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ABSTRACT

Healthcare operations have enjoyed reduced costs, improved patient safety, and

innovation in healthcare policy over a huge variety of applications by tackling prob-

lems via the creation and optimization of descriptive mathematical models to guide

decision-making. Despite these accomplishments, models are stylized representations

of real-world applications, reliant on accurate estimations from historical data to jus-

tify their underlying assumptions. To protect against unreliable estimations which

can adversely affect the decisions generated from applications dependent on fully-

realized models, techniques that are robust against misspecications are utilized while

still making use of incoming data for learning. Hence, new robust techniques are ap-

plied that (1) allow for the decision-maker to express a spectrum of pessimism against

model uncertainties while (2) still utilizing incoming data for learning. Two main ap-

plications are investigated with respect to these goals, the first being a percentile

optimization technique with respect to a multi-class queueing system for application

in hospital Emergency Departments. The second studies the use of robust forecasting

techniques in improving developing countries’ vaccine supply chains via (1) an inno-

vative outside of cold chain policy and (2) a district-managed approach to inventory

control. Both of these research application areas utilize data-driven approaches that

feature learning and pessimism-controlled robustness.
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Chapter 1

INTRODUCTION

1.1 Overview

Healthcare operations have enjoyed significant improvements over a huge variety of

applications by tackling problems via (1) the creation of descriptive mathematical

models and (2) the optimization of said models to guide decision-making. This ap-

proach has yielded great successes in the reduction of costs, improvement of patient

safety, and innovations in healthcare policy. Despite these accomplishments, models

are stylized representations of real-world applications, and as such, must rely on esti-

mations from historical data to justify their underlying assumptions. In settings with

scarce or unreliable data, such as those experienced at the inception of a new process,

specifying model parameters or underlying stochastic elements can be highly unreli-

able. Hence, models are subject to inevitable misspecifications which can adversely

affect the decisions generated from applications dependent on precise estimation, re-

sulting in excess expenses, higher patient risks, or an unnecessarily strained system.

To combat these issues, many studies pursue techniques that are robust against

model misspecifications. These robust procedures often utilize minimax objectives

on specialized sets of parameters or models to guide their decision-making. By op-

timizing against the worst-case scenario within the specified set via engaging in a

game against an antagonistic agent, this technique effectively protects their decisions

from poorly estimated models. However, naively constructing such robust methods

can be ineffective in real applications due to (1) overly-conservative policies and (2)

ignoring potential learning from incoming streams of data. To gain a large amount

1



of robustness against model ambiguity, a decision-maker might choose to create ex-

pansive ambiguity sets to encompass a large variety of potential situations. However,

if these robust sets are too large, the resulting policies will be optimizing over highly

unrealistic scenarios with respect to the real application and hence do not generate

useful decision-making or insights. Furthermore, robust models for dynamic processes

that feature incoming data streams that do not express learning via this information

miss out on the significant potential to modify their decision schemes in the presence

of new, better model estimates.

Due to the unintended negative consequences of state of the art robust techniques,

this research will apply techniques that (1) allow for the decision-maker to express a

spectrum of pessimism while (2) still utilizing incoming data for learning. Specifically,

we explore two different applications with respect to these goals. The first application

is a percentile optimization technique with respect to a multi-class queueing system

for application in hospital Emergency Departments (EDs). The second investigates

the use of robust forecasting techniques in improving developing countries’ vaccine

supply chains via (1) a non-traditional “outside of cold chain” policy and (2) a district-

managed supply chain network. Both of these research application areas utilize data-

driven approaches that feature learning and pessimism-controlled robustness.

1.2 Dissertation Outline

The dissertation is divided into five chapters: Chapter 1 provides the overview and

the outline of the dissertation. Chapter 2 studies our application in robust multi-class

queueing systems. Such models typically experience ambiguity in real-world settings

in the form of unknown parameters, hence we incorporate robustness in the control

policies by applying a novel data-driven percentile optimization technique that allows

for (1) expressing a controller’s optimism level toward ambiguity, and (2) utilizing
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incoming data in order to learn the true system parameters. Our contributions in-

clude showing that the optimal policy under the percentile optimization objective is

related to a closed-form priority-based policy. We also identify connections between

the optimal percentile optimization and cµ-like policies, which in turn enables us to

establish effective but easy-to-use heuristics for implementation in complex systems.

Using real-world data collected from a leading U.S. hospital, we also apply our ap-

proach to a hospital ED setting, and demonstrate the benefits of using our framework

for improving current patient flow policies.

In Chapter 3, we examine the potential of utilizing thermostability in developing

countries’ vaccine supply chains. Providing immunizations to many developing coun-

tries with limited infrastructure is complicated by maintaining the cold chain. For

the purposes of increasing vaccination coverage and the potential for the introduction

of new vaccines, we utilize the thermostable properties of vaccines in the last mile of

delivery which enhances the flexibility and capacity of the supply chain. To combat

the inherent ambiguity arising from uncertain demand while maximizing vaccination

coverage and keeping wastage costs under control, we develop a robust constrained

newsvendor model using distributionally robust optimization procedures.

In Chapter 4, we consider managing the vaccine supply chain at the district level

via a “push” mechanism from vaccine depots to IHCs as opposed to traditional “pull”

strategies from the IHCs. The last mile of the vaccine supply chain is well-known to

suffer from poor data quality, limited transportation capacity, and a lack of managerial

oversight. To help tackle these issues, we consider district led immunization delivery

system, where vehicles at the district depot routinely supply vaccines to IHCs in its

service area, where demand rates at each IHC are either fully observed or are assessed

via a Bayesian approach. We develop and test effective policies and heuristics based

on lower bounds that can become tight under high population densities.
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Finally, Chapter 5 summarizes our contributions stemming from Chapters 2-4 and

concludes the thesis.
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Chapter 2

DATA-DRIVEN PERCENTILE OPTIMIZATION FOR MULTI-CLASS

QUEUEING SYSTEMS WITH MODEL AMBIGUITY

2.1 Introduction

Multi-class queueing systems require dynamic control in environments where servers

must process multiple types of jobs that vary with respect to holding costs, service

rates, and other defining characteristics. These types of queueing systems are widely

used to model call centers, hospitals, manufacturing lines, and service operations,

where elements in the queue can be classified based on differing levels of urgency,

processing time, or other attributes. For example, in a hospital Emergency Depart-

ment (ED), patients are classified through a triage system, which differentiates them

based on their severity, medical complexity, or other conditions (see, e.g., Saghafian

et al. (2012), Saghafian et al. (2014), and the references therein). Hence, a natural

way to analyze ED patient flow is via a multi-class queueing system which separates

patients based on their attributes. 1

In such systems, when all parameters are known, many well-established policies

like the cµ rule have been shown to be optimal for optimizing the system’s performance

(see, e.g., Van Mieghem (1995) and Buyukkoc et al. (1985)). However, the assumption

that all the model parameters are perfectly known is often unrealistic, especially in

settings with little supporting data, inaugural system launch, or various other sources

of ambiguity. A manager with incorrect parameter specifications may enforce policies

that perform poorly, or may not have confidence in using a policy that is obtained
1See, e.g., Saghafian et al. (2015) for a recent review of various models used to optimize patient

flow and improve ED operations.
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from a model with parameters that s/he does not fully trust. In an effort to combat

such mistrust, we consider a form of model ambiguity caused by the ambiguity in

parameters termed parameter ambiguity, and develop strategies that directly take

these into account.

Traditionally, robust optimization protects against parameter ambiguity by uti-

lizing a minimax objective on an ambiguity set of parameters which are assumed to

contain the true system parameters. However, this type of robustness (a) can result

in overly pessimistic policies and (b) ignores the significant potential to learn about

the true system parameters from data acquired both before and after system launch.

Even when this pessimism is reduced by choosing tighter ambiguity sets, the policies

generated are not capable of learning from incoming data. To avoid these deficiencies,

we model parameter ambiguity via a Partially Observable Markov Decision Process

(POMDP), an extension of Markov Decision Processes (MDPs), which allows for

(a) imperfect state knowledge, and (b) learning in a Bayesian manner. A POMDP

supports the distribution of the underlying system parameters, known as the belief

space, and updates this distribution to reflect received observations. This is ideal

from a learning perspective; however, in a POMDP, the decision-maker is assumed to

have an initial prior belief which is often a subjective value, guided by scarce data,

error-prone expert opinion, intuition, or instinct. For these reasons, Bayesian critics

distrust such learning mechanisms, citing the unreliability of the prior specification

in real-world applications 2 .

To incorporate robustness to such a prior belief (hence gaining robustness to pa-

rameter ambiguity), we integrate our POMDP model with a percentile optimization

approach. Percentile optimization is traditionally used to avoid overly conservative
2Though we mainly focus on a queueing model, our approach can be used for the general class

of Bayesian decision-making problems where the decision-maker faces ambiguity with respect to
parameters that shape his/her prior (see Corollaries A.1 and A.2 in Online Appendix A.2).
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policies by offering a certain level of performance over a percentage of the ambiguity

set (see, e.g., Delage and Mannor (2010) and Nemirovski and Shapiro (2006)). We

extend percentile optimization in order to incorporate robustness to the belief about

the model parameters rather than relying on a robustness generated directly from

the parameters themselves. In this way, we investigate strategies where the controller

learns the main model parameters (e.g., unknown service rates) while simultaneously

controlling the underlying system for superior performance, which contrasts with ro-

bust techniques that only focus on parameter ambiguity sets. Thus, our framework

allows generating policies that are robust to parameter ambiguities (considering a

manager’s pessimism level), while simultaneously learning about the true model from

data/observation of the system’s performance in a Bayesian manner.

Our main contributions stem from extending the robust percentile optimization

approach for integration with POMDPs. We find that the percentile optimization

objective reduces to the minimax and minimin objectives when the optimism level is

set to its lowest and highest values, respectively and show that the optimal policies

under these objectives are myopic cµ priority policies. Understanding the non-robust

problem (which assumes a specified initial belief) proves to be essential in finding

robust policies where the belief is subject to ambiguity. We find that optimal robust

policies can be formed using specific non-robust policies via a geometric structure

known as the convex floating body. Therefore, to solve the robust percentile problem,

we first solve the non-robust problem that has a known initial belief. As the rate of

observations increases, we find that a priority-based policy that acts as an extension

of the well-known cµ rule becomes asymptotically optimal to the non-robust problem.

This policy, which we term Ecµ, is myopic and prioritizes the class with the largest

expected cµ value. The proposed Ecµ policy utilizes incoming data for learning (unlike

the traditional cµ rule), and is extremely simple to implement.
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Due to its foundation in POMDPs, the robust framework we consider is compu-

tationally ambitious and necessitates finding tractable methods for implementation.

Using the analytical insights gained from the connection between non-robust and ro-

bust policies, constraints via the convex floating body, and the relation of Ecµ to the

non-robust objective, we develop a heuristic for the robust problem that (a) is highly

scalable to large problem instances, and (b) shows strong performance in extensive

simulation experiments. We also develop analytical bounds to the non-robust prob-

lem based on queueing systems with fully known parameters. These bounds are (a)

tight under a variety of conditions, and (b) can be used to more effectively compute

optimal robust policies. Furthermore, since the bounds are based on non-learning

policies, they can be computed in an efficient manner.

Finally, we demonstrate the benefits of our approach in a real-world setting by

utilizing data that we have collected from a leading U.S. hospital, and by establishing

the advantages of using our framework in improving the current ED patient flow poli-

cies. Our percentile optimization framework is the first study in the literature to yield

data-driven policies for use in EDs that hedge against parameter ambiguity. We find

that highly congested EDs are well-suited to our percentile optimization framework,

especially in geographical areas with uncertain/unstable patient population charac-

teristics. Additionally, our approach explicitly avoids overly conservative policies that

focus only on the “worst-case” scenarios. As a result, we find that percentile opti-

mization performs well over a large spectrum of optimism/pessimism. In particular,

our simulations calibrated with hospital data suggest that, by using our approach, an

ED manager can significantly improve performance regardless of his/her disposition.

The rest of the chapter is organized as follows. In Section 2.2, we provide a litera-

ture review of the related studies. Section 2.3 introduces the non-robust continuous-

time formulation of our problem, which is uniformized into a discrete-time problem
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in Section 2.3.1, and lays the foundation for the percentile framework developed in

Section 2.3.2. We provide the majority of our analytical insights in Sections 2.4 and

2.5, where we establish optimal policies for the non-robust and robust formulations,

and identify upper/lower bound results. Section 2.6 introduces a heuristic to the

robust problem that is rooted in the analytical insights generated from Section 2.4.

In Section 2.7, we present various numerical experiments, discuss the application of

our work for improving patient flow in EDs, and use real-world data obtained from

a leading U.S. hospital to evaluate the potential benefits of our approach. Finally, in

Section 2.8, we present our concluding remarks.

2.2 Literature Review

The literature surrounding multi-class queueing systems aims to analyze complex

structures and discover their optimal control policies such as the cµ policy and its

variations (see, e.g., Buyukkoc et al. (1985), Van Mieghem (1995), Saghafian and

Veatch (2016), and the references therein). A common tool used to analyze and

control such systems is Markov Decision Processes (MDPs). However their use is

limited to the unrealistic case where the decision-maker is assumed to completely

know all the parameters of the model (e.g. service rates). Most notably, this includes

a perfect knowledge assumption of the transition matrices that guide a system’s state

transitions. This assumption can be problematic in various practical applications in

which service rates (or other parameters) are not perfectly known. Mannor et al.

(2007) and Nilim and El Ghaoui (2005) found that small changes in such parameters

can result in significant differences in decision-making strategies. However, a synthesis

of most studies on dynamic control in queueing systems indicates the use of tools

that heavily rely on a full knowledge about the system’s parameters. This is despite

the fact that in practice such parameters are typically unknown and often hard to
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estimate.

Robust methods applied to queueing models are largely involved with reducing

the computational burden of characterizing queueing metrics and policies. Su (2006)

studies a fluid approximation of a multi-class queueing model’s holding cost under a

robust paradigm established by Bertsimas and Sim (2004a) and Bertsimas and Sim

(2004b). Bertsimas et al. (2011) focuses on finding bounds for performance measures

through a method rooted in robust optimization, and studies the performance of

this method on tandem and multi-class single server queueing networks. Jain et al.

(2010) finds that a queueing network with control over traffic intensities has a simple

threshold type policy under a robust objective. For more recent studies on robust

techniques used in queueing systems we refer to Pedarsani et al. (2014), Bandi and

Bertsimas (2012), Bandi et al. (2015), and the references therein. This stream of

research is mainly aimed at increasing tractability by focusing on “worst-case” (i.e.,

fully pessimistic) scenarios, and establishing related performance metrics. Unlike

this stream, our goal is to provide policies that (a) are more optimistic (i.e., less

conservative), and (b) incorporate learning from online system-run data/observations.

Adding robustness when facing parameter ambiguity is a topic of significant in-

terest to a variety of fields including economics, operations research/management,

computer science, and decision theory among others. Typically, robustness in MDPs

is added using a “minimax” objective, since this often results in tractable analyses

as shown in Nilim and El Ghaoui (2005), Iyengar (2005), and the references therein.

Other studies such as Chen and Farias (2013) deal with ambiguities by consider-

ing policies that offer guarantees on expected performance. Still other methods of

incorporating robustness include regret minimization (Lim et al. (2012)), relative en-

tropy (Bagnell et al. (2001)), and martingale-based approaches (Hansen and Sargent

(2007)) that provide less conservative, and hence, potentially more realistic alter-
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natives to minimax techniques. In particular, Delage and Mannor (2010) identify

a robust approach applied to MDPs called percentile optimization that effectively

avoids over-conservatism (see also Nemirovski and Shapiro (2006) and Wiesemann

et al. (2013) for related studies). Instead of finding policies that are tailored to work

well in worst-case scenarios, the percentile optimization method finds policies that

maximize performance with respect to a level of belief about the true parameters for

a given level of optimism. 3

Chow et al. (2017) also utilize this type of robustness to develop risk-constrained

policies for MDPs. However, a significant deficit in current percentile optimization

approaches is the lack of ability to learn about the true parameters over time. Delage

and Mannor (2007) work to fill this gap via a similar formulation to our approach,

and find second-order approximations to MDPs that experience transition parameter

uncertainty. However, the Dirichlet-type uncertainty assumed in transition param-

eters does not fit our queueing problem, and in our work, we extend the percentile

optimization approach with respect to ambiguity in the initial belief. Thus, system

data/observations can be used for learning the true operational model, and as we

will show, this ability to learn itself adds a strong layer of robustness for control-

ling queueing systems (e.g., hospital patient flows) that face parameter ambiguity.

Learning to overcome ambiguities are also discussed in Bassamboo and Zeevi (2009),

which models a call center application using a data-driven technique. However, their

work (a) does not include any notion of robustness, and (b) focuses on near-optimal

policies with performance bounds. Our work differs in modeling approach by our

joint focus on learning and robustness, and in methodology by our contributions in

characterizing the exact optimal policies.
3The percentile objective originally arose in single-period contexts (see, e.g., Charnes and Cooper

(1959) and Prékopa (1995)).

11



Data-driven parameter learning has been incorporated in POMDPs: Ross et al.

(2011) explores a finite-horizon POMDP model that updates a posterior of its pa-

rameter belief in a Bayesian manner, and Thrun (1999) investigates a POMDP in

continuous action and state spaces that relies on particle filtering techniques to de-

termine the belief state. Unlike learning mechanisms, robust methods are almost

non-existent in POMDP frameworks. Osogami (2015) shows that traditional mini-

max approaches with convex ambiguity sets can be extended to POMDPs while still

retaining its structural features (such as convexity). In a new approach, Saghafian

(2018) extends POMDPs to a new class termed Ambiguous POMDPs (APOMDPs)

which incorporates ambiguity in transition and observation probabilities in a robust

fashion. The robustness in Saghafian (2018) is achieved by considering α-maximin

(α-MEU) preferences, and by incorporating the decision-maker’s temperament to-

ward model ambiguity. Different from the APOMDP approach of Saghafian (2018),

we utilize a percentile optimization objective to hedge against ambiguities.

2.3 The Multi-Class Queueing Control Problem with Parameter Ambi-

guity

We begin by considering a continuous time multi-class queueing control problem with

preemption, where a single 4 server is responsible for serving n classes of customers

over an infinite time horizon. Unlike the traditional version of this model, we assume

the controller does not know the main parameters of the system, and hence, is faced

with parameter ambiguity. We focus on the case where the ambiguity is on service

rates. To this end, we start by excluding dynamic arrivals to the system, and instead
4For analytical tractability, we restrict our attention to single-server scenarios. Cases with multi-

ple servers may interfere with some of our main analytical results, notably the relation to multi-armed
bandit problems and the optimality of cµ-like policies. In Section 2.7, we investigate the robustness
of the insights we gain via simulation experiments.
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consider a clearing system 5 version of the problem. We relax this assumption

in Sections 2.7 and A.1.4 by allowing for dynamic arrivals, and find that many of

our major results are transferable from the clearing system. Our general approach

can also be used for systems where arrival rates or other parameters are ambiguous

by modifying the underlying dynamic program to include these components along

with their learning mechanisms. However, this appears to increases the problem’s

complexity without providing additional insights.

With N = {1, . . . , n} denoting the set of customer classes, we assume each cus-

tomer of class i ∈ N accrues a cost ĉi > 0 for each unit of time spent in the sys-

tem. Let ĉ = (ĉ1, ĉ2, . . . , ĉn) be the cost vector, α ∈ (0,∞) the discount rate, and

X(t) = (X1(t), X2(t), . . . , Xn(t)) the vector of the number of customers in the sys-

tem, where Xi(t) is number of class i customers in the system at time t. In line with

many robust approaches, we begin by outlining an ambiguity set (i.e. a “cloud” of

models) that is assumed to include the true model. To this end, and for tractability,

we assume service times for each class are i.i.d. exponential 6 random variables with

unknown rates for each class. The true service rate for each class i ∈ N is chosen

by Nature at time t = 0, and lies within ambiguity set 7 Mi = {µ̂i,1, . . . , µ̂i,mi}. We

further assume that service times for different classes are independent. For future

notational convenience, we let Ji = {1, . . . ,mi}. Throughout the chapter, we assume

mi ∈ N, and µ̂i,j 6= µ̂i,k for each i ∈ N and distinct j, k ∈ Ji. Though the ambiguity

setsMi are discrete, the continuous case can be approximated arbitrarily closely by
5Clearing systems are typically used to model busy periods by focusing on the customers/jobs

already in the system. The goal is then to clear the system with the minimum cost.
6In Section 2.7 we relax the exponential distribution assumption. For instance, our data shows

that service times in EDs are close to log-normal. As we will show, our main insights and heuristic
control procedures remain effective even when the service times are not exponential.

7The general nature of our ambiguity sets enhances the flexibility of our framework. For ambiguity
sets reminiscent of other robust literature, we may choose to build eachMi to surround some nominal
value estimated from historical data. This is in fact the strategy we use in our ED application of
Section 2.7.1.
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increasing the number of potential service rates mi to make the mesh size ofMi close

to zero.

Over time, the controller can learn the true service rates by observing the process

history which includes all previous service durations, control actions, and observations

of service completions. For Markovian systems with incomplete information, it has

been shown in Bertsekas (1995) that the Bayesian belief on the unknown parameters

with respect to the observed process history is a sufficient statistic. We let B be the

set of all such sufficient statistics, i.e., the set of possible belief distributions on the

system’s service parameters. Letting m =
∑

i∈N mi, each b ∈ B is an m-dimensional

vector of the form b = (b1,1, b1,2, . . . , b1,m1 , b2,1, . . . , bn,mn) with the condition that each

bi,j ≥ 0 and that
∑mi

j=1 bi,j = 1 for each i ∈ N . In this setting, if µ̂∗i ∈Mi is the true

(unknown) service rate for class i ∈ N , P (µ̂i,j = µ̂∗i |b) = bi,j. We further assume that

the observation made after serving one class does not affect the belief about another.

This is aligned with the assumption that service time of one class is independent of

that of another class.

To find policies that optimally prescribe which customer class the server should

serve at any time, given (a) the available information summarized in the current

belief about the service rates, and (b) the number of customers in each queue, it is

known that one can restrict attention to policies that are deterministic, stationary,

and Markovian (see, e.g., Sondik (1971), Smallwood and Sondik (1973), and Bertsekas

(1995)). Consequently, an admissible non-anticipative policy π maps the current belief

and queue length information (information state) to the set of actions: π : Zn+×B →

N ⋃{0}, with the additional condition that π can serve only customer classes that

have non-empty queues, and serves the fictitious class “0” when the server is idled

(e.g., when all the queues are empty). Our model described above is schematically

illustrated in Figure 2.1.
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a ∈ A (X) µ′∗a ∈Ma

Figure 2.1: The server serves a class a customer with an unknown rate µ̂∗a belonging

to ambiguity setMa.

We let Π be the set of all admissible policies, and Xπ(t) = (Xπ
1 (t), Xπ

2 (t), . . . , Xπ
n (t)) ∈ Zn+

be the number of customers in the system under policy π ∈ Π at time t. In Appendix

A.2, Lemma A.17 shows that idling the server when at least one customer class queue

is non-empty is always suboptimal; hence, we consider only non-idling policies in

our analysis. For a given policy π, the expected discounted true cost the system

experiences is

Eπ

[∫ ∞
t=0

e−αtĉXπ (t)T dt|X(0)

]
,

given the true transition parameters chosen by Nature at time t = 0, where the nota-

tion “T” represents transpose, and Eπ is expectation with respect to the probability

measure induced by π. However, since the controller does not know the true tran-

sition matrix (as service rates are unknown), we are interested in the expected cost

with respect to the controller’s belief:

Jπ (X(0),b(0)) = Eπ,b(0)

[∫ ∞
t=0

e−αtĉXπ (t)T dt|X (0)

]
, (2.1)

where Eπ,b(0) denotes expectation with respect to both the initial belief b(0) and π.

We refer to Jπ(X(0),b(0)) as the non-robust cost under policy π, since it assumes a

perfectly assigned b(0) (which is inevitably hard to quantify for any decision-maker

who is faced with model ambiguity). The optimal non-robust cost is then given by

J (X(0),b(0)) = infπ∈Π Jπ (X(0),b(0)) . In what follows, we first use uniformization to
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work with the discrete-time model of the non-robust scenario, where the initial belief is

given. We then adopt percentile optimization to enable the decision-maker/controller

to reduce his/her reliance on b(0), and thereby make robust decisions.

2.3.1 A Discrete-Time Non-Robust Framework

The continuous-time Markov chain {Xπ(t) : t ≥ 0} can be converted to a discrete-

time equivalent using the well-known uniformization technique (Lippman (1975)).

Following this method, we first select a uniformized exponentially distributed random

variable ξ with a rate ψ > maxi∈N ,j∈Ji µ̂i,j which serves as our rate of observations

made as follows. If the server completes service to a customer of class i a uniformized

unit of time (i.e., at the end of each period), an observation indicating the “successful”

service to class i is recorded. Otherwise, if no service completion is observed within

this time, an observation is recorded indicating an “incomplete” service to class i. We

note that this uniformization rate ψ may be arbitrarily large so as to approximate

continuous observations.

We let σ be the Bayesian learning operator such that σ (b, a, θ) is anm-dimensional

vector representing the updated belief after taking action a and receiving observation

θ, when the prior belief is b. Since there are only two outcomes for observations for

any given action, we let “+” signify an observed service completion (“success”) during

the uniformized time period, and “−” represent an incomplete service (“failure”) in

that period. In this setting, we use a discrete-time dynamic program with uniformized

parameters µi,j = µ̂i,j/ψ. For notational convenience, we let E [µi|b] =
∑mi

j=1 µi,jbi,j

be the expected service transition probability of class i ∈ N given belief b. In this

way, the Bayesian learning operator updates belief b with components bi,j to belief
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b̄ = σ (b, a, θ) with components b̄i,j = σ (b, a, θ)i,j , where a, i ∈ N , j ∈ Ji, and

σ (b, a,+)i,j =


µa,jba,j∑ma
k=1 µa,kba,k

=
µa,jba,j
E[µa|b]

: i = a

bi,j : i 6= a
(2.2)

for a successful service observation, and

σ (b, a,−)i,j =


(1−µa,j)ba,j∑ma
k=1(1−µa,k)ba,k

=
(1−µa,j)ba,j
(1−E[µa|b])

: i = a

bi,j : i 6= a

(2.3)

for a failed service observation. Equations (2.2) and (2.3) are established due to the

fact that under realized parameter µa,j, the probability of successful service in a given

period is µa,j and probability of incomplete service is (1−µa,j). With this, and defining

a discrete-time discounting factor β = ψ
ψ+α

and instantaneous cost cXT = ĉXT

ψ+α
,

where X is an n-dimensional vector representing queue lengths, we can identify the

non-robust optimal policy and the associated cost via the dynamic program

Vt+1 (X,b) = cXT + β

[
min

a∈A(X)

{
E [µa|b] Vt (X− ea, σ (b, a,+))

+ (1− E [µa|b]) Vt (X, σ (b, a,−))
}]
, (2.4)

with the terminal condition V0 (X,b) = cXT. In this setting, taking the limit as t→

∞, we define V (X,b) = limt→∞Vt (X,b), and note that V (X,b) = infπ∈Π Jπ(X,b)

(see Lemma A.11 in Online Appendix A.2 for a rigorous treatment), where Jπ(X,b)

is defined in (2.1). To account for evaluating non-optimal policies, we let Vπ
t+1 (X,b)

be a value function similar to that of the dynamic program (2.4) with minimiza-

tion operator replaced by serving the class prescribed by policy π. Likewise, we

let Vπ (X,b) = limt→∞Vπ
t (X,b) be the infinite-horizon dynamic program value func-

tion under policy π.
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2.3.2 Gaining Robustness via Percentile Optimization

Since the controller is facing ambiguity with respect to the true model, s/he may

distrust his/her initial prior on the cloud of models, b(0). The specification of b(0)

is subject to model sensitivities, especially in applications in which there is little or

highly variable data to perfectly quantify it. Often, the selection of a prior is a process

that requires sussing out probabilities and parameter values from experts in the field,

which can be a highly subjective and inaccurate task 8 .

In traditional robust optimization, one would choose a policy assuming that Na-

ture, being an antagonistic character, picks the worst-case initial belief vector b(0)

for a chosen policy. Hence, the traditional minimax robust objective can be defined

by first considering the worst-case cost under a policy π ∈ Π :

Rπ (X) = max
b∈B

Vπ (X,b) .

The cost under the minimax robust objective is then R (X) = infπ∈Π Rπ (X). In this

setting, the controller assumes that Nature will pick the transition parameters that

result in the maximum cost for any given policy, and chooses a policy that minimizes

the cost of this worst-case outcome.

In sharp contrast to this type of robustness, which typically yields overly pes-

simistic control policies, is the overly optimistic minimin objective defined by:

Nπ (X) = min
b∈B

Vπ (X,b) ,

and N (X) = infπ∈Π Nπ (X), under which the controller chooses a policy assuming

Nature picks the transition parameters resulting in the best-case cost for any given

policy. In what follows, we first show that both minimax and minimin optimal policies
8This is indeed a general criticism to Bayesianism and goes well beyond the queueing setting of

this thesis.
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are within the well-known class of cµ policies. Thus, they (a) are fully myopic, and

(b) have very simple forms.

Proposition 2.1 (Minimax/Minimin cµ Optimal Policies). At any state (X,b),

optimal policies to the minimax and minimin objectives serve classes

arg maxa∈A(X) (minj∈Ja caµa,j) and arg maxa∈A(X) (maxj∈Ja caµa,j), respectively.

Proposition 2.1 establishes that optimal policies under both minimax and min-

imin objectives are myopic priority disciplines (known as the cµ rule) with respect

to the smallest and largest transition rates within the ambiguity set for each class,

respectively. However, it should be noted that such policies (a) ignore the potential

for learning from the system behavior, and (b) only consider the potentially unre-

alistic extreme best and worst-case scenarios and can perform poorly in real-world

applications. To address this deficit, we next investigate how the percentile optimiza-

tion approach provides a balancing alternative between these two extreme strategies,

while incorporating learning about the hidden probabilities associated with the true

transition parameters (i.e., service rates).

To this end, for a given ε ∈ [0, 1], we define the percentile optimization program:

Yπ(X, ε) = inf
yε∈[Nπ(X),Rπ(X)]

yε (2.5)

s.t. PB (Vπ (X,B) ≤ yε) ≥ 1− ε, (2.6)

and let Y (X, ε) = infπh∈Π
Yπ (X, ε) represent the optimal percentile objective. In

(2.5), we impose that Nπ (X) ≤ yε ≤ Rπ (X) so that the value of the objective is within

the most optimistic and pessimistic values attainable for any given belief in accordance

with the policy, hence enforcing “realizable” expected costs. The probability operator,

PB, in (2.6) is defined with respect to a specified probability density function over

the prior belief space 9 , where B is a random variable whose realization is b. The
9One may criticize the use of the percentile objective due to the potential ambiguity of PB;
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percentile optimization program (2.5)-(2.6) allows us to find a chance-constrained

policy: it emphasizes policy performance over a portion of the belief space. We thus

term the policy that is the solution under the optimal percentile objective as (1− ε)%

chance-constrained policy. Intuitively, the smaller the ε, the more protection from

poor parameter settings since the proportion of the belief space that performs worse

than yε becomes smaller.

It is important to note that the percentile objective acts as a bridge between non-

robust and robust objectives; expressing a manager’s optimism level is a core ambition

of this type of robustness. For instance, the chance-constrained policy reduces to the

minimax and minimin policies when ε is 0 and 1, respectively.

Proposition 2.2 (Percentile/Minimax/Minimin Relationship). The percentile

objective, minimax, and minimin policies share the following relation:

(i) If ε = 0 and PB (B = b) > 0 for all b ∈ B, then the optimal policy and cost

under both minimax and percentile objectives are the same.

(ii) If ε = 1, then the optimal policy and cost under the minimin and percentile

objectives are the same.

The additional condition PB (B = b) > 0 for all b ∈ B in part (i) is necessary,

since PB with zeros allows percentile objective to “ignore” certain portions of the

belief space while still satisfying constraint (2.6). For example, if PB is the degenerate

distribution with respect to a point b, Y (X, 0) = V (X,b).

however, it should be noted that this is a second-order distribution, and perturbations in PB result
in very similar convex floating bodies, which is the geometric structure investigated in Section 2.4
that generates our optimal robust policies.
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2.4 Structure of Optimal Policies under the Percentile Objective

Analyzing program (2.5)-(2.6) is inherently complex both analytically and computa-

tionally. However, we find that the solution to this program is linked to solving the

non-robust problem. Hence, we first consider the solution of the dynamic program

(2.4), identify important characteristics of these solutions over the belief space, estab-

lish the link between non-robust and robust policies, and finally work to characterize

optimal percentile policies. In Section 2.6, we develop an easy-to-use heuristic based

on these insights to facilitate tractable solutions.

