
A Generalized H∞ Mixed Sensitivity Convex Approach to Multivariable Control

Design Subject to Simultaneous Output and Input Loop-Breaking Specifications

by

Karan Puttannaiah

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved July 2018 by the
Graduate Supervisory Committee:

Armando A. Rodriguez, Chair
Spring M. Berman

Hans D. Mittelmann
Konstantinos Tsakalis

ARIZONA STATE UNIVERSITY

August 2018

ABSTRACT

In this dissertation, we present a H-infinity based multivariable control design method-

ology that can be used to systematically address design specifications at distinct

feedback loop-breaking points. It is well understood that for multivariable systems,

obtaining good/acceptable closed loop properties at one loop-breaking point does not

mean the same at another. This is especially true for multivariable systems that

are ill-conditioned (having high condition number and/or relative gain array and/or

scaled condition number). We analyze the tradeoffs involved in shaping closed loop

properties at these distinct loop-breaking points and illustrate through examples the

existence of pareto optimal points associated with them. Further, we study the limita-

tions and tradeoffs associated with shaping the properties in the presence of right half

plane poles/zeros, limited available bandwidth and peak time-domain constraints. To

address the above tradeoffs, we present a methodology for designing multiobjective

constrained H-infinity based controllers, called Generalized Mixed Sensitivity (GMS),

to effectively and efficiently shape properties at distinct loop-breaking points. The

methodology accommodates a broad class of convex frequency- and time-domain de-

sign specifications. This is accomplished by exploiting the Youla-Jabr-Bongiorno-

Kucera parameterization that transforms the nonlinear problem in the controller to

an affine one in the Youla et al. parameter. Basis parameters that result in efficient

approximation (using lesser number of basis terms) of the infinite-dimensional pa-

rameter are studied. Three state-of-the-art subgradient-based non-differentiable con-

strained convex optimization solvers, namely Analytic Center Cutting Plane Method

(ACCPM), Kelley’s CPM and SolvOpt are implemented and compared.

The above approach is used to design controllers for and tradeoff between several

control properties of longitudinal dynamics of 3-DOF Hypersonic vehicle model - one

that is unstable, non-minimum phase and possesses significant coupling between chan-

i

nels. A hierarchical inner-outer loop control architecture is used to exploit additional

feedback information in order to significantly help in making reasonable tradeoffs

between properties at distinct loop-breaking points. The methodology is shown to

generate very good designs - designs that would be difficult to obtain without our pre-

sented methodology. Critical control tradeoffs associated are studied and compared

with other design methods (e.g., classically motivated, standard mixed sensitivity) to

further illustrate its power and transparency.

ii

To my parents Puttannaiah N. & Radha D.,

and

my uncle Sreenivas R.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Armando A. Rodriguez who has guided and

supported me immensely throughout my journey in Graduate School. I have acquired

a wealth of knowledge from him in both technical and non-technical aspects. He has

been a great positive influence on me and has changed the way I think. I am truly

indebted to him.

I am grateful to the members of my thesis committee, Dr. Spring M. Berman, Dr.

Hans D. Mittelmann and Dr. Konstantinos Tsakalis for their continuous guidance

and support. I would also like to thank Dr. Jennie Si who has helped me a great

deal in my research and classes. They have always been very understanding and

accomodating, and often went out their ways to help me. Further, I would like

to acknowledge the support of Dr. Joseph C. Palais and the School of Electrical,

Computer and Energy Engineering at Arizona State University (ASU), which made

my PhD possible through assistantships and financial support.

I would like to thank my manager at Intel Corporation, Dr. Niveditha Sundaram

who helped gain valuable industry experience during my internship. She has put

generous trust and been patient during my internship and final stages of PhD.

I am thankful for the support from colleagues at ASU - Shiba Biswal, Nirangkush

Das, Justin A. Echols, Dr. Rakesh Joshi, Shi Lu, Kaustav Mondal, Pragyan Pradhan,

Nikhilesh Ravishankar, Venkatraman Renganathan, Aratrik Sarkar, Dr. Ashfaque B.

Shafique, Aniket Shirsat, Shubham Sonawani, Dr. Srikanth Sridharan, and at Intel -

Kaushik Balasubramanian, Daniel G. Cartagena and Ryan D. Saffores.

Finally, I am grateful to my family and friends for their love and encouragement,

esp. Adithya, Akhilesh, Alex, Amith, Arindam, Darshan, Deepak, Ganesh, Ginni,

Harshith, Hemanth, Hitha, Manvir, Navaneeth, Pradeep, Rajesh, Ravi Sagar, Sagar,

Sandeep, Shwetha, Skanda, Sonali, Thanuchith, Vimarsh, Vinayaka and many more.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 State-of-the-Field, Related Work and Challenges 2

1.3 Contributions . 5

1.4 Organization of Dissertation . 8

2 MATHEMATICAL PRELIMINARIES . 10

2.1 Overview. 10

2.2 Notations and Definitions . 10

2.3 Signal and System Norms . 11

2.3.1 Signal Norms . 11

2.3.2 System Norms . 12

2.4 Singular Values of a Matrix . 13

2.4.1 Singular Value Decomposition (SVD) . 13

2.4.2 Condition Number (κ) . 14

2.5 Elements of Convex Optimization . 14

2.5.1 Convex Set and Convex Function . 15

2.5.2 Convexity Preserving Operations. 15

2.6 Summary and Conclusions . 17

3 RELEVANT DESIGN CHALLENGES AND TRADEOFFS IN SISO

AND MIMO CONTROL SYSTEMS . 18

3.1 Overview. 18

v

CHAPTER Page

3.2 Open and Closed Loop Transfer Function Matrices (TFMs) 18

3.3 Plant Condition Number Dependent Relations Between Sensitivi-

ties at Distinct Loop-Breaking Points . 20

3.4 Relations between Open and Closed Loop TFMs 22

3.5 Measures of Interactions in MIMO Systems . 23

3.5.1 Condition Number (κ) . 23

3.5.2 Relative Gain Array (RGA) . 23

3.5.3 Scaled Condition Number (K∗) . 24

3.6 Gain and Phase of MIMO Systems . 25

3.7 Bode Sensitivity Integral Constraint . 28

3.7.1 Bode’s Generalized Sensitivity Integral Relation 28

3.7.2 Sensitivity Peaking Analysis Using Generic Bounds 29

3.8 Peak Sensitivity Bounds Imposed by RHP Zeros 40

3.8.1 Weighted Sensitivity Peak Relation . 40

3.8.2 Sensitivity Peaking Analysis Using Generic Weighting Func-

tions . 41

3.9 Stability Margin Bounds from Closed Loop Frequency Response

Bounds . 51

3.10 Sensitivity Bounds Imposed by RHP Poles and RHP Zeros 51

3.11 Impact of Uncertainty on Sensitivity . 52

3.12 Summary and Conclusions . 52

4 GENERALIZED H∞ MIXED SENSITIVITY OPTIMIZATION CON-

TROL DESIGN METHODOLOGY . 53

4.1 Overview. 53

vi

CHAPTER Page

4.2 Typical Closed Loop Frequency-Domain Design Objectives 53

4.3 Standard H∞ Mixed-Sensitivity Optimization Problem 54

4.4 Proposed Generalized H∞ Mixed Sensitivity Optimization Problem 55

4.4.1 GMS at Two Loop-Breaking Points for Standard P-K Feed-

back Structure . 56

4.4.2 GMS at Three Loop-Breaking Points for Hierarchical Inner-

Outer Loop Feedback Structure . 57

4.5 Different H∞ based Multiobjective Function Formulations 59

4.5.1 Weighted Max Formulation . 60

4.5.2 Stacking Formulation. 60

4.5.3 Sum Formulation . 61

4.6 Summary and Conclusions . 62

5 SOLUTION METHOD FOR THE GENERALIZED MIXED SENSI-

TIVITY OPTIMIZATION PROBLEM . 63

5.1 Overview. 63

5.2 Youla et al. (or Q) Parameterization of All Stabilizing Controllers . . 63

5.2.1 Observer Based Youla et al. Parameterization 64

5.2.2 Coprime Factorization Based Youla et al. Parameterization . 69

5.2.3 Controller State Space Representation . 71

5.3 Achieving Finite Dimensionality . 72

5.4 Basis Options . 75

5.5 Computation of Subgradients . 76

5.5.1 Subgradient for H∞ Norm at a Transfer Function Matrix . . . 76

5.5.2 Subgradient for Time-Domain L∞ Norm at a TFM 78

vii

CHAPTER Page

5.5.3 Subgradient of Multiobjective Functions 79

5.6 Convex Optimization Methods . 80

5.6.1 Overview of Interior Point and Cutting Plane Methods 81

5.6.2 Analytic Center Cutting Plane Method (ACCPM). 86

5.6.3 Kelley’s Cutting Plane Method (Kelley’s CPM) 90

5.6.4 Solver for Local Nonlinear Optimization Problems (SolvOpt) 91

5.6.5 Comparison of Convex Optimization Solvers Using Control

Problem within GMS. 92

5.7 Basis Selection . 97

5.8 Summary and Conclusions . 108

6 CONTROL-RELEVANT TRADEOFFS USING GENERALIZED MIXED

SENSITIVITY METHODOLOGY . 109

6.1 Overview. 109

6.2 Multiobjective Weighted Sensitivity Minimization of an Ill-Conditioned

Plant . 109

6.3 Multiobjective Weighted Mixed Sensitivity Minimization of an Ill-

Conditioned Plant . 117

6.4 Weighted Mixed Sensitivity Minimization Subject to L∞ Time-

Domain Constraint . 119

6.5 Simple Nominal Open Loop
(
Lo = 1

s

)
with Challenging Specifications125

6.6 SISO Unstable and Non-minimum Phase Plant with Standard P-K

versus Inner-Outer Loop Feedback . 132

6.7 µ-Synthesis Using GMS: Toward D-Q Iteration 138

6.8 Forming the Design Plant . 141

viii

CHAPTER Page

6.8.1 Design Plants with Integrator Augmentation 141

6.8.2 Bilinear Transformation . 142

6.9 Summary and Conclusions . 142

7 CONTROL OF LONGITUDINAL DYNAMICS OF HYPERSONIC VE-

HICLE . 143

7.1 Overview. 143

7.2 Longitudinal Dynamics Model . 144

7.3 Control Designs . 151

7.3.1 Generalized Mixed Sensitivity Design (D-1) 152

7.3.2 Classically Motivated Design (D-2) . 153

7.3.3 Standard Mixed Sensitivity Design (with r−di Generalized

Plant) (D-3) . 154

7.3.4 Observations . 156

7.4 Summary and Conclusions . 161

8 SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH 162

8.1 Summary . 162

8.2 Directions for Future Research . 163

REFERENCES . 165

APPENDIX

A MATLAB CODE . 186

A.1 Design Using Generalized Mixed Sensitivity. 187

A.1.1 GMS Main Code (gms main.m) . 187

A.1.2 Nominal Controller Design (f KNominal.m) 200

A.1.3 Youla et al. Parameterization (f CoprFac.m) 200

ix

CHAPTER Page

A.1.4 Basis Selection (f Basis.m) . 210

A.1.5 Form Finite-Dimensional Q Parameter (f FormQN.m) 210

A.1.6 Extract Data From Problem Setup (f GenData.m) 211

A.1.7 Vectorize the Problem (f Vectorize.m) . 215

A.1.8 H∞-Norm Value and Subgradient (f Hinf.m) 216

A.1.9 L∞-Norm Value and Subgradient (f Linf.m) 217

A.1.10 Form K(Q) (f FormK.m) . 218

A.1.11 Kelley’s CPM Optimizer (f KelleyCPM GenMix Optimizer.m)219

A.1.12 ACCPM Optimizer (f ACCPM GenMixSens Optimizer.m) . . 221

A.2 Bode Sensitivity Integral Constraint . 224

A.3 Sensitivity Peak Bounds Due to RHP Zero . 226

A.4 SISO Unstable and Non-Minimum Plant Example Using HINF-

STRUCT . 228

A.5 Pareto Optimality Example Using FMINCON . 232

A.6 µ-Synthesis Using DK-Iteration . 235

A.7 Forming Closed Loop Maps . 237

A.8 Modifying the Appearance of Plots . 242

A.9 MIMO Dynamical System Interaction Measures 242

A.10 Phase of MIMO System . 245

x

LIST OF TABLES

Table Page

3.1 Sensitivity Bounds Due to RHP Zeros . 41

3.2 Sensitivity Bounds Due to RHP Zeros . 42

5.1 Optimization Example 5.6.1: Computation Times and Number of It-

erations . 95

5.2 Optimization Example 5.6.1: Computation Times (s) for Increasing

Number of Variables . 97

5.3 Optimization Example 5.6.1: Number of Iterations for Increasing Num-

ber of Variables . 97

6.1 1
s

Example: OL and CL Properties for Various Specifications 126

6.2 SISO Unstable and Non-Minimum Phase Plant Example: Critical Con-

trol Properties & Corresponding Controller Parameters Using Stan-

dard P-K Structure . 133

6.3 SISO Unstable and Non-Minimum Phase Plant Example: Critical Con-

trol Properties & Corresponding Controller Parameters Using Inner-

Outer Structure . 134

6.4 SISO Unstable and Non-Minimum Phase Plant Example: Properties

& Parameters for Realistic Design Using Inner-Outer Structure 135

7.1 Poles and Transmission Zeros of Flexible Model at Mach 8, 85kft 147

7.2 Poles and Transmission Zeros of Rigid Model at Mach 8, 85kft 147

7.3 Weights Used for Design-1 . 153

7.4 Critical Control-Relevant Properties: Peak Singular Values Are in dB,

Bandwidth of Se/c & Trc Measured at −20dB & 0dB Respectively 155

xi

LIST OF FIGURES

Figure Page

3.1 Visualization of Standard P-K Negative Feedback Structure 19

3.2 MIMO Phase Plot . 26

3.3 MIMO Phase Plot . 27

3.4 MIMO versus SISO Phase Plot . 27

3.5 Visualization of Sensitivity Bounds . 30

3.6 Visualization of Sensitivity Bound . 32

3.7 Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 1 and m3 = 1 . 33

3.8 Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 1 and m3 = 1 . 34

3.9 Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 1 and m3 = 2 . 34

3.10 Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 1 and m3 = 2 . 35

3.11 Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 2 and m3 = 2 . 35

3.12 Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 2 and m3 = 2 . 36

3.13 Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 1 and m3 = 3 . 36

3.14 Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 1 and m3 = 3 . 37

3.15 Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 2 and m3 = 3 . 37

3.16 Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 2 and m3 = 3 . 38

3.17 Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 3 and m3 = 3 . 38

3.18 Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 3 and m3 = 3 . 39

3.19 Bode’s Sensitivity Integral: M versus ωs for m1 = 1, m2 = 3 and m3 = 3 39

3.20 Bode’s Sensitivity Integral: ωs versus M for m1 = 1, m2 = 3 and m3 = 3 40

3.21 Bode Asymptotic Approximation Magnitude of W (s) 43

3.22 Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 1

and k3 = 1 . 44

xii

Figure Page

3.23 Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 1

and k3 = 2 . 45

3.24 Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 2

and k3 = 2 . 45

3.25 Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 1

and k3 = 3 . 46

3.26 Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 2

and k3 = 3 . 46

3.27 Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 3

and k3 = 3 . 47

3.28 Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 1 and k3 = 1 . 48

3.29 Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 1 and k3 = 2 . 48

3.30 Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 2 and k3 = 2 . 49

3.31 Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 1 and k3 = 3 . 49

3.32 Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 2 and k3 = 3 . 50

3.33 Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 3 and k3 = 3 . 50

4.1 Visualization of Generalized Plant Setup for GMS Problem 56

4.2 Standard P-K Feedback Structure . 57

xiii

Figure Page

4.3 Hierarchical Inner-Outer Loop Feedback Structure. 58

4.4 Hierarchical Inner-Outer Loop Feedback Structure. 59

5.1 General System Interconnection . 64

5.2 General System Interconnection with Q-Parameterization 65

5.3 Visualization of Q Connected to an Observer-Based Controller 66

5.4 Observer Based Q-Parameterization for the Set of All Stabilizing LTI

Controllers K(Q) . 67

5.5 Visualization of the Closed Loop System Twz in terms of T and Q 68

5.6 Optimization Example 5.6.1: γ versus Iteration Count 95

5.7 Optimization Example 5.6.1: γ versus Computation Time (s) 96

5.8 Optimization Example 5.6.1: Time versus Iteration Count 96

5.9 Basis Selection: Sensitivity . 99

5.10 Basis Selection: Control Sensitivity . 99

5.11 Basis Selection: Open and Closed Loop Maps . 100

5.12 Basis Selection: Performance Measure . 100

5.13 Basis Selection: γ versus N and α . 101

5.14 Basis Selection: γ versus α for Fixed N . 102

5.15 Basis Selection: Minimum Value of N Required versus α for Some

Percentage of Optimal Performance . 103

5.16 Basis Selection: ε versus N and α . 104

5.17 Basis Selection: ε versus α for Fixed N . 105

5.18 Basis Selection: Minimum Value of N Required to Achieve Desired ε . . 105

5.19 Basis Selection: Weighting Function W . 106

5.20 Basis Selection: γ vs N and α . 107

xiv

Figure Page

5.21 Basis Selection: γ vs α for Fixed N . 107

6.1 Pareto Optimality in Weighted Sensitivity Minimization Using GMS:

‖W1Se‖H∞ and ‖W4Sc‖H∞ versus ρ . 111

6.2 Pareto Optimality in Weighted Sensitivity Minimization Using GMS:

‖W1Se‖H∞ versus ‖W4Sc‖H∞ . 112

6.3 Pareto Optimality in Weighted Sensitivity Minimization Using GMS:

Sensitivities of Equilibrated Design . 113

6.4 Pareto Optimality in Weighted Sensitivity Minimization Using GMS:

Constraint Weighted KSe . 113

6.5 Pareto Optimality in Weighted Sensitivity Minimization Using GMS:

Dependence on Constraint Value . 114

6.6 Pareto Optimality in Weighted Sensitivity Minimization Using FMIN-

CON: ‖W1Se‖H∞ and ‖W4Sc‖H∞ versus ρ . 115

6.7 Pareto Optimality in Weighted Sensitivity Minimization Using FMIN-

CON: ‖W1Se‖H∞ versus ‖W4Sc‖H∞ . 116

6.8 Pareto Optimality in Weighted Mixed Sensitivity Minimization Using

GMS: First and Second Objectives versus ρ . 118

6.9 Pareto Optimality in Weighted Mixed Sensitivity Minimization Using

GMS: First Objective versus Second Objective . 119

6.10 Imposing Time-Domain Constraint: Control Response to Step Refer-

ence Command . 122

6.11 Imposing Time-Domain Constraint: Output Response to Step Refer-

ence Command . 122

6.12 Imposing Time-Domain Constraint: Magnitude of Tru 123

xv

Figure Page

6.13 Imposing Time-Domain Constraint: Magnitude of Try 123

6.14 Imposing Time-Domain Constraint: Magnitude of Sensitivity 124

6.15 Imposing Time-Domain Constraint: Magnitude of Tdiy 124

6.16 1
s

Example: Sensitivity Magnitudes for Weighting Function Slopes

m1 = m3 = 1 . 127

6.17 1
s

Example: Open Loop and Integrator Magnitudes for Weighting

Function Slopes m1 = m3 = 1 . 127

6.18 1
s

Example: Sensitivity Magnitudes for Weighting Function Slopes

m1 = m3 = 2 . 128

6.19 1
s

Example: Open Loop and Integrator Magnitudes for Weighting

Function Slopes m1 = m3 = 2 . 128

6.20 1
s

Example: Sensitivity Magnitudes for Weighting Function Slopes

m1 = m3 = 3 . 129

6.21 1
s

Example: Open Loop and Integrator Magnitudes for Weighting

Function Slopes m1 = m3 = 3 . 129

6.22 1
s

Example: Sensitivity Magnitudes for Weighting Function Slopes

m1 = m3 = 4 . 130

6.23 1
s

Example: Open Loop and Integrator Magnitudes for Weighting

Function Slopes m1 = m3 = 4 . 130

6.24 1
s

Example: Sensitivity Magnitudes for Weighting Function Slopes

m1 = m3 = 5 . 131

6.25 1
s

Example: Open Loop and Integrator Magnitudes for Weighting

Function Slopes m1 = m3 = 5 . 131

6.26 Visualization of Feedback Structures . 133

xvi

Figure Page

6.27 Weighted Sensitivity Minimization Example for SISO Plant with RHPP=1

and RHPZ=10: Sensitivity and Complementary Sensitivity 136

6.28 Weighted Sensitivity Minimization Example for SISO Plant with RHPP=1

and RHPZ=5: Sensitivity and Complementary Sensitivity 137

6.29 Weighted Sensitivity Minimization Example for SISO Plant with RHPP=1

and RHPZ=2: Sensitivity and Complementary Sensitivity 137

6.30 Visualization of Control Configuration for µ-Synthesis 139

6.31 DK-Iteration: µ for Robust Stability . 140

6.32 DK-Iteration: Se . 140

6.33 DK-Iteration: KSe . 141

7.1 Schematic of Hypersonic Scramjet Vehicle . 145

7.2 Hypersonic Vehicle Model: Singular Value Plot . 148

7.3 Hypersonic Vehicle Model: Bode Magnitude Plot . 148

7.4 Hypersonic Vehicle Model: Condition Number . 149

7.5 Hypersonic Vehicle Model: RGA Sum . 150

7.6 Hypersonic Vehicle Model: RGA Elements . 150

7.7 Hypersonic Vehicle Model: Minimized Condition Number 151

7.8 Hierarchical Inner-Outer Loop Control Structure for Hypersonics Model151

7.9 Sensitivities at Output Se: D-1 and D-2 . 157

7.10 Sensitivities at Input Sc: D-1 and D-2 . 158

7.11 Complementary Sensitivities at Output Te: D-1 and D-2 158

7.12 Complementary Sensitivities at Input Tc: D-1 and D-2 159

7.13 Output Respones to Step Input References: D-1 and D-2 159

xvii

Figure Page

7.14 Output Respones to Step Input References: D-1, D-2 and D-1 with

Overshoot Constrant . 160

7.15 Control Sensitivities with Respect to Reference Tru: D-1 and D-2 160

7.16 Disturbance Sensitivities at Input Tdiy: D-1 and D-2 161

xviii

Chapter 1

INTRODUCTION

1.1 Motivation

It is well understood that, in general, a good multivariable control system design

must possess acceptable properties at distinct loop-breaking points [1–15]; e.g. the

plant output and the plant input. Achieving acceptable properties includes satisfying

and trading off nominal performance specifications as well as robustness specifications

at these loop-breaking points. It is also well known that tradeoffs can be particularly

taxing when the plant is ill-conditioned (having high condition number [3–9] and/or

relative gain array (RGA) entries [16–21] and/or scaled condition number [15, 22]).

While much insight has been obtained, there still remains a need for a methodology

that can be used to systematically address the associated tradeoffs. It is natural,

for example, to ask for a methodology that can be used to “equilibrate” (to the ex-

tant possible) properties at distinct loop breaking points as well as to manage the

associated (possibly very difficult) tradeoffs. Moreover, we also want the methodol-

ogy to handle a large set of control objectives and constraints (e.g. peak weighted

frequency response, output overshoot/peak controls to reference (time-domain) com-

mands, etc.) without undue computational hardship - leveraging off (for example) the

state-of-the-art fast interior point convex optimization solvers [23–32] which can han-

dle non-differentiable objective/constraint functions. Further, hierarchical control

architecture [20, 33, 34] can exploit the additional feedback information to signifi-

cantly help in making reasonable tradeoffs between properties at the outputs/errors

and at the inputs/controls. Given the above, it is natural to seek a methodology that

1

can be used to systematically design hierarchical inner-outer loop control systems to

simultaneously meet design specifications at distinct loop breaking points (e.g. out-

puts/errors, inputs/controls). Such a methodology, in principle, can then be used to

reveal fundamental tradeoffs and systematically address difficult tradeoffs. Our work

is motivated by the above fundamental control-relevant design issues.

1.2 State-of-the-Field, Related Work and Challenges

Much has been done in the field of multiobjective optimization for control design

in the past three decades for addressing problems involving multiple performance/ro-

bustness specifications. Mixed H2/H∞ optimization [35–37] has been used to address

frequency- and time-domain specifications that can be conflicting. Many algorithm-

s/approaches based on convex optimization and Linear Matrix Inequalities (LMIs)

have also been investigated [38–54] for multiobjective control design. Within [55–58],

the authors have exploited these ideas to develop methods that directly accommodate

specifications at distinct loop breaking points (e.g. outputs/errors, inputs/controls).

Within [58], the author proposed what is called a “generalized” weighted H∞

mixed-sensitivity optimization subject to convex constraints. This was achieved by

exploiting convex optimization ideas from [40, 59–61] to formulate an optimization

that directly addresses closed loop maps associated with distinct loop breaking points

(e.g. outputs/errors, inputs/controls). Such a methodology is particularly benefi-

cial for multivariable plants that are ill-conditioned (having high condition number

and/or RGA entries and/or scaled condition number) [3–10, 16–21]. More specifically,

the generalized mixed-sensitivity methodology presented within [55–58], provides a

tool for directly addressing tradeoffs and “equilibration” issues associated with dis-

tinct loop breaking points. Here, the term “equilibration” refers to achieving simi-

lar properties (e.g. peak sensitivities) at distinct loop breaking points. Within [56],

2

the authors demonstrated the utility of this approach for directly shaping properties

at the inputs/controls and at the outputs/errors. Near-optimal finite-dimensional

“equilibrated” controllers were designed for stable infinite-dimensional plants in [56].

Within [57], the authors extended the ideas within [56] - presenting and examining

three different approaches to formulating objective functions within the generalized

mixed-sensitivity control design methodology.

Within [62, 63], the authors presented a weighted mixed-sensitivity H∞ approach

that weighs responses from plant input disturbances di as well as the (traditionally

weighted responses from) reference commands r. This approach directly penalizes di-

induced responses in order to try to directly influence properties at the plant input.

Within [55], the authors presented a methodology for doing hierarchical inner-

outer control design using generalized H∞ mixed sensitivity. The objective function

in [62, 63] uses closed-loop maps that are different from the closed loop maps that one

would want to address. This is a consequence of introducing a fictitious plant output

and reference input in order to generate an inner-outer loop control system. In [55],

closed loop maps of interest were used in the objective function using “selection ma-

trix”. For the hierarchical inner-outer loop control structure, it is observed that three

sets of closed loop properties are obtained by breaking the loop at the error/output

(e), the control/input (c), and at inner-loop sensor noise (ni) respectively. In [55],

closed loop properties at e and c were shaped directly, whereas the properties at ni

were adjusted after the optimization process using roll-offs in inner-loop controller.

The amount of roll-off was varied to tradeoff between retaining acceptable properties

at e and c, while achieving required bandwidth specifications at ni.

Since the scramjet-powered Mach 7/10 flights of X-43A in 2004 [64–66], the re-

search on hypersonic vehicles has seen a resurgence [62, 63, 67–85]. With the recent

successful X-51A flight test (May, 2013), the hypersonic application considered here

3

is timely. Air-breathing hypersonic propulsion is viewed as the next critical step to-

ward achieving (1) reliable, affordable, routine access to space, as well as (2) global

reach vehicles. There are commercial and as military implications to both objectives.

Rocket-based (combined cycle) propulsion systems are much more expensive to op-

erate because they must carry oxygen. This is particularly costly when traveling at

lower altitudes through the troposphere (i.e. below 36,152 ft). They do not exhibit

the desired levels of reliability and flexibility (e.g. airplane like takeoff and landing

options) either. As a result, much emphasis has been placed on two-stage-to-orbit

(TSTO) designs that involve a turbo-ram-scramjet combined cycle first stage and

a rocket second stage. This research focuses on control challenges associated with

scramjet-powered hypersonic vehicles. Such vehicles are characterized by significant

aero-thermo-elastic-propulsion interactions and uncertainty. Hierarchical inner-outer

loop controllers have been used controlling such vehicles. In this work, we consider

the control design for the longitudinal dynamics of a scramjet-powered hypersonic

vehicle flying at Mach 8, 85 kft. The control system will seek good properties at

input/control, output/error as well as at the inner-loop sensor noise.

The methodology presented in [55–58] was used to design hierarchical inner-outer

controllers for a LCL-filter [86–88] based grid-connected inverter [89]. Three-phase

(3-φ) voltage source inverters are widely used as an interface to inject power from var-

ious distributed power generation systems (DPGSs) like wind and solar [90, 91] into

the utility grid. Inner-outer control structure has been widely used for such inverters

[92]. Within [89], the authors used the Generalized Mixed Sensitivity methodolgy

to address closed loop properties at distinct loop-breaking point associated with this

inner-outer control structure. It was show how an inner-outer can be systematically

designed using this methodology. Further extensions to the methodology can be made

to address relevant issues and tradeoffs in control of multiple ground vehicle robots

4

toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME [93]) as discussed in the

some recent papers [94, 95] by the author and the related theses [96–103]. Several

ongoing projects related to these topics were presented in [104–106]. Connectivity

between subsystems can be supported by advanced approaches as described in [107–

112]. Further, the control challenges associated with a Hawkmoth Flapping Wing

Micro Air Vehicle (MAV) [113–115] can be systematically addressed using General-

ized Mixed Sensitivity. Ongoing work in this direction was presented in [116]. Finally,

control designs for two challenging application areas, namely dynamic thermal man-

agement controllers for multi-core processors [117–119] and convex formulations for

modeling and predictive control (MPC) of nonlinear hybrid systems [120–124], that

were addressed in papers [125, 126] were contributed by the author.

1.3 Contributions

This work addresses and provides answers to the following fundamental control design

questions/problems:

1. How can we develop a multivariable control system design methodology that

simultaneously accommodates typical control objectives and constraints involv-

ing several loop breaking points? Such a methodology can be particularly useful

for plants that are ill-conditioned (having high condition number and/or RGA

entries and/or scaled condition number) [3–10, 16–21].

2. How the closed loop properties associated with several loop breaking points

in the hierarchical inner-outer loop control architecture can be systematically

shaped using the generalized H∞ mixed sensitivity (GMS) hierarchical method-

ology?

5

3. How can we use such methodology to design controllers for and tradeoff between

several control properties of longitudinal dynamics of 3-DOF Hypersonic vehicle

model - one that is unstable, non-minimum phase and possesses significant

coupling between channels?

In this work, we address the above fundamental control design questions/problems.

The main contributions of this work are listed below.

1. We present a H∞-based generalized mixed-sensitivity control design methodol-

ogy (GMS) for multivariable Linear Time Invariant (LTI) systems to simulta-

neously address specifications at distinct loop breaking points [55–58] e.g. out-

puts/errors, inputs/controls. The term “generalized” is intended to capture

this.

2. The convex optimization based methodology presented can be used to gener-

ate what we call equilibrated designs. Such designs possess similar properties

(e.g. peak sensitivities) at the inputs/controls and at the outputs/errors. As

such, equilibrated designs and the presented methodology can be used to di-

rectly address fundamental input-output tradeoffs [55–58, 89]. As such, this

powerful convex optimization based tool can be used to understand control

design limitations and trade-offs.

3. We show how GMS can be used to address broad class of convex frequency-

domain (e.g. H∞) and time-domain (e.g. L∞) design specifications.

4. We analyze the tradeoffs involved in shaping closed loop properties at distinct

multivariable loop-breaking points and demonstrate the existence of pareto op-

timal points associated with them. Further, we study the limitations and trade-

offs associated with shaping the properties in the presence of right half plane

6

poles/zeros, limited available bandwidth and peak time-domain constraints.

5. Three state-of-the-art subgradient-based non-differentiable constrained (frequency-

and time-domain) convex optimization solvers, namely Analytic Center Cutting

Plane Method (ACCPM), Kelley’s CPM and SolvOpt are utilized to solve the

convex probelm and comparisons are made.

6. Basis parameters that result in efficient approximation (using lesser number of

basis terms) of the infinite-dimensional Youla et al. parameter are studied.

7. The utility of the methodology is illustrated by designing controllers for longi-

tudinal dynamics of a 3-DOF scramjet-powered hypersonic vehicle model - one

that is unstable, non-minimum phase and has high coupling between channels

[62, 63, 67–82]. For such a challenging model, the methodology is shown to gen-

erate very good designs - designs that would be very difficult to obtain without

the methodology presented. Comparisons to other methods are made to further

illustrate the power and transparency of the methodology. The methodology

presented is shown to generate good designs much faster than that obtained

by other methods; i.e. it is much more transparent than other methods. Since

the scramjet-powered Mach 7/10 flights of X-43A in 2004 [64–66], the research

on hypersonic vehicles has seen a resurgence [62, 63, 67–85]. With the recent

successful X-51A flight test (May, 2013), the hypersonic application considered

here is timely.

8. While the focus of the dissertation is on finite-dimensional LTI multivariable

plants, the work presented here can also be applied to infinite-dimensional plants

subject to mixed time- and frequency-domain specifications. Ongoing work in

this direction was presented by the author in [56, 57].

7

In short, this work provides a systematic approach to a large class of important control

system design problems.

1.4 Organization of Dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, we provide

the mathematical preliminaries and establish notations that are be used throughout

the dissertation. In Chapter 3, we analyze the relevant control design challenges and

tradeoffs associated with shaping of closed loop properties for Single-Input Single-

Output (SISO) as well as Multiple-Input Multiple-Output (MIMO) systems in the

presence of inherent control difficulties instability, non-minimum phase, algebraic

and analytic constraints, etc. In Chapter 4, we describe the proposed generalized

mixed-sensitivity methodology used to systematically design hierarchical inner-outer

loop controllers that addresses specifications at several loop-breaking points and dis-

cuss several extensions that can be made to address a broad class of design require-

ments/specifications. In Chapter 5, we discuss

1. the technical approach taken to convexify the problem

2. the technical approach taken to convert the (strictly speaking) infinite-dimensional

problem to an approximated finite-dimensional one

3. the implementation and comparisons of the algorithms used to solve them

Chapter 6 contains illustrative control design examples problems that are solved using

GMS, and demonstrate

1. the existence of pareto optimality in obtaining properties at error/output &

control/input

2. how we can pose L∞ time-domain specifications as convex constraints

8

3. solving some SISO problems that discuss some specific control challenges and

tradeoffs

Chapter 7 presents multivariable control designs for the longitudinal dynamics of a

scramjet-powered hypersonic vehicle using generalized mixed sensitivity, along with

comparision several other control designs/methods. Finally, Chapter 8 summarizes

the work presented in the dissertation and provides directions for future research.

9

Chapter 2

MATHEMATICAL PRELIMINARIES

2.1 Overview

In this chapter, we present some well known mathematical definitions and results

that are relevant to our work and establish notations that are used throughout the

dissertation.

2.2 Notations and Definitions

Throughout this dissertation, we use the following standard notations:

• C, R, and Z: Set of complex, real, and integer numbers respectively;

• R+
def
= { t ∈ R | t ≥ 0 }: Non-negative real numbers;

• R−
def
= { t ∈ R | t < 0 }: Negative real numbers;

• C+
def
= { s ∈ C | Re s > 0 }: Open Right Half complex Plane (ORHP);

• F : General field designation used to represent R and C when both are appli-

cable;

• jR def
= { s ∈ C | Re s = 0 }: Imaginary axis;

• H∞ def
= H∞ (C+): Hardy space of scalar or matrix valued functions which are

analytic and essentially bounded in C+;

• H2 def
= H2 (C+): Hardy space of scalar or matrix valued functions which are

Laplace transforms of functions in L2 (R+);

10

• L∞ def
= L∞ (jR): Lebesgue space of measurable essentially bounded scalar or

matrix valued functions with support on jR ;

• RH∞: Subspace of H∞ consisting of real-rational scalar or matrix valued func-

tions;

• |(.)|: Magnitude of the complex quantity (.);

• ∠(.): Phase angle of the complex quantity (.);

• ‖g‖(.): Norm of a function g belonging to the space (.);

2.3 Signal and System Norms

The signal and system norms relevant to the work in the dissertation are now defined.

2.3.1 Signal Norms

Lp Norms - Functions on the Real Line. Let g : R → F denote a scalar signal

defined on the real axis. :

‖g‖L1
def
=

∫ ∞
−∞
|g(t)| dt (2.1)

‖g‖L2
def
=

√∫ ∞
−∞
|g(t)|2 dt (2.2)

‖g‖Lp
def
=

[∫ ∞
−∞
|g(t)|p dt

] 1
p

p = 1, 2, . . . (2.3)

‖g‖L∞
def
= ess sup

t∈R
|g(t)| (2.4)

Here,
∫

denotes the Lebesgue integral [127–129]. Each of the above norms are readily

extended to vectors of signals by replacing | · | with a vector norm. The vector norm

selected is typically the associated vector norm. Let g : R → Fn denote a vector

11

valued signal. Given this, we have the following norm extensions:

‖g‖L1
def
=

∫ ∞
−∞
‖g(t)‖1 dt (2.5)

‖g‖L2
def
=

√∫ ∞
−∞
‖g(t)‖2

2 dt (2.6)

‖g‖Lp
def
=

[∫ ∞
−∞
‖g(t)‖pp dt

] 1
p

(2.7)

‖g‖L∞
def
= ess sup

t∈R
‖g(t)‖∞ (2.8)

where ‖x‖p
def
= (

∑n
i=1 |xi|p)

1
p (p = 1, 2, . . .) and ‖x‖∞

def
= maxi |xi| for an n-

dimensional vector x = [x1 · · · xn]T .

2.3.2 System Norms

Lp Norms - Functions on the Imaginary Axis. Let G : C −→ C denote the

transfer function of a single-input single-output (SISO) LTI system. The following

are typical system norms that arise in engineering applications.

‖G‖L2
def
=

√
1

2π

∫ ∞
−∞
|G(jω)|2 dω (2.9)

‖G‖L∞
def
= ess sup

ω∈R
|G(jω)| (2.10)

Each of the above system norms can be extended to a multiple-input multiple-output

(MIMO) transfer function matrix G : C −→ Cq×n. Doing so yields:

‖G‖L2
def
=

√
1

2π

∫ ∞
−∞

trace [GH(jω)G(jω)] dω (2.11)

‖G‖L∞
def
= ess sup

ω∈R
σ̄ [G(jω)] . (2.12)

σ̄(M) denotes the maximum singular value of the matrix M . See Section 2.4 for a

brief discussion on singular values of a matrix.

12

Hp Norms - Functions Over the Open Right Half Plane.

‖G‖H2

def
= sup

σ>0

√
1

2π

∫ σ+j∞

σ−j∞
|G(σ + jω)|2 dω (2.13)

‖G‖Hp
def
= sup

σ>0

[
1

2π

∫ σ+j∞

σ−j∞
|G(σ + jω)|p dω

] 1
p

(2.14)

‖G‖H∞
def
= sup

Res>0
|G(s)|. (2.15)

Here, σ = Re(s) and ω = Im(s). MIMO transfer function matrix G : C+ −→ Cq×m.

‖G‖H2

def
= sup

σ>0

√
1

2π

∫ σ+j∞

σ−j∞
trace [GH(σ + jω)G(σ + jω)] dω (2.16)

‖G‖Hp
def
= sup

σ>0

[
1

2π

∫ σ+j∞

σ−j∞

[
trace{ GH(σ + jω)G(σ + jω) }

]p
dω

] 1
p

(2.17)

‖G‖H∞
def
= sup

Res>0
σ̄ [G(s)] (2.18)

where trace(M) denotes the trace of the matrix M .

2.4 Singular Values of a Matrix

2.4.1 Singular Value Decomposition (SVD)

Theorem 2.4.1 (Singular Value Decomposition of a Matrix)

Let M ∈ Cm×n. There exists unitary matrices U ∈ Cm×m, V ∈ Cn×n, and a block

diagonal matrix Σ ∈ Rm×n such that

M = UΣV H (2.19)

where

Σ =

 S 0

0 0

 (2.20)

13

and S = diag(σ1, σ2, . . . , σr) where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values

of M and r is the rank of M [130, 131]. The above decomposition is referred to as

the singular value decomposition for the matrix M . The vectors vi are called the right

singular vectors, and the vectors ui are called the left singular vectors.

Proof: See [130, 131].

2.4.2 Condition Number (κ)

Definition 2.4.1 (Condition Number (κ)) The condition number of a matrix M

is defined by the ratio

κ(M)
def
=
σ̄(M)

¯
σ(M)

(2.21)

where σ̄(M) is the maximum singular value, and
¯
σ(M) is the minimum singular value

of the matrix M .

Definition 2.4.1 is used in Chapter 3 to establish some relations between properties

at distinct loop-breaking points that show the difficulties in control of ill-conditioned

plants.

2.5 Elements of Convex Optimization

In this section, we provide the definitions of convex set and convex function, and

present some properties of convex functions that are relevant to our work within the

dissertation.

14

2.5.1 Convex Set and Convex Function

Definition 2.5.1 (Convex Set) A set S in a vector space (over real numbers) X

is said to be convex if for every x1, x2 ∈ S, and for every t ∈ [0, 1],

tx1 + (1− t)x2 ∈ S (2.22)

Definition 2.5.2 (Convex function) A real valued function f : S → R (where S

is a convex set in a vector space X) is said to be a convex function if, for every

x1, x2 ∈ S, and every t ∈ [0, 1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) (2.23)

A comprehensive treatment of convex sets and functions can be found in the book

[60] by Boyd et al. Next, we present some very relevant properties of convex functions

that can be used to leverage off for establishing convexity results on multiobjective

convex optimization problems presented in Chapter 4.

2.5.2 Convexity Preserving Operations.

A convexity preserving operation produces a new convex function out of a set of

“atom” functions that are already known to be convex [60, 132]. Here, we present

two such functions that are relevant to our work. They are,

1. Pointwise Weighted Maximum of two “atom” functions (f1 and f2).

15

2. Weighted Sum of two “atom” functions (f1 and f2).

A larger set of operations that preserve convexity can be found in the book [60] by

Boyd et al.

Lemma 2.5.1 (Pointwise Weighted Maximum) If f1 and f2 are convex func-

tions, and if µ1 ∈ R+, µ2 ∈ R+, then the pointwise weighted maximum f , defined

by

f(x) = max {µ1f1(x), µ2f2(x)} (2.24)

with domf = domf1 ∩ domf2 is also convex.

This property can be extended to an arbitrary number of convex functions. Further,

it can be extended to the pointwise weighted supremum over an arbitrary number of

convex functions.

Lemma 2.5.2 (Weighted Sum) If f1 and f2 are convex functions, and if µ1 ∈ R+,

µ2 ∈ R+, then the weighted sum f , defined by

f(x) = µ1f1(x) + µ2f2(x) (2.25)

with domf = domf1 ∩ domf2 is also convex.

This property can be extended to an arbitrary number of convex functions. These

two properties of convex functions presented in Lemmas 2.5.1 and 2.5.2 can be used

to show the convexity properties of multiobjective functions presented in Section 4.5.

16

2.6 Summary and Conclusions

In this chapter, we presented some well known mathematical results that are relevant

to our work, and established notations that are used throughout the dissertation. We

also provided definitions involving matrices (e.g. Definition 2.4.1) that are used in

Chapter 3 to establish some relations between properties at distinct loop-breaking

points that show the difficulties in control of ill-conditioned plants. Further, we

discussed relevant convex optimization results that are leveraged off in our work.

Specifically, the multiobjective (multipe convex objectives) optimization problems

considered in Chapter 4 can be shown to be convex using these results.

17

Chapter 3

RELEVANT DESIGN CHALLENGES AND TRADEOFFS IN SISO AND MIMO

CONTROL SYSTEMS

3.1 Overview

In this chapter, we analyze the design challenges and tradeoffs associated with control

of SISO and MIMO systems relevant to the work in the dissertation. We define open

and closed loop transfer function matrices (TFMs) for a generic MIMO system using

standard P-K feedback structure. These closed loop maps defined here are shaped

using our proposed GMS methodology in Chapters 6 and 7. Several design difficulties

(e.g. dependence of sensitivities at output versus input on plant condition number)

and limitations (e.g., Bode’s sensitivity integral constraint, sensitivity limatations due

to Right Half Plant (RHP) poles/zeros, etc.) are analyzed in detail to obtain insight

into achievable control properties. These help in posing the control problem (e.g.,

selecting weighting functions) using GMS.

3.2 Open and Closed Loop Transfer Function Matrices (TFMs)

Consider a standard feedback control system as shown in Figure 3.1. It is assumed

that the plant (P) and controller (K) are MIMO LTI systems (i.e. P and K are

transfer function matrices).

18

r

reference
command

- -
e

error
K

Controller

-
u

control
f?

di
input

disturbance

-
up

P

LTI Plant

-
yp f?
do

output

disturbance

-
y

actual
output

�

6−
f

f
6n
sensor
noise

Figure 3.1: Visualization of Standard P-K Negative Feedback Structure

The closed and open loop transfer function matrices [133] when the feedback loop is

broken at (1) plant output/error defined as in Equations (3.1) - (3.4) and represented

by subscript e, and (2) plant input/control defined as in Equations (3.5) - (3.8) and

represented by subscript c are shown below:

• Open loop TFM at Plant Output/Error

Le
def
= PK (3.1)

• Sensitivity at Plant Output/Error

Se
def
= [I + PK]−1 = Tre(unfiltered) (3.2)

• Control Sensitivity at Plant Output/Error

KSe
def
= K[I + PK]−1 = [I +KP]−1K = ScK = Tru(unfiltered) (3.3)

• Complementary Sensitivity at Plant Output/Error

Te
def
= I − Se = PK[I + PK]−1 = Try(unfiltered) (3.4)

19

• Open loop TFM at Plant Input/Control

Lc
def
= KP (3.5)

• Sensitivity at Plant Input/Control

Sc
def
= [I +KP]−1 = Tdiup (3.6)

• Disturbance Sensitivity at Plant Input/Control

PSc
def
= P [I +KP]−1 = [I + PK]−1P = SeP = Tdiy (3.7)

• Complementary Sensitivity at Plant Input/Control

Tc
def
= I − Sc = [I +KP]−1KP = Tdiu (3.8)

3.3 Plant Condition Number Dependent Relations Between Sensitivities at

Distinct Loop-Breaking Points

It is well understood that in general, a good multivariable control system design must

possess acceptable properties at distinct loop-breaking points. The tradeoffs that

exist can be particularly taxing when the plant is ill-conditioned. Freudenberg et al.

[3, 10] obtained bounds on singular values of sensitivity function at one loop-breaking

point in terms of those at the other. It is assumed that the plant is square and that

both plant and controller transfer function matrices are non-singular at frequencies

of interest.

Theorem 3.3.1 Let det(P) 6= 0 and det(K) 6= 0 at frequencies of interest. Then at

those frequencies each singular value of the sensitivity functions (Se and Sc) satisfy

the bounds

1

κ(P)
σi(Sc) ≤ σi(Se) ≤ κ(P)σi(Sc) (3.9)

1

κ(P)
σi(Se) ≤ σi(Sc) ≤ κ(P)σi(Se) (3.10)

20

Proof: The proof follows from the similarity transformation identities

Sc = P−1SeP (3.11)

Se = PScP
−1 (3.12)

and the minimax property of singular values [131]

We see that, as expected, the sensitivities at distinct loop-breaking point can be very

different if κ(P) >> 1, i.e. obtaining good properties at output/error does not a

priori imply the same at input/control. Similar inequalities that depend on condition

number of the controller K can be obtained as listed below.

1

κ(K)
σi(Sc) ≤ σi(Se) ≤ κ(K)σi(Sc) (3.13)

1

κ(K)
σi(Se) ≤ σi(Sc) ≤ κ(K)σi(Se) (3.14)

Note that if κ(K) = 1 or K = P−1g(s) where g(s) is a scalar transfer function, then by

definition Le = Lc, and from the above relations, Se = Sc. Both these strategies are

deficient in that they unnecessarily restrict the class of achievable feedback properties.

This is especially true if we have different specifications (e.g. different closed loop

bandwidths) at distinct loop-breaking points or the plant is non-minimum phase.

Further, it is important to note that analogous relations to the above inequalities can

be obtained on complementary sensitivity functions (Te and Tc) based on similar ideas.

These ideas are exploited in Chapter 6 to show how multiobjective optimization can

be used to address simultaneously addressing sensitivities at distinct loop-breaking

points.

21

3.4 Relations between Open and Closed Loop TFMs

In this section we list some important relations between open and closed loop TFMs.

These can be readily obtain from definitions and by using triangle enequality property

of norms.

|1−
¯
σ(L)| ≤ 1

σ̄(S)
≤

¯
σ(L) + 1 (3.15)

1

¯
σ(L) + 1

≤ σ̄(S) ≤ 1

|
¯
σ(L)− 1|

(3.16)

1

|σ̄(L)− 1|
≤

¯
σ(S) ≤ 1

σ̄(L) + 1
(3.17)

1

¯
σ(L) + 1

− 1 ≤ σ̄(T) ≤ 1

|
¯
σ(L)− 1|

+ 1 (3.18)

where
¯
σ(M) > 0 is the minimum singular value of matrix M.

Equality of Geometric Means of Singular Values.

Theorem 3.4.1 Let P & K both be n × n square matrices and let det(Le) 6= 0 &

det(Lc) 6= 0 at frequencies of interest. Then at all those frequencies

n∏
i=1

σi(Le) =
n∏
i=1

σi(Lc) (3.19)

Proof: Using the matrix product property of determinants [134] we have det(Le) =

det(PK) = det(P) det(K) = det(KP) = det(Lc). Further if SVD of Le is such that

Le = UΣV H , then det(Le) = det(UΣV H) = det(U) det(Σ) det(V). But since U

and V are unitary and Σ is diagnoal, we have |det(Le)| = |det(Σ)| =
∏n

i=1 σi(Le).

The required relation follows from the above two identities and extending them to Lc.

22

Analogous results can be derived on closed loop sensitivity and complementary sen-

sitivity TFMs. From the above relations it follows that

σ̄ (Le) ≥
¯
σ (Lc) (3.20)

σ̄ (Lc) ≥
¯
σ (Le) (3.21)

Again, analogous results can be derived on closed loop sensitivity and complementary

sensitivity TFMs.

