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ABSTRACT 

Distributed systems are prone to attacks, called Sybil attacks, wherein an adversary may 

generate an unbounded number of bogus identities to gain control over the system.  In 

this thesis, an algorithm, DownhillFlow, for mitigating such attacks is presented and 

tested experimentally.  The trust rankings produced by the algorithm are significantly 

better than those of the distributed SybilGuard protocol and only slightly worse than 

those of the best-known Sybil defense algorithm, ACL.  The results obtained for ACL are 

consistent with those obtained in previous studies.  The running times of the algorithms 

are also tested and two results are obtained: first, DownhillFlow’s running time is found 

to be significantly faster than any existing algorithm including ACL, terminating in 

slightly over one second on the 300,000-node DBLP graph.  This allows it to be used in 

settings such as dynamic networks as-is with no additional functionality needed.  Second, 

when ACL is configured such that it matches DownhillFlow’s speed, it fails to recognize 

large portions of the input graphs and its accuracy among the portion of the graphs it does 

recognize becomes lower than that of DownhillFlow. 
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I – INTRODUCTION 

i) Statement of the Problem 

Distributed systems are prone to what is called the Sybil attack [13], where an adversary 

may generate an unbounded number of fake identities, called Sybil identities, to gain 

control over the system.  This attack is applicable to practically any type of distributed 

system where users may organize into a trust network.  These systems can differ in size, 

connectivity, the presence of a central authority, or any number of other factors.  On a 

small scale, threats such as spam attacks are applicable pretty much anywhere.  On a 

larger scale, social networks such as Facebook [16] can span millions, and even billions, 

of users, and suffer from the threat of fake accounts created to spam honest users, forge 

identities or any other range of uses.  Furthermore, Sybil attacks can carry harmful 

consequences: applications such as P2P file sharing with no trusted authority run the risk 

of data loss if an adversary can compromise enough of the system to outvote honest 

users.  

 

A wide literature of protocols aiming to help mitigate such attacks – which are commonly 

referred to as “Sybil defense” protocols – has developed.  In this thesis, we investigate 

Sybil defense mechanisms as well.  We focus on Sybil defense protocols that are based 

upon flow algorithms and their variants.  To our knowledge, we are the first to do so; 

most Sybil defense protocols rely on random walks and their associated properties and 

distributions.   
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Sybil defense protocols fall into two major categories: 1) protocols that allow a honest 

user to “accept” or “reject” any other node in the trust network [24, 28, 29], and 2) 

protocols that allow an honest user to generate a full “trust ranking” 𝑡 across all other 

nodes [3, 10, 11, 15].  In the former case, the robustness of a protocol – how accurately it 

can distinguish honest nodes from Sybils – is assessed qualitatively using such metrics as 

the number of Sybil node accepted per attack edge and the number of false positives 

(honest nodes declared Sybil by the protocol).  In the latter case, the robustness of a 

protocol is assessed using such metrics as precision/recall or the area under the Receiver 

Operating Characteristic (abbreviated ROC) curve of the trust ranking [14]. 

 

While most recent approaches focus on the latter case, as we do, there is also a severe 

lack of consistency within the literature regarding how the robustness of the Sybil 

defense protocols are actually judged.  Many protocols are individually claimed to be 

“optimal” and shown to achieve better results under the specific setup assumed by their 

underlying research.  Some studies [10] focus primarily on small graphs (less than 

100,000 nodes), sometimes using techniques such as BFS tracing to prune larger graphs 

down to a smaller size.  The simulations conducted by most studies often introduce only a 

small number of attack edges [10, 11, 24, 29], trust links where an honest user falsely 

trusts a Sybil node.  It is not clear if any of these techniques affect the robustness of the 

protocols at large, and it is difficult to obtain an “all-things-equal” comparison of the 

many protocols in the literature today.  Moreover, there is a lack of consistency regarding 

the structure of the social graphs assumed: while many protocols assume that the honest 



 

3 

region of the network is fast-mixing (we define this in section II), it was shown by 

Mohaisen et al. [19] that this does not appear to actually be true in practice, instead 

supporting a notion that social graphs fall into a “community” structure of several tightly-

knit subsets of nodes loosely connected with one another.  Some protocols [10, 28] claim 

that this does not affect the fast-mixing property of their input graphs.  Still others [24] 

assume an expander graph, a stronger condition than fast-mixing. 

 

For this reason, our study largely follows the framework laid out by Alvisi et al. in [3], 

which addresses many of these issues and serves as a baseline to work from.  We use 

precision/recall as our metric of choice and study the ACL community detection 

algorithm [4], which they showed to obtain near-optimal results on a variety of social 

graphs, as the current “leader”.  We aim both to 1) compare our results to those of ACL 

as well as other protocols and 2) demonstrate a replication of their results.  

 

Our main contribution is an algorithm, termed DownhillFlow, which achieves good 

results on a wide range of social graphs under the two models of attack defined in [3].  

We compare DownhillFlow to ACL and the distributed protocol SybilGuard, and find 

that DownhillFlow’s results are slightly less robust than ACL’s and noticeably more 

robust than SybilGuard’s.  Furthermore, DownhillFlow is very fast, taking slightly over 

1.2 seconds for the 310,000-node DBLP graph, compared to about 45 minutes for ACL.  

Moreover, if ACL is restricted to run for up to 4 seconds, its results are not as good as 

those of DF.  This performance advantage of DownhillFlow grows as the graph size 



 

4 

increases.  We also show how an unoptimized version of DownhillFlow can be adapted 

to form a distributed protocol, present ideas to adapt the missing optimizations to the 

distributed setting and show how certain limitations of the distributed DownhillFlow 

protocol can be addressed by drawing a link to a specialized version of the electronic 

cash problem.  Last, based on its running time, we propose several applications for 

DownhillFlow, the most promising of which is dynamic networks. 

 

ii) System Model and Preliminaries 

As customary in the literature, we model the system in terms of an unweighted, 

undirected graph 𝐺 = (𝑉, 𝐸).  Nodes 𝑢 ∈ 𝑉 represent distinct (honest or Sybil) identities 

in the system, and an edge 𝑒 = 𝑢𝑣 represents a mutual trust connection between 𝑢 and 𝑣.  

𝐻 ⊆ 𝑉 is the set of honest identities in the system, while 𝑆 ⊆ 𝑉 is the set of Sybil 

identities.  For simplicity’s sake, we use “node” and “identity” interchangeably when 

describing honest and Sybil identities.  Nodes 𝑣 ∈ 𝑆 are Byzantine and all act under 

control of an adversary, an edge 𝑒 is called an attack edge if it has one endpoint in 𝐻 and 

the other in 𝑆.  We are interested in algorithms leveraging these trust links to distinguish 

honest nodes from Sybil nodes. 

 

We assume that the graph 𝐺 is static.  For a node 𝑣 ∈ 𝐺, we denote its neighbors as 𝑁(𝑣), 

its degree as deg⁡(𝑣) and its distance from a node 𝑢 as 𝑑𝑢(𝑣).  We use 𝑒𝑎 to denote the 

set of attack edges.  Throughout the thesis, we use 𝑡 to denote the trust vector obtained 

from a (fixed) source node 𝑠, which is assumed to be honest, and we use 𝑡𝑣 to denote the 
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trust obtained for a single 𝑣 ∈ 𝑉.   

 

We use two metrics from information theory, precision and recall.  For a trust vector 𝑡 

and any given position 𝑘, 1 ≤ 𝑘 ≤ |𝐻| + |𝑆|, the precision at position 𝑘 is defined to be 

the percentage of the 𝑘 highest-ranked nodes that are honest, and the recall is defined to 

be the percentage of honest nodes that appear in the 𝑘 highest-ranked nodes.  Thus, the 

two metrics trade off with each other: as a trust ranking recalls more honest nodes, it 

starts to accept a greater proportion of Sybil nodes as well, becoming less precise. 

 

We consider two models for simulating Sybil attacks, which we refer to as the random 

attack and the fixed attack.  Both were formalized by Alvisi et al. in [3], although the 

fixed attack model was previously employed in the literature.  These are described below: 

 

Random attack – In this model of attack, the Sybil region 𝑆 is configured to be an exact 

copy of 𝐻.  The adversary attempts to set up |𝐸| attack edges 𝑢𝑣 joining 𝑆 to 𝐻.  The 

endpoints 𝑢 and 𝑣 are chosen degree-preferentially, so for a node 𝑢, the probability of 

being chosen is 
deg(𝑢)

2|𝐸|
.  The attack edge is created with probability 𝑝, a parameter of the 

attack, and fails with probability 1 − 𝑝.  The expected number of attack edges is thus 

𝑝|𝐸|. 

 

Fixed attack – This model of attack takes two parameters (𝑔, 𝛾) as input, which represent 

a fixed number of attack edges and Sybil nodes to be created, respectively.  In this attack, 
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nodes in the honest region 𝐻 are randomly declared to be Sybil nodes until a total of 𝑔 

attack edges are reached, and from there, the Sybil region 𝑆 is built up using a scale-free 

topology, such as Barabasi-Alberts [1], until a total of 𝛾 Sybil nodes are reached.   

 

We consider both the centralized and distributed settings: in the centralized setting, a 

network operator with full knowledge of the graph topology picks a source 𝑠 ∈ 𝐻 

(determined, for instance, by manual verification) and runs the algorithm in a fully-

trusted manner.  In the distributed setting, a node 𝑠 ∈ 𝐻 wishes to obtain its trust vector 𝑡.  

It is assumed that each 𝑣 ∈ 𝑉 is only aware of its neighbors⁡𝑁(𝑣) – the nodes it has 

selected to trust – and it is explicitly assumed here that the edge set 𝐸, whose size is often 

several orders of magnitude above the vertex set 𝑉, is too large to fit on one machine.  

Without this assumption, the distributed setting is not interesting as a source node 𝑠 can 

simply obtain a crawl of the entire graph.  A node 𝑣 in the distributed setting is identified 

by its public key 𝑃𝐾𝑣: for the sake of simplicity, we omit this step in discussion 

henceforth and refer to nodes directly.  We assume that the public key of the source 𝑃𝐾𝑠 

is known to all nodes, and also leave out the specifics required for nodes 𝑣 to forward 

messages back-and-forth to⁡𝑠.  Since Sybil nodes all act under control of an adversary, 

this means that under the distributed setting, the adversary controls all 𝑣 ∈ 𝑆.  However, 

we assume communication is reliable and that nodes⁡𝑣 ∈ 𝐻 are resilient to drop attacks 

(utilizing, for instance, timeout mechanisms). 
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iii) Organization of the Thesis 

The rest of the thesis is organized as follows.  In section II, we give an overview of the 

field since the inception of the Sybil attack in [13].  We review most existing protocols, 

beginning from SybilGuard [29] and continuing through to the state of the art [xxxx, 3, 

10, 11, 24, 28, 29].  We present our algorithm in section III, and we discuss our 

experimental setup in section IV.  In section V, we present and discuss results both 

demonstrating the accuracy of our protocol and analyzing its running time performance.  

In section VI, we attempt to adapt our algorithm into a distributed protocol, both 

discussing a concrete approach with accumulators and showing a potential link to a 

specialized type of e-cash scheme, and discuss the limitations that arise when doing so.  

We discuss future work in section VII and conclude in section VIII.  

