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ABSTRACT

Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and

their integration shows great potential to further improve the spectral efficiency, which

offers a solution to the fifth generation wireless systems. High quality channel state in-

formation (CSI) are the key components for the implementation and the performance

of the FD TWR system, making channel estimation in FD TWRs crucial.

The impact of channel estimation on spectral efficiency in half-duplex multiple-

input-multiple-output (MIMO) TWR systems is investigated. The trade-off between

training and data energy is proposed. In the case that two sources are symmetric in

power and number of antennas, a closed-form for the optimal ratio of data energy to

total energy is derived. It can be shown that the achievable rate is a monotonically

increasing function of the data length. The asymmetric case is discussed as well.

Efficient and accurate training schemes for FD TWRs are essential for profiting

from the inherent spectrally efficient structures of both FD and TWRs. A novel

one-block training scheme with a maximum likelihood (ML) estimator is proposed

to estimate the channels between the nodes and the residual self-interference (RSI)

channel simultaneously. Baseline training schemes are also considered to compare

with the one-block scheme. The Cramer-Rao bounds (CRBs) of the training schemes

are derived and analyzed by using the asymptotic properties of Toeplitz matrices.

The benefit of estimating the RSI channel is shown analytically in terms of Fisher

information.

To obtain fundamental and analytic results of how the RSI affects the spectral

efficiency, one-way FD relay systems are studied. Optimal training design and ML

channel estimation are proposed to estimate the RSI channel. The CRBs are derived

and analyzed in closed-form so that the optimal training sequence can be found

i



via minimizing the CRB. Extensions of the training scheme to frequency-selective

channels and multiple relays are also presented.

Simultaneously sensing and transmission in an FD cognitive radio system with

MIMO is considered. The trade-off between the transmission rate and the detection

accuracy is characterized by the sum-rate of the primary and the secondary users.

Different beamforming and combining schemes are proposed and compared.

ii



To My Family.

iii



ACKNOWLEDGMENTS

Five years have already passed since the beginning of my PhD By the time I was close

to finishing, my PhD duration became surprisingly short. All of my achievements will

not be possible without the help of many people.

First and foremost I would like to extend my deepest appreciation to my advisor,
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Chapter 1

INTRODUCTION

Both two-way relays (TWRs) and in-band full-duplex (FD) are not new concepts in

wireless communications but they have been re-discovered recently since they and

their integration are potential solutions to provide efficient utilization of spectrum to

support the fifth generation (5G) wireless systems [1–4]. Bidirectional or two-way di-

rect communication between two nodes was first studied by Shannon in [5]. However,

at that time it was more practical to decompose the two-way communication into

two conventional uni-direction communication. Hence, the two-way communication

did not draw much attention until the last decade when the TWR architecture signif-

icantly improves the spectral efficiency with a low-complexity implementation [6, 7].

Systems with paired users are typical applications of TWRs [8–10]. Especially in the

internet of things (IoT) era where huge number of devices simultaneously access a

router [11,12], as shown in Figure 1.1, spectrally efficient architecture becomes more

and more crucial [13].

Practical relays usually work in half-duplex mode that includes one receiving phase

and one forwarding phase of the same length [14–16], which cuts down the through-

put of such relay systems to one half. Therefore, it is natural to apply FD on the

relays to compensate the throughput loss. The terminology full-duplex means trans-

mitting and receiving at the same time either over the same frequency band (in-band)

or different bands (out-band). Clearly, in-band FD has the potential to double the

spectrum efficiency. The history of in-band FD dates back to 1940s. Though FD

was extensively used in continuous wave radars [17], it was considered to be im-

practical in wireless communications since the strong self-interference (SI) from the
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transmitter overwhelms the desired signal at the receiver. Recently development of

self-interference cancellation (SIC) [18,19] acts as an enabler of in-band FD and makes

it a candidate solution for 5G.

The integration of FD radios and TWRs shows great potential to further improve

the spectrum efficiency [20], especially in the scenario shown in Figure 1.1 where

TWRs provide pair-wise two-way communication for devices while FD makes the

router efficient. However, the high spectrum efficiency in theory is fundamentally

limited by the quality of channel state information (CSI) used in SIC. In FD relays, the

residual self-interference (RSI) caused by the imperfect CSI in the SIC process [21,22]

reduces the spectrum efficiency of the system. The efficiency and overhead of the

channel estimation methods are also major concerns when optimizing the spectrum

efficiency of the whole system. For instance, a half-duplex mode channel estimation

approach is not preferred in an FD system for the following reasons. First, the half-

duplex training approach increases the overhead compared to a specially designed

approach for FD. Second, extra complexity is needed to switch duplex modes between

training phase and data phase for the system. Therefore, it is challenging for channel

estimation methods to be of both high quality and high efficiency. This motivates my

work in this thesis to develop suitable channel estimation methods for the particular

FD TWR system.

1.1 Two-Way Relay Systems

Shannon firstly raised the problem that in two-way communication, how to com-

municate in both directions through the channel as effectively as possible, if not

decomposing the two-way into one-way communication. Later, the TWR was investi-

gated when the physical layer network coding came out which significantly improves

the network throughput of ad hoc and cellular systems [23, 24]. Inspired by the

2



Figure 1.1: A scenario where FD TWRs are spectrally efficient - in the IoT era where
huge number of devices simultaneously access a router, spectrally efficient architecture
becomes more and more crucial. TWRs provide pair-wise two-way communication
for devices while FD makes the router efficient.

network coding, the TWR architecture in which two nodes exchange their messages

via a relay inherited the throughput improvement and became an active research

area [6,25–27]. Relay architectures including one-way and two-way relays are investi-

gated for the present standards such as LTE-Advanced and WiMAX in which relays

are deployed efficiently in cellular systems [28, 29]. TWRs can be relevant to ad hoc

networks, networks with a centralized controller through which all messages must

pass, and cell phones talking via a satellite, which would be widely used.

In a TWR system, as shown in Figure 1.2, two source nodes exchange information

with the help of a relay node in between. There is either direct link or not between

the source nodes. The TWR system can be classified by the scheme of how the relay

forwards information and the protocol of two source nodes exchanging information.

The relaying schemes and protocols will be discussed in detail in the next chapter.

The TWR system can operate in either full-duplex or half-duplex. In half-duplex

communication, a node may either transmit or receive at a given time. This is in

contrast to in-band FD where nodes transmit and receive over the same frequency

simultaneously. The channels between nodes are referred to as individual channels

while the effective channels from one source to the other, which are products of two

individual channels, are referred to as cascaded channels.

3



Figure 1.2: A two-way relay system - two sources exchange their messages with the
help of a relay node in between. There is no direct link between the two sources. The
channels h1, h2, h3, and h4 are individual channels and h1h4 and h2h3 are cascaded
channels.

1.2 Full-Duplex Radios

In-band FD wireless radios are able to transmit and receive simultaneously over the

same frequency band and are used in FD relays [20,30,31], continuous wave radars [17],

and FD bidirectional communications [32–34]. In the past, in-band FD radios were

generally thought infeasible due to strong SI from the transmitter to the receiver.

Here is an example to illustrate how strong the SI is. According to [19], in femtocell

networks, femto base stations transmit at 21 dBm with a receiver noise floor of 100

dBm. If a physical isolation of 15 dB between the base station’s transmit and receive

antennas is assumed, then the SI from the base bastion will be 21−15−(−100) = 106

dB above the noise floor. Compared to a half-duplex counterpart, the FD base station

has to suppress the SI by a fantastic value of 106 dB to achieve the same received

signal to noise ratio (SNR) for the desired signal. That explains why half-duplex

systems, which transmit and receive either at different time slots, or over different

frequency bands, are commonly used.

However, recently, FD radios have drawn great attention from both industry and

academia for the following reasons. First, the traditional approaches to increase spec-

tral efficiency such as MIMO, coding and advanced modulation have been exhausted.

Second, most contemporary wireless communication terminals/devices such as base

stations, relays and mobiles have the function of both transmitters and receivers,
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and largely benefit from FD. Besides, SIC techniques have been developed with great

promise [3,18,19], which leverages the implementation of FD devices. As a typical ap-

plication of in-band FD radios, an FD relay, which receives the current symbols from

a source while transmits the previously received symbols to a destination over the

same frequency, is of great interest for the 5G wireless communication systems [4,20]

due to its potential to double the spectrum efficiency. As in-band FD is the promising

technology, we will use FD to generally refer to in-band FD throughout this thesis

unless otherwise stated.

The implementation of FD relays can be devices equipped with either separate-

antenna [30,35,36] or shared-antenna [37]. Two antenna sets are used for transmission

and reception respectively in the former implementation while only one antenna set is

adopted to transmit and receive simultaneously with a duplexer/circulator connected

to it in the latter case. More detailed comparison of the two implementations can be

found in [19, 20]. We will adopt the separate-antenna implementation in this thesis

since the advantages of such implementations are two-fold. First, it is relatively

easy to implement the separate-antenna sets with current antennas and circuits and

to install those sets on large size terminals, e.g., base stations, infrastructure-based

relays. Second, physical isolation for SIC can take advantage of the physical distance

between the antenna sets which provides natural isolation. The space between the

antenna sets also allows obstacles to block the line-of-sight component of the SI.

1.3 Contributions

Here we summarize the main contributions of this thesis.

• For the half-duplex TWRs, we investigate the trade-off between training and

data in a MIMO scenario. In the symmetric power case of two sources, a closed-

form expression of the optimal ratio of data energy to training energy is derived
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to maximize the achievable rate of the data phase. The optimal ratio is found

by solving a fourth order equation and reduces to a quadratic equation when

the number of antennas at the source is large. We also show that the achievable

rate is a monotonically increasing function of the data time. The results can

be extended to the asymmetric case in which the minimum of the two source

SNRs is maximized.

• In the FD TWR system, we propose a spectrally efficient one-block training

scheme which suits the FD transmission. A maximum likelihood (ML) esti-

mator with zero-forcing initialization are derived and efficiently solved by the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Baseline schemes in-

cluding the multi-block training scheme and the cross-correlation method for

ISI channels are also proposed for comparison. The Cramer-Rao bounds (CRBs)

for the training schemes are derived and compared. We analyze how the channel

parameters and transmit powers affect the Fisher information by using the theo-

rem of asymptotic Toeplitz matrices. We also show analytically that the Fisher

information exploiting the channel structure arising form the RSI is greater

than the counterpart which does not take the structure into account. To show

the importance of estimating the RSI channel and canceling the RSI, matched

filter detector and Viterbi equalizer are implemented and compared.

• In the FD one-way relay, we propose a block-based training scheme with an

ML estimator to estimate the RSI channel and the end-to-end channel at the

destination. Closed-form expressions of CRBs for the channel and RSI param-

eters are derived. We approximate the CRB for large training length by us-

ing asymptotic Toeplitz matrices, and minimize it with respect to the training

sequence. We show that the optimal training sequence is sinsoid and charac-
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terize its frequency. Extensions to the case when the channels between nodes

are frequency-selective and the case of multi-relay systems are considered. We

show that our training scheme applies also for frequency-selective case when the

length of training sequence is large. For the multi-relay case we also derive an

asymptotic CRB which captures the effect of the number of relays.

• Simultaneously sensing and transmission problem in an FD cognitive radio sys-

tem with MIMO is considered. The probabilities of detection in the presence of

RSI are derived. The sum-rate of the PU and the SU is proposed as a metric to

characterize the trade-off between the transmission rate and the detection ac-

curacy. Different beamforming and combining schemes are compared and how

the schemes affect the sum-rate is discussed.

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 provides the reader the

background of the channel estimation problem in FD TWRs. Chapter 3 begins with

a system model for the half-duplex MIMO TWR. The trade-off between training and

data for TWR is investigated. In Chapter 4, we focus on the channel estimation

problem of an FD TWR system, aiming to estimate and eliminate the RSI at the

sources. The Fisher information of the channels are also analyzed to show the benefit

of estimating the RSI. Chapter 5 discusses the optimal training design of a FD one-

way relay system with closed-form expression of CRBs. Simultaneously sensing and

transmission in FD is considered in Chapter 6. Chapter 7 draws the conclusion of

this thesis.
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Chapter 2

BACKGROUND

In this chapter, background knowledge on three main topics is provided, namely

relaying schemes and protocols, the unique channel estimation problem in two-way

relays (TWRs), and residual self-interference (RSI). The relaying schemes and pro-

tocols are important since they affect the accuracy and efficiency of the training

schemes. Roughly speaking, traditional channel estimation methods can work with

low efficiency protocols while new training schemes need to be designed to suit high

efficiency protocols, especially for FD relays. Before getting into the FD training

schemes, we will explain the unique channel estimation problem which is the ambi-

guity of estimating the individual channels in TWRs. Without sophisticated training

schemes, the two sources can only estimate the cascaded channels, which result in

ambiguity when the cascaded channels are used to recover the individual channels.

Lastly, we illustrate the point that RSI is unavoidable in FD relays even all the self-

interference cancellation (SIC) approaches are applied, and discuss the RSI channel

model by considering the residual error from SIC and transceiver distortions from

hardware impediment. An accurate and effective RSI channel model is essential in

designing effective channel estimation methods for FD TWRs.

2.1 Relaying Schemes and Protocols

2.1.1 Relaying Schemes

Relay schemes are the strategies of how the relay processes its received signal.

Amplify-and-forward (AF) [38–43] and decode-and-forward (DF) [38, 44–48] are two
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main schemes that can be adopted to both half-duplex and FD TWRs. In the AF

scheme, the relay constructs its transmit signal by simply replicating and amplifying

the received signal and does not decode the received signal. Hence, it has a much

shorter forwarding delay. The AF relay has lower complexity than the DF relay and

can be implemented by analog circuits only if necessary [6]. Another advantage of the

AF relay is that it is transparent to the transmit signal of the source, which means

the received signal at the destination is an explicit function of the transmit signal at

the source [49]. This flexibility which is not limited to particular modulation types

of the transmit signal allows end-to-end optimization in AF relays. However, one

of the intrinsic drawbacks of the AF relay is that it also amplifies its receiver noise

and propagates it to the destinations, which will degrade the bit error rate (BER)

performance. In an FD AF relay, the RSI after SIC is also amplified and would result

in distortion and clipping of the signal which must be prevent from by carefully

controlling the power scaling factor at the relay [50,51]. Moreover, the RSI link forms

a feedback at the relay, which makes the overall channel a single pole infinite impulse

response (IIR) channel and causes inter-symbol interference (ISI) [52–55].

On the contrary, in the DF scheme the relay decodes both messages from the two

sources, then encodes them and transmits the new codeword. Thus, the relay requires

the full codebooks of both source 1 and source 2 and a large mount of calculation

to decode. The processing delay and the implementation complexity are high but

the noise-propagation is stopped. For FD relays, the SI again has a large impact on

the decoding such that more rigorous SIC process is needed otherwise the received

signal is not decodable. In addition to the AF and the DF schemes, there are other

relaying schemes but not as commonly used as AF and DF. For instance, compress-

and-forward [56] is a scheme performs in between AF and DF. It compress the received

to satisfy certain constraints and then forwards the signal. Though the relay does
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not require codebooks, it really requires some channel state information (CSI) such

as the distribution of the source-to-relay channel. In detect-and-forward scheme [57]

the relay detects the received signal to reduce the relay noise and in partial decode-

and-forward [58] the relay decodes the sum or XOR sum of the two messages from

source 1 and source 2 respectively.

2.1.2 Relaying Protocols

The relaying protocol plays an important role in increasing the spectrum efficiency.

The protocols for half-duplex TWRs are four time slots, three time slots and two time

slots protocols, as shown in Figure 2.1. Traditionally, the four time slots protocol of

a half-duplex relay system is 1 → R, R → 2, 2 → R,R → 1, where the time slots

are listed chronologically. Therefore, the two-way communication is decomposed into

two conventional one-way communication. There is no overlap of the two signals of

the two source nodes in this protocol so that interference can be avoided. However,

the protocol is spectrally inefficient and does not take full advantage of the broadcast

nature of wireless channels. One intuitive way to take advantage of the broadcast

channel is to combine the second and the fourth time slot into a single broadcast

transmission by using network coding [23]. This protocol works as the following. If

the relay can decode the messages m1 and m2 from the two sources respectively, it is

sufficient for the relay to broadcast mR = m1 ⊕m2 to both sources. This three time

slots protocol is also called the time division broadcast protocol. The time slots needed

can be further reduced to two by using network coding which is the key to improve

the efficiency. In [6], the authors introduce analog network coding in AF-based TWRs

which allows the two source nodes transmit their signals simultaneously to the relay,

then the relay amplifies and broadcasts the superimposed signal. Either of the source

receives the superimposed signal and remove its own part from it. Consequently, the
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source can get the message from the other source. The advantage of analog network

coding is the simplicity of the scheme which can be implemented totally in analog

and does not largely depend on CSI. In most of the cases the relay only needs to

keep the power constraint. In [24], Zhang et al. show that network coding applied at

the physical layer enables the source nodes to transmit simultaneously to the relay in

DF scheme. The two time slots scheme is also called the multiple access broadcast

protocol since in the first time slot the TWR channel is a multiple access channel

while in the second time slot it is a broadcast channel. Though the exact capacity

region of TWRs with the two time slots scheme is still unknown [7,38], the reduction

in time slot already achieves significant throughput increase compared with the four

and the three time slots protocols.

The two time slot protocol can be extended to FD relays, where the relay receives

the current symbols while it forwards the previously received symbols. A forwarding

process delay of at least one symbol duration cannot be ignored when formulating

the forwarded signal due to causality. In FD relays, the SIC process also results in a

delay which inhibits the FD relays from achieving the theoretical spectral efficiency.

However, the spectral efficiency gain from reducing two time slots to one is consid-

erable and the rate loss due to the delay is negligible when the duration of the time

slot is long. The synchronization of the two sources is a common problem in TWR

systems with the two time slot protocol. Some studies [6, 59, 60] provide practical

methods to synchronize the two sources and analyze the effect of asynchronization on

the system performance as well. Though these methods are designed for half-duplex,

they can be extended to FD and used in conjunction without methods. Since the

synchronization is an unavoidable cost of both half-duplex or FD TWR system, it is

not taken into account when considering the efficiency of spectrum. Hence, we will

assume perfect synchronization throughout this thesis.
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Figure 2.1: Relaying protocols for half-duplex TWRs - the four time slots protocol
decomposes the two-way communication into two conventional one-way communica-
tion. In the three time slots protocol, the relay receives messages separately, then
broadcasts a coded message to both sources. In the two time slots protocol, the relay
receives a superimposed signal and then broadcasts it.

2.2 Channel Estimation Problem in Two-Way Relays

2.2.1 Cascaded and Individual Channel Estimation

The channel estimation problem in TWRs with the two time slot protocol has

its own characteristics. As the relay forwards the signal from one source to another,

the effective channels between the two sources are cascaded channels which are the

product of the channels between the sources and the relay (i.e. the individual chan-
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nels). The individual channels cannot be directly estimated or recovered without

sophisticated training schemes, which will be explained in the following example.

Consider a half-duplex TWR system with two source nodes Source 1 and Source

2 and one relay node, as shown in Figure 1.2. The AF relaying scheme and the

two time slots protocol are adopted. In the first time slot, the two sources transmit

messages to the relay simultaneously while in the second time slot the relay amplifies

and broadcasts its received signal to both the source nodes. For simplicity, we assume

that both of the nodes are equipped with a single antenna. The channels between

nodes are h1, h2, h3, and h4, and they are assumed to be flat fading modeled by

independent complex Gaussian random variable with zero mean and variance σ2
h. In

the training phase, both sources transmit training sequences x1t and x2t to the relay

at the first time slot. The received signal at the relay is

yrt =
√
P1h1x1t +

√
P2h2x2t + nrt, (2.1)

where P1 and P2 are transmit powers of Source 1 and 2 respectively, and nrt is a noise

vector composed of independent samples from a complex Gaussian distribution with

zero mean and variance σ2
v. The relay scales the superimposed signal yrt by a power

scaling factor α such that

α =

√
Pr

P1σ2
h + P2σ2

h + σ2
v

, (2.2)

where Pr is the maximum relay transmit power. Then the relay broadcasts the su-

perimposed training signal at the second time slot. The received training signal at

Source 1 can be expressed as

y1t = α
√
P1h3h1x1t + α

√
P2h3h2x2t + αh3nrt + n1t, (2.3)
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where noise vector n1t is defined in the same way as nrt. We define the cascaded

channels as p := αh3h1, q := αh3h2. Therefore, we can rewrite (2.3) as

y1t = [x1t x2t][p q]
T + αh3nrt + n1t. (2.4)

A least square (LS) estimator of the cascaded channels for Source 1 is given by

[p̂ q̂]T =
(
XH

t Xt

)−1
XH

t y1t, (2.5)

where Xt = [x1t x2t]. Because of the symmetry of the TWR, the cascaded channels

for Source 2 can be estimated in the same way.

Now we can see that if either the relaying protocol is not modified or other side

information (e.g., Gaussian-Kronecker model) is assumed, the sources are only able

to estimate the cascaded channels. Individual channels cannot be recovered. Even

the channels between the sources and the relay have reciprocal property, i.e., h3 = h1

and h2 = h4, there is still a sign ambiguity of recovering h1 since p = αh2
1. Note that

having the CSI of the cascaded channels is enough to detect the messages from the

other node. Considering the data phase with the same relaying protocol, the received

signal of Source 1 is as follows:

y1d = [x1d x2d][p q]T + αh3nrd + n1d, (2.6)

where x1d and x2d are the messages from the sources and nrd and n1d are the noise

vectors. Assume p and q are known from the training phase. To detect x2d, Source

1 first subtracts its own signal x1d (which is known) from the superimposed received

signal y1d, then it can detect x2d normally. Note that the subtraction in the detection

is also named self-interference cancellation in the half-duplex TWR literature. To

distinguish it from the SIC in FD, this subtraction will be referred to as self-signal

removing in this thesis.
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Despite the CSI of the cascaded channels is enough for detection, it is worth to

estimate the individual channels which are useful in the optimization problems in

TWR, e.g., beamforming, relay selection, etc. Approaches to estimate the individual

channels can be roughly classified into two categories: designing training schemes

to use separate training signals for each individual channel [61–63], and extracting

the individual channels by exploiting special structures of the training signal which

contains the cascaded channel [64, 65]. In [61], the authors use two non-overlapped

subsets of OFDM pilots to transmit training sequences for the two individual channels

separately. A training protocol where the relay transmits its own training sequence to

estimate the individual channel is used in [62]. The authors in [63] propose a two-stage

training protocol to estimate each individual channel in different stages. In contrast

to using separate training signals, the authors in [64] assume the Gaussian-Kronecker

MIMO channel model and make use of its properties to extract the individual channels

from the superimposed training signal. The authors in [65] leverage an algorithm for

higher dimension arrays or tensors analysis which generalizes the concept of low-rank

decomposition [66,67] to estimate individual channels.

