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ABSTRACT 

 Factors that explain human mobility and active transportation include built 

environment and infrastructure features, though few studies incorporate specific 

geographic detail into examinations of mobility. Little is understood, for example, about 

the specific paths people take in urban areas or the influence of neighborhoods on their 

activity. Detailed analysis of human activity has been limited by the sampling strategies 

employed by conventional data sources. New crowdsourced datasets, or data gathered 

from smartphone applications, present an opportunity to examine factors that influence 

human activity in ways that have not been possible before; they typically contain more 

detail and are gathered more frequently than conventional sources. Questions remain, 

however, about the utility and representativeness of crowdsourced data. The overarching 

aim of this dissertation research is to identify how crowdsourced data can be used to 

better understand human mobility. Bicycling activity is used as a case study to examine 

human mobility because smartphone apps aimed at collecting bicycle routes are readily 

available and bicycling is under studied in comparison to other modes. The research 

herein aimed to contribute to the knowledge base on crowdsourced data and human 

mobility in three ways. First, the research examines how conventional (e.g., counts, travel 

surveys) and crowdsourced data correspond in representing bicycling activity. Results 

identified where the data correspond and differ significantly, which has implications for 

using crowdsourced data for planning and policy decisions. Second, the research 

examined the factors that influence cycling activity generated by smartphone cycling 

apps. The best predictors of activity were median weekly rent, percentage of residential 
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land, and the number of people using two or more modes to commute in an area. Finally, 

the third part of the dissertation seeks to understand the impact of bicycle lanes and 

bicycle ridership on residential housing prices. Results confirmed that bicycle lanes in the 

neighborhood of a home positively influence sale prices, though ridership was marginally 

related to house price. This research demonstrates that knowledge obtained through 

crowdsourced data informs us about smaller geographic areas and details on where 

people bicycle, who uses bicycles, and the impact of the built environment on bicycling 

activity.  
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CHAPTER 1 

INTRODUCTION 

 As cities continue to expand and densify, people are tasked with getting to the 

places they want and need to go in the amount of time they have to get there. This is one 

aspect of human mobility and accessibility that is studied so that people are able to go 

more places and reduce overall travel times. While development of many western urban 

areas has been focused on human mobility via personal motor vehicles, planners and 

other stakeholders are now investing more in alternative forms of transport. This shift 

seems to relate to planners' desire to reduce carbon emissions, increase safety for riders, 

and to decrease motor vehicle trips. The face of human mobility has changed with the 

advent of city planning specifically aimed at serving people who choose to use bicycles 

as a mode of transport. The push for bicycle related infrastructure such as bicycle lanes 

and routes has facilitated bicycling's uptake as an activity and form of transportation. 

This supportive infrastructure means that bicyclists now have choices about where, when, 

and how they ride. Cyclists may represent a broad range of ages and skill levels from 

young and old to cautious riders, people out for a casual Sunday ride, or those coined as 

"mamil" - middle aged men in lycra  - who may be interested in using bicycling as a 

mode of fitness and competition, recreation, or transportation. A particular cyclist may 

choose to ride a direct route through several busy intersections or may go out of their way 

to stay on bicycle-supportive infrastructure.  

 In light of the push for increased bicycle-friendly infrastructure, city planners and 

other stakeholders are pressed to understand where, when, and what type of infrastructure 

to install. Different types of infrastructure might support recreational versus 

transportation bicyclists and knowledge of where, when, and what type of bicyclists are 

accessing cycling is needed so that informed decisions can be made. One problem in 

generating this knowledge lies in the ways that bicycling activity data are usually 

collected; the data often do not have enough information to understand the rider and 

street level details needed in decision making. More detail is needed to inform 

assessments of existing infrastructure as well as planning for installing infrastructure in 

the future. Informed urbanism in the form of well-planned and assessed infrastructure is 
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key in understanding the economic impact, overall ridership, and data sources associated 

with bicycling activity. 

1. Problem Statement 

Basic research questions in analysis of human mobility pertain to identifying 

popular places and the routes that people use to travel between them. Outcomes from 

these analyses characterize human mobility, such as defining transportation modes, 

identifying reasons for travel (e.g., commuting or recreation), or describing travel paths, 

and may illuminate drivers that influence those behaviors. The patterns and 

characteristics associated with mobility including routes taken, purpose for travel, or 

duration and distance of trips can be used to predict and estimate travel demands on 

networks or can also be used to examine travel among different modes, such as personal 

vehicles, public transit, and pedestrian activity. (Kitamura et al., 2000; Hiribarren and 

Herrera, 2014; Tao, Rohde, and Corcoran, 2014).  

Findings in mobility studies usually show that regional travel characteristics can 

be discovered within the data using a variety of partitioning, flow, and cluster methods, 

though detailed mobility information is typically left out. For example, specific routes, 

street level detail, and information about demographic subgroups are often ignored when 

regional, or origin-destination, data are used. Understanding the drivers of human 

mobility is key in generating policies and planning that can effectively predict, manage, 

influence, and facilitate improved human mobility and can illuminate where effective 

changes or improvements can be made so that congestion, excessive travel time, 

restricted accessibility and other problems do not occur. 

Current sampling methods and data available for planning and analyzing non-

motorized travel are limited in detail and scale, and robust systems that account for and 

measure pedestrian and cyclist travel are needed (Lindsey, Chen, and Hankey 2013). 

Active transport, or non-motorized travel, is associated with increased health behavior 

(Sahlqvist et al., 2013), reduced traffic congestion, and potential reduction of emissions 

associated with vehicular travel (Frank et al., 2006), though it must be a feasible transport 

option for those benefits to be realized. Increased use of and access to active transport is 

one aspect of transit planning and design that may improve problems associated with 
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human mobility. Regional travel surveys may not address non-motorized travel activity at 

all, and if they do it has been convention to assume that people take the shortest distance 

path between their origin and destination. This approach overlooks other network features 

and built environment contexts that may influence movement behavior such as 

infrastructure, other geographic features like slope or land use, and trip purposes (Broach, 

Dill, and Gliebe, 2012). These are the networks and contexts that may influence whether 

a cyclists chooses going out of their way to stay on bicycle specific infrastructure rather 

than take a direct route or vice versa.  

Collection and analysis of activity data is central to the success of human mobility 

studies. Conventional methods to collect human movement and mobility data include 

sensor detectors, manual counts, travel surveys and travel diaries. These sources provide 

information about trip origins, destinations, travel volume, and flows between different 

areas. They have three major limitations including high costs, coarse scale, and small 

sample sizes. High costs may be associated with dedicated infrastructure, like loop 

detectors and sensors, that capture movement behavior (Hiribarren and Herrera, 2014; 

Leduc, 2008). The sampling strategies of these data are also coarse in that they only 

collect information about volumetric flows at particular locations, so coverage and detail 

are limited (Leduc, 2008). While broad movement patterns of travel around regions can 

be characterized, smaller group or individual travel cannot be distinguished. Since 

volumes are only collected at particular locations with these technologies, they do not 

allow actual route information to be observed. Travel surveys and diaries may be 

similarly limited as only trip origin and destination locations are collected and route 

information is not often included. Further, these data are typically aggregated to some 

larger spatial unit to protect privacy, so actual origin and destinations may not be 

retained. Some analyses are possible at the individual level with travel survey data, 

though finer scale examinations at sub-regional levels are limited by sample sizes in 

particular regions because there may be too few respondents in any one area. Since data 

collection periods often typically span one or two days, it is also possible that certain 

travel behaviors could be missed depending on the days that are selected. Participants 

using travel diaries may also fail to record trips, especially short trips that are not taken 
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from their home location (Wolf, Guensler, and  Bachman, 2001). GPS recordings can be 

used to supplement travel diaries and overcome problems, such as trips that are not 

recalled or recorded by participants, though they are still associated with small sample 

sizes and short data collection periods.  

Sampling strategies for mobility data using these conventional methods are one 

factor that has limited detailed analysis of movement and mobility activity. Sampling 

methods particularly limit analysis of mobility in the area of active transport, or non-

motorized travel like walking and cycling for practical purposes rather than leisure 

(Saunders et al., 2013). Since non-motorized trips tend to be shorter, they necessarily 

require detailed finer resolution data for analysis (Cervero, 2003). Non-motorized travel 

usually occurs on local streets so developing and planning its infrastructure are typically 

within the domain of local governments, though increased federal and state funding has 

led to increased interest in monitoring pedestrian and cycling activities (Lindsey, Chen, 

and Hankey 2013). 

Greater knowledge about the infrastructure and network contexts that positively 

influence utilization of active transport modes will inform policy and design so those 

modes could be adopted and accessed by more users. Physical or environmental features 

such as transport infrastructure, land use, and the social, cultural, and institutional 

characteristics of neighborhoods are known to shape human behavior and these contexts 

influence mobility by offering a setting wherein people are able to engage in and access 

healthy living patterns (Kwan, 2012). Because people may travel through a variety of 

neighborhoods as they move about to perform their daily activities, individual, person 

and path-based definitions of movement and methods that account for people's actual 

movement paths, the places they visit, and the amount of time they spend there are 

needed (Kwan, 2012). Mobility data that contain information at finer spatial and temporal 

scales than conventional data are needed to account for people's experiences during 

movement behavior. These are the kinds of data that will distinguish between different 

types of travelers as well as the routes they take. 

One of the opportunities to improve examinations of active transport lies in new 

crowdsourced data sets. These data provide an opportunity to examine detailed 
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movement contexts that influence behavior and mobility by overcoming some of the 

limitations associated with conventional data. GPS traces, made available through 

location aware technologies (LATs) and smartphone applications, provide fine scale 

space-time data related to people's activities and movements (Laube and Purves, 2011; 

Miller, 2010). These detailed movement datasets contain information that some 

conventional methods cannot collect such as full travel routes, speeds, and duration of 

travel at an individual level, along with the benefit of increased sample sizes and the 

potential for near-continuous data collection. These data could allow for aspects of non-

motorized travel, such as how different types of infrastructure, street level environmental 

contexts, and movement activities interact and influence human mobility, to be measured. 

Despite potential insights, crowdsourced data may be biased and limiting in terms of 

generalizable representation of greater populations and few studies have compared the 

data to conventional sources to determine what they represent or how they may be used 

to advance our knowledge about human mobility and active transport. Potential 

limitations in the representativeness of these data need to be examined so their utility can 

be realized, and appropriate analytical methods can be applied to them.  

The goal of this research is to advance the understanding of human mobility using 

crowdsourced data. To that end crowdsourced data are used to incorporate geographic 

context into three studies that examine bicycling activity in urban areas. The following 

sections explain the background literature that relates to human mobility, the 

conventional data used to examine it, and explains the use of bicycling as a case study for 

mobility analysis. The remainder of the dissertation is organized as three separate but 

related research papers. The first paper compares crowdsourced and conventional data 

while the second paper examines factors that influence bicycling activity using 

crowdsourced data. Finally, the third paper uses crowdsourced data to determine whether 

bicycle ridership is related to house prices. 
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CHAPTER 2 

BACKGROUND LITERATURE AND RESEARCH GOALS 

 The goal of this literature review is to outline human mobility and the data used to 

examine it; it provides a synthesis of the background literature and the specific research 

goals of the dissertation. Conventional methods for collecting mobility data are discussed 

as they have key shortcomings in representing human mobility. Bicycling is justified as a 

case study for mobility since it occurs at the fine spatio-temporal scales that are relevant 

to understanding geographic context and active transportation. The benefits and 

drawbacks of using crowdsourced data are also outlined. The chapter then presents the 

specific research goals of the dissertation and discusses how those goals will be 

addressed. This section describes the research problem context, the goals of the research, 

as well as the outline of the remainder of the dissertation. 

2.1 Literature Review 

2.1.1 Human Mobility 

 Human mobility is studied to determine important places and the routes and 

modes people use to travel between them, as well as the influence of neighborhoods 

activity (Hirsch et al., 2014). As people move through space and time, what they 

experience and how they move is influenced by where, when, and why they move, for 

how long, and in or between which places (Kwan, 2012; Kwan, 2013). Where and when 

(i.e., time of day, for how long) people move constitutes the geographic context, and its 

influence must be considered and accounted for in examinations of active transportation. 

The geographic context needs to be examined in greater detail so that the factors that 

influence how and why people move around urban areas can be better understood. 

Greater understanding of the influence of context on mobility will aid policy and 

planning decisions like where, when, and what types of infrastructure to install.  

 Differing delineations of geographic context, however, also influence conclusions 

that are made about movement behaviors (Kwan, 2012). To accurately assess the impacts 

of geographic context on mobility, context needs to be examined as a dynamic concept 
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that considers people's actual movement paths (Kwan, 2013). Larger scale studies that 

examine regional trends in mobility often ignore the specific street level contexts within 

which people move because existing data is limited in detail; in examinations of dynamic 

contexts and human mobility, detailed mobility data are needed. There are limitations 

associated with some forms of mobility (e.g., walking and bicycling) that reduce the 

amount of information gleaned from said examinations because they occur at small 

spatial scales. Outside of small scale and localized travel studies, few conventional 

sources (e.g., counts and travel surveys) generate the level of detail necessary for studies 

of where and when people engage in mobility and active transport. Since crowdsourced 

data do often have detail like routes or counts indicative of popular routes, they have the 

potential to overcome these limitations and allow for analysis related to the geographic 

contexts through which people move. 

2.1.2 Active Transportation 

Active transport has several benefits though its use remains low in many urban 

areas. This section examines the research related to both bicycling activity as well as 

studies of crowdsourced data that relate to it. First, the benefits of active transport are 

discussed. Then, more details on the drivers and implications of bicycling as a mode of 

active transportation are summarized.  

 Active transport modes are associated with a range of individual and population-

level benefits, including decreased risk of adverse health outcomes, like hypertension and 

diabetes, as well as reduction in carbon emissions (Saunders et al., 2013; van Heeswijck 

et al., 2015; Kuzmyak and Dill, 2014). Using active transit modes is often associated with 

neighborhoods that are walkable, or characterized by dense, connected areas with mixed-

use land development and attractive destinations for pedestrians (Frank et al., 2006). 

Neighborhood walkability is associated with increased active transit and both decreased 

rates of and risk of obesity (Frank et al., 2006). Increased active transport in walkable 

areas, with a corresponding decrease in motorized transport, is associated with health 

benefits related to less air pollution and carbon dioxide emissions reduction (Woodcock 

et al., 2009; Frank et al., 2006). Despite benefits, levels of bicycling for commute and 
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recreation remain low in many urban areas, representing low percentages relative to all 

trips among other modes (Kuzmyak and Dill, 2014; Pucher, Garrard, and Greaves, 2011).  

Bicycling research addresses the role of road infrastructure, path preferences, and 

rider demographics. Current studies that utilize conventional data from regular cyclists 

have shown that they prefer to ride on bicycling specific infrastructure and well-

connected streets (Dill, 2009), prefer short paths and ride an average of about 30 minutes 

when commuting (Dill, 2008, Plaut, 2005).  

 Surveys aimed at cyclist preferences might only collect route information from 

participant recall, if at all, and may have small sample sizes. Travel surveys that target 

bicycling activity are typically limited in temporal scope and might only offer data on a 

single day or single week as well (Dill, 2009). Further, questionnaires may limit the 

information collected by only asking about typical behaviors and leaving out the details 

of where bicycling actually occurred (Dill, 2009). Travel surveys that utilize tracking 

technologies, such as GPS devices, gather detailed route and trip information but also 

generate noise and uncertainty associated with the data (Siła-Nowicka et al., 2016). 

Participants may not use devices when they are expected to or devices may run out of 

power and not collect data about relevant trips (Siła-Nowicka et al., 2016). Larger sample 

surveys comprised of more respondents, like the United States Census Bureau's 

American Community Survey and National Household Transport Survey, typically do 

not collect any route information and may miss bicycling activity altogether as it is 

relatively rare in comparison to other transport modes (Dill, 2009).   

 Bicycle count surveys are one of the most common methods for gathering 

bicycling data, though they suffer from a number of limitations. While counts provide 

bicycling travel volumes in particular locations, additional conclusions about bicycling 

behavior are difficult to make. Typically no additional route information is collected, so 

full travel behavior is not captured and cannot be inferred and geographic contexts are not 

determined (Kuzmyak and Dill, 2014). Count sites are not selected randomly and might 

only be based in locations where counts have occurred historically, popular or known 

bicycling routes, or where known problems with bicycling (e.g., crashes) occur (Ryus et 

al., 2014). Further, manual counts are temporally limited, only conducted annually or 
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semi-annually, for one day over a period of a few hours (Kuzmyak and Dill, 2014). 

Automated count technologies that passively collect travel volumes as riders pass by or 

over them have become more popular, but are associated with some of the same 

limitations as manual counts (Kuzmyak and Dill, 2014). Once installed, these tools can 

collect count data over longer periods of time though they have the same problems as 

manual counts in terms of collecting data from areas that are not randomly selected. 

Individual technologies are also associated with their own limitations, for example 

walking, bicycling, and skateboarding behavior may all be recorded as the same type of 

movement by an infrared counter (Kuzmyak and Dill, 2014). These limitations have 

caused a gap in research relating to the geographic contexts that cyclists travel through. 

 Despite knowledge of these factors, little is known about the broad 

generalizability of these findings because sample sizes are small and localized. Further, 

while findings address infrastructure, they do not address the larger geographical contexts 

(i.e., specific neighborhood features) within which people ride bicycles. Overall, these 

conventional approaches for bicycling data collection might be suitable for discovering 

general bicycling trends though they remain limited in spatial and temporal scope.  

2.1.3 Crowdsourced Data 

 Crowdsourced bicycling data which often originate from smartphone applications 

have the ability to overcome data limitations to provide more information on human 

mobility. The individual trip level movement paths generated from new data sources have 

fine scale detail and a great number of users in many different areas. With consideration 

of their representativeness and scope, these data may complement or replace conventional 

data collection methods for bicycling activity. Further, analytical approaches that have 

not been possible with conventional data because of its limitations could be applied to 

these new data to discover new movement behaviors. There remains a gap, however, in 

examinations of mobility using these data; few studies have examined bicycling activity 

using crowdsourced data. It remains unknown whether crowdsourced data lead to the 

same or differing conclusions as conventional data when studying bicycling activity. 

 In addition to providing more detail and greater data volume, crowdsourced data 

help overcome difficulties associated with public participation. Traditionally, public 
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participation in planning processes has been limited despite being considered important 

to successful planning efforts (Misra et al., 2014). Though information is easier to access, 

public participation is declining because it still often relies on physical presence in the 

process wherein certain groups may be excluded because of their inability to attend 

(Misra et al., 2014). Crowdsourced data overcome this limitation by providing a way for 

citizens to engage in civic decision making and public advocacy and not requiring 

citizens to be physically present at a particular time and place (Le Dantec et al., 2015). 

Using data generated from crowdsourced means, city planners and decision makers have 

new ways to consider developing projects and transportation planning in particular. 

Sustainable decision making requires both that the data be produced and that it be shared 

and used by relevant stakeholders (Le Dantec et al., 2015). Cycle Atlanta is one bicycling 

app that the city has used to make decisions about transport. The app provides 

information about routes as well as barriers riders encounter (e.g., pot holes). The city can 

then use the data to make knowledge based and data driven decisions about infrastructure 

developments to support bicycling activity. Cycletracks is another app that lends data on 

bicycling movement to the city of San Francisco and the app provides data for cyclists as 

well; the service is aimed at public participation and civic engagement and motivated by 

a lack of data on bicycling activity (Lee et al., 2014; Misra et al., 2014).  

 Crowdsourced data are useful in a transportation context because they easily 

engage users within a region, and in the case of bicycling activity, are more cost effective 

than conventional survey means (Misra et al., 2014). Depending on the platform, 

geographically spread and diverse types of users can lend data to the system which may 

not be the case in traditional public participation formats where attendance at specific 

meetings is required (Misra et al., 2014). Though smartphones are increasingly present, 

their use is not as popular with certain age, socioeconomic, and ethnic groups and 

therefore input based on them can be biased (Windmiller et al., 2014).  

 In general, smartphone samples tend to under-sample females, older age groups, 

and low income populations while oversampling particular minority ethnic populations 

(Windmiller et al., 2014; Blanc et al., 2016). Even with smartphone ownership, 

familiarity with its capabilities or availability of apps could hinder user input from 
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particular groups (Blanc et al., 2016). With bicycling activity in particular, it must also be 

considered that many people who ride or rely on bicycles for transport will not also be 

motivated to log those rides on a smartphone app. Despite these potential sampling 

biases, they are only a concern in conclusions we make about bicycling activity if the 

activity represented in crowdsourced data differ from those represented in conventional 

data. Further, the opportunity crowdsourced data bring to lend new insight also brings 

new challenges related to their large volumes and potential low quality (Leao et al., 

2017).  

