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ABSTRACT

When looking at drawings of graphs, questions about graph density, community

structures, local clustering and other graph properties may be of critical importance

for analysis. While graph layout algorithms have focused on minimizing edge crossing,

symmetry, and other such layout properties, there is not much known about how these

algorithms relate to a user’s ability to perceive graph properties for a given graph

layout. This study applies previously established methodologies for perceptual analysis

to identify which graph drawing layout will help the user best perceive a particular

graph property. A large scale (n = 588) crowdsourced experiment is conducted to

investigate whether the perception of two graph properties (graph density and average

local clustering coefficient) can be modeled using Weber’s law. Three graph layout

algorithms from three representative classes (Force Directed - FD, Circular, and

Multi-Dimensional Scaling - MDS) are studied, and the results of this experiment

establish the precision of judgment for these graph layouts and properties. The findings

demonstrate that the perception of graph density can be modeled with Weber’s law.

Furthermore, the perception of the average clustering coefficient can be modeled as an

inverse of Weber’s law, and the MDS layout showed a significantly different precision

of judgment than the FD layout.
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Chapter 1

INTRODUCTION

Given a particular graph, there are multiple graph drawing algorithms for producing

a graph visualization. These algorithms remove edge crossings, depict symmetric

substructures, and organize vertices and edges according to various heuristics and

optimization techniques. Each graph drawing algorithm attempts to improve a

user’s ability to interpret a graph [58] through its own optimization criteria and

computational method. Experiments that compare the performance of different graph

layout algorithms typically consider the visual properties of the graph drawings (e.g.

vertex size [51]), the extent to which common aesthetics are emphasized [59], or

their computational complexity. However, graphs can be characterized in many

different quantitative ways, not only the number of vertices and edges, but also the

structure of the graph (e.g., density, diameter, clustering coefficient, degree distribution

etc.). To date, most comparisons between graph layout algorithms have focused on

theoretical properties such as the computational complexity of an algorithm. For

example, Battista et al. [22] compared the running time of 4 orthogonal layout

algorithms, Himsolt [38] compared the runtimes of 10 layout algorithms present in the

GraphEd system [39](a widely used graph editor), and Hachul et al. [34] compared

running time of 6 computationally efficient graph layout algorithms on a wide variety

of graphs(consisting of both artificial and real-world graphs). But little work has

explored the perception of graph properties with respect to a graph layout.

This thesis presents the results of two experiments that focus on comparing graph

layout algorithms with respect to the extent to which they support the perception
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of underlying properties of the graph. The hypothesis is that some graph layout

algorithms may make it easier for a viewer to discern graph properties than others.

Following the example of perception studies in psychology and the work of Rensink

et al. [62], we focus on measuring the just noticeable difference (JND) – that is, the

smallest difference between two property values that can be perceived by humans –

for two graph properties across three different graph layout algorithms.

Rensink et al. [62] used a JND approach for the perception of correlation in

scatterplots, showing that such perception can be modeled using Weber’s law – that

is, the JND between the perception of a given correlation (the target stimulus) and a

different one is a constant ratio of the original target stimulus. Harrison et al. [36]

used this JND methodology as a means of comparing nine different ways in which

correlation can be visualized (e.g. scatterplot, parallel coordinates, donut charts).

Subsequent work by Kay and Heer [46] revisited the data collected by Harrison et

al. [36] and enhanced the analysis with log transformation and censored regression to

inclusively embrace all individual data points. This same methodology offers a means

for comparing graph layout algorithms with respect to perception of graph properties,

providing a quantifiable means of determining which algorithms outperform others

with respect to perception of important properties. For example, if a communication

network is to be drawn so that people can easily discern the density of the network –

which is the best layout algorithm to use?

This thesis applies the experimental methodology of Rensink et al. [62] to determine

if the perception of graph properties can also be modeled following Weber’s law. As

in Harrison et al. [36], this thesis adopts this methodology for a crowdsourcing

environment on Amazon’s Mechanical Turk, and applies it to two graph properties

(graph density and average local clustering coefficient) across three different graph

2



layout algorithms (Force Directed - FD [41], Circular [24], and Multi-Dimensinal

Scaling - MDS [7]). Thus, this thesis is able to:

• Demonstrate that the perception of graph properties can (sometimes) be modeled

using Weber’s law;

• Provide a means for comparing the effectiveness of different graph layouts for

perceiving graph properties.

This work is important because graph drawings are increasingly being used in a

variety of non-research areas (e.g., fraud detection, criminal networks, marketing) and

depicting them in a way that makes the salient properties easy to perceive will make

them more useful for the appropriate domain task. All stimuli and responses used in

this experiment have been included in the appendix.
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Chapter 2

RELATED WORK

This section first reviews various classes of graph layout algorithms like Force-

Directed layouts, distance based layouts, orthogonal layouts and tree drawing layouts.

Then the related work in comparisons of different graph layouts has been presented.

Subsequently, this section reviews various graph properties, graph mining techniques,

and several graph visualization systems. Finally, the studies that use Just Noticeable

Difference for analyzing perception of properties are shown.

2.1 Graph Layout Algorithms

Research on the best way to automatically visualize relational data with node-link

diagrams has been active for several decades. The early primer by Di Battista et al. [23]

provides a good overview of the field of graph layout algorithms, and researchers in this

area continue to develop new approaches and improve on existing ones. More recent

are comprehensive surveys of the area by Gibson et al. [31] and von Landesberger et

al. [71]. Gibson et al. [31], review many graph drawing techniques developed over the

past 35 years. These include force-directed, dimension-reduction and computationally

improved multi-level graph drawing methods. Gibson et al. offers comparisons

between and within layouts of each classes. They also speculate that the force-directed

layout algorithms could be redesigned to place more emphasis in showing a particular

structural feature or property of the network. For instance, LinLog, ForceAtlas, and

OpenOrd layouts are already designed to aid the display of clustering in the network.
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Von Landesberger et al. [71], in their review of graph layouts, focus on techniques

used to specifically visualize large graphs. Starting with node-link and space filling

techniques(treemap, sunburst[65], icicle plots[68] etc) to draw trees, they move on to

the node-link based and the matrix-based representations for both static and dynamic

graphs. They also review various user interaction techniques used for network visual

analysis like graphical fisheye views [63] and guided panning(navigation along edges

of selected node) [54].

Graph layout algorithms fall into different categories. Force-Directed algo-

rithms [48] are based on a physical springs model and attempt to achieve minimum

energy. Although, direct application of Force-Directed layout is computationally ex-

pensive for large graphs(O(|V |2)), Yifan Hu [41] proposed a multi-level force-directed

algorithm for drawing large graphs efficiently. This layout algorithm consists of a multi-

level subroutine that coarsens a large graph into a much smaller graph(G0, G1..., Gk

where Gi+1 is coarser than Gi) for faster run-time. Then a Force-Directed algorithm

is applied using a Barnes and Hut [3] octree approximation that further reduces the

computational cost. In this technique, when calculating the repulsive force on a vertex

u exerted from vertices that are far away, the group of these far-away vertices can

be treated as one supernode(placed at their center of mass), and the overall force

can be approximated as the force between the vertex u and the supernode. Then the

output of the applying FD-algorithm on the coarsest graph is prolongated back to its

previous state(Gk−1). Prolongation typically involves putting nodes that merged into

vertex u in Gi in random positions near u in Gi−1. Refinement follows prolongation

where the FD-algorithm is again applied to Gk−1(however less number of iterations

are needed as the network already has near optimal energy). This prolongation and

refinement continues in similar until G0 is reached.
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FD-algorithms have been widely used for graph visualization. However, Brandes

et al. [7] suggest the use of distance-based graph drawing algorithms when the

requirement of visualization is to depict the graph-theoretic distances properly. Multi-

dimensional scaling(MDS) algorithms are a popular class of distance-based graph

layout algorithm. They project high-dimensional data onto low dimensional space,

typically preserving the graph-theoretic distance between pairs of vertices [13]. These

techniques usually use majorization to minimize the involved objective function. The

principle of majorization given by Leeuw et al. [19] is to find a surrogate function

that majorizes a particular objective function that is hard to minimize directly. Let

the function to be minimized be f(x). The majorization principle involves finding

a simpler function g(x, y) such that for all x, g(x, y) ≥ f(x) where y is a constant

called supporting point. However, it is required that the surrogate function touches

the curve of f(x) at y. Then clearly, any value of x say x∗ that minimizes g(x, y) will

also minimize f(x). This process is repeated with the next surrogate function g(x, y)

but now y = x∗. The process converges when f(x)− f(x∗) is less than a threshold.

With respect to network, majorization technique is used to optimize the stress in the

network, σ(X) defined as
∑

i<j wij(δij − dij(X))2 where δij is the geodesic distance

between vertices i and j, wij is the weight of the edge, and dij is the distance between

them in the graph drawing.

Besides FD and distance-based graph layouts, other popular classes of layout

algorithms have been developed like the orthogonal layout methods that insists on

keeping all edges as horizontal or vertical [25] and circular layout methods that place all

vertices on the circumference of a circle in a careful ordering to satisfy an aesthetic like

minimizing crossings. Dougrusoz et. al. [24] proposes an implementation of circular

layout that emphasizes clusters within graph. The algorithm given by Dougrusoz et.
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Figure 1: Sample drawing produced by the circular layout [24]

al. [24] first partitions the nodes into clusters. Each cluster is then placed on a circle

of some computed radius. A virtual cluster is also formed that contains one node from

each cluster. The nodes within the virtual cluster are connected if their corresponding

clusters also have interconnections. Finally, all the clusters undergo edge crossings

minimization starting from first, the virtual cluster, then the main site cluster(these

are clusters whose node remain in the virtual cluster after each node of degree one is

removed iteratively), and then finally all the remaining clusters. Figure 1 shows one

of the graphs produced by the layout algorithm.

Other graph layout techniques have also been proposed to facilitate fast calculation

of large networks and human-centered designs. Galán and Mengshoel [30] proposed

a Neighborhood Beautification(NB) layout technique which has each node passing

messages to its neighbors to adjust their position in each NB iteration. Each NB iter-

ation consists of three message passing phases which conform the following aesthetics:

minimize edge crossings, maximize edge length uniformity, and maximize angular

resolution(the angles between any pair of edges from a node u to its consecutive

neighbors is set to 360°/degree(u)). An advantage over Force-Directed algorithms is

that unlike them, the NB technique does not have the issue of getting stuck in local

7



minima for large graphs. Also, for most of the tested graphs by Galán and Mengshoel

[30], the NB technique needed a shorter runtime.