Other works for channel estimation in half-duplex TWR include optimal training

sequence design [63, 68, 69], training schemes in OFDM based TWRs [61, 62, 70–72],

and channel estimation for MIMO TWRs [64, 73–75]. All these works focus on de-

signing training schemes compatible with the relaying protocol to take full advantage

of the spectrally efficient TWR system, and inspire the training scheme design in FD

TWRs.

2.2.2 Channel Estimation in Full-Duplex Relays

Several works propose FD relays and analyze the system performance in the pres-

ence of RSI with different criteria, e.g., interference power, outage probability, and
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BER [22, 43, 52, 76]. Some of the works assume perfect CSI [22, 52] while others as-

sume imperfect CSI [76], but they do not mention training schemes for FD systems.

Though the impact of channel estimation error is studied [32, 77], specific training

schemes for FD are not investigated. One may ask why the training schemes for half-

duplex relays are not suitable. The reasons are three-fold. First, half-duplex training

schemes lose the spectral efficiency provided by FD relaying protocol. The training

overhead for half-duplex would be at least twice as that for FD. Second, the relay

system has to have the luxury of changing duplex mode between training phase and

data phase, which requires more complexity in both hardware and protocols. Last

but not least, the estimation needs to include the RSI channel which the half-duplex

methods cannot deal with. The CSI of the RSI channel is used to further suppress

the SI [54, 78]. There are few works considering the estimation of the RSI channel.

Reference [79] proposes two methods for the RSI channel in an AF FD relay system

where the destination is equipped with massive MIMO. In the first method the au-

thors consider the case where the RSI channel is estimated by the relay itself, and

in the second method the base station estimates the RSI channel. However, in their

system model, the RSI is incorporated into the noise term and the ISI caused by the

RSI is treated as noise. Consequently, methods in [79] cannot obtain the CSI of RSI

for further suppression. In [53], an ML estimator for the RSI channel is investigated

and the Cramer-Rao bounds (CRBs) is derived without performance analysis and

optimal training design. The time-varying channel estimation in FD is investigated

in [80]. The blank of specific training schemes and analysis for FD relays motivates

my work in this thesis in which we propose training schemes for FD one-way and

two-way relays and analyze the CRB to design the optimal training sequences.
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2.3 Residual Self-Interference

2.3.1 Self-Interference Cancellation

Self-interference cancellation is an enabler for FD relay networks. Thus, many re-

cent studies are conducted to approach the issue of SIC from diverse aspects, including

propagation domain, analog-circuit domain and digital domain approaches [19]. In

propagation domain, physical isolation and directional antennas are used, mainly to

block the line-of-sight (LoS) component of SI. For analog-circuit domain approaches,

the idea is that the relay estimates the SI channel and subtracts its transmit signal

in analog [81,82]. The estimation error in this process will result in RSI. One natural

question is why the subtraction is done in analog or why the relay cannot simply

cancel the SIC using digital signal processing to subtract its transmit signal. The

main answer is the limited dynamic range of analog-to-digital converters (ADCs).

Due to the huge difference in power between the SI and the desired signal, they can-

not simultaneously fall into the ADC dynamic range, which makes the simple digital

subtraction impossible. Therefore, analog cancellation should reduce the SI for a

certain amount to guarantee the desired signal falls into the ADC dynamic range.

After the analog cancellation, digital approaches are applied. In these approaches,

multiple antennas for transmitting and receiving are adopted at the relay to exploit

the potential of extra degrees of freedom for interference cancellation [30,78,83]. For

more details on SIC approaches, I refer readers to the following references [18, 19].

The combination of these approaches can provide a high attenuation of the SI power.

However, the RSI is still quite high compared to the desired received signal, and does

not yield good performance when treated as noise. References [19], [35], and [76]

report that the power of RSI is about 30 dB higher than the noise floor.
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2.3.2 Residual Self-Interference Channel Modeling

The existence of RSI has also been addressed in the literature [19,30,35,52,76,79].

One reason for the presence of RSI is due to the limitation of analog cancellation which

suffers from estimation error in the pre-stage [79]. In FD relay systems, there is a

pre-stage before the transmission of training and data phases to gather the CSI for the

SIC process in later transmission. In the pre-stage, the relay estimates the SI channel

and uses the estimates to cancel the self-interference in RF before ADC [81]. The

pre-stage estimation error is caused by noise, and time variation of the SI channel.

The SI channel consists of an LoS part and a multi-path path part due to scattering

from nearby obstacles [35,79]. The LoS part almost remains the same for a relatively

long interval and dominates the SI. Thus, using the pre-stage estimates to cancel

the SI significantly reduces the power of it. However, the multi-path part changes

more often and the estimates are not accurate for it over time. This part can also be

seen as an estimation error which results in RSI. The second reason for RSI can be

seen from the digital domain when using multiple antennas for both transmitting and

receiving at the relay. Reference [30] investigates how to design pre-coding matrices

to mitigate the SI and all the degrees of freedom (DoF) offered by antennas are

used for the purpose of interference cancellation. However, when multiple antennas

are used, beamforming for maximizing the transmission rate can also be considered.

Reference [78] jointly designs pre-coding matrices minimizing the self-interference

while maximizing the rate. Since part of the DoF is used for improving the rate, the

effort of mitigating the self-interference is not as good as the one which uses all the

DoF, which also results in RSI. Therefore, there is a trade-off between maximizing

the rate and suppressing the self-interference.
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An accurate and effective channel model for RSI which captures the features (e.g.,

the multi-path part of SI, transceiver distortion) in propagation domain and analog-

circuit domain is crucial for channel estimation and performance analysis. Since

the LoS component of the SI varies very slowly, it can be much reduced by the

RF cancellation, which means the multi-path component dominates the RSI in the

transmission stage [79,84]. Under the assumption that the LoS component is largely

reduced and the bulk of the interference is from the scattering multi-path components,

the RSI channel hrr can be modeled as a complex Gaussian random variable with

zero mean and variance σ2
rr [84]. Moreover, the RSI channel is also assumed to be

frequency-flat fading and time-invariant within transmission blocks. The Gaussian

model is also used by [78] and [79] for mathematical tractability. In this thesis, we

assume that hrr is time-invariant and flat fading in one transmission block and varies

from block to block. The Gaussian assumption is used in the simulations to generate

realizations of the channels for multiple blocks but not in the derivation of our training

scheme and analysis. Different channel models such as Rician model for the self-

interference channel before active cancellation [35] can also be adopted. In addition,

the signal distortion caused by hardware impediments like the limited dynamic-range

of non-ideal amplifiers, oscillators, ADCs, and DACs is considered [31, 33, 85–87]

when modeling the RSI channel. However, with sufficient passive self-interference

suppression and analog cancellation in RF, the distortion can be ignored [35], which

leads to the Gaussian model for the RSI channel mentioned above. The Gaussian

model still works when the distortion has to be considered. That is because the

distortion is well modeled as additive Gaussian noise terms which can be incorporated

into the system noise variance [85].
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Chapter 3

CHANNEL ESTIMATION IN HALF-DUPLEX TWO-WAY RELAYS

In this chapter, we investigate the trade-off between high quality estimates and spec-

trum efficiency in half-duplex TWR through energy allocation. As more power and

symbols devoted into training phase, the channel estimates get higher quality, which

results in better SNR and an increase in achievable rate. However, the increase in

SNR might not compensate the rate loss due to low ratio of data symbols to total

symbols. We propose the optimal energy allocation between training phase and data

phase in a MIMO TWR system to show how much training and power are needed.

3.1 Channel Estimation in MIMO Two-Way Relays

3.1.1 System Model

We consider a half-duplex TWR with two source nodes and one relay node, as

shown in Figure 3.1. The relay uses Amplify-and-Forward (AF) scheme. The protocol

of relaying is the two time slots protocol where in the first time slot, Source 1 and

Source 2 transmit data to the relay simultaneously; in the second time slot, the relay

amplifies and broadcasts its the received signal to both the source nodes. Both sources

have M antennas and the relay node has N antennas. We consider the possibility of

different number of source antennas M1 and M2 later in the sequel. The channels are

assumed to be quasi-static flat fading, where they remain constant over 2T discrete

symbols. The channels from Source 1 to the relay and from Source 2 to relay are

denoted by M × N matrices H1 and H2, respectively. We also assume channel

reciprocity holds, i.e., the channels from the relay to Source 1 and the relay to Source
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Figure 3.1: System model of the MIMO TWR - both sources have M antennas and
the relay node has N antenna in the symmetric case while the two sources have M1

and M2 antennas in the asymmetric case.

2 are HT
1 and HT

2 respectively. Both H1 and H2 have zero-mean unit-variance

independent complex-Gaussian entries.

The data transmission protocol has two time slots as well. In the first time slot,

Source 1 and Source 2 send T ×M matrices simultaneously. The relay scales the

superimposed signal by a N × N diagonal matrix A = αI before broadcasting it in

the second time slot. The scale factor α can be chosen as

α =

√
ρR

(ρ1 + ρ2 + 1)N
, (3.1)

which satisfies the power constraint ρR at the relay.

Because the symmetry of the two source nodes, we can only focus on Source 1. It

receives

Y1 =

√
ρ

M
S1H1AH

T
1 +

√
ρ

M
S2H2AH

T
1 +ZRAH

T
1 +Z1

= α

√
ρ

M
S1P + α

√
ρ

M
S2Q+ αZRH

T
1 +Z1, (3.2)

where we define the cascaded channel matrices to be estimated as P := H1H
T
1

and Q := H2H
T
1 for Source 1. Note that while (H1,H2) → (P ,Q) is a lossy

transformation, (P ,Q) is sufficient for detection of data from Source 1. The entries

of the noise matrices ZR and Z1 are independent, additive, white, and Gaussian

(AWGN) with zero mean and unit variance.
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To first review data detection with perfect CSI, if P is known perfectly, Source 1

can cancel out the first term in (3.2) since it knows its own message S1, which is the

self-signal removing process. The remaining signal of Y1 after the process, denoted

by Ỹ1, is

Ỹ1 = α

√
ρ

M
S2Q+ αZRH

T
1 +Z1. (3.3)

Then, Source 1 estimates S2 based on Q. So in this case, we do not need to know

the exact values of H1 and H2 separately, but only need P and Q, which are to be

estimated at Source 1.

3.1.2 Optimal Training Sequences

We first look at the procedure of Source 1. The procedure of Source 2 is similar

and we will discuss it in Section 3.2.2 for the asymmetric case of sources power and

number of antennas. The training scheme is composed of the following two phases

and each of the phases has two equal length time slots.

1. Training phase: In this phase, both sources transmit training symbols to the

relay over Tτ symbol intervals at the first time slot, then the relay broadcast

the superimposed training signal at the second time slot. The received training

signal at Source 1 and the power constraints for the training symbols are

Y1τ = ατ

√
ρτ
M
S1τP + ατ

√
ρτ
M
S2τQ+ ατZRτH

T
1 +Z1τ , (3.4)

tr(S1τS
H
1τ ) = MTτ , tr(S2τS

H
2τ ) = MTτ ,

where Siτ , i = 1, 2 are Tτ ×M matrices of training symbols sent by Source

1 and Source 2 respectively , ρτ is the transmit power of all nodes during the

training phase, ατ is the power scaling factor at the relay in the training phase
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and we define the matrices to be estimated as P := H1H
T
1 and Q := H2H

T
1

for Source 1.

2. Data phase: In this phase, the length of time slots is Td. The transmission is

the same as the training phase. The received data signal at Source 1 and the

power constraints are

Y1d = αd

√
ρd
M
S1dP + αd

√
ρd
M
S2dQ+ αdZRH

T
1 +Z1, (3.5)

E
[
tr(S1dS

H
1d)
]

= MTd, E
[
tr(S2dS

H
2d)
]

= MTd,

where Sid, i = 1, 2, are Td ×M matrices of data symbols, Tτ + Td = T , ρd is

the transmit power during the data phase of all nodes, αd is the power scaling

factor at the relay and Y1d is Td ×M .

To define the MSE, we consider the received signal at the data stage in the presence

of channel estimation error. Let (P̂ , Q̂) be the estimate of (P ,Q) and P̃ and Q̃ are

the residual error of P and Q respectively where P = P̂ + P̃ , Q = Q̂+ Q̃.

Now we write the total MSE of P and Q defined through the Frobenius norm as

follows:

J = E
[
‖Q̃‖2

F

]
+ E

[
‖P̃ ‖2

F

]
(3.6)

= E
[
‖Q− V Y1τ‖2

F

]
+ E

[
‖P −UY1τ‖2

F

]
, (3.7)

where V and U represent the linear transformation of the received signal to estimate

Q and P .

We can obtain the minimum mean square error (MMSE) estimator P̂ through

the optimal U which can be found from ∂J/∂U = 0 and is given by

U ∗ =
1

ατ

√
M

ρτ
SH1τ

(
M

ρτ

Mα2
τ + 1

α2
τ (M + 1)

ITτ + S1τS
H
1τ +

M

M + 1
S2τS

H
2τ

)−1

. (3.8)
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Similarly, for V ∗ we have:

V ∗ =
1

ατ

√
M

ρτ
SH2τ

(
Mα2

τ + 1

ρτα2
τ

ITτ + S2τS
H
2τ +

M + 1

M
S1τS

H
1τ

)−1

. (3.9)

We now discuss how the structure of the training sequences affects the MMSE.

After substituting the optimal U and V into (3.7), the variables in (3.7) are S1τ and

S2τ . The training design problem becomes minimizing the MMSE with respect to

S1τ and S2τ :

min
S1τ ,S2τ

E
[
‖Q̃‖2

F

]
+ E

[
‖P̃ ‖2

F

]
, (3.10)

s.t. tr(S1τS
H
1τ ) = MTτ ,

tr(S2τS
H
2τ ) = MTτ .

The following properties of P andQ are used. The second order moment of P and

Q required below can be computed from the fourth order moments of the channel

matrix which can be obtained since the channel and the noise are assumed to be

Gaussian random variables with zero mean and unit variance:

E[PPH ] = (M + 1)NIM , E[QQH ] = MNIM ,

E[PQH ] = 0, E[PHH
1 ] = 0,

E[P ] = E[Q] = 0, E[QHH
1 ] = 0. (3.11)

We first calculate RP̃ = E[P̃ P̃H ] using the above properties:

E[P̃ P̃H ] = E[(P −UY1τ )(P
H − Y H

1τ U
H)]

= (M + 1)N
[
IM − α2

τ (M + 1)N
ρτ
M
SH1τR

−1
Y1τ
S1τ

]
, (3.12)

where

RY1τ = E[Y1τY
H

1τ ]

= α2
τN

ρτ
M

(M + 1)S1τS
H
1τ + α2

τN
ρτ
M
MS2τS

H
2τ + (α2

τM + 1)NITτ . (3.13)

24



Similarly,

RQ̃ = E[Q̃Q̃H ] = MN
[
IM − α2

τNρτS
H
2τR

−1
Y1τ
S2τ

]
. (3.14)

We have E
[
‖P̃ ‖2

F

]
= tr(RP̃ ) and E

[
‖Q̃‖2

F

]
= tr(RQ̃). Thus, the objective

function in (3.10) becomes

tr(RP̃ ) + tr(RQ̃)

= tr
(

(M + 1)N
[
IM − α2

τ (M + 1)N
ρτ
M
SH1τR

−1
Y1τ
S1τ

])
+ tr

(
MN

[
IM − α2

τNρτS
H
2τR

−1
Y1τ
S2τ

])
= MNtr

([
IM − α2

τ (M + 1)N
ρτ
M
SH1τR

−1
Y1τ
S1τ

])
+MNtr

([
IM − α2

τNρτS
H
2τR

−1
Y1τ
S2τ

])
+Ntr

(
IM − α2

τ (M + 1)
ρτ
M
SH1τR

−1
Y1τ
S1τ

)
. (3.15)

We now want to show that the solution of (3.10) satisfies

SH1τS1τ = TτIM , SH2τS2τ = TτIM ,

SH1τS2τ = 0, (3.16)

and we can see the different number of antennas and different transmit power in each

source node do not affect the minimization of MSE through the proof.

Assuming M � 1, then the second term of (3.15) is negligible. Define Sτ =

[S1τ S2τ ], the eigenvalues of SHτ Sτ , denoted by λk for k = 1, 2, . . . , 2M , are equal to

the eigenvalues of SH1τS1τ and SH2τS2τ , denoted by λ1i and λ2j for i = 1, 2, . . . ,M and

j = 1, 2, . . . ,M .
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tr(RP̃ ) + tr(RQ̃)

≈ MNtr(I2M − α2
τNρτS

H
τ R

−1
Y1τ
Sτ )

= MNtr

(
I2M −

√
α2
τNρτ

α2
τM + 1

SHτ (ITτ +
α2
τNρτ

α2
τM + 1

SτS
H
τ )−1

√
α2
τNρτ

α2
τM + 1

Sτ

)

= MNtr

(
(I2M +

α2
τNρτ

α2
τM + 1

SHτ Sτ )
−1

)
=

2M∑
k=1

1

1 + α2
τNρτ

α2
τM+1

λk

=
M∑
i=1

1

1 + α2
τNρτ

α2
τM+1

λ1i

+
M∑
j=1

1

1 + α2
τNρτ

α2
τM+1

λ2j

. (3.17)

Since the traces of SH1τS1τ and SH2τS2τ are fixed, the minimization problem is solved

by setting all their eigenvalues equally. Thus λ1j = λ2j = Tτ for i, j = 1, 2, . . . , 2M .

This means the eigenvalues of SHτ Sτ are all equal and SHτ Sτ = TτI2M . This shows

that (3.16) holds.

This solution means the two training matrices, when concatenated, form a unitary

matrix. The training matrices can be simply implemented by choosing Sτ =
√
TτI2M ,

a scaled identity matrix. However, this choice requires different power levels to trans-

mit zeros and ones. An alternative way to implement the structure is to choose

columns for Sτ from a Hadamard matrix which is composed of +1 and −1 and has

orthogonal columns [88]. Thus, the optimal structure is satisfied and transmitting

zeros is avoided.

The optimal structure also has a symmetry between nodes Source 1 and Source

2. When looking at Source 2, the two matrices to be estimated is P ′ = H2H
T
2 and

Q′ = H1H
T
2 , corresponding to S2τ and S1τ respectively. The MSE of P ′ and Q′ at

Source 2 is minimized by the training choice in (3.16). Thus, the optimal training for
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one source is optimal for both, rather than improving the performance for one source

at the expense of the performance of the other.

3.2 Allocation Between Training and Data Energy

3.2.1 Symmetric Case of Two Sources

In this subsection we discuss how much power and time should be devoted to the

training phase to maximize the average SNR of the data phase. We write the SNR

of Source 1 as follows.

γ̄1 =
ρ2dE

[
‖Q̂‖2

F

]
ρ2dE

[
‖Q̃‖2

F

]
+ ρ1dE

[
‖P̃ ‖2

F

]
+M2(N + 1/α2

d)
. (3.18)

With the optimal structures of the two training sequences, γ̄1 can be simplified to

a function of power and time by calculating the denominator of (3.18). Substituting

S1τ and S2τ into (3.15), we have

E
[
‖P̃ ‖2

F

]
=

d3MN(M + 1)

d1Tτ (M + 1) + d3

, (3.19)

where d1 = α2
τρ1τ/M , d2 = α2

τρ2τ/M and d3 = α2
τM + 1. The case of E

[
‖Q̃‖2

F

]
is

similar, and given by

E
[
‖Q̃‖2

F

]
=

d3NM
2

d2TτM + d3

. (3.20)

The numerator E
[
‖Q̂‖2

F

]
is obtained by using the orthogonal principle of MMSE

which implies

E
[
‖Q̂‖2

F

]
= M2N − E

[
‖Q̃‖2

F

]
=

d2NM
3Tτ

d2TτM + d3

. (3.21)

Substituting (3.19), (3.20) and (3.21) into (3.18), we can represent γ̄1 as a function

of the length and power of the training sequence as

γ̄1 =
ρ2dd2MTτ

ρ2dd3 + ρ1d
M+1
M

d3
d2TτM+d3

d1Tτ (M+1)+d3
+ (1 + 1

α2
dN

)(d2TτM + d3)
. (3.22)
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Therefore, the achievable rate at Source 1 is given by

R1 = E

[
Td
T

log

(
det
(
I +

α2
d
ρd
M
Q̂HQ̂

σ2
Ñ

))]

= E

[
Td
T

log

(
det
(
I +

α2
dρdσ

2
Q̂

σ2
Ñ

Q̄HQ̄

M

))]

= E

[
Td
T

log

(
det
(
I + γ̄1

Q̄HQ̄

M

))]
, (3.23)

where Q̄ = 1
σQ̂
Q̂ is the normalized channel with σ2

Q̂
= E

[
‖Q̂‖2

F

]
/M , and Ñ is the

equivalent noise which involves the residual error of the channel estimates and the

additive noise and is given by

Ñ = αd

√
ρd
M
S2dQ̃+ αd

√
ρd
M
S1dP̃ + αdZRH

T
1 +Z1. (3.24)

Considering the total energy, we have the following relation of power and time:

ρT = ρτTτ + ρdTd. (3.25)

Let β be the ratio of data energy to the total energy, so that

ρτTτ = (1− β)ρT,

ρdTd = βρT. (3.26)

The two sources may have different powers, we consider ξ as the ratio of the power

of Source 1 to the total power. Thus,

ρ2d = ξρd, ρ1d = (1− ξ)ρd,

ρ2τ = ξρτ , ρ1τ = (1− ξ)ρτ . (3.27)

First we consider the symmetric case which means ξ = 0.5 and M1 = M2 = M .

Proposition 1: For any fixed pair of Tτ and Td, the optimal β the maximizes R1

can be found in closed form. The closed form can be simplified when the number of

antennas is large.

