

Control for Resonant Microbeam Vibrotactile Haptic Displays

By

Kendra Lee-Ann Kim

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2018 by the

Graduate Supervisory Committee:

Angela Sodemann, Chair

John Robertson

Ajay Bansal

ARIZONA STATE UNIVERSITY

May 2018

i

ABSTRACT

 The world’s population is currently 9% visually impaired. Medical sciences do

not have a biological fix that can cure this visual impairment. Visually impaired people

are currently being assisted with biological fixes or assistive devices. The current

assistive devices are limited in size as well as resolution. This thesis presents the

development and experimental validation of a control system for a new vibrotactile haptic

display that is currently in development. In order to allow the vibrotactile haptic display

to be used to represent motion, the control system must be able to change the image

displayed at a rate of at least 30 frames/second. In order to achieve this, this thesis

introduces and investigates the use of three improvements: threading, change filtering,

and wave libraries. Through these methods, it is determined that an average of 40

frames/second can be achieved.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES ... iv

LIST OF FIGURES ...v

INTRODUCTION ...1

 Resonant Microbeam Vibrotactile Haptic Display Concept8

CONTROL PROBLEM ANALYSIS ..14

 Proposed Solution ..18

 Solution Options Overview ...18

 Threading ...19

 Change Filtering...19

 Wave Library ...20

 Solution Details ...21

EXPERIEMENTATION AND RESULTS ...31

 Experimental Setup ...31

 Experimental Results ...33

CONCLUSIONS AND DISCUSSION ...50

FUTURE WORK ...53

REFERENCES ...53

APPENDIX I ..53

iii

 Page

APPENDIX II ...63

APPENDIX III ..69

iv

LIST OF TABLES

Table Page

1. Benchmarking of Basic Python Control ..17

2. Dynamic Link Libraries ...21

3. Results of the Threading Time Study ..48

4. Results of the Change Filtering Experiment ..49

5. Results of the Wave Library Experiment...49

6. Wave Library Improvements for Experimental Conditions ..49

v

LIST OF FIGURES

Figure Page

1. Representation of Human Echolocation ..2

2. Representation of Retina Implant ..3

3. Photo of Blind Seeing Eye Dog and Cane in Use ..4

4. Electro tactile tongue display ...6

5. Electro tactile braille display ...7

6. Array of Cantilever Beams ..9

7. Flow chart of vibrotactile display ..11

8. Motors Currently being used for Vibration Application ..13

9. Flow chart of Python Control System ..21

10. Threading Representation of Image Dividing for Parallel Execution25

11. 12 Levels of Grayscale...26

12. Comparison of 8-bit depth and 4-bit depth of the same image27

13. Flow chart of Python Control System with Conditional Statement for Significant

Image Change ..28

14. Flow chart of Python Control System with Predetermined Waves29

15. Tolerance of 0-5 pixel changes for Conversation Benchmark.....................................32

16. Average Change of Pixels vs. Pixel Differential in Conversation Scenario33

17. Tolerance of 0-5 pixel changes for Driving Benchmark ...34

18. Tolerance of 0-5 pixel changes for Hallway Benchmark ..35

19. Average Change of Pixels vs. Pixel Differential in Driving Scenario36

vi

Figure Page

20. Average Change of Pixels vs. Pixel Differential in Walking Down a Hall Scenario ..36

21. Tolerance of 0-5 pixel changes for City Path Benchmark ...37

22. Tolerance of 0-5 pixel changes for Landscaped Path Benchmark38

23. Average Change of Pixels vs. Pixel Differential in Walking Down a City Path

Scenario..39

24. Average Change of Pixels vs. Pixel Differential in Walking Down a .. Landscape Path

Scenario..39

25. Percent of Frame Changed with Tolerance Increase for Pixel Changes < 50040

26. Percent of Frame Changed with Tolerance Increase for Pixel Changes < 100041

27. Percent of Frame Changed with Tolerance Increase for Pixel Changes < 150042

28. Percent of Frame Changed with Tolerance Increase for Pixel Changes < 200043

29. Percent of Frame Changed with Tolerance Increase for Pixel Changes < 250044

30. Percent of Frame Changed with Tolerance Increase for Pixel Changes < 300045

31. Percent of Time Saved vs the Difference Tolerances ..45

1

1. Introduction

 There are 19% of people in the world that must live with disabilities. These

impairments have a substantial effect on each person’s life. Although this is unfortunate,

there are assistive technologies both in use and being developed world wide to help

overcome these disabilities. One of the more common disabilities is visual impairment.

Visual impairment includes partially sighted, legally blind, and totally blind individuals.

Sensory disabilities which include visual impairments are currently being assisted with

biological fixes or assistive devices.

Biological fixes are the utilization of the human abilities to aid the visually

impaired through other bodily functions. Biological fixes can provide aid with a range

from allowing the patient to function at a high level to increase visual capability.

Echolocation is an example of a biological fix that allows the patient to function at a high

level. Echolocation is the ability to locate objects with the reflected sound on those

objects shown in Figure 1. The primary visual cortex drives a remapping phenomenon,

neuroplasticity to echolocate objects [1].

2

Figure 1: Representation of Human Echolocation

Another biological fix is the retina implant. The restoration of sight to people that are

blind by retinal degeneration is done with retinal prostheses. Retinal implants utilize an

external camera to convert an image to an electrical signal. The pattern of this electrical

signal is used for a improved visual ability of the patient shown in Figure 2. The retina

implant has 1500 microphotodiodes which is roughly 38 x 38 resolution [2]–[4].

Although this is a significant increase in vision, the resolution is restricted by

photodiodes sizes and input/out ratio of the signal.

3

Figure 2: Representation of Retina Implant

In addition to the resolution limitation, the implants are invasive, requiring surgery and

the destruction of the patient’s existing visual mechanism. Also, the implants are

expensive with a cost of $150,000. Unfortunately, the only patients that have this solution

available to them are individuals who lost their photoreceptors due to retinal diseases and

can afford the surgery [2]. Because of these limitations, the retinal implants are not the

most ideal solution for majority of the visually disabled.

 In addition to biological fixes, there are also assistive devices that improve the life

of the visually disabled person. One of the simpler assistances available is the guide dog

shown in Figure 3. These assistive animals are trained to go around obstacles and safely

lead their blind owner. Another simple assistive device available is the cane. There are

two different kinds of commonly used canes. The first is a support cane that not only

provides support but helps identify the user as an individual with low vision. The second

is a probing cane; which assists in locating obstacles.

4

Figure 3: Photo of Blind Seeing Eye Dog and Cane in Use

 Although these devices are beneficial to ensure the safety of the patient, they do

not enable the patient to understand what obstacles they are encountering. An alternate

type of assistive device which does allow understanding of the encountered obstacles is

the audio device. Audio devices are a type of technical assistance that provides either a

description or an echolocation support for the visually disabled. Audio device assistive

technologies are helpful because visual disability is independent of the patient’s sensory

development [5]–[7]. Due to the sensory development being independent of the

disability, some visually impaired were able to detect and classify different objects in

complex scenes with echolocation [1].

There are also audio devices that produce words to describe a scene that have

proven to be very helpful to the patients. However, these audio devices are still limiting.

One of the main concerns for those that are visually disabled is their safety. There is an

5

assistive technology that maps the environment of the patient and alarms them of traffic

and pedestrian signals in real time [8]. Audio solutions have not been considered

successful because of the limitations in the information that can be sent to the user. The

echolocation solution previously discussed in the introduction allows the patients to

determine that there is an object ahead, however, it does not give a depiction of what that

object ahead is. With the technologic assistive devices, the patients can hear an audio

voice to describe the environment however, this is limiting the available information to

the patient. For example, the assistive device may state that you are walking in a park, but

may not include the detail of the fall season and describe the color changes in the leaves.

Due to these limitations in audio solutions, they are to be considered not as effective in

the lifestyle improvement of the user as other assistive devices, such as the haptic

devices.

 In addition to audio devices, there are haptic devices that also assist the visually

disabled. There are two main types of haptic display devices. The first type of display are

the electro tactile displays that are represented in the braille and tongue placed solutions.

The second main type of display is the vibration display. A revolutionary assistive device

to help the visually impaired is the electro tactile tongue placed display. The electro-

tactile tongue placed display consists of an array of small electrodes placed on a flat

surface. The electrode array is connected to a cable which connects it to a camera in the

user’s glasses. As illustrated in Figure 4, a grayscale image is captured from the camera,

then the charge on each electrode is varied based on the grayscale level read from a

corresponding pixel in the image.

6

Figure 4: Electro tactile tongue display

 The electrode array is placed on the user’s tongue. Thus, the user perceives an

image through a ‘tingling’ sensation that varies with the captured image. The electro-

tactile tongue display has successfully resulted in an improvement in the patient’s quality

of life with the ability to sense objects within the view of the user. In one case, a patient

was able to participate in a tic tac toe game for the first time with his daughter [9].

Unfortunately, the electrode array gives a maximum resolution of 32 x 32. This low

resolution is due to the limited surface available on the tongue as well as the number of

electrodes required in the output of the device.

 In addition to the electro tactile tongue display, the electro tactile braille display

has also been developed. The electro tactile braille display converts the letters of text into

braille that the user is able to feel on the finger sleeve, as shown in Figure 5 [10]–[13].

7

Figure 5: Electro tactile braille display

Braille is a written language that has raised dots that represent characters, therefore the

limitations in braille are not resolution. The limitations in braille include the boundaries

of the description to only be available for text conversion and ability to present

information within a timely manner. Aside from the Electro tactile braille display, all

other assistive representation technologies are currently limited in resolution [3], [9].

 Besides the electro-tactile display, another approach to a haptic display is the

vibro-tactile display. A vibro-tactile display utilizes vibrating elements rather than

electrode elements for the ‘tactile pixels’. The vibro-tactile display has the advantage of

not requiring placement on the tongue, which allows a much larger potential surface area

for placement of the device. The larger surface area would also potentially allow for a

high resolution.