 To date, few studies have examined crowdsourced data related to bicycling and 

those that have been conducted have typically used aggregated data from the Strava 

fitness application. One such study found that bicycling infrastructure was only 

moderately associated with the density of bicycling activity, though fitness-oriented 

cyclists using Strava may not seek out urban areas where infrastructure is located to 

support commute activity (Griffin and Jiao, 2015). In another study, categorical volumes 

(low, medium, high) of crowdsourced cyclists had some correspondence with manual 

counts, though presence of bicycling infrastructure was not predictive of bicycling 

volumes (Jestico, Nelson, and Winters, 2016). Recreational cyclists using the Strava app 

also tended to ride around residential land and along short, connected streets with low 

traffic volume (Sun et al., 2017). Further, recreational ridership tended to be outside the 

city center (Sun and Mobasheri, 2017). Individual-level crowdsourced data may 

overcome limitations related to this research design by providing more detail on both 

routes and trip purposes. 

 Crowdsourced data that provide detailed information about how people travel 

through urban areas might lend new insights into the relationship between urban 

structures and commute times for non-motorized modes, given examinations that make 

use of those data. While walking as a transport mode has been studied, bicycling remains 

under examined in comparison (Winters et al., 2016). The features of neighborhoods and 

networks that support walking or bicycling share some common characteristics, for 

example short street blocks or street level destinations (e.g., first floor retail), though 

bicycling involves additional features that may be relevant in supporting its uptake as an 
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activity (e.g., bicycle lanes) (Winters et al., 2016). Results from studies on cyclist 

behaviors and preferences have revealed some characteristics associated with bicycling 

activity. In general, commuting cyclists show preference for shorter, direct (i.e., few 

turns) routes, lower traffic volume and speed, and bicycling specific infrastructure (e.g., 

separated bicycle paths) and areas with more bicycling infrastructure tend to have more 

cyclists (Broach, Dill, and Gliebe, 2012; Winters et al., 2010; Winters et al., 2013). Many 

cyclists ride along bicycling infrastructure for a high proportion of their ride, though 

bicycle infrastructure might comprise a proportionally low amount of distance among the 

full street network (Dill, 2009). This indicates that cyclists may be willing to travel 

further distances to ride on bicycling infrastructure, though analysis comparing shortest 

distances between origins and destinations to actual travel paths is needed to determine 

whether this is the case (Dill, 2009). Other features of the built environment that 

influence bicycling include land use, density, and workplace accessibility (Handy and 

Xing, 2011).  In contrast to general findings regarding the positive association between 

amounts of bicycling activity and bicycling infrastructure, Dill et al. (2014) found no 

increase in bicycling activity where new bicycling boulevards were installed. 

Discrepancies such as this require further examination and the high volume, detailed GPS 

traces of bicycling trips generated from crowdsourced data may provide clearer insights 

into bicycling activity and the infrastructure that supports it. 

2.1.4 Data Usage in Mobility Studies 

The goal of this section is to discuss human mobility and the conventional data 

used to examine it. Key features of new crowdsourced data and their related findings on 

human mobility are explained. Finally, limitations of both conventional and 

crowdsourced data are discussed.   

Recording mobility, in both conventional and crowdsourced data, consists of a 

record of a moving object’s path through a discretized series of spatial locations at 

particular time intervals (Long and Nelson, 2013). Specifically, mobility data can be 

recorded as a simple {ID, XY location, time} sequence for an object or represented as 

just the origin and destination of that path (often referred to as OD or O-D trajectories). 

For example, travel diaries and mobile phone data can be used to create movement paths 
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for individuals that indicate their mobility across an area. In addition to the spatial 

location of movement, additional features of activities including trip origins and 

destinations, modes of travel, routes taken, times, and trip purposes can be included.  

 There are three conventional methods that are used to collect human movement 

and mobility data: sensor detectors, travel surveys, and travel diaries. Sensor detectors 

estimate or measure vehicle traffic flows. The technologies include inductive loop 

detectors or pneumatic road tubes, which count vehicles passing over them at particular 

points along roadways (Leduc, 2008). There are also less intrusive methods to measure 

traffic such as manual counts, infrared, and other sensors. Manual counts utilize 

observers to record information about vehicles and pedestrians that pass by their location 

(Leduc, 2008). Other types of sensors detect moving objects that pass through their field 

and may be able to record the type of vehicle and speed in addition to basic counts.  

 Travel surveys are larger scale (e.g., nation, state, county) data collection efforts 

that are generated by surveying randomly selected, representative samples. Data are 

collected regarding all trips a participant takes during the study period, which is usually 

one day or less than one week (Freeth, 2000; Pucher et al., 2011). Travel diaries are 

similar to surveys but typically collect more detailed information on travel paths and 

destinations. Diaries involve recording detailed daily travel from a sample group of study 

participants or all members of a household. Some travel diaries are collected on their 

own, while others may be used as a supplement to a larger travel survey. Information 

about each trip a participant takes during the study period is recorded including origin 

and destination location, time of travel, mode of travel, and trip purpose (Hirsch et al, 

2014; Wolf, Guensler, and Bachman, 2001). More recent efforts at travel diary studies 

have used GPS recording alongside the traditional written diary (Hirsch et al, 2014). 

 In addition to the conventional data sources for mobility data, there are newer data 

collection methods, driven by the ubiquity of GPS and other mobile technologies. These 

new, high-resolution movement data sets are often generated from Big Data sources, 

volunteered geographic information (VGI), or crowdsourced data. The term “Big Data” 

refers to information that is collected frequently, with great volume, from a wide variety 

of sources (Goodchild, 2013). In terms of mobility data, many of these sources are 
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associated with automatic data collection from transport services use such as smart card 

data from public transport and transport hire services (e.g., taxi or bicycle sharing 

schemes) as well as location-aware devices such as mobile phones.  

 VGI is user-generated spatial information that includes websites like 

OpenStreetMap which allow users to create content with spatial or geographic 

information, as well as smartphone applications where users record information about 

trips they take while participating in activities like walking or bicycling. These geosocial 

networking applications (e.g., Strava, RiderLog), a subset of VGI, utilize the GPS 

functionality of smartphone devices to allow users to record activity locations and often 

have a social component in terms of connecting with other users (Elwood, et al, 2012). 

Typically the location information, such as a GPS trace, is gathered and shared 

automatically by the device and application after a user has opted into the service 

(Elwood, et al, 2012). The detailed information about activities that people undertake is 

possibly one of the most valuable aspects of VGI (Goodchild, 2007). In general, it is 

gathered more frequently and is less expensive than conventional data as well 

(Goodchild, 2007; Goodchild and Li, 2012). Detailed GPS data sets can be used to 

examine both individual and group level movement behaviors, which allows for broader 

application contexts (Meijles et al., 2014). For example, GPS and personal itinerary 

information were used to supplement one another to determine different groups of park 

users (Meijles et al., 2014), and VGI has been used to map and describe different areas 

(e.g., Wikimapia, OpenStreetMap) (Elwood, 2012). 

 Smart cards are transit passes that are used as automated fare collection rather 

than traditional paper tickets or magnetic stripe cards (Bagchi and White, 2005). Cards 

are typically tapped or swiped on a receiver when boarding and alighting public transport 

which provides an electronic record of where and when passengers use public transport 

modes (Bagchi and White, 2005). Movement data from taxi trips typically include, at 

minimum, origin and destination locations and the date and time of each trip, though full 

GPS traces could be included in some cases (Guo et al., 2013). For cycle hire schemes 

(i.e., bicycle share), data typically include the origin, destination, date, and time where a 

customer checked out a bicycle for use. Mobile phone data typically consist of individual 
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call records or aggregated call volume data (Gao et al., 2013). Call record data includes 

user information, receiver and base-station location, date/time and duration (Gao et al., 

2013). The data are recorded as users communicate via calls or messages over the cellular 

network and each communication is associated with the latitude/longitude position where 

the base-station is located (Gao et al., 2013). Broad mobility patterns, flows, and clusters 

can be detected using the origin and destination points associated with these data and 

some individual travel behavior can be examined in systems where user information is 

collected. For example, Gao et al. (2013) used mobile phone records to discover 

interaction patterns between different groups; results showed that despite the ability to 

use a mobile phone anywhere, groups still tended to communicate within close spatial 

proximity. Guo et al. (2013) were similarly able to distinguish regions using graph 

partitioning of vehicle trajectories. Results from that study identified clusters of travel 

within 10 regions that allow for spatio-temporal patterns to be better understood (Guo et 

al., 2013).  

 While the previously discussed conventional sources of mobility data have been 

used a great deal to examine broad travel activities, two key limitations appear to include 

coarse spatio-temporal scale and limited sample sizes. In terms of active transportation, 

representation in conventional data collection methods suffers especially from coarse 

scale and limited sampling. Walking and bicycling tend to occur over shorter distances 

and durations than motorized travel, so conventional data that rely on counts or origin-

destination locations do not contain enough detail to examine activity at the localized 

scales in which it occurs and assumptions about factors that influence movement 

behavior may not hold. Since walking and bicycling are also associated with their own 

infrastructures, and different levels of interaction with the built environment and 

neighborhood contexts, finer scale data are needed to examine those factors that might 

influence movement behavior. While walking and walkability has been examined, little 

research has given detailed insight into where, when, and how people use bicycles at fine 

geographical scales. The finer-scale data and GPS traces collected through crowdsourced 

data could generate new insights on movement by allowing for detailed examination of 

full travel paths, rather than being restricted to general movement behaviors or broad 



16 
 

patterns. In terms of limited sampling, conventional methods might only collect volumes 

at particular locations or origin-destination locations, crowdsourced data provide new 

information about the actual routes people take to move between locations. This kind of 

detail is needed to generate knowledge about the network, neighborhood, and geographic 

contexts that drive the smaller-scale movement behavior associated with non-motorized 

modes. Detailed GPS data sets can be used to examine both individual and group level 

movement behaviors, which allows for broader application contexts (Meijles et al., 

2014). 

 Just as conventional data collection methods have limitations for representing 

human mobility, crowdsourced data too have limitations by potentially being biased 

thereby limiting their use to generalizable representation of greater populations. Users 

who generate data using smartphone technology are generally self-selected and those 

who also have access to the technologies and resources (e.g., money, time) required to 

take part (Goodchild, 2007; Heipke, 2010). Participants also have varied motivations for 

contributing to these data sources, for example convenience of sharing information, 

personal satisfaction or promotion, or in some cases passive contribution when data are 

collected and disseminated in some way as part of a service (e.g., consumer information 

collected from store loyalty cards or activities utilizing public transport) (Goodchild, 

2007). As such, the data potentially represent only the users specific to their application 

and not the general public. Depending on the source, commuters, students, children, and 

occasional or recreational non-motorized activity could be missed completely. For these 

reasons, comparisons of conventional and crowdsourced, examinations of what the data 

represent are needed. Critical examination of the features characteristic of these novel 

data will ensure that they are applied to problem contexts in such a way that biases are 

minimized (Elwood et al., 2012; Jackson et al., 2013). While crowdsourced data have the 

potential to lend new insights into human mobility because of their increased detail, and 

active transportation in particular, there is risk in relying on data that are not authoritative 

and potentially biased. In a transportation planning and decision making context, it is 

important to ensure that no one group or area has a disproportionate share of the 

associated costs or benefits. It is possible that relying on information generated only by 
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people contributing to crowdsourced and other urban movement data that require access 

to the resources they depend on could lead to increased inequities in transportation 

planning and policy. 

2.1.5 Summary of the Literature 

 The environments through which people move, or geographic context, influences 

their mobility and differing methods of defining those environments may change 

conclusions made about activity. Active transportation is one form of mobility activity 

that is influenced by geographic context, though detailed examinations have been limited 

by the conventional sampling strategies used to gather data. These conventional strategies 

are primarily limited by coarse spatio-temporal scale and relatively small sample sizes 

and crowdsourced data may overcome these limitations. Understanding of bicycling 

activity in particular stands to be improved by using novel crowdsourced datasets. 

Despite their potential utility, there is a gap in understanding both how crowdsourced 

data compare to conventional data as well as how they can be used to improve our 

understanding of mobility in urban areas. 

2.2 Research Objectives and Dissertation Plan 

 Research shows that better and more detailed information about where and when 

people use bicycles is needed so the processes that influence riding can be better 

understood. Research that generates detailed information about the specific neighborhood 

and street level contexts in which people bicycle can aid planning decisions that will 

increase bicycling rates to improve the health and sustainability of urban areas. A better 

sense of the contexts that facilitate bicycling as a practical transport option will inform 

improvements that would encourage or facilitate bicycling. Those contextual features that 

facilitate bicycling behavior may also highlight factors that prevent people from adopting 

bicycling as a transport mode. Network and other street level built environment features 

from areas with low bicycling activity can be compared to those with higher levels to 

determine which factors drive movement behavior.  

 The overarching objective of this dissertation research is to identify how 

crowdsourced data can be used to better understand human mobility, and bicycling 

activity in particular, and built environment context in urban areas. In light of the gaps in 



18 
 

research relating to bicycling activity and crowdsourced data, the research herein seeks to 

address human mobility, and bicycling in particular, using crowdsourced data. Three 

related research questions broadly compare crowdsourced and conventional data, 

examine the factors that underlie bicycling activity, and address the economic value of 

bicycling infrastructure and bicycle ridership. These questions relate in using 

crowdsourced data to incorporate geographic context in understanding bicycling in urban 

areas. First the research addresses the gap in understanding how crowdsourced and 

conventional data correspond in representing bicycling activity. It compares 

crowdsourced and conventional data by asking how do crowdsourced and conventional 

bicycle data correspond in representing bicycling activity? Related, what are the factors 

that underlie that bicycling activity? Second the research aims to understand human 

mobility, bicycling activity in particular, through the use of crowdsourced data. The 

specific research question is what are the factors that influence where bicycling data are 

represented in crowdsourced data and what is missed when we use crowdsourced 

samples? Further, are those factors the same between differing datasets or do different 

factors drive activity among them? Finally, the research examines the economic value of 

both bicycling infrastructure as well as neighborhood ridership volume. While density or 

proximity of some bicycling facilities have been linked to higher home prices, there is a 

gap in understanding the influence of actual bicycle ridership in those areas. This 

research seeks to answer what is the impact of bicycle ridership on residential housing 

prices?  

2.2.1 Dissertation Plan 

 The questions posed are addressed by three independent but related research 

papers. The papers align by examining urban mobility using crowdsourced data. The first 

paper is entitled "Comparing Spatial Patterns of Crowdsourced and Conventional 

Bicycling Datasets". As stated, conventional data on bicycling activity are limited in their 

spatial and temporal representation; crowdsourced data may overcome those limitations 

by providing more detailed information on ridership. Little research has addressed 

whether crowdsourced and conventional data correspond, or whether the new 

crowdsourced data are representative of broader bicycling activity. This paper explores 
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the gap in understanding how crowdsourced and conventional data compare in 

representing bicycling activity using local spatial analysis.  

 In order to fill the gap in understanding bicycling activity through crowdsourced 

data, the second paper, entitled "Factors that influence cycling activity density in Sydney 

using varied crowdsourced datasets", examines the contextual factors that determine 

where crowdsourced data are contributed. Systematic examination of several sources is 

needed to determine not only what activities the data represent, but the social and built 

environment drivers of the areas where those activity data are collected (i.e., positive 

space). The aim of this paper is to assess how the physical environment, bicycling 

infrastructure, and sociodemographic features of Statistical Areas Level 2 (SA2) in the 

Greater Sydney region predict where crowdsourced bicycling data are (i.e., positive 

space) and are not (i.e., negative space) contributed. 

 The third paper, entitled "Impact of Bicycle Ridership on Residential Housing 

Prices" addresses the economic impact of both bicycle facilities and bicycling ridership 

on local home prices. While the effects of transit on housing prices have been well 

studied, the influence of bicycle ridership has not been examined. This is partly because 

conventional data have been limited in the spatial scale necessary to measure bicycle 

ridership. Using crowdsourced data, this study examines how neighborhood ridership 

influences housing prices to fill the gap in knowledge about the economic value of 

neighborhood ridership.  
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CHAPTER 3 

COMPARING SPATIAL PATTERNS OF CROWDSOURCED AND 

CONVENTIONAL BICYCLING DATASETS* 
 

 This chapter is derived from a manuscript published in Applied Geography with 

coauthors Elizabeth Wentz, Trisalyn Nelson, and Christopher Pettit. The full citation is: 

Conrow, L., Wentz, E., Nelson, T., & Pettit, C. (2018). Comparing spatial patterns of 

crowdsourced and conventional bicycling datasets. Applied Geography, 92, 21-30. 

 

3.1 Abstract 
 

 Conventional bicycling data have critical limitations related to spatial and 

temporal scale when analyzing bicycling as a transport mode. Novel crowdsourced data 

from smartphone apps have the potential to overcome those limitations by providing 

more detailed data. Questions remain, however, about whether crowdsourced data are 

representative of general bicycling behavior rather than just those cyclists who use the 

apps. This paper aims to explore the gap in understanding of how conventional and 

crowdsourced data correspond in representing bicycle ridership. Specifically, we use 

local indicators of spatial association to generate locations of similarity and dissimilarity 

based on the difference in ridership proportions between a conventional manual count 

and crowdsourced data from the Strava app in the Greater Sydney Australia region. 

Results identify where the data correspond and where they differ significantly, which has 

implications for using crowdsourced data in planning and infrastructure decisions. 

Fourteen count locations had significant low-low spatial association; similarity was found 

more often in areas with lower population density, greater social disadvantage, and lower 

ridership overall. Five locations had high-high spatial association, or were locations of 

dissimilar rank values indicating that they did not have a strong spatial match. Higher 

coefficients of variation were associated with population density, the number of bicycle 

journey to work trips, and percentage of residential land use for the significant locations 

of dissimilarity. The Index of Relative Socio-economic Disadvantage (IRSD) and bicycle 

infrastructure density were lower than the locations that were not significantly dissimilar. 

For the significant locations of similarity, all coefficient of variation measures were lower 



21 
 

than the locations that were not significant. Areas where ridership show locations of 

similarity are those where it may be suitable to substitute conventional data for the more 

detailed crowdsourced data, given further investigation into potential bias related to rider 

demographics.  

3.2 Introduction 

Progress in planning and research for active transportation, or non-motorized 

transport modes like walking and bicycling for practical purposes, is limited by a lack of 

data related to where and when people use those modes. Since active transport trips tend 

to be shorter in duration and occur at finer-scale levels of movement, they necessarily 

require detailed fine-resolution data for analysis at the neighborhood level where the 

activity, and therefore policy and planning decisions, occur (Cervero and Duncan, 2003). 

The lack of reliable data and knowledge about non-motorized travel has limited measures 

of accessibility and examinations related to human mobility using those modes (Iacono et 

al., 2010). Further, there is a lack of data that can be used to link non-motorized transport 

behavior with infrastructure and other network features that may influence it (Broach et 

al., 2012). This research has two goals: first to determine how crowdsourced and 

conventional bicycling data correspond in representing bicycling activity and second to 

determine how that correspondence helps understand factors that underlie bicycling 

activity. 

For bicycling in particular, data limitations are associated with the sampling 

strategies for conventional data collection. The primary conventional methods for 

collecting bicycling travel activity data are manual bicycle counts, automated bicycle 

counts, regional travel surveys, and direct questionnaires. Manual bicycle counts are one 

of the most common methods for gathering bicycling data; they are conducted by 

counting travel volumes at specific locations for all riders who pass the location. The 

advantages of counts are that they do not depend on user participation, though they also 

have significant disadvantages. No additional information is collected, so route 

information, cyclist demographics, and reasons for the trip are not included (Kuzmyak 

and Dill, 2014). Another disadvantage is the representation of the sample is limited both 

spatially (e.g., count locations may not be spatially distributed in such a way to better 
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understand problems) and temporally (e.g., typically conducted annually or semi-

annually for a few hours on one or two days) (Ryus et al., 2014; Kuzmyak and Dill, 

2014). One alternative to manual counts is automated count technologies that 

continuously collect travel volumes as riders pass the counter (Kuzmyak and Dill, 2014). 

While these counters solve the problem of temporal sampling, the spatial sampling 

problem and the lack of associated travel data remain unsolved. Regional travel surveys 

tend to be more comprehensive and include all travel modalities including automobile 

and public transportation. Travel surveys typically sample individual travel activities over 

a short period of time, such as a day or a week’s worth of travel and as such, are able to 

gain more insight on route information and reasons for travel (Dill, 2009). Despite the 

additional information that is collected, travel surveys are often still limited in overall 

sample and detail. Since bicycling constitutes a comparatively small percentage of modal 

share, the activity may be missed completely, and route information may not be collected. 