28



Since the power ρτ and ρd affect R1 only through the effective SNR γ̄1, maximizing

R1 is equivalent to maximizing γ̄1. Substituting (3.26) into (3.22), it becomes a

function of β, Tτ , T and ρ:

γ̄1 =
a1β

3 + b1β
2 + c1β

a2β2 + b2β + c2

, (3.28)

where

a1 =
α4
τN

2ρ3T 3(M + 1)

MTd
,

b1 =
−2α4

τN
2ρ3T 3(M + 1)

MTd
− ατN

2ρ2T 2(α2
τM + 1)

Td
,

c1 = a1 +
ατN

2ρ2T 2(α2
τM + 1)

Td
,

a2 =
α4
τN

2ρ2T 2(M + 1)(1 + 1/(α2
dN))

α2
τM + 1

− 2α2
τNρ

2T 2(M + 1)

Td
,

b2 =
ρTM(α2

τM + 1)

Td
− α2

τNρT (2M + 1)(1 + 1/(α2
dN))

M
− a2,

c2 =
α4
τN

2ρ2T 2(M + 1)(1 + 1/(α2
dN))

α2
τM + 1

+
α2
τNρT (2M + 1)(1 + 1/(α2

dN))

M

+ (1 + 1/(α2
dN))(α2

τM + 1). (3.29)

When T and ρ are fixed, the optimal β that maximizes γ̄1 can be found by

∂γ̄1/∂β = 0, which yields

a1a2β
4 + 2a1b2β

3 + (3a1c2 + b1b2 − c1a2)β2 + 2b1c2β + c1c2 = 0. (3.30)

Equation (3.30) shows that the exact solution of the optimal β∗ is possible and can be

obtained by solving the fourth order equation, analytically or numerically. Though

equations (3.22) and (3.30) are derived for node Source 1, in the symmetric case which

Source 1 and Source 2 have the same number of antennas and power, they also hold

at Source 2. Therefore, β∗ is optimal for both sources.
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If we consider the case M � 1, the second term of the denominator of (3.22)

becomes ρ1dd3. Thus, (3.28) can be simplified as

γ̄1 =
ρdd1MTτ

2ρdd2 + 2(1 + 1/(α2
dN))(d1TτM + d2)

=

(
ρTNα2

τ

4Td

)
−β2 + β

a3β + b3

, (3.31)

where

a3 =
(α2

τM + 1)N

Td
− 1

2

(
α2
τN +

α2
τ

α2
d

)
,

b3 =

(
1 +

1

α2
dN

)(
α2
τM + 1

ρT
+

1

2
α2
τ

)
N. (3.32)

Taking ∂γ̄1/∂β = 0 again, we have the quadratic equation

a3β
2 + 2b3β − b3 = 0. (3.33)

If a3 = 0, which means 2(α2
τM+1)N
Td

= α2
τN + α2

τ

α2
d
, the optimal power allocation ratio

is β∗ = 1
2
. The total energy is split equally.

If a3 6= 0, β∗ is a root of (3.33), the closed form expression is given as follows.

β∗ =
−b3 +

√
b2

3 + a3b3

a3

. (3.34)

It can be verified that b2
3 + a3b3 is always greater than zero and this root is between

0 and 1. Thus we have the expression of β that maximizes γ̄1 for all the cases.

Through the simplification, equation (3.30) reduces to a quadric equation of β.

The simplification is used for getting some intuition about the power allocation from

the equations of β and making the computation easier. In Section 3.3 we show that

even for small M , (3.16) performs very well, so that practically speaking, M � 1 is

not necessary.

In the point-to-point MIMO system, the power allocation problem only depends

on the number of transmit antennas. But in two-way relay systems, the relay is both
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a transmitter and a receiver so that the number of antennas in the relay should be

considered. For simplicity, we assume high SNR in which case we have α2
τ = α2

d ≈ 1
2N

.

Then (3.34) can be simplified to

β∗ =

−3(M+2N)
ρT

− 3
2

+ (M + 2N)

√(
1
Td

+ 3
2ρT

)(
3

2ρT
+ 3

2(M+2N)

)
M+2N
Td
− 3

2

. (3.35)

For a3 6= 0, i.e., Td 6= 2
3
(M + 2N) is satisfied. From (3.35) we can find that

when either M + 2N is increased with fixed Td, β
∗ will decrease. This shows that

with increased number of antennas,either at the source or relay, we should put more

energy into the training phase. In contrast, when Td is increased and M and N are

fixed, β∗ increases with Td. Thus, in this case we need to put more energy into the

data phase. Note that for estimating the channels in TWRs, we need the length of

training sequence satisfies Tτ ≥ 2M . Thus the maximum length for the length of

data is Td ≤ T − 2M .

Equation (3.34) can be used for setting M = N = 1, which is the signal antenna

case in TWRs. When ξ = 0.5 for the symmetric powers for both source, our results

of the optimal β∗ matches the numerical results provided by [89].

Given the optimal β which is a function of Td, we now discuss how to choose Tτ

and Td.

Proposition 2: Given the optimal β, R1 is a monotonically increasing function

of Td. The maximum value of Td is T − 2M .

Let λ be an arbitrary non-zero eigenvalue of Q̄
HQ̄
M

(λ > 0), from (3.23) we have

R1 ≥
M

T
E [Td log(1 + λγ̄1)] . (3.36)

Taking the derivative of (3.36) with respect to Td yields

∂R1

∂Td
≥ M

T
E

[
log(1 + λγ̄1) +

Td
1 + γ̄1

∂γ̄1

∂Td

]
. (3.37)
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We discuss the case of a3 < 0. The other cases have similar arguments and the same

results. The optimal β that maximizes γ̄1 can be obtained by

β∗ =
−b3 +

√
b2

3 + a3b3

a3

. (3.38)

Substituting (3.38) into (3.31), γ̄1 can be rewritten as a function of Td:

γ̄1 =
ρTNα2

τ

4M
· 1

Td
· −β + 1

a3β + a3 + 2b3

=
ρTNα2

τ

4M
· 1

Tda3

· a3 + b3 −
√
b2

3 + a3b3

a3 + b3 +
√
b2

3 + a3b3

=
ρTNα2

τ

4M
· 1

Tda3

·
1 + b3

a3
+
√

b23
a23

+ b3
a3

1 + b3
a3
−
√

b23
a23

+ b3
a3

=
ρTNα2

τ

4M

−1

b4Td − a4

·
1− η +

√
η(η − 1)

1− η −
√
η(η − 1)

=
ρTNα2

τ

4M

1

b4Td − a4

(
√
η −

√
η − 1)2, (3.39)

where η = −b3/a3, a4 = α2
τN+1, and b4 = 1/M . From (3.32), we know Td is involved

in η and η > 1. Thus,

dη

dTd
=

−a4b3

(b4Td − a4)2
. (3.40)

Taking the derivative of γ̄1, we have

∂γ̄1

∂Td
=
ρTNα2

τ

4M

[
−b4

(b4Td − a4)2
(
√
η −

√
η − 1)2

+
1

b4Td − a4

·
2
√
η(η − 1)− η − (η − 1)√

η(η − 1)
· dη
dTd

]

=
ρTNα2

τ

4M

[
−b4

(b4Td − a4)2
(
√
η −

√
η − 1)2 +

a4b3

(b4Td − a4)3

(
√
η −
√
η − 1)2√

η(η − 1)

]

=
ρTNα2

τ

4M

(
√
η −
√
η − 1)2

(b4Td − a4)2

[
a4η

Td
· 1√

η(η − 1)
− b4

]

=
γ̄1b4

b4Td − a4

(
a4
√
η

b4Td
√
η − 1

− 1

)
. (3.41)
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Let λ be an arbitrary non-zero eigenvalue of Q̄
HQ̄
M

(λ > 0), we have

R1 ≥
M

T
E
[
Td log(1 + λγ̄1)

]
. (3.42)

Taking the derivative of (3.42) with respect to Td yields

∂R1

∂Td
≥ M

T
E

[
log(1 + λγ̄1) +

Td
1 + γ̄1

∂γ̄1

∂Td

]
=
M

T
E

[
log(1 + λγ̄1)− λγ̄1

1 + λγ̄1

b4Td
b4Td − a4

(
1−

a4
√
η

b4Td
√
η − 1

)]
(3.43)

≥ M

T
E

[
log(1 + λγ̄1)− λγ̄1

1 + λγ̄1

]
, (3.44)

where

0 <
b4Td

b4Td − a4

(
1−

a4
√
η

b4Td
√
η − 1

)
< 1. (3.45)

The left inequality can be shown by substituting all the coefficients into the middle

term of (3.45). Note that we discuss the case of a3 < 0. Thus, b4Td−a4 = −Tda3 > 0

and Td > 2M . Then

a4
√
η

b4Td
√
η − 1

=

√
2M

Td
·

√
2M + ρT/3

Td + ρT/3
< 1. (3.46)

To prove the right inequality, one can upper bound the middle term of (3.45) by

replacing
√
η − 1 with

√
η:

b4Td
b4Td − a4

(
1−

a4
√
η

b4Td
√
η − 1

)
<

b4Td
b4Td − a4

(
1−

a4
√
η

b4Td
√
η

)
=

b4Td
b4Td − a4

(
1− a4

b4Td

)
= 1. (3.47)

Therefore, (3.44) holds.

Assuming x = λγ̄1, it can be proved that log(1 + x) − x
1+x
≥ 0 for all x ≥

0. Therefore, ∂R1/∂Td ≥ 0 and R1 is a monotonically increasing function of Td.

To maximize R1, Td should be chosen as its maximum value. Note that to obtain
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meaningful estimates of the channels, Tτ ≥ 2M is required in the TWR system to

ensure as many measurements as unknowns. Therefore, the choice of Tτ = 2M and

Td = T − 2M maximizes R1.

3.2.2 Asymmetric Case of Two Sources

For the asymmetric case, as the sources have different power and number of an-

tennas, the formulas for the effective SNRs at the two sources are different. Let M1

and M2 be the number of antennas for Source 1 and Source 2 respectively. In this

case, it cannot be guaranteed that the optimal β for one source is still optimal for

the other, and there is a trade-off between the two sources. We consider to maximize

the smaller one of the two SNRs. The effective SNRs for Source 1 and Source 2 are

γ̄1 and γ̄2 respectively, and are given by

γ̄1 =

(
ρTNα2

τ

TdM2

)
ξ2(−β2 + β)

a31β + b31

, (3.48)

γ̄2 =

(
ρTNα2

τ

TdM1

)
(1− ξ)2(−β2 + β)

a32β + b32

, (3.49)

where

a31 =
α2
τN + 1

Td
− ξ

M2

(
α2
τN +

α2
τ

α2
d

)
,

b31 =

(
1 +

1

α2
dN

)(
α2
τN + 1

ρT
+

ξ

M2

α2
τN

)
,

a32 =
α2
τN + 1

Td
− 1− ξ

M1

(
α2
τN +

α2
τ

α2
d

)
,

b32 =

(
1 +

1

α2
dN

)(
α2
τN + 1

ρT
+

1− ξ
M1

α2
τN

)
. (3.50)

The parameter ξ ∈ (0, 1) represents the power imbalance of the two sources, which

can be related to the location of the relay and it is assumed fixed. The optimal ratio

that maximizes γ̄i is

β∗i =
−b3i +

√
b2

3i + a3ib3i

a3i

, (3.51)
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where i = 1, 2. Both of the two SNRs are functions of β. Our optimization problem

becomes

β∗ = arg max
β

min{γ̄1, γ̄2}. (3.52)

Define f(β) = γ̄1 − γ̄2, we have the following proposition.

Proposition 3: When M1 = M2, if ξ > 0.5, f(β) is a concave function of β and

f(β) > 0 for β ∈ (0, 1). Thus min{γ̄1, γ̄2} = γ̄2 and β∗ = β∗2 . If ξ < 0.5, f(β) is a

convex function of β and f(β) < 0 for β ∈ (0, 1). Thus min{γ̄1, γ̄2} = γ̄1 and β∗ = β∗1 .

Proof: We have a31β + b31 > 0 and a32β + b32 > 0 for β ∈ (0, 1) and a31 + b31 =

a32 + b32. Taking the second order derivative of f(β) and after some manipulations,

we have

f ′′(β) = 2

(
ρTNα2

τ

M1Td

)
(a31 + b31)× b32(1− ξ)2(a31β + b31)3 − b31ξ

2(a32β + b32)3

(a31β + b31)3(a32β + b32)3
.

(3.53)

All the parts in (3.53) are positive except the numerator of the fraction. Substituting

(3.50) into the numerator and applying difference of cubes formula on it, its sign is

determined by the factor 1− 2ξ. When ξ > 0.5, which means Source 2 has the larger

power, then f ′′(β) is negative and f(β) is a concave function for β ∈ (0, 1). Moreover,

we have f(0) = 0 and f(1) = 0. Thus f(β) > 0 in (0, 1). If ξ < 0.5, with the same

argument, f(β) is a convex function and f(β) < 0 for β ∈ (0, 1). The optimal β∗ can

be calculated by (3.51).

3.3 Numerical Results

We choose T = 256 and ρ = 10 dB in our simulations. In Figure 3.2 we fix

Td = 192 and simulate γ̄1 with different number of antennas for the symmetric case.

We also illustrate the approximation of γ̄1 calculated by (3.31) for (M,N) = (4, 4).

The results show that the γ̄1 through Monte Carlo simulation almost overlaps with
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Figure 3.2: Effect of number of antennas on optimal β - when the number of antennas
increases, either at the source or at the relay, β∗ decreases, which means more energy
should be devoted to the training.

the approximation. Figure 3.2 also shows when the number of antennas increases,

either at the source or at the relay, β∗ decreases as we inferred from (3.35). Thus,

more energy should be devoted to the training for large number of antennas.

Figure 3.3 shows the achievable rate as a function of Td with different choices of

β for the symmetric case. We choose M = N = 8. When the optimal β is used,

the rate is a monotonically increasing function of Td and reaches its maximum value

at Td = T − 2M . We also simulate the rate for fixed β = 0.5 and for β = Td/T

in which case ρτ = ρd always holds. The results for these two cases achieve inferior

performance compared to the optimal β.

3.4 Conclusion

In this chapter, we propose a power allocation method in the presence of channel

estimation in MIMO TWR. We optimize the ratio of training-versus-data for both

the symmetric and asymmetric cases. In the symmetric case, with M1 = M2 and
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Figure 3.3: Achievable rate as a function of Td with different choices of β - with
the optimal β, the rate is a monotonically increasing function of Td and reaches its
maximum value at Td = T −2M . The rate for fixed β = 0.5 and for β = Td/T achieve
inferior performance compared to the optimal β.

ξ = 0.5, the optimal β can be found by solving a fourth order equation, which is

further reduced to a quadratic equation when the number of antennas at the sources

grows large. Data time is set to its maximum value Td = T −2M since the achievable

rate is a monotonically increasing function of Td. In the asymmetric case, we show

that the difference of two average SNRs is a concave or convex function for β ∈ (0, 1),

depending on ξ, enabling the maximization of the minimum of γ̄1 and γ̄2.
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Chapter 4

CHANNEL ESTIMATION IN FULL-DUPLEX TWO-WAY RELAYS

In this chapter, we focus on analyzing the channel estimation problem in a TWR

system with an FD relay helping to exchange data between two FD capable devices

in the presence of RSI. Though the channel estimation can be done by making the

training phase working in half-duplex mode, it is more spectrally efficient to esti-

mate the channels in FD mode. Moreover, as mentioned in Section 2.3.2, the RSI

still exists after active self-interference cancellation (SIC) at the relay and makes the

overall end-to-end channel an inter-symbol-interference (ISI) channel [52,76]. There-

fore, simply treating the RSI as noise does not yield good performance. To improve

the performance, the estimation and equalization of the ISI channel parameters are

needed. Thus, we estimate the RSI in the destination node to enable cancellation of

the interference of the system further, through equalization.

We propose a novel one-block training scheme and two baseline schemes to esti-

mate the RSI channel at both sources in an amplify-and-forward (AF) TWR system.

The one-block training scheme uses one transmission block to keep the training phase

relaying protocol consistent with the data phase. An ML estimator is derived to es-

timate the RSI channel as well as the individual channels. A popular quasi-Newton

method, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [90], is used to

numerically solve the ML estimator. Zero-forcing estimation is used for initialization

to improve the accuracy and reduce the complexity of the ML estimator.

As a baseline, we also propose a multi-block training scheme in which the tradi-

tional least squares (LS) channel estimation method is used. A half-duplex transmis-

sion protocol is needed in this training phase to make the received signal linear in the
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RSI channel. In addition, the cross-correlation method for estimating the ISI channel

is also considered for comparison. The two baseline schemes estimate the same chan-

nel parameters as the one-block scheme does. The CRBs for both training schemes

are derived respectively to assess the fundamental limits of each training scheme.

4.1 System Model

We consider a system with two sources and a relay in between, with no direct link,

as shown in Figure 4.1. The sources and the relay are equipped with two antennas,

one serving as a receive antenna while the other one a transmit antenna. The AF

scheme is adopted at the relay. To operate this scheme in the FD mode, the relay

receives the current symbols while it amplifies and forwards the previously received

symbols. The channel coefficients between Source 1 and the relay, and Source 2 and

the relay are h1r and h2r, respectively. The reverse channels between the relay and the

two sources are hr1 and hr2. Without loss of generality, we assume the forward and

reverse channels between a source and the relay are different (i.e., we do not assume

the channels are reciprocal, which also could be handled with some modifications).

The four individual channels above are complex Gaussian, independent, with zero

means and unit variance. They are also assumed to be time invariant across multiple

blocks. The noise at both sources and the relay are assumed to be complex Gaussian

with zero mean and variance σ2
v. Perfect synchronization is assumed in our system.

The methods for synchronization in half-duplex can be extended to FD [91] and used

in conjunction without methods.

In our system model, the relay estimates the SI channel in the pre-stage which

is explained in Section 2.3.2 and uses the estimates to cancel the SI in the following

transmission. The RSI channel which is due to the pre-stage estimation error can

be modeled as a flat fading channel [30, 52]. Let hrr, h11, h22 be the RSI channels
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Figure 4.1: Full-duplex two-way relays - the sources and the relay are equipped
with two antennas, one serving as a receive antenna while the other one a transmit
antenna. The FD relay receives the current symbols while it amplifies and forwards
the previously received symbols.

between the two antennas at the relay and source nodes. They are with zero means

and variance σ2
rr, σ

2
11, σ

2
22 respectively which capture the inaccuracy of SIC in the pre-

stage. The RSI power, which is related to the transmit power of the relay, is not

small enough to be treated as noise, and often higher than the desired signal power.

Moreover, it makes the overall end-to-end channel an ISI channel in the AF relay

even when the channels on all links are flat fading. The channel state information

(CSI) of the RSI channel is needed for equalizers to alleviate the ISI at the receiver.

4.2 One-Block Training Scheme

In this section, we propose the one-block training scheme for FD transmission

training and compare it with the multi-block training scheme which is proposed in

the following section. The one-block scheme consists of only one transmission block

consisting of N symbols during training and the multi-block scheme consists of four

blocks that have a total of N symbols. One block in our scheme means one trans-

mission phase that either the source or the relay node transmits its training sequence

without changing the transmission protocol. In the one-block scheme, we consider

the transmission from Source 1 to Source 2 : Source 1 transmits its training sequence

(and the relay forwards) for the whole training. No nodes change their training pro-
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tocols and thus this training scheme is considered as one block. In contrast, in the

multi-block scheme, in the first block Source 1 transmits its training sequence. Then

in the second block Source 1 stops and the relay transmits what it received in the

previous block. In the third block the relay transmits its own training data and in

the fourth block the relay transmits what it received in the third block. Hence the

transmission protocol changes multiple times during training. Each time it changes

is a different block during training. The overhead due to training, which is the to-

tal training length, is one block length for the one-block scheme and four blocks for

the multi-block scheme. In the comparison of the two schemes, we fix the training

overhead, which leads to different block lengths for the two schemes. The one-block

scheme has N symbols per block, and the multi-block scheme has N/4 symbols per

block that totals N symbols during training.

4.2.1 The Training Phase

In the training phase, we extend to FD the two time slots relaying protocol for

half-duplex in which two sources transmit their signals to the relay simultaneously

in the first time slot and the relay broadcasts its received signal in the second time

slot. In FD mode, the transmission of the two sources and the broadcast of the relay

happens in the same symbol interval. The relay receives the current signal while

continuing to transmit its received signal in the previous symbol interval. For the

purpose of training, the relay adds its own training sequence to its received signal,

scales the processed signal to satisfy the power constraint, then it transmits the scaled

signal. The sources also transmit and receive together. At symbol interval n, the relay

receives

yr[n] = h1rx1[n] + h2rx2[n] + hrrtr[n] + vr[n], (4.1)
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where x1[n] and x2[n] are the training sequences sent by Source 1 and Source 2

respectively. Let Ps be the transmit power of both sources. Thus, the training

sequences satisfy |x1[n]|2 = |x2[n]|2 = Ps. The term tr[n] is the transmit signal of the

relay and thus hrrtr[n] is RSI term due to the broadcast of the previous received signal

at the relay in the previous time slot. The noise term is vr[n] ∼ CN (0, σ2
v). The relay

adds its own training sequence xr[n] satisfying |xr[n]|2 = Ps and scales the processed

signal. Without loss of generality, we assume that there is a one-symbol delay for

the relay to forward its received symbols, which is due to the SIC processing. The

transmit signal of the relay therefore is

tr[n] = α(yr[n− 1] + xr[n− 1]), (4.2)

where α is a power scaling factor used to satisfy the power constraint at the relay. At

Source 1, the received symbol at time n is

y1[n] = hr1tr[n] + h11x1[n] + v1[n] (4.3)

=
∞∑
k=1

θ(k−1) (px1[n− k] + qx2[n− k] + dxr[n− k])

+ h11x1[n] +
∞∑
k=1

dθ(k−1)vr[n− k] + v1[n], (4.4)

where we define p := αhr1h1r, q := αhr1h2r, d := αhr1, and θ := αhrr for simplicity.

The recursive form of (4.4) is obtained by substituting (4.1) and (4.2) in (4.3). Due

to the feedback in the SI link θ at the relay, the overall channel in (4.4) is a single

pole infinite impulse response (IIR) channel which causes ISI. Moreover, the effective

noise is colored with correlations that depend on the pole. The impulse response for

x1[n] is p[k] := pθk−1, and for x2[n] is q[k] = qθk−1, k = 1, 2, · · · .
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The power scaling factor α is chosen to keep the system stable and guarantee

finite relay transmit power. The relay transmit power is calculated as

E[tr[n]t∗r [n]] = α2

∞∑
k=1

(α2|hrr|2)(k−1)
(
Ps|h1r|2 + Ps|h2r|2 + Ps + σ2

v

)
(4.5)

= α2Ps|h1r|2 + Ps|h2r|2 + Ps

1− α2|hrr|2
. (4.6)

By solving E[tr[n]t∗r [n]] ≤ Pr, α should satisfy α2 < 1/|hrr|2 [50]. However, in a

channel estimation scenario, the instantaneous CSI is not available. We can choose

α to satisfy a long term condition which is α2 < 1/E[|hrr|2] = 1/σ2
rr, and σ2

rr can be

obtained at the pre-stage. Therefore, we choose the power scaling factor as

α2 =
Pr

3Ps + Prσ2
rr + σ2

v

. (4.7)

where Pr is the maximum transmit power of the relay. With this power scaling factor,

the average RSI power is Prσ
2
rr. We can also setup a fixed, pre-defined gain margin

to prevent the instantaneous |hrr| value from exceeding the constraint.

We define L as the effective length of the overall channel impulse response in where

most of the energy, e.g. 99%, is contained [52]. Thus, a block based transmission can

be adopted with a guard time of L symbol intervals in which the sources keep silent to

avoid inter-block interference. Without loss of generality, we assume the block length

N is far greater than L, so the rate loss due to the guard time is negligible. We can

now rewrite (4.4) for block transmission. For the mth block, the nth received symbol

is

y
(m)
1 [n] =

∞∑
k=1

θ(k−1)
(
px1[(m− 1)(N + L) + n− k] + qx2[(m− 1)(N + L) + n− k]

+ dxr[(m− 1)(N + L) + n− k]
)

+ h11x1[(m− 1)(N + L) + n]

+
∞∑
k=1

dθ(k−1)vr[(m− 1)(N + L) + n− k] + v1[(m− 1)(N + L) + n], (4.8)
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for n = 0, 1, 2, · · · , N + L, and m = 1, 2, · · · , and x1[n] = x2[n] = xr[n] = 0 for n =

N + 1, · · · , N + L. With the last L symbols of every block being zero, there is no

inter-block interference, which allow us to drop the block index henceforth.