All of the haptic display solutions found in the literature have two primary

complications: The low resolution and the one pin per element problem. Resolution is the

number of pixel contained in an image. A visual digital image commonly has a resolution

8

such as 640x480 or 720x1080 pixels. However, the current highest- resolution tactile

display has a resolution of less than 32x32. Since a visual image becomes more difficult

to interpret the lower the resolution is, it is expected that an image with a resolution as

low as 32x32 would not be able to be interpreted by a viewer. Therefore, the low

resolution of the haptic displays is a significant impediment to their success.

The one pin per element problem stems from the need to individually control each

tactile pixel independently of the other. In order to accomplish this individual control, a

single pin of a microcontroller is needed for each tactile element. Thus, in order to

achieve a resolution of even 32x32, 1024 individual pins would be required, as well as

1024 individual pulse width modulation signals and their corresponding clocks. Both of

these complications are addressed with the proposed solution of the resonant microbeam

vibrotactile haptic display.

Both audio and haptic display solutions depend upon the brain’s ability of

‘sensory substitution’. Sensory substitution is a subcategory of neuroplasticity that

allows the brain of an individual to interpret information received through one sense as if

it were presented through another sense. Sensory substitution is necessary for patients to

make new connections in the brain to comprehend surroundings. The ability for the brain

to make new connections successfully by repeating stimuli is the reason that the haptic

display solutions have shown good initial success with the visually disabled [5].

1.1 Resonant Microbeam Vibrotactile Haptic Display Concept

 An alternative solution to the vibrotactile haptic display is currently under

development at Arizona State University. This alternative solution has the potential to

9

greatly increase the resolution of a haptic display. This research project aims to

investigate the necessary control system for this type of display. Thus, a brief background

of the proposed vibrotactile haptic display is given here.

 The development of the resonant microbeam vibrotactile haptic display concept is

based on the patient’s ability to utilize sensory substitution [5], [14], [15]. The resonant

microbeam vibrotactile array is a mechatronic system that is based on two subsystems: a

beam array and a beam array controller. The beam array consists of stainless steel beams,

each fixed to a base at one end and free at the other end as shown in Figure 6. Each beam

in the array is designed to have a unique length and/or cross-sectional area, so that each

bean has a unique natural frequency. The base of the beam array is attached to a surface

transducer that is actuated to vibrate. When the frequency of vibration of the surface

transducer matches the natural frequency of one of the beams, that beam ‘resonates’-

vibrates with a large amplitude. When the frequency of vibration of the surface

transducer does not match the natural frequency of a beam, the beam does not vibrate or

vibrates with a low amplitude. Because the natural frequency of each beam is unique, the

birational amplitude of each beam can be controlled independently, each beam can

represent a different pixel of an image. The construction of the beam array is through an

electrical discharge machine. This manufacturing process uses current discharges

between two electrodes separated by a dielectric liquid to remove material from the

electrodes.

10

Figure 6: Array of Cantilever Beams

 The second subsystem is the control the vibration beam array. The control system

converts streamed images to a single soundwave that will resonate the corresponding

beams of the image. The sound wave that is produced by the control device, phone or

tablet, is the sum of every individual element sinusoidal wave. The Fourier transform is

the decomposition of the function of time. This transformation can be used against the

sinusoidal sound wave to determine individual frequencies. This decomposition is broken

up into each individual beam that represents each pixel in the image. This is expressed in

the fourth step of the flowchart of the vibrotactile display shown in Figure 7.

11

Figure 7: Flow chart of vibrotactile display

 This study addresses the design of the second subsystem. In order to be a viable

approach to replace vision, the overall system needs to have a frame rate that is fast

enough that the user can perceive each picture as motion. However, due to the number of

calculations that must be computed at the time of streaming, achieving a reasonable

12

frame rate is difficult. To perceive each picture as motion, the frame rate will ideally be

30 frames per second (FPS). This value is slightly above of the current cinematic frame

rate of 24 FPS. In addition to having a reasonable frame rate, the solution needs to be cost

effective for mass production. The frame rate is dependent on the computation

development for effective and efficient controls. The cost-effective development is

dependent on how the device is fabricated at scale.

In addition to fast implementation, the solution must also be easily accessible by a

user. The user will have easy accessibility by utilizing Kivy, which allows python code

to run on Linux, Windows, OS X, Android, and iOS. With a control system that is

supported among all types of platforms the user will have the ability to use their current

technology; such as a phone, or tablet. This feature also addresses the device’s cost-

effective prototyping.

 The proposed solution addresses the two areas of complications in current haptic

displays. The first problem is the limitation in resolution. The number of pixels required

to represent an image is determined by the number of beams in the beam array. In the

example of the electro-tactile display, the display is limited to 32 x 32 because the display

must be placed on the tongue; therefore, the area available for the electrodes is limited.

With the resonant microbeam vibrotactile haptic display, the resolution is not limited by

available surface area. The patient will be able to utilize any surface area that can feel

motion. This means they have the option to have this device anywhere on their skin. In

addition, each vibrating element in the proposed array is expected to be 0.1mm. This

allows a large quantity of elements to fill a limited space. If the micro-cantilever beams

13

are made 0.1mm in diameter with 0.1mm space between beams, 640x480 beams could fit

in a space approximately the size of the palm of a hand.

 One cause for limited resolution is the one pin per element problem. In a haptic

display, each pixel needs to be controlled individually. One downfall of the current

vibratory systems is the use of individual motors as each tactile element. Each tactile

element is independent and requires its own signal to drive the motors such as the ones

shown in Figure 8. With the resonant microbeam vibrotactile haptic display, the one pin

per element is not limiting. To excite each of these pins individually, the excitation is

produced by a dynamic soundwave that excites each of the beams individually at their

natural frequencies.

Figure 8: Motors Currently being used for Vibration Application

14

2. Control Problem Analysis

The control problem analysis chapter includes the system overview and

benchmarking sections. The system overview is a system relates how the resonant haptic

display conceptually works with benchmarking data. The explanation includes the

theoretical process including how the video feed input is manipulated into a soundwave

output. The benchmarking section explains the importance of the benchmark and how the

benchmarking experiment was implemented as well as the benchmarking results.

2.1 System Overview

The control system of the vibrotactile display consists of software to stream in the

video feed in which is then translated to soundwaves that excite the corresponding beams.

This process proceeds as follows: A single image is extracted from a video stream. This

single image is then reduced in resolution to match the number of beams in the beam

array. Then, the image is converted from color to grayscale. The image is required to be

converted to grayscale because the device is not able to represent a spectrum of colors.

This limitation is due to the design of the device which allows for either full excitation

representing a white color or no excitation representing a black color, as well as all

excitations of grayscale in-between. Each pixel has a grayscale value from 0 – 255 that

represents the pixel’s brightness. The 255 pixel value limit is based on the 8 bit-depth that

is a standard for image processing. The pixel’s grayscale value is used as the amplitude of

the individual sinusoidal wave. All individual sinusoidal waves are summed, and the

single resultant wave is produced through the speaker attached to the base of the beam

array.

15

For example, suppose the image is of a dark room where all pixels in the image

are black. In this case, the grayscale value of all pixels is 0 and there is no excitation to

the beams. However, if the image is completely light and all pixels in the image are

white, the grayscale value of all pixels is 255 and all of the beams will be excited with

maximum amplitude. The maximum amplitude of sound for any individual wave is based

on the required excitation for a human to feel the excitation of the beam. This is

dependent on the size of the beams, the spacing of the beams, as well as the user’s

sensitivity.

 The video streaming will ideally be on a device that is common to the user such as

a phone or tablet. Due to the type of device to be used, the software selection to develop

the control system is limited to object oriented languages that can be used on multiple

operating systems. Python is one of the most popular languages used in data science. In

addition to being reliable and efficient with libraries that offer cross platform support,

python is accessible. This software can be run on mobile devices such as a phone or

tablet. Because the execution speed is variable to the device, the experimentation was

done on standard current equipment. Python also has the ability to work on the web based

execution method known as, Jupiter.

The most computationally-intensive portion of the proposed system is the array

management of each image. The grayscale values will be stored into the random-access

memory of user’s computational device, such as their tablet or phone. These stored

values in memory are an array type that is referenced to determine the amplitude for the

corresponding beam. In addition to image processing libraries and array management, the

16

device will also need to produce the sinusoidal wave to excite the beams. The total

harmonic distortion of the produced sound wave is addressed with the speaker selection.

2.2 Benchmarking

 To determine if the python code needs to be optimized or if the standard libraries

are reasonable enough, benchmarking was done on basic code that implements all of the

primary steps of the control system: capture an image, convert to grayscale, decrease

resolution, calculate waves, sum the waves, and produce the sound wave. The

hypothetical beam array to be excited by the control code is a 64 x 64 beam array. The

dimension of 64 x 64 was chosen because this resolution is double the current resolution

in haptic displays. The benchmarking evaluates the effects of resolution by starting the

time study at an 8 x 8 resolution and increases the resolution until 64 x 64 is reached.

Each operation uses the resolution information to determine the number of loops required

for the image dimensions. For example, if the resolution is 8 x 8 there are 64 pixels in the

image, and the quantity of pixel loops is 64 in this case. However, if the resolution is 64 x

64, the there are 4096 pixels in the image and the loop needs to run 4096 times. The

results of the time study shows that the pixel loop is directly related to the time increase.

This is due to the number of times the loop is required to run. These results determine

what part of the code will be optimized. The correlation between resolution and time for

each operation is considered and analyzed to verify the loop optimization.