FD and distance-based layouts, focus on minimizing the energy or stress of the

graph system rather than working on pleasing important aesthetics for graph readability

like minimizing edge-crossings [58]. However, recently, Kieffer et al. [47] proposed

an algorithm that was designed specifically to meet 9 aesthetic criteria. Keiffer et al.

suggest that no algorithm produces layout of quality comparable to those made by

humans. Thus, they first performed a user study where participants were asked to

manually improve layouts of 8 graphs. The initial layout that was given contained a

lot of edge crossings and bends. Then, a tournament style voting was used to rank the

created layouts for each graph. Analyzing the correlation between various aesthetic

value and rank of layouts, a set of 9 final aesthetics was given that included previously

known aesthetics like minimizing stress, bends, crossings and two novel aesthetics:

placing tress outside the layout and creating aesthetic bend points that empasize

symmetry and places edges on opposite ends of nodes with degree 2. Following these

9 aesthetics, Keiffer et al. [47] propose the HOLA algorithm that has the following 4

stages:

1. Toplogical decomposition: Leaves are removed from the graph until none remain.

The graph that is left is called the core graph.

2. Layout of the core: First, the core is laid out with a stress-minimizing algorithm

and the overlap between nodes is removed. This is followed by orthogonalization

where nodes are visited by decreasing degree and their neighbors are placed such

that their is atmost one neighbor in each cardinal compass direction(NORTH,

SOUTH etc). Then the chains in the graphs are visited and bends are introduced

to minimize stress and maximize symmetry.
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3. Tree layout and placement: Each tree is added back to the graph and laid out

with symmetric layout. The direction of each tree is kept at one of the 4 cardinal

or 4 ordinal directions(NORTHWEST, SOUTHEAST etc) such that their is

minimum increase in stress.

4. Opportunistic improvement: This final steps tweaks the layout such that no

obvious small change would improve it further. It includes, for example, a step

where the layout aligns nearby nodes that were previously only almost aligned.

A final study showed that HOLA achieves better task performance than the best

available orthogonal layout algorithm.

There are also specific algorithms for trees [61] and planar graphs [56]. Reingold

et. al. [61] proposed an algorithm for drawing trees in which the drawings were

aesthetically pleasing(nodes at same level were along a straight line, the lines through

each levels were parallel and the parent node was centered over its left and right sons

that were positioned necessarily to its left and right respectively). The idea was to

visit each node in a postorder-traversal. At each node, the left and right subtrees

were first superimposed at the root and then moved apart until their was a minimum

separation between the nodes present at the closest contours of the two subtress.

This thesis uses three layout algorithms commonly implemented across a variety of

different graph drawing systems, and each algorithm is an example of a different cate-

gory. The first one is a multi-level force-directed algorithm by Yifan Hu [41], available

as sfdp (scalable force-directed placement) in GraphViz [26] and as YifanHu in Gephi [4].

The implementation provided by Gephi was used. The second algorithm is one of

the most effective dimensionality reduction algorithms, as shown in an experimental

study by Brandes and Pich [7]. This algorithm applies classical multi-dimensional

9



scaling, followed by stress majorization. This thesis uses the implementation provided

in the MDSJ library in Gephi(https://gephi.org/plugins/#/plugin/mdslayout).

The third algorithm is a circular layout. It places all vertices evenly spaced along a

circle and attempts to reduce the number of crossings. Again, Gephi’s implementation

of circular layout was used. The first two algorithms chosen are representative of

the major methods (force-directed and MDS respectively), while the third algorithm

(circular) is a good “generic” option provided by most graph drawing systems. Other

algorithms and layout categories should be explored in the future; however, this thesis

focuses on these algorithms due to their ubiquity in freely available graph drawing

systems.

2.2 Graph Layout Comparisons

Most of the work that compares different graph layout algorithms focus on com-

paring their computation complexity [23] or how much they conform to commonly

known graph aesthetics [59]. Helen et al. [58] first studied the importance of different

aesthetic qualities in graph drawings through human experiments. They looked at

five aesthetics: minimizing edge bends, minimizing edge crossings, maximizing the

minimum angles between outgoing edges, maximizing orthogonality and maximizing

the network symmetry. Human experiments were conducted to see which of the aes-

thetics influenced human understanding of graphs the most. In the experiment, each

participant was shown 2 graph drawings for each aesthetic(the drawing represented

a strong or weak presence of the aesthetic). For each drawing, the participant was

asked a few questions(like length of shortest path between two given nodes) and the

number of errors made and the time taken to answer was noted. Statistical tests

10
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found that minimizing edge crossings was most significant to reduce both errors and

time, whereas maximizing symmetry was only significant for time and minimizing

bends was only significant for errors.

This work was followed by Helen et al. [59] where they compared 8 automatic graph

layout algorithms with respect to human performance. Although, the layouts were

not directly compared by the extent to which they conform to aesthetics, the effects of

aesthetics were assumed to be present since different layouts satisfy different aesthetics.

Similar to the work by Helen et al. [58], the participant was shown 8 graph drawings

corresponding to 8 different graph layouts and asked graph-based questions while

their error and time to respond was noted. Tukey’s pairwise comparison found that

Seisenberger [64] drawing produced significantly more errors than Fructherman and

Reingold [29], force-directed incremental algorithm [69], and Kamadi and Kawai [44]

algorithm. Another study for edge crossings aesthetic was conducted by Stephen et.

al. [49], more recently, in which the significance of edge crossings on task performance

was studied for both small and large graphs with varying edge densities. Although two

layout algorithms were used(FDP and MDS), their effect on task performance was not

analyzed separately. A correlation between graph aesthetics and the stress(objective

function minimized by MDS algorithm) in the two layout algorithms was also computed

for 9 graphs to find that only crossings and energy showed some positive correlation.

The impact of the aesthetic of crossing angles on the task of finding the length

of shortest path between two nodes was studied by Huang et al. [42]. To nullify

the impact of confounding aesthetic factors a study was conducted with purposely-

generated graphs that only differed in the angles edge crossings made with the path

whose length was to determined(16 sets of drawings were made, each set had 7 drawings

of same graph with different crossing angles: 10°, 15°, 20°, 30°, 50°, 70°, or 90°). The
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participant was shown 128 drawings and asked to compute path length. Statistically,

it was found that crossing angles did affect response time, and that as crossing angle

increase, the response time decreased. Further, Huang et al. [42] conducted a similar

study with real-world graphs to show that the overall minimum and average crossing

angle in the graph has significant impact on response time. Finally, a study for

direct comparison of MDS variants(classical scaling, distance scaling, pivot MDS, and

landmark MDS) and Force-directed layout was performed by Brandes et al. [7]. The

study showed that for graph drawings that represented graph-theoretic distance, MDS

layouts were better than FD layout for graphs whose graph-theoretic distance is well

representable in low dimension. However they fail to create good quality drawings for

small world and scale free graphs. Moreover, it was found that majorization process

led to lowest stress values when initialized with output of classical scaling. The final

stress values gets progressively worse when starting from the output of fm3 [33], grip

[66], hde [35] to random initialization. Finally, PivotMDS [8] and LandmarkMDS [21]

were tested with varying strategies in picking up the pivot points to find that in most

cases, PivotMDS performed better with maxmin strategy in which the next pivot

point is chosen such that it is furthest from current pivot points.

This thesis directly compares different graph layouts with respect to perception of

properties. No control over aesthetics was made when generating the graph layouts.

2.3 Graph Properties, Graph Mining and Graph Visualization Systems

The structure of any graph can be characterized by a set of graph-theoretic

properties, the most trivial being order (number of vertices) and size (number of

edges). These properties describe the nature of a graph, independent of the way it
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is drawn – other examples include density (the proportion of the number of edges

to the maximum possible), diameter (the longest shortest path between pairs of

vertices), number of connected components (subgraphs with a path between any pair

of vertices), vertex degree distribution (represented as a histogram), and transitivity

(the extent to which vertices are clustered together by edges). The focus of my thesis

was on two graph properties: the graph density(GD) and the average local clustering

coefficient(ALCC). The local clustering coefficient of a vertex is given as the ratio

of the number of edges between its neighbors to the total number of possible edges

between them. Its average value over all the vertices in the network is defined as the

network’s average local clustering coefficient.

Graph mining (as a type of structured data mining) is the activity of identifying

patterns in graphs. Rehman et al. provide a comprehensive review of graph mining

approaches [60]. Various approaches for graph classification exists like Callut et. al.

[10] proposed a technique based on D-Walks that can be used to find the unknown

classes of nodes given some labeled nodes in the graph. The technique defines D-Walks

as a random walk that starts and ends with node having some label C such that no

other node in the walk is labeled C. Given all such walks for class C, the betweenness

B(q, C) is the expected number of times the node q is reached during the walks. Then

the label of q is simply the class for which betweenness is maximum given same prior

probability. Graph clustering is another important graph mining task where vertices

of graph are grouped in such a way that there are many edges withing clusters as

compared to number of edges between clusters. Blondel et al. [5] presented a heuristic

method based on modularity optimization that can extract the community structure

of large graphs in short run-time. The quality of network partitioning is quantified by

a scalar value called modularity(higher value represent better partitioning). Initially,
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Figure 2: Transitivity facet for the largest component of a co-authorship graph [43]

every node is assigned a different community. Subsequently, the method undergoes

iterations consisting of two phases: the first phase consists of traversing every node

and assigning it the community of its neighbor that increases the modularity the

most(the community to which the node belongs remains unchanged in the case of

no increase in modularity), while the second phase merges nodes belonging to the

same community into a single node. Iterations stop when no change in modularity is

observed.

Chakrabarti and Faloutsos address the issue of generating synthetic graphs that

match the patterns within real-world (especially large) graphs [12]. In particular, they

emphasize the importance of being able to say that two different graphs are similar

to each other with respect to given properties. The PEGASUS system handles very

large graphs (with “billions” of vertices), to find connected components, diameter, and

vertex proximities [45].