To write the output of the system in vector form, we relate the following vectors

x1 = [x1[0], · · · , x1[N − 1]]T ,

x2 = [x2[0], · · · , x2[N − 1]]T ,

xr = [xr[0], · · · , xr[N − 1]]T ,

y1 = [y1[1], · · · , y1[N ]]T ,

as follows:

y1 = pHθx1 + qHθx2 + dHθxr + dHθvr + h11J
ux1 + v1, (4.9)

where Ju is an N×N upshift matrix given by a Toeplitz matrix with the first column

[0, 0, · · · , 0]T and the first row [0, 1, 0, · · · , 0], and Hθ is an N × N Toeplitz matrix

with the first row [1, 0, · · · , 0] and the first column [1, θ, θ2, · · · , θL−1, 0, · · · , 0]T . Note

that the last L guard time symbols of every block are discarded so that the lengths

of the input and the output vector are N .

The data phase uses the same protocol as the training phase. The only difference

is the relay does not add its own signal when forwarding its received overlapped signal.

The received data signal at Source 1 is

y1d = pHθx1d + qHθx2d + dHθvrd + h11J
ux1d + v1d, (4.10)

where E [|x1d[n]|2] = E [|x2d[n]|2] = Ps.

4.2.2 Maximum Likelihood Estimator

In this section, we derive the ML estimator for Source 1 but it is similar for

Source 2 due to symmetry. For data detection and better performance, not only the
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two cascaded channels hr1h1r and hr1h2r are needed, but also the colored noise needs

be whitened. The whitening of the noise requires Source 1 to have the knowledge of

the RSI channel at the relay and the individual channels, either via relay feedback or

estimating them by itself. Due to the impracticality of the feedback channel, Source

1 will estimate the RSI channel as well as the individual channels in our approach,

which needs the relay to send its own training sequence.

Letting the relay transmit leads to a loss of simplicity at the AF relay by adding the

capability of sampling process to it, in contrast of doing the AF in analog. However,

there are reasons to have the sampling process at the relay. In FD mode, the relay

needs to perform SIC which is assumed to be done in the pre-stage and results in the

RSI. The SIC cannot be done only by analog means; digital domain methods such

as time domain cancellation through estimating the SI channel and SI suppression

using MIMO are also used to get enough attenuation [19]. Thus, sampling is already

necessary at the relay for reasons other than channel training.

From (4.9), channel parameters p, q, θ, d, and h11 are complex unknown param-

eters to be estimated. We define ω = [px, py, qx, qy, θx, θy, dx, dy, h11x, h11y]
T as the

parameter vector, where px and py are the real and the imaginary part for p re-

spectively and similar to the other complex parameters. We separate the real and

imaginary parts because BFGS algorithm optimizes with respect to real parameters.

Given ω, the mean and the covariance matrix of y1 are given by

µ = E[y1] = pHθx1 + qHθx2 + dHθxr + h11J
ux1, (4.11)

C = |d|2σ2
vHθH

H
θ + σ2

vIN . (4.12)

Thus, the likelihood function of y1 is

p(y1;ω) =
1

πN |C|
exp

(
−(y1 − µ)HC−1(y1 − µ)

)
, (4.13)
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where |C| denotes the determinant of matrix C. The corresponding log-likelihood

function is

log p(y1;ω) = −N log π − log |C| − (y1 − µ)HC−1(y1 − µ). (4.14)

Maximizing the likelihood function is equivalent to minimizing the last two terms in

(4.14). Let f(ω) denote our objective function, then we have

f(ω) = log |C|+ (y1 − µ)HC−1(y1 − µ). (4.15)

The ML estimator is given by

ω̂ = arg min
ω

f(ω). (4.16)

The objective function is not jointly convex with respect to ω. To solve the

problem numerically, we use the BFGS algorithm, which is a popular quasi-Newton

method. The BFGS is guaranteed to converge to a local minimum no matter whether

the objective function is convex or not [92]. Also, the BFGS often needs less steps to

converge than the gradient descent method [90], and thus is more efficient.

The parameters in ω are optimized with different step sizes rather than optimizing

ω as a whole since they have different scales. For example dx and θx are related to

the relay-to-source channel and the RSI channel receptively. The gain of RSI channel

is far smaller than that of the channel between nodes. So it is better to use different

stepsizes when optimizing them. The algorithm takes the estimates of the real and

imaginary part as the initial values. Due to the non-convexity, the algorithm might

be trapped in a local minimum that is far from the optimal solution. Thus, it is

necessary to initialize properly, which will be discussed in the following subsection.

Backtracking line search is used to determinate the stepsize in the update process.

The gradients needed in the BFGS method are derived in Appendix A. They are

taken with respect to real parameters which are the elements in ω.
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4.2.3 Initialization

We use zero-forcing (ZF) estimation method to initialize the BFGS method. The

first five received symbols at Source 1 are taken to estimate h11, p, q, d, and θ. The

five symbols used are

y1[0] = h11x1[0] + v1[0], (4.17)

y1[i] =
i∑

k=1

θk−1(px1[i− k] + qx2[i− k] + dxr[i− k]) + h11x1[i]

+
i∑

k=1

dθk−1vr[i− k] + v1[i]. (4.18)

We obtain the estimate of h11 first by the following.

ĥ11 =
y1[0]

x1[0]
. (4.19)

Define ỹ1[i] = y[i]− ĥ11x1[i] and we may design the the training symbols to make it

easier to estimate the other four parameters. Let x1[0] = x1[1], x2[0] = x2[1], and

xr[0] = xr[1]. With ZF method, the noise is ignored. We can estimate θ by using

ỹ1[1] and ỹ1[2]:

θ̂ =
ỹ1[2]− ỹ1[1]

y1[1]
. (4.20)

Let ỹ′1[1] = ỹ1[1]− θ̂y[i− 1] for i = 2, 3, 4. Then, the estimator of p, q, and d are

p̂

q̂

d̂


=



x1[1] x2[1] xr[1]

x1[2] x2[2] xr[2]

x1[3] x2[3] xr[3]



−1 

ỹ′1[2]

ỹ′1[3]

ỹ′1[4]


, (4.21)
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which provides an exact estimate in the absence of noise. We may design the sym-

bols of x1[n], x2[n], and xr[n] that are involved in the coefficient matrix of (4.21) to

guarantee the matrix is invertible.

The ZF initialization provides a starting point close to the optimal solution, which

not only reduces the number of iterations for convergence compared to random ini-

tialization, but also reduces the likelihood that the algorithm will trap in a local

minimum far from the optimal solution.

4.2.4 BFGS Algorithm

After we obtain all the required inputs of the algorithm, it is summarized as the

following:

Initialize: x0
{p} ,

[
p̂Tx p̂

T
y

]T
, x0
{q} ,

[
q̂Tx q̂Ty

]T
,x0
{d} , [d̂x d̂y]

T ,

x0
{θ} , [θ̂x θ̂y]

T , x0
{h11} , [ĥ11x ĥ11y]

T .

Repeat until convergence for i ≥ 1:

Step 1: x
(i)
0 = x

(i−1)
{p} , B−1

0 = I2

Step 2: Repeat until convergence for k: (BFGS)

1. Obtain a search direction pk = −B−1
k ∇f(x

(i)
k ).

2. Find stepsize αk by backtracking linesearch,

then update x
(i)
k+1 = x

(i)
k + αkpk.

3. Set sk = αkpk, vk = ∇f(x
(i)
k+1)−∇f(x

(i)
k )

4. Update the inverse Hessian approximation by

B−1
k+1 = B−1

k +
(sTk vk+vTkB

−1
k vk)sks

T
k

(sTk vk)2
− B−1

k vks
T
k +skv

T
kB

−1
k

sTk vk

Step 3: Obtain the converged result x
(i)
{h} = x

(i)
k

Step 4: Repeat Step 1 to Step 3 for q, d, h11, and θ with x
(i)
0 = x

(i−1)
{q} ,x

(i)
0 = x

(i−1)
{d} ,

x
(i)
0 = x

(i−1)
{h11}, and x

(i)
0 = x

(i−1)
{θ} respectively
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There are three inputs of the algorithm: (i) received training data from (4.9), (ii)

gradients of the real part and imaginary part of the parameters which are derived

in Appendix A (from (A.3) to (A.10)), and (iii) the initialization of the parameters

which can be obtained from (4.19) and (4.21) in Section 4.2.3. For each parameter

in ω, after the initial values are given, it is optimized by BFGS algorithm when the

other parameters are fixed. The five parameters are optimized alternatively, which is

the iteration controlled by i. The results of the iteration will be used as initial values

for the next iteration.

The BFGS algorithm is guaranteed to converge to a local minimum point because

it is a descent algorithm. This is the case in our setup as explained next. In Step 2.4,

BFGS algorithm updates the inverse Hessian approximation matrix which approxi-

mates the true Hessian to reduce complexity. The corresponding equation to update

the Hessian approximation matrix is given by

Ak+1 = Ak +
vkv

T
k

vTk sk
− (Aksk)(Aksk)

T

sTkAksk
. (4.22)

This is a rank-two update which ensures the Hessian approximation matrix is posi-

tive definite [92, Sec. 8.3.5]. The positive definite property implies that the search

direction pk = −A−1
k ∇f(x

(i)
k ) is a descent direction. Thus, the algorithm is guar-

anteed to converge to a minimum. However, for non-convex objective functions, the

convergence point may be a local minimum that is not optimal. To avoid this, we

use ZF estimates of the parameters to initialize the algorithm as mentioned above.

The complexity consists of the evaluation of three parts: (i) The calculation of

gradients, (ii) line search, and (iii) the approximate inverse-Hessian matrix update.

For the gradients of (4.15), the calculation is dominated by the matrix inversion of

the covariance matrix C which has complexity of O(N3), where N is the length of the
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training length. For large N , C asymptotically becomes to a Toeplitz matrix. The

complexity of inverting a positive definite Toeplitz matrix is O(N log2N). The line

search step requires the calculation of (4.15) which also includes the matrix inversion.

Thus line search has the same complexity as the gradients step. The approximate

inverse-Hessian matrix update has the complexity of O(n2) where n is the number

of parameters to be estimated, i.e. the length of ω which is 10. The complexity

of this update does not scale with N since n = 10 is a constant. Therefore, the

total complexity of the BFGS algorithm in one iteration is O(N log2N) for large N .

Moreover, based on our observation in the simulation, the algorithm with zero-forcing

initialization converges at an average of about 3 iterations, which is 2 less iterations

than random initialization. This also reduces the complexity of the algorithm.

4.3 Baseline Schemes

In this section we provide two baseline schemes for comparison. One is the multi-

block training scheme which works similar to half-duplex training. The other is the

conventional cross-correlation channel estimation method for ISI channel.

To compare to the proposed one-block training scheme, we propose another train-

ing scheme that takes multiple transmission blocks in the training. We discuss how

the traditional LS method is applied in the FD system. The training phase adopts a

relay protocol similar to half-duplex which is different from the protocol of the data

phase. We still do not assume any feedback channel here. The training consists of

four phases. In phase 1, the two sources transmit their training sequences x1t and

x2t with length N1 simultaneously. Meanwhile, the two sources receive what they

transmit. The relay only receives in this phase. The received signals at Source 1 and

50



the relay are yP1 and yr. We have

yP1 = h11x1t + vP11, (4.23)

yr = h1rx1t + h2rx2t + vP1r. (4.24)

The RSI channel h11 can be estimated by Source 1 itself. Phase 1 costs one-block

time which has N1 symbols.

In phase 2, the relay scales the received signal from phase 1, then transmits this

processed signal. The two sources only receive the signal from the relay. The received

signal at Source 1 is

yP2 = α1hr1yr + nP21 = pmx1t + qmx2t + dmvP1r + vP21, (4.25)

where pm = α1hr1h1r, qm = α1hr1h2r, dm = α1hr1 and α1 =
√
Pr/(2Ps + 1).

Through yP2, Source 1 can estimate two cascaded channels. Phase 2 takes another

N1 symbols. In the first two phases the relay works in half-duplex mode. The sources

only do FD at phase 1. Since the training sequence in Phase 2 depends on Phase 1,

the time cost of Phase 2 is also N1 symbols

From the above two phases, the only unknown channel to Source 1 is the RSI

channel hrr at the relay. If a feedback channel from the relay to Source is possible, in

phase 3 the relay could transmit and receive its own training signal and estimate hrr,

then feedback its estimates to the sources, which is more easier to operate. However,

we do not assume feedback channels due to practical reasons. Therefore, the relay

needs to transmit training signal that contains hrr to the sources. Assuming the

training sequence sent by the relay is xrt with length N2, the relay transmits it to the

sources in phase 3. The received signal is

yP3 = hr1xrt + vP3. (4.26)
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In this phase hr1 can be estimated at the source. At the same time, the relay receives

its transmitted signal which will be used in the last phase.

In Phase 4, the relay transmits its received signal from the previous phase, and

we have

yP4 = hr1θxrt + α2hr1vP3r + vP4, (4.27)

where θ = α2hrr and α2 =
√
Pr/(Prσ2

rr + 1).

Source 1 is able to estimate the individual channel hr1 through yP3 and then

recover the other individual channels. The estimate of θ can be obtained by using

yP4. Phase 3 and Phase 4 cost another two transmission blocks with block length N2.

If we assume N1 = N2 = N/4, then the training overhead of the multi-block scheme

is the same as that of the one-block scheme. Both estimators achieve estimating the

individual channels and the RSI channel at each source node.

The estimators are given as follows.

ĥ11 =
(
xH1tx1t

)−1
xH1tyP1, [p̂ q̂]T =

(
XH

rtXrt

)−1
XH

rt yP2, (4.28)

ĥr1 =
(
xHrtxrt

)−1
xHrtyP3, θ̂ =

(
xHrtxrt

)−1
xHrtyP4/ĥr1, (4.29)

where Xrt = [x1t x2t].

The multi-block scheme is not a bandwidth efficient scheme since it works in

half-duplex mode. However, it has some advantages. First, with the switch between

the half-duplex and FD, linear estimator such as LS and MMSE can be applied for

channel estimation, in which case we do not need to design special estimators for the

system. Second, when the block length in the multi-block scheme is the same as it in

one-block scheme, the MSE performance is better than the one-block scheme. Thus,

in the multi-block scheme the MSE is improved at the cost of bandwidth.

Another baseline scheme is the correlation method. Using the same signal model

in (4.9), the cross-correlation method for ISI channel can also be applied by treating
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the taps as different parameters. By using training sequences which has an autocorre-

lation function that is approximately a delta function, the estimator can be obtained

by doing the cross-correlation between the received signal and the training sequences.

The parameters ξISI = [p, q, d, h11, θ1, · · · , θL−1]T , where θi = θi but is treated as dif-

ferent parameters, can be estimated. We directly use the estimate of θ1 as the final

estimates of θ without investigating the the relationship between the channel taps.

4.4 Cramer-Rao Bounds and Analysis of the Fisher Information

4.4.1 Cramer-Rao Bounds for One-Block Training Scheme

The Cramer-Rao bound is used to evaluate the fundamental limits of each training

scheme. We obtain the Fisher information matrix (FIM) through the second order

derivative of the likelihood function. We use complex derivatives [93] to find the FIM.

We define ξ = [p q θ d h11]T , which has the same parameters as ω, except each entry

is a complex variable. The FIM is given by

Γ(ξ) = E

[
∂f

∂ξ∗
∂f

∂ξT

]
. (4.30)

The (m,n)th element of Γ is given by

Γmn =
∂µH

∂ξ∗m
C−1 ∂µ

∂ξn
+ tr

(
C−1 ∂C

∂ξ∗m
C−1∂C

∂ξn

)
. (4.31)

We first begin with the diagonal elements of the FIM. For p and q, we have

Γ11 =
∂µH

∂p∗
C−1∂µ

∂p
+ tr

(
C−1∂C

∂p∗
C−1∂C

∂p

)
= xH1 H

H
θ C

−1Hθx1, (4.32)

Γ22 = xH2 H
H
θ C

−1Hθx2. (4.33)
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Both µ and C contains θ, so

Γ33 =
∂µH

∂θ∗
C−1∂µ

∂θ
+ tr

(
C−1∂C

∂θ∗
C−1∂C

∂θ

)
= (px1 + qx2 + dxr)

HBH
θ C

−1Bθ(px1 + qx2 + dxr)

+ |d|4σ4
ntr
(
C−1HθB

H
θ C

−1BθH
H
θ

)
, (4.34)

where Bθ = ∂Hθ

∂θ
is also an N × N Toeplitz matrix given by the first column

[0, 1, 2θ, · · · , (L− 1)θL−2, 0, · · · , 0]T and the first row [0, 0, · · · , 0]. For d, it is similar

to the case of θ since it appears in both µ and C,

Γ44 =
∂µH

∂d∗
C−1∂µ

∂d
+ tr

(
C−1∂C

∂d∗
C−1∂C

∂d

)
= xHr H

H
θ C

−1Hθxr + |d|2σ4
ntr
(
C−1HθH

H
θ C

−1HθH
H
θ

)
, (4.35)

and last for h11,

Γ55 =
∂µH

∂h∗11

C−1 ∂µ

∂h11

+ tr

(
C−1 ∂C

∂h∗11

C−1 ∂C

∂h11

)
= xH1 (Ju)HJux1. (4.36)

Other elements are given in Appendix B. We focus on these diagonal elements because

we will analyze how the channel parameters affect the Fisher information in Section

4.4.2.

The CRBs are given by the diagonal elements of inverse of the FIM such that

CRBξ = tr
(
Γ−1

)
. (4.37)

In particular, CRBp = [Γ−1]11, CRBq = [Γ−1]22, CRBθ = [Γ−1]33, CRBd = [Γ−1]44,

and CRBh11 = [Γ−1]55 where [A]mn denotes the (m,n)th element of matrix A.

We also derive the CRBs for the multiple transmission blocks training case in

Appendix B for comparison with the CRBs of the one-block training scheme.

54



4.4.2 Analysis of the Fisher Information

In this subsection, we anaylze the Fisher information for the one-block training

scheme by using asymptotic properties of Toeplitz matrices [94] to see how the chan-

nel parameters and transmit powers affect the estimation, in the regime where the

training length N is large. To analyze the asymptotic behavior of the Toeplitz matrix,

Hθ will be used. Define a function

t(λ) =
∞∑
k=0

tke
jλk, (4.38)

where tk are the elements of the first column of the N × N Toeplitz matrix TN .

Thus, we can use the function t(λ) to represent the matrix. We denote the ma-

trix as TN(t(λ)). In our system, tk = θk for k = 0, · · · , L − 1 and otherwise

tk = 0. We show that Hθ and TN(t(λ)) are asymptotically equivalent. First,

since both Hθ and TN(t(λ)) are banded Toeplitz matrices, their strong norms (op-

erator norms) are bounded. Secondly, from the definition of TN(t(λ)), we have

limN→∞ ||Hθ − TN(t(λ))|| = 0, where ||A|| denotes the weak norm (Hilbert-Schmidt

norm) of matrix A. With the two conditions above, we can say that Hθ and TN(t(λ))

are asymptotically equivalent [94]. Therefore, we will write Hθ = TN(t(λ)) which will

be understood to hold for asymptotically large N . We have the following expression

for t(λ).

t(λ) =
L−1∑
k=0

θkejλk =
1− θLejLλ

1− θejλ
=

1

1− θejλ
, (4.39)

where θL ≈ 0 by our assumption of channel energy in Section 4.2.1. The covariance

matrix C is

C = |d|2σ2
vTN(t(λ))TN(t∗(λ)) + σ2

vIN . (4.40)

Without loss of generality, we set σ2
v = 1. According to the asymptotic properties

of Toeplitz matrices [94], the product of two Toeplitz matrices and the inverse of
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a Toeplitz matrix are Toeplitz matrices asymptotically, which can be expressed as

follows.

C = |d|2TN(|t(λ)|2) + IN = TN(|d|2|t(λ)|2 + 1), (4.41)

C−1 = TN

(
1

|d|2|t(λ)|2 + 1

)
. (4.42)

Theorem 1: The Fisher information of the cascaded channel p is an increasing

function of the absolute value of the RSI channel hrr, a decreasing function of the

relay transmit power Pr and the individual channel hr1, and an increasing function

of the source transmit power Ps asymptotically when the length of training goes to

infinity with fixed training energy.

Proof. The Fisher information of the cascaded channel p in the one-block training

scheme from (4.32) is

Γ11 = xH1 H
H
θ C

−1Hθx1 = x1TN(t(λ))TN

(
1

|d|2|t(λ)|2 + 1

)
TN(t∗(λ))x1 (4.43)

= x1TN

(
|t(λ)|2

|d|2|t(λ)|2 + 1

)
x1 ≤ ηmax||x||2, (4.44)

where ηmax is the maximum eigenvalue of TN

(
|t(λ)|2

|d|2|t(λ)|2+1

)
. When N →∞, we have

ηmax = max
λ

|t(λ)|2

|d|2|t(λ)|2 + 1
= max

λ

1

|d|2 + |1− θejλ|2
=

1

|d|2 +
∣∣1− |θ|∣∣2 , (4.45)

with λ equals to the minus phase of θ. Therefore, the Fisher information can be

expressed in terms of the channel parameters and power scaling factor α,

Γ11 =
Et

α2|hr1|2 +
∣∣1− α|hrr|

∣∣2 , (4.46)

where Et = ||x1||2 is the training energy and is kept to be a constant.

From the derivation of α to keep the stability of the system in Section 4.2.1, we

conclude that E[|θ|2] = α2E[|hrr|2] < 1. Proper α can be chosen by using fixed gain
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margin to satisfy this condition. Thus |θ| < 1 and |hrr| has a constraint related

to α. Therefore, for a constant α, Γ11 is an increasing function of |hrr|. It is also

a decreasing function of α. Since α grows with Pr and decreases with Ps, Γ11 is a

decreasing function of Pr, and an increasing function of Ps.

Theorem 1 shows large value of the RSI channel gain increases the Fisher informa-

tion of the cascaded channel and makes it easier to estimate. On the other hand, Γ11

is a decreasing function of α, we can say that increasing Pr does not help to estimate

the cascaded channel but increasing Ps does.

Theorem 2: The Fisher information of the RSI channel hrr is an increasing

function of |hrr|, the absolute values of both the cascaded channels, and the power

scaling factor α asymptotically when the length of training goes to infinity with fixed

training energy.