As the observation rate increases, tending toward continuous observations, the

non-robust problem can be transferred to a multi-armed bandit (MAB) problem by

noting that (a) under any action, only the belief about transition parameters and

number of customers in the served class (the “arms” of the MAB) change, and (b)

the “discounted cost” can be reinterpreted as “discounted savings” of the MAB due

to our clearing system environment (for further discussion, see Lemma A.3 in Online

Appendix A.2). MAB problems are typically solved by indexing policies related to

the expected savings in cost experienced through exclusively serving one class over

time.

To take advantage of the above-mentioned connection, we term the myopic policy

that serves the class a ∈ A(X) with largest value of caE [µa|b] the “Ecµ” policy.

Thus, we denote πcµ that serves arg maxa∈A(X(t)) caE [µa|b(t)] as the Ecµ policy. This

policy can be viewed as an extension of the traditional cµ policy (often seen in the

literature surrounding control of multi-class queueing systems) for queueing systems

with ambiguous parameters. 10 The expectation operator in this policy dynamically

combines all the possible cµ values for each class based on the belief at time t. In
10Argon and Ziya (2009) demonstrate the optimality of a similar policy in an average-cost non-

learning queueing environment when service rates are known, but customer class is not fully observed.
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the following theorem, we show that the Ecµ policy is asymptotically optimal for the

non-robust problem as the observation rate increases.

Theorem 2.1 (Ecµ Asymptotic Optimality). The Ecµ policy πcµ is asymptotically

optimal for the non-robust problem: limψ→∞Vπcµ (X,b) = limψ→∞V (X,b) for X ∈

Zn+ and b ∈ B.

Theorem 2.1 is surprising in its simplicity since problems based on POMDP formu-

lations typically do not yield closed-form results. In contrast to the usual complexities,

the asymptotic optimality of the Ecµ policy implies that the only information nec-

essary to make decisions is the expected transition rates among non-empty queues.

Therefore, queue lengths are essentially irrelevant to the decision-maker. Rather, the

Ecµ policy features a momentum property; if the current action a prescribed by the

policy yields enough successes so that caE[µa|b] does not fall below the threshold

defined by câE[µâ|b] of the next highest available class â, the Ecµ policy will continue

to serve class a regardless of the state of other classes. In turn, this means that the

policy will not attempt to serve a class with smaller câE[µâ|b] until other classes with

larger values have experienced a sufficient number of service failures, or have cleared

their queue. This property may run counter-intuitive to the exploration-minded indi-

vidual; even if a class has the potential to be endowed with a very large caµa,j value

(under the realization of system parameters), this potential is only rated on the basis

of its contribution to the expected service rate.

Another important property of the Ecµ policy is that under mild conditions,

Vπcµ (X,b) is piecewise-linear over the belief space (excluding beliefs near edges and

faces of B). 11

11An infinite horizon POMDP value function is not always guaranteed to be piecewise-linear (see,
e.g. White and Harrington (1980)).
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Proposition 2.3 (Piecewise-Linearity of the Approximate Non-Robust Value

Function). Let B′ be any closed subset of B such that for any b ∈ B′, bi,j > 0 for all

i ∈ N , j ∈ Ji. If minj∈Ji ciµi,j 6= minj∈Jk ckµk,j for any distinct pair i, k ∈ N , then

Vπcµ (X,b) is piecewise-linear on B′.

This result is related to two facts: (i) for any given initial prior b ∈ B′ (and

X ∈ Zn+), the Ecµ policy is unique, unless b lies on the break-points of the piecewise-

linear function Vπcµ (X,b) (see Lemma A.7 and 2.3 in Online Appendix A.2), and

(ii) policies can be evaluated as linear functions of the belief in any POMDP. There-

fore, with respect to closed, non-zero portions of the belief space, the value function

Vπcµ (X,b) is differentiable (except at breakpoints). As we will show in Theorem 2.2,

the differentiability of the value function strongly enhances the relationship between

optimal policies of the non-robust problem and those under the robust percentile

optimization program (2.5)-(2.6). Thus, in identifying an asymptotically optimal

policy that exhibits this property enables us to solve the robust percentile optimiza-

tion program in an efficient way. This is an important insight to our search for

robust chance-constrained policies especially since, as Zhang (2010) states, there are

no known general conditions over which a POMDP value function is differentiable on

its entire belief space.

To the purpose of finding robust chance-constrained policies, we introduce the

following set of policies. Fix the initial X, and let Kb =
{
π1
b, π

2
b, . . . , π

k
b

}
be any

finite set of optimal policies to the non-robust problem when the initial prior is b,

and p = (p1, p2, . . . , pk) be an associated distribution such that
∑k

i=1 pi = 1. We

define a policy πp
Kb

to be a randomized policy, if at time 0, an element of Kb, πib, is

chosen with probability pi, which will dictate all current and future decisions. 12

12For these randomized policies, we disallow policies that are not picked at time zero for the
purpose of targeting specific contours of the value function.
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Interestingly, similar to other non-learning robust problems (see, e.g., Bertsimas

and Thiele (2006)), we find that there exists a randomized policy that forms an

optimal solution to the robust percentile problem. This means that there exists an

optimal robust policy that randomizes between optimal non-robust policies obtained

for a single belief point b ∈ B. Furthermore, we shed light on conditions (associated

with the differentiability of V(X,b) with respect to the belief space) such that a

deterministic non-robust policy is optimal even for the robust percentile problem.

Theorem 2.2 (Chance-Constrained Policy). For any given ε ≥ 0, there exists

a b∗ ∈ B and a distribution p∗ forming a randomized policy πp∗

Kb∗
that is optimal

under the percentile optimization program (2.5)-(2.6) 13 : Y
πp∗
Kb∗ (X, ε) = Y (X, ε) =

V (X,b∗). Furthermore, if Vπb(X,b) is differentiable at b∗, then Kb∗ consists of a

single policy, and hence, πp∗

Kb∗
is deterministic.

The above result significantly reduces the complexity of the search for optimal

robust policies. Importantly, it implies that we can combine policies associated with

the function V (X,b∗) to find chance-constrained policies. In this way, we no longer

need to look at the general space of policies, but rather can focus on the class of non-

robust optimal policies. Moreover, Proposition 2.3 shows that the differentiability

condition of Theorem 2.2 can be met by a surface that converges to the value function.

If b∗ lies on a linear segment of the value function that is not a breakpoint, Kb∗ can

be composed of a single policy yielding a deterministic chance-constrained policy.

Hence, under this assumption, one need not be concerned with finding p∗.

However, Theorem 2.2 leaves us with an important question: what belief, b∗,

should be used to form the chance-constrained policy πp∗

Kb∗
for a given percentile

problem? If such a b∗ is characterized, then the solution to the percentile problem
13For notational convenience, we suppress the dependency of p∗ and b∗ on ε.
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can easily be found by a randomization of non-robust policies associated with b∗. The

answer to this question turns out to be closely related to the geometrical concept of the

convex floating body first discussed by Dupin (1822), and later used in robust literature

to generate ambiguity sets that guarantee performance for policies evaluated within

these sets (see, e.g., Lagoa et al. (2005) and Bertsimas et al. (2013)). However, we

utilize the convex floating body in order to characterize b∗, which generates a policy

satisfying the chance-constrained objective.

Definition 2.1 (Convex Floating Body). Let Wε = {(w, w) ∈ Rm × R :

PB

(
BwT ≥ w

)
≤ ε} be the set of all half spaces that “cut off” ε or less volume

of the belief space B with respect to PB. An ε-based convex floating body on B is

Lε =
⋂
{w,w}∈Wε

{
b ∈ B : bwT ≤ w

}
. We let δLε be the boundary of Lε 14 .

Based on the above definition, a convex floating body is the region left from

hyperplanes “cutting off” a specified volume (ε) from an object. For every b ∈ δLε,

there exists a hyperplane that divides B into two pieces, one which has volume less

than or equal to ε. Figure 2.2 illustrates the convex floating body of a sphere with

uniform density, which is either the empty set or another sphere. We study convex

floating bodies with respect to the density measure PB on the belief space of our priors

to characterize b∗, and thereby find optimal chance-constrained policies as discussed

in Theorem 2.2.

For the purposes of characterizing b∗, it is important that Lε is non-empty. For-

tunately, Fresen (2013) states that when PB is a log-concave probability distribution,

Lε exists so long as ε ≤ e−1. Hence, for many robust applications which tend toward

pessimism (where ε is small), under common distributions, the convex floating body
14We note that if Lε is nonempty, δLε always exists since closed, convex, and compact sets are

equal to the convex hull of their boundary.
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Figure 2.2: A convex floating body Lε when PB has uniform density within the circle
and is zero elsewhere. It is generated from the intersection of halfspaces (w, w) ∈ Wε,
and the striped area must contain less than or equal to ε volume. (n = 2,m1,m2 = 2)

is guaranteed to exist 15 . If Lε is nonempty, we find that b∗ (defined in Theorem 2.2)

is found at the largest value of the non-robust problem on the boundary of the convex

floating body.

Proposition 2.4 (Characterizing Kb∗). For nonempty Lε,

b∗ = argmaxb∈δLε V (X,b), where b∗ satisfies Y (X, ε) = V (X,b∗) .

Interestingly, Proposition 2.4 relates percentile optimization to a minimax objec-

tive: one can search for a worst-case belief within a specified set. Since V (X,b) is

concave in b (by the convexity results of Sondik (1971) and Smallwood and Sondik

(1973)), if δLε is easily characterized, we can apply gradient-based optimization to

solve the problem rather than evaluating the entire surface which is computationally

intractable. Although Theorem 2.2 states that Kb∗ is a singleton when the value func-

tion is differentiable at b∗, the differentiability is not always guaranteed. To this end,

in the proof of Proposition 2.4 (see Online Appendix A.2), we characterize p∗. We

find that the distribution p∗ such that the contour {b ∈ B|Vπp∗
Kb∗ (X,b) = V (X,b∗)}

is a subgradient hyperplane to Lε.
15For additional discussion and examples of convex floating bodies, see Online Appendix A.1.6.
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In general, since non-robust policies are only partially characterized (they con-

verge to Ecµ policies asymptotically), it is important to connect the Ecµ policies to

the percentile optimization objective. The following corollary is similar to Proposi-

tion 2.4 and shows that there exists a finite randomization of Ecµ policies that are

asymptotically optimal to the percentile objective as ψ →∞.

Corollary 2.1 (Robust Ecµ Optimality). If Lε is nonempty, then there exists a

policy π that is a finite randomization of Ecµ policies such that Yπ(X, ε)−Y(X, ε) ≤

Vπcµ(X, b̂)−V(X,b∗), where b̂ = arg maxb∈δLε Vπcµ(X,b) and b∗ is defined in The-

orem 2.2.

This corollary holds despite the fact that Vπcµ(X,b) is not guaranteed to be

concave in b. In fact, if it is concave in b, the randomized policy π can be directly built

from non-robust policies. However, if Vπcµ(X,b) is not concave in b, we can still form

the appropriate randomized policy satisfying Corollary 2.1 via a randomization of

policies that satisfy minimax solutions within the set of Ecµ policies on the boundary

of the convex floating body, namely minb1∈Bmaxb2∈δLε Vπcµ
b1 (X,b2).

With respect to optimal solutions to the percentile objective, additional results

can further confine Kb∗ (of Theorem 2.2) by noting that b∗ must lie near the extreme

belief state with worst-case transition parameters. We denote this “worst-case” belief

state by b0, and note that it is composed of components

b0
i,j =

 1 : if µi,j = mink∈Ji µi,k,

0 : otherwise.
(2.7)

It can be shown (see the proof of Proposition 2.5) that for any policy, b0 is the

worst-case (most expensive) belief state for the system. To further characterize b∗,

we define the concept of visibility (adopted from geometry literature but repurposed

for our needs).
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Figure 2.3: Belief points b2 and b3 are not visible from reference belief b1, whereas

b4 is visible from reference belief b1 (n = 2,m1,m2 = 2).

Definition 2.2 (Visibility). A belief point b ∈ Lε is said to be visible from a refer-

ence belief b1 ∈ B if {b2 ∈ B : b2 = ηb + (1− η)b1, η ∈ [0, 1]}⋂Lε = b.

As demonstrated in Figure 2.3, a belief b in the convex floating body is visible

from a reference belief b1 if, on the line segment connecting these points, only b lies

within the convex floating body. This implies that if the reference belief point b1 is

distinct from b, and b is visible from b1, then b must lie in the boundary (b ∈ δLε).

However, not every point on δLε is visible from a reference point b1. In the following

Proposition, we show that the belief b∗ (introduced in Theorem 2.2) must be visible

from the worst-case belief state b0.

Proposition 2.5 (Visibility of b∗). If Lε is nonempty, then there exists a b∗ visible

from the worst-case belief b0.

Proposition 2.5 significantly helps us find b∗ (of Theorem 2.2): we only need

to search part of δLε which is visible from b0. Proposition 2.5 also can facilitate

establishing effective heuristics which circumvent the calculation of the non-robust

problem. For instance, Figure 2.4 demonstrates the implications of Proposition 2.5

for a uniform type PB: b∗ lies somewhere on the dashed line.
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Figure 2.4: On the left, convex floating bodies Lε for ε = 0.05, 0.15, 0.25 with n =

2,m1,m2 = 2, and uniform PB. To be visible from b0, belief b∗ associated with

Proposition 2.4 must lie on the dashed lines assuming µ1,1 < µ1,2 and µ2,1 < µ2,2

(Proposition 2.5). On the right, V((10, 10),b) is evaluated on these boundaries when

µ1,1 = 0.1, µ1,2 = 0.2, µ2,1 = 0.05, µ2,2 = 0.25. Belief b∗ lies at the peak of these

curves.

2.5 Asymptotically Tight Bounds

Although we have characterized the optimal policies of the non-robust and percentile

problems, evaluating the non-robust value function V (X,b) is still a computationally

complex problem (see, e.g., Littman et al. (1998), Mundhenk et al. (2000), and Pa-

padimitriou and Tsitsiklis (1987) for an in-depth discussion regarding the complexity

of POMDP programs). If the value function V (X,b) and the convex floating body’s

boundary δLε are known, the solution to the percentile optimization is easily charac-

terizable (Theorem 2.2, Proposition 2.4, and Proposition 2.5). Therefore, we provide

computationally tractable bounds to the non-robust problem that can be evaluated

in closed-form to facilitate the computability of chance-constrained policies.

The bounds we form are based on the performance of (a) queues under no model

ambiguity with fixed rate parameters equal to E[µi|b], and (b) following a particu-
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lar server allocation priority rule based on the initial parameter belief. These imply

that our bounds rely only on the valuation of fixed priority-based policies that do not

change with dynamic observations, significantly reducing the computational complex-

ity of the problem.

For a given belief b̂ ∈ B, consider a counterpart system identical to our original

setting with the exception of the ambiguity sets being M̂i =
{

E[µi|b̂]
}
(analogous to

the original ambiguity setsMi). That is, the counterpart queueing system has fully

known service rates that are calculated based on taking an expectation of service rates

inMi over belief b̂. Obviously, the optimal policy for this system is the traditional

cµ rule, since all of its parameters are fully known. Let πb̂ denote this cµ rule and

V̄πb̂(X, b̂) be the associated infinite-horizon cost of the counterpart system under πb̂.

It is important to emphasize that πb̂ exhaustively serves class arg maxa∈A(X) caE[µa|b̂]

until no customer of that class remains in the system, and acts only as a function of

the queue state, not of belief, even when πb̂ is implemented in the original system.

When πb̂ is implemented in the original system, we denote the infinite-horizon cost

by Vπb̂(X, b̂). Using the counterpart system’s cost and its associated policy, we

can bound the non-robust cost (which is needed to calculate the robust cost; see

Theorem 2.2 and Proposition 2.4) using the following proposition.

Proposition 2.6 (Asymptotically Tight Bounds). For any state (X, b̂), the non-

robust cost V(X, b̂) is bounded as V̄πb̂(X, b̂) ≤ V(X, b̂) ≤ Vπb̂(X, b̂). Furthermore:

(i) The gap between the upper and lower bound costs decrease to zero as queue

length Xi increases to infinity, where i = arg maxa∈A(X) caE[µa|b̂].

(ii) The gap between the upper and lower bound costs monotonically decrease to zero

as Var[µi|b̂] decrease to zero (for all i ∈ N ).

Both the upper and lower bounds of Proposition 2.6 are easily calculable (see
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Online Appendix A.2). Furthermore, under the conditions above, these bounds be-

come arbitrarily close approximations, which adds computational tractability to the

problem as well as analytical insight to the relationship between our non-robust and

traditional cµ policies. In particular, part (ii) of Proposition 2.6 supports the in-

tuition that gathering more data on unknown service parameters can provide more

accurate bound information. Part (i) of Proposition 2.6 provides conditions under

which the myopic, non-learning policy’s cost converges to that of the optimal policy.

Remark 1. Since the percentile objective relies on the computation of the non-

robust problem, the bound results can be easily applied to the percentile formulation

as well. For instance, one can refine the search for argmaxb∈δLε V (X,b) as in Proposi-

tion 2.4: if the upper bound for a b ∈ δLε is less than the lower bound for b′ ∈ δLε, b

must not be the belief point b∗. Since most infinite-horizon POMDPs are calculated

by finite-horizon approximations, a second application of the bounds is to use them

as the terminal cost used in the finite-horizon dynamic program. That is, when evalu-

ating the finite-horizon approximation, one can replace V0(X,b) by lower and upper

bounds V̄πb̂(X, b̂) and Vπb (X,b) , respectively. This can provide very tight bounds

on the POMDP, since after a certain number of “learning periods,” where the POMDP

is explicitly evaluated, the controller might have collected enough information to have

enough confidence in the true transition parameters.

2.6 An Analytically-Rooted Heuristic Policy

Chance-constrained policies are inherently difficult to calculate, even given the analyt-

ical results established in the previous section. To circumvent complexity arising from

(a) the PSPACE-hard problem of evaluating a POMDP over a belief space with high

dimensionality, and (b) finding the shape of the convex floating body which requires

high-dimensional polytope approximations, we now introduce an effective heuristic
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policy. This heuristic policy operates by simply choosing the Ecµ policy associated

with the belief point on the convex floating body’s boundary δLε that minimizes the

distance from b0 (the worst-case parameter settings for each class characterized in

(2.7)). This is typically an easy-to-perform task, especially in the cases of uniform and

spherical type distributions on the belief space, allowing for managers to benefit from

our approach without requiring demanding computations. Moreover, as we will show

in Section 2.7, this heuristic performs extremely well both on randomly generated

data and on real-world data that we have collected from a leading U.S. hospital.

We term the Ecµ policy with expectation taken based on belief point

arg minb∈δLε ‖b0 − b‖ , where ‖·‖ is the l2-norm, as the (1− ε)% Ecµ heuristic policy.

This heuristic policy takes advantage of three main structural results of the chance-

constrained policy (that we established in the previous section), while providing a

much simpler version of it:

(1) It assumes that the true optimal policies of the non-robust problem are Ecµ, a

fact supported by Theorem 2.1 which shows the asymptotic relationship of the

optimal policies to Ecµ.

(2) It locates belief arg minb∈δLε ‖b0 − b‖ to be near b∗ (of Theorem 2.2) based on

Proposition 2.4. The worst-case (most expensive) belief state is b0, and through

the proof of Proposition 2.5 (see Online Appendix A.2) the value function is

non-increasing in λ with respect to belief λb + (1 − λ)b0 for λ ∈ [0, 1]. Thus,

arg maxb∈δLε V (X,b) is expected to be near b0. 16

(3) It takes advantage of the fact that arg minb∈δLε ‖b0 − b‖ satisfies Proposi-

tion 2.5 (since this belief is visible from b0).
16This does not imply that arg maxb∈δLε V (X,b) = arg minb∈δLε ‖b0 − b‖. V (X,b) is only

assured to be non-increasing on line segments connected to b0.
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2.7 Numerical Experiments

We now perform various numerical experiments in order to (a) identify the advantages

of chance-constrained policies in a variety of environments under model ambiguity, (b)

demonstrate the sensitivities of the underlying queueing models, (c) study the effec-

tiveness of the proposed Ecµ heuristic in mimicking the optimal chance-constrained

policies, and (d) demonstrate the implications of our results in real-world applica-

tions. To pursue these goals, we present our analyses in five parts: we (a) establish

the sensitivities in initial prior selection, (b) investigate how our policies perform over

a large parameter suite but in a relatively small queueing system, (c) evaluate our

proposed heuristic alongside percentile, minimax, and minimin policies in a larger

system, (d) demonstrate the gap between the Ecµ and optimal (non-robust) policies,

and (e) apply the Ecµ heuristic to a hospital Emergency Department (ED) setting us-

ing real-world data, and discuss its significant implications on improving the current

patient flow policies.

To help establish the necessity of our robust percentile formulation, it is first im-

portant to establish the sensitivities of the non-robust value function under small

perturbations in belief. To this end, we evaluate the expected cost under a va-

riety of parameter settings when n = 2,m1 = 2, and m2 = 2 with respect to a

“central prior” b̄ = (0.5, 0.5, 0.5, 0.5) , that assumes a uniform distribution on param-

eters, a slightly pessimistic b̄p = (0.6, 0.4, 0.6, 0.4) , and a slightly optimistic prior

b̄o = (0.4, 0.6, 0.4, 0.6). Table 2.1 displays the results from comparing the percentage

difference between non-robust value functions evaluated at these priors (for various

parameter configurations) via the expression

|V(X,b)− V(X, b̂)|(
V(X,b) + V(X, b̂)

)
/2

%
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Percentage Differences

X (µ1,1, µ1,2) (µ2,1, µ2,2) (c1, c2) b̄ vs b̄p b̄ vs b̄o b̄p vs b̄o

(5, 5) (0.1, 0.2) (0.15, 0.3) (0.1, 0.1) 5.24 5.52 10.76

(10, 10) 4.25 4.98 9.22

(15, 15) 3.62 4.29 7.9

(5, 5) (0.05, 0.15) (0.1, 0.2) (0.1, 0.1) 5.21 6.1 11.3

(10, 10) 4.11 4.63 8.74

(15, 15) 3.19 3.7 6.89

(5, 5) (0.05, 0.1) (0.06, 0.08) (0.1, 0.1) 3.03 3.23 6.26

(10, 10) 2.24 2.23 4.47

(15, 15) 1.58 1.63 3.21

(5, 5) (0.1, 0.2) (0.1, 0.2) (0.15, 0.3) 5.46 5.27 10.72

(10, 10) 4.39 4.89 9.27

(15, 15) 3.97 4.05 8.02

Average %

Percentage Differences

X (µ1,1, µ1,2) (µ2,1, µ2,2) (c1, c2) b̄ vs b̄p b̄ vs b̄o b̄p vs b̄o

(5, 5) (0.05, 0.15) (0.1, 0.2) (0.15, 0.2) 5.31 5.8 11.1

(10, 10) 4.15 4.47 8.62

(15, 15) 3.39 3.37 6.75

(5, 5) (0.1, 0.2) (0.15, 0.3) (0.2, 0.15) 5.33 5.8 11.12

(10, 10) 4.7 4.77 9.46

(15, 15) 4.02 3.89 7.91

(5, 5) (0.05, 0.15) (0.1, 0.2) (0.2, 0.15) 6.32 6.0 12.32

(10, 10) 4.75 4.6 9.35

(15, 15) 3.64 3.81 7.45

(5, 5) (0.05, 0.1) (0.06, 0.08) (0.2, 0.15) 3.44 3.95 7.39

(10, 10) 2.66 2.63 5.3

(15, 15) 2.04 1.96 4.0

3.72 3.93 7.64

Table 2.1: Percentage gaps for b̄ = (0.5, 0.5, 0.5, 0.5) , b̄p = (0.6, 0.4, 0.6, 0.4) , and

b̄o = (0.4, 0.6, 0.4, 0.6) where n = 2,m1 = 2,m2 = 2.

for two distinct priors b, b̂ ∈ B.

Even with relatively small perturbations to the selection of the prior, as can be

seen from Table 2.1, differences in value function are substantial. Thus, we make the

following:

Observation 2.1 (Sensitivity to Prior Specification). The expected cost of the

non-robust problem is sensitive to the choice of prior.

Can slight perturbations in the prior also cause significant differences in policies

obtained from the non-robust framework? To answer this, we again turn to our

n = 2,m1 = 2,m2 = 2 environment and investigate the differences non-robust policies

Ecµ experience as their prior changes from b̄, b̄p, and b̄o. We run simulations in

which the true parameter settings are selected according to b̄. To identify differences

between the policies at different initial priors, we track the cumulative number of

attempts to serve class 1 by time t under each policy, and depict the results in
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Figure 2.5: Comparison of two non-robust policies under slight perturbations of the

initial prior b̄ (µ1,1 = 0.1, µ1,2 = 0.15, µ2,1 = 0.12, µ2,2 = 0.13).

Figure 2.5.

Figure 2.5 shows that policies experience an extended period of time in which

they disagree on the class to serve. This is especially evident when a large number

of customers are in the system, indicating that policies only begin to converge after

having finished the service of the class. Furthermore, as discussed earlier, the Ecµ

policy experiences momentum toward serving a customer after a successful service.

Therefore, as can be seen from Figure 2.5, two policies with slightly different starting

beliefs (i.e., initial priors) may experience very different action profiles.

Thus, not only does the value function experience sensitivity among different

selections of the prior, but these differences also correspond to policy changes. Thus,

we make the following:

Observation 2.2 (Sensitivity in Policy). The policies generated from the non-

robust problem are sensitive to the choice of prior.

If the duration of time where the optimal policy experiences learning is relatively

small, the choice of the initial prior becomes inconsequential, since the difference

between initial priors will be quickly “washed out” by the incoming data. To test

35



Figure 2.6: Comparison of the average KL-divergence between two policies’ beliefs

when the true prior is b̄.

whether or not the differences between initial priors is long-lasting, in Figure 2.6 we

compare the KL-divergence 17 between two beliefs after each observation under their

associated policies.

From Figure 2.6, it is evident that the beliefs converge to one another given that

there are enough customers to serve. In general the learning is faster for smaller queue

states until all of the customers have been served since the policies are in effect closer

to one another. However, even in the smaller queue settings, the learning rate is not

fast enough to disregard the choice of the initial prior. Thus, we make the following:

Observation 2.3 (Slow Convergence in Belief). The differences between the be-

liefs about the correct model with differing initial priors is long-lasting.

To better understand the relative performance of our robust percentile policies, we
17For two belief points, b, b̂ ∈ B with all positive components in the setting where n = 2,m1 = 2,

and m2 = 2, the KL-divergence is DKL(b||b̂) =
∑2
i=1

∑2
j=1 b1,ib2,j log

b1,ib2,j

b̂1,ib̂2,j
.
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start by considering a large parameter suite including over 1, 000 parameter settings

in an n = 2,m1 = 2, and m2 = 2 setting with four different PB distributions at

their 95% chance-constrained policy. We name these PB distributions f1, f2, f3 and

f4 respectively: f1, f2, and f3 are truncated multivariate normal distributions with

means µ1 = (0.5, 0.5) , µ2 = (0.4, 0.4) , µ3 = (0.6, 0.6) and covariance matrices Σ1 =

( 1.5 0.0
0.0 1.5 ) , Σ2 = ( 0.5 0.0

0.0 0.5 ) , and Σ3 = ( 0.5 0.0
0.0 0.5 ) respectively. Finally, f4 is the uniform

distribution.

We include two non-learning robust policies (minimin and minimax) as bench-

marks for the performance of our robust percentile policies and compare the policies

by evaluating their total cost when each model (i.e., parameter configuration) is

equally likely. That is, we assume that the true (but unknown) prior of our system is

b̄ = (0.5, 0.5, 0.5, 0.5), and we evaluate the total cost under 95% chance-constrained,

minimax, and minimin policies. Furthermore, we assume c1 = c2. In every problem

instance, we assume µ2,1 < µ1,1 and µ1,2 < µ2,2 so that the policy is not uniform

throughout the belief space, which provides incentive for gaining additional knowl-

edge. Further detail on this parameter suite is presented in Online Appendix A.1.1.

We next compare our proposed policies with other non-learning robust policies

(minimax and minimin). In Table 2.2, we present the results of this comparison

expressed by the average (among all models) optimality gap percentage under various

policies. The optimality gap percentage for policy π at b is defined as

Vπ(X,b)− V(X,b)

V(X,b)
%.

From Table 2.2, we observe that on average, our proposed chance-constrained

policies perform much better than the other non-learning policies. Since there is equal

chance of every parameter configuration, non-learning policies serve the wrong class

for a realized set of parameters 50% of the time, which results in poor performance.
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Optimality Gap (%)

X Minimax Minimin
95% Chance

Constrained f1

95% Chance

Constrained f2

95% Chance

Constrained f3

95% Chance

Constrained f4

(2, 2) 3.17 15.51 1.84 2.07 2.2 1.97

(2, 5) 2.52 13.58 0.85 0.81 0.86 0.86

(2, 10) 1.35 8.21 0.52 0.51 0.54 0.49

(5, 2) 4.48 8.73 2.65 2.74 2.33 2.21

(5, 5) 5.01 10.3 0.85 0.81 0.75 0.79

(5, 10) 3.37 7.56 0.61 0.58 0.48 0.57

(10, 2) 4.14 4.05 1.76 1.93 1.32 1.35

(10, 5) 5.49 5.79 0.53 0.51 0.54 0.55

(10, 10) 4.34 5.15 0.33 0.33 0.35 0.35

Ave. 3.76 8.76 1.10 1.14 1.04 1.02

Table 2.2: Performance of various robust policies over the test suite (n = 2,m1 =

2,m2 = 2).

Comparing the chance-constraint policies under f1, f2, f3, and f4 in Table 2.2 re-

veals yet another interesting insight: they exhibit similar performance. The reason

behind this is three-fold: (a) as a property of Proposition 2.5, since we used 95%

chance-constrained policies, each b∗ tends to be near b0, (b) even though the distri-

butions f1, f2, f3, and f4 are different (e.g., they have differing covariance structures

and are centered at different beliefs), their convex floating bodies are quite similar,

and (c) the chance-constrained policies we propose exhibit learning. Hence, we can

make the following:

Observation 2.4 (Sensitivity). The performance of chance-constrained policies is

not sensitive to the choice of PB.

In Section 2.6, we introduced the Ecµ heuristic as an easy-to-implement pol-

icy that mimics the performance of robust optimal chance-constrained policies. To
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Figure 2.7: The optimality gap (%) of Ecµ policy when evaluated on the central prior

b̄ (µ1,1 = 0.6, µ1,2 = 0.7, µ2,1 = 0.5, µ2,2 = 0.8).

demonstrate the validity of the first assumption underlying this heuristic – that the

optimal policies of the non-robust problem are Ecµ – in Figure 2.7 we depict the

percent optimality gap of the Ecµ heuristic policy by comparing its cost to that of

the optimal non-robust policies in a situation where ψ is small. Since we know that

Ecµ becomes optimal as ψ becomes large (Theorem 2.1), this poses a “worst-case”

scenario for the performance of the Ecµ policies. From Figure 2.7, we can make the

following:

Observation 2.5 (Near Optimality of Ecµ). Even when ψ is small, the Ecµ per-

formance is close to the non-robust optimal policy, especially when the system is highly

congested.

Observation 2.5 confirms that the myopic Ecµ policy provides us with a good

approximation of the optimal POMDP value function (as we would expect given its

asymptotic relationship to the chance-constrained policy; see Theorem 2.1). How-

ever, using such a rule to find the explicit surface of the POMDP value function is

computationally challenging, even though the Ecµ policy is simple. This is because

policy evaluation (even when a policy is known) in POMDPs is PSPACE complete
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(see, e.g., Mundhenk et al. (2000)). Hence, the ideal task of searching for the max of

the convex floating body as in Proposition 2.4, even with the help of Proposition 2.5,

is highly difficult even in moderate problem instances where n > 3 and m > 6. Fur-

thermore, often times the shape of Lε is difficult to determine explicitly as is the case

even in the simple uniform distributions in more than two dimensions, which further

complicates our search. Hence, for implementation in real applications, we turn to

our robust heuristic policy.