If route information is inferred later, many surveys assume a cyclist takes the shortest 

path between an origin and destination (van Heeswijck et al., 2015) though this may not 

be the case as cyclists are willing to go out of their way to avoid traffic and stay on 

bicycling infrastructure (Dill, 2008). Information about bicycling activity may also be 

gleaned from direct questionnaires to cyclists. Direct questionnaires have been used to 

examine how bicyclists view urban design (Forsyth and Krizek, 2011), perceptions of 

risk while bicycling (Lawson et al., 2013; Møller and Hels, 2008), bicycle facility 

planning ( Rybarczyk and Wu, 2010; Dill, 2009), and route-choice modeling (Broach et 

al., 2012; Dill and Gliebe, 2008). These questionnaires generate valuable demographic 

and experience or opinion based data, but they also have a tendency toward limited 

spatial coverage and small sample sizes. 

 Novel crowdsourced data from smartphone apps have the potential to improve on 

the resolution of conventional data collection methods. Data collected from personal 

mobile devices overcome limitations in spatial and temporal scope by both providing 

finer-scale specificity about the actual route and not depending on the timing of a survey. 

These smartphone-based geosocial networking apps utilize built-in GPS functionality to 

allow users to record activity locations and often have a social component in terms of 
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connecting to, competing with, or sharing information among other users (Elwood et al., 

2012). The finer scale detail from near-continuous time frames is needed to generate 

knowledge about the neighborhood and network contexts that drive behavior associated 

with non-motorized modes. Detailed GPS data sets can be used to examine both 

individual and group level movement behaviors, which allows for broader application 

contexts as well (Meijles et al., 2014). The challenges with using crowdsourced bicycling 

data are the inherent biases due to self-selected participation. Users who generate data 

using smartphone technology are limited to those who have access, have the motivation 

to participate, and who have the resources (e.g., money, time) required to take part 

(Goodchild, 2007; Heipke, 2010). This means that crowdsourced data sources may be 

biased and limiting in terms of extensive and generalizable representation of greater 

populations, despite potential benefits associated with the detail and information they 

may provide. Groups such as commuters, students, children, and average recreational 

riders could be missed completely. This is problematic because relying on biased 

information could lead to increased inequities in transportation planning and policy.  

There are pertinent questions related to the effectiveness of these crowdsourced 

data for understanding the drivers of bicycling behavior because the data may be biased 

or of poor representative quality. Studies that have compared crowdsourced bicycling 

data to conventional bicycling data have found similar ridership volumes with 

correspondence closest when volumes were grouped categorically such as low, medium, 

and high volumes or according to peak hours, suggesting that spatial patterns between 

them may be similar (Jestico et al., 2016). For example, all riders in an urban downtown 

may use similar routes because of limited choices, which helps explain the relationship 

between crowdsourced and conventional count data. Using bicycle count and survey data, 

increased ridership is usually associated with increased bicycling infrastructure (e.g., 

bicycle lanes, separated cycle paths) (Broach et al., 2012). In the case of crowdsourced 

data, presence of bicycling facilities was not predictive of ridership volumes (Jestico et 

al., 2016). The poor association between crowdsourced ridership volume and bicycling 

infrastructure may be related to the manual count locations in known areas of bicycling 

activity. Another study using Strava data found that bicycling infrastructure was only 
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moderately associated with the density of bicycling activity; it is possible that fitness-

oriented cyclists using mobile apps such as Strava may not seek out urban areas where 

infrastructure is located to support commute activity (Griffin and Jiao, 2015).  

Crowdsourced data also show wide potential for examinations of urban areas and 

urban transportation. For example, ridership volumes collected by Strava have also been 

used to show how changes in bicycling infrastructure influence bicycling activity over the 

short-term (Heesch and Langdon, 2017). Though changes in ridership volumes occurred 

around bicycling infrastructure improvements, conventional data were still needed to 

adjust volumes across the region because of variations in app use across the area (Heesch 

and Langdon, 2017). Since all riders in the area do not use the app, their differing 

preferences for particular routes or types of infrastructure may influence conclusions if 

volumes are not adjusted based on the larger bicycling patterns from all riders in a region. 

Further, Strava ridership have been associated with particular neighborhood 

characteristics like highly connected streets within residential areas, though the 

characteristics and riding environments of cyclists using the Strava app may differ from 

those who are not (Sun et al., 2017a; Sun, 2017). Health and exposure characteristics 

have also been explored using these data. Researchers found differences between 

recreational and commuting riders in terms of where they ride and how much pollution to 

which they are exposed (Sun and Mobasheri, 2017). Since recreational riders tended 

toward the outskirts of an urban area, they were potentially exposed to less air pollution 

than commuters in the same region (Sun and Mobasheri, 2017). These studies help 

indicate where infrastructure changes could be made to positively influence cyclist 

health, safety, and overall ridership. 

As a step toward developing a method for conflating conventional and 

crowdsourced bicycling data, we seek to explore the, as yet, understudied area of 

understanding how crowdsourced and conventional data correspond in representing 

activity. Specifically, we first ask how do manual count data compare with Strava 

crowdsourced data in terms of bicycling activity volume? We conduct this exploration by 

analyzing the spatial pattern of crowdsourced data as compared to data collected through 

conventional methods in the Greater Sydney area. Spatial pattern analysis is used in this 



25 
 

context as a way to measure how the ridership in crowdsourced and conventional data 

correspond and show differences among the included datasets. The analysis provides 

greater precision of correspondence in the comparison as the approach avoids binning 

ridership into just low, medium, and high areas. While previous studies examined the 

strength of associations between manual counts and crowdsourced data, they did not 

examine the spatial associations and ridership patterns between locations for the differing 

data sources. Specifically, we compare manual bicycle count data with crowdsourced 

data using local Moran's Ii.  

Spatial pattern analysis is a commonly used analytical tool to identify where in a 

study area there are highly correlated areas of activity. Since highly correlated areas of 

activity may give some indication about the processes that underlie them (Nelson and 

Boots, 2008), we then also explore socio-economic demographics and infrastructure in 

the area to determine their explanatory value related to the patterns of data 

correspondence and differences we discover. Between discovering areas of high and low 

correspondence and examining the contests that underline them, we will better 

understand the analytical potential that crowdsourced data may lend in studies of 

bicycling activity. Areas with greater population density should be more likely to have 

similar ridership patterns between datasets as cyclists in dense urban areas may tend to 

take the same routes (Jestico et al., 2016); the same mechanism is thought to drive 

ridership in areas with a great deal of bicycling infrastructure and residential land and 

areas where there are more people using bicycling as a journey to work mode. Since 

disadvantaged areas are associated with lower ridership overall (Cervero and Duncan, 

2003), the datasets should show similar rates of low ridership in areas with greater 

disadvantage.  

Beyond weak correlation to bicycling infrastructure, the analytical potential for 

understanding bicycling behavior with crowdsourced data remains unknown; comparison 

of ridership  among conventional and crowdsourced data sets is needed to determine how 

they correspond. Their correspondence will reveal whether they are interchangeable, 

complementary, or display differing bicycling activity in the same spatio-temporal 

contexts. Examining covariates known to correlate with bicycling activity will lend 
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insight into whether areas of similarity or dissimilarity have common underlying 

contexts. If there are contexts common to those areas, we can have confidence in 

determining where Strava data can and cannot be used in place of conventional bicycling 

data. Considering that bicycling infrastructure was not associated with crowdsourced 

ridership volumes, and that bicycling infrastructure in urban areas tends to be located in 

and around denser city areas where people travel to work, it is possible that a fitness-

oriented app like Strava is not as well suited for collecting bicycling activity for transport 

purposes. Bicycling for transport is the analytical focus in an active transport context 

because both recreational and transport bicycling have health benefits, but the goals of 

sustainable transport and traffic congestion reduction are associated with people using 

bicycling for trips where they would have otherwise used motorized means.  

3.3 Methods 

3.3.1 Study Area 

The Greater Sydney area in New South Wales, Australia is used as a case study 

for the analyses herein (Figure 3.1, insets). The region has a population of 4.92 million 

people as of 2015 and though bicycling rates remain relatively low, the number of people 

bicycling to work has increased 50% in the Sydney area since 2006 (Transport for NSW, 

2013). Sydney serves as the capital of New South Wales and is a major core of economic 

activity including finance, business, manufacturing, agriculture, among others (NSW, 

2017). The area encompasses 12,368 square kilometers (ABS, 2017) with a variable 

climate within the area that typically ranges between a summer average of 23°C (73°F) 

and a winter average of 9°C (48°F) (NSW, 2017). 
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Figure 3.1. Greater Sydney area, New South Wales Australia, and the 122 count 

locations. 

 

In New South Wales, 70% of residents indicated a willingness to bike for 

transport provided it was a safer and more convenient option (Transport for NSW, 2013). 

Transport for New South Wales (2013) has identified the need for providing improved 

infrastructure and connectivity to encourage increased use of bicycling for transport. 

Bicycling is a feasible transport option for many people in Sydney, given the large 

number of daily commute trips within 10 km and a majority of short trips have travel 

times that are comparable to motorized trips (BITRE, 2016; Ellison and Greaves, 2011).  
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Figure 3.2. Bicycling facilities within the study area. 

As shown in Figure 3.2, the Greater Sydney area has a variety of facilities that 

comprise the bicycling network including painted cycleways, shared vehicle and shared 

busway lanes, separated on-road, and separated off-road cycle lanes, though shared and 

painted lanes are the majority (Pucher et al., 2011). Despite infrastructure, the region also 

has several factors that hinder bicycling as a feasible transport option without continued 

improvement. The terrain is hilly in areas, with natural barriers and few crossings (Pucher 

et al., 2011). Planned cycle routes are aimed toward recreational cyclists, such as those 

paths delineated along coastlines, or serve outer regions with low bicycling demand for 

commutes (Figure 3.2). While these paths may be used daily commuting by some 

populations, they are less likely to support direct routes that facilitate bicycling as an 

inner city transport mode (Pucher et al., 2011).  

3.3.2 Data 

 The data sources used for this study originate from the Super Tuesday manual 

count and the Strava smartphone app. The manual count data represent a conventional 
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manual count targeted specifically at capturing commuter bicycling activity. Strava data 

are crowdsourced data collected voluntarily through a smartphone app. The remainder of 

this section describes the features of each dataset and how they were integrated for use in 

this study.  

 The manual count data were collected between 7 and 9 am on March 1, 2016 at 

122 locations across 12 council areas in New South Wales. Of the 12 council areas, only 

those within the greater Sydney area were included (Figure 3.1); those eight included 

council areas were Canterbury, Leichardt, Marrickville, Parramatta, Randwick, 

Sutherland Shire, Sydney, and Warringah. The data collection locations were not 

distributed evenly across the study area since they depended on participating councils. 

The data collection points were situated at key intersections or along bicycling specific 

infrastructure such as cycleways or bike lanes and volunteers recorded counts of cyclist 

movement along the streets and paths at each location. As shown in Figure 3.1, the count 

locations were focused within several areas of the Greater Sydney region: the central 

business district and inner west, Paramatta (west of the Harbor), and northern beaches 

(northeast of the harbor area). Each count location had a corresponding total number of 

cyclists that passed by it during the data collection period. 

 The crowdsourced data originate from the Strava app's commercial data product, 

Strava Metro, which is marketed for use by city planners, transportation departments, and 

advocacy groups (Strava, 2016). Rather than providing full paths, users' bicycling activity 

in a particular area is aggregated to protect privacy. The data product consists of counts 

within origin and destination polygons, flow volumes through network nodes 

(intersections), or flow volumes along street segments that are indicative of popular 

routes. Since the node based intersection flows did not always correspond to the Super 

Tuesday count locations, the data used for this analysis consist of flow volumes along 

street segments for weekday bicycling in the month of March 2016. The aggregate month 

was the finest time scale available for this analysis that did not result in data scarcity at 

count locations. The volume measure used in this analysis was the total number of riders 

on a segment, regardless of direction travelled. The overall Strava sample included trips 

from 84863 unique riders who generated 2,889,139 trips; 77% of the riders were male. 
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The majority of the sample was between ages 25 and 54 for both males and females, with 

age 35-44 having the largest number of riders (n = 17032 and n = 2845 for male and 

female respectively). The median distance travelled was 23.73 km and approximately 

39% of the trips were marked as commutes. 

 To facilitate comparison between the two datasets, the Strava segment flow 

volumes were converted to counts that match the 122 Super Tuesday count locations. 

Each manual count location contained a description the streets included in that location's 

count, along with its direction (e.g., Darling St. [E], Beattie St. [W], Darling St. [NW]). 

The corresponding street segments were selected from the Strava data to generate the 

matching count locations; in some cases street segments in the digitized data format 

required additional cleaning. For example, some bi-directional streets were represented as 

two separated line feature segments (Figure 3.3) so one of the segments had to be 

excluded from the set of segments at that location. Specific rules and assumptions as to 

the inclusion or exclusion of street segments based on issues with matching are listed in 

Table 3.1 and further illustrated in Figure 3.3. 

 

Table 3.1. Rules and assumptions for matching Strava street segments to Super 

Tuesday manual count locations. 

Matching issue 
Figure 3.3 

example  
Decision Justification 

Bi-directional street 

represented as separate 

segments 

Segments 

a and b 

Include segment 

in direction of 

travel into 

intersection (e.g. 

segment b) 

Riders in the 

manual count are 

recorded according 

to their direction of 

travel 

Segment separating bi-

directional street, within 

count intersection 

Segment d Exclude segment 
False/excess 

segment 

Bi-directional street split into 

multiple segments, no 

intersection 

Segment e 

Include segment 

closest to count 

location 

Closest segment is 

where a cyclist 

enters the 

intersection to be 

counted 
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Roundabout n/a 

Include street 

segments that 

enter/exit 

roundabout, 

exclude segments 

that comprise the 

roundabout itself  

Roundabout curves 

often represented 

by multiple 

segments which 

over-counts 

cyclists.  

Non-conventional 

intersection/street (e.g., 

median separated) 

n/a 

Include street 

segments that 

match direction in 

manual count 

description 

Riders in the 

manual count are 

recorded according 

to their direction of 

travel 

 
Figure 3.3. Example digitized representation of an intersection at a manual count 

location (left) and the finalized intersection representation after cleaning (right). 

 

This process resulted in a set of segments that matched the description of streets included 

in the count at each of the manual count locations. This volume of riders on each segment 

was aggregated by location to derive a total sum of Strava ridership volume for each of 

the 122 count locations. This process was conducted using ArcMap 10.2. 
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 While the volumes in the manual counts account for turning activity and therefore 

only count riders once as they move through an intersection, the Strava street segment 

volumes represent all riders on each segment so the aggregated segment activity is double 

counted. For example, Figure 3.3 depicts cyclist movement behavior as the rider turns 

from segment b to segment c. In this scenario, the manual count at this location would 

record one rider regardless of turning behavior or the segments crossed. The same turning 

behavior in the Strava segment volume would count the rider's movement as one at 

segment b and one at segment c for a total of two. For this reason, the total Strava 

ridership volume at all count locations comprised of two or more segments was divided 

in half once they were aggregated since each rider would have approached and departed 

the location via at least two segments. After data preparation, the manual count data 

contained 16,554 rides taken by bicyclists and the adjusted Strava data contained 65,062 

rides across the 122 count locations.  

 Information about factors that are potential influencers of bicycling activity were 

obtained from the Australian Bureau of Statistics' National Regional Profile (NRP), New 

South Wales Office of Environment and Heritage (OEH), and The Socio-Economic 

Indexes for Areas (SEIFA) from 2011 at the Statistical Area 2 (SA2) level. The NRP data 

included estimated resident population density and method of travel to work including 

car, bus, train, and bicycle. The OEH data included the land use classifications for parcels 

in the Greater Sydney region. The SEIFA data included the Index of Relative 

Disadvantage (IRSD) score for each SA2 unit. The IRSD is a summary measure of the 

socio-economic conditions; low index scores indicate the most disadvantaged areas 

where higher scores indicate less general disadvantage (ABSb, 2017). The bicycle 

infrastructure data consisted of a polyline file obtained from OpenStreetMap representing 

segments of road and separated paths that were designated as bicycle infrastructure. The 

road network data originated from Strava as part of the included core data. To give some 

indication of accessibility, bicycle and road network densities were computed by dividing 

the length of bicycle infrastructure or road segments by the area in square kilometers of 

each SA2 unit. 
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3.3.3 Methodological Approach 

 

 To establish whether the data represent similar spatial patterns in volume of 

ridership at each count location, descriptive summaries were used to compare both 

ridership volumes and proportions among each data set. Local Moran's Ii was then used in 

this analysis to determine whether spatial patterns in ridership volume differed between 

the conventional and crowdsourced data; the statistic indicates the degree of spatial 

clustering of similar values around each observation. Positive values indicate clusters of 

similar entity values (high or low) and negative values indicate clusters of dissimilar 

values (e.g., a location with a high value and neighbors with low values) (Anselin, 1995). 

The entities in this case are the count locations along the network and the attributes are 

their respective rank difference of ridership volume. Since the aim in this analysis was to 

quantify and compare ridership between the datasets, a single value representing the 

difference in ridership volume between them was needed. To derive this value, the 

ridership volumes for each dataset were first ranked and a rank difference was computed 

according to equation 1, where 𝑅𝑖 = the rank at location i for data sets x and y. 

 

𝑅𝐷𝑖 =  (𝑅𝑥𝑖 − 𝑅𝑦𝑖)
2 

 

(1) 

Using rank difference, the statistic will detect clusters among the count locations where 

differences in rank of ridership volume differ from expectation (Boots, 2003). Detecting 

clusters is a first step in discovering the process that underlie some phenomenon (Nelson 

and Boots, 2008). Clusters in this context will indicate areas where soco-economic and 

infrastructure characteristics may be influencing bicycling activity volumes. The statistic 

(Equation 2) used for the analysis herein was defined as: 

 

𝐼𝑖 =
(𝑛 − 1)𝑧𝑖 ∑ 𝑤𝑖,𝑗𝑧𝑗𝑗

∑ 𝑧𝑗
2

𝑗

 

 

(2) 

Local Moran's Ii is computed for a row standardized binary spatial weights matrix based 

on the eight nearest neighbors for all i locations (i.e., a weight of 1 if location j is within 

the set of location i nearest neighbors and 0 otherwise). Since the local Moran's Ii values 
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are relative, standardized z scores and  p-values derived from  conditional randomization 

using 10000 permutations are used for interpreting the statistic (Anselin, 1995).The 

statistic was calculating using Python 2.7.13 and the PySAL library. 

 The factors related to socio-economic demographics and infrastructure were then 

explored to determine whether they were associated with the spatial patterns of similarity 

and dissimilarity between manual and Strava data counts. If the patterns are associated 

with those factors, they show the potential influence between population density, land 

use, IRSD, and journey to work modes as well as density of bicycle infrastructure in 

driving bicycling activity. The coefficient of variation was computed for each factor to 

indicate the relative variability of the factors between significant and non-significant 

count locations. QGIS 2.18.10 was used to associate each location with the socio-

economic and infrastructure factors as well as to visualize results.  

3.4 Results 

 The overall mean number of cyclists per location in the manual count was 136 for 

March 1st, 2016, the day the data were collected. The Strava sample mean was 533 

cyclists per location for the month of March 2016. The differences in ridership volume 

between datasets are eliminated when considering the proportions of rides; the mean, 

standard deviation, and range are similar between the data sets (Table 3.2). Both data sets 

have a mean proportion of 0.82% as well as showing the highest proportions of ridership 

were just over 8.0%.  

Table 3.2. Summary of Super Tuesday (March 1st, 2016) and Strava (March, 2016) 

descriptive statistics 

 Super Tuesday Strava 

Count Proportion 

(as %) 

Count Proportion 

(as %) 

Total 16554  65062  

Mean 136 0.82 533 0.82 

St. 

Dev. 
227 1.37 810 1.25 

Min 0 0.00 0 0.00 

Max 1338 
 

8.08 

 

5296 8.14 
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 The spatial distribution of the proportional ridership volumes at each location for 

each data set is shown in Figure 3.4. The correlation between ridership volumes for both 

data sets was 0.79, indicating a relatively strong positive correspondence in bicycling 

volumes across the study area (Figure 3.5). When divided into low, medium, and high 

bicycling activity the correlations dropped to 0.55, 0.17, and 0.57 respectively. While the 

ridership proportions between the data sets are similar in many areas, there are also areas 

where qualitative differences are present. Locations with the highest proportions among 

the manual count data tended to be near the Sydney central business district and the 

surrounding area south of the Harbor (Figure 3.4a). The lowest ridership mainly occurred 

at the southernmost locations, the northern suburbs, and some interspersed with the 

moderately-low locations immediately west and southwest of Sydney. Like the Super 

Tuesday sample, the highest ridership proportions in the Strava data were located in the 

central business district, though locations in the eastern suburbs displayed differing 

locations of higher ridership (Figure 3.4b). The areas immediately to the west and 

southwest of Sydney had a greater number of lower ridership sites with fewer 

moderately-low locations than the Super Tuesday data (Figure 3.4b). The Strava data also 

showed a greater number of northern suburbs and southernmost locations that had 

moderately-low ridership compared to low ridership in the same locations among the 

Super Tuesday data. Since correlation alone shows only the relationship between 

quantities, rank difference provides a more precise examination of the correspondence 

between the data sets which is needed to determine whether they contrast or complement 

one another and can be used interchangeably.  
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Figure 3.4. Ridership proportions (as %) for (a) Super Tuesday and (b) Strava  
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Figure 3.5. Correlation between Strava and Manual Count proportions, 0.79. Correlation 

for low, medium, and high ridership volumes were 0.55, 0.17, and 0.57 respectively. 