Proof. Define Bθ = TN(g(λ)) where g(λ) = ejλ

(1−θejλ)2
. Function g(λ) is obtained

similarly to t(λ) by using the sum of a geometric sequence and θL ≈ 0. Then, from

(4.34), the Fisher information of the RSI channel can be represented by Toeplitz

matrices as

Γ33 = (px1 + qx2 + dxr)
HTN

(
|g(λ)|2

|d|2|t(λ)|2 + 1

)
(px1 + qx2 + dxr)

+ |d|4tr

(
TN

(
|g(λ)|2|t(λ)|2

(|d|2|t(λ)|2 + 1)2

))
(4.47)

≤
(
|p|2||x1||2 + |q|2||x2||2 + |d|2||xr||2

)
max
λ

(
|g(λ)|2

|d|2|t(λ)|2 + 1

)
+ |d|4 1

2π

∫ 2π

0

|g(λ)|2|t(λ)|2

(|d|2|t(λ)|2 + 1)2
dλ. (4.48)

For the first term in (4.52), the maximum value is 1
|1−|θ||2(|d|2+|1−|θ||2)

. The second term

comes from the asymptotic property of Toeplitz matrix that the trace of it is equal

to the integration of the function that characterized it. Simplifying the integral we
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have ∫ 2π

0

|g(λ)|2|t(λ)|2

(|d|2|t(λ)|2 + 1)2
dλ =

∫ 2π

0

1

|1− θejλ|2(|d|2 + |1− θejλ|2)2
dλ. (4.49)

In the FD TWR system, we assume Pr � Ps since Ps is the received power at the

relay which incorporates the pathloss. Thus α2 � 1. Note that |θ| < 1, we have

|d2| = α2|hr1|2 � |1− θejλ|2. We can approximately calculate the integral as

1

2π

∫ 2π

0

1

|1− θejλ|2(|d|2 + |1− θejλ|2)2
dλ (4.50)

≈ 1

2π

∫ 2π

0

1

|1− θejλ|2|d|4
dλ =

1

|d|4
1

(|θ|+ 1)
∣∣|θ| − 1

∣∣ . (4.51)

The Fisher information of the RSI channel θ becomes

Γ33 =
α2Et(|hr1h1r|2 + |hr1h2r|2 + |hr1|2)∣∣1− α|hrr|

∣∣2(α2|hr1|2 + |1− α|hrr||2)
+

1

(α|hrr|+ 1)
∣∣α|hrr| − 1

∣∣ . (4.52)

Γ33 is an increasing function of α so that increasing Pr helps to estimate hrr while

increasing Ps does not. Γ33 is also a function of |hrr| and it increases with growing

|hrr|. That means larger RSI channel will make itself easier to estimate. Lastly, Γ33 is

an increasing function of channel gains between sources and relay, thus large channel

gains increase the accuracy of the estimate of hrr.

Theorem 3: The Fisher information of the individual channel hr1 is an increas-

ing function of the absolute value of the RSI channel hrr, a decreasing function of

the power scaling factor α, and a decreasing function of the absolute value of hr1

asymptotically when the length of training goes to infinity with fixed training energy.

Proof. Similar to the above two proofs, for the relay to source channel hr1, we have

Γ44 =
Et

α2|hr1|2 +
∣∣1− α|hrr|

∣∣2 + +
1

(α|hrr|+ 1)
∣∣α|hrr| − 1

∣∣ . (4.53)

The first term of (4.53) is the same as (4.46). The second term is similar to the second

term in (4.52) and can be obtained by using (4.49) to (4.51).
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The affects of RSI channel and α to estimating hr1 are the same to the cascaded

channel case. However the Fisher information of hr1 contains itself so that it will be

harder to estimate the channel when it has large absolute value.

4.4.3 Exploiting the Structure of the Related Channel Taps

To show the advantage of exploiting the channel structure created by the RSI

feedback, we compare the Fisher information of the RSI channel θ corresponding to

two channel assumptions in one-block training scheme. In the first case, the structure

of geometric sequence ISI channel taps is considered, while in the other case the chan-

nel taps are treated as different parameters (not necessarily a geometric sequence).

We will show that exploiting the channel structure has larger Fisher information than

treating the taps as different parameters.

We first look at the Fisher information of treating the taps as different parameters.

The parameter vector for this case is defined by ξISI = [p, q, d, h11, θ1, · · · , θL−1]T ,

where θi are independent channel taps. The Fisher information of p, q, d, and h11

are the same as the Fisher information of exploiting the channel structure. Let the

partial derivative of Hθ with respect to θ1 be D1 = ∂Hθ

∂θ1
= Jd. D1 is also a Toeplitz

matrix and thus we have D1 = TN(ejλ). The Fisher information for θ1 is similar to

(4.34) which is

Γθ1 = (px1 + qx2 + dxr)
HDH

1 C
−1D1(px1 + qx2 + dxr)

+ |d|4σ4
ntr
(
C−1HθD

H
1 C

−1D1H
H
θ

)
. (4.54)

Theorem 4: With designed training sequences, the Fisher information of θ is greater

than that of θ1 by Γdiff which can be approximated in closed form, when training

length goes to infinity.
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Proof. The difference of the two Fisher information is

Γdiff = Γ33 − Γθ1

= (pHθx1 + qHθx2 + dxr)
HTN

(
|g(λ)|2 − 1

|d|2|t(λ)|2 + 1

)
(pHθx1 + qHθx2 + dxr)︸ ︷︷ ︸

Γa

+ |d|4tr

(
TN

(
|t(λ)|2(|g(λ)|2 − 1)

(|d|2|t(λ)|2 + 1)2

))
︸ ︷︷ ︸

Γb

. (4.55)

For the first term of (4.55), we have

Γa ≤
(
|p|2||x1||2 + |q|2||x2||2 + |d|2||xr||2

)
max
λ

(
|g(λ)|2 − 1

|d|2|t(λ)|2 + 1

)
(4.56)

=
(
|p|2||x1||2 + |q|2||x2||2 + |d|2||xr||2

) 1− (1− |θ|)4

|d|2(1− |θ|2) + (1− |θ|4)
. (4.57)

The equality holds when the training sequence is the eigenvector corresponding to

the maximum eigenvalue of TN

(
|g(λ)|2−1
|d|2|t(λ)|2+1

)
which is given by [55,94]

xt =
1√
N

[1, ej2π, ej4π · · · , ej2π(N−1)]T . (4.58)

Note that |θ| < 1, therefore, by choosing the training sequence, the first term of the

difference is greater than zero.

For the second term, first we calculate

1

2π

∫ 2π

0

|g(λ)|2dλ =

(
1 + |θ|2

(1− |θ|2)3
· sign(1− |θ|2)

)
. (4.59)

The integration in Γb can be approximated by using integration by parts and the

results from (4.49) to (4.51) and (4.59), we have

Γb =
1− |1− θ|4

|1− θ|4(|θ|+ 1)
∣∣|θ| − 1

∣∣ − 1

2π

∫ 2π

0

(|g(λ)|2)′
1

|1− θejλ|2
dλ

=
1− |1− θ|4

|1− θ|4(|θ|+ 1)
∣∣|θ| − 1

∣∣ − 1

2π

∫ 2π

0

−4|θ| sinλ
|1− θejλ|8

(4.60)

=
1− |1− θ|4

|1− θ|4(|θ|+ 1)
∣∣|θ| − 1

∣∣ , (4.61)

60



where the second term in (4.60) is zero since it is an odd function over [0, 2π]. Γb > 0

for |θ| < 1. Thus, Γdiff = Γa + Γb > 0.

The Fisher information of related channel taps is larger than independent channel

taps, regardless of estimators so that exploiting the structure arising from the RSI

channel increases its Fisher information.

4.5 Numerical Results

In our simulations, we first setup a set of parameters and keep it unchanged for

all the training schemes. We set the relay power Pr = 40 dB and the RSI variance

σ2
rr = −20 dB. If the original SI channel has unit variance, then the RSI variance σ2

rr

represents the ability of self-interference cancellation to reduce the interference power.

We first simulate the MSEs of estimates of the channels to show the performance of

the ML estimator in the one-block training scheme with training length N = 100.

Figure 4.2 shows the MSEs of different channel parameters. For the cascaded channel,

we plot the MSE of hcas = hr1h1r = p/α which is the channel without power scaling

factors for comparison with other schemes. The other cascaded channel q/α is omitted

since it has a symmetric position to p/α and similar results. In Figure 4.2 and 4.3, hr1

represents the individual channel from the relay to Source 1, and hrr and h11 are the

RSI channels in the relay and Source 1 respectively. The MSEs are compared with

the CRBs obtained by (4.32) to (4.36). It can be observed that there is a gap between

MSE and CRB because the block length which is also the overhead in the one-block

scheme N is not large enough. Since the ML estimator is asymptotic efficient, i.e.

achieves the CRB as N goes to infinity [93], we expect this gap to close for large N .

The MSEs and CRBs for the two baseline methods are also simulated. Figure 4.3

shows the performance of the LS estimator in the multi-block training scheme. Here

we set N1 = N2 = 100 which means this scheme has the same training block length as
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Figure 4.2: MSE of the one-block training scheme - the MSEs are compared with the
CRBs. In the figure, hr1 represents the individual channel from the relay to Source
1, and hrr and h11 are the RSI channels in the relay and Source 1 respectively.

Figure 4.3: MSE of the multiple-block training scheme - the MSE of the LS estimator
in the multi-block training scheme is simulated. To keep a fair comparison, we set
the training block length and the power of the relay as same as those in one block
training scheme.

the one block training scheme. To keep a fair comparison, the training power of the

relay in the multi-block training is Pr = Ps, same as the one-block training scheme.
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Figure 4.4: MSE performance comparison of different training schemes - if the
overhead of training is kept the same, the one-block training scheme has better per-
formance than the other schemes.

In Figure 4.4, the MSE performance of the cascaded channel hcas for different

training schemes are compared. If the overhead of training is kept the same, which

means the N1 = N2 = N/4, the one-block training scheme has better performance

than the multi-block training, and the cross-correlation method. However, the multi-

block training scheme outperforms the one-block training scheme when the training

block lengths, which is fixed, of both schemes are the same. This is expected since

the LS estimator keeps the same transmit power as the ML estimator for both nodes

but takes four times the transmit time for training. When the overhead increases, all

the schemes have lower MSEs.

The CRBs of the RSI channel hrr for different schemes are shown in Figure 4.5.

The MSE of hrr for the cross-correlation method is also shown in this figure. The

cross-correlation method has large gap between the MSE and CRB because the au-

tocorrelation function of the training sequence is not a perfect delta function with

limited training length. The CRBs with and without exploiting the structure of re-
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Figure 4.5: Comparison of CRBs of hrr for different training schemes - the one-block
training scheme exploits the structure of related channel taps while the others do not.
Exploiting the structure has lower CRB than treating the taps as different parameters
in one-block training scheme.

lated channel taps are also compared. Exploiting the structure has lower CRB than

treating the taps as different parameters in one-block training scheme. We also see

that the CRB of the multi-block training scheme is higher than those of one-block

training scheme when overhead is fixed.

In Figure 4.6, we compare the Fisher information calculated by (4.46), (4.52),

and (4.53) and that from simulation results. The Fisher information Γ11,Γ33,Γ44

are for the cascaded channel hcas, RSI channel hrr, and the individual channel hr1 in

the one-block training scheme respectively. The figure shows Γ11 and Γ44 decreases

while Γ33 increases with increasing |hr1|, which verifies Theorem 1 to 3. We can

conclude from Figure 4.6 that large gain of the individual channel helps to estimate

the individual channel and it does not help to estimate the cascaded channel and the

RSI channel. We set training length as N = 100 in this simulation. There is a gap

between the simulated Fisher information and the analytical one since the analytical
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Figure 4.6: Fisher information vs. |hr1| - the analytical results and the simulated
results which verify Theorem 1 to 3 are compared. Large gain of the individual
channel helps to estimate the individual channel and it does not help to estimate the
cascaded channel and the RSI channel.

Fisher information expression is obtained in the asymptotic regime when N is large.

For Γ11 and Γ44 the gaps are negligible and for Γ33 the gap is within a factor of 1.3.

The difference in Fisher information of exploiting the channel structure versus

treating the taps as individual variables, which is Γdiff , is also simulated and compared

to that calculated from (4.57) and (4.61) in Figure 4.7. When using N = 100 in the

simulation, the gap between the theory and simulation for the difference in Fisher

information is around a factor of 1.6, illustrating the usefulness of (4.57) and (4.61).

From the simulation we observe that the analysis of the asymptotic behavior of the

Fisher information is close to the simulation results. Figure 4.7 verifies Theorem 4

which asserts that taking the channel structure into account is always better than

treating the taps as individual variables when estimating the RSI channel. Figure

4.7 also shows increasing Pr helps to estimate the RSI channel which is concluded in

Theorem 3.

65



Figure 4.7: Difference in the Fisher information - the difference in Fisher information
between exploiting the channel structure and treating the taps as individual variables
is simulated. The results verify Theorem 4 and assert that taking the channel struc-
ture into account is always better than treating the taps as individual variables when
estimating the RSI channel.

To illustrate the benefit of canceling RSI at the receiver by using the estimates

of θ, BER performance with different detectors are simulated. We implemented two

detectors: (i) an equalizer using Viterbi algorithm which uses the full information of

channel taps, (ii) a matched filer with the strongest channel tap. In this simulation,

estimated CSI are used. We also simulate the effect of noise whitening. Figure 4.8

shows the comparison of BER of the two detectors with a fixed relay power Pr = 40

dB. Define the signal to interference ratio at relay as

SIRr =
E [|h1rx1d[n] + h2rx2d[n]|2]

trd[n]
=

2Ps

Prσ2
rr

. (4.62)

Note that σ2
rr is the variance of the RSI after the self-interference cancellation at

the relay. Since Ps actually represents the power of the source transmit signal arriving

at the relay, according to the data reported in [19] and [35], it could be much smaller

than the self-interference power from the relay itself, even after some method of
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Figure 4.8: BER performance for different detectors - a Viterbi equalizer which uses
the full CSI is compared to an MF detector which only uses the CSI of the strongest
channel tap. The Viterbi equalizer outperforms the MF detector in low SIR regime,
which shows benefit of estimating the RSI channel at the receiver.

cancellation. This case become more severe when the FD transceiver is a base station.

Thus SIRr can be negative in dB scale. Figure 4.8 shows the BER performance for

different detectors. For the whitened noise case, the Viterbi equalizer outperforms the

matched filter detector by about 1.5 dB in this important low SIR regime showing that

the ISI due to the RSI cannot be ignored. This advantage decreases with increasing

SIR since the RSI becomes lower. There is also a gap of about 1dB between the

two matched filter detectors with and without noise whitening. Thus, whitening the

noise not only limits the maximum signal power but also improves the BER. It shows

one advantage of estimating the individual channel rather than only estimating the

cascaded channel. However, when SIRr increases, the gap between the equalizer and

matched filter decreases since RSI becomes rather small and the ISI effect can be

ignored.
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Figure 4.9: BER performance for different combinations of Pr and Ps - increasing
Ps always helps to improve the BER but increasing Pr does not; BER first decreases
and then increases since the RSI also increases with Pr.

Figure 4.9 shows the BER performance varying with Pr. For a fixed Ps, the BER

first reduces and then goes up with increasing Pr. The destination source will have

high SNR when the relay transmits with large Pr so increasing it helps to improve

the BER performance. However, continuing to increase Pr results in worse BER

because the RSI power is also related to Pr and the desired signal is overwhelmed

by interference when Pr is too large. On the other hand, for a fixed Pr, increasing

Ps always reduces the BER because the SIRr is proportional to Ps. In summary,

increasing Ps always helps to improve the BER but increasing Pr does not; BER first

decreases and then increases since the RSI also increases with Pr.

4.6 Conclusion

The one-block training schemes and two baselines for FD TWR are proposed

in this chapter to obtain the CSI in the presence of RSI. With one-block training

scheme, an ML estimator is derived to estimate the cascaded channel, individual
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channel as well as the RSI channel simultaneously. The BFGS algorithm is used in the

calculation of the ML estimator. The initialization and convergence of the algorithm

are also discussed. The two baselines including the multi-block training scheme with

LS estimator and the cross-correlation method are proposed for comparison. The

CRBs for the three schemes are derived. By using the asymptotic properties of

Toeplitz matrices, how the channel parameters and transmit powers affect the Fisher

information is analyzed. We also showed analytically that the Fisher information of

exploiting the structure of the channel taps is greater than that of treating the taps

as individual variables.
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Chapter 5

CHANNEL ESTIMATION IN FULL-DUPLEX ONE-WAY RELAYS

In this chapter, we consider an AF FD one-way relay system with only the relay

working in FD mode. The RSI in the relay propagates to the destination, creating an

end-to-end ISI channel. We further cancel the RSI at the destination by estimating the

RSI channel and applying equalization. The one-way relay system model is simpler

than the TWR model which is more analytic when considering the effect of RSI.

In the previous chapter we analyze the Fisher information while in this chapter we

further analyze the CRB in closed-form expression. We are able to minimize the CRB

and find the optimal training sequence. Besides, we also extend our training method

to the case when the channels between nodes are frequency-selective and the case of

multiple relay systems.

5.1 System Model

We consider a system consisting of a source, a relay, and a destination, without

any direct link between the source and the destination, as shown in Figure 5.1. AF

relaying protocol is adopted. The relay uses two antennas, one receiving the current

symbol while the other one amplifying and forwarding the previously received sym-

bol, to operate in FD mode. The channel coefficients between the source and the

relay, and the relay and the destination are hsr and hrd respectively. The two chan-

nels between nodes are assumed to be flat fading modeled by independent complex

Gaussian random variable with zero means and variances σ2
sr, σ

2
rd, respectively. A

separate pre-stage is assumed to gather the information of the SI channel to perform

analog and digital cancellation methods in the next transmission stage [19,79]. Dur-
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Figure 5.1: An FD one-way relay system - the system consists of a source, a relay,
and a destination. The FD relay uses two antennas, one receiving the current symbol
while the other one amplifying and forwarding the previously received symbol.

ing the transmission, the SI is reduced in RF with analog cancellation methods until

the RSI power falls in the ADC dynamic range, and then is further suppressed by

digital methods. However, despite these suppression methods, the RSI is still present

at the destination. We consider the RSI as the residual (error) through either ana-

log cancellation only or analog-plus-digital cancellation. The non-zero residual is an

unavoidable result of the SIC. Even though the LoS component is largely canceled,

the RSI power is still not small enough to be treated as noise, and is often higher

than the desired signal power [19, 35]. Moreover, the RSI makes the overall end-to-

end channel an ISI channel at the AF relay, even when the channels on all links are

flat fading. Thus, estimating the RSI at the destination is needed for equalizers to

alleviate the ISI at the destination receiver. In our system model, we assume that hrr

is time-invariant and flat fading in one transmission block and varies from block to

block. The Gaussian assumption is used in the simulations to generate realizations

of the channels for multiple blocks but not in the derivation of our training scheme

and analysis.

We assume the processing delay for the relay to forward its received symbols is τ0

which is an integer multiple of the symbol duration Ts, i.e., τ0 = mTs, m = 1, 2, · · · .
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The processing delay τ0 is a deterministic system parameter and can be known at the

system design level once the hardware and the SIC approaches are chosen. We can

introduce an artificial additional processing delay to make τ0 an integer multiple of

the symbol duration if it is not. With the synchronized signal, the resulting discrete-

time equivalent channel model is sparse with zero coefficients and can simplify the

analysis. Let the transmit signal at the relay be tr[n] = αyr[n − m] where α is a

real and positive power scaling factor. We will discuss the choices of it later in this

section. At the destination, the received symbol at the nth time interval is

yd[n] = hrdt[n] + nd[n] = hrd(αyr[n−m]) + nd[n]

=
∞∑
k=1

hθk−1x[n− km] +
∞∑
k=1

dθk−1nr[n− km] + nd[n] n = 0, 1, · · · , (5.1)

where yr[n] = hsrx[n] + αhrryr[n−m] + nr[n] is the nth received symbol at the relay.

x[n] is the transmit signal of the source and satisfies E
[
|x[n]|2] = Ps where Ps is the

transmit power of the source and incorporates the path loss. For brevity, we define

d := αhrd, h := αhsrhrd and θ := αhrr. Noise terms nr[n] and nd[n] are complex

Gaussian with zero mean and variance σ2
r and σ2

d respectively. If there is no RSI,

the effective end-to-end channel h is the overall channel for the system. However,

the SI link θ forms a feedback at the relay, which makes the overall channel a single

pole infinite impulse response (IIR) channel and causes ISI. Additionally, the effective

noise at the destination is colored with correlations that depend on the pole. The

overall IIR channel has channel taps [h, 0, · · · , 0︸ ︷︷ ︸
m terms

, hθ, 0, · · · , 0︸ ︷︷ ︸
m terms

, hθ2, 0, · · · ]T . We can

see that m only affects the position of the non-zero coefficients, which means that m

has no effect on calculating the gradients in Section 5.2.2. Moreover, in Section 5.3.2,

the zero coefficients have no contribution to (5.28) which is the key component in the

CRB analysis. Thus, assuming m = 1 is without loss of generality.
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The SIC at the relay should be such that |θ| < 1 is possible with proper choice

of α. Such α keeps the system stable and guarantees finite average relay transmit

power. The average relay transmit power is calculated as

E[tr[n]t∗r [n]] = α2

∞∑
k=1

(α2|hrr|2)(k−1)
(
Ps|h|2 + σ2

r

)
= α2 Ps|h|2 + σ2

r

1− α2|hrr|2
. (5.2)

Define Pr as the maximum relay transmit power. The condition for the stability of

the system is given by [50]

E[tr[n]t∗r [n]] ≤ Pr, (5.3)

where the expectation in (5.3) is with respect to the noise. By solving (5.3), α should

satisfy α2|hrr|2 = |θ|2 < 1. However, in a channel estimation scenario, the expectation

value of hrr is used instead of its instantaneous value in α. We can choose α to satisfy

a long term condition E[α2|hrr|2] < 1 which leads to α2σ2
rr < 1. Using the variance of

the RSI channel instead of its realizations is a common problem in AF FD relays since

the RSI is considered as the residual error which cannot be further estimated after

all the self-interference cancellation approaches. Note that RSI channel realization

might exceed some threshold. If that happens, α can be adjusted to make the relay

transmit with its maximum power. This will lead to clipping and distortions but not

instability. In addition, the clipping case happens with small probability since the RSI

channel has small variance [19] which limits the dynamic range of the realizations.

To further reduce the clipping probability, a fixed power margin between the relay

gain power and the maximum power can be made on α to increase the threshold.

Therefore, we do not incorporate these distortions in our system model and analysis.

Thus, α first normalizes the received signal power, then amplifies the signal power to

Pr. Such an α is given by

α2 =
Pr

Ps + Prσ2
rr + σ2

r

. (5.4)
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Since the non-zero coefficients θk−1 at the kth taps of the IIR channel decrease

in amplitude with increasing tap index k, we can assume that most of the energy

(e.g. 99%) is contained in a finite length of the overall channel impulse response [52].