To gain deeper insights into the performance of our heuristic, we simulate systems

with m1 = m2 = m3 = 3 with uniform PB in the largest inscribed sphere of the belief

space. To also evaluate the robustness of our proposed heuristic vis-a-vis the optimal

percentile policy as well as minimin and minimax policies, we use CVar(q), which

is the average cost within the most costly q% of our simulated runs. Therefore, if

S = {s1, . . . , sr} is the set of the costs from a simulation of r runs ordered from most

costly to least costly, then

CVar (q) =

∑d(1−q)(r−1)+1e
i=1 si

d(1− q)(r − 1) + 1e .

This statistic may roughly be seen as a function that increases in pessimism, since

we use fewer low cost data points in the expectation as q increases. 18

Using a 95% chance-constrained policy, the Ecµ heuristic, minimin, and minimax

policies, Figure 2.8 illustrates performance over 20, 000 simulation runs. 19 The

leftmost subfigures display the raw CVar values. However, we direct our attention

to the rightmost figures, which display the percentage gap (of CVars) between the

four selected polices and “best” policy at a given q. From Figure 2.8, we observe the

following:
18For instance, one would expect the minimax policy to perform well in comparison to other

policies at CVar(1).
19The associated confidence intervals are tight, so we only show the averages.
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Figure 2.8: Comparison of policies with respect to CVar (20, 000 simulated runs and

a uniform PB on the largest inscribed sphere of the belief space).

Observation 2.6 (Heuristic Performance). The Ecµ heuristic performs nearly

identically to the chance-constrained policy, with a diminishing difference as the sys-

tem becomes more congested.

We note that percentile optimization is not concerned about the “worst-case”

scenarios, and rather optimizes based on a proportion of the belief space. Hence,

being a statistic concerned with the tail performance of the distribution of costs,

CVar (as compared to the expected cost) provides us with a more accurate rep-

resentation of the value of robustness that percentile optimization offers. Further-
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more, Figure 2.8 demonstrates that the proposed heuristic captures the essence of

the chance-constrained policy in that it lies near the optimal policy, mirroring its

performance in each simulated run. Overall, our goal to provide an alternative to the

over-conservatism and over-optimism of the minimax and minimin policies seems to

be met by our percentile optimization technique, which is consistent with established

robust optimization literature (see, e.g., Bertsimas and Sim (2004b)). Moreover,

though our policies are generated from a fixed pessimism level (i.e., 95% chance-

constrained), they perform well throughout the spectrum of optimism/pessimism in

the CVar statistic.

Even in cases where the chance-constrained policy is inferior to other policies with

regard to the CVar statistic (e.g., the fourth row of Figure 2.8 with X = (10, 10, 10),

where the minimin policy is seen to perform best with regard to CVar(0)), we can

see that fixed priority policies (e.g., those obtained under the minimin objective)

miss out on the advantages of robustness that the chance-constrained policy offers

throughout the optimism spectrum. Furthermore, percentile optimization is flexible:

by modifying ε, we can change our policy’s focus to be more or less optimistic to

the point of becoming a minimax and minimin policy itself (Proposition 2.2). A

similar advantage is also gained in the APOMDP framework of Saghafian (2018),

where α-maximin expected utility (α-MEU) preferences are used.

2.7.1 Real-World Application: ED Patient Prioritization

In most hospital Emergency Departments (EDs) in the U.S., patients upon arrival are

sorted by means of an urgency-based triage system into one of (typically) five classes

known as Emergency Severity Index (ESI) levels. These ESI levels classify patients

in descending order of urgency so that a patient of ESI 1, being in dire condition,

is immediately treated, whereas patients of levels 4 and 5 are sent to a “fast track”
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area to be treated. Therefore, the classes served by the main section of the ED (the

majority of arrivals) are those with ESI levels 2 and 3 (see, e.g., Saghafian et al.

(2012), Saghafian et al. (2014), and the references therein). We denote ESI 2 and 3

patients by “Urgent” and “Non-Urgent” patients, respectively.

As patients wait to receive treatment their condition may worsen over time and

lead to adverse medical events. Sprivulis et al. (2006) and Plunkett et al. (2011)

show that higher patient mortality is associated with longer waiting times prior to

seeing a physician. Other research (e.g., an extremely large study on data of nearly

14 million patients by Guttmann et al. (2011)) indicates that the Risk of Adverse

Events (ROAE) for patients increases with higher waiting times leading to higher

mortality and hospital admission rates. Therefore, with the objective of increasing

patient safety, we consider the goal of minimizing average ROAE for ED patients,

and investigate optimal prioritization policies. To do so, we assume adverse events

occur based on a Poisson process with a higher rate for urgent patients, and note

that ROAEs in this setting play the role of holding cost parameters in our multi-class

queueing model introduced earlier. The same approach is used in Saghafian et al.

(2014), where the benefits of further stratifying these levels in terms of a patient’s

complexity is discussed. Simple patients are those that experience only a single inter-

action with the physician, and thus are more quickly treated by the ED than complex

patients, whose treatment necessitates several interactions with the physician inter-

spersed with various tests (CT scans, MRI, etc.).

Figure 2.9 (left) illustrates a schematic flow of patients as a multi-class queue-

ing system. To analyze the multi-class queueing system of Figure 2.9 (right) in a

traditional way, one needs to obtain point estimates of various parameters (e.g., ser-

vice/treatment rates for each class), a task which is subject to inevitable errors. 20

20Even after using a large data set that we have collected from a leading U.S. hospital, which
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Figure 2.9: Patient flow in hospital Emergency Departments (left: the overall flow;

right: the multi-class flow).

Furthermore, triaged urgency and complexity levels are subject to misclassifications,

which further confuses the true parameter settings of the system. Although misclassi-

fications can be included in the analysis when all of the parameters of the system are

known, the misclassification probabilities themselves are also hard to quantify. These

create parameter ambiguity, and one needs to use robust analyses to hedge against

them. However, current ED patient prioritization policies are based on analyses that

ignore such ambiguities.

To demonstrate the benefits of our percentile optimization approach, we now focus

on two questions: how should EDs prioritize their patients given that they are faced

with parameter ambiguity? and how much benefit can they get by taking ambiguities

into consideration? To answer these questions, we first model the ED from a broad

perspective with non-stationary Poisson process arrivals and known service rates for

all four classes: Urgent Simple (US), Urgent Complex (UC), Non-Urgent Simple (NS),

and Non-Urgent Complex (NC) patients. In this way, we model the ED as a single

“super-server” (i.e., with a pooled capacity that we estimate from our data set so as

to match the input-output process of the ED as a whole). This allows us to gain

includes data about more than 18,000 patient visits, we see that our point estimates are not reliable
due to various reasons including the large variation among patient characteristics as well as the need
to estimate parameters for each patient class separately.
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insights into the questions we raised above by noting that the ED queueing model

of Figure 2.9 (right) is essentially a special case of our general model depicted in

Figure 2.1 with n = 4.

Patient arrivals in an ED fluctuate throughout a given day, so we model these

arrivals with a non-stationary Poisson process with hourly rates shown in Figure A.6

in Online Appendix A.1 which depicts the actual time-dependent arrival rates to the

ED based on our data set. Furthermore, since patient LOS in our data has a lognormal

distribution, we fit lognormal service distributions to match the LOS of patients for

each class of patients. Next, we design our “cloud of models” by perturbing the fitted

rate parameters such that for each class i with fitted rate µ̂i,3, we incorporate four

additional possible rate parameters so µ̂i,1 < µ̂i,2 < µ̂i,3 < µ̂i,4 < µ̂i,5. Because

patients become fairly stable upon seeing a physician, we focus on adverse events in

the waiting area of EDs, and assume ROAE drops to zero once the treatment stage

begins. Our model is non-preemptive, which is a reflection of physicians’ behavior in

EDs: upon initiating treatment to a patient, they rarely pause treatment to serve a

different patient. Since there is a possibility that the ROAE for simple patients differs

from that of complex patients, we also consider a variety of such “cost” structures in

our study.

Though this model allows for dynamic arrivals (unlike our model introduced in

Section 2.3), we can still incorporate chance-constrained policies through the use of

our heuristic, and compare its performance to the complexity-based prioritization

policy that serves classes US, UC, NS, and NC in descending priority (demonstrated

to be optimal for EDs in Saghafian et al. (2014) when ambiguity is ignored), minimax,

and minimin policies. To do so, we simply modify the Bayesian belief to also incor-

porate arrival data. We simulate these policies, and track the non-discounted ROAE

by assuming that PB is uniform. The result of 20,000 simulated days expressed in
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terms of the CVar statistic is reported in Figure 2.10 (see Online Appendix A.1.7 for

four additional ROAE settings and in-depth discussions).

Figure 2.10: 20, 000 simulated days in the ED for the complexity-based prioritization,
95% Ecµ heuristic, minimin, and minimax policies, when PB is uniform, and the cloud
of models perturbs the fitted service rate µ̂i,3 in terms of two-hour time increments
with c = (3.5, 4.0, 1.75, 2.0). (Triage levels US, UC, NS, and NC are denoted 1,2,3,
and 4, respectively.)
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A widely discussed topic in the literature surrounding EDs is the “overcrowding”

issue (see e.g. Derlet and Richards (2000), Derlet et al. (2001), and Trzeciak and

Rivers (2003)) that stems from high arrival rates and limited resources (such as ca-

pacity, physicians, equipment, etc). Overcrowding in EDs results in high ROAE that

endangers patients. The third row of Figure 2.10 demonstrates how policies perform

in overcrowded EDs by considering an ambiguity set with smaller service rates (in

comparison to the other ambiguity sets). We note that percentile optimization, in

comparison with other policies, is especially suited for studying patient prioritization

in overcrowded EDs. This is because under heavy congestion, chance-constrained

policies learn faster, since more classes are available to serve at any given time. Fur-

thermore, as we show in Corollary A.3 in Online Appendix A.2, the Ecµ policy

becomes asymptotically optimal when arrivals occur during intense bursts followed

by lull periods. Since hospital EDs typically experience long periods of heavy traffic

in the afternoon followed by little traffic after midnight (see the actual arrival pattern

depicted in Figure A.6 in Online Appendix A.1), this further establishes our approach

in hospital ED applications. Using these results, we can make the following:

Observation 2.7 (High Traffic). Our percentile optimization approach performs

well for prioritizing patients in EDs, especially in highly congested ones (e.g. those

in busy research hospitals).

Also, Figure 2.10 shows that, once again, the chance-constrained policies nearly

dominate the entire spectrum of the CVar statistic since they explicitly incorporate

both learning and robustness. Hence, even though our stylized environment is less

detailed than those ED flow models in studies such as Huang et al. (2015), Saghafian

et al. (2012), Saghafian et al. (2014), Saghafian et al. (2015), and the references there

in (which feature patient feedback), these experiments indicate a performance advan-
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tage over complexity-based prioritization, which suggests implementation regardless

of optimism/pessimism levels. Hence, to establish the potential benefits percentile

optimization can offer to EDs over the current status quo, we make the following:

Observation 2.8 (Improved System Performance). Percentile optimization can

improve the performance of EDs regardless of a manager’s disposition.

In systems with high traffic, learning may occur at an advanced rate, since it

has available customers from each class a majority of the time the system is online.

Hence, while static priority policies continue to serve the “wrong” classes (due to

the underlying parameter ambiguity), the chance-constrained policy quickly identi-

fies the optimal cµ priority using the observed values. This enhances the quality the

robustness percentile optimization offers, especially since one is typically more con-

cerned with overcrowded/busy systems (EDs with low traffic have short patient LOS

naturally, and are not in significant need for optimization).

Furthermore, our “clearing” system is a model often used to study queues under-

going overcrowded situations. Therefore, a more congested ED is a better fit to our

original model, and in considering dynamic arrivals, we can reconfirm all the previous

insights generated in the “clearing” environment. This further confirms the results of

Section A.1.4 (within Online Appendix A.1), where we show that most of the main

insights gained from the “clearing” system holds for systems with dynamic arrivals.

Finally, we note that in communities with unstable patient population character-

istics, where ED service rates or misclassification probabilities are more ambiguous,

ED managers can incorporate percentile optimization to effectively hedge against such

ambiguities. Moreover, percentile optimization is well-suited to high levels of ambi-

guity. In our simulations, this is captured through modifying our cloud of models to

incorporate larger differences in the fitted parameters (see the first row of Figure 2.10
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and compare it with the second row). Hence, when patient population characteris-

tics are unstable, percentile optimization stands out as a method that protects from

negative consequences of focusing only on extreme outcomes, while simultaneously

learning from incoming data. This results in the following:

Observation 2.9 (Uncertain Population Characteristics). Percentile optimiza-

tion can significantly help EDs that are placed in geographical areas with unstable or

unknown patient population characteristics to better prioritize their patients.

2.8 Conclusion

Multi-class queues are versatile structures widely used in operations management that

see a large variety of applications in both service and manufacturing sectors. In such

environments, often exact parameter specification is rife with estimation errors that

(if ignored) can cause system managers to implement wrong policies. We identify and

implement a novel data-driven percentile optimization framework for use in POMDPs.

Our method layers chance-constrained optimization on a non-robust learning model,

effectively enabling learning of the true system state parameters, and allowing the

manager to set an optimism level indicating the extent of protection against poor

parameter scenarios s/he desires. We characterize the optimal policies to both the

non-robust and percentile problems and find that chance-constrained policies can be

established via the non-robust problem.

Since percentile optimization problems are typically computationally difficult, we

introduce an analytically-rooted heuristic that can be used to effectively incorporate

robustness in managing large and complex service or manufacturing systems. To

further improve computational tractability, we find asymptotically tight bounds to the

non-robust problem, which can be used to efficiently solve the percentile optimization

problem.
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Finally, we demonstrate the efficacy of our methods numerically in both stylized

and realistic environments. Using real-world data collected from a leading hospital,

we observe that our approach provides promising results in improving current patient

flow policies, especially for overcrowded EDs, or those facing unknown patient popu-

lation characteristics. Since ED managers typically do not fully know the service rate

parameters, traditional patient flow policies based on queueing models that assume

full service rate knowledge subject patients to higher risk than chance-constrained

policies. Our work is the first to take into account the inevitable ambiguities in ED

operations, and sheds light on the dire consequences of ignoring such ambiguities.
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Chapter 3

OUTSIDE OF COLD CHAIN: IMPROVING VACCINE DELIVERY IN

DEVELOPING COUNTRIES VIA ROBUST FORECASTING AND INVENTORY

MANAGEMENT

3.1 Introduction

With the goal of reducing child mortality, the Expanded Program on Immunization

(EPI) developed by the World Health Organization (WHO) currently outlines routine

immunization guidelines with the purpose of increasing coverage. In developing coun-

tries, vaccines are sent from a centrally located depot to regional and district depots

until they reach integrated health centers (IHCs) where they are administered via

fixed and outreach sessions. However, to ensure potency, vaccines are recommended

to lie in a temperature-controlled environment throughout the supply chain, which

invokes the title “cold chain.” Hence, to provide vaccination coverage, IHC workers

with access to refrigeration retrieve vaccines in regular intervals, whereas other loca-

tions with limited or no access to refrigeration, must engage in regular outreach or

mobile immunization sessions (see, e.g. Haidari et al. (2013)). Since the cold chain ne-

cessitates refrigeration, cold-packs, and other temperature-regulating devices, many

developing countries struggle to maintain inventory flow, especially in areas with poor

transportation and inadequate storage infrastructure. These complications are fur-

ther exacerbated when there is little or unreliable data to forecast vaccine demands;

such uncertainty induces poor inventory policies, which can lead to excessive waste

or a loss in coverage. This “last mile” of the vaccine supply chain, which includes

the transportation to and management of inventory for IHCs, is the source of many
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problems in the cold chain and is the focus of the chapter.

According to the WHO’s strategic immunization plan, some of the major chal-

lenges toward effectively distributing vaccinations include limited cold chain capaci-

ties, service delivery points, planning/leadership deficiencies, poor data management,

and unreliable forecasting techniques (World Health Organization (2014)). The first

of these challenges is documented in numerous studies. For example, in a district of

Cameroon, Akoh et al. (2016) shows that 16.7% of health facilities had non-functional

refrigerators, 54.8% had no access to effective transportation, and 11.9% had expe-

rienced vaccine stockouts in the three months prior to the survey. In 2013, 96% of

Nigeria’s health facilities were found to have no working refrigerators and 43% of

the existing cold chain equipment was found to be non-functional (Nigeria’s Ministry

of Health (2013)). The critical condition of Nigeria’s cold chain is corroborated by

Ophori et al. (2014), who found that despite large quantities of cold chain equip-

ment, much of it remains non-functional and beyond the point of repair. According

to Ethiopia’s multiyear plan, in addition to lack of regular maintenance, 35% of cold

chain equipment (such as refrigerators/freezers) is nonfunctioning, and 83% of equip-

ment is at least 10 years old (Ethiopia’s Federal Ministry of Health (2010)). Since

such infrastructural inadequacies negatively impact vaccine access, we seek to enable

immunization activities, even when refrigeration is limited or unavailable.

In addition to the infrastructural inadequacies, as stated in the WHO’s strategic

plan, one of the reasons for subpar outreach efforts is that many vaccine supply chains

lack data-informed decision-making which can result in poor inventory management

practices. These logistical issues can lead to costly missed opportunities or waste

due to the perishable nature of vaccines. As Zaffran et al. (2013) state, most vaccine

supply chains are ill-equipped to handle the increasing demands leading to reduced

coverage (via stockouts) and costly waste if logistics are not adequately supported.
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India: Immunization Schedule

Antigen VVM cm3 Cost Birth 6 Wk 10 Wk 14 Wk 9 Mo 16 Mo >16 Mo

BCG 30 3.3 0.075

HepB 30 4.4 0.175

OPV 2 2.0 0.18

Penta 7 7.8 1.35

JapEnc 14 6.9 0.41

Measles 14 2.6 0.237

DPT 14 3.0 0.2

TT 30 2.1 0.11

Table 3.1: The immunization schedule for India, where the VVM rating, timetable,

cost per dose, and volume per dose are obtained from WHO (2016) and the WHO’s

immunization forecast tool.

The waste due to logistical supply chain failures such as expiry, exposure to extreme

temperatures, and breakage may have been somewhat de-emphasized in the past due

to low vaccine prices (e.g., the cost per dose of diphtheria, pertussis, and tetanus

(DPT) vaccine is only about $0.20, see Table 3.1). However, that dismissal loses rela-

tive credit with new sophisticated vaccines such as the pneumococcal vaccine costing

as much as $7 per dose. Hence, the fact that many countries see 50% wastage rates

is simply unsustainable (World Health Organization (2005)). Shen et al. (2014) also

identifies the necessity of incorporating and generating data to guide the decisions

surrounding the supply chain, citing it as one of the key elements for a reliable net-

work. As such, there is a dire need for information systems that can support better

management of vaccine chain coordination when little data are available.

Despite these difficulties, vaccine logistics policies have been formed without con-
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sideration to the actual stability of the vaccines under suboptimal conditions. As

Galazka et al. (1998) aptly states, “However, this approach has led to the gradual

emergence of a dogmatic view of the cold chain, preventing health workers from

taking full advantage of the actual heat stabilities of different vaccines.” To take

advantage of the heat stability properties of different vaccines, a relatively new WHO

approved approach termed Outside of Cold Chain (OCC) has been developed which

allows for managing vaccine supply chains outside of the typical temperature ranges

(see, e.g., Villadiego (2008) and the references within). OCC procedures allow for

transportation and storage in cool or ambient temperatures while still guaranteeing

the potency of the vaccine. This can help to reduce the dependency on refrigeration

capacity, decrease the need for heavy ice packs used to cool vaccine carriers and cold-

boxes, and extend the cold-life of storage containers by permitting a wider range of

temperature environments in the cold chain.

To make such an endeavor possible, it is necessary to be able to ensure the potency

of vaccines in the presence of less-than-ideal temperature conditions. Vaccine vial

monitors (VVMs), which are temperature sensitive monitors placed on individual

vials of vaccines, are present on nearly all vaccinations in current production, and

are available in a variety of temperature sensitivity levels, ranging from the highly

sensitive VVM2 to the resilient VVM30 (see Table 3.1 for the sensitivities of a variety

of vaccines). VVMs enable a vaccine to be used even after exposure to temperatures

so long as the VVM has not expired.

OCC practices have helped to enable vaccination campaigns, especially in areas

where transportation and storage capacities are limited. For example, Juan-Giner

et al. (2014) demonstrated the feasibility of using a tetanus toxoid vaccine in an

experiment conducted in Chad. The vaccine remained potent even though it was

exposed to a maximum of 30 days of exposure to ambient temperatures (< 40◦C).
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Ren et al. (2009) studied the potency of vaccines for measles (which is heat-sensitive)

and hepatitis B (which is freeze sensitive) which were kept outside cold chain in

China. The OCC techniques have even been studied with vaccines most sensitive to

temperature. Specifically, the oral polio vaccine (OPV) is notoriously heat sensitive,

yet Halm et al. (2010) and Zipursky et al. (2011) investigate the effects of OPV kept

outside of cold chain in a vaccination campaign in Mali and Chad, respectively, and

find that with proper care, OCC techniques can still be effective in immunization

activities. These studies imply that with careful management, the cold chain may be

more flexible than the conventional 2◦ - 8◦C temperature range specification in the

last mile of delivery.

We develop a new inventory control methodology that takes advantage of OCC

procedures in order to help provide routine vaccination services for communities with

limited infrastructure while directly taking into account the major related complica-

tions arising from the uncertainty of demands and the potential for increased deteri-

oration due to exposure. Therefore, we model the last mile of the supply chain in a

robust framework similar to a multi-product newsvendor problem (MPNP) which will

help determine level of inventory necessary to accommodate immunization sessions.

We aim to provide answers to the questions:

• How can vaccine availability be improved without large infrastructure invest-

ment?

• To what degree can improved demand forecasts reduce the strain on the supply

chain?

• How should vaccines be distributed in environments where demand is highly

uncertain?

We design an algorithm for determining optimal policies in the case of general
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forecasts and also deliver insights for the special case of Normal forecasts via bounds

and other analytical results, which reveal the relative priorities for ordering different

kinds of immunizations when capacity constraints become tight. Additionally, we

identify the benefits of our robust approach via a numerical case study in Section 3.6

that uses real population data from an IHC in Bihar, India. We find that a robust

policy-maker can reduce costs due to wastage while still achieving high immunization

coverage, especially in the presence of large levels of ambiguity. Furthermore, we

show that utilizing the robust OCC approach can reduce the required transportation

and refrigeration capacities for providing high levels of immunization coverage and

discuss the relative importance of transportation and refrigeration capacities.

The remainder of this chapter is organized as follows: we present a literature

review composed of the current state of vaccine supply chains and related work on

MPNPs in Section 3.2. Then we formulate the problem in Section 3.3, and proceed

to solve the single-period formulation of our problem in Section 3.4 whose results are

used in Section 3.5 to develop techniques for handling a multi-period context. Finally,

we provide a numerical analysis in Section 3.6 that tests our approach in simulated

settings.

3.2 Literature Review

Much research has been conducted for the purpose of improving vaccine supply chains

in developing countries via large simulation models, studied under a variety of settings

to illuminate the potential effects of policy changes on cost and vaccine availability.

Studies such as Assi et al. (2013), which considers the implications of removing the

regional level of Niger’s vaccine supply chain, or Brown et al. (2014), which proposes

alternative inventory transportation strategies, examine the effects of changes to the

supply chain network itself. Other studies investigate the impact of decision-making
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within the network, such as Dhamodharan and Proano (2012) or Assi et al. (2011),

which make recommendations for vaccine vial sizing, or Haidari et al. (2013), which

weighs the relative importance of increasing storage capacity vs transportation ca-

pacity. Finally, others consider the forecasting and management of inventory levels

such as Mueller et al. (2016), which weighs the benefits of commercial forecasting

systems throughout the vaccine supply chain, or Rajgopal et al. (2011) which com-

pares several strategies for managing routine immunizations at an IHC in a setting

with unlimited transportation and storage capacity. However, these studies are based

on simulations that feature fully known stochastic features and rely on established

inventory polices to capture the behavior of the network as a whole. Since in re-

ality, demand distributions are not fully known to policy-makers, we approach the

management of inventory in the last mile of the vaccine supply chain via a more de-

tailed model that allows us to consider ambiguity in the distribution of demand and

incorporate transportation/storage capacity constraints.

The study of robust techniques which protect against distributional ambiguity in

inventory control problems has a rich trove of literature, mainly focusing on newsven-

dor variations and related problems. The first studies in this area, such as the pioneer-

ing work of Scarf (1959) followed by Gallego and Moon (1993) consider moment-based

approaches, where only mean and variance information is used to generate robust poli-

cies. More recent work focuses on data-driven approaches such as Wang et al. (2016),

which considers ambiguity sets based on the likelihood function, or Xin et al. (2013)

which studies the time-consistency properties of multi-period newsvendor problems.

We refer to Gabrel et al. (2014) for an in-depth review of recent work in robust in-

ventory control problems. In our work, since vaccine supply chains currently face

limitations in transportation and storage capacity while making ordering decisions

with respect to several vaccine types, we focus on robust solutions that jointly pro-
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tect against distributional ambiguities of the entire suite of vaccines in a setting with

capacity constraints, where demand evolves according to an autoregressive process.

Since decisions are based on maximizing coverage levels while simultaneously re-

ducing the costs resulting from both wastage and holding excess inventory subject

to both transportation and refrigeration constraints, the resulting problem is closely

related to the MPNP with budget constraints. This type of newsvendor variant, first

studied by Hadley (1963), is a single-period inventory problem with several demand

streams and constraints on order quantities. Many studies utilize Lagrange-multiplier

techniques to solve single constraint problems. Erlebacher (2000) develops optimal or-

der solutions in the special cases of similar cost/demand structures as well as the case

of uniformly distributed demands. Abdel-Malek et al. (2004) gives special attention

to the case of uniform and exponential demands, as well as a general algorithm for

establishing optimal, or near-optimal solutions. Moon and Silver (2000) investigate a

dynamic programming method used in both distribution-known and distribution-free

approaches which can guarantee integer-valued orders. Zhang et al. (2009) utilizes

properties of optimal solutions to develop highly efficient algorithms for both continu-

ous and discrete demand cases. Using these ideas, Zhang (2012) extends this work for

multiple constraints. Vairaktarakis (2000) considers three related robust formulations

of the problem based on worst-case demand realizations and finds efficient solutions

to these objectives. Other studies such as Ben-Daya and Raouf (1993), Lau and Lau

(1995), and Lau and Lau (1997) study cases with multiple constraints and design

effective solution methodologies and heuristics. For other related studies, see Khouja

(1999), Abdel-Malek et al. (2004), Abdel-Malek and Montanari (2005), Zhang and

Hua (2008) and the references within.
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3.3 Problem Description

In regular periods (bi-monthly or monthly, see, e.g. Assi et al. (2013) and Haidari

et al. (2013)), n different types of vaccines are collected to be administered via fixed

and/or outreach sessions. IHC workers travel to the district level to pick up vaccines

to satisfy demand (in terms of doses), and are not required to place orders in advance

for future periods (i.e., orders are typically placed with zero lead-time). Vaccination

schedules imply that a given period’s demand has dependence with past demands

since they direct the timetable for the immunization of each child. For example, in

many African countries, the diphtheria-tetanus-pertussis (DTP) vaccine is scheduled

to be administered in 3 doses for infants at 6, 10, and 14 weeks of age. Similarly,

Oral Polio Vaccine (OPV) is scheduled to be administered to newborns at 6, 10, and

14 weeks of age. To capture these dependencies, we assume that vaccine demand is

forecasted according to a p-th order vector autoregressive process (VAR(p)). Thus,

the forecast vector V̂t = (V̂ t
1 , . . . , V̂

t
n)′ for the n vaccine types at period t is given by

V̂t = a0 + A1V̂
t−1 + . . .+ ApV̂

t−p + εt, (3.1)

where εt ∼ N(0,Ω) is a zero mean multivariate error term with covariance matrix

Ω made up of components Ωi,j for i, j ∈ N = {1, 2, . . . , n}. In (3.1), “ ′ ” denotes

the transpose operator, p ∈ Z+, a0 = (a0
1, . . . , a

0
n)′ is an n-dimensional vector, and

Ai (for i = 1, . . . , p) is an n × n matrices with components aij,l for j, l ∈ N . For

tractability, we assume that the VAR(p) process given by (3.1) is time-stationary (in

long run). We let f̂ ti and F̂ t
i denote the marginal probability density and cumulative

distribution function for V̂ t
i (i.e., demand forecast for vaccine i at time t), and let

f̂ t denote the joint density function for V̂t given all relevant previous realizations

v̂t−1, . . . , v̂t−p. We assume that f̂ t is such that P(V̂ t
i < 0) is negligible for all i ∈ N

since V̂t represents a forecast for demand.
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As described in the Section 3.2, determining the demand process for vaccines is

challenging for multiple reasons. Often the last mile of the vaccine supply chain is

subject to limited, or poor data quality. Furthermore, if new vaccines are introduced

or additional outreach sessions are implemented, forecasting the true demand for these

new inclusions can be difficult simply due to uncertainty in the target populations.

Hence, the forecasted demand distribution f̂ t is not completely reliable, and can be

subject to error. To make decisions that are robust to this error, we assume that the

true distribution for demand Vt, f t, is chosen by Nature and lies in an ambiguity set

surrounding the VAR(p) forecasted distribution, f̂ t. This ambiguity set is defined as

D(f̂ t, η) =

{
f ∈ Pf̂ t :

n∑
i=1

∫
∀vi:f̂ ti (vi)>0

f ti (vi) ln
f ti (vi)

f̂ ti (vi)
dvi ≤ η

}
, (3.2)

where Pf̂ t denotes the set of all distributions on Rn that are absolutely continuous to

f̂ t and f ti denote the marginals of f t for i ∈ N . Hence, D(f̂ t, η) includes all densities

whose total KL-divergence from the marginals of f̂ t do not exceed η. Importantly,

we focus on ambiguity sets surrounding the marginals of f̂ t rather than its joint

density since, in MPNPs, it is well known that the correlation structure of the density

chosen by Nature at time t does not affect the expect cost of any ordering decision.

Hence, by focusing on D(f̂ t, η), we utilize an ambiguity set that encompasses the key

features that can affect the policy-maker’s decisions. Vt−j are generated from previous

forecasts of demand in accordance with (3.1), hence, to ensure starting conditions,

we assume that at least p periods of demand have been initially recorded to facilitate

ordering decisions in the early periods.

In accordance with the proposed partial OCC strategy, all vaccines are typically

transported to the IHC via a vaccine carrier with cold packs. This ensures the nec-

essary temperature requirements for heat-sensitive vaccines, and extends the time to

expiration for heat-resistant vaccines (see, e.g., Chen and Kristensen (2009)). Upon
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reaching the IHC, highly heat sensitive vaccines are placed in refrigeration, and less

sensitive vaccines are stored within the vaccine carrier for the duration of a period.

1 Thus, the decision-maker must order vaccines with respect to capacity constraints

on both the refrigerator and vaccine carrier. To model these capacity constraints, we

assume that each dose of a vaccine of type i has volume wi > 0, and let ri = wi if the

vaccine is to be placed in refrigeration and ri = 0 otherwise. Letting w = (w1, . . . , wn)′

and r = (r1, . . . , rn)′ refer to vectors of these parameters, and bc > 0 and br > 0 be

the total capacity available to the vaccine carrier and refrigerator, respectively, we

define

X (st) =

{
x ∈ Rn

+

∣∣∣∣xi ≥ sti,w
′(x− s) ≤ bc, r

′x ≤ br

}
(3.3)

as the set of feasible “order-up-to” quantities of vaccines. Here, order-up-to quantities

must satisfy refrigerator and vaccine carrier capacities given the level of vaccines

in refrigeration prior to ordering, which we denote by the non-negative vector st =

(st1, . . . , s
t
n)′. If vaccines are ordered to the level xt−1 in period t−1, the held inventory

st is the realization of St = (St−1 + xt−1 −Vt−1)+, where the operator “+” used on

any vector returns a new vector with each component being the maximum of the

original component and zero. Nature, as a robust agent, aims to maximize costs by

selecting densities from D(f̂ t, η) at each period t given the decision-maker’s current

level of vaccines and forecast given by (3.1), which depends on the past p estimates.