 

 In terms of rank difference, lower values indicate that the rank for a location was 

similar between the two data sources whereas higher values indicate greater difference in 

rank or said another way, greater mismatch between relative ridership volumes between 

the data sources. The spatial distribution of rank difference among count locations is 

shown in Figure 3.6. While count locations in the westernmost region of the study area 

had proportionally low ridership in both the Super Tuesday and Strava data, the rank 

difference values show differing levels of mismatch among them. Similarly, few areas in 

the northern suburbs or eastern suburbs show similar rank values. The Sydney central 

business district, where both data sets had relatively high proportions of ridership, also 

has low rank difference values. The area immediately west of Sydney shows a mix of 

similarly ranked locations where proportional ridership was low or moderately low for 
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both data sets, or where ridership was moderately low in one data set and moderately 

high in the other. 

 
Figure 3.6. Spatial distribution in rank difference among count locations. 

 

Figure 3.7 shows the results of the Local Moran's Ii  analysis as the significant locations 

and the quadrant within which they fell. There were 14 locations that had significant low-

low spatial association, or locations of similarity, (quadrant 3) while five locations show 

a high-high spatial association (quadrant 1), or locations of dissimilarity. There were also 

three locations with mixed spatial associations; two locations had high ridership ranks 

with low neighbors (quadrant 4) and one had a low rank with high neighbors (quadrant 

2). Table 3.3 shows the relative variability for the rank difference locations of 
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dissimilarity and similarity. Higher coefficients of variation were associated with 

population density, the number of bicycle journey to work trips, and percentage of 

residential land use in the area for the significant locations of dissimilarity. IRSD and 

bicycle infrastructure density were lower than the locations that were not significantly 

dissimilar. Comparing significant locations of dissimilarity and similarity measures, the 

pattern in coefficient of variation is the same. For the significant locations of similarity, 

all coefficient of variation measures were lower than the locations that were not 

significant. 

 

 
Figure 3.7. Location and quadrant of significant rank difference. 
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Table 3.3. Coefficient of variation for locations of dissimilarity and locations of similarity 

in rank difference. 

Variable 

Dissimilar 

locations, 

significant 

Dissimilar 

locations, 

not 

significant 

Similar 

locations, 

significant 

Similar 

locations, 

not 

significant 

Population 

density 
82.22 50.03 29.41 53.22 

IRSD 0.49 4.32 3.32 3.91 

Number of 

bicycle 

JTW 

79.99 76.72 55.69 71.15 

Bike lane 

density 
0.00 82.52 47.44 87.96 

Road 

density 
43.50 36.27 11.69 40.20 

Residential 

land use 
88.47 40.14 13.56 44.13 

 

3.5 Discussion 

 Results from this analysis quantified the patterns in ridership volume among 

conventional and crowdsourced data to determine how they correspond in representing 

bicycling activity. Qualitative comparison of the data shows that the spatial distribution 

of ridership shows some difference between the conventional manual count and the 

crowdsourced Strava data sources. The finding that both data sources had elevated 

ridership proportions near the central business district aligns with prior findings that 

conventional and crowdsourced ridership correspond in urban downtowns where riders, 

whether recreational or for transport, use similar routes because of limited choices 

(Jestico et al., 2016). Further, it is possible that the barriers to riding associated with few 
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crossings along the harbor would necessarily funnel riders to specific areas of access, 

which would lead to elevated volumes regardless of data sources (Pucher et al., 2011).  

 Given that the Strava data showed medium and high ridership in the eastern 

Sydney suburbs (e.g., Randwick), while the Super Tuesday data did not, there are 

implications for data use cases and planning decisions dependent upon them. In thinking 

about bicycling for transport, we anticipate high ridership in urban downtown areas 

where many employment centers are located. The high ridership proportions in the 

eastern Sydney suburbs are not associated with the expected employment centers, 

demonstrating that the data reflect differing bicycling patterns in terms of where the 

populations that are captured prefer to ride. While it would require investigation beyond 

the scope of this paper, it is possible that Strava users who may be more focused on 

fitness and competition prefer riding in locations that are more removed from the dense, 

high traffic areas associated with central business districts (Griffin and Jiao, 2015). Well-

developed infrastructure to support bicycling is key in encouraging people to switch from 

motorized modes to bicycling for transport. Bicycling could be a feasible option for many 

commuters in the Greater Sydney area, given installed infrastructure that supports it. 

Switching transport modes to bicycling for short trips will reduce problematic traffic 

congestion in the area, allowing improved traffic flow and travel times for commuters 

who must travel further distances (Transport for NSW, 2013). 

 Despite some relative spatial similarity in the distribution ridership proportions, 

the significant locations in the local Moran's Ii analysis demonstrate areas of interest in 

terms of rank difference. Ranks in this context are measuring the relative importance of a 

location within each dataset; the rank difference then is a measure of how similar the 

datasets are in terms of each location's standing. By creating locations of similarity and 

dissimilarity of bicycling activity, we can identify regions of varied bicycling activity 

beyond what can be generated by highlighting high or low volume point locations alone. 

This allows further understanding of the underlying factors of the spatial landscape that 

supports bicycling activities as captured by differing data collection methods.  

 The 14 locations in the Parramatta area that were locations of similarity (figure 

3.7, quadrant 3) had low ridership overall and have significantly low rank differences of 
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ridership volume, relative to their neighbors. In addition to having low ridership, this low 

rank difference cluster indicates that the manual count and Strava data represent similar 

ridership volumes. These locations, therefore, are those where it may be appropriate to 

utilize the more-detailed Strava data for planning and design decisions if more details 

about the rider demographics in the area are known (i.e., whether the average Strava rider 

represents the average non-Strava rider). In terms of socio-economic and infrastructure 

characteristics that may play a role in generating low bicycling volumes that are similar 

between conventional and crowdsourced data, the western portion of the study area has 

few designated bicycle paths which may explain the overall low ridership since higher 

ridership is associated with installed infrastructure (Dill, 2009; Broach et al, 2012). This 

area also shows higher rates of using train or car as a journey to work mode as compared 

to bicycle. It is also of note that this area also had some of the lowest scores on IRSD 

indicating greater relative disadvantage in terms of social and economic conditions such 

as low income, education, and/or skill. Low income neighborhoods have been associated 

with decreased probability of taking bicycling trips (Cervero and Duncan, 2003) so this 

aligns with general findings on bicycling activity. In a similar vein, the area also has 

lower percentages of residential land use mix which helps explain the low ridership; 

Strava riders generally prefer residential land use areas for bicycling activity (Sun et al., 

2017).    

 The five locations of dissimilarity were in the northern suburbs; this association 

indicates locations that have a high rank difference and whose nearest neighbors also 

have a high rank difference. All five locations had higher ridership proportions in the 

Strava data set as compared to the manual count data. Despite their popularity in the 

Strava dataset, these locations are not located on or near any bicycling infrastructure and 

have low bicycle infrastructure density relative to the locations of similarity areas (Table 

3.3). This indicates again the importance of installed bicycling infrastructure in 

supporting commute activity rather than just recreational riding (Broach et al., 2012). 

Since many Strava users are focused on fitness, it is possible that despite not having 

infrastructure, the roads in this area in some way support riding for purposes other than 

commuting (Griffin and Jiao, 2015). Interestingly, the one low-high location in this 
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northern area of high-high rank differences was off the main streets as compared to the 

high-high points. Since it was more of an out of the way location, this may explain why 

the Super Tuesday and Strava ranks for it were similar.  Like the western portion of the 

study area, there were low rates of bicycling as a journey to work mode in this northern 

area. In contrast though to the western area, the locations in the northern area are 

associated with higher scores on the IRSD which indicates that they are some of the least 

disadvantaged areas. Strava users are typically associated with higher socioeconomic 

status areas, so this relationship is in line with previous findings (Griffin and Jiao, 2016). 

As reflected here, the Strava data are likely biased toward recreational riders. Because the 

high-high spatial association indicates high rank difference surrounded by other high 

difference locations, this area is one where caution should be taken in substituting Strava 

data for conventional data.  

 The two high-low locations in the data were also located in the western most part 

of the study area. The high-low association indicates they have high rank difference while 

their neighbors were low - overall this means those two locations were dissimilar in terms 

of their position or importance in the data. For the furthest west high-low point, Super 

Tuesday ridership was higher than Strava, and the opposite is true for the other high-low 

point. It is important to note here as well that there is some disparity in the IRSD where 

the westernmost location was more advantaged than the other high-low point. Both points 

are surrounded by similar areas of medium-level bicycling and street infrastructure.  

  The vast majority of locations showed no spatial association, meaning that the 

spatial pattern of rank difference was not unexpected based on a null hypothesis of 

random processes. Considering that many of the locations with no significant difference 

were located close to the Sydney central business district, there are several factors that 

may be at play. First, this area is dense with bicycling infrastructure and since it is also a 

dense urban area, cyclists may have few choices in terms of bicycling paths so the Super 

Tuesday and Strava counts show relatively stable rates of activity (Jestico et al., 2016). 

Second, this area is close to the harbor where cyclists have few options for crossing, so it 

is possible that bicycling activity is forced to occur along particular corridors where that 

access is possible. Also, it is not surprising that these locations had some of the highest 
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scores on the IRSD indicating that they have good relative socioeconomic advantage. 

These areas also had some of the highest population density in general so the findings 

may be associated with having a larger total sample in the area. Finally, since the variable 

at study is rank difference, it is possible that bicycling rates in this area are actually 

different between the datasets, but that their relative importance in the data is stable as 

indicated by having similar rank difference to their neighbors.  

 One limitation of the current analysis is that the conventional manual count data 

collection depend on the councils that choose to participate in the count and are therefore 

not randomly distributed throughout the study area. The uneven distribution of count sites 

across the study area could have some implications for spatial pattern analysis results, 

though they are thought to be minimized by focusing on comparability rather than the 

pattern result itself. The current analysis is also limited in the demographic information 

included. Strava metro publishes little data on their sample and no demographics are 

captured in the conventional count. Future endeavors to examine crowdsourced and 

conventional data may include intercept surveys to capture more information about the 

riders who generate said data. Another limitation relates to the time periods for each data 

set. While the data sets were comparable proportionally, the Strava data presumably 

reflect more diurnal variation in bicycling activity since they reflect weekday riding for a 

full month rather than one day. Again, the influence of this variation minimized by using 

the ordinal values between the datasets rather than focusing on counts or proportions. 

Future examinations may consider using Strava data to extrapolate diurnal variations to 

scale one-day manual counts. 

3.6 Conclusions 

 In terms of comparing ridership patterns, these results begin to indicate how 

crowdsourced data can be used by planners and other stakeholders when designing and 

planning bicycling facilities. Despite Strava data appearing to offer much more than 

conventional data in terms of spatial and temporal resolution, it is clear that the patterns 

of ridership are different even at basic levels. There are differences in ridership patterns 

related to socioeconomic status and presence or absence of bicycling infrastructure. In 

terms of planning and design to encourage and facilitate active transport, the high-high 
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location of dissimilarity cluster area demonstrates where the data may not quite match. In 

this case, the absence of bicycling infrastructure indicates an area where improvements 

could be made while accounting for multiple data sources rather than Strava or counts 

alone. On the other hand, low-low locations of similarity and those that are not significant 

in terms of spatial association may show areas where crowdsourced and conventional 

data can be used together or as a substitute without introducing undue bias, given further 

investigation into the demographic characteristics of the riders themselves. The low areas 

too would indicate good areas to improve or install new bicycling facilities. While 

outside the scope of this study, future examinations of the patterns between crowdsourced 

and conventional data should more deeply examine the infrastructure, neighborhood, and 

socioeconomic factors that underlie the patterns. The anomalous high-low and low-high 

locations may be of particular interest as the disparate values in their rank my reveal 

characteristics that are not present in the other areas. Overall, in consideration of the 

difference in ridership proportions and the relative importance of locations between 

crowdsourced and conventional, it is imperative that planners and other stakeholders do 

not consider crowdsourced data as a singular source of ridership activity data. This could 

lead to decisions that benefit only the types of riders who use apps to record rides, rather 

than all or potential riders in a region. Strava is potentially a good substitute for 

conventional manual count data in areas where ridership is low overall, if rider 

demographics match those of the typical rider in the area as well. Further investigation 

into the characteristics of the riders in Strava versus typical riders who do not use the app 

is needed, however. Additional data collection is needed in areas where social advantage 

and ridership are high, especially if these areas do not have the type of infrastructure that 

supports high rates of bicycling activity. 
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CHAPTER 4  

FACTORS THAT INFLUENCE BICYCLING ACTIVITY DENSITY IN SYDNEY 

USING VARIED CROWDSOURCED DATASETS 

4.1 Introduction 

City planners, policymakers, and bicycling interest groups aim to understand 

where and when people use non-motorized transportation so that bicycle-friendly 

infrastructure can be better planned. Though walking as a transport mode has been 

studied, bicycling remains under examined in comparison (Winters et al., 2016). The 

features of neighborhoods and networks that support walking or bicycling share some 

common characteristics, though bicycling involves additional features that may be 

relevant in supporting its uptake as an activity (Winters et al., 2016). Physical or 

environmental features of neighborhoods include sidewalks, parks and other elements or 

services that facilitate behavior by offering a setting wherein people are able to engage in 

and access bicycling activity. The importance of considering these factors, which look 

beyond both characteristics of individuals and their immediate home residence, have been 

established (Kwan, 2013; Kwan, 2012). Local attitudes related to health, social 

connections and socioeconomic status are among the additional neighborhood features 

that might influence behavior (Kwan, 2012).  

Results from studies on bicyclist behaviors and preferences have revealed some 

characteristics associated with bicycling activity. Short term local surveys have shown 

that commuting cyclists show preference for shorter, direct (i.e., few turns) routes, lower 

traffic volume and speed, and bicycling specific infrastructure (e.g., separated bicycle 

paths) and areas with more bicycling infrastructure tend to have more bicyclists (Broach 

et al., 2012; Winters et al., 2010;  Winters et al., 2013). Many cyclists ride along 

bicycling infrastructure for a high proportion of the distance of their ride, though bicycle 

infrastructure might comprise a proportionally low amount of distance among the full 

street network (Dill, 2009). This indicates that cyclists may be willing to travel further 

distances to ride on bicycling infrastructure (Dill, 2009). Other features of the built 

environment that influence bicycling include land use, density, and workplace 
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accessibility (Handy and Xing, 2011). In contrast to general findings regarding the 

positive association between bicycling activity and bicycling infrastructure, Dill et al 

(2014) found no increase in bicycling activity where new bicycling boulevards were 

installed. Discrepancies such as this require further examination and the high volume of 

bicycling trips generated from crowdsourced data may provide clearer insights into 

bicycling activity and the infrastructure that supports it. Surveys have shown some 

factors that are associated with ridership, but conventional bicycle counts and short term 

surveys are problematic in spatial and temporal scope or cannot provide information 

about user level bicycling activity. Additionally in terms of crowdsourced data, it remains 

unknown how these factors vary by app or user type.    

Conventional data sources provide some information, but are limited in spatial 

and temporal scope as well as information about individual users. New crowdsourced 

data from smartphone applications (apps) may provide more information about where 

and when people use bicycles. While previous studies have examined the factors that 

influence bicycle ridership, there is a gap in understanding the contextual factors that 

determine where crowdsourced data are contributed. Systematic examination of several 

sources is needed to determine not only what activities the data represent, but the social 

and built environment drivers of the areas where those activity data are collected. The 

aim of this paper is to assess how the physical environment, bicycling infrastructure, and 

sociodemographic features of SA2 areas in the Greater Sydney region predict where 

crowdsourced bicycling data are (i.e., positive space) and are not (i.e., negative space) 

contributed. That is to say, what are the factors that influence where people bicycle from 

crowdsourced data samples and what new information can we glean from them? Further, 

are those factors the same between datasets or do different factors drive activity among 

them? The paper begins with a review of crowdsourced and conventional data, using 

bicycling app data as a case study, then discusses the associated potential for sampling 

bias. Finally, models comparing two exemplar crowdsourced datasets, Strava and 

RiderLog, are discussed in the context of the factors that determine where the data are 

contributed. 
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There is some evidence that crowdsourced bicycling data do not have the same 

predictors of ridership as conventional data, and there are mixed results overall as to what 

urban structures are preferred by different types of cyclists. In one examination of 

crowdsourced bicycling activity for health purposes, presence of bicycle lanes was not 

associated with ridership volumes; people bicycling for fitness are likely to access areas 

with fewer barriers to riding (e.g., stop lights) that are away from the urban center where 

bicycle infrastructure is located (Griffin and Jiao, 2015). Further, cyclists using the Strava 

app are more likely bicycling for recreation on short streets with high connectivity and 

low traffic volume (Sun et al., 2017). Conventional data, however, have shown 

repeatedly that bicyclists who are using bicycling as a transport mode prefer bicycle lanes 

and will use them where they are available (Dill and Carr, 2003). For cyclists using 

bicycling for utilitarian purposes, almost all of it occurs in areas with bicycle facilities 

(Dill, 2009). From app-based crowdsourced data as well, cyclists show more comfort on 

separated paths and bicycle boulevards (Blanc et al., 2016). As with prior research, 

cyclist's comfort levels fell when vehicular traffic was present during their ride. Cyclists 

in that study (Griffin and Jiao, 2015) also preferred hilly areas which is contrary to 

findings for cyclists who ride for transport purposes. These findings illustrate that 

crowdsourced data, when contributed by bicyclists aiming for health and fitness, may 

provide different information when the data are intended to be used with utilitarian 

bicycling in mind. Further, bicycling data gathered from smartphones is generally biased 

toward relatively young male riders, and low-income populations are under sampled 

(Blanc et al, 2016).  

Active transport, or non-motorized travel like walking and bicycling for utilitarian 

trips rather than leisure, is associated with increased health behavior, reduced traffic 

congestion, and potential reduction of emissions associated with vehicular travel. 

Walking and bicycling, however, must be feasible transport options for those benefits to 

be realized. Since non-motorized travel usually occurs on local streets, developing and 

planning its infrastructure are typically within the domain of local governments, though 

increased federal and state funding has led to increased interest in monitoring pedestrian 

and bicycling activities (Lindsey et al., 2013). Robust accounts of pedestrian and cyclist 
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travel are needed to ensure we plan for pedestrian safety and comfort so that more users 

could adopt active transport modalities (Transport for NSW, 2013). Current tools and 

data available for planning and analyzing non-motorized travel are limited in detail and 

spatial and temporal extent (Saunders et al., 2013)., and robust systems that account for 

and measure pedestrian and cyclist travel are needed (Lindsey et al., 2013).  

Manual bicycling counts are limited in spatial and temporal coverage, and 

regional travel surveys may not address non-motorized travel activity at all. Since non-

motorized trips tend to be shorter, they necessarily require detailed finer resolution data 

for analysis (Cervero and Duncan, 2003). This lack of reliable data and knowledge about 

non-motorized travel has limited measures of accessibility and examinations related to 

human mobility using those modes (Iacono, Krizek, and El-Geneidy 2010). Further, there 

is a lack of data that can be used to link active transport modal behavior with 

infrastructure and other network features (Broach et al, 2012). Since data availability is a 

limitation in understanding active transport, there has been increased demand for using 

crowdsourced data in examinations of activity (Blanc, Figliozzi, and Clifton, 2016; 

Heesch and Langdon, 2016). Greater knowledge about the infrastructure and network 

contexts that positively influence utilization of active transport modes will inform policy 

and design so those modes could be adopted and accessed by more users. Physical or 

environmental features such as transport infrastructure, land use, and the social, cultural, 

and institutional characteristics of neighborhoods are known to shape human behavior 

and these contexts influence mobility by offering a setting wherein people are able to 

engage in and access healthy living patterns (Kwan, 2012). 

Crowdsourced data from smartphone apps often contain route or origin-

destination information, some user demographics, and may be collected more frequently 

than conventional methods. Many such bicycling apps have been developed for 

commercial purposes and widespread activity monitoring (e.g., Strava, MapMyRide) or 

for capturing activity to use in a particular area's or municipality's planning efforts (e.g., 

RiderLog, CycleTracks) (Leao et al., 2017, Blanc et al., 2016). While these apps differ in 

focus and function (i.e., fitness or implicit data collection efforts), they have in common 

the large amount of data they produce at detail levels that are not typically possible 
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through conventional means. These app-based data may help answer questions about 

where people ride bicycles, and the factors that underlie that ridership because they 

contain that extra detail and information that are not captured with conventional sources. 