Table 1 shows each operation performed within the program and the time it took

to perform each operation. Table 1 reports the amount of time required for each part of

the benchmarking code under different resolutions. For example, row 1 for Table 1 shows

17

that the ‘Opening PyAudio’ function require 0.534 seconds to complete regardless of the

resolution. From Table 1, we can see that only a few functions are affected by the change

in resolution. For example, the ‘Create Waves; function only requires 0.080 seconds to

complete with a resolution of 8x8, but requires 4.663 seconds with a 64x64 resolution.

Roughly 11% of the program is not affected by the increase of resolution. This is because

the resolution only affects the number of waves that are being created. One of the key

benefits of the micro-cantilever beam resonant frequency vibratory haptic display is the

lack of limitations regarding pixel resolution. The proposed resonant frequency approach

will allow all elements to be excited with a single sound wave. Thus, it is important to

consider the effects of increasing resolution on computation time. The time study shows

that only the pixel loop is dependent upon resolution. This is because the number of times

the loop is required to run is dependent upon the number of pixels in the image.

18

Table 1: Benchmarking of Basic Python Control

 8x8

image

16x16

image

24x24

image

32x32

image

40x40

image

48x48

image

56x56

image

64x64

image

Opening

Pyaudio

0.534

sec.

0.534

sec.

0.534

sec.

0.534

sec.

0.534

sec.

0.534

sec.

0.534

sec.

0.534

sec.

Access

Webcam

0.172

sec.

0.172

sec.

0.172

sec.

0.172

sec.

0.172

sec.

0.172

sec.

0.172

sec.

0.172

sec.

Take an Image 0.026

sec.

0.002

sec.

0.002

sec.

0.001

sec.

0.001

sec.

0.001

sec.

0.001

sec.

0.001

sec.

Grayscale 0.001

sec.

0.002

sec.

0.001

sec.

0.001

sec.

0.001

sec.

0.001

sec.

0.000

sec.

0.001

sec.

Adjust

Resolution

0.000

sec.

0.000

sec.

0.000

sec.

0.000

sec.

0.000

sec.

0.000

sec.

0.000

sec.

0.000

sec.

Create Waves 0.080

sec.

0.340

sec.

0.701

sec.

1.212

sec.

1.886

sec.

2.687

sec.

3.611

sec.

4.665

sec.

Sum Waves 0.000

sec.

0.000

sec.

0.000

sec.

0.000

sec.

0.000

sec.

0.000

sec.

0.000

sec.

0.000

sec.

Pixel Loop 0.080

sec.

0.340

sec.

0.701

sec.

1.212

sec.

1.886

sec.

2.687

sec.

3.611

sec.

4.665

sec.

Write Wave 0.160

sec.

0.188

sec.

0.189

sec.

0.189

sec.

0.158

sec.

0.188

sec.

0.188

sec.

0.190

sec.

3. Proposed Solution

 In this chapter, the solution options overview and solution details are

discussed. The solution options overview discusses the conceptual details of the three

experiments conducted. This section also evaluates the hypothesis of the experiments.

The solution details section reviews the flowchart used and libraries required to conduct

the experiments.

3.1 Solution Options Overview

 There are three solutions that we propose to improve the computational time of

the control system: (1) Threading, (2) Change Filtering, and (3) Wave Library. Each of

19

these solutions are related to improving the logic sequence that the control system uses to

compute each resonant frequency sinusoidal excitation.

3.1.1 Threading

The first solution is to break the image into multiple parts that will be computed at

the same time, also known as threading. Threading is a method that is used for parallel

programing. This allows the execution of image processing to occur multiple times

within the same time frame. By allowing the imaging to be broken up into multiple

processes, the time to compute each of these processes will be reduced. The evaluation of

this improvement considered multiple threads to determine if increasing the threads will

increase the frame rate to 30 frames per second.

3.1.2 Change Filtering

 The second and third solutions both utilize a decreased grayscale range. By

default, the captured image has an 8-bit grayscale depth, giving 256 different grayscale

levels. In the vibratory haptic display, each grayscale level corresponds to the amplitude

of the sound wave, which determines the amplitude of vibration of the corresponding

beams. By utilizing a decreased grayscale range, the number of different possible sound

amplitudes and, thus, vibration amplitudes of the beams will be reduced. This means that

the user will not be presented with 255 different levels of vibration amplitude but instead

will be presented with fewer, such as 12, levels of amplitude. The 12 levels of amplitude

is designed by software limitation for the Wave Library design and is utilized throughout

all grayscale experimentation. By decreasing the grayscale levels to 12, the number of

possible waves is reduced by more than 95%. Although this does not decrease the

20

calculation time directly, this improvement is required for both the Change Filtering and

the Wave Library improvements.

 The Change Filtering improvement is to determine if each pixel has changed

within the new grayscale range before calculating the wave. If the pixel has significant

change, then the new wave will be calculated; however, if the pixel is determined to not

have a significant change then the same wave can be used as in the previous calculation.

This can improve the time by ~100% if the entire image does not change. The

determination of the what pixel tolerance is acceptable to consider the pixel to be

unchanged is determined in the experimentation. This solution will be most beneficial in

scenarios where the environment does not have significant change such as a conversation

or standing still. This solution does need to utilize additional memory to determine if

there is change from the original image. In the case that the first image is found to not

have significant change to the second image, the first image is stored. The third image is

compared against the first image to determine if there is significant change. If the third

image is significantly different then the third image is computed and stored in place of

the first image to be the new comparison to future images.

3.1.3 Wave Library

 The third solution is to change the addition of the Wave Library to the control

system. The Wave Library is the creation of the waves in the initialization process. The

waves created are all of the pixel options both in position and grayscale. For example, in

position 1x1 the Wave Library includes twelve waves for each grayscale. Due to the

number of waves per position that is calculated, this solution adds time to the

21

initialization process by calculating all the predetermined waves. The benefit to

increasing the initialization time is that the initialization only occurs one time and

becomes less significant the longer the program is running. In addition to adding to the

initialization time, all the waves are stored in memory which decreases the processing

time slightly. After the waves are created they are stored in memory, they are called for

each beam’s pixel values of the images.

 These solutions are implemented individually to determine the increase of time

per solution. As each of the solutions are executed the baseline will also be executed with

the same input variables for consistency. The individual experiments determine their

benefits and can be combined for the most optimized the control system based on these

findings.

3.2 Solution Details

 The control in Python is based on an initialization with two loop back systems

shown in Figure 9. After the startup of the program, there are two main initializations that

are required in addition to the libraries. The first main initialization is a PyAudio, a

Python binding for Port Audio. This library is used to produce the frequency to excite the

corresponding beams. The second main initialization is an imaging module that uses

multiple library to stream the video for the patient’s view.

22

Figure 9: Flow chart of Python Control System

This initialization utilizes several dynamic link libraries. Another purpose for using

python as the control system language are the dynamic link libraries readily available.

The dynamic link libraries that are used utilize a process that does not require

compilation into the main program and therefore does not use the random-access memory

to load programs. Table 2 shows the dynamic link libraries that were used within the

control system.

23

Table 2: Dynamic Link Libraries

Library Syntax

Image from PIL import Image

Resizeimage import resizeimage

Scipy

Mathplotlib.pyplot

Scientific computing library

2D plotting

CV2 Open CV used for array operations and

preserved data types

Pyaudio Audio input/output library

Numpy Highly stable and fast array processing

library

Time Representing time under the control of CPU

Math Mathematical

GC Garbage Collector

 The first library used is the image resizeimage which is imported from the Image

PIL. This library saves the streamed video as a single image. In addition to converting

video to image, the library also adjusts the resolution of image to the quantity of beams

available given as an input variable. This library is imported from Image module. The

image module provides a class with many functions to load images from files and create

new images. This module is used to capture different scenarios for a controlled

experimental procedure.

 The program requires the ability to compute and represent the results. These

results and representations are based on multiple dynamic link libraries shown in all code

within the Appendix III. The first library used is the Scipy library which is used in the

calculations of the results. Another library used is the matplotlib library that includes the

pyplot function. The pyplot function allows changes to a figure such as plotting area, plot

labels, and creating a plot. This is used to compare and represent the results of each

experiment. The Numpy library is the extension of the matplotlib library and is an array

24

package that is also used in OpenCV. Another dynamic library used is the OpenCV

library that is for array operations, preserved data types, as well as image processing.

Within OpenCV, Array processing is used specifically with the third solution. Time is a

function that is used to determine the time the CPU spend on executing each operation of

the program. This is used for experimental purposes and is not a required function for the

prototyping of the device’s control system.

 After the program has all the required initializations including importing all of the

necessary libraries shown in Table 2, the program enters the first main loop. The first

main loop ensures that the patient has a consistent stream of their environment, as the

haptic display is produced. Within the first main loop there are six executables that are

broken into three main sections as shown in Figure 9. The first main section is the image

manipulation which changes the image pixel values. The second main section is the

construction of waves which relates the pixel values to a single wave. The last main

section is the sound production which sums all of the waves and produces a sound. The

first main loop is also referred to as the frame loop because the loop iterates every time

the user interprets a new frame.

 The first section of the frame loop is the image manipulation, which consists of

three executables. The first executable is to take an image of the steamed video in real

time. The process for taking an image is extracting a single image that the video is

streaming at the exact moment the code is executed. After the image is taken, it is stored

in the device’s random-access memory. After the image is stored, the image is then

converted to grayscale. The last executable in the image manipulation is adjusting the

25

resolution of the image to represent the quantity of beams available. The image is

converted to grayscale before adjusting the resolution due to image compression model

that python organizes when executing the ‘resizeimage’ module. The resolution is set to

64 x 64 for the proposed solution, however this is not a maximum resolution. The

maximum resolution is dependent on the size of the beam array of the device. This means

that the user could have a standard dvd resolution of 720 x 480 if the beams are small

enough to fit 345,600 within a surface area that has nerves such as the user’s back.