Hence, we let an admissible policy for Nature be the mapping ξ : Rn
+×Rp

+ → D(f̂ , η)

and define Ξ as the set of all such policies. Here, f̂ is determined via (3.1) so that

Vt
ξ = (V t

1,ξ, V
t

2,ξ, . . . , V
t
n,ξ)
′ denotes the random variable of demand at time t. The

decision-maker orders vaccines according to the current level of inventory and the
1Our study also encompasses vaccine management in areas with no refrigeration, such as areas

targeted for outreach sessions, IHCs with no available electricity or access to refrigerators, or mobile
strategies used to target nomadic populations.

61



demand density chosen by Nature. As such, we define an admissible ordering policy as

a mapping ζ : Rn
+×Ξ→ X (S), and define Z as the set of all such admissible ordering

policies. Furthermore, we let Xt
ζ = (X t

1,ζ , . . . , X
t
n,ζ)
′ denote the order quantity vector

at time t under policy ζ, where X t
i,ζ is the order quantity at time t for type i vaccine.

To differentiate between vaccine classes, we define Oc = {i ∈ N|ri = 0} as

the set of OCC vaccines that will be stored in the vaccine carrier, and similarly

Or = {i ∈ N|ri > 0} as the set of vaccines to be refrigerated upon arrival at the

IHC. Naturally, OCC vaccines will experience degradation due to the additional heat

exposure. Thus, each vaccine within Oc left at the end of the period is wasted (and

hence, sti = 0 for all i ∈ Oc), incurring a cost to the system. Refrigerated vaccines

that do not experience such accelerated degradation still induce system costs due to

their natural expiration date and the valuable/limited space they occupy in the cold

chain. To capture these costs, we consider a holding/overage cost, and denote it by

h = (h1, . . . , hn)′.

Missing vaccination opportunities due to lack of available vaccines is highly costly

in most immunization chains (especially those in Africa), since it reduces coverage

as well as confidence in immunization sessions. In the case that there is a relative

weighting to the importance of administrating a given vaccine, we let u = (u1, . . . , un)′

be a positive vector denoting the cost of missed opportunity (i.e., underage cost) for

each unit of each type vaccine. 2 In most vaccine policies, missing a vaccine of type

i is considered to be more deleterious than incurring a waste (see, e.g., World Health

Organization (2005)). Hence, we expect that ui > hi, though we do not impose this

condition.

It is the aim of the decision-maker to manage vaccine levels so as to minimize the
2This cost can be set to be the vector of all ones in the case that there is no relative weighting

between the cost of such missed opportunities.

62



overall underage and overage costs in a robust way (i.e., considering potential forecast

errors). Therefore, defining

Hi(xi, vi) = ui(vi − xi)+ + hi(xi − vi)+, (3.4)

We consider the objective to be finding the policy that minimizes the worst-case

infinite-horizon discounted cost:

arg inf
ζ∈Z

sup
ξ∈Ξ

lim sup
T→∞

E

[
T∑
t=1

n∑
i=1

βtHi(X
t
i,ζ , V

t
i,ξ)

]
, (3.5)

where β ∈ (0, 1) is a discounting factor. This robust objective allows us to take into

account the ambiguities surrounding demand for vaccines. The level of ambiguity

within each component is reflected in η; a policy-maker with high levels of ambiguity

would choose η to be very large whereas a policy-maker with less ambiguity would

choose η to be small, effectively shrinking the ambiguity set to be near the estimate

for each demand model. In this way, Nature chooses the density for demand via ξ by

considering all models that come within a proximity measured via the KL-divergence

to the non-robust nominal model.

3.4 Single-Period Properties

To identify strategies for solving (3.5), we first carefully examine its single period

properties. To this end, in Section 3.4.1, we start by studying the single-period

version of (3.5) with a general underlying nominal density. Using the results we

obtain, in Section 3.4.2, we then tackle the single-period version of (3.5) for the

special case in which the nominal density is multivariate normal. In Section 3.5, we

then use insights gained to solve (3.5) in its general format (i.e., multi-period version).

Finally, in Section 3.6 we perform various numerical experiments using a real-world

case study of immunization in Bihar, India, (as well as synthetic data) to gain more

insights.
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3.4.1 Robust Single-Period Problem

Suppressing the notation for period, t, and letting f̂ denote a general positive nominal

density, the single-period version of (3.5) takes the form

arg inf
x∈X (s)

sup
f∈D(f̂ ,η)

Ef

[
n∑
i=1

Hi(xi,Vi)

]
. (3.6)

To solve (3.6), we define

G(x, α) = α

n∑
i=1

ln Ef̂

[
eHi(xi,Vi)/α

]
+ αη, (3.7)

and present the following proposition which identifies an equivalent problem to (3.6).

Proposition 3.1 (Robust Objective Equivalence). If there exists α > 0 such

that∑n
i=1 Ef̂

[
eHi(xi,Vi)/α

]
<∞ for all x ∈ X (s), (3.5) is equivalent to the objective:

minimize
x∈X (s),α≥0

G(x, α). (3.8)

Objective (3.8) is jointly convex in x and α, and if x∗ and α∗ solve (3.8), the maxi-

mizing (i.e., worst-case) density in (3.6) is

f(v) =
n∏
i=1

f̂i(vi)
eHi(x

∗
i ,vi)/α

∗

Ef̂

[
eHi(x

∗
i ,Vi)/α

∗] . (3.9)

Proposition 3.1 is established via the class of robust optimization problems in-

vestigated by Hu and Hong (2012). However, our work differs by focusing on the

KL-divergence from the marginal densities. Since (3.8) is a convex optimization

problem, it results in a simpler framework for solving Problem (3.5).

Inspecting (3.7), and noting that η is only present in the term αη, it is intuitive

for α to be monotonically decreasing in η. This means that a policy-maker with large

levels of ambiguity will have a smaller α∗. This fact is established in the following

lemma by showing that the log term of (3.7) is monotone in α.
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Lemma 3.1 (Monotonicity of α∗ in η). α∗(η) = arg min
α≥0

G(x∗, α) is decreasing in

η.

Due to this monotone relation between α and η, insights regarding α via the sim-

pler, equivalent objective (3.6), correspond directly to the level of ambiguity expressed

in η. Hence, by studying the impact of α, we can reveal the effect of a policy-maker’s

ambiguity level without directly searching for η.

Next, we note that if we can characterize x∗ as a function of α which we denote

by x∗α = (x∗α1 , x∗α2 , . . . , x∗αn ), solving (3.8) reduces to a simple univariate search for

an optimizing α. With this goal, we define the following functions which we term

marginal benefit functions :

παi (xi) =
Gxi(xi, α)

wi
. (3.10)

In (3.10) Gxi = ∂G/∂xi (for i ∈ N ) which is a function of only xi and α (and not

xj for j 6= i), since G is completely additively separable. Though παi are interpreted

slightly differently between OCC and refrigerated vaccines as seen in the forthcoming

Theorem 3.1, marginal benefit functions generally act as the rate of cost change

relative to the rate of volume consumption for a given vaccine. Furthermore, since it

is the derivative of a convex function, παi is monotone, and has a lower bound equal

to −ui/wi (see Lemma B.2 in Online Appendix B.3). Hence, we define an associated

inverse function to παi :

πα,−1
i (q) =


inf{x ≥ 0|q ≤ παi (x)} q ≥ −ui/wi

0 q < −ui/wi.
(3.11)

The case with q < −ui/wi in (3.11) is incorporated for notational convenience since

the function is minimized at−ui/wi. Naturally, if capacity is unlimited (bc = br =∞),

the optimal xi as a function of α, x∗αi , corresponds either to the zero of παi or to si

65



if παi (si) > 0. We denote this special unconstrained order-up-to level as x̂αi , and note

that it acts as the “desired order-up-to” value that can be used to identify optimality

conditions for x∗αi .

In the following theorem, we utilize the properties of the marginal benefit functions

to identify optimality conditions. This, in turn, will grant (a) an efficient way of

finding solutions to (3.6), and (b) analytical insights into the optimal order-up-to

quantities.

Theorem 3.1 (Robust Optimality Conditions). Let

νc = max
{
ν ≤ 0|

∑
i∈N

max{πα,−1
i (ν), si} − si ≤ bc

}
,

νr = max
{
ν ≤ 0|

∑
i∈N

max{πα,−1
i (ν), si}ri ≤ br

}
,

and νb = max
{
ν ≤ 0|

∑
i∈Oc

max{πα,−1
i (ν), si} − si +

∑
i∈Or

max{πα,−1
i (νr), si} − si ≤ bc

}
.

(i) If
∑n

i=1(x̂αi − si)wi ≤ bc and
∑n

i=1 x̂
α
i ri ≤ br, then x∗αi = x̂αi for all i ∈ N .

(ii) If
∑n

i=1(x̂αi − si)wi ≤ bc and
∑n

i=1 x̂
α
i ri > br, then x∗αi = x̂αi for all i ∈ Oc and

x∗αi = max{πα,−1
i (νr), si} for all i ∈ Or.

(iii) If
∑n

i=1(x̂αi − si)wi > bc and
∑n

i=1 x̂
α
i ri ≤ br, then x∗αi = max{πα,−1

i (νc), si} for

all i ∈ N .

(iv) If
∑n

i=1(x̂αi −si)wi > bc and
∑n

i=1 x̂
α
i ri > br, then x∗αi = max{πα,−1

i (νb), π
α,−1
i (νc), si}

for all i ∈ Oc, x∗αi = max
{

min{πα,−1
i (νc), π

α,−1
i (νr)

}
, si} for all i ∈ Or.

Noting that the refrigeration constraint does not affect vaccines inOc, Theorem 3.1

demonstrates the intuitive notion that optimal order quantities aim for the zero of

the marginal benefit function. If this quantity can be met for all vaccines without

violating constraints, the optimal order is x̂αi . Otherwise, if an optimal order for a
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vaccine i ∈ Oc is less than its infinite-capacity quantity (x∗αi < x̂αi ), then x∗αj < x̂αj for

all other non-zero orders, where by “zero-order”, we refer to the event that x∗αi = si,

since this is the case where no new vaccines are ordered. In a similar vein, if an order

for a vaccine i ∈ Or has x∗αi < x̂αi , then x∗αj < x̂αj for all other non-zero orders j ∈ Or.

Therefore, if unconstrained order quantities cannot be met, the limiting constraint

is tight. Moreover, the marginal benefit function under optimal order quantities

within each class of vaccines (Oc and Or) are equal when constraints are tight, which

is intuitive since they share a common constraint. Similarly, when the limiting con-

straint is the vaccine carrier (and not the refrigeration), all non-zero order quantities

have identical marginal benefit values. Importantly, Theorem 3.1 also allows us to

construct the optimal order quantities of the robust problem (3.6) by performing a

search for specific values of παi , which is the basis of the Single-Period Algorithm pre-

sented in Table 1. This algorithm only involves finding (1) x̂αi for each vaccine class,

and (2) at most three target values for the modified robust marginal benefit function

ratios πα. Notably, if παi is known, each of these steps can be easily accomplished via

binary search algorithms allowing for the easy calculation of robust order quantities.

The Single-Period Algorithm of Table 2 can also be used as a myopic solution for the

multi-period problem, but we provide further characterization for the multi-period

setting in Section 3.5.

3.4.2 Robust Single-Period Problem with Normal Demand

Since each period’s forecast is multivariate normal in a VAR(p), to further character-

ize the solution to (3.5), we next generate insights by investigating the single-period

problem in the special case where the nominal forecast f̂ is multivariate normal.

Again, assuming that the probability of negative demand is negligible and letting

µi and σi denote the mean and standard deviation parameters of f̂i (the marginal
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Table 2: Single-Period Algorithm

Initialize. Calculate x̂αi for i ∈ N and determine case (i)-(iv) via Theorem 3.1.

Case (i). Let x∗αi = x̂αi for i ∈ N .

Case (ii). Let x∗αi = x̂αi for i ∈ Oc. Find

q∗r = max

{
q ≤ 0

∣∣∣∣∑i∈Or max{πα,−1
i (q), si}wi ≤ br

}
,

and let x∗αi = max{πα,−1
i (q∗r), si} for all x ∈ Or.

Case (iii). Find

q∗cr = max

{
q ≤ 0

∣∣∣∣∑n
i=1(πα,−1

i (q)− si)+wi ≤ bc

}
,

and let x∗αi = max{πα,−1
i (q∗cr), si} for all i ∈ N .

Case (iv). If bc − br +
∑n

i=1 siri > 0, find the quantities

q∗c = max

{
q ≤ 0

∣∣∣∣∑i∈Oc π
α,−1
i (q)+wi ≤ bc − br +

∑n
i=1 siri

}
,

q∗r = max

{
q ≤ 0

∣∣∣∣∑i∈Or max{πα,−1
i (q), si}wi ≤ br

}
.

· If ∑i∈Oc x̂
α
i wi ≤ bc − br +

∑n
i=1 siri, let x

∗α
i = max{πα,−1

i (q∗r), si} for all x ∈ Or and x∗αi = x̂αi for all x ∈ Oc.

· Else if
∑

i∈Oc x̂
α
i wi > bc − br +

∑n
i=1 siri and q

∗
c ≥ q∗r ,

let x∗αi = max{πα,−1
i (q∗r), si} for all x ∈ Or and x∗αi = max{πα,−1

i (q∗c ), si} for all x ∈ Oc.

· Else find x∗αi according to Case (iii) for all i ∈ N .

of f̂ with respect to V̂i), the partial derivatives of G(x, α) introduced in (3.7) (and

hence παi introduced in (3.10)) can be expressed in closed form (see, e.g. Proposi-

tions B.1 and B.2 in Online Appendix B.3). Fortunately, these show that the condition∑n
i=1 Ef̂

[
eHi(xi,Vi)/α

]
< ∞ for all x ∈ X (s) required in Proposition 3.1 is obviously

satisfied for any positive finite α, which allows us to utilize (3.8).

Using these closed form expressions, we first investigate bounds by considering the

case where there is infinite carrier and refrigeration capacity (bc = br = ∞). These

bounds are closely related to the non-robust problem (i.e., when η = 0). Hence, we

define

x̂i = max

{
F̂−1
i

(
ui

ui + hi

)
, si

}
,
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which is either the well-known newsvendor critical fractile based on the forecasted

demand for the vaccine type i, or the current level of vaccine in storage with respect

to the nominal forecast.

Proposition 3.2 (Infinite-Capacity Robust Bounds). For all i ∈ N , suppose

f̂i ∼ N(µi, σ
2
i ). Then:

1. If hi ≤ ui,

max

{
si, µi +

(ui − hi)σ2
i

2α
, x̂i

}
≤ x̂αi

≤ max

{
si,min

{
µi +

(ui − hi)σ2
i

2α
+
α ln(ui/hi)

ui + hi
, x̂i +

uiσ
2
i

α

}}

2. If hi ≥ ui,

max

{
si, µi +

(ui − hi)σ2
i

2α
+
α ln(ui/hi)

ui + hi
, x̂i −

hiσ
2
i

α

}
≤ x̂αi

≤ max

{
si,min

{
µi +

(ui − hi)σ2
i

2α
, x̂i

}}

Proposition 3.2 implies that in the uncapacitated robust problem, the optimal

order quantities are bounded by an interplay between α, the difference between hi

and ui, the variance of the nominal model, and the non-robust ordering quantity

x̂i. The bounds converge in many asymptotic cases. For example, when a policy-

maker places equal weight on a missed opportunity and an overage (i.e., when ui

approaches hi), the bounds converge to the point max{µi, si}. This is intuitive, since

Nature should see no clear advantage to choosing distributions that induce higher

as opposed to lower demands when overage and underage costs are equal with a

symmetric nominal distribution. However, this behavior is not expressed in practice,

since policy-makers typically prefer to see a low outage rate compared to that of

overage if they have the capacity to do so. In fact, a typical vaccine policy-maker
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would settle cost of missed opportunity moderately greater than that of overage. This

is inclination is more dramatically demonstrated in the case when ui →∞. For this

case, the bounds show that the order quantity goes to infinity as expected due to an

increasing fear of stock outages, which is much more aligned with most IHCs’ goal of

near-zero outages in developed countries where capacity is ample. As noted earlier,

however, in developing countries, the limited capacity disallows reaching this goal.

We also note that when α becomes small, α ln(ui/hi)
ui+hi

terms in the bounds given in

Proposition 3.2 go to zero, and since α must decrease as η increases (Lemma 3.1),

the bounds converge as ambiguity increases. Since these bounds either go to infinity

or zero depending on the underage/overage costs, a policy-maker with high levels of

ambiguity and no capacity constraints will engage in extreme ordering behavior. On

the other hand, as α becomes large or σi becomes small, the bounds converge to the

original newsvendor order quantities which indicates that as the level of ambiguity

decreases, the ordering decisions tend toward the non-robust optimal case.

Interestingly, the term α ln(ui/hi)
ui+hi

in upper and lower bounds is not affected by σi.

However, as α decreases, these bounds deviate by at least a factor of the variability in

the nominal distribution. Hence, once again, from the perspective of a policy-maker

who is not facing tight capacity restrictions, higher variability and higher ambiguity

aversion results in more extreme ordering decisions. Since the robust problem with

capacity restrictions necessitate ordering at most as many vaccines as those in the

uncapacitated robust problem, x∗αi with bc = br =∞ serve as an upper bound to the

optimal capacitated order quantities.

In certain cases, tighter upper/lower bounds than those found in Proposition 3.2

can be obtained. Due to the closed form of παi and the symmetry with respect to

underage and overage costs found therein, if both uiσi
α

and hiσi
α

lie beneath or above

0.84 (which occurs whenever the level of ambiguity is high or low), the following
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upper/lower bounds can be established.

Corollary 3.1 (Cost/Ambiguity-Dependent Bounds). If uiσi
α
≥ hiσi

α
≥ 0.84,

or if uiσi
α
≤ hiσi

α
≤ 0.84, x̂αi ≤ max{si, µi+ (ui−hi)σ2

i

α
}. Otherwise, if hiσi

α
≥ uiσi

α
≥ 0.84,

or if hiσi
α
≤ uiσi

α
≤ 0.84, x̂αi ≥ max{si, µi +

(ui−hi)σ2
i

α
}.

Via these tightened bounds, Corollary 3.1 further reinforces that higher levels of

ambiguity result in more extreme ordering behavior in the case of infinite capacity.

Moreover, tying these results with Proposition 3.2 can help a policy-maker to plan

for appropriate refrigeration and carrier capacities at different ambiguity levels since

the infinite-capacity case acts as target for order quantities in the case with limited

capacity.

In these cases where refrigeration and/or carrier capacity is finite, by investigating

παi in light of Theorem 3.1, it is easy to show that order quantities are monotonically

increasing in µi (see, e.g., Proposition B.3 in Online Appendix B.3). An equally

intuitive, but less direct result maintains that the optimal order quantity x∗αi also

experiences monotone behavior in σi.

Proposition 3.3 (Monotonic Ordering in σi). For i ∈ N , if ui ≥ hi and x∗αi ≥ µi,

x∗αi is nondecreasing in σi. Otherwise, if ui ≤ hi, x∗αi is nonincreasing in σi.

Proposition 3.3 implies an important relationship between variance and the effect

of ambiguity on order quantities. It can be shown that α must increase in systems

with larger σi (see, e.g., Proposition B.4 in Online Appendix B.3). Hence, comparing

the relative order quantities of vaccine type i in the case where ui ≥ hi, policy-makers

with larger ambiguity levels and lower σi can actually order fewer type i vaccines than

policy-makers with lower levels of ambiguity and higher σi. Hence, variability has the

effect of increasing the flexibility of Nature’s ambiguity set, resulting in more larger

order quantities, even when a policy-maker’s ambiguity levels are relatively small.
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Importantly, these monotone results (in µi and σi) consider only a fixed α. In-

specting the bounds of Proposition 3.2, the infinite-capacity order quantities move in

a linear fashion with respect to changes in the mean and variance. Now, increases

in µi when capacity constraints are tight, and increases in σi induce an exponential

increase in cost in (3.7), hence the α term in (3.8) must also increase to compen-

sate and reduce costs. Proposition 3.2 suggests that larger α result in less extreme

ordering behavior, hence, optimal orders to (3.8) change only by a linear factor of

mean and variance if this intuition is correct. In this way, a policy-maker can be

much less concerned about the sensitivity surrounding mean and variance estimates

in their initial forecasts since parameter shifts only perturb ordering behavior on the

same magnitude as the original non-robust case.

Therefore, to reinforce these insights and investigate ordering behavior as the level

of ambiguity changes, we identify a monotone relation between α and optimal order

quantities in the following proposition. Since α affects all vaccines simultaneously,

simple monotone properties relating to optimal order quantities are not established in

the same manner as Proposition 3.3 (and Proposition B.3 in Online Appendix B.3).

However, since optimal order quantities become independent decisions between vac-

cine classes in the infinite capacity case, we can find monotone properties of x̂αi with

respect to α, which in turn imply important behaviors of x∗αi .

Proposition 3.4 (Monotonic Ordering in α). For all i ∈ N , if ui ≥ hi x̂
α
i is

nonincreasing in α. Otherwise, if ui ≤ hi, x̂αi is nondecreasing in α.

In addition to the fact that it implies reduced concern about policy sensitivity to

parameters (as discussed above), Proposition 3.4 yields similar policy implications to

that of Proposition 3.3. It demonstrates that as the level of ambiguity η increases,

the target order quantities become more extreme. Tying this result with those found
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in Proposition 3.2 and Corollary 3.1, we can further improve the infinite-capacity

bounds. If xα and xα represent the tightest upper/lower bounds implied by Proposi-

tion 3.2 and Corollary 3.1, Proposition 3.4 implies that min0<α≤α̂ x
α and maxα≥α̂ x

α

provide an upper and lower bound to the infinite capacity case with α̂ that are at

least as tight as the original bounds when ui ≥ hi. Otherwise, if ui ≤ hi, minα≥α̂ x
α

and max0<α≤α̂ x
α represent the tightened bounds. Hence, a policy-maker can refer

to monotone bounds in α for the purpose of studying changes in ordering behav-

iors and better determining appropriate levels of ambiguity aversion by observing the

infinite-capacity case (which act as ordering targets), as shown in Section 3.6.

Importantly, Proposition 3.4 paired with Theorem 3.1 allows us to gain insights

into the behavior of the optimal policy with respect to changes in η in the capacitated

case. From the following corollary, we have conditions under which tight capacity

constraints will remain tight as the level of ambiguity increases (i.e., as η increases).

Corollary 3.2 (Full Capacity). If ui ≥ hi for all i ∈ N and
∑n

i=1(x∗αi −si)wi = bc

then
∑n

i=1(x∗α̂i − si)wi = bc for all α̂ ≤ α.

This result reinforces the notion that robust decision-makers who fear outages

(i.e. ui ≤ hi) and reach their carrier capacity constraint continue to do so as the

level of ambiguity (i.e. η) increases. The reason this does not carry through to the

refrigeration constraint is that the decision-maker may need to alter the composition

of orders to include a greater quantity of Oc vaccines in favor of refrigerated vaccines,

and hence forfeit remaining capacity in refrigeration.

Since η affects all vaccine demands simultaneously, Proposition 3.4 only shows a

monotonic correspondence to more extreme order quantities in the infinite-capacity

case or where capacity is non-restrictive. However, as long as ui > hi, it can be shown

that παi (xi) approaches the lower bound −ui/wi (established in Lemma B.2) when α is
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sufficiently small. This implies that the target values for the robust marginal benefit

functions in the robust algorithm decrease when η is large. This induces extreme

ordering behavior, even in the case with capacity restrictions.

Proposition 3.5 (Orders as η → ∞). Define γc = mini∈Oc − ui
wi
1{ui > hi} and

γr = mini∈Or − ui
wi
1{ui > hi}. If ui 6= hi for all i ∈ N , then optimal order quantities

have the following asymptotic properties:

(i) If ui < hi, limη→∞ x
∗
i − si = 0.

(ii) If γc < 0 and γc ≤ γr, limη→∞ x
∗
i = si for all i ∈ N that have −ui/wi > γc, and

limη→∞ bc −
∑n

i=1(x∗i − si)wi = 0.

(iii) If γr < γc, limη→∞ x
∗
i = si for all i ∈ Or with −ui/wi > γr and limη→∞ x

∗
i = si

for all i ∈ Oc that have −ui/wi > γc. Furthermore,

lim
η→∞

min

{
br −

n∑
i=1

x∗i ri, bc −
n∑
i=1

(x∗i − si)wi
}

= 0,

and if γc < 0, limη→∞ bc −
∑n

i=1(x∗i − si)wi = 0.

Proposition 3.5 shows that the optimal ordering level for all vaccines with ui < hi

go to zero-orders as η, the level of ambiguity, becomes large. This implies that for

very expensive vaccines that also have tight expiration dates, a policy-maker with

extremely high levels of ambiguity should order nothing. However, in the case where

ui > hi, each vaccine will only have a non-zero ordering level if it has −ui/wi = γc

when i ∈ Oc, or −ui/wi = γr if i ∈ Or. This implies that the determining factor for

non-zero ordering quantities when η is large is the ratio −ui/wi. If these ratios are

unique, the optimal ordering decision becomes to fill the carrier capacity with a single

vaccine type if γc < 0 and γc ≤ γr, and at most two types of vaccines if γr < γc. In

the case where all vaccines have equal underage costs (i.e., ui = 1 with hi < 1 for all
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i ∈ N ), if an OCC vaccine has smallest volume per dose (i.e., wi), the carrier is filled

with only this vaccine. Otherwise, if a refrigerated vaccine has smallest volume per

dose, the carrier is filled with this vaccine and the OCC vaccine with smallest wi.

3.5 Robust Multi-Period Problem

Despite solving the single-period problem, the multi-period problem (3.5) is highly

complex. This is because the problem lies in a continuous space and is highly dimen-

sional, requiring consideration for v̂t−1, . . . , v̂t−p in order to forecast each demand

epoch. Furthermore, Nature’s policy is no longer easily determined due to the fact

that leftover inventory can potentially be carried over. Hence, in general, the problem

(3.5) is out of reach.

However, under certain conditions we can still utilize the single-period problem

to gain insights into the optimal solutions of the multi-period problem. One obvious

case is where even refrigerated vaccines have tight expiration dates, and hence, cannot

be carried over to future periods. More generally, consider the case where the action

space is expanded to enable the decision-maker to modify st to any 0. When this

action is enabled, we say that the decision-maker can “return” vaccines. In the case

that all leftover vaccines in refrigeration at the IHC can be sent back to the district

depot, this action implies vaccines are returned to be stored at the district level.

Assuming that the vaccines are returnable, and the carrier’s capacity is not bind-

ing, we provide the following result which casts the multi-period objective as a series

of single-period problems.

Proposition 3.6 (Multi-Period Objective Equivalence). If vaccines are return-

able and bc = ∞, the optimal ordering quantities to the multi-period objective (3.5)
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at each period t can be determined via

minimize
x∈X (0),α≥0

α

n∑
i=1

ln Ef̂t

[
eHi(xi,Vi)/α

]
+ αη. (3.12)

The result also holds if vaccines are not returnable and bc <∞, but Oc = N .

Proposition 3.6 allows us to consider two important cases. The first case, when

returns are possible with bc =∞, arises when the carrier’s capacity is not a limiting

factor and either (1) policy-makers assign low costs to vaccine waste resulting from

shifting refrigeration inventories, or (2) when transportation to the upstream of the

vaccine supply chain is possible. This can occur when deliveries are accomplished

in round trips by the district depot (see, e.g., Brown et al. (2014)), or when mobile

strategies are utilized to reach remote communities such as those in Nigeria, Nicer-

acgua, and Kenya (see, e.g., Ryman et al. (2008), and the references therein). It also

is possible whenever there is adequate freezer and carrier capacity so that carriers can

be outfitted with cold packs for the return trip. Obviously, infinite-capacity carriers

are a fictitious construct; however, when deliveries are accomplished in vehicles that

transport a large volume of vaccines at once, vaccine capacity is no longer a limiting

constraint on ordering. Furthermore, even when transportation capacity is limited,

in settings where deliveries can be made with higher frequency, even a finite-capacity

carrier can render the constraint induced by bc non-binding.

The second case, when N = Oc, describes a purely OCC process. This situation

arises whenever an IHC is planning of outreach sessions or when refrigeration simply

is not available at the IHC, like many IHCs in Sub-Saharan Africa where electricity is

scarce and equipment is subject to failure (see, e.g., Ophori et al. (2014), Haidari et al.

(2013)). When refrigeration is not available, our approach enables the policy-maker to

maximize coverage while minimizing the wastage costs resulting from leftover vaccines

from a given demand period. When planning for outreach sessions, it is important
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to establish appropriate levels of inventory since transporting vaccines for use in

such sessions necessarily exposes vaccines to temperatures and other factors that can

accelerate their degradation. Hence, our approach helps determine inventory levels

that consider maximizing the coverage for sessions, while still minimizing costs of

exposure due to vaccines leaving refrigeration.

If the district depot delivers vaccines directly to IHCs, another related scenario

may arise. As described in Proposition 3.6, since vaccines are delivered to multiple

IHCs, trucks must be endowed with large transportation capacity. Hence, from the

perspective of the IHC, transportation capacity can be viewed as infinite. However,

in this case, storage capabilities at the IHC are binding due to the refrigeration

capacity, as well as the OCC storage in vaccine carriers available at the IHC. Hence,

if transportation capacity is infinite, yet the storage capacity for carriers at the IHC

is limited because of either (1) the number of carriers available, or (2) the number

of carriers that can be kept in the cool chain (with respect to limit on cool packs

which are to be cycled through refrigeration), we find that, a single-period strategy

can again be employed so long as vaccines are returnable.

Corollary 3.3 (District-Delivered Policy). If vaccines are returnable and de-

livered to an IHC via the district depot, the optimal order-up-to quantities to the

multi-period objective (3.5) at each period t = 1, 2, . . . can be determined via

minimize
x∈X̂ ,α≥0

α

n∑
i=1

ln Ef̂t

[
eHi(xi,Vi)/α

]
+ αη, (3.13)

where X̂ is given by X̂ =

{
x ∈ Rn

+

∣∣∣∣∑i∈Oc xiwi ≤ bc,
∑

i∈Or xiwi ≤ br

}
.

In (3.13), Corollary 3.3 shows that optimal order quantities in this case is deter-

mined by two fully myopic singly-constrained problems, and hence can be solved via

two instances of the Single-Period Algorithm. This is due to the fact that in this
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case, any quantity of OCC and non-OCC vaccines can be transported to the IHC,

though storage capacity is limited by refrigeration and vaccine carrier space, respec-

tively. Therefore OCC and non-OCC vaccines do not share any capacity constraints

which accounts for the modified action space X̂ , since non-OCC vaccines no longer

are transported in the carrier used to store OCC vaccines, however, Nature’s demand

distribution must still be selected jointly in (3.13).

In general, the multi-period problem appears to be out of reach. However, when

we consider the system with backordering where the remaining inventory transitions

to sti = min{xt−1
i − vt−1

i , 0} for OCC vaccines and sti = xt−1
i − vt−1

i for refrigerated

vaccines, instead of the lost-sales model, we can still characterize optimal policies as

modified base-stock.

Proposition 3.7 (Base-Stock Optimality). When demands are backordered, for

the infinite-horizon problem, there exists a stationary base-stock level y = (y1, . . . , yn) ∈

Rn such that the optimal action to the multi-period objective (3.5) from an initial in-

ventory position s and previous p forecasts is xi = si if si ≥ yi, and xi = yi if

(max{y1, s1}, . . . ,max{yn, sn}) ∈ X (s).

Systems with backordering are well-known to be approximations of lost-sales mod-

els when the level of coverage is high, hence under conditions with enough capacity

to ensure low levels of outages, a policy-maker can expect optimal policies to be very

near a modified base-stock policy. This enhances the intuition that ordering targets

exist such that, with sufficient capacity, a policy-makers can order up to these levels

regardless their current inventory state st.

3.6 Numerical Experiments

To generate further insights, we first consider a case study, and examine the multi-

period problem using real-world data from an IHC in India. We then turn our atten-
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tion to the single-period problem and perform various experiments under a variety of

parameter configurations (i.e., synthetic data).

3.6.1 Multi-Period Problem. Immunization in Bihar (India)

Lim et al. (2016) use partial data of villages near the Tetia Bambar IHC in Bihar, India

to develop a representative population map for the purposes of determining outreach

center locations. Figure 3.1 shows this map with village locations, populations outside

5km, three routine outreach immunizations, and center locations as determined by

Lim et al. (2016). We utilize this map to study our vaccine management problem

in a multi-period context in two main scenarios: the first scenario considers only the

planning of the outreach immunization, and the second scenario plans inventory levels

for the entire IHC.