 In addition to providing more detail and greater data volume, crowdsourced data 

help overcome difficulties associated with public participation. Traditionally, public 

participation in planning processes has been limited despite being considered important 

to successful planning efforts (Misra et al., 2014). Though information is easier to access, 

public participation is declining because it still often relies on physical presence in the 

process wherein certain groups may be excluded because of their inability to attend 

(Misra et al., 2014). Crowdsourced data overcome this limitation by providing a way for 

citizens to engage in civic decision making and public advocacy and not requiring 

citizens to be physically present at a particular time and place (Le Dantec et al., 2015). 

Using data generated from crowdsourced means, city planners and decision makers have 

new ways to consider developing projects and transportation planning in particular. 

Sustainable decision making requires both that the data be produced and that it be shared 

and used by relevant stakeholders (Le Dantec et al., 2015). Crowdsourced data are useful 

in a transportation context because they easily engage users within a region, and in the 

case of bicycling activity, are more cost effective than conventional survey means (Misra 

et al., 2014). Cycle Atlanta is one bicycling app that Atlanta, Georgia has used to make 

decisions about transport. The app provides information about routes as well as barriers 

riders encounter (e.g., pot holes). The city can then use the data to make knowledge based 

and data driven decisions about needed infrastructure developments to support bicycling 

activity. Cycletracks is another app that lends data on bicycling movement to the city of 

San Francisco and the app provides data for cyclists as well; the service is aimed at public 

participation and civic engagement and motivated by a lack of data on bicycling activity 

(Lee et al., 2014; Misra et al., 2014).  

 Differing smartphone apps make for a compelling comparison because of their 

explicit and implicit nature. Crowdsourced data are generated in two ways, explicitly or 

implicitly. Explicit crowdsource systems involve generating data and information to 

solve or provide input on a stated problem (Misra et al., 2014). Some bicycling apps have 
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been made with explicit data generation in mind, though others provide implicit data. 

Implicit systems are those where user input generates an indirect data product (Misra et 

al., 2014). The data can still be used to solve a problem, but said problem is not the 

reason the data are generated in the first place. Implicit systems, therefore, do not have an 

explicit agreement with the user as to for what purposes their data will be used. (Misra et 

al., 2014). 

 In this paper we focus our efforts on two bicycling apps in particular, Strava and 

RiderLog. The Strava app has international reach and is focused mainly on fitness and 

competition. Users choose to log GPS traces of the bicycle rides they take to track 

progress and compete virtually with other users. In terms of a spatial data product, Strava 

Inc. releases an aggregated version of users' ridership, Strava Metro, which was made 

available for analysis by Transport for New South Wales (Strava, LLC., 2016). The rides 

in a particular area are aggregated to polygons, road intersections (nodes), or roads 

(edges) to give volumes of rides indicative of popular routes and areas. Strava is used 

worldwide and over 2.5 million activities are logged each week through the app (Strava, 

LLC., 2016). Since the spatial data is a secondary product generated from Strava users 

but the focus of the app itself is fitness and competition, it is an implicit source of 

crowdsourced data. Riderlog, on the other hand, is marketed specifically toward helping 

local stakeholders generate data to appeal to policy and planning so it is an explicit case 

of crowdsourced data. RiderLog is a smartphone app that was developed by the 

Australian nonprofit organization Bicycle Network (Leao et al., 2017). The app was 

developed and marketed specifically toward generating data for city planners to use to 

advocate for bicycle oriented planning, and users are able to monitor both their 

movements and performance over time (Leao et al., 2017). On the development side, the 

app collects full GPS traces of rides that users choose to log, along with demographics 

and ride information such as gender, age, and trip purpose (Leao et al., 2017). The app 

was launched in May 2010 and has nearly 10 thousand users across Australia.  

4.2 Methodological Approach 

4.2.1 Study Area 
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 Analysis was conducted at the statistical area level 2 (SA2) level in the Greater 

Sydney area in New South Wales (NSW), Australia. The city of Sydney is the capital of 

New South Wales and is the major economic core in the area (NSW, 2017). The 

population as of 2015 was 4.92 million people and the Greater Sydney area encompasses 

12,474 sq. kilometers of land at the eastern coast of NSW to the Blue Mountains in the 

interior with both urban and rural populations (ABS, 2017; NSW, 2017). The SA2 areas 

represent medium sized areas of social and economic interaction; they generally have a 

mean of 10,000 persons and the average sq. kilometers of the SA2 areas was 44.33. 

Generally the SA2 areas are smaller areas with larger populations in more urban areas 

and are larger with less population as areas become more suburban and rural (ABS, 

2016).  

 Bicycling rates have increased since 2006 in the Greater Sydney area though 

overall rates remain relatively low (Transport for NSW, 2013). Despite low rates, a large 

number of daily commute trips fall within a feasible bicycling trip range (<10 km) 

(BITRE, 2016) and travel times between bicycles are motorized trips are often 

comparable (Ellison and Greaves, 2011). The area has a variety of bicycling facilities 

including painted lanes, mixed traffic and shared busway lanes, as well as separated on-

road and off-road lanes (Pucher et al., 2011). Despite this infrastructure, the area has 

several features that hinder bicycling including hilly terrain and natural barriers with few 

crossings along the harbor area. Many of the planned cycle routes serve recreational 

riders as they are located along coastlines or along outer regions with lower demand for 

commute activity (Pucher et al., 2011). Despite barriers, 70% of residents surveyed in 

NSW expressed willingness to use bicycling for transport if it were a safer and more 

convenient mode (Transport for NSW, 2013). 

4.2.2 Data 

This study used data from two bicycling smartphone apps, characteristics of the 

road network, as well as sociodemographic data from the Australian Bureau of Statistics. 

The dependent variables are derived from the bicycling apps while the independent 

variables consist of infrastructure and socioeconomic features of the Greater Sydney area. 

The Strava aggregate data consisted of SA2 area volumes for 2016 which show the 
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number of rides originating, ending, or passing through each SA2 area in the study 

region; the Strava sample included rides from 84,863 unique riders who generated 

2,889,139 trips overall in 2015. RiderLog trip records consist of a user and ride identifier, 

trip purpose, trip start and end date and time, trip duration, distance, average speed, user 

gender and age, with a full record of the route via GPS locations taken throughout each 

recorded trip. The dataset used for the Greater Sydney area included 14,844 trips 

generated by 1172 riders that were collected between May 2010 and May 2014. The 

individual routes were aggregated to the SA2 level to derive a count of rides that 

originated, ended, or passed through for each SA2 area.  

 The dependent variables for the models herein consists of two measures for Strava 

and RiderLog. First, a count of rides (ridership volume) that passed through each SA2 

area was derived for each dataset. The second dependent variable was a binary of 

whether an SA2 area was positive for bicycling activity. Whether an area was positive 

was determined by a threshold based on quartiles in the data. Any SA2 area with less 

than the first quartile's value was considered negative for crowdsourced data 

contributions. For the Strava data, the first quartile was 1176 which left 209 areas 

labelled as positive and the remaining 70 negative. The threshold for RiderLog was 17 

leaving 206 areas positive and 73 negative. The positive and negative spaces represented 

by both Strava and RiderLog are shown in Figure 4.2. Since we aim to determine whether 

there are asymmetries in our crowdsourced data, we hypothesize that the factors that 

predict ridership volume and presence for Strava will be different than those which 

predict the same for RiderLog. Namely, we predict that higher bicycle lane density, lower 

amounts of residential land, and higher population density areas will be important in 

predicting RiderLog ridership as those variables are associated with utilitarian bicycling 

trips; we suggest that RiderLog use will be associated more with commuting than will 

Strava.  

 The independent variables used in the modeling herein are comprised of built 

environment and sociodemographic measures; they were chosen based on previous 

findings in the literature that relate to road structure and connectivity as well as where 

cyclists prefer to ride (i.e., residential land areas). The built environment data consist of 
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the street network, bicycle infrastructure line data and land use zoning information. The 

bicycle infrastructure include streets and cycleways that were designated as bicycling 

facilities within the Greater Sydney area. The land use data contain zoning classifications 

that give details about the type of land use that is permitted within each parcel.  

Table 4.1. Independent variables considered for modeling. 

Variable Source Formulation/ 

operationalization 

Reason 

Street Network OpenStreetMap 𝑁 =  𝑙
𝑠⁄  

𝛽 =  
𝑒

𝑣
 

𝛾 =  
𝑒

3(𝑣 − 2)
 

 

The measures of 

network structure 

quantify features of 

the street network 

that typically 

influence bicycling 

behavior. 

Bicycle Network OpenStreetMap " " 

Land Use 

(residential, 

business, industry, 

recreation, 

infrastructure (e.g., 

streets and 

highways), mixed 

use, environment, 

and city/town 

centres.) 

New South 

Wales 

Department of 

Planning and 

Environment's 

2015 Local 

Environment 

Plan 

Percentage of each 

within SA2  

Strava users prefer 

residential areas 

(Sun et al., 2017) 

and business areas 

are a popular 

destination feature. 

Population density Australian 

Bureau of 

Statistics' census 

SA2 areas More cyclists in less 

dense areas. 

Median age " " Ridership has been 

associated with 

specific age groups. 

Might influence the 

potential pool of 

cyclists in the area. 

Index of Relative 

Socio-economic 

" Low scores indicate 

relatively greater 

social disadvantage 

while high scores 

indicate the least 

These variables were 

meant to represent 

the idea that cyclists 

would avoid 

disadvantaged areas 
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Disadvantage 

(IRSD) score 

disadvantaged 

areas. 

and that more 

activity would be 

present in higher 

income and higher 

affluence regions. 

Median income " " " 

Median weekly rent " " " 

Number of people 

using two modes for 

journey to work 

(JTW using two 

modes) 

" " Possible greater pool 

of bicycling 

commuters 

 

 The street network and bicycle infrastructure data were used to derive measures of 

network structure. Network density is the ratio between the total length 𝑙 of street 

segments within an SA2 area to the total area 𝑠 of that area and measures street network 

intensity. An area based measurement of density was used rather than graph-based 

density measure to examine the relative neighborhood street density in an SA2 area to 

consider the overall context within which people ride. The graph-based metrics of beta 

index, gamma index, were also computed. Beta index indicates the level of connectivity 

and complexity of a graph and is defined as the ratio of the number of edges, 𝑒 (i.e., street 

segments) to nodes, 𝑣 (i.e., intersections). Gamma index measures the relationship 

between actual connections on a network and all possible connections. Since the gamma 

index is a ratio of the number of edges to the number of all possible edges, it gives an 

indication of connectivity within the actual network context on a 0-1 scale where 1 is 

completely connected.  

4.3 Statistical Analysis 

Determining which factors predict bicycling activity will reveal differences 

among the data sets. Understanding where we do and do not have detailed data can help 

focus efforts to collect data from geographic areas or populations that are 

underrepresented as well generate strategies for how those data might best be captured. 
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Using varied data sources also allows for comparison between the spaces generated by 

them which will help understand how those data can best be conflated with conventional 

data to get a better picture of bicycling activity. Examining the spaces where bicycling 

activity is present as well as where it is absent will help determine which infrastructure 

and sociodemographic contexts are potential drivers of activity or lack thereof.  

 Descriptive summaries of each of the independent and dependent measures were 

computed. The correlations between all measures were also computed to ensure that 

collinear measures were not included in the multivariate models. Bike beta and bike 

gamma had a moderate negative correlation, while road beta and road gamma had a 

strong positive correlation. Further, the household specific measures of total households, 

number employed, and number of people using two modes for their JTW were also 

moderately to strongly correlated. These measures were tested separately within 

exploratory models to avoid adding multicollinearity. Extreme outliers in the ridership 

measures were winsorized using median absolute deviation so that they did not skew 

statistical estimates. 

 Four separate models were used to measure the factors that influence bicycling 

activity; the first two models predicted ridership volume for Strava and Riderlog to 

determine whether the same factors predict the level of bicycling activity. A Poisson 

model and subsequent testing indicated that the data were overdispersed, necessitating the 

use of the Negative Binomial parameterization of the model. Moran's Ii analysis 

confirmed that significant spatial autocorrelation was present in residuals of the 

preliminary Negative Binomial models; since spatial data present concerns in terms of 

independence of both observations and error terms, spatial autoregressive (SAR) models 

were also used in models three and four to supplement the Negative Binomial findings. 

Since the SAR model requires a spatial weight, neighbors were defined as any polygons 

sharing boundary points. Because the estimates of the SAR cannot be interpreted as 

partial derivatives, the direct and indirect impacts are shown to assess the sign and 

magnitude of impacts from changing the independent variables. 

 Models 5 and 6 used linear discriminant analysis to predict the binary whether an 

SA2 area was labelled positive or negative. The aim of linear discriminant analysis is to 
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find the combination of variables that gives the best separation between groups; here the 

groups are the binary positive and negative spaces in the crowdsourced datasets. The two 

most useful discriminant functions can be discovered for predicting positive space and we 

can determine whether they are the same or different between data sets. In terms of 

coefficients, the larger the coefficient, the more important it is in the discriminant 

function.  

4.4 Results 

 Table 4.2 shows the winsorized minimum, maximum, and median of ridership 

counts per SA2 area. Despite differences in overall ridership, the data sources show 

similar distributions. 

Table 4.2. Descriptive statistics for ridership counts for Strava (year 2016) and RiderLog 

(2010-2014) 

 

 

 

 

Next the factors that underlie ridership were addressed through several models, 

answering the question which built-environment and sociodemographic factors predict 

where the data are contributed. 

 Min Max Median St. Deviation 

Strava 30 16090 2895 4913 

RiderLog 0 432 70 156 
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Figure 4.1. Quintile maps of Strava vs. Riderlog ridership frequency (Strava a, Riderlog 

b), and normalized by population (bottom, Strava c, Riderlog d). 
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Figure 4.2. Negative and positive space for Strava (left) and Riderlog (right) identified by 

the lowest quintile in each dataset. 

 
Figure 4.3. OpenStreetMap bicycle lanes for Greater Sydney Area 
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Table 4.3. Models 1-4 predicting ridership volume (1 and 3) and ridership positive space 

(3 and 4). 

 Dependent variable: 

 Strava RiderLog Strava RiderLog 

 Negative  Binomial  SAR 
 

 (1) (2) (3) (4) 

Median age -0.007 0.010 -8.241 -0.708 
 (0.010) (0.013) (32.688) (0.810) 
     

Median weekly 

rent ($AUS) 
0.005*** 0.004*** 6.998*** 0.008 

 (0.001) (0.001) (2.380) (0.057) 
     

IRSD score -0.001*** -0.002*** -0.744 0.031 
 (0.0003) (0.0004) (1.126) (0.028) 
     

Population 

Density 
-0.0001 0.0001* -0.449*** -0.0005 

 (0.00005) (0.0001) (0.142) (0.004) 
     

% Residential 

land 
-0.015*** -0.006** -36.722*** -0.418** 

 (0.002) (0.003) (7.031) (0.170) 
     

% City Centres -0.026 -0.072*** x x 
 (0.019) (0.025)   
     

JTW using 2 

modes 
0.001*** 0.0002 4.629*** 0.050*** 

 (0.0002) (0.0003) (0.756) (0.019) 
     

Road density 60.366*** 78.740*** 144,721.300** 171.375 
 (17.985) (23.175) (57,256.890) (1,419.154) 
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Bike lane density 2.540 31.328 272,007.000** 
11,183.710*

** 
 (38.339) (49.358) (125,260.900) (3,136.209) 
     

Constant 7.488*** 3.365*** -1,210.281 -8.715 
 (0.374) (0.484) (1,236.632) (30.548) 

Observations 279 279 279 279 

Log Likelihood -2,582.398 
-

1,580.370 
-2,614.907 -1,597.445 

theta 
1.479***  

(0.114) 

0.897*** 

 (0.070) 
  

Akaike Inf. Crit. 5,184.796 3,180.740 5,251.814 3,216.890 

  sigma2 7,288,107.0 4,484.184 
 

  
Wald Test 

(df = 1) 
185.611*** 642.882*** 

  
LR Test 

(df = 1) 
114.147*** 243.614*** 

 Note:*p<0.1; **p<0.05; ***p<0.01 

 

Table 4.3 presents the results obtained from the initial Negative Binomial analysis of 

factors related to bicycle ridership volumes. For the built environment factors in models 1 

and 2, percentage of area zoned as residential had a significant negative effect on 

ridership in both models; as percentage of land zoned as residential decreased, sampled 

ridership increased. While all land classifications were tested, the percentage of land 

zoned as city centres was the only other land use variable that had a significant effect in 

the models. As with residential land, it was negative for both datasets though significant 

for RiderLog only. Though not significant, it is noted that land zoned as business had a 

positive relationship with ridership volumes. In terms of predicting ridership volume per 

SA2 area in models 1 and 2, the other built-environment factors had mixed results. Road 

density stands out in the models as it is significant and positive for both Strava and 

RiderLog samples. The effect of roads was still significant when substituting the gamma 

and beta measures for road density, though the coefficients changed in magnitude they 
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did not change in direction. Bike lane density was not significant though it was positive 

as expected. 

 The measures of sociodemographic context for models 1 and 2 also had mixed 

results. Median age of the residents in SA2 areas was not significant. Median rent was a 

significant positive factor for both models. IRSD score was negatively associated with 

ridership volume for both Strava and RiderLog. Population density was significant for 

RiderLog only, and interestingly it was positive for RiderLog and negative for Strava. 

Though it was not significant, median age also had flipped signs with positive and 

negative for RiderLog and Strava respectively. Using more than two modes of travel for 

journey to work was positive for Strava meaning that as more people had to use two 

modes for their JTW, they were more likely to log a ride on Strava. 

 Results of the SAR models are shown in Table 4.3, models 3 and 4. Spatial lag 

models were used because of the autocorrelation associated with the linear models. In 

terms of predicting ridership volumes bike lane density, residential percent, and JTW 

using two modes were significant for both Strava and Riderlog. Road density, median 

rent and population density were additionally significant for Strava only. In order to 

understand the true effects of the variables in the SAR models, direct and indirect effects 

were computed for both models as shown in Tables 4.4 and 4.5.  

 The lagged variables in the spatial autoregressive model necessitate interpretation 

of direct and indirect effects. Direct effects on the dependent variables are those that 

result from a change in the independent variable for a single SA2 area (Golgher and 

Voss, 2016). Changes in the dependent variable based on the independent variable for 

another SA2 area, outside itself, are the indirect effects in the model (Golgher and Voss, 

2016). From Table 4.4, changes in median age and IRSD score are not significant which 

suggests they do not impact Strava ridership counts. The indirect effects of median rent, 

number of people who JTW using two modes, road density, and bike lane density are all 

significant and positive, suggesting that increasing any of these in neighboring regions 

will have an impact in neighboring areas. Because direct impacts are also positive, this 

suggests that increasing those factors in any area will also increase Strava ridership. 

Percentage of residential land and population have negative effects for both direct and 
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indirect impacts indicating that decreasing either factor would increase ridership in any 

area or neighboring area. For RiderLog ridership, only percentage of residential land, 

number of people who JTW using two modes, and bike lane density were significant 

(Table 4.5). Bicycle lane density and JTW using two modes were positive while 

percentage of residential land was negative. In considering total effect as the sum of 

direct and indirect impacts, the effects from these factors are mostly comprised of indirect 

effects. 

  Models 5 and 6 in Table 4.6 show the discriminant analyses results that predict 

which factors determine whether an SA2 area is labelled as positive or negative for 

crowdsourced data contributions. The positive and negative spaces represented by both 

Strava and Riderlog and shown in Figure 4.2. A large number of the negative Strava 

spaces occur where there is bicycling infrastructure relatively close or within the western 

suburbs of the city of Sydney. The result of the model is shown in Figure 4.4; while the 

models do reasonably well to discriminate among positive and negative spaces, there is 

still some overlap between groups; the accuracy was 83.15%. The model predicts that 

26% of the areas in the data correspond to negative spaces. For both Strava and Riderlog, 

median weekly rent is the strongest predictor of whether a space is labelled positive. For 

Strava, the next most useful functions to discriminate are percentage of residential land 

and JTW using two modes, while for RiderLog it is IRSD score and population density. 

With the exception of percentage of residential land in the Strava model and median age 

in the RiderLog model, there was a tendency for the group variables to be negative when 

areas were labelled positive, and positive when areas were labelled negative. 

Table 4.4. Direct and indirect effects for Strava SAR models 

Variable Direct Indirect 

Median age  -9.299  -13.501 

Median rent      7.896***  11.4641***  

IRSD score  -0.8399  -1.2194 

Pop. Density -0.5066*** -0.7354*** 

% Residential -41.4385*** -60.1601*** 

JTW two modes     5.2232***     7.58299***  

Road density     163307.9***   237089.0** 
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Bike lane density      306940.7**   445614.0** 

Note:*p<0.1; **p<0.05; ***p<0.01 

Table 4.5. Direct and indirect effects for RiderLog SAR models. 