 

II – PREVIOUS WORK 

The Sybil attack was formalized by Douceur in [13].  Initial investigations led to a variety 

of results. Bazzi and Konjevod [6] discussed approaches levering the geometric structure 

of the network to identify nodes based on their locations, and Bazzi et al. [5] proposed a 

Sybil-resilient distance vector routing scheme, guaranteeing under most assumptions 

Sybil nodes could not report a distance from a source node 𝑠 lower than their actual 

distance.  Kamvar et al. [15] proposed the EigenTrust reputation system, wherein a node 

𝑣’s reputation is determined by ratings given by its neighbors, weighted in turn by the 

trust of the neighbors. 
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The first protocol leveraging the structure of the whole social graph to defend against 

Sybil attacks was SybilGuard [29], which was introduced in 2006 by Yu et al.  The key 

insight of SybilGuard is that if the honest subgraph is fast-mixing, then it is likely that 

two random walks originating from any two 𝑢, 𝑣 ∈ 𝐻 will intersect with each other.  We 

give a high-level definition of fast-mixing here and urge the reader to consult, for 

instance [19] for a more detailed discussion: 

 

Definition 1 (Fast-mixing): A graph 𝐺 is fast-mixing if a random walk starting from any 

𝑣 ∈ 𝑉 converges to the stationary distribution 𝜋, where 𝜋 is the degree-normalized 

uniform distribution (for each 𝑣𝑖 we have 𝜋𝑣𝑖 =
deg(𝑣𝑖)

2|𝐸|
), “quickly” – in 𝒪(log⁡|𝑉|) steps. 

 

They show how this can be done in a distributed manner by substituting the random 

walks with random routes.  Each node 𝑣 generates a random permutation 

𝑘1, 𝑘2, … 𝑘deg⁡(𝑣) of the set 1, 2, … deg⁡(𝑣) and forms a routing table as follows: if a 

random route enters 𝑣 along edge 𝑒𝑖, its next edge is determined by 𝑒𝑘𝑖.  They later 

improve on SybilGuard by introducing SybilLimit [28], the key advantage of which is 

that rather than running one, long random route of length 𝑙, they run many shorter routes 

of length 𝑤, each under a unique routing table.  They are able to show that this approach 

is sufficient to bound the number of Sybil nodes accepted to 𝒪(log|V|) per attack edge.  

However, their approach comes with the drawback that the input graphs must be pre-

processed by iteratively removing nodes with degree lower than 5.  This is required both 

to ensure fast-mixing and because a node 𝑣 runs a random route through each of its 
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outgoing edges, and as such the number of routes ran by one 𝑣 is constrained by its 

degree. 

 

Since then, multiple protocols were proposed.  SybilInfer [11] uses a Bayesian model to 

assess the likelihood that a random trace was initiated by honest nodes.  They claim their 

protocol works in the distributed setting, however Yu et al. point out [28] its design is 

incomplete.  Gatekeeper [24] is adapted from the SumUp [25] protocol, which was 

originally designed for online content voting.  In Gatekeeper, a source 𝑠 picks 𝑚 random 

nodes to act as ticket sources, each of which distributes 𝑡 tickets in a distributed manner; 

the value 𝑡 is adjusted adaptively in order to ensure enough nodes receive tickets and thus 

are accepted.  Gatekeeper claims to limit the number of Sybils accepted to 𝒪(1) per 

attack edge.  However: 1) they assume the input graph is an expander graph, a stronger 

condition than the fast-mixing widely assumed elsewhere, and 2) they require the input 

graphs satisfy an added balance criterion that restricts the outcome of their ticket 

distribution mechanism.  They essentially only provide guarantees on graphs that 

conform to a standard that suits their protocol.  

 

All of these protocols rely on the assumption that their input graphs are fast-mixing.  

Mohaisen et al. report in [19], however, concrete measurements on a variety of social 

graphs demonstrating that this assumption doesn’t hold in practice.  They report that the 

graphs that do turn out to be fast-mixing, such as Facebook, are online social networks 

where there is no special need to be careful about which friend requests are accepted.  
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But the graphs that rely on strong, out-of-band trust links assumed by SybilLimit-like 

protocols, such as DBLP, are not fast-mixing.  They also point out that the pre-processing 

step required by SybilGuard and SybilLimit is problematic: in some cases it causes over 

75% of the nodes to be denied service.  Viswanath et al. [27] report that social graphs 

more closely take on a structure of several, loosely coupled communities, each of which 

are individually tightly connected, and point out that community detection algorithms 

serve largely the same purpose as the random walks in prior protocols.  

 

The next protocol we consider, SybilRank [10], provides the insight that the landing 

distribution of an early-terminated random walk – namely, length 𝒪(log 𝑡), where 𝑡 is the 

mixing time of the honest region – gives honest nodes enough of an advantage over the 

stationary distribution to be effectively distinguished from Sybil nodes.  SybilRank works 

by initializing a fixed amount of trust on a given number of seed nodes, and utilizing 

power iteration to compute this distribution in an efficient manner: intuitively, rather than 

simulating many random walks, it computes the exact distribution one step at a time until 

𝑡 steps.  They heuristically set 𝑡 = log⁡|𝑉| and demonstrate how the community structure 

can be handled by manually distributing seed nodes across several communities.  They 

compare against several other protocols and Mislove’s community detection [18] 

algorithm.  This algorithm functions as a greedy heuristic: to identify a community 𝐶 of 

surrounding nodes, the algorithm repeatedly adds the neighbor 𝑣 ∈ 𝑁(𝐶) such that 

adding 𝑣 results in minimal normalized conductance (according to the expected value). 
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In [3], Alvisi et al. further investigate parallels between Sybil defense and community 

detection.  They select the ACL algorithm [4], proving that if the mixing time of a 

community 𝐶 ⊆ 𝑉 is sufficient, it allows for almost all honest 𝑣 ∈ 𝐶 to compute a trust 

ranking, the first |𝐶| positions of which consist almost entirely of honest nodes in⁡𝐶.  This 

is a significant improvement as it is the first result to mathematically address the issue of 

individual fast-mixing communities, rather than addressing only the mixing time of the 

entire honest region and proceeding on a best-effort basis.  They demonstrate that ACL 

achieves robust results on a variety of social graphs, formalize two models of simulation 

for Sybil attacks, and examine what happens under much stronger attacks than those 

assumed elsewhere in the literature; namely, their model scales according to graph size 

and introduces attack edges proportionally to the number of edges, not vertices (or 

constant), in the graph.  As an example, under the LiveMocha graph we use later with 𝑝 = 

0.1, their model induces |𝑒𝑎| > 200,000, whereas |𝑒𝑎| in other studies is assumed to be on 

the order of magnitude of thousands.  Even the empirical analysis of SybilLimit 

conducted by Yu et al. [28] shows that on all graphs, the number of Sybil nodes accepted 

→ |V| as |𝑒𝑎| approaches 100,000. 

 

We must also describe the ACL algorithm itself: rather than handling normal random 

walks, ACL approximates the degree-normalized distribution that a node is visited by a 

random walk of geometric random length.  At each step, the random walk has probability 

𝛼 of returning to the source node, called the jumpback parameter.  This provides many of 

the guarantees of random walk theory while prioritizing nodes close to the source node, 
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ranking more highly nodes in the same community as the source.  This distribution is 

approximated by a repeated series of steps wherein nodes take the correct amount of trust 

for themselves and propagate the remainder to their neighbors – for a more detailed 

discussion, refer to [4] or Alvisi’s implementation [3].  The running time of ACL is 

𝒪(
1

𝛼𝜖
), where 𝜖 is an error parameter setting how close the approximated distribution 

must be to the limit distribution; this creates a tradeoff between its speed and the 

robustness of its results.  We discuss this in more depth in sections IV and V. 

 

It is also worth discussing the SumUp vote collection protocol [25].  SumUp, the ticket 

distribution of which was reused in Gatekeeper, is, in fact, based around flow.  To collect 

𝐶𝑚𝑎𝑥 votes for an object, a source 𝑠 distributes 𝐶𝑚𝑎𝑥 tickets to a set 𝑇 of nodes through 

breadth-first search until 𝑇 has 𝐶𝑚𝑎𝑥 outgoing edges.  𝑠 then calculates a set of flow paths 

to the nodes 𝑣 ∈ 𝑉 who have voted for that object.  These are combined within the flow 

envelope to create a flow of total capacity 𝐶𝑚𝑎𝑥.  This is a different and more restricted 

problem than that of universal Sybil defense, however, since rather than evaluating the 

trustworthiness of any other node in the graph, it aims to select specifically 𝐶𝑚𝑎𝑥 nodes 

out of a predefined set of nodes the size of which is expected to be much smaller than the 

total number of nodes in the graph.  As such, this approach is not adaptable to the 

problem of universal Sybil defense, and in fact, Tran et al. report on these limitations 

themselves [24] when presenting Gatekeeper. 

 

The intuition behind why flow algorithms seem promising under the context of Sybil 
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defense is fairly straightforward.  Suppose we have a graph 𝐺 = (𝑉, 𝐸) with honest and 

Sybil subgraphs 𝐻 and 𝑆 respectively.  If 𝑠 ∈ 𝐻 and 𝑒𝑎 is the set of attack edges, then 𝑒𝑎 

defines a cut separating 𝐻 and 𝑆.  Therefore, if we can find an 𝑠, 𝑣-flow 𝑓 of value 

𝑓 > |𝑒𝑎|, we must necessarily have 𝑣 ∈ 𝐻.  Ideally, in this way, we could cleanly 

separate the nodes in 𝐻 from the nodes in 𝑆.  Furthermore, it is not known whether this 

approach requires as strong of a set of assumptions as those assumed in many random 

walk-based protocols, which is particularly important to handle the “community” 

structure found in social graphs in practice.   

 

III – OUR APPROACH 

a) “Naïve” Approach 

To get an intuition of a flow-based approach for Sybil defense, consider whether a 

standard maximum flow algorithm, such as Ford-Fulkerson or preflow-push, can provide 

good results in the context of Sybil defense.  The most obvious way to apply such 

algorithms to our problem is in the following manner: for a source node⁡𝑠 ∈ 𝐻, calculate 

the maximum flow to all other nodes 𝑣 ∈ 𝑉 and set 𝑡𝑣 = 𝑓𝑚𝑎𝑥(𝑠, 𝑣). 

 

We find, however, that this approach is not sufficient.  We provide intuition why: for an 

attacked graph 𝐺, let 𝑒𝑎 be the set of attack edges, and let 𝑣 ∈ 𝑉.  Since 𝑠‘s trust value for 

𝑣, 𝑡𝑣, is the maximum flow from 𝑠 to⁡𝑣, it is equivalent to the minimum 𝑠, 𝑣-cut.  

However, we find that the capacity of the minimum 𝑠, 𝑣-cut is not bounded by |𝑒𝑎| as 

expected.  In fact, almost always, we have both deg⁡(𝑠) and deg(𝑣) < |𝑒𝑎|, meaning that 
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to find a smaller cut, we need only look at the edges incident to⁡𝑠 and 𝑣.  This means that 

this approach cannot possibly distinguish between honest and Sybil nodes: to do so, we 

need for honest nodes to attain a flow of at least |𝑒𝑎|.  As an example, on the epinions 

graph with 𝑝 = 0.01, we have |𝑒𝑎| ≈ 1,000, but 𝑑𝑒𝑔𝑚𝑎𝑥 = 443.  When we consider the 

average degree and not the maximum, the outlook is even worse: we have 𝑑𝑒𝑔𝑎𝑣𝑔 = 7.  

Indeed, in practice, we find that this does place a tight bound on the limiting cut for most 

𝑣, regardless of whether 𝑣 is honest or Sybil: for most 𝑣, we have 𝑡𝑣 = max⁡(deg⁡(𝑠), 

deg⁡(𝑣)).  