3.5 Measures of Interactions in MIMO Systems

3.5.1 Condition Number (κ)

Definition 3.5.1 (Condition Number (κ)) The condition number of a matrix A

is defined by the ratio

κ(A)
def
=
σ̄(A)

¯
σ(A)

(3.22)

where σ̄(A) is the maximum singular value, and
¯
σ(A) is the minimum singular value

of A.

Comment 3.5.1 For a nonsingular square matrix A,
¯
σ(A) = 1

σ̄(A−1)
, so

κ(A) =
σ̄(A)

σ̄(A−1)
(3.23)

3.5.2 Relative Gain Array (RGA)

Definition 3.5.2 (Relative Gain Array (RGA)) The Relative Gain Array (RGA)

of a nonsingular square matrix A is a square matrix defined as [20]

RGA(A) = Λ(A)
def
= A ◦

(
A−1

)T
(3.24)

23

where “ ◦ ” denotes element-wise matrix multiplication (Hadamard or Schur product

of matrices)

3.5.3 Scaled Condition Number (K∗)

Definition 3.5.3 (Scaled Condition Number (κ∗)) The Scaled Condition Num-

ber of a nonsingular square matrix A is defined as

κ∗(A)
def
= min

D1,D2

κ (D1AD2) (3.25)

where D1 and D2 are diagonal scaling matrices.

Theorem 3.5.1 For a 2× 2 matrix A, the scaled condition number is given by,

κ∗(A) = ‖Λ‖i1 +
√
‖Λ‖i1 − 1 (3.26)

where ‖Λ‖i1 is the induced 1-norm (maximum column sum) of Λ(A)

Proof: See [135].

Definition 3.5.4 (Structured Singular Value of a Matrix)

Consider the uncertainty set consisting of diagonally organized scalar and matrix

blocks:

∆
def
= { diag [δiIr1 , . . . , δsIrS ,∆1, . . . ,∆F] ∈ Cn×n | δ1 ∈ C, ∆j ∈ Cmj×mj }(3.27)

where we have

S∑
i=1

ri +
F∑
j=1

mj = n (3.28)

24

for dimensional consistency. We say that ∆ is a structured uncertainty set that

defines the set of admissible perturbations.

The structured singular value of the matrix M ∈ Cn×n with respect to the uncertainty

set ∆ is defined as follows [15, 136]:

µ∆(M)
def
=

1

min { σ̄(∆) | ∆ ∈∆, det(I −M∆) = 0 }
(3.29)

where µ∆(M)
def
= 0 if no admissible perturbation makes I −M∆ singular.

We note that µ∆ is simply the reciprocal of the size of the smallest admissible pertur-

bation that makes I −M∆ singular. For S = 0 and F = 1, we have µ∆(M) = σ̄(M).

3.6 Gain and Phase of MIMO Systems

Consider a transfer function matrix L(s). At a fixed point s ∈ C, let its singular value

decomposition (SVD) be given by

L(s) =
n∑
1

σi(L(s))vi(L(s))uHi (L(s)) (3.30)

where the singular values are ordered so that σ1(L(s)) ≥ σ2(L(s)) ≥ · · · ≥ σn(L(s)).

Gain: The gains of L(s) are defined to be its singular values σi(L(s)).

Phase: The phase of L(s) corresponding to σi(L(s)) is defined [137] to be the phase

difference between the corresponding left and right singular values in reference to

some basis vectors wi

θi(L(s))
def
= ∠wHi vi(L(s))− ∠wHi ui(L(s)) (3.31)

where wi (i = 1, 2, . . . , n) are the basis vectors of a given orthonormal basis of C.

Selecting wi = ui(L(s)), we get

θi(L(s)) = ∠uHi (L(s))vi(L(s)) (3.32)

25

Example 3.6.1 Consider a 2× 2 TFM as shown below

L(s) =

 1
s+1

0

0 1
s+2


 9 −10

−8 9

 (3.33)

The phase of L(s) along s = jω for reference vector wi = ui is shown by Fig. 3.2.

10
-2

10
-1

10
0

10
1

10
2

Frequency (rad/s)

0

10

20

30

40

50

60

70

80

90

(d
e

g
)

 u
i

H
 v

i

sv1

sv2

Figure 3.2: MIMO Phase Plot

This plot is obtained by using the MATLAB code given in Appendix A.10.

Example 3.6.2 Consider a 2× 2 TFM as shown below

L(s) =
1

s+ 1

 1 0

0 1

 (3.34)

The phase of L(s) along s = jω for reference vector wi = ui is shown by Fig. 3.3.

26

10
-2

10
-1

10
0

10
1

10
2

Frequency (rad/s)

0

10

20

30

40

50

60

70

80

90

(d
e

g
)

 u
i

H
 v

i

sv1

sv2

Figure 3.3: MIMO Phase Plot

Compare the above with Fig. 3.4, which shows the phase of L(s) = 1
s+1

.

10
-2

10
-1

10
0

10
1

10
2

Frequency (rad/s)

-100

-80

-60

-40

-20

0

20

40

60

80

100

(d
e

g
)

 u
i

H
 v

i

MIMO phase formula

MATLAB bode cmd

Figure 3.4: MIMO versus SISO Phase Plot

Figures 3.4 and 3.3 are obtained using the MATLAB code given in Appendix A.10

27

3.7 Bode Sensitivity Integral Constraint

In this section we study performance limitations imposed on sensitivity function given

by Bode’s sensitivity integral relations. The fundamental problem under investigation

is how increasing the performance bandwidth of the system results in undesirable

increase of peak sensitivity.

3.7.1 Bode’s Generalized Sensitivity Integral Relation

Theorem 3.7.1 (Bode Sensitivity Integral) [20, 138–144] Suppose that the open

loop transfer function matrix L(s) is rational and has at least double pole roll-off.

Then for closed-loop stability the sensitivity transfer function matrix must satisfy

∑
j

∫ ∞
0

lnσj (S(jω)) dω = π
∑N

i=1Re(pi) (3.35)

where Re(pi) represents real part of i-th RHP (unstable) pole and N represents number

of RHP poles of L(s). If the L(s) is stable, then right hand side of the equaiton is 0.

Note that S (or T) here can be Se (or Te) or Sc (or Tc). For SISO systems with real

RHP poles (pi), the sensitivity function satisfies the following integral:∫ ∞
0

ln | S(jω) | dω = π
∑N

i=1 pi (3.36)

Similar relations can be derived for complementary sensitivity transfer function ma-

trix can be seen in works by Chen and Åström et al. [141, 142, 145]. In those relations,

the RHP transmission zeros of L(s) determine the behavior of T , as opposed to RHP

poles of L(s).

28

3.7.2 Sensitivity Peaking Analysis Using Generic Bounds

A Lower Bound on Sensitivity Peak

Consider a SISO unity feedback loop with an open loop unstable pole located at

p ∈ R (p = 0 if open loop stable).

Assumption 3.7.1 Let the closed loop sensitivity function satisfy the following upper

bound in the frequency range ω ∈ [0, ωs] ∪ [f2ωp,∞) with ωs < f2ωp and 0 < f2 ≤ 1:

ln |S(jω)| ≤



ln ε, 0 ≤ ω < ωsε
1
m1 f

m1+m2
m1

1

m1 ln
(

ω
f1ωs

)
−m2 ln f1, ωsε

1
m1 f

m1+m2
m1

1 ≤ ω < f1ωs

m2 ln
(
ω
ωs

)
, f1ωs ≤ ω < ωs

−m3 ln
(
ω
ωp

)
, f2ωp ≤ ω < ωp

0, ωp ≤ ω <∞

(3.37)

where 0 < ε < 1, 0 < f1 ≤ 1, ε
1
m1 f

m2
m1

1 ≤ 1, m1,m2,m3 > 0 with the parameter ωs

corresponding to performance bandwidth and ωp to maximum available bandwidth.

Corollary 3.7.1 (Corollary to Bode Sensitivity Integral) If Assumption 3.7.1

is satisfied, Then a lower bound on peak of sensitivity function magnitude

(‖S‖H∞ > 1) is as follows

‖S‖H∞ ≥ EXP


πp+m1f1ωs

(
1− ε

1
m1 f

m2
m1

)
+ 2m2ωsf1 ln f1

(
1 + ε

1
m1 f

m2
m1

)
+m2ω2(1− f1)−m3ωp(1− f2 − f2 ln f2)

f2(ωp − ωs)

 = M∗ (3.38)

29

Let m1 = m2 = m and m3 →∞. Then a lower bound on peak and an upper bound

on unity gain crossover of sensitivity magnitude are as follows

‖S‖H∞ ≥ EXP

(
πp+ ωsm (1− m

√
ε)

ωp − ωs

)
= M∗ (3.39)

ωg ≤
ωp lnM∗ − πp

lnM∗ +m (1− m
√
ε)

(3.40)

Figure 3.5 shows the bounds on the sensitivity function magnitude. The solid-black-

thick lines in the frequency range ω ∈ [0, ωs]∪ [ωp,∞) indicate upper limit on sesnsi-

tivity magnitude. Using the inequalities (3.39) and (3.40), it can be seen that reducing

the sensitivity in one frequency range (e.g., ω ∈ [0, ωs]) necessarily increases the sen-

sitivity in some other frequency range (e.g., ω ∈ (ωs, ωp)). M
∗ in the figure represents

the right hand side of the inequality in (3.39). That is,

M∗ = EXP

(
πp+ ωsm (1− m

√
ε)

ωp − ωs

)
(3.41)

M∗ represents the lower bound on peak sensitivity magnitude.

ω
ωs

ln ε

ω m
√
ε

m ln ω
ωs

lnM∗

ωp

Figure 3.5: Visualization of Sensitivity Bounds

Comment 3.7.1 (Tradeoff between M∗ and ωs) From the inequality in (3.39),

it can be seen that for fixed ωp, ε, m and p, the lower bound on peak sensitivity

magnitude (M∗) increases as ωs approaches ωp.

30

Comment 3.7.2 (M∗ versus m) From the inequality in (3.39), it can be seen that

for fixed ωp, ωs, p, and ε = 0, as the order of the sensitivity function (m) is increased,

M∗ increases. Hence, increasing the order of sensitivity below the performance band-

width worsens the sensitivity magnitude peak. When 0 < ε < 1, it can be shown that

M∗ still increases with m, but the increase is slower compared to the case when ε = 0.

Comment 3.7.3 (M∗ versus ε) From the inequality in (3.39), it can be seen that

for fixed ωp, ωs, m and p, M∗ increases as ε is lowered and decreases as ε is increased.

Comment 3.7.4 (M∗ versus ωp) From the inequality in (3.39), it can be seen that

for fixed ωs, ε, m and p, M∗ increases as ωp decreses and decreases as ωp increases.

Comment 3.7.5 (M∗ versus p) From the inequality in (3.39), it can be seen that

for fixed ωp, ωs, ε and m, M∗ increases as p increases and decreases as p decreases.

Minimum Upper Bound on Sensitivity Peak [146]

Assumption 3.7.2 Let the closed loop sensitivity function satisfy the following upper

bound:

ln |S(jω)| =



ln ε, 0 ≤ ω < ωs m1
√
ε

m1 ln
(
ω
ωs

)
, ωs m1

√
ε ≤ ω < ωs

m2 ln
(
ω
ωs

)
, ωs ≤ ω < ωs

m2
√
M

lnM, ωs
m2
√
M ≤ ω < ωp

m3
√
M

−m3 ln
(
ω
ωp

)
, ωp

m3
√
M
≤ ω < ωp

0, ωp ≤ ω <∞

(3.42)

where M > 1 is an upper bound for the peak sensitivity, ωs is performance bandwidth

parameter and ωp is maximum available bandwidth parameter. Further,

ωs
m2
√
M ≤ ωp

m3
√
M

(3.43)

31

ω
ωs

ln ε

ω m1
√
ε

m1 ln ω
ωs

m2 ln ω
ωs

lnM

ωp

−m3 ln ω
ωp

ωs
m2
√
M

ωp
m3
√
M

Figure 3.6: Visualization of Sensitivity Bound

Corollary 3.7.2 If Assumption 3.7.2 is satisfied, then using Bode’s sensitivity inte-

gral formula in Eqn. 3.36, it follows that,

− m3
√
M
(
−πp+ 1

m1
ε ln(ε)ωs −m1ωs − m1

√
ε ln(ε)ωs +m1

m1
√
εωs +m2ωs +m3ωp

)
(3.44)

+ m2
√
M m3
√
Mm2ωs +m3ωp ≥ 0

ωs ≤
πp+

m3
m3
√
M
ωp−m3ωp

1
m1

ε ln(ε)−m1− m1
√
ε ln(ε)+m1

m1
√
ε−m2

m2
√
M+m2

(3.45)

Figures 3.7 - 3.20 show the behavior of M versus ωs and vice versa. It is assumed

that ωp = 10, p = 0 and ε = 0+. The red curves indicate the inequality (3.43). The

blue curves are valid in the region below the red curves. In the figures corresponding

to behavior of M versus ωs, the blue curve does not exit for some high values of

ωs. These values correspond to those where the solution to (3.44) are imaginary (not

real). These figures were generated using the MATLAB code given in Appendix A.2.

32

Comment 3.7.6 From Figures 3.7 - 3.20, it can be seen that if we fix m3 and set

m2 = m1, then as we increase m1, M attains higher at all values of ωs. This indicates

that increasing the slope of sensitivity at low frequencies (both m1 and m2 together)

adversely affects the sensitivity peak. It can also be observed that in these cases, the

maximum value of ωs that is under the red curve remains constant even as m1 is

increased. This indicates that increasing the slope of sensitivity (both m1 and m2

together) does not help the inequalities 3.44 - 3.45 hold good on a wider frequency

range (i.e., higher value of ωs).

10
-1

10
0

10
1

s
 (rad/s)

0

5

10

15

20

25

30

L
B

 o
n

 M
 (

d
B

)

LB on M vs
s

X: 2.485

Y: 5.381

Figure 3.7: Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 1 and m3 = 1

33

0 5 10 15 20 25 30 35 40

M (dB)

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

X: 6.006

Y: 2.5

Figure 3.8: Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 1 and m3 = 1

10
-1

10
0

10
1

s
 (rad/s)

0

5

10

15

20

25

30

L
B

 o
n

 M
 (

d
B

)

LB on M vs
s

X: 2.88

Y: 5.491

Figure 3.9: Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 1 and m3 = 2

34

0 5 10 15 20 25 30 35 40

M (dB)

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

X: 7.047

Y: 2.963

Figure 3.10: Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 1 and m3 = 2

10
-1

10
0

10
1

s
 (rad/s)

0

5

10

15

20

25

30

L
B

 o
n

 M
 (

d
B

)

LB on M vs
s

X: 1.992

Y: 5.577

Figure 3.11: Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 2 and m3 = 2

35

0 5 10 15 20 25 30 35 40

M (dB)

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

X: 12.05

Y: 2.5

Figure 3.12: Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 2 and m3 = 2

10
-1

10
0

10
1

s
 (rad/s)

0

5

10

15

20

25

30

L
B

 o
n

 M
 (

d
B

)

LB on M vs
s

X: 3.159

Y: 7.064

Figure 3.13: Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 1 and m3 = 3

36

0 5 10 15 20 25 30 35 40

M (dB)

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

X: 7.487

Y: 3.164

Figure 3.14: Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 1 and m3 = 3

10
-1

10
0

10
1

s
 (rad/s)

0

5

10

15

20

25

30

L
B

 o
n

 M
 (

d
B

)

LB on M vs
s

X: 2.096

Y: 5.573

Figure 3.15: Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 2 and m3 = 3

37

0 5 10 15 20 25 30 35 40

M (dB)

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

X: 13.29

Y: 2.789

Figure 3.16: Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 2 and m3 = 3

10
-1

10
0

10
1

s
 (rad/s)

0

5

10

15

20

25

30

L
B

 o
n

 M
 (

d
B

)

LB on M vs
s

X: 2.497

Y: 17.16

Figure 3.17: Bode’s Sensitivity Integral: M versus ωs for m1 = m2 = 3 and m3 = 3

38

0 5 10 15 20 25 30 35 40

M (dB)

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

X: 18.02

Y: 2.5

Figure 3.18: Bode’s Sensitivity Integral: ωs versus M for m1 = m2 = 3 and m3 = 3

10
-1

10
0

10
1

s
 (rad/s)

0

5

10

15

20

25

30

L
B

 o
n

 M
 (

d
B

)

LB on M vs
s

X: 3.996

Y: 10.44

Figure 3.19: Bode’s Sensitivity Integral: M versus ωs for m1 = 1, m2 = 3 and m3 = 3

39

0 5 10 15 20 25 30 35 40

M (dB)

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

X: 11.89

Y: 4.019

Figure 3.20: Bode’s Sensitivity Integral: ωs versus M for m1 = 1, m2 = 3 and m3 = 3

3.8 Peak Sensitivity Bounds Imposed by RHP Zeros

3.8.1 Weighted Sensitivity Peak Relation

Theorem 3.8.1 (Weighted Sensitivity Peak) [20] Let a SISO plant P (s) have a

RHP zero z and let Ws(s) be a stable weighting function. Then for closed loop stability

the weighted sensitivity function must satisfy

‖WsS‖H∞ ≥ |Ws(z)| (3.46)

Let a SISO weighting function W (s) be an upper bound on SISO sensitivity. Then

we have [20]

|S(jω)| < 1

|Wp(jω)|
∀ω (3.47)

|Wp(z)| < 1 (3.48)

40

3.8.2 Sensitivity Peaking Analysis Using Generic Weighting Functions

We now consider several weighting functions (upper bounds on sensitivity) to derive

bounds on peak sensitivity that can be achieved. Tables 3.1 and 3.2 show the bounds

on sensitivity based on several generic weighting functions. Here, the parameters

assocated with W (s) can be thought of as follows: M > 1 is an upper bound for

the peak sensitivity, ωs is performance bandwidth parameter and ωp is maximum

available bandwidth parameter

Weight (W) Figure (Approx. W−1) Bounds on M and ωs

W (s) = s+Mωs
s

s+fz
s+fMz

ω
ωs

lnM

fMzωsM fz

M >
z

z −
(
f+1
f

)
ωs

ωs <
z(M − 1)f

M(f + 1)

fz > Mωs

W (s) = s+Mωs
s

s+fz/M
s+fz

ω
ωs

lnM

fzωsM fz
M

M2ωs +Mf (ωs −Mz) + zf < 0

ωs <
z(M − 1)f

M(M + f)

fz > M2ωs

W (s) = s+Mωs
s

s+fωs
s+fMωs

ω
ωs

lnM

fMωsωsM fωs

M >
z(

f−1
f

)
z − ωs

ωs <
z(Mf −M − f)

Mf

f > M

Table 3.1: Sensitivity Bounds Due to RHP Zeros

41

Weight (W) Figure (Approx. W−1) Bounds on M and ωs

W (s) = s+Mωs
s

s+fωs/M
s+fωs

ω
ωs

lnM

fωsωsM fωs
M

zM2 − f(z − ωs)M + zf < 0

ωs <
z(Mf −M2 − f)

Mf

f > M2

W (s) = s+Mωs
s

s+fMωs
s+fM2ωs

ω
ωs

lnM

fM2ωsωsM fMωs

M >
z (1 + 1/f)

z − ωs

ωs <
z(Mf − f − 1)

Mf

f > 1

W (s) = s+Mωs
s

s+ωp/M

s+ωp

ω
ωs

lnM

ωpωsM
ωp
M

zωsM
2 − (z − ωs)ωpM

−(M − 1)zωp < 0

ωs <
zωp(M − 1)

(ωp +Mz)M

ωp > M2ωs

W (s) = s+ωs
s

s+Ωp
s+ΩpM

ω
ωs

lnM

ΩpMωsM Ωp

M >
z

z − ωs − zωs
Ωp

=
Ωp

Ωp − ωs − Ωpωs
z

If Ωp >> z,M >
z

z − ωs

If z >> Ωp,M >
Ωp

Ωp − ωs

ωs <
zΩp(M − 1)

(z + Ωp)M

Ωp > Mωs

Table 3.2: Sensitivity Bounds Due to RHP Zeros

42

Consider the asymtotic approximation of magnitude of a generic weighting function

W (s) =
(s+ ωs k1

√
ε)
k1 (s+ ωs)

k2−k1 (s+ ωp)
k3(

s+ ωs
k2
√
M
)k2 (

s+ ωp
k3
√
M

)k3 (3.49)

This weighting function can be visualized as in Figure 3.21.

ω
ωs

ln ε

ω k1
√
ε

k1 ln ω
ωs

k2 ln ω
ωs

lnM

ωp

−k3 ln ω
ωp

ωs
k2
√
M

ωp
k3
√
M

Figure 3.21: Bode Asymptotic Approximation Magnitude of W (s)

Using the bound on weighting function |W (z)| < 1 and assuming ε = 0+, we obtain

zk1 (z + ωs)
k2−k1 (z + ωp)

k3(
z + ωs

k2
√
M
)k2 (

z + ωp
k3
√
M

)k3 < 1 (3.50)

If ωp >> z, then the bound (3.50) becomes

zk1 (z + ωs)
k2−k1 ωk3p(

z + ωs
k2
√
M
)k2 (

z + ωp
k3
√
M

)k3 < 1 (3.51)

If z >> ωp and hence z >> ωs, then the bound (3.50) becomes

zk2k3(
z + ωs

k2
√
M
)k2 (

z + ωp
k3
√
M

)k3 < 1 (3.52)

43

Effect of RHP Zero on Sensitivity Peak (z << ωp).

Figures 3.22 - 3.27 show the behavior of M versus ωs and vice versa. It is assumed

that z = 10, ε = 0+ and ωp = 105. It can be seen that as the performance bandwidth

approaches closer the RHP zero value, the bound on sensitivity peak increases, and

goes to infinity when they become equal. Note that this captures the effect of RHP

zero (z) on sensitivity peak, rather than the available bandwidth (ωp). This is due to

the frequency of RHP zero being much below available bandwidth. These figures are

generated using the MATLAB code given in Appendix A.3.

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n
 P

e
rf

.
B

a
n
d
w

id
th

s
 (

ra
d
/s

)

UP on
s
 vs M

Figure 3.22: Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 1

and k3 = 1

44

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

Figure 3.23: Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 1

and k3 = 2

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

Figure 3.24: Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 2

and k3 = 2

45

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

Figure 3.25: Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 1

and k3 = 3

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

Figure 3.26: Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 2

and k3 = 3

46

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

Figure 3.27: Limitation Due to RHP Zero (z << ωp): ωs versus M for k1 = k2 = 3

and k3 = 3

Effect of Available Bandwidth on Sensitivity Peak (ωp << z.

Figures 3.28 - 3.33 show the behavior of M versus ωs and vice versa. It is assumed

that z = 105, ε = 0+ and ωp = 10. The red curves indicate the inequality (3.43). The

blue curves are valid in the region below the red curves. It can be seen that as the

performance bandwidth ωs increases, the bound on sensitivity peak increases. This

behaviour is only seen when the blue curves lie below the red curves. Beyond this

region, the inequality (3.43) is violated. This is a limitation inherently present due

to the finite slopes of the weighting functions.

47

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

Figure 3.28: Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 1 and k3 = 1

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

Figure 3.29: Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 1 and k3 = 2

48

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

Figure 3.30: Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 2 and k3 = 2

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

Figure 3.31: Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 1 and k3 = 3

49

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

Figure 3.32: Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 2 and k3 = 3

0 5 10 15 20 25 30 35 40

M (dB)

10
-2

10
-1

10
0

10
1

U
B

 o
n

 P
e

rf
.

B
a

n
d

w
id

th

s
 (

ra
d

/s
)

UP on
s
 vs M

Figure 3.33: Limitation Due to Available Bandwidth (ωp << z): ωs versus M for

k1 = k2 = 3 and k3 = 3

50

3.9 Stability Margin Bounds from Closed Loop Frequency Response Bounds

Consider a SISO feedback system which is closed loop stable. Suppose that the

sensitivity transfer function S satisfies the following bound

|S(jω)| def
=

1

|1 + L(jω)|
≤ α (3.53)

for all ω ≥ 0 where α ≥ 1, and suppose that complementary transfer function T

satisfies the following bound

|T (jω)| def
=

L(jω)

|1 + L(jω)|
≤ β (3.54)

for all ω ≥ 0 where β ≥ 1. We can obtain the following bounds on stability margins

[146]

↑GM ≥ max

{
α

α− 1
, 1 +

1

β

}
> 1 (3.55)

↓GM ≥ max

{
α

α + 1
, 1− 1

β

}
< 1 (3.56)

|PM | ≥ max

{
2 sin−1

(
1

2α

)
, 2 sin−1

(
1

2β

)}
(3.57)

α > max

{
↓GM

1− ↓GM
,

1

2 sin
(
PM

2

) , ↑GM
↑GM − 1

}
(3.58)

β > max

{
1

1− ↓GM
,

1

2 sin
(
PM

2

) , 1

↑GM − 1

}
(3.59)

3.10 Sensitivity Bounds Imposed by RHP Poles and RHP Zeros

We have the following relation for peak sensitivity and complementary sensitivity at

the plant output: ‖S‖∞ ≥ c, ‖T‖∞ ≥ c, where

φ = arccos |yHz yp| (3.60)

c =

√
sin2 φ+

|z + p|2
|z − p|2

cos2 φ (3.61)

51

where yz is output directionality of the NMP zero, yp is the output directionality of

the RHP pole, and φ is the angle between them.

For a SISO plant with a single RHP zero (z) and a single RHP pole (p), the following

holds [20]: ∫ ∞
0

ln |S(jω)| 2z

z2 + ω2
dω = π ln

∣∣∣∣p+ z

p− z

∣∣∣∣ (3.62)

3.11 Impact of Uncertainty on Sensitivity

We have the following bound on the impact of multiplicative output uncertainty EO

and input uncertainty EI on the resulting sensitivity S ′ [9, 20]:

σ̄(S ′) ≤ σ̄(S)σ̄((I + EOT)−1) (3.63)

σ̄(S ′) ≤ γ(P)σ̄(S)σ̄((I + EITc)
−1) (3.64)

where Tc is complementary sensitivity at plant input/control.

3.12 Summary and Conclusions

In this chapter, we analyzed the design challenges and tradeoffs associated with con-

trol of SISO and MIMO systems. We defined the open and closed loop transfer

function matrices (TFMs) for a generic MIMO system using standard P-K feedback

structure. Difficulty in control design due to high plant condition number, Bode’s

sensitivity integral constraint, and Right Half Plant (RHP) poles/zeros, were stud-

ied. These help in posing control problems (e.g., selecting weighting functions) using

GMS studied in Chapters 6 and 7.

52

Chapter 4

GENERALIZED H∞ MIXED SENSITIVITY OPTIMIZATION CONTROL

DESIGN METHODOLOGY

4.1 Overview

In this chapter, we present the GeneralizedH∞ Mixed Sensitivity methodology (GMS)

problem posed as a constrained multiobjective optimization problem. Typical con-

trol relevant specifications and standard mixed sensitivity methods are first discussed.

The GMS problem is then defined along with discussion on different variations based

on desired objectives and feedback architectures.

4.2 Typical Closed Loop Frequency-Domain Design Objectives

General closed loop objectives associated with feedback design may be stated as

follows:

• the closed loop system should be stable

• σ̄ [Se(jω)] and σ̄ [Sc(jω)] should be small at low fequencies for good low fre-

quency command following and disturbance attenuation

• σ̄ [K(jω)Se(jω)] should not be too large to prevent the controls from getting

too large for anticipated exogneous signals

• σ̄ [P (jω)Sc(jω)] should be small at high frequencies for good high frequency

input disturbance attenuation

• σ̄ [P (jω)Sc(jω)] should be small at low frequencies for good low frequency input

disturbance attenuation

53

• σ̄ [Te(jω)] and σ̄ [Tc(jω)] should be small at high frequencies for good high

frequency noise attenuation

• σ̄ [Te(jω)] and σ̄ [Tc(jω)] should not be too large in order for the closed loop

system to be robust with respect to multiplicative modeling errors at the plant

output.

Here, σ̄ [M] denotes the maximum singular value of a matrix M .

4.3 Standard H∞ Mixed-Sensitivity Optimization Problem

The Standard Weighted H∞ mixed sensitivity optimization problem that addresses

closed loop maps at plant output is as follows [147–156]:

K = arg

 min
K stabilizing

γ

∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥


W1Se

W2KSe

W3Te


∥∥∥∥∥∥∥∥∥∥
H∞

< γ

 (4.1)

where W1,W2,W3 are frequency-dependent weighting matrices that are used to trade-

off the properties of Se, KSe, and Te. The above Problem 4.1 can be solved using

the two-Riccati formulae [157, 158] with loopshifting [159], or using LMI method

[45, 160, 161]. The closed loop maps that are shaped (using corresponding weights)

in the above Problem (4.1) are with respect to the feedback loop broken at plant

output/error. Here, we note that when the plant to be controlled is ill-conditioned,

one of the main difficulties is that obtaining good properties at one feedback loop-

breaking point, does not guarantee acceptable properties at a different loop-breaking

point [9, 10]. For a plant that is square (i.e., number of input/s equal to number of

output/s) and assuming P (jω) is invertible at frequencies of interest, the following

54

inequality gives upper bound on ‖Sc‖H∞ using ‖Se‖H∞ and κ[P].

1

κ[P]
σi [Se] ≤ σi [Sc] ≤ κ[P]σi [Se] (4.2)

If the condition number of the plant is high, achieving good feedback properties at

plant output might still result in bad properties at plant input. Analogous results can

be obtained as upper bound on ‖Se‖H∞ . Hence, both Se and Sc must be addressed

during the design process based on the specifications. This issue is also discussed in

Section 3.3.

Consider the following approach, where one uses di as an exogenous signal to a gen-

eralized plant to influence properties at the plant input.

K = arg{ min
K stabilizing

γ | ‖Twz‖H∞ < γ} (4.3)

Twz =


W1Ŝe W1PSc

W2KŜe W2Tc

W3T̂ e W3PSc

 (4.4)

While this approach is somewhat effective in impacting properties at the input, di-

rectly shaping the actual closed loop maps at distinct loop-breaking points is not

straight forward. In what follows, we show how the proposed Generalized Mixed Sen-

sitivity methodology can be used to achieve this. Further, we compare these control

design approaches in Chapter 7.

4.4 Proposed Generalized H∞ Mixed Sensitivity Optimization Problem

To address the problem of simultaneously addressing design requirements at multiple

loop-breaking points, we formulate the following H∞/L∞-constrained multiobjective

weighted H∞ mixed sensitivity minimization problem:

K = arg

 min
K

stabilizing

γ

∣∣∣∣∣∣∣
max (‖µiTwizi‖H∞) < γ ,

Cj
(
Twj zj

)
≤ cj

 (4.5)

55

where i, j = 1, 2, 3, ..., µi ∈ [0, 1], Cj denotes jth constraint funcional with cj ∈ R,

Twizi are weighted closed loop transfer function matrices with loop broken at distinct

points (E.g. e, c/u and ni for hierarchical inner-outer control architecture).

-w1

-w2
...

G

- z1

- z2
...

-

e

�K

u

Figure 4.1: Visualization of Generalized Plant Setup for GMS Problem

4.4.1 GMS at Two Loop-Breaking Points for Standard P-K Feedback Structure

When we consider loop-breaking points at error (e) and controls (c), the Optimization

Problem in Equation 4.5 reduces the following two-objective problem.

K = arg

 min
K

stabilizing

γ

∣∣∣∣∣∣∣∣∣∣
max

ρ
∥∥∥∥∥∥∥∥∥∥


W1Se

W2KSe

W3Te


∥∥∥∥∥∥∥∥∥∥
H∞

, (1− ρ)

∥∥∥∥∥∥∥∥∥∥


W4Sc

W5PSc

W6Tc


∥∥∥∥∥∥∥∥∥∥
H∞

 < γ

 (4.6)

s.t. closed loop convex frequency/time-domain constraints.

Wi ∈ RH∞ and ρ ∈ [0, 1].

The above methodology captures the traditional mixed-sensitivity at the output prob-

lem that has been widely addressed within the controls literature [147–156] as well the

not so broadly addressed mixed-sensitivity at the input problem [9, 10]. The former

can be used to systematically achieve desirable properties at the output, while the

56

latter can be used to achieve desirable properties at the input. By combining the two

as above, a designer can, by using the weighting functions, systematically shape and

tradeoff properties simultaneously at both loop breaking points.

r

reference
command

- -
e

error
K

Controller

-
u

control
f?

di
input

disturbance

-
up

P

LTI Plant

-
yp f?
do

output

disturbance

-
y

actual
output

�

6−
f

f
6n
sensor
noise

Figure 4.2: Standard P-K Feedback Structure

4.4.2 GMS at Three Loop-Breaking Points for Hierarchical Inner-Outer Loop

Feedback Structure

Weighted closed loop maps Twizi corresponding to the three loop breaking points for

hierarchical inner-outer architecture (see Figure 4.3) can be formulated as,

Tw1 z1 =
[
W1Se

T W2KSe
T W3Te

T
]T

(4.7)

Tw2 z2 =
[
W4Sc

T W5PSc
T W6Tc

T
]T

(4.8)

Tw3 z3 =
[
W7Sni

T W8KSni

T W9Tni

T
]T

(4.9)

The first loop-breaking point corresponds to that at plant output/error (w1 = r). For

the case when unfiltered reference command is used, the closed loop maps of interest

are Tre = Se, Tru = KSe and Try = Te. The second loop-breaking point corresponds

to that at plant input/control (w2 = di). The closed loop maps of interest are

Tdiup = Sc, Tdiy = PSc and Tdiu = Tc. It is observed that when hierarchical inner-

outer loop feedback structure is considered, using only the closed loop associated with

57

the above two loop-breaking points does not capture some other important closed

loop maps (namely Tniu which is observed in many cases to be heavily dependend

on frequency characteristics of inner-loop controller Ki). This is discussed in more

detail in Chapter 7 in which the control design for the longitudinal dynamics 3-DOF

hypersonics model is considered. It is important to note that the closed loop maps

corresponding to the third loop-breaking point at inner-loop sensor noise (w3 = ni)

are Tniei = Sni , Tniy = KSniu and Tniy = Tni . Note that, depending on the design

requirements, the closed loop maps Tnie and Tniui can also be shaped using our GMS

methodology.

-
r d

−
e
- Ko

-
uo d -

ud -?

di

up

d?
ni

d?
no

P
-

yp

xi

- yd?
do

��
eiui

Ki

6−

�

6

Figure 4.3: Hierarchical Inner-Outer Loop Feedback Structure

In Chapter 7, we use this hierarchical inner-outer loop feedback structure to design

controllers for longitudinal dynamics of a 3-DOF hypersonics model. The H∞/L∞-

constrained multiobjective weighted H∞ mixed sensitivity minimization problem (see

Equation 4.5)) presented is based on a weighted maximum formulation. This can be

modified to use other formulations such as weighted sum and weighted stacking.

These formulations are presented in Section 4.5. In many cases, the actual output

of the plant (y: see Figure 4.3) depends directly on the extra measurement (xi:

58

see Figure 4.3). In such case, the feedback structure may be redrawn as shown in

Figure 4.4. Similar to the earlier case, three points loop-breaking become necessary

to address all the closed-loop maps associated with the hierarchical inner-outer loop

feedback structure. .

r

reference
command

- d
−
e

error

- Ko

Outer Loop

Compensator

-
uo d -ud-?

di

up1

d?
ni

d?
no

P1
-

yp1 up2
P2

-
yp2-d?

do1

-
y

Actual
Output

d?
do2

�
eiui

Ki

Inner Loop

Compensator

�

6−

�

6

Figure 4.4: Hierarchical Inner-Outer Loop Feedback Structure

4.5 Different H∞ based Multiobjective Function Formulations

Multiobjective optimization has been studied as a tool to tradeoff between specifi-

cations/requirements that are often conflicting [38–54]. In this section, we present

three multiobjective function formulations that combine multiple functionals in dif-

ferent ways. To accurately specify the design objectives, especially in order to address

specifications at distinct feedback loop-breaking points (e.g. output and input), the

Generalized Mixed Sensitivity methodology accomodates three formulations [162–

166]. The objective function can be specified in terms of:

1. Weighted Max

2. Weighted Stacking

3. Weighted Sum

59

It is important to note that in each of the above formulations, if the individual

objective functions that make up the multiobjective function are convex, then the

multiobjective function will be convex. This is proved by using the properties of

convex “atom” functions (see Subsection 2.5.2 [59, 60] that talks about convexity

preserving operations).

4.5.1 Weighted Max Formulation

The Weighted Max formulation, also called the minimax design, minimizes the weighted

pointwise maximum of two or more objective functionals. Due to the simplicity of

the formulation, selection of weighting functions is easy. The weighting functions are

selected so as to shape the individual closed loop maps (each objective functional).

Then the optimizer minimizes the worst of the objective functional at each itera-

tion of the solution algorithm. The weighted max formulation for generalized mixed

sensitivity when two loop-beaking points are considered is shown in Equation (4.10)

[46, 47].

K = arg

 min
K

stabilizing

γ

∣∣∣∣∣∣∣∣∣∣
max

ρ
∥∥∥∥∥∥∥∥∥∥


W1Se

W2KSe

W3Te


∥∥∥∥∥∥∥∥∥∥
H∞

, (1− ρ)

∥∥∥∥∥∥∥∥∥∥


W4Sc

W5PSc

W6Tc


∥∥∥∥∥∥∥∥∥∥
H∞

 < γ

(4.10)

s.t. closed loop convex frequency/time-domain constraints.

Wi ∈ RH∞ and ρ ∈ [0, 1].

4.5.2 Stacking Formulation

In case of Weighted Stacking, since the H∞-norm is taken after the two objectives

are stacked, the convexity preservation results are not needed to see why the stacked

objective function is convex. It is important to note that due to matrix dimensionality

60

issues stacking can only be done when the number of external inputs associated with

each channel (wi) are equal.

K = arg



min
K

stabilizing

γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



ρ


W1Se

W2KSe

W3Te



(1− ρ)


W4Sc

W5PSc

W6Tc





∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
H∞

< γ



(4.11)

s.t. closed loop convex frequency/time-domain constraints.

Wi ∈ RH∞ and ρ ∈ [0, 1].

4.5.3 Sum Formulation

The Weighted Sum formulation, minimizes the weighted pointwise sum of two or

more objective functionals. The optimizer minimizes the sum of all objective func-

tionals at each iteration of the solution algorithm. The weighted sum formulation for

generalized mixed sensitivity when two loop-beaking points are considered is shown

in Equation (4.12).

K = arg

 min
K

stabilizing

γ

∣∣∣∣∣∣∣∣∣∣
ρ

∥∥∥∥∥∥∥∥∥∥


W1Se

W2KSe

W3Te


∥∥∥∥∥∥∥∥∥∥
H∞

+ (1− ρ)

∥∥∥∥∥∥∥∥∥∥


W4Sc

W5PSc

W6Tc


∥∥∥∥∥∥∥∥∥∥
H∞

< γ

 (4.12)

s.t. closed loop convex frequency/time-domain constraints.

Wi ∈ RH∞ and ρ ∈ [0, 1].

61

4.6 Summary and Conclusions

In this chapter, we presented the Generalized H∞ Mixed Sensitivity methodology

problem posed as a constrained multiobjective optimization problem. We also visited

the three types of multiobjective functions - weighted max, weighted stacking and

weighted sum - formulations that can be handled by our Generalized Mixed Sensi-

tivity methodology. The problems that were formulated have the closed loop maps

that depend nonlinearly (non-convex) on controller K. Using Youla parameterization

(or Q-parameterization), the relationship can be transformed into affine dependence

in the parameter Q. By doing this, we can transform the objective function and

constraints (H∞-based) into convex functions. This is discussed in detail in this

Chapter 5.

62

Chapter 5

SOLUTION METHOD FOR THE GENERALIZED MIXED SENSITIVITY

OPTIMIZATION PROBLEM

5.1 Overview

In the H∞/L∞-constrained multiobjective weighted H∞ mixed sensitivity minimiza-

tion problems that are formulated in Chapter 4, the closed loop maps depend non-

linearly on controller K (see closed loop map definitions in Section 3.2). Using Youla

et al. parameterization (or Q-parameterization), the relationship can be transformed

into affine dependence in the parameter Q. By doing this, we can transform the objec-

tive function and constraints (H∞/L∞-based) into convex functions. This is discussed

in detail in this chapter. Further, this chapter discusses several subgradient-based

constrained convex optimization algorithms and solvers, along with comparisons be-

tween them. Finally, the dependence of convergence rate on basis parameters used

for Youla et al. parameterization are studied through examples.

5.2 Youla et al. (or Q) Parameterization of All Stabilizing Controllers

Youla et al.)(or Q) Parameterization [167–172] is used to parameterize the set of

all stabilizing controllers for a given LTI plant. We show how this transforms the

closed loop transfer function matrix Twz(K) that depends nonlinearly on controller

K to an affine closed loop transfer function matrix Twz(Q) in the parameter Q. This

transforms our (H∞/L∞-based) optimization problem (see Chapter 4) to a convex

optimization problem - albeit infinite-dimensional. This infinite-dimensional problem

will be approximated by a finite-dimensional one in Section 5.3. Within the current

63

section we focus on the Youla et al. (or Q) Parameterization for the set of all LTI

compensators that stabilize the LTI plant.

Theorem 5.2.1 (Parameterizing the Set of All Stabilizing Controllers)

Given an LTI plant P = [A,B,C,D], the set of all proper LTI controllers S(P) that

internally stabilize P may be parameterized as

S(P) = {K(Q) | Q ∈ H∞} (5.1)

More specifically, if Ko internally stabilizes P , then there exists Qo ∈ H∞ such that

Ko = K(Qo). Moreover K(Q) internally stabilizes P for any given Q ∈ H∞.

5.2.1 Observer Based Youla et al. Parameterization

Consider a general feedback configuration of a finite-dimensional plant P, shown in

Figure 5.1.

K(Q)

G-

�

- -w

u

z

e

Figure 5.1: General System Interconnection

The transfer function from w to z is given by:

u = K(Q)e

z = G11w +G12u

= G11w +G12K(Q)e

e = G21w +G22u

= G21w +G22K(Q)e

= [I −K(Q)G22]−1G21w



=⇒ Twz = G11 +G12K(Q)[I −K(Q)G22]−1G21(5.2)

64

Let the generalized plant G shown in Figure 5.1 be given by


ẋ

z

e

 =


A B1 B2

C1 D11 D12

C2 D21 D22



x

w

u

 (5.3)

Note that the generalized plant G can include weighting functions augmented to the

original plant to be controlled. The original plant P to be controlled can then be

given by

P =

 A B2

C2 D22

 (5.4)

The parameterization K(Q) may be constructed in terms of a model based compen-

sator Ko = [A−B2F −L(C2−D22F), L,−F] that stabilizes LTI plant P and a stable

transfer function matrix Q (Q ∈ H∞) with control gain matrix F , and the filter gain

matrix L as in Figure 5.2 and Figure 5.3. Note that Figure 5.2 is a representation of

Figure 5.1 to show the interconnection between Ko and Q.

Q

-

�
yQ uQ

K(Q)

Ko
-

G
-

- -w

u

z

ee

Figure 5.2: General System Interconnection with Q-Parameterization

where Ko is given by
˙̂x

u

uQ

 =


A−B2F − LC2 + LD22F L B2 − LD22

−F 0 I

−(C2 −D22F) I −D22




x̂

e

yQ

 (5.5)

yQ = QuQ (5.6)

65

-
e

Ko

-
u

-

uQ�Q
yQ

Figure 5.3: Visualization of Q Connected to an Observer-Based Controller

Ko has the following form

Ko =

 K11 K12

K21 K22

 (5.7)

where,

K11 = −F (sI − A+B2F + LC2 − LD22F)−1L (5.8)

K12 = −F (sI − A+B2F + LC2 − LD22F)−1(B2 − LD22) + I (5.9)

K21 = −(C2 −D22F)(sI − A+B2F + LC2 − LD22F)−1L+ I (5.10)

K22 = −(C2 −D22F)(sI − A+B2F + LC2 − LD22F)−1(B2 − LD22)−D22(5.11)

Hence, K(Q) can be represented as

K(Q) = Fl(Ko, Q) = K11 +K12Q[I −QK22]−1K21 (5.12)

The observer-based structure of controller K(Q) is shown in Figure 5.4

66

e
- −I - d

−
-

uQ
L

Filter
Gain Matrix

- d - Φ(s)

Φ(s)
def
= (sI −A)−1

xk - −F

Control
Gain Matrix

-
u

- Q

?d -
yQ

�B

?

�C�

6

�D

6

d

6−

Figure 5.4: Observer Based Q-Parameterization for the Set of All Stabilizing LTI

Controllers K(Q)

Achieving Convexity: Q-Parameterization for Twz .

The closed loop system Twz can be represented as shown in Figure 5.5 the system

T is to be determined below. Note that the general transfer function matrices can

be visualized as both Trz and Tdiz. Hence it is sufficient to show the affine relation

between T and Q. The state space representation for T . With x denoting the states

of F and xk the states of Kmbc, we obtain the following

ẋ = Ax+BFx−BF (x− xk) +Bw +Bv̂ (5.13)

d

dt
(x− xk) = (A+ LC)(x− xk) + (B + LD)w (5.14)

z = (C +DF)x−DF (x− xk) +Dw +Dv̂ (5.15)

v = C(x− xk) +Dw (5.16)

67

-
w

T

-
z

-
v̂ v

�Q

Figure 5.5: Visualization of the Closed Loop System Twz in terms of T and Q

Given this, it follows that the system T can be expressed as follows:

T =

 T1 T2

T3 T4

 =



A+BF −BF B B

0 A+ LC B + LD 0

C +DF −DF D D

0 C D 0


. (5.17)

From Equation 5.17 it can be seen that

T1 =


A−B2F B2F B1

0 A− LC2 B1 − LD21

C1 −D12F D12F D11

 , T2 =

 A−B2F B2

C1 −D12F D12

 ,

T3 =

 A− LC2 B1 − LD21

C2 D21

 , T4 = 0.

Given the above, it follows that the closed loop transfer function matrix T is given

by

T (Q) = Fl(T,Q) (5.18)

= T1 + T2QT3. (5.19)

This shows that

68

• the closed loop transfer function matrix Twz depends affinely on Q.

• our general control problem is convex in Q.

Given the above, the multiobjective optimization is formulated by selecting the input

and output channels of interest. The closed loop TFMs (Twizi , i = 1, 2, 3, . . .) to be

shaped by the GMS optimizer (see GMS problem in Equation (4.5)).

5.2.2 Coprime Factorization Based Youla et al. Parameterization

Theorem 5.2.2 Given an LTI plant P = [A,B,C,D], the set of all proper LTI

controllers that internally stabilize P may be parameterized as [149, 170–172]:

K(Q) = (Nk −DpQ)(Dk −NpQ)−1 (5.20)

where

Np =

 A−BF B

C −DF D

 Dp =

 A−BF B

−F I

 (5.21)

Nk = −

 A−BF L

−F 0

 Dk =

 A−BF L

C −DF I

 (5.22)

where F is control gain matrix and L is filter gain matrix that can be obtained by using

the model based compensator configuration. It should be noted that Ko = NkD
−1
k

represents one strictly proper LTI compensator that internally stabilizes P .

K(Q) may also be parameterized as,

K(Q) = (D̃k −QÑp)
−1(Ñk −QD̃p) (5.23)

where

69

Ñp =

 A− LC B − LD

C D

 D̃p =

 A− LC −L

C I

 (5.24)

Ñk = −

 A− LC L

−F 0

 D̃k =

 A− LC −(B − LD)

F I

 (5.25)

K̃o = D̃k
−1Ñk represents one strictly proper LTI compensator that internally stabi-

lizes P .

Achieving affiness:

Consider a unity (positive) feedback loop with compensator K(Q) in series with P .

The closed-loop transfer function matrices can be parameterized as follows:

Se(Q) = [I + PK(Q)]−1 (5.26)

= [Dk −NpQ] D̃p (5.27)

Sc(Q) = [I +K(Q)P]−1 (5.28)

= Dp

[
D̃k −QÑp

]
(5.29)

K(Q)Se(Q) = Sc(Q)K(Q) (5.30)

= Dp[Ñk +QD̃p] (5.31)

PSc(Q) = Np[D̃k −QÑp] (5.32)

= [Dk −NpQ]Ñp (5.33)

Te(Q) = I − Se(Q) (5.34)

= Np[Ñk +QD̃p] (5.35)

Tc(Q) = I − Sc(Q) (5.36)

= [I −DpD̃k] +DpQÑk (5.37)

70

Note that all the closed loop transfer function matrices can be represented as

T (Q) = Fl(T,Q) (5.38)

= T1 + T2QT3 (5.39)

Given the above, the multiobjective optimization is formulated by selecting the input

and output channels of interest. The closed loop TFMs (Twizi , i = 1, 2, 3, . . .) to be

shaped by the GMS optimizer (see GMS problem in Equation (4.5)).

5.2.3 Controller State Space Representation

Once we obtain the Q-parameter, it is easy to obtain K(Q). If the state space

representation of Q is as below,

Q
def
=

 AQ BQ

CQ DQ

 (5.40)

then, this yields the following state space representation for the controller K(Q):

K(Q) =

 AK BK

CK DK

 . (5.41)

where,

AK =

 (A− LC)− (B − LD)∆−1(DQC + F) (B − LD)∆−1CQ

−BQC +BQD∆−1(DQC + F) AQ −BQD∆−1CQ

 , (5.42)

BK =

 L+ (B − LD)∆−1DQ

BQ −BQD∆−1DQ

 , (5.43)

CK =

[
−∆−1(DQC + F) ∆−1CQ

]
, (5.44)

DK = ∆−1DQ for ∆ = (I +DQD). (5.45)

71

If D = 0

 Ak Bk

Ck Dk

 = K(Q) =


A−BF − LC −BDQC BCQ L+BDQ

−BQC AQ BQ

−(DQC + F) CQ DQ

 .(5.46)

If D = DQ = 0

K(Q) =

 Ak Bk

Ck Dk

 =


A−BF − LC BCQ L

−BQC AQ BQ

−F CQ 0

 . (5.47)

It should be noted that the Youla parameterization is constructed from a nomi-

nal controller defined by Q = 0. This nominal controller - and hence the Youla

parametrization - is defined by the control gain matrix F , and the filter gain matrix

L. F and L are not unique.

From the above discussion, it is clear that the optimization problem (nonlinear) over

stabilizing controllers K can instead be solved by optimizing over all stable transfer

function matrices Q (Q ∈ RH∞). As such, we still have an infinite-dimensional

problem. This problem can be transformed to a finite-dimensional problem if Q is

appropriately approximated. How this is done is now shown.