Variable Direct                   Indirect   

Median age   -.9233  -3.0394 

Median rent      0 .01099   0.00362 

IRSD score   0 .0409   0.1345 

Pop. Density  -0.0006  -0.0019 

% Residential  -0.5457**  -1.7964** 

JTW two modes     0.0655***   0.2156**  

Road density     223.551    735.9081  

Bike lane density      14588.64***   48024.44***  

Note:*p<0.1; **p<0.05; ***p<0.01 

Table 4.6. Discriminant function results  

 Strava Riderlog 

 Discriminant 

function   

 (5) (6) 

Median age 0.1015 0.0688 

Median 

weekly rent 

($AUS) 

0.7108 0.9352 

IRSD score 0.2494 -0.6287 

Population 

Density 
-0.0931 0.3772 

% Residential 

land 
-0.6182 -0.0595 

% City 

Centre 
-0.0573 -0.3609 

JTW using 2 

modes 
0.4414 0.0954 

Road density 0.0598 0.2789 
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Bike lane 

density 
0.1661 0.2645 

 

 

Figure 4.4. Results from Discriminant Analysis for Strava (Left) and Riderlog (Right). 

Histograms Show the Distribution of Discriminant Scores for Positive and Negative 

Spaces. 

4.5 Discussion 

 As shown in Figure 4.1, there are qualitative asymmetries in ridership frequency 

between Strava and RiderLog. Both sources show a great deal of ridership in the most 

central Sydney area (near the harbor), though there are differences outside of the 

downtown core. Within the Strava data, ridership appears higher in the areas on the 

outskirts of the city center as compared to RiderLog; Strava ridership is particularly 

frequent in the northern Sydney suburbs. RiderLog ridership is comparatively low on the 

outskirts of the study area and is mainly clustered tightly around the city center. When 

considering the densities of ridership, Strava and RiderLog have a similar inner-city 

pattern with some differences moving toward the outskirts. Most notably, Strava and 

RiderLog both have elevated ridership in the northern suburbs, though in different areas. 

Overall, the higher RiderLog density is more compact and close to the urban core of the 

region whereas Strava is more spread through the region. When considering volume of 

ridership only (Figure 4.1 upper), it is clear that Riderlog is more concentrated around the 

downtown core with volumes generally fading as they move outward. Strava on the other 

hand has high volume ridership near the city center but much higher ridership remains 
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while moving outward and the lower ridership areas occur in the west/southern suburbs. 

When accounting for the area of the SA2 areas, Strava and RiderLog ridership look 

similar in the city center, with most ridership concentrating around that area. Strava 

ridership, however, remains elevated on the outer regions of the study area. While 

RiderLog has some elevated ridership in the outskirts, the majority occurs within the 

urban core with a ring of lower ridership between that urban core area and the outskirts. 

In Figure 4.3 there appears to be some relationship between ridership volume/density and 

the location of bicycle infrastructure. The RiderLog positive space seems to align more 

closely with the bicycle infrastructure than does the Strava positive space. Considering 

that bicycle lane density was a significant positive factor for predicting RiderLog 

ridership volume whereas it was not significant for Strava, this general conclusion makes 

sense. Further, bicycle infrastructure has been unrelated to ridership volumes in previous 

studies using Strava data (Griffin and Jiao, 2015; Jestico et al., 2016). As with prior 

findings, it appears the Strava users seek areas with few barriers to riding that are away 

from urban centers. 

 The overarching question in this research was what are the physical, 

infrastructure, and socioeconomic factors that predict ridership among two different 

sources of crowdsourced bicycling data: Strava and RiderLog. The models show that 

some similarities and differences are present. First median rent, IRSD score, percentage 

of residential land, and road density were significant in the models predicting ridership 

volume for both data sources. Since median rent was positive, this lends support to the 

idea that ridership in crowdsourced data is recorded in higher valued areas which could 

be an effect of the people who log their rides as well as where people choose to log those 

rides. Ridership also increased as IRSD score decreased; lower IRSD scores are 

indicative of areas with higher social disadvantage. This seems contradictory to the 

finding that higher rental areas were associated with more Strava ridership. Again, users 

are likely seeking areas away from the city center that would be associated with less 

overall socioeconomic capital and rents decrease as one moves away from the city center 

with highest rents south of the harbor and in the northern suburbs.  
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 That percentage of residential land was negative is supported by the previous 

findings that bicyclists using these apps are seeking areas away from urban cores (Griffin 

and Jiao, 2015); they were more likely to ride where residential land percentages were 

lower. In the case of RiderLog, ridership volumes were higher when percentage of city 

centre land is lower. Considering that the percentage of business-zoned land was positive 

though not significant, it is possible that riders are either seeking the destinations of the 

urban core or somehow necessarily required to travel through business heavy areas. This 

is possible in Sydney as any travel across the harbor is funneled through the few bridge 

crossings available, and the bridges are near business centered areas (Pucher et al., 2011). 

Road density was a positive predictor of ridership in both models which aligns with the 

idea that riders prefer connected streets (Sun et al., 2017). It is also possible that the types 

of riders that choose to use apps are those that are more bold in their ridership choices 

and willing to ride on roads that are not specifically marked for bicycle use, since bicycle 

lane density was not significant.  

 The remaining factors had mixed results, indicating that there are differences 

between the ridership in each dataset. Population density was positive and significant for 

RiderLog indicating again that users are seeking denser urban areas to ride. Population 

density however, was negatively associated with ridership for the Strava sample (though 

not significant) which lends support to the idea that Strava users are interested in exercise 

away from busy corridors (Griffin and Jiao, 2015). Further, RiderLog is not as popular as 

Strava so one must consider that its uptake may not reach far beyond the areas where it 

has been marketed, in this case around the urban cores of the Greater Sydney area. 

 Using two modes during the journey to work in an area was positively associated 

with Strava ridership. This makes sense as a positive predictor of ridership for Strava 

volumes as people are likely to use bicycles to connect to public transportation options, 

and the variable implies a greater potential pool of cyclists. It is possible that Strava users 

undertake longer commutes or recreational rides that begin in high rental cost areas but 

also journey to low population density/low SES areas. If these same areas have lower 

percentages of residential land and high weekly rents, it is possible that they are set 

further from business cores where people need to travel for work. 
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 After controlling for spatial effects (models 3 and 4), the models support the idea 

more rides are logged in areas with greater bike lane density and less residential 

percentage of land, with a greater potential pool of cyclists (i.e., people using two modes 

on their journey to work may choose bicycling) (Dill and Carr, 2013; Sun et al., 2017). 

Median weekly rent and population density however, are no longer significant for 

RiderLog. While JTW using two or more modes may indicate a greater pool of cyclists in 

an area, it is additionally possible that local attitudes toward bicycling are more popular 

in those areas out of necessity of connecting to public transportation, which can spur 

more bicycling behavior (Kwan, 2012). It is also notable that bicycle lane density was not 

significant in the aspatial model but that it becomes significant in the spatial model. 

When the effects of variation in bicycle lane density over space are accounted for, it 

becomes an important predictor of bicycle ridership in both datasets - bicycle lane density 

is only important when neighboring bicycle lane density is also considered. 

 That said, it is perhaps more important to examine the direct and indirect effects 

of the spatial model to get a clearer sense of the true effects of the factors that influence 

ridership. The only significant direct and indirect effects for RiderLog were percentage of 

residential land, JTW using two modes, and bike lane density. Road density, population 

density, and median rent were additionally significant for Strava. Again it seems 

increases in any of these factors in an SA2 area will increase Strava ridership for that and 

any neighboring area. It seems however that RiderLog users may only increase activity 

with increases in bicycle lanes, as they are more likely to stick to the bicycle 

infrastructure. On the other hand, increasing road density and median rent or decreasing 

population density would lead to more Strava Ridership. It is possible that the difference 

between implicit and explicit ridership apps is coming into play. A possible explanation 

for this is that users of RiderLog, an explicit ridership app, are different from those who 

use Strava to log rides. Namely, it seems the RiderLog users have more in line with 

conventional ridership data focused on riders taking utilitarian trips; their trips are logged 

more frequently where there is low residential land and more bicycle lanes to support 

bicycling. This could be because of RiderLog's explicit aim of generating data for cities 
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to use to improve the bicycling experience for riders and their specific marketing in city 

regions.  

 When considering just positive and negative space as in models 5 and 6, that 

median weekly rent was the most important factor between datasets supports the findings 

that it is a good predictive factor for where bicycling activity occurs. The differences 

between the remaining coefficients reveal that the factors are of differing importance 

between the datasets. For example, JTW using two modes was less important for 

RiderLog than Strava which may indicate that areas where a great deal of people ride as 

part of their commute are the same where people log rides on Strava. That bike lane 

density was less important for Strava again lends credence to the notion that Strava riders 

are bolder and willing to ride in areas with less bicycling-specific infrastructure and again 

it seems RiderLog users have more in line with traditional commuting cyclists. Overall 

for the factors that influence bicycling activity levels, it seems median rent is the greatest 

overall predictor with more people using JTW using two modes and less percentage of 

residential land as strong secondary predictors. In terms of the differences between Strava 

and RiderLog, it seems the idea that Strava users seek areas away from urban cores is 

supported while RiderLog users are more concentrated in city centers on bicycling 

infrastructure. 

4.6 Limitations 

 While crowdsourced data provide more detail than many conventional sources, 

they also have potential bias which may limit their broad generalizability. In general, 

smartphone samples tend to under-sample females, older age groups, and low income 

populations while oversampling particular minority ethnic populations (Windmiller et al., 

2014; Blanc et al., 2016). Even with smartphone ownership, familiarity with its 

capabilities or availability of apps could hinder user input from particular groups (Blanc 

et al., 2016). With bicycling activity in particular, it must also be considered that many 

people who ride or rely on bicycles for transport will not also be motivated to log those 

rides on a smartphone app. Despite these potential sampling biases, they are only a 

concern in conclusions we make about bicycling activity if the activity represented in 

crowdsourced data differ from those represented in conventional data. Further, the 
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opportunity crowdsourced data bring to lend new insight also brings new challenges 

related to their large volumes and potential low quality (Leao et al., 2017). Additionally, 

while there are many variables we could have included here based on the literature it is 

notable that slope has been left out as a factor that may influence bicycling activity; the 

DEMs available did not provide adequate coverage of the study area, particularly around 

north and western Sydney, so it was best to leave them out. That said, local slopes likely 

serve as a barrier to uptake of riding in the first place rather than influencing specifically 

where people ride. 

4.7 Conclusions 

 Crowdsourced data are at the forefront of mobility analysis because these new 

data may provide more information about activity than conventional data. Questions 

remain however about what new insights we can gain based on those data that we would 

not be able to glean from conventional sources. This study has shown that there are 

similarities and differences in the factors that influence bicycling activity density, 

depending on the data source. While the Strava data did not contain full paths, it 

contained the sequence of SA2 areas that riders traversed so that a volume of ridership 

per SA2 area could be derived. This is finer resolution than would be possible with 

conventional manual counts or travel surveys with just origin and destination. Similarly, 

since the RiderLog data contained full paths, a measure that accounts for the total journey 

in each area could be generated. In terms of the drivers of crowdsourced activity, several 

factors aligned with previous findings. The findings remain true that cyclists record more 

activity in areas with higher bicycle lane density. Further, Strava cyclists tended to show 

more activity in areas with high median weekly rent and low population density which is 

supported by Figure 4.1 showing moderate to high ridership in areas outside the center of 

Sydney. RiderLog cyclists on the other hand had more activity where population density 

was high and bike lane density was high which aligns more with riding close to the city 

center. Overall it seems the best predictors for crowdsourced ridership in an area are the 

median weekly rent, an indicator of the income of an area, as well as percentage of 

residential land and the number of people in that area who are using two or more modes 
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to commute, though the importance of these variables changes with the data used and the 

model specifications. 

 The analysis undertaken here could not be achieved with conventional sources of 

data. Since count data are static in location, it would not be possible to consider the total 

volume of bicycling activity through each SA2 area. The spatial scope in general for 

counts is quite low whereas here we were able to consider the entirety of the region as 

bicycling occurred across the study area rather than at discrete locations. As a comparison 

to household travel survey data as well, we were able to capture the actual dynamic 

context that people were bicycling through rather than just the origin and destination. 

This improves on previous research by exploring the factors related to bicycling along an 

entire trajectory rather than discrete locations. 
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CHAPTER 5 

IMPACT OF BICYCLE INFRASTRUCTURE, CONVENIENCE, AND 

RIDERSHIP PATTERNS ON RESIDENTIAL HOUSING PRICES 

5.1 Introduction and Problem Statement 

 Planners in cities and municipalities are increasingly interested in addressing 

urban problems such as traffic congestion, pollution, sprawl, and housing availability 

(Cervero et al., 2002). Solutions to such problems include compact cities, transit oriented 

design (TOD), accessibility to public transportation, and downtown revitalization. TOD 

in particular focuses on providing mixed use (i.e., business and residential) designs near 

transit, often accompanied by more compact living environments that include pedestrian 

and bicycle friendly facilities as a mechanism to reduce vehicle trips and increase 

accessibility (Cervero et al., 2002; Bartholomew & Ewing, 2011).  As cities make such 

changes to address complex urban problems, the intended and unintended consequences 

need to be evaluated. One dimension that requires evaluation is how changes to 

transportation infrastructure and design impact the local economy and the livelihood of 

individuals residing there. Additional information on the economic costs and benefits of 

changes can be reported to taxpayers, voters, and other stakeholders.  

 One challenge in estimating the benefit of bicycle facilities relates to the lack of 

market data identifying the economic impact or value of bicycle lanes as well as dearth of 

information on their use and how use is related to market values and economic activity 

(Krizec, 2007). While several prior studies have demonstrated that the presence of 

bicycle facilities influence property values in some contexts (Liu and Shi, 2017), the 

volume of cyclists on said facilities or the volume of cyclists in a given area is an 

additional factor not typically measured in modeling contexts and may give additional 

insight into the question. The volume of cyclists is presumably indicative of 

neighborhood and bicycle facility features that attract cyclists and where the volume 

(bicycle use) may relate to property values independently from the existence of bicycle 

facilities themselves. Crowdsourced data can be used to overcome limitations of 

conventional models as they provide estimates of the ridership on local streets. 
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Home values are affected by home characteristics but are also a reflection of 

buyers' perceived value of amenities that are both structural and neighborhood based 

(Bartholomew & Ewing, 2011). Changes in transit infrastructure, for example additional 

bike paths and safe walking routes, might affect local economies and tax revenues 

through their influence on property prices. Bicycle facilities can be valued by current and 

potential future users; home buyers may pay a premium to be near facilities because they 

may want to use them at some point (Krizec, 2007). Despite plans to improve bicycling 

infrastructure in many cities, additional research is needed to clarify the linkages between 

a city's bicycling infrastructure and the economy of that city. If bicycling infrastructure 

has a positive effect on property values this can provide additional support for transit 

oriented projects (Nicholls and Crompton, 2005). One limitation of studies that measure 

bicycle infrastructure in relation to property values and economy is that while they 

account for presence of said facilities, they do not measure the number of riders that are 

actually using the infrastructure, or cyclist volume.  

The goal of this paper is to evaluate the role bicycling infrastructure and usage, 

measures to combat traffic congestion and air pollution, have on home values in Tempe 

Arizona. This study fills a research gap in understanding the impacts of bicycling 

infrastructure, access, and bicycling activity on property values using crowdsourced data. 

Similar to prior studies, the paper starts by examining how bicycling infrastructure and 

proximity to that infrastructure affects property prices. The analysis is then expanded to 

include other composite measures such as walkability and bikeability and then address 

actual bicycling activity through ridership volumes. Inclusion of novel measures of 

bicycling and crowdsourced data into the analysis of property values is a significant 

contribution provided by this paper.  

5.2 Literature Review 

 Many studies have used hedonic pricing analysis to estimate the economic effects 

of infrastructure associated with TOD through their effects on property prices. Findings 

show that factors like proximity to bicycle infrastructure, trails, light rail, and other TOD 

features influence housing prices. In this section, we review their analysis techniques, 
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variables commonly examined as well as their results and focus on their findings related 

to transit specific variables.  

 Bicycle infrastructure has been studied in terms of its impact on housing prices, 

though there are mixed findings and different ways of operationalizing bicycle facility 

variables. Bicycle infrastructure includes bicycle lanes, buffered bike lanes, and bicycle 

boulevards and all may have differing impacts on housing prices (Krizek, 2006). Bicycle 

lanes are typically painted lanes which share a regular vehicle traffic lane. Buffered 

bicycle lanes are also proximal to traffic, but are separated from vehicular traffic by a 

buffer such as bollards, a parking lane, or a berm/landscaping. Bicycle boulevards are 

separated from traffic and are sometimes multi-use trails; they may be paved or unpaved.  

 A study that examined the impact of advanced bicycle facilities, or separated bike 

lanes, buffered bike lanes, and bike boulevards, found that closer proximity and higher 

density of facilities were associated with higher property values (Liu & Shi, 2017). The 

facilities were operationalized as the distance from each property to the nearest bicycle 

lane and density of bicycling infrastructure was measured within a ½ mile radius of each 

property (Liu & Shi, 2017). Housing prices similarly increased as distance from the 

nearest regional multi-use path decreased in another study (Welch et al., 2016). Off-street 

facilities were similarly associated with housing prices, though the variable was not 

significant. Overall, proximity to on-street bicycle facilities was associated with lower 

house prices; city and suburban prices were most affected by roadside trails. (Welch et 

al., 2016). While contrary to other findings, the authors attribute the negative effect of on-

street paths to high volume traffic arterial streets which are less attractive to buyers 

(Welch et al., 2016). Using distance to each type of facility, roadside bicycle facilities, or 

those separated from the vehicular roadway by a berm, affected city and suburban home 

prices negatively while off-street trails were associated with higher home prices (Krizek, 

2006). Proximity to bicycle facilities overall was associated with lower house prices; city 

and suburban prices were most affected by roadside trails. Proximity to on-street and off-

street trails did not affect house prices (Krizek, 2006). Independent bicycling 

infrastructure variables have typically been operationalized as either dummy indicating 

whether there was a bicycle facility in the area, or as network distance to a nearest 
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bicycle facility. Within these definitions, presence of trails in the neighborhood, 

proximity to trails, and proximity to bicycle lanes were all positively associated with 

house prices.  

 Prior housing price research has also examined the impacts of similar features 

e.g., greenways, trails, associated with pedestrian infrastructure and estimated impacts on 

property prices. In general, development density, land use mix, and pedestrian 

infrastructure are associated with higher residential property values (Sohn et al., 2012). 

Greenbelts are open corridors that typically follow a natural landscape feature such as 

riverfronts or stream valleys, or manmade features like canals or railways that are no 

longer in use (Nicholls & Crompton, 2005). Trails are typically defined as multi-use 

paths that are separated from road traffic and may be paved or unpaved.  

 Other studies have addressed the impacts of other TOD features, such as light rail, 

on property prices. Light rail may influence house prices through several mechanisms. 

On the positive side, light rail provides greater access and may be associated with 

reduced commute times for those who live in proximity to it. Retail establishments may 

be attracted to station areas and built up around them (Bowes and Ihlanfeldt, 2001). 

Negative impacts include potential noise or neighborhood aesthetic issues as well as 

possible increased crime at station locations (Bowes and Ihlanfeldt, 2001). That said, 

proximity to light rail has been associated with higher residential home prices. For 

properties within a ½ mile of a station, property values increased by $2.31 for each foot 

closer the house was to a light rail station (Hess and Almeida, 2007). Additionally 

however, high and low income areas had opposite property price effects; high-income 

areas had positive effects while low-income areas had negative effects (Hess and 

Almeida, 2007; Bowes and Ihlanfeldt, 2001). The value of properties in close proximity 

to the light rail were affected negatively while those between one and three miles away 

from a station had positive price effects (Bowes and Ihlanfeldt, 2001).  

 Walkability and bikeability are used to operationalize the transit-friendliness of an 

area; they measure how accessible an area is for either foot or bicycle traffic. While these 

scores summarize the infrastructure present in an area, they cannot reflect actual 

connectivity, especially unmarked roads that cyclists still use, or total activity by 
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pedestrians or cyclists (Pivo & Fisher, 2011). Walkability is usually measured as an area's 

Walk Score which is produced by www.walkscore.com. Walk Score measures how car-

dependent people are in residential areas (Boyle et al., 2013). The score is determined by 

the distance to amenities such as schools, retail, food, and recreation as well as street 

connectivity; it assigns an area a score from 0-100 based on distance to said amenities 

and the level of connectivity (Pivo & Fisher, 2011). Greater walkability has been 

associated with higher office, retail, and apartment values (Pivo & Fisher, 2011). In 

contrast, once heterogeneity of Walk Score was accounted for, there was no relationship 

between walk score and house prices in another study (Boyle et al., 2013). Neighborhood 

walkability, rather than walkability associated with the specific property, may be a better 

measure of how valuable it is as a price premium for an area (Boyle, et al., 2013). 