 

One possible way to mitigate this is to incorporate the neighbors of⁡𝑠 and 𝑣 into the flow 

calculation: meaning, calculate 𝑇1 = {𝑢 ∶ 𝑑𝑠(𝑢) ≤ 1}, 𝑇2 = {𝑢 ∶ 𝑑𝑣(𝑢) ≤ 1} and set 

𝑡𝑣 = 𝑓𝑚𝑎𝑥(𝑇1, 𝑇2).  However, we find this is still not sufficient: on average for the 

epinions graph, this only allows for 100~200 units of flow to be pushed from 𝑠 to 𝑣, still 

not enough to reach |𝑒𝑎|.  Moreover, this approach carries the risk that a source node 

𝑠 ∈ 𝐻 hoping to calculate its trust ranking will find that it is adjacent to the Sybil region, 

at which point the adversary can take an unlimited amount of flow from 𝑠. 

 

We conclude that by itself, the concept of maximum flow is insufficient to solve our 

problem.  We thus investigate algorithms that use flow as a core concept while being 

more specialized toward the goal of Sybil defense. 
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b) Our Approach 

Our approach is based on the insight that if flow is only allowed to be pushed “downhill” 

– meaning, pushed uniformly to nodes at greater distance from the source node⁡𝑠 – then 

this leverages the assumption that the adversary’s ability to create attack edges is limited 

and provides multiple other properties suitable for Sybil defense.  (Note that since the 

flow is pushed uniformly, the flow is separated throughout the graph exponentially by 

BFS level.)  To illustrate this, if 𝑣 ∈ 𝑆 is a Sybil node with exactly one attack edge 𝑢𝑣, 

then the flow 𝑣 receives from the honest region of the graph will primarily come from the 

one attacked vertex 𝑢, since the flow passed to 𝑆 over attack edges elsewhere must find 

its way over to 𝑣, being split apart exponentially at each hop.  Moreover, the flow 

received will be limited as 𝑣 only has one incoming edge, as opposed to, ideally, several 

incoming edges for a node in the honest region.  Furthermore, since the flow is spread out 

exponentially, it prioritizes nodes in close range of the source node 𝑠, which intuitively 

should make nodes in 𝑠’s community more likely to be highly ranked.  This approach 

also prioritizes nodes in denser areas of the graph, as even though a node 𝑣 cannot take 

flow from all of its neighbors, such 𝑣 would likely still have a significant proportion of 

their edges coming from nodes at the next lower distance which they could receive flow 

from.  Since social graphs consist mostly of nodes split into dense communities, this 

would serve to benefit honest nodes.  

 

This algorithm, which we call the “DownhillFlow” algorithm (abbreviated DF), is shown 

below: 
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Algorithm 1: DF1(𝑠, 𝑑𝑠) 
1. 𝑡𝑠 ← 1 

2. 𝑡𝑣 ← 0⁡∀𝑣 ∈ 𝐺 ∖ {𝑠} 
3. 𝑄 ← {𝑠} 
4. while 𝑄 ≠ ∅ do: 

5.  Extract 𝑣 ← 𝑄. 

6.  for 𝑤 ∈ 𝑁(𝑣) ∶ 𝑑𝑠(𝑤) = 𝑑𝑠(𝑣) + 1 do: 

7.   if 𝑡𝑤 = 0 then Insert 𝑄 ← 𝑤. 

8.   𝑡𝑤 ← 𝑡𝑤 + 𝑡𝑣/deg⁡(𝑣) 
9. 𝑡𝑣 ← 𝑡𝑣/ deg(𝑣)⁡∀𝑣 ∈ 𝐺 

10. return 𝑡 
 

Essentially, the algorithm functions by running a breadth-first search starting from the 

source node 𝑠.  When a node 𝑣 is processed, it splits its flow evenly among its deg⁡(𝑣) 

neighbors 𝑤.  Then 𝑣 pushes the flow to 𝑤 if 𝑑𝑠(𝑤) > 𝑑𝑠(𝑣) and discards it otherwise.  

Note that since we have 𝑑𝑠(𝑤) > 𝑑𝑠(𝑣) with the edge 𝑣𝑤 ∈ 𝐸, we must necessarily have 

𝑑𝑠(𝑤) = 𝑑𝑠(𝑣) + 1. 

 

Some generalizations are made in the above algorithm for readability.  We use 𝑑𝑠 to 

indicate the distance vector of all nodes from 𝑠, which the algorithm takes as input.  In 

practice, however, this is unnecessary as the distance calculation can be streamlined in 

the BFS mechanism of the algorithm.  Also, as with many other Sybil defense protocols, 

the trust values are all normalized by dividing by degree.  Rather than reiterating through 

all of the nodes to do this, this step can be done inside of the while loop in steps 4~8 after 

each node pushes flow to its neighbors, as its trust value is not used again after this is 

done.  In section V, we will show that this degree-normalization improves the precision 

of the algorithm (and in fact turns out to be necessary for the algorithm to compute results 

that are significantly above random) and speculate on why this is the case. 
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Initial tests of this algorithm showed promising results; however, there is still room for 

improvement.  Namely, the edges 𝑣𝑤 such that 𝑑𝑠(𝑣) = 𝑑𝑠(𝑤) are entirely ignored by 

the algorithm, since an edge 𝑣𝑤 has flow pushed across it if and only if 𝑑𝑠(𝑣) =

𝑑𝑠(𝑤) + 1 or vice versa.  This seems to go against the goal of ranking nodes more highly 

that fall into denser areas of the graph. 

 

We can remedy this by adding an extra step to the algorithm wherein a node 𝑣 accepts 

flow from its same-level neighbors.  Note that care needs to be taken to ensure that the 

same-level push step is simultaneous, i.e. nodes do not mix up their same-level flow 

before pushing to other nodes at the same level.  We show how this is done here: 

Algorithm 2: DF2(𝑠, 𝑑𝑠) 
1. 𝑡𝑠, 𝑠𝑠 ← 1 

2. 𝑡𝑣, 𝑠𝑣 ← 0⁡∀𝑣 ∈ 𝐺 ∖ {𝑠} 
3. 𝑄 ← {𝑠} 
4. while 𝑄 ≠ ∅ do: 

5.  Extract 𝑣 ← 𝑄. 

6.  for 𝑤 ∈ 𝑁(𝑣) ∶ 𝑑𝑠(𝑤) = 𝑑𝑠(𝑣) do: 

7.   𝑠𝑣 ← 𝑡𝑤/deg⁡(𝑤) 
8.  for 𝑤 ∈ 𝑁(𝑣) ∶ 𝑑𝑠(𝑤) = 𝑑𝑠(𝑣) + 1 do: 

9.   if 𝑡𝑤 = 0 then Insert 𝑄 ← 𝑤. 

10.   𝑡𝑤 ← 𝑡𝑤 + (𝑡𝑣 + 𝑠𝑣)/deg⁡(𝑣) 
11. 𝑡𝑣 ← (𝑡𝑣 + 𝑠𝑣)/ deg(𝑣)⁡∀𝑣 ∈ 𝐺 

12. return 𝑡 
 

Each node 𝑣 keeps track of a separate value, 𝑠𝑣 for its trust obtained from flow pushed 

from same-level nodes, and this value is not added into its total trust 𝑡𝑣 until immediately 

before 𝑣 pushes its trust to its higher-level neighbors.  This serves to modify DF1 such 

that rather than ignoring same-level edges, they are instead utilized “both ways”: same-

level nodes 𝑢 and 𝑣 that share an edge 𝑢𝑣 will both push the flow they receive from 
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lower-level nodes to each other across that edge. 

 

This provides a slight improvement over DF1, but still suffers from the issue that flow 

can only be pushed through same-level edges at most once per BFS level, as each node 

pushes to its higher-level neighbors after receiving its same-level flow.  It is not clear if it 

is possible to efficiently work around this limitation with this approach – not only is the 

asymptotic running time of the algorithm affected if the number of same-level push steps 

is not bounded by a constant, it is not clear exactly how many same-level pushes is 

optimal. 

 

A different approach is to use a token system to determine where flow should be pushed 

instead of relying entirely on the distance from 𝑠: 

 

Algorithm 3: DF3(𝑠, 𝑑𝑠) 
1. 𝑡𝑠 ← 1 

2. 𝑡𝑣 ← 0⁡∀𝑣 ∈ 𝐺 ∖ {𝑠} 
3. 𝑇 ← 1 

4. 𝑡𝑜𝑘𝑒𝑛𝑠 ← 𝑇 

5. 𝑡𝑜𝑘𝑒𝑛𝑣 ← 0⁡∀𝑣 ∈ 𝐺 ∖ {𝑠} 
6. 𝑄 ← {𝑠} 
7. while 𝑄 ≠ ∅ do: 

8.  Extract 𝑣 ← 𝑄. 

9.  for 𝑤 ∈ 𝑁(𝑣) ∶ 𝑡𝑜𝑘𝑒𝑛𝑤 = 0 or 𝑡𝑜𝑘𝑒𝑛𝑤 > 𝑡𝑜𝑘𝑒𝑛𝑣 do: 

10.   if 𝑡𝑜𝑘𝑒𝑛𝑤 = 0 then: 

11.    𝑇 ← 𝑇 + 1 

12.    𝑡𝑜𝑘𝑒𝑛𝑤 ← 𝑇 

13.    Insert 𝑄 ← 𝑤. 

14.   𝑡𝑤 ← 𝑡𝑤 + 𝑡𝑣/deg⁡(𝑣) 
15. 𝑡𝑣 ← 𝑡𝑣/ deg(𝑣)⁡∀𝑣 ∈ 𝐺 

16. return 𝑡 
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In this version of the algorithm, each node 𝑣 has a unique token, 𝑡𝑜𝑘𝑒𝑛𝑣, assigned to it.  

Here we start with 𝑡𝑜𝑘𝑒𝑛𝑠 = 1 and each time a new node is seen, we increment the token 

value by 1 and assign it to that node.  However, the tokens need not be constrained except 

that they must be unique and for nodes 𝑣 and 𝑤 with 𝑑𝑠(𝑣) > 𝑑𝑠(𝑤), we must have 

𝑡𝑜𝑘𝑒𝑛𝑣 > 𝑡𝑜𝑘𝑒𝑛𝑤.  DF3 accomplishes this since tokens are assigned only once, when we 

first see a node, and since it runs using BFS as a base, it processes all nodes in non-

decreasing order of distance, and thus there is no way to assign a node at a higher 

distance a token of lower value.  One caveat of this approach is that when we process a 

node 𝑣, we assign many tokens all at once to its neighbors⁡𝑤 ∈ 𝑁(𝑣), each of which must 

be unique.  Therefore, there must be some way of picking the order 𝑣’s neighbors are 

processed.  For our purposes, it suffices to pick them in random order. 

 

This approach is not perfect – it is possible that a node 𝑣 with several same-distance 

edges⁡𝑣𝑤 still will not receive flow from any of them, since we may have 𝑡𝑜𝑘𝑒𝑛𝑤 >

𝑡𝑜𝑘𝑒𝑛𝑣 for every such 𝑤 ∈ 𝑁(𝑣).  However, in terms of the edges used, it is a significant 

improvement over the first version of the algorithm as here all edges are used in one 

direction or the other, and improves on DF2 in that it does allow for some, limited, 

capability for flow to be continually pushed across a BFS level. 

 

Initial tests showed better results for this version of the algorithm than both DF1 and 

DF2.  It is not obvious to us if there is a better method of incorporating the same-distance 

edges into our algorithm in a way that preserves the efficiency of the algorithm (as well 
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as some other relevant properties that we will discuss later).  As such, all results reported 

henceforth for the centralized setting will be for DF3. 

 

Note that all versions of the algorithm have time complexity 𝒪(|𝑉| + |𝐸|).  For DF1 and 

DF3, the while loop in steps 4 and 7 respectively processes each vertex at most once, and 

the for loop in steps 6/9 runs at most once in total for each edge of the graph.  For DF2, 

the while loop processes each vertex at most once, and the for loop processes same-level 

edges at most twice and all other edges at most once.  As the distance calculation and 

normalization by degree can both be streamlined within the while loop, neither of these 

steps add to the time complexity of the algorithm. 