Table 3.1 shows relevant immunization data that we use including the level of ther-

mostability by VVM, the volume and price per dose, and the immunization schedule

for children in India. We begin by generating nominal parameters for our underlying

VAR(p) model by simulating a system that features i.i.d. newborn arrivals in each

period with a perfect adherence to the schedule (see Online Appendix B.1).

We first consider inventory control policies over the outreach sessions to the

center with population 10,749, (see Figure 3.1). In this case, the problem acts

as a fully OCC problem since vaccines are distributed at the location and are re-

turned to the IHC within the day. Since schedules for vaccines BCG/HepB and

JE/Measles schedules are identical, we assume that the demand for each type of vac-

cine is also identical which allows us to treat these as bundled vaccines. Then, we

study the problem with u = (2, 1, 2, 1, 1, 1)′, h = λ(0.25, 0.11, 0.647, 0.2, 1.35, 0.18)′,

w = (7.7, 2.1, 9.5, 3, 7.8, 2)′ in accordance with Table 3.1, where vaccines are indexed

in the order BCG/HepB, TT, JE/Measles, DTP, Penta, and OPV respectively. We
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Figure 3.1: Tetia Bambar IHC in Bihar, India with 3 outreach sessions. Circle diam-

eters represent population of villages outside 5km from the IHC. Total population =

57,734. Map generated from data provided in Lim et al. (2016).

further assume that each outreach session occurs on bimonthly intervals per recom-

mendations from WHO (2010). Here, we let λ > 0 represent a scaling factor for our

holding costs to maintain the relative cost difference while investigating the effects of

different holding cost levels. By changing λ, we generate insights into the effect of a

policy-maker’s aversion to outages on immunization coverage.

Figure 3.2 shows the average cost and coverage levels with respect to varying levels

of ambiguity aversion, capacity levels, and holding costs compared to a traditional

outreach policy. The traditional order quantities are established via WHO (2010)

which simply prescribes ordering 1.33 times the average vaccine demand. This tradi-

tional order policy requires approximately 1.3 liters of carrier capacity which is fairly

typical of vaccine carriers. To ensure that our robust policies do not gain advantage
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Figure 3.2: Average discounted cost % gap between policies (left column) and coverage

(right column) in outreach sessions with various levels of ambiguity aversion when

λ = 0.5, 0.25, 0.1, and 0.05 and β = 0.95. The current policy orders 1.33 of each

vaccine’s expected demand (WHO (2010)).

simply via increased carrier capacity, we vary carrier capacity levels at 1.3, 1.4, 1.5,

and 1.6 liters.

The right column of Figure 3.2 shows that when η is small, the average coverage

under each policy is also large since in such systems there is only minor demand

ambiguity. However, even when such ambiguity is small, the left column shows that

the traditional policy pays a heavy price in holding costs since this policy does not

forecast based on the schedule, but rather assumes i.i.d. demand in each period. These

large holding costs showcase the trade-off that traditional vaccine policies make in

return for simplicity and demonstrates the potential gains that can be obtained by
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Figure 3.3: Average discounted cost % gap between policies (left column) and coverage

(right column) in outreach sessions with various levels of ambiguity aversion when

λ = 0.5, 0.25, 0.1, and 0.05 and β = 0.95. The current policy orders 1.33 of each

vaccine’s expected demand (WHO (2010)).

considering the natural autoregressive nature of vaccine demand. When less waste

due to overage can be obtained while still maintaining acceptable coverage levels, the

strain on the cold-chain’s capacity is naturally reduced via smaller inventory levels.

This can be expressed via reduced strain on both cold storage and transportation

capacity at each level of the supply chain. Therefore, we make the following:

Observation 3.1 (Outreach Overage Costs). Robust inventory policies can re-

duce vaccine waste while still maintaining high coverage levels even when the level of

ambiguity is small.

As the level of distrust for the model increases and η becomes large, the disparity
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between robust optimal policies and traditional policies becomes more pronounced.

Even when the robust policy is constrained to the carrier capacity of 1.3 liters, the ro-

bust optimal policy reduces the costs and underages by nearly a factor of 2 throughout

the spectrum of η. When the capacity is increased, these gains are even more apparent

in both cost and underages. This is especially true when λ is small since in this case

the robust policy can leverage the extra capacity to better protect against outages;

when η is small and λ is large, as in Figures 4.1a and 4.1b, these improvements are

negligible since the high overage costs lead to orders near, or below the capacity con-

straint. However, when η is large and λ is small, increasing capacity yields moderate

cost/underage improvements, though these improvements see diminishing returns as

seen in Figures 3.2c-3.3d. Hence, we make the following:

Observation 3.2 (Increasing Outreach Capacity). Outreach systems with vac-

cines that have low overage costs (e.g., BCG, OPV, and TT) experience the greatest

impact from increases in carrier capacity.

Next, we consider the scenario where some vaccines are stored in refrigeration,

and some in cool storage within the vaccine carrier at the IHC. Since BCG/HepB

and TT are the least heat sensitive vaccines, we let these be our OCC vaccines,

whereas JE/Measles, DTP, Penta, and OPV are to remain in refrigeration. Since

OCC vaccines experience higher exposure to heat, we let u = (2, 1, 2, 1, 1, 1)′, h =

(0.25λ1, 0.11λ1, 0.647λ2, 0.2λ2, 1.35λ2, 0.18λ2)′, w = (7.7, 2.1, 9.5, 3, 7.8, 2)′, where λ1 >

λ2. We assume that vaccines are stocked in monthly intervals, which is the most com-

mon restocking interval for IHCs. Furthermore, since traditional IHC policies dictate

6 weeks order-up-to levels, we assume there is enough refrigeration and transporta-

tion capacity to make to achieve 6 weeks of stock with near 100% certainty for OCC

vaccines (see Appendix B.1 for further details).
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Since determining optimal order quantities when refrigerators are utilized in the

general case requires solving a highly dimensional dynamic program with continuous

state space, we leverage Proposition 3.6 and Corollary 3.3 to observe the performance

of our policies in two settings. In Case 1, we order vaccines and determine Nature’s

worst-case demand densities under the assumptions of Proposition 3.6. In this way,

both the policy-maker and Nature behave myopically, and so long as the constraint

on transportation capacity is not tight, this behavior is optimal. In Case 2, we order

vaccines according to the assumptions of Corollary 3.3, where vaccines are delivered

to the IHC, and bc and br act only as storage capacity constraints for OCC and

non-OCC vaccines respectively.

Figure 3.4 shows the results of simulations with λ1 = 0.25 and λ2 = 0.05 in both

cases. In Case 1, though there appears to be large improvements with respect to

coverage and cost in our policies to the traditional approach, there is little differen-

tiation between the robust policies when transportation and storage capacities are

manipulated. The reason for this is simple: in settings where the traditional policy

has enough storage and transportation to satisfy 6 weeks demand, there is more than

enough capacity for robust policies to order their desired quantities of vaccines, even

when η is moderately large. Thus, in this experiment, the order quantities are almost

never restricted by capacity constraints even when we reduce capacity by 5 − 10%,

hence, there is very little difference between the settings with larger capacities. There-

fore, we make the following:

Observation 3.3 (IHC Capacity). Our approach can reduce the current require-

ments for storage and transportation capacity at the IHC level by 5− 10%.

Furthermore, it is clear from Figures 3.4a and 3.4b that, even though the tra-

ditional policy achieves high coverage when η is small, it does so at the expense of
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Figure 3.4: Average cost % gap (left column) and coverage (right column) in Case 1

(associated with Proposition 3.6) and Case 2 (associated with Corollary 3.3) at IHCs

with various levels of ambiguity aversion when λ1 = 0.25 and λ2 = 0.05. The current

policy orders 1.5 of each vaccine’s expected infinite horizon demand (WHO (2010)).

high overage costs. Moreover, these order quantities do not adequately protect cov-

erage levels when η becomes large, yet the robust policy is capable of simultaneously

attaining high coverage levels with low overage costs, even with high η.

Similar behavior to Case 1 can be observed in Case 2 in Figures 3.4c and 3.4d,

where the robust policy demonstrates high performance in reducing costs as opposed

to the traditional policy. However, when bc = 4, even though the costs are dramati-

cally reduced, vaccine coverage achieves similar levels to the traditional policy. This

indicates that when capacity constraints are tight, Nature greatly limits the capabil-

ity of attaining high coverage, yet this also implies that small increases in capacity
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can have dramatic effects on improving coverage, especially when η is high. Hence,

we make the following:

Observation 3.4 (Case 2 Coverage). When vaccines are delivered to the IHC in

accordance with Corollary 3.3, increases in OCC capacity can greatly increase cover-

age, especially when demand is highly uncertain.

3.6.2 Single Period Problem

To gain deeper insight into the single period problem, we now examine order behav-

ior under a variety of parameter configurations. For a related investigation on the

performance of our analytical bounds, we refer to Online Appendix B.2. Through-

out our following analysis, we utilize the BCG vaccine as a working example, whose

nominal parameter settings consist of µi = 220, σi = 40, wi = 0.0044 (as estimated in

Section 3.6.1), and whose underage/overage costs have been normalized to ui = 1 and

hi = 0.75 respectively. Throughout our analysis, we consider the case where ui > hi

since (1) this case is much more closely aligned with real-world vaccine policy-maker’s

disposition, and (2) the case where hi > ui is highly symmetric to that of ui > hi,

hence insights into these cases follow in a similar manner.

In the general single-period problem, we investigate a system with n = 4 where

Oc = {1, 2} and Or = {3, 4} in order to understand the effects of parameter shifts

when capacity constraints become restrictive. In order to generate insights while

avoiding redundancy, we focus on cases with si = 0, hi ≤ ui, and a mean fixed to

µ = (230, 245, 200, 215)′ to help differentiate ordering behaviors. In cases with non-

zero inventory, si simply become lower bounds order quantities, and scenarios with

hi ≥ ui yield highly symmetric results to that of ui ≥ hi. Therefore, we study problem

instances that deviate from a central setting where σi = 40, ui = 1, hi = 0.75 and

wi = 0.0044, for all i ∈ N . This environment features uniform characteristics so that
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the effect of shifting parameters can be more easily observed.

Figure 3.5 show order quantities in settings that feature binding constraints on

both refrigeration and carrier capacity. Since each of the vaccines feature identical

features with the exception of their mean, the marginal benefit functions feature iden-

tical costs when x∗αi − µi = x∗αj − µj, and hence, the difference between their optimal

order quantities is exactly the difference between their means until the capacity con-

straints become tight. As expected via Corollary 3.2, once the capacity becomes a

binding constraint, it remains binding as α → 0. Furthermore, due to their identi-

cal features, optimal order quantities stay constant with small enough α as shown

in Figure 3.5a, hence, as Proposition 3.5 suggests, once a policy-maker achieves a

certain level of ambiguity, all optimal orders will remain the same for higher levels of

ambiguity.

Variability plays an important role in ordering levels, since generally speaking,

higher variability in the nominal distribution permits Nature to choose from a more

hazardous pool of densities. Figure 3.5b demonstrates ordering in a setting identical

to Figure 3.5a except that σ1 and σ3 are increased to 60. As expected from Proposi-

tions 3.3 and 3.5, the priority to fill vaccines shifts from x2 and x4 to filling x1 and

x3 as α → 0 since the potential costs from these types become more severe when

the variance is higher. Importantly, these increases in variance effect order quantities

for non-OCC vaccines more than OCC vaccines since refrigeration and carrier con-

straints act jointly on non-OCC vaccines, leading to decreased order quantities for

vaccines with smaller variance than their OCC counterpart which can be observed in

Figure 3.5b, where x4 begins decreasing prior to x2 as α → 0. Therefore, increases

in variability increases the priority for a vaccine, which can lead a policy-maker to

reduce other vaccine orders, especially for non-OCC vaccines.

Turning our attention to ordering behavior with respect to overage/underage Fig-
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Figure 3.5: Order quantities for vaccines with µ = (230, 245, 200, 215)′, ui = 1,

hi = 0.75, si = 0, wi = 0.0044 in the base case, where Oc = {1, 2} and Or = {3, 4}.

ures 3.5c and 3.5d show the effect of modifying hi/ui in refrigerated vaccines and

OCC vaccines. As shown in Figure 3.5d, even with a major decreases in overage costs

for vaccines 1 and 3, order quantities are not highly sensitive to α since, for moderate

α values, the cost due to overages is relatively minor in comparison to underage costs

as a result of the capacity constraints which directly limits the likelihood of overages.

Hence, when capacity constraints become tight, a policy-maker can be relatively un-

concerned about overage costs as opposed to their treatment of other parameters.

Alternatively, Figure 3.5c shows a setting with a relatively modest increase in un-

derage costs for vaccines 1 and 3, which demonstrates that even small increases in

underage costs results in large increases in relative order quantities, especially when
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capacity constraints become tight. Again, this increase is due to the fact that under-

age is the primary contributor to costs when capacity constraints become binding.

Based on these, we make the following:

Observation 3.5 (Effect of Underage Cost). When capacity constraints are tight,

a policy-maker should place an especially high priority on ordering vaccines with large

underage cost (e.g., OPV in high-risk areas).

Therefore, if some vaccines can be viewed as more critical than others (i.e., those

that have a higher chance of reducing mortality), a policy-maker should prioritize

these vaccines, even at the cost of reducing the order sizes of less critical vaccines.

The final major factor that affects order quantities is the volume of the vaccine. In

Figure 3.6a volume parameters w1 and w3 are increased from 4.4ml to 5ml, which dis-

courages such orders for when the capacity constraints become tight. As Figure 3.6b

shows, vaccine volume can have dramatic effects, especially when both capacity con-

straints become active. These behaviors indicate that it can be better to fill vaccines

that are more volume-efficient than to fill vaccines that require more space, espe-

cially in highly uncertain environments with limited capacities. Thus, we make the

following:

Observation 3.6 (Effect of Vaccine Volume). When capacity is limited, ordering

vaccines with low volume requirements (e.g., TT, OPV, and Measles) is heavily in-

centivized, whereas ordering for vaccines with high volume requirements (e.g., Penta

and JapEnc) is greatly reduced.

Since KL-divergence permits a highly diverse ambiguity set, it is interesting to

identify the shape of the robust density chosen by Nature. Figure 3.7 demonstrates a

few infinite capacity settings where x∗αi = x̂α and µi = 10, σi = 1, ui = 1. Figures 3.7a

and 3.7b show the density shape when α = 30 and α = 20 respectively with hi =
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Figure 3.6: Order quantities for vaccines with µ = (230, 245, 200, 215)′, ui = 1,

hi = 0.75, si = 0, wi = 0.0044 in the base case, where Oc = {1, 2} and Or = {3, 4}.

0.75 and 0.25. Interestingly, their shape resembles mixture distributions with two

highly distinct phases, with the smaller peak tending toward the case of underages

and the larger peak tending toward the case of overages. This implies that the

larger order quantities protect against the underage costs by reducing the density for

larger realizations. As α decreases, the spread of the robust density increases, while

simultaneously further dividing the two peaks of the density. Hence, a robust policy-

maker who fears underage (i.e. ui ≥ hi) will actually expect larger overages rather

than larger underages when they experience no capacity restrictions. Surprisingly,

this contradicts the intuition that the worst-case scenario experiences high levels of

demand.

3.7 Conclusion

Maintaining the cold chain for vaccine distribution in developing countries is subject

to unreliable population data, limited refrigeration capacities, and aging infrastruc-

ture. To gain insights into policies that can improve vaccine delivery in such countries,

we develop an approach that takes advantage of the thermostable properties of vac-

cines. We take advantage of natural autoregressive characteristics implied by vaccine
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schedules to tackle the high levels of ambiguity experienced in demand forecasts,

we apply a robust optimization technique that utilizes ambiguity sets composed of

densities constrained by KL-divergence from the nominal forecast.

We provide a variety of analytical findings including (1) an efficient algorithm

for determining optimal order quantities, (2) easily calculable bounds, and (3) policy

behavior with respect to the level of ambiguity, variability, and capacity restrictions.

Furthermore, via a case study based on real-world data, we find that both outreach

and fixed immunization strategies can benefit from our approach by reducing waste

while ensuring high coverage levels in the presence of forecast ambiguities. Fur-

thermore, since we rely on OCC strategies, our approach can reduce the capacity

necessary for adequate coverage, which is important in areas with limited/unreliable

refrigeration space, especially as the quantity and selection of vaccines included in

immunization schedules increases.

Since our research mainly considers inventory control systems at the last mile of

the vaccine supply chain, future studies could investigate decisions at higher levels

of the supply chain to help regional and district depots store appropriate levels of

inventory while facing uncertain populations. Developing countries suffer from a lack

of data-informed decision-making and managerial oversight, hence policy-makers are

in need of practical considerations to the propagation of upstream data to help ensure

high levels of coverage in the presence of demand ambiguity.
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Chapter 4

DISTRICT-MANAGED VACCINE SUPPLY NETWORKS WITH DEMAND

UNCERTAINTY

4.1 Introduction

Providing immunizations to populations in developing countries is well-known to be

one of the most effective actions to combat high mortality rates, especially for children.

As such, organizations such as UNICEF, the WHO, and GAVI partner with devel-

oping countries in order to enable high vaccination coverage. However, despite these

efforts, the vaccine supply chain for developing countries is currently at capacity and

is further being strained due to increases in vaccine demands, the introduction of ad-

ditional vaccines, insufficient storage and transportation capacity, aging equipment,

and the deficient utilization of data for forecasting and informed decision-making.

As such, to improve vaccination coverage, it is necessary to not only invest in the

modernization and expansion of vaccine supply chains, but also to investigate man-

agement practices that can ensure high levels of coverage for the purpose of reaching

populations in need of immunization.

For this reason, we propose a new management system from the perspective of the

district level of the supply chain; instead of the traditional approach which relies on

Integrated Health Centers (IHCs) fetching vaccines from the district supply depot, we

investigate an approach where vaccines are delivered to the IHC by the district level.

The district depot, which supplies vaccines to a number of IHCs, can more effectively

manage its own inventory levels if it also assumes responsibility for monitoring the

inventory levels of the IHCs. However, in developing countries with limited capability
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for information sharing, communication between levels of the supply chain is typi-

cally poor leading to (1) incomplete knowledge of inventory levels throughout at the

IHC level and (2) uncertainty in the true demand for vaccines. We aim to address

these issues via (1) improved demand forecasting, (2) reduced capacity strain, (3)

proper/safe disposal of vaccine wastes, (4) improved upstream information flow in

the supply chain, (5) reduced strain on IHC workers, and (6) additional monitoring

at the IHC level of the supply chain.

4.2 Literature Review

In developing countries, vaccines are typically transported from a centrally located

national vaccine store to regional stores, then to district depots. IHC workers then

fetch vaccines from the district depots and distribute immunizations via outreach and

fixed immunization sessions. These supply chains feature a wide range of challenges

including aging infrastructure, the necessity of maintaining a cool environment for

the product, and limited storage/transportation capacity at each level which hinders

the ability to provide full coverage to their population (see, e.g. Nigeria’s Ministry of

Health (2013), Ophori et al. (2014), and Adair-Rohani et al. (2013)). To help reduce

costs and increase coverage, many studies investigate the potential for modifying

current practices and supply chain structures. Among these, in a study on Benin’s

vaccine supply chain, Brown et al. (2014) shows that logistics costs can be reduced

by delivering vaccines to IHCs in groups via trucks from higher levels of the supply

chain as opposed to a strategy that can serve only a single IHC at a time (usually

via motorcycles). In our work, we also consider such a delivery strategy, focusing

specifically on a network of IHCs where inventory levels are not observable until

delivery and the demand parameter may be learned from incoming data in a Bayesian

context.
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Along with infrastructural challenges, the WHO’s strategic immunization plan

also indicates a lack of leadership, ineffective data management, and poor demand

forecasting as areas in dire need of improvement (World Health Organization (2014)).

As noted by a GAVI report on Nigeria, remote locations are particularly susceptible

to issues arising from lack of effective communication and inventory management

decisions at the district and IHC levels of the supply chain (GAVI (2014)). Shen

et al. (2014) and Zaffran et al. (2013) state that establishing data-informed inventory

management solutions to vaccine supply chains is essential to providing coverage,

especially as increases in demand due to rising populations and the introduction of

new vaccines strain the system. Yet, maintaining rigorous data records is already a

challenging task for IHC workers, and as many audits show, reliable data often does

not propagate back up the supply chain to inform inventory policy (see, e.g. Wagenaar

et al. (2015), Bosch-Capblanch et al. (2009), Chilundo et al. (2004), Lim et al. (2008),

Murray et al. (2003) and the many references within). These studies have found the

quality of data lacking, and often prescribe additional supervision to improve record-

keeping practices. Therefore, any policy approach that requires frequent, intricate

data records while simultaneously determining inventory decisions based off of this

data from the IHC level would be (1) extremely difficult to implement (due to the

higher levels of effort and training), and (2) subject to many human recording errors.

In our goal to protect against such parameter uncertainty while maintaining im-

plementable policies, the problem we tackle is a combination of periodic inventory

control within a network under demand uncertainty. In this vein, there is a wealth of

literature that uses robust optimization to aid in determining effective policies in the

presence of demand ambiguities. Among these, Bertsimas and Thiele (2006) incor-

porate robustness against parameter uncertainty in a tractable manner by applying

bounds to the forecast errors via a “Budgets of Uncertainty” via Bertsimas and Sim
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(2004a). Other strategies such as those seen in Adida and Perakis (2006), Bienstock

and ÖZbay (2008), See and Sim (2010), Klabjan et al. (2013) and the references within

tackle uncertain demands in inventory control problems via fluid models, data-driven

approaches, and by utilizing moment constraints.

Due to the difficulty of transferring information in developing countries, we con-

sider an environment where demands are unobservable until the decision to order

inventory. We first examine the problem with a single IHC from both a fully ob-

served and Bayesian perspective, where uncertainty is expressed in rate of the Poisson

process that guides demand. This resembles traditional Bayesian inventory control

approaches like Scarf (1959) and Azoury (1985); however, we focus on delivery timings

with unobserved demands between excursions.

Since our problem takes place in a network where deliveries must be made to

several IHCs with varying characteristics, our problem takes the form of a specialized

Inventory Routing Problem (IRP). This class of problems, first studied by Bell et al.

(1983), minimize transportation and inventory costs involved with the distribution of

products to a network of demand sites. With the exception of few recent papers such

as Grønhaug et al. (2010), Engineer et al. (2012), and Uggen et al. (2013), as Coelho

et al. (2013) note in their literature review, most IRP studies assume fixed, determin-

istic consumption rates. In our problem, we not only assume stochastic consumption,

but also consider consumption under parameter uncertainty via a Bayesian approach.

IRPs are well-known to be difficult to solve exactly (see, e.g. Coelho et al. (2013),

Andersson et al. (2010) and the references within), and as such many realistic im-

plementations rely on heuristics or solutions based on simplified problem instances.

The literature is filled with a large variety of such strategies including those based

on metaheuristics, column generation, and clustering strategies. Following the IRP

literature, we provide integer programming (IP) formulations with simplified policy

96



spaces that can be solved in small to medium problem instances. We also employ a

cluster-type heuristic algorithm which can be used on larger problem instances. Un-

like most of the IRP literature, we identify an easily calculable lower bound converges

asymptotically when populations become large.

4.3 Problem Description

As opposed to the traditional approach where IHCs fetch their vaccines from the

district level, we investigate the case where the district level delivers to IHCs directly.

We consider a network where the district depot delivers to n IHCs at periodic time

intervals. Since vaccine inventory can be expressed in terms of the total amount of

inventory necessary to immunize a single child rather than determining the levels of

each type of vaccine individually (see, e.g., UNICEF, WHO (2012)) and since IHCs

utilize order-up-to policies (see, e.g., Rajgopal et al. (2011)), we assume that order-

up-to levels have been determined for each IHC, so that whenever the district delivers

vaccines to IHC i ∈ {1, . . . , n} = N , they ensure qi FIC units of vaccines are in stock

at the beginning of the period. In developing countries, storage capacity at the IHC

level is often highly limited, hence in these settings, qi can simply be the available

refrigeration volume for vaccines. Following the literature like Brown et al. (2014),

we assume that demand for each IHC i ∈ N occurs according to independent Poisson

processes with mean λi per period.

Supplying the network of IHCs requires the use of vehicles and other resources

due to fuel, maintenance, and labor. Therefore, we assign a fixed cost k per route

in addition to a travel cost di,j > 0 whenever an excursion travels from node i to j

for i, j ∈ N ⋃{0}. Here, index 0 corresponds to the district depot and we assume

that the network experiences symmetric costs so that di,j = dj,i for all i, j ∈ N
⋃{0}.

Furthermore, due to (1) the time spent unloading and recording inventory levels and
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(2) limited transportation capacity, we assume that the district can fill at mostm ≤ n

IHCs in a given excursion. We note that this is a simplification of the real system; in

reality, if few vaccines are distributed in an excursion due to low demand realizations

or order-up-to levels, there is the potential to serve additional IHCs in the same trip.

However, in setting m constant for all excursions, we establish a baseline that can

protect against adverse scenarios where all of the transportation capacity is necessary

to serve the IHCs in a route. Hence such policies guarantee a service level even when

they are modified to incorporate additional visits based on the inventory levels in a

given trip. 1

The decision-maker seeks to minimize the costs of underages and transportation,

thus we denote the cost of a missed opportunity due to inventory outages be set to υ.

Since communication is limited between levels of the supply chain, we assume that

previous realizations of demands are not observed until the district delivers vaccines

to the IHC. Letting τ = (τ1, . . . , τn) ∈ Zn+ be the vector of the number of periods

since each IHC was last visited, a policy can be expressed as a mapping that takes

the current period and number of periods since last delivery to each IHC and returns

the IHCs that will be visited on the given period. Hence, we let a policy be a function

π : Z+ × Zn+ → Bn so that π(t, τ ) = a = (a1, . . . , an), where ai = 1 if IHC i is visited

on period t under policy π and aπi = 0 otherwise and let Π be the set of all policies.

To form optimal routes based on the IHCs visited in a given period, a, we let

O(a) = {i ∈ N|ai > 0}, and define ψ : Bn → R as the optimal cost to the constrained

multiple Traveling Salesman Problem (mTSP) with fixed cost k per salesman for

nodes i ∈ N with ai > 0 which can be solved via the following Mixed Integer Program
1The restriction to visitingm IHCs can be extended to reflect the transportation capacity demand

rate at each facility, as discussed in Online Appendix C.2.
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(MIP).

ψ(a) = min kr +
∑

0≤i≤n

∑
0≤j≤n
j 6=i

di,jui,j (4.1)

s.t.
∑
j∈O(a)

(u0,j + uj,0) = 2r,

∑
0≤i≤n
i 6=j

ui,j = 1, j ∈ O(a)

∑
0≤i≤n
j 6=i

ui,j = 1, i ∈ O(a)

bi − bj +mui,j ≤ m− 1, i, j ∈ O(a), i 6= j,

r ∈ N, ui,j ∈ B, bi ∈ N

Here, ui,j are the usual TSP variables that are 1 if the edge i to j is used in a tour

and 0 otherwise, bi represent the node potentials in the network, and r gives number

of tours scheduled (see, e.g. Miller et al. (1960) and Bektas (2006)).

Now, letting τ πt = (τπ1,t, . . . , τ
π
n,t) be the number of periods since each IHC was last

visited and aπt = (aπ1,t, . . . , a
π
n,t) be the action under policy π at time t, and letting Xt

denote the demand at time t, the cost under policy π at time t can be expressed

Zπ
t =



ψ(aπt ) + υ
∑n

i=1

(
Xi,t −

(
qi − 1{τπi,t 6= 1}∑t−1

t̂=t−τπi,t
Xi,t̂

)+)+

t < T,

ψ(1n) + υ
∑n

i=1

(
Xi,t −

(
qi − 1{τπi,t 6= 1}∑t−1

t̂=t−τπi,t
Xi,t̂

)+)+

t = T,

0 Otherwise,

(4.2)

Hence, given an initial τ1 (which is not affected by π) our goal is to find the policy

that minimizes the objective:

arg min
π∈Π

E

[∑T
t=1 Z

π
t

T

]
. (4.3)
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We refer to the case when T →∞ as the infinite horizon average cost case.

However, in developing countries, populations served by IHCs are not well under-

stood, hence the rate of demand can be uncertain. Therefore, instead of assuming a

fully observed parameters λi, we approach the problem from a Bayesian perspective.

Assuming the initial prior for each IHC’s λi is gamma with parameters αi,0 and βi,0,

a sufficient statistic from the observations up to time t is given by αi,0 +
∑t

i=1 Xi and

t+ βi,0. Letting α = (α1, . . . , αn) and β = (β1, . . . , βn), the policies for the Bayesian

case are mappings π : Z+ × Zn+ × Rn
+ × Rn

+ → Z+ which take the prior parameters

along with τ and the current period t, and return the IHCs that are served in a given

period. Hence, in the Bayesian case, π(t, τ ,α,β) = a, which represents the IHCs

that are visited at time t under policy π. In a nearly identical manner to the case

where λ is fully observed, we let Π̂ denote the set of such policies and express the

cost under policy π as

Ẑπ
t =



ψ(aπt ) + υ
∑n

i=1

(
Xi,t −

(
qi − 1{τπi,t 6= 1}∑t−1

t̂=t−τπi,t
Xi,t̂

)+)+

t < T,

ψ(1n) + υ
∑n

i=1

(
Xi,t −

(
qi − 1{τπi,t 6= 1}∑t−1

t̂=t−τπi,t
Xi,t̂

)+)+

t = T,

0 Otherwise,

(4.4)

Then, given τ1 and initial priors α0 and β0, the Bayesian objective can be expressed:

min
π∈Π̂

Eα0,β0

[
T∑
t=1

Ẑπ
t

]
, (4.5)

where prior parameters are updated at time t in accordance with αi,t = αi,0 +
∑t

i=1 Xi

and t+ βi,0 if aπi,t = 1 since demand observations only occur when IHCs are visited.
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4.4 Fully-Observed Case

Both (4.3) and (4.5) can be solved via dynamic programs. First focusing on (4.3), we

define the cost function

ci(λ) =


υ (λ(1− F (qi − 1, λ))− qi(1− F (qi, λ))) λ > 0,

0 λ = 0,

(4.6)

for each i ∈ N , where F is the Poisson CDF with parameter λ which is the expected

number of underages resulting from a single period of Poisson demand with mean λ

when the order-up-to level is given by qi. Then, we can express (4.3) in terms of a

dynamic program which operates backwards in time:

Vt(τ ) =


mina∈Bn ψ(a) +

∑n
i=1 ci(λiτi)− ci(λi(1− τi)

+Vt−1(((1− a1)τ1 + 1, ..., (1− an)τn + 1)) t > 0,

ψ(1n) +
∑n

i=1 ci(λiτi)− ci(λi(τi − 1)) t = 0,

(4.7)

Here, τ still consists of the number of periods since the last delivery to each IHC,

and act as the system state at time t. If the decision-maker chooses action ai = 1,

then cost ci(λiτi) is collected and the next period’s τi transitions to 1. Otherwise, if

ai = 0, the system delays delivery, and τi transitions to τi + 1. If the initial state is

τ ,
∑T

t=1 Z
π
t = Vt(τ ), hence, the infinite horizon case of (4.7) can be calculated as the

limit of the dynamic program limT→∞VT (τ )/T .

The problem (4.7) is highly computationally complex due to its n-dimensional

state and action spaces, where the action space is further demanding as a result of the

service constraints on each trip. Even given an optimal action a, simply determining

ψ(a) is well-known to be an NP-Hard problem, and the naive MIP formulation of

(4.7) features far too many constraints and variables to be tractable. However, using

the structural results of the case when n = 1, we can determine a lower bound to
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(4.7).

When n = 1, the (4.7) takes on a highly simplistic form since the timing of routes

is only based on a single IHC’s inventory level and ψ only takes on values 2d1,0 in the

case that a1 = 1 and 0 otherwise. Furthermore, since no parameter learning occurs,

intuitively, there is no advantage to altering the number of periods between deliveries

over different periods. Since such a policy maintains an identical delivery pattern,

we say π is a fixed-τ policy if it designates τ periods between every delivery. As our

intuition suggests, fixed-τ policies are optimal to the fully observed objective. This

allows us to easily determine the optimal policy, as well as evaluate (4.7) via the

following proposition:

Proposition 4.1 (Optimal Fully-Observed Policy). In the case where n = 1 and

k + 2d1,0 < υq1, letting τ̂ = argminτ≥1
1
τ
(k + 2d1,0 + c1(τλ1)),

(i) The optimal policy to the infinite horizon average cost case of (4.3) is fixed-τ

with ordering period τ̂ with average cost 1
τ̂
(k + 2d1,0 + c1(τ̂λ1)).