5.3 Achieving Finite Dimensionality

Approximation ideas are used to approximate the parameter Q and transform the

inifinite-dimensional problem to a finite-dimensional one for which efficient algorithms

exist. To do this, express the Q-parameter is expressed as a finite linear combination

of a priori selected stable transfer functions qk; i.e.

QN =
N∑
k=1

Xkqk (5.48)

72

where

Xk =


x11
k · · · x1ne

k

...
...

xnu1
k · · · xnunek

 ∈ Rnu×ne (5.49)

Here, nu and ne are the number of inputs and outputs of the plant respectively.

Substituting QN into 5.19, then yields the following structure for Twz:

Twz = T1 + T2

(
N∑
k=1

Xk qk

)
T3 (5.50)

= T1 +
N∑
k=1

T2XkT3 qk (5.51)

Next, we note that Xk may be written as follows:

Xk =
ne∑
j=1

nu∑
i=1

Bijxijk (5.52)

where Bij ∈ Rnu×ne is a matrix with its ijth entry equal to 1 and all other elements

zero. Note that the above sum is carried out over rows first and then columns. By

so doing, we “vectorize” the problem. Substituting the above expression for Xk into

Twz the yields

T = T1 +
N∑
k=1

T2

(
ne∑
j=1

nu∑
i=1

Bijxijk

)
T3 qk (5.53)

= T1 +
N∑
k=1

ne∑
j=1

nu∑
i=1

T2 B
ij xijk T3 qk (5.54)

= T1 +
N∑
k=1

ne∑
j=1

nu∑
i=1

T2 B
ij T3 qk x

ij
k . (5.55)

This expression may be written as

T = Mo +
N∑
k=1

ne∑
j=1

nu∑
i=1

M ij
k xijk (5.56)

73

where

Mo = T1 (5.57)

M ij
k = T2 B

ij T3 qk. (5.58)

Finally, to complete the vectorization of the problem we define a new indexing variable

l = (k − 1)ne + j − 1 + i where we sequence over i, and then j, and then k. Defining

the scalar xl and the matrix Ml, we have the following bijective mapping:

xl = xijk (5.59)

Ml = M ij
k . (5.60)

With this definition, our expresssion for Twz becomes

T = Mo +
nu×ne×N∑

l=1

Ml xl. (5.61)

From this expression, it follows that T depends affinely on the elements xl = xijk .

Our general control system design problem has thus been transformed to a finite-

dimensional convex optimization in the scalar elements xl = xijk .

What makes the approach taken in this chapter very appealing is the fact that many

control system design specifications may be posed as convex constraints on the closed

loop transfer function matrix [59]. Because the closed loop transfer function ma-

trix is convex in the Youla Q-Parameter, it follows that convex constraint may be

incorporated into a convex optimization problem involving Q.

Order of the Controller K(QN). When coprime-factorization approach is used to

parameterize the set of all stabilizing controllers, the order of the controller (nk) is

given by

nk = n+ np (5.62)

74

where np is the number of states of the generalized plant, and nq is the number of

states of QN

5.4 Basis Options

In this work, the following basis options [173–177] have been used:

1. Fixed pole low-pass

qk =

(
p

s+ p

)k−1

(5.63)

2. Fixed pole all-pass

qk =

(
p− s
s+ p

)k−1

(5.64)

3. Variable pole low-pass (first order)

q1 = 1, qk+1 =
kp

s+ kp
(5.65)

4. Variable pole all-pass

qk =
(k − 1)p− s
s+ (k − 1)p

(5.66)

5. Fixed pole fixed zero

qk =

(
z − s
s+ p

)k−1

(5.67)

6. Laguerre

qk =

√
2α

s+ α

(
α− s
s+ α

)k−1

(5.68)

where k = 1, 2, ..., N and p, z ∈ R+.

75

5.5 Computation of Subgradients

5.5.1 Subgradient for H∞ Norm at a Transfer Function Matrix

In what follows, we will be interested in minimizing theH∞ norm of a transfer function

matrix. This is useful for control system system design. Given this, we consider the

function

φ : H∞ −→ R+ (5.69)

: M −→ φ(M)
def
= ‖M‖H∞ (5.70)

which maps transfer function matrices M ∈ H∞ (i.e. stable systems) to non-negative

real numbers.

The function φ is a non-differentiable function. Finding a derviative for φ at a

transfer function matrix is therefore not possible. While this is undesirable, it should

be noted that subgradients for the H∞ norm function at a transfer function matrix

are easy to find. This is shown in [59, 178, 179].

Subgradient for φ at M . Suppose that we have a transfer function matrix given by

M =
n∑
k=1

Mkxk (5.71)

where {Mk}nk=1 is a sequence of H∞ transfer function matrices (i.e. stable systems).

We wish to determine a subgradient for φ at M . In [59, 173], the authors provide an

answer to this. A subgradient for φ at M , denoted gφ(M) ∈ ∂φ(M), is given by the

76

n-dimensional vector

gφ(M) =



φsg(M1)

φsg(M2)

...

φsg(Mn)


(5.72)

φsg(Mk) = Re
(
uHo Mk(jωo)vo

)
(5.73)

where uo and vo are the left and right singular vectors of M(jωo) corresponding to

the maximum singular value σmax at the peak frequency ωo at which the H∞ norm

of M is achieved; i.e. ‖M‖H∞ = maxω≥0 σmax [M(jω)] = σmax [M(jωo)].

Interpretation of Subgradient. For SISO systems, we have

φsg(Mk) = Re
(
uHo Mk(jωo)vo

)
= |Mk(jωo)|. (5.74)

That is, for SISO systems, the kth component of gφ(M) is the value of |Mk(jω)| at

the peak frequency ωo of M .

Significance. Just as gradient information for a differentiable function permits one to

construct an affine tangent approximation, the subgradient gφ(M) provides us with

the following affine lower bound approximation for the convex function φ:

φ(Mo) + gφ(M −Mo) ≤ φ(M) (5.75)

for any H∞ (i.e. stable) transfer function matrices M and Mo.

Special Case. In what follows, we will apply the above ideas to

φ(T ∗wz) = ‖T ∗wz‖H∞ (5.76)

where T ∗wz takes the form

T ∗wz = M∗ =
nu×ne×N∑

l=1

M∗
l xl. (5.77)

77

Given this, it follows that

g =



φsg(M∗
1)

φsg(M∗
2)

...

φsg(M∗
nu×ne×N)


∈ ∂φ(M∗) (5.78)

where M∗
l , nu, ne, and N are defined in Section 5.3 and

φsg(Mk) = Re
(
uHo M

∗
k (jωo)vo

)
(5.79)

where uo and vo are the left and right singular vectors of M∗(jωo) corresponding to

the maximum singular value σmax at the peak frequency ωo at which the H∞ norm

of T ∗wz = M∗ is achieved; i.e. ‖T ∗wz‖H∞ = ‖M∗‖H∞ = maxω≥0 σmax [M∗(jω)] =

σmax [M∗(jωo)].

5.5.2 Subgradient for Time-Domain L∞ Norm at a TFM

In what follows, we will be concerned with meeting peak time response specifications

(to step input). Given this, we consider the function

φ : H∞ −→ R+ (5.80)

: M −→ φ(M)
def
= sup

t≥0
sstep,t(M)− 1 (5.81)

which maps transfer function matrices M ∈ H∞ (i.e. stable systems) to non-negative

real numbers. Here, sstep,t(M) denotes the unit step response of a stable system.

The function φ is a non-differentiable function. Finding a derviative for φ at a

transfer function matrix is therefore not possible. While this is undesirable, it should

be noted that subgradients for the step response overshoot function at a transfer

function matrix are easy to find. This is shown in [59, 180, 181]. In this example, we

show how to compute such subgradients.

78

Subgradient for φ at M . Suppose that we have a transfer function matrix given by

M =
n∑
k=1

Mkxk (5.82)

where {Mk}nk=1 is a sequence of H∞ transfer function matrices (i.e. stable systems).

We wish to determine a subgradient for φ at M . In [59], the authors provide an

answer to this. A subgradient for φ at M , denoted gφ(M) ∈ ∂φ(M), is given by the

n-dimensional vector

gφ(M) =



φsg(M1)

φsg(M2)

...

φsg(Mn)


(5.83)

φsg(Mk) = φstep,to(Mk) (5.84)

= value of step response ofMk at to. (5.85)

where to denotes the time that the step response of M reaches its peak. The above

shows that the kth component of gφ(M) is the value of the step response of Mk at to

- the time at which the step response of M achieves its peak overshoot.

5.5.3 Subgradient of Multiobjective Functions

This subsection discusses important properties of subgradients that are made use

of for solving our non-differentiable multiobjective functions. Thus far in this Sec-

tion 5.5, subgradient computation for single objective function is presented. Here, we

show how subgradients can be computed for multiobjective functions. These make

use of the detailed discussions on the theory of subgradients in the works by Nesterov

and Boyd et al. in [182, 183].

Nonnegative scaling: Suppose f is a non-differentiable convex function and µ ∈ R+.

79

Then the subgradient of the scaled function (µf) is given by

gφ(µf) = µ gφ(f) (5.86)

Sum: Suppose f1 and f2 are non-differentiable convex functions. Then the subgradi-

ent of the sum function (f = f1 + f2) is given by

gφ(f) = gφ(f1) + gφ(f2) (5.87)

Pointwise maximum: Suppose f1 and f2 are non-differentiable convex functions. Let

k ∈ {1, 2} be the index for which fk = f at a given point. Then gφ(fk) is a subgra-

dient of f at that point. Note that the subgradient-based solvers (see Section 5.6)

we use require any one of the subgradient of the objective function in each iteration.

Given this, the above subgradient computation method is sufficient to provide sub-

gradient information required by the solvers. More general way to compute (obtain

all) subgradients at a given point can be found in [182, 183].

The above discussion on sum and pointwise maximum cases was done using two objec-

tive functions. But the results can be extended to arbitrary number of simultaneous

objective functions.

5.6 Convex Optimization Methods

In this section discusses three convex optimization solvers used within the Generalized

Mixed Sensitivity (GMS) framework.

1. Analytic Center Cutting Plane Method (ACCPM) solver

2. Kelley’s Cutting Plane Method (Kelley’s CPM) solver

3. SOLver for local OPTimization (SolvOpt)

80

The multiobjective optimization problem to be solved involves non-differentiable, but

continuous convex objectives and functions [173, 184–187]. Nondifferentiability means

that the gradient information is not available at all points of the function. To tackle

these problems, many subgradient-based methods were developed [188, 189]. These

are iterative techniques where each iterate is updated using a current subgradient

and a chosen step size. It is shown that a constant step size in each iteration does

not always converge [29, 188]. A convergent step-size satisfies
∑∞

k=0 tk =∞, tk → 0,

where tk is step size involved in a iterate of the form xk+1 = xk + tkgk, where xk is

current point, and gk is subgradient (at xk) of the function to be minimized. These

ideas are incorporated within the above solvers.

5.6.1 Overview of Interior Point and Cutting Plane Methods

We first focus on two general classes of optimization methods that can use subgra-

dient information [59] of the objective/constraint functions to solve the optimization

problem.

1. Interior Point Methods (IPMs), and

2. Cutting Plane Methods (CPMs).

Terminology. To help describe each method, it is useful to consider the following

convex optimization problem. We assume that fo, f1, . . . , fm are convex functions

mapping Rn → R.

min
x∈Rn

fo(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

(5.88)

The function fo is called the objective function. The functions f1, . . . , fm are constraint

functions. The feasible set or constraint set defined by the convex constraint functions

81

f1, . . . , fm is denoted as follows:

F def
= { x ∈ Rn | fi(x) ≤ 0, i = 1, . . . ,m } (5.89)

The interior of F is denoted int(F) and is defined as follows:

int (F)
def
= { x ∈ Rn | fi(x) < 0, i = 1, . . . ,m }. (5.90)

The boundary of F is denoted ∂F and defined as follows:

∂F def
= { x ∈ Rn | fi(x) = 0, i = 1, . . . ,m }. (5.91)

It should be noted that F , int(F), and ∂F are convex sets. For the optimization

problem in (5.88), when a minimizer exits, we denote the minimum by f ∗o denotes

the minimum, and the minimizer by x∗.

Interior Point Methods (IPMs)

nterior Point Methods (IPMs) are characterized by the property that at each iteration

the method generates a point that lies within (interior to) the feasible set (i.e., xk ∈

int (F)). A popular IPM nown as Analytic Center Method (or Method of Centers) is

now described. The analytic center of a set of inequalities fi(x) < 0 (i = 1, . . . ,m),

is defined as

xac
def
= arg

(
max

x∈int(F)

m∏
i=1

−fi(x)

)
(5.92)

The analytic center defines a “center” xac ∈ int(F) for the feasible set F . To solve

the constrained convex problem (5.88), the constrained problem is replaced by a se-

quence of unconstrained convex optimization problems. Each unconstrained problem

is solved by finding x∗ac(t), which denotes the analytic center of the inequalities

fo(x) < t, fi(x) < 0, for all i = 1, . . . ,m and t ∈ R. (5.93)

82

From (5.92), x∗ac(t) is given by

x∗ac(t) = arg

(
max

x∈int(F),fo(x)<t
(t− fo(x))

m∏
i=1

−fi(x)

)
(5.94)

= arg
(

min
x
Ft(x)

)
(5.95)

If t > f ∗o and the set { x | fo(x) < t, fi(x) ≤ 0 i = 1, 2, . . . ,m } is bounded,

then xac(t) exists and 0 ≤ fo(x
∗
ac(t)) − f ∗o ≤ m [t− fo(x∗ac(t))]. Moreover,

limt→f∗o f(x∗ac(t)) = f ∗o .

Analytic Center Method (ACM) Algorithm. The ACM algorithm can be implemented

using Sequential Unconstrained Minimization Technique (SUMT) algorithm as de-

scribed belwo.

Input: strictly feasible x(0), tolerance ε > 0,

initial upper bound t(0) > fo(x
(0)), and 0 < θ < 1.

Output: a feasible x such that | f ∗o − fo(x) |< ε.

Assumption: The feasible set intersected with { x | fo(x) < t } is bounded.

Begin

x := x(0), t := t(0) (Initialization)

repeat{ (Minimizer Update Loop)

repeat{ (Newton-Line Search Loop)

v := − [∇2Ft(x)]
−1 ∇Ft(x); (Newton Direction)

δ∗ := arg(minδ∇F (x+ δv)); (Line Search)

x := x+ δ∗v; (Minimizer Update)

}until ‖v‖ very small (Newton Stopping Criteria)

return if m(t− fo(x)) < ε (Stopping Criteria)

t := (1− θ)fo(x) + θt (Minimum Update)

}

end.

83

A draw back of this algorithm is that the initial upper bound t(0) must always be cho-

sen larger than the value of fo(x
(0)). This value may be very conservative - resulting

in higher number of iterations to arrive at the solution.

Pros and Cons of Interior Point Methods (IPMs)

• Pros:

1. Speed. IPMs are fast, especially for large problems. They have been proven

to be polynomial-time for linear programming (LP) problems [190]. This

can be extended to nonlinear programming problems [191].

2. Size of Problem/Complexity. The iterates in IPMs do not grow fast in

complexity compared to CPMs.

• Cons:

1. Information Required. Most IPMs rely on the use of descent methods. This

requires additional effort for non-differentiable functions, which is the case

in our GMS optimization problems.

2. Ease of Coding. IPM algorithms may be difficult to code. This may be

particularly true for nonlinear problems requiring polynomial time per-

formance [191]. This, in part, can be attributed to increased theoretical

overhead (e.g. constructing a barrier function that is self-concordant [191]).

3. Ease of Use. Performance of IPM algorithms can be very sensitive to

associated algorithm parameter(s). Fortunately, they are not difficult to

tune.

84

Cutting Plane Methods (CPMs)

Cutting Plane Methods (CPMs) were proposed independently by Kelley [192] and

Cheney and Goldstein [193] as a solution technique for the constrained convex op-

timization problem in (5.88). These are one of the first and fundamental solution

methods that were developed to solve non-differentiable convex optimization prob-

lems. CPMs rely on polyhedral approximations of convex functions to perform the

optimization. The CPMs in most cases are observed to be much slower compared to

IPMs.

Pros and Cons of Cutting Plane Methods (CPMs)

• Pros

1. Information Required. CPMs only requires one subgradient at each itera-

tion. No additional effort is needed for nondifferentiable functions [29].

2. Ease of Use. CPM’s are easy to use - since they typically involve less

parameters.

3. Ease of Coding. CPMs are easy to code and understand [29].

• Cons

1. Speed. Most CPMs are slow, but there are new advanced methods that

overcome this problem [194].

2. Information Required. Must specify an initial box which contains a mini-

mizer (however this box can be as large as you want).

3. Complexity. The associated linear program grows linearly in size with

iterations. As such, the complexity is non-polynomial.

85

5.6.2 Analytic Center Cutting Plane Method (ACCPM)

In this section, we describe the Analytic Center Cutting Plane Method (ACCPM).

ACCPM was developed by Goffin et al. [195] and analyzed in [196–198]. We choose

the ACCPM as our main method for solving convex control system design problems

because ACCPM combines the simplicity of a cutting plane method (CPM) with the

efficiency of an interior point method (IPM) [196–198]. Atkinson and Vaidya [197]

showed that ACCPM exhibits polynomial time behavior under certain adaptation.

Kelley’s cutting plane method computes the minimizer and the query point by solv-

ing a linear programming (LP) problem. ACCPM uses the analytic center of the

localization set as its query point. The method is described below [23–32]:

ACCPM Algorithm is as follows:

Input: initial point x1, initial box (xmin, xmax) ← any initial box that contains a

minimizer

Output: an approximate minimizer x such that x is feasible and fo(x)−Lk ≤ εobj

Assumption: x1 is feasible

Begin

L0 := −∞

U0 := fo(x1)

k := 0

while f1(xk+1) > 0 or . . . or fm(xk+1) > 0 or Uk − Lk > εobj

{

k := k + 1

compute the analytic center (xak, L
a
k) of the localization set FUk as in (5.102)

If xak is feasible{

compute optimality cut and the upper bound Uk := min(fo(x
a
k), Uk−1)

86

}else{

compute feasibility cut

}

Add cut to the localization set defined in (5.100)

xk+1 := xak (Update Minimizer)

Lk := max(Lak, Lk−1) (Update Lower Bound)

}

end.

ACCPM is different from Kelley’s CPM in that ACCPM uses the notion of local-

ization set and index sets to describe the relaxed problem. Further, ACCPM uses a

cutting plane algorithm that generates optimality cuts for feasible query points and

feasibility cuts for infeasible query points, which allow us to consider only feasible

points for the stopping criteria.

Consider the constrained convex problem (5.88), where fo(x), f1(x), . . . , fm(x) are

non-smooth convex functions. Since the objective function fo is convex, subgradients

may be used to generate piecewise affine approximations as follows:

fo(x) ' max
i∈I
{ fo(xi) + goi(x− xi) } (5.96)

where I is an index set and goi is a subgradient of fo at xi. Larger sets I, in princi-

ple, will yield better piecewise affine approximations. Since the constraint functions

{fi}mi=1 are convex, subgradients may be used to generate piecewise affine approxima-

tions as follows:

fk(x) ' max
j∈J
{ fk(xj) + gkj(x− xj) } k = 1, . . . ,m (5.97)

where J is an index set and gkj is a subgradient of fk(x) at xj.

87

Given the above, the optimization problem in (5.88) can be approximated as follows:

min
maxj∈J f1(xj) + g1j (x− xj) ≤ 0

...

maxj∈J fm(xj) + gmj (x− xj) ≤ 0

xmin − x ≤ 0

x− xmax ≤ 0

fo(x) + goi(x− xi). (5.98)

The above affine approximation can be formulated as an LP. This is done as follows:

min
fo(xi) + goi (x− xi) ≤ L, ∀ i ∈ I

f1(xj) + g1j (x− xj) ≤ 0

...

fm(xj) + gmj (x− xj) ≤ 0

, ∀ j ∈ J

xmin − x ≤ 0

x− xmax ≤ 0

L (5.99)

We refer to this as the relaxed problem (5.99) with index sets Ik and Jk. This relax-

ation gets tighter as more points are included in the index sets I and J .

At each iteration of the ACCPM, a bounded polyhedral set (the localization set) is

updated. Since an upper bound Uk to to the relaxed problem can be achieved through

the evaluation of the objective function at feasible query points (as in Kelley’s CPM),

88

the localization set is given by

FUk
def
=



(x, L) ∈ Rn ×R |

L ≤ Uk

fo(xi) + goi(x− xi) ≤ L i ∈ Ik

f1(xj) + g1j(x− xj) ≤ 0

...

fm(xj) + gmj(x− xj) ≤ 0

j ∈ Jk

xmin − x ≤ 0

x− xmax ≤ 0



(5.100)

where L defines a lower bound on the objective function fo. The localization set FUk

is a bounded polyhedral subset of the feasible region for the relaxed problem that

contains any optimal solution (x∗, f ∗o).

The kth query point for ACCPM is the analytic center of the localization set FUk .

This new notion was first introduced by Sonnevend [199–201] as the unique pair

(xak, L
a
k) = arg{ min

(x,L)∈FUk
FUk(x, L)} (5.101)

that minimizes

FUk(x, L)
def
= − log(Uk − L)−

∑
i∈Ik

log[L− fo(xi)− gi0(x− xi)]

−
∑
j∈Jk

log[−f1(xj)− gj1(x− xj)]

...

−
∑
j∈Jk

log[−fm(xj)− gjm(x− xj)]

− log(x− xmin)− log(xmax − x) for all x ∈ FUk . (5.102)

89

This function is a potential function similar to the one used by Karmarkar [190] when

presenting the first interior point algorithm for LPs. For the stopping criteria, the

computation stops if the gap between upper and lower bounds falls below a certain

threshold ε > 0;

Uk − Lk ≤ εobj (5.103)

and if the query point xk is feasible. Further details about the ACCPM algorithm

can be found in works by Goffin et al. and Boyd et al. [23–32]. The oracle-based

ACCPM package with MATLAB support was obtained [202] to integrate with our

MATLAB-based control design framework.

5.6.3 Kelley’s Cutting Plane Method (Kelley’s CPM)

In this section, we describe the Kelley’s CPM that was proposed independently by

Kelley [192] and Cheney and Goldstein [193] Kelley’s CPM can be used to solve the

constrained convex non-differentiable problem in (5.88) by generating piecewise affine

(linear) functions that provide affine lower bounds to the objective and constraint

functions and then solving the linear program formed by these bounds. The affine

lower bounds are generated using only function values and subgradient information.

Thus the method can be applied to non-differentiable optimization problems. As

the method progresses, the upper and lower bounds converge toward the desired

minimum f ∗o . These bounds permits one to compute a solution to a desired a priori

accuracy. While the associated linear program to be solved grows linearly with each

iteration, an adequate solution is usually found in practice before the computational

requirements become excessive. Kelley’s cutting-plane algorithm for the constrained

problem is given below:

Input: starting point x1, initial box (xmin, xmax)← any initial box that contains a

90

minimizer

Output: an approximate minimizer x such that

f1(x) ≤ εfeas, . . . , fm(x) ≤ εfeas and fo(x)− Lk ≤ εobj

Begin

k := 0

repeat{

k := k + 1

compute function values fo(xk), f1(xk), . . . , fm(xk)

compute subgradients gok ∈ ∂fo(xk), g1k ∈ ∂f1(xk), . . . , gmk ∈ ∂fm(xk)

solve the associated LP to find approximate minimizer xk and lower bound Lk

compute upper bound Uk

xk+1 := xk (Update Minimzer)

} until f1(xk) ≤ εfeas, . . . , fm(xk) ≤ εfeas and Uk−Lk ≤ εobj (Stopping Crierion)

end.

Further details about the Kelley’s CPM algorithm can be found in [59, 153, 192,

193]. Within our MATLAB-based GMS control design framework, the Kelley’s CPM

algorithm is fully implemented using MATLAB code.

5.6.4 Solver for Local Nonlinear Optimization Problems (SolvOpt)

SolvOpt is an (open-source) optimization package developed by Kuntsevich et al.

[203–205] for solving nonlinear problems which can handle nonsmooth objective and

constraint functions. It is a subgradient-based method that uses a modified version

of Shor’s r–algorithm [206–208] to find a local minimum of the problems. SolvOpt is

compatible with MATLAB, Python, C and Fortran. In this work, we use the MAT-

LAB compatible package. The main idea of the algorithm is to make steps in the

direction opposite to a subgradient at the current point. However, the steps are to

91

be made in the transformed space. Toward this end, at each iteration the difference

between a subgradient at the current point and that calculated at the previous step

is calculated. This is used to perform dilation of the space with a priori given co-

efficient (γ ∈ [0, 1]). The r-algorithm also uses space dilation, but in the direction

of the difference of two successive subgradients. For the boundary cases γ = 0 and

γ = 1, the method reduces to steepest descent and to a variant of the conjugate

gradient method respectively [206–208]. It must be noted that SolvOpt has been

used to solve (local minimum) nonlinear and constrained optimization problems in

general that are nonsmooth. Within our work, we use the solver for solving our

convex optimization problems. Similar solvers are available that are used in popular

control design toolboxes. HANSO is a MATLAB package based on BroydenFletcher-

GoldfarbShanno (BFGS) and gradient sampling methods for solving unconstrained

nonlinear problems that can handle nonsmooth functions. This has been used in HI-

FOO - A MATLAB Package for Fixed-Order Controller Design and H∞ Optimization

[209, 210]. GRadient-based Algorithm for Non-Smooth Optimization (GRANSO) is

a MATLAB optimization package based on BFGS and Semidefinite Programming

(SDP) that can solve constrained nonsmooth optimization problems, involving objec-

tive and constraint functions that can be nonsmooth [211, 212].

5.6.5 Comparison of Convex Optimization Solvers Using Control Problem within

GMS

In this subsection, we compare the efficiency of the three subgradient-based con-

strained convex optimization solvers using simple control example problem. The

three methods to be used are

1. Analytic Center Cutting Plane Method (ACCPM)

92

2. Kelleys Cutting Plane Method (CPM)

3. Solver For Local Nonlinear Optimization Problems (SolvOpt)

All the results in this subsection are obtained using

• Processor: Intel® Core™ i7-3635QM CPU @ 2.40GHz (Number of Processors:

1, Total Number of Cores: 4, L2 Cache (per Core): 256 KB, L3 Cache: 6 MB,

Memory: 8 GB),

• Operating System: Mac OS X Version:10.13.5 Build:17F77,

• MATLAB: Version 9.1.0.441655 (R2016b), and

• Java: Java 1.7.0_75-b13 with Oracle Corporation Java HotSpot™ 64-Bit Server

VM mixed mode.

Example 5.6.1 Consider a 2× 2 plant [15]:

P =
1

s

 10 9

9 8

 (5.104)

(5.105)

Consider the following generalized H∞ mixed sensitivity minimization problem

K = arg

 min
K

stabilizing

γ

∣∣∣∣∣∣∣∣∣∣
max


∥∥∥∥∥∥∥∥∥∥


W1Se

W2KSe

W3Te


∥∥∥∥∥∥∥∥∥∥
∞

,

∥∥∥∥∥∥∥∥∥∥


W4Sc

W5PSc

W6Tc


∥∥∥∥∥∥∥∥∥∥
∞

 < γ

 (5.106)

The closed loop maps Se, KSe, Te, Sc, PSc and Tc are closed loop maps as defined in

93

Section 3.2.

W1 =
1

Ms

[
s+Msωb
s+ εωb

]
× I2×2 = W4 (5.107)

W2 =
1

ε

[
s+ ωbu

k2
√
Mu

s+
ωbu
k2
√
ε

]k2
× I2×2 (5.108)

W3 =

[
s+ ωbc

My

εs+ ωbc

]
× I2×2 = W6 (5.109)

W5 =

[
Mdcωd1

s+ ωd1

] [
ωd2

s+ ωd2

] [
Mhighωd3

s+ ωd3

]
× I2×2 (5.110)

The weighting function parameters selected are as follows: Ms = 3, ωb = 0.5, ε =

0.01,Mu = 0.01, ωbu = 50,My = 3, ωbc = 10, k2 = 2,Mdc = 1,Mhigh = 0.1, wd1 =

10−2, wd2 = 1, wd3 = 102. The infinite dimensional Youla parameter (Q) is approxi-

mated by a finite dimensional paraameter (QN) with N = 6. Given that the plant P

is 2×2, this makes the number of optimization variables 24 (N×ne×nu = 6×2×2).

Here, all-pass basis with pole location at 22 are chosen. Coprime-factorization based

Q-parameterization is used along with an inital controller found based on LQG method

(controller weights Qf = I, Rf = 15I and observer weights Ql = I, Rl = 15I).

Initial Data. For the three methods considered, objective value tolerances of 10−4

for the stopping criterion, and initial points of ones(N,1) were used. For CPM and

ACCPM, the initial box is defined by: xmin = 100 × ones(N, 1) and xmax = −100 ×

ones(N, 1).

The Table 5.1 shows optimization relevant results for the above problem from all

three optimization solvers. The computation time (CPU time) taken by each solver

is denoted by “Total time” in the table. It can be seen that ACCPM outperforms

Kelley’s CPM (denoted simply as CPM in the table) and SolvOpt. The number of

total iterations is denoted by “# Iter”, number of objective function evaluations by

“# f Evals”, number of subgradient computations by “# sg Evals” and average time

taken per iteration by “Avg Time/Iter”. For this two-objective optimization problem,

94

number of function evaluations is double that of subgradients. At each iteration,

the subgradient is computed only for the objective function which is “active” (see

Subsection 5.5.3 for details). The updates of objective function value with respect

to iteration count and elapsed computation time are shown in Figures 5.6 and 5.7

respectively.

Total time (s) # Iter # f Evals # sg Evals Avg Time/Iter

ACCPM 87.50 164 328 164 0.533

CPM 205.83 573 1146 573 0.359

SolvOpt 553.34 457 915 457 1.211

Table 5.1: Optimization Example 5.6.1: Computation Times and Number of Itera-

tions

0 20 40 60 80 100 120 140 160

Iteration

10

15

20

25

30

 (
d

B
)

ACCPM

CPM

SolvOpt

Figure 5.6: Optimization Example 5.6.1: γ versus Iteration Count

95

0 50 100 150

Time (s)

10

12

14

16

18

20

22

24

26

28

30

 (
d

B
)

ACCPM

CPM

SolvOpt

Figure 5.7: Optimization Example 5.6.1: γ versus Computation Time (s)

0 20 40 60 80 100 120 140 160 180 200

Iteration

0

20

40

60

80

100

120

140

160

180

200

T
im

e
 (

s
)

ACCPM

CPM

SolvOpt

Figure 5.8: Optimization Example 5.6.1: Time versus Iteration Count

Tables 5.2 and 5.3 show the total computation times and number of iterations for

varying number of optimization variables. Here, the number of basis terms considered

96

are N = 2, 3, 6, 9, and 10. Corresponding to these - given that the plant is 2× 2, the

number of optimization variables are 8, 12, 24, 36, and 40 respectively.

Variables 8 12 24 36 40

ACCPM 11.45 19.22 87.50 216.49 295.4

CPM 28.41 97.3 205.83 843.65 1475.9

SolvOpt 58.74 116.80 553.34 3436.90 4463.7

Table 5.2: Optimization Example 5.6.1: Computation Times (s) for Increasing Num-

ber of Variables

Variables 8 12 24 36 40

ACCPM 46 58 164 187 197

CPM 92 269 573 686 891

SolvOpt 64 109 457 869 847

Table 5.3: Optimization Example 5.6.1: Number of Iterations for Increasing Number

of Variables

5.7 Basis Selection

In this section, we discuss some rules of thumb for selecting basis parameters for finite-

dimensional approximation of the infinite-dimensional Youla et al. (Q)-parameter

[173–177] using examples. Consider a simple SISO stable system.

P =
1

s+ 1
(5.111)

97

The set of all stabilizing controllers for this stable SISO system can parameterized as

follows:

Kstabilizing =
Q

1− PQ
(5.112)

Consider a standard H∞ mixed sensitivity problem:

Kmso = arg

 min
K stabilizing

γ

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
 W1Se

W2KSe


∥∥∥∥∥∥∥
H∞

< γ

 (5.113)

with the weights

W1 =
1

Ms

[
s+Msωb
s+ εωb

]
(5.114)

W2 =
1

εMu

[
s+ ωbu
s+ ωbu/ε

]
(5.115)

where Ms = 1.5, ωb = 10, ε = 0.01, Mu = 1/30, and ωbu = 750.

Using MATLAB’s hinfsyn command that uses the two-Riccati formulae [157, 158],

we obtain a performance γ = 0.97908820. The parameter TOLGAM within the

command [154] that represents relative error tolerance for γ was set to a very low

value (≈ 10−10). Given this, we call the performance achieved as our “optimal”

performance (i.e., γopt = 0.97908820). The corresponding controller obtained is,

Kopt =
7.9839× 108 (s+ 1)2 (s+ 0.1) (s+ 7.5× 104)

(s+ 1.113× 1011) (s+ 53.14) (s+ 1) (s+ 0.1135) (s+ 0.08666)
(5.116)

Figures 5.9 - 5.12 show the open and closed loop maps for this this design.

98

10-2 10-1 100 101 102 103
-50

-40

-30

-20

-10

0

10

S_e

W1-1

Sensitivity

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

(d
B

)

Figure 5.9: Basis Selection: Sensitivity

10-2 10-1 100 101 102 103
-20

-15

-10

-5

0

5

10

15

20

25

30

KS_e

W2-1

Control Sensitivity

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

(d
B

)

Figure 5.10: Basis Selection: Control Sensitivity

99

10
-2

10
-1

10
0

10
1

10
2

10
3

-50

-40

-30

-20

-10

0

10

20

30

40

S_e

T_e

Lo

Sensitivity and Complementary Sensitivity

Frequency (rad/s)

M
a
g
n
it
u
d
e
 (

d
B

)
(d

B
)

Figure 5.11: Basis Selection: Open and Closed Loop Maps

10-2 10-1 100 101 102 103
-50

-40

-30

-20

-10

0

10

W1-1 S_e

W2-1 KS_e

[W1-1 S_e; W2-1 KS_e]

Weighted Performance

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

(d
B

)

Figure 5.12: Basis Selection: Performance Measure

Now, we solve the Problem (5.113) using our Generalized Mixed Sensitivity frame-

work. Here, we solve the same problem using different values of number of basis terms

100

(N) and basis pole (α), for the fixed pole all-pass basis

qk =

(
α− s
s+ α

)k−1

k = 1, 2, ..., N, α ∈ R+ (5.117)

For various values of number of basis terms (N) and basis pole (α) the GMS problem

is solved to visualize the behavior of performance γ with respect to N and α. Doing

this, we obtain the performance γ as shown in Figure 5.13. It can clearly be seen

that the performance improves as number of basis terms (N) increases. But, there is

a value of basis pole (α) above or below which performance deteriorates. Here, the

parameterization is done using a zero (0) initial controller (Zames parameterization)

for simplicity. This is a valid choice, as the plant considered is stable. For an unstable

plant, we must use a stabilizing initial controller which is non-zero.

 vs N and

5 10 15 20

N

10-2

100

102

104

2

4

6

8

10

12

14

16

18

20

Figure 5.13: Basis Selection: γ versus N and α

Figure 5.14 shows the performance γ versus basis pole (α) for fixed number of basis

terms (N).

101

10-2 100 102 104 106
-5

0

5

10

15

20

25

30

35

 (
d
B

)

 vs

N = 1
N = 2
N = 3
N = 4
N = 5
N = 10
N = 15
N = 20

Figure 5.14: Basis Selection: γ versus α for Fixed N

Figure 5.14 shows the minimum value of N required to achieve at least some percent-

age of optimal Performance for different values of α.

102

100 101 102 103
0

5

10

15

20

25

M
in

. V
al

ue
 o

f N
 R

eq
ui

re
d

Min. Value of N Required vs

1%
5%
10%

Figure 5.15: Basis Selection: Minimum Value of N Required versus α for Some

Percentage of Optimal Performance

Using the basis parameter to be α ≈ 22.5, lesser number of basis terms N may

be sufficient to obtain a desired perormance γ. Note that in this case the open

loop bandwidth (unity gain crossover frequency of L) is ≈ 10. The “optimal” basis

parameter in this case is nearly double of the open loop bandwidth.

Approximation of Qopt using a Real-Rational Basis.

Consider the approximation of a function f by the following real-rational expansion

[133]:

f(x) ≈ co + c1

(
x− xo
x+ xo

)
+ c2

(
x− xo
x+ xo

)2

+ · · · . (5.118)

The coefficients can be shown to be

c1 = lim
x→xo

f1(x) for f1(x)
def
=

(x+ xo)
2

2xo
fo
′(x) (5.119)

c2 =
1

2!
lim
x→xo

f2(x) for f2(x)
def
=

(x+ xo)
2

2xo
f1
′(x) (5.120)

103

c3 =
1

3!
lim
x→xo

f3(x) for f3(x)
def
=

(x+ xo)
2

2xo
f2
′(x) (5.121)

Now Qopt corresponding to the Kopt obtained in Equation 5.116 is

Qopt =
5.3341e06 (s+ 7.5e05) (s+ 1)3 (s+ 0.1)

(s+ 1.134e09) (s+ 277.4) (s+ 12.82) (s+ 1)2 (s+ 0.1)
(5.122)

Consider the approximation of Qopt using the real-rational basis terms

qk =

(
α− s
s+ α

)k−1

k = 1, 2, ..., N, α ∈ R+ (5.123)

Figure 5.16 shows the approximation error in Eqn 5.124 as the number of terms N

and basis pole α are varied.

ε = ‖W (Qopt −QN,α)‖H∞ (5.124)

Here, the weight W is a band-pass filter around the open-loop system crossover fre-

quency. The magnitude plot of W is shown in Figure 5.19

W =
(s+ 0.001)

(s+ 0.1)
× (0.01s+ 1000)

(s+ 1000)
(5.125)

 vs N and

2 4 6 8 10

N

100

101

102

103

1

2

3

4

5

6

7

8

Figure 5.16: Basis Selection: ε versus N and α

104

Figure 5.17 shows the ε versus basis pole (α) for fixed number of basis terms (N).

10
0

10
1

10
2

10
3

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

 (
d

B
)

 vs

N = 2

N = 3

N = 5

N = 8

N = 9

N = 10

Figure 5.17: Basis Selection: ε versus α for Fixed N

Figure 5.18 shows the minimum value of N required to achieve a desired value of ε.

10
0

10
1

10
2

10
3

3

4

5

6

7

8

9

10

11

M
in

.
V

a
lu

e
 o

f
N

 R
e

q
u

ir
e

d

Min. Value of N Required vs

0.01

0.1

1

2

3

Figure 5.18: Basis Selection: Minimum Value of N Required to Achieve Desired ε

105

10
-4

10
-2

10
0

10
2

10
4

-40

-35

-30

-25

-20

-15

-10

-5

0

M
a
g
n
it
u
d
e
 (

d
B

)

W

Frequency (rad/s)

Figure 5.19: Basis Selection: Weighting Function W

The value of basis parameter α that results in acceptable value of performace γ with

least number of basis terms N is found to be ≈ 22.5. This is in agreement with the

“optimal” value obtained by running GMS for different values of α.

Laguerre Basis. We sweep over the number of basis terms (N) and basis pole (α),

for the same problem as above, but using Laguerre basis

qk =

√
2α

s+ α

(
s− α
s+ α

)k−1

k = 1, 2, ..., N, α ∈ R+ (5.126)

where α is a positive real number. For various values of number of basis terms (N)

and basis pole (α), we obtain the performance γ as shown in Figure 5.13. It is clear

that the performance improves as number of basis terms (N) is increased. But, there

is a value of basis pole (α) above or below which performance deteriorates.

106

 vs N and

5 10 15 20

N

10
0

10
1

10
2

10
3

2

4

6

8

10

12

14

16

18

20

Figure 5.20: Basis Selection: γ vs N and α

Figure 5.14 shows the performance γ versus basis pole (α) for fixed number of basis

terms (N).

10
0

10
1

10
2

10
3

-5

0

5

10

15

20

25

30

35

 (
d

B
)

 vs

N = 1

N = 2

N = 3

N = 4

N = 5

N = 10

N = 15

N = 20

Figure 5.21: Basis Selection: γ vs α for Fixed N

107

5.8 Summary and Conclusions

In this chapter, a general control system design problem was formulated. The prob-

lem was infinite-dimensional and nonlinear in the controller K. It was shown how

the Youla et al. parameterization and approximation ideas may be used to transform

the problem to a finite-dimensional convex optimization problem for which efficient

numerical algorithms exist. This chapter discussed several subgradient-based con-

strained convex optimization algorithms and solvers, along with comparisons between

them. Finally, the dependence of convergence rate on basis parameters used for Youla

et al. parameterization were studied through examples. The approach taken - at best

- provides us with a methodology for computing finite-dimensional LTI controllers

that satisfy important design specifications for which no direct approach exists. At

the very least, the approach provides us with a methodology to assess fundamental

performance limitations associated with a very wide class of design specifications.

These ideas are be applied to several control system design problems in what follows.

108

Chapter 6

CONTROL-RELEVANT TRADEOFFS USING GENERALIZED MIXED

SENSITIVITY METHODOLOGY

6.1 Overview

In this chapter, we present several control problems with different objective and con-

straint functions to illustrate critical control-relevant tradeoffs associated with them.

Firstly, tradeoffs associated with MIMO ill-conditioned plants that are not typically

seen in SISO systems are illustrated. This is done using GMS by considering the

problem of simultaneously addressing output and input properties. An example that

illustrates handling L∞ time-domain constraint is also presented. Further, some SISO

problems are considered that discuss specific control challenges and tradeoffs.

6.2 Multiobjective Weighted Sensitivity Minimization of an Ill-Conditioned Plant

When the plant to be controlled is ill-conditioned, one of the main difficulties is that

obtaining good properties at one feedback loop-breaking point, does not guarantee

acceptable properties at a different loop-breaking point [9, 10]. For a plant that is

square (i.e., number of input/s equal to number of output/s) and assuming P (jω)

is invertible at frequencies of interest, the following inequality gives upper bound on

‖Sc‖H∞ using ‖Se‖H∞ and κ[P].

1

κ[P]
σi [Se] ≤ σi [Sc] ≤ κ[P]σi [Se] (6.1)

If the condition number of the plant is high, achieving good feedback properties at

plant output might still result in bad properties at plant input. Analogous results can

109

be obtained as upper bound on ‖Se‖H∞ . Hence, both Se and Sc must be addressed

during the design process based on the specifications. This issue is also discussed in

Section 3.3.

Consider a 2-input, 2-output ill-conditioned plant. The transfer function matrix of

the plant is shown below [15]:

P (s) =
1

s

 10 9

9 8

 (6.2)

The condition number is κ[P (jω)] ≈ 50dB for all ω ∈ R+. RGA-sum norm and scaled

condition number are also near 50dB for all ω ∈ R+. Note that κ[P (jω)] ≈ κ∗[P (jω)]

means that the plant is (almost) “optimally” scalled in the sense that condition

number is minimum with respect to scaling of inputs and outputs.

Consider the following constrained multiobjective weighted sensitivity minimization

problem:

K = arg

 min
K

stabilizing

γ

∣∣∣∣∣∣∣
max

(
ρ ‖W1Se‖H∞ , (1− ρ) ‖W4Sc‖H∞

)
< γ,

‖W2cKSe‖H∞ < c2

 (6.3)

The weighting functions selected are as follows:

W1 =
1

Mse

[
s+Mseωbe
s+ εωbe

]
× I2×2 (6.4)

W4 =
1

Msc

[
s+Mscωbc
s+ εωbc

]
× I2×2 (6.5)

W2c =

 c11 0

0 c22

 (6.6)

with Mse = Msc = 2, ωbe = 1, ωbc = 2, ε = 0.01, c11 = 0.5 and c22 = 1.

Multiobjective Weighted Sensitivity Minimization of an Ill-Conditioned

Plant Using GMS.

110

The optimization problem is solved for several different values of the tradeoff param-

eter ρ ∈ [0, 1] using GMS. It can be seen from the tradeoff curves in Figures 6.1

and 6.2 that improving one of the two objectives of the multiobjective function

(e.g. ‖W1Se‖H∞) results in degrading the other objective (e.g. ‖W4Sc‖H∞). It can

also be seen from the figures that at near the point ρ = 0.5, the two objective function

values become equal. This example illustrates the pareto optimality [213] associated

with this weighted sensitivity minimization problem simultaneously at output/error

and input/controls.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

(d
B

)

Weighted Sensitivities vs

||W
1
*S

e
||

||W
4
*S

c
||

Figure 6.1: Pareto Optimality in Weighted Sensitivity Minimization Using GMS:

‖W1Se‖H∞ and ‖W4Sc‖H∞ versus ρ

111

0 5 10 15 20 25 30 35 40 45

||W
1
*S

e
|| (dB)

5

10

15

20

25

30

35

||
W

4
*S

c
||
 (

d
B

)

Weighted Sensitivities

Figure 6.2: Pareto Optimality in Weighted Sensitivity Minimization Using GMS:

‖W1Se‖H∞ versus ‖W4Sc‖H∞

The setup for the above optimization problem used within GMS framework is now

discussed briefly. Initial controller and observer gains used for Youla et al, param-

eterization are obtained using LQG ideas with the weighting matrices all equal to

identity. The basis (fixed pole all-pass) parameters chosen are α = 2.5, N = 7. The

upper and lower bounds on optimization variables are picked to be ±100 resectively,

with an initial value of 1. The MATLAB code used to generate the results can be

found in Appendix A.1.

The sensitivities of the “equilibrated” design corresponding to the point where both

the objective functions are nearly equal is shown in Figures 6.3. Figure 6.4 shows the

constraint weighted KSe along with the constraint value c2 (see Equation (6.3)).

112

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-60

-50

-40

-30

-20

-10

0

10

20

max
(S

e
)

W1
-1

max
(S

c
)

W4
-1

Figure 6.3: Pareto Optimality in Weighted Sensitivity Minimization Using GMS:

Sensitivities of Equilibrated Design

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-60

-50

-40

-30

-20

-10

0

10

20

30

40

W_2c*KS_e
Constr Value

W
2c

*KS
e

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 6.4: Pareto Optimality in Weighted Sensitivity Minimization Using GMS:

Constraint Weighted KSe

113

Figure 6.5 shows the pareto optimality curve corresponding the problem when three

different constraint values on weighted KSe are considered. As one would expect, as

the constraint becomes stricter (c2 decreases), the optimum objective function value

(weighted sensitivities in this case) get worse overall (for ρ ∈ [0, 1]).

-5 0 5 10 15 20 25 30 35 40 45

||W
1
*S

e
|| (dB)

0

5

10

15

20

25

30

35

||
W

4
*S

c
||
 (

d
B

)

Weighted Sensitivities

c
2
 = 12.5

c
2
 = 10

c
2
 = 7.5

Figure 6.5: Pareto Optimality in Weighted Sensitivity Minimization Using GMS:

Dependence on Constraint Value

Multiobjective Weighted Sensitivity Minimization of an Ill-Conditioned

Plant using FMINCON.

For simplicity, we assume that the controller is static. That is, the controller K is of

the form

K =

 k11 k12

k21 k22

 (6.7)

where kij ∈ R; i = 1, 2; and j = 1, 2. With these settings we solve the optimization

problem (6.3) using MATLAB’s nonlinear optimization solver fmincon for several

different values of the tradeoff parameter ρ ∈ [0, 1]. It can be seen from the tradeoff

114

curves in the Figures 6.6 and 6.7 that improving one of the two objectives of the

multiobjective function (e.g. ‖W1Se‖H∞) will result in degrading the other objective

(e.g. ‖W4Sc‖H∞). It can also be seen from the figures that at near the point ρ =

0.5, the two objective function values become equal. This example illustrates the

pareto optimality [213] associated with this weighted sensitivity minimizaton problem

simultaneously at output/error and input/controls.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40

45

50

||
W

*S
||

 (
d

B
)

||W*S|| vs

||W
1
*S

e
||

||W
4
*S

c
||

Figure 6.6: Pareto Optimality in Weighted Sensitivity Minimization Using FMIN-

CON: ‖W1Se‖H∞ and ‖W4Sc‖H∞ versus ρ

115

5 10 15 20 25 30 35 40 45 50

||W
1
*S

e
|| (dB)

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

||
W

4
*S

c
||

 (
d

B
)

||W
4
*S

c
|| vs ||W

1
*S

e
||

Figure 6.7: Pareto Optimality in Weighted Sensitivity Minimization Using FMIN-

CON: ‖W1Se‖H∞ versus ‖W4Sc‖H∞

Note that the controller associated with each value of tradeoff parameter ρ is obtained

using MATLAB’s nonlinear solver where we assumed K is static (involving only 4

optimization variables). The optimization problem is nonconvex due to objective

and constraint functions are nonconvex The MATLAB script used for solving the

above problem is as in Appendix A.5. The above solution method to the nonlinear

optimization problem faces the issue of being stuck in one of the several possible

local minima. One way to tackle this issue is by solving the same problem several

times with different random initial points/guesses. A more efficient way is to use

global optimization solvers that guarantee obtaining global minimum under some

specific settings. A list of such solvers can be seen in the works by Mittelmann [214].