 

c) Theoretical Guarantees and Relation to Random Walks 

We do not prove any theoretical guarantees of DownhillFlow in this thesis, instead 

aiming to show its effectiveness experimentally through comprehensive simulation.  We 

leave analysis of the theoretical guarantees of DownhillFlow to future work.  For our 

purposes, we do not believe this to be a problem, primarily for reasons discussed in I and 

II: without preprocessing, as with SybilGuard, it is very hard to define constraints that 

apply universally to all social graphs, and even traits widely assumed about social graphs 

in the literature, such as fast-mixing, do not appear to hold in practice [17, 19].  

Moreover, the “defense in depth” approach put forth by Alvisi [3] provides an argument 

that it is not too much of a disaster if one individual protocol fails to address all 

possibilities: theoretical weaknesses of one protocol can be made up for by additionally 
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using other protocols with orthogonal weaknesses.  For this reason, we believe that it is 

of utmost importance to demonstrate robustness in practice first and delve into theory 

later. 

 

It is worth noting that although DownhillFlow is designed to function as a flow 

algorithm, it turns out that the trust vector it computes can be modeled in terms of a 

specific type of random walk.  We show how this is done here: let 𝑠 ∈ 𝐻 be a source 

node, and let 𝑑 be the distance vector from 𝑠 to all nodes 𝑢 ∈ 𝐺.  At any given step of the 

walk, with 𝑣 being our current node, we pick a uniformly random 𝑤 ∈ 𝑁(𝑣).  Then we 

move to 𝑤 if and only if 𝑑𝑤 = 𝑑𝑣 + 1 and stop otherwise.  This walk, which we call a 

“downhill random walk”, shares similarity to the geometric-length random walks used by 

ACL, with a major difference: rather than having probability 𝛼 of the walk ending at all 

hops, the probability instead varies at each hop, according to the ratio of each 𝑣’s higher-

level neighbors to all its neighbors.  Since many of ACL’s community-detection 

guarantees stem from the use of its geometric-length random walks, we speculate based 

on this similarity that the distribution calculated by DownhillFlow effectively serves as a 

method of more loosely identifying a community of nodes surrounding 𝑣.  We leave 

further discussion to future work. 

 

IV – EXPERIMENTAL SETUP 

a) Robustness Tests 

To measure the robustness of DownhillFlow’s results, we compare against the ACL 
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community detection algorithm, which is implemented as in [2].  We also compare 

against SybilGuard, as although it was the first widely cited protocol using the social 

graph structure as a foundation for Sybil defense, it is one of the few existing protocols 

that retains the quality of being distributed.  We aim to show that DownhillFlow obtains 

results better than those of SybilGuard, and only slightly worse than those of ACL. 

 

We use five graphs, which we selected from both Stanford Network Analysis Project [23] 

and Online Network Repository [22].  The graphs range in size from |𝑉|  26,000 to |𝑉| 

 300,000.  The graphs, along with various properties of them, are listed in Table 1: 

Graph |𝑉| |𝐸| 𝑑𝑒𝑔𝑎𝑣𝑔 𝑑𝑒𝑔𝑚𝑎𝑥 Diam. 

epinions 26,588 100,120 7.53 443 17 

Twitter 81,306 1,768,149 33.01 3,383 7 

Slashdot 82,168 948,464 12.27 2,552 11 

LiveMocha 104,103 2,193,083 42.13 2,980 6 

DBLP 317,080 1,049,866 6.62 343 21 

Table 1: Number of nodes, number of edges, average and maximum degree, and 

diameter for the epinions, Twitter, Slashdot, LiveMocha, and DBLP graph datasets used 

in our study.  The datasets were obtained from [22, 23]. 

 

Our methodology closely resembles that of Alvisi et al. in [3].  We simulate Sybil attacks 

on the above five graphs under the two models of attack introduced in section Ib, and 

generate full trust rankings across all nodes in each graph.  For the random attack model, 

we test with with 𝑝 = 0.01, 0.03, 0.05, 0.07, 0.09.  For the fixed attack model, we test two 

sets of parameters, intended to represent a weak attack (𝑔 ≈
1

100
|𝐸|) and a strong attack 

(𝑔 ≈
1

10
|𝐸|).  𝛾 is set according to |𝑉|: with the exception of epinions, we set 𝛾 = 25,000 

when |𝑉| < 100,000 and⁡𝛾 = 50,000 otherwise.  Because of its small size, we set 𝛾 = 
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5,000 for epinions. 

 

The parameters tested are listed in Table 2: 

Graph (𝑔, 𝛾), weak (𝑔, 𝛾), strong 

epinions (1,000, 5,000) (10,000, 5,000) 

Twitter (16,000, 25,000) (160,000, 25,000) 

Slashdot (10,000, 25,000) (100,000, 25,000) 

LiveMocha (20,000, 50,000) (200,000, 50,000) 

DBLP (10,000, 50,000) (100,000, 50,000) 

Table 2: Parameters for the fixed attack model.  Both weak and strong attacks are 

simulated.  The number of Sybil nodes 𝛾 remains the same for each graph, while the 

number of attack edges 𝑔 varies. 

 

To reduce the variance of our results, we test each iteration of the experiment from ten 

sources and take the average of the values we obtain.  We speculate in section VII on 

whether it may be possible to obtain better results by combining the values in other 

manners besides the average.  Since SybilGuard requires its input graphs to be 

preprocessed such that all nodes of degree fewer than 5 are iteratively removed, we 

perform that step as well when testing SybilGuard, but not with DownhillFlow or ACL.  

We also limit the source selection to nodes that do not fall within distance 2 of the Sybil 

region after the graph is attacked.  When this is impossible, we allow nodes that fall 

within distance 2, but not within distance 1 (i.e. nodes adjacent to the Sybil region) – this 

is sufficient to cover all cases. 

 

We configure ACL to have 𝛼 = 10
-3

 and 𝜖 = 10
-6

 for epinions, 𝜖 = 10
-7

 for all other 

graphs.  These settings are identical to the ones proposed by Alvisi et al. in [3].  

Throughout all tests henceforth, the value of 𝛼 is fixed, and we investigate only 
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variations to the value of⁡𝜖.  Some additional care needs to be taken to compute the trust 

ranking in the case of SybilGuard.  While DownhillFlow and ACL naturally compute a 

trust vector 𝑡 across all nodes in the graph, SybilGuard functions differently: it’s a 

protocol designed such that a honest source 𝑠 can choose to accept or reject any other 

single node in the graph 𝑣.  Thus, for our experiment, we set 𝑡𝑣 to be the number of⁡𝑠’s 

random routes that accept 𝑣.  Note that because the graphs in SybilGuard are 

preprocessed, deg(𝑠) ≥ 5, and since⁡𝑠 originates a random route from each edge incident 

to it, one source 𝑠 will always have at least 5 random routes.  Also note that in 

SybilGuard, a node 𝑣 is accepted if at least 
deg(𝑠)

2
 of 𝑠’s routes accept 𝑣, so we have 

essentially eliminated this check and used the count of accepted routes directly.  We also 

need to set the length of the random routes 𝑙.  Yu et al. [29] recommend a route length of 

𝑙 = Θ(√𝑛 log(𝑛)), but this bound is asymptotic and we must set the hidden constant.  We 

determined this by manually testing several such constants and using the one for which 

SybilGuard generated the best results. This was 1/40 for epinions and 1/100 for other 

graphs. 

 

Table 3 shows the effects of preprocessing the graphs for SybilGuard and the exact route 

lengths used for random attack, 𝑝 = 0.01: 

 

b) Running Time Tests 

We analyze the running time of DownhillFlow by comparing it to that of ACL.  

DownhillFlow has an asymptotic running time of 𝒪(|𝑉| + |𝐸|) and takes no parameters, 
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 |𝑉|, 
original 

|𝑉|, pre-

processed 

% 

removed 

 

𝑙 
epinions 26,588 5,904 77.79% 15 

Twitter 81,306 62,516 23.11% 27 

Slashdot 82,168 26,752 67.44% 16 

LiveMocha 104,103 79,811 23.33% 31 

DBLP 317,080 98,942 68.79% 36 

Table 3: Information for our graphs related to SybilGuard.  The original number of 

nodes, number of nodes remaining after preprocessing, and % removed are shown along 

with the route length 𝑙. 
 

so we can simply measure its running time.  However, ACL’s situation is more 

complicated: its running time is 𝒪(
1

𝛼𝜖
), inversely proportional to the jumpback parameter 

𝛼 and error parameter 𝜖.  This means that its running time is determined by the desired 

accuracy of its results: increasing 𝜖 gives less precise results, but makes the algorithm 

finish more quickly.  In fact, increasing 𝜖 too much means that some nodes 𝑣 aren’t even 

recognized by ACL – that is, they have 𝑡𝑣 = 0.  Of course, if 𝑡𝑣 = 0, 𝑣 can’t possibly be 

distinguished from any Sybil node.  So, we must not only measure the precision of 

ACL’s results, but the fraction of nodes for which ACL actually obtains results.  We say 

that ACL “captures” a node 𝑣 for a certain 𝜖 if it returns 𝑡𝑣 > 0 for that 𝜖. 

 

Another point about ACL’s running time is that it is entirely independent of the size of 

the graph, depending on only the jumpback and error parameters 𝛼 and 𝜖.  In theory, this 

would mean that as the graph size tends to infinity, ACL’s running time would be less 

than that of DF.  It is not so clear, however, if and where the 𝒪(|𝑉| + |𝐸|) bound 

overtakes the 𝒪(
1

𝛼𝜖
) bound on social graphs in use today.  It is also not clear the impact of 

graph size on the value of 𝜖 necessary to capture the entire honest region. 
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To give insight into both of these problems, we run DownhillFlow and ACL on epinions 

and DBLP, the two extremes amongst the graphs we use in testing in terms of |𝑉|, under 

the random attack from ten sources and measure the running time across each run.  We 

assume a qualitative worst-case scenario for purposes of DownhillFlow’s results: 𝑝 is set 

to the largest possible value where DownhillFlow is capable of distinguishing a large 

portion of the graph (for our purposes, we require at least 90% precision at 50% recall).  

For epinions, 𝑝 = 0.1; for DBLP, 𝑝 = 0.03.  For ACL, we vary 𝜖 across a range of values.  

We start at the 𝜖 value used in the experiments in i (for which ACL captures the entire 

graph), and increase the value logarithmically until ACL’s running time becomes lower 

than that of DF.  For each run of ACL, we measure its running time, its percentage of 

honest nodes captured 𝐻𝐶𝜖 and its precision over the nonzero portion of the trust ranking 

– in other words, at 𝐻𝐶𝜖 recall.  Then we compare its precision with that of DF at recall 

𝐻𝐶𝜖 for that run.  We report on how the two algorithms compare to each other when 𝜖 is 

raised enough to make ACL match DF’s running time.  From there, we extrapolate on 

what would happen on larger graphs. 

 

c) Obtaining Multiple Sources from One Honest 𝑠  

One pitfall of using only a single source node 𝑠 is that it may not be able to effectively 

distinguish nodes outside of its community from nodes in the Sybil region, thanks to the 

fact that the communities are also separated by sparse cuts.  As such, we look into 

possibilities for a source node 𝑠 to pick multiple other sources in a way where 1) they are 

all likely to be honest, and 2) combining the results of these sources gives results more 
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robust than those generated from 𝑠 alone.  Ideally, by utilizing this type of approach, the 

source node 𝑠 could leverage the community sub-structure of the social graph to pick 

other honest sources throughout the graph’s various communities, correctly scoring a 

wider range of honest nodes highly in the ranking.  This idea is not new – algorithms 

such as Gatekeeper [24] have similar source distribution mechanisms in place, and Cao et 

al. [10] report about using manual verification to distribute their sources – but the 

technical workings of such mechanisms vary from algorithm to algorithm.  Therefore, we 

wish to isolate ideas that work well specifically for DownhillFlow. 