Improving walkability may lead to higher residential prices, though highest payoff is in 

neighborhoods that are already walkable (Li et al., 2015).  

 Related to walk score, Bike Score measures the bikeability of an area. Bike Score 

values range from 0-100 and are comprised of three measures relating to bikeability: bike 

lane score, hill score, and destinations and connectivity score (Winters et al., 2016). The 

bike lane score measures the amount of bicycling infrastructure in an area, though does 

not include sharrows, bicycle parking, or bicycle sharing. The hill score is derived from 

the steepest slope grade within a 200m area and the destinations score is the same as the 

area's walk score (Winters et al., 2016). Lane score is weighted as 50% while the hill and 

destinations scores are weighted 25% each, which overcomes one of the drawbacks of 

using derived measures like Walk Score.  

 Built environment features near residences can influence whether people engage 

in bicycling activity; an important consideration when valuing home prices in a 

neighborhood. The origins of bicycle trips are strongly influenced by density, diversity, 

and design, or the core elements of the built environment (Cervero and Duncan, 2003). 

Off-road bike paths and greenway trails may be associated with more greenspace overall; 

on-street bicycle lanes are associated with higher connected street areas with low speeds 

and lower overall traffic volume, which are characteristics that homebuyers may value 

rather than the bike lanes themselves. Well-connected streets with small block distance, 
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mixed land use, and access to retail activity spurs walking and bicycling activity (Cervero 

and Duncan, 2003; Sun et al., 2017). An increase in residential density and access to 

parks and attractive destinations was associated with uptake of transport-related bicycling 

whereas street connectivity was associated with starting recreational bicycling activity 

after people moved residences (Beenackers et al., 2012).  

 While studies have examined the associations between walkability, trails, bike 

lanes and property costs they do not directly measure activity; there is no guarantee that 

proximity to walk or bike friendly amenities will actually increase pedestrian activity (Li 

et al., 2015). Some bicycle activity occurs on bicycle specific infrastructure, but 

neighborhood ridership volumes may relate more to street connectivity or other built 

environment features than bicycle infrastructure alone; riders may utilize streets that are 

not specifically marked as bicycle lanes. Related, many low speed and low traffic volume 

streets are bicycle activity friendly, but because they are naturally conducive to bicycling 

activity they are not separately labelled as such. 

 Ridership in particular is associated with certain neighborhood features that 

appeal to cyclists and residents alike. For example in Strava, a smartphone app for 

recording bicycling trips that is focused on fitness and competition, recreation trips occur 

on short length streets, with high connectivity, and in areas nearer to residential land (Sun 

et al., 2017a). Further, cyclists have some preference for areas with traffic calming 

features (Broach et al., 2012) and low traffic speeds which could be seen as a beneficial 

neighborhood features. Greater safety for motorists and cyclists alike has also been 

associated with presence of bicycle lanes (Brady et al., 2010), which could contribute to 

overall neighborhood safety. Increased active transport in walkable areas, with a 

corresponding decrease in motorized transport, is associated with health benefits related 

to less air pollution and carbon dioxide emissions reduction (Woodcock et al., 2009; 

Frank et al, 2006). Overall, walkable neighborhoods are associated with greater rates of 

bicycling activity (Dill and Carr, 2003; Krizek et al., 2009; Nelson and Allen, 1997; 

Reynolds et al., 2009; Van Dyck et al., 2010). These characteristics that are associated 

with increased bicycle ridership are the same that may be desirable neighborhood features 

and therefore relate to higher property values, as market values of properties should 
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reflect attraction to particular developments by displaying a price premium (Bartholomew 

& Ewing, 2011). We specifically examine ridership volume herein as it also captures 

where infrastructure is not located but ridership still happens. 

 Greater community health benefits may result from self-selection of places suited 

to pedestrian activity rather than overtly designing neighborhoods for said activity 

(Cervero and Duncan, 2003). Walking and bicycling have obvious health benefits related 

to increased physical activity, but also have also been shown to improve hypertension, 

type 2 diabetes, and overall mortality (Saunders et al., 2013). Further, adopting walking 

or bicycling on larger scales can improve traffic congestion and carbon emissions if the 

overall number of vehicular trips is reduced. These are factors that may contribute to 

positive neighborhood features that appeal to home buyers. 

5.3 Hedonic Price Analysis  

 Hedonic pricing is commonly used to infer values for non-traded environmental 

or public goods from observed market transactions for related private goods, such as 

housing. Housing is a differentiated product that includes attributes such as 

environmental quality or access to public goods, e.g. bicycle infrastructure. Observed 

market transactions for housing implicitly carry price signals about these non-market 

attributes that are part of the bundle of attributes that consumers consider when 

purchasing housing (Palmquist, 2002; Freeman, 2003).  Hedonic modeling is a revealed 

preference technique that uses information about housing costs to identify premiums 

buyers are willing to pay for perceived amenities or to avoid disamenities. While hedonic 

models are difficult to generalize across regions, characteristics that are repeatedly 

significant in the models point to features that are more consistently valued by home 

buyers (Sirmans et al., 2005). Hedonic studies that investigate residential properties 

typically examine characteristics related to the structure of the house itself as well as the 

location and surrounding neighborhood, which includes proximity to a number of 

potential amenities and disamenities. The structural features may include square footage, 

number of rooms, presence of a garage and pool, and age of the house among other 

attributes (Bartholomew & Ewing, 2011; Sirmans et al., 2005). Neighborhood and 

proximity features may include factors related to the population like median age or racial 
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makeup or other location characteristics like proximity to parks, and greenspaces, 

business districts, school quality, and access to transit (Bartholomew & Ewing, 2011; 

Sirmans et al., 2005). Hedonic models are used to extract the value of these non-market 

characteristics through the market for housing (Palmquist, 2002). In this way, hedonic 

pricing is one way to evaluate livability or the aesthetic value of bicycling activity and 

bicycle facilities (Krizec, 2007). 

5.4 Empirical application: Study area Tempe, Arizona 

 Residents and city officials in Tempe, AZ are engaged in a debate as to the 

economic value of bicycling infrastructure, with some residents arguing that the presence 

of bicycle lanes will reduce home values. Because of the interest in this question of value, 

we select Tempe as our study area. Our analysis of the influence of bicycle lanes on 

housing prices will inform this debate, and provide robust analysis to help city planners 

and citizens alike make informed decisions on installing bicycle infrastructure  

 The city of Tempe is part of the Phoenix metro area in Maricopa county and has a 

population of over 174,000 people as of 2016, growing from 161,719 in 2010 (US census 

factfinder). This population growth has been absorbed into the 40.2 sq. mi. existing land 

area of the city. Land annexation for Tempe to accommodate growth halted when the city 

boundaries joined with the cities of Mesa, Scottsdale, Chandler, and Phoenix (Figure 

5.1). This has led to urban densification and an emphasis on mixed land use development. 

This type of development requires mixed modal transportation that includes active 

transportation such as bicycling. Bicycling is made easier due to the generally flat 

topography, low rainfall amounts (average annual precip is less than 10 inches a year), 

and year round warm temperatures (annual average high temperature in Tempe is 87.3 F 

and the average low is 55.3). The moderate fall, winter, and spring temperatures as well 

as little rainfall make Tempe bikeable year-round.   
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Figure 5.1. Tempe city limits and census tract boundaries, situated between Phoenix in 

the west and Mesa/Chandler in the East. 

One of the significant drivers of urban growth and economic development in the 

City of Tempe is the largest campus of Arizona State University (ASU). Situated in the 

north central part of the city near the Tempe Town Lake, ASU brings thousands of people 

to campus daily. ASU students and employees either reside in Tempe or commute to the 

campus by car, public transportation (light rail and bus), or active transportation (e.g., 

walking, skateboarding, bicycling).  

To support both ASU and the residents of Tempe, the city’s master transportation 

plan includes improvements to bike lanes, addition of buffered and protected bike lanes, 

and development of bicycle boulevards. Tempe's bicycle infrastructure includes over 175 

miles of bicycle lanes, routes, paved and unpaved multi-use paths, and paved shoulders 
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(Figure 5.2). Approximately 52% of Tempe's facilities are bicycle lanes, or designated 

portions of roadways that have preferential or exclusive use for bicycles. An additional 

27% of the facilities are multi-use paths, which are completely separated from motorized 

traffic. Bicycle routes comprise 15% of the infrastructure and are designated by signs 

only, typically on residential streets (TMP, 2015). Currently, a greater percentage of 

Tempe residents bike and walk to work as compared to other cities in the Phoenix 

Metropolitan area (TMP, 2015). The American Community Survey (ACS) 2012 revealed 

that 4.2% of residents bike to work as compared to the Maricopa County average of 

0.8%. Figure 5.2 shows the distribution of bicycle lanes throughout the study area. In 

addition, the Tempe area supports three bicycle share systems which are known to 

increase rates of bicycling activity. 

 Despite the relatively high use of bicycling as well as the planning and advocacy 

for more bicycling infrastructure, residents at town hall meetings debate the economic 

value of bicycling infrastructure, with some residents arguing that presence of bicycle 

lanes will reduce home values. Our analysis of bicycle lane influences on housing prices 

will help city planners and citizens alike make informed decisions about the value of 

bicycle infrastructure. Our study therefore focuses on 37 of the 39 2010 census tracts in 

the Tempe area with a mean size of 1.14 sq miles (2.95 sq km). Two census tracts within 

the study area were excluded as they contained no single family houses; the excluded 

tracts corresponded to areas largely containing ASU and the Tempe downtown area. We 

based our analysis on 5437 single family properties within these 37 census tracts. 
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Figure 5.2. Location of bicycle lanes, light rail line, and single family homes in the study 

area. 

 

Figure 5.3. Low, medium, and high quantiles of bicycle lane density, where density is 

the total distance of bicycle lanes within a ½ mile of each parcel. 
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Figure 5.4. Low, Medium, and high quantiles (equal count) of ridership count, where 

count is the total number of riders within a ½ mile of each parcel 

5.5 Data 

 We construct a dataset to conduct a hedonic pricing analysis using information 

about property characteristics, locational and demographic characteristics, bicycling 

amenities and other relevant variables. Figure 5.2 shows the distribution of bicycle lanes 

and residential properties throughout the study area. The bicycle lanes and single family 

houses appear to be situated ubiquitously throughout the study area. The light rail runs 

from the northwestern corner of the study area to the northeastern side; housing is sparser 

along the light rail corridor as compared to the rest of the study area. As shown in Figure 

5.2, the light rail runs through the northernmost region of the study area so a large 

distance for most properties is expected. The lowest house prices occurred near the light 

rail and in the westernmost part of Tempe while the highest house prices are situated in 

the southern extent. Figure 5.3 shows that the density of bike lanes varies, with a notable 

area of low bicycling infrastructure near the central portion of the study area. Related to 

bicycle density, ridership density is shown in Figure 5.4. The general qualitative patterns 
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between bicycle infrastructure and ridership density differ. Ridership is high in the 

northern and south-central parts of the study area; the part of the study are that 

corresponds to the least dense bicycle infrastructure also has low ridership, though there 

are some pockets of high and medium ridership within it.  

 We constructed a dataset to for a hedonic pricing analysis using information about 

property characteristics, neighborhood features, amenities, and features related to 

bicycling. This section describes the dependent and independent variables for our models 

and the data sources for each. We obtain single-family residential property sales and 

associated housing characteristics from the Maricopa County Assessor's office sales 

affidavits st42025 files from 2017. Actual market sales data from housing market 

transactions are collected as the dependent variable (P); sales price was used because it 

represents the actual market transactions. We limited the period of analysis to the years 

2013 and 2016 inclusive, representing a period of relative market stability at the study 

location. This period does not span events that could create significant structural changes, 

such as recession, in the housing market. We also restricted transactions to only single-

family residential property and omitted sales that were not arms-length or included non-

standard financial arrangements resulting in 5,437 observations. Although inflation was 

very low during this period, we also adjusted nominal prices to reflect 2016 real dollars. 

This lead to increases of 5.91, 4.09, and 2.21 percent for the years 2013 to 2015 

respectively. 

 Independent variables reflecting structural attributes, neighborhood characteristics 

including demographics, and the bicycling infrastructure and usage were acquired to 

analyze the factors that influence housing values in Tempe. The Maricopa Assessors data 

contained information about livable square feet and lot size for each property as well as 

other characteristics such as pool, garage, and the year the house was built. Pools were 

considered as a binary whether a property had a pool. House age was the number of years 

since the house was originally built. The average house in the study was 656.3 sq. ft. on a 

lot of 9059 sq. ft. and was 41 years of age (Table 2). Of the 5437 properties, 2576 had a 

pool and the vast majority (94%) had a garage or carport.  
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 Using bicycle lane locations acquired from Maricopa Association of Governments 

(2014) we also calculated the distance from each property to the nearest bicycle lanes. 

Similarly, using parks and other greenspaces (e.g., golf courses), we computed distance 

from each property to the nearest park. The mean distance to a bike lane was 567 ft. 

whereas the mean distance to the light rail was nearly 3 miles. In terms of greenspace, the 

mean distance to parks was 1432 ft. 

 Neighborhood variables reflect the neighborhood characteristics representative of 

all within neighborhood and neighborhood amenities, which are opportunities available 

to those within the neighborhood. Neighborhood level variables were derived from the 

US Census's American Community Survey 2015 and include population density, median 

age, median household income, percent rented households, and percent minority at the 

census tract level. Each single family residence in our study was assigned the value of the 

tract within which it was situated. We recognize that ecological fallacy tells us that these 

values that are assigned to individual households are deduced from group observations 

and are not necessarily the actual observed value at that household. The variables do 

however reflect the neighborhood characteristics, which is the intent of the study. 

 For neighborhood amenities, we collected data on school quality and eight 

variables on transportation amenities. In order capture school quality, each property was 

assigned to the elementary, middle, and high school enrollment catchments that contained 

them. The GreatSchools rating from greatschools.org was then used to rate each school. 

The overall rating accounts for test scores as well as socioeconomic, racial, and 

attendance factors; ratings are on a 1-10 scale where 10 is the highest and a 4-7 is about 

an average performing school ("About GreatSchools' Ratings", 2018). 

 Since bicycle ridership is associated with bike lanes but riders do still ride on both 

roads with no markings as well as roads with "sharrows" (not included in our set of 

marked bicycle lanes) we have also controlled for the road network in two ways. In terms 

of road access, we first calculated the road density within the census tract, then we also 

calculated the beta measure for the roads in each census tract for each property.  The beta 

index is defined as β = e/v where e = edges (streets) and v = nodes (intersection) in a 

graph and it is a measure of connectivity. Complex connected roads would have a higher 
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value of beta where lower values indicate a less connected network. Access to light rail 

was computed as the distance from each property to the light rail line. 

 The set of transit-related variables were developed in several ways and include 

accessibility indices and transit infrastructure variables. First Bike Score was used to 

indicate bikeability of an area and was derived from the WalkScore.com website. While 

the official measures of walkability and bikeability are proprietary to the site, points are 

given to areas according to their distance to amenities where those within a ½ mile 

(approximately a five minute walk) are given the maximum points and no points are 

given for walks that would be in excess of 30 minutes ("Walk Score Methodology", 

2018). Census tracts defined neighborhoods in this study, so the Bike Score at the 

centroid of each tract was collected and assigned to each property using spatial join. The 

Walk Score for each census tract was also recorded as a measure of the walkable access 

for each neighborhood. In addition, Bike Score was not available for five of the census 

tracts which led to too many properties with unknown values. Bike Score and Walk Score 

were moderately correlated (0.74) so Walk Score was used in place of Bike Score in this 

analysis 

 Second, bike lane density was computed two ways; a shapefile was obtained from 

Maricopa Association of Governments that displayed a polyline file of all bicycle lanes. 

The first density measure was the distance of bicycle lanes within the area of each census 

tract (density = distance/tract area). The second measure of density computed the length 

of bicycle lanes within a ½ mile buffer of each property (density = length/buffer area). 

Therefore the densities are measured as a property's immediate neighborhood as well as 

the individual surrounds of the property itself. We chose ½ mile as the distance a person 

is willing to travel for everyday activities. Next bicycle infrastructure variables specific to 

the property were developed; proximity to bicycle lanes was derived by determining the 

distance in feet from each property to the nearest bicycle facility. Since greenspaces are 

associated with higher home values (Lindsey et al, 2004; Asabere and Huffman, 2009), 

we also computed distance from each property to the nearest park to control for the 

existence and location of those spaces. Ridership was operationalized as the number of 

riders on each street segment within a ½ mile buffer of each property. The ridership data 
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originated from the Strava smartphone application and consisted of volumes of riders on 

each street segment in the study area. 

5.6 Empirical modelling 

 The sale price (P) of a house is a function of differentiated property attributes 

such as the characteristics of the lot and the physical housing structure, neighborhood 

characteristics, amenities/accessibility in the area, as well as bicycling related 

infrastructure, equation (1). 

  

P=P(H,N,A,C) (1) 

 

Where: 

H = vector of housing characteristics (e.g., lot size, house size and age) 

N = vector of neighborhood characteristics e.g. school quality 

A = vector of amentities and accessibility in the area e.g., road density 

C = vector of bicycling characteristics e.g., bike lanes, ridership volume   

      

Taking the first derivative of (1) with respect to any of the bundle of attributes yields 

their marginal prices at the given level of consumption. For example, ∂P/∂c, represents 

the marginal value of a given bicycling infrastructure variable c i.e. the increase in 

expenditure required to obtain one more unit of attribute c, all else equal (Freeman, 

2003). These relationships can be determined statistically by estimating the hedonic 

pricing function and parameter values, which represent the marginal values. Economic 

theory lends latitude in model estimation and there are few restrictions on functional 

form, data characteristics are generally used to guide our model parametrization (Owusu-

Ansah, 2011).  

 We utilize hedonic price modeling technique to understand the impact of various 

characteristics on single-family residential homes in Tempe, AZ. We start initially with 

an OLS specification  
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Pi=β0 + β1Hi + β2Ni + β3Ai + β4Ci +εi (2) 

Where 

Pi = adjusted property sale price 

Hi = vector that includes house/property characteristics (e.g., square footage, lot size, age, 

pool binary) 

Ni = vector that includes neighborhood sociodemographic characteristics (e.g., % renters, 

school score) 

Ai = vector that includes access to amenities such as light rail, roads, and parks (e.g., 

distance to light rail, road density) 

Ci = vector of bike facility and ridership characteristics (e.g., bicycle lane density, 

ridership volume) 

In the OLS model (Model 1), we include characteristics specific to the transaction, the 

property, the neighborhood, and our set of biking-related variables. Physical property 

attributes such as lot size (in sq. ft.), livable square footage of the house, and age of the 

house in years were also obtained from the Maricopa County assessor's office along with 

a shapefile showing the location and footprint of each property throughout the study area. 

Housing prices are positively skewed and were logged in Model 2 to correct the skewness 

yielding the following specification:  

lnPi=β0 + β1Hi + β2Ni + β3Ai + β4Ci +εi (3) 

As prior models have suggested spatial dependence may occur between units (Shir, 2007) 

or in model residuals (Liu and Shi, 2017). Moran's Ii analysis was conducted to determine 

whether spatial autocorrelation in housing prices was present in the study area, as we can 

expect that housing prices are influenced by the price of neighboring homes. Results 

indicated that adjusted housing prices were similar among the nearest neighbors (0.68, 
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p=0.01) within the study area.  For these reasons we include spatial specifications of the 

model alongside the general ordinary least squares model. The general spatial 

autoregressive model then is specified as: 

y=ρWy+Xβ+ϵ (4) 

Where ρWy specifies a spatially lagged dependent variable parameter using a spatial 

weighting matrix; ρ is the spatial lag parameter, W is the weight matrix, and X is the 

vector of independent variables in the model in equation 1. For this study we used k-

nearest neighbor weighting as it can be thought of as a weighted averaged of the response 

variable in a neighborhood, and it allows for a neighborhood that is not of a fixed width 

(Owusu-Ansah 2011). As an important consideration for the model, we have chosen to 

specify W as the 8 nearest neighbors to account for the spatial arrangements and reduce 

bias while maintaining variance.  

 We anticipate that lot size, livable square footage, and whether a house has a pool 

will all contribute positively to house price whereas price will decrease with house age. 

In terms of neighborhood level variables, we expect that higher median household 

income and school scores will be associated with higher house prices as these are 

desirable neighborhood features; higher percentage of renters will be associated with 

lower prices. Road density should be negatively associated with house prices as we 

believe homeowners value secluded home locations with longer blocks and fewer 

connecting streets, including development areas with cul de sac style streets. Bicycle lane 

density should be positively associated with house price and we further anticipate that 

ridership volume will also be associated with higher prices; riders prefer low traffic 

volume areas with greenspace which are also considered housing amenities.   