Visualization is commonly used for depicting the values of graph properties,

although this is not always using the common node-link diagram. However, the

methodology used in my thesis is appropriate for comparing visualizations of any

type(not just node-link diagram). Kairam et al. describe Graph-Prism [43], which

visualizes several graph properties using stacked histograms and color encoding,
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including connectivity, transitivity, and density. Figure 2 shows one of the B−Matrix

facets that visualizes transitivity(fraction of closed triads to all triads in a graph)

patterns for the largest component of a co-authorship graph. The color intensity of

an element Bl,k of the matrix represents the percentage of nodes with transitivity k

when considering the l-level subgraphs formed around each node. The l-level subgraph

of a node t includes nodes that are l hopes away from t. The facets were augmented

by a node-link diagram having linked selection with the facets. Their user study

asked participants to choose a synthetic graph (from a set of ten, all represented in

the GraphPrism diagram format) that best matched the summary statistics of a real

graph.

Visual analysis of large graphs represented by adjacency matrices is considered by

van Ham et al. [70]. They propose a technique for aggregating adjacency matrices of

large graphs while still maintaining important connectivity information within the

network. The method uses some predefined hierarchy based on node attributes(like

position within organization or geographic information) for aggregation. At each step

of aggregation, the vertices at the lowest level of the hierarchy are eliminated such that

if two connected vertices have different ascendants(one level up) in the hierarchy, then

the edge count between the ascendants is increased by one in the aggregated matrix.

In addition to the connectivity measure, van Ham et al. define two more measures

that help users identify potentially interesting patterns in the network: asymmetry

defined as CC(X, Y )/CC(Y,X) where CC(X, Y ) denotes the edge count from node

X to Y in the aggregated matrix and deviation from expected which measures the

difference between the observed edge count between two nodes and the expected edge

count between them if the edges had been distributed randomly in the network.

The need for examining multiple networks at once, for different graph properties,
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Figure 3: Manynets [28] visualizing a time-sliced cell-phone network. Each row
represents networks of calls in a 5-hour period

comes in many instances, like viewing temporal slices of evolving social networks,

distribution of “motifs” in biological network, viewing clusters within networks etc

[28]. The tabular interactive tool ManyNets [28] can visualize a large number (“up to

several thousand”) of graphs, allowing visual comparison of graphs based on properties.

An example visualization is shown in Figure 3, where each row represents a single

network. The columns contain either user-defined(domain dependent properties like

Node ID) or default network properties(edge count, graph density etc). The table

is augmented with node-link diagram generated via SocialAction [57]. Each cell

with scalar values contain horizontal bars that aid in comparison between graphs.

Properties with distribution like node-degree are summarized with histograms within

cells. It is possible to start from a single network and subsequently break it down into
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(a) Uniform layout (b) Spectral layout (c) Layered layout

Figure 4: Graph layouts provided in Visone [9]

more and more smaller networks to compare network properties at different scales.

Although, only a single node-link diagram is shown at a given time in ManyNets, it is

evident that the system would benefit hugely if the user was provided with multiple

node-link diagram that made their graph properties evident by the layout used. In

the case study presented by Freire et al. [28], the network analyst studied a trust

network where each edge was labeled by the trust between source and target node.

Deep insights were found after splitting the network like the pairs and triads within

the largest component had lower trust values among on average than the ones found

in other isolated components.

Unlike GraphPrism and ManyNets, Visone [9], on the other hand, solely depends
on node-link diagram. Visone tries to represent graph-theoretic indices used in Social
Network Analysis such as degree, betweenness, closeness, eccentricity, pagerank etc.
The value of these indices for each node is conveyed via visual cues in node-link
diagram like via position or size of the node while various graph aesthetics are also
followed to improve readability of graphs. Visone provides four different layout options:
uniform layout(Figure 4a) places every pair of vertices such that their distance is in
proportion to their geodesic graph distance giving us information about properties
like average path length and diameter, spectral layout(Figure 4b) that enables display
of symmetry in graphs, layered layout(Figure 4c) where the node’s Y -coordinate
represents its ranked index value, while the X-coordinate is varied to minimize edge
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Figure 5: Initial view of the network where each node is shown and colored based
on its betweenness centrality(color ranges from green to red representing low to high
betweenness value) [57]

crossings and finally, radial layout that try to achieve a uniform distribution of nodes
with minimum edge crossings.

Another tool that uses node-link diagram is SocialAction [57] in which visualization

is integrated cohesively with graph statistics. While the visualization simplifies

statistical results and provides patterns’ discovery, statistics helps in the overall

comprehension of a large network. Initially(Figure 5), the user gets the overview of

the whole network statistically(being shown measures like density, diameter, average

degree etc) and visually(by a force-directed layout of the graph). Moreover, each

node can be colored with varying intensity from green to black representing a selected

statistic’s value for the node. Filtering the network is possible by eliminating nodes

whose statistic’s value does not fall in a given range(Figure 6) which further reveals
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Figure 6: The network is filtered showing only those nodes whose betweenness centrality
falls within user-specified range [57]

deeper insights on the network. For example, one of the case studies performed using

SocialAction involving senatorial voting patterns revealed that when edges whose

weights was less than 180 were removed, where weight represented how often two

senators voted together, a clear partisanship could be observed(see figure 7 where blue

and red nodes represent Democratic and Republican senators respectively).

Various tools like Gephi [4], GraphViz [26], NodeXL etc are also worth mentioning

as they provide several graph layout options to choose from for visualizing graphs. In

addition, these tools have the feature to encode attribute information about nodes and

edges via their color or size. Gephi by default provides 6 graph layouts(and more than

10 layouts as plugins) including Frutherman-Reingold, Yifan Hu, OpenOrd etc. It also

provides options like zooming and panning over displayed graph, filtering out nodes
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Figure 7: The social network of the U.S. Senator voting patterns analyzed during a
case study evaluating SocialAction [57]

and edges based on attributes, and resizing or coloring nodes based on attribute values.

GraphViz similarly gives many layout options like dot(layered hierarchical graph

drawing), neato(equivalent to MDS layout), fdp(equivalent to Frutherman-Reingold

layout), sfdp(multi-scale fdp for drawing large graphs fast) etc.

Finally, Vizter [37] also produces nodelink drawings of graphs, in this case iden-

tifying and highlighting communities in social networks on demand. Vizter was

actually designed for the end-users of social networking systems to enable discovery

and awareness of their on-line community. It uses a FD spring embedding layout for

the node-link diagram, where nodes represent members of the system and the links

represent their friendship. An egocentric view of the network is shown with the individ-

ual’s node in the center and his immediate friends around the node. Users can expand

any node to display its immediate friends as well. Although, the expanded node’s

position remains fixed, rest of the nodes move via FD-layout. Moreover, the layout is

computed in real-time(through Barnes-Hut algorithm and numerical integration), so
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the user has the option of moving a node, while the rest of nodes adjust their positions

accordingly. Several other interaction and visualization features are provided to aid

discovery including search by attribute value(e.g. age), X-Ray mode to show a selected

attribute’s value for each node via discriminating node color, curved borders(blobs)

around communities detected via Newman’s community detection algorithm [55] etc.

This prior work reinforces the need for properties of graphs to be made evident

to users – either through a supplementary visualization (as in ManyNets [28]), or as

part of the node-line depiction (as in Visone [9]). Being able to compare two graphs

according to their properties is particularly important when synthetic graphs are to be

used in place of larger real-world ones [12]. Commonly, no studies have considered this

question from an empirical human perception perspective. Specifically, can humans

detect differences in the properties of graphs when depicted as graph drawings and are

there particular layout algorithms that best support the visual perception of graph

properties?

2.4 Perception of Properties: Just Noticeable Difference

Experiments in the psychology of perception use the “Just Noticeable Difference”

(JND) as a means of determining the minimum distinguishable property difference

between two stimuli [67]. Such experiments ask participants to indicate which of the

two stimuli has a greater value of a given measurable property (e.g., which square is

greener). The JND is the value difference between two stimuli that is noticed at least

50% of the time by participants [50].

The method of constant stimuli is commonly used to get the Just Noticeable

Difference. This method involves showing the participants two stimuli with different
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values several times and asking them which stimulus has the larger value. One of the

stimuli, called the constant stimuli, has a fixed value throughout the conducted trials

while the other stimuli, called the comparison stimuli, varies in its value. Now, let

Xt be the value of comparison stimuli that is correctly selected to be larger than the

constant stimuli in t% of the trials(that involved the comparison stimuli). The JND is

then computed as the value (X75−X25)/2 [11]. The JND experimental method can be

applied to any type of perception. For example, Goodfellow [32] studied the perception

of sound, vision and touch. For each of them, the participants were presented with

the stimuli three times in each trial. The first two stimulus were presented one second

apart. The time interval between the second and last stimuli was initially kept large

and steadily decreased until participant reported that the two time intervals were

equal and then further decreased until participant again noticed a difference. Wilson

et al. [73] studied thermal perception. The participants were initially kept at a neutral

temperature of 30°C. They were then subjected to a warmer or colder stimulus for 10

seconds and asked to indicate as soon as they felt a change in thermal stimulation.

The temperature difference between the skin and stimuli gave the thermal JND. In

their study, JND was calculated for varying rate of change of temperature, stimulus

temperature, direction of change(warm or cool), and body location where stimulus

was applied. Weber’s law states that if P is the property value of a stimulus, the ratio

of the JND to P will be constant.

Weber’ law is a historically important psychological law that relates the perception

of change in a given stimulus with the magnitude of that stimulus. Weber’s law

states that if P is the property value, being perceived, of a stimulus, the ratio of the

JND to P will be constant(k called Weber fraction). The Weber fraction represents

the amount of change needed for perception at a given stimuli. So for two different

22



Figure 8: Geometry of binoc-
ular stereopsis [20]

Figure 9: An illustration of the hypothetical scenario
used in the user study by Camacho et al. [11]

perception model, at same stimulus, the one with higher Weber fraction will require

more change in the stimulus for it to be noticeable. If perception of a property follows

Weber’s law, then it is possible to compare its perception under different conditions.

For example, Harrison et al. [36] compares 9 visualization techniques(scatterplot,

parallel coordinates, stacked area etc) for the perception of correlation between two

variables.