Though it is well known that numerous such global optimization solvers exist, those

that directly support MATLAB-based problems are limited in number. To make

use of larger set of solvers, our control problems of interest which are constrained

116

non-smooth and multiobjective can be transformed using modeling languages such as

A Mathematical Programming Language (AMPL) [215–217] and General Algebraic

Modeling System (GAMS) [218, 219]. These standard widely used platforms enable

us to use large set of solvers. As part of future work, the MATLAB-based GMS

framework can be extended to include support for using solvers do not have MATLAB

support.

6.3 Multiobjective Weighted Mixed Sensitivity Minimization of an Ill-Conditioned

Plant

Consider again the 2-input, 2-output ill-conditioned plant considered in Section 6.2

P (s) =
1

s

 10 9

9 8

 (6.8)

Consider the following multiobjective weighted mixed sensitivity minimization prob-

lem:

K = arg

 min
K

stabilizing

γ

∣∣∣∣∣∣∣max

ρ
∥∥∥∥∥∥∥
 W1Se

W2KSe


∥∥∥∥∥∥∥
H∞

, (1− ρ)

∥∥∥∥∥∥∥
 W4Sc

W5PSc


∥∥∥∥∥∥∥
H∞

 < γ

 (6.9)

The weighting functions selected are as follows:

W1 = W4 =
1

Ms

[
s+Msωb
s+ εωb

]
× I2×2 (6.10)

W2 = W5 = I2×2 (6.11)

with Ms = 2, ωb = 1, ε = 0.01.

The optimization problem is solved for several different values of the tradeoff parame-

ter ρ ∈ [0, 1]. Figures 6.8 and 6.9 show the relevant properties. It can be seen from the

tradeoff curves in the Figures 6.8 and 6.9 that improving one of the two objectives of

the multiobjective function

e.g.

∥∥∥∥∥∥
 W1Se

W2KSe

∥∥∥∥∥∥
H∞

 will result in degrading the other

117

objective

e.g.

∥∥∥∥∥∥
 W4Sc

W5PSc

∥∥∥∥∥∥
H∞

. It can also be seen from the figures that at near

the point ρ = 0.5, the two objective function values become equal. This example

illustrates the pareto optimality [213] associated with this weighted mixed sensitivity

problem simultaneously at output/error and input/controls.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

(d
B

)

Weighted Sensitivities vs

||[W
1
*S

e
; W

2
*KS

e
||

||[W
4
*S

c
; W

5
*PS

c
]||

Figure 6.8: Pareto Optimality in Weighted Mixed Sensitivity Minimization Using

GMS: First and Second Objectives versus ρ

118

15 20 25 30 35 40 45 50 55

||[W
1
*S

e
; W

2
*KS

e
|| (dB)

-5

0

5

10

15

20

25

30

35

40

45

||
[W

4
*S

c
;

W
5
*P

S
c
]|
|
(d

B
)

Weighted Sensitivities

Figure 6.9: Pareto Optimality in Weighted Mixed Sensitivity Minimization Using

GMS: First Objective versus Second Objective

The setup for the above optimization problem used within GMS framework is now

discussed briefly. Initial controller and observer gains used for Youla et al, param-

eterization are obtained using LQG ideas with the weighting matrices all equal to

identity. The basis (fixed pole all-pass) parameters chosen are α = 2.5, N = 7. The

upper and lower bounds on optimization variables are picked to be ±100 resectively,

with an initial value of 1. The MATLAB code used to generate the results can be

found in Appendix A.1.

6.4 Weighted Mixed Sensitivity Minimization Subject to L∞ Time-Domain

Constraint

In this section, we consider the problem of imposing time-domain L∞ constraint on

closed loop map. We show how GMS can be used to impose such constraints, and

compare the resulting design with the unconstrained case. We consider the same

119

plant
(
P = 1

s+1

)
and objective function considered in Problem 5.113. Along with

this objective, we impose L∞ constraint on KSe i.e., peak control response to step

reference comamand (unfiltered). Thus the constrained problem becomes

Kmso = arg

 min
K stabilizing

γ

∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥
 W1Se

W2KSe


∥∥∥∥∥∥∥
H∞

< γ

‖W2cKSe‖L∞ < c

 (6.12)

with the weighting functions

W1 =
1

Ms

[
s+Msωb
s+ εωb

]
(6.13)

W2 =
1

εMu

[
s+ ωbu
s+ ωbu/ε

]
(6.14)

W2c = 1 (6.15)

where Ms = 1.5, ωb = 10, ε = 0.01, Mu = 1/30, and ωbu = 750. For the unconstrained

case the peak control signal to step reference command (unfiltered) is found to be ≈ 8.

This can be seen in Figure 6.10 shown by the curve labelled “Uncon unfilt”. Given

this, if the constraint parameter c > 8 then the constrained problem is equivalent

to the unconstrained one. As c is decreased to values below 8, the constrained and

unconstrained problems start to differ. Figure 6.10 shows the control response to unit

step reference command for both these cases. The curve labelled “Con unfilt” refers

to the constrained problem. It can be seen that the control response in this case just

reaches a maximum value of 6 (as desired). This is an illustration of how time-domain

constraint can be imposed on closed loop responses (Here, KSe). This can be extended

to any other closed loop map (weighted or unweighted) [180, 181, 220, 221]. In all

these cases, the subgradient information used in the required by subgradient-based

optimization algorithms can be obtained as discussed in Section 5.5.2. In Figure 6.10,

the response corresponding to filtered step reference is also presented. In this case, we

120

use the controller obtained using the unconstrained problem. A prefilter (first order)

is iteratively (manual process) designed to limit the peak control signal to a value of

6. The resulting prefilter is

Wfilter =
22

s+ 22
(6.16)

The response is shown in Figure 6.10 by the curve labelled “Uncon filt’. It is seen

that the response is limited to a maximum value of just below 6. Figures 6.10 - 6.15

shows all the relevant closed loop responses corresponding to the above designs. For

comparison purpose, the problem (unconstrained case) is also solved using MATLAB’s

standard mixed sensitivity tool hinfsyn. The corresponding responses (unfiltered) are

given by the curves labelled “Uncon hinfsyn”. It can be seen that as expected, these

responses almost overlap with the unconstrained design obtained by GMS (labelled

“Uncon unfilt’). The problem setup when GMS is now discussed briefly. As the

plant is stable Zames parameterization is used (along with 0 initial controller). The

basis (fixed pole all-pass) parameters chosen are α = 22, N = 10. The upper and

lower bounds on optimization variables are picked to be ±100 resectively, with an

initial value of 1. The MATLAB code used to generate the figures can be found in

Appendix A.1.

121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

8
Uncon unfilt

Con unfilt

Uncon filt

Uncon hinfsyn

Control Response to Step Reference Command

Time (seconds)

A
m

p
lit

u
d
e

Figure 6.10: Imposing Time-Domain Constraint: Control Response to Step Reference

Command

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Uncon unfilt

Con unfilt

Uncon filt

Uncon hinfsyn

Output Response to Step Reference Command

Time (seconds)

A
m

p
lit

u
d
e

Figure 6.11: Imposing Time-Domain Constraint: Output Response to Step Reference

Command

122

10
-2

10
-1

10
0

10
1

10
2

10
3

-30

-20

-10

0

10

20

30

Uncon unfilt

Con unfilt

Uncon filt

W2
-1

Uncon hinfsyn

T
ru

 Magnitude

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 6.12: Imposing Time-Domain Constraint: Magnitude of Tru

10
-2

10
-1

10
0

10
1

10
2

10
3

-70

-60

-50

-40

-30

-20

-10

0

Uncon unfilt

Con unfilt

Uncon filt

W3
-1

Uncon hinfsyn

T
ry

 Magnitude

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 6.13: Imposing Time-Domain Constraint: Magnitude of Try

123

10
-2

10
-1

10
0

10
1

10
2

10
3

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Uncon

Con

W1
-1

Uncon hinfsyn

Sensitivity Magnitude

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 6.14: Imposing Time-Domain Constraint: Magnitude of Sensitivity

10
-2

10
-1

10
0

10
1

10
2

10
3

-60

-55

-50

-45

-40

-35

-30

-25

-20

Uncon

Con

Uncon hinfsyn

T
d

i
y
 Magnitude

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 6.15: Imposing Time-Domain Constraint: Magnitude of Tdiy

124

6.5 Simple Nominal Open Loop
(
Lo = 1

s

)
with Challenging Specifications

In this section, we design controllers for and study the corresponding feedback prop-

erties of a simple plant (P = 1), that try to satisfy certain challenging design spec-

ifications. We see that even for a simple system (e.g., P = 1), depending on

the specifications, the control problem may become very hard. Consider a nomi-

nal design specification on open loop transfer function in which |L(j0.1)| ≥ 20dB

and |L(j10)| ≤ −20dB. For this design, a trivial controller K = 1
s

satisfies the

specification. But as this specification is made severe, e.g., |L(j0.1)| ≥ MdB and

|L(j10)| ≤ −MdB where M = 21, 22, 23, etc., the problem gets more complicated

and results in trading off robustness properties (e.g. phase margin, peak sensitivity).

Using GMS methodology, we shape the closed loop properties (S and T) to achieve

the above specification on L indirectly using weighting functions as shown in Equa-

tions (6.17) and (6.18). Note that S (or T) here can be Se (or Te) or Sc (or Tc) as

the plant is SISO and we have considered standard P-K feedback structure.

W1(s) =
1

Ms

 (
s+ m1

√
Msωb

)m1(
s+ ωbε

(0.1)m1−1

)
(s+ 0.1ωb)

m1−1

 (6.17)

W3(s) =
1

ε


(
s+ ωbc

m3
√
My

)m3

(s+ 10ωbc)
m3−1 (s+ ωbc

10m3−1ε

)
 (6.18)

The weighting function parameters selected are ε = 10−5(−100dB),Ms = 2, ωb = 1/2,

My = 2, ωbc = 2. The slopes associated with the weighting function m1 and m2 are

varied based on the specification. We solve the following multiobjective minimization

problem using our GMS methodology.

K = arg

 min
K

stabilizing

γ

∣∣∣∣∣∣max (‖W1S‖H∞ , ‖W3T‖H∞) < γ

 (6.19)

125

Depending on the slopes (m1 and m2 in Equations (6.17) and (6.18)) of magnitudes

of weighting functions, the specification is relaxed or made strict. For the case when

m1 = m2 = 1, a trivial controller of K = 1
s

achieves the specification and has

good robustness properties (peak sensitivities and phase margin (PM)) as shown

in Table 6.1. But as these values are increased, the robustness properties become

worse. This can be seen in the cases when k1 and k2 are higher, for e.g., equal to 4

and 5. Figures 6.16 - 6.25 show the corresponding closed loop sensitivity and open

loop magnitudes. Also, the weighting functions can be visualized using the figures

provided. The above problem 6.19 is solved using our GMS methodology. The basis

(fixed pole all-pass) parameters chosen are α = 2, N = 10. Initial controller and

observer gains used for Youla et al, parameterization are obtained using LQG ideas

with the weighting matrices all equal to identity. The upper and lower bounds on

optimization variables are picked to be ±100 resectively, with an initial value of

1. Further, during the optimization problem setup the design plant is made to be

Pd = 1
s
. The resulting controller is then augmented with this integrator 1

s
and then

used along with the original plant P to form the feedback loop. The MATLAB code

used to generate the values in the table and in Figures 6.16 - 6.25 can be found in

Appendix A.1.

k1 & k2 |L(j0.1)| (dB) |L(j10)| (dB) ‖S‖H∞ (dB) ‖T‖H∞ (dB) PM (deg)

1 20.00 -20.00 0.00 0.00 90.00

2 31.34 -31.44 2.83 2.77 46.89

3 40.74 -41.11 7.22 6.94 26.82

4 50.00 -48.67 10.27 9.87 18.62

5 57.22 -52.78 11.33 10.95 16.41

Table 6.1: 1
s

Example: OL and CL Properties for Various Specifications

126

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-100

-80

-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 (
d

B
)

S

T

W1
-1

W3
-1

Bode Magnitude

Frequency (rad/s)

Figure 6.16: 1
s

Example: Sensitivity Magnitudes for Weighting Function Slopes m1 =

m3 = 1

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-80

-60

-40

-20

0

20

40

60

80

M
a

g
n

it
u

d
e

 (
d

B
)

L

1/s

Bode Magnitude

Frequency (rad/s)

Figure 6.17: 1
s

Example: Open Loop and Integrator Magnitudes for Weighting Func-

tion Slopes m1 = m3 = 1

127

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-100

-80

-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 (
d

B
)

S

T

W1
-1

W3
-1

Bode Magnitude

Frequency (rad/s)

Figure 6.18: 1
s

Example: Sensitivity Magnitudes for Weighting Function Slopes m1 =

m3 = 2

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-80

-60

-40

-20

0

20

40

60

80

M
a

g
n

it
u

d
e

 (
d

B
)

L

1/s

Bode Magnitude

Frequency (rad/s)

Figure 6.19: 1
s

Example: Open Loop and Integrator Magnitudes for Weighting Func-

tion Slopes m1 = m3 = 2

128

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-100

-80

-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 (
d

B
)

S

T

W1
-1

W3
-1

Bode Magnitude

Frequency (rad/s)

Figure 6.20: 1
s

Example: Sensitivity Magnitudes for Weighting Function Slopes m1 =

m3 = 3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-80

-60

-40

-20

0

20

40

60

80

M
a

g
n

it
u

d
e

 (
d

B
)

L

1/s

Bode Magnitude

Frequency (rad/s)

Figure 6.21: 1
s

Example: Open Loop and Integrator Magnitudes for Weighting Func-

tion Slopes m1 = m3 = 3

129

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-100

-80

-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 (
d

B
)

S

T

W1
-1

W3
-1

Bode Magnitude

Frequency (rad/s)

Figure 6.22: 1
s

Example: Sensitivity Magnitudes for Weighting Function Slopes m1 =

m3 = 4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-80

-60

-40

-20

0

20

40

60

80

M
a

g
n

it
u

d
e

 (
d

B
)

L

1/s

Bode Magnitude

Frequency (rad/s)

Figure 6.23: 1
s

Example: Open Loop and Integrator Magnitudes for Weighting Func-

tion Slopes m1 = m3 = 4

130

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-100

-80

-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 (
d

B
)

S

T

W1
-1

W3
-1

Bode Magnitude

Frequency (rad/s)

Figure 6.24: 1
s

Example: Sensitivity Magnitudes for Weighting Function Slopes m1 =

m3 = 5

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-80

-60

-40

-20

0

20

40

60

80

M
a

g
n

it
u

d
e

 (
d

B
)

L

1/s

Bode Magnitude

Frequency (rad/s)

Figure 6.25: 1
s

Example: Open Loop and Integrator Magnitudes for Weighting Func-

tion Slopes m1 = m3 = 5

131

6.6 SISO Unstable and Non-minimum Phase Plant with Standard P-K versus

Inner-Outer Loop Feedback

In this section, we study the limitations on peak sensitivity and complementary sensi-

tivity imposed by RHP pole and RHP zero present in the plant. It is shown how inner

loop may be used to stabilize the system without the bandwidth limitation imposed

by this RHP zero. Design limitations due to the unstable pole remain, but are now

less severe. The sensitivities must still satisfy the design limitations imposed bode

integrals, but these design limitations are less severe with the additional measurement

(inner-loop). This was also studied in the paper [222] by Freudenberg et al. Consider

a SISO plant (P) having a RHP pole and a RHP zero as in Equation 6.20 below.

P =
p (z − s)
z (s− p)

(6.20)

Let the pole (p) be located at 1. We consider the location of zero (z) to be 10, 5 and

2 in the same order. Here, we intend to find the following:

1. minimum achievable peak sensitivity (‖S‖H∞).

2. minimum achievable peak complementary sensitivity (‖T‖H∞).

3. minimum achievable “equilibrated” peak sensitivity & peak complementary sen-

sitivity (max {‖S‖H∞ , ‖T‖H∞}).

Note that S and T here refer to Se and Te respectively. We use both the standard

P-K structure and hierarchical inner-outer structure as shown in Figures 6.26.

132

r
- -

e
K -

u d?
di

-
up

P -
yp d?
do

-
y

�

6−
d

d
6n

Standard P-K Feedback Structure

-r b−e- Ko
-uo b -ub -?

di
up

b?ni
b?no

P - - yb?do
��eiui Ki

6
−

�

6

Hierarchical Inner-Outer Structure

Figure 6.26: Visualization of Feedback Structures

Standard P-K Feedback Structure: For simplicity, we consider a proportional controller

(K = kp, where kp ∈ R). The optima (minimum peaks) achieved for different values

of RHP zero (z) are shown in Table 6.2.

z
∣∣∣ z+pz−p

∣∣∣ To Minimize Min Val (dB) kp

10 1.7430 ‖S‖H∞ 1.7430 1.8182

‖T‖H∞ 1.7430 5.5

max {‖S‖H∞ , ‖T‖H∞} 3.3018 3.1623

5 3.5218 ‖S‖H∞ 3.5218 1.6667

‖T‖H∞ 3.5218 3

max {‖S‖H∞ , ‖T‖H∞} 5.1489 2.2361

2 9.5424 ‖S‖H∞ 9.5424 1.3333

‖T‖H∞ 9.5424 1.5

max {‖S‖H∞ , ‖T‖H∞} 10.6658 1.4142

Table 6.2: SISO Unstable and Non-Minimum Phase Plant Example: Critical Control

Properties & Corresponding Controller Parameters Using Standard P-K Structure

The values in Table 6.2 were obtained by solving the H∞ based problems using

MATLAB’s hinfstruct [154, 223–226]. The MATLAB code used to generate the above

133

results is given in Appendix A.4. Within the code, the designs can be selected to be

standard P-K or hierarchical inner-outer structure by assigning a value of 1 or 2

respectively to the variable flag as explained in the code.

Hierarchical Inner-Outer Structure: We consider proportional controllers in inner

(Ki = kip , where kip ∈ R) and outer (Ko = kop , where kop ∈ R) loops respectively.

The optima (minimum peaks) achieved for different values of RHP zero (z) are shown

in Table 6.3. Pmod in the table corresponds to the feedback loop formed by the inner-

loop controller (i.e., Pmod = feedback(P,Ki)).

z
∣∣∣ z+pz−p

∣∣∣ To Minimize Min Val (dB) kip kop Pmod

10 1.7430 ‖S‖H∞ ≈ 0 2.25 ≈ 0 −0.12904(s−10)
(s+1.614)

‖T‖H∞ ≈ −∞ 4.891 ≈ 0 −0.21136(s−10)
(s+9.023)

max {‖S‖H∞ , ‖T‖H∞} 0 2.25 ≈ 0 −0.12904(s−10)
(s+1.614)

5 3.5218 ‖S‖H∞ ≈ 0 1.223 ≈ 0 −0.26473(s−5)
(s+0.2946)

‖T‖H∞ ≈ −∞ 5 ≈ 0 −0.44399(s−5)
(s+3.88)

max {‖S‖H∞ , ‖T‖H∞} 0 1.311 ≈ 0 −0.27107(s−5)
(s+0.4213)

2 9.5424 ‖S‖H∞ ≈ 0 1.732 ≈ 0 −1.755(s−2)
(s+1.51)

‖T‖H∞ ≈ −∞ 1.618 ≈ 0 −2.3109(s−2)
(s+2.622)

max {‖S‖H∞ , ‖T‖H∞} 0 1.942 ≈ 0 −1.2445(s−2)
(s+0.4889)

Table 6.3: SISO Unstable and Non-Minimum Phase Plant Example: Critical Control

Properties & Corresponding Controller Parameters Using Inner-Outer Structure

The values in Table 6.3 were obtained by solving the H∞ based problems using

MATLAB’s hinfstruct [154, 223–226]. The MATLAB code used to generate the above

results is given in Appendix A.4. Within the code, the designs can be selected to be

standard P-K or hierarchical inner-outer structure by assigning a value of 1 or 2

134

respectively to the variable flag as explained in the code. It can be seen from the

table that the limitation on peak sensitivities
(∣∣∣ z+pz−p

∣∣∣) can be avoided by using inner-

loop controller. This is shown by the low peak sensitivity values in each of the cases

in Table 6.3.

A More Realistic Design Using Hierarchical Inner-Outer Structure: Here, we minimize

the weighted sensitivities to instead of unweighted ones. The weighting functions (W1

and W3) used to shape S and T respectively are as follows:

W1 =
1

Ms

[
s+Msωb
s+ ωbε

]
(6.21)

W3 =
s+ ωbc

My

εs+ ωbc
(6.22)

where Ms = My = 2, ωb = ωbc = 0.02 and ε = 0.01.

We again consider proportional controllers in inner (Ki = kip , where kip ∈ R) and

outer (Ko = kop , where kop ∈ R) loops respectively. The optima (minimum peaks)

achieved for different values of RHP zero (z) are shown in Table 6.4. Pmod in the table

corresponds to the feedback loop formed by the inner-loop controller (i.e., Pmod =

feedback(P,Ki)).

z To Minimize Min Val (dB) kip kop Pmod

10 max {‖W1S‖H∞ , ‖W3T‖H∞} -0.0853 1 0.01794 −0.11111(s−10)
(s+0.0001518)

5 max {‖W1S‖H∞ , ‖W3T‖H∞} -0.0743 1 0.01593 −0.0039976(s−5)
(s+0.02014)

2 max {‖W1S‖H∞ , ‖W3T‖H∞} -0.0142 1 0.009884 −0.0099837(s−2)
(s+0.02012)

Table 6.4: SISO Unstable and Non-Minimum Phase Plant Example: Properties &

Parameters for Realistic Design Using Inner-Outer Structure

Figures 6.27 - 6.29 show magnitudes of senstivity and complementary sensitivity func-

tions for the three designs in Table 6.4. The values in Table 6.3 and the Figures 6.27

135

- 6.29 were obtained using the MATLAB code given in Appendix A.4.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

-60

-50

-40

-30

-20

-10

0

10

S

T

W1
-1

W3
-1

Sensitivity and Complementary Sensitivity

Frequency (rad/s)

S
in

g
u

la
r

V
a

lu
e

s
(d

B
)

Figure 6.27: Weighted Sensitivity Minimization Example for SISO Plant with

RHPP=1 and RHPZ=10: Sensitivity and Complementary Sensitivity

136

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

-50

-40

-30

-20

-10

0

10

S

T

W1
-1

W3
-1

Sensitivity and Complementary Sensitivity

Frequency (rad/s)

S
in

g
u

la
r

V
a

lu
e

s
(d

B
)

Figure 6.28: Weighted Sensitivity Minimization Example for SISO Plant with

RHPP=1 and RHPZ=5: Sensitivity and Complementary Sensitivity

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

-50

-40

-30

-20

-10

0

10

S

T

W1
-1

W3
-1

Sensitivity and Complementary Sensitivity

Frequency (rad/s)

S
in

g
u

la
r

V
a

lu
e

s
(d

B
)

Figure 6.29: Weighted Sensitivity Minimization Example for SISO Plant with

RHPP=1 and RHPZ=2: Sensitivity and Complementary Sensitivity

137

6.7 µ-Synthesis Using GMS: Toward D-Q Iteration

The H∞ control methodology provides a powerful framework to analyze and design

controllers for a very large performance characteristics and robustness to uncertainty

requirements. Open and closed loop responses are shaped based on these specifica-

tions using H∞ methods. Though it is a powerful tool when unstructured uncer-

tainties are considered [147, 148], H∞ methodology is unable to handle structured

uncertainties [227], i.e. the designs may become conservative when the plant uncer-

tainties are structured [228–230]. The structured singular value (µ) was developed

by Doyle et al. [22] (given in Definition 3.5.4) as a measure for robustness to these

structured uncertainties. To design controllers that (approximately) minimize the µ

(µ-synthesis problem), DK-iteration technique has been widely used [9, 226, 227, 231–

233]. It is important to note here that the H∞ design methods are still used within

the µ-synthesis design methodology [227]. It essentially integrates the H∞ techniques

for synthesis and µ techniques for analysis. The µ-synthesis problem can be posed as

follows

min
K

(
min
D

∥∥DFl(N,K)D−1
∥∥
H∞

)
(6.23)

whereD is diagonal scaling matrix, Fl denotes lower Linear Fractional Transformation

(LFT) [221] and N is as shown in Figure 6.30. Here, w & z are exogeneous signals,

and u∆ & y∆ correspond to signals from and to block diagonal uncertainty ∆ (problem

dependent) respectively, which is described in Equation 3.27.

In what follows, we consider a 2×2 plant along with divisive uncertainties simultane-

ously at plant input and output such that ∆ = diag (∆i,∆o). All uncertainties present

anywhere in the feedback system (e.g. ∆i, ∆o) can be grouped in block-diagonal form

by associated matrix M = Fl(N,K). Hence µ allows us to nonconservatively ana-

lyze simultaneous occurances of them [15]. As a performance measure we use mixed

138

-
u∆

M

-
y∆

- -w z
-

e�K
u

Figure 6.30: Visualization of Control Configuration for µ-Synthesis

weighted sensitivities W1Se and W2KSe. As robust stability measure we use weighting

functions on these uncertainties. The TFMs of the plant and the weighting functions

are as follows.

P =
1

s

 10 9

9 8

 (6.24)

W1 =
1

Ms

(
s+Msωb
s+ εωb

)
I2×2 (6.25)

W2 = 0.5 I2×2 (6.26)

Wi = I2×2 (6.27)

Wo = I2×2 (6.28)

where Ms = 2, ωb = 0.1 and ε = 0.01. ∆i and ∆o are complex uncertainty blocks.

This problem can readily be solved by using DK-iteration technique in MATLAB

(using dksyn command) [226]. Figures 6.31 - 6.33 show the resulting properties. The

MATLAB code used is given in Appendix A.6.

139

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Frequency (rad/s)

-40

-30

-20

-10

0

10

20
 for Robust Stability

Figure 6.31: DK-Iteration: µ for Robust Stability

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-100

-80

-60

-40

-20

0

20

S_e

W_1
-1

S
e

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 6.32: DK-Iteration: Se

140

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-100

-80

-60

-40

-20

0

20

KS_e

W_2
-1

KS
e

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 6.33: DK-Iteration: KSe

Tsai et al. [228–230] proposed a D-Q iteration procedure that uses Youla et al.

parameterization [167–169]. It includes a D-step and a Q-step. In the D-step, the

D-scale at some predetermined frequencies is optimized. This step is similar to that

in D-K iteration. But D-scale fitting is not required. In the Q-step, using D-scale

obtained in the previous step, the problem is approximated by a finite-dimensional

Q-parameter optimization problem at same frequencies as before. As part of future

work, the GMS methodology can be extended to include the above using some ideas

presented in [234–237].

6.8 Forming the Design Plant

6.8.1 Design Plants with Integrator Augmentation

In order to guarantee zero steady state to step reference commands, in many cases, we

augment the plant’s actual outputs with integrators. The set of stabilizing controllers

141

is obtained for this augmented plant. At this point the integrator is in P - not in K.

To shape the true reference to controls map, we use Tru(unfiltered) = (KSe)design× I
s+ε

where ε is a small number. Similarly, we use Tdiy(unfiltered) = (PSc)design × (s+ ε).

6.8.2 Bilinear Transformation

A caveat of of the H∞ design methodology is the inversion of invert plant dynamics.

For example, H∞ controller - if permitted - may try to invert plant poles that are near

the imaginary axis. This is typically highly undesirable. When plant poles near the

imaginary axis are present, one can use a bilinear transformation method to prevent

undesirable inversions by the resulting compensator. Bilinear transformation may

be used in such cases to define a shifted (towards left-side along σ axis). stability

region [133, 159]. This is made use of in Chapter 7. Mention why and how bilinear

transformation is used in H∞ Mixed Sensitivity Problems.

6.9 Summary and Conclusions

In this chapter, we presented several control problems with different objective and

constraint functions to illustrate critical control-relevant tradeoffs associated with

them. Firstly, tradeoffs associated with MIMO ill-conditioned plants that are not

typically seen in SISO systems were illustrated using examples. SISO example was

used to illustrates handling L∞ time-domain constraint using GMS. Further, some

SISO problems were presented that discuss specific control challenges and tradeoffs.

142

Chapter 7

CONTROL OF LONGITUDINAL DYNAMICS OF HYPERSONIC VEHICLE

7.1 Overview

We design an inner-outer loop controller for the longitudinal dynamics of a scramjet-

powered hypersonic vehicle flying at Mach 8, 85 kft. The control system will seek

good properties at input/control, output/error as well as at the inner-loop sensor

noise. Since the scramjet-powered Mach 7/10 flights of X-43A in 2004 [64–66], the

research on hypersonic vehicles has seen a resurgence [62, 63, 67–85]. With the re-

cent successful X-51A flight test (May, 2013), the hypersonic application considered

here is timely. Air-breathing hypersonic propulsion is viewed as the next critical step

toward achieving (1) reliable, affordable, routine access to space, as well as (2) global

reach vehicles. There are commercial and as military implications to both objectives.

Rocket-based (combined cycle) propulsion systems are much more expensive to op-

erate because they must carry oxygen. This is particularly costly when traveling at

lower altitudes through the troposphere (i.e. below 36,152 ft). They do not exhibit

the desired levels of reliability and flexibility (e.g. airplane like takeoff and landing

options) either. As a result, much emphasis has been placed on two-stage-to-orbit

(TSTO) designs that involve a turbo-ram-scramjet combined cycle first stage and

a rocket second stage. This research focuses on control challenges associated with

scramjet-powered hypersonic vehicles. Such vehicles are characterized by significant

aero-thermo-elastic-propulsion interactions and uncertainty.

143

7.2 Longitudinal Dynamics Model

The longitudinal equations of motion for our 3-DOF (including flexible modes) hy-

personic vehicle are given as follows [82–85]:

v̇ =

[
T cosα−D

m

]
− g sin γ (7.1)

γ̇ =

[
L+ T sinα

mv

]
−
[
g

v
− v

RE + h

]
cos γ (7.2)

q̇ =
M
Iyy

, ḣ = v sin γ, θ̇ = q, α
def
= θ − γ (7.3)

η̈i = −2ζωiη̇i − ω2
i ηi +Ni, g = g0

[
RE

RE + h

]2

(7.4)

where h denotes altitude, L denotes lift, T denotes engine thrust, D denotes drag,M

is the pitching moment, Ni denotes generalized forces, ζ and ωi denote flexible mode

dampic factor and undamped natural frequency respectively, i = 1, 2, 3, m denotes

the vehicle’s total mass, Iyy is the pitch axis moment of inertia, g0 is the acceleration

due to gravity at sea level, and RE is the radius of the Earth. For our 100 ft vehicle,

the weight per unit width is 6138 lb/ft and Iyy = 86, 698 slugs ft2/ft.

144

−20 0 20 40 60 80 100

−10

−8

−6

−4

−2

0

2

4

6

8

Feet

F
e

e
t

P
u
, M

u
, T

u

P
1
, M

1
, T

1

P
b
, M

b
, T

b

P
e
, M

e
, T

e

CG
τ
1u

τ
1l

τ
2

Oblique Shock

F
re

e
s
tr

e
a

m

Expansion Fan

Elevator

L
1 L

e

Shear Layer (Plume)

Diffuser
Combustor

Nozzle

L
2

m

Figure 7.1: Schematic of Hypersonic Scramjet Vehicle

States and Controls. The vehicle possesses ten (10) states. They are: velocity v,

flight path angle (FPA) γ, pitch rate q, pitch angle θ, and the 6 flexible body states

η1, η̇1, η2, η̇2, η3, η̇3. The vehicle has two (2) control inputs: a rearward situated ele-

vator δe and stoichiometrically normalized fuel equivalence ratio (FER). The “new

engine model” introduced within [79] is used in this work. Within [62], two plume

models were considered: (1) an “old plume” model and (2) a “new plume” model.

Here, the designation “old plume” refers to a plume whose shape is independent of the

flight condition [82–85, 238]. The “new plume” model addresses this by employing

Newtonian impact theory to compute aft body pressures [73]. Both nonlinear models

were linearized about a Mach 8, 85kft level flight condition [62]. The “new plume”

model has high coupling - especially at low frequencies. The condition number varies

between 32dB and 65dB, with the peak occuring at 0.01rad/s. For this reason, we

145

focus exclusively on the new plume model. The associated poles and transmission

zeros [133, 146, 239] for the flexible new plume model are given in Table 7.1. We ob-

serve that the model is unstable and non-minimum phase (NMP) - unstable because

of a forward situated center of pressure associated with the vehicle’s shovel-nosed

forebody compression ramp; NMP because of the inverse flight-path response to ele-

vator deflection. For simplicity, we consider the vehicle body to be rigid. This makes

the plant a 4-state system, which neglects the flexible modes. It must be noted that,

despite this assumption, the system still imposes an upper limit on the closed loop

bandwidth because of the presence of NMP zero. The presense of right half plane

pole imposes a lower limit on the bandwidth. These critical aspects of the plant make

it a challenging control problem. Further, due to the strong interactions (coupling)

between channels, the use of multivariable (not decentralized) control is justified [63].

In [63], several controller structures were analyzed. It was shown that though decen-

tralized control designs were stable, the performance and robustness were uacceptable

[12, 240]. From frequency-domain analysis it was shown using classical ideas, it was

found that the closed loop performance strongly depends on the (1,2) element of the

inner loop controller. This further justifies using a multivariable controller. Note

that the transfer function corresponding to the (2,1)-element (i.e., T : FER → γ) is

strong. Table 7.2 shows the poles and transmission zeros of the model when flexible

modes are neglected. We call this the “rigid model”. We analyze this plant and

design controllers using different methodologies for the model at Mach 8, 85kft.

146

Pole Damping Frequency (rad/sec)

(−0.527± j9.57)× 10−3 0.0549 0.00958

2.3 (Unstable) -1 2.3

-2.4 1 2.4

-0.397 ± j22 0.0180 22

-0.957 ± j48.2 0.0198 48.3

-1.9 ± j94.8 0.02 94.8

Transmission Zero Damping Frequency (rad/sec)

7.71 (NMP) -1 7.71

-7.72 1 7.72

-0.552 ± j19.5 0.0283 19.5

-0.959 ± j48.8 0.0197 48.8

-1.9 ± j95 0.02 95

Table 7.1: Poles and Transmission Zeros of Flexible Model at Mach 8, 85kft

Pole Damping Frequency (rad/sec)

(−0.526± j9.57)× 10−3 0.0549 0.00958

2.30 (Unstable) -1 2.30

-2.39 1 2.39

Transmission Zero Damping Frequency (rad/sec)

7.74 (NMP) -1 7.74

-7.74 1 7.74

Table 7.2: Poles and Transmission Zeros of Rigid Model at Mach 8, 85kft

147

The singular value and Bode magnitude plots of the rigid body model are shown in

Figures 7.2 and 7.3 respectively.

10
-3

10
-2

10
-1

10
0

10
1

10
2

-100

-80

-60

-40

-20

0

20

40

60

80
Singular Value Plot of Plant

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 7.2: Hypersonic Vehicle Model: Singular Value Plot

-150

-100

-50

0

50

T
o

:
v
 (

k
ft

/s
)

From: FER

10
-2

10
0

10
2

-100

-50

0

50

100

T
o

:
 (

d
e

g
)

From:
e
 (deg)

10
-2

10
0

10
2

Bode Magnitudes of Plant TFs

Frequency (rad/s)

M
a
g
n
it
u
d
e
 (

d
B

)

Figure 7.3: Hypersonic Vehicle Model: Bode Magnitude Plot

148

Figure 7.4 shows the condition number of the plant model at different frequencies. It

is observed that it varies between 30dB and 60dB. Figures 7.5 - 7.7 show the RGA

and scaled condition number properties of the plant. These figures are obtained using

the MATLAB code given in Appendix A.9.

10
-3

10
-2

10
-1

10
0

10
1

10
2

Frequency (rad/s)

30

35

40

45

50

55

60

65

C
o

n
d

.
N

u
m

.
(d

B
)

Condition Number of Plant

Figure 7.4: Hypersonic Vehicle Model: Condition Number

149

10
-3

10
-2

10
-1

10
0

10
1

10
2

Frequency (rad/s)

5

10

15

20

25

30

35

40

45

50

55

(d
B

)

RGA Sum of Plant

Figure 7.5: Hypersonic Vehicle Model: RGA Sum

10
-3

10
-2

10
-1

10
0

10
1

10
2

Frequency (rad/s)

-80

-60

-40

-20

0

20

40

60

(d
B

)

RGA Elements of Plant

rga11

rga12

Figure 7.6: Hypersonic Vehicle Model: RGA Elements

150

10
-3

10
-2

10
-1

10
0

10
1

10
2

Frequency (rad/s)

0

10

20

30

40

50

60

(d
B

)

Minimized Condition Number

Figure 7.7: Hypersonic Vehicle Model: Minimized Condition Number

7.3 Control Designs

We consider three inner-outer loop control designs for the rigid model of the 3-DOF

hypersonic vehicle. These are as D-1, D-2 and D-3. Here, the pitch attitude θ (one

of the plant states) is fed back within the inner-loop. The outputs - velocity v and

FPA γ - are fed back in the outer loop.

-r1 g -

-r2 g - K
-FERg?
di1

-

-δe g
6

di2

- P

- g?do1 -v

- g?
do2

-γ

θ

Figure 7.8: Hierarchical Inner-Outer Loop Control Structure for Hypersonics Model

151

Figure 7.8 shows the hierarchical inner-outer loop control structure used. The sensor

noise in the inner-loop (ni) is associated with the measurement of the angle θ which

can be seen as being fed back in the inner loop. Tniu is shaped so as to attenuate

high-frequency sensor noise associated with inner-loop sensor noise. For a fair com-

parison of designs, based on the challenging plant in consideration, we consider the

following specifications: ‖Se‖H∞ , ‖Te‖H∞ < 3dB, ‖Sc‖H∞ , ‖Tc‖H∞ < 7dB, settling

times vts < 80s, γts < 15s, and peak control signals |FER| < 1.5, |δe| < 20, with

comparable bandwidths in closed loop maps. It is important to note that the closed

loop maps corresponding to inner-loop sensor noise (ni) are not captured when we

break the loop at error or controls. To address this, we shape Tniu by making use of

the proposed methodology. Specifically, we make use of the weighting function W8 in

design D-1. This is dicussed in more detail below.

7.3.1 Generalized Mixed Sensitivity Design (D-1)

Design D-1 uses our generalized mixed-sensitivity inner-outer loop methodology. The

closed loop maps corresponding to the following loop breaking points: (1) error (e),

corresponding to the difference between desired velocity v & FPA γ, and the actual

values, (2) controls (c), which are fuel equivalence ratio (FER) & elevator deflection

δe, and (3) inner-loop sensor noise (ni) corresponding to the pitch attitude θ, along

with suitable weights are used in the optimization methodology captured by Eqn. 4.5.

Accomodating these three loop breaking points that are critical for hierarchical inner-

outer architecture is a major improvement to the methodology presented in [55]. In

the Design 3 (D-3) that is discussed below, we use the ideas presented in [55] for

comparing to our current work (captured by D-1). The weighting functions used are

152

as follows:

w1i =
s/Mei + ωei
s+ ωeiεei

, w2i =
s+ ωui/Mui

εuis+ ωui
(7.5)

w3i =
s+ ωyi/Myi

εyis+ ωyi
, w4i =

s/Mei + ωei
s+ ωeiεei

(7.6)

w5i = 1w6i =
s+ ωyi/Myi

εyis+ ωyi
, w7i = 0 (7.7)

w8i =
s+ ωni/Mni

εnis+ ωni
, w9i = 0 (7.8)

Wj = diag(wji, wji) where j = 1 − 9 and i = 1, 2. Table 7.3 shows the weighting

function parameter values (see Eqn. 4.5). The weighting function W8 is used to shape

W1 W2 W3 W4 W6 W8

Mi 1.08 0.29 1.3 1.08 1.3 0.1

ωi 0.05 20 3 0.1 20 25

εi 0.01 0.3 0.01 0.01 0.01 0.01

Table 7.3: Weights Used for Design-1

Tniu, so as to attenuate high-frequency sensor noise associated with inner-loop sensor

noise. For a fair comparison between designs, we have tried to maintain bandwidth

of Tniu at 30 rad/s. This was achieved in designs D-1 and D-2. But using D-3, this

was not possible as the closed loop system became unstable when roll-off was severe.

Hence D-3 corresponds the bandwidth of Tniu set at 200rad/s.

7.3.2 Classically Motivated Design (D-2)

Design D-2 is a classically motivated (multivariable) control design that possesses

a fully populated PD inner-loop structure (with lag) and a PI outer-loop structure.

153

The precise controller structures used are as follows:

Ki =

(Kp1 +Kd1s)α2

(
s+

ωgi2√
α2

s+ωgi2
√
α2

)
(Kp2 +Kd2s)

 (7.9)

Ko =


(
kp11 +

ki11
s

) (
kp12 +

ki12
s

)
(
kp21 +

ki21
s

) (
kp22 +

ki22
s

)
 (7.10)

where the Ko parameters are kp11=2, ki11=−0.02, kp21=−5, ki21=−0.4, kp12=−0.7,

ki12=−0.312, kp22=−0.2, ki22=−0.074. The Ki parameter values are Kp1=−0.3,

Kd1=−0.465, α2=0.5, ωgi2=1.1313, Kp2=−0.05, Ki2=−0.065. Along with the above,

roll-off terms are used in both Ko (i.e., (10
s+10

)2 on all four elements in the transfer

function matrix and Ki (i.e., (20
s+20

)3 on the first element and (35
s+35

)3 on the second

element) are used. The roll-off terms, in addition to making the system robust to high

frequency modeling uncertainties, are also used to obtain good sensor noise attenu-

ation. We have observed that adjusting roll-off in Ki helps adjust the bandwidth of

inner-loop control sensitivity Tniu. The above parameter values were found manually

by running loops over a large set of parameter values. Despite its decent properties

(worse than D-1, discussed below), computing D-2 required considerable time - thus

providing significant motivation for the method used to obtain the superior design

D-1. Further, due to the high number of parameters to be optimized (manually), it

is not guaranteed that these are optimal values. This is another major disadvantage

of D-2.

7.3.3 Standard Mixed Sensitivity Design (with r − di Generalized Plant) (D-3)

Design D-3 uses the generalized mixed sensitivity formulation presented in [55]. The

closed loop maps corresponding to the following loop breaking points: (1) error (e),

corresponding to the difference between desired velocity v & FPA γ, and the actual

154

values, and (2) controls (c), which are fuel equivalence ratio (FER) & elevator deflec-

tion δe, along with suitable weights are used in the optimization methodology. Note

that, in this formulation, the properties at inner-loop sensor noise (ni) are adjusted

external to the optimization methodology. For e.g., the bandwidth of inner-loop

control sensitivity (Tniu) is corresponding to the pitch attitude θ is set by adding

roll-off term to inner-loop controller Ki (See [55]). This is necessary for comparing

the designs obtained by the methodology to classical design techniques.

NOTE: Given the above, it is important to reiterate that D-3 does not incorporate

properties at inner-loop sensor noise (ni) within the objective function of the opti-

mization methodology. We therefore do not expect to see results from D-3 as good as

those from D-1 or D-2. Table 7.4 demonstrates this by summarizing the closed loop

properties for each design.

Type Se Sc Te Tc Trc Tdiy

D-1 3.42 4.90 1.96 6.97 20.64 1.97

D-2 2.40 7.84 2.39 7.21 15.90 1.41

D-3 2.57 7.68 1.87 8.28 15.33 -3.80

vts(s) γts(s) BW Se BW Sc BW Trc |FER|

D-1 78.65 14.06 0.017 0.018 22.61 1.45

D-2 66.27 11.90 0.020 0.021 20.90 1.48

D-3 80.16 3.10 0.016 0.014 23.35 0.92

Table 7.4: Critical Control-Relevant Properties: Peak Singular Values Are in dB,

Bandwidth of Se/c & Trc Measured at −20dB & 0dB Respectively

In designs D-1 and D-3, the infinite dimensional Youla parameter (Q) is approximated

by a finite dimensional paraameter (QN) with N = 6. Here, all-pass basis with

155

pole location at 10 are chosen. Coprime-factorization based Q-parameterization is

used along with an inital controller found based on LQG method (controller weights

Qf = I, Rf = 105 × I and observer weights Ql = I, Rl = 105 × I).

7.3.4 Observations

Critical observations for the designs D-1, D-2 and D-3 are now made:

• D-1 outperforms D-2 and D-3 in terms of sensitivity at controls Sc. In terms

of sensitivity at error Se, D-1 is slightly worse, as can be seen in Table 7.4

and Figs.7.9-7.10. In the figures, “GMS” corresponds designs obtained using

Generalized Mixed Sensitivity (D-1), and “Classical” corresponds to the designs

obtained using classical ideas (D-2). In other words, using D-1, we are able to

tradeoff Se somewhat to obtain better Sc. This can be thought of as approach-

ing our goal of “equilibration”. This was done by selecting similar weighting

function values corresponding to these closed-loop maps. It must be noted that

D-1 was much much faster to obtain than D-2. The time-to-design for D-1 was

comparable to D-3. D-1, and hence our method, is therefore viewed as superior

because it offers speed while directly shaping the desired closed loop maps.

• It is important to emphasize that in D-1 inner-loop control sensitivity Tniu is

shaped within the optimization methodology via the weighting function W8,

whereas in D-2, a roll-off is used on inner-loop controller Ki to adjust the

bandwidth of Tniu. In D-2, the parameters were tuned by brute force search,

along with a roll-off added in D-2, where as in D-1, it is more systematic. In D-3,

the roll-off is added post-optimization, and hence D-1 and D-2 outperform D-3.

D-2 is outperformed by D-1, which is expected as D-1 is a full-order controller

and D-2 is much simpler.

156

• A critical point to be made here is, D-1 (and its desirable sensitivity properties)

was far easier to obtain (faster, more transparent) using our generalized mixed-

sensitivity inner-outer loop approach than D-2.

• Fig. 7.14 is an illustration of time-domain constraint being handled by the

generalized mixed-sensitivity methodology. A maximum overshoot of 4% in

velocity channel was allowed, as opposed to 16% in the unconstrained case. This

constraint was satisfied, but after trading off settling time. Note that settling

time constraint, being quasi-convex, cannot be accomodated. Yet, overshoot

constraint is considered to be a useful tool for control design. This also extends

to control step response, if one wants to limit the peak value of control signal.

10
-3

10
-2

10
-1

10
0

10
1

10
2

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

GMS
Classical

Sensitivity at Error

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 7.9: Sensitivities at Output Se: D-1 and D-2

157

10
-3

10
-2

10
-1

10
0

10
1

10
2

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

GMS
Classical

Sensitivity at Controls

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 7.10: Sensitivities at Input Sc: D-1 and D-2

10
-3

10
-2

10
-1

10
0

10
1

10
2

-120

-100

-80

-60

-40

-20

0 GMS
Classical

Complementary Sensitivity at Error

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 7.11: Complementary Sensitivities at Output Te: D-1 and D-2

158

10
-3

10
-2

10
-1

10
0

10
1

10
2

-120

-100

-80

-60

-40

-20

0

20

GMS
Classical

Complementary Sensitivity at Controls

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 7.12: Complementary Sensitivities at Input Tc: D-1 and D-2

-0.5

0

0.5

1

1.5

T
o

:
O

u
t(

1
)

From: In(1)

0 20 40 60 80 100
-0.5

0

0.5

1

1.5

T
o

:
O

u
t(

2
)

From: In(2)

0 20 40 60 80 100

GMS

Classical

Output Step Response

Time (seconds)

A
m

p
lit

u
d
e

Figure 7.13: Output Respones to Step Input References: D-1 and D-2

159

-0.5

0

0.5

1

1.5

T
o
:
O

u
t(

1
)

From: In(1)

0 20 40 60 80 100
-0.5

0

0.5

1

1.5

T
o
:
O

u
t(

2
)

From: In(2)

0 20 40 60 80 100

GMS

Classical

GMS Constr.

Output Step Response

Time (seconds)

A
m

p
lit

u
d

e

System: GMS Constr.

I/O: In(1) to Out(1)

Time (seconds): 50.7

Amplitude: 1.04

Figure 7.14: Output Respones to Step Input References: D-1, D-2 and D-1 with

Overshoot Constrant

10
-3

10
-2

10
-1

10
0

10
1

10
2

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

GMS
Classical

Tru

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 7.15: Control Sensitivities with Respect to Reference Tru: D-1 and D-2

160

10
-3

10
-2

10
-1

10
0

10
1

10
2

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

GMS
Classical

T
d

i
y

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 7.16: Disturbance Sensitivities at Input Tdiy: D-1 and D-2

7.4 Summary and Conclusions

In this chapter, we considered a scramjet-powered hypersonic vehicle model in

the operating condition Mach 8, 85 kft. We designed inner-outer loop controllers

for the longitudinal dynamics using three approaches. The control system seeked

to satisfy the specifications at several loop-breaking points. These approaches were

studied and compared. It was shown how the proposed Generalized Mixed Sensitivity

methodology is able to systematically shape closed loop properties at distinct loop-

breaking points, thus directly addressing the control design specifications.

161

Chapter 8

SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH

8.1 Summary

In this dissertation, we presented a multivariable control design methodology, based

on multiobjective H∞ mixed sensitivity to effectively and efficiently tradeoff closed

loop properties at distinct loop breaking points. We studied the tradeoffs involved in

obtaining acceptable properties at these distinct loop breaking points. We analyzed

the closed loop shaping challenges and limitations at these distinct loop-breaking

points and illustrated through examples the existence of some pareto optimal points

associated with them. The methodology accommodates a broad class of frequency-

and time-domain control design specifications. The above approach was used to

design hierarchical inner-outer loop controllers for trading off control properties for

longitudinal model of 3-DOF Hypersonic vehicle model - one that is unstable and

non-minimum phase. The methodology was shown to directly address shaping of

closed loop properties at these points using convex optimization. This was accom-

plished by exploiting the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization.

Basis parameters that result in efficient approximation (using lesser number of ba-

sis terms) of the infinite-dimensional parameter were studied. Three state-of-the-art

subgradient-based non-differentiable constrained convex optimization solvers, namely

Analytic Center Cutting Plane Method (ACCPM), Kelley’s CPM and SolvOpt were

implemented and compared within the GMS framework.