5.7 Results  

 Three different models were specified. Model 1 shows the regular OLS approach 

while Model 2 shows the log-linear OLS model. We performed several tests to check that 

the models herein did not violate the assumptions of OLS. First the model is linear in 

parameters and the mean of the residuals is zero (1.728143e-12). Figure 4 shows the 

residuals vs. fitted values plot indicating no severe decreasing or increasing trend and 
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therefore homoscedasticity. The Durbin-Watson test results were 1.98 for both models 1 

and 2 with a p-value of 0.2889 and 0.1848 respectively indicating that there was no 

autocorrelation among the residuals. Similarly, correlation tests showed that the 

independent variables were not correlated with the residuals and all independent variables 

had variance greater than 0. All variance inflation factor values were less than four 

indicating that there was no multicollinearity present in the models. Finally, QQ plots 

(Figure 5) showed that the residuals in models 1 and 2 were represent a heavy tailed 

normal distribution. Table 5.1 shows the results of the ordinary least squares models; the 

coefficients are given with standard errors in parentheses beneath.  

Table 5.1. Descriptive statistics for independent variables 

Statistic N Mean St. Dev. Min Max 

 

PriceAdj (USD) 5,437 $286k $143k $26.5k $4.3 mil 

Property level:      

Livable SqFt  1889 686.2 480 9650 

Lot Size (sqft)  9059 5550.4 1133 128k 

House Age (years)  41.9 12.83 1 94 

Neighborhood:      

Pop. Density (ppl per sq 

mi) 
 4,867.9 2,354.7 515.6 13,033.1 

% Minority pop.  34.6 10.6 12.9 65.8 

Med. HH income (USD)  66,136 27,578.8 19,221 127,879 

% Renters  43.8 22.4 3.8 96.6 

School Score (max)  5.5 1.9 1.5 8.5 

Infrastructure:      

Road density (ft/buffer 

area) 
 21.8 5.3 11.8 35.5 
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Road beta  1.7 0.15 1.45 2.14 

LTR distance (ft)  15,194.5 9,251.5 285.3 36,680.1 

Walk score  38.99 14.17 8 74 

Bike score  69.734 14.524 0 100 

Bike lane density 

(ft/buffer area) 
 6.0 2.6 1.6 16.1 

Distance to bike lane (ft)  567.3 521.3 0.0 3,121.7 

Ridership density  171.2 507.8 1 9,847 

 

As expected lot size, livable square feet, and whether or not the property had a pool were 

all highly significant positive predictors of house price (p<0.01). House age was also 

significant where house price decreased as age increased.  

 Ultimately, only percentage of renters at the census tract level was used to 

characterize neighborhood level features. At the neighborhood (tract) level median age, 

median household income, and percentage of renters in the tract were considered, though 

subsequent variance inflation factors were moderately high (>4) indicating that they were 

highly correlated in the models. Percentage renters was a better predictor of house price 

so it was retained in subsequent models. According to the model results in Table 3, house 

price increases as the percentage of renters in the neighborhood decreases. As anticipated, 

distance to light rail from each property was also highly significant and negative in the 

models. The maximum elementary school score was also significant and contributed 

positively to house price. 

 When examined independently Walk Score and Bike Score were significant and 

negative meaning that house price increased as the scores decreased, though they were 

not significant when other bicycling and accessibility measures were included in the 

specification. Modeling distance to nearest bike lane and neighborhood (tract based) bike 

lane density showed they were negative and positive respectively. The signs align as 

house price would decrease the further a house was from a bike lane and higher 
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neighborhood bike lane density also contribute to higher house prices. As predicted, 

neighborhood road density was significant and negative. Similarly, bike lane density 

contributes positively to house price; for each unit increase in bike lane density, we 

would expect a 1.4% increase in house price. Similarly, bicycle ridership was significant 

and positive p<0.01. (Table 3). We would expect very marginal (<1%) increases in house 

price for every unit increase in neighborhood ridership density. 

 Table 5.3, model 3, shows the results of the spatial autoregressive models, with 

coefficients listed with standard error in parentheses. Again, spatial models were used as 

there was spatial autocorrelation present in the house prices across the study area. Lot 

size, livable sq. feet, age of house, and whether the house had a pool and garage remained 

significant. As in the aspatial model, distance from light rail was negative and significant 

indicating that house price rose as distance from light rail decreased. Percentage of 

renters and median household income remained positive neighborhood level predictors of 

house price. Even when controlling for road density in the area, bike lane density 

remained positive and significant indicating that house prices were higher in areas with 

higher bike lane density. If bike lane density was controlled for in the model, the amount 

of ridership in the buffered neighborhood was not significant.  

 Table 5.4 shows the direct and indirect effects associated with the SAR model, 

since the coefficients cannot be directly interpreted based on the lagged variables. The 

direct effects result from a change in the respective independent variable for each 

property whereas the indirect (spillover) effects are based on changes within a property's 

neighbors. Direct and indirect impacts that are positive suggest that increasing a given 

variable will have an impact in the immediate or neighboring area. Lot size, livable 

square feet, pool binary, and school score are all positive impacts whereas age, distance 

to LTR, percentage renter, and road density are negative; decreasing any of these factors 

would increase house price in neighboring and immediate properties. 

Table 5.2. OLS (model 1 & 2) and SAR (model 3) results  

 Dependent variable: 
 OLS SAR 

 PriceAdj log(PriceAdj) log(PriceAdj) 
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 (1) (2) (3) 
  

Lot Size (sq ft) 5.741*** 0.00001*** 7.1406e-06*** 

 (0.201) (0.00000) (0.00000) 

    

Livable Sq.Ft. 141.463*** 0.0004*** 2.7468e-04*** 

 (1.906) (0.00001) (0.00000) 

    

Age (years) -906.520*** -0.003*** -3.3048-03*** 

 (114.976) (0.0003) (0.0003) 

    

Pool binary 5,372.378*** 0.070*** 6.2827e-02*** 

 (2,053.161) (0.006) (0.00525) 

    

Distance to lightrail (ft) -0.628*** -0.00000*** -5.0012e-06*** 

 (0.197) (0.00000) (0.00000) 

    

Percent Renter -414.338*** -0.003*** -5.2553-03*** 

 (66.816) (0.0002) (0.00019) 

    

Max. elem. school score 5,992.084*** 0.004** 3.9397e-02*** 

 (742.686) (0.002) (0.00200) 

    

Road Density (ft/buffer area) -2,875.302*** -0.010*** -4.4234e-03*** 

 (200.313) (0.001) (0.00054) 
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Ridership volume 7.958*** 0.00002*** 5.9534e-06 

 (1.914) (0.00001) (0.00000) 

    

Bike Lane Density (ft/buffer area) 5,533.627*** 0.014*** 1.1606e-02*** 

 (405.695) (0.001) (0.00105) 

    

Constant 12,226.320 12.094*** 6.0560*** 

 (11,887.300) (0.033) (0.199) 

Observations 5,437 5,437 5,437 

R2 0.770 0.750 0.787 (pseudo) 

Adjusted R2 0.769 0.749  

Residual Std. Error (df = 5426) 68,655.900 0.191  

F Statistic (df = 10; 5426) 1,813.820*** 1,625.357***  

Log Likelihood  1739.967 

Note: *p<0.1; **p<0.05; ***p<0.01  

 

Table 5.3. Direct and indirect effects associated with the SAR. 

             
        

Direct Indirect Total 

Lot Size 0.000005641326 0.000004077118 0.000009718445 

Livable Sq.Ft. 0.000259443047 0.000187505547 0.000446948595 

Age (years) -0.002239891125 -0.001618821607 -0.003858712732 

Pool Binary 0.061458648461 0.044417600021 0.105876248482 

Distance to LTR  -0.000003277067 -0.000002368413 -0.000005645479 

% Renter -0.001031601086 -0.000745562188 -0.001777163274 

School Score  0.002852229089 0.002061372549 0.004913601638 

Road Density -0.005107507601 -0.003691314980 -0.008798822581 

Ridership vol. 0.000008396792 0.000006068557 0.000014465349 

Bike ln. Density 0.010085373054 0.007288934554 0.017374307608 

 

5.8 Discussion 

 Considering debates in Tempe as to the value of bicycle lanes in residential areas, 

the current study demonstrates that there is some value associated with the presence of 
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infrastructure that supports bicycling activity. Our findings align with previous research 

linking property values to bicycle lanes (e.g., Liu, 2017). House price increased as 

percentage of renters in a neighborhood increased; this relationship is possibly indicative 

of areas where people are willing to pay a premium to live or that owning a house in a 

high rentership area costs a premium. Decreasing the percentage of renters around any 

given property would increase house prices, based on the direct and indirect impacts. The 

highest rates of renting were in the northern and northwestern areas of the study areas 

where housing prices were medium or low which correspond to the university and 

business areas of Tempe; the lowest numbers of renters occurred where the highest house 

prices occurred. Since we did not distinguish between owner-occupied single family 

residences, it is also possible that the same high cost homes are being rented rather than 

occupied by the owners. It makes intuitive sense that neighborhoods with higher incomes 

have higher cost homes. 

 House prices generally increased as distance to light rail decreased, though the 

highest price homes in the study area are also furthest from the light rail. While some of 

the least expensive houses immediately surround the light rail (Figure 5.2), several high 

home price areas are located within the average distance (3 miles) to the light rail. While 

there have been mixed results as to whether transit benefits property prices (Bartholomew 

& Ewing 2011), there is a clear and strong relationship in this study. Overall the finding 

aligns with previous research showing that properties close to light rail see negative 

effects while those further from it see positive effects (Bowes and Ihlanfeldt, 2001). 

 The results for bike lane density align with previous findings in that buffered bike 

lane density is positive and significant in home prices. We expect that the neighborhood 

features associated with bike lanes are the same ones that people are willing to pay a 

premium for e.g., small blocks, low traffic speeds. While Liu and Shi (2017) examined 

the impacts of bike lanes on home prices, they did not consider all types of bike lanes as 

we have done here. Further, we have shown that ridership is also significant and positive, 

thought its effect size is small. It likely that rather than bicycle ridership spurring higher 

home prices, the features of neighborhoods that are associated with higher ridership are 

those for which home buyers are willing to pay a premium. For example, wide and 
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connected streets with low traffic volume and speed are those that bicyclists tend to 

choose. Increased traffic leads to more traffic noise, which is associated with lower home 

prices (Theebe, 2004). Surveys of bicyclists have shown that striped bicycle lanes lead to 

greater perception of safety that those without and similarly pavement conditions play a 

role in cyclist perceptions of the quality of the built environment (Landis et al., 1997). 

These may be the same factors, as part of the bundle of property attributes, that home 

buyers examine while they decide to purchase and decide the premium they are willing to 

pay for better conditions. 

 This study has used crowdsourced data to examine whether ridership is related to 

property values. Crowdsourced data from smartphone apps has allowed this analysis to 

overcome prior limitations related to the economic valuation of bicycle infrastructure. 

Rather than examine the presence of bicycle lanes, which are not necessarily widely used 

in all areas of Tempe, despite their presence, we have demonstrated that rider volume 

near properties is related to house prices. In a similar vein, there is dense ridership in 

places where there is no bicycle infrastructure (Figures 5.3 and 5.4) which demonstrates 

that infrastructure and ridership are separate factors that both need to be examined. Future 

work should further assess the influence of said ridership by examining additional, street 

level factors that are known to influence bicycle ridership volumes. For example, street 

shade and vegetation and attractiveness of areas could be examined to determine the 

relationship between those features, ridership, and property values. 

5.9 Conclusion 

 The transit factors that influence house prices in Tempe AZ include distance to 

light rail and bicycle lane density. The results support the idea that transit oriented design, 

and bicycle lanes in particular, increase house prices nearby. It is possible and certainly 

plausible that the same characteristics that come with bicycle lanes are those that are 

desirable to potential homeowners. The lower traffic speeds and lower traffic 

volumes/noise associated with bike-friendly areas are the same features that contribute to 

neighborhood safety. Further, community health benefits as presence of bicycle lanes can 

spur active transport behavior. In this case, it seems that bicycle lanes and bicycle 
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ridership can be considered neighborhood amenities and an attractive selling point for 

potential buyers. 

 Transit oriented design, including built environment features that support walking 

and bicycling, is of interest to planners and stakeholders in many cities. TOD aids 

problems associated with mobility and accessibility including congestion, pollution, and 

sprawl. Studies show the economic valuation of such TOD features, including potential 

positive influences on property prices. Results from this study can be used to inform 

debates on the positive economic effects associated with bicycle friendly infrastructure 

and ridership. 
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CHAPTER 6 

CONCLUSION 

 Analysis of human mobility is primarily focused on popular places and how 

people travel to and between them. Active transport, or walking and bicycling, is 

associated with both personal and community level benefits including reduced risk of 

adverse health outcomes and reduced carbon emissions. Despite benefits, levels of 

walking and bicycling remain low in many urban areas. Detailed information about the 

contexts that support and encourage walking and bicycling as practical transport options 

will aid planning and policy decisions. Understanding the factors that influence mobility 

is key in creating effective planning and policy to predict and manage human movement 

behavior.   

 This detailed information however, depends on the data that are available for 

research and analyses. While conventional methods used to collect mobility data capture 

some information about movement such as traffic flows and volumes, they have a 

number of limitations. These limitations include high operational costs, coarse spatio-

temporal scale, and small sample sizes. Conventional data are particularly limiting in 

analysis of active transport like walking and bicycling because these movement behaviors 

occur on finer spatial scales and necessarily require finer scale data. Travel surveys and 

studies are limited in spatial and temporal scope and may have comparatively small 

sample sizes. Bicycle counts are commonly conducted, but they suffer some of the same 

spatio-temporal limitations as surveys but are additionally limited in that no route 

information can be deduced from their results. Lack of data has limited analysis of 

walking and bicycling as mobility modes. Further, there has traditionally been a dearth of 

data that can link active transport modes to the built environment and networks in which 

they occur.  

 One of the opportunities to improve analysis of active transport lies in 

crowdsourced data that originate from smartphones and other location aware 

technologies. Crowdsourced bicycling data provide more information on human mobility. 

These detailed movement datasets often contain full routes, speeds and durations of 
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travel, and have the benefit of increased sample sizes and near-continuous data collection. 

Few studies have critically examined crowdsourced data related to bicycling activity. 

Those that have focused on the Strava fitness app and found that Strava users tended to 

ride in the outskirts of urban areas, on short, connected streets. The neighborhood 

characteristics that support bicycling are those associated with short, direct routes, lower 

traffic volume and speeds, and bicycling specific infrastructure that supports riding. In 

smaller scale studies, cyclists prefer bike lanes and boulevards and are willing to go out 

of their way to stay on bicycling specific infrastructure though it remains to be seen 

whether conclusions like this hold when considering crowdsourced rather than 

conventional data.  

 The gap in the research lies in the under examination bicycling activity using 

crowdsourced data as a mobility and active transportation data source. Chapter 3 

addressed the gap by first examining crowdsourced and conventional data sources to 

determine how they correspond in representing bicycling activity. Local indicators of 

spatial association were used to generate locations of similarity and dissimilarity; these 

locations were based on the difference in ridership proportions between a conventional 

manual count and crowdsourced data in the greater Sydney region. Similarity was found 

more often in areas with lower population density, greater social disadvantage, and low 

ridership overall. Dissimilarity was found among five locations; these locations were 

among low bicycle infrastructure density areas though they were popular locations in the 

Strava dataset.  

 Next, Chapter 4 assessed how the built environment, infrastructure, and 

sociodemographic factors in Sydney predict where bicycling activity occurs. The analysis 

further examined whether the factors that predict bicycling activity were the same 

between two datasets, one from Strava and one from RiderLog. Median rent, percentage 

of residential land, road density and number of people using two or more modes to travel 

to work were all significant predictors of ridership volume in both datasets. Overall, more 

rides were logged in areas with greater bike lane density and a lower percentage of 

residential land. In terms of the difference in riders between datasets, Strava users tended 

to ride near the city center but also in the outskirts of the study area whereas RiderLog 
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users were much more concentrated in the city center only. Further, bicycling 

infrastructure density was more important for RiderLog users than Strava users.  

 Chapter 5 examined the influence of ridership and bicycle lane density on home 

prices. Findings showed that bicycle lane density with a ½ mile neighborhood of a home 

positively influenced adjusted sale price. Similarly, ridership volume within the same 

neighborhood radius also positively contributed to house price. This is an important 

distinction as neighborhoods may have bike lanes but lack in ridership, or may not have 

bicycle lanes but have other built environment features that spur bicycle use in the area. It 

is probable that rather than ridership directly influencing house price, it is an indicator of 

neighborhood features that facilitate bicycle riding. Some of these factors may be low 

traffic speeds and volumes, wider streets, and green spaces. Bicycle lanes and 

neighborhood activity may also spur uptake of bicycling as an activity, which will help 

realize the associated community health benefits. 

 The studies from Chapters 3 and 4 overcome a gap in the knowledge base related 

to understanding bicycle ridership and crowdsourced data. Because conventional count 

data are static in location, it would not be possible to determine the factors that influence 

bicycling activity across the study area while considering general movement paths. 

Similarly, household travel surveys and studies often only include origin and destination 

information so analysis of the factors that influence movement across the study area 

would not be possible with those data. The major link between Chapters 3, 4, and 5 is the 

neighborhood and built environment. In Chapters 3 and 4, the neighborhood and built 

environment play a role in facilitating bicycle activity. In Chapter 5, bicycle lanes 

influence, or are at least associated with, neighborhood valuation of amenities. Overall, 

this research aims to explore gaps in knowledge related to the relationships between 

ridership and the factors that underlie that activity, and using crowdsourced data to 

explore those gaps. The dissertation research confirms that there are differences in the 

activity represented by conventional and crowdsourced datasets, as well as differences in 

users from differing data sources. These differences must be considered and accounted 

for when using crowdsourced data to examine the factors that underlie bicycling activity. 

Further, this research aids in understanding how we can use both conventional and 



101 
 

crowdsourced data sets to fill gaps in knowledge and answer questions that have not been 

possible before. 

 As planners and other stakeholders invest more in bicycling specific 

infrastructure, research that includes detailed information about where and when people 

ride is of importance in making informed decisions related to said infrastructure's 

location and type. Informed decisions about infrastructure will facilitate bicycling activity 

so that the benefits of it (e.g., reduced traffic congestion and emissions) can be realized. 

Similarly, as bicyclists have more choices about where and how they ride, research that 

includes rider and street-level detail remains important in understanding bicycling 

activity; if bicycling activity is better understood, planning efforts can be improved to 

develop safe, efficient, and desirable routes.  

 The research herein used detailed bicycling data to make conclusions about 

activity that can be used by planners and bicycling interest groups to both make decisions 

and appeal for bicycling specific infrastructure. For example, the findings related to 

locations of similarity and dissimilarity in Chapter 3 can inform policy and planning. 

Locations of dissimilarity can be used to direct further data collection efforts in order to 

understand what population of bicyclists (e.g., recreation or transport) is being served by 

the infrastructure so that future planning efforts better accommodate different types of 

bicycling activity. The finding that Strava and RiderLog users were different in Chapter 4 

highlights the need to consider that crowdsourced data does not universally represent the 

same types of riders; riders may be more transport or recreation oriented. It is important 

to understand the types of riders that are represented as policy and planning efforts need 

to consider the populations that produce different types of activity as infrastructure design 

choices may vary based on who is riding where and for what purpose. Recreational riders 

may be better served by long bicycle boulevards on the outskirts of the city whereas 

transport oriented cyclists may need direct, connected routes through the dense city 

center. Finally, the link between infrastructure and economic value can be used by 

planners and interest groups to appeal for increased bicycling infrastructure in residential 

areas. Overall this research informs on the economic impact, overall ridership, and 

different data sources associated with bicycling activity. 
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6.1 Limitations and Future Work 

 While the crowdsourced data utilized in these studies allowed for analysis that 

would not be possible with conventional data, the data are likely biased in user input 

which was not corrected. As mentioned, crowdsourced samples tend to under sample 

females, older age groups, and low income groups; we did not make any corrections for 

this under sampling as information about the underlying sample was not available. In a 

similar vein, comparisons of the crowdsourced samples were limited to those councils or 

areas that participate in data collection.  

 This work will allow planners and other stakeholders to make informed, proactive 

decisions about bicycling infrastructure design. Creating enjoyable, safe, and carefully 

planned places for people to engage in bicycling activity will increase bicycling rates, 

which benefits both personal and environmental health. Further, it allows for us to 

understand how we can do better with conventional data collection strategies. 

Understanding where data are and are not captured will help direct new data collection 

efforts. 
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APPENDIX A 

DIAGNOSTIC PLOTS FOR HEDONIC PRICING ANALYSIS  
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Figure 4. Residuals vs. Fitted plot for model 1(top) and model 2 (bottom) showing 

homoscedasticity 
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Figure 5. QQ plots showing normal residuals with extreme values for models 1 (top) and 

2 (bottom) 
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