 After the image is manipulated, the information from the image is used for the

construction of the waves. Construction of the waves is a nested Pixel Loop within the

Frame Loop. Each wave is related to a single pixel of the manipulated image. This wave

holds an amplitude value from 0-255, that is based on the grayscale value of the pixel that

is used for the corresponding pixel’s beam on the haptic display. Each of the pixels will

have a beam with an individual natural frequency that the amplitude is applied to. As

each of the waves are calculated they are summed together to form a single wave,

referred to as the Sum Wave. The Sum Wave is used to produce the sound that excites the

beams on the haptic display. After the sound is produced, the Frame Loop goes back to

take another image.

 The improvements of the control system are to save time of the pixel loop so the

frame rate is fast enough to ensure the user can sense motion and get information at a

reasonable time. The current cinematic industry considers 24 FPS as an acceptable

standard for reasonable time. The control system is evaluated for each improvement

independently to determine what improvements impact the frame rate the most. The first

26

improvement is threading the control by separating the image into multiple parts.

Separating the image into multiple parts allows parallel execution of the frame loop

shown in Figure 10.

Figure 10: Threading Representation of Image Dividing for Parallel Execution

 Figure 10 shows that the threading operations do not simply go from parallel

operation to serial execution. This is due to how each of the threads are processed. For

example, if thread 3 takes longer to execute, thread 1,2, and 4 will continue to execute

within the same time. This process allows for some threads to finish executing before

others. Therefore, the time used is the time for the last thread of the last pixel is

considered total time for the frame execution time.

 Threading is one opportunity to improve the frame rate. There are additional

opportunities to increase the frame rate by limiting the image’s information. The last two

improvements limit the image’s information by decreasing the gray scale range to 12

27

levels shown in Figure 11. The limited grayscale range is executed between the image

manipulation section and the construction of the pixel waves. Changing the image’s bit

depth from 8 to 4 decreases the number of grayscale levels. By decreasing the grayscale

levels the calculations required for each frame is also decreased.

Figure 11: 12 Levels of Grayscale

Decreasing the bit depth is accomplished by changing the pixel value to the closest

grouped value within Table 2. With a limited grayscale value, the number of waves to be

calculated are decreased in the majority of the image, and in some cases images will not

be represented effectively.

Table 2: 12 Levels of Grayscale

Level Pixel Value Range

1 0 – 21

2 22 – 43

3 44 – 65

4 66 – 87

5 88 – 109

6 110 – 131

7 132 – 153

8 154 – 175

9 176 – 197

10 198 – 219

11 220 – 241

12 242 - 255

It is assumed that decreasing the grayscale levels does not affect the patient’s ablility to

identify the environment with less grayscale. Figure 12 shows two common scenarios

28

that the patient may experience when walking by either buildings or nature. Visually the

images are different however, the objects in the images are still identifiable.

Figure 12: Comparison of 8-bit depth (bottom) and 4-bit depth (top) of the same image

 The Change Filtering proposed improvement is to determine if the image has

significant change from the previous image. This improvement is completed after the

image has limited gray scale values, in the form of a conditional statement. This

conditional statement comes before the pixel loop shown in Figure 13. The significant

change improvement has the short coming of more memory to store previous image

values; however, the benefit is that the image has the potential to not require

recalculation.

29

Figure 13: Flow chart of Python Control System with Conditional Statement for

Significant Image Change

 The Wave Library solution, is a change of logic in the flow of the system. This

solution creates all of the possibilities of each wave for all individual beams within the

initialization stage. Although the creation of the waves requires a longer initialization

time, the calculation time for this initialization will only be required one time. After the

waves for each beam are calculated, they are stored in memory. After the waves are

stored in memory they can be called on, as shown in Figure 14.

30

Figure 14: Flow chart of Python Control System with Predetermined Waves

 These solutions are independent of each other and are studied under multiple

conditions to determine individual efficiency. This means that each of the experiments

were conducted under the same baseline and not dependent on each other. The time

savings per frame rate can we improved further by combining all three of the

improvements together.

31

4. Experimentation and Results

 This chapter describes how the experimentation of each solution is compared with

a standard baseline that includes the results of the control system. The baseline code that

is run for each individualized experiment can be found in Appendix I. This code sets the

measured parameters of interest for the starting point of each experiment. Without this

baseline the effects cannot be quantified or interpreted as a measurement. Based on these

results the system solutions can be organized into the most optimized system.

4.1 Experimental Setup

 One experiment is performed for each proposed solution to evaluate its

effectiveness. The Threading experiment uses the same image values across 10 images

for an average time to complete a baseline, a single thread, two threads, and four threads.

This experiment uses randomly selected values to represent the 10 images. For this

experiment, it is hypothesized that the computation time will be halved when the number

of threads is doubled. Therefore, with four threads, the time will be 25% of the time as a

single thread. Due to the increase of time in the initialization for creating each thread, the

comparison is made against the single thread instead of the baseline. However, the

comparison with the baseline is hypothesized to show significant decrease in time.

 The Change Filtering experiment utilizes videos of five common scenarios

selected to include different amounts of motion, or change, in the video. These five

scenarios are: (1) a conversation with someone, (2) walking down the hall, (3) walking

next to a landscaped path, (4) driving in a car, and (5) walking on a city path as shown in

the Appendix. The conversations scenario includes images from a laptop’s webcam to

32

show what a person would see in a conversation. The setting of this scenario is within a

conference room with a nonactive background. The second scenario is walking down a

hall. The hall is also basic, however the motion of walking allows the background to be

mildly active. This is similar to walking down a landscaped path. The main difference

between walking down a landscaped path and a hallway is that the hallway has a simple

background and the landscaped path has a very detailed background. In-between these

two scenarios is walking down a city path. The city path includes mild landscaping as

well as buildings that are large simple structures. The last scenario is the driving scenario.

This includes nonactive areas such as a dashboard or visor, as well as extremely active

parts of the image which is what the user sees through the windshield which can include

either a landscaped path or a city path. These scenarios were chosen to represent five

likely scenarios with different motion rates and different motion representation such as

partial frame motion.

 Each of these scenarios have different levels of motion that occur in each scene. It

is hypothesized that the scenes with the least amount of motion will benefit the most from

the Change Filtering solution. The benefit is potentially up to 100% of the computation

time if there is no change. This solution is limited because it is only beneficial in low

motion scenarios. The scenarios of the user being high motion are more likely and will

therefore limit the time savings. The Wave Library experiment also utilizes videos of the

five common scenarios.

33

4.2 Experimental Results

 In a review of the literature, no standards were found for evaluating real time

video processing methods for efficiency. Thus, a method is proposed here to carry out

such an evaluation. The proposed evaluation is based on levels of complex motion and

amount of motion within the frame. In order to evaluate the success of the proposed

methods across a range of scenarios with varying levels of complexity and motion, five

common scenarios were selected to be video recorded and evaluated. The level of motion

within each video was subjectively evaluated.

 The scenarios have 5 different levels of motion that are used as the metric to

determine time savings of both the Change Filtering as well as the Wave Library

solutions. These levels of motions are the following: hardly any motion, motion in partial

frame, fast changing motion, moderate changing motion, and slow changing motion.

Each of the experimental scenarios are rated in level of motion. The first video was taken

during a conversation. In this experiment the code executes 10 frames per second to

determine how many pixels were considered changed after increasing the tolerance of

each pixel to consider it changed.

34

Figure 15: Tolerance of 0-5 pixel changes for Conversation Benchmark

Figure 15 shows the number of pixels that changed their grayscale value relative to the

previous frame for each frame of the ‘Conversation’ video, for each of 6 levels of

‘change threshold’. For example, the blue curve shows the number of changed pixels in

each frame when any change greater than 0 is detected as a change. The green curve

shows the number of changed pixels in each frame when only a change greater than 5 is

detected as a change. The differences in the curves in Figure 15 show that the baseline

(change threshold of 0) requires recalculation for roughly 2700 pixels which is slightly

above 60% of the image. When the tolerance of the pixel changes from 0 to 1 there is

significant reduction in the number of changed pixels. Since only changed pixels require

recalculation, this would give a significant reduction in the amount of time required for

calculation. The image has the most significant improvement at the transition from 0 to 1

0

500

1000

1500

2000

2500

3000

3500

4000

o
f

C
h

an
ge

d
 P

ix
el

s

Frames

Benchmark of Conversation
Change of Pixels vs. 10 Frames/Sec.

0

1

2

3

4

5

35

pixel tolerance however the difference between 1 to 2 pixel tolerance is also significant

and continues to increase as the tolerance increases.

Figure 16: Average Change of Pixels vs. Pixel Differential in Conversation Scenario

Figure 16 shows the change of pixels against the grayscale levels in the conversation

scenario. As the grayscale tolerance increases to the point of plateauing the solution

becomes ineffective because the image will not show as changing and motion will not be

interpreted by the user.

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5

A
vg

. P
ix

el
 C

h
an

ge

Grayscale Tolerance

Benchmark of Conversation
Average Change of Pixels vs.

Grayscale Tolerance

Change No Change

36

Figure 17: Tolerance of 0-5 pixel changes for Driving Benchmark

Figure 18: Tolerance of 0-5 pixel changes for Hallway Benchmark

500

1000

1500

2000

2500

3000

3500

4000

o
f

C
h

an
ge

d
 P

ix
el

s

Frames

Benchmark of Driving
Change of Pixels vs. 10 Frame/Sec.

0

1

2

3

4

5

300

800

1300

1800

2300

2800

3300

3800

o

f
C

h
an

ge
d

 P
ix

el
s

Frames

Benchmark of Path with Hallway
Change of Pixels vs. 10 Frame/Sec.