162

8.2 Directions for Future Research

In this dissertation, we addressed trading off closed loop properties at distinct loop

breaking points by using H∞ Generalized Mixed Sensitivity methodology. Below, we

list some extensions to the work presented in the dissertation.

• It was shown how H∞ based objectives and H∞/L∞ based constraints can be

handled by GMS methodology in Chapter 5. Additional convex objectives/con-

straints based on different norms such as H2 [59] on closed loop maps can be

incorporated to address wider class of design specifications.

• Additional constraints such as sector constraint on closed loop pole locations

can be incorporated [241–243].

• Model reduction techniques can be used to reduce the order of resulting con-

troller obtained from the methodology [133].

• Additional convex optimization algorithms that can handle constrained non-

differentiable optimization problems can be investigated and compared to those

in Section 5.6. The following solvers are compatible with MATLAB.

– Optimal SubGradient Algorithm (OSGA) [244–246]

– Gradient sampling solver (GradSamp) [247]

A list of similar solvers (both MATLAB based and otherwise) can be found in

[214, 248–251]

• “Optimal” basis selection strategies to approximate the infinite dimensional

Youla parameter Q using finite dimensional Qn [173–177, 252–254] can be de-

veloped. The types of bases selected can include using “mixed” types where

different combinations of basis options shown in Section 5.4 are used.

163

• Finally, future work can address applying our ideas to stable and unstable mul-

tivariable infinite-dimensional systems. Work in this direction was started in

[56, 57] where simple stable infinite dimensional systems were considered.

164

REFERENCES

[1] J. S. Freudenberg, “Analysis and design for ill-conditioned plants part
i. lower bounds on the structured singular value,” International Journal
of Control, vol. 49, no. 3, pp. 851–871, 1989. [Online]. Available:
http://dx.doi.org/10.1080/00207178908559672

[2] ——, “Analysis and design for ill-conditioned plants part 2. directionally
uniform weightings and an example,” International Journal of Control, vol. 49,
no. 3, pp. 873–903, 1989. [Online]. Available: http://dx.doi.org/10.1080/
00207178908559673

[3] J. S. Freudenberg and D. P. Loose, “Relations between properties of multivari-
able feedback systems at different loop-breaking points: Part i,” in Proceedings
of the 24th IEEE Conference on Decision and Control, 1985, Dec 1985, pp.
250–256.

[4] J. S. Freudenberg and D. P. Looze, “Relations between properties of multi-
variable feedback systems at different loop-breaking points: Part ii,” in IEEE
American Control Conference, 1986, June 1986, pp. 771–777.

[5] J. S. Freudenberg, “Analysis and design for ill-conditioned plants,” in IEEE
American Control Conference, 1988, June 1988, pp. 372–377.

[6] ——, “Directionality, coupling, and multivariable loop-shaping,” in Proceedings
of the 27th IEEE Conference on Decision and Control, 1988, vol. 1, Dec 1988,
pp. 399–340.

[7] J. S. Freudenberg and D. P. Looze, Frequency Domain Properties of Scalar
and Multivariable Feedback Systems, 1st ed., ser. Lecture Notes in Control and
Information Sciences. Springer-Verlag Berlin Heidelberg, 1988, vol. 104.

[8] J. S. Freudenberg, C. V. Hollot, and R. H. Middleton, “A tradeoff between
disturbance attenuation and stability robustness,” in IEEE American Control
Conference, 2003, vol. 6, June 2003, pp. 4816–4821.

[9] G. Stein and J. C. Doyle, “Beyond singular values and loop shapes,” Journal
of Guidance, Control, and Dynamics, vol. 14, no. 1, pp. 5–16, 1991.

[10] J. S. Freudenberg, “Plant directionality, coupling and multivariable loop-
shaping,” International Journal of Control, vol. 51, no. 2, pp. 365–390, 1990.
[Online]. Available: https://doi.org/10.1080/00207179008934071

[11] J. S. Freudenberg and K. Saglik, “Scaling down the plant condition number
scales up the size of uncertainty,” in 29th IEEE Conference on Decision and
Control, Dec 1990, pp. 1195–1196 vol.3.

[12] J. Freudenberg and R. Middleton, “Design rules for multivariable feedback sys-
tems,” in Proceedings of 35th IEEE Conference on Decision and Control, vol. 2,
Dec 1996, pp. 1980–1985 vol.2.

165

http://dx.doi.org/10.1080/00207178908559672
http://dx.doi.org/10.1080/00207178908559673
http://dx.doi.org/10.1080/00207178908559673
https://doi.org/10.1080/00207179008934071

[13] J. S. Freudenberg, C. V. Hollot, R. H. Middleton, and V. Toochinda, “Funda-
mental design limitations of the general control configuration,” IEEE Transac-
tions on Automatic Control, vol. 48, no. 8, pp. 1355–1370, Aug 2003.

[14] S. Hara and M. Kanno, When Is a Linear Continuous-time System Easy or
Hard to Control in Practice? London: Springer London, 2008, pp. 111–124.
[Online]. Available: http://dx.doi.org/10.1007/978-1-84800-155-8 8

[15] J. C. Doyle, J. E. Wall, and G. Stein, “Performance and robustness analysis
for structured uncertainty,” in 21st IEEE Conference on Decision and Control,
Dec 1982, pp. 629–636.

[16] J. Chen, J. S. Freudenberg, and C. N. Nett, “The role of the condition number
and the relative gain array in robustness analysis,” Automatica, vol. 30, no. 6,
pp. 1029–1035, 1994.

[17] S. Skogestad and K. Havre, “The use of RGA and condition number as
robustness measures,” Computers & Chemical Engineering, vol. 20, pp. S1005
– S1010, 1996. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0098135496001755

[18] S. Skogestad, M. Morari, and J. C. Doyle, “Robust control of ill-conditioned
plants: High-purity distillation,” IEEE Transactions on Automatic Control,
vol. 33, no. 12, pp. 1092–1105, Dec 1988.

[19] K. Havre and S. Skogestad, “Achievable performance of multivariable
systems with unstable zeros and poles,” International Journal of Control,
vol. 74, no. 11, pp. 1131–1139, 2001. [Online]. Available: https:
//doi.org/10.1080/00207170110053346

[20] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and
Design, 2nd ed. New York: Wiley, 2007.

[21] A. Khaki-Sedigh and B. Moaveni, Control Configuration Selection for Multivari-
able Plants, ser. Lecture Notes in Control and Information Sciences. Springer-
Verlag Berlin Heidelberg, 2009, vol. 391.

[22] J. Doyle, “Analysis of feedback systems with structured uncertainties,” IEE
Proceedings D - Control Theory and Applications, vol. 129, no. 6, pp. 242–250,
November 1982.

[23] J.-L. Goffin and J.-P. Vial, “Convex nondifferentiable optimization: A survey
focused on the analytic center cutting plane method,” Optimization Methods
and Software, vol. 17, no. 5, pp. 805–867, 2002.

[24] F. Babonneau, C. Beltran, A. Haurie, C. Tadonki, and J.-P. Vial, Proximal-
ACCPM: A Versatile Oracle Based Optimisation Method. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 67–89.

166

http://dx.doi.org/10.1007/978-1-84800-155-8_8
http://www.sciencedirect.com/science/article/pii/0098135496001755
http://www.sciencedirect.com/science/article/pii/0098135496001755
https://doi.org/10.1080/00207170110053346
https://doi.org/10.1080/00207170110053346

[25] J.-L. Goffin and J.-P. Vial, “Multiple cuts in the analytic center cutting plane
method,” SIAM Journal on Optimization, vol. 11, no. 1, pp. 266–288, 2000.
[Online]. Available: https://doi.org/10.1137/S1052623498340266

[26] J. Gondzio, O. du Merle, R. Sarkissian, and J.-P. Vial, “ACCPM - A library
for convex optimization based on an analytic center cutting plane method,”
European Journal of Operational Research, vol. 94, no. 1, pp. 206 – 211,
1996. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0377221796001695

[27] Y. Nesterov and J. P. Vial, “Homogeneous analytic center cutting plane
methods for convex problems and variational inequalities,” SIAM Journal
on Optimization, vol. 9, no. 3, pp. 707–728, 1999. [Online]. Available:
https://doi.org/10.1137/S1052623497324813

[28] J. E. Mitchell, Cutting Plane Methods and Subgradient Methods. Maryland,
USA: Institute for Operations Research and the Management Sciences
(INFORMS), 2009, ch. Chapter 2, pp. 34–61. [Online]. Available: https:
//pubsonline.informs.org/doi/abs/10.1287/educ.1090.0064

[29] S. Elhedhli, J.-L. Goffin, and J.-P. Vial, “Nondifferentiable optimization: Intro-
duction, applications and algorithms,” Kluwer Academic Publishers, Dordrecht,
pp. 1705–1710, 2000.

[30] O. Péton and J.-P. Vial, “A brief tutorial on ACCPM,” University of Geneva,
Tech. Rep., 2001.

[31] J.-L. Goffin and J.-P. Vial, “Convex nondifferentiable optimization: A
survey focused on the analytic center cutting plane method,” Optimization
Methods and Software, vol. 17, no. 5, pp. 805–867, 2002. [Online]. Available:
https://doi.org/10.1080/1055678021000060829a

[32] S. P. Boyd, L. Vandenberghe, and J. Skaf, “Analytic center cutting-plane
method,” 2018.

[33] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control System Design,
1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000.

[34] F. G. Shinskey, Process Control Systems: Application, Design and Tuning,
4th ed. New York, NY, USA: McGraw-Hill, Inc., 1996.

[35] K. Zhou, K. Glover, B. Bodenheimer, and J. Doyle, “Mixed H2 and H∞ per-
formance objectives. I: Robust performance analysis,” IEEE Transactions on
Automatic Control, vol. 39, no. 8, pp. 1564–1574, Aug 1994.

[36] J. Doyle, K. Zhou, and B. Bodenheimer, “Optimal control with mixed H2 and
H∞ performance objectives,” in IEEE American Control Conference, 1989,
June 1989, pp. 2065–2070.

167

https://doi.org/10.1137/S1052623498340266
http://www.sciencedirect.com/science/article/pii/0377221796001695
http://www.sciencedirect.com/science/article/pii/0377221796001695
https://doi.org/10.1137/S1052623497324813
https://pubsonline.informs.org/doi/abs/10.1287/educ.1090.0064
https://pubsonline.informs.org/doi/abs/10.1287/educ.1090.0064
https://doi.org/10.1080/1055678021000060829a

[37] P. P. Khargonekar and M. A. Rotea, “Mixed H2/H∞ control: A convex opti-
mization approach,” IEEE Transactions on Automatic Control, vol. 36, no. 7,
pp. 824–837, Jul 1991.

[38] C. W. Scherer, “Multiobjective H2/H∞ control,” IEEE Transactions on Auto-
matic Control, vol. 40, no. 6, pp. 1054–1062, Jun 1995.

[39] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control
via lmi optimization,” IEEE Transactions on Automatic Control, vol. 42, no. 7,
pp. 896–911, Jul 1997.

[40] H. A. Hindi, B. Hassibi, and S. P. Boyd, “Multiobjective H2/H∞-optimal con-
trol via finite dimensional Q-parametrization and linear matrix inequalities,” in
IEEE American Control Conference, 1998, vol. 5, Jun 1998, pp. 3244–3249.

[41] X. Qi, M. H. Khammash, and M. V. Salapaka, “Optimal controller synthesis
with multiple objectives,” in IEEE American Control Conference, 2001, vol. 4,
2001, pp. 2730–2735.

[42] P. Apkarian, D. Noll, and A. Rondepierre, “Mixed H2/H∞ control via
nonsmooth optimization,” SIAM Journal on Control and Optimization, vol. 47,
no. 3, pp. 1516–1546, 2008. [Online]. Available: http://dx.doi.org/10.1137/
070685026

[43] T. Iwasaki and S. Hara, “Feedback control synthesis of multiple frequency
domain specifications via generalized kyp lemma,” International Journal of
Robust and Nonlinear Control, vol. 17, no. 5-6, pp. 415–434, 2007. [Online].
Available: http://dx.doi.org/10.1002/rnc.1123

[44] ——, “Dynamic output feedback synthesis with general frequency domain
specifications,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 345
– 350, 2005, 16th IFAC World Congress. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1474667016370148

[45] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H∞
control,” International Journal of Robust and Nonlinear Control, vol. 4,
no. 4, pp. 421–448, 1994. [Online]. Available: http://dx.doi.org/10.1002/rnc.
4590040403

[46] Y. S. Hung and B. Pokrud, “An H∞ approach to feedback design with two
objective functions,” IEEE Transactions on Automatic Control, vol. 37, no. 6,
pp. 820–824, Jun 1992.

[47] Z. Hu, S. E. Salcudean, and P. D. Loewen, “Numerical solution of the multiple
objective control system design problem for siso systems,” in American Control
Conference, Proceedings of the 1995, vol. 2, Jun 1995, pp. 1458–1462.

[48] L. Hosseini-Ravanbod, D. Noll, and P. Apkarian, “Robustness via structured
H∞/H∞ synthesis,” International Journal of Control, vol. 84, no. 5, pp. 851–
866, 2011.

168

http://dx.doi.org/10.1137/070685026
http://dx.doi.org/10.1137/070685026
http://dx.doi.org/10.1002/rnc.1123
http://www.sciencedirect.com/science/article/pii/S1474667016370148
http://www.sciencedirect.com/science/article/pii/S1474667016370148
http://dx.doi.org/10.1002/rnc.4590040403
http://dx.doi.org/10.1002/rnc.4590040403

[49] M. Gabarrou, D. Alazard, and D. Noll, “Structured flight control law design
using non-smooth optimization,” IFAC Proceedings Volumes, vol. 43, no. 15,
pp. 536 – 541, 2010, 18th IFAC Symposium on Automatic Control in
Aerospace. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1474667015318966

[50] J. M. Rieber and F. Allgöwer, “From H∞ control to multiobjective control: An
overview,” at Automatisierungstechnik, vol. 54, no. 9, pp. 437–449, 2006.

[51] M. V. Salapaka and M. Dahleh, Multiple objective control synthesis, ser. Lecture
Notes in Control and Information Sciences. Springer, London: Springer-Verlag,
2000.

[52] W. M. Haddad, V. Chellaboina, and R. Kumar, “Multiobjective L1/H∞
controller design for systems with frequency and time domain constraints,” Eu-
ropean Journal of Control, vol. 6, no. 2, pp. 170 – 183, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0947358000709253

[53] J. R. Corrado and W. M. Haddad, “Robust fixed-structure controller synthesis,”
Ph.D. Dissertation, Georgia Institute of Technology, 2000.

[54] T. Basar and P. Bernhard, H∞ Optimal Control and Related Minimax Design
Problems: A Dynamic Game Approach, 2nd ed. Boston, MA: Birkhauser,
2008, vol. 235.

[55] K. Puttannaiah, A. A. Rodriguez, K. Mondal, J. A. Echols, and D. G. Carta-
gena, “A generalized mixed-sensitivity convex approach to hierarchical mul-
tivariable inner-outer loop control design subject to simultaneous input and
output loop breaking specifications,” in IEEE American Control Conference,
2016, July 2016, pp. 5632–5637.

[56] K. Puttannaiah, J. A. Echols, and A. A. Rodriguez, “A generalized H∞ control
design framework for stable multivariable plants subject to simultaneous output
and input loop breaking specifications,” in IEEE American Control Conference,
2015, July 2015, pp. 3310–3315.

[57] K. Puttannaiah, J. A. Echols, K. Mondal, and A. A. Rodriguez, “Analysis and
use of several generalized H∞ mixed sensitivity framework for stable multivari-
able plants subject to simultaneous output and input loop breaking specifica-
tions,” in Proceedings of the 54th IEEE Conference on Decision and Control,
2015, Dec 2015, pp. 6617–6622.

[58] K. Puttannaiah, “H∞ control design via convex optimization: Toward a com-
prehensive design environment,” M.S. Thesis, Arizona State University, Tempe,
AZ, 2013.

[59] S. P. Boyd and C. H. Barratt, Linear Controller Design: Limits of Performance.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1991.

[60] S. P. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004.

169

http://www.sciencedirect.com/science/article/pii/S1474667015318966
http://www.sciencedirect.com/science/article/pii/S1474667015318966
http://www.sciencedirect.com/science/article/pii/S0947358000709253

[61] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix in-
equalities in system and control theory. SIAM, 1994, vol. 15.

[62] J. A. Echols, K. Puttannaiah, K. Mondal, and A. A. Rodriguez,
“Fundamental control system design issues for scramjet-powered hypersonic
vehicles,” in AIAA Guidance, Navigation & Control Conference. American
Institute of Aeronautics and Astronautics, 2015. [Online]. Available:
http://dx.doi.org/10.2514/6.2015-1760

[63] K. Mondal, “Multivariable control of fixed wing aircrafts,” M.S. Thesis, Arizona
State University, Tempe, AZ, 2015.

[64] C. Peebles, Road to Mach 10: Lessons Learned from the X-43A Flight Research
Program. American Institute of Aeronautics and Astronautics, 2008.

[65] C. McClinton, “X-43-scramjet power breaks the hypersonic barrier: Dryden
lectureship in research for 2006,” in 44th AIAA Aerospace Sciences Meeting
and Exhibit, Aerospace Sciences Meetings, 2006.

[66] M. C. Davis and J. T. White, “X-43a flight-test-determined aerodynamic force
and moment characteristics at mach 7.0,” Journal of spacecraft and rockets,
vol. 45, no. 3, pp. 472–484, 2008.

[67] S. Sridharan, J. A. Echols, A. A. Rodriguez, and K. Mondal, “Integrated design
and control of hypersonic vehicles,” in IEEE American Control Conference,
2014, 2014, pp. 1371–1376.

[68] S. Sridharan, “Multidisciplinary optimization for the design and control of
uncertain dynamical systems,” Ph.D. Dissertation, Arizona State University,
Tempe, AZ, 2014.

[69] S. Sridharan and A. A. Rodriguez, “Impact of control specifications on vehicle
design for scramjet-powered hypersonic vehicles,” in AIAA Guidance, Naviga-
tion and Control Conference, 2013, pp. 1–18.

[70] S. Sridharan and A. Rodriguez, “Performance based control-relevant
design for scramjet-powered hypersonic vehicles,” in AIAA Guidance,
Navigation and Control Conference, 2012, pp. 1–17. [Online]. Available:
http://arc.aiaa.org/doi/pdf/10.2514/6.2012-4469

[71] J. J. Dickeson, “Control relevant modeling and design of scramjet-powered hy-
personic vehicles,” Ph.D. dissertation, Arizona State University, 2012.

[72] S. Sridharan, A. A. Rodriguez, J. J. Dickeson, and D. Soloway,
“Constraint enforcement and robust tube-based control for scramjet-
powered hypersonic vehicles with significant uncertainties,” in IEEE
American Control Conference, 2012, pp. 4619–4624. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6315659

170

http://dx.doi.org/10.2514/6.2015-1760
http://arc.aiaa.org/doi/pdf/10.2514/6.2012-4469
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6315659

[73] S. Sridharan, J. J. Dickeson, and A. A. Rodriguez, “Impact of plume modeling
on the design and control for a class of air-breathing hypersonic vehicles,” in
AIAA Guidance, Navigation and Control Conference, 2011, pp. 509–531.

[74] J. Khatri, “Modeling, analysis, and control of a hypersonic vehicle with sig-
nificant aero-thermo-elastic-propulsion interactions: Elastic, thermal and mass
uncertainty,” M.S. Thesis, Arizona State University, Tempe, AZ, 2011.

[75] J. J. Dickeson, A. A. Rodriguez, S. Sridharan, and A. Korad, “Elevator sizing,
placement, and control relevant tradeoffs for hypersonic vehicles,” in AIAA
Guidance, Navigation and Control Conference, 2010, pp. pp. 1–23.

[76] A. S. Korad, “Modeling, analysis, and control of a hypersonic vehicle with
significant aero-thermo-elastic-propulsion interactions,” M.S. Thesis, Arizona
State University, Tempe, AZ, 2010.

[77] S. Sridharan, “Control relevant design of scramjet-powered hypersonic vehi-
cles with aero-thermo-elastic-propulsive effects and uncertainty,” M.S. Thesis,
Arizona State University, Tempe, AZ, 2010.

[78] J. Dickeson, A. Rodriguez, S. Sridharan, J. Benavides, and D. Soloway, “De-
centralized control of an airbreathing scramjet-powered hypersonic vehicle,” in
AIAA Guidance, Navigation, and Control Conference, 2009.

[79] A. A. Rodriguez, J. J. Dickeson, S. Sridharan, A. Korad, J. Khatri, J. Benavides,
D. Soloway, A. Kelkar, and J. M. Vogel, “Control-relevant modeling, analysis,
and design for scramjet-powered hypersonic vehicles,” AIAA/DLR/DGLR In-
ternational Space Planes and Hypersonic Systems and Technologies Conference,
pp. 1–45, 2009.

[80] D. Soloway, A. A. Rodriguez, J. J. Dickeson, O. Cifdaloz, J. Benavides, S. Srid-
haran, A. Kelkar, and J. M. Vogel, “Constraint enforcement for scramjet-
powered hypersonic vehicles with significant aero-elastic-propulsion interac-
tions,” in 2009 American Control Conference, June 2009, pp. 3154–3159.

[81] J. M. Vogel, A. G. Kelkar, G. Inger, C. Whitmer, A. Sidlinger, and A. Ro-
driguez, “Control-relevant modeling of hypersonic vehicles,” in 2009 American
Control Conference, June 2009, pp. 2519–2524.

[82] A. A. Rodriguez, J. J. Dickeson, O. Cifdaloz, R. McCullen, J. Benavides,
S. Sridharan, A. Kelkar, J. M. Vogel, and D. Soloway, “Modeling and con-
trol of scramjet-powered hypersonic vehicles: Challenges, trends, & tradeoffs,”
Proceedings of the AIAA Guidance, Navigation, and Control Conference and
Exhibit, no. August, pp. 1–40, 2008.

[83] M. Bolender and D. Doman, A Non-Linear Model for the Longitudinal
Dynamics of a Hypersonic Air-breathing Vehicle. American Institute
of Aeronautics and Astronautics, 2018/04/11 2005. [Online]. Available:
https://doi.org/10.2514/6.2005-6255

171

https://doi.org/10.2514/6.2005-6255

[84] M. A. Bolender and D. B. Doman, “Nonlinear longitudinal dynamical
model of an air-breathing hypersonic vehicle,” Journal of Spacecraft and
Rockets, vol. 44, no. 2, pp. 374–387, 2018/04/11 2007. [Online]. Available:
https://doi.org/10.2514/1.23370

[85] M. W. Oppenheimer and D. B. Doman, “Control of an unstable, nonminimum
phase hypersonic vehicle model,” in 2006 IEEE Aerospace Conference, 2006,
pp. 7 pp.–.

[86] M. Liserre, F. Blaabjerg, and S. Hansen, “Design and control of an LCL-filter-
based three-phase active rectifier,” IEEE Transactions on Industry Applica-
tions, vol. 41, no. 5, pp. 1281–1291, Sept 2005.

[87] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed.
New York, NY, USA: Springer Science & Business Media, 2001.

[88] A. Sarkar, “Modeling and control of a three phase voltage source inverter with
an LCL filter,” M.S. Thesis, Arizona State University, 2015.

[89] A. Sarkar, K. Puttannaiah, and A. A. Rodriguez, “Inner-outer loop based robust
active damping for lcl resonance in grid-connected inverters using grid current
feedback,” in IEEE American Control Conference, 2018, to be published.

[90] D. Pan, X. Ruan, C. Bao, W. Li, and X. Wang, “Optimized controller design
for LCL-type grid-connected inverter to achieve high robustness against grid-
impedance variation,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 3, pp. 1537–1547, March 2015.

[91] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of
control and grid synchronization for distributed power generation systems,”
IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1398–1409, Oct
2006.

[92] M. Hanif, V. Khadkikar, W. Xiao, and J. L. Kirtley, “Two degrees of freedom ac-
tive damping technique for LCL filter-based grid connected pv systems,” IEEE
Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2795–2803, June 2014.

[93] “Modeling, Simulation, Animation, and Real-Time Control (MoSART) of Flex-
ible Autonomous Machines operating in an uncertain Environment (FAME),”
http://aar.faculty.asu.edu/research/mosart/mosart-fame.html, accessed: 2018-
07-20.

[94] A. A. Rodriguez, K. Puttannaiah, Z. Lin, J. Aldaco, Z. Li, X. Lu, K. Mon-
dal, S. D. Sonawani, N. Ravishankar, N. Das, and P. A. Pradhan, “Modeling,
design and control of low-cost differential-drive robotic ground vehicles: Part
i - single vehicle study,” in 2017 IEEE Conference on Control Technology and
Applications (CCTA), Aug 2017, pp. 155–160.

[95] ——, “Modeling, design and control of low-cost differential-drive robotic ground
vehicles: Part ii - multiple vehicle study,” in 2017 IEEE Conference on Control
Technology and Applications (CCTA), Aug 2017, pp. 161–166.

172

https://doi.org/10.2514/1.23370
http://aar.faculty.asu.edu/research/mosart/mosart-fame.html

[96] I. Anvari, “Non-holonomic differential drive mobile robot control and design:
Critical dynamics and coupling constraints,” M.S. Thesis, Arizona State Uni-
versity, 2013.

[97] D. Chopra, “Feedback control and obstacle avoidance for non-holonomic differ-
ential drive robots,” M.S. Thesis, Arizona State University, 2013.

[98] Z. Lin, “Modeling, design and control of multiple low-cost robotic ground vehi-
cles,” M.S. Thesis, Arizona State University, 2015.

[99] J. A. Lopez, “Image processing based control of mobile robotics,” M.S. Thesis,
Arizona State University, 2016.

[100] Z. Li, “Modeling and control of a longitudinal platoon of ground robotic vehi-
cles,” M.S. Thesis, Arizona State University, 2016.

[101] X. Lu, “Modeling and control for vision based rear wheel drive robot and solving
indoor SLAM problem using LIDAR,” M.S. Thesis, Arizona State University,
2016.

[102] N. Ravishankar, “Autonomous quadrotor navigation by detecting vanishing
points in indoor environments,” M.S. Thesis, Arizona State University, 2018.

[103] V. Renganathan, “Kill zone analysis for a bank-to-turn missile-target engage-
ment,” M.S. Thesis, Arizona State University, 2016.

[104] A. A. Rodriguez, P. A. Pradhan, K. Puttannaiah, N. Das, K. Mondal, and
A. Sarkar, “A comprehensive academic success and professional development
(ASAP) framework that uses career-steering/shaping projects to train engi-
neering students and develop critical life/professional skills: Part i - impact
on key groups,” in 2018 IEEE Frontiers in Education Conference Proceedings
(FIE), 2018, to be published.

[105] A. A. Rodriguez, P. Pradhan, K. Puttannaiah, N. Das, K. Mondal, A. Sarkar,
S. Sonawani, S. Lu, K. Bui, C. Cederstrom, C. Christie, Z. Giacometti,
C. Kurowski, N. Lopez, B. Pedroza, T. Rosenthal, M. Sabet, B. Soni,
and T. Waggoner, “A comprehensive ASAP framework that uses career-
steering/shaping projects to train engineering students and develop critical
life/professional skills: Part ii - case studies from students working on funded
projects,” in 2018 IEEE Frontiers in Education Conference Proceedings (FIE),
2018, to be published.

[106] A. A. Rodriguez, P. A. Pradhan, K. Puttannaiah, N. Das, K. Mondal, and
A. Sarkar, “Topical concerns and critical questions engineering students wan-
t/need answers to: Dependence on key groups,” in 2018 IEEE Frontiers in
Education Conference Proceedings (FIE), 2018, to be published.

[107] A. S. Thyagaturu, A. Mercian, M. P. McGarry, M. Reisslein, and W. Kellerer,
“Software defined optical networks (SDONs): A comprehensive survey,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2738–2786, 2016.

173

[108] A. S. Thyagaturu, Y. Dashti, and M. Reisslein, “SDN-based smart gateways
(Sm-GWs) for multi-operator small cell network management,” IEEE Transac-
tions on Network and Service Management, vol. 13, no. 4, pp. 740–753, 2016.

[109] Z. Alharbi, A. Thyagaturu, M. Reisslein, H. ElBakoury, and R. Zheng, “Perfor-
mance comparison of R-PHY and R-MACPHY modular cable access network
architectures,” IEEE Transactions on Broadcasting, 2017, to be published.

[110] A. S. Thyagaturu, Z. Alharbi, and M. Reisslein, “R-FFT: Function split at
IFFT/FFT in unified lte cran and cable access network,” IEEE Transactions
on Broadcasting, pp. 1–18, 2018, to be published.

[111] P. Shantharama, A. Thyagaturu, N. Karakoc, L. Ferrari, M. Reisslein, and
A. Scaglione, “LayBack: SDN management of multi-access edge computing
(MEC) for network access services and radio resource sharing,” IEEE Access,
2018, to be published.

[112] M. Reisslein and A. Thyagaturu, “Systems and methods for a smart gateway
sdn-based backhaul architecture for small cells,” Oct. 5 2017, uS Patent App.
15/476,611.

[113] C. Ellington, “The novel aerodynamics of insect flight: applications to micro-air
vehicles,” Journal of Experimental Biology, vol. 202, no. 23, pp. 3439–3448,
1999. [Online]. Available: http://jeb.biologists.org/content/202/23/3439

[114] C. T. Orlowski and A. R. Girard, “Dynamics, stability, and control
analyses of flapping wing micro-air vehicles,” Progress in Aerospace
Sciences, vol. 51, pp. 18 – 30, 2012. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0376042112000103

[115] S. Biswal, “Modeling and control of flapping wing micro aerial vehicles,” M.S.
Thesis, Arizona State University, 2015.

[116] P. A. Pradhan, K. Puttannaiah, K. Mondal, A. A. Rodriguez, and S. Biswal,
“Modeling and control of a flappingwing hawkmoth micro air vehicle using
generalized mixed sensitivity hierarchical design approach,” in AIAA Guidance,
Navigation, and Control Conference. American Institute of Aeronautics and
Astronautics, 2018, submitted for publication.

[117] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp. 94–125,
Mar. 2004. [Online]. Available: http://doi.acm.org/10.1145/980152.980157

[118] “Intel® Xeon® Processor E7- 2800/4800/8800 product family datasheet,” In-
tel Corporation, Tech. Rep., 2014.

[119] E. Intel, “SpeedStep® technology for the Intel® Pentium® M processor,”
Intel Corporation, Tech. Rep., 2004.

174

http://jeb.biologists.org/content/202/23/3439
http://www.sciencedirect.com/science/article/pii/S0376042112000103
http://www.sciencedirect.com/science/article/pii/S0376042112000103
http://doi.acm.org/10.1145/980152.980157

[120] N. N. Nandola and S. Bhartiya, “A multiple model approach for
predictive control of nonlinear hybrid systems,” Journal of Process
Control, vol. 18, no. 2, pp. 131 – 148, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0959152407001175

[121] ——, “A computationally efficient scheme for model predictive control of
nonlinear hybrid systems using generalized outer approximation,” Industrial &
Engineering Chemistry Research, vol. 48, no. 12, pp. 5767–5778, 2009. [Online].
Available: https://doi.org/10.1021/ie801384y

[122] ——, “Hybrid system identification using a structural approach and its
model based control: An experimental validation,” Nonlinear Analysis:
Hybrid Systems, vol. 3, no. 2, pp. 87 – 100, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1751570X08000708

[123] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework for hybrid
control: model and optimal control theory,” IEEE Transactions on Automatic
Control, vol. 43, no. 1, pp. 31–45, Jan 1998.

[124] R. Pörn, I. Harjunkoski, and T. Westerlund, “Convexification of different
classes of non-convex MINLP problems,” Computers and Chemical Engineering,
vol. 23, no. 3, pp. 439 – 448, 1999. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0098135498003056

[125] D. G. Cartagena, K. Puttannaiah, and A. A. Rodriguez, “Modeling of a multi-
core processor thermal dynamics for development of dynamic thermal manage-
ment controllers,” in IEEE American Control Conference, 2016, July 2016, pp.
6917–6922.

[126] N. N. Nandola and K. Puttannaiah, “Modeling and predictive control of non-
linear hybrid systems using disaggregation of variables - a convex formulation,”
in IEEE European Control Conference, 2013, July 2013, pp. 2681–2686.

[127] T. M. Apostol, Mathematical Analysis. Addison-Wesley Reading, 1974.

[128] W. Rudin et al., Principles of Mathematical Analysis. McGraw-hill New York,
1964, vol. 3.

[129] H. Royden and P. Fitzpatrick, Real Analysis, 4th ed. Pearson, 2010.

[130] V. Klema and A. Laub, “The singular value decomposition: Its computation
and some applications,” IEEE Transactions on Automatic Control, vol. 25,
no. 2, pp. 164–176, Apr 1980.

[131] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. Baltimore,
Maryland: The Johns Hopkins University Press, 2013.

[132] M. C. Grant and S. P. Boyd, “Graph implementations for nonsmooth convex
programs,” in Recent Advances in Learning and Control, V. D. Blondel, S. P.
Boyd, and H. Kimura, Eds. London: Springer London, 2008, pp. 95–110.

175

http://www.sciencedirect.com/science/article/pii/S0959152407001175
https://doi.org/10.1021/ie801384y
http://www.sciencedirect.com/science/article/pii/S1751570X08000708
http://www.sciencedirect.com/science/article/pii/S0098135498003056
http://www.sciencedirect.com/science/article/pii/S0098135498003056

[133] A. A. Rodriguez, Analysis and Design of Multivariable Feedback Control Sys-
tems. Tempe, AZ: CONTROL3D, L.L.C., 2002.

[134] J. F. Humphreys, A course in group theory. New York: Oxford University
Press, 1996.

[135] P. Grosdidier, M. Morari, and B. R. Holt, “Closed-loop properties
from steady-state gain information,” Industrial & Engineering Chemistry
Fundamentals, vol. 24, no. 2, pp. 221–235, 05 1985. [Online]. Available:
https://doi.org/10.1021/i100018a015

[136] A. Packard and J. Doyle, “The complex structured singular value,”
Automatica, vol. 29, no. 1, pp. 71 – 109, 1993. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/000510989390175S

[137] J. Chen, “Multivariable gain-phase and sensitivity integral relations and design
trade-offs,” IEEE Transactions on Automatic Control, vol. 43, no. 3, pp. 373–
385, Mar 1998.

[138] ——, “Logarithmic integrals, interpolation bounds, and performance limita-
tions in mimo feedback systems,” IEEE Transactions on Automatic Control,
vol. 45, no. 6, pp. 1098–1115, Jun 2000.

[139] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory.
Macmillan Publishing Co., 1990.

[140] K. J. Åström, “Model uncertainty and robust control,” in Lecture Notes on
Iterative Identification and Control Design, 2000, pp. 63–100.

[141] K. J. Åström and R. M. Murray, Feedback Systems: An Introduction for Scien-
tists and Engineers, 2nd ed. Princeton University Press, November 2016.

[142] ——, Feedback Systems: An Introduction for Scientists and Engineers. Prince-
ton University Press, 2008.

[143] K. J. Åström, “Limitations on control system performance,” European Journal
of Control, vol. 6, no. 1, pp. 2 – 20, 2000.

[144] G. Stein, “Respect the unstable,” IEEE Control Systems, vol. 23, no. 4, pp.
12–25, Aug 2003.

[145] J. Chen, “On logarithmic complementary sensitivity integrals for mimo sys-
tems,” in Proceedings of the 1998 American Control Conference. ACC (IEEE
Cat. No.98CH36207), vol. 6, Jun 1998, pp. 3529–3530 vol.6.

[146] A. A. Rodriguez, Analysis and Design of Feedback Control Systems. Tempe,
AZ: CONTROL3D, L.L.C., 2003.

[147] K. Zhou and J. C. Doyle, Essentials of Robust Control. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1998, vol. 104.

176

https://doi.org/10.1021/i100018a015
http://www.sciencedirect.com/science/article/pii/000510989390175S

[148] K. Zhou, J. C. Doyle, K. Glover et al., Robust and Optimal Control. Prentice
hall New Jersey, 1996, vol. 40.

[149] B. A. Francis, A Course in H∞ Control Theory, ser. Lecture Notes in Control
and Information Sciences. Springer-Verlag Berlin Heidelberg, 1987, vol. 88.

[150] B. A. Francis and J. C. Doyle, “Linear control theory with an H∞ optimality
criterion,” SIAM Journal on Control and Optimization, vol. 25, no. 4, pp.
815–844, 1987. [Online]. Available: https://doi.org/10.1137/0325046

[151] J. Maciejowski, Multivariable Feedback Design. Wokingham, Berkshire, UK:
Addison-Wesley, 1989.

[152] O. Cifdaloz, “H∞ mixed-sensitivity optimization for infinite dimensional plants
subject to convex constraints,” Ph.D. Dissertation, Arizona State University,
Tempe, AZ, 2007.

[153] M. Shayeb, “Multivariable control system design via convex optimization,” M.S.
Thesis, Arizona State University, Tempe, AZ, 2002.

[154] G. Balas, R. Chiang, A. Packard, and M. Safonov, “Robust control toolbox
users guide,” The Math Works, Inc, 2008.

[155] B. M. Chen, H∞ Control and its Applications, ser. Lecture Notes in Control
and Information Sciences. London: Springer-Verlag, 1998, vol. 235.

[156] K. Glover, H-Infinity Control. London: Springer London, 2013, pp. 1–9.
[Online]. Available: https://doi.org/10.1007/978-1-4471-5102-9 166-1

[157] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space
solutions to standard H2 and H∞ control problems,” IEEE Transactions on
Automatic Control, vol. 34, no. 8, pp. 831–847, Aug 1989.

[158] K. Glover and J. C. Doyle, “State-space formulae for all stabilizing
controllers that satisfy an H∞-norm bound and relations to relations to risk
sensitivity,” Systems and Control Letters, vol. 11, no. 3, pp. 167 – 172,
1988. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0167691188900552

[159] M. G. Safonov, D. J. N. Limebeer, and R. Y. Chiang, “Simplifying the H∞
theory via loop-shifting, matrix-pencil and descriptor concepts,” International
Journal of Control, vol. 50, no. 6, pp. 2467–2488, 1989. [Online]. Available:
https://doi.org/10.1080/00207178908953510

[160] A. Packard, K. Zhou, P. Pandey, J. Leonhardson, and G. Balas, “Optimal,
constant I/O similarity scaling for full-information and state-feedback control
problems,” Systems and Control Letters, vol. 19, no. 4, pp. 271 – 280,
1992. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
016769119290065Z

177

https://doi.org/10.1137/0325046
https://doi.org/10.1007/978-1-4471-5102-9_166-1
http://www.sciencedirect.com/science/article/pii/0167691188900552
http://www.sciencedirect.com/science/article/pii/0167691188900552
https://doi.org/10.1080/00207178908953510
http://www.sciencedirect.com/science/article/pii/016769119290065Z
http://www.sciencedirect.com/science/article/pii/016769119290065Z

[161] T. Iwasaki and R. Skelton, “All controllers for the general H∞ control
problem: LMI existence conditions and state space formulas,” Automatica,
vol. 30, no. 8, pp. 1307 – 1317, 1994. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0005109894901104

[162] R. Marler and J. Arora, “Survey of multi-objective optimization methods
for engineering,” Structural and Multidisciplinary Optimization, vol. 26,
no. 6, pp. 369–395, Apr 2004. [Online]. Available: https://doi.org/10.1007/
s00158-003-0368-6

[163] Y. H. Sardahi, “Multi-objective optimal design of control systems,” Ph.D. Dis-
sertation, UC Merced, Merced, CA, 2016.

[164] A. Gambier and M. Jipp, “Multi-objective optimal control: An introduction,”
in 2011 8th Asian Control Conference (ASCC), May 2011, pp. 1084–1089.

[165] A. Gambier and E. Badreddin, “Multi-objective optimal control: An overview,”
in 2007 IEEE International Conference on Control Applications, Oct 2007, pp.
170–175.

[166] W.-Y. Ng, Interactive Multi-Objective Programming as a Framework for
Computer-Aided Control System Design, 1st ed., ser. Lecture Notes in Con-
trol and Information Sciences. Springer-Verlag Berlin Heidelberg, 1989, vol.
132.

[167] D. Youla, H. Jabr, and J. Bongiorno, “Modern wiener-hopf design of optimal
controllers–part II: The multivariable case,” IEEE Transactions on Automatic
Control, vol. 21, no. 3, pp. 319–338, Jun 1976.

[168] G. Zames, “Feedback and optimal sensitivity: Model reference transformations,
multiplicative seminorms, and approximate inverses,” IEEE Transactions on
Automatic Control, vol. 26, no. 2, pp. 301–320, Apr 1981.

[169] V. Kučera, “Algebraic theory of discrete optimal control for multivariable
systems [i.],” Kybernetika, vol. 10, no. Suppl, pp. (1), 3–56, 1974. [Online].
Available: http://eudml.org/doc/28093

[170] M. Vidyasagar, Control System Synthesis: A Factorization Approach, Part I.
Morgan & Claypool Publishers, 2011, vol. 2, no. 1.

[171] ——, Control System Synthesis: A Factorization Approach, Part II. Morgan
& Claypool Publishers, 2011, vol. 2, no. 1.

[172] M.G.Safonov, E. Jonckheere, M.Vermaj, and D.J.N.Limebeer, “Synthesis
of positive real multivariable feedback systems,” International Journal
of Control, vol. 45, no. 3, pp. 817–842, 1987. [Online]. Available:
https://doi.org/10.1080/00207178708933772

[173] E. Polak and S. E. Salcudean, “On the design of linear multivariable feedback
systems via constrained nondifferentiable optimization in H∞ spaces,” IEEE
Transactions on Automatic Control, vol. 34, no. 3, pp. 268–276, March 1989.

178

http://www.sciencedirect.com/science/article/pii/0005109894901104
http://www.sciencedirect.com/science/article/pii/0005109894901104
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1007/s00158-003-0368-6
http://eudml.org/doc/28093
https://doi.org/10.1080/00207178708933772

[174] P. S. Heuberger, P. M. Van den Hof, and B. Wahlberg, Modelling and Identi-
fication with Rational Orthogonal Basis Functions. Springer-Verlag London,
2005.

[175] P. S. C. Heuberger, P. M. J. V. den Hof, and O. H. Bosgra, “A generalized
orthonormal basis for linear dynamical systems,” IEEE Transactions on Auto-
matic Control, vol. 40, no. 3, pp. 451–465, Mar 1995.

[176] H. Akçay and B. Ninness, “Orthonormal basis functions for continuous-time
systems and Lp convergence,” Mathematics of Control, Signals and Systems,
vol. 12, no. 3, pp. 295–305, Aug 1999.

[177] M. B. Jamoom, “Constrained optimization for hierarchical control system de-
sign,” M.S. Thesis, Massachusetts Institute of Technology, Boston, MA, 1999.

[178] P. Benner and T. Mitchell, “Faster and more accurate computation of the H∞
norm via optimization,” arXiv preprint arXiv:1707.02497, 2017.

[179] A. Varga and P. Parrilo, “Fast algorithms for solving H∞-norm minimization
problems,” in Proceedings of the 40th IEEE Conference on Decision and Control
(Cat. No.01CH37228), vol. 1, 2001, pp. 261–266 vol.1.

[180] P. Apkarian, D. Noll, and A. M. Simoes, “Time-domain control design: A non-
smooth approach,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 6, pp. 1439–1445, Nov 2009.

[181] V. Bompart, P. Apkarian, and D. Noll, “Control design in the time
and frequency domain using nonsmooth techniques,” Systems & Control
Letters, vol. 57, no. 3, pp. 271–282, 2008. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167691107001247

[182] S. P. Boyd and L. Vandenberghe, “Subgradients,” 2018.

[183] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course,
1st ed., ser. Applied Optimization. New York: Springer, 2004, vol. 87.

[184] A. Lewis, “Nonsmooth optimization and robust control,” Annual Reviews
in Control, vol. 31, no. 2, pp. 167 – 177, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1367578807000351

[185] A. S. Lewis and H. S. Sendov, “Nonsmooth analysis of singular values. part i:
Theory,” Set-Valued Analysis, vol. 13, no. 3, pp. 213–241, Sep 2005. [Online].
Available: https://doi.org/10.1007/s11228-004-7197-7

[186] ——, “Nonsmooth analysis of singular values. part ii: Applications,”
Set-Valued Analysis, vol. 13, no. 3, pp. 243–264, Sep 2005. [Online]. Available:
https://doi.org/10.1007/s11228-004-7198-6

[187] J. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: The-
ory and Examples, 2nd ed. New York: Springer-Verlag London, 2006.

179

http://www.sciencedirect.com/science/article/pii/S0167691107001247
http://www.sciencedirect.com/science/article/pii/S0167691107001247
http://www.sciencedirect.com/science/article/pii/S1367578807000351
https://doi.org/10.1007/s11228-004-7197-7
https://doi.org/10.1007/s11228-004-7198-6

[188] N. Z. Shor, K. C. Kiwiel, and A. Ruszcayǹski, Minimization Methods for Non-
differentiable Functions. Berlin, Heidelberg: Springer-Verlag, 1985.

[189] L. Lukšan and J. Vlcek, “Test problems for nonsmooth unconstrained and lin-
early constrained optimization,” Technická zpráva, vol. 798, 2000.

[190] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” in
Proceedings of the sixteenth annual ACM symposium on Theory of computing.
ACM, 1984, pp. 302–311.

[191] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Con-
vex Programming. Philadelphia, PA: Society for Industrial and Applied Math-
ematics, 1994, vol. 13.

[192] J. J. E. Kelley, “The cutting-plane method for solving convex programs,” Jour-
nal of the Society for Industrial and Applied Mathematics, vol. 8, no. 4, pp.
703–712, 1960.

[193] E. W. Cheney and A. A. Goldstein, “Newton’s method for convex programming
and tchebycheff approximation,” Numer. Math., vol. 1, no. 1, pp. 253–268,
Dec. 1959. [Online]. Available: http://dx.doi.org/10.1007/BF01386389

[194] A. Nemirovsky and D. Yudin, “Problem complexity and method efficiency in
optimization,” New York, 1983.

[195] J.-L. Goffin and J.-P. Vial, “On the computation of weighted analytic centers
and dual ellipsoids with the projective algorithm,” Mathematical Programming,
vol. 60, no. 1-3, pp. 81–92, 1993.

[196] Y. Nesterov, “Complexity estimates of some cutting plane methods based on
the analytic barrier,” Mathematical Programming, vol. 69, no. 1-3, pp. 149–176,
1995.

[197] D. S. Atkinson and P. M. Vaidya, “A cutting plane algorithm for convex pro-
gramming that uses analytic centers,” Mathematical Programming, vol. 69, no.
1-3, pp. 1–43, 1995.

[198] Y. Ye, Interior Point Algorithms: Theory and Analysis, ser. Wiley Series in
Discrete Mathematics and Optimization. Wiley, 2011.

[199] G. Sonnevend, “An “analytical centre” for polyhedrons and new classes of
global algorithms for linear (smooth, convex) programming,” in System Mod-
elling and Optimization, ser. Lecture Notes in Control and Information Sciences,
A. Prékopa, J. Szelezsáan, and B. Strazicky, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1986, pp. 866–875.

[200] ——, New Algorithms in Convex Programming Based on a Notion
of “Centre” (for Systems of Analytic Inequalities) and on Rational
Extrapolation. Basel: Birkhäuser Basel, 1988, pp. 311–326. [Online].
Available: https://doi.org/10.1007/978-3-0348-9297-1 20

180

http://dx.doi.org/10.1007/BF01386389
https://doi.org/10.1007/978-3-0348-9297-1_20

[201] ——, “Applications of the notion of analytic center in approximation
(estimation) problems,” Journal of Computational and Applied Mathematics,
vol. 28, pp. 349 – 358, 1989. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0377042789903464

[202] “Analytic Center Cutting Plane Method (ACCPM) webpage,” https://www.
maths.ed.ac.uk/∼gondzio/software/accpm.html, accessed: 2018-07-20.

[203] A. Kuntsevich and F. Kappel, “Solvopt: The solver for local nonlinear optimiza-
tion problems,” Institute for Mathematics, Karl-Franzens University of Graz,
1997.

[204] F. Kappel and A. V. Kuntsevich, “An implementation of shor’s r-algorithm,”
Computational Optimization and Applications, vol. 15, no. 2, pp. 193–205, Feb
2000. [Online]. Available: https://doi.org/10.1023/A:1008739111712

[205] H. Fendl and H. Schichl, “A feasible second order bundle algorithm for nons-
mooth nonconvex optimization problems with inequality constraints: II. imple-
mentation and numerical results,” arXiv preprint arXiv:1506.08021, 2015.

[206] N. Z. Shor, Minimization Methods for Non-Differentiable Functions, ser.
Springer Series in Computational Mathematics. Berlin Heidelberg: Springer-
Verlag, 1985, vol. 3.

[207] P. I. Stetsyuk, Shor’s r-Algorithms: Theory and Practice. Cham:
Springer International Publishing, 2017, pp. 495–520. [Online]. Available:
https://doi.org/10.1007/978-3-319-68640-0 24

[208] J. V. Burke, A. S. Lewis, and M. L. Overton, “The speed of shor’s r-algorithm,”
IMA Journal of Numerical Analysis, vol. 28, no. 4, pp. 711–720, Oct 2008.

[209] S. Gumussoy, D. Henrion, M. Millstone, and M. L. Overton, “Multiobjective
robust control with HIFOO 2.0,” IFAC Proceedings Volumes, vol. 42, no. 6, pp.
144 – 149, 2009, 6th IFAC Symposium on Robust Control Design.

[210] J. Burke, D. Henrion, A. Lewis, and M. Overton, “HIFOO - a
matlab package for fixed-order controller design and H∞ optimization,”
IFAC Proceedings Volumes, vol. 39, no. 9, pp. 339 – 344, 2006,
5th IFAC Symposium on Robust Control Design. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474667015335229

[211] F. E. Curtis, T. Mitchell, and M. L. Overton, “A BFGS-SQP method for
nonsmooth, nonconvex, constrained optimization and its evaluation using
relative minimization profiles,” Optimization Methods and Software, vol. 32,
no. 1, pp. 148–181, 2017. [Online]. Available: https://doi.org/10.1080/
10556788.2016.1208749

[212] T. Mitchell, “Robust and efficient methods for approximation and optimization
of stability measures,” Ph.D. Dissertation, New York University, 2014.