Define L as the effective length of the overall impulse response which is h[k] :=

hθk, k = 0, · · · , L− 1. Thus, we use a block-based transmission with a guard time of

L symbol intervals to avoid inter-block interference [54]. At the receiver, it receives

N +L symbols and discards the last L symbols. Without loss of generality, the block

length N is assumed to be far greater than L, so the rate loss due to the guard time is

negligible. With the effective length L and block-based transmission, we can truncate

the IIR channel.

Let Hθ be the matrix form of the channel in one block, which is given by an

N × N Toeplitz matrix with first column [1, θ, θ2, · · · , θL−1, 0, · · · , 0]T and first row

[1, 0, · · · , 0]. We rewrite the output in terms of x := [x[0], · · · , x[N − 1]]T and y :=

[yd[1], · · · , yd[N ]]T as:

y = hHθx+ dHθnr + nd, (5.5)

where nr and nd are noise vectors composed of independent samples from the same

distribution as nr[n] and nd[n] respectively. As can be seen from the matrix expres-

sion, hHθ is the overall channel and the sum of the last two terms in (5.5) is the

colored noise. Thus, the overall channel becomes an ISI channel. In (5.5), we assume

distortion of the signal caused by hardware impediment is negligible due to sufficient

passive self-interference suppression and analog cancellation in RF [35]. However, if

the distortion has to be considered, (5.5) does not change because the distortion can

be incorporated as part of the noise. To be specific, the distortion from the transmit-

ter and the receiver are incorporated into the colored noise term dHθnr and additive

noise term nd respectively [85]. Since we have explicitly labeled the noise variances
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of nr and nd as σ2
r and σ2

d respectively, the incorporation of the distortion can be

captured by modifying the noise variance values.

5.2 Channel Estimation

5.2.1 Maximum Likelihood Formulation

We now derive the ML estimator of h and θ for a given training sequence x.

We are only interested in h and θ since knowing them is enough for detection and

equalization. In (5.5) we have three parameters h, θ and d. The coefficients of the

desired signal x is hHθ which only contain h and θ while d appears in the colored

noise term dHθnr. When detecting x, d is not necessary. For example, at high SNR,

a zero-forcing detector can be used which is obtained by using h and θ to calculate

the inverse of hHθ. We set d as a nuisance parameter and integrate out the nuisance

parameter from the likelihood function which is an established method [93] to deal

with it in the likelihood function. We have

p(y|h, θ) =

∫
p(y|h, θ, d)p(d)dd. (5.6)

Since p(y|h, θ, d) and p(d) are Gaussian distributed, it is shown in Appendix C that

the distribution of p(y|h, θ) is also Gaussian with mean and covariance matrix

µ = hHθ, (5.7)

C = α2σ2
rHθH

H
θ + σ2

dIN . (5.8)

Therefore, the likelihood function of y is

p(y|h, θ) =
1

πN |C|
exp

(
−(y − µ)HC−1(y − µ)

)
, (5.9)
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where |C| denotes the determinant of matrix C. The corresponding log-likelihood

function is [93]

log p(y|h, θ) =−N log π − log |C| − (y − µ)HC−1(y − µ). (5.10)

Maximizing (5.10) is equivalent to minimizing the last two terms of it. Let f

denote our objective function.

f(h, θ) = log |C|+ (y − µ)HC−1(y − µ). (5.11)

The ML estimator is given by

{ĥ, θ̂} = arg min
h,θ

{
log |C|+ (y − µ)HC−1(y − µ)

}
. (5.12)

Note that the two parameters are complex. We denote h = hx+ jhy where hx and

hy are the real part and imaginary part of h respectively and j is the imaginary unit.

Similarly we have θ = θx + jθy. Before we solve the ML estimator, we will simplify

the objective function to express it in terms of only one complex parameter θ. First

we take derivative of f with respect to h,

∂f

∂h
= −yHC−1Hθx+ h∗xHHH

θ C
−1Hθx. (5.13)

Setting the derivative to 0 we have

h = (xHHH
θ C

−1Hθx)−1xHHH
θ C

−1y. (5.14)

We can substitute (5.14) into (5.11) to eliminate h.

The objective function is not convex with respect to θ. To solve the problem nu-

merically, we use the BFGS algorithm [92], which is a popular quasi-Newton method.

Note that the constraint |θ| < 1 is imposed to ensure stability in (5.1). Euclidean

projection is further applied to θ̂ to ensure that |θ̂| < 1 so that the estimates conform

with the stability assumption. Because the algorithm can only deal with real valued

parameters, the real and imaginary parts are optimized separately.
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5.2.2 BFGS algorithm

We use the BFGS algorithm which is also used in [54] to solve the ML estimator in

a different two-way relay context. The algorithm needs the gradients of f with respect

to θx and θy. We derive the gradients in Appendix D. A linear MMSE estimator is

used to initialize the BFGS algorithm, which helps the algorithm to converge faster

and to reduce the possibility of trapping in a local minimum. We now elaborate on

the initialization before we provide the details of the BFGS algorithm.

Pairs of received samples can be used for linear MMSE estimation even though

the received samples y are not linear in the desired parameters h and θ. We take two

received symbols yd[2] and yd[3] to estimate h and θ. For estimating h, the second

received symbol at the destination is used, which is

yd[2] = hx[1] + dnr[1] + nd[2]. (5.15)

The linear MMSE estimator ĥ0 is given by [93, Sec. 12.3]

ĥ0 =
α2σ2

srσ
2
rdx
∗[1]yd[2]

α2σ2
srσ

2
rd|x[1]|2 + α2σ2

rdσ
2
r + σ2

d

. (5.16)

Let h̃0 be the residual estimation error of h, i.e. h = ĥ0 + h̃0. Thus, h̃0 is a random

variable with zero mean and variance σ2
h̃0

which is given by

σ2
h̃0

=
α2σ2

srσ
2
rd(α2σ2

rdσ
2
r + σ2

d)

α2σ2
srσ

2
rd|x[1]|2 + α2σ2

rdσ
2
r + σ2

d

. (5.17)

After having ĥ0, we can estimate θ. First we use ĥ0 to remove the known part

ĥ0x[2] in yd[3]. The remaining signal of yd[3] is as follows:

y′d[3] =ĥ0θx[1] + h̃0θx[1] + h̃0x[2] + hdnr[1] + dnr[2] + nd[3]. (5.18)

The linear MMSE estimator of θ is

θ̂0 =
ĥ0α

2σ2
rrx
∗[1]y′d[3]

ĥ2
0α

2σ2
rr|x[1]|2 + σ2

h̃0
|x[2]|2 + σ2

h̃0
α2σ2

rr|x[1]|2 + α4σ2
srσ

4
rdσ

2
r + α2σ2

rdσ
2
r + σ2

d

.(5.19)
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Though we only make use of one training symbol in the above linear MMSE

method, it is possible to extend the method to use multiple symbols, in which case

a special training sequence with L − 1 zeros followed by one symbol is transmitted,

where L is the effective length of the channel impulse response.

We now provide the BFGS algorithm which uses the initialization explained above,

and the gradients in Appendix D.

Initialize: z0 , [θ̂x θ̂y]
T , A−1

0 = I2×2.

Repeat until convergence for k: (BFGS)

1. Obtain a search direction pk = −A−1
k ∇f(zk).

2. Find stepsize λk by backtracking linesearch, then update zk+1 = zk + λkpk.

3. Set sk = λkpk, vk = ∇f(zk+1)−∇f(zk)

4. Update the inverse Hessian approximation by

A−1
k+1 = A−1

k +
(sTk vk+vTkA

−1
k vk)sks

T
k

(sTk vk)2
− A−1

k vks
T
k +skv

T
kA

−1
k

sTk vk

Obtain the converged result zk and construct the estimate θ̂ from it.

If |θ̂| > 1, θ̂ = θ̂/|θ̂| (Euclidean projection).

After the initial values are input, the complex parameter θ is optimized by the

BFGS algorithm. The iteration is controlled by the index k. The results of one

iteration will be used as initial values for the next iteration. Let θ̂ be the estimate

of θ and is obtained from zk. In particular, there is a constraint |θ| < 1 on θ. We

use Euclidean projection, which in this case is a vector normalization, to keep θ̂ in

its valid region. If the result of θ̂ is a point outside of the valid region, Euclidean

projection maps the outside point to its nearest valid point. The BFGS algorithm is

able to converge since it uses the Hessian approximation matrix to update the search

direction. The positive definite property of the Hessian approximation matrix implies
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a descent search direction, which guarantees convergence [92]. However, due to the

non-convexity of the objective function, the algorithm might be trapped in a local

minimum. To avoid this, we use MMSE estimates of the parameters to initialize the

algorithm as mentioned above.

The complexity of the algorithm is dominated by the matrix inversion of the

covariance matrix C in the calculation of the gradients and the objective function

(5.11). For large training length N , C asymptotically becomes to a positive definite

Toeplitz matrix. The complexity of inverting it is O(N log2N) [93]. The approxi-

mate inverse-Hessian matrix update only depends on the number of parameters to

be estimate but not on N . Therefore, the total complexity of the BFGS algorithm in

one iteration is O(N log2N) for large N . Moreover, the algorithm with linear MMSE

initialization converges faster than random initialization based on our observation in

the simulation. Thus, our initialization method also helps to reduce the complexity

of the algorithm.

5.3 Optimal Training Sequences

5.3.1 Cramer-Rao Bounds

The CRB is derived not only to show the accuracy of the estimates but also to act

as a metric when designing the training sequences. Differentiating the log-likelihood

function log p(y|h, θ) twice, we can obtain the Fisher information matrix (FIM). Let

ξ = [h θ]T be the vector of parameters. The FIM is given by

Γ(ξ) = E

[
∂ log p

∂ξ∗
∂ log p

∂ξT

]
. (5.20)

The (m,n) element of Γ is given by

Γmn =
∂µH

∂ξ∗m
C−1 ∂µ

∂ξn
+ tr

(
C−1 ∂C

∂ξ∗m
C−1∂C

∂ξn

)
, (5.21)
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where ξm is the mth element of ξ. Thus we have

Γ11 =
∂µH

∂h∗
C−1∂µ

∂h
+ tr

(
C−1 ∂C

∂h∗
C−1∂C

∂h

)
= xHHH

θ C
−1Hθx. (5.22)

Similarly,

Γ22 =
∂µH

∂θ∗
C−1∂µ

∂θ
+ tr

(
C−1∂C

∂θ∗
C−1∂C

∂θ

)
= |h|2xHBH

θ C
−1Bθx+ α4σ4

r tr
(
C−1HθB

H
θ C

−1BθH
H
θ

)
. (5.23)

Since C is not a function of h,

Γ12 =
∂µH

∂h∗
C−1∂µ

∂θ
= hxHHH

θ C
−1Bθx, (5.24)

Γ21 =
∂µH

∂θ∗
C−1∂µ

∂h
= h∗xHBH

θ C
−1Hθx. (5.25)

The CRB is given by the trace of the inverse of Γ, which is CRBξ = tr(Γ−1).

In particular, the CRBs for each parameter are the diagonal elements of the inverse

FIM. Since Γ is a 2 by 2 complex matrix, we can find its inverse by calculating its

determinant and adjoint. The determinant is |Γ| = Γ11Γ22 − Γ12Γ21. Therefore, the

CRBs are given by

CRBh = Γ22/|Γ|, (5.26)

CRBθ = Γ11/|Γ|. (5.27)

5.3.2 Training Sequence Design via the CRB

In this subsection, we analyze the CRB by using theorems for inverses, products,

and eigenvalues of Toeplitz matrices derived in [94] about asymptotic behavior of

Toeplitz matrix eigenvalues. The CRB is minimized in the regime where the training

length N is large. We show that the optimal training sequence that minimizes the

CRB is sinusoidal and we characterize the frequency of this sinusoidal. The key idea

behind this is that circulant matrices have sinusoidal eigenvectors and the Toeplitz
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matrices in the CRB expression can be well approximated by circulant matrices for

large N .

To analyze the asymptotic behavior of Toeplitz matrices, we define an N × N

Toeplitz matrix TN whose elements tk satisfy
∑∞

k=−∞ |tk| < ∞. According to [94],

TN is equivalent to a circulant matrix as N →∞, and can be expressed as TN(t(λ))

where t(λ) =
∑∞

k=−∞ tke
jλk. Now we show that Hθ is asymptotically equivalent to

TN(t(λ)). First, since both Hθ and TN(t(λ)) are banded Toeplitz matrices [94, Sec.

4.3], their strong norms (operator norms) are bounded. Secondly, let tk = θk for

k = 0, · · · , L− 1 and otherwise tk = 0, we have limN→∞ ||Hθ−TN(t(λ))|| = 0, where

||A|| denotes the weak norm (Hilbert-Schmidt norm) of matrix A. With the two

conditions above, we can say that Hθ and TN(t(λ)) are asymptotically equivalent [94,

Sec. 2.3]. Therefore, we will write Hθ = TN(t(λ)) which will be understood to hold

for asymptotically large N and thus the asymptotic properties which are introduced

later can be applied to analyze the CRB. We have the following expression for t(λ),

t(λ) =
L−1∑
k=0

θkejλk =
1− |θ|L

1− θejλ
=

1

1− θejλ
, (5.28)

where the assumption of channel energy |θ|L ≈ 0 is used. The covariance matrix C is

C = α2σ2
rTN(t(λ))TN(t∗(λ)) + σ2

dIN . (5.29)

Without loss of generality, we set σ2
r = σ2

d = 1. According to [94], the product of

two Toeplitz matrices is a Toeplitz matrix asymptotically, as well as the inverse of a

Toeplitz matrix. Thus we have

C ≈ α2TN(|t(λ)|2) + IN = TN(α2|t(λ)|2 + 1), C−1 ≈ TN
(

1

α2|t(λ)|2 + 1

)
. (5.30)
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The Fisher information of the source-relay-destination channel h is

Γ11 = xHHH
θ C

−1Hθx = xHTN(t∗(λ))TN

(
1

α2|t(λ)|2 + 1

)
TN(t(λ))x (5.31)

≈ xHTN
(

|t(λ)|2

α2|t(λ)|2 + 1

)
x =

|t(λ)|2

α2|t(λ)|2 + 1
||x||2, (5.32)

where |t(λ)|2
α2|t(λ)|2+1

is the eigenvalue of TN

(
|t(λ)|2

α2|t(λ)|2+1

)
and depends on λ. Similarly,

we can denote Bθ = TN(g(λ)) where g(λ) = ejλ

(1−θejλ)2
is the derivative of t(λ) with

respect to θ. The Fisher information of the RSI channel can be represented by Toeplitz

matrices as

Γ22 = |h|2xHBH
θ C

−1Bθx+ α4tr
(
C−1HθB

H
θ C

−1BθH
H
θ

)
(5.33)

≈ |h|2xHTN
(

|g(λ)|2

α2|t(λ)|2 + 1

)
x+ α4tr

(
TN

(
|g(λ)|2|t(λ)|2

(α2|t(λ)|2 + 1)2

))
(5.34)

= |h|2 |g(λ)|2

α2|t(λ)|2 + 1
||x||2 + α4 ||x||2

2πPs

∫ 2π

0

|g(λ)|2|t(λ)|2

(α2|t(λ)|2 + 1)2
dλ. (5.35)

We can simplify the first term in (5.35) similarly to Γ11. The second term comes from

the fact that the trace of Toeplitz matrices is equal to the integral of the function of

λ that characterizes it [94]. Simplifying this integral we have∫ 2π

0

|g(λ)|2|t(λ)|2

(α2|t(λ)|2 + 1)2
dλ =

∫ 2π

0

1

|1− θejλ|2(α2 + |1− θejλ|2)2
dλ. (5.36)

In our FD relay system, we assume Pr � Ps since Ps is the transmit power at the

source which incorporates the path loss. Thus α2 � 1. Note that since |θ| < 1, we

have α2 � |1− θejλ|2. We can approximate the integral as

1

2π

∫ 2π

0

1

|1− θejλ|2(α2 + |1− θejλ|2)2
dλ

≈ 1

2π

∫ 2π

0

1

|1− θejλ|2α4
dλ =

1

α4

1

(|θ|+ 1)
∣∣|θ| − 1

∣∣ . (5.37)

Therefore, the Fisher information of the RSI channel θ becomes

Γ22 =
|h|2|g(λ)|2

α2|t(λ)|2 + 1
||x||2 +

1

Ps(|θ|+ 1)
∣∣|θ| − 1

∣∣ ||x||2. (5.38)
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Similarly, we can represent Γ12 and Γ21 as

Γ12 = hxHBH
θ C

−1Hθx ≈ xHTN
(
ht(λ)g∗(λ)

α2t(λ)|2 + 1

)
x, (5.39)

Γ21 = h∗xHHH
θ C

−1Bθx ≈ xHTN
(
h∗t∗(λ)g(λ)

α2|t(λ)|2 + 1

)
x. (5.40)

To calculate the CRB, we need the product of Γ12 and Γ21 which is

Γ12Γ21 = |h|2 p2(λ)

(α2|t(λ)|2 + 1)2
||x||4. (5.41)

where p(λ) = 1
2
[t∗(λ)g(λ) + t(λ)g∗(λ)]. Function p(λ) is the real part of t∗(λ)g(λ)

and it shows that only the symmetric part of the Toeplitz matrix affects the product.

Thus, the CRB of θ is

CRBθ =
Γ11

Γ11Γ22 − Γ12Γ21

=
1

Γ11Γ22 − Γ12Γ21

xHTN(
|t(λ)|2

α2|t(λ)|2 + 1
)x. (5.42)

Minimizing (5.42) is to find a eigenvalue of TN( |t(λ)|2
α2|t(λ)|2+1

) which depends on λ.

Note that the term Γ11Γ22 − Γ12Γ21 also depends on λ, the minimization of (5.42) is

only through λ and the optimal training sequence is the corresponding eigenvector.

Since TN( |t(λ)|2
α2|t(λ)|2+1

) is asymptotically equivalent to a circulant matrix, the eigenvector

is sinusoidal. Plug (5.32), (5.38), and (5.41) into (5.42),

CRBθ =
1

||x||2
|t(λ)|2(α2|t(λ)|2 + 1)

|h|2|t(λ)|2|g(λ)|2 + A|t(λ)|2(α2|t(λ)|2 + 1)− |h|2|p(λ)|2

,
1

||x||2
F (λ), (5.43)

where A = (Ps(|θ| + 1)
∣∣|θ| − 1

∣∣)−1. To find the frequency of the sinusoidal training

sequence, we minimize the F (λ) in (5.43) with λ ∈ [0, 2π]. Simplifying F (λ) we have

F (λ) =
α2 + |1− θejλ|2

|h|2
|1−θejλ|2 + A(α2 + |1− θejλ|2)− 1

4
|h|2 (Re[ejλ−θ∗])2

|1−θejλ|4
. (5.44)

Let z = |1− θejλ|2 and z ∈ [(1− |θ|2), (1 + |θ|)2]. Substitute it into F (λ), we have

G(z) =
α2 + z

|h|2
z

+ A(α2 + z)− |h|2
4z2

(
(1+|θ|2−z)θx

2|θ|2 +
√

1− (1+|θ|2−x)2

4|θ|2
θy
|θ| − θx

)2 , (5.45)
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where θx and θy are the real and imaginary parts of θ respectively.

The optimal solution that minimizes F (λ) can be found by numerically solving

G′(z) = 0 which can be rewritten as a polynomial in z with highest order 8. The coef-

ficients of the polynomial are given in Appendix E. Note that z ∈ [(1−|θ|2), (1+θ)2],

so that the two endpoints of the interval are also candidates for the optimal solution

in case that the only solution to G′(z) = 0 is a saddle point or there is no solution

in the interval. After we get all the candidates (of which there are a maximum of 8),

we are able to substitute each of them into G(z) to find the one that minimizes the

function. Since the Toeplitz matrices asymptotically behave equivalently to circulant

matrices according to Lemma 4.2 in [94], the same way for circulant matrices can be

used to find the corresponding eigenvector for Toeplitz matrices. Assume the solution

that minimizes CRBθ is λ∗, the corresponding optimal training sequence is given by

1√
N

[1, · · · , ej2πkλ∗ , · · · , ej2π(N−1)λ∗ ]T for k = 0, · · · , N − 1.

The CRB for h can be also derived the same way as the CRB of θ,

CRBh =
1

||x||2
|h|2|g(λ)|2(α2|t(λ)|2 + 1) + A(α2|t(λ)|2 + 1)2

|h|2|t(λ)|2|g(λ)|2 + A|t(λ)|2(α2|t(λ)|2 + 1)− |h|2|p(λ)|2
. (5.46)

It can also be minimized by finding the roots of a polynomial. Note that when

minimizing the CRB for θ, it is not guaranteed that the CRB of h is minimized as

well. However, we can minimize the sum of CRBs of θ and h if both parameters are

considered, also through polynomial rooting.

The optimal training sequence depends on both of the channel h and θ through

λ. In practice, we do not have the information of h and θ until the first training

sequence is sent. We can apply an adaptive training method where the optimal

training sequence is designed by using estimates obtained from its previous training

sequence. In what follows we show through an approximation that the minimizer of

(5.45) only weakly depends on h.
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5.3.3 Low Complexity Approximation

The optimal solution can be found by minimizing the CRB numerically via finding

the polynomial roots. However, the complexity can be reduced by a certain approxi-

mation which we now describe. This provides an approximately optimal and practical

solution for the problem. Assume |θ| is small, so that the value of x is very close to

1. Then we can have the following approximation(
(1 + |θ|2 − z)θx

2|θ|2
+

√
1− (1 + |θ|2 − z)2

4|θ|2
θy
|θ|
− θx

)2

≈ 1 . (5.47)

Thus,

G(z) ≈ α2 + z
|h|2
z

+ A(α2 + z)− |h2|
4z2

. (5.48)

Solving G′(x) = 0 is equivalent to solving the following equation:

8|h2|z3 + (4α2 − 3)|h|2z2 − 2α2|h|2z = 0. (5.49)

Equation (5.49) shows that h does not affect the solution of G′(z) = 0. One can

verify that none of the three real roots of (5.49) is in the valid interval of z which

is [(1 − |θ|)2, (1 + |θ|)2]. Note that G(z) is an increasing function since |h|2 > 0.

Therefore the approximately optimal solution is the left endpoint of the interval

i.e. z = (1 − |θ|)2. Thus, λ = −∠θ where ∠ represents the phase of a complex

number. Moreover, the channel |h| does not affect the solution of z, so that the

training sequence for estimating θ only depends on θ and not |h|, making it easier

to implement than the optimal training sequence. The normalized corresponding

training sequence is given by 1√
N

[1, · · · , ej2πkλ∗1 , · · · , ej2π(N−1)λ∗1 ]T for k = 0, · · · , N−1

where λ∗1 minimizes (5.48).
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5.4 Frequency-Selective Channels

In this section, we extend our channel estimation method to the case where the

channels between nodes are frequency-selective fading. We show that our training

method and CRB calculation can be extended to this case based on our analysis of

the basic one-way relay system.