While Weber’s law experiments typically focus on low-level perceptual properties,

they can be applied to any stimuli for measurable properties. De Silva et al. [20], for

example, looked at the 3D stereoscopic vision. The study derives a JND in depth as

seen by a viewer watching a 3D video. A 3D simulation is achieved by a process called

binocular stereopsis(figure 8) in which the eye of the viewer is fixated on a point P at

viewing distance µ. Then the images from point R and Q are casted on eyes’ fovea at

different angles to the image casted by point P that indicates depth information to

the brain. The study calculates a model for JND that depends on µ and the simulated

depth. The common JND calculation methodology is used where two objects are

shown initially at the same depth and then one object’s depth is gradually increased
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or decreased until the observer signals that they sensed a change. Cornelissen et

al. [18] explores visual biases in the perception of body weight. The study shows that

weber’s law is followed in the perception of body weight by humans as it progressively

gets more difficult to discriminate weight difference(i.e. JND in weight increases) as

the weight of the pair of bodies increases. The experiment involved 8 reference(the

fixed stimuli in pair of bodies presented) weight levels. Two different types of stimuli

were used. One type was CGI images(such that factors like height, complexion etc

could be maintained) and the other was real images of people. The study found

that JND was higher for real images. Camacho et al. [11] considered the perception

of viscosity in beverages. The experiment consisted of varying the viscosity of the

liquid while other sensory properties like taste and flavor remain unchanged. The

method of constant stimuli was used with 6 duplicated directional 2-alternative forced

choice(AFC) tests. In each AFC test, the participant had asked to choose the thicker

liquid among the pair of reference and comparison stimuli. Among the 6 AFC tests,

3 had liquid with higher viscosity than the reference liquid while the rest had lower

viscosity. Chowdhury et al. [14] looked at travel time and route taking decisions. In

the Weber’s law experiments that were performed, the participants were given two

hypothetical scenarios(one of them is shown in Figure 9) and asked what was the

minimum travel time(or cost) they wished to save for them to take the route involving

transfer(route through node two in Figure 9). Both scenarios had different comfort

amenities at the interchange. Although experiments showed that the Weber’s law was

not followed, the Weber fraction on average was found to be lower for higher comfort

interchange. This meant that the participants were willing to sacrifice on travel time

and cost savings for more comfort.

In the field of data visualization, the psychophysical methods of calculating JNDs
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can similarly be applied to the perception of various properties of data including

correlation. Several visualization techniques are available such as scatterplots, parallel

coordinates plots, donut charts etc that can be used to communicate properties like

correlation. The perception of correlation in scatterplots by the JND methodology

was studied by Rensink et. al. [62]. All the scatterplots used in the experiment were

300X300 pixels containing 100 normally distributed points along the 45° line. The

participants were tested on both precision(reflecting the discrimination of correlation

between plots) and accuracy(direct estimation of the correlation value). For testing

precision, for each base correlation, the participant was shown two scatterplots side-

by-side and asked to pick the one with higher correlation(one of the scatterplots

showed the base correlation, while the other showed the comparison correlation).

The initial difference between the plots was kept at 0.1. Each such trial followed

the staircase procedure of calculating JND. In the staircase procedure, when the

participant chose the scatterplot correctly, the difference in the correlation of the two

scatterplots was decreased by 0.01 in the next trial to make the task more difficult.

However, when the participant chose incorrectly, then the difference was increased

by 0.03, thus making the task of picking the scatterplot with higher correlation more

easier. For each judgment, the scatterplots were randomly generated at that time.

The experiment first involved conducting at least 24 trials. Then the 24 trials were

divided into 3 consecutive non-overlapping sub-windows of 8 trials each. Subsequently,

the comparison correlation values for the trials were taken and the ratio of average

variance within the sub-windows to the variance of averages of the sub-windows was

calculated. The experiment stopped if this ratio was found to be lower than 0.25.

Otherwise, more trials were conducted until this condition was achieved for the last

24 trials. However, the procedure stopped regardless of the condition, after 50 trials.
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Figure 10: Regression results for multiple visualization techniques for the perception
of correlation [36]. The figure also includes the regression model fit given by Rensink
et al. [62]

After the experiment ends, the average difference between the base and comparison

correlation for the last 24 trials is taken as the JND.

The same experimental methodology was adopted by Harrison et al. [36] where a

large-scale crowd-sourced experiment with 1687 users was conducted to investigate

the perception of correlation in nine common visualizations(scatterplots, parallel

coordinates etc). Harrison et. al. describe that it is possible to compare the perception

of correlation between different visualizations if they all follow Weber’s law. The

Weber model also provides a baseline using which the effect of other design elements

like point color, brightness, size etc can be studied. The experiment, similar to the

one followed by Rensink et al. [62], follows the staircase procedure. However, the

perception of negative correlation values was also studied for the 9 visualizations.
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Hence, each participant was assigned a visualization, direction(positive or negative

correlation), and a pair of r values for the staircase procedure. In addition, Harrison

et al. also considered the two limitations associated with the staircase procedure: the

ceiling effect and the chance boundary. The ceiling effect occurs when the staircase

procedure reaches an upper limit of correlation(r = 1), before the real JND is reached.

In this case, the computed JND is not accurate. The chance boundary for the

staircase procedure was calculated by running its simulation 10000 times such that in

each trial, a scatterplot was randomly selected to have a larger correlation with 0.5

probability. The resulting JND of 0.45 was then used as a performance threshold for

the participant. A JND above this threshold indicated that the participant had not

reliably perceived the correlation. Using the data collected from the crowd-sourced

experiment, Harrison et al. found that all the visualizations followed Weber’s law with

minimum r2 = 0.74. Also the Weber’s model for positive and negative correlation

was found to be different and a comparison among all the regression plots(Figure 10)

revealed that scatterplot(positive and negative) and parallel coordinates(negative)

had lower average JND values and were better for perceiving correlation.

We apply the same JND methodologies for the perception of graph properties. We

aim to determine whether the perception of two graph properties (graph density and

average local clustering coefficient) follow Weber’s law, and which of the three graph

layout algorithms (FD, MDS, and circular) best supports the perception of property

differences.
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2.5 Graph Generators

Generating synthetic graphs with required property values is important for percep-

tion experiments as real graphs might not give the entire range of stimulus needed for

calculation of JND in Weber’s law experiments. Various graph generating mechanisms

exists including the Erdos-Renyi graph model [27], the Watts-Strogatz graph model

[72], the Barabasi-Albert(BA) graph model[2] etc.

Each graph generator attempts to generate certain class of graphs: BA model

generates power-law graphs, Watts-Strogatz generates small-world graphs while Erdos-

Renyi generates graphs with binomial degree distribution. The BA graph model [2],

starts with a network with small number of nodes and no edges. At each time step

t, a vertex v is added to the graph with m edges. Each edge of v is connected to an

existing vertex of graph via Preferential Attachment(PA) in which the probability of

connecting with a vertex u is proportional to degree of u. Hence, there is a higher

chance for a new vertex to attach to a node with a higher degree than a lower one,

which leads to a power-law degree distribution. Holme et. al. [40] extends the basic

BA model by adding an additional Triad Formation(TF) step. In the TF step, if

an edge has been added between new vertex v and existing vertex u in a previously

preformed PA step, then one more edge is added between the vertex v and a random

neighbor of w. The PF steps causes a power-law degree distribution whereas the

TF step increases the number of triads at u and hence the average local clustering

coefficient of the graph is increased. The TF step can be made to occur with a given

probability which makes it possible to tune the average local clustering coefficient of

the generated graph. Watts-Strogatz graph model [72] generates graphs with small

world properties i.e. their characteristic path length is small like the Erdos-Renyi
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graph and their clustering coefficient is high like a regular lattice. The procedure

starts with a ring of n vertices, each connected with k neighbors and then iterates

through all vertices until all edges have been tried once for rewiring with probability

p. In the first iteration, the edge connecting the visited vertex to its first nearest

neighbor is selected for rewiring. In the subsequent iterations, the edge connecting the

vertex to its next nearest neighbor is selected. During rewiring, the edge is connected

randomly to any vertex in the graph. Watts et. al. [72] showed that small-world

graphs were generated for some values of p.

Another set of techniques for generating graphs with required properties involve

starting with a graph with some fixed property values and then subsequently rewiring

it such that the desired graph property is controlled while other properties remain

constant. Bansal et. al. [1] proposed a Markov chain simulation algorithm that

generates simple connected random graphs with desired clustering coefficient while

keeping the graph’s degree sequence fixed. In each rewiring stage, five nodes x, y1,

y2, z1, and z2, connected by edges (x, y1), (x, y2), (y1, z1), (y2, z2), are selected in

input network. Then the outer edges are swapped to create edges (y1, y2) and (z1, z2)

which changes the number of triangles in the network(and hence clustering coefficient).

However, the degree of involved nodes remain unchanged. Menglin et. al. [52], provide

a method to generate a graph with N vertices, E edges and a desired clustering

coefficient. The algorithm begins with a Erdos-Renyi connected graph with desired

number of edges. Within each iteration, an edge is first deleted and then added back

between any two unconnected nodes such that both deletion and addition move the

clustering coefficient of the graph towards the desired value.

This thesis uses the mentioned Holme et al. [40] approach for generating networks

with a given number of nodes, number of edges and a particular average local clustering
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coefficient value. Moreover, a novel algorithm to generate a network with a given

graph density was devised. Briefly, the algorithm starts with a path graph(a connected

graph with minimum number of edges) and then keeps on connecting two randomly

chosen vertices until the graph density reaches within a threshold distance of the

required value.
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Chapter 3

METHODOLOGY

The goal of this thesis is to quantitatively evaluate human perception of selected

graph properties and compare the way in which different graph layout algorithms

support the perception of these properties. Five user studies were conducted to

quantify the just noticeable differences (JNDs) of two graph properties and measured

how these JNDs fit as a function of the property value in three different layout contexts.

This thesis hypothesizes that some graph layout algorithms will be better than others

at revealing graph properties.

In order to test this hypothesis, we chose two graph properties, graph density (GD)

and average local clustering coefficient (ALCC), and three graph layout algorithms,

Force Directed Layout [41], Circular [24], and Multi-Dimensional Scaling [7] were

chosen. Graph density was chosen due to its simplicity to explain to participants

and importance in expressing the connectedness of a graph. Previous studies have

also explored the ability of humans to perceive density within plots [16] indicating

that (minimally) perception of graph density should be measurable. Average local

clustering coefficient is a measure of the degree to which vertices in a graph tend

to cluster together and is commonly analyzed with respect to small world networks.

Given the recent importance of visualizing small world networks in the context of

social network graphs, average local clustering coefficient was chosen as our second

property to measure.

Two experiments were performed. Experiment 1 consists of three user studies

analyzing the perception of graph density over three layout algorithms. Experiment 2
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Figure 11: (a) A sample starting comparison with target value d = 0.2 on the left
and d = 0.3 on the right. Participants were asked to choose which one has a higher
graph density. (b) The staircase procedure converges to the JND by gradually making
comparisons more difficult: d = 0.3 on the left and d = 0.28 on the right.

consists of two user studies anayzing the perception of the average local clustering

coefficient over two layout algorithms.