 

We investigate the following methods for a source node 𝑠 (chosen randomly from the 

honest region, under the constraint that 𝑠 is not within distance 2 of the Sybil region) to 

determine multiple other, trusted sources: 

 Top 10 positions of the trust ranking 𝑡. 

 Top 10 positions of the trust ranking 𝑡, subject to the condition that the nodes are 

spread out across different distances.  In this case, we force the nodes to be 

distributed as uniformly as possible from distances 1 to 5. 

 Top 10 positions of the trust ranking 𝑡 such that all nodes are of distance 𝑑 or 

greater from 𝑠.  We test 𝑑 = 4, 5. 

 Top 10 positions of the trust ranking 𝑡 such that all nodes are of distance 𝑑 or 

greater from each other.  We test 𝑑 = 4, 5. 

 Ten random nodes from the top 𝑘 percent of the trust ranking 𝑡, chosen uniformly.  

We test 𝑘 = 1%, 10%.  
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We also measure the following for comparison purposes: 

 Ten randomly determined honest nodes. 

 One node running ACL. 

These tests were all ran on the epinions graph under a random attack with 𝑝 = 0.1.  The 

value of 𝜖 used for ACL was set to 10
-6

, as with the experiments in IVa. 

 

V – RESULTS 

a) Robustness 

Figure 1 shows the precision-recall curves for DownhillFlow on all five graphs under the 

random attack model.  On all graphs but DBLP, DownhillFlow generates good results 

even at 𝑝 = 0.09.  Table 4 gives the exact precision values for DownhillFlow on epinions 

at 50%, 90%, and 95% recall.  We also report the corresponding results for ACL in 

Figure 2 and Table 5, respectively.  The results obtained for ACL are consistent with 

those obtained by Alvisi in [3].  At 95% recall, ACL continues to identify honest nodes 

with high precision even under stronger attacks. 

 

Figure 3 shows precision-recall curves comparing DownhillFlow’s results with those 

obtained by ACL and SybilGuard on epinions and DBLP at 𝑝 = 0.01, 0.05.  We obtained 

similar results in all other iterations of the experiment, with exception of the strong fixed 

attack.  In all cases but that case, for all graphs, ACL’s results are more robust than those 

of DownhillFlow, which in turn are more robust than those of SybilGuard.  Recall that 
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Figure 1: Precision-recall curves for DownhillFlow on epinions (top left), Twitter (top 

right), Slashdot (middle left), LiveMocha (middle right), and DBLP (bottom) graphs. 

 

 50% 90% 95% 

𝑝 = 0.01 0.996 0.987 0.980 

𝑝 = 0.03 0.979 0.952 0.919 

𝑝 = 0.05 0.962 0.887 0.801 

𝑝 = 0.07 0.955 0.888 0.806 

𝑝 = 0.09 0.929 0.811 0.684 

Table 4: Precision of DownhillFlow on epinions by attack strength under the random 

attack model at 50%, 90% and 95% recall.  A value of 0.5 corresponds to a random 

ranking. 
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Figure 2: Precision-recall curves for ACL on epinions (top left), Twitter (top right), 

Slashdot (middle left), LiveMocha (middle right), and DBLP (bottom) graphs. 

 

 50% 90% 95% 

𝑝 = 0.01 1.000 1.000 1.000 

𝑝 = 0.03 0.998 0.998 0.998 

𝑝 = 0.05 0.992 0.989 0.983 

𝑝 = 0.07 0.991 0.986 0.968 

𝑝 = 0.09 0.971 0.961 0.922 

 

Table 5: Precision of ACL on epinions by attack strength under the random attack model 

at 50%, 90% and 95% recall.  A value of 0.5 corresponds to a random ranking. 
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Figure 3: Precision-recall curves comparing ACL, DownhillFlow and SybilGuard.  The 

tests shown are epinions (left) and DBLP (right) at 𝑝 = 0.01 (top) and 𝑝 = 0.05 (bottom).  

SybilGuard degrades much more quickly than DownhillFlow under stronger attacks. 

 

for SybilGuard, we report results on the preprocessed input graphs, compared to the raw 

input graphs for DownhillFlow and ACL.  Perhaps somewhat counter-intuitively, under 

the strong fixed attack, SybilGuard overtakes both DownhillFlow and ACL on the twitter 

and DBLP graphs.  The results for LiveMocha are also mixed, as SybilGuard stays 

slightly ahead of ACL for most of the trust ranking, but its precision decreases rapidly at 

around 60% recall.  DownhillFlow and ACL’s results continue to remain mostly 

correlated – whichever one is better varies depending on the graph.  However, it must 

also be noted that under many of the strong fixed attacks, almost no trust rankings were 

noticeably above random, except on LiveMocha.  Also note that the fixed attack model 

was the model SybilGuard was originally studied under in [29]. 
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The preprocessing step for SybilGuard proved to be problematic in several iterations of 

the experiment: we found that for strong enough attacks, it was impossible to find ten 

source nodes not within distance 2 of the Sybil region after preprocessing.  This did not 

happen with any of the raw input graphs, and as such DownhillFlow and ACL did not 

suffer from this problem.  Note that even when suitable source nodes were possible to 

pick after SybilGuard’s preprocessing step, which was the case in all iterations for both 

epinions and DBLP as well as all iterations for which 𝑝 = 0.01, DownhillFlow’s results 

were still more robust than those of SybilGuard in all iterations besides the strong fixed 

attacks.  Additionally, the results for SybilGuard on other graphs besides epinions and 

DBLP were qualitatively very similar to those for epinions on DBLP under all attack 

strengths, usually being satisfactory until⁡𝑝 = 0.03 but experiencing a sharp drop at the 𝑝 

= 0.05 level regardless of how the distance was constricted.  While the values we 

obtained in section IV support the result of Mohaisen et al. in [19], this result seems to 

provide an argument that not only does preprocessing rule out nodes, it can actually serve 

to endanger the nodes that do remain in the graph after the preprocessing step is finished.  

 

For a full collection of precision-recall curves for all iterations of the experiment (taking 

graph, attack type/strength and protocol as parameters), consult Appendix A.  Both 

graphs comparing by values of 𝑝 and graphs comparing by protocol are included there. 

 

b) Running Time 

Table 6 shows the average running time across the ten source nodes for DownhillFlow 
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and ACL on epinions and DBLP, respectively.   

 epinions DBLP 

DF 0.099 s 1.263 s 

ACL, 1.0*10
-7 

--- 45.6 min + 

ACL, 2.0*10
-7

 --- 9.5 min + 

ACL, 4.5*10
-7

 --- 17.313 s 

ACL, 1.0*10
-6

 4.4 min + 4.397 s 

ACL, 2.0*10
-6

 54.165 s + 1.920 s 

ACL, 4.5*10
-6

 0.405 s 1.585 s * 

ACL, 1.0*10
-5

 0.099 s * 0.742 s * 

Table 6: Running time of DownhillFlow vs. ACL on epinions and DBLP graphs 

(average, 10 runs).  The speed/𝜖 tradeoff is shown for ACL and compared to 

DownhillFlow (no parameters), starting at the value used in a).  Values marked with + 

show ACL captures all honest nodes, i.e. 𝑡𝑣 > 0 ∀𝑣 ∈ 𝐻.  Values marked with * begin 

from the highest 𝜖 where ACL’s running time is slower. 

 

For DownhillFlow, the running time in our implementation cleanly follows its asymptotic 

bound: |𝑉| + |𝐸| is slightly over 10 times larger for DBLP (1,366,946) than epinions 

(126,708).  When ACL captures the entire honest region, its running time also cleanly 

follows its asymptotic bound.  The running times for DBLP are approximately ten times 

those of epinions, while the value of 𝜖 was reduced by a factor of 1/10.  When the 𝜖 value 

is set high enough for ACL to start missing nodes, however, the running time improves at 

a rapid rate, faster than its asymptotic bound would suggest.  Eventually, increasing 𝜖 

enough allows ACL’s running time performance to overtake that of DownhillFlow. 

 

So what happens to ACL’s results at that point?  As Table 6 shows, on both graphs ACL 

does not match DownhillFlow’s speed until well after it begins to miss nodes.  We 

examine ACL’s behavior on both graphs individually.  Table 7 shows more detailed 

information for the epinions graph, including the percentage 𝐻𝐶𝜖 of the honest region 
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captured and precision at 𝐻𝐶𝜖 recall: 

 

 epinions # 𝑣 ∈ 𝐻 

missed 
𝐻𝐶𝜖 ACL prec. 

at 𝐻𝐶𝜖 recall 

DF prec. at 

𝐻𝐶𝜖 recall 

DF 0.099 s --- --- --- --- 

ACL, 1.0*10
-6

 4.4 min + 0 + 100.00% + --- --- 

ACL, 2.0*10
-6

 54.165 s + 0 + 100.00% + --- --- 

ACL, 4.5*10
-6

 0.405 s 926 96.51% 0.648 0.581 

ACL, 1.0*10
-5

 0.099 s * 8,058 * 69.69% * 0.759 * 0.874 * 

Table 7: Running time of DownhillFlow versus ACL on epinions, including the 𝐻𝐶𝜖 

obtained by ACL under various 𝜖 values.  The two rightmost columns compare 

DownhillFlow’s precision versus that of ACL among the % of the trust ranking 

recognized by ACL, 𝑝 = 0.1. 

 

 

Figure 4: Precision-recall curve of DownhillFlow compared to ACL on epinions ran at 𝜖 

= 10
-5

, 𝑝 = 0.1.  At 69.69% recall, ACL’s curve begins to drop linearly as its results 

correspond to random. 

 

This seems to indicate a mix of results: DownhillFlow enjoys a significant precision 

advantage compared to ACL at 𝜖 = 10
-5

 among the nonzero portion of ACL’s trust 

ranking, but at the next lower 𝜖 level, this advantage is lost. 

 

Next we focus on DBLP.  Table 8 shows detailed information for the DBLP graph.  On 

DBLP, ACL’s decrease in ability to capture honest nodes is more noticeable.  At the 
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point where ACL matches DownhillFlow, ACL only captures 31.10% of the honest 

region; even at the next lower 𝜖 level, we have only 𝐻𝐶2.0∗10−6 = 56.66%, while 

DownhillFlow still obtains slightly better precision.  This seems to indicate that 

 DBLP # 𝑣 ∈ 𝐻 

missed 
𝐻𝐶𝜖 ACL prec. at 

𝐻𝐶𝜖 recall 

DF prec. at 

𝐻𝐶𝜖 recall 

DF 1.263 s --- --- --- --- 

ACL, 1.0*10
-7 

45.6 min + 0 + 100.00% + --- --- 

ACL, 2.0*10
-7

 9.5 min + 0 + 100.00% + --- --- 

ACL, 4.5*10
-7

 17.313 s 10,156 96.79% 0.580 0.516 

ACL, 1.0*10
-6

 4.397 s 60,590 80.89% 0.690 0.637 

ACL, 2.0*10
-6

 1.920 s 137,410 56.66% 0.757 0.775 

ACL, 4.5*10
-6

 1.585 s * 218,443 * 31.10% * 0.798 * 0.832 * 

ACL, 1.0*10
-5

 0.742 s * 266,348 * 15.99% * 0.828 * 0.845 * 

Table 8: Running time of DownhillFlow versus ACL on DBLP, including the 𝐻𝐶𝜖 

obtained by ACL under various 𝜖 values.  The two rightmost columns compare 

DownhillFlow’s precision versus that of ACL among the % of the trust ranking 

recognized by ACL, 𝑝 = 0.03. 