181

http://www.sciencedirect.com/science/article/pii/0377042789903464
http://www.sciencedirect.com/science/article/pii/0377042789903464
https://www.maths.ed.ac.uk/~gondzio/software/accpm.html
https://www.maths.ed.ac.uk/~gondzio/software/accpm.html
https://doi.org/10.1023/A:1008739111712
https://doi.org/10.1007/978-3-319-68640-0_24
http://www.sciencedirect.com/science/article/pii/S1474667015335229
https://doi.org/10.1080/10556788.2016.1208749
https://doi.org/10.1080/10556788.2016.1208749

[213] Y. Censor, “Pareto optimality in multiobjective problems,” Applied
Mathematics and Optimization, vol. 4, no. 1, pp. 41–59, Mar 1977. [Online].
Available: https://doi.org/10.1007/BF01442131

[214] “Decision tree for optimization software,” http://plato.asu.edu/sub/benchm.
html, accessed: 2018-07-20.

[215] D. M. Gay, “Hooking your solver to AMPL,” Citeseer, Tech. Rep., 1997.

[216] R. Fourer, D. M. Gay, and B. Kernighan, AMPL. Boyd & Fraser Danvers,
MA, 1993, vol. 117.

[217] R. Fourer, D. M. Gay, and B. W. Kernighan, “A modeling language for
mathematical programming,” Management Science, vol. 36, no. 5, pp. 519–554,
1990. [Online]. Available: https://doi.org/10.1287/mnsc.36.5.519

[218] “General Algebraic Modeling System (GAMS) website,” https://www.gams.
com/, accessed: 2018-07-20.

[219] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, and U. America, “The general
algebraic modeling system,” GAMS Development Corporation, vol. 1050, 1998.

[220] A. Forrai, “Robust controller design,” in Embedded Control System Design,
2013.

[221] M. G. Safonov and R. Y. Chiang, “CACSD using the state-space L∞ theory
– a design example,” IEEE Transactions on Automatic Control, vol. 33, no. 5,
pp. 477–479, May 1988.

[222] J. S. Freudenberg, R. Middleton, and A. Stefanpoulou, “A survey of inherent
design limitations,” in Proceedings of the 2000 American Control Conference,
vol. 5, 2000, pp. 2987–3001.

[223] P. Apkarian and D. Noll, “The H∞ control problem is solved,” AerospaceLab
Journal: Design and Validation of Aerospace Control Systems: New Methods &
Tools with Illustrations, no. 13, pp. 1–11, November 2017.

[224] P. Gahinet and P. Apkarian, “Decentralized and fixed-structure H∞ control in
matlab,” in 2011 50th IEEE Conference on Decision and Control and European
Control Conference, Dec 2011, pp. 8205–8210.

[225] P. Apkarian and D. Noll, “Nonsmooth H∞ synthesis,” IEEE Transactions on
Automatic Control, vol. 51, no. 1, pp. 71–86, Jan 2006.

[226] D. W. Gu, P. Petkov, and M. M. Konstantinov, Robust control design with
MATLAB®, 2nd ed. Springer-Verlag London, 2013.

[227] G. J. Balas, “Robust control of flexible structures: Theory and experiments,”
Ph.D. Dissertation, California Institute of Technology, Pasadena, CA, 1990.

182

https://doi.org/10.1007/BF01442131
http://plato.asu.edu/sub/benchm.html
http://plato.asu.edu/sub/benchm.html
https://doi.org/10.1287/mnsc.36.5.519
https://www.gams.com/
https://www.gams.com/

[228] K.-Y. Tsai and H. A. Hindi, “DQIT: µ-synthesis without D-scale fitting,” IEEE
Transactions on Automatic Control, vol. 49, no. 11, pp. 2028–2032, Nov 2004.

[229] ——, “DQIT: µ-synthesis without D-scale fitting,” in Proceedings of the 2002
American Control Conference (IEEE Cat. No.CH37301), vol. 1, May 2002, pp.
493–498 vol.1.

[230] K.-Y. Tsai and H. Hindi, “Method for design of multi-objective robust con-
trollers,” November 2004, uS Patent App. 10/709,458.

[231] J. Doyle, K. Lenz, and A. Packard, “Design examples using µ-synthesis: Space
shuttle lateral axis FCS during reentry,” in 1986 25th IEEE Conference on
Decision and Control, Dec 1986, pp. 2218–2223.

[232] E. Prempain and I. Postlethwaite, “A constant D-scale µ-synthesis approach
based on nonsmooth optimization,” IFAC Proceedings Volumes, vol. 41, no. 2,
pp. 15 209 – 15 213, 2008, 17th IFAC World Congress.

[233] A. Packard, J. Doyle, and G. Balas, “Linear, multivariable robust control with
a µ perspective,” Journal of Dynamic Systems, Measurement, and Control, vol.
115, no. 2B, pp. 426–438, 1993.

[234] R. S. da Silva de Aguiar, P. Apkarian, and D. Noll, “Structured robust control
against mixed uncertainty,” IEEE Transactions on Control Systems Technology,
pp. 1–11, 2017.

[235] E. F. M. Menezes, R. S. S. Aguiar, A. M. Simoes, and P. Apkarian, “Struc-
tured robust controller design via non-smooth mixed µ synthesis,” IET Control
Theory Applications, vol. 10, no. 17, pp. 2186–2193, 2016.

[236] P. Apkarian, M. N. Dao, and D. Noll, “Parametric robust structured control
design,” IEEE Transactions on Automatic Control, vol. 60, no. 7, pp. 1857–
1869, July 2015.

[237] P. Apkarian and H. D. Tuan, “Nonsmooth µ synthesis,” in 2010 11th Inter-
national Conference on Control Automation Robotics Vision, Dec 2010, pp.
917–922.

[238] F. R. Chavez and D. K. Schmidt, “Analytical aeropropulsive-aeroelastic
hypersonic-vehicle model with dynamic analysis,” Journal of Guidance,
Control, and Dynamics, vol. 17, no. 6, pp. 1308–1319, 2018/04/11 1994.
[Online]. Available: https://doi.org/10.2514/3.21349

[239] A. A. Rodriguez, Linear Systems Analysis and Design. Tempe, AZ: CON-
TROL3D, L.L.C., 2004.

[240] G. C. Goodwin, M. E. Salgado, and E. I. Silva, “Time-domain performance
limitations arising from decentralized architectures and their relationship to
the RGA,” International Journal of Control, vol. 78, no. 13, pp. 1045–1062,
2005. [Online]. Available: https://doi.org/10.1080/00207170500226016

183

https://doi.org/10.2514/3.21349
https://doi.org/10.1080/00207170500226016

[241] F. Yang, Z. Wang, Y. S. Hung, and H. Shu, “Mixed H2/H∞ filtering for uncer-
tain systems with regional pole assignment,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 41, no. 2, pp. 438–448, April 2005.

[242] M. Chilali, P. Gahinet, and P. Apkarian, “Robust pole placement in LMI re-
gions,” IEEE Transactions on Automatic Control, vol. 44, no. 12, pp. 2257–
2270, Dec 1999.

[243] ——, “Robust pole placement in lmi regions,” in Proceedings of the 36th IEEE
Conference on Decision and Control, vol. 2, Dec 1997, pp. 1291–1296.

[244] M. Ahookhosh, “High-dimensional nonsmooth convex optimization via optimal
subgradient methods,” Ph.D. Dissertation, University of Vienna, 2015.

[245] ——, “User’s manual for OSGA (optimal subgradient algorithm),” Vienna, Aus-
tria, January 2015.

[246] ——, “Optimal subgradient methods: computational properties for large-scale
linear inverse problems,” Optimization and Engineering, Mar 2018.

[247] J. Burke, A. Lewis, and M. Overton, “A robust gradient sampling algorithm for
nonsmooth, nonconvex optimization,” SIAM Journal on Optimization, vol. 15,
no. 3, pp. 751–779, 2005.

[248] “Nonsmooth optimization (NSO) software,” http://napsu.karmitsa.fi/
nsosoftware/, accessed: 2018-07-20.

[249] M. M. Mäkelä, N. Karmitsa, and A. Bagirov, “Subgradient and bundle meth-
ods for nonsmooth optimization,” in Numerical Methods for Differential Equa-
tions, Optimization, and Technological Problems: Dedicated to Professor P.
Neittaanmäki on His 60th Birthday, S. Repin, T. Tiihonen, and T. Tuovinen,
Eds. Dordrecht: Springer Netherlands, 2013, pp. 275–304.

[250] N. Karmitsa, A. Bagirov, and M. M. Mäkelä, “Comparing different nons-
mooth minimization methods and software,” Optimization Methods and Soft-
ware, vol. 27, no. 1, pp. 131–153, 2012.

[251] ——, “Empirical and theoretical comparisons of several nonsmooth minimiza-
tion methods and software,” TUCS Technical Report 959, Turku Centre for
Computer Science, Tech. Rep., 2009.

[252] K. Glover, J. Lam, and J. R. Partington, “Rational approximation of a
class of infinite-dimensional systems i: Singular values of hankel operators,”
Mathematics of Control, Signals and Systems, vol. 3, no. 4, pp. 325–344, Dec
1990. [Online]. Available: https://doi.org/10.1007/BF02551374

[253] ——, “Rational approximation of a class of infinite-dimensional systems ii:
Optimal convergence rates of L∞ approximants,” Mathematics of Control,
Signals and Systems, vol. 4, no. 3, pp. 233–246, Sep 1991. [Online]. Available:
https://doi.org/10.1007/BF02551279

184

http://napsu.karmitsa.fi/nsosoftware/
http://napsu.karmitsa.fi/nsosoftware/
https://doi.org/10.1007/BF02551374
https://doi.org/10.1007/BF02551279

[254] P. Bodin, L. Villemoes, and B. Wahlberg, “Selection of best orthonormal
rational basis,” SIAM Journal on Control and Optimization, vol. 38,
no. 4, pp. 995–1032, 2000. [Online]. Available: https://doi.org/10.1137/
S036301299732818X

185

https://doi.org/10.1137/S036301299732818X
https://doi.org/10.1137/S036301299732818X

APPENDIX A

MATLAB CODE

186

All the MATLAB codes presented below are written in the following MATLAB and
Java versions respectively:

• MATLAB Version: 9.1.0.441655 (R2016b).

• Java Version: Java 1.7.0_75-b13 with Oracle Corporation Java HotSpot™
64-Bit Server VM mixed mode.

A.1 Design Using Generalized Mixed Sensitivity

A.1.1 GMS Main Code (gms main.m)

% Main File for Control Design using Generalized Mixed Sensitivity(GMS)
%
% Computes a H-infinity based Feedback Controller based on
% multiobjective constrained convex optimization.
%
% Outline of steps for GMS problem setup:
% - Form the design plant:
% - Define the original plant
% - Integrator augmentation if needed
% - Bilinear transformation values if needed
%
% - Select weighting functions:
% - Tradeoff param rho
% - W for obj
% - W for constraint
%
% - Select optimization params:
% - LB and UB
% - Init point
% - Maximum number of iterations
%
% - Select Youla/Zames parametrization:
% - Select Youla or Zames
% - Initial controller
%
% - Finite Dimensionality
% - Basis params
%
% - Objective function:
% - sum/max/stacking
%
% - Find initial controller (Ko, F, L)
%
% - Youla parameterization
%
% - Find Initial Q parameter using initial controller (Ko, F, L)
%
% - Extract required data from problem setup
%

187

% - Vectorize the optimization problem
%
% - Optimization process
% - define how subgradient is picked based on sum/max/stacking
%
% - form Q using the optimized variables and bases
%
% - form Controller K using the obtained Q
%
% - Inverse bilinear transformation if needed
%
% - Inverse of integrator augmentation if needed
%
% - Compute OL and CL maps

%% Initial Code Setup
clear;
close all;
% clc;
% warning off;

% Transfer function variable
s = tf('s');

%% Design Plant

% % ------- Select one of the following PlntLabel ------- %
% PlntLabel='SISO Stable'; Bilinear=0; AugInteg=0;
PlntLabel='acad 2by2'; Bilinear=0; AugInteg=0;
% PlntLabel='hsv io'; Bilinear=1; AugInteg=0; AugTwoChannel=1;
% PlntLabel='1bys'; Bilinear=0; AugInteg=0;

% %-------------- Plant --------------%
switch PlntLabel

case 'SISO Stable'
P tf = tf([1],[1 1]);
P ss = ss(P tf);
[Ap, Bp, Cp, Dp] = ssdata(P ss);

case 'acad 2by2'
s=tf('s');
P tf = 1/s * [10 9; 9 8]; % Doyle Example
P orig = P tf;
% rolloff = 100/(s+100);
% P tf = series(rolloff,P tf);
P design = P tf;
P ss=ss(P tf);
[Ap, Bp, Cp, Dp] = ssdata(P ss);

case 'hsv io'
% % %------------ Flexible model ------------%
% A = [
% -0.0008 -0.0006 0.0000 0.0001 -0.0005 ...

-0.0000 -0.0012...
% 0 -0.0009 0
% 0.0398 -0.1068 -0.0000 0.1068 -0.0565 ...

0.0002 -0.0502...

188

% 0 -0.1122 0
% -8.1371 -6.4875 -0.0018 6.4875 -2.6934 ...

-0.0500 -13.9072...
% 0 -3.5889 0
% 0 0 1 0 0 0 ...

0 ...
% 0 0 0
% 0 0 0 0 0 1 ...

0 ...
% 0 0 0
% 97.7307 -175.4193 0 175.4193 -486.4654 ...

-0.7903 -62.4896...
% 0 -194.3275 0
% 0 0 0 0 0 0 ...

0 ...
% 1 0 0
% -29.74 -8.29 0 8.29 6.187 0 ...

1.578 ...
% 0 -8995 -3.796
%];
% B = [
% 0.07128 -0.0006543
% 0.242 0.01766
% -34.65 -9.551
% 0 0
% 0 0
% -20.3 39.96
% 0 0
% 176.1 -25.53
% 0 0
% -94.96 -4.327
%];
% C = [
% 1 0 0 0 0 0 0 0 0 0
% 0 1 0 0 0 0 0 0 0 0
%];
% D = [
% 0 0
% 0 0
%];
%
% P ss=ss(Ap,Bp,Cp,Dp);
% P ss TwoChannel=P ss; % backup the original plant ...

(2-output)
%
% % Parameters for bilinear transformation
% p2 = -1e20; p1 = -0.001;
%
% % Augment integrator at output, in first two channels
% AugTwoChannel=1;
% if AugTwoChannel==1
% s=tf('s');
% [Ap,Bp,Cp,Dp]=ssdata(P ss);
%
% % Make it 3-channel.
% Cps=[P ss TwoChannel.c; 0 0 0 1 zeros(1,6)];
% % First two states are of integrator

189

% P ss ThreeChannel=ss(Ap,Bp,Cps,[]); % backup
% M=[0 0 0 1 zeros(1,6)];
%
% % Augment integrator in first two output ...

channels of plant
% Ap=blkdiag(Ap,zeros(size(Cp,1)));
% Ap(end-size(Cp,1)+1:end,1:size(Cp,2))=Cp;
% Bp=[Bp; zeros(size(Cp,1),size(Bp,2))];
% Cp=[zeros(2,10), eye(2)];
% Cp=[Cp; zeros(1,3) 1 zeros(1,8)];
% P ss=ss(Ap,Bp,Cp,[]);
% P ss ThreeChannel AugInteg=P ss; % Backup
% else
% % Make it 3-channel
% Cps=[P ss TwoChannel.c; 0 0 0 1 zeros(1,6)];
% P ss=ss(Ap,Bp,Cps,[]); [Ap,Bp,Cp,Dp]=ssdata(P ss);
% P ss ThreeChannel=P ss; % Backup
% end

% %------------ Rigid model ------------%
Ap=[-0.0008659 -0.0004395 9.981e-09 -0.0001174

0.02865 -0.08627 -2.467e-06 0.08627
-8.706 -5.512 -0.001827 5.512
0 0 1 0];

Bp =[0.07122 -0.0006823
0.242 0.01353
-35.54 -9.621
0 0];

Cp =[1 0 0 0
0 1 0 0
0 0 0 1];

Dp =[0 0
0 0
0 0];

P ss=ss(Ap,Bp,Cp,Dp);
P ss TwoChannel=P ss(1:2,:); % backup original plant (2-output)

% Parameters for bilinear transformation
p2 = -1e20; p1 = -0.001;

% Augment integrator at output, in first two channels
if AugTwoChannel==1

s=tf('s');
[Ap,Bp,Cp,Dp]=ssdata(P ss TwoChannel);

% Make it 3-channel.
P ss ThreeChannel=P ss; % backup
M=[0 0 0 1];

% Augment integrator in first two output channels of plant
Ap=blkdiag(Ap,zeros(size(Cp,1)));
Ap(end-size(Cp,1)+1:end,1:size(Cp,2))=Cp;
Bp=[Bp; zeros(size(Cp,1),size(Bp,2))];
Cp=[zeros(2,4), eye(2)];
Cp=[Cp; zeros(1,3) 1 zeros(1,2)];
P ss=ss(Ap,Bp,Cp,[]);
P ss ThreeChannel AugInteg=P ss; % Backup

190

else
% Make it 3-channel
Cps=[P ss TwoChannel.c; 0 0 0 1];
P ss=ss(Ap,Bp,Cps,[]); [Ap,Bp,Cp,Dp]=ssdata(P ss);
P ss ThreeChannel=P ss; % Backup 3-output

end

P ss=ss(Ap,Bp,Cp,[]);
P tf=tf(P ss);

case '1bys'
P tf = tf([1],[1 0]);%*[1 0.1; 0.1 1];
P ss = ss(P tf);
% s=tf('s'); P tf=P tf/s; P ss=series(ss(0,1,1,0),P ss);
[Ap, Bp, Cp, Dp] = ssdata(P ss);

end

% %-------- Integrator augmentation at output if needed -------%
if AugInteg==1

Integ=ss(0,1,1,0);
P0=P ss;
P ss=series(Integ,P ss);
[Ap, Bp, Cp, Dp] = ssdata(P ss);

end

% %------------ Size of design plant ------------%
[n e, n u] = size(P ss);

%% Bilinear Transformation
if Bilinear==1

P ss BeforeBilin=P ss; % Backup plant before bilin transform
[Ap,Bp,Cp,Dp]=bilin(P ss.a,P ss.b,P ss.c,P ss.d,1,'Sft jw',[p2 p1]);
P ss=ss(Ap,Bp,Cp,Dp);
P ss BilinPlnt=P ss; % backup bilin transformed plant

end

%% Objective Weighting Functions
%%%
% Design parameters: Weights for multiobjective function
% mu corresponds to weight on properties at plant output,
% rho corresponds to weight on properties at plant input
% If eta is defined, it corresponds to weight on properties at ...

sensor noise
% for the inner-outer loop case

mu1=1; mu2=1; mu3=1; rho1=1; rho2=1; rho3=1;
% eta1=1e-1; eta3=0;

switch PlntLabel
case {'SISO Stable'}

Eps=0.01;
Ms=1.5; wb=10;
W1 = tf([1/Ms wb], [1 wb*Eps]);
% % W1 = (1/Ms)*tf([1 nthroot(Ms,k1)*wb],[1 ...

nthroot(Eps,k1)*wb])ˆk1;

191

Mu=1/30; wbu=750;
W2 = [tf([1 wbu*Mu],[Eps wbu])];
% % W2 = (1/Eps)*tf([1 wbu*nthroot(Mu,k2)],[1 ...

wbu/nthroot(Eps,k2)])ˆk2;
My=30; wbc=1000;
% W3 = tf([1 wbc/My], [Eps wbc]);
% % W3 = (1/Eps)*tf([1 wbc/nthroot(My,k3)],[1 ...

wbc/nthroot(Eps,k3)])ˆk3;
W3 = ss(1);
Wd1=W1(1,1);
wd21=0.1; wd22=1; wd23=10; s=tf('s');
Wd2=((wd21/(s+wd21))*((s+wd22)/wd22)ˆ2*(wd23/(s+wd23)));
Wd3=W3(1,1);
W1=mu1*W1; W2=mu2*W2; W3=mu3*W3;
W1=ss(W1); W2=ss(W2); W3=ss(W3);
Wd1=rho1*Wd1; Wd2=rho2*Wd2; Wd3=rho3*Wd3;
Wd1=ss(Wd1); Wd2=ss(Wd2); Wd3=ss(Wd3);

case {'acad 2by2'}
Eps=0.01; Ms=2; wb1=1; wb2=1;
W1 = [tf([1/Ms wb1], [1 wb1*Eps]) 0; 0 tf([1/Ms wb2], [1 ...

wb2*Eps])];
Eps=0.01; Ms=2; wb1=2; wb2=2;
Wd1 = [tf([1/Ms wb1], [1 wb1*Eps]) 0; 0 tf([1/Ms wb2], [1 ...

wb2*Eps])];
W2 = ss(eye(2));
W3 = ss(eye(2));
Wd2 = ss(eye(2));
Wd3 = ss(eye(2));
W1=mu1*W1; W2=mu2*W2; W3=mu3*W3;
W1=ss(W1); W2=ss(W2); W3=ss(W3);
Wd1=rho1*Wd1; Wd2=rho2*Wd2; Wd3=rho3*Wd3;
Wd1=ss(Wd1); Wd2=ss(Wd2); Wd3=ss(Wd3);

case 'hsv io'
% Weights for case: Two loop-breaking points
Eps1=0.01; Ms1=1.08; wb1=0.01; Ms2=1.08; wb2=0.01;
W1 = [tf([1/Ms1 wb1], [1 wb1*Eps1]) 0; 0 tf([1/Ms2 wb2],...

[1 wb2*Eps1])];
Eps2=1; Mu1=0.1; wbu1=1000; Mu2=0.1; wbu2=1000;
W2 = [tf([1 wbu1*Mu1],[Eps2 wbu1]) 0; 0 tf([1 wbu2*Mu2],...

[Eps2 wbu2])];
Eps3=0.01; My=1.3; wbc=100;
W3 = tf([1 wbc/My], [Eps3 wbc])*eye(2);
Epsd1=0.01; Msd1=1.05; wbd1=0.18;
Wd1=tf([1/Msd1 wbd1], [1 wbd1*Epsd1])*eye(n u);
wd21=1; wd22=1; wd23=1;
Wd2=((wd21/(s+wd21))*((s+wd22)/wd22)ˆ2*(wd23/(s+wd23)))*eye(2);
Epsd3=0.01; Myd=1.3; wbcd=1000;
Wd3=tf([1 wbcd/Myd], [Epsd3 wbcd])*eye(n u);
W1=mu1*W1; W2=mu2*W2; W3=mu3*W3;
W1=ss(W1); W2=ss(W2); W3=ss(W3);
Wd1=rho1*Wd1; Wd2=rho2*Wd2; Wd3=rho3*Wd3;
Wd1=ss(Wd1); Wd2=ss(Wd2); Wd3=ss(Wd3);

% % Weights for case: Three loop-breaking points
% Eps1=0.01; Ms1=1.08; wb1=0.01; Ms2=1.08; wb2=0.01;

192

% W1 = [tf([1/Ms1 wb1], [1 wb1*Eps1]) 0; 0 tf([1/Ms2 ...
wb2],...

% [1 wb2*Eps1])];
% Eps2=1; Mu1=0.1; wbu1=2000; Mu2=0.1; wbu2=2000;
% W2 = [tf([1 wbu1*Mu1],[Eps2 wbu1]) 0; 0 tf([1 ...

wbu2*Mu2],...
% [Eps2 wbu2])];
% Eps3=0.01; My=1.3; wbc=100;
% W3 = tf([1 wbc/My], [Eps3 wbc])*eye(2);
% Epsd1=0.01; Msd1=1.0; wbd1=0.1;
% Wd1=tf([1/Msd1 wbd1], [1 wbd1*Epsd1])*eye(n u);
% wd21=1; wd22=1; wd23=1;
% ...

Wd2=((wd21/(s+wd21))*((s+wd22)/wd22)ˆ2*(wd23/(s+wd23)))*eye(2);
% Epsd3=0.01; Myd=1.2; wbcd=1000;
% Wd3=tf([1 wbcd/Myd], [Epsd3 wbcd])*eye(n u);
% Epsni1=0.1;
% Mu1=0.001; wbu1=520; Mu2=0.001; wbu2=520;
% Wni1 = [(1/sqrt(Epsni1)*tf([1 wbu1*sqrt(Mu1)],[1 ...

wbu1...
% /sqrt(Epsni1)]))ˆ2 0; 0 (1/sqrt(Epsni1)*tf([1 ...
% wbu2*sqrt(Mu2)],[1 wbu2/sqrt(Epsni1)]))ˆ2];
% Wni1 = Wni1(1,1)*eye(n u);
% Wni3 = Wd1(1,1);
% W1=mu1*W1; W2=mu2*W2; W3=mu3*W3;
% W1=ss(W1); W2=ss(W2); W3=ss(W3);
% Wd1=rho1*Wd1; Wd2=rho2*Wd2; Wd3=rho3*Wd3;
% Wd1=ss(Wd1); Wd2=ss(Wd2); Wd3=ss(Wd3);
% Wni1=eta1*Wni1; Wni1=ss(Wni1);
% Wni3=eta3*Wni3; Wni3=ss(Wni3);

case '1bys'
Eps = 0.00001;
Ms = 10; wb = 1; k1 = 1;
W1 = (1/Ms)*(s+nthroot(Ms,k1)*wb)ˆk1/((s+wb*Eps*0.1/0.1ˆk1)...

*(s+0.1*wb)ˆ(k1-1));
W2 = ss(1);
My = 10; wbc = 1; k3 = 1;
W3 = (1/Eps)*(s+wbc/nthroot(My,k3))ˆk3/((s+10*wbc)ˆ(k3-1)*...

(s+wbc*10/(Eps*10ˆk3)));
Wd1 = W1;
Wd2 = W2;
Wd3 = W3;

W1=mu1*W1; W2=mu2*W2; W3=mu3*W3;
W1=ss(W1); W2=ss(W2); W3=ss(W3);
Wd1=rho1*Wd1; Wd2=rho2*Wd2; Wd3=rho3*Wd3;
Wd1=ss(Wd1); Wd2=ss(Wd2); Wd3=ss(Wd3);

end

%% Constraint Weighting Functions

constr flag = 1; % 0 = unconstrained, 1 = constrained.

if constr flag == 0
W1c=[];

193

W2c=[];
W3c=[];
Wd1c=[];
Wd2c=[];
Wd3c=[];

elseif constr flag == 1
W1c=[];
W2c=[];
W3c=[];
Wd1c=[];
Wd2c=[];
Wd3c=[];

W2c{1}.tfm = ss(1)*eye(n u); % Constraint Weigthing
W2c{1}.Fun = 'f Hinf'; % Constraint Type
W2c{1}.Val = 20; % Constraint Value

% W2c{1}.tfm = ss(1)*eye(n u); % Constraint Weigthing
% W2c{1}.Fun = 'f Linf'; % Constraint Type
% W2c{1}.Val = 6; % Constraint Value
%
% W2c{1}.tfm = ss(1)*eye(n u); % Constraint Weigthing
% W2c{1}.Fun = 'f Linf'; % Constraint Type
% W2c{1}.Val = [Inf Inf; Inf 24]; % Constraint Value

else
disp('Set constr flag to indicate unconstrained or constrained')

end

%% Weighting functions data structure
weights.W1 = W1;
weights.W2 = W2;
weights.W3 = W3;
weights.Wd1 = Wd1;
weights.Wd2 = Wd2;
weights.Wd3 = Wd3;

weights.W1c = W1c;
weights.W2c = W2c;
weights.W3c = W3c;
weights.Wd1c = Wd1c;
weights.Wd2c = Wd2c;
weights.Wd3c = Wd3c;

if (exist('Wni1','var'))
weights.Wni1 = Wni1;

end
if (exist('Wni3','var'))

weights.Wni3 = Wni3;
end

%% Finite Dimensionality: Basis parameters

Basis.n = 5;
Basis.type = 2;
Basis.p = 10;

194

Basis.z = 10;

N = Basis.n;

%% Youla/Zames Parameterization
% Youla=1 or Zames=0; Type of parameterization.
% Zames only for stable plant, zero (0) initial controller
YoulaOrZames=1;

%% Optimization Parametrs: Bounds and initial point
xmax1 = 100; xmin1 = -100;
x01 = 1; % Initial point for optimization xk'
MaxIter = 100;

% Form the vector of LB, UB and initial point
x0=x01*ones(N*n u*n e,1);
xmax=xmax1*ones(N*n u*n e,1); xmin=xmin1*ones(N*n u*n e,1);

%% Optimization to find Controller
SumOrMax =1; % 1=Max, 2=Sum.

%% Nominal Controller
[Ko,F,L]=f KNominal(P ss);

%% Coprime factorization
if YoulaOrZames==1

% --------- Classic P*K structure (no inner-outer) ---------%
[T11rz, T12rz, T21rz,T11dz, T12dz, T21dz]=f CoprFac(P ss,...

F,L, weights);

% %--------- Added for Hypersonic inner-outer ---------%
% [T11rz, T12rz, T21rz,T11dz, T12dz, ...

T21dz]=f CoprFac hsvio(P ss,...
% F,L, weights);

% %--------- Added for Hypersonic inner-outer WITH Tniu ...
---------%

% [T11rz, T12rz, T21rz, T11dz, T12dz, T21dz,T11niz,T12niz,...
% T21niz]=f CoprFac hsvio Tniu(P ss,F,L, weights);

%
else

[T11rz, T12rz, T21rz,T11dz, T12dz, T21dz]=f CoprFac ZamesParam...
(P ss,F,L, weights);

end

%% Initial Q-parameter
n x=size(Ap,1); n e=size(Cp,1); n u=size(Bp,2);
N = Basis.n;
q = f Basis(N, Basis.p, Basis.z, Basis.type);
% x0 = x01*ones(N*n u*n e,1);
Q = f FormQN(x0, q, n u, n e, N);
xk=x0;

%% Problem Data

% %--------- Classic P*K structure (no inner-outer) ---------%

195

[n e, n u, ProblemDatarz, ProblemDatadz] = f GenData(P ss, weights);

% %--------- Added for Hypersonic inner-outer ---------%
% % P ss1=P ss(1:2,1:2); n u=2; n e=2;% Added for HSV inner-outer
% [n e, n u, ProblemDatarz, ProblemDatadz] = f GenData hsvio(P ss, ...

weights);

% --------- Added for Hypersonic inner-outer WITH Tniu ---------%
% [n e, n u, ProblemDatarz, ProblemDatadz, ProblemDataniz] = ...

f GenData hsvio Tniu(P ss, weights);

Datarz=ProblemDatarz; Datadz=ProblemDatadz;
% --------- Added for Hypersonic inner-outer WITH Tniu ---------%
% Datarz=ProblemDatarz; Datadz=ProblemDatadz; Dataniz=ProblemDataniz;

%% Vectorization
[Mrz, Mobjrz, ...

Mconrz]=f Vectorize(T11rz,T12rz,T21rz,q,N,n u,n e,ProblemDatarz);
[Mdz, Mobjdz, ...

Mcondz]=f Vectorize(T11dz,T12dz,T21dz,q,N,n u,n e,ProblemDatadz);

% [Mrzc, Mobjrzc, Mconrzc] = f Vectorize(T11rz1c, T11rz1c, T11rz1c, ...
q, N, n u, n e, ProblemDatarzc);

% --------- Added for Hypersonic inner-outer WITH Tniu ---------%
% [Mniz, Mobjniz, ...

Mconniz]=f Vectorize(T11niz,T12niz,T21niz,q,N,n u,n e,ProblemDataniz);

%% Optimization process
NQ=N;
N = length(xk); % Dimension of problem

algo = 2; % 1=ACCPM, 2=Kelley's CPM, 3=SolvOpt.

if algo == 1
% -------- ACCPM -------- %
switch SumOrMax

case 1
% % Weighted Minmax

[xk,fx,iter cnt,perf meas]=...
f ACCPM GenMixSens Optimizer(N,NQ,xk,Mobjrz,Mobjdz,...
Mconrz,Mcondz,T11rz, T12rz, T21rz,T11dz, T12dz, ...
T21dz,Datarz,Datadz,Q,q,n u,n e,xmax,xmin,MaxIter);

% %--------- Added for HSV IO WITH Tniu ---------%
% [xk,fx,iter cnt,perf meas]=...
% f ACCPM GenMixSens Optimizer With Tniu...
% (N,NQ,xk,Mobjrz,Mobjdz,Mobjniz,Mconrz,Mcondz,...
% Mconniz,T11rz, T12rz, T21rz,T11dz, T12dz, T21dz,...
% T11niz,T12niz,T21niz, Datarz, Datadz,Dataniz, Q,q,...
% n u,n e,xmax,xmin,MaxIter);
%

case 2
% % Weighted Sum

196

[xk,fx,iter cnt,perf meas]=...
f ACCPM GenMixSens Optimizer Sum...
(N,NQ,xk,Mobjrz,Mobjdz,Mconrz,Mcondz,...
T11rz, T12rz, T21rz,T11dz, T12dz, T21dz,...
Datarz, Datadz, Q,q,n u,n e,xmax,xmin,MaxIter);

end

elseif algo == 2

% -------- KELLEY'S CPM -------- %

switch SumOrMax
case 1

% Weighted Minmax

[xk,frz,fdz]=f KelleyCPM GenMix Optimizer...
(N,NQ,xk,Mobjrz,Mobjdz,Mconrz,Mcondz,T11rz,T12rz,...
T21rz,T11dz, T12dz, T21dz, Datarz, Datadz, Q,q,n u,...
n e,MaxIter,xmax,xmin);

% %--------- Added for HSV IO WITH Tniu ---------%
% [xk,frz,fdz]=f KelleyCPM GenMix Optimizer With Tniu...
% (N,NQ,xk,Mobjrz,Mobjdz,Mobjniz,Mconrz,Mcondz,T11rz,...
% T12rz, T21rz,T11dz, T12dz, T21dz,T11niz,T12niz,...
% T21niz, Datarz, Datadz,Dataniz, ...

Q,q,n u,n e,MaxIter,...
% xmax,xmin);

case 2
% Weighted sum
[xk,fo]=f KelleyCPM GenMix Optimizer Sum...

(N,NQ,xk,Mobjrz,Mobjdz,Mconrz,Mcondz,T11rz,...
T12rz, T21rz,T11dz, T12dz, T21dz, Datarz,Datadz,...
Q,q,n u,n e,MaxIter,xmax,xmin);

end

elseif algo == 3
% -------- SOLVOPT -------- %

opts(1) = -1; % negative => minimization
opts(2) = 1e-4;
opts(3) = 1e-4;
opts(4) = MaxIter; % default num iter 15000
opts(5) = 0; % 1->verbose, 0->silent
NQ = N/(n u*n e);
[xk solvopt,fx solvopt,opts solvopt] = solvopt(x0,...

@(x)solvopt fval(x,NQ,Mobjrz,Mobjdz,Mconrz,Mcondz,T11rz,...
T12rz, T21rz,T11dz, T12dz, T21dz, Datarz, Datadz, q,n u,...

n e),@(x)solvopt sg(x,NQ,Mobjrz,Mobjdz,Mconrz,Mcondz,T11rz,...
T12rz, T21rz,T11dz, T12dz, T21dz, Datarz, Datadz, q,n u,n e),opts);

else
disp('Choose a valid algorithm')

end

%% Form Q
Q = f FormQN(xk, q, n u, n e, NQ);

197

disp(' ')

%%
[forz, Gfo] =feval('f Hinf', Mobjrz, xk, T11rz, T12rz, T21rz, Q, ...

Datarz.ObjVec);
[fodz, Gfo] =feval('f Hinf', Mobjdz, xk, T11dz, T12dz, T21dz, Q, ...

Datadz.ObjVec);
fx=max([forz,fodz]);

%% Form K
if YoulaOrZames==1

K=f FormK(P ss,Q,F,L); % youla parameterization
else

K=f FormK ZamesParam(P ss,Q,F,L); % Zames parameterization
end

T copr.T11rz = T11rz;
T copr.T12rz = T12rz;
T copr.T21rz = T21rz;

T copr.T11dz = T11dz;
T copr.T12dz = T12dz;
T copr.T21dz = T21dz;

% --------- Added for Hypersonic inner-outer WITH Tniu ---------%
% T copr.T11niz = T11niz;
% T copr.T12niz = T12niz;
% T copr.T21niz = T21niz;

%% *************** Inverse Bilinear Transformations ***************
if Bilinear==1

[Acp1,Bcp1,Ccp1,Dcp1] = ssdata(K);
K BeforeInvBilin=K; % Backup K before inverse bilin transformation
[Atk1,Btk1,Ctk1,Dtk1]=bilin(Acp1,Bcp1,Ccp1,Dcp1,-1,'Sft jw',[p2 ...

p1]);
K=ss(Atk1,Btk1,Ctk1,Dtk1);
P ss=P ss BeforeBilin;

end

%% Analysis of Control Design

% Frequency vector
wvec2=logspace(-3,3,1000); tvec=linspace(0,10,100);

% Form open and closed loop maps
if strcmp(PlntLabel,'hsv io')

K Design=K; % Backup design K (without integ aug)
K = minreal(K);

if AugTwoChannel==1
% % Augment integrator at input, in all channels
% K=series(K,1/s);
% Augment integrator at output, in first two channels
Kouter=series(1/s,K(:,1:2));
Kinner=K(:,3:end);

else
Kouter=K(:,1:2);

198

Kinner=K(:,3:end);
end

if AugTwoChannel==1
K=series(blkdiag(1/s, 1/s, 1),K);

end

% Add ROLL-OFF if needed
K NoRolloff=K; % backup
% K=series(K NoRolloff,(58/(s+58))ˆ2);

P ss=P ss TwoChannel; % Plant 2-outputs, without integ

[Lo,Li,So,Si,To,Ti,KS,PS,Tniy,Tniu]=f CLMapInnerOuter BigK...
(P ss TwoChannel,K,M);

% Modify weights to remove near-zero dummy values
W1=W1(1:size(So,1),1:size(So,1));
W3=W3(1:size(To,1),1:size(To,1));
Wd2=Wd2(1:size(KS,1),1:size(KS,1));
n e=2; n u=2;

else
% K = minreal(K);
% Standard feedback (no inner loop)
[Lo,Li,So,Si,To,Ti,KS,PS] = f CLTFM(P ss,K);

end

K gms=K;

%% Display max xk and isstable(To)
max xk=max(abs(xk))

isstab=isstable(To)

%% CL Performance and Robustness

NormInf = mag2db([hinfnorm(So), hinfnorm(Si), hinfnorm(KS), ...
hinfnorm(PS), hinfnorm(To), hinfnorm(Ti)])

PerformMeasOutOrigWts=norm([W1*So; W2*KS; W3*To],inf);
PerformMeasInOrigWts=norm([Wd1*Si; Wd2*PS; Wd3*Ti],inf);

% % Bandwidth/crossovers
% BW 20 So = min(getGainCrossover(So,0.1))
% BW 20 Si = min(getGainCrossover(Si,0.1))
% BW 20 To = max(getGainCrossover(To,0.1))
% BW 20 Ti = max(getGainCrossover(Ti,0.1))
% BW 0 KS = max(getGainCrossover(KS,1))
% BW 0 PS = max(getGainCrossover(PS,1))
% % BW 0 Tniu = max(getGainCrossover(Tniu,1))
% BW 0 Lo = max(getGainCrossover(Lo,1))
% BW 0 Li = max(getGainCrossover(Li,1))

% % Time domain properties
% To stepinfo = stepinfo(To);

199

% % v ts = To stepinfo(1,1).SettlingTime
% % gamma ts = To stepinfo(2,2).SettlingTime
% ts1 = To stepinfo(1,1).SettlingTime
% ts2 = To stepinfo(2,2).SettlingTime
% KS stepinfo = stepinfo(KS);
% % peak FER = KS stepinfo(1,1).Peak
% % peak elev = KS stepinfo(2,2).Peak
% u peak1 = KS stepinfo(1,1).Peak
% u peak2 = KS stepinfo(2,2).Peak

A.1.2 Nominal Controller Design (f KNominal.m)

function [Ko,F,L]=f KNominal(P ss)
% Nominal Controller
[Ap, Bp, Cp, Dp] = ssdata(P ss);
n x=size(Ap,1); n e=size(Cp,1); n u=size(Bp,2);
F = lqr(Ap, Bp, 1e0*eye(n x), 1.5e1*eye(n u));
L = lqr(Ap',Cp',1e0*eye(n x), 1.5e1*eye(n e));
L=L';
Ko = ss(Ap-Bp*F-L*Cp+L*Dp*F, -L, -F, 0);

A.1.3 Youla et al. Parameterization (f CoprFac.m)

function [T11rz, T12rz, T21rz,T11dz, T12dz, ...
T21dz]=f CoprFac(P ss,F,L,...
weights)

% Youla Coprime factorization
% Works for general case of stable as well as unstable plants

[Ap, Bp, Cp, Dp] = ssdata(P ss);

% Right coprime factorization
NumP.a=Ap-Bp*F; NumP.b=Bp; NumP.c=Cp-Dp*F; NumP.d=Dp;
NumP=ss(NumP.a,NumP.b,NumP.c,NumP.d);
DenP.a=Ap-Bp*F; DenP.b=Bp; DenP.c=-F; DenP.d=eye(size(DenP.c,1));
DenP=ss(DenP.a,DenP.b,DenP.c,DenP.d);
% Controller
NumK.a=Ap-Bp*F; NumK.b=-L; NumK.c=-F; ...

NumK.d=zeros(size(NumK.c,1),size(NumK.b,2));
NumK=ss(NumK.a,NumK.b,NumK.c,NumK.d);
DenK.a=Ap-Bp*F; DenK.b=L; DenK.c=Cp-Dp*F; DenK.d=eye(size(DenK.c,1));
DenK=ss(DenK.a,DenK.b,DenK.c,DenK.d);
% Left coprime factorization
NumPt.a=Ap-L*Cp; NumPt.b=Bp-L*Dp; NumPt.c=Cp; NumPt.d=Dp;
NumPt=ss(NumPt.a,NumPt.b,NumPt.c,NumPt.d);
DenPt.a=Ap-L*Cp; DenPt.b=-L; DenPt.c=Cp; DenPt.d=eye(size(DenPt.c,1));
DenPt=ss(DenPt.a,DenPt.b,DenPt.c,DenPt.d);
% Controller
NumKt.a=Ap-L*Cp; NumKt.b=-L; NumKt.c=-F; ...

NumKt.d=zeros(size(NumKt.c,1),size(NumKt.b,2));
NumKt=ss(NumKt.a,NumKt.b,NumKt.c,NumKt.d);
DenKt.a=Ap-L*Cp; DenKt.b=-(Bp-L*Dp); DenKt.c=-F; ...

DenKt.d=eye(size(DenKt.c,1));
DenKt=ss(DenKt.a,DenKt.b,DenKt.c,DenKt.d);

200

% Feedback transfer function matrices
SOut11=DenK*DenPt; SOut12=-NumP; SOut21=DenPt;
KSOut11=NumK*DenPt; KSOut12=DenP; KSOut21=DenPt;
TOut11=NumP*NumKt; TOut12=NumP; TOut21=DenPt;
SensIn11=DenP*DenKt; SensIn12=-DenP; SensIn21=NumPt;
SInP11=NumP*DenKt; SInP12=-NumP; SInP21=NumPt;
% TIn11=NumK*NumPt; TIn12=DenP; TIn21=NumPt; % Final!!!
% TIn11=DenP*NumKt*inv(DenPt)*NumPt; TIn12=DenP; TIn21=NumPt;
TIn11=eye(size(DenP,1))-DenP*DenKt; TIn12=DenP; TIn21=NumPt;

W1 = weights.W1;
W2 = weights.W2;
W3 = weights.W3;
Wd1 = weights.Wd1;
Wd2 = weights.Wd2;
Wd3 = weights.Wd3;

W1c = weights.W1c;
W2c = weights.W2c;
W3c = weights.W3c;
Wd1c = weights.Wd1c;
Wd2c = weights.Wd2c;
Wd3c = weights.Wd3c;

if (isfield(weights,'Wni1'))
Wni1 = weights.Wni1;

end
if (isfield(weights,'Wni3'))

Wni3 = weights.Wni3;
end

% Parameterization
T11rz1=W1*SOut11; T12rz1=W1*SOut12; T21rz1=SOut21;
if isempty(W2)

T11rz2=ss([]); T12rz2=ss([]); T21rz2=ss([]);
else

T11rz2=W2*KSOut11; T12rz2=W2*KSOut12; T21rz2=KSOut21;
end
if isempty(W3)

T11rz3=ss([]); T12rz3=ss([]); T21rz3=ss([]);
else

T11rz3=W3*TOut11; T12rz3=W3*TOut12; T21rz3=TOut21;
end
if isempty(Wd1)

T11dz1=ss([]); T12dz1=ss([]); T21dz1=ss([]);
else

T11dz1=Wd1*SensIn11; T12dz1=Wd1*SensIn12; T21dz1=SensIn21;
end
if isempty(Wd2)

T11dz2=ss([]); T12dz2=ss([]); T21dz2=ss([]);
else

T11dz2=Wd2*SInP11; T12dz2=Wd2*SInP12; T21dz2=SInP21;
end
if isempty(Wd3)

T11dz3=ss([]); T12dz3=ss([]); T21dz3=ss([]);
else

201

T11dz3=Wd3*TIn11; T12dz3=Wd3*TIn12; T21dz3=TIn21;
end

% Constraint tf parameterization
T11rz1c=[]; T12rz1c=[]; T21rz1c=[];
for ii=1:length(W1c)

T11rz1c=W1c{ii}.tfm*SOut11; T12rz1c=W1c{ii}.tfm*SOut12;
T21rz1c=SOut21;

end

% if isempty(W2c)
% T11rz2c=[]; T12rz2c=[]; T21rz2c=[];
% else
% T11rz2c=W2c{1}.tfm*KSOut11;
% T12rz2c=W2c{1}.tfm*KSOut12; T21rz2c=KSOut21;
% T11rz2c=[T11rz2c; W2c{2}.tfm*KSOut11];
% T12rz2c=[T12rz2c; W2c{2}.tfm*KSOut12];
% end
T11rz2c=[]; T12rz2c=[]; T21rz2c=[];
for ii=1:length(W2c)

T11rz2c=[T11rz2c; W2c{ii}.tfm*KSOut11];
T12rz2c=[T12rz2c; W2c{ii}.tfm*KSOut12];

end

T11rz3c=[]; T12rz3c=[]; T21rz3c=[];
for ii=1:length(W3c)

T11rz3c=W3c{ii}.tfm*TOut11;
T12rz3c=W3c{ii}.tfm*TOut12;
T21rz3c=TOut21;

end

T11dz1c=[]; T12dz1c=[]; T21dz1c=[];
for ii=1:length(Wd1c)

T11dz1c=Wd1c{ii}.tfm*SensIn11;
T12dz1c=Wd1c{ii}.tfm*SensIn12;
T21dz1c=SensIn21;

end

T11dz2c=[]; T12dz2c=[]; T21dz2c=[];
for ii=1:length(Wd2c)

T11dz2c=Wd2c{ii}.tfm*SInP11;
T12dz2c=Wd2c{ii}.tfm*SInP12;
T21dz2c=SInP21;

end

T11dz3c=[]; T12dz3c=[]; T21dz3c=[];
for ii=1:length(Wd3c)

T11dz3c=Wd3c{ii}.tfm*TIn11;
T12dz3c=Wd3c{ii}.tfm*TIn12;
T21dz3c=TIn21;

end

% For Trz1 and Tdiz2
T11rz=[T11rz1; T11rz2; T11rz3; T11rz1c; T11rz2c; T11rz3c];
T12rz=[T12rz1; T12rz2; T12rz3; T12rz1c; T12rz2c; T12rz3c];
T21rz=T21rz1;
T11dz=[T11dz1; T11dz2; T11dz3; T11dz1c; T11dz2c; T11dz3c];

202

T12dz=[T12dz1; T12dz2; T12dz3; T12dz1c; T12dz2c; T12dz3c];
T21dz=T21dz1;

function [T11rz, T12rz, T21rz, T11dz, T12dz, ...
T21dz]=f CoprFac hsvio(P ss,F,L,weights) % W1, W2, W3, Wd1, Wd2, ...
Wd3, W1c, W2c, W3c, Wd1c, Wd2c, Wd3c)

% Youla Coprime factorization
% For HSV inner-outer with two loop-breaking points

W1 = weights.W1;
W2 = weights.W2;
W3 = weights.W3;
Wd1 = weights.Wd1;
Wd2 = weights.Wd2;
Wd3 = weights.Wd3;

W1c = weights.W1c;
W2c = weights.W2c;
W3c = weights.W3c;
Wd1c = weights.Wd1c;
Wd2c = weights.Wd2c;
Wd3c = weights.Wd3c;

[Ap, Bp, Cp, Dp] = ssdata(P ss);

% Right coprime factorization
NumP.a=Ap-Bp*F; NumP.b=Bp; NumP.c=Cp-Dp*F; NumP.d=Dp; ...

NumP=ss(NumP.a,NumP.b,NumP.c,NumP.d);
DenP.a=Ap-Bp*F; DenP.b=Bp; DenP.c=-F; DenP.d=eye(size(DenP.c,1)); ...

DenP=ss(DenP.a,DenP.b,DenP.c,DenP.d);
% Controller
NumK.a=Ap-Bp*F; NumK.b=-L; NumK.c=-F; ...

NumK.d=zeros(size(NumK.c,1),size(NumK.b,2)); ...
NumK=ss(NumK.a,NumK.b,NumK.c,NumK.d);

DenK.a=Ap-Bp*F; DenK.b=L; DenK.c=Cp-Dp*F; ...
DenK.d=eye(size(DenK.c,1)); DenK=ss(DenK.a,DenK.b,DenK.c,DenK.d);

% Left coprime factorization
NumPt.a=Ap-L*Cp; NumPt.b=Bp-L*Dp; NumPt.c=Cp; NumPt.d=Dp; ...