3.1 Experimental Method

Based upon the perceptual analysis of correlation done by Rensink and

Baldridge [62] and Harrison et al. [36], this thesis applies the same adaptive psy-

chophysical method, a staircase procedure, to derive JNDs for the perception of the

32



graph properties. For each user study, a list of evenly separated property values in

a possible value range is designed as base values. Each base value graph drawing is

compared to a graph drawing with another property value using two approaches (above

or below). This means, for each property base value, the JND will be approached

from above and below in two sets of comparisons using a staircase procedure.

To evaluate JND, participants are shown two stimuli side-by-side (in this case

node-link graph drawings generated by the same algorithm), and participants will

be asked to indicate which graph has a higher property value (see Figure 11 as an

example of graph density). One of the two graph drawings has the base value, and

the other graph drawing represents a smaller property value in the below approach or

a larger property value in the above approach. Initially, the difference in the value of

the properties between the two stimuli is set by a specified initial-difference. There is

also a step-size parameter which is tuned to adjust the two stimuli in the staircase

procedure. For example, if a participant is assigned the base value of 0.5, with a

below approach, and the initial-difference is 0.1 and the step-size is 0.01, the first pair

will have property values of 0.5 and 0.4. The participant is asked to select the graph

drawing with the higher value of the property. Using a similar staircase methodology

to Harrison et al. [36], if the correct choice is made (0.5), the next pair presented will

be 0.5 and 0.41 (a decrease of 0.01 of the difference, making the task more difficult).

If the participant answers incorrectly (0.4), the next pair will be 0.5 and 0.37 (an

increase of 0.03 of the difference, making the task easier). A similar procedure is

followed for the above approach. The distance changes allow the process to converge

to a state such that the difference in properties between two side-by-side stimuli can

be discriminated 75% of the time.

The staircase procedure ends when it reaches one of the following two conditions:
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(1) the participant has done a maximum number of judgments (e.g, 50), or (2) the

participant reaches the JND indicated by a convergence criterion. This convergence

criterion is the same as that of Harrison et al. [36] and Rensink and Baldridge [62].

Specifically, the convergence criteria uses the last 24 judgments to determine if the

participant’s ability to discriminate between the two property values from the given

graph drawings has stabilized. To test the stability, these 24 judgments are segmented

into 3 groups of 8 sequential judgments in each, and an F-test(F (2, 21), α = 0.1) is

applied on these 3 groups. When the F-test shows no significant difference between

these three groups, convergence is assumed and the staircase procedure ends. No

matter which ending condition a participant reaches, the final JND of the base value

and the approach (above or below) is calculated by taking the average of the difference

between the stimuli over the final 24 judgments.

For each trial in the experiment, the location of the base value graph is randomized

(i.e., the base value graph will randomly be the left image or the right image). For

each property value (both the base values and the interim values), we created a

large number of possible graph drawings was generated, thus mitigating against any

possible learning effect or unanticipated confounding factors. All graph drawings

are pre-computed and images used are chosen through random selection from our

pre-generated graph drawing pool. The same methodology is applied to both the

graph density and the average local clustering coefficient experiment. Experiments

differ only in the choice of base values, initial-difference, and step-size which were

designed after preliminary experiments were conducted to determine feasibility.
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3.2 Data Analysis Method

Once data is collected, the goal is to determine if the data can be modeled using

Weber’s law. Prior to model fitting, the data was analyzed to remove any base value

and approach conditions that suffer from the ceiling effect, which means the obtained

JND is constrained by the range of the property value available in our experiment and

therefore we could not observe the true JND. The ceiling effect is quantified in our

experiment over the last 24 judgments. If over 50% of the judgments are performed

on data within .05 of the upper or lower bounds of the data range, then participants

are bounded by a ceiling effect. The hit rate is the percentage of participants that

are bounded by a ceiling effect within a group (value, approach). Outliers outside

of 3 median absolute deviations from the median in each base value and approach

condition are also removed prior to model fitting.

After data cleaning, results from the experiment were analyzed in a three-step

process. First, the JNDs in each user study (where an user study consists of a single

graph layout algorithm being tested for a single graph property) are tested by fitting

a model of Weber’s law. The fitting methodology is modeled on that of Rensink and

Baldridge [62] and Harrison et al. [36]. Average JNDs are calculated for each base

value and approach condition. The property values used in the model are adjusted

from the base value by adding (or removing) 0.5 × JND within each base value

and approach condition. To test for Weber’s law, the JNDs and the adjusted values

are fit using a linear regression model. Next, individual data points are fit without

averaging and property value adjustment using linear regression with both continuous

and categorical variables, following the methodology by Kay and Heer [46]. This is

followed by an analysis to test if some data transformation is required for an adequate
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model. Finally, results are compared between layouts using Mann-Whitney U test to

see if the perception ability in different layout algorithms has comparable distributions.
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Chapter 4

EXPERIMENT 1: GRAPH DENSITY

The first experiment explores the effects of graph layouts on perceiving graph

density. This experiment only considers undirected graphs where graph density is

defined as:

D =
2|E|

|V |(|V | − 1)
(4.1)

where E is the number of edges and V is the number of vertices in the graph. Graph

density describes how dense a graph is, and, for a fixed number of vertices, the more

edges a graph has, the higher the graph density value. In a simple and connected

graph, the maximum D is 1 (for complete graphs) and the minimum D is 2
|V | (for

having |V| - 1 edges connecting all vertices).

In this experiment, the goal is to quantitatively analyze people’s perception of

graph density given different layout algorithms. To achieve this goal, mixed design

experiments were conducted such that just noticeable differences (JNDs) were collected

by asking participants to compare the graph drawings of two different graph density

values. Three user studies with three different graph layout algorithms (FD, Circular,

and MDS) were conducted. Note that the formula of graph density used here is

nonlinear with respect to the graph order. Changing the number of nodes could result

in a different perceptual model [53]. This experiment, only studies graphs with 100

nodes, and future work should explore how perceptual discrimination responds as the

graph size changes.
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4.1 Graph Generation

To study the perception of graph density, graphs with varying density need to be

generated and visualized. Considering the size of the display and potential cluttering

issues of node-link diagrams, the graph order was chosen to be |V | = 100 in all

experiments. Therefore, a simple connected graph has its graph density range from

0.02 to 1. Graphs are generated for every value in this range at intervals of 0.01,

resulting in 99 different graph density values.

A simple, connected graph G with graph density D was generated stochastically

by an iterative procedure. The initial graph has 100 vertices and 99 edges connecting

the vertices in a path. At each step, a vertex is randomly selected and connected to

another vertex that is not already its neighbor. This increases the edge count and

thus the graph density. This process is repeated until the graph density comes within

the range D±T . Here T is a tolerance parameter to define the accuracy of the output

graph density and the value we use is 0.001. Algorithm 1 thoroughly describes this

procedure.

Due to its stochastic nature, Algorithm 1 generates different graph structures for

same graph density D. Different graph structures with the same graph density may

vary on other graph properties, which cannot always be directly controlled for in our

study. To mitigate the impact of perception on other graph properties associated with

one particular graph structure, 50 graph structures for each D are generated and will

be used randomly in the experiment.

Once graph structures are generated, the layout algorithm is applied to create

graph drawings. The following three layout algorithms in different categories are used

in our study based on their popularity and ease of use: FD [41], Circular Layout [24],
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Algorithm 1: Generate graph with given graph density
Input :Number of Vertices(N), Required graph density(D), Tolerance(T )
Output : connected simple graph G with graph density D
Create a path graph G with N vertices v1, v2, . . . , vn having edges {vi, vi+1}
where i = 1, 2, . . . , n− 1. Let set of vertices be V = {v1, v2, . . . , vn};
Calculate the graph density of G as Dnew ;
while |D −Dnew| > T do

Randomly select a vertex vi with uniform probability ;
Find its current neighbors Ni ;
Randomly select a vertex vk with uniform probability from the set
V \ {Ni ∪ vi} ;

Add an edge {vi, vk} to graph G ;
Recalculate graph density dnew ;

end

and MDS [7]. These layout algorithms also have random factors when they position

the vertices. To mitigate this impact, we randomly create 20 graph drawings using

each layout algorithm for every graph structure. Therefore, for graph density, we

have 99,000 (99(values) × 50(structures) × 20(layouts)) graph drawings by each

layout algorithm. This is the pre-generation of our graph drawing pool used in our

experiment, and Figure 12 lists some example graph drawings by these three layout

algorithms for different graph density values.

It is recognized that the order of the graph (the number of vertices) may also relate

to a participant’s ability to perceive JND. However, as the order of a graph increases,

many algorithms converge towards a hairball layout. The goal of this experiment was

to use a constant (modest) graph order to evaluate the perception of graph properties

with respect to layout. Future studies will explore the range of graph orders in which

graph properties are perceptible.
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Figure 12: Examples of the graph drawings by the three layout algorithms at several
graph density values

4.2 Procedure

The experimental procedure is a mixed 7 × 2 design in which there are 7 base

values (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8) and two approach conditions (above and

below). For each base value, D, the JND will be estimated from above and below.

Graph density may not be a widely known term and it is possible that our

participants on Amazon Mechanical Turk (AMT) may not know about this concept.

As such, the experiment presents an introduction page describing the meaning of

graph density and presents example graph drawings with low and high density values.

To verify that participants understand the concept of graph density, they have to
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pass a screening session with 20 judgments. These judgments are designed to be easy

(difference value > 0.2 between the two stimuli) so as to not exclude participants

based on their perceptual ability. The goal of the screening is only to ensure that

they understand the concept and know what the task is. For the first 5 judgments,

participants will receive feedback on their choice. If they choose incorrectly, they have

to explicitly make the right choice before they can move to the next judgment. For

the final 15 judgments of the screening, there is no feedback, and the participant has

to make at least 10 correct choices to continue to the real session.

For each layout algorithm, the conditions in this experiment include the seven base

values and two approaches (above and below). Each participant is randomly assigned

two base values and both above and below trials will be conducted for each base

value. This results in four trials per participant and each trial consists of at most 50

judgments. After each judgment, the screen will flash gray to notify participants that

a new set of images to be judged have been rendered. In practice, the experiment takes

approximately 10 minutes to complete. Following the completion of all four trials, a

demographics questionnaire was given to participants. Finally, a short debriefing is

provided. Payout rates were $.50 per participant.

