12 – Comparison of thermal stress and tensile strength development in a fresh 
concrete pavement with two different mixture compositions 
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Figure 10-13 – Experimental validation for MATRICEs conducted on a concrete pavement 
slab 

A field validation of MATRICEs was carried out by embedding RFID sensors containing 

thermocouples inside a fresh concrete pavement slab. The experimentally measured 

temperature profile for three days was compared against the temperature profile predicted by 

MATRICEs. The results are shown in Figure 10-13. Results show a good agreement 

between measured and predicted values. 
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CHAPTER 11 

CONCLUSIONS 

A comprehensive investigation on multi-component cementitious composites has been 

presented in three parts in this thesis. The first part is focused on the understanding of the 

behavior of interground limestone systems and their interaction with alumina based 

materials. The second part sets ground over ultra-high performance concrete – a novel type 

of concrete with extremely high mechanical strength and durability characteristics. A novel 

framework to design ultra-high performance binders and concrete based on microstructure, 

rheology and aggregate optimization has been developed and implemented. Mechanical and 

durability investigations on the developed UHPC mixtures have been conducted. The last 

part of the study goes over the numerical modeling of phase change materials in concrete. 

Following are the conclusions of this thesis. 

• Limestone is either interground or blended with cement powder to be used as a 

partial replacement material. It is found that interground systems consistently 

outperform the blended systems in terms of compressive strength, porosity and 

reaction kinetics. 

• Particle-size matched blended limestone cements created are compared with the 

interground limestone-based cements at the same level of limestone replacement. 

The size matching ensures the same particle size distributions for the composite 

powder and neutralizes the effect of surface area. Comparing between the 

interground and blended systems shows that interground systems show enhanced 

early age hydration properties as noted from the calorimetric heat evolution curves. 
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• The interground limestone systems show a higher degree of carbonate consumption 

indicating the participation of limestone in the formation of hydration products, and 

not just acting as a filler material.  

• The interground limestone systems show a significantly refined pore-structure with a 

lower critical pore diameter. At the same time, the interground systems demonstrate 

a higher value of compressive strength as compared to the blended systems. This is 

attributed to the presence of relatively finer limestone in the interground systems. 

• The enhanced properties of the interground limestone systems over the particle size 

matched blended limestone systems is intriguing. The hypothesis that limestone is 

finer in the interground systems was confirmed in a following study conducted to 

determine the exact distribution of limestone and cement in the interground systems. 

A novel method has been proposed since conventional methods are found to be 

insufficient. 

• The novel method is an optimization approach based on the (a) characteristic 

diameter and (b) shape parameter obtained from Rosin-Rammler distribution of the 

blended and interground powders, and (c) surface area of powders obtained using 

their particle size distributions. It is found that limestone present in the interground 

systems is significantly finer than the limestone present in the blended systems. The 

reason for this is the differential grinding of cement and limestone due to different 

material hardness. Limestone, being the softer phase, is ground to a much smaller 



329 

 

size as compared to cement clinker. Such a method is useful to help achieve 

performance equivalence to the interground systems.  

• The interaction of interground and blended limestone systems with alumina 

containing blast furnace slag has been investigated in Chapter 5. Three different 

mixture categories – pure slag, interground limestone containing slag, blended 

limestone containing slag, were created to replace cement at a volume fraction of 

20% to 50%. 

• The synergistic effect of limestone and slag has been brought out. The hydration of 

slag was accelerated in the presence of limestone, with the finer limestone in 

interground systems providing increased acceleration than the blended ones, as 

determined from isothermal calorimetry measurements. At the same time, the 

consumption of limestone was found to increase with increase in the slag content of 

the mixture. 

• The hydration product corresponding to the presence of limestone, AFmc or 

carboaluminate phase was quantified using thermos-gravimetric measurements. A 

linear correlation was identified between the consumption of carbonates and the 

formation of the AFmc phase. The effect was more pronounced in interground 

limestone containing slag systems, due to the presence of finer limestone. 

• The synergistic effect of limestone and slag was found to achieve similar compressive 

strength values as compared to pure cement at all replacement levels. The critical 
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pore diameter was found to decrease in the presence of slag and limestone, indicating 

pore size refinement in these systems. 

• A first principles-based design of ultra-high performance binders and concrete has 

been proposed. Rational methodologies for the design of UHP concretes were 

derived from the fundamental understanding of the characteristics of the component 

paste phase at the microstructure level and component aggregate phase at the 

mesostructure level.  The ideal binder formulation suitable to exhibit ultra-high 

performance was selected from several binary, ternary, and quaternary blends using a 

stepwise algorithm that considered the effect of both microstructural packing as well 

as rheological properties of the binder.   

• The proposed methodology allows the user to select mixtures based on acceptable 

ranges of microstructural packing and workability demanded by the application. The 

selected binder formulations were evaluated for the compressive strengths and 28-

day compressive strengths close to 100 MPa were obtained for all binders. 

• A compressible packing model was used for the packing of coarse and fine 

aggregates in UHPC and to determine the optimum aggregate composition to 

achieve the maximum packing density. 28-day compressive strengths in excess of 150 

MPa were obtained. 28-day flexural strengths more than 10 MPa were obtained. 

Significantly improved resistance to ionic transport as compared to conventional or 

high performance concretes was also observed, validating the material design 

procedure. 
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• In the final part of this study, a numerical simulation approach was carried out to 

quantify the effect of phase change materials in concrete infrastructure. Phase change 

materials are high latent heat capacity materials which can change phase reversibly at 

room temperatures, and as a result store or release heat energy. A comprehensive 

software tool MATRICEs was developed to analyze the thermal stresses in concretes 

as a result of concrete hydration as well as daily and seasonal climatic variations.  

• Phase change materials with transition temperatures of 24 °C and 35 °C were 

simulated in concrete pavements and bridge decks. The concrete members were 

subjected to climatic conditions obtained from historical climate database and their 

temperature profiles were determined by solving the second-order heat diffusion 

equation using a finite difference scheme.  

• It was found that presence of PCMs at 5% by volume reduced the peak temperature 

by 6 °C to 10 °C in hydrating fresh concretes. The thermal stresses were determined 

using the temperature profiles and compared with the tensile strength development 

to determine the probability and severity of thermal cracking in the concrete 

members. Concretes containing PCMs showed significantly reduced cracking 

probabilities. 

• The selection of phase change material to be used under different climatic conditions 

was explored. Long term simulations for concrete pavements containing PCMs were 

carried out for Phoenix, AZ and San Francisco, CA weather. It was found that 24 C 

PCM was more effective for San Francisco, a hybrid combination of 24 °C and 35 
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°C PCM resulted in higher effectiveness in thermal stresses for Phoenix climate, thus 

reducing thermal fatigue and life cycle costs. 

• Experimental validation of the model developed in MATRICEs was carried out on a 

concrete pavement located in Phoenix, AZ. Excellent agreement between measured 

and predicted temperature profiles was obtained.  
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