 

 

Figure 5: Precision-recall curve of DownhillFlow compared to ACL on DBLP ran at 𝜖 = 

4.5 *10
-6

, 2.0 * 10
-6

, 𝑝 = 0.03. 

 

DownhillFlow’s advantage is greater on larger graphs, as the larger the graph, the smaller 

𝜖 required for ACL to capture the complete honest region. 
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It is worth noting that it is not necessarily a bad thing if ACL fails to capture 100% of the 

honest nodes – on both graphs, a proper choice of 𝜖 (4.5 * 10
-6

 for epinions and 4.5 * 10
-5

 

for DBLP) allows ACL to capture a significant majority of the honest region (>96% in 

both cases), while still incurring the rapid decrease in running time that occurs when 

ACL does not capture the whole graph.  While it was previously known (and in fact a 

part of ACL’s design) that higher values of 𝜖 resulted in faster running time and some 

nodes 𝑣 ∈ 𝑉 having 𝑡𝑣 = 0, to our knowledge, we are the first to report actual running 

times showing that ACL can capture a large portion of the honest subgraph while still 

being fast. 

 

That being said, we next revisit our assumption of a worst-case scenario for 

DownhillFlow and ask: is DownhillFlow’s advantage more significant under a weak 

attack?  And if so, how much greater of a proportion of nodes can DownhillFlow rank 

precisely than is capturable by ACL?  Table 9 and Figure 6 show the percentage of nodes 

recalled by DownhillFlow at 99.00% and 98.00% precision and the precision-recall 

curves for DownhillFlow and ACL, respectively, under a very weak attack (𝑝 = 0.001).  

For ACL, we report the values for 𝜖 = 2.0 * 10
-6

 and 4.5 * 10
-6

: 

Value % nodes 

DF, 0.990 prec. 84.16% 

DF, 0.980 prec. 92.53% 

ACL, 𝐻𝐶2.0∗10−6 59.85% 

ACL, 𝐻𝐶4.5∗10−6 34.69% 

Table 9: Comparing the percentage of nodes DownhillFlow can recall at precision 99%, 

98% versus the percentage of nodes captured by ACL at 𝜖 = 2.0 * 10
-6

, 4.5 * 10
-6

, 𝑝 = 

0.001.  Note that these 𝐻𝐶𝜖 values are higher than those for 𝑝 = 0.03 since there are fewer 

attack edges. 
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Although we have assumed an unreasonably weak attack, these findings seem to confirm 

our intuition: when the attack strength is weak enough, DownhillFlow can recall a far 

greater proportion of the graph at good precision than ACL can capture (at any 

precision).  We have yet to investigate how this effect downscales as the attack strength 

increases upward back to 𝑝 = 0.01~0.03. 

 

Figure 6: Precision-recall curve for DownhillFlow versus ACL at 𝜖 = 2.0 * 10
-6

, 4.5 * 

10
-6

 for 𝑝 = 0.001. 

 

c) Obtaining Multiple Sources from One Honest 𝑠 

Figure 7 shows the precision-recall curves for the different methods of obtaining multiple 

sources from one honest 𝑠. 
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Figure 7: Precision-recall curves comparing various ways of choosing multiple sources 

from a trust ranking.  For comparison, we show the results for one source, ten random 

sources and one node running ACL on all graphs.  The remaining curves are as follows.  

Top-left: Top 10 (top ten nodes) and top 10 different 𝑑 (top-ranked nodes at different 

distances spread uniformly 1 < 𝑑𝑠(𝑣) < 5); Top-right: 𝑑4 and 𝑑5 (top-ranked nodes at 

distances 4, 5 respectively); Bottom-left: 𝑑4ALL and 𝑑5ALL (top-ranked nodes all 

distances 4, 5 from each other respectively); Bottom-right: 1% and 10% (ten random 

nodes from the top 1% and 10% of the trust ranking respectively). 

 

The results range from moderately better than with one 𝑠 (but still slightly worse than 

random) to noticeably worse.  Particularly, selecting the top 10 nodes from the trust 

ranking and picking 10 nodes randomly from the highest 𝑘% of the ranking fared worse 

off than one node.  In the former case, we speculate this is because picking the top 10 

nodes with no further processing usually just results in a group of nodes clustered around 

𝑠.  In the latter case, we speculate that due to its randomness, the approach is too 

susceptible to accepting either 1) “bad” sources that are close or adjacent to the Sybil 

region, or 2) Sybil nodes themselves. 

 

The most robust results were obtained by selecting nodes from the top of the trust ranking 

in a way where they had to be distance at least 𝑑 from each other; this approach both with 

𝑑 = 4, 5 outranked the other approaches.  We suspect that out of the approaches we tried, 
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this approach is the most effective at spreading the source nodes throughout the entire 

graph, and thus being more likely to place source nodes within different communities. 

 

d) Results Without Degree Normalization 

We also tested how DownhillFlow performs without the degree-normalization step at the 

end as it was not immediately obvious how this step is beneficial to the algorithm.  Figure 

8 shows the precision-recall curves for DownhillFlow on epinions, without the degree-

normalization step.  Skipping over the degree-normalization step makes the resulting trust 

list worse by a significant margin: 

 

Figure 8: Precision-recall curve for DownhillFlow on epinions without degree-

normalization (left).  For comparison, the original curve is shown (right). 

 

The reason many random walk distribution-based protocols (such as SybilRank [10] and 

ACL [3]) normalize by degree is because the stationary distribution 𝜋 is not a uniform 

distribution: it is proportional to the degree of the nodes.  Thus normalizing by degree 

eliminates the bias nodes would otherwise receive by having high degree.  Since degree 

normalization helps the robustness of our algorithm, we would thus expect this bias to be 

present in the non-normalized results: a manual inspection of the trust ranking produced 
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at 𝑝 = 0.09 confirms this is the case, with higher-degree nodes being concentrated near 

the top of the ranking and all Sybils within the top 500 positions of the ranking having 

deg⁡(𝑣) > 12 (and most having deg⁡(𝑣) > 30).  We thus speculate that although our 

algorithm is based around flow, we can still draw connections to random walk theory 

when investigating its properties, as with the approach discussed in IIIc. 

 

 

 

VI – DISTRIBUTED SETTING 

We have shown that in the centralized setting, the results obtained by DownhillFlow are a 

significant improvement over those obtained by SybilGuard.  We have also shown that 

for the results it achieves, DownhillFlow has excellent running time performance, and 

that its results overtake those of ACL when ACL’s error parameter 𝜖 is pushed such that 

ACL’s speed matches that of DownhillFlow.  However, we are still missing one piece of 

the puzzle: namely, showing how to adapt DownhillFlow to the distributed setting.  To 

get a suitable distributed protocol, we need 1) the source node 𝑠 to be able to get its trust 

vector 𝑡 without knowledge of the full graph topology, and 2) all nodes 𝑣 ∈ 𝑉 to have 

only 𝒪(|𝑉|) space to work with.  The centralized version of the algorithm makes use of 

the fact that the entity running the algorithm knows (and stores in memory) the full 

topology of the graph.  Therefore, we need a different approach in order to meet these 

two assumptions.  In this section, we discuss possible approaches to this by drawing on 

results from two other cryptographic fields: accumulators and e-cash. 
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We first introduce the notion of a cryptographic accumulator.  Cryptographic 

accumulator schemes were first proposed in [7], and allow for a set of input values 𝒳 

over an input domain 𝒵𝑖 to be combined, or “accumulated”, into a single value 𝑎𝑐𝑐𝒳 ∈

𝒵𝑎, such that the original set 𝒳 cannot be forged or tampered with.  This is done using 

witnesses: for each 𝑥𝑖 ∈ 𝒳, we can compute a witness 𝑤𝑥𝑖
, which a verification algorithm 

can use to verify 𝑥𝑖 ∈ 𝒳.  It must be computationally infeasible to compute a witness 𝑤𝑥𝑖
 

for a value 𝑥𝑖 ∉ 𝒳.  We provide a simplified definition, taken from [12], which we urge 

the reader to consult for a more detailed discussion about the properties enjoyed by such 

schemes and the various accumulator schemes in use today: 

 

Definition 2 (Cryptographic accumulator): A static cryptographic accumulator scheme 

is a 4-tuple of efficient algorithms  (Gen, Eval, WitCreate, Verify) which are defined as 

follows: 

1. Gen(1𝑘, 𝑡): Takes as input 𝑘, a security parameter, and 𝑡, the maximum size of 

the set 𝒳 supported by the accumulator scheme.  If there is no upper bound on the 

size of 𝒳, then 𝑡 = ∞.  Returns the private/public accumulator key pair 

(𝑆𝐾𝑎𝑐𝑐 , 𝑃𝐾𝑎𝑐𝑐). 

2. Eval((𝑆𝐾𝑎𝑐𝑐
~ , 𝑃𝐾𝑎𝑐𝑐),𝒳): Takes as input (optional) 𝑆𝐾𝑎𝑐𝑐,⁡𝑃𝐾𝑎𝑐𝑐 and the set⁡𝒳 of 

values to be accumulated and returns the accumulated value 𝑎𝑐𝑐𝒳. 

3. WitCreate((𝑆𝐾𝑎𝑐𝑐
~ , 𝑃𝐾𝑎𝑐𝑐), 𝑎𝑐𝑐𝒳 , 𝑥𝑖): Takes as input (optional) 𝑆𝐾𝑎𝑐𝑐,⁡𝑃𝐾𝑎𝑐𝑐 an 

accumulated value⁡𝑎𝑐𝑐𝒳 and a value 𝑥𝑖.  Computes and returns a witness 𝑤𝑥𝑖
 if 

𝑥𝑖 ∈ 𝒳 and returns false otherwise. 
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4. Verify(𝑃𝐾𝑎𝑐𝑐 , 𝑎𝑐𝑐𝒳 , 𝑤𝑥𝑖
,⁡𝑥𝑖): Takes as input ⁡𝑃𝐾𝑎𝑐𝑐, an accumulated value⁡𝑎𝑐𝑐𝒳, 

a witness 𝑤𝑥𝑖
 and a value 𝑥𝑖.  Returns true if 𝑤𝑥𝑖

 is a witness proving 𝑥𝑖 ∈ 𝒳 and 

false otherwise. 

 

𝑆𝐾𝑎𝑐𝑐
~  is used in the above definition to indicate that the secret key passed as input is 

optional; henceforth, when an algorithm is called without the secret key, we denote this 

by using ∅ in its place.  Note that the definition provided above is for a static 

accumulator scheme.  This differs from a dynamic accumulator scheme in that 

essentially, the set 𝒳 is fixed in place when the Eval algorithm is called.  In a dynamic 

scheme, additional algorithms are provided to allow for addition and deletion of elements 

to 𝒳 and to update the witnesses 𝑤𝑥𝑖
 when a value 𝑥𝑗 ≠ 𝑥𝑖 is added to or deleted from 𝒳.  

We focus on the static setting here as dynamic schemes are harder to construct and we do 

not need the added functionality they provide.  Note also that we do not instantiate any 

cryptographic accumulator schemes in this thesis.  We do, however, assume the existence 

of a black-box static, unbounded accumulator scheme over an input domain 𝒵𝑖 such that 

there exists a hash function ℋ:⁡𝒯 → 𝒵𝑖 accepting a set of flow tickets 𝒯, which we define 

shortly, as its domain.  