(ii) In the finite-horizon problem, if T + 1 mod τ̂ = 0, the fixed-τ policy with τ̂ is

optimal with cost VT (1) = T+1
τ̂

(k + 2d1,0 + c1(τ̂λ1)).

(iii) In any finite-horizon problem with T , VT (1) ≤ T+1
τ̂

(k + 2d1,0 + c1(τ̂λ1)).

This reinforces the notion that the fully-observed case minimizes the cost by mini-

mizing the average cost between deliveries. When IHCs must be served on an individ-

ual basis due to remote locations or transportation capacity restrictions, a simple rou-

tine delivery policy should be implemented if the demand rate is established. In finite

horizon settings, when T + 1 mod τ̂ = 0, an average cost of 1
τ
(k+ 2d1,0 + c1(τλ1)) per

period can be achieved by delivering every τ̂ periods, whereas when T + 1 mod τ̂ 6= 0

the terminating conditions of (4.7) imply that at least some delivery must violate the

fixed-τ policy associated with τ̂ . However, the performance of the fixed-τ policy (with
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the exception of the final delivery) in these cases is very near optimal performance,

since the average cost for all periods except those associated with the final delivery

can be shown to result in lower cost than all other policies.

We specify that k+ 2d1,0 < υq1 since otherwise, the cost of delivering the vaccines

will outweigh any mitigated underage costs which induces an optimal strategy of zero

deliveries. In practice, since the leading metric of vaccine supply chains is immuniza-

tion coverage, the cost of missed opportunity is large in comparison to transportation

costs, hence this condition is naturally satisfied in any realistic setting. Hence, so long

as the costs of delivery are not prohibitive, a manager that has fully characterized

demand should strive to engage in equally spaced deliveries. Furthermore, since c1 is

an increasing function of λ1, which induces a smaller τ̂ , supply chains will naturally

experience higher costs and more deliveries when demands increase.

Using the structural results of the single-IHC case, we can determine an easily

calculable lower bound to (4.7).

Proposition 4.2 (Fully-Observed Lower Bounds). If k + 2di,0 < υqi for all

i ∈ N , the following lower bounds to (4.7) (and hence (4.3)) hold:

n∑
i=1

min
τ≥1

1

τ

(
k + 2d0,i

m
+ ci(τλi)

)
≤ VT (1n)

T + 1
≤ lim

T→∞

VT (1n)

T
. (4.8)

In addition to revealing a lower bound for both finite and infinite horizon cases,

Proposition 4.2 enables a sufficient condition for optimality of (4.7) when the distance

costs go to zero. Referring to routes that feature many IHC visits as “dense” and

letting a “fully dense” route describe a route that visits exactlym IHCs, when di,j = 0,

if a policy exists that consists of only fully dense routes, where each IHC is visited

every arg minτ≥1
1
τ

(
k
m

+ ci(τλi)
)
periods, this policy experiences a cost identical to

the lower bound of Proposition 4.2 and hence is optimal to (4.7). Even for cases

where such a policy is not possible, and distance costs are small, (4.8) suggests that
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optimal policies to (4.7) strive to (1) enable fully dense trips and (2) target trips near

arg minτ≥1
1
τ

(
k+2di,0
m

+ ci(τλi)
)

for each IHC. Hence, these lower bounds naturally

improve when n increases, m decreases, and when IHCs with similar λi and qi are

tightly clustered, since these conditions become easier to satisfy. Thus, a manager is

incentivized to serve IHCs with similar characteristics if they lie near one another in

regular intervals in accordance with τ̂ of Proposition 4.1.

Though the lower bounds (4.8) can be near the optimal cost in the above settings,

they can be improved under some assumptions concerning the routes in the optimal

policy. If it is assumed that each route includes at least m̂ IHCs, letting

ψ̂(i, m̂) = min
a∈Bn

{
ψ(a)

∣∣r = 1, ai > 0,
∑
j∈N

aj ≥ m̂

}
(4.9)

denote the transportation cost of the smallest route of m̂ IHCs that includes IHC i,

the lower bounds (4.8) can be improved to

n∑
i=1

min
τ≥1

1

τ

(
ψ̂(i, m̂)

m
+ ci(τλi)

)
≤ VT (1n)

T + 1
≤ lim

T→∞

VT (1n)

T
(4.10)

by substituting the transportation cost k+2di,0 with ψ(i, m̂). Since inventory routing

problems usually are composed of dense routes, and since the capacity restrictions

via m further incentivize route density in our problem, (4.10) provides a means of

obtaining more realistic bounds in cases where n is small, m is large, and the network

is more sparse, which can worsen the guaranteed lower bounds (4.8).

4.5 Bayesian Case

We turn our attention to the case where the demand rates are not fully observed, (4.5),

which can also be expressed via a dynamic program. Similar to the fully-observed
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case, we define cost functions for the Bayesian case

ĉi(τ, α, β) =


υ
β

((qi + τα)h(qi, τα, β) + (qiβ − ατ)(−1 +H(qi, τα, β))) , τ > 0,

0, τ = 0.

(4.11)

Here, H and h are distribution functions of the negative binomial distribution

h(y, α, β) =

(
1

β + 1

)y (
1− 1

β + 1

)α(
y + α− 1

α− 1

)
. (4.12)

Cost function ĉi gives the expected cost due to missed opportunities when the time

since last service is τ and prior parameters for demand are the pair α and β for all

i ∈ N . The Bayesian objective (4.5) can be solved via the dynamic program

V̂t(α,β, τ ) = min
a∈Bn

ψ(a) +
n∑
i=1

ĉi(τi, αi, βi)− ĉi(τi − 1, αi, βi) (4.13)

+ Eα,β,τ

[
V̂t−1((α1 +

t∑
t̂=t−τ1

X1,t, ..., αn +
t∑

t̂=t−τn

Xn,t),

(β1 + a1τ1, ..., βn + anτn),

((1− a1)τ1 + 1, ..., (1− an)τn + 1))
]

if t > 0, and terminating state

V̂t(α,β, τ ) = ψ(1n) +
n∑
i=1

ĉi(τi, αi, βi)− ĉi(τi − 1, αi, βi) (4.14)

if t = 0. However, given the high level of complexity in the fully-observed problem

(4.7), the Bayesian program (4.13) is hopelessly complex to solve in general, even over

small time horizons and small n. Fortunately, (4.13) admits a lower bound, similar

to (4.8).

To accomplish this, we again turn to the case when n = 1, where V̂t(1) can be

105



expressed

V̂t(α, β) = min
τ≥1


k + 2d1,0 + ĉ1(τ, α, β)

+
∑∞

y=0 V̂t−τ (α + y, β + τ)h(y, τα, β) t− τ > 0

k + 2d1,0 + ĉ1(τ, α, β) t− τ ≤ 0.

(4.15)

Unlike (4.13), actions between deliveries are by definition delayed actions, hence these

waiting periods can be immediately woven into the dynamic program and we drop

τ from the state space (see Lemma C.1 in Online Appendix C.3). Inspecting (4.15)

reveals that β − t remains constant throughout the dynamic program. This implies

that V̂t(α, β) can be viewed as a two-dimensional dynamic program by linking β and t.

Thus, to solve for period t, it suffices to solve for the t−1 periods of single-dimensional

components of the dynamic program.

Since V̂t is the Bayesian counterpart to Vt, the two dynamic programs feature

many connections. Therefore, letting V̂π
t (α, β) to be the evaluation of policy π on

(4.15), we make the following proposition.

Proposition 4.3 (Learning Objective Characterization). The following rela-

tions between fully observed and learning objectives hold:

(i) For any fixed-τ policy π, t+1
τ̂

(k + 2d1,0 + c1(τ̂α/β)) ≤ V̂π
t (α, β),

(ii) limβ→∞ V̂t(λ1β, β) = Vt(λ1),

(iii) minτ∈Z+ Eg

[
t+1
τ

(k + 2d1,0 + c1(τλ))
]
≤

V̂t(α, β) ≤ minτ∈Z+
t+1
τ

(k + 2d1,0 + ĉ1(τ, α, β)).

Proposition 4.3 implies that the non-learning and Bayesian objectives are highly

related. Result (i) implies that fully observed demand parameters are preferable to

any parameter uncertainty when the decision-maker is restricted to fixed-τ policies.
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This is because when the Bayesian objective is restricted to non-learning policies, the

convex properties of ĉ in α allows us to invoke Jensen’s inequality. However, in general

we do not have t+1
τ̂

(k + 2d1,0 + c1(τ̂α/β)) ≤ V̂t(α, β) since V̂t(α, β) is non-convex in

α and β.

Since β acts roughly as the level of information, (ii) shows that as the level of

information increases, the Bayesian case converges to the fully observed case, hence

V̂t(α, β) ≈ t+1
τ̂

(k + 2d1,0 + c1(τ̂α/β)) for large β. This intuitive result reinforces

the fact that information is the link between objectives and further shows that as T

becomes large, policies in the Bayesian case become fixed-τ .

Further linking non-learning and Bayesian cases, (iii) shows that the Bayesian

objective can be bounded from below via the non-robust objective, and bounded

above via ĉ. Defining the probability density function

ĝ(λ, α, β, τ) =
λα−1

(
β
β+1

)ατ
(β + τ)αe−λ(β+τ)

1F1

(
ατ ;α; λ(β+τ)

β+1

)
Γ(α)

,

where 1F1 is the hypergeometric function, we can use these bounds to generate suffi-

cient conditions for optimality criteria via the following corollary.

Corollary 4.1 (Sufficient Optimality Condition). If there exists 0 < τ < t such

that

t+ 1

τ
(k + 2d1,0 + ĉ1(τ, α, β)) ≤


Eĝ

[
t+1
τ

(k + 2d1,0 + c1(τ̂λ))
]

τ̂ < t

k + 2d1,0 + ĉ1(τ̂ , α, β) τ̂ ≥ t

(4.16)

for every τ̂ 6= τ , then the optimal delivery waiting period for V̂t(α, β) is τ .

By substituting the upper bound as the valuation for policies under action τ , and

substituting the lower bound in the cost-to-go for policies under all other actions τ̂ , if

action τ is still preferable to the decision-maker, τ must represent an optimal action.
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Since Corollary 4.1 relies on fixed-τ policies, the conditions necessary to declare τ

an optimal action are only satisfied for sufficiently small T since the potential for

learning policies to reduce costs can be made arbitrarily large with T . However, the

following proposition shows that optimal actions in the Bayesian case can be easily

bounded.

Proposition 4.4 (Delivery Bounds). If k + 2d1,0 ≤ ĉ(2τ, α, β) − 2ĉ(τ, α, β), then

the optimal delivery waiting period to V̂t(α, β) is less than 2τ .

The proposition is established intuitively; if two deliveries can be accomplished

with smaller expected value than a single delivery over the same number of periods,

there is no incentive for the decision-maker to deliver with any larger gap since the

information state can remain the same after two orders. Naturally this implies that a

manager can expect to engage in faster deliveries as the expected demand rate, α/β,

increases.

The results on the single-IHC case helps to form a lower bound to (4.13).

Proposition 4.5 (Bayesian Lower Bounds). Letting V̂′T,i(αi, βi) refer to (4.15)

with fixed and distance costs k/m and 2d0,i/m and underage cost function ĉi, (4.13)

has the lower bound

n∑
i=1

V̂′T,i(αi, βi) ≤ V̂T (α,β,1n). (4.17)

Like the lower bound (4.8) in the fully observed case, (4.17) results from the fact

that a system only capable of serving one IHC per trip with fixed and travel costs

of k/m and 2di,0/m results in a lower cost than a system with fixed and travel costs

of k and di,j that can serve m IHCs each trip since the former is essentially a less

restricted version of the latter. Unlike Proposition 4.2, even when distance costs go

to zero, the lower bound (4.17) are only realizable if there exists fully dense trips
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that satisfy the waiting periods implied by the dynamic program V̂′t,i(αi, βi) at each

period. Since the prior parameters naturally deviate based on observations, such a

scenario is impossible to guarantee, hence, in general, only trivial settings can result

in achievable lower bounds. However, the lower bounds still provide a baseline from

which to compare the performance of suboptimal policies that can be calculated by

evaluating n instances of (4.15).

Similar to (4.10), these lower bounds can be improved by assuming that the op-

timal policy has route density such that every route visits at least m̂ IHCs. Then,

letting V̂′′T,i(αi, βi) denote a modified version of V̂′T,i(αi, βi) where term (k + 2di,0)/m

is replaced with with (k + ψ̂(i, m̂))/m, we gain the improved bounds

n∑
i=1

V̂′′T (αi, βi) ≤ V̂T (α,β,1n). (4.18)

4.6 Fixed-τ Policies Reduction

Since both (4.3) and (4.5) become highly intractable, we focus on a reduced pol-

icy space which only use variations on fixed-τ policies. Then, the problems can be

expressed as more easily solvable MIPs than the original dynamic programming for-

mulations (4.7) and (4.13).

Therefore, since the fully observed single-IHC problem is solved via fixed-τ policies

and the lower bounds (4.8) suggest that such policies also have a strong connection

to (4.7), we consider the infinite-horizon average case where a manager is restricted

to utilizing only fixed-τ policies. Thus, defining τ̄ as the maximal allowable number

of period between deliveries for any IHC in the network and letting Tτ̄ be the least

common multiple of {1, ..., τ̄}, the infinite-horizon fully observed problem restricted

to using only fixed-τ policies can be solved via the MIP (4.19).
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min
n∑
i=1

τ̄∑
τ=1

τ−1∑
j=0

yi,τ,jci(τλi)/τ +
1

Tτ̄

( Tτ̄∑
t=1

(
krt+

n∑
i=0

n∑
j=0

di,jui,j,t
))

(4.19)

s.t.
τ̄∑
τ=1

τ−1∑
j=0

yi,τ,j = 1, i = 1, ..., n

n∑
j=1

(u0,j,t + uj,0,t) = 2rt, t = 1, ..., Tτ̄

∑
i 6=j

ui,j,t =
τ̄∑
τ=1

yj,τ,t mod τ , j = 1, ..., n, t = 1, ..., Tτ̄ ,

∑
j 6=i

ui,j,t =
τ̄∑
τ=1

yi,τ,t mod τ , i = 1, ..., n, t = 1, ..., Tτ̄ ,

bi,t − bj,t +mui,j,t ≤ m− 1, i, j ∈ N , i 6= j, t = 1, ..., Tτ̄

rt ∈ N, yi,τ,j ∈ B, ui,j,t ∈ B, bi,t ∈ N

Program (4.19) takes advantage of the fact that fixed-τ policies feature a natural

periodicity every Tτ̄ periods, hence it suffices to consider only these Tτ̄ periods to

solve the infinite horizon problem. Similar to (4.1), in (4.19), ui,j,t = 1 when the edge

from i to j is used at time t and is 0 otherwise, yi,τ,j = 1 indicates that IHC i is

served every τ periods with first service occurring on period j + 1, and rt represents

the total number of trips made on period t. These decision variables, along with

the fact that (4.19) only requires Tτ̄ periods, account for why the MIP formulation is

much simpler than the dynamic program (4.7); policies for each IHC no longer deviate

throughout time, but all the information for a policy at an IHC is held within yi,τ,j,

which describes the time between individual services paired with its starting point.

Interestingly, when the travel costs go to zero (i.e., di,j = 0), so long as there exists

fully dense trips that facilitate deliveries every arg minτ≥1
1
τ

(
k
m

+ ci(τλi)
)
periods for

each IHC, (4.19) will still achieve the lower bound of Proposition 4.2, and hence will

result in an optimal policy. Even when travel costs are non-zero, (4.19) can still
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approach this lower bound. If IHCs can be grouped into disjoint subsets O1,O2, . . . ,

so that di,j is small pairwise within each subset, then di,0 ≈ dj,0 for each i, j ∈ Ol.

Hence, treating each subset as an instance of (4.19), if there exists fully utilized trips

that deliver every arg minτ≥1
1
τ

(
k+2di,0
m

+ ci(τλi)
)
periods for each IHC i ∈ Ol for each

disjoint subset, (4.19) will approximately yield the lower bounds of Proposition 4.2.

Even when such a policy is not achievable for all IHCs, if most can be served in

this manner, performance can still be near the lower bounds, hence, in networks that

feature natural clustering, (4.19) can result in a close upper bound to (4.7).

Though (4.19) is a simplification of (4.7), it can still be a challenging problem

when τ̄ and n is large. This is because even when all fixed-τ policies have been

determined (i.e., all yi,τ,j are known), the routing constraints (see, e.g., Miller et al.

(1960)) form a series of Tτ̄ mTSPs which are known to be even more challenging

than the traditional TSP. Furthermore, since Tτ̄ is the least common multiple of all

whole numbers up to τ̄ , Tτ̄ grows exponentially, hence the number of mTSPs that

must be embedded into (4.19) increases exponentially in τ̄ . Each embedded mTSP

sees quadratic increases in decision variables in n, thus the problem can obviously

still become highly intractable. District depots usually supply fewer than 20 − 25

IHCs, and if each period represents the time interval of a week, τ̄ should be no larger

than 6 (see, e.g., Assi et al. (2013), Brown et al. (2014)). Though these smaller

settings are not out of reach, they are still time consuming, requiring many hours of

computational effort. Thus, in both smaller settings and in cases where n and τ̄ are

large, we provide a scalable heuristic in Section 4.7 based on the structural results of

(4.19).

A similar strategy can be employed to incorporate learning via a tractable Bayesian

approach by modifying the policy space to feature fixed-τ policies. In a T period prob-

lem, consider the restricted policy space where (1) all IHCs are required to be visited
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on periods T1, T2, . . . , where Ti < Ti+1 and (2) each IHC must be served according to

a fixed-τ strategy between periods Ti and Ti+1. Hence, like (4.19), we aim to reduce

the complexity of (4.13) by enforcing fixed-τ strategies, but allow the decision-maker

to dynamically update their strategies between mandatory delivery periods. The

optimal policy for periods t ∈ {1, . . . , T1} can be solved via the MIP (4.20).

min
n∑
i=1

τ̄∑
τ=1

τ−1∑
j=0

yi,τ,j

(
ĉi(j + 1, αi, βi) + τbT1−(j+1)

τ
cĉi(τ, αi, βi) (4.20)

+ ĉi

(
T1 − τbT1−(j+1)

τ
c − (j + 1), αi, βi

))
+ ψ(1n) +

T1−1∑
t=1

(
krt +

n∑
i=0

n∑
j=0

di,jui,j,t
)

s.t.
τ̄∑
τ=1

τ−1∑
j=0

yi,τ,j = 1, i = 1, ..., n

n∑
j=1

(u0,j,t + uj,0,t) = 2rt, t = 1, ..., T1 − 1

∑
i 6=j

ui,j,t =
τ̄∑
τ=1

yj,τ,t mod τ , j = 1, ..., n, t = 1, ..., T1 − 1,

∑
j 6=i

ui,j,t =
τ̄∑
τ=1

yi,τ,t mod τ , i = 1, ..., n, t = 1, ..., T1 − 1,

bi,t − bj,t +mui,j,t ≤ m− 1, i, j ∈ N , i 6= j, t = 1, ..., T1 − 1

rt ∈ N, yi,τ,j ∈ B, ui,j,t ∈ B, bi,t ∈ N

MIP (4.20) can restrict its attention to the first T1 periods since the condition that

all IHCs experience deliveries at T1 ensures an identical system state at T1 under

all feasible policies in the restricted policy space. Due to the fact that only fixed-τ

strategies are employed, (4.20) is highly similar to (4.19): yi,τ,j = 1 if deliveries to

IHC i are made every τ periods starting with period j + 1, ui,j,t indicates if the edge

from i to j is used on period t, and rt represents the number of trips made at period t.

However, there are distinct differences in the objective since the Bayesian problem is
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not infinite horizon with periodicity. Instead, underage costs are calculated in three

portions: the underage cost from periods 1, ..., j + 1 is accounted for by the term

ĉi(j + 1, αi, βi), the underage costs with τ periods between trips corresponds to the

ĉi(τ, αi, βi) term, and underage cost from periods leading up to the required delivery

at period T1 is given by the ĉi(T1 − T1−T1 mod τ
τ

− (j + 1), αi, βi) term. Also, we note

that travel costs accrue identically to (4.19) up to period T1−1, at which point travel

costs on period T1 are accounted for via ψ(1n).

Since it shares a comparable complexity due to the same number of decision

variables and constraints as found in (4.19), (4.20) grants a computationally feasible

space to express policies that exhibit parameter learning. However, in the case that

n or T1 become large, we provide a heuristic in Section 4.7 similar to those provided

for the fully observed MIP (4.19). The simplifications used to attain tractability

in the form of the MIP (4.20) increase the costs to (4.13) due to increased policy

restrictions, yet, if Ti are chosen carefully, this approach can still be shown to yield

high performance as compared to the lower bounds of Proposition (4.5). If each

Ti mod Tτ̄ = 0, the mandatory services at Ti will naturally occur (i.e., the the fixed-τ

policy delivers at time Ti) for IHCs that have yi,τ,τ−1 = 1. Hence, the additional cost

resulting from service periods T1, T2, . . . can be made small since this requirement

is not highly restrictive when Ti is chosen appropriately. Obviously, the other main

simplification is the restriction to fixed-τ policies. However, this restriction can also

be managed by careful selection of Ti: if there is a large amount of uncertainty

in parameters, Ti can be chosen to be smaller, resulting in a faster response to new

information. Otherwise, if there is little parameter uncertainty Ti can be made larger,

which results in fewer costs due to required service periods, with the trade-off of having

a slower response to new information.
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4.7 Class-Based Heuristic

Since solving the network case can become computationally challenging, even with

the simplifications used in Section 4.6, we develop an easy-to-implement, scalable

heuristics based on fixed-τ strategies. To accomplish this, our heuristics endeavor

to mimic the MIP reductions (4.19) and (4.20) by arranging IHCs in groups that

satisfy fully dense routes, aiming for deliveries that occur every arg minτ≥1
1
τ

(k+2di,0
m

+

ci(τλi)
)
periods in the fully observed case and arg minτ≥1

1
τ

(k+2di,0
m

+ ĉi(τ, αi, βi)
)
in

the Bayesian case for each IHC.

Therefore, to classify IHCs in accordance with their single-IHC order period, we

define θ(i) = arg min1≤τ≤τ̄
1
τ

(k+2di,0
m

+ ci(τλi)
)
and θ̂(i) = arg min1≤τ≤τ̄

1
τ

(k+2di,0
m

+

ĉi(τ, αi, βi)
)
return the “class” of IHC i in the fully observed and Bayesian cases

respectively. Then, lettingM⊆ N andM(i) = {j ∈M|θ(j) = i} refer to the set of

IHCs in a particular class withinM, we make the following observation: if i divides

j and b |M(j)|i
j
c > 1, IHCs of class j can be substituted for class i while still satisfying

service every j periods by serving b |M(j)|i
j
c IHCs of class j every i periods. This can

be exploited to obtain a quantity of class i such that it is divisible by m which can

be used to implement fully dense trips to these IHCs. For example, when m = 2,

|M(2)| = 1 and |M(6)| = 3, if we visit a different class 6 IHC along with the class 2

IHC every 2 periods, each IHC can be visited according to its class in a fully dense

route.

When class j are used to generate class i in this way, we refer to this as reducing

class j into class i. Thus, we define red : Z3
+ → Z2

+ as the reducing function from j

into i,

red(i, j, a) =


(bai

j
c, a− bai

j
c j
i
) j mod i = 0

(0, a) Otherwise,
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Algorithm 1 Moderate IHC Arrangement
1: function Soft_Reduce(a, i)
2: b← a
3: bi ← bi mod m
4: if bi = 0 or i = τ̄ then return b
5: for j = i+ 1, j + +, while j ≤ τ̄ do
6: if bj mod m 6= 0 then
7: if bi + red(i, j, bj)1 ≥ m then
8: bj = (red(i, j, bj)1 − (m− bi))) ji + red(i, j, bj)2 mod m
9: bi = 0 return b
10: else
11: bi = bi + red(i, j, bj)1

12: bj = red(i, j, aj)2

13: return (b1, ..., bi, ai+1, ...aτ̄ )

where we refer to red(i, j)1 and red(i, j)2 as the first and second elements of the

associated 2-vector, which are simply the quotient and remainder resulting from ai/j

when i divides j and (0, a) otherwise.

Since IHCs with low class experience frequent visits, they encourage dense routes

to an even greater degree than higher classes. Thus, our heuristic prioritizes deter-

mining dense routes for lower classes via reductions. To reflect this characteristic

in our heuristic, we design Algorithms 1 and 2, which take a targeted class and the

number of each class of customers and return IHC groupings that yield dense routes.

Algorithm 1 attempts to find fully utilized trips for class i via reductions of other

classes. It prioritizes reducing smaller classes into i before resorting to reductions

of larger classes, yet it only reduces class j into class i if the remaining members of

class j becomes a multiple of m. In this way, the Algorithm 1 does not break up

potentially fully utilized excursions composed of class j. Algorithm 2 is identical to

the Algorithm 1 with the exception that it will break up classes in order to find fully

dense excursions for class i.

Algorithms 1 and 2 only return the quantity of each class which yield dense routes

with a focus on reducing IHCs of a particular class. To assign the routes themselves,
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Algorithm 2 Strict IHC Arrangement
1: function Hard_Reduce(a, i)
2: b← a
3: bi ← bi mod m
4: if bi = 0 or i = τ̄ then return b
5: for j = i+ 1, j + +, while j ≤ τ̄ do
6: if bi + red(i, j, bj)1 ≥ m then
7: bj = (red(i, j, bj)1 − (m− bi))) ji + red(i, j, bj)2 mod m
8: bi = 0 return b,0
9: else
10: bi = bi + red(i, j, bj)1

11: bj = red(i, j, aj)2

12: a← b
13: for j = i+ 1, j + +, while j ≤ τ̄ do
14: if bi + bj < m then
15: bi = bi + bj
16: bj = 0
17: else
18: bj = bj − (m− bi)
19: bi = 0 return b,a− b
20: return 0,0

we employ a MIP solution which minimizes the transportation cost associated with

the groupings produced by the reduction Algorithms 1 and 2, which is detailed in

Online Appendix C.1.

The principal advantage of our heuristic (see, e.g., Algorithm 3 in Online Ap-

pendix C.1) is that its complexity only grows linearly in τ̄ and avoids the exponential

growth of Tτ̄ which allows for it to be applied to problems with finer time periods

than our fixed-τ MIP formulations permit. Furthermore, though it still requires the

solution of TSP-related MIPs, these problems are called at most dn/me times, and

unlike MIPs (4.19) and (4.20), our heuristic uses with smaller subsets of N , which

further reduces the associated computational complexity in n. Hence, as stated in

Section 4.6, though n is usually less than 20, our heuristic can still provide tractable

solutions in settings with larger n.
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4.8 Numerical Study

To further investigate the problem under various parameter settings, we present the

following numerical study which consists of evaluating our MIP solutions, heuristic,

and bounds over a large parameter suite. In order to avoid biases resulting from

class/location similarity (which naturally improves our heuristic’s performance), we

randomly generate IHC and depot locations via a multivariate normal random vari-

able with mean 0, and covariance Iσ, where σ > 0. Then, with a FIC volume of

68.2cm3 (according to India’s immunization schedule from WHO (2016)) we assume

that each IHC is equipped with refrigeration capacity of 30 liters (see, e.g., WHO

(2000) and WHO (2017)), which corresponds qi = 450 for all i ∈ N . Then, we

vary n,m, k, and σ, as well as λ, α, and β in the fully observed and Bayesian cases

respectively.

As discussed in Section 4.6, our MIP solutions are still computationally difficult

problems, even in the reduced solution space where fixed-τ policies are employed.

Hence, in Tables 4.1-4.2 we evaluate the cost percentage gap from the smaller of (1)

best MIP solution obtained in 30 minutes of computation time and (2) the solution ob-

tained via our heuristic approach in the fully-observed and Bayesian cases respectively.

First turning our attention to the fully-observed case, we consider three settings for λ:

For all i ∈ N , In Case 1: λi = 100 + 25(i mod 6), in Case 2: λi = 100 + 25(i mod 3),

and in Case 3: λi = 150 + 25(i mod 4) per week. This generates classes of IHCs that

range from 1−4, and allows us to investigate settings with low demand rates (Case 2),

high demand rates (Case 3), or a mixture of both (Case 1). In the Bayesian analog,

we consider cases where the prior parameters are set such that for all i ∈ N , in Case

1: αi/βi = 100 + 25(i mod 6), in Case 2: αi/βi = 100 + 25(i mod 3), and in Case 3:

αi/βi = 150+25(i mod 4) per week. To reflect different levels of information, we con-
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sider cases where, for all i ∈ N , IHCs share the same value βi = 5, 10, 15, 20, 25 since

it is expected that the level of information throughout the network is approximately

the same.

Since our heuristic is based on achieving highly dense routes with the aim of

accommodating routine trips to each IHC in accordance with their class, it is expected

for the performance of our heuristic to become stronger when n increases and m

decreases. In these settings, a larger proportion of fully dense trips should be able

to be accommodated without compromising travel expenses by visiting IHCs too

frequently. Naturally, these travel costs comprise the bulk of the suboptimal behavior

in our heuristic; by its design, high underage costs are already mitigated in our

heuristic since it guarantees visits to each IHC with respect to its class. Observing

averages in terms of n and m in both Table 4.1 and 4.2 reveals that this intuition

holds true, since the performance of our heuristic increases as compared to the MIP

solution. Therefore, since large n implies high populations size (due to the necessity

of many IHCs), and since small m can indicate either low transportation capacity or

high levels of demand at each IHC, we make the following:

Observation 4.1 (Large Population/Low Transport Capacity). In settings

large populations (n) and/or low transportation capacity (m), a manager can expect

high performance from our class-based routing heuristic.

Additionally, the heuristic’s capability for accomodating fully dense trips improves

when IHC classes are small and relatively uniform. This is because (1) m IHCs of the

same class can always be grouped together to form fully dense trips, and (2) smaller

classes can more easily reduce larger classes. Tables 4.1 and 4.2 reflect this inclination:

Case 1, which features a wider range of IHC classes and largest percentage gap than

Cases 2 and 3 in both Fully-Observed and Bayesian problems. Furthermore, Case
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Numerical Suite Performance: % Gap

Type MIP % Heur % MIP Time Heur Time LB1 % LB2 % LB3 %

n = 9 0.98 10.79 29.43 0 36 32 30

12 3.25 3.77 29.87 0.09 31 28 26

15 4.92 2.29 30 0.01 28 26 24

18 5.41 1.36 30 0.02 29 27 25

m = 3 3.37 1.25 29.95 0 19 16 13

5 4.68 3.66 30 0.01 30 28 26

7 2.95 8.41 29.58 0.09 43 41 39

k = 0.25 1.04 4.69 30 0.02 48 42 38

0.5 1.32 6 28.94 0.01 46 41 37

1 2.56 3.97 30 0.03 41 36 33

5 4.67 5.35 30 0.01 34 32 30

Case 1 2.9 7.2 29.78 0.01 33 31 29

Case 2 6.43 2.68 30 0.01 32 29 27

Case 3 1.26 3.8 29.7 0.1 28 25 23

d = 0.05 3.95 4.84 29.74 0.01 27 25 23

0.1 4.41 4.16 30 0.14 29 26 25

0.5 3.23 4.11 29.92 0.01 31 28 26

1 2.83 4.63 30 0.01 34 31 28

1.5 3.96 4.6 29.48 0.02 32 29 27

Ave. 3.63 4.48 29.84 0.04 31 28 26

Table 4.1: The performance of our heuristic and bounds, under different parameters.
Timing of the MIP and Heuristic problems are in minutes.

3 has the smallest percentage gap due to the small IHC classes as a result of larger

mean demand rates. Interestingly, in the Bayesian case, there does not appear to be

large differences between the levels of β, which implies that the heuristic is well-suited

for any level of uncertainty in parameters.