4.3 Results

105 participants were recruited for the user study of Circular layout, another 105

participants were recruited for the user study of the MDS layout, and finally, 102

participants were recruited for the user study of the FD layout. For each user study,

this yields 30 data samples for every base value and approach condition and 420 (408

for FD) data samples in total. Prior to analysis, we removed outliers that are outside
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Table 1: Parameters in the Model of Weber’s Law

Property Layout β0 β1 R2 r RMS

GD
FD .0277 .0402 .904 .95 .0026

Circular .0235 .0582 .832 .91 .0052
MDS .0337 .0261 .438 .66 .0059

ALCC
FD .5763 -.6478 .823 -.90 .033

Circular – – – – –
MDS .3619 -.3796 .911 -.95 .013

of 3 median absolute deviations from the median in each base value and approach

condition. 37, 12 and 21 samples were removed for FD, MDS, and Circular respectively

(< 10%). No group level ceiling effects were observed.

(a) (b)

Figure 13: Regression results for graph density user studies. (a) The model fit for the
averaged individual JNDs. (b) The model fit for individual points after the Box-Cox
transformation where the colored area indicates the 95% confidence interval.

Among all the participants that shared their gender and age information post study,

the age and gender distribution in the Circular, MDS and FD layout experiments were

60 females and 42 males(age varying from 18-68), 64 females and 39 males (age varying

from 18-76), and 62 females and 34 males (age varying from 19-71) respectively.
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4.3.1 The Model of Weber’s Law

Following classical work on perceptual laws [62, 67], the individual JNDs were

averaged over (value, approach) groups and calculate the adjusted graph density value

off the base value before fitting a regression model. The adjusted density value, DA,

of each base density value, D, is calculated by shifting towards the approach direction

by half of the average JND of the group.

DA = D + 0.5× ai × JND (4.2)

ai =


1 if approach is from above

−1 if approach is from below
(4.3)

The average JNDs are further fit by the adjusted graph density values through a linear

regression.

JND = β0 + β1DA + ε (4.4)

The same modeling process is applied to the data collected in the three user studies

about graph density with different layout algorithms. The model coefficients (β0

and β1), R2, the root-mean-square (RMS) error, and the correlation (r) between DA

and JNDs are listed in Table 1. Figure 13a shows the fit lines for the three layout

algorithms along with the observed average JNDs. Among the three layout algorithms

(FD, Circular, and MDS), both FD and Circular layout have a high goodness-of-fit

(R2 ≈ 90% and R2 ≈ 83% respectively) and appear to follow Weber’s law. For these

layouts, participants were able to better discriminate between graphs when the density

is lower and such ability decreases linearly when graph density increases.

While the perception of density in the FD and Circular layout follow Weber’s

law, it is found that the linear model for the MDS layout only explains 44% of the
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variance. It can be seen in Figure 13a (green) that when the graph density becomes

large, the model fails to fit the underlying data. However, applying a quadratic

regression to the MDS data results in a better goodness-of-fit (R2 = 0.53), as shown

in Figure 13a (green dashed line). Furthermore, calculating Cook’s D [17] for the

MDS data, one can find one leverage point of D = 0.8 and approach above (which has

the largest Cook’s D = 1.14, ∼ 8 times the mean Cook’s D of observations). After

removing this observation, the goodness-of-fit of a linear model increased to R2 = 0.70.

This indicates that the MDS layout may follow Weber’s law within a smaller range

(specifically, [0.2, 0.7]) of graph density values.

4.3.2 Fitting Individuals

While models were found to fit the data, averaging individual JNDs could result

in a loss of individual variance [46, 15]. As such, this thesis also analyzed the data

following the approach of Kay and Heer [46], who re-analyzed Harrison et al.’s data

to include individual variance. Taking the raw base value of graph density and

the individual JNDs, a linear regression model was fit that includes the approach

(above/below) as a categorical variable, ai, which is defined in Equation 4.3. This

model uses the raw base value of graph density, approach, and the interaction of these

two variables and is defined as:

JNDi = β0 + β1 ×Di + β2 × ai + β3 × ai ×Di + εi (4.5)

To test the model’s adequacy, we examined the residual distributions (Figure

14 (left)). By observation, it is found that the residuals are skewed compared to a

normal distribution, and a Box-Cox transformation for each dataset was applied using
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Figure 14: The left shows that residual distributions were skewed before the transfor-
mation and the right shows the distribution is more normal after the transformation

Equation 4.6. We then fit the model to the transformed data, Figure 13b.

JND
(λ)
i = β0 + β1 ×Di + β2 × ai + β3 × ai ×Di + εi (4.6)

λ = −0.5 is used in the final model and this value is in the 95% confidence interval

of the estimated λ for all three layout algorithms. Figure 14 (right) shows that residual

distributions after this transformation become more normal. This indicates that the

perception of graph density with the drawings given by the FD, Circular, and MDS

layout algorithms may not follow an exactly linear relationship to the property value
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when individual variances are considered; instead, a power transformation may be

required.

4.3.3 Comparison Between Layout Algorithms

In the experiment, workers are randomly recruited on AMT for each user study. In

this way, subjects are considered as independent between conditions (layout algorithms)

and the individual JNDs are independent measures. To compare the effect of the

three layout algorithms (FD, Circular, and MDS) with respect to their ability to

discriminate on graph density, the individual JNDs (as opposed to the mean JNDs)

are used and following the work of Harrison et al. [36], a pairwise Mann-Whitney U

test was applied.

A Bonferroni correction was applied for three pairs and set α = 0.0166 in each

test between two layouts. Results indicate that there are no significant differences in

their individual JND distributions. Similarly, when the test is separately applied to

the averaged JND, there was no significant difference found.

To further compare the three layout algorithms with respect to the discrimination

of graph density, the linear fit for the model of Weber’s law (see Figure 13a) was

examined. The clear overlap between all the layout algorithms for JND < 0.55

confirm the previous statistical findings that the three layout algorithm are not

significantly different when perceiving graph density. Finally, the best model fit for

all the individual points is shown in Figure 13b where the colored area shows the

95% confidence interval of the model. This plot shows even more overlap across the

entire range of D values confirming that all the three layouts are roughly equivalent

for discriminating graph density.
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Chapter 5

EXPERIMENT 2: AVERAGE LOCAL CLUSTERING COEFFICIENT

While graph density is a relatively straight forward property to visually explain, a

primary aim for the second experiment was to begin exploring perception in graph

layouts with respect to more complex graph properties. In real-world networks,

vertices tend to create tightly connected groups and form clusters. This generates

more clustering than random graphs. Along with scale-free property where degree

distribution follows a power law, a high clustering coefficient is one critical characteristic

of complex networks and plays an important role in graph analysis. As such, our

second experiment focused on the perception of clustering in a simple, connected,

undirected graph. This experiment studied the perception of a global clustering

measure, the average local clustering coefficient (ALCC), which is defined as:

C =
1

|V |

|V |∑
i=1

2 |{ejk : vj, vk ∈ Vi, ejk ∈ E}|
ki(ki − 1)

. (5.1)

This is the average of the local clustering coefficients of all the vertices measured by

Watts and Strogatz [72] for ‘small-world’ analysis. In this equation, V is the vertex

set and E is the edge set. Vi represents the immediately connected neighbors of a

vertex vi, and ki is the degree of the vertex vi.

This experiment quantifies how well people perceive clustering given graph drawings

with different average local clustering coefficients and different layout algorithms. From

an initial inspection among the three layout algorithms (Table 15), the circular layout

with random vertex position provides little obvious discrimination between two graph

drawings with large differences in ALCC. Therefore, the Circular layout is removed
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Algorithm 2: Generate Graph with tunable ALCC
Input :Number of Vertices (N), Number of edges for each vertex (m),

Probability of Triad Formation (Pt)
Output :Connected simple scale-free graph with ALCC = C
Initialize graph G with small number of vertices, m0, and no edges. Let V be
the set of vertices of G, and kv be the degree of vertex v ;

while the number of vertices in G < N do
Add a vertex v with m edges to the graph G ;
Select another vertex w of G with probability Pw which is proportional to its
degree;

Pw =
kw∑
v∈V kv

(5.2)

Add an edge connecting v and w ;
while unattached edges remain in v do

Perform the following TF step with probability Pt or PA step with
probability 1− Pt;

TF: add an edge between v and a neighbor of w;
PA: select a new vertex w′ other than v and w with probability, Pw′

given by Equation 5.2 and add an edge between v and w′. Update w
with w′. ;

end
end

from this experiment. Two user studies are conducted with the FD and MDS layout

algorithms respectively for average local clustering coefficient.

5.1 Graph Generation

For this experiment, graphs of |V | = 100 with varying ALCC are generated while

keeping the scale-free property. Specifically, the number of edges is kept the same

across all graphs generated in order to keep graph density constant. However, by

keeping the above properties, only a limited range of ALCC value can be obtained
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Figure 15: Examples of the graph drawings from the three layout algorithms at several
average local clustering coefficient values

as shown by Holme et al. [40]. With |V | = 100 and |E| = 194, the ALCC value, C

ranges from 0.07 to 0.75. Note that the range of ALCC for any graph is 0 to 1.

The graph generation procedure of Holme et al. [40] is used to produces scale-free

graphs with tunable clustering. It is an extension of Barábasi and Albert model (BA

model) [2]. Algorithm 2 describes the procedure of our graph generation for varying C.

In this algorithm, the Preferential Attachment (PA) step comes from the BA model

and the Triad Formation (TF) step is an extension by Holme et al. [40]. Note that

the PA step ensures the scale-free property of graph G, while the TF step increases C.

Thus, by varying the probability Pt of taking a TF step, different values of C can be

achieved.

We used Algorithm 2 with m = 2, and varied Pt to get graphs with different C.
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Similar to the graph generation for graph density, graphs are generated given every

ALCC value, C, in the range of [0.07, 0.75] with step equals to 0.01. This results in

69 different average local clustering coefficient values. For each C, 50 graph structures

are generated and each graph structure is visualized in 20 different graph drawings

using the corresponding layout algorithm. Example graph drawings for varying C are

shown in Figure 15.