 

We can apply accumulators to DownhillFlow by taking advantage of the fact that to 

know where a node 𝑣 should push flow, we need only look at the nodes 𝑤 ∈ 𝑁(𝑣) and 

their corresponding 𝑑𝑠(𝑤)s.  Each 𝑣 makes use of several flow tickets, denoted 〈𝑣, 𝑤〉, 

indicating it is to push flow to a target node 𝑤.  Then each⁡𝑣 forms a set 𝐴𝐿𝐿𝑇𝑣 of all 
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tickets going in and out from itself.  We can then store the entire set 𝐴𝐿𝐿𝑇𝑣 using one 

value 𝑎𝑐𝑐𝑣.  𝑣 forwards this information to 𝑠 by composing another set, 𝑉𝐸𝑅, of (ticket, 

witness) pairs the witness of which indicates that the ticket 〈𝑖, 𝑗〉 is a part of the value 

𝑎𝑐𝑐𝑖.  Note we have either 𝑖 or 𝑗 = 𝑣.  𝑠 can use the witnesses from the 𝑉𝐸𝑅 set to verify 

that the tickets it receives are legitimate, and thus can update 𝑣’s trust accordingly.  𝑠 

maintains a hash table ℳ linking nodes to (trust value,⁡𝑎𝑐𝑐, |𝐴𝐿𝐿𝑇|) tuples, and thanks to 

the space-saving property accumulators provide, this all takes only 𝒪(|𝑉|) space.   Note 

also that 𝑠 must instantiate its own 𝐴𝐿𝐿𝑇 and 𝑎𝑐𝑐 values and propagate its own tickets for 

use by its neighbors. 

 

Before proceeding further, we must note a contingency.  First, degree-normalization here 

does not function the same way as with the centralized version of the algorithm: 𝑠 stores 

the base 𝑡𝑣 and subsequently calculates the final trust value by dividing by |𝐴𝐿𝐿𝑇𝑣| as 

opposed to deg⁡(𝑣).  It is possible to mitigate this by requiring nodes to keep track of 

empty tickets for their neighbors at the same level.  However, we then run into a different 

problem: the adversary has full control over the Sybil region 𝑆 and can thus arrange it 

such that 𝑆 has no nodes at the same BFS level with each other, making |𝐴𝐿𝐿𝑇𝑣| =

deg(𝑣)⁡∀𝑣 ∈ 𝑆!  We thus conclude that it is sufficient to use |𝐴𝐿𝐿𝑇𝑣| for all nodes 

(which can only increase the trust). 

 

The protocol is shown below in algorithms 4.1 (for a source node 𝑠) and 4.2 (for a non-

source node 𝑣): 
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Algorithm 4.1: DF1_DIST (source node 𝑠) 

 // Initialization 

1 ℳ ← ∅ 

2 𝐴𝐿𝐿𝑇 ← ∅ 

 // Compute entry for⁡𝑠 and push first round of tickets 

3 for each higher-level node 𝑣 do: 

4  𝑇𝑣 ← 〈𝑠, 𝑣〉 
5  𝐴𝐿𝐿𝑇 ← 𝐴𝐿𝐿𝑇 ∪ {ℋ(𝑇𝑣)} 
6 𝑎𝑐𝑐 ← Eval((𝑃𝐾𝑎𝑐𝑐, ∅), 𝐴𝐿𝐿𝑇) 

7 for each higher-level node 𝑣 do: 

8  send 〈𝑇𝑣, 𝑎𝑐𝑐〉 to 𝑣 

 // Register entry for 𝑠 in the hash table ℳ 

9 ℳ.add(𝑠, (1, 𝑎𝑐𝑐, |𝐴𝐿𝐿𝑇|)) 
 // Receive 𝑉𝐸𝑅 messages from the rest of the graph 

10 for each 〈𝑉𝐸𝑅𝑣〉 from 𝑣 ≠ 𝑠 do: 

  // Initialize info for 𝑣 

11  𝑡𝑣 ← 0 

12  𝐴𝐿𝐿𝑇𝑣 ← ∅ 

  // Add flow for each incoming ticket that is verified 

13  for each (𝑇 ∶= 〈𝑖, 𝑗〉, 𝑤) ∈ 𝑉𝐸𝑅𝑣 do: 

14   if 𝑗 = 𝑣 and Verify(𝑃𝐾𝑎𝑐𝑐 , 𝑎𝑐𝑐𝑖, 𝑤, 𝑇) = true then 𝑡𝑣 ← 𝑡𝑣 +
𝑡𝑖

|𝐴𝐿𝐿𝑇𝑖|
 

15   𝐴𝐿𝐿𝑇𝑣 ← 𝐴𝐿𝐿𝑇𝑣 ∪ {ℋ(𝑇)} 
  // Compute 𝑣’s 𝑎𝑐𝑐 value and store entry for 𝑣 in ℳ 

16  𝑎𝑐𝑐𝑣 ← Eval((𝑃𝐾𝑎𝑐𝑐 , ∅), 𝐴𝐿𝐿𝑇𝑣) 

17  ℳ.add(𝑣, (𝑡𝑣, 𝑎𝑐𝑐𝑣, |𝐴𝐿𝐿𝑇|𝑣)) 
 // Repeat step 10 until a suitable amount of nodes are accepted.  𝑠 may terminate the 

 // protocol at its own discretion. 

 

This approach carries a variety of limitations, which we proceed to discuss.  The first is 

that even though the protocol is executed in a distributed manner, the flow computation is 

all done locally at 𝑠 (albeit requiring only 𝒪(|𝑉|) space).  This is not suitable for a 

distributed protocol: it would be more intuitive if the computation required to calculate 

the flow could be distributed throughout the graph as well, in a way where nodes have a 

proof of work which could be sent back to 𝑠.   
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Algorithm 4.2: DF1_DIST (non-source node 𝑣) 

 // Initialization 

1 𝐴𝐿𝐿𝑇 ← ∅ 

2 𝑉𝐸𝑅 ← ∅ 

 // Receive tickets from lower-level nodes 

3 for each 〈𝑇𝑢 ∶= 〈𝑢, 𝑣〉, 𝑎𝑐𝑐𝑢〉 from lower-level nodes 𝑢 do: 

4  𝑤𝑢 = WitCreate((𝑃𝐾𝑎𝑐𝑐 , ∅), 𝑎𝑐𝑐𝑢,ℋ(𝑇𝑢)) 
5  𝑉𝐸𝑅 ← 𝑉𝐸𝑅 ∪ {(𝑇𝑢, 𝑤𝑢)}  
6  𝐴𝐿𝐿𝑇 ← 𝐴𝐿𝐿𝑇 ∪ {ℋ(𝑇𝑢)} 
 // Compute 𝑎𝑐𝑐, push info to higher-level nodes and to 𝑠 

7 for each higher-level node 𝑤 do: 

8  𝑇𝑤 ← 〈𝑣, 𝑤〉 
9  𝐴𝐿𝐿𝑇 ← 𝐴𝐿𝐿𝑇 ∪ {ℋ(𝑇𝑤)} 
10 𝑎𝑐𝑐 ← Eval((𝑃𝐾𝑎𝑐𝑐, ∅), 𝐴𝐿𝐿𝑇) 

11 for each higher-level node 𝑤 do: 

12  send 〈𝑇𝑤 , 𝑎𝑐𝑐〉 to 𝑤 

13 send 〈𝑉𝐸𝑅, 𝑎𝑐𝑐〉 to 𝑠 

 // End 

 

Another limitation stems from the algorithm’s complexity at 𝑠.  The for loop in step 10 is 

ran at most 𝒪(|𝑉|) times.  The for loop in step 13 is at most 𝑑𝑚𝑎𝑥 times, however it is 

only ran in total at most twice in for each edge in the graph.  In step 14, 𝑎𝑐𝑐𝑢 is obtained 

from the hash table ℳ, which is 𝒪(1) average-case complexity (but⁡𝒪(|𝑉|) worst-case).  

In step 14, the Verify algorithm is called, and step 15 is constant, so assuming constant-

time witness verification, as in for instance [20], these loops contribute 𝒪(|𝑉| + |𝐸|) total 

average complexity.  However, step 16 calls the Eval algorithm, and as such, its time 

complexity at that step is determined by the time complexity of the Eval algorithm.  

Further, it takes 𝐴𝐿𝐿𝑇𝑣 as input, which is 𝒪(|𝑉|) size worst-case.  However, as shown in 

section IV, this is not indicative of the average-case complexity: |𝐴𝐿𝐿𝑇𝑣| is tightly 

bounded by 𝑑𝑒𝑔𝑚𝑎𝑥, which for many social graphs ≪ |𝑉|.  Since the Eval algorithm 

must be efficient, this contributes 𝒪(|𝑉|𝑑𝑒𝑔𝑚𝑎𝑥
2) average complexity, which is the 
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dominating factor. 

 

A third limitation is that the protocol assumes each 𝑣 is aware of which of its neighbors 

are lower-level vs. higher-level (or same-level).  This is in part based upon the result of 

Bazzi et al. [5], which presents a secure distance-vector routing protocol wherein Sybil 

nodes generally may not report a lower distance to 𝑠 than their actual distance.  However, 

that protocol carries a few corner cases where this condition does not hold: for instance, 

Sybil nodes 𝑣 can report a lower distance if there exists a closer 𝑢 ∈ 𝑆.  It is not clear to 

us how to circumvent this. 

  

We next investigate solutions to the above limitations by noting that the requirement that 

Sybil nodes may not create arbitrary flow shares strong similarity with the security 

requirement of electronic cash.  Electronic cash was originally designed by Chaum [9] as 

a system for electronic payments, and the many schemes in the literature since share a 

variety of properties.  We give an informal description of these properties below, 

modeled after the categorization of Okamoto et al. [21]: 

1. Privacy – Users cannot be identified by their purchases. 

2. Security – Users cannot forge or double-spend coins. 

3. Offlineness – Users can make purchases directly to merchants without consulting 

with the bank. 

4. Transferability – Users can transfer their coins to other users. 

5. Divisibility – A coin 𝐶 can be divided into multiple, smaller pieces such that any 
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total value less than 𝐶 can be obtained. 

Since the field’s inception, electronic cash systems have been designed with privacy and 

security in mind first and foremost.  The intuition behind why the security property is 

useful for our purposes is as follows: if we had a suitable scheme, a source node 𝑠 could 

start with some amount of currency, say $1, and begin by distributing it to its neighbors.  

From there, each 𝑣 could add up its currency, report to 𝑠 on how much they have, and 

continue by transferring it to nodes at the next BFS level.  Under a suitable electronic 

cash scheme, the security property would guarantee mathematically that 𝑣 could not 

forge extra currency, thus enabling 𝑠 to accept 𝑣‘s report as is with no need for further 

verification.  The privacy property, on the other hand, is not useful for our purposes – 

there is no need for the source node 𝑠 to be unable to identify where a node 𝑣 pushed or 

received its currency from.  In fact, we have the opposite scenario:⁡𝑠 would be better off 

having as much information as possible about 𝑣’s currency.  This property is particularly 

limiting for our purposes as, indeed, practically all existing electronic cash schemes 

require substantial technical construction to ensure the privacy property is satisfied. 

 

Moreover, while the divisibility property is suitable for the purposes of electronic cash, it 

is not strong enough for our purposes: in fact, we need for coins⁡𝐶 to support arbitrary 

rational denominations 𝑚/𝑛.  No existing electronic cash scheme accomplishes this, and 

constructing one falls outside the scope of this thesis. 

 

We also must talk about transferability.  Assuming an offline scheme, this is obviously 
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necessary, but what is not as obvious is that nodes 𝑣 ≠ 𝑠 must have the capability to 

combine multiple coins 𝐶1, 𝐶2, … into one coin 𝐶.  This is because at each hop, a node 𝑢 

splits its coins based on deg⁡(𝑢), and as such, with no way of combining coins, the 

number of coins in circulation grows exponentially by BFS level.  This causes issues for 

both space and time complexity (as each⁡𝑣 would need to total up the value of its coins to 

report to 𝑠, which in turn would need to process this information).  Under the online 

setting, the situation is different: a node 𝑣 simply cashes in its coins at 𝑠, at which point 𝑠 

mints them a new coin valued at the total value of 𝑣’s coins.  Thus neither transferability 

(nodes push their currency by spending, not transferring) nor the requirement that coins 

can be combined are needed.  However, this creates a bottleneck at 𝑠, and indeed, this 

bottleneck is widely cited in the literature as a compelling reason electronic cash systems 

should aim for offlineness. 