0

1

2

3

4

5

37

Figure 17 is the plot of the number of pixels changed in the Driving scenario with six

different grayscale levels. Figure 18 is the same plot with the Hallway scenario. The

Driving scenario shows that as the pixel tolerance increases, the number of changed

pixels within the image is slightly decreased. This difference between the conversation

scenario and the driving scenario is that the motion changes consistently. The driving

scenario has motion in partial frame in streaming and walking down the hall with slow

changing motion. Due to the motion being slow changing there is not a large change in

the pixels changed as shown in the Conversation scenario, Figure 15. Figure 17 and

Figure 18 have similar patterns such that the difference between each grayscale level is

roughly the same. However, the averages per grayscale level is shifted, Figure 18 the

Hallway scenario has a higher average of pixels changing overall.

Figure 19: Average Change of Pixels vs. Pixel Differential in Driving Scenario

0

1000

2000

3000

4000

0 1 2 3 4 5

A
vg

. P
ix

el
 C

h
an

ge

Grayscale Tolerance

Benchmark of Driving
Average Change of Pixels vs.

Grayscale Tolerance

Change No Change

38

Figure 20: Average Change of Pixels vs. Pixel Differential in Walking Down a Hall

Scenario

Figure 19 shows the average change of pixels against the grayscale tolerance for the

Driving scenario. Figure 20 shows the same plot as Figure 19 with the Hallway scenario.

Figure 20 shows that there is consistent climb of the average pixel change and the

grayscale tolerance increases. Due to the number of changed pixels decreasing at a slow

rate, the grayscale cannot be set for multiple scenarios. For example, if both conversation

and driving are set at the same value of grayscale there will be significant sacrifice in

either case. If the grayscale tolerance is set to 3 for the conversation optimization, the

driving scenario will have limited benefits.

0

1000

2000

3000

4000

0 1 2 3 4 5

A
vg

. P
ix

el
 C

h
an

ge

Grayscale Tolerance

Benchmark of Path with Hallway
Average Change of Pixels vs.

Grayscale Tolerance

Change No Change

39

Figure 21: Tolerance of 0-5 pixel changes for City Path Benchmark

Figure 22: Tolerance of 0-5 pixel changes for Landscaped Path Benchmark

 Figure 21 shows the number of pixels changed for six grayscale levels for the City

Path scenario. Figure 22 shows the same plot for the Landscaped Path scenario. Walking

1200

1700

2200

2700

3200

3700

4200

4700

o
f

C
h

an
ge

d
 P

ix
el

s

Frames

Benchmark of Path with City Path
Change of Pixels vs. 10 Frame/Sec.

0

1

2

3

4

5

2000

2500

3000

3500

4000

4500

o

f
C

h
an

ge
d

 P
ix

el
s

Frames

Benchmark of Path with Landscaped Path
Change of Pixels vs. 10 Frames/Sec.

0

1

2

3

4

5

40

down a path that is naturally landscaped or on a path next to city buildings, the change in

image is significant. Although the images streamed include images that are changing, in

the driving scenario and walking down the hall scenario the change is only in partially the

frame; whereas the landscaped and building paths, the users experiences change within

the entire frame. Due to this difference in frame change, the number of pixels changed for

each scenario has no correlation to each other and therefore cannot depend on a single

grayscale tolerance.

Figure 23: Average Change of Pixels vs. Pixel Differential in Walking Down a City Path

Scenario

0

1000

2000

3000

4000

0 1 2 3 4 5

A
vg

. P
ix

el
 C

h
an

ge

Grayscale Tolerance

Benchmark of with City Path
Average Change of Pixels vs.

Grayscale Tolerance

Change No Change

41

Figure 24: Average Change of Pixels vs. Pixel Differential in Walking Down a

Landscape Path Scenario

 Figure 23 show the average change of pixels against the grayscale tolerances.

Figure 24 shows the same plot except instead of a City Path scenario, Figure 24 is of the

Landscaped Path scenario. The City Path scenario is moderately changing in motion

while streaming. The Landscape scenario is fast changing motion in streaming. The

Conversation scenario shows that the tolerance of grayscale can be as low as 4 pixels

before climbing up to majority of the frame being considered changed. Figure 25 shows

that at less than 500 frame changes all scenarios stay at roughly none of frame changed

up.

0

1000

2000

3000

4000

5000

0 1 2 3 4 5

A
vg

. P
ix

el
 C

h
an

ge

Grayscale Tolerance

Benchmark of Landscaped Path
Average Change of Pixels vs.

Grayscale Tolerance

Change No Change

42

Figure 25: Percent of Frame Changed with Tolerance Increase for Pixel Changes < 500

0%

20%

40%

60%

80%

100%

120%

0 2 4 6 8 10 12

%
 o

f
F
ra

m
e
 C

h
an

ge
d

Grayscale Tolerance

% of Frames with <500 Pixels Changed

vs.

Grayscale Tolerance
Conversation

Landscaped

path
City path

Hallway

Driving

43

Figure 26: Percent of Frame Changed with Tolerance Increase for Pixel Changes < 1000

 Figure 25 shows the percentage of the frame that is changed with a tolerance of

500 pixels for the grayscale tolerance levels for each scenario. Figure 26 shows the same

plot as Figure 25 with a tolerance of 1000 pixels. As the pixel change increases from 500

to 1000 shown in Figure 26, the driving scenario does start to represent a frame change at

roughly 20%. This means that with partial frame change the pixel change can be

represented with less than 1000 pixels with a grayscale tolerance of 11. By adding

another 500 pixel tolerance, the pixel change within a frame includes all five scenarios

except for the landscaped path. The compromise for increasing the pixels changed in

0%

20%

40%

60%

80%

100%

120%

0 2 4 6 8 10 12

%
 o

f
F
ra

m
e
 C

h
an

ge
d

Grayscale Tolerance

% of Frames with <1000 Pixels Changed vs.

Grayscale Tolerance

Conversation

Landscaped

path

City path

Hallway

Driving

44

frame by 1000 is that the gauge for low motion conversation scenario includes 100% of

the frame changed with a grayscale tolerance of 1.

Figure 27: Percent of Frame Changed with Tolerance Increase for Pixel Changes < 1500

 Figure 27 shows the percentage of the frame that is changed with a tolerance of

1500 pixels for the grayscale tolerance levels for each scenario. In Figure 27 the frame

rate change with less than 2000 pixels, the driving and hallway scenarios where the frame

goes up to 80% changed at less than 10 grayscale tolerances is ideal however, the city

path is roughly half of driving/hallway frame rate change at 10 grayscale tolerance with

40% of the frame changed.

0%

20%

40%

60%

80%

100%

120%

0 2 4 6 8 10 12

%
 o

f
F
ra

m
e
 C

h
an

ge
d

Grayscale Tolerance

% of Frames with <1500 Pixels Changed vs.

Grayscale Tolerance

Conversation

Landscaped

path

City path

Hallway

Driving

45

Figure 28: Percent of Frame Changed with Tolerance Increase for Pixel Changes < 2000

 Figure 28 shows the percentage of the frame that is changed with a tolerance of

2000 pixels for the grayscale tolerance levels for each scenario. With the total resolution

at 4096 pixels the experiment with pixel change of less than 2500, more than half of the

available image that changes are considered within the tolerance difference. Therefore,

the landscaped path where the images were changing often, the percentage of frame

changed starts to increase to roughly 20% at a grayscale tolerance of 12 shown in Figure

28. This pixel change yields the same results for images that were not changing often

such as the conversation scene.

0%

20%

40%

60%

80%

100%

120%

0 2 4 6 8 10 12

%
 o

f
F
ra

m
e
 C

h
an

ge
d

Grayscale Tolerance

% of Frames with <2000 Pixels Changed vs.

Grayscale Tolerance

Conversation

Landscaped

path

City path

Hallway

Driving

46

Figure 29: Percent of Frame Changed with Tolerance Increase for Pixel Changes < 2500

 Figure 29 shows the percentage of the frame that is changed with a tolerance of

2500 pixels for the grayscale tolerance levels for each scenario. The last comparison of

frame changes with a tolerance increase for pixels changed less than 3000. When

considering this high of pixel change the conversation as well as the driving scenarios

start with changes at ~50% and ~90% of the frames respectively. The results are analyzed

when determining the grayscale range as well as planning for future development. This

future development is to consider additional algorithms for efficient computing based on

feedback.

0%

20%

40%

60%

80%

100%

120%

0 2 4 6 8 10 12

%
 o

f
F
ra

m
e
 C

h
an

ge
d

Grayscale Tolerance

% of Frames with <2500 Pixels Changed

vs.

Grayscale Tolerance

Conversation

Landscaped

path

City path

Hallway

Driving

47

Figure 30: Percent of Frame Changed with Tolerance Increase for Pixel Changes < 3000

Figure 31: Percent of Time Saved vs the Difference Tolerances

0%

20%

40%

60%

80%

100%

120%

0 2 4 6 8 10 12

%
 o

f
F
ra

m
e
 C

h
an

ge
d

Grayscale Tolerance

% of Frames with <3000 Pixels Changed vs.

Grayscale Tolerance

Conversation

Landscaped

path

City path

Hallway

Driving

48

 Figure 30 shows the percentage of the frame that is changed with a tolerance of

3000 pixels for the grayscale tolerance levels for each scenario. At this tolerance the

Conversation scenario starts off at almost 100% of the frame changed and the Driving

scenario is roughly 50% already changed with no grayscale level increase. Figure 31

shows the percentage of the time saved with multiple grayscale tolerance levels for each

scenario. The Wave Library improvement increases the initialization time by creating all

predetermined waves. The predetermined waves include the 12 levels of grayscale ranged

amplitudes for every beam. The benefit of this process is that the calculations will only

need to be run one time. This will require an increased initialization time, however as the

length of time that the program runs increases, the less significant the initialization time

becomes. After the waves are created in an array during the initialization, the program

analyzes which wave to call based on the pixel grayscale value or the corresponding

beam.