We assume the source-to-relay and relay-to-destination channels are frequency-

selective fading with channel taps

hsr = [hsr[1], hsr[2], · · · , hsr[L1]],

hrd = [hrd[1], hrd[2], · · · , hrd[L2]], (5.50)

respectively. Therefore, with block based transmission, the channel matrix for the

source-to-relay channel Hsr is an N × N Toeplitz matrix with the first column

[hTsr, 0, · · · , 0]T and the first row [1, 0, 0, · · · , 0]. For the relay-to-destination chan-

nel, the channel matrix Hrd is also an N ×N Toeplitz matrix with the first column

[hTrd, 0, · · · , 0]T and the first row [1, 0, 0, · · · , 0]. The received signal for the training

phase is similar to (5.5) and becomes

yf = αfHrdHθHsrx+ αfHrdHθnr + nd, (5.51)

where αf is the new power scaling factor for the frequency-selective channel given by

α2
f =

Pr

Ps(
∑L1

i=1 σ
2
sri) + Prσ2

rr + σ2
r

. (5.52)

where σ2
sri is the variance of the ith source-to-relay channel tap. The overall channel

is αfHrdHθHsr in the frequency-selective case instead of hHθ for flat fading.

To extend our training method, we can use the theorem for products of Toeplitz

matrices which is explained in Section 5.3.2 to approximate the overall channel matrix

as a Toeplitz matrix. According to the theorem, when the training length is large,
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the product of two Toeplitz matrices is still a Toeplitz matrix and the elements of

the product can be determined by the elements of the two matrices. Similar to

the way we define Hθ = TN(t(λ)) for large N , we can define Hsr = TN(q(λ)) and

Hrd = TN(p(λ)), where q(λ) =
∑L1−1

k=0 hsr[k+ 1]ejλk and p(λ) =
∑L2−1

k=0 hrd[k+ 1]ejλk.

Thus, the overall channel matrix is

Hf = HrdHθHsr = αfTN(p(λ))TN(t(λ))TN(q(λ)) ≈ αfTN(p(λ)t(λ)q(λ)). (5.53)

Hf is also a Toeplitz matrix. Assume the elements in its first column are hf [k] for

k = 1, 2, · · · , N , we have

hf [k] = αf
1

2π

∫ 2π

0

p(λ)t(λ)q(λ)e−jkλdλ. (5.54)

The parameters to be estimated are hf [k] for k = 1, 2, · · · , Lf where Lf = L1+L2+L−

2. Assume ξf = [hf [1], · · · , hf [Lf ]]
T , our ML estimator can be extended to estimate ξf

by the following. First hf [1] has the same position as h in (5.12). Then using hf [i+ 1]

replace θi in (5.12). Thus, our ML method can be applied to estimate the overall

channel even in the frequency-selective setup.

The Fisher information for the frequency-selective can be obtained similarly to

the flat fading case by using

Γ(f)
mn =

∂µHf
∂ξ∗fm

C−1
f

∂µf

∂ξfn

+ tr

(
C−1

f

∂Cf

∂ξ∗fm
C−1

f

∂Cf

∂ξfn

)
, (5.55)

where µf = Hfx and Cf = α2
f σ

2
rHrdHθH

H
θ H

H
rd + σ2

dIN . The CRBs are given by

the diagonal elements of the inverse of the Fisher information matrix Γ(f). If desired,

a single scalar quantity representing the overall CRB can be computed by find the

trace of this matrix: CRBξf = tr
(
(Γ(f))−1

)
.

5.5 Multiple Relays

The multi-relay case is also an intuitive extension from the basic one-way relay

system. With the analysis for the one-way relay, we can modify the estimation method
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and CRB analysis. In the multi-relay case, the distance between the source and the

destination is fixed. The relays are placed in an equally-spaced manner in series

between the source and the destination. Assume there are M relays which satisfy

M(L − 1) < N (There is a guard time of L − 1 symbols for each relay). Each

relay works in FD mode with AF relay protocol. The relays have their own RSI,

and they do not perform estimation or equalization to keep relay complexity low.

The estimation and equalization are performed only at the destination. The channel

between the (i − 1)th relay and the ith relay is flat fading with coefficients hi for

i = 2, 3, · · · ,M . The channels from the source to the first relay and from the last

relay to the destination are h1 and hM+1. Channel coefficients hi for i = 1, · · · ,M+1

are Gaussian random variables with zero-mean and variance σ2
h. Each relay has its

own RSI channel hrri and power scaling factor αi which is given by

α2
i =

Pr

Psiσ
2
h + Prσ2

rr + σ2
r

, (5.56)

where Psi is the received power of the desired signal at the ith relay. We also assume

all the relays have the same average transmit power Pr and average RSI power for

simplicity.

The distance between the source and the destination is fixed in our model and

M relays are placed in the line between the source and the destination in an equally

spaced manner. Assume the distance between the source and the destination is nor-

malized and the corresponding path loss is K dB. Then by using a simplified path

loss model [95], the path loss between two relays is

KmdB = KdB + 10γ log10(M + 1), (5.57)

where γ is the path loss exponent. We incorporate the path loss into hi which leads

to σ2
h = 1/Km and Psi = PrK(M + 1)γ.
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The transmit signal at the mth relay is

ym =
m∏
i=1

(αihiHθi)x+
m∑
i=1

[(
m∏

n=i+1

αnhn

m∏
n=i

Hθn

)
nri

]
, (5.58)

where Hθi is the RSI channel at the ith relay defined similarly as Hθ with θi = αihrri,

and nri is the additive Gaussian white noise at the ith relay. The received signal at

the destination from the mth relay is given by

yd = hM+1yM + nd = hM+1

M∏
i=1

(αihiHθi)x+
M∑
i=1

[(
m∏

n=i+1

αnhn

m∏
n=i

Hθn

)
nri

]
+ nd.

(5.59)

Define H(n) =
∏M

i=nHθi and its corresponding function t(n)(λ). By using the

property of product of Toeplitz matrix for large N , we have

H(n) =
M∏
i=n

T (tθi(λ)) = T

(
M∏
i=n

tθi(λ)

)
, (5.60)

where tθi(λ) is defined the same as (5.28) with θi. H
(n) is also a Toeplitz matrix and

the elements in its first row defined through an inverse Fourier transform

h
(n)
k =

1

2π

∫ 2π

0

t(n)(λ)e−jkλdλ, (5.61)

where t(n)(λ) =
∏M

i=n tθi(λ). Thus, we can approximate yd for large N as

yd = zMH
(1)x+

M∑
i=1

[(
M∏
n=i

αnhn

)
/(αihi)H

(i)nri

]
+ nd, (5.62)

where zM = hM+1

∏M
i=1 αihi. The first row of H(1) is [1, h

(1)
2 , · · · , h(1)

M(L−1), 0, · · · , 0]T

which is an N × 1 vector (Assume M(L − 1) < N). The channel parameters to be

estimated is ξM = [zM , h
(1)
2 , h

(1)
3 , · · · , h(1)

M(L−1)]
T . The superscript of h

(n)
m means the

overall channel is the channel from the nth relay to the last relay while the subscript

means the index of the taps of the overall ISI channel, i.e. the index of elements of ξM .

The signal model of (5.62) is the same to that of (5.51) except additional noise terms.
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We can also extend our ML estimator to estimate the channel parameters using the

same way in the frequency-selective case where zM and h
(1)
k are analogous to h and

θk in (5.51) respectively. The advantage of estimating the multi-relay channel at the

destination rather than at each relay is to keep the relays low complexity with just

analog signal processing capability. However, the performance is better if estimation

and equalization are performed at each relay, at the cost of complexity.

The CRB for multiple relays can be derived and analyzed similarly to the single

relay case. We derive the CRBs for the first two strongest channel taps zM and h
(1)
2

which dominate the data detection. The CRBs for other parameters can also be found

similarly to (5.55). The CRB of h
(1)
2 is given by

CRB
h
(1)
2

=
|t(M)(λ)|2|(

∑M
i=1 |ci|2|tθi(λ)|2 + 1)

J1

(∑M
i=1 |ci|2|tθi(λ)|2 + 1

)
+ ||x||2||zM ||2J2

, (5.63)

where ci =
∏M

n=i αnhn/(αihi) and

J1 = |c1|4
1

2π

∫ 2π

0

|t(M)(λ)|2|g(M)(λ)|2

(
∑M

i=1 |ci|2|tθi(λ)|2 + 1)2
, (5.64)

J2 = |t(M)(λ)|2|g(M)(λ)|2 − |p(M)(λ)|2. (5.65)

Define the following functions

g(M)(λ) =
∂t(M)(λ)

∂λ
, (5.66)

p(M)(λ) =
1

2

[
(t(M)(λ))∗g(M)(λ) + t(M)(λ)(g(M)(λ))∗

]
. (5.67)

For zM we have

CRBzM =
[|zM |2|g(M)(λ)|2|+ J1(

∑M
i=1 |ci|2|tθi(λ)|2 + 1)](

∑M
i=1 |ci|2|tθi(λ)|2 + 1)

J1

(∑M
i=1 |ci|2|tθi(λ)|2 + 1

)
+ ||x||2||zM ||2J2

.

(5.68)

We further approximate the CRBs and have simple expressions to find how the

number of relays affects the CRBs. From (5.28) we have |tθi(λ)| ≈ 1 for small θi.
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We also assume the training power is large so that J � ||x||2. Therefore, the CRB

becomes

CRB
h
(1)
2
≈
∑M

i=1 |ci|2 + 1

|zM |2||x||2
, CRBzM ≈

∑M
i=1 |ci|2 + 1

||x||2
. (5.69)

By plugging in |ci|2 = (α2
i )
M−i∏M

n=i+1 |hi|2, and α2
i = Pr

PrK(M+1)γ+Prσ2
rr+1

, we have the

CRB expressions as a function of M .

CRB
h
(1)
2

=

∑M
i=1(K(M + 1)γ + k1)i−M(

∏M
n=i+1 |hi|2)i−M + 1

||x||2(L(M + 1)γ + k1)−M
∏M

n=i+1 |hi|2
, (5.70)

CRBzM =

∑M
i=1(K(M + 1)γ + k1)i−M(

∏M
n=i+1 |hi|2)i−M + 1

||x||2
. (5.71)

where k1 = σ2
rr + 1/Pr. Equation (5.70) and (5.71) are simple functions of M . In-

tuitively, the estimates of zM will become more inaccurate as the noise goes strong

for increasing M . However, as the number of relays increases, the RSI for each relay

accumulates at the destination, which makes the RSI channel h
(1)
2 stronger and easier

to estimate. Thus there is an optimal M which minimizes the sum MSE of zM and

h
(1)
2 . Since M is an integer and is not quite large, the optimal number of relays with

respect to the minimum sum CRBs of (5.70) and (5.71) can be found by searching

over M .

5.6 Numerical Results

We first simulate the performance of the proposed ML estimator and compare

it with the corresponding CRBs. We set Pr = 30 dB and σ2
rr = −10 dB. For the

channels we set σ2
sr = σ2

rd = 1 and the realization of hsr and hrd are drawn from

their distributions. The variances of noise at the relay and the destination are set

to 1. For each block we estimate the channels and calculate the mean squared error

(MSE) which is averaged over multiple independent realizations of the channels. The

training length is N = 140 according to the LTE FDD downlink standard.
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Figure 5.2: Performance of the ML estimator compared with the CRB - when Ps

is small, the RSI dominates the signal, which makes the parameter hard to estimate
and results in a large gap between MSE and CRB.

Figure 5.3: Number of iterations to convergence for different initialization - the
objective function converges in 3 iterations with MMSE-based initialization while it
needs 2 more iterations to converge with random initialization.
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In Figure 5.2, we compare the MSEs of h and θ to their CRBs. For h, we obtain the

simulated MSEs of hx and hy because our optimization only deals with real numbers.

To make a fair comparison with its CRB which is derived for complex numbers, we use

the fact that the MSE of h is the sum of the MSEs of its real and imaginary parts. The

comparisons for θ are similar. When Ps is small, the RSI dominates the signal, which

makes the parameter hard to estimate and results in a large gap between MSE and

CRB. Moreover, the colored noise dHθnr also degrades the estimation performance

because we use the expectation value of d in the estimation. The effect of colored

noise reduces when Ps is large. For θ, the MSE does not decrease when Ps is less

than 10 dB. The MSE for θ is also affected by the relay power Pr. It can be seen

analytically from (5.48) that when the amplitude of Ps is close to that of Prσ
2
rr, the

decrease in α is apparent, which leads to a decrease in the CRB.

Figure 5.3 illustrates the convergence speed of the objective function f for different

initialization methods, namely, random initialization and MMSE-based initialization.

We calculate the average of f in each step for the same h and θ. We observe that with

MMSE-based initialization, the objective function converges in 3 iterations while it

needs 2 more iterations to converge with random initialization. Thus MMSE-based

initialization increases the convergence speed of the algorithm.

We compare the CRBs of θ with different training sequences in Figure 5.4. We

generate a training sequence which consists of i.i.d Bernoulli symbols which are ran-

dom +1 and−1 with equal probability to compare with the optimal training sequence.

The optimal and approximately optimal curves are almost overlapped. We observe

that for different θ values, the roots calculated from the 8th order equation do not

fall in the interval [(1− |θ|)2, (1 + |θ|)2] discussed in Section 5.3.2. Thus the optimal

solution is on the boundary values which is consistent with the approximately optimal

solution. Therefore the simulation results of the optimal and the approximately op-
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Figure 5.4: Comparison of optimal, approximately optimal, and random training se-
quences - the optimal training sequences save approximately 3 dB in power compared
to the random training sequences and is almost overlapped with the approximately
optimal one.

Figure 5.5: Effect of training length N on the CRB - the asymptotic CRB is an
approximation of the exact CRB when the training length goes to infinity, and has a
closed-form expression which can be efficiently calculated and analyzed.
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timal cases are very close. Figure 5.4 also shows that the optimal training sequences

save approximately 3 dB in power compared to the case of random training sequences.

Figure 5.5 shows the influences of training length N on the simulated CRB and the

CRB calculated asymptotically, with the optimal training sequence. As N increases,

the MSE gradually gets close to the CRB as we expect, since the ML estimator

is asymptotically efficient (when N goes to infinity) [93] which shows the estimate

of the RSI channel gets more accurate. The asymptotic CRB from (5.43) is an

approximation of the CRB from (5.23) when the training length goes to infinity, and

has a closed-form expression which can be efficiently calculated and analyzed. The

small gap in the simulation shows the accuracy of the approximation.

In Figure 5.6, we compare the performance of different detectors including the

Viterbi equalizer and matched filter (MF) detector with channel tap length L = 3.

The Viterbi equalizer we use is the standard one for ISI channel [95]. However, in our

system the ISI is caused by the RSI and forms a channel with taps [h, hθ, hθ2]T which

can be obtained from the estimates of h and θ. Thus, the standard Viterbi equalizer

can be applied for RSI mitigation. On the other hand, the MF detects the signal by

multiplying the received signal by the strongest tap of the ISI channel which is h.

There are also two cases for MF detector. In one case, MF detector is directly used

to the received signal which has colored noise. The other case is obtained by first

applying a noise whitening filter to the received signal and then doing MF detection.

So the noise is whitened in this case. From the perspective of how much CSI is

needed, the former case only needs h while the latter needs both h and θ. Figure 5.6

shows the Viterbi equalizer outperforms any MF detector since the equalizer cancels

the RSI while MF treats the RSI as noise. For the two MF detectors, the one that

whitens the noise has better performance which comes from the noise whitening filter
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Figure 5.6: BER comparison of different detectors - the Viterbi equalizer can elim-
inate the ISI caused by the RSI channel. The MF detects the signal by multiplying
the received signal by the strongest tap of the ISI channel. The Viterbi equalizer
outperforms the MF detector since the equalizer cancels the RSI while MF treats the
RSI as noise.

by using the CSI of θ. The fact that canceling the RSI and whitening the noise lead

to better performance illustrates the benefits of estimating the RSI channel θ.

Figures 5.7 and 5.8 show the MSE of the two extensions. Note that the estimator

are derived by using Hf in (5.53) and H(1) in (5.62) which are the approximation

of the exact channels for frequency-selective case and multi-relay case respectively.

The MSE is calculated by comparing the estimates of the approximation to the exact

channels. Figure 5.7 shows that in the frequency-selective case, the MSE reduces

with the training length N increasing, implying that the asymptotic approximation

Hf gets closer to the exact channels. The reducing MSE shows the accuracy of the

approximation.

Figure 5.8 shows the MSEs of zM and h
(1)
2 compared with their CRBs in the

multi-relay case. Specifically, the total path-loss between the source and the relay

is K = −60 dB and path-loss exponent is γ = 3.71 for the outdoor environment.
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Figure 5.7: MSE with increasing N in frequency-selective case - the MSE reduces
with the training length N increasing, implying that the asymptotic approximation
Hf gets closer to the exact channels.

As M increases, the MSE of zM increases because more noise and interference are

added. On the other hand, the MSE of h
(1)
2 decreases, since the RSI channel is easier

to estimate as the RSI gets stronger. The asymptotic CRBs derived by (5.70) and

(5.71) are close to the simulated CRBs. Since M is an integer and not large, one can

search over the best M by using (5.70) and (5.71).

5.7 Conclusion

In this chapter, we propose an ML channel estimator in FD relays to estimate the

end-to-end channel as well as the RSI channel at the destination. The log-likelihood

function is maximized through the BFGS algorithm. The algorithm is initialized by a

linear MMSE estimator to prevent local minima and increase the convergence speed.

The corresponding CRBs are derived to evaluate the accuracy of the estimates. By

using asymptotic properties of Toeplitz matrices, we show that the optimal training

sequence is a sinusoid. To find the frequency, we minimize the CRBs and propose

the corresponding optimal training sequence and a practical approximately optimal
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Figure 5.8: CRB for multiple relays - as M increases, the MSE of zM increases

because more noise and interference are added. The MSE of h
(1)
2 decreases since the

RSI channel is easier to estimate as the RSI gets stronger.

training sequence. Extensions of our estimation method to frequency-selective and

multi-relay case are also considered.
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Chapter 6

SIGNAL DETECTION IN FULL-DUPLEX COGNITIVE RADIOS

In this chapter, we propose the signal detection problem in the presence of RSI.

Different from FD relays, FD radios can also be used in spectrum sensing devices

which detect signals from others while transmit their own data. The cognitive radio

system is such a scenario that two types of users, unlicensed secondary users (SUs)

and licensed primary users (PUs), share the spectrum through spectrum sensing [96,

97]. Underlay and overlay are two spectrum sharing schemes that SUs are allowed

to access the spectrum bands of PUs. In the underlay scheme [98], the SUs are

allowed to transmit if the interference caused by the SUs’ transmission to PUs is

below some threshold. In contrast, overlay spectrum sharing [99], which is adopted in

this thesis, allows the SUs to access only the empty spectrum of PUs. The reliability

and efficiency of identifying the spectrum holes by spectrum sensing are the key

components to protect PUs’ transmission and maximize SUs’ throughput.

In conventional cognitive radio systems, PUs and SUs are half-duplex devices.

Thus, the operation of SUs is time-slotted, and each slot is divided into spectrum

sensing sub-slot and transmission sub-slot. The SUs will sense the PUs’ spectrum

bands in the sensing sub-slot and decide whether to transmit by accessing the spec-

trum bands in the following transmission sub-slot. Though optimization and cooper-

ation of spectrum sensing are investigated, the half-duplex based system still suffers

from two major problems. First, the SUs have to sacrifice their transmission time

for spectrum sensing. The sensing is periodic so it wastes more transmission time

for long and continuous spectrum holes. Second, the SUs cannot sense the spectrum

when they transmit. Therefore, if the PUs arrive or leave during the SUs’ transmis-
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sion sub-slots, the SUs cannot notice the PUs’ state change until the next sensing

sub-slot, which leads to long collision for the PUs’ arrival or transmission time waste

for the PUs’ departure.

The FD enhances the utilization of the spectrum holes and protection of the PUs’

transmission by letting the SUs keep sensing the spectrum all the time. Hence, the

spectrum efficiency in cognitive radio systems is improved. However, due to the exis-

tence of RSI, the spectrum sensing needs to incorporate the RSI. Several works have

discussed FD cognitive radio systems where the SU is an FD device and it senses the

activity of the PU while simultaneously transmitting its own data to its correspond-

ing receiver [100–104]. In [102], the probabilities of miss detection and false alarm

are compared in half-duplex and FD cognitive radio systems under energy detection.

Different implementations of FD including two-antenna and signal antenna FD are

also considered. The authors in [103] propose and analyze a simultaneous sensing

and transmission scheme for a two-antenna FD SU. The trade-off between the SU’s

transmission rate and the detection accuracy is investigated where increasing SU’s

power improves the rate but leads to more RSI and reduces the detection accuracy.

In [104], the authors consider cooperation between the primary and the secondary

system. A cognitive FD relay forwards the primary signal and transmits its own

cognitive signal. With MIMO at the relay, beamforming is used to differentiate the

forwarding primary signal and the cognitive secondary signal.

We focus on the trade-off between transmission rate and the detection accuracy

in an FD cognitive radio system with MIMO. Different from the single antenna case

where the SU’s power is the only parameter affecting the trade-off [103], the beam-

former and combiner used for the transmitting and receiving antenna sets of the FD

SU can have a significant impact on the trade-off. We use the sum-rate of PU and SU
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as a metric and discuss how different choices of the beamformer and combiner affect

the sum-rate.

6.1 System Model

We consider a cognitive radio system consisting of one PU and one SU pair as

shown in Figure 6.1. Node B is the FD secondary transmitter equipped with two

sets of antennas, where each set has NB antennas and is used for either transmitting

or spectrum sensing. Other nodes include primary transmitter (node A), primary

receiver (node AR), and secondary receiver (node BR), and each has a single antenna.

The PU either transmits its message to its receiver or be idle while the secondary

user senses whether the PU accesses the spectrum. If PU is transmitting, SU is silent

and senses the spectrum. If PU is idle, SU transmits its messages to its receiver

but still keep detecting whether PU becomes active again, which is feasible by FD.

The channels for the PU and the SU pair are hA and hB respectively. Let hAB be

the channel between PU and SU which is used in the spectrum sensing. The NB by

NB channel matrix Hrr is the RSI channel for SU. All the channels are assumed to

be flat fading and time-invariant. We assume the SU knows the channels related to

it, i.e., hB, hAB, and Hrr. The beamforming vector b and combiner w are used at

the transmitter and receiver side at SU respectively. We assume PU has the prior

probabilities p0 for its state transition from “idle” to “active” and p1 for that from

“active” to “idle”, which are fixed and known. However, the sensing is performed in

the presence of RSI from SU. There is a trade-off in the system that increasing SU’s

rate, which leads to more RSI, decreases the accuracy of spectrum sensing.
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Figure 6.1: An FD cognitive radio system - An FD cognitive radio system consisting
of one PU and one SU pair. The secondary transmitter is an FD device equipped
with two sets of antennas, where each set has NB antennas and is used for either
transmitting or spectrum sensing. The PU either transmits or be idle while the SU
keeps sensing the spectrum all the time to decide when to transmit.