 

We further continue this discussion in section VII. 

 

VII – OPEN PROBLEMS AND FUTURE WORK 

We have experimentally demonstrated the effectiveness of DownhillFlow in the 

centralized setting, both in terms of its results and its running time.  We have also made 

progress towards realizing an implementation of DownhillFlow in the distributed setting.  

However, we are not quite fully there: namely, our implementation of the distributed 

algorithm using accumulators is for the DF1 version of the algorithm (refer to section 

III), not DF3.  While DF1 was showed to obtain promising results in initial testing, its 
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results were worse than those of DF3 and we have not tested it under the same level of 

experimental rigor we have done for DF3.  To bridge this last gap, we need a way of 

assigning the tokens used by DF3 in a distributed, Sybil-resilient manner.  Recall that the 

tokens are numeric values that are unique and satisfy the condition that if 𝑢, 𝑣 ∈ 𝑉 with 

𝑑𝑠(𝑢) > 𝑑𝑠(𝑣), we must have 𝑡𝑜𝑘𝑒𝑛𝑢 > 𝑡𝑜𝑘𝑒𝑛𝑣.  One idea may be to simply have each 

𝑣 coordinate with each of their same-level neighbors 𝑤 ∈ 𝑁(𝑣) to agree on a random 

orientation of each shared edge 𝑣𝑤: while this does not explicitly assign numeric tokens, 

it may be possible this approach would be effective in randomly ordering the nodes at an 

individual BFS level, the same result provided by the tokens. 

 

We also have not showed the robustness of DownhillFlow’s results theoretically.  While 

this does not take away from the fact that its results as is serve as a very good heuristic 

for computing trust vectors, we must take caution: lack of a mathematical foundation can 

open the protocol to theoretical corner cases that experimental testing may not have 

accounted for.  Mislove’s community detection [18] serves as an example of this, as 

while it was heuristically shown to obtain robust results on social networks in multiple 

studies (for instance [3, 10]), attacks exist that can cause it to deterministically admit 

every node in the Sybil region [2].  Moreover, understanding the mathematical 

foundation of the algorithm is the first step towards refining it into something more 

theoretically sound – it may, for instance, be possible that some improvements that would 

appear minor could be technicalities that can serve to mathematically guarantee “good” 

results. 
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We chose SybilGuard as the distributed protocol to compare DownhillFlow against; 

however, there is at least one other option, namely SybilLimit [28].  SybilLimit was 

introduced by Yu et al. as an improvement over SybilGuard, and was shown by Alvisi et 

al. [3] to achieve results more robust than (but qualitatively similar to) most existing 

random walk-based protocols.  Recall that the major difference proposed by SybilLimit 

over SybilGuard is that rather than running one, long random route of length 𝑙 for each 

node, it runs many iterations of the random routes, each with shorter length 𝑤 and 

different routing tables.  While the results demonstrated for SybilLimit in [3] look 

promising for our algorithm from a qualitative standpoint, a particularly notable instance 

of this being the DBLP graph with 𝑝 = 0.01, it is yet to be determined how SybilLimit 

performs in our experiments when tested with the same rigor. 

 

While we combined our results in section V using the average, it is not known if this is 

actually the best way to do so: given how DownhillFlow works, putting the results 

together in a different way may lead to more robust results.  In our initial testing, it 

appeared that actually, removing the highest 𝑘 trust values for each node and then taking 

the average led to higher precision at 50% recall (but the precision dropped off steeply 

afterward).  We suspect this is because this enforces the notion that a node 𝑣 must have 

high trust from many nodes, not just one, to rank highly in the overall ranking.  This stops 

Sybil nodes from being highly ranked just by sharing, for instance, one attack edge close 

to a source.  Furthermore, it is not known whether this type of approach could be 

generalized to other algorithms such as ACL. 
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Although we would need further guarantees for our purposes, constructing a rational-

valued electronic cash scheme is an interesting problem even when viewed entirely on its 

own.  While many schemes in the literature achieve divisibility, a core foundation of all 

of these schemes since electronic cash’s introduction in [9] is the principle that each coin 

be given a fixed, constant value, and the insight that this allows coins to be minted and 

spent in a disjoint, incremental manner.  As such, the schemes that achieve divisibility 

largely do so by requiring the existence of a minimum “base” value for which coins can 

be broken into.  For instance, in [21], divisibility is achieved using a hash tree that splits 

the values of coins in half repeatedly; however, without a base value (i.e., $0.01), this 

approach cannot yield exact results.  The scheme in [8] supports withdrawals of size 2𝑙 in 

a way that requires only 𝒪(𝑙 + 𝑘) time/space, where 𝑘 is a security parameter.  But in this 

scheme, each individual coin withdrawn still has a fixed value.  

 

To give an example of why this is insufficient for DownhillFlow’s purposes, we need 

only note that on the epinions graph at 𝑝 = 0.01, DownhillFlow computes trust values for 

some nodes on the order of 10
-10

.  DBLP fares even worse, at 10
-14

.  That means that to 

achieve accurate results, we would need to process over one hundred trillion coins, which 

is clearly not viable. 

 

Last, we discuss potential applications of DownhillFlow based on its running time.  In 

section V, we showed that DownhillFlow ran very quickly, averaging 0.099 seconds for 

epinions and 1.263 seconds for DBLP.  We also demonstrated that when ACL’s error 
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paremeter 𝜖 was set such that it ran at similar speeds, DownhillFlow’s results overtook 

those of ACL both in terms of robustness and the percent of honest nodes captured.    

However: is running time actually a significant advantage in practice? 

 

To look into this, we extrapolate towards what might happen on even larger graphs.  We 

consider the Tuenti graph [26] (|𝑉|  11M, |𝐸|  1.422b) as an observation point as there 

exist Sybil defense protocol studies [10] that have reported measurements of running 

times on this graph.  Some social graphs, however, are even larger, for instance 

sinaweibo (|𝑉|  20M), friendster (|𝑉|  65M) and the complete Facebook graph [16] (if 

we estimate based on the number of users, we have |𝑉| > 2.0b!). For the Tuenti graph, 

using the asymptotic bound for DownhillFlow, we could expect a running time of 

roughly 22.1 minutes (|𝑉| + |𝐸|  1.433b).  For ACL, on the other hand, an even lower 

value of 𝜖 may be required in order to capture the entire honest region of the graph.  

Based on the running times for epinions and DBLP, setting 𝜖 = 10
-8

 (i.e. reducing by 

another factor of 10) may yield running times of over 45.6 min * 10  7.5 hours.  This is 

already an improvement over SybilRank in [10], which claimed a (parallelized) running 

time of over 20 hours on Tuenti.  Since our implementations of DownhillFlow and ACL 

were not parallelized, it is likely the actual time improvement of both of these algorithms 

on larger graphs is greater. 

 

However, the people maintaining such graphs are likely social network operators, whose 

systems have very large live time.  As such, they would not be severely time constrained 
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and would most likely be better off investing in the costly algorithms to get the most 

precise results.  Social network operators could also take advantage of parallelization to 

speed up costly algorithms such as ACL.  So, if not larger graphs, where to go? 

 

We propose that the most suitable application for DownhillFlow is in dynamic networks.  

Such networks are not likely to be too large, and even for DBLP DownhillFlow finishes 

in slightly over a second.  Thus it does not need any added mechanisms to support 

addition/removal of nodes – the network operator can simply run the protocol and obtain 

a near-instant assessment of trust for the network at that time.  Other suitable applications 

most likely include hypothetical scenarios where a TTP wishes to generate personalized 

on-the-fly trust rankings for a node to use: we can, for instance, imagine a file-sharing 

system where a TTP keeps track of who trusts who, but provides no other services.  In 

that way, a node 𝑣 could call on the TTP for a personalized snapshot of “good” nodes for 

themselves before deciding which to work with.  However, the number of nodes with the 

desired file will be ≪ |𝑉|.  As such, both speed and high inclusivity are needed. 

 

Another scenario where high inclusivity is needed is, in fact, in online content voting.  As 

discussed previously in section II, there exists a protocol, SumUp [25], for Sybil defense 

in this context, and it is not clear whether DownhillFlow or SumUp obtains better results 

for it, especially since both are based around flow.  However, one thing that is apparent is 

that even though SumUp is claimed to be adaptable to the distributed setting, it isn’t 

under our restrictions: the method shown for this is simply for the source node 𝑠 to obtain 
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a trace of the entire graph.  As such, a more in-depth investigation may prove fruitful. 

 

VIII – CONCLUSION 

In this thesis, we presented the Sybil defense algorithm DownhillFlow and demonstrated 

the robustness of its results experimentally.  We took steps towards implementing 

DownhillFlow in the distributed setting, showing a concrete approach based around a 

black-box cryptographic accumulator with weak assumptions and a link to the problem of 

constructing a non-private, rational-valued electronic cash scheme.  We showed that 

DownhillFlow’s results were more robust than those of SybilGuard, one of the few Sybil 

defense protocols in circulation today that retains the quality of being distributed.  We 

also showed results for ACL very similar to those obtained by Alvisi et al. in [3], which 

were more robust by a slight margin than those of DownhillFlow. 

We also analyzed DownhillFlow’s running time versus that of ACL, a community 

detection algorithm shown to obtain near-optimal trust ranking on several social graphs, 

and showed that not only was DownhillFlow significantly faster without measures to 

terminate ACL early, but that when ACL’s error parameter 𝜖 was adjusted enough to 

make it match DownhillFlow’s speed, DownhillFlow’s results were more robust both in 

terms of precision/recall and the proportion of honest nodes recognized.  This effect was 

most noticeable on larger graphs and under weaker attacks – for DBLP under a weaker 

attack, DownhillFlow identified 92.53% of the honest region at satisfactory precision, 

while ACL was only able to capture 31.10% of the honest region at all. 
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To our knowledge, we are the first both to 1) investigate Sybil defense protocols based 

around flow, and 2) report concrete running time measurements showing ACL’s 

robustness/speed tradeoff within the context of Sybil defense.  Based on DownhillFlow’s 

near-instant running time, we propose dynamic networks as its most promising 

application. 
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APPENDIX I 

PRECISION-RECALL CURVES GROUPED BY PROTOCOL AND ATTACK 

STRENGTH, ALL ITERATIONS 
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In this appendix, all precision-recall curves are presented, organized as in V: epinions 

(top-left), twitter (top-right), Slashdot (middle-left), LiveMocha (middle-right), DBLP 

(bottom).  Entries 1 ~ 6 are sorted by protocol and compare attack strengths against each 

other: the DownhillFlow, ACL and SybilGuard protocols are all shown.  The remaining 

entries, 7 ~ 13, are sorted by attack type and compare the protocols against each other: 

the random attack with 𝑝 = 0.01 … 0.09 and the fixed attack with weak and strong 

parameters are shown. 
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1) DownhillFlow, random model 
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2) DownhillFlow, fixed model 
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3) ACL, random model 
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4) ACL, fixed model 
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5) SybilGuard, random model 
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6) SybilGuard, fixed model 
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7) Random attack, 𝑝 = 0.01 
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8) Random attack, 𝑝 = 0.03 
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9) Random attack, 𝑝 = 0.05 

 

 

 

  



 

70 

10) Random attack, 𝑝 = 0.07 

 

 

 

  



 

71 

11) Random attack, 𝑝 = 0.09 
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12) Fixed attack, weak 
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13) Fixed attack, strong 

 

 

 

 