 Based on all experiments the results show that every solution does improve the

frame rate. The first solution of threading with four threads improve time by roughly

52%. However, this solution alone does not bring the frame rate to the target 30

frames/second, and will have to be considered when combining multiple solutions. The

second solution of storing original image and comparing images after to determine the

change of image improves time by roughly 99.9% if the image does not change. The big

downfall to this solution is that in this solution has the potential to not only add time with

additional storage but could not improve the time at all if the images are always

significantly changing. The last solution of predetermined waves and change of logic to

49

call stored waves improves time by roughly 96.5%. This solution alone improves the

frame rate to reach the target 30 frames/second.

50

5. Conclusions and Discussion

In all the experiments there was improvement in the frame rate. The threading

experiment resulted in three different improvements. Table 3 shows the results of this

threading experiment. The first thread takes slightly longer than the baseline. This is

expected because the baseline does not include the threading initialization. Although this

is not required every iteration of the code, it is required one time. As the number of

frames increases the initialization becomes negligible. The hypothesis of this experiment

was that there would be a proportional decrease of frame rate with an increase of

threading. When the number of threads increase to two, the frame rate was hypothesized

to be roughly 50% because the image to be processed in each thread is half. As the

threads increase to four, the image is broken into four sections with the expectation of the

frame rate to decrease to roughly 25%. The results show that the two-thread experiment

resulted in roughly 60% decrease of time, however the four-thread experiment resulted in

roughly 50% decrease of time.

Table 3: Results of the Threading Time Study

 Baseline (4096) 1 Thread

(4096/thread)

2 Threads

(2048/thread)

4 Threads

(1024/thread)

Average

Time to

Complete

(10

images)

4.787 4.905 2.971 2.491

STDDev 0.056 0.049 0.064 0.181

 The Change Filtering solution of determining if there is significant change has

high variability. The time study shown in Table 4 shows the potential of time to be saved

51

because the time to call the previous wave is significantly less than the time to make a

new wave. The high variability of the time savings is due to the dependent nature on the

user’s environment.

Table 4: Results of the Change Filtering Experiment

Time to Call

Previous Wave/

Pixel (sec.)

Time to Make

Wave/ Pixel (sec.)

Time to Append

Wave (sec.)

Time for Pixel

Change

3.674e-6 0.00194 0.002 0.00394

 The Wave Library solution of improving the frame rate by rearranging the

sequence of the control system to include predetermined waves that are called. Based on

arbitrary images the improvement is substantial enough to meet the target frame rate.

Table 5: Results of the Wave Library Experiment

Original

Initialization

(sec.)

Logic

Improvement

Initialization

(sec.)

Original

Frame

Loop for

50

Frames

(sec.)

Logic

Improvement

Frame Loop

for 50 Frames

(sec.)

Original

Total

Time for

50 Frames

(sec.)

Logic

Improvement

for 50 Frames

(sec.)

0.706 3.891 266.744 5.471 267.45 9.363

This improvement was validated through experimentation results shown in Table 5. In all

five experimental scenarios the frame rate exceeds the target frame rate shown in Table 6.

52

Table 6: Wave Library Improvements for Experimental Conditions

 Conversation Landscaped

Path

City Path Hallway Driving

Time Saved

(sec.)

88.747 94.863 93.635 99.902 97.432

% Saved 94.84% 94.88% 95.07% 95.29% 94.96%

Frame Rate

(FPS)

41.658 39.266 41.383 40.697 38.833

The average percentage of time savings is ~95% seconds across the five experimental

conditions. This time savings results in the average frame rate across the five

experimental conditions to be 40 frames/second. The Wave Library solution is a

significant improvement from the original 2 frames/second and meets the goal of 30

frames/second.

53

6. Future Work

 There are potential future works in three main categories of this control system.

The first is improving the current solutions. The python control system is primarily based

on the concept of converting image to sound. The development of this process can be

further expanded in a number of different applications. In addition to the application of

converting image to sound, each of the solutions have the opportunity to expand. The first

solution, running the code in parallel, also known as threading has the opportunity to run

the program on a GPU instead of a CPU. The GPU has thousands of cores with the ability

to process parallel workloads more efficiency than the CPU which only contains multiple

cores. The second solution of determining if the pixels have experience significant value

change can be expanded to determine if the pixels of an image have experienced

significant change. This development would require focus on determining the effect on

the frame rate. The last solution has the opportunity to store the predetermined waves on

a network so more pixel grayscale values are available to the user on the cloud instead of

in the device’s memory.

 The second future improvement is expanding on the Change Filtering proposed

solution. Currently, the amount of motion in the videos used to evaluate the proposed

solutions was evaluated subjectively. This means that these were determined low to high

activity based on human evaluation. As an item for future work, the use of the Change

Filtering method could be evaluated as a way to objectively quantify the amount of

change within a video to determine the processing difficulty.

54

 The last future improvement is total system testing. This control system is

designed for a vibrotactile haptic display currently in development. Full system

integration can include testing for harmonic distortion, overlapping natural frequencies,

as well as user implementation. User implementation testing could include determining

the most sensitive part with the largest surface area of the human body. The

implementation can also include how much pressure the skin needs to contact each beam.

 Although there is opportunity to develop each solution, visually impaired scenario

metric, as well as the total system integration testing, this control system concept also has

opportunity for further development as well as application. Conversion from image to

sound can be further expanded with artificial intelligence as well as image compression

standards. The application can also be further researched to determine if this solution

would improve current system processes.

55

References

[1] X. Zhang et al., “Human echolocation: waveform analysis of tongue clicks,”

Electron. Lett., vol. 53, no. 9, pp. 580–582, 2017.

[2] W. Liu and M. S. Humayun, “Artificial retinal prosthesis to restore vision for the

blind,” in 2000 Digest of the LEOS Summer Topical Meetings. Electronic-Enhanced

Optics. Optical Sensing in Semiconductor Manufacturing. Electro-Optics in Space.

Broadband Optical Networks (Cat. No.00TH8497), 2000, pp. I61–I62.

[3] Y. H.-L. Luo and L. da Cruz, “A review and update on the current status of retinal

prostheses (bionic eye),” Br. Med. Bull., vol. 109, no. 1, pp. 31–44, Mar. 2014.

[4] J. M. Ong and L. da Cruz, “The bionic eye: a review,” Clin. Experiment.

Ophthalmol., vol. 40, no. 1, pp. 6–17, Jan. 2012.

[5] P. Bach-y-Rita, Brain mechanisms in sensory substitution. New York,: Academic

Press, 1972.

[6] E. Sampaio, S. Maris, and P. Bach-y-Rita, “Brain plasticity: ‘visual’ acuity of blind

persons via the tongue,” Brain Res., vol. 908, no. 2, pp. 204–207, Jul. 2001.

[7] A. C. Nau, C. Pintar, A. Arnoldussen, and C. Fisher, “Acquisition of Visual

Perception in Blind Adults Using the BrainPort Artificial Vision Device,” Am. J.

Occup. Ther., vol. 69, no. 1, p. 6901290010p1-6901290010p8, 2015.

[8] T. Gonnot and J. Saniie, “Integrated machine vision and communication system for

blind navigation and guidance,” in 2016 IEEE International Conference on Electro

Information Technology (EIT), 2016, pp. 0187–0191.

[9] T. H. Nguyen, T. H. Nguyen, T. L. Le, T. T. H. Tran, N. Vuillerme, and T. P. Vuong,

“A wearable assistive device for the blind using tongue-placed electrotactile display:

Design and verification,” in 2013 International Conference on Control, Automation

and Information Sciences (ICCAIS), 2013, pp. 42–47.

[10] Z. Liu, Y. Luo, J. Cordero, N. Zhao, and Y. Shen, “Finger-eye: A wearable text

reading assistive system for the blind and visually impaired,” in 2016 IEEE

International Conference on Real-time Computing and Robotics (RCAR), 2016, pp.

123–128.

56

[11] “Combining haptic and braille technologies: design issues and pilot study.”

[Online]. Available:

http://www.sigchi.org/chi96/proceedings/papers/Ramstein/CR_BRL.HTM.

[Accessed: 23-Feb-2017].

[12] T. Park, J. Jung, and J. Cho, “A method for automatically translating print books

into electronic Braille books,” Sci. China Inf. Sci., vol. 59, no. 7, p. 072101, Jul.

2016.

[13] M. Romero, B. Frey, C. Southern, and G. D. Abowd, “BrailleTouch: designing a

mobile eyes-free soft keyboard,” in Proceedings of the 13th International Conference

on Human Computer Interaction with Mobile Devices and Services, 2011, pp. 707–

709.

[14] P. Bach-y-Rita and S. W. Kercel, “Sensory substitution and the human–machine

interface,” Trends Cogn. Sci., vol. 7, no. 12, pp. 541–546, Dec. 2003.

[15] “Blind Sight: The Next Generation of Sensory Substitution Technology,” The

Crux, 28-Apr-2014.

57

APPENDIX I

PHOTOS OF VIDEOS FOR EXPERIEMTNATION

58

Figure 32: Images of Conversation Video

59

Figure 33: Images of Walking down Landscaped Path Video

60

Figure 34: Images of Walking down a City Path Video

61

Figure 35: Images of Walking down a Hallway Video

62

Figure 36: Images of Driving Video

63

APPENDIX II

ADDITIONAL GRAPHS

64

Figure 37: Minimum and Maximum Pixel Change vs Grayscale Tolerance for the

Conversation Video

Figure 38: Standard Deviation of the Pixel Change vs Grayscale Tolerance for the

Conversation Video

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o

f
C

h
an

ge
d

 P
ix

el
s

Grayscale Tolerance

Benchmark of Conversation
Max. & Min. Change of Pixels vs.

Difference Tolerance

Max

Min

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o

f
C

h
an

ge
d

 P
ix

el
s

Grayscale Tolerance

Benchmark of Conversation
Standard Deviation of Pixel Change vs.