6.2 Simultaneous Sensing and Transmission

6.2.1 Energy Detection

Working in FD mode, the SU can detect the PU’s states when transmitting its

own signal. However, the SU’s detection is affected by its RSI and also depends on

whether it transmits or not. When the SU is silent, there is no RSI and the spectrum

sensing is the same as that in the conventional half-duplex cognitive radio system.

On the other hand, when the SU transmits, its received signal for detection contains

RSI. Therefore, we will consider two cases of spectrum sensing for either the SU is

transmitting or silent.

When the SU is silent, the cases when the PU is active or idle are referred to

as hypothesis H01 and H00 respectively. The received signal of the SU under each
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hypothesis is

y[n] =


wH(hAB

√
PAxA[n] + v[n]), H01

wHv[n], H00,

(6.1)

where xA is the transmit signal of the PU with |xA[n]|2 = 1, PA is the PU’s transmit

power, the channel hAB is an NB × 1 vector, and v is the complex Gaussian noise

with zero mean and variance σ2
v.

When the SU is transmitting, RSI exists in the received signal. The hypothesis

H11 and H10 are under which the SU is transmitting while the PU is active or idle

respectively. SU’s received signal can be expressed as

y[n] =


wH(hAB

√
PAxA[n] +Hrrb

√
PBxB[n] + v[n]), H11

wH(Hrrb
√
PBxB[n] + v[n]), H10,

(6.2)

where b and w are NB × 1 vectors, and xB[n] is the transmit signal of the SU with

|xB[n]|2 = 1.

Energy detection is adopted for the spectrum sensing. The average received power

in a time interval is used as the test statistics as follows:

M =
1

N

N∑
n=1

|y[n]|2, (6.3)

where y[n] is the nth sample in the test interval given by (6.1) and (6.2) for different

cases of SU’s activities. The spectrum is considered to be occupied when M is greater

than a certain threshold, otherwise the spectrum is idle and can be accessed by the

SU. Since the received signals are different for SU’s activities, i.e., the received signal

is affected by RSI when SU is transmitting and has no RSI when SU is silent, we use

two thresholds and calculate the probabilities of false alarm and detection for both

cases. Let ε0 and ε1 be the thresholds when the SU is silent and transmitting. The
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probability set for SU being silent is

pf(ε0) = Pr(M > ε0|H00), (6.4)

p
d
(ε0) = Pr(M > ε0|H01). (6.5)

Similarly, the other probability set when SU is transmitting is {pfI(ε1), pdI(ε1)}.

Either the PU is transmitting or idle, the received signal of the SU y(n) is as-

sumed to be i.i.d. in the test interval. If N is sufficiently large, by the central limit

theorem, the PDF of M can be approximated by a Gaussian distribution with mean

E [|y[n]|2] and variance 1
N

var [|y[n]|2]. Therefore, we can derive the statistics of M

under each hypothesis. Let m01 and σ2
01 be the mean and variance of M when the

PU is transmitting and the SU is silent under H01. We have

m01 = E
[
|y[n]|2

]
= PAw

HhABh
H
ABw + σ2

v||w||2, (6.6)

σ2
01 =

1

N
var
[
|y[n]|2

]
=

1

N

(
E
[
|y[n]|4

]
−
(
E
[
|y[n]|2

])2
)

(6.7)

=
1

N

(
PAw

HhABh
H
ABw + σ2

v||w||2
)2
, (6.8)

where the derivation of E [|y[n]|4] uses the property of absolute moments of the Gaus-

sian random variable.

Similarly, we derive the statistics for other hypothesis as follows. For H00 where

the PU is idle and the SU is silent, we have

m00 = σ2
v||w||2, (6.9)

σ2
00 =

1

N
σ4

v||w||4. (6.10)

For H11 where both the PU and the SU are transmitting,

m11 = PAw
HhABh

H
ABw + PBw

HHrrbb
HHH

rrw + σ2
v||w||2, (6.11)

σ2
11 =

1

N

(
PAw

HhABh
H
ABw + PBw

HHrrbb
HHH

rrw + σ2
v||w||2

)2
. (6.12)
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Last, for H10 where the PU is idle and the SU is transmitting,

m10 = PBw
HHrrbb

HHH
rrw + σ2

v||w||2, (6.13)

σ2
10 =

1

N

(
PBw

HHrrbb
HHH

rrw + σ2
v||w||2

)2
. (6.14)

With the statistics, we are able to calculate the sensing probabilities. When the

SU is silent, the threshold ε0 is used. Thus,

pf(ε0) = Q

(
ε0 −m00

σ00

)
, (6.15)

p
d
(ε0) = Q

(
ε0 −m01

σ01

)
, (6.16)

where Q(·) denotes the Q-function. When the SU is transmitting with threshold ε1,

we have

pfI(ε1) = Q

(
ε1 −m10

σ10

)
, (6.17)

pdI(ε1) = Q

(
ε1 −m11

σ11

)
. (6.18)

6.2.2 Sum-Rate Metric

To represent the trade-off between the transmitting rate and the accuracy of

detection, we define sum-rate of the PU and the SU as a metric. We first define

the probabilities that a spectrum waste happens. Let pcollision be the probability of

both the PU and SU are transmitting, i.e., a collision happens which is the situation

that the PU becomes active from its previous state (either active or idle) and the SU

misdetects the PU’s signal. Therefore, we can write pcollision as the following,

pcollision = p0(1− pdI(ε1)) + (1− p1)(1− pd(ε0)), (6.19)

where p0 and p1 are prior probabilities of the PU changing its states defined in Section

6.1. Another spectrum waste situation is that both the PU and the SU are idle, which
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happens when the PU becomes idle but the SU has a false alarm. Let pidle be the

probability of that both the PU and the SU are idle which can be expressed as

pidle = p1pf(ε0) + (1− p0)pfI(ε1). (6.20)

After defining the probabilities of situations that can cause wastes of transmission

time, we can define the sum-rate as

Rsum = RA(1− pcollision) +RB(1− pidle), (6.21)

where RA and RB are the transmission rate of the PU and the SU respectively, and

are given by

RA = log

(
1 +

PA|hA|2

σ2
v

)
, (6.22)

RB = log

(
1 +

PB|bHhB|2

NBσ2
v

)
. (6.23)

We propose different schemes for choosing the beamformer b and the combiner w to

see how they affect the trade-off through sum-rate.

6.2.3 Beamforming and Combining Schemes

We begin with the schemes for the combiner w. When using multiple antennas

at the receiver, maximum-ratio combining (MRC) can maximize the received SNR.

MRC is also used in energy detection in half-duplex systems. In FD systems, MRC

may enhance the RSI in the received signal but the enhancement of RSI is not as

strong as that of the desired signal. Thus, the MRC scheme for w still improve the

SNR for the desired signal in the presence of RSI. Such a combiner can be expressed

as

wMRC =
hAB

||hAB||
, (6.24)
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where the combiner is normalized to keep the power constraint. Selection combining

(SC) is commonly used for its simplicity. If the FD system has multiple antennas at

both transmitter and receiver, one receiving antenna can receive multiple copies of

RSI from the transmitting antennas. Thus, selecting the receiving antenna with the

best SINR is an efficient way to reduce the effect of RSI. The SC scheme combiner is

wSCi =


1, i = arg maxi

|hABi|2

||h(i)
rr ||

,

0, otherwise,

(6.25)

where wSCi and hABi are the ith elements of wSC and hAB respectively, and h
(i)
rr is

the ith row of Hrr.

For the schemes of beamformer, one natural choice is to maximize the SU’s (node

B’s) rate. However, such beamformers may enhance the RSI and reduce the detec-

tion accuracy, which leads to a decrease of the sum-rate. The max-B-rate scheme

beamformer is given by

bmax−B−rate =
hB
||hB||

. (6.26)

Note that if the channel of SU to its receiver is a matrix, bmax−B−rate is the eigenvector

corresponding to the maximum eigenvalue of hBh
H
B . We can also use the beamformer

to help reduce the RSI at the receiver to improve the detection probabilities. Though

such a scheme does not increase the SU’s rate directly, it can still improve the sum-rate

by reducing the probabilities of spectrum waste. The min-B-RSI scheme beamformer

bmin−B−RSI can be obtained by finding the normalized eigenvector corresponding to

the minimum eigenvalue of HH
rrww

HHrr.

6.3 Numerical Results

In this section, we simulate the sum-rate Rsum by combining different schemes of

w and b. As shown in Figure 6.2, Rsum has local maximum points when using the
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Figure 6.2: Sum-rate for different schemes of b and w - for the max-B-rate scheme,
Rsum has a local maximum and decreases for large PB which leads to strong RSI and
large pfI. Rsum increases again but is dominated by RB. For the min-B-RSI scheme,
Rsum is a monotonically increasing function of PB. The min-B-RSI scheme efficiently
utilizes the transmission time of the PU and the SU and performs better for large PB.

max-B-rate scheme of b. When PB is less than 18 dB, Rsum increases due to the

augment in RB. However, continuing to increase PB leads to strong RSI and rises pfI.

Consequently, pidle is large for large PB, which results in a decrease in Rsum. When

PB is greater than 25 dB, Rsum increases again because the augment in RB due to

large PB can compensate the rate loss caused by large pidle. Though Rsum increases

again in this situation, the system still wastes lots of transmission time due to large

pidle. The sum-rate is dominated by RB and the PU has little impact on Rsum. For

the min-B-RSI b scheme, Rsum is a monotonically increasing function of PB. In this

scheme, pfI and pdI are kept in reasonable range for large PB. Though min-B-RSI

scheme is worse than max-B-rate scheme for PB less than 23 dB, it efficiently utilizes

the transmission time of the PU and the SU, and performs better for large PB. For

w, MRC performs better than SC.

We also simulate how the RSI affects pidle, as shown in Figure 6.3. The parameter

σ2
rr is the variance of the RSI channel, i.e., variance of the elements of Hrr. It char-
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Figure 6.3: Probability of both the PU and the SU being idle - when the average
RSI power is below −5 dB, pidle increases slowly with increased RSI but goes up fast
when RSI is greater than −5 dB. This can be used as a threshold for RSI when design
the system.

acterizes the ability of SIC so that the average RSI power is equal to PBσ
2
rr, e.g., for

the rightmost plot in Figure 6.3, PB = 10 dB and when σ2
rr = −15 dB, the average

RSI power is 10 + (−15) = −5 dB. We can see when the average RSI power is below

−5 dB for all the three plots, pidle increases slowly with increased RSI but goes up

fast when RSI is greater than −5 dB. This can be used as a threshold for RSI when

design the system.

6.4 Conclusion

We consider the simultaneously transmitting and sensing problem in an FD cog-

nitive radio system with MIMO. The probabilities of detection in the presence of RSI

are derived. The sum-rate of PU and SU is proposed as a metric to characterize the

trade-off between transmission rate and the detection accuracy. Different beamform-

ing and combining schemes are compared and how the schemes affect the sum-rate is

discussed.
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Chapter 7

CONCLUSIONS

In this dissertation, we study channel estimation in half and full duplex relays, aiming

to provide spectrally efficient training schemes with high performance for FD relays.

The training schemes take full advantages of the FD relaying protocol and take the

RSI channels into account.

The impact of channel estimation on spectral efficiency in half-duplex MIMO

TWR systems is investigated. The trade-off between training and data energy is

optimized in the MIMO TWR scenario. We derive the ratio of training-versus-data

for both the symmetric case and the asymmetric case of the two source powers.

To maximize the spectral efficiency, data time is set to its maximum value since

the achievable rate is a monotonically increasing function of the data time. In the

asymmetric case, we show that the difference of two SNRs is either a concave or

convex function of the training-versus-data ratio which enables the maximization of

the minimum SNR of the two sources via the ratio.

To utilize the inherent spectrally efficient structures of both FD and TWRs, the

efficient and high performance one-block training scheme is proposed to obtain the

CSI in the presence of RSI. An ML estimator solved by the BFGS algorithm is derived

to estimate the cascaded channel, the individual channel as well as the RSI channel

simultaneously. The initialization, complexity and convergence of the algorithm are

also discussed. The two baselines, including the multi-block training scheme with LS

estimator and the cross-correlation method, are proposed for comparison. The CRBs

for the three schemes are derived and analyzed to show how the channel parameters

and transmit powers affect the training performance via Fisher information. We
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show analytically that exploiting the channel structure arising from the RSI channel

increases its Fisher information, which demonstrates the benefit of estimating the

RSI channel.

The FD one-way relay system is considered for fundamental and analytic results

of the effect of RSI on spectral efficiency. We propose an ML channel estimator in

FD relays to estimate the end-to-end channel and the RSI channel at the destination.

The corresponding CRBs are derived in closed form and analyzed by using asymp-

totic properties of Toeplitz matrices. We show that the optimal training sequence is

a sinusoid. To find the frequency, we minimize the CRBs with respect to the cor-

responding training sequence. A practical approximately optimal training sequence

is also proposed. Extensions of our estimation method to frequency selective and

multi-relay case are also considered.

The simultaneously transmitting and sensing problem in an FD cognitive radio

system with MIMO is considered. The probabilities of detection in the presence of

RSI are derived. The sum-rate of PU and SU is proposed as a metric to charac-

terize the trade-off between transmission rate and the detection accuracy. Different

beamforming and combining schemes are compared and how the schemes affect the

sum-rate is discussed.
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We derive the gradients used in the BFGS method in Section 4.2.4. Before that
the following derivatives are needed.

∂µ

∂θx
= Bθ(Xth+ dxr)

∂µ

∂θy
= jBθ(Xth+ dxr) (A.1)

∂C

∂θx
= |d|2σ2

n

(
BθH

H
θ +HθB

H
θ

) ∂C

∂θy
= |d|2σ2

n

(
jBθH

H
θ − jHθB

H
θ

)
. (A.2)

where Bθ = ∂Hθ

∂θ
is also an N × N Toeplitz matrix given by the first column

[0, 1, 2θ, · · · , (L− 1)θL−2, 0, · · · , 0]T and the first row [0, 0, · · · , 0].
The gradients for both real and imaginary part are needed as inputs of the algo-

rithm. The gradients of px and py are

∇fpx =
∂f

∂px
= −2Re

[
(y1 − µ)HC−1Hθx1

]
(A.3)

∇fpy =
∂f

∂py
= −2Re

[
(y1 − µ)HC−1jHθx1

]
(A.4)

The derivatives of q are similar to those of p only by replacing x1 with x2 in (A.3).
The derivatives with respect to h11 are

∇fh11x =
∂f

∂h11x

= −2Re
[
(y1 − µ)HC−1Jux1

]
(A.5)

∇fh11y =
∂f
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= −2Re
[
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]
(A.6)

For d, it’s involved in both µ and C, thus
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and θ is similar to d for which we need the derivatives of µ and C with respect with
it. Using (A.1) and (A.2), we have
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For the one-block training scheme, elements for the FIM can be obtained by
(4.31). We derive all the Γmn, m 6= n here. For different (m,n), they are given by
the following.

Γ12 =xH1 H
H
θ C

−1Hθx2, Γ13 =xH1 H
H
θ C

−1Bθ(px1 + qx2 + dxr),

Γ14 =xH1 H
H
θ C

−1Hθxr, Γ15 =xH1 H
H
θ C

−1Jux1,

Γ23 =xH2 H
H
θ C

−1Bθ(px1 + qx2 + dxr), Γ24 =xH2 H
H
θ C

−1Hθxr,

Γ25 =xH2 H
H
θ C
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θ C
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+d∗|d|2σ4
ntr
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H
θ C

−1HθH
H
θ

)
(B.1)

and Γmn = Γ∗nm.
We also derive the CRBs for the multi-block training scheme. Put (4.23) to (4.27)

together to form a new received signal vector as

yM =
[
yTP2 y

T
P4 y

T
P3 y

T
P1

]T
(B.2)

The mean of yM is given by

µM =
[
µTh µ

T
θ µ

T
hr1
µTh11

]T
(B.3)

where µh = px1t + qx2t, µθ = hr1θxrt, µhr1 = hr1xrt, and µh11 = h11x1t.
The covariance matrix of yM is

CM =


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where ⊗ denotes the Kronecker product. µM is a 4N×1 vector and CM is a 4N×4N
diagonal matrix due to the uncorrelated noise in yM.

Define ξ(M) = [p q θ hr1 h11]T . The (m,n)th element of the FIM is given by
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Only the diagonal elements, Γ
(M)
12 , and Γ

(M)
21 are not zero. Thus the inverse of the

FIM can be obtained by finding the inverse of a partitioned matrix. Define D =
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21 . The CRBs are given by the diagonal elements of inverse of the

FIM, thus
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In (5.5), h and θ are parameters of interest and d is the nuisance parameter. The
likelihood function p(y|h, θ) is obtained through integrating p(y|h, θ, d) with respect
to d [93],

p(y|h, θ) =

∫
p(y|h, θ, d)p(d)dd. (C.1)

Since p(y|h, θ, d) and p(d) are Gaussian distributed, it can be shown that the distri-
bution of p(y|h, θ) is also Gaussian. Denoting the mean of y given h and θ to be
E[y|h, θ] and the covariance matrix as V [y|h, θ]. It can be shown that

E[y|h, θ] = Ed[Ey[y|h, θ, d]] (C.2)

V [y|h, θ] = Vd[Ey[y|h, θ, d]] + Ed[Vy[y|h, θ, d]]. (C.3)

Since we know p(y|h, θ, d) is a Gaussian distribution with mean µ and co-variance
matrix C, then it is straight forward to get

Ey[y|h, θ, d] = hHθ, Vy[y|h, θ, d] = |d|2σ2
rHθH

H
θ + σ2

dIN . (C.4)

The distribution of p(d) is also Gaussian with zero mean and variance α2, thus

Ed[Ey[y|h, θ, d]] = Ed[hHθ] = hHθ (C.5)

Vd[Ey[y|h, θ, d]] = Vd[hHθ] = 0N×N (C.6)

Ed[Vy[y|h, θ, d]] = Ed[|d|2σ2
rHθH

H
θ + σ2

dIN ] = α2σ2
rHθH

H
θ + σ2

dIN . (C.7)

Therefore, we can obtain the mean and covariance matrix of the Gaussian distribution
p(y|h, θ),

µ = E[y|h, θ] = hHθ (C.8)

C = V [y|h, θ] = α2σ2
rHθH

H
θ + σ2

dIN . (C.9)
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Now we derive the gradients of f with respect to θx and θy which are used in
the BFGS algorithm. The gradients for both real and imaginary parts are needed
as inputs of the algorithm. For θ, we first obtain the derivative of Hθ with respect
to θ, denoted as Bθ, which is also an N × N Toeplitz matrix with first column
[0, 1, 2θ, · · · , (L− 1)θL−2, 0, · · · , 0]T and first row 0TN×1.

Both C and µ contain θ, therefore there are three terms in its gradient. We have

∇fθx = tr
(
α2|d|2σ2

nC
−1(BθH

H
θ +HθB

H
θ )
)
− 2Re

[
(y − µ)HC−1hBθx

]
− α2|d|2σ2

n(y − µ)HC−1(BθH
H
θ +HθB

H
θ )C−1(y − µ), (D.1)

∇fθy = tr
(
jα2|d|2σ2

nC
−1(BθH

H
θ −HθB

H
θ )
)
− 2Re

[
(y − µ)HC−1jhBθx

]
− jα2|d|2σ2

n(y − µ)HC−1(BθH
H
θ −HθB

H
θ )C−1(y − µ). (D.2)
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To solve G′(x) = 0 we only need to solve the numerator of G′(x) equals to zero
which is given by

|h|2 2x2 + αx

θ2
R

+ |h|2x
2 + αx

8|θ|4
· −
√

∆ +m+m|θ|2 −mx√
∆

(1− |θ|2 +m
√

∆− x)

− |h|2 2α2 + 3x

16|θ|4
(1− |θ|2 +m

√
∆− x)2 = 0. (E.1)

where m = θI/θR and ∆ = 4|θ|2− (1 + |θ|2−x)2. |h|2 can be canceled from (E.1) and

thus the solution is not related to h. Move all the terms containing
√

∆ to the left
hand side and the others to the right hand side, and take a square of both sides, we
have

LHS = ∆
[x(α + x)(−1 + |θ|2 +m2 +m2|θ|2 + x−m2x)

|θ|4

+
m(2α2 + 3x)(−1 + |θ|2 + x)

|θ|4
+
αx+ 2x2

R2

]2

,

RHS =
[m(αx+ 2x2)[(1− x)2 − |θ|4 −∆]− (α2 + 3

2
x)[(1− |θ|2 − x)2 +m∆]

|θ|4
]2

.

(E.2)

Simplify both sides, we have

LHS = (−x2 + d1x+ d2)(e2x
3 + e3x

2 + e4x+ e5)2,

RHS =
(
f1x

4 + f2x
3 + f3x

2 + f4x+ f5

)2
, (E.3)

where

d1 = 2(1 + |θ|2), d2 = −(1− |θ|2)2,

e1 = −1 + |θ|2 +m2 +m2|θ|2, e2 = 1 + 3m−m2,

e3 = α− αm2 + e1 − 2α2m+
2|θ|4

R2
, e4 = αe1 + 3m|θ|3 − 3m+

α|θ|4

R2
,

e5 = 2α2m(|θ|2 − 1), (E.4)

and

f1 = 2m, f2 =
3

2
− 3

2
m2 − 4m− 2|θ|2m+ 2αm,

f3 = 2m− 2|θ|2m− 4αm− 2α|θ|2m+ α2 − α2m2 + 3m2 + 3m2|θ|2 + 3 + 3|θ|2,

f4 = 2αm− 2α|θ|2m+
3

2
(1−m2)(1− |θ|2)2 + 2α(m2 +m2|θ|2 − 1 + |θ|2),

f5 = α2(1−m2)(1− |θ|2)2. (E.5)
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Finally, the coefficients are

x8 : f 2
1 + e2

2,

x7 : 2f1f2 − d1e
2
2 + 2e2e3,

x6 : (f 2
2 + 2f1f3)− (d1e

2
2 + 2d1e2e3 − e2

3 − 2e2e4),

x5 : (2f2f3 + 2f1f4)− (2d2e2e3 + d1e
2
3 + 2d1e2e4 − 2e3e4 − 2e2e5),

x4 : (f 2
3 + 2f2f4 + 2f1f5)− (d2e

2
3 + 2d2e2e4 + 2d1e3e4 − e2

4 + 2e2e5 − 2e3e5),

x3 : (2f3f4 + 2f2f5)− (2d2e3e4 + d1e
2
4 + 2d2e2e5 + 2d1e3e5 − 2e4e5),

x2 : (f 2
4 + 2f3f5)− (d2e

2
4 + 2d2e3e5 + 2d2e4e5 − e2

5),

x : 2f4f5 − (2d2e4e5 + d1e
2
5),

x0 : f 2
5 − d2e

2
5. (E.6)
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