5.2 Procedure

Similar to Experiment 1, we present participants on AMT an introduction page

to describe the meaning of clustering followed by two examples of graph drawings

with high clustering and low clustering. Following the introduction, participants are

required to take a screening session with 20 judgments which are designed to be highly

discriminable. In each judgment, one graph has a low clustering value in [0.1, 0.3],

and the other graph has a high clustering value in [0.5, 0.7]. For the first 5 judgments,

the participants will receive feedback, and if the participant chooses incorrectly they

have to explicitly choose the correct one to move on. For the final 15 judgments, there

is no feedback and the participant has to make at least 10 correct choices to continue.

The experimental procedure for the average local clustering coefficient and MDS

layout is identical to the procedure for graph density but with a different base value

and step-size. This procedure has a 5× 2 design in which there are 5 base values (0.2,

0.3, 0.4, 0.5, and 0.6) and two approach conditions (above and below) for each base

value. The initial-difference is 0.1 and the step-size is 0.01, and the maximum number

of judgments is set to be 50. For each average local clustering coefficient base value,

C, the JND is estimated from above and below using the methodology presented in
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section 3.1. Each participant was randomly assigned two base values with both the

above and the below approach.

The same procedure was applied for average local clustering coefficient and the FD

layout. However, when collecting preliminary data for the FD layout, we found that

participants suffered from a severe ceiling effect, which means the JND is bounded by

the possible values we can generate. For example, we have C = 0.07 as the minimum

average local clustering coefficient, and when we run (0.2, below), the furthest distance

we can achieve is 0.13. This range is not discriminable by participants and prevents

us from quantifying the the true JND for small values of C. Furthermore, during our

preliminary data collection for the FD layout, we found that many of the participants

completed all 50 judgments, which means that the experiment may have ended prior

to the participant reaching a stabilized discrimination. Based on this information, the

base values and initial-difference was modified for the full study. For the final FD

experiment, a 10× 2 design was used in which the base values for above and below

are different. For the above approach, lower base values (0.1, 0.15, 0.2, 0.25, 0.3, 0.35,

0.4, 0.45, 0.5, and 0.55) are used, and for the below approach, higher base values (0.3,

0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75) are used. To help participants reach their

JND faster, the initial-difference is enlarged to 0.2. This value was chosen because

the average JNDs of each base value that was estimated in the Preliminary FD study

either reached the ceiling or was larger than 0.2. Finally, the maximum number of

judgments was increased to 75 to help participants reach a stable discrimination state.
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5.3 Results

For the MDS layout, 75 participants were recruited. Each participant was assigned

two base values with both above and below approaches. This gives 30 data samples

for every (value, approach) pair and 300 data samples in total. For the FD layout

experiment, 201 participants were recruited. Each participant was assigned two base

values, one from each approach. This gives 20 data samples for every (value, approach)

pair and 402 samples in total. Among all the participants that shared their gender and

age information post study, the MDS layout study had 43 females and 32 males (age

varying from 19-69) while the FD study had 110 females and 88 males (age varying

from 18-70) respectively.

Before the JNDs for the ALCC were modeled, the distribution of JNDs for each

(value, approach) condition are analyzed to identify outliers as well as groups that

suffer from the ceiling effect (hit rate > 50%). In the collected JNDs for the MDS

layouts, two groups, (C = 20, approach = below) and (C = 30, approach = below),

had a hit rate greater than 50% (80.42% and 62.08% respectively). These samples

were removed from analysis as their true JND is not accurately measured. No outliers

(points that fall outside 3 median deviations for each (value, approach) pair) were

found.

Following the same procedure for the FD layouts, the observations for C ∈

{30, 35, 40} with approach = below were removed. After removing groups due to the

ceiling effect, outliers that fall outside 3 median deviation for each (value, approach)

pair were also removed. In total, 60 samples were removed because of ceiling effects

and 1 sample was removed as an outlier. 341 samples of the 402 samples collected are

used in the analysis.
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(a) (b)

Figure 16: Regression results for the average local clustering coefficient user studies.
(a) The model fit for the averaged individual JNDs (b) The model fit for individual
points after the Box-Cox transformation where the colored area indicates the 95%
confidence interval.

5.3.1 The Model of Weber’s Law

After the observations were removed under the conditions mentioned, the JNDs in

each group (base value × approach) were averaged and adjusted following the same

analysis procedure as section 4.3.1. The linear regression model with the adjusted

base value CA was fit for the averaged JNDs for both the FD layout and the MDS

layout. The fit coefficients (β0, β1), R2 and RMS error, and the correlation between

CA and JNDs are listed in Table 1. Results indicate that MDS has a better goodness-

of-fit (R2 ≈ 91.1%) than FD layout (R2 ≈ 82.3%), while the average perceptions of

ALCC displayed by both layout algorithms follow Weber’s law with a negative linear

relationship of the property value as illustrated in Figure 16a.
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Figure 17: The left shows that residual distributions were skewed before the transfor-
mation and the right shows the distribution is more Normal after the transformation.

5.3.2 Fitting Individuals

As in Section 4.3.2, all individual points were modeled without taking the average

of the JNDs in each group. First, a linear model with base value C, approach, and

their interaction term was fit for individual JNDs. Then, the residuals were analyzed

against normal distribution. To correct the skewness of the residual distribution, a

Box-Cox transformation was applied (λ = 0.2518 with Confidence Interval (0.08, 0.42)

for FD, and λ = −0.058 with Confidence Interval (−0.279, 0.165) for MDS). This

indicates that a log transformation for MDS and a power transformation with λ ≈ 0.24

could fit the data better than a linear model when individual variance is considered.

Figure 17 shows that residual distributions after this transformation become more

normal.
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5.3.3 Comparison Between Layout Algorithms

Similar to section 4.3.3, a Mann-Whitney U test with α = 0.05 was conducted to

compare FD and MDS for presenting average local clustering coefficient. With p-value

< 0.05 for both the test on individual JNDs and the test on the averaged JNDs, it

was found that there is a significant difference between the JNDs observed for the FD

and MDS layout algorithm.

To further compare the two layout algorithms with respect to the discrimination

of the average local clustering coefficient, their best-fit linear regression models were

examined, Figure 16a. Here it can be seen that the MDS layout algorithm provides a

better perceptual discrimination of the average local clustering coefficient across the

entire range of tested values.

Finally, the best model fit for all the individual points is shown in Figure 16b with

the colored area representing the 95% confidence interval of the model. This plot

indicates that the MDS layout algorithm performs better then FD for perceiving the

average local clustering coefficient.
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Chapter 6

CONCLUSION

To my knowledge, this is the first experiment designed to model humans’ ability

to perceptually discriminate graph properties. Such experiments provide us a means

of quantitatively comparing graph layout algorithms with respect to their ability

to communicate graph properties. The models and results presented in this work

demonstrate that for the two graph properties tested, different layout algorithms can

be modeled using Weber’s law. This experiment analyzed discriminations from 588

participants. Results in the perception of graph density showed that the three layout

algorithms explored (Force Directed - FD, Circular, Multi-Dimensional Scaling - MDS)

could be modeled using Weber’s law and there was no significant difference between

the layout algorithms. Results in the perception of average local clustering coefficient

demonstrated that the two algorithms considered (MDS and FD) can be modeled

using Weber’s law. This time there is a significant difference between the algorithms,

as the MDS algorithm is better at discriminating ALCC than the FD algorithm.

The study used Amazon Mechanical Turk to host the experiments. Even with

limited control on the user’s end, AMT works well for such studies [6]. According to

Borgo et al. [6], such crowdsourced studies provide several advantages like larger and

diverse samples, easier and faster data collection, and financial effectiveness. They

also discuss 4 case studies of successful crowdsourcing-based evaluations among which

two compared static visualizations while one used an interactive visualization. The

remaining case study was of a crowdsourced-based evaluation that accounted for the

effect of user’s individual traits on the responses that were collected.

56



Table 2: Common graph properties

Property Definition
Triangle Count Count of complete subgraphs with 3 nodes
Vertex Connec-
tivity

Minimum number of vertices whose removal disconnects the
network

Edge Connectiv-
ity

Minimum number of edges whose removal disconnects the
network

Global Cluster-
ing Coefficient

It is given by 3 ∗ n∆/nΛ where nΛ is the number of connected
triplets (connected subgraph with 3 vertices and 2 edges) and
n∆ is the number of triangles.

Degree Distribu-
tion Probability distribution of node degrees over the whole graph.

Average Path
Length

Average of shortest distance between all pairs of vertices in a
graph.

Assortativity Co-
efficient

Tendency of the vertices in a graph to be connected to other
vertices with similar values of some vertex property (e.g.,
degree distribution).

Network Diame-
ter Greatest distance between any pair of vertices.

Network Radius
It is defined as the minimum eccentricity over all vertices in the
network where eccentricity of a vertex is the maximum distance
between the vertex and any other vertex in the network.

Scale-free A network is scale-free if its degree distribution follows a power
law

Small-world
A network is small-world if it has much larger clustering coef-
ficient and almost equal average path length when compared
to a random network with same average degree

Efficiency

Measures how well the network is connected such that infor-
mation is exchanged efficiently between nodes. Networks with
short geodesic distance between most pairs of its vertices have
high efficiency.
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This study explores only two graph properties and instances of graph layouts

for three categories of algorithms. However, a large variety of graph properties

remain to be studied; see Table 2 for a summary. Future work should explore more

such properties and correlations between them. This is especially important for the

perception of graph properties like degree assortativity as it does not directly affect

the objective function of the layout algorithms unlike the clustering coefficient(a high

clustering coefficient introduces cliques in the graph structure that become clumps of

vertices in the graph drawing). Moreover, additional layout algorithms need to be

tested for perception, especially those belonging to the class of orthogonal layouts

which was left in this thesis. An additional limitation is that all graphs tested in this

experiment were of fixed order (number of vertices). As graphs become larger, some

layout algorithms tend to produce hairball layouts. Future experiments should explore

the effects of graph type, graph order, and screen size on perception to determine at

what settings the discrimination of graph properties becomes infeasible, and how (or if)

perception is affected. Additionally, several multi-level graph drawing methods exists

that efficiently produce drawings for large graphs unlike the basic force-directed model.

However, the effect of the approximations used in these methods on the perception of

properties should be determined.

Furthermore, a comparison of perception within classes of layout algorithms should

be done to explore if all layout algorithms that fall within a class (e.g., force directed

algorithms) have the same basic underlying perceptual properties. This is especially

important for the force-directed algorithms as some of its variants have been specifically

designed to showcase clustering in a network. Finally, the correlations between all

the graph properties and their effect on graph perception should be investigated. For

instance, there is a clear correlation between graph density and average degree, but
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does this signify that the layouts algorithms that are best to perceive graph density

would also be best for average degree. This experiment only scratches the surface of

potential combinations of layouts and properties. However, this serves as an initial

step in demonstrating that (at least for some) graph properties can be discriminated.