NumPt=ss(NumPt.a,NumPt.b,NumPt.c,NumPt.d);
DenPt.a=Ap-L*Cp; DenPt.b=-L; DenPt.c=Cp; ...

DenPt.d=eye(size(DenPt.c,1)); ...
DenPt=ss(DenPt.a,DenPt.b,DenPt.c,DenPt.d);

% Controller
NumKt.a=Ap-L*Cp; NumKt.b=-L; NumKt.c=-F; ...

NumKt.d=zeros(size(NumKt.c,1),size(NumKt.b,2)); ...
NumKt=ss(NumKt.a,NumKt.b,NumKt.c,NumKt.d);

DenKt.a=Ap-L*Cp; DenKt.b=-(Bp-L*Dp); DenKt.c=-F; ...
DenKt.d=eye(size(DenKt.c,1)); ...
DenKt=ss(DenKt.a,DenKt.b,DenKt.c,DenKt.d);

% Feedback transfer function matrices
SOut11=DenK*DenPt; SOut12=-NumP; SOut21=DenPt;
KSOut11=NumK*DenPt; KSOut12=DenP; KSOut21=DenPt;
TOut11=NumP*NumKt; TOut12=NumP; TOut21=DenPt;
SensIn11=DenP*DenKt; SensIn12=-DenP; SensIn21=NumPt;
SInP11=NumP*DenKt; SInP12=-NumP; SInP21=NumPt;

203

% TIn11=NumK*NumPt; TIn12=DenP; TIn21=NumPt; % Final!!!
% TIn11=DenP*NumKt*inv(DenPt)*NumPt; TIn12=DenP; TIn21=NumPt;
TIn11=eye(size(DenP,1))-DenP*DenKt; TIn12=DenP; TIn21=NumPt;

%%%%%%%%%%%%%%%%%%%%%%%
% Inner-Outer loop - Select required tf's
SOut11=SOut11(1:2,1:2); SOut12=SOut12(1:2,1:2); SOut21=SOut21(:,1:2);
KSOut11=KSOut11(1:2,1:2); KSOut12=KSOut12(1:2,1:2); ...

KSOut21=KSOut21(:,1:2);
TOut11=TOut11(1:2,1:2); TOut12=TOut12(1:2,1:2); TOut21=TOut21(:,1:2);
SInP11=SInP11(1:2,1:2); SInP12=SInP12(1:2,1:2); SInP21=SInP21(:,1:2);
% SensIn21=NumPt(1:2,:);
% TIn21=NumPt(1:2,:);
%%%%%%%%%%%%%%%%%%%%%%%

%%
% Added for Integ Augment fix
s=tf('s');
T11rz2=series(W2*KSOut11,ss(1/s)); ...

T12rz2=series(W2*KSOut12,ss(1/s)); T21rz2=KSOut21;
T11dz2=series(Wd2*SInP11,ss(s)); T12dz2=series(Wd2*SInP12,ss(s)); ...

T21dz2=SInP21;
%%

% Parameterization

T11rz1=W1*SOut11; T12rz1=W1*SOut12; T21rz1=SOut21;
T11rz2=W2*KSOut11; T12rz2=W2*KSOut12; T21rz2=KSOut21;
T11rz3=W3*TOut11; T12rz3=W3*TOut12; T21rz3=TOut21;
T11dz1=Wd1*SensIn11; T12dz1=Wd1*SensIn12; T21dz1=SensIn21;
T11dz2=Wd2*SInP11; T12dz2=Wd2*SInP12; T21dz2=SInP21;
T11dz3=Wd3*TIn11; T12dz3=Wd3*TIn12; T21dz3=TIn21;

% Constraint tf parameterization
T11rz1c=[]; T12rz1c=[]; T21rz1c=[];
for ii=1:length(W1c)

T11rz1c=W1c{ii}.tfm*SOut11; T12rz1c=W1c{ii}.tfm*SOut12; ...
T21rz1c=SOut21;

end
% if isempty(W2c)
% T11rz2c=[]; T12rz2c=[]; T21rz2c=[];
% else
% T11rz2c=W2c{1}.tfm*KSOut11; T12rz2c=W2c{1}.tfm*KSOut12; ...

T21rz2c=KSOut21;
% T11rz2c=[T11rz2c; W2c{2}.tfm*KSOut11]; T12rz2c=[T12rz2c; ...

W2c{2}.tfm*KSOut12];
% end
T11rz2c=[]; T12rz2c=[]; T21rz2c=[];
for ii=1:length(W2c)

T11rz2c=[T11rz2c; W2c{ii}.tfm*KSOut11]; T12rz2c=[T12rz2c; ...
W2c{ii}.tfm*KSOut12];

end
T11rz3c=[]; T12rz3c=[]; T21rz3c=[];
for ii=1:length(W3c)

T11rz3c=W3c{ii}.tfm*TOut11; T12rz3c=W3c{ii}.tfm*TOut12; ...
T21rz3c=TOut21;

end

204

T11dz1c=[]; T12dz1c=[]; T21dz1c=[];
for ii=1:length(Wd1c)

T11dz1c=Wd1c{ii}.tfm*SensIn11; T12dz1c=Wd1c{ii}.tfm*SensIn12; ...
T21dz1c=SensIn21;

end
T11dz2c=[]; T12dz2c=[]; T21dz2c=[];
for ii=1:length(Wd2c)

T11dz2c=Wd2c{ii}.tfm*SInP11; T12dz2c=Wd2c{ii}.tfm*SInP12; ...
T21dz2c=SInP21;

end
T11dz3c=[]; T12dz3c=[]; T21dz3c=[];
for ii=1:length(Wd3c)

T11dz3c=Wd3c{ii}.tfm*TIn11; T12dz3c=Wd3c{ii}.tfm*TIn12; ...
T21dz3c=TIn21;

end
% For Trz1 and Tdiz2
T11rz=[T11rz1; T11rz2; T11rz3; T11rz1c; T11rz2c; T11rz3c]; ...

T12rz=[T12rz1; T12rz2; T12rz3; T12rz1c; T12rz2c; T12rz3c]; ...
T21rz=T21rz1;

T11dz=[T11dz1; T11dz2; T11dz3; T11dz1c; T11dz2c; T11dz3c]; ...
T12dz=[T12dz1; T12dz2; T12dz3; T12dz1c; T12dz2c; T12dz3c]; ...
T21dz=T21dz1;

function [T11rz, T12rz, T21rz, T11dz, T12dz, ...
T21dz,T11niz,T12niz,T21niz]=f CoprFac hsvio Tniu(P ss,F,L,weights)

% Youla Coprime factorization
% For HSV inner-outer with three loop-breaking points

W1 = weights.W1;
W2 = weights.W2;
W3 = weights.W3;
Wd1 = weights.Wd1;
Wd2 = weights.Wd2;
Wd3 = weights.Wd3;
Wni1 = weights.Wni1;
Wni3 = weights.Wni3;

W1c = weights.W1c;
W2c = weights.W2c;
W3c = weights.W3c;
Wd1c = weights.Wd1c;
Wd2c = weights.Wd2c;
Wd3c = weights.Wd3c;

[Ap, Bp, Cp, Dp] = ssdata(P ss);

% Right coprime factorization
NumP.a=Ap-Bp*F; NumP.b=Bp; NumP.c=Cp-Dp*F; NumP.d=Dp; ...

NumP=ss(NumP.a,NumP.b,NumP.c,NumP.d);
DenP.a=Ap-Bp*F; DenP.b=Bp; DenP.c=-F; DenP.d=eye(size(DenP.c,1)); ...

DenP=ss(DenP.a,DenP.b,DenP.c,DenP.d);
% Controller
NumK.a=Ap-Bp*F; NumK.b=-L; NumK.c=-F; ...

NumK.d=zeros(size(NumK.c,1),size(NumK.b,2)); ...
NumK=ss(NumK.a,NumK.b,NumK.c,NumK.d);

DenK.a=Ap-Bp*F; DenK.b=L; DenK.c=Cp-Dp*F; ...

205

DenK.d=eye(size(DenK.c,1)); DenK=ss(DenK.a,DenK.b,DenK.c,DenK.d);
% Left coprime factorization
NumPt.a=Ap-L*Cp; NumPt.b=Bp-L*Dp; NumPt.c=Cp; NumPt.d=Dp; ...

NumPt=ss(NumPt.a,NumPt.b,NumPt.c,NumPt.d);
DenPt.a=Ap-L*Cp; DenPt.b=-L; DenPt.c=Cp; ...

DenPt.d=eye(size(DenPt.c,1)); ...
DenPt=ss(DenPt.a,DenPt.b,DenPt.c,DenPt.d);

% Controller
NumKt.a=Ap-L*Cp; NumKt.b=-L; NumKt.c=-F; ...

NumKt.d=zeros(size(NumKt.c,1),size(NumKt.b,2)); ...
NumKt=ss(NumKt.a,NumKt.b,NumKt.c,NumKt.d);

DenKt.a=Ap-L*Cp; DenKt.b=-(Bp-L*Dp); DenKt.c=-F; ...
DenKt.d=eye(size(DenKt.c,1)); ...
DenKt=ss(DenKt.a,DenKt.b,DenKt.c,DenKt.d);

% Feedback transfer function matrices
SOut11=DenK*DenPt; SOut12=-NumP; SOut21=DenPt;
KSOut11=NumK*DenPt; KSOut12=DenP; KSOut21=DenPt;
TOut11=NumP*NumKt; TOut12=NumP; TOut21=DenPt;
SensIn11=DenP*DenKt; SensIn12=-DenP; SensIn21=NumPt;
SInP11=NumP*DenKt; SInP12=-NumP; SInP21=NumPt;
% TIn11=NumK*NumPt; TIn12=DenP; TIn21=NumPt; % Final!!!
% TIn11=DenP*NumKt*inv(DenPt)*NumPt; TIn12=DenP; TIn21=NumPt;
TIn11=eye(size(DenP,1))-DenP*DenKt; TIn12=DenP; TIn21=NumPt;

% Tniu11=NumK*DenPt; Tniu12=DenP; Tniu21=DenPt; % map from sensor ...
noise in the inner-loop to control signal

% Tniy11=NumK*DenPt; Tniy12=DenP; Tniy21=DenPt; % map from sensor ...
noise in the inner-loop to output

% Tniei11=NumK*DenPt; Tniei12=DenP; Tniei21=DenPt; % map from sensor ...
noise in the inner-loop to output

%%%%%%%%%%%%%%%%%%%%%%%
% Inner-Outer loop - Select required tf's
Tniu11=KSOut11(1:2,3); Tniu12=KSOut12(1:2,:); Tniu21=KSOut21(:,3);
% Tniy11=TOut11(1:2,3); Tniy12=TOut12(1:2,3); Tniy21=TOut21(:,3);
% Tnixp11=TOut11(1:2,3); Tnixp12=TOut12(1:2,3); Tnixp21=TOut21(:,3);
Tniei11=SOut11(3,3); Tniei12=SOut12(3,:); Tniei21=SOut21(:,3);

SOut11=SOut11(1:2,1:2); SOut12=SOut12(1:2,1:2); SOut21=SOut21(:,1:2);
KSOut11=KSOut11(1:2,1:2); KSOut12=KSOut12(1:2,1:2); ...

KSOut21=KSOut21(:,1:2);
TOut11=TOut11(1:2,1:2); TOut12=TOut12(1:2,1:2); TOut21=TOut21(:,1:2);
SInP11=SInP11(1:2,1:2); SInP12=SInP12(1:2,1:2); SInP21=SInP21(:,1:2);
% SensIn21=NumPt(1:2,:);
% TIn21=NumPt(1:2,:);
%%%%%%%%%%%%%%%%%%%%%%%

%%
% Added for Integ Augment fix
s=tf('s');
% T11rz1=series(W1*SOut11,ss(s+1e-6)); ...

T12rz1=series(W1*SOut12,ss(s+1e-6)); T21rz1=SOut21;
T11rz2=series(W2*KSOut11,ss(1/(s+1e-1))); ...

T12rz2=series(W2*KSOut12,ss(1/(s+1e-1))); T21rz2=KSOut21;
% % The eps in the integrator (1/(s+eps)) is picked to relatively ...

high value

206

% % ~0.1 because of a bad effect caused by bilinear transformation. When
% % bilinear transformation is done, the weighted KS or
% % (T11rz2+T12rz2**T21rz2) was going to a high value at low frequencies
% % (near DC), even though the acutal weighted KS (i.e., without ...

bilin) was
% % low at those frequencies.
% T11dz1=series(Wd1*SensIn11,ss(s+1e-6)); ...

T12dz1=series(Wd1*SensIn12,ss(s+1e-6)); T21dz1=SensIn21;
T11dz2=series(Wd2*SInP11,ss(s+1e-6)); ...

T12dz2=series(Wd2*SInP12,ss(s+1e-6)); T21dz2=SInP21;
%%

% Parameterization

T11rz1=W1*SOut11; T12rz1=W1*SOut12; T21rz1=SOut21;
% T11rz2=W2*KSOut11; T12rz2=W2*KSOut12; T21rz2=KSOut21;
T11rz3=W3*TOut11; T12rz3=W3*TOut12; T21rz3=TOut21;
T11dz1=Wd1*SensIn11; T12dz1=Wd1*SensIn12; T21dz1=SensIn21;
% T11dz2=Wd2*SInP11; T12dz2=Wd2*SInP12; T21dz2=SInP21;
T11dz3=Wd3*TIn11; T12dz3=Wd3*TIn12; T21dz3=TIn21;

T11niz1=Wni1*Tniu11; T12niz1=Wni1*Tniu12; T21niz1=Tniu21;
% T11niz2=Wni2*Tnixp11; T12niz2=Wni1*Tnixp12; T21niz2=Tnixp21;
T11niz3=Wni3*Tniei11; T12niz3=Wni3*Tniei12; T21niz3=Tniei21;

% Constraint tf parameterization
T11rz1c=[]; T12rz1c=[]; T21rz1c=[];
for ii=1:length(W1c)

T11rz1c=W1c{ii}.tfm*SOut11; T12rz1c=W1c{ii}.tfm*SOut12; ...
T21rz1c=SOut21;

end
% if isempty(W2c)
% T11rz2c=[]; T12rz2c=[]; T21rz2c=[];
% else
% T11rz2c=W2c{1}.tfm*KSOut11; T12rz2c=W2c{1}.tfm*KSOut12; ...

T21rz2c=KSOut21;
% T11rz2c=[T11rz2c; W2c{2}.tfm*KSOut11]; T12rz2c=[T12rz2c; ...

W2c{2}.tfm*KSOut12];
% end
T11rz2c=[]; T12rz2c=[]; T21rz2c=[];
for ii=1:length(W2c)

T11rz2c=[T11rz2c; W2c{ii}.tfm*KSOut11]; T12rz2c=[T12rz2c; ...
W2c{ii}.tfm*KSOut12];

end
T11rz3c=[]; T12rz3c=[]; T21rz3c=[];
for ii=1:length(W3c)

T11rz3c=W3c{ii}.tfm*TOut11; T12rz3c=W3c{ii}.tfm*TOut12; ...
T21rz3c=TOut21;

end
T11dz1c=[]; T12dz1c=[]; T21dz1c=[];
for ii=1:length(Wd1c)

T11dz1c=Wd1c{ii}.tfm*SensIn11; T12dz1c=Wd1c{ii}.tfm*SensIn12; ...
T21dz1c=SensIn21;

end
T11dz2c=[]; T12dz2c=[]; T21dz2c=[];
for ii=1:length(Wd2c)

T11dz2c=Wd2c{ii}.tfm*SInP11; T12dz2c=Wd2c{ii}.tfm*SInP12; ...

207

T21dz2c=SInP21;
end
T11dz3c=[]; T12dz3c=[]; T21dz3c=[];
for ii=1:length(Wd3c)

T11dz3c=Wd3c{ii}.tfm*TIn11; T12dz3c=Wd3c{ii}.tfm*TIn12; ...
T21dz3c=TIn21;

end

% For Trz1 and Tdiz2
T11rz=[T11rz1; T11rz2; T11rz3; T11rz1c; T11rz2c; T11rz3c]; ...

T12rz=[T12rz1; T12rz2; T12rz3; T12rz1c; T12rz2c; T12rz3c]; ...
T21rz=T21rz1;

T11dz=[T11dz1; T11dz2; T11dz3; T11dz1c; T11dz2c; T11dz3c]; ...
T12dz=[T12dz1; T12dz2; T12dz3; T12dz1c; T12dz2c; T12dz3c]; ...
T21dz=T21dz1;

T11niz=[T11niz1; T11niz3]; T12niz=[T12niz1; T12niz3]; T21niz=T21niz1;

function [T11rz, T12rz, T21rz,T11dz, T12dz, ...
T21dz]=f CoprFac ZamesParam(P ss,F,L,weights)

% Zames Coprime Parameterization
% Works stable plants
% Assumes zero initial controller Ko

[Ap, Bp, Cp, Dp] = ssdata(P ss);

[n e, n u] = size(P ss);
NumP=P ss;
DenP=ss(eye(n u));
NumK=ss(zeros(n u,n e));
DenK=ss(eye(n e));

NumPt=P ss;
DenPt=ss(eye(n e));
NumKt=ss(zeros(n u,n e));
DenKt=ss(eye(n u));

% Feedback transfer function matrices
SOut11=DenK*DenPt; SOut12=-NumP; SOut21=DenPt;
KSOut11=NumK*DenPt; KSOut12=DenP; KSOut21=DenPt;
TOut11=NumP*NumKt; TOut12=NumP; TOut21=DenPt;
SensIn11=DenP*DenKt; SensIn12=-DenP; SensIn21=NumPt;
SInP11=NumP*DenKt; SInP12=-NumP; SInP21=NumPt;
% TIn11=NumK; TIn12=DenP; TIn21=NumPt;
TIn11=DenP*NumKt*inv(DenPt)*NumPt; TIn12=DenP; TIn21=NumPt;

% Weights
W1 = weights.W1;
W2 = weights.W2;
W3 = weights.W3;
Wd1 = weights.Wd1;
Wd2 = weights.Wd2;
Wd3 = weights.Wd3;

W1c = weights.W1c;
W2c = weights.W2c;
W3c = weights.W3c;

208

Wd1c = weights.Wd1c;
Wd2c = weights.Wd2c;
Wd3c = weights.Wd3c;

if (isfield(weights,'Wni1'))
Wni1 = weights.Wni1;

end
if (isfield(weights,'Wni3'))

Wni3 = weights.Wni3;
end

% Parameterization
T11rz1=W1*SOut11; T12rz1=W1*SOut12; T21rz1=SOut21;
T11rz2=W2*KSOut11; T12rz2=W2*KSOut12; T21rz2=KSOut21;
T11rz3=W3*TOut11; T12rz3=W3*TOut12; T21rz3=TOut21;
T11dz1=Wd1*SensIn11; T12dz1=Wd1*SensIn12; T21dz1=SensIn21;
T11dz2=Wd2*SInP11; T12dz2=Wd2*SInP12; T21dz2=SInP21;
T11dz3=Wd3*TIn11; T12dz3=Wd3*TIn12; T21dz3=TIn21;

% Constraint tf parameterization
T11rz1c=[]; T12rz1c=[]; T21rz1c=[];
for ii=1:length(W1c)

T11rz1c=W1c{ii}.tfm*SOut11; T12rz1c=W1c{ii}.tfm*SOut12; ...
T21rz1c=SOut21;

end
% if isempty(W2c)
% T11rz2c=[]; T12rz2c=[]; T21rz2c=[];
% else
% T11rz2c=W2c{1}.tfm*KSOut11; T12rz2c=W2c{1}.tfm*KSOut12; ...

T21rz2c=KSOut21;
% T11rz2c=[T11rz2c; W2c{2}.tfm*KSOut11]; T12rz2c=[T12rz2c; ...

W2c{2}.tfm*KSOut12];
% end
T11rz2c=[]; T12rz2c=[]; T21rz2c=[];
for ii=1:length(W2c)

T11rz2c=[T11rz2c; W2c{ii}.tfm*KSOut11]; T12rz2c=[T12rz2c; ...
W2c{ii}.tfm*KSOut12];

end
T11rz3c=[]; T12rz3c=[]; T21rz3c=[];
for ii=1:length(W3c)

T11rz3c=W3c{ii}.tfm*TOut11; T12rz3c=W3c{ii}.tfm*TOut12; ...
T21rz3c=TOut21;

end
T11dz1c=[]; T12dz1c=[]; T21dz1c=[];
for ii=1:length(Wd1c)

T11dz1c=Wd1c{ii}.tfm*SensIn11; T12dz1c=Wd1c{ii}.tfm*SensIn12; ...
T21dz1c=SensIn21;

end
T11dz2c=[]; T12dz2c=[]; T21dz2c=[];
for ii=1:length(Wd2c)

T11dz2c=Wd2c{ii}.tfm*SInP11; T12dz2c=Wd2c{ii}.tfm*SInP12; ...
T21dz2c=SInP21;

end
T11dz3c=[]; T12dz3c=[]; T21dz3c=[];
for ii=1:length(Wd3c)

T11dz3c=Wd3c{ii}.tfm*TIn11; T12dz3c=Wd3c{ii}.tfm*TIn12; ...
T21dz3c=TIn21;

209

end

% For Trz1 and Tdiz2
T11rz=[T11rz1; T11rz2; T11rz3; T11rz1c; T11rz2c; T11rz3c]; ...

T12rz=[T12rz1; T12rz2; T12rz3; T12rz1c; T12rz2c; T12rz3c]; ...
T21rz=T21rz1;

T11dz=[T11dz1; T11dz2; T11dz3; T11dz1c; T11dz2c; T11dz3c]; ...
T12dz=[T12dz1; T12dz2; T12dz3; T12dz1c; T12dz2c; T12dz3c]; ...
T21dz=T21dz1;

A.1.4 Basis Selection (f Basis.m)

function q = f Basis(N, p, z, basis type)
% Form the basis TFs for given basis parameters and type

q{1} = zpk([],[],1);
% q{1} = tf(1,1);
if basis type == 1 % fixed pole low pass

for k=2:N
q{k} = zpk([],-p,p)ˆ(k-1);

end
elseif basis type == 2 % fixed pole all pass

for k=2:N
q{k} = zpk(p,-p,-1)ˆ(k-1);

end
elseif basis type == 3 % variable pole low pass

for k=2:N
q{k} = zpk([],-p*(k-1),p*(k-1));

end
elseif basis type == 4 % variable pole all pass

for k=2:N
q{k} = zpk(p*(k-1),-p*(k-1),-1);

end
elseif basis type == 5 % pole and zero

for k=2:N
q{k} = zpk(z,-p,-1)ˆ(k-1);

end
elseif basis type == 5 % Laguerre

for k=2:N
q{k} = zpk([],-p,sqrt(2*p))*zpk(p,-p,1)ˆ(k-1);

end
end

A.1.5 Form Finite-Dimensional Q Parameter (f FormQN.m)

function QN = f FormQN(x, qk, n u, n e, N)
% From Q N at given point x using the bases qk

xtemp = reshape(x,n u*n e,N);
QN = zeros(n u, n e);
for i = 1:N

X{i} = reshape(xtemp(:,i),n u,n e);

% % Find temp = QN + X{i} * qk{i}

210

% % Straight forward way.
% temp = QN + X{i} * qk{i};
% Alternative way. minreal in later works better when this is used,
% i.e., order of QN found will be as expected.
QNss = ss(QN);
xqss = ss(series(qk{i},X{i}));
A = blkdiag(QNss.a,xqss.a);
B = [QNss.b;xqss.b];
C = [QNss.c,xqss.c];
D = QNss.d+xqss.d;
temp = zpk(ss(A,B,C,D));

QN = minreal(temp,1e-6);

end
QN = ss(QN);

A.1.6 Extract Data From Problem Setup (f GenData.m)

function [n e, n u, DATArz,DATAdz] = f GenData(P, weights)
% Extract data from problem setup for the GMS methodology

W1 = weights.W1;
W2 = weights.W2;
W3 = weights.W3;
Wd1 = weights.Wd1;
Wd2 = weights.Wd2;
Wd3 = weights.Wd3;

W1c = weights.W1c;
W2c = weights.W2c;
W3c = weights.W3c;
Wd1c = weights.Wd1c;
Wd2c = weights.Wd2c;
Wd3c = weights.Wd3c;

if (isfield(weights,'Wni1'))
Wni1 = weights.Wni1;

end
if (isfield(weights,'Wni3'))

Wni3 = weights.Wni3;
end

[n e, n u, n s] = size(P);

nObj = 0;
%% Check W1
if ~isempty(W1)

[noutput, ninput, nstate] = size(W1);
if noutput ~= ninput

disp('Error: W1 is not square')
return

end
if noutput ~= n e

disp('Error: Dimansion mismatch in W1')

211

return
end
nObj = nObj+n e;

end

%% Check W2
if ~isempty(W2)

[noutput, ninput, nstate] = size(W2);
if noutput ~= ninput

disp('Error: W2 is not square')
return

end
if noutput ~= n u

disp('Error: Dimansion mismatch in W2')
return

end
nObj = nObj+n u;

end

%% Check W3
if ~isempty(W3)

[noutput, ninput, nstate] = size(W3);
if noutput ~= ninput

disp('Error: W3 is not square')
return

end
if noutput ~= n e

disp('Error: Dimansion mismatch in W3')
return

end
nObj = nObj+n e;

end

DATArz.ObjVec = 1:nObj;
TotalRows = nObj;
%% rz
ConstraintCounter = 0;
[nRow nCol]=size(W1c);
for i=1:nCol

W1 = W1c{i}.tfm;
if ~isempty(W1)

[noutput, ninput, nstate] = size(W1);
if noutput ~= ninput

disp(['Error: W1c{' num2str(i) '} is not square'])
return

end
if noutput ~= n e

disp(['Error: Dimansion mismatch in W1c{' num2str(i) '}'])
return

end
ConstraintCounter = ConstraintCounter + 1;
DATArz.ConVec{ConstraintCounter} = TotalRows+1:TotalRows+n e;
DATArz.ConNam{ConstraintCounter} = W1c{i}.Fun;
DATArz.ConVal{ConstraintCounter} = W1c{i}.Val;
TotalRows = TotalRows + n e;

end
end

212

%%
[nRow nCol]=size(W2c);
for i=1:nCol

W2 = W2c{i}.tfm;
if ~isempty(W2)

[noutput, ninput, nstate] = size(W2);
if noutput ~= ninput

disp(['Error: W2c{' num2str(i) '} is not square'])
return

end
if noutput ~= n u

disp(['Error: Dimansion mismatch in W2c{' num2str(i) '}'])
return

end
ConstraintCounter = ConstraintCounter + 1;
DATArz.ConVec{ConstraintCounter} = TotalRows+1:TotalRows+n u;
DATArz.ConNam{ConstraintCounter} = W2c{i}.Fun;
DATArz.ConVal{ConstraintCounter} = W2c{i}.Val;
TotalRows = TotalRows + n u;

end
end

%%
[nRow nCol]=size(W3c);
for i=1:nCol

W3 = W3c{i}.tfm;
if ~isempty(W3)

[noutput, ninput, nstate] = size(W3);
if noutput ~= ninput

disp(['Error: W3c{' num2str(i) '} is not square'])
return

end
if noutput ~= n e

disp(['Error: Dimansion mismatch in W3c{' num2str(i) '}'])
return

end
ConstraintCounter = ConstraintCounter + 1;
DATArz.ConVec{ConstraintCounter} = TotalRows+1:TotalRows+n e;
DATArz.ConNam{ConstraintCounter} = W3c{i}.Fun;
DATArz.ConVal{ConstraintCounter} = W3c{i}.Val;
TotalRows = TotalRows + n e;

end
end
DATArz.ConNum = ConstraintCounter;

%% dz
nObj = 0;
%% Check Wd1
if ~isempty(Wd1)

[noutput, ninput, nstate] = size(Wd1);
if noutput ~= ninput

disp('Error: Wd1 is not square')
return

end
if noutput ~= n u

213

disp('Error: Dimansion mismatch in Wd1')
return

end
nObj = nObj+n u;

end

%% Check Wd2
if ~isempty(Wd2)

[noutput, ninput, nstate] = size(Wd2);
if noutput ~= ninput

disp('Error: Wd2 is not square')
return

end
if noutput ~= n e

disp('Error: Dimansion mismatch in Wd2')
return

end
nObj = nObj+n e;

end

%% Check Wd3
if ~isempty(Wd3)

[noutput, ninput, nstate] = size(Wd3);
if noutput ~= ninput

disp('Error: Wd3 is not square')
return

end
if noutput ~= n u

disp('Error: Dimansion mismatch in Wd3')
return

end
nObj = nObj+n u;

end

DATAdz.ObjVec = 1:nObj;
TotalRows = nObj;
%%
ConstraintCounter = 0;

[nRow nCol]=size(Wd1c);
for i=1:nCol

Wd1 = Wd1c{i}.tfm;
if ~isempty(Wd1)

[noutput, ninput, nstate] = size(Wd1);
if noutput ~= ninput

disp(['Error: Wd1c{' num2str(i) '} is not square'])
return

end
if noutput ~= n e

disp(['Error: Dimansion mismatch in Wd1c{' num2str(i) '}'])
return

end
ConstraintCounter = ConstraintCounter + 1;
DATAdz.ConVec{ConstraintCounter} = TotalRows+1:TotalRows+n e;
DATAdz.ConNam{ConstraintCounter} = Wd1c{i}.Fun;
DATAdz.ConVal{ConstraintCounter} = Wd1c{i}.Val;
TotalRows = TotalRows + n e;

214

end
end

%%
[nRow nCol]=size(Wd2c);
for i=1:nCol

Wd2 = Wd2c{i}.tfm;
if ~isempty(Wd2)

[noutput, ninput, nstate] = size(Wd2);
if noutput ~= ninput

disp(['Error: Wd2c{' num2str(i) '} is not square'])
return

end
if noutput ~= n u

disp(['Error: Dimansion mismatch in Wd2c{' num2str(i) '}'])
return

end
ConstraintCounter = ConstraintCounter + 1;
DATAdz.ConVec{ConstraintCounter} = TotalRows+1:TotalRows+n u;
DATAdz.ConNam{ConstraintCounter} = Wd2c{i}.Fun;
DATAdz.ConVal{ConstraintCounter} = Wd2c{i}.Val;
TotalRows = TotalRows + n u;

end
end

%%
[nRow nCol]=size(Wd3c);
for i=1:nCol

Wd3 = Wd3c{i}.tfm;
if ~isempty(Wd3)

[noutput, ninput, nstate] = size(Wd3);
if noutput ~= ninput

disp(['Error: Wd3c{' num2str(i) '} is not square'])
return

end
if noutput ~= n e

disp(['Error: Dimansion mismatch in Wd3c{' num2str(i) '}'])
return

end
ConstraintCounter = ConstraintCounter + 1;
DATAdz.ConVec{ConstraintCounter} = TotalRows+1:TotalRows+n e;
DATAdz.ConNam{ConstraintCounter} = Wd3c{i}.Fun;
DATAdz.ConVal{ConstraintCounter} = Wd3c{i}.Val;
TotalRows = TotalRows + n e;

end
end

DATAdz.ConNum = ConstraintCounter;

A.1.7 Vectorize the Problem (f Vectorize.m)

function [M Mobj Mcon] = f Vectorize(T11, T12, T21, qk, N, n u, n e, ...
ProblemData)

% Vectorize Problem

215

% Forms M {l} = M {k}ˆ{ij}
% l = (k-1)*nu*ne+(j-1)*nu+i;
% M {k}ˆ{ij} = T {12}*Bˆ{ij}*T {21}*q k
% T wz = M o + sum {l=1}ˆ{nu*ne*N} M l x l
Mobj = {};
Mcon = {};
Bij = zeros(n u,n e);
for k = 1:N

for j = 1:n e
for i = 1:n u

l = (k-1)*n u*n e+(j-1)*n u+i;
Bij = zeros(n u,n e);
Bij(i,j) = 1;
[size t21 temp] = size(T21.a);
[temp size t12] = size(T12.a);
if isempty(T12)

M{l} = ss([]);
else

a = [T21.a zeros(size t21,size t12);
T12.b*Bij*T21.c T12.a];

b = [T21.b; T12.b*Bij*T21.d];
c = [T12.d*Bij*T21.c T12.c];
d = T12.d*Bij*T21.d;
M{l} = ss(a,b,c,d)*qk{k};

end
end

end
end
for k = 1:N*n e*n u

Mobj{k} = M{k}(ProblemData.ObjVec,:);
end
for i = 1:ProblemData.ConNum

for k = 1:N*n e*n u
Mcon{i,k} = M{k}(ProblemData.ConVec{i},:);

end
end

A.1.8 H∞-Norm Value and Subgradient (f Hinf.m)

function [value sg varargout] = f Hinf(M, x, T11, T12, T21, Q, vec, ...
varargin)

% Compute H-infinity norm and subgradients
% of Parameterized TFMs for given Youla et al. parameter Q

if nargin == 8
conval = varargin{1};
varargout{1} = conval;

end
n = length(x);

[n u, n e, n s] = size(Q);
if isempty(T11)

Twz = ss([]);
else

Twz = parallel(T11,series(series(T21,Q),T12));

216

end
%Twz = minreal(Twz);
Twz = Twz(vec,:);

% [ninf, fpeak] = norm(Twz, inf, 1e-8);
[ninf, fpeak] = hinfnorm(Twz, 1e-8);
value = ninf;

if fpeak < 1e-5
fpeak = 1e-5;

end

if fpeak<1e-5
wmin=1e-8; wmax=1e-2;

elseif fpeak<1e-2
wmin=1e-4; wmax=1e0;

elseif fpeak<1e0
wmin=1e-1; wmax=1e1;

elseif fpeak<10
wmin=1e-1; wmax=1e2;

elseif fpeak<1e2
wmin=1e0; wmax=1e4;

elseif fpeak<1e5
wmin=1e3; wmax=1e7;

elseif fpeak>=1e5
wmin=1e4; wmax=1e10;

else
wmin=max([1, fpeak-10]); wmax=fpeak+10;

end
TwzScaled=prescale(Twz,{wmin,wmax});

Hjwo = freqresp(TwzScaled,fpeak);
% Hjwo = evalfr(TwzScaled,fpeak);

[U,S,V] = svd(Hjwo); % SVD at W0
if isempty(U)

uo = [];
vo = [];

else
uo = U(:,1); % Maximum Left Singular Vector
vo = V(:,1); % Maximum Right Singular Vector

end
subgradient = [];
for i = 1:n

Hjwo = freqresp(M{i},fpeak);
magHjwo = abs(Hjwo);
subgradient = [subgradient; real(uo'*Hjwo*vo)];

end
sg = subgradient;

A.1.9 L∞-Norm Value and Subgradient (f Linf.m)

function [value,sg,ConValVec,varargout] = f Linf(M,x,T11,T12,...
T21, Q, vec, varargin)

% Compute peak value and subgradients

217

% of Parameterized TFMs for given Youla et al. parameter Q

tvec = 0:0.001:10;
if nargin == 8

conval = varargin{1};
end
n = length(x);

Twz = parallel(T11,series(series(T21,Q),T12));
Twz = Twz(vec,:);
% [n output,n input] = size(Twz); % n row = n output

% subgradient = NaN*zeros(n,length(conval));
Counter=0;
for ii = 1:size(conval,1)

for jj = 1:size(conval,2)
% kk=(ii-1)*size(conval,2)+jj;
if conval(ii,jj)==Inf

disp('');

else
Counter=Counter+1;
ConValVec(Counter)=conval(ii,jj);

[y,tvec] = step(Twz(ii,jj), tvec);

[ypeak,I] = max(y);
tpeak = tvec(I);
value(Counter,1) = ypeak;

for i = 1:n
% if n output == n input
% [y,tvec] = step(M{i}(ii,jj), tvec);
% else
% [y,tvec] = step(M{i}(ii,1), tvec);
% end
[y,tvec] = step(M{i}(ii,jj), tvec);
subgradient(i,Counter) = y(I);

end

if nargin == 8
varargout{1} = conval(ii);

end
% if value > conval(ii) % See why this is required
% return
% end

end
end

end
sg = subgradient;

A.1.10 Form K(Q) (f FormK.m)

function K=f FormK(P ss,Q,F,L)

218

% Form the controller from Q
% Uses Youla parameterization

Ap=P ss.a; Bp=P ss.b; Cp=P ss.c; Dp=P ss.d;
Aq = Q.a; Bq = Q.b; Cq = Q.c; Dq = Q.d; % Q - Parameter
n x=size(Ap,1); n e=size(Cp,1); n u=size(Bp,2);

Delta = eye(n u) - Dq*Dp;
invDelta = inv(Delta);
Ak11 = (Ap-L*Cp)-(Bp-L*Dp)*invDelta*(-Dq*Cp+F);
Ak12 = -(Bp-L*Dp)*invDelta*Cq;
Ak21 = -Bq*Cp+Bq*Dp*invDelta*(-Dq*Cp+F);
Ak22 = Aq+Bq*Dp*invDelta*Cq;
Ak = [Ak11 Ak12; Ak21 Ak22];
Bk = [L-(Bp+L*Dp)*invDelta*Dq;

Bq+Bq*Dp*invDelta*Dq];
Ck = [invDelta*(-Dq*Cp+F) invDelta*Cq];
Dk = invDelta*Dq;
K = ss(Ak, Bk, Ck, Dk);

A.1.11 Kelley’s CPM Optimizer (f KelleyCPM GenMix Optimizer.m)

function ...
[xk,frz,fdz]=f KelleyCPM GenMix Optimizer(N,NQ,x0,Mobjrz,Mobjdz,Mconrz,Mcondz,T11rz, ...
T12rz, T21rz,T11dz, T12dz, T21dz, Datarz, Datadz, ...
Q,q,n u,n e,MaxIter,xmax,xmin)

% Kelley's CPM

warning off
tol obj = 1e-4;
tol feas = 1e-4;

% INITIALIZE
% fx = 0; % Set output to zero
iter = 0; % Iteration count
xk = x0; % Initial query point
xkStore=NaN*ones(length(xk),MaxIter);
ExitFlagStore=NaN*ones(1,MaxIter);
foStore=NaN*ones(2,MaxIter);

nConrz = Datarz.ConNum; nCondz = Datadz.ConNum; % Number of constraints
% Below matrices are used in solving the LP: min c'x s.t. Aw<b
Ao = []; % A matrix associated with objective function
bo = []; % b vector associated with objective function

c = [zeros(N,1); 1]; % cvector associated with the variable x
UkminLkrz=1000; UkminLkdz=1000; constraint flagrz=1; ...

constraint flagdz=1;
w=zeros(N+1,1);

options = optimset('Display','off');
% options=optimset('MaxIter',500,'TolFun',1e-9,'Display','final')

% START

219

while UkminLkrz > tol obj | | UkminLkdz > tol obj | | ...
(constraint flagrz>0) | | (constraint flagdz>0)

Ac=[]; bc=[];
[forz, Gfo] =feval('f Hinf', Mobjrz, xk, T11rz, T12rz, T21rz, Q, ...

Datarz.ObjVec);
if UkminLkrz > tol obj

Ao = [Ao; Gfo' -1];
bo = [bo; Gfo'*xk-forz];
% UkminLkrz3=for3-c'*w;

end

% Constraints rz:
% Compute fi(x), Gfi(x) and Form Ac, bc
frz{1}=[];
for ii = 1:nConrz

Mrz = Mconrz(ii,:);
[frz{ii}, Gf{ii}, ConValVec] = ...

feval(Datarz.ConNam{ii}, Mrz, xk, T11rz, T12rz, T21rz, ...
Q, Datarz.ConVec{ii}, Datarz.ConVal{ii});

frz{ii} = frz{ii} - ConValVec';
if constraint flagrz>0

Ac = [Ac; Gf{ii}' zeros(size(Gf{ii}',1),1)];
bc = [bc; Gf{ii}'*xk-frz{ii}];

end
end

[fodz, Gfo] =feval('f Hinf', Mobjdz, xk, T11dz, T12dz, T21dz, Q, ...
Datadz.ObjVec);

if UkminLkdz > tol obj
Ao = [Ao; Gfo' -1];
bo = [bo; Gfo'*xk-fodz];
% UkminLkdiz3=fo3-c'*w;

end

% Constraints dz:
% Compute fi(x), Gfi(x) and Form Ac, bc
fdz{1}=[];
for ii = 1:nCondz

Mdz = Mcondz(ii,:);
[fdz{ii}, Gf{ii}, ConValVec] = ...

feval(Datadz.ConNam{ii}, Mdz, xk, T11dz, T12dz, T21dz, ...
Q, Datadz.ConVec{ii}, Datadz.ConVal{ii});

fdz{ii} = fdz{ii} - ConValVec'; % In AllStep this is ...
changed. Originally it was frz{ii} - Datarz.ConVal{ii}

if constraint flagdz>0
Ac = [Ac; Gf{ii}' zeros(size(Gf{ii}',1),1)];
bc = [bc; Gf{ii}'*xk-fdz{ii}];

end
end

Ao=[Ao;Ac]; bo=[bo;bc];

% Solve LP (used optimization toolbox function: linprog)
[w,fval,exitflag] = linprog(c,Ao,bo,[],[],xmin,xmax,xk,options);
% Check if problem is giving empty w. Try using other algorithms
optionstemp=options; % temporary option

220

if exitflag == -4
optionstemp.Algorithm='dual-simplex';
[w,fval,exitflag] = ...

linprog(c,Ao,bo,[],[],xmin,xmax,xk,optionstemp);
end
if exitflag == -4

optionstemp.Algorithm='active-set';
[w,fval,exitflag] = ...

linprog(c,Ao,bo,[],[],xmin,xmax,xk,optionstemp);
end

UkminLkrz=forz-c'*w; fprintf('\n%d %1.6f %1.6f ', iter,forz, ...
UkminLkrz);

UkminLkdz=fodz-c'*w; fprintf('%1.6f %1.6f ', fodz, UkminLkdz);

foStore(:,iter+1)=[forz; fodz];

% Update xk
xk = w(1:N); xkStore(:,iter+1)=xk;ExitFlagStore(1,iter+1)=exitflag;

% Increment iter
iter = iter + 1;
% Check if fi(xk) < epsilon for all i
constraint flagrz = 0;
for ii = 1:nConrz

if frz{ii} > tol feas
constraint flagrz = 1;

end
end
constraint flagdz = 0;
for ii = 1:nCondz

if fdz{ii} > tol feas
constraint flagdz = 1;

end
end

if iter == MaxIter
fprintf('\n');
fprintf('Max Num of Iter exceeded \n')
break;

end
Q = f FormQN(xk, q, n u, n e, NQ);

end

A.1.12 ACCPM Optimizer (f ACCPM GenMixSens Optimizer.m)

function [x, fx, iter cnt, perf meas] = ...
f ACCPM GenMixSens Optimizer(N,NQ,x0,Mobjrz,Mobjdz,Mconrz,Mcondz,T11rz, ...
T12rz, T21rz,T11dz, T12dz, T21dz, Datarz, Datadz, ...
Q,q,n u,n e,xmax,xmin,MaxIter)

% ACCPM main file

% Inputs
% xk is initial x

221

%% User initialisation of the ACCPM parameters
% x0 = x01*ones(N,1);
[problemS,methodS] = UserInitACCPM(N, x0,xmax,xmin,MaxIter);

%% Call the initialization routine
[accpm, accpm2Oracle] = C InitProxAccpm(problemS, methodS);
clear problemS methodS;

%% Optimization process
Flag = 1;
% Store the num of iterations and objective func value at each iter
iter cnt = 0;
perf meas = NaN*ones(MaxIter,1);
while(Flag)

% Function evaluate at current point (y) using the Oracle
[oracleS] = UserOracle(accpm2Oracle, Mobjrz,Mobjdz, Mconrz,Mcondz, ...

T11rz, T12rz, T21rz,T11dz, T12dz, T21dz, Q, Datarz,Datadz);
% Call the query point generator to get the next point
[accpm, accpm2Oracle] = ...
C ProxAccpmGen(oracleS, accpm, accpm2Oracle);
x = get(accpm2Oracle,'y');
Q = f FormQN(x, q, n u, n e, NQ);
clear oracleS;
% Possibly artificial stop
condition = (get(accpm2Oracle,'ExitCode') ~= 0);
if (condition)

Flag = 0;
end
iter cnt = iter cnt+1;
perf meas(iter cnt) = accpm.ParamS.OptTypeFact * ...

accpm.ManagerS.D.ObjBounds(2);
end
% Minimizer and Objective
x = get(accpm2Oracle,'y');
fx = accpm.ParamS.OptTypeFact * accpm.ManagerS.D.ObjBounds(2);
clear accpm2Oracle;
% Display Results
C Display ProxAccpmResults(accpm);
clear accpm;
return

function [problemS,methodS] = UserInitACCPM(n, x0,xmax,xmin,MaxIter)
% In this function, the user initializes the ACCPM parameters

% problemS object created
problemS = ProblemS;
problemS = set(problemS,'OptType','min'); % min or max
problemS = set(problemS,'NbVariables',n); % Number of dual variables
problemS = set(problemS,'NbSubProblems',1); % Number of subproblems
problemS = set(problemS,'StartingPoint',x0); % starting point
problemS = set(problemS,'VarLowerBounds',xmin); % Lower bounds on ...

variables
problemS = set(problemS,'VarUpperBounds',xmax); % Upper bounds on ...

variables

% methodS object created

222

methodS = MethodS;
methodS = set(methodS,'Proximal',0); % Use the proximal term (0/1)
methodS = set(methodS,'Rho',1); % Value of the rho in the ...

proximal term
methodS = set(methodS,'Verbose',3); % Display results (0/1/2/3)
methodS = set(methodS,'MaxOuter',MaxIter); % Maximum number of ACCPM ...

iterations
methodS = set(methodS,'MaxInner',100); % Maximum number of Newton ...

iterations in the computation of the analytic center
methodS = set(methodS,'Tolerance',1e-4); % Relative optimality gap
methodS = set(methodS,'WeightEpigraphCutInit',10); % Initial weight ...

on the epigraph cut
methodS = set(methodS,'WeightEpigraphCutInc',0); % Increment on the ...

epigraph cut

return

function [oracleS] = UserOracle(accpm2Oracle, Mobjrz,Mobjdz, ...
Mconrz,Mcondz, T11rz, T12rz, T21rz,T11dz, T12dz, T21dz, Q, ...
Datarz,Datadz)

% User oracle

% Current point
x = get(accpm2Oracle,'y');

oracleS = OracleS;

% Constraint
% Reference to output
for ii = 1:Datarz.ConNum

Mrz = Mconrz(ii,:);
[fc,Gfc,val] = ...

feval(Datarz.ConNam{ii}, Mrz, x, T11rz, T12rz, T21rz, Q,...
Datarz.ConVec{ii}, Datarz.ConVal{ii});

if (fc > val)
oracleS = set(oracleS, 'FunctionValues', fc-val); % Value of the ...

objective
oracleS = set(oracleS, 'SubGradients', Gfc); % Subgradient
oracleS = set(oracleS, 'SubProblemIndex', 0); % Nature of the ...

cut (Optimality -> 1, Feasibility -> 0)
return

end
end
% d i to output
for ii = 1:Datadz.ConNum

Mdz = Mcondz(ii,:);
[fc,Gfc,val] = ...

feval(Datadz.ConNam{ii}, Mdz, x, T11dz, T12dz, T21dz, Q,...
Datadz.ConVec{ii}, Datadz.ConVal{ii});

if (fc > val)
oracleS = set(oracleS, 'FunctionValues', fc-val);
oracleS = set(oracleS, 'SubGradients', Gfc);
oracleS = set(oracleS, 'SubProblemIndex', 0);
return

end
end

223

% Optimality
[forz,Gforz] = f Hinf(Mobjrz, x, T11rz, T12rz, T21rz, Q, Datarz.ObjVec);
[fodz,Gfodz] = f Hinf(Mobjdz, x, T11dz, T12dz, T21dz, Q, Datadz.ObjVec);
if forz>=fodz

oracleS = set(oracleS, 'FunctionValues', forz); % Value of the ...
objective

oracleS = set(oracleS, 'SubGradients', Gforz); % Subgradient
oracleS = set(oracleS, 'SubProblemIndex', 1); % Nature of the ...

cut (Optimality -> 1, Feasibility -> 0)
else

oracleS = set(oracleS, 'FunctionValues', fodz);
oracleS = set(oracleS, 'SubGradients', Gfodz);
oracleS = set(oracleS, 'SubProblemIndex', 1);

end
return

A.2 Bode Sensitivity Integral Constraint

% Bode Sensitivity Integral
% SISO LTI plant with P-K classic feedback structure
% Open loop TF is rational and has at least 2-pole roll-off
clear;
close all;
% Sensitivity Integral Relations for
% Generic upper bound on sensitivity

% Available Bandwidth
wp = 10;

% Performance Bandwidth Vector
ws vec = logspace(-1,1,1000);
% Peak Sensitivity Value Vector
M vec = logspace(0,2,1000);

% RHP pole
p = 0; % p=0 => Stable Plant

% Order of transfer function in a given frequency range
% First slope:
k1 = 1;
% Second slope:
k2 = 1;
% Third slope:
k3 = 1;

% Epsilon (magnitude of sensitivity at low freq.)
% Assume that epsilon is 0 (or 0+ to be precise)

% --
% % Solve for M for different value of ws
% Expression involving M:
% k2*nthroot(M,k2)*nthroot(M,k3)*ws ...
% - nthroot(M,k3)*(-pi*p - k1*ws + k2*ws + k3*wp) + k3*wp <= 0

224

% Preallocate
Msoln vec = NaN*ones(numel(ws vec),1);
validM vec = NaN*ones(numel(ws vec),1);

for ws ind = 1:numel(ws vec)
ws = ws vec(ws ind);

% Parameterized function:
M param func = @(M,ws,wp,p,k1,k2,k3) ...

k2*nthroot(M,k2)*nthroot(M,k3)*ws ...
- nthroot(M,k3)*(-pi*p - k1*ws + k2*ws + k3*wp) + k3*wp;

% "Single" variable function:
M singlevar fun = @(M) M param func(M,ws,wp,p,k1,k2,k3);
% Initial Point:
M init = 1;
% Solve for M:
try

M soln = fzero(M singlevar fun,M init);
catch

M soln = NaN;
end
% Store the solution:
Msoln vec(ws ind) = M soln;

% For the assumed upper bound on sensitivity, the relations are ...
valid

% under certain assumption. This assumption is based on relation
% between ws and wp.
validM vec(ws ind) = (wp/ws)ˆ((k2*k3)/(k2+k3));

end
% % Plot
figure;
semilogx(ws vec,mag2db(Msoln vec),'-b');
grid on; hold on;
semilogx(ws vec,mag2db(validM vec),'-r');
title('LB on M vs \omega s');
ylabel('LB on M (dB)');
xlabel('\omega s (rad/s)');
plot axis;
ylim([0 30])

% --
% Solve for ws for different value of M
% Expression involving ws:
% ws <= (pi*p + k3/nthroot(M,k3)*wp - k3*wp)/(-k1 - k2*nthroot(M,k2) ...