Since the heuristic and lower bounds assume fully dense trips with zero costs

resulting from IHC-to-IHC transportation, as dij increases, it is expected that the

performance of our heuristic will worsen. Though some small deterioration can be

observed in both Table 4.1 and 4.2, this decrease in performance is largely unremark-

able, which can be attributed to the fact that the rate at which IHCs are optimally

served is quite insensitive to distance. Consider Figure 4.1, which demonstrates that

the main determining factor to the cost (in the fully-observed case) is associated with

the term ci or ĉi, and hence, the choice of τ is relatively unaffected by distance costs.

119



Numerical Suite Performance: % Gap

Type MIP % Heur % MIP Time Heur Time LB1 % LB2 % LB3 %

n = 9 4.21 10.95 22.19 0 45 40 35

12 1.3 3.01 26.98 0.01 42 38 34

15 2.69 2 26.79 0.02 41 37 34

18 4 0.98 30 0.02 37 35 32

m = 3 2.74 1.26 25.7 0 28 24 19

5 2.41 3.94 26.96 0.01 43 39 36

7 4.1 7.87 28.64 0.02 52 49 46

k = 0.25 1.67 5.38 25.74 0.01 48 43 39

0.5 2.9 4.57 28.81 0.01 45 41 37

1 3.48 5.45 25.78 0.01 42 38 34

5 4.3 2.21 27.94 0.01 30 28 26

Case 1 2.42 8.82 27.65 0.01 43 39 36

Case 2 3.59 2.64 28.43 0.01 43 39 35

Case 3 3.2 1.96 25.01 0.02 39 34 30

β = 5 3.9 1.97 30 0.01 38 34 31

10 2.65 4.71 27.07 0.02 42 38 35

15 2.64 5.46 25.35 0.01 42 38 34

20 3.14 4.89 26.94 0.01 41 38 34

25 3.17 4.89 23.6 0.01 43 39 35

d = 0.05 2.56 3.74 30 0.01 38 35 32

0.1 3.89 2.46 25.02 0.01 37 34 31

0.5 4.23 5.15 25.7 0.01 45 41 37

1 1.85 6.11 27.57 0.01 43 39 35

1.5 2.95 4.46 24.82 0.02 44 38 34

Ave. 3.1 4.4 27.12 0.01 41 37 34

Table 4.2: The performance of our heuristic and bounds, under different parameters.
Timing of the MIP and Heuristic problems are in minutes.

Hence, even though the heuristic does not capure IHC-to-IHC travel costs, so long as

these distances are not extremely large, the heuristic still tends to choose an optimal

τ . Therefore, we make the following:

Observation 4.2 (Sensitivity In Transportation Costs). Changes in fixed costs

(k) and transportation costs (dij) do not have large impacts on the frequency of IHC

visits.

In developing countries where data is limited, it is unlikely that a policy-maker

can determine a known demand form, which calls into question the assumption of a
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Figure 4.1: Class sensitivity with respect to changes in transportation costs for the

fully observed case. The Bayesian case behaves in an almost identical fashion.

Poisson demand process. Therefore, to test the robustness of our approach against

misspecifications of the demand distribution, we evaluate the differences in expected

underage, E [(
∑τ

t=1Xi,t − qi)+], when the underlying density of demand at each pe-

riod deviates from Poisson. Since Poisson random variables have variances which

scale according to λ, to capture deviations from our Poisson assumption, we test

the expected underage when demand occurs according to discretized normal random

variables with mean λi and standard deviation θi
√
λi.

Figure 4.2 demonstrates the difference in expected underage associated with Nor-

mal and Poisson demand for various τ . As expected, when θi approaches 1, the

expected underage from Normal demands becomes a good match to the expected

underage in the Poisson demand process. However, even in the case where |θi − 1|

is large, the expected underage gap remains within a small margin of the Poisson

case. Importantly, since these gaps are small enough to still provide a high level

of differentiation between IHC classes, our heuristic can still achieve a high level of

performance in both fully-observed and Bayesian cases even when demand does not

occur according to a Poisson process.
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Observation 4.3 (Sensitivity to Poisson Demand). Our heuristic is not highly

sensitive to deviations in the distribution of demand.

Notably, the lower bounds in Tables 4.1 and 4.2 tend to perform poorly despite

acting as a basis for a high-performance heuristic. This is due to two main contribut-

ing factors: (a) IHC-to-IHC transportation costs (which are ignored in the lower

bounds), and (b) a failure to serve all IHCs via fully-dense trips in accordance with

their class. To investigate the impacts of these two factors, we consider the optimal-

ity percentage gap of the lower bounds when IHCs are shifted away from the district

depot as pictured in Figure 4.3a in two settings: Case 1 where IHCs can be served

via fully-dense trips with respect to their class, and Case 2 where this is not possible.

This allows us to observe the effect of both factors: as the cluster shifts away from

the depot, IHC-to-IHC travel costs become small in comparison to the total costs,

which reduces Factor (a) of our heuristic as a contributor to suboptimality. Likewise,

we can compare the effects of Factor (b) by observing Case 1 against Case 2.

Figure 4.3b shows that, as expected, in Case 1, when the IHC-to-IHC transporta-

tion costs become small in comparison to the total costs, the bounds converge to

the optimal cost. Furthermore, when IHCs become more dispersed (i.e., σ becomes

large), this effect is more pronounced. Notably, the percentage gap can be reduced

when n becomes large since this naturally results in a closer spacing between IHCs.

In Case 2, we also see reduced percentage gap as the distance from IHCs to depot

becomes small. However, since it takes place in an environment where fully-dense

trips are not possible, the bounds can never achieve the optimal cost since the lower

bounds assume a transportation cost of (k + 2di,0)/(mτ) for each IHC. This effect is

especially obvious in Tables 4.1 and 4.2 in the cases where σ = 0.05, which despite

negligable IHC-to-IHC transportation costs, still experiences a large percentage gap.

However, we again note that when n becomes large, the proportion of trips that are
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fully-dense also naturally becomes large, resulting in smaller percentage gap due to

Factor (b).

Observation 4.4 (Lower Bound Performance). When IHCs are grouped closely

to one another, the lower bounds (and hence the heuristic) see increased performance.

4.9 Conclusion

In order to aid developing countries’ vaccine supply chains that experience (1) limited

transportation capacity, (2) poor data quality, (3) insufficient managerial oversight,

and (4) a lack of communication between levels of the supply chain, we identify a

new strategy for delivering vaccines directly from the district depot that can directly

address these problems while also providing a means of learning demand rates in a

Bayesian manner.

Though the general problem is highly challenging in both fully observed and

Bayesian cases, by investigating the single-IHC cases, we find easily calculable lower

bounds and other features that help to characterize asymptotically optimal policies

that transfer to the multiple-IHC case. Though these policies can be solved via a

MIP approach, we also identify an easy-to-implement heuristic approach that oper-

ates by grouping IHCs into classes based on their demand rate and transportation

costs. Finally, we verify our approach numerically via a large parameter suite, which

demonstrates the high-performance of our heuristic, especially in settings with (1)

numerous IHCs, (2) low transportation capacity, or (3) highly clustered IHCs. This

allows for managers to design policies that naturally mitigate vaccine outages while

avoiding excessive transportation costs without undergoing heavy computational bur-

dens.
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Figure 4.2: Gap between Normal and Poisson expected underages,

E [(
∑τ

t=1 Xi,t − qi)+]− ci(τλi), when qi = 450.
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(a) Cluster of IHCs shift away from the depot located at (0,0).
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Figure 4.3: Optimal percentage gap of lower bounds as IHC clusters shift away from

the district depot. Case 1 has n = 9 with 6 Class 2 IHCs and 3 Class 3 IHCs. Case

2 has n = 10 with 7 Class 2 IHCs and 3 Class 3 IHCs (m = 3, k = 1, and qi = 450

for all i ∈ N ). IHCs are located according to a multivariate normal random variable,

with mean in accordance with the distance from the district depot, and covariance

Iσ.
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Chapter 5

CONCLUSION

5.1 Contributions

Healthcare operations has experienced great improvements over a vast array of prob-

lems via the development and optimization of models for the purpose of informing

policies that can help reduce costs and increase patient safety. However, models exist

only as stylized representations of real-world scenarios, hence they rely on estimations

from data and/or content experts. Thus, an estimated model can be an unreliable

representation of the real-world, especially in settings with little or highly variable

supporting data. This can lead to poor decision-making, resulting in increased costs

or reduced patient outcomes.

To help reduce the negative consequences of model misspecifications in healthcare

operations, instead of optimizing with respect to a single model, policy-makers can

implement robust techniques by instead considering a suite of models, engaging in

a minimax game against an antagonistic agent, and hence can safeguard themselves

from potentially adverse scenarios. However, this robust methodology can result in (1)

overly-conservative policies that (2) ignore learning from incoming data streams. To

mitigate these drawbacks, we have studied robust frameworks for two main health care

applications that allow decision-makers to engage in policies that protect against these

misspecifications in accordance with their pessimism levels while utilizing incoming

data to learn about the true underlying model.

In Chapter 2, we investigated a percentile optimization technique for multi-class

queueing systems with unknown service rates that can utilize incoming data for learn-
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ing the true system parameters. We found that the optimal policies to the non-robust

parameter-learning problem take the form of an easily expressible policy that can be

used to generate optimal policies to the robust problem. Since the general robust

problem is highly complex, by further characterizing the robust optimal policies, we

identified a high-performance, easy-to-implement heuristic that we applied to a Hos-

pital Emergency departments application, and found that our approach could benefit

Emergency departments with high congestion and unstable/unknown populations.

In Chapter 3, we propose implementing a novel inventory policy for the last mile in

developing countries supply chains that utilizes the inherent thermostable properties

of the vaccines. We model this problem as a MPNP and give initial results concerning

its optimal policy and a simple algorithm for finding optimal ordering policies. Since

the underlying model requires the estimation of many parameters (such as those

guiding the arrivals, proportion of arrivals, and wastage rates), we develop a KL-

divergence constrained objective that can help to protect against these ambiguities.

We find that our approach can help to reduce the necessary storage capacities at

IHCs, identify relative ordering behavior between vaccine types in settings with highly

uncertain demand, while highlighting the benefits of increased transportation capacity

and informed demand forecasting.

Finally, in Chapter 4 we propose a model that utilizes a new district-managed

approach of the vaccine supply chain to transform the traditional pull system to a

data-informed push system, effectively integrating the last two levels of the supply

chain. We study networks where the demand rate of each IHC are (1) fully known

or (2) known only up to a prior via a Bayesian approach and establish effective

policies by implementing analytically driven MIP and heuristic solutions. In addition

to naturally providing additional managerial oversight, improving data reliability via

consolidation, and reducing the load on IHC workers, we find that this approach is
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effective at maintaining high levels of coverage while still utilizing incoming data for

informed decision-making.
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A.1 Numerical Experiments and Extensions

A.1.1 Parameter Suite

We explicitly describe the parameter suite associated with the experiment summarized

in Table 2.2. In each parameter configuration, was let c = (1, 1) and β = 0.99. Since

there is only one optimal policy when µ1,i > µ2,j, (or µ1,i < µ2,j) for all i, j ∈ {1, 2},

our parameter suite focuses on the case where µ2,1 < µ1,1 < µ1,2 < µ2,2 so that the

minimax policy focuses on class 1 and minimin policy focuses on class 2. To limit the

study for tractability purposes, we let the parameters vary from 0.1 to 0.9 on a grid

with 0.1 increments so that each µi,j = 0.1 ∗ k for i, j ∈ {1, 2} and k ∈ {1, 2, . . . , 9}.

There are 126 configurations of parameters that satisfy these requirements. Therefore,

for each X specified in Table 2.2, we evaluate each policy (minimax, minimin, and

95% chance-constrained for f1, f2, f3 and f4) on each parameter configuration at the

central prior b̄, resulting in 1, 134 examples for each policy.

A.1.2 Heuristic Performance

To help establish the near-optimality of the Ecµ heuristic, we utilize the parameter

suite explicitly described above in Section A.1.1 and evaluate the percentile objective

using this heuristic. Table A.1 gives the optimality gap percentage of the percentile

objective under the heuristic policy π, with respect to the parameter suite associated

with Table 2.2 evaluated as

Yπ(X, ε)− Y(X, ε)

Y(X, ε)
%.

The extremely small gaps indicate that our heuristic performs very closely to the

optimal percentile policy. Again, this is due to (a) the relationship of the Ecµ policy

to the optimal non-robust policies, (b) the fact that we utilize a prior on the boundary

of Lε, and (c) the visibility of this prior from the worst-case belief.
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Optimality Gap (%)

X
95% Chance

Constrained f1

95% Chance

Constrained f2

95% Chance

Constrained f3

95% Chance

Constrained f4

(2, 2) 0.02 0.03 0.01 0.01

(2, 5) 0.08 0.12 0.1 0.10

(2, 10) 0.06 0.08 0.07 0.07

(5, 2) 0.13 0.18 0.05 0.04

(5, 5) 0.10 0.11 0.12 0.12

(5, 10) 0.10 0.11 0.11 0.12

(10, 2) 0.14 0.17 0.09 0.08

(10, 5) 0.23 0.27 0.27 0.27

(10, 10) 0.26 0.27 0.25 0.27

Ave. 0.12 0.15 0.12 0.12

Table A.1: Performance of the heuristic over the test suite (n = 2,m1 = 2,m2 = 2).

To show that our heuristic policy performs well, even in large instances, we perform

simulations for very large problem instances, well-beyond our capability for finding

the optimal chance-constrained solution. Using a uniform PB with ε = 0.05 and X =

(10, 10, 10, 10, 10, 10) as well as X = (30, 30, 30, 30, 30, 30) we again evaluate over the

CVar statistic with respect to the heuristic and minimax policies which can be seen in

Figure A.1. In this experiment, we see many of the same performance characteristics

as our smaller examples. Notably, the heuristic ourperforms the minimax policy of

the spectrum of optimism/pessimism.

A.1.3 Sensitivity: Robust Case

To show that the sensitivities to policies with respect to the selection of the prior

are alleviated in our robust framework, we re-examine the experiment associated
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Class µi,1 µi,2 µi,3 µi,4 µi,5 µi,6

1 0.1 0.105 0.11 0.115 0.12 0.125

2 0.085 0.15 0.125 0.14 0.165 0.185

3 0.08 0.11 0.14 0.15 0.165 0.175

4 0.07 0.08 0.1 0.13 0.145 0.155

5 0.065 0.075 0.085 0.09 0.155 0.2

6 0.055 0.065 0.075 0.08 0.115 0.175

Table A.2: Ambiguity set for the service rates for each of our 6 customer classes in

our extended example.

Figure A.1: 10, 000 simulations of the 95% Ecµ heuristic and minimax policies, when

PB is uniform and c = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0).
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Figure A.2: Comparison of four 95% chance-constrained policies with prior densities

f1, f2, f3, and f4 against b̄ (µ1,1 = 0.1, µ1,2 = 0.15, µ2,1 = 0.12, µ2,2 = 0.13).

with Figure 2.5. Keeping the experiment setting identical to Figure 2.5, we evaluate

policies over prior distributions f1, f2, f3, and f4 associated with Table 2.2. Again,

we run simulations in which the true parameter settings are selected according to b̄

and keep track of the cumulative number of attempts to serve class 1 by time t under

each policy, and depict the results in Figure A.2.

Figure A.2 shows that these policies are nearly identical, which is expected since

the belief points that generate these policies lie near one another, a fact that is also

reflected in Table 2.2.
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A.1.4 Extension: Systems with Dynamic Arrivals

Consider the case where arrivals occur in accordance with independent Poisson pro-

cesses with associated rates λ̂i for each class i ∈ N . For the stability of the queue,

we assume that
∑

i∈N λ̂i < mini∈N ,j∈Ji µ̂i,j. We can express the system as a dy-

namic program similar to (2.4) using uniformized parameters with respect to ψ >

maxi∈N ,j∈Ji µ̂i,j +
∑

i∈N λ̂i so that λi = λ̂i/ψ. We also modify our belief update

mechanism σ to σ̂ so that the updated belief after receiving an observation is based

on components

σ̂ (b, a,+)a,j =
µa,jba,j∑ma
k=1 µa,kba,k

=
µa,jba,j
E [µa|b]

, (A.1)

for “successful” service observations, and

σ̂ (b, a,−)a,j =

(
1− µa,j −

∑
i∈N λi

)
ba,j∑ma

k=1

(
1− µa,k −

∑
i∈N λi

)
ba,k

=

(
1− µa,j −

∑
i∈N λi

)
ba,j(

1− E [µa|b]−∑i∈N λi
) , (A.2)

for “failed” service observations, and σ (b, a, θ)i,j = bi,j for i 6= a since parameter belief

is independent between customer classes. In this way, the discrete-time equivalent

problem when arrivals occur according to Poisson processes is given by

V̂ (X,b) = cXT + β

[
min

a∈A(X)

{
E [µa|b] V̂ (X− ea, σ̂ (b, a,+)) +

∑
i∈N

λiV̂ (X + ei,b)

+
(
1−

∑
i∈N

λi − E [µa|b]
)
V̂ (X, σ̂ (b, a,−))

}]
, (A.3)

where, in the case of X = 0, the idling action is used. As with the clearing system,

we show that this is the discrete-time equivalent to the continuous-time problem in

Lemma A.12 in Online Appendix A.2.

To transfer the case of arrivals to the percentile optimization criterion, we let

R̂π (X) = maxb∈B V̂π (X,b) and N̂π (X) = minb∈B V̂π (X,b) be the minimax and

minimin robust objectives in the case of Poisson arrival streams. Then, we define

Ŷπ(X, ε) = inf
yε∈[N̂π(X),R̂π(X)]

yε
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s.t. PB

(
V̂π (X,B) ≤ yε

)
≥ 1− ε, (A.4)

as the percentile objective adapted to Poisson arrivals with Ŷ (X, ε) = infπ∈Π Yπ (X, ε).

Interestingly, many of the results we found for the percentile problem with respect

to the clearing system can be transferred to the case of Poisson arrivals due to the

preservation of b0 as a “worst-case” belief and the concavity of V̂ (X,b) with respect

to its belief state. Letting Π̂b denote the set of non-robust policies associated with

V̂ (X,b), and appropriately altering Kb to be composed of such policies, Theorem 2.2

and Propositions 2.1, 2.4, and 2.5 can be interpreted from the perspective of Poisson

arrivals with associated non-robust value function V̂ (X,b) and percentile objective

Ŷ (X, ε). Hence, we gain Proposition A.1.

Proposition A.1 (Dynamic Arrivals). The result of Theorem 2.2, and Proposi-

tions 2.1, 2.4, and 2.5 holds when arrivals occur according to independent Poisson

processes.

Proposition A.1 suggests that, even for systems with dynamic arrivals, we can

gain essentially all of the insights necessary for constructing effective policies under

the robust percentile objective by studying the non-robust problem of a clearing

system. Hence, we can use the same strategies for implementing the Ecµ policy to

solve the modified percentile objective as used in the clearing system.

To further connect the Ecµ policy to the case with dynamic arrivals, we also

show that under some conditions, the Ecµ policy remains asymptotically optimal to

the non-robust problem even when the system is not a clearing one. For instance,

consider a queueing system that undergoes intense bursts of arrivals during which the

probability of clearing any given class is near 0. If these bursts are followed by long

periods of no arrivals, so that the probability of clearing the system between arrival

bursts is near 1 under any non-idling policy, the system resembles a series of clearing
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systems. In these types of arrival processes, the Ecµ policy becomes asymptotically

optimal. The proof and details of this are outlined in the proof of Corollary A.3 in

Online Appendix A.2. This is an important insight with respect to hospital EDs – the

application we study in Section 2.7.1 – since their arrival behavior exhibit these traits;

typically EDs experience long periods of heavy traffic during peak hours followed by

little traffic after midnight, where the system clears. 1

A.1.5 Sensitivity to Prior Belief: Arrivals Case

Numerical experiments that lead to Observations 2.2 and 2.3 establish the sensitives

inherent within non-robust problem with regard to the specification of belief. We

find that the robust problem does not experience these sensitivities by the replicating

the numerical experiments with under different PB that were used in the experiment

associated with Table 2.2.

To show that actions are not sensitive to the selection of PB, we compare the

cumulative actions taken as in experiment 2. Figure A.3 demonstrates that even under

significantly different distributions, the difference between policies is on average, only

differ by about two actions, which is not a large degree of difference given the number

of actions it takes to empty the queue and in comparison to Figure 2.5.

To show that the difference in beliefs over time is not significant, we compare

the KL-divergence between the beliefs of which two separate 95% chance constrained

robust policies are generated in Figure A.4. Obviously, since their initial beliefs are

very similar, and their associated policies are also very similar, the KL-divergence

remains very small, especially in comparison to Figure 2.6.
1A year of data show that typically a peak arrival rate is seen close to noon, followed by a lull

period close to midnight as shown by Figure A.6 in Online Appendix A.1.7.
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Figure A.3: Comparison of two 95% chance constrained robust policies under

f1, f2, f3, and f4 associated with Table 2.2.

A.1.6 Expressible Convex Floating Bodies

The set Lε (and hence δLε) typically needs to be estimated by a polytope since most

distributions result in convex floating bodies with no easy closed-form representation.

However, upper and lower bounds to the percentile objective can be found by opti-

mizing over sets (in the sense of Proposition 2.4) that contain or are contained by Lε
which converge to Y(X, ε) as the sets converge to Lε. The details of this are expressed

in the proof of Lemma A.9 in Online Appendix A.2. Additionally, with certain PB,

the problem of estimating Lε may be altogether circumvented. This is specifically the

case when PB has the form of a spherical-type distribution defined below.

Definition A.1 (Spherical Distribution). We say PB is a spherical distribution

centered at b1, if, for any ε ∈ R+, Lε = {b2 ∈ B : ‖b2 − b1‖ ≤ d} for some d ∈ R+,

where ‖·‖ is the l2-norm.

In cases with spherical distributions, searching for b∗ is simplified even in large

dimensional spaces, since we have the expression for δLε and bounds based on the

visibility from b0. Thus, the problem is reduced to searching for the maximum of a

concave function on a sphere.

Another distribution that features an easily expressible convex floating body is a
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Figure A.4: Comparison of the average KL-divergence between two 95% chance con-

strained robust policies’ beliefs under f1, f2, f3, and f4 associated with Table 2.2.

special case when PB is uniform. If n = 2,m1 = 2,m2 = 2, and PB is uniform, a

small modification of a result by Calgar (2010) shows that δLε is given by a curve

defined in four quadrants as:

b2,1 =



b1,1−1+0.5ε

b1,1−1
: 0.5 ≤ b1,1 ≤ 1− ε, 0.5 ≤ b2,1 ≤ 1− ε

b1,1−0.5ε

b1,1
: ε ≤ b1,1 ≤ 0.5, 0.5 ≤ b2,1 ≤ 1− ε

0.5ε
b1,1

: ε ≤ b1,1 ≤ 0.5, ε ≤ b2,1 ≤ 0.5

− 0.5ε
b1,1−1

: 0.5 ≤ b1,1 ≤ 1− ε, ε ≤ b2,1 ≤ 0.5

for 0 < ε < 0.5 as shown in Figure 2.4. If we evaluate V (X,b) along the quadrant

visible to b0, belief b∗ is revealed as the maximum on this curve. We use this uni-

form case and various spherical cases in Section 2.7 to show that since our approach

includes learning, it provides robustness to the specification of PB. Therefore, even

though exact closed-form representations of Lε in general are rare, polytope or spher-

ical approximations are sufficient for the purposes of percentile optimization in our

framework.
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Figure A.5: Normalized histograms of the patients’ Length of Stay (LOS) based on

a year of data collected from a partner hospital.

A.1.7 The Hospital Emergency Department Setting: Calibration Using

Data

We fit a model with fully known parameters such that first of all, the cµ priority

rule (which is optimal with known exponential service rates) follows the ED proto-

col of prioritizing patients in order of Urgent Simple (US), Urgent Complex (UC),

Non-Urgent Simple (NS), and Non-Urgent Complex (NC) classes that is proven by

Saghafian et al. (2014) to be optimal under fully observed parameters. Secondly, we

ensure that this model matches our data collected from a partner hospital seen in

Figures A.5 and A.6. Furthermore, in line with what is described in the main body,

we assume that the costs (ROAE) do not accumulate for patients who have started

service (stabilized patients) and that the service is nonpreemtive.

To accomplish these goals, we model the arrivals as a non-stationary Poisson

process with arrival rates changing every two hours according to the data obtained

from our partner hospital. We assume that 51% and 49% of patients are simple

and complex respectively in urgent and non-urgent patients which are the typical

proportions reported in Saghafian et al. (2014).
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Figure A.6: Per hour arrival rates of urgent and non-urgent classes based on a year

of data collected from a partner hospital.

In hospital EDs, patients are subject to misclassifications. Urgent/non-urgent

patients experience misclassification errors of 9% − 15%, whereas simple/complex

misclassifications occur at a rate near 17% (see, e.g., Saghafian et al. (2014), and the

references within). In our model, we use error-impacted service rates and treat the

each class of patient as their triaged class, as opposed to their “true” class. Hence,

the queue containing patients classified as UC may include patients that are actually

within US, UC, NS, and NC, and the associated rate parameter of this queue reflects

this mixture. Hereafter, we refer to each class as the “error-impacted” class.

Since LOS in urgent and non-urgent patients appears to be lognormally dis-

tributed, we assume service time distributions of the ED as a superserver are also

lognormal. Complex patients by definition experience multiple visits with physicians

and undergo tests which usually require more processing time. Therefore, we as-

sume that the service rate for a complex patient is less than that of a simple patient.

Next, we fit the service rates (of the ED as a superserver) so that the mean LOS is

the mean LOS seen from our data set. Letting US, UC, NS, NC be classes 1, 2, 3,
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and 4, respectively, we find that lognormal distributions with rates (denoted µ̂i,3),

µ̂1,3 = 6.8, µ̂2,3 = 2.72, µ̂3,3 = 10.2, µ̂4,3 = 4.08 and scale parameter 0.5 see the same

mean LOS as in our data set. We note that these rates are estimated from our data

for 2-hour periods of time. To incorporate model ambiguity, we generate ambiguity

sets by incorporating four additional rate parameters µ̂i,1, µ̂i,2, µ̂i,4, µ̂i,5 to our fitted

rates µ̂i,3 so that for each i ∈ N , µ̂i,1 < µ̂i,2 < µ̂i,3 < µ̂i,4 < µ̂i,5.

To study the effect of incorporating ambiguities, we wish to compare our proposed

data-driven percentile optimization to the complexity-based prioritization (as recom-

mended by Saghafian et al. (2014)), minimax, and minimin approaches. Since arrivals

are included in the ED model, we must begin by modifying our Bayesian updating

mechanism. To accomplish this, we use uniformization rate ψ = 30 to uniformize pa-

rameters µi,j corresponding to their continuous time rates. We choose this rate since

is fast relative to our estimated service rates, allowing for us to employ our asymp-

totic results gained from Theorem 2.1. At a given time, let λi be the uniformized

rate associated with an arrival of class i. Then the updated belief σ (b, a, θ) after

receiving an observation is based on components

σ (b, a,+)a,j =
µa,jba,j∑ma
k=1 µa,kba,k

=
µa,jba,j
E [µa|b]

, (A.5)

for “successful” service observations, and

σ (b, a,−)a,j =

(
1− µa,j −

∑
i∈N λi

)
ba,j∑ma

k=1

(
1− µa,k −

∑
i∈N λi

)
ba,k

=

(
1− µa,j −

∑
i∈N λi

)
ba,j(

1− E [µa|b]−∑i∈N λi
) , (A.6)

for “failed” service observations, and σ (b, a, θ)i,j = bi,j for i 6= a (since parameter

belief is independent between customer classes).

We assume PB is uniform within B and wish to use a 95% chance-constrained

policy on the system. Since this problem is highly dimensional and the convex float-

ing body (introduced in the main body) is not easily determined, we utilize our Ecµ
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heuristic. The heuristic states that our 95% chance-constrained policy should be ap-

proximately the Ecµ policy with initial belief with components {bi,1, bi,2, bi,3, bi,4, bi,5} =

{0.51, 0.1225, 0.1225, 0.1225, 0.1225} for each i ∈ N .

To test our percentile approach against other methods, we simulated a day under

each method and examined the total cost over this period using the CVar metric with

the following ambiguity sets:

µ̂i,1 µ̂i,2 µ̂i,4 µ̂i,5

µ̂i,3 − 2.0 µ̂i,3 − 1.0 µ̂i,3 + 1.0 µ̂i,3 + 2.0

µ̂i,3 − 1.5 µ̂i,3 − 0.75 µ̂i,3 + 0.75 µ̂i,3 + 1.5

µ̂i,3 − 2.0 µ̂i,3 − 1.0 µ̂i,3 + 0.75 µ̂i,3 + 1.5

µ̂i,3 − 1.5 µ̂i,3 − 0.75 µ̂i,3 + 1.0 µ̂i,3 + 2.0

Table A.3: Ambiguity setsMi considered for the different service rates of the Emer-

gency Department under consideration.

These ambiguity sets represent scenarios of busier and queues (e.g., the third ambi-

guity set of Table A.3), less busy queues (e.g., the fourth ambiguity set of Table A.3),

and ambiguity sets with tighter or looser considerations (e.g., the second and first

ambiguity set of Table A.3 respectively).

Since it is possible that the true ROAE for complex patients is different from that

of simple patients, so we test our method choosing a variety of adverse event (i.e., cost)

configurations. Namely, we assume that simple patients ROAE is less than or equal to

their complex counterpart, and perform simulations for when c1 = kc2 and c3 = kc4

for k ∈ {1/2, 5/8, 3/4, 7/8, 1}. Thus, we perform 20 simulations to analyze each

combination of cost setting and ambiguity set. We implement a warm-up period of 6

hours for each run and perform 20, 000 replications for each configuration. The results

of these simulations are shown in Figure 2.10 in Section 2.7.1, and in Figures A.7,
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A.8, A.9, and A.10.
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To show that our approach can be used in even larger settings, we conduct an

additional experiment that features week-long (7 day) simulations of the ED with

a uniform PB and the ambiguity shown in Table A.4. The results of these simula-

tions are shown in Figure A.11 and demonstrate that our chance-constrained policies

still dominate the spectrum of pessimism/optimism as compared to other prioriti-

zation schemes. This implies that our approach offers significant advantages over

non-learning policies, even in large problem instances.

Class µ̂i,1 µ̂i,2 µ̂i,3 µ̂i,4 µ̂i,5 µ̂i,6 µ̂i,7 µ̂i,8 µ̂i,9

US 4.80 5.30 5.80 6.30 6.80 7.30 7.80 8.30 8.80

UC 0.72 1.22 1.72 2.22 2.72 3.22 3.72 4.22 4.72

NS 8.20 8.70 9.20 9.70 10.20 10.70 11.20 11.70 12.20

NC 2.08 2.58 3.08 3.58 4.08 4.58 5.08 5.58 6.08

Table A.4: Ambiguity set for the service rates of each patient class for our extended

hospital ED example.
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Figure A.7: 20, 000 simulated days in the ED for the complexity-based prioritization,

95% Ecµ heuristic, minimin, and minimax policies, when PB is uniform, and the cloud

of models perturbs the fitted service rate µ̂i,3 in terms of two-hour time increments

with c = (4.0, 4.0, 2.0, 2.0). (Triage levels US, UC, NS, and NC are denoted 1,2,3,

and 4, respectively.)
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Figure A.8: 20, 000 simulated days in the ED for the complexity-based prioritization,

95% Ecµ heuristic, minimin, and minimax policies, when PB is uniform, and the cloud

of models perturbs the fitted service rate µ̂i,3 in terms of two-hour time increments

with c = (2.0, 4.0, 1.0, 2.0).
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Figure A.9: 20, 000 simulated days in the ED for the complexity-based prioritization,

95% Ecµ heuristic, minimin, and minimax policies, when PB is uniform, and the cloud

of models perturbs the fitted service rate µ̂i,3 in terms of two-hour time increments

with c = (2.5, 4.0, 1.25, 2.0).
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Figure A.10: 20, 000 simulated days in the ED for the complexity-based prioritization,

95% Ecµ heuristic, minimin, and minimax policies, when PB is uniform, and the cloud

of models perturbs the fitted service rate µ̂i,3 in terms of two-hour time increments

with c = (3.0, 4.0, 1.5, 2.0).
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Figure A.11: 1, 000 simulated weeks in the ED for the complexity-based prioritization,

95% Ecµ heuristic, minimin, and minimax policies, when PB is uniform, and the cloud

of models perturbs the fitted service rate µ̂i,3 in terms of two-hour time increments

with c = (3.0, 4.0, 1.5, 2.0). (Triage levels US, UC, NS, and NC are denoted 1,2,3,

and 4, respectively.)
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A.2 Proofs of Propositions, Lemmas, and Theorems

Lemma A.1. For all a ∈ A(X), t ∈ N
⋃ {0} , and b ∈ B, Vt (X− ea,b) < Vt (X,b) .