Finally, by identifying the different conditions and classes of algorithms that

improve discrimination, future work can inform ideas of new design spaces for graph

layout algorithms that not only focus on layouts for graph aesthetics, but also on

conditions for graph perception. For instance, are there ways in which the optimization

model of the Force-directed or the MDS layout algorithm be informed to manipulate

JND properties. Moreover, an entirely new graph drawing algorithms could be

developed, based on further findings in the perception of graph properties, that

provides a good perception of several(or all) graph properties.
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APPENDIX A

STIMULI USED FOR THE EXPERIMENTS
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A sample of the graphs generated for experiment 1 (section 4.1) and experiment 2
(section 5.1) is presented in this section.

A.1 Graphs generated for experiment 1 (graph density)

For the graph density experiment, a total of 99000 graph drawings were generated
for each layout. For each graph density value from 0.02 to 1, with step equals to 0.01,
50 different non-isomorphic graphs were generated. Then, each graph was drawn 20
times using the layout algorithm to produce 20 graph drawings that were all unique
because of the stochastic nature of the graph layout algorithms. The following section
shows one graph sampled for each density value from 0.1 to 0.9 (steps of 0.1), for each
layout algorithm.
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A.1.1 Graph drawings using the circular layout

(a) GD=0.1 (b) GD=0.2 (c) GD=0.3

(d) GD=0.4 (e) GD=0.5 (f) GD=0.6

(g) GD=0.7 (h) GD=0.8 (i) GD=0.9
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A.1.2 Graph drawings using the FD layout

(a) GD=0.1 (b) GD=0.2 (c) GD=0.3

(d) GD=0.4 (e) GD=0.5 (f) GD=0.6

(g) GD=0.7 (h) GD=0.8 (i) GD=0.9
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A.1.3 Graph drawings using the MDS layout

(a) GD=0.1 (b) GD=0.2 (c) GD=0.3

(d) GD=0.4 (e) GD=0.5 (f) GD=0.6

(g) GD=0.7 (h) GD=0.8 (i) GD=0.9

72



A.2 Graphs generated for experiment 2 (average clustering coefficient)

For the average clustering coefficient experiment, a total of 69000 graph drawings

were generated for each layout. For each clustering coefficient value from 0.07 to

0.75, with step equals to 0.01, 50 different non-isomorphic graphs were generated.

Then, each graph was drawn 20 times using the layout algorithm to produce 20 graph

drawings that were all unique because of the stochastic nature of the graph layout

algorithms. The following section shows one graph sampled for 9 density value from

0.07 to 0.75 (steps of ≈ 0.08), for each layout algorithm.
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A.2.1 Graph drawings using the circular layout

(a) ACC=0.07 (b) ACC=0.15 (c) ACC=0.24

(d) ACC=0.32 (e) ACC=0.41 (f) ACC=0.49

(g) ACC=0.58 (h) ACC=0.66 (i) ACC=0.75
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A.2.2 Graph drawings using the FD layout

(a) ACC=0.07 (b) ACC=0.15 (c) ACC=0.24

(d) ACC=0.32 (e) ACC=0.41 (f) ACC=0.49

(g) ACC=0.58 (h) ACC=0.66 (i) ACC=0.75
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A.2.3 Graph drawings using the MDS layout

(a) ACC=0.07 (b) ACC=0.15 (c) ACC=0.24

(d) ACC=0.32 (e) ACC=0.41 (f) ACC=0.49

(g) ACC=0.58 (h) ACC=0.66 (i) ACC=0.75
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APPENDIX B

RESPONSE OBTAINED IN THE EXPERIMENTS
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A sample of responses obtained for experiment 1 (section 4.3) and experiment 2

(section 5.3) is presented in this section. For each base value and approach pair in the

user study, the experiment system recorded the following:

1. the Amazon turk worker ID of the participant

2. the computed JND for the participant

3. the number of selections performed till the convergence of the staircase procedure

4. the average time taken per selection in seconds

At the end of the user study, the participants were also asked to optionally provide

their demographic information.
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B.1 Response obtained for experiment 1 (average local clustering coefficient)

B.1.1 User study of the circular layout

A total of 105 participants were recruited for the user study of circular layout.

Among all the participants that shared their gender and age information post study,

60 were females while 42 were males. The age of the participants varied from 18 to

68. Table 3 shows a sample of 10 responses obtained from the user study of circular

layout.

Table 3: Responses collected for the user study of the circular layout for perception of
graph density

WorkerID Target Direction JND abs
JND

Number
of
selec-
tions

Average
time
per se-
lection

A298X7UE3B93PL 20 below -2.66 2.66 50 1.01
A1H60UAPD5M113 70 below -2.58 2.58 26 2.03
A195LN7C3VWZI8 40 above 5.83 5.83 46 1.51
A28VLQAH7JLSN9 20 above 3.08 3.08 26 1.55
A4397UDZV79P0 30 below -2.25 2.25 35 3.26
AB76Q5DREW15V 50 above 6.5 6.5 24 1.42
A31JM9RECQGYEX 40 below -7 7 49 0.99
A1EWV27J9TWQ54 60 above 6 6 24 1.48
A2RHJT0OMA09YH 70 below -5.5 5.5 36 1.43
A4LIJVRU6DG61 20 above 2 2 29 3.76
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B.1.2 User study of the FD layout

A total of 102 participants were recruited for the user study of FD layout. Among
all the participants that shared their gender and age information post study, 62 were
females while 34 were males. The age of the participants varied from 19 to 71. Table
4 shows a sample of 10 responses obtained from the user study of FD layout.

Table 4: Responses collected for the user study of the FD layout for perception of
graph density

WorkerID Target Direction JND abs
JND

Number
of
selec-
tions

Average
time
per se-
lection

A7N3J27F3IL6M 30 below -17.5 17.5 35 0.4
AS7ZK30LXDC46 40 above 3.375 3.375 26 2.1
A3FDLHGTF8I256 30 below -4 4 40 1.3
A1S9EY8YUIGDYV 80 above 4.625 4.625 28 6.7
A15QGLWS8CNJFU 70 below -11.5 11.5 26 1.3
A1669EVSVOHN54 80 above 3.25 3.25 25 2.4
A20E3U52YFBLHJ 20 above 3.5 3.5 46 0.6
AVJ2J2LH1WMQB 70 above 4.04 4.04 30 3.1
A5I4Y0GXJM69D 70 above 28.375 28.375 36 0.9
A2C5UH05QY2GZH 20 above 2.33 2.33 27 3.5
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B.1.3 User study of the MDS layout

A total of 105 participants were recruited for the user study of MDS layout. Among
all the participants that shared their gender and age information post study, 64 were
females while 39 were males. The age of the participants varied from 18 to 76. Table
5 shows a sample of 10 responses obtained from the user study of MDS layout.

Table 5: Responses collected for the user study of the FD layout for perception of
graph density

WorkerID Target Direction JND abs
JND

Number
of
selec-
tions

Average
time
per se-
lection

ASHYATOD3J5Z9 50 above 3 3 39 1.34
AG2YM9OWQP690 50 above 7.66 7.66 33 3.70
A15HRBYM3REOEV 30 below -12.66 12.66 50 1.81
A1NITBXDX8TN7T 20 above 2.25 2.25 31 2.39
A3AD7HRMCBVVRZ 20 below -4.5 4.5 29 1.09
A3OVF9XI01U9W7 40 above 3.25 3.25 25 2.54
A36KDWI1CGJFFA 40 above 3.875 3.875 44 2.71
A2CSV75E3JT58Y 20 below -7 7 30 0.95
A1KYOQ0CHD4VUT 30 above 2 2 29 1.01
A2CWYA82P6BE09 50 below -3.125 3.125 30 1.41
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B.2 Response obtained for experiment 2 (average local clustering coefficient)

B.2.1 User study of the FD layout

A total of 201 participants were recruited for the user study of FD layout. Among
all the participants that shared their gender and age information post study, 110 were
females while 88 were males. The age of the participants varied from 18 to 70. Table
6 shows a sample of 10 responses obtained from the user study of FD layout.

Table 6: Responses collected for the user study of the FD layout for perception of
ACC

WorkerID Target Direction JND abs
JND

Number
of
selec-
tions

Average
time
per se-
lection

AMXSOUSW1WJ6N 50 above 16.83 16.83 29 4.00

A3PB0KSWXYUEA 40 below -
32.375 32.375 44 0.39

A2VL807897JLT9 40 above 11.33 11.33 50 1.47

ASHABZG2VI0KN 20 below -
11.125 11.125 50 2.33

A3GOPXU6AK0K0Y 50 below -
41.625 41.625 39 0.27

AVCTTVFVLG90I 40 above 21.83 21.83 50 2.63
A39P7K4TGGHBUY 60 below -9 9 27 1.90
A11IGE3ORQP5WI 20 above 26 26 38 1.97
A11IGE3ORQP5WI 50 below -18.83 18.83 30 2.08
ATB2PODALQX0A 40 above 21 21 50 1.57
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B.2.2 User study of the MDS layout

A total of 75 participants were recruited for the user study of MDS layout. Among
all the participants that shared their gender and age information post study, 43 were
females while 32 were males. The age of the participants varied from 19 to 69. Table
7 shows a sample of 10 responses obtained from the user study of FD layout.

Table 7: Responses collected for the user study of the MDS layout for perception of
ACC

WorkerID Target Direction JND abs
JND

Number
of
selec-
tions

Average
time
per se-
lection

A1R37XA9QPSIAN 45 below -
35.375 35.375 46 1.68

A19HJF1JGJL7EY 15 above 39.83 39.83 59 2.76
ADRINUO0QTC33 35 below -27.33 27.33 26 2.55
A2ZVWCVZO273CD 40 above 33.875 33.875 29 2.6
A2BEH9YQPHKP6A 40 below -32.16 32.16 42 1.37
A15340BRCER2UO 20 above 54.5 54.5 54 2.43
A38G99MUB98LXL 60 below -26.83 26.83 24 2.23
A195LN7C3VWZI8 45 above 20 20 27 5.01
A3ATZTGLM6AK05 70 below -33.5 33.5 75 0.79
A32A08M12Z9V7K 25 above 38.66 38.66 75 4.41
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