+ k2)

% Preallocate
ws vec = NaN*ones(numel(ws vec),1);
validws vec = NaN*ones(numel(ws vec),1);

for M ind = 1:numel(M vec)
M = M vec(M ind);

% Solve for ws
ws soln = (pi*p + k3/nthroot(M,k3)*wp - k3*wp)...

/(-k1 - k2*nthroot(M,k2) + k2);

225

% Store ws
ws vec(M ind) = ws soln;

% For the assumed upper bound on sensitivity, the relations are ...
valid

% under certain assumption. This assumption is based on relation
% between ws and wp.
validws vec(M ind) = wp/(nthroot(M,k2)*nthroot(M,k3));

end
% % Plot
figure;
semilogy(mag2db(M vec),ws vec,'-b');
grid on; hold on;
semilogy(mag2db(M vec),validws vec,'-r');
title('UP on \omega s vs M');
xlabel('M (dB)');
ylabel('UB on Perf. Bandwidth \omega s (rad/s)');
plot axis;
ylim([1e-1 1e1])

A.3 Sensitivity Peak Bounds Due to RHP Zero

% Sensitivity Limits Imposed by RHP Zero:
% Sensitivity bounds based on RHPZ and Weighting function
% SISO LTI plant with P-K classic feedback structure
% Stable plant

% ---
clear;
s = tf('s');

% Available Bandwidth
wp = 1e5;

% RHP zero
z = 10;

% % % Generic Weighting FUnction:
% W = ((s+ws*nthroot(M,k2))ˆk2 * (s+wp/nthroot(M,k3))ˆk3)/ ...
% ((s+ws*nthroot(epsilon,k1))ˆk1 * (s+ws)ˆ(k2-k1) * (s+wp)ˆk3);

% Order of transfer function in a given frequency range
% First slope:
k1 = 1;
% Second slope:
k2 = 1;
% Third slope:
k3 = 1;

% Performance Bandwidth Vector
ws vec = logspace(-1,1,1000);
% Peak Sensitivity Value Vector
M vec = logspace(0,2,1000);

% Epsilon (magnitude of sensitivity at low freq.)

226

% Assume that epsilon is 0 (or 0+ to be precise)

% --
% % Solve for M for different value of ws
% Expression involving M and ws
% zˆk1 * (z+ws)ˆ(k2-k1) * (z+wp)ˆk3 ...
% - (z+ws*nthroot(M,k2))ˆk2 * (z+wp/nthroot(M,k3))ˆk3 == 0;

% Preallocate
Msoln vec = NaN*ones(numel(ws vec),1);
validM vec = NaN*ones(numel(ws vec),1);

for ws ind = 1:numel(ws vec)
ws = ws vec(ws ind);

M param func = @(M,ws,wp,z,k1,k2,k3) ...
(z+ws*nthroot(M,k2))ˆk2 * (z+wp/nthroot(M,k3))ˆk3 ...
- zˆk1 * (z+ws)ˆ(k2-k1) * (z+wp)ˆk3;

% "Single" variable function:
M singlevar fun = @(M) M param func(M,ws,wp,z,k1,k2,k3);
% Initial Point:
M init = 1;
% Solve for M (root of nonlinear expression):
try

M soln = fzero(M singlevar fun,M init);
catch

M soln = NaN; %
end
% Store the solution:
Msoln vec(ws ind) = M soln;

% For the assumed upper bound on sensitivity, the relations are ...
valid

% under certain assumption. This assumption is based on relation
% between ws and wp.
validM vec(ws ind) = (wp/ws)ˆ((k2*k3)/(k2+k3));

end
% % Plot
figure;
semilogx(ws vec,mag2db(Msoln vec),'-b');
grid on; hold on;
semilogx(ws vec,mag2db(validM vec),'-r');
title('LB on M vs \omega s');
ylabel('LB on M (dB)');
xlabel('\omega s (rad/s)');
plot axis;
ylim([-10 60])

% ---
% Solve for ws for different value of M
% Expression involving ws:
% ws <= (pi*p + k3/nthroot(M,k3)*wp - k3*wp)/(-k1 - k2*nthroot(M,k2) ...

+ k2)

% Preallocate

227

ws vec = NaN*ones(numel(ws vec),1);
validws vec = NaN*ones(numel(ws vec),1);

for M ind = 1:numel(M vec)
M = M vec(M ind);

ws param func = @(ws,M,wp,z,k1,k2,k3) ...
(z+ws*nthroot(M,k2))ˆk2 * (z+wp/nthroot(M,k3))ˆk3 ...
- zˆk1 * (z+ws)ˆ(k2-k1) * (z+wp)ˆk3;

% "Single" variable function:
ws singlevar fun = @(ws) ws param func(ws,M,wp,z,k1,k2,k3);
% Initial Point:
ws init = 1;
% Solve for ws (root of nonlinear expression):
try

ws soln = fzero(ws singlevar fun,ws init);
catch

ws soln = NaN; %
end
% Store ws
ws vec(M ind) = ws soln;

% For the assumed upper bound on sensitivity, the relations are ...
valid

% under certain assumption. This assumption is based on relation
% between ws and wp.
validws vec(M ind) = wp/(nthroot(M,k2)*nthroot(M,k3));

end
% % Plot
figure;
semilogy(mag2db(M vec),ws vec,'-b');
grid on; hold on;
semilogy(mag2db(M vec),validws vec,'-r');
title('UP on \omega s vs M');
xlabel('M (dB)');
ylabel('UB on Perf. Bandwidth \omega s (rad/s)');
plot axis;
ylim([1e-2 1e1])

A.4 SISO Unstable and Non-Minimum Plant Example Using HINFSTRUCT

% MATLAB Code to design controller for SISO unstable and non-minimum
% phase plant using hinfstruct
% A classic P-K structure OR a hierarchical inner-outer structure can
% be selected

clear;
close all;

% Classic P-K structure: set flag=1, or
% Hierarchical inner-outer structure: set flag=2.
flag = 1;

% Transfer functions variable
s = tf('s');

228

%% Plant
% Plant
p = 1;
z = 10;

P = ((z-s)/(s-p))*((p)/(z));
[n e,n u] = size(P);

%% Weighting Functions
Eps=0.01;
Ms=2; wb=0.02;
% W1 = tf([1/Ms wb], [1 wb*Eps]);
W1 = ss(1);
% Mu=0.1/3; wbu=7500;
% W2 = [tf([1 wbu*Mu],[Eps wbu])];
W2 = ss(0);
My=2; wbc=0.02;
% W3 = tf([1 wbc/My], [Eps wbc]);
W3 = ss(1);

% Number of exogenous inputs and outputs
n w = size([W1; W2; W3],2);
n z = size([W1; W2; W3],1);

%% Define tunable controller structure

% rolloff at a
a = 100;

if flag == 1
% % Classic P-K structure
% ---
K norolloff = ltiblock.pid('K norolloff','p');
% K norolloff = tunablePID('K norolloff','pi');

% K = gk/s*(s+zk)*(a/(s+a))ˆ2;
K = K norolloff;
% K = series(K norolloff,(a/(s+a))ˆ2);

elseif flag == 2
% % Hierarchical inner-outer structure
% ---
Ko norolloff = ltiblock.pid('Ko norolloff','p');
Ko = Ko norolloff;

% Ko = series(Ko norolloff,(a/(s+a))ˆ2);

Ki norolloff = ltiblock.pid('Ki norolloff','p');
Ki = Ki norolloff;

% Ki = series(Ki norolloff,(a/(s+a))ˆ2);
end

%% Define closed-loop interconnection

if flag == 1
% Classic P-K structure
% ---

229

% Using feeedback command
CL0 = blkdiag(W1*feedback(1,P*K),W3*feedback(P*K,1));
% CL0 = blkdiag(feedback(1,P*K));
%
% % % % Generalized Plant - MSO
% % systemnames='P W1 W2 W3';
% % inputvar=['[r{' int2str(n e) '};u{' int2str(n u) '}]'];
% % outputvar=['[W1; W2; W3; r-P]'];
% % input to P='[u]';
% % input to W1='[r-P]';
% % input to W2='[u]';
% % input to W3='[P]';
% % cleanupsysic='yes';
% % GenP mso=sysic;
% %
% % [Ag,Bg,Cg,Dg]=ssdata(GenP mso);
% % % [Ag,Bg,Cg,Dg]=ssdata(GenP mso io);
% %
% % % % Matrix blocks of Generalized Plants for LMI
% % % A=Ag;
% % % B1=Bg(:,1:n w);
% % % B2=Bg(:,n w+1:end);
% % % C1=Cg(1:n z,:);
% % % C2=Cg(n z+1:end,:);
% % % D11=Dg(1:n z,1:n w);
% % % D12=Dg(1:n z,n w+1:end);
% % % D21=Dg(n z+1:end,1:n w);
% % % D22=Dg(n z+1:end,n w+1:end);
% %
% % % Num. of states of GenP
% % nx genp = size(Ag,1);
% % CL0 = lft(GenP mso,K);

elseif flag == 2
% Hierarchical inner-outer structure
% ---
P.InputName = 'u';
P.OutputName = 'y';
Ko.InputName = 'e';
Ko.OutputName = 'uo';
Ki.InputName = 'y';
Ki.OutputName = 'ui';
W1.InputName = 'e';
W1.OutputName = 'z1';
W3.InputName = 'y';
W3.OutputName = 'z3';
sum outer=sumblk('e=r-y',1);
sum inner=sumblk('u=uo-ui',1);
WS = connect(P,Ki,Ko,W1,W3,sum outer,sum inner,'r','z1');
WT = connect(P,Ki,Ko,W1,W3,sum outer,sum inner,'r','z3');
CL0 = blkdiag(WS,WT);

end
%% Solve $H {\infty}$ problem with hinfstruct
opts = hinfstructOptions('Display','final','MaxIter',100,...

'RandomStart',50);%,'TolGain',1e-7);
[CL,gam1] = hinfstruct(CL0,opts); % CL is tuned version of CL0

230

if flag == 1
% % Classic P-K structure
% % ---
% Get proportional and integral gains
kp = CL.Blocks.K norolloff.Kp.Value;
ki = CL.Blocks.K norolloff.Ki.Value;
kd = CL.Blocks.K norolloff.Kd.Value;
tau = CL.Blocks.K norolloff.Tf.Value;
% Form the final controller
K norolloff = kp + kd*(s/(tau*s+1)) + ki/s;
K = K norolloff;
% series(K norolloff,(a/(s+a))ˆ2);

elseif flag == 2
% Hierarchical inner-outer structure
% ---
% Ko:
% Get proportional and integral gains
kop = CL.Blocks.Ko norolloff.Kp.Value;
koi = CL.Blocks.Ko norolloff.Ki.Value;
% Form the final controller
Ko norolloff = kop + koi/s;
Ko = Ko norolloff;

% Ko = series(Ko norolloff,(a/(s+a))ˆ2);

% Ki:
% Get proportional and differential gains
kip = CL.Blocks.Ki norolloff.Kp.Value;
kid = CL.Blocks.Ki norolloff.Kd.Value;
tau = CL.Blocks.Ki norolloff.Tf.Value;
kii = CL.Blocks.Ki norolloff.Ki.Value;
% Form the final controller
Ki norolloff = kip + kid*(s/(tau*s+1)) + kii/s;
Ki = Ki norolloff;

% Ki = series(Ki norolloff,(a/(s+a))ˆ2);

end

%% Analyze OL and CL maps

if flag == 1
% % Classic P-K structure
% % ---
[Lo,Li,So,Si,To,Ti,KS,PS] = f CLTFM(P,K);
S = So;
T = To;
zpk(T)

% Plot S and T
wvec = logspace(-4,3,1000);
figure; sigma(So,wvec); grid on; hold on; sigma(To,wvec);
plot axis;
[hL,hObj]=legend('S','T');
plot legend(hL,hObj);

elseif flag == 2

231

% % Hierarchical inner-outer structure
% % ---
P.InputName = 'u';
P.OutputName = 'y';
Ko.InputName = 'e';
Ko.OutputName = 'uo';
Ki.InputName = 'y';
Ki.OutputName = 'ui';
sum outer=sumblk('e=r-y',1);
sum inner=sumblk('u=uo-ui',1);

Pmod = connect(P,Ki,sum inner,'uo','y');
zpk(Pmod)

S = connect(P,Ki,Ko,sum outer,sum inner,'r','e');
T = connect(P,Ki,Ko,sum outer,sum inner,'r','y');
zpk(T)

% Plot S and T
wvec = logspace(-4,2,1000);
figure; sigma(S,wvec); grid on; hold on;
sigma(T,wvec);
sigma(inv(W1),wvec);
sigma(inv(W3),wvec);
title('Sensitivity and Complementary Sensitivity')
plot axis;
[hL,hObj]=legend('S','T','W1ˆ{-1}','W3ˆ{-1}');
plot legend(hL,hObj);

end

A.5 Pareto Optimality Example Using FMINCON

% Illustrative Example: Weighted Sensitivities vs Tradeoff Parameter
% Using nonlinear optimization solver
% % Assumptions:
% P is dynamic
% K is static
% 2X2 system
% K is of the form [k11 k12; k21 k22]

clear all;
close all;

% Transfer function variable
s = tf('s');

% Plant definition
P = 1/s*[10 9; 9 8];

% Weighting functions
% % W1 and Wd1
Eps=0.01; Ms=2; wb1=1; wb2=1;
W1 = [tf([1/Ms wb1], [1 wb1*Eps]) 0; 0 tf([1/Ms wb2], [1 wb2*Eps])];
Eps=0.01; Ms=2; wb1=2; wb2=2;
Wd1 = [tf([1/Ms wb1], [1 wb1*Eps]) 0; 0 tf([1/Ms wb2], [1 wb2*Eps])];

232

% W2 and Wd2
W2 = ss([0.5 0; 0 2]);
Wd2 = ss([1 0; 0 1]);

% Constraint values
cvalvec = [10; 1000; 0.0001; 10000];

% rho vector
rho vec = 0:0.05:1;

% Bounds on optimization variable
k ub = 20;
k lb = -20;
kvec ub = k ub*ones(4,1);
kvec lb = k lb*ones(4,1);

% Initial point for the first iteration
kvec init = [-8; 9; 9; -10];

% Loop for all the different values of rho
for ind = 1:numel(rho vec)

rho = rho vec(ind);

% Call the fmincon solver function
[kvec soln,fval,flg] = fmincon(@(x) obj func(x,P,W1,Wd1,rho),...

kvec init,[],[],[],[],kvec lb,kvec ub,...
@(c) constr func(c,P,W2,Wd2,cvalvec));

% Controller parameters obtained
k11 = kvec soln(1);
k12 = kvec soln(2);
k21 = kvec soln(3);
k22 = kvec soln(4);
K = [k11 k12; k21 k22]

% Store the relevant control properties
K store{ind} = K;
[Lo,Li,So,Si,To,Ti,KS,PS] = f CLTFM(ss(P),ss(K));
NormInf = mag2db([hinfnorm(So), hinfnorm(Si), hinfnorm(KS), ...

hinfnorm(PS), hinfnorm(To), hinfnorm(Ti)])
norm1 store(ind) = hinfnorm(W1*So)
norm2 store(ind) = hinfnorm(Wd1*Si)
So BW 20 = max(getGainCrossover(So,0.1));
To BW 20 = max(getGainCrossover(To,0.1));
constr store(:,ind) = [hinfnorm(W2*KS); hinfnorm(Wd2*PS); ...

So BW 20; To BW 20]

% Initial point for next iteration
kvec init = kvec soln;

end

figure; plot(rho vec,mag2db(norm1 store),'-*'); grid on;
hold on;
plot(rho vec,mag2db(norm2 store),'-*')
plot axis;
title(' | | W*S | | {\infty} vs \rho');

233

[hL,hObj]=legend(' | | W 1*S e | | {\infty}',' | | W 4*S c | | {\infty}');
plot legend(hL,hObj)
ylabel(' | | W*S | | {\infty} (dB)');
xlabel('\rho');

figure; plot(mag2db(norm1 store),mag2db(norm2 store),'-*'); grid on;
plot axis;
ylabel(' | | W 4*S c | | {\infty} (dB)');
xlabel(' | | W 1*S e | | {\infty} (dB)');
title(' | | W 4*S c | | {\infty} vs | | W 1*S e | | {\infty}');

%%
function fval = obj func(kvec,P,W1,Wd1,rho)
% % Objective Function
% Inputs: kvec P W1 Wd1 rho
% Output: fval

% Form the controller
k11 = kvec(1);
k12 = kvec(2);
k21 = kvec(3);
k22 = kvec(4);
K = [k11 k12; k21 k22];

% Compute the closed loop maps
[~,~,So,Si,~,~,~,~] = f CLTFM(ss(P),ss(K));

% Objective Function
% fval = rho*hinfnorm(W1*So) + (1-rho)*hinfnorm(Wd1*Si);
fval = max(rho*hinfnorm(W1*So),(1-rho)*hinfnorm(Wd1*Si));
end

function [cineq,ceq] = constr func(kvec,P,W2,Wd2,cvalvec)
% % Constraint Function
% Inputs: kvec P W2 Wd2
% Output: cineq ceq

% Form the controller
k11 = kvec(1);
k12 = kvec(2);
k21 = kvec(3);
k22 = kvec(4);
K = [k11 k12; k21 k22];

% Compute the closed loop maps
[~,~,So,Si,To,Ti,KS,PS] = f CLTFM(ss(P),ss(K));

% Check the bandwidths
if ~isempty(getGainCrossover(So,0.1))

So BW 20 = max(getGainCrossover(So,0.1));
else

So BW 20 = Inf;
end;
if ~isempty(getGainCrossover(To,0.1))

To BW 20 = max(getGainCrossover(To,0.1));
else

To BW 20 = Inf;

234

end;

% Inequality Constraints
cineq = [hinfnorm(W2*KS) - cvalvec(1);

hinfnorm(Wd2*PS) - cvalvec(2);
-So BW 20 + cvalvec(3);
To BW 20 - cvalvec(4)
];

% No Equality Constraint
ceq = [];
end

A.6 µ-Synthesis Using DK-Iteration

% MATLAB code for mu-synthesis using DK-iteration technique
% Uses MATLAB's dksyn command in Robust Control Toolbox

clear; close all;

% Transfer function variable
s = tf('s');

%% Plant model
P = 1/s * [10 9; 9 8];
[n e,n u] = size(P);

%% Define uncertainty blocks
InputUnc = ultidyn('InputUnc',[2 2],'Bound',1);
OutputUnc = ultidyn('OutputUnc',[2 2],'Bound',1);

%% Weighting Functions
% Weight on Divisive Uncertainty at Input
Wi = 1*eye(n u);
% Weight on Divisive Uncertainty at Output
Wo = 1*eye(n e);
% Weight on Se
rho = 1;
Eps=0.01;
Ms=2; wb=0.1;
W1 = tf([1/Ms wb], [1 wb*Eps])*eye(n e);
% Weight on KSe
W2 = ss(0.1)*eye(n u);

%% Generalized plant
systemnames = 'P W1 W2 Wi Wo';
inputvar = '[di(2); do(2); w(2); u(2)]';
outputvar = '[Wi; Wo; W1; W2; w-P+do]';
input to P = '[u-di]';
input to W1 = '[w-P+do]';
input to W2 = '[u-di]';
input to Wi = '[u-di]';
input to Wo = '[P-do]';
sysoutname = 'GenP';
cleanupsysic = 'yes';

235

sysic;
% GenP = minreal(ss(GenP));
GenP unc = lft([InputUnc zeros(2); zeros(2) OutputUnc],GenP);

%% dksyn command
[K dksyn,CL dksyn,Bnd dksyn,Info dksyn] = dksyn(GenP unc,2,2);

%% mu-analysis
% del I, del O for robust stability (RS)
BlockStructureRS = [2 2; 2 2];
% % del I, del O for NP
% BlockStructureNP = [2 2];
% % del I, del O, del P for RP
% BlockStructureRP = [BlockStructureRS; BlockStructureNP];

wvec1=logspace(-3,3,1000); % freq vec for Mu-analysis
N = lft(GenP,K dksyn);
Nf = frd(N,wvec1);
% mu for RS:
MuData=mussv(Nf(1:sum(BlockStructureRS(:,1)),1:sum(BlockStructureRS(:,1))),BlockStructureRS); ...

% Pick the channels corresponding to del I and del O. Reject ...
the channel corresponding to del P

muRS(1:length(wvec1))=MuData(1,1).ResponseData(1,1,:);
% % mu for RP:
% MuData=mussv(Nf,BlockStructureRP);
% muRP(1:length(wvec1))=MuData(1,1).ResponseData(1,1,:);
% % mu for NP:
% ...

MuData=mussv(Nf(end-sum(BlockStructureNP(:,1))+1:end,end-sum(BlockStructureNP(:,1))+1:end),BlockStructureNP); ...
% Pick the channels corresponding to del I and del O. Reject ...

the channel corresponding to del P
% muNP(1:length(wvec1))=MuData(1,1).ResponseData(1,1,:);

figure;
semilogx(wvec1,mag2db(muRS)); grid on;
title('\mu for Robust Stability');
ylabel('\mu');
xlabel('Frequency (rad/s)');
plot axis
% plot legend(hL,hObj)
ylim([-40 20]);

%% CL maps
[Lo,Li,So,Si,To,Ti,KS,PS] = f CLTFM(P,K dksyn);

wvec=logspace(-3,3,10000); % freq vec for plotting

figure; sigma(So,wvec); grid on; hold on; sigma(inv(W1),wvec);
title('S e');
[hL,hObj]=legend('S e','W 1ˆ{-1}');
plot axis
plot legend(hL,hObj)
ylim([-100 20]);

figure; sigma(KS,wvec); grid on; hold on; sigma(inv(W2),wvec);
title('KS e');
[hL,hObj]=legend('KS e','W 2ˆ{-1}');

236

plot axis
plot legend(hL,hObj)
ylim([-100 20]);

A.7 Forming Closed Loop Maps

Classic P-K structure:

function [Lo,Li,So,Si,To,Ti,KS,SP] = f CLTFM(P,K)

% OL and CL frequency responses (ss based)
% Works for MIMO P and K
% Inputs:
% P: Plant in state space form
% K: Control in state space form
% Outputs:
% Lo, Li: Open loop tfs in ss
% So,Si,To,Ti,KS,SP: Closed loop tfs in ss

[Ap, Bp, Cp, Dp] = ssdata(P);
n e = size(P,1);
n u = size(P,2);
n p = size(P,'order');
[Ak, Bk, Ck, Dk] = ssdata(K);
n k = size(K,'order');

%% Lo = PK
A Lo = [Ap Bp*Ck; zeros(n k,n p) Ak];
B Lo = [Bp*Dk; Bk];
C Lo = [Cp Dp*Ck];
D Lo = Dp*Dk;
Lo = ss(A Lo,B Lo,C Lo,D Lo);

%% Li = KP
A Li = [Ak Bk*Cp; zeros(n p,n k) Ap];
B Li = [Bk*Dp; Bp];
C Li = [Ck Dk*Cp];
D Li = Dk*Dp;
Li = ss(A Li,B Li,C Li,D Li);

%% Mo
Mo = inv(eye(n e)+Dp*Dk);
%% Mi
Mi = inv(eye(n u)+Dk*Dp);

%% So = inv(I+PK)
A So = [Ap-Bp*Dk*Mo*Cp Bp*Ck-Bp*Dk*Mo*Dp*Ck; -Bk*Mo*Cp Ak-Bk*Mo*Dp*Ck];
B So = [Bp*Dk*Mo; Bk*Mo];
C So = [-Mo*Cp -Mo*Dp*Ck];
D So = Mo;
So = ss(A So,B So,C So,D So);

%% Si = inv(I+KP)
A Si = [Ak-Bk*Dp*Mi*Ck Bk*Dp*Mi*Dk*Cp-Bk*Cp; Bp*Mi*Ck Ap-Bp*Mi*Dk*Cp];
B Si = [-Bk*Dp*Mi; Bp*Mi];
C Si = [Mi*Ck -Mi*Dk*Cp];

237

D Si = Mi;
Si = ss(A Si,B Si,C Si,D Si);

%% To = PKinv(I+PK)
A To = [Ap-Bp*Dk*Mo*Cp Bp*Ck-Bp*Dk*Mo*Dp*Ck; -Bk*Mo*Cp Ak-Bk*Mo*Dp*Ck];
B To = [Bp*Dk*Mo; Bk*Mo];
C To = [Mo*Cp Mo*Dp*Ck];
D To = Mo*Dp*Dk;
To = ss(A To,B To,C To,D To);

%% Ti = inv(I+KP)KP
A Ti = [Ak-Bk*Dp*Mi*Ck Bk*Dp*Mi*Dk*Cp-Bk*Cp; Bp*Mi*Ck Ap-Bp*Mi*Dk*Cp];
B Ti = [-Bk*Dp*Mi; Bp*Mi];
C Ti = [Mi*Ck -Mi*Dk*Cp];
D Ti = -Dk*Dp*Mi;
Ti = ss(A Ti,B Ti,C Ti,D Ti);

%% KS
A ks = [Ap-Bp*Dk*Mo*Cp Bp*Ck-Bp*Dk*Mo*Dp*Ck; -Bk*Mo*Cp Ak-Bk*Mo*Dp*Ck];
B ks = [Bp*Dk*Mo; Bk*Mo];
C ks = [-Dk*Mo*Cp Ck-Dk*Mo*Dp*Ck];
D ks = Dk*Mo;
KS = ss(A ks,B ks,C ks,D ks);

%% SP
A sp = [Ak-Bk*Dp*Mi*Ck Bk*Dp*Mi*Dk*Cp-Bk*Cp; Bp*Mi*Ck Ap-Bp*Mi*Dk*Cp];
B sp = [-Bk*Dp*Mi; Bp*Mi];
C sp = [Mo*Dp*Ck Mo*Cp];
D sp = Mo*Dp;
SP = ss(A sp,B sp,C sp,D sp);

Inner-Outer Hierarchical Structure:

function ...
[Lo,Li,So,Si,To,Ti,Tru,PS,Tniy,Tniu]=f CLMapInnerOuter generic...
(P,Ki,Ko,Mi)

% Computes the open and closed loop maps for inner-outer loop
% configuration
% Mi is a matrix with following properties
% num of col = num of states
% num of row = num of states being fed back in inner loop
% Eg: feeding back states 3 and 4:
% Mi = [0 0 1 0 0 0;
% 0 0 0 1 0 0];

[Ap, Bp, Cp, Dp] = ssdata(P);
[Ai, Bi, Ci, Di] = ssdata(Ki);
[Ao, Bo, Co, Do] = ssdata(Ko);

% Open loop
%% Lo
A Lo=[Ap+Bp*Di*Mi Bp*Co -Bp*Ci;

zeros(size(Ao,1),size(Ap,2)) Ao ...
zeros(size(Ao,1),size(Ai,2));
Bi*Mi zeros(size(Ai,1),size(Ao,2)) Ai];

238

B Lo=[Bp*Do;
Bo;
zeros(size(Bi,1),size(Bo,2))];

C Lo = [Cp-Dp*Di*Mi Dp*Co -Dp*Ci];
D Lo = Dp*Do;

Lo=ss(A Lo,B Lo,C Lo,D Lo);

%% Li
A Li=[Ap zeros(size(Ap,1),size(Ao,2)) ...

zeros(size(Ap,1),size(Ai,2));
-Bo*Cp Ao ...

zeros(size(Ao,1),size(Ai,2));
Bi*Mi zeros(size(Ai,1),size(Ao,2)) Ai ...

];

B Li=[Bp;
-Bo*Dp;
zeros(size(Ai,1),size(Bp,2))];

C Li=[-Do*Cp-Di*Mi Co -Ci];
D Li= -Do*Dp;
Li=ss(A Li,B Li,C Li,D Li);

%% Closed loop
Q =inv(eye(size(Do,1)) + Do*Dp);

Amat=[Ap+Bp*Q*(Do*Dp*Di*Mi-Do*Cp)-Bp*Di*Mi Bp*Q*Co ...
-Bp*Ci+Bp*Q*Do*Dp*Ci ;

Bo*Dp*Di*Mi-Bo*Cp-Bo*Dp*Q*(Do*Dp*Di*Mi-Do*Cp) Ao-Bo*Dp*Q*Co ...
Bo*Dp*Ci-Bo*Dp*Q*Do*Dp*Ci;
Bi*Mi zeros(size(Ai,1),...
size(Ao,2)) Ai];

%% To
B To = [Bp*Q*Do ;

Bo-Bo*Dp*Q*Do ;
zeros(size(Ai,1),size(Bo,2))];

C To=[Cp+Dp*Q*(Do*Dp*Di*Mi-Do*Cp)-Dp*Di*Mi Dp*Q*Co ...
Dp*Q*Do*Dp*Ci];

D To = Dp*Q*Do;
To=ss(Amat,B To,C To,D To);

%% So
D So=eye(size(Dp,1),size(Bo,2))-Dp*Q*Do;
So=ss(Amat,B To,-C To,D So);

%% KS (Tru, strictly speaking)
C KS = [Do*Dp*Di*Mi-Do*Cp-Di*Mi Co Do*Dp*Ci-Ci];
D KS = Q*Do;
Tru=ss(Amat,B To,C KS,D KS);

%% Si
B Si=[Bp - Bp*Q*Do*Dp ;

-Bo*Dp+Bo*Dp*Q*Do*Dp ;
zeros(size(Bi,1),size(Dp,2))];

239

D Si=eye(size(Q,1))- Q*Do*Dp;
Si=ss(Amat,B Si,C KS,D Si);

%% Ti
D Ti = -Q*Do*Dp ;
Ti=ss(Amat,B Si,C KS,D Ti);

%% PS
D PS = Dp-Dp*Q*Do*Dp ;
PS=ss(Amat,B Si,C To,D PS);

%% Tniy
B Tniy=[Bp*Q*Do*Dp*Di-Bp*Di;

Bo*Dp*Di-Bo*Dp*Q*Do*Dp*Di;
Bi];

D Tniy=[Dp*Q*Do*Dp*Di-Dp*Di];
Tniy=ss(Amat,B Tniy,C To,D Tniy);

%% Tniu
D Tniu=Q*Do*Dp*Di-Di;
Tniu=ss(Amat,B Tniy,C KS,D Tniu);

Inner-Outer Hierarchical Structure when Same States are Associated with
Ko and Ki:

function ...
[Lo,Li,So,Si,To,Ti,Tru,PS,Tniy,Tniu]=f CLMapInnerOuter BigK(P,...
K,Mi)

% Computes the open and closed loop maps for inner-outer loop ...
configuration

% This code can be used when both Ko and Ki have same A and C matrices.
% In other words, when big K is formed which has both Ko and Ki in it.
% This code must be used rather than f CLMapInnerOuter generic.m in ...

order
% to avoid nonminimality in the system
% Mi is a matrix with following properties
% num of col = num of states
% num of row = num of states being fed back in inner loop
% Eg: feeding back states 3 and 4:
% Mi = [0 0 1 0 0 0;
% 0 0 0 1 0 0];

[Ap, Bp, Cp, Dp] = ssdata(P);
[Ak, Bk, Ck, Dk] = ssdata(K);

Bo=K.b(:,1:size(Cp,1)); % Number of inputs to Ko is same as num of ...
plant...

% output
Do=K.d(:,1:size(Cp,1));
Bi=K.b(:,size(Cp,1)+1:end); % Inputs to Ki are the remaining inputs ...

to K...
% Also equal to num of rows in Mi
Di=K.d(:,size(Cp,1)+1:end);
%
% Bo=K.b(:,1:size(Mi,1)); % Number of inputs same as num of rows in Mi

240

% Do=K.d(:,1:size(Mi,1));
% Bi=K.b(:,size(Mi,1)+1:end); % Inputs are the remaining inputs to K...
% Also equal to num of plant output
% Di=K.d(:,size(Mi,1)+1:end);

% Open loop
%% Lo
A Lo=[Ap-Bp*Di*Mi Bp*Ck;

-Bi*Mi Ak];
B Lo=[Bp*Do;

Bo];
C Lo = [Cp-Dp*Di*Mi Dp*Ck];
D Lo = Dp*Do;

Lo=ss(A Lo,B Lo,C Lo,D Lo);

%% Li
A Li=[Ap zeros(size(Ap,1),size(Ak,2));

-Bo*Cp-Bi*Mi Ak];
B Li=[Bp;

-Bo*Dp];
C Li=[-Do*Cp-Di*Mi Ck];
D Li= -Do*Dp;
Li=ss(A Li,B Li,C Li,D Li);

%% Closed loop
Q =inv(eye(size(Dp,1)) + Dp*Do); %

Amat=[Ap-Bp*Do*Q*Cp+Bp*Do*Q*Dp*Di*Mi-Bp*Di*Mi Bp*Ck-Bp*Do*Q*Dp*Ck;
-Bo*Q*Cp+Bo*Q*Dp*Di*Mi-Bi*Mi Ak-Bo*Q*Dp*Ck];

%% To
B To = [Bp*Do*Q;

Bo*Q];
C To=[Cp-Dp*Do*Q*Cp+Dp*Do*Q*Dp*Di*Mi-Dp*Di*Mi Dp*Ck-Dp*Do*Q*Dp*Ck];
D To = Dp*Do*Q;
To=ss(Amat,B To,C To,D To);

%% So
D So=eye(size(Dp,1))-Dp*Do*Q;
So=ss(Amat,B To,-C To,D So);

%% KS (Tru, strictly speaking)
C KS = [-Do*Q*Cp+Do*Q*Dp*Di*Mi-Di*Mi Ck-Do*Q*Dp*Ck];
D KS = Do*Q;
Tru=ss(Amat,B To,C KS,D KS);

%% Si
B Si=[Bp-Bp*Do*Q*Dp;

-Bo*Q*Dp];
D Si=eye(size(Do,1))-Do*Q*Dp;
Si=ss(Amat,B Si,C KS,D Si);

%% Ti
D Ti =-Do*Q*Dp ;
Ti=ss(Amat,B Si,C KS,D Ti);

241

%% PS
D PS = Dp-Dp*Do*Q*Dp ;
PS=ss(Amat,B Si,C To,D PS);

%% Tniy
B Tniy=[Bp*Do*Q*Dp*Di-Bp*Di;

Bo*Q*Dp*Di-Bi];
D Tniy=-Dp*Di+Dp*Do*Q*Dp*Di;
Tniy=ss(Amat,B Tniy,C To,D Tniy);

%% Tniu
D Tniu=Do*Q*Dp*Di-Di;
Tniu=ss(Amat,B Tniy,C KS,D Tniu);

A.8 Modifying the Appearance of Plots

function plot axis
% This function sets the axes and line properties
% Puts grid and adjusts grid transparency
% Adjusts the LineWidth of the graph
% Adjusts the FontSize of axes

grid on;
h line = findobj(gcf, 'type', 'line');
set(h line, 'LineWidth',2);
h axes = findobj(gcf, 'type', 'axes');
set(h axes,'LineWidth',1,'FontSize',12,'GridAlpha',0.25);

function plot legend(hL,hObj)
% This function sets the legend properties
% Adjusts the LineWidth and FontSize

set(hL,'FontSize',12);
hTL=findobj(hObj,'type','line'); % get the lines, not text
set(hTL,'LineWidth',2) % set linewidth
hTL=findobj(hObj,'type','Text'); % get the text
set(hTL,'FontSize',12) % set fontsize
% ax = gca; ax.LineWidth = 1; ax.FontSize = 14; ax.GridAlpha = 0.25; ...

lgd = legend('So','To'); lgd.FontSize = 14;
% hL = gca; hObj = gca;

A.9 MIMO Dynamical System Interaction Measures

Condition Number:

function cond num=f CondNum(G,wvec)
% Code to find condition number of a dynamic system
% Inputs:
% G: Dynamic system,
% wvec: frequency sampling points
% Outputs:

242

% Condition number vector
sing val=sigma(G,wvec);
cond num=sing val(1,:)./sing val(end,:);

% % Plot
% figure; loglog(wvec,cond num); grid on;

Relative Gain Array (RGA):

function [RGAMat,RGASumNorm]=f RGADynSys(G,wvec)
% Code to find rga for a dynamic system
% Inputs:
% G: Dynamic system, wvec: frequency sampling points
% Outputs:
% RGAMat: RGA matrix components for all specified frequencies, ...

RGASumNorm

% % % Method-1
% RGASumNorm=zeros(length(wvec),1);
% RGAMat=zeros(size(G,1),size(G,2),length(wvec));
% for ii=1:length(wvec)
% freq=wvec(ii);
% G mat=evalfr(G,freq);
% R=rga(G mat);
% RGAMat(:,:,ii)=R;
% RGASumNorm(ii)=sum(sum(abs(R)));
% end

% % Method-2
% wvec=logspace(1,1,100);
Gss = ss(G);
Gpck = pck(Gss.a,Gss.b,Gss.c,Gss.d);
Gw=frsp(Gpck,wvec);
RGAMat=veval('.*',Gw,vpinv(vtp(Gw)));
RGASumNorm = sum(abs(RGAMat(1:length(wvec),1:2)),2);

Optimally Scaled Condition Number:

function [condnum store,L opt store,R opt store] = f MinCondNum(...
ss Plant,wvec,gamma vec)

% Function to obtain the minimized condition number of a dynamical ...
system

% Min cond num at each desired frequency value is obtained
% The value of optimization variable gamma is guessed each time before
% successively solving an LMI. The gamma is looped over several values.
% The minimum condition number obtained over all the gamma values is ...

chosen
% Set wvec, the frequency points where condnum need to be mimimized
% Set gamma vec, the values of guess for optimization variable gamma at
% each frequency
%
% Inputs:
% 1) System whose minimized condition number is to be found
% 2) wvec: the frequency points where condnum need to be mimimized
% 3) gamma vec, the values of guess for optimization variable gamma ...

243

at each
% frequency
% Example:
% wvec=logspace(-3,1,25);
% gamma vec = logspace(-3,1,50);
% % load FlexNom.mat
% % load Linr-Bolender NewEng OldPlm1.mat
% % ss Plant = HSV Trim Data{1,1}.FER Scaled;
% load('NENP Rigid');
% ss Plant=plantRigid(1:2,:);
% % ss Plant=[1/(s+1) 0; 0 1/(s+2)]*[9 -10; -8 9];
% % ss Plant=[(10-s)/10 0; 0 1/(s+1)];
%
% Outputs:
% 1) Cell of length same as that of wvec, each with diagonal matrix ...

matrix
% L of size equal to number of system outputs
% 2) Cell of length same as that of wvec, each with diagonal matrix ...

matrix
% R of size equal to number of system inputs
% 3) Vector of Minimized Condition Number at every frequency point ...

given by
% wvec

% addpath(genpath('path to yalmip'))
% addpath(genpath('path to SeDuMi'))

% clear;
% warning off;
% s=tf('s');

[n y,n u] = size(ss Plant);

% wvec=1e-1;
% Preallocate:
condnum store = NaN*ones(1,length(wvec));
L opt store{length(wvec)} = [];
R opt store{length(wvec)} = [];

for j=1:length(wvec)

M = bode(ss Plant,wvec(j));
eps = 1e-4;

for jj = 1:length(gamma vec)
g = gamma vec(jj); % this is the optimization objective
tic;
if cond(M) > 1

P = diag(sdpvar(n y,1));
Q = diag(sdpvar(n u,1));
MID = M'*P*M;
C1 = [Q <= MID, MID <= gˆ2*Q, Q>eps*eye(2), P>eps*eye(2)];
% C1 = [Q <= MID, MID <= gammaˆ2*Q, Q>eps*eye(2)];

% sdpsettings('bmibnb.roottight',[0|1])
sdpset = sdpsettings('solver','sedumi','verbose',1); ...

%,'showprogress',1);

244

% solvesdp(C1,gˆ2,sdpset);
diagnostics = optimize(C1,gˆ2,sdpset);

P = double(P);
Q = double(Q);

PT = isnan(P);
QT = isnan(Q);
PT1 = find(PT == 1);
QT1 = find(QT == 1);
PT2 = sum(PT1);
QT2 = sum(QT1);
if PT2 ==0 && QT2 ==0

L = sqrtm(P);
R = Qˆ(-0.5);
condnum(jj) = cond(L*M*R);
L cur gam{jj} = L;
R cur gam{jj} = R;

else
condnum(jj) = Inf;
L cur gam{jj} = [];
R cur gam{jj} = [];

end
clear PT QT PT1 QT1 PT2 QT2

else
condnum = 1;

end

toc;
end

[condnum store(j),ind] = min(condnum);
clear condnum;
L opt store{j}=L cur gam{ind};
R opt store{j}=R cur gam{ind};

end

A.10 Phase of MIMO System

function [phase vec] = f MIMOPhase(Plnt,wval vec)
% Phase of SISO/MIMO Square Plant
%
% Inputs:
% Plnt: Dynamical system (usually tf/zpk/ss)
% wvec: [Optional] Frequency vector for obtaining phase at each
% of those points
% [Default] wvec = logspace(-3,3,1e3)
% Outputs:
% phase vec: Computed phase of system (in deg)
%
% For SISO systems, for getting the phase same as usual Bode phase
% plot, pick wi=-ui
% See Jie Chen, Multivar Gain-Phase ... , 1998

245

% % Also see Freudenberg Book
% Here, it is assumed that the reference vector wi=ui.

% Frequency vector: Assign Default if not provided
if nargin < 2

wval vec = logspace(-3,3,1e3);
end

% System
% s = tf('s');
%
% Plnt = [1/(s+1) 0; 0 1/(s+2)] * [9 -10; -8 9];
% % Plnt = [1/(s+1) 0; 0 1/(s+1)];

% sval = 1i*0.5;

for sval ind = 1:length(wval vec)

sval = wval vec(sval ind);
Plnt jw = evalfr(Plnt,1i*sval);

[u,sv,v] = svd(Plnt jw);

for singval ind = 1:size(Plnt,1)

phase sv(sval ind,singval ind) = angle(u(:,singval ind)'...
*v(:,singval ind))*180/pi;

% fprintf('Angle (deg) corresponding to sv1')
% angle(u(:,1)'*v(:,1))*180/pi

% phase sv2(sval ind) = angle(u(:,2)'*v(:,2))*180/pi;
% % fprintf('Angle (deg) corresponding to sv2')
% % angle(u(:,2)'*v(:,2))*180/pi

end

end

figure;
for singval ind = 1:size(Plnt,1)

semilogx(wval vec,phase sv(:,singval ind));
hold on;

end
title('\angle u iˆH v i');
ylabel('(deg)');
xlabel('Frequency (rad/s)');
% legend('sv1','sv2');
plot axis;
% figure;
% semilogx(wval vec,phase sv1,wval vec,phase sv2);
% title('\angle u iˆH v i');
% ylabel('(deg)');
% xlabel('Frequency (rad/s)');
% legend('sv1','sv2');
% plot axis;

246

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Motivation
	1.2 State-of-the-Field, Related Work and Challenges
	1.3 Contributions
	1.4 Organization of Dissertation

	2
	2.1 Overview
	2.2 Notations and Definitions
	2.3 Signal and System Norms
	2.3.1 Signal Norms
	2.3.2 System Norms

	2.4 Singular Values of a Matrix
	2.4.1 Singular Value Decomposition (SVD)
	2.4.2 Condition Number ()

	2.5 Elements of Convex Optimization
	2.5.1 Convex Set and Convex Function
	2.5.2 Convexity Preserving Operations.

	2.6 Summary and Conclusions

	3
	3.1 Overview
	3.2 Open and Closed Loop Transfer Function Matrices (TFMs)
	3.3 Plant Condition Number Dependent Relations Between Sensitivities at Distinct Loop-Breaking Points
	3.4 Relations between Open and Closed Loop TFMs
	3.5 Measures of Interactions in MIMO Systems
	3.5.1 Condition Number ()
	3.5.2 Relative Gain Array (RGA)
	3.5.3 Scaled Condition Number (K*)

	3.6 Gain and Phase of MIMO Systems
	3.7 Bode Sensitivity Integral Constraint
	3.7.1 Bode's Generalized Sensitivity Integral Relation
	3.7.2 Sensitivity Peaking Analysis Using Generic Bounds

	3.8 Peak Sensitivity Bounds Imposed by RHP Zeros
	3.8.1 Weighted Sensitivity Peak Relation
	3.8.2 Sensitivity Peaking Analysis Using Generic Weighting Functions

	3.9 Stability Margin Bounds from Closed Loop Frequency Response Bounds
	3.10 Sensitivity Bounds Imposed by RHP Poles and RHP Zeros
	3.11 Impact of Uncertainty on Sensitivity
	3.12 Summary and Conclusions

	4
	4.1 Overview
	4.2 Typical Closed Loop Frequency-Domain Design Objectives
	4.3 Standard H Mixed-Sensitivity Optimization Problem
	4.4 Proposed Generalized H Mixed Sensitivity Optimization Problem
	4.4.1 GMS at Two Loop-Breaking Points for Standard P-K Feedback Structure
	4.4.2 GMS at Three Loop-Breaking Points for Hierarchical Inner-Outer Loop Feedback Structure

	4.5 Different H based Multiobjective Function Formulations
	4.5.1 Weighted Max Formulation
	4.5.2 Stacking Formulation
	4.5.3 Sum Formulation

	4.6 Summary and Conclusions

	5
	5.1 Overview
	5.2 Youla et al. (or Q) Parameterization of All Stabilizing Controllers
	5.2.1 Observer Based Youla et al. Parameterization
	5.2.2 Coprime Factorization Based Youla et al. Parameterization
	5.2.3 Controller State Space Representation

	5.3 Achieving Finite Dimensionality
	5.4 Basis Options
	5.5 Computation of Subgradients
	5.5.1 Subgradient for H Norm at a Transfer Function Matrix
	5.5.2 Subgradient for Time-Domain L Norm at a TFM
	5.5.3 Subgradient of Multiobjective Functions

	5.6 Convex Optimization Methods
	5.6.1 Overview of Interior Point and Cutting Plane Methods
	5.6.2 Analytic Center Cutting Plane Method (ACCPM)
	5.6.3 Kelley's Cutting Plane Method (Kelley's CPM)
	5.6.4 Solver for Local Nonlinear Optimization Problems (SolvOpt)
	5.6.5 Comparison of Convex Optimization Solvers Using Control Problem within GMS

	5.7 Basis Selection
	5.8 Summary and Conclusions

	6
	6.1 Overview
	6.2 Multiobjective Weighted Sensitivity Minimization of an Ill-Conditioned Plant
	6.3 Multiobjective Weighted Mixed Sensitivity Minimization of an Ill-Conditioned Plant
	6.4 Weighted Mixed Sensitivity Minimization Subject to L Time-Domain Constraint
	6.5 Simple Nominal Open Loop (Lo = 1s) with Challenging Specifications
	6.6 SISO Unstable and Non-minimum Phase Plant with Standard P-K versus Inner-Outer Loop Feedback
	6.7 -Synthesis Using GMS: Toward D-Q Iteration
	6.8 Forming the Design Plant
	6.8.1 Design Plants with Integrator Augmentation
	6.8.2 Bilinear Transformation

	6.9 Summary and Conclusions

	7
	7.1 Overview
	7.2 Longitudinal Dynamics Model
	7.3 Control Designs
	7.3.1 Generalized Mixed Sensitivity Design (D-1)
	7.3.2 Classically Motivated Design (D-2)
	7.3.3 Standard Mixed Sensitivity Design (with r-di Generalized Plant) (D-3)
	7.3.4 Observations

	7.4 Summary and Conclusions

	8
	8.1 Summary
	8.2 Directions for Future Research
	REFERENCES
	A
	A.1 Design Using Generalized Mixed Sensitivity
	A.1.1 GMS Main Code (gms_main.m)
	A.1.2 Nominal Controller Design (f_KNominal.m)
	A.1.3 Youla et al. Parameterization (f_CoprFac.m)
	A.1.4 Basis Selection (f_Basis.m)
	A.1.5 Form Finite-Dimensional Q Parameter (f_FormQN.m)
	A.1.6 Extract Data From Problem Setup (f_GenData.m)
	A.1.7 Vectorize the Problem (f_Vectorize.m)
	A.1.8 H-Norm Value and Subgradient (f_Hinf.m)
	A.1.9 L-Norm Value and Subgradient (f_Linf.m)
	A.1.10 Form K(Q) (f_FormK.m)
	A.1.11 Kelley's CPM Optimizer (f_KelleyCPM_GenMix_Optimizer.m)
	A.1.12 ACCPM Optimizer (f_ACCPM_GenMixSens_Optimizer.m)

	A.2 Bode Sensitivity Integral Constraint
	A.3 Sensitivity Peak Bounds Due to RHP Zero
	A.4 SISO Unstable and Non-Minimum Plant Example Using HINFSTRUCT
	A.5 Pareto Optimality Example Using FMINCON
	A.6 -Synthesis Using DK-Iteration
	A.7 Forming Closed Loop Maps
	A.8 Modifying the Appearance of Plots
	A.9 MIMO Dynamical System Interaction Measures
	A.10 Phase of MIMO System