Difference Tolerance

65

Figure 39: Minimum and Maximum Pixel Change vs Grayscale Tolerance for the

Landscaping Video

Figure 40: Standard Deviation of the Pixel Change vs Grayscale Tolerance for the

Landscaping Video

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o

f
C

h
an

ge
d

 P
ix

el
s

Grayscale Tolerance

Benchmark of Path with Landscaping
Max. & Min. Change of Pixels vs.

Difference Tolerance

Max

Min

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o

f
C

h
an

ge
d

 P
ix

el
s

Grayscale Tolerance

Benchmark of Path with Landscaping
Standard Deviation of Pixel Change vs.

Difference Tolerance

66

Figure 41: Minimum and Maximum Pixel Change vs Grayscale Tolerance for the City

Path Video

Figure 42: Standard Deviation of the Pixel Change vs Grayscale Tolerance for the City

Path Video

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o

f
C

h
an

ge
d

 P
ix

el
s

Grayscale Tolerance

Benchmark of Path with City Path
Max. & Min. Change of Pixels vs.

Difference Tolerance

Max

Min

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o

f
C

h
an

ge
d

 P
ix

el
s

Grayscale Tolerance

Benchmark of Path with City Path
Standard Deviation of Pixel Change vs.

Difference Tolerance

67

Figure 43: Minimum and Maximum Pixel Change vs Grayscale Tolerance for the

Hallway Video

Figure 44: Standard Deviation of the Pixel Change vs Grayscale Tolerance for the

Hallway Video

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o

f
C

h
an

ge
d

 P
ix

el
s

Grayscale Tolerance

Benchmark of Path with Hallway
Max. & Min. Change of Pixels vs.

Difference Tolerance

Max

Min

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o

f
C

h
an

ge
d

 P
ix

el
s

Grayscale Tolerance

Benchmark of Path with Hallway
Standard Deviation of Pixel Change vs.

Difference Tolerance

68

Figure 45: Minimum and Maximum Pixel Change vs Grayscale Tolerance for the Driving

Video

Figure 46: Standard Deviation of the Pixel Change vs Grayscale Tolerance for the

Driving Video

0

1000

2000

3000

4000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o

f
C

h
an

ge
d

 P
ix

el
s

Grayscale Tolerance

Benchmark of Driving
Max. & Min. Change of Pixels vs.

Difference Tolerance

Max

Min

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13

o

f
C

h
an

ge
d

 P
ix

el
s

Grayscale Tolerance

Benchmark of Driving
Standard Deviation of Pixel Change vs.

Difference Tolerance

69

APPENDIX III

CODE

70

Original Time

Code to show the time of each step per resolution from 8x8 to 64x64

import cv2

from PIL import Image

from resizeimage import resizeimage

import pyaudio

import numpy as np

import time

import matplotlib.pyplot as plt

import math

import scipy

import pylab

from numpy.random import randn

img_counter = 0

p = pyaudio.PyAudio()

fs = 44100 # sampling rate, Hz, must be integer

duration = .10 # in seconds, may be float # sine

frequency, Hz, may be float

f = 20 # sine frequency, Hz, may be float

waves=[] # array of wavesa= .0002

a=0#.0002 #amp/volume range [0.0, 1.0] for 4096

t = np.linspace(0, duration, fs) # used in plot

benchinc=0

count=0

freq=[]

amp=[]

sumsamples=0

check =0

waves=[]

countTest=0

#**********A**********************

startA=time.time()

open pyaudio.PyAudio()

stream = p.open(format=pyaudio.paFloat32,

 channels=1,

 rate=fs,

 output=True)

endB=time.time()

#**********B**********************

71

#access webcam

startB=time.time()

cap=cv2.VideoCapture(0)

endC=time.time()

while countTest <= 7:

#****Benchmarking*****************

#*********************************

 if countTest == 0:

 sumMax = 8*8

 if countTest == 1:

 sumMax = 16*16

 if countTest == 2:

 sumMax = 24*24

 if countTest == 3:

 sumMax = 32*32

 if countTest == 4:

 sumMax = 40*40

 if countTest == 5:

 sumMax = 48*48

 if countTest == 6:

 sumMax = 56*56

 if countTest == 7:

 sumMax = 64*64

 # access the correct values for the soundwave (freq & amp)

 for count in range (benchinc, sumMax):

 freq.append(f)

 amp.append(a)

 f=f+4

 a=a+0.0002

#*********************************

#*********************************

#**********C**********************

 #capture an image

 startC=time.time()

 ret, frame = cap.read()

 endD=time.time()

#**********D**********************

 #convert image to grayscale

 startD=time.time()

 gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

 endE=time.time()

72

#**********E**********************

 #resize image

 startE=time.time()

 new_img = gray.resize((64,64))

 endF=time.time()

#**********F**********************

 #calculating soundwave

 startF=time.time()

 for inc in range (benchinc, sumMax):

 #create sinewaves for each pin

 f=freq[inc]

 a=amp[inc]

 w = 2. * np.pi * f

 samples = a*np.sin(w * t)

 endG=time.time()

#**********G**********************

 startG=time.time()

 #sum each pin wave into a single wave

 sumsamples = samples + sumsamples

 endH=time.time()

#**********H**********************

 startH=time.time()

 stream.write(sumsamples)

 endI=time.time()

 countTest=countTest+1

#**********I**********************

#****Benchmarking*****************

#*********************************

 AtoB=endB-startA

 BtoC=endC-startB

 CtoD=endD-startC

 DtoE=endE-startD

 EtoF=endF-startE

 FtoG=endG-startF

 GtoH=endH-startG

 FtoH=endH-startF

 HtoI=endI-startH

 print "Resolution: ", sumMax

 print "A > B", AtoB

 print "B > C", BtoC

 print "C > D", CtoD

73

 print "D > E", DtoE

 print "E > F", EtoF

 print "F > G", FtoG

 print "G > H", GtoH

 print "F > H", FtoH

 print "H > I", HtoI

#*********************************

#*********************************

stream.close()

p.terminate()

cap.release()

Threading Solution

Code to show the time of each threading experiment

import cv2

from PIL import Image

from resizeimage import resizeimage

import pyaudio

import numpy as np

import time

import matplotlib.pyplot as plt

import math

import scipy

import pylab

import threading

from threading import Thread

img_counter = 0

p = pyaudio.PyAudio()

fs = 44100 # sampling rate, Hz, must be integer

duration = .10 # in seconds, may be float # sine

frequency, Hz, may be float

f = 20 # sine frequency, Hz, may be float

waves=[] # array of wavesa= .0002

a=0#.0002 #amp/volume range [0.0, 1.0] for 4096

t = np.linspace(0, duration, fs) # used in plot

benchinc=0

count=0

freq=[]

amp=[]

74

sumsamples=0

check =0

waves=[]

countTest=0

sumMax=4096

p = pyaudio.PyAudio()

stream = p.open(format=pyaudio.paFloat32,

 channels=1,

 rate=fs,

 output=True)

cap=cv2.VideoCapture(0)

def singlescreen():

 import cv2

 from PIL import Image

 from resizeimage import resizeimage

 import pyaudio

 import numpy as np

 import time

 import matplotlib.pyplot as plt

 import math

 import scipy

 import pylab

 cap=cv2.VideoCapture(0)

 img_counter = 0

 fs = 4410 # sampling rate, Hz, must be integer

 duration = .1 # in seconds, may be float # sine

frequency, Hz, may be float

 f = 20.0 # sine frequency, Hz, may be float

 waves=[] # array of wavesa= .0002

 a=.0002 #amp/volume range [0.0, 1.0] for 4096

 t = np.linspace(0, duration, fs) # used in plot

 benchinc=0

 count=0

 freq=[]

 amp=[]

 sumsamples=0

 check =0

 waves=[]

 countTest=1

75

 while countTest <= 10:

 sumMax = 4096

 freq=[f]*sumMax

 amp=[a]*sumMax

 t1=[t]*sumMax

 ret, frame = cap.read()

 gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

 new_img = gray.resize((64,64))

 for inc in range (benchinc, sumMax):

 f=freq[inc]

 a=amp[inc]

 samples = a*np.sin(2. * np.pi * f * t)

 sumsamples = samples + sumsamples

 #print "Thread 1 sumsample ", sumsamples

 stream.write(sumsamples)

 countTest=countTest+1

 print "Thread 1 of Resolution: ", sumMax

 stream.close()

 p.terminate()

 cap.release()

def singlescreen2():

 import cv2

 from PIL import Image

 from resizeimage import resizeimage

 import pyaudio

 import numpy as np

 import time

 import matplotlib.pyplot as plt

 import math

 import scipy

 import pylab

 cap=cv2.VideoCapture(0)

 img_counter = 0

 fs = 4410 # sampling rate, Hz, must be integer

 duration = .1 # in seconds, may be float # sine

frequency, Hz, may be float

 f = 20.0 # sine frequency, Hz, may be float

 waves=[] # array of wavesa= .0002

 a=.0002 #amp/volume range [0.0, 1.0] for 4096

 t = np.linspace(0, duration, fs) # used in plot

 benchinc=0

76

 count=0

 freq=[]

 amp=[]

 sumsamples=0

 check =0

 waves=[]

 countTest=1

 while countTest <= 10:

 sumMax = 64*64

 freq=[f]*sumMax

 amp=[a]*sumMax

 t1=[t]*sumMax

 ret, frame = cap.read()

 gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

 new_img = gray.resize((64,64))

 for inc in range (benchinc, sumMax):

 f=freq[inc]

 a=amp[inc]

 samples = a*np.sin(2. * np.pi * f * t)

 sumsamples = samples + sumsamples

 stream.write(sumsamples)

 countTest=countTest+1

 print "Thread 2 of Resolution: ", sumMax

 stream.close()

 p.terminate()

 cap.release()

def main():

 global k, lock

 lock= threading.Lock()

 k=0

 ScreenTesting=threading.Thread(target=singlescreen, name =

"Screen_Testing")

 ScreenTesting.start()

 print ('Start of Thread 1')

 ScreenTesting2=threading.Thread(target=singlescreen2, name =

"Screen_Testing2")

 ScreenTesting2.start()

 print ('Start of Thread 2')

if (__name__=="__main__"):

77

 main()

Grayscale

Code to show the images manipulated at 12 grayscale levels

import cv2

from PIL import Image

from resizeimage import resizeimage

import pyaudio

import numpy as np

import time

import matplotlib.pyplot as plt

import math

import scipy

import pylab

import gc

from scipy.misc import imsave

Amp=[0]*4096

Amp2=[0]*4096

imgValue = Image.open("Building.png")

gray = imgValue.load()

xMax = (64)

yMax = (64)

x=0

y=0

count=0

for x in range (x,xMax):

 for y in range (y,yMax):

 a= gray[x,y]

 Amp[count]=a

 if a <= 21:

 a=0

 elif a <= 43:

 a=21

 elif a <= 65:

 a=43

 elif a <= 87:

 a=65

 elif a <= 109:

78

 a=87

 elif a <= 131:

 a=109

 elif a <= 153:

 a=131

 elif a <= 175:

 a=153

 elif a <= 197:

 a=175

 elif a <= 219:

 a=197

 elif a<= 241:

 a=219

 else:#if a >241& a <= 255:

 a=241

 Amp2[count]=a

 count=count+1

 if y==63:

 y=0

img = Image.new('L',(64,64),color=None)

img.putdata(Amp2)

img.save('Building1.png')

Wave Library

Code to show the implement the Wave library

import cv2

from PIL import Image

from resizeimage import resizeimage

import pyaudio

import numpy as np

import time

import matplotlib.pyplot as plt

import math

import scipy

import pylab

from numpy.random import randn

img_counter = 0

p = pyaudio.PyAudio()

fs = 44100 # sampling rate, Hz, must be integer

79

duration = .10 # in seconds, may be float # sine

frequency, Hz, may be float

f = 20 # sine frequency, Hz, may be float

waves=[] # array of wavesa= .0002

a=0#.0002 #amp/volume range [0.0, 1.0] for 4096

t = np.linspace(0, duration, fs) # used in plot

benchinc=0

count=0

freq=[]

amp=[]

sumsamples=0

check =0

waves=[]

countTest=0

#**********A**********************

startA=time.time()

open pyaudio.PyAudio()

stream = p.open(format=pyaudio.paFloat32,

 channels=1,

 rate=fs,

 output=True)

#endB=time.time()

#**********B**********************

#access webcam

#startB=time.time()

cap=cv2.VideoCapture(0)

endC=time.time()

startTest=time.time()

while countTest <= 50:

#****Benchmarking*****************

#*********************************

 sumMax = 64*64

 # access the correct values for the soundwave (freq & amp)

 for count in range (benchinc, sumMax):

 freq.append(f)

 amp.append(a)

 f=f+4

 a=a+0.0002

#*********************************

80

#*********************************

#**********C**********************

 #capture an image

 startC=time.time()

 ret, frame = cap.read()

 #endD=time.time()

#**********D**********************

 #convert image to grayscale

 #startD=time.time()

 gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

 #endE=time.time()

#**********E**********************

 #resize image

 #startE=time.time()

 new_img = gray.resize((64,64))

 #endF=time.time()

#**********F**********************

 #calculating soundwave

 #startF=time.time()

 for inc in range (benchinc, sumMax):

 #create sinewaves for each pin

 f=freq[inc]

 a=amp[inc]

 w = 2. * np.pi * f

 samples = a*np.sin(w * t)

 # endG=time.time()

#**********G**********************

 # startG=time.time()

 #sum each pin wave into a single wave

 sumsamples = samples + sumsamples

 # endH=time.time()

#**********H**********************

 # startH=time.time()

 stream.write(sumsamples)

 #endI=time.time()

 countTest=countTest+1

#**********I**********************

#****Benchmarking*****************

#*********************************

AtoB=endB-startA

81

BtoC=endC-startB

CtoD=endD-startC

DtoE=endE-startD

EtoF=endF-startE

FtoG=endG-startF

GtoH=endH-startG

FtoH=endH-startF

HtoI=endI-startH

AtoC=endC-startA

CtoI=endI-startC

print AtoC

print CtoI

endTest=time.time()

test=endTest-startTest

print test

#*********************************

#*********************************

stream.close()

p.terminate()

cap.release()

Frame Rate Calculation

Code to show the calculate time savings and frame rate

import cv2

from PIL import Image

from resizeimage import resizeimage

import pyaudio

import numpy as np

import math

import scipy

import time

print 'driving'

fs=44100

duration = 0.1

82

t = np.linspace(0, duration, fs*duration)

f=20.0

BansalWaves0=[]

BansalWaves1=[]

BansalWaves2=[]

BansalWaves3=[]

BansalWaves4=[]

BansalWaves5=[]

BansalWaves6=[]

BansalWaves7=[]

BansalWaves8=[]

BansalWaves9=[]

BansalWaves10=[]

BansalWaves11=[]

check=1

sumwave=0

wave=0

i=0

j=0

k=0

startCreate=time.time()

p = pyaudio.PyAudio()

stream = p.open(format=pyaudio.paFloat32,

 channels=1,

 rate=fs,

 output=True)

#______________________CREATE WAVES__________________

for i in range (4096):

 a=0

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves0.append(b)

#print len(BansalWaves0)

for j in range (4096):

 a=21

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves1.append(b)

#print len(BansalWaves1)

83

for k in range (4096):

 a=43

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves2.append(b)

#print len(BansalWaves2)

for l in range (4096):

 a=65

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves3.append(b)

#print len(BansalWaves3)

for m in range (4096):

 a=87

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves4.append(b)

#print len(BansalWaves4)

for n in range (4096):

 a=109

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves5.append(b)

#print len(BansalWaves5)

for o in range (4096):

 a=131

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves6.append(b)

#print len(BansalWaves6)

for p in range (4096):

 a=153

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves7.append(b)

#print len(BansalWaves7)

for q in range (4096):

 a=175

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves8.append(b)

#print len(BansalWaves8)

for r in range (4096):

84

 a=197

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves9.append(b)

#print len(BansalWaves9)

for s in range (4096):

 a=219

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves10.append(b)

#print len(BansalWaves10)

for n in range (4096):

 a=241

 b=a*np.sin(2. * np.pi * f * t)

 BansalWaves11.append(b)

#print len(BansalWaves11)

endCreate=time.time()

#______________________CHECK IMAGE__________________

startBansal=time.time()

check=0

while check <= 201:

 startvideo=time.time()

 imgValue = Image.open("TinyGS_{}.png".format(check))

 gray = imgValue.load()

 endvideo=time.time()

 xMax = (64)

 yMax = (64)

 x=0

 y=0

 count=0

 for x in range (x,xMax):

 for y in range (y,yMax):

 a= gray[x,y]

 if a <= 21:

 wave=BansalWaves0[count]

 elif a <= 43:

 wave=BansalWaves1[count]

 elif a <= 65:

 wave=BansalWaves2[count]

85

 elif a <= 87:

 wave=BansalWaves3[count]

 elif a <= 109:

 wave=BansalWaves4[count]

 elif a <= 131:

 wave=BansalWaves5[count]

 elif a <= 153:

 wave=BansalWaves6[count]

 elif a <= 175:

 wave=BansalWaves7[count]

 elif a <= 197:

 wave=BansalWaves8[count]

 elif a <= 219:

 wave=BansalWaves9[count]

 elif a<= 241:

 wave=BansalWaves10[count]

 else:

 wave=BansalWaves11[count]

 count=count+1

 sumwave=wave+sumwave

 if y==63:

 y=0

 stream.write(sumwave)

 check=check+1

endBansal=time.time()

BansalTime=endBansal-startBansal

CreateTime=endCreate-startCreate

VideoTime=endvideo-startvideo

print sumwave

print ('Bansal time', BansalTime)

print ('Create time', CreateTime)

print ('Video Open time', VideoTime)

#______________________ORIGINAL IMAGE__________________

startOriginal=time.time()

check=0

while check <= 201:

 startvideo=time.time()

86

 imgValue = Image.open("TinyGS_{}.png".format(check))

 gray = imgValue.load()

 endvideo=time.time()

 xMax = (64)

 yMax = (64)

 x=0

 y=0

 count=0

 for x in range (x,xMax):

 for y in range (y,yMax):

 a= gray[x,y]

 if a <= 21:

 a=0

 wave=a*np.sin(2. * np.pi * f * t)

 elif a <= 43:

 a=21

 wave=a*np.sin(2. * np.pi * f * t)

 elif a <= 65:

 a=43

 wave=a*np.sin(2. * np.pi * f * t)

 elif a <= 87:

 a=65

 wave=a*np.sin(2. * np.pi * f * t)

 elif a <= 109:

 a=87

 wave=a*np.sin(2. * np.pi * f * t)

 elif a <= 131:

 a=109

 wave=a*np.sin(2. * np.pi * f * t)

 elif a <= 153:

 a=131

 wave=a*np.sin(2. * np.pi * f * t)

 elif a <= 175:

 a=153

 wave=a*np.sin(2. * np.pi * f * t)

 elif a <= 197:

 a=175

 wave=a*np.sin(2. * np.pi * f * t)

 elif a <= 219:

 a=197

 wave=a*np.sin(2. * np.pi * f * t)

 elif a<= 241:

87

 219

 else:

 a=241

 wave=a*np.sin(2. * np.pi * f * t)

 count=count+1

 sumwave=wave+sumwave

 if y==63:

 y=0

 stream.write(sumwave)

 check=check+1

endOriginal=time.time()

OriginalTime=endOriginal-startOriginal

print ('Original time', OriginalTime)

stream.close()

#p.terminate()

#cap.release()