Furthermore, if π is a priority policy (i.e. it chooses to prioritize classes of cus-

tomers), Vπ
t (X− ea,b) < Vπ

t (X,b) .

Proof. We proceed by induction on t. In the base case, when t = 0, the assertion is

true since c (X− ea)
T < cXT. For the inductive step, we suppose the assertion holds

for t. Suppose the optimal action for Vt (X,b) is action a′. If a′ = a and Xa− 1 = 0,

note that V (X− ea,b) = V (X− ea, σ (b, a,+)) = V (X− ea, σ (b, a,−)) since there

are no members of class a left to serve. This implies any changes in belief concerning

this class has no effect on cost. Therefore,

Vt+1 (X− ea,b)

≤ c (X− ea)
T + β

[{
E [µa′|b] Vt (X− ea, σ (b, a′,+))

+ (1− E [µa′|b]) Vt (X− ea, σ (b, a′,−))
}]

< cXT + β

[{
E [µa′ |b] Vt (X− ea′ , σ (b, a′,+))

+ (1− E [µa′|b]) Vt (X, σ (b, a′,−))
}]

= Vt+1 (X,b) ,

by the inductive hypothesis. Otherwise,

Vt+1 (X− ea,b)

≤ c (X− ea)
T + β

[{
E [µa′ |b] Vt (X− ea − ea′ , σ (b, a′,+))

+ (1− E [µa|b]) Vt (X− ea, σ (b, a′,−))
}]

< cXT + β

[{
E [µa′|b] Vt (X− ea′ , σ (b, a′,+))
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+ (1− E [µa|b]) Vt (X, σ (b, a′,−))
}]

= Vt+1 (X,b) ,

by the inductive hypothesis. For the second portion of the proof, it is easy to see that

the priority discipline would choose a′ until none remain in the class, so the proof

remains the same by substituting Vπ
t in place of Vt.

Lemma A.2. For all a ∈ A(X), t ∈ N
⋃ {0} , and b ∈ B, Vt (X− ea, σ (b, a,+)) <

Vt (X, σ (b, a,−)) . Furthermore, if π is a priority policy (i.e. it chooses to prioritize

classes of customers), Vπ
t (X− ea, σ (b, a,+)) < Vπ

t (X, σ (b, a,−)) .

Proof. We proceed by induction on t. In the base case, when t = 0, the assertion

is true since c (X− ea)
T < cXT. For the inductive step, we suppose the assertion

holds for t. Suppose the optimal action for Vt (X, σ (b, a,−)) is action a′. Simi-

lar to Lemma A.1, if a′ = a and Xa − 1 = 0, note that V (X− ea, σ(b, a,+)) =

V (X− ea, σ(σ (b, a,+) , a,+)) = V (X− ea, σ(σ (b, a,+) , a,−)) since there are no

members of class a left to serve. Again, this implies any changes in belief concerning

this class has no effect on cost.

Vt+1 (X− ea, σ (b, a,+))

≤ c (X− ea)
T + β

[{
E [µa′ |σ (b, a,+)] Vt (X− ea, σ (σ (b, a,+) , a′,+))

+ (1− E [µa′|σ (b, a′,+)]) Vt (X− ea, σ (σ (b, a,+) , a′,−))
}]

< cXT + β

[{
E [µa′ |σ (b, a,+)] Vt (X− ea′ , σ (σ (b, a,+) , a′,+))

+ (1− E [µa′ |σ (b, a,+)]) Vt (X, σ (σ (b, a,+) , a′,−))
}]

≤ cXT + β

[{
E [µa′ |σ (b, a,−)] Vt (X− ea′ , σ (σ (b, a,−) , a′,+))

+ (1− E [µa′|σ (b, a,−)]) Vt (X, σ (σ (b, a,−) , a′,−))
}]
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= Vt+1 (X, σ (b, a,−)) ,

since E [µa′|σ (b, a,−)] ≤ E [µa′|σ (b, a,+)], the inductive hypothesis, and since

Vt (X− ea,b) < Vt (X,b) by Lemma A.1. Otherwise,

Vt+1 (X− ea, σ (b, a,+))

≤ c (X− ea)
T + β

[{
E [µa′ |σ (b, a,+)] Vt (X− ea − ea′ , σ (σ (b, a,+) , a′,+))

+ (1− E [µa′ |σ (b, a,+)]) Vt (X− ea, σ (σ (b, a,+) , a′,−))
}]

< cXT + β

[{
E [µa′|σ (b, a,+)] Vt (X− ea′ , σ (σ (b, a,+) , a′,+))

+ (1− E [µa′ |σ (b, a,+)]) Vt (X, σ (σ (b, a,+) , a′,−))
}]

≤ cXT + β

[{
E [µa′|σ (b, a,−)] Vt (X− ea′ , σ (σ (b, a,−) , a′,+))

+ (1− E [µa′ |σ (b, a,−)]) Vt (X, σ (σ (b, a,−) , a′,−))
}]

= Vt+1 (X, σ (b, a,−)) ,

since E [µa′ |σ (b, a,−)] ≤ E [µa′ |σ (b, a,+)], by the inductive hypothesis, and since

Vt (X− ea,b) < Vt (X,b) by Lemma A.1. For the second portion of the proof, it is

easy to see that the priority discipline would choose a′ until none of the class remain

in the system, so the proof remains the same by substituting Vπ
t in place of Vt.

Proof of Proposition 2.1. To prove that the minimax policy is associated with the cµ

policy that prioritizes arg maxa∈A(X) minj∈Ja caµa,j, first we show that for any priority

policy π and belief b, λ ∈ [0, 1], Vπ(X, λb0 +(1−λ)b) is nondecreasing as λ increases.

Choosing δ > 0 such that λ − δ > 0, we proceed by induction on t. In the base

case, when t = 1, the assertion is true since Vπ
1 (X, (λ − δ)b0 + (1 − λ + δ)b) ≤

Vπ
1 (X, λb0 + (1 − λ)b) since E[µa|λb0 + (1 − λ)b] ≤ E[µa|(λ − δ)b0 + (1 − λ + δ)b]

for all a ∈ A(X). For the inductive step, we suppose the assertion holds for t. Then,
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suppose that the action chosen by π(X, λb0 + (1− λ)b) = a. Then,

Vπ
t+1 (X, (λ− δ)b0 + (1− λ+ δ)b)

= cXT + β

[{
E [µa|(λ− δ)b0 + (1− λ+ δ)b] Vπ

t (X− ea, σ ((λ− δ)b0 + (1− λ+ δ)b, a,+))

+ (1− E [µa|(λ− δ)b0 + (1− λ+ δ)b]) Vπ
t (X, σ ((λ− δ)b0 + (1− λ+ δ)b, a,−))

}]
≤ cXT + β

[{
E [µa|λb0 + (1− λ)b] Vπ

t (X− ea, σ (λb0 + (1− λ)b, a,+))

+ (1− E [µa|λb0 + (1− λ)b]) Vπ
t (X, σ (λb0 + (1− λ)b, a,−))

}]
= Vπ

t+1 (X, λb0 + (1− λ)b) ,

because

Vπ
t (X, σ ((λ− δ)b0 + (1− λ+ δ)b, a, θ)) ≤ Vt (X, σ (δb0 + (1− λ)b, a, θ)) ,

by the inductive hypothesis, and since

Vπ
t (X− ea, σ (b, a,+)) ≤ Vπ

t (X, σ (b, a,−)) ,

by Lemma A.2. Therefore, noting that Rπ (X) = Vπ (X,b0) , and since our system is

identical to that of Buyukkoc et al. (1985) when the belief is composed of only zeros

and ones, the cµ policy that prioritizes arg maxa∈A(X) minj∈Ja caµa,j is optimal for the

minimax objective.

Similarly, to prove that the minimin policy is associated with the cµ policy that

prioritizes arg maxa∈A(X) maxj∈Ja caµa,j, let b1 be the belief with components

b1
i,j =

 1 : if µi,j = maxk∈Ji µi,k

0 : otherwise.

First we show that for any priority policy π and belief b, λ ∈ [0, 1], Vπ(X, λb1 +

(1− λ)b) is nonincreasing as λ increases.
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Choosing δ such that λ − δ > 0, we proceed by induction on t. In the base

case, when t = 1, the assertion is true since Vπ
1 (X, (λ − δ)b1 + (1 − λ + δ)b) ≥

Vπ
1 (X, λb1 + (1 − λ)b) since E[µa|λb1 + (1 − λ)b] ≥ E[µa|(λ − δ)b1 + (1 − λ +

δ)b] for all a ∈ A(X). For the inductive step, we suppose the assertion holds

for t. Then, suppose that the action chosen by π(X, λb1 + (1 − λ)b) = a. Then,

Vπ
t+1 (X, (λ− δ)b1 + (1− λ+ δ)b)

= cXT + β

[{
E [µa|(λ− δ)b1 + (1− λ+ δ)b] Vπ

t (X− ea, σ ((λ− δ)b1 + (1− λ+ δ)b, a,+))

+ (1− E [µa|(λ− δ)b1 + (1− λ+ δ)b]) Vπ
t (X, σ ((λ− δ)b1 + (1− λ+ δ)b, a,−))

}]
≥ cXT + β

[{
E [µa|λb1 + (1− λ)b] Vπ

t (X− ea, σ (λb1 + (1− λ)b, a,+))

+ (1− E [µa|λb1 + (1− λ)b]) Vπ
t (X, σ (λb1 + (1− λ)b, a,−))

}]
= Vπ

t+1 (X, λb1 + (1− λ)b) ,

because

Vπ
t (X, σ ((λ− δ)b1 + (1− λ+ δ)b, a, θ)) ≥ Vt (X, σ (λb1 + (1− λ)b, a, θ))

by the inductive hypothesis, and since

Vπ
t (X− ea, σ (b, a,+)) ≤ Vπ

t (X, σ (b, a,−)) ,

by Lemma A.2. By the same argument as we used for the minimax portion of the

proof while noting that Nπ (X) = Vπ (X,b1) , and since our system is identical to

that of Buyukkoc et al. (1985) when the belief is composed of only zeros and ones,

the cµ policy that prioritizes arg maxa∈A(X) maxj∈Ja caµa,j is optimal for the minimin

objective.

Proof of Proposition 2.2. For the first half of the proposition, we must relate the

robust objective and the percentile objective with ε set to zero. Note that,

Y (X, 0) = inf
π∈Π

{
inf

yε∈[Nπ(X),Rπ(X)]
{yε|P (Vπ (X,B) ≤ yε) = 1}

}
,
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which implies that any yε chosen with respect to some policy π must be greater

than or equal to every Vπ (X,b) for b ∈ B since PB(B = b) > 0. The value yε is

being minimized, so for any given policy we must choose yε = maxb∈B {Vπ (X,b)}.

Substituting this back into the original percentile objective we obtain

inf
π∈Π

{
max
b∈B
{Vπ (X,b)}

}
,

which is the same as R (X).

For the second half of the proposition, we note that

Y (X, 1) = inf
π∈Π

{
inf

yε∈[Nπ(X),Rπ(X)])
{yε|PB (Vπ (X,b) ≤ yε) ≥ 0}

}
Thus, it is easy to see that setting yε = N (X) paired with the nominal priority

policy π satisfies the probability constraint since PB (· ≤ yε) ≥ 0 is satisfied for all

real numbers. Furthermore, N (X) is the smallest value any percentile objective may

obtain, and hence, the proof is complete.

Lemma A.3 (Non-Robust MAB Formulation). The dynamic program (2.4) has

an equivalent Multi-Armed Bandit (MAB) formulation as ψ →∞.

Proof. In order to show that (2.4) can be formulated as a MAB as the observation rate

goes to infinity, we simply show that it is analogous to the traditional reward-based

MAB dynamic programming formulation in which only the active class generates

rewards and experiences state transitions, while all other customer classes remain

frozen. We can achieve this by noting that a customer of class i ∈ N incurs a total

discounted cost
∑τ

t=0 β
τci, where τ is the period in which the customer is served,

thus leaving the system. Therefore, an equivalent representation of our discrete-time

objective is given by

inf
π∈Π

{
∞∑
t=0

βt

(
cXT − E

[
n∑
i=1

∞∑
k=1

βkW π
i,k

∣∣∣∣X(0),b(0)

])}
,
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where W π
i,k is the random variable taking value

∑∞
t=0 β

tci = ci
1−β if a customer from

class i is served at time k under policy π and is zero otherwise. Therefore, we can

write,

V (X,b) =
cXT

1− β − Ŵ (X,b, 0) ,

where,

Ŵ (X,b, i) =
ci

1− β + max
a∈N

β
[
1 {Xa > 0}

[
E[µa|b]Ŵ (X− ea, σ (b,+, a) , a)

+ (1− E[µa|b]) Ŵ (X, σ (b,−, a) , 0)
]

+ 1 {Xa = 0} Ŵ (X,b, 0)
]
.

Here, 1 is the indicator function and we remind the reader that c0 = 0 since it is the

class that enables “idling” policies.

The above system offers rewards immediately after completing service to a cus-

tomer. Let us consider an alternative system where the reward for the ith customer

of class a is given immediately after the service to the i + 1 customer of class a is

initiated. This can be described by the dynamic program:

W (X,b,Y) = max
a∈N

1 {Ya = 1}
(

ci
1− β

)
+ β [1 {Xa > 0} [E[µa|b]W (X− ea, σ (b,+, a) ,Y + 1 {Ya = 0} ea)

+ (1− E[µa|b]) W (X, σ (b,−, a) ,Y − 1 {Ya = 1} ea)]] .

+ 1 {Xa = 0}W (X,b,Y − 1 {Ya = 1} ea)] .

This seemingly more complicated dynamic program relies on an extra state Y ∈

Zn+ with elements Ya ∈ {0, 1}. We regard this state as a “primer” indicator. If a

customer from class a has completed service and is just waiting for the server to

begin service to the following customer of its class, then Ya = 1. Otherwise it is zero.

Note that as the observations become continuous, Ŵ and W become identical. This is

because the policy for W that serves customer a whenever Ya = 1, and otherwise serves
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the class that Ŵ would serve can only differ from each other finitely many (namely

X1T) times while the probability of service during those periods where Y1T > 0

becomes arbitrarily small (we assume the decision-maker begins with Y = 0). Thus,

as observations become continuous, the cost difference for policies that differ finitely

many times goes to zero.

Since under action a, the only rewards generated are associated with this class

and all other classes remain frozen in state and rewards, this dynamic program is a

MAB.

Since we have shown that we can express our problem as a MAB when the obser-

vation rate is appropriately fast, we aspire to calculate the Gittins index introduced

by Gittins (1979) which provides an optimal policy for the system. The numerator of

this index for action a associated with W (X,b,0) is identical to the value obtained

by repeatedly serving class a and completely ignoring other classes. This value can

be calculated via the dynamic program,

Ut+1(Xa,b, a) = β

(
E [µa|b]

(
Ut (Xa − 1, σ(b, a,+), a) +

ca
1− β

)
+ (1− E [µa|b]) Ut (Xa, σ(b, a,−), a)

)
,

where U0(Xa,b, a) = Ut(0,b, a) = 0. We wish to show that these values have an

easily calculable closed form. To this end, we define,

g(t,Xa)a,l =


∑t−1

k=0 β
k +

∑t−1
j=Xa

[
(−1)j+Xa+1µja,l

(
j−1
Xa−1

) (∑t−1
k=j

(
k
j

)
βk
)]

: 0 < Xa < t∑t−1
k=0 β

k : 0 < t ≤ Xa

0 : Xa = 0,

(A.7)

which will help with this task.

Lemma A.4 (Closed Form Ut Representation).

Ut(Xa,b, a) = caβ
1−β

∑ma
j=1 ba,jµa,jg(t,Xa)a,j.
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Proof. We accomplish the proof via induction. Assuming Xa > 0, for the base case,

when t = 1 we have

U1(Xa,b, a) = β

(
E [µa|b]

(
U0 (Xa − 1, σ(b,+, a), a) +

ca
1− β

)
+ (1− E [µa|b]) U0 (Xa, σ(b,−, a), a)

)
=

caβ

1− βE[µa|b]

=
caβ

1− β
ma∑
j=1

µa,jba,jg(1, Xa)a,j.

For the inductive step,

Ut+1(Xa,b, a) = β

(
E [µa|b]

(
Ut (Xa − 1, σ(b,+, a), a) +

ca
1− β

)
+ (1− E [µa|b]) Ut (Xa, σ(b,−, a), a)

)
= β

(
E[µa|b]

(
ca

1− ββ
ma∑
j=1

µa,j
µa,jba,j
E[µa|b]

g(t− 1, Xa − 1)a,j +
ca

1− β

)

+ (1− E[µa|b])
ca

1− ββ
ma∑
j=1

µa,j
(1− µa,j)ba,j
1− E[µa|b]

g(t− 1, Xa)a,j

)

= β

(
ca

1− βE[µa|b] +
caβ

1− β
ma∑
j=1

µ2
a,jba,jg(t− 1, Xa − 1)a,j

+
caβ

1− β

(
−
∑

µ2
a,jba,jg(t− 1, Xa)a,j +

ma∑
j=1

µa,jba,jg(t− 1, Xa)a,j

))

=
caβ

1− β

(
E[µa|b] +

(
ma∑
j=1

µa,jba,j (µa,j[g(t− 1, Xa − 1)a,j − g(t− 1, Xa)a,j]

+g(t− 1, Xa)a,j))) (A.8)

=
caβ

1− β

(
E[µa|b] +

(
ma∑
j=1

µa,jba,j
(g(t,Xa)a,j − 1)

β

))
(A.9)

=
caβ

1− β
ma∑
j=1

µa,jba,jg(t,Xa)a,j,

by the identity βµa,j (g(t− 1, Xa − 1)a,j − g(t− 1, Xa)a,j) + βg(t− 1, Xa)a,j) + 1 =

g(t,Xa)a,j used from (A.8) to (A.9) which is proven in Lemma A.5.
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Lemma A.5. g(t,Xa)a,j =

βµa,j (g(t− 1, Xa − 1)a,j − g(t− 1, Xa)a,j) + βg(t− 1, Xa)a,j) + 1.

Proof. Ignoring the subscripts for the entirety of the proof, we begin with the base

case, where t = 2. When Xa = 1, we have

βµ (g(1, 0)− g(1, 1)) + βg(1, 1)) + 1 = −µβ + β + 1 = g(2, 1).

Otherwise, with Xa > 1, we have

βµ (g(1, Xa − 1)− g(1, Xa)) + βg(1, Xa)) + 1 = β + 1 = g(2, Xa).

When t > 2, in the case where Xa = 1, we obtain

βµ (g(t− 1, 0)− g(t− 1, 1)) + βg(t− 1, 1)) + 1 = −βµg(t− 1, 1)) + βg(t− 1, 1) + 1

= 1 +
t−2∑
k=0

βk+1 +
t−2∑
j=1

[
(−1)jµj

(
t−2∑
k=j

(
k

j

)
βk+1

)]
−

t−2∑
j=0

[
(−1)jµj+1

(
t−2∑
k=j

(
k

j

)
βk+1

)]

=
t−1∑
k=0

βk +
t−2∑
j=1

[
(−1)jµj

(
t−1∑
k=j

(
k

j

)
βk+1

)]
−

t−2∑
j=0

[
(−1)jµj+1

(
t−2∑
k=j

(
k

j

)
βk+1

)]
.

If we examine the coefficients to µj, they are

(−1)j

(
t−2∑

k=j−1

(
k

j − 1

)
βk+1 +

t−2∑
k=j

(
k

j

)
βk+1

)
= (−1)j

(
βj +

t−2∑
k=j

((
k

j − 1

)
+

(
k

j

))
βk+1

)

= (−1)j
t−1∑
k=j

(
k

j

)
βk,

since
(
j
i

)
+
(
j
i+1

)
=
(
j+1
i+1

)
. This proves the assertion for Xa = 1 if we compare to

g(t, 1). If Xa > 1,

βµ (g(t− 1, Xa − 1)− g(t− 1, Xa)) + βg(t− 1, Xa)) + 1

=
t−1∑
k=0

βk +
t−2∑
j=Xa

[
(−1)j+Xa+1µj

(
j − 1

Xa − 1

)( t−2∑
k=j

(
k

j

)
βk+1

)]

+
t−2∑

j=Xa−1

[
(−1)j+Xaµj+1

(
j − 1

Xa − 2

)( t−2∑
k=j

(
k

j

)
βk+1

)]
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−
t−2∑
j=Xa

[
(−1)j+Xa+1µj+1

(
j − 1

Xa − 1

)( t−2∑
k=j

(
k

j

)
βk+1

)]
.

If we examine the coefficients of µj, they are

(−1)j+Xa+1

(
j − 1

Xa − 1

) t−2∑
k=j

(
k

j

)
βk+1 + (−1)j+Xa−1

(
j − 2

Xa − 2

) t−2∑
k=j−1

(
k

j − 1

)
βk+1

+ (−1)j+Xa−1

(
j − 2

Xa − 1

) t−2∑
k=j−1

(
k

j − 1

)
βk+1

= (−1)j+Xa+1

((
j − 1

Xa − 1

) t−2∑
k=j

(
k

j

)
βk+1

+

(
j − 1

Xa − 1

) t−2∑
k=j−1

(
k

j − 1

)
βk+1

)

= (−1)j+Xa−1

(
j − 1

Xa − 1

)( t−2∑
k=j

(
k + 1

j

)
βk+1 + βj

)

= (−1)j+Xa−1

(
j − 1

Xa − 1

) t−1∑
k=j

(
k

j

)
βk,

which concludes our lemma if we examine compare this to g(t,Xa).

Lemma A.6. Function
∑t

j=i(−1)j+i+1
(
j−1
i−1

)(
t
j

)
xj with x ∈ [0, 1] is non-positive and

decreasing in x and t.

Proof. We begin by proving that the function is negative and decreasing in x by

taking the first derivative with respect to x,

d

dx

t∑
j=i

(−1)j+i+1

(
j − 1

i− 1

)(
t

j

)
xj =

t∑
j=i

(−1)i+j+1

(
j − 1

i− 1

)(
t

j

)
jxj−1

=
t∑
j=i

(−1)i+j+1

(
j

i

)(
t

j

)
xj−1

=

(
t

i

) t∑
j=i

(−1)i+j+1

(
t− i
j − i

)
xj−1

=

(
t

i

)
(1− x)t−i xi−1(−1)2i+1,
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which only has zeros at 1 and 0. Furthermore, since the xi term is negative, and for

small enough x, dominates the rest of the polynomial, we know that the derivative

of the function is always less than 0, which proves that the function is decreasing in

x over [0, 1]. Furthermore, since the function evaluated at x = 0 is zero, the function

must be non-positive.

To prove the function is decreasing in t, we note that we can express the function

as

−xi
(
t

i

)
2F1 (1, i− t; 1 + i;−x) ,

where 2F1 is the Gaussian or ordinary hypergeometric function. Now, the derivative

of this function with respect to t is

d

dt
− xi

(
t

i

)
2F1 (1, i− t; 1 + i;−x) = xi

(
t

k

)(
2F1 (1, i− t; 1 + i;−x)

(
−

t∑
j=1

1

j
+

t−i∑
j=1

1

j

)

+
d

dt
2F1 (1, i− t; 1 + i;−x)

)
.

Now, since −xi
(
t
i

)
2F1 (1, i− t; 1 + i;−x) < 0 as shown by the previous portion of the

proof, 2F1 (1, i− t; 1 + i;−x) > 0, hence 2F1 (1, i− t; 1 + i;−x)
(
−∑t

j=1
1
j

+
∑t−i

j=1
1
j

)
<

0. Now we need to show that 2F1 (1, i− t− 1; 1 + i;−x) − 2F1 (1, i− t; 1 + i;−x) is

negative to show that the second part of the equation is also negative. Using Gauss’

continued fraction representation (as seen in equation (3) of Karp and Sitnik (2009)),

2F1 (1, i− t− 1; 1 + i;−x)− 2F1 (1, i− t; 1 + i;−x) = (1− 1) +

(
(i− t− 1)i− (i− t)i

1 + i
x

)
+ . . .+

(i− t− 1 + l)(i+ l)− (i− t+ l)(i+ l)

1 + i+ 2l
x

+
(l + 1)(1 + t+ 1 + l)− (l + 1)(1 + t+ l)

1 + i+ 2l + 1
x+ . . . ,

and since

(i− t− 1 + l)(i+ l)− (i− t+ l)(i+ l)

1 + i+ 2l
x+

(l + 1)(1 + t+ 1 + l)− (l + 1)(1 + t+ l)

1 + i+ 2l + 1
x

=
−i− l

1 + i+ 2l
x+

l + 1

2 + i+ 2l
x < 0,
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the proof is complete.

Proof of Theorem 2.1. The Gittins index associated with W (X,b,0) with respect to

action a is given by,

max
τ≥0

{
Uτ (Xa,b, a)∑τ

t=0 β
t

}
= max

τ≥0

{
caβ
1−β

∑ma
j=1 µa,jba,jg(t,Xa)a,j∑τ

t=0 β
t

}
.

Now, defining

h(X, a, l, t) =


caµa,l(

∑t−1
k=0 β

k+
∑t−1
j=Xa

(−1)j+Xa+1µja,l(
j−1
Xa−1)(

∑t−1
k=j (kj)βk))∑t

k=0 β
k : Xa < t

caµa,l
∑t−1
k=0 β

k∑t
k=0 β

k : Xa ≥ t

(A.10)

serving the Gittins index rule is equivalent to serving

arg max
a∈A(X)

ma∑
l=1

ba,lh(X, a, l, t)

We first show that the index associated with g is bounded by caβ
1−βE[µa|b]. We

examine the difference

Uτ+1(Xa,b, a)− Uτ (Xa,b, a)

=
βca

1− β
ma∑
j=1

µa,jba,j

(
βτ

τ∑
k=Xa

(
k − 1

Xa − 1

)(
τ

k

)
(−1)k+Xa+1µka,j + βτ

)

=
βca

1− β
ma∑
j=1

µa,jba,j

(
βτ

(
τ∑

k=Xa

(
k − 1

Xa − 1

)(
τ

k

)
(−1)k+Xa+1µka,j + 1

))
.

Now, as seen in Lemma A.6, we have

τ∑
k=Xa

(
k − 1

Xa − 1

)(
τ

k

)
(−1)k+Xa+1µka,j + 1 < 1, (A.11)

which implies that an upper bound of the index is found by,

Uτ (Xa,b, a)∑τ
t=0 β

t
≤

caβ
1−βE[µa|b]

∑τ
t=0 β

t∑τ
t=0 β

t
=

caβ

1− βE[µa|b].
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This proves property that the indices stemming from h are bounded by caE[µa|b].

Furthermore, this bound implies that

t−1∑
j=Xa

(−1)j+Xa+1µja,l

(
j − 1

Xa − 1

)( t−1∑
k=j

(
k

j

)
βk

)
< βt,

since otherwise the bound would be attained or exceeded.

Now, when we write h in terms of the uniformization rate (when Xa < t),

ĉa
ψ+α

(
µ̂a,l
ψ

)(∑t−1
k=0

(
ψ

ψ+α

)k
+
∑t−1

j=Xa
(−1)j+Xa+1

(
µ̂a,l
ψ

)j (
j−1
Xa−1

)(∑t−1
k=j

(
k
j

) (
ψ

ψ+α

)k))
∑t

k=0

(
ψ

ψ+α

)k
for any δ > 0, there exists ψ large enough so that∣∣∣∣∣∣∣∣h(X, a, l, t)−

ĉa
ψ+α

(
µ̂a,l
ψ

)(∑t−1
k=0

(
ψ

ψ+α

)k)
∑t

k=0

(
ψ

ψ+α

)k
∣∣∣∣∣∣∣∣ < δ.

This is because the term
(
µ̂a,l
ψ

)j
on the right hand of the expression goes to zero

faster than the left hand side. This result holds trivially when Xa ≥ t. Therefore, it

holds that when ψ is large, for any action, a ∈ A (X),

ma∑
l=1

ba,lh(X, a, l, t) = caE [µa|b]

∑t−1
k=0 β

k∑t
k=0 β

k
− δ

for arbitrarily small δ, which implies the Ecµ policy is optimal as ψ → ∞. Further-

more, since V(X,b) = cXT

1−β − Ŵ (X,b, 0) , and limψ→∞ Ŵ (X,b) = limψ→∞W (X,b)

as discussed in Lemma A.3, the assertion is proven.

Lemma A.7 (Finite Cardinality of Πb). If minj∈Ji ciµi,j 6= minj∈Jk ckµk,j for any

distinct i, k ∈ N , and bi,j > 0 for each component of b ∈ B, then |Πb| <∞.

Proof. Without loss of generality, let minj∈Ji µi,j = µi,1 and assume c1µ1,1 < c2µ2,1 <

. . . < cnµn,1.
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We begin by proving that for any belief b ∈ B with bi,j > 0 for all i ∈ N , j ∈ Ji,

for any δ > 0, there exists k such that the Bayesian updated belief after experiencing

k service incompletions of class a, which we denote b′, has component b′i,1 > 1− δ.

From Equation (2.3), σ (b, a,−)a,j =
(1−µa,j)ba,j
(1−E[µa|b])

, which implies that the belief b′

resulting from observing k service incompletions

b̂ = σ (. . . σ (σ (b, a,−) , a,−) . . . , a,−)

has components that are related in the following manner:

b̂a,1 = b̂a,j

(
1− µa,1
1− µa,j

)k
ba,1
ba,j

.

Now, since
(

1−µa,1
1−µa,j

)k
> 1, b̂a,1 becomes arbitrarily large with respect to any other

component b̂a,j for large enough k, which implies that b̂a,1 becomes arbitrarily close

to 1 for large enough k.

Therefore, after experiencing k service incompletions to class a ∈ N , E[µa|b̂]

becomes arbitrarily close to minj∈Ja caµa,j, since terms b̂a,jµa,j become near zero for

any j 6= 1. Since order of observations does not effect the updated belief state, suppose

we choose k1, k2, . . . , kn such that b̂, the updated belief state of b after experiencing

Xi successful service observations and ki incomplete service observations from each

class i ∈ N , has E[µ1|b̂]c1 < E[µ2|b̂]c2 < . . . < E[µn|b̂]cn.

Since successful observations only increase E[µn|b̂]cn, and since Ecµ policies choose

to serve the largest E[µi|b̂]ci under any path, the path will have either successfully

served, or will continue to serve class n (without attempting service of other classes)

until all class n customers are served after time t =
∑

i∈N (ki +Xi).

Suppose all members of n are served at time τ . Then, in a similar manner, either all

customers of class n−1 are served or will continue to be served after τ+
∑n−1

i=1 (ki+Xi).

In this way, we see that there are finitely many indexing policies with starting belief

173



b and queue state X, since after given periods of time, the indexing policy is either

guaranteed to have completed service to a class, or continues to serve that class until

completion without attempting service at other classes.

Proof of Proposition 2.3. Without loss of generality, let minj∈Ji µi,j = µi,1 and as-

sume c1µ1,1 < c2µ2,1 < . . . < cnµn,1. The proof follows in a similar manner to the

proof of Lemma A.7. As in the proof of Lemma A.7, for any belief b ∈ B′, there exists

k1
b, k

2
b, . . . , k

n
b such that the updated belief state of b after experiencing Xi successful

service observations and kib incomplete service observations from each class i ∈ N

which we term b̂, has E[µ1|b̂]c1 < E[µ2|b̂]c2 < . . . < E[µn|b̂]cn.

Now, letting ki = supb∈B′ k
i
b, we know that the updated belief state of b ∈ B′ after

experiencing Xi successful service observations and ki incomplete service observations

from each class i ∈ N which we term b∗, has E[µ1|b∗]c1 < E[µ2|b∗]c2 < . . . <

E[µn|b∗]cn. Furthermore, each ki exists and is finite since B′ is a closed set.

Using a similar argument to Lemma A.7, every indexing policy with starting belief

b ∈ B′ and queue state X chooses to serve the largest index under any path of an

indexing policy, so the path will have either successfully served, or will continue to

serve class n (without attempting service of other classes) until all class n customers

are served after time t =
∑

i∈N (ki +Xi).

For a given belief b, suppose all members of n are served at time τb. Then, in

a similar manner, either all customers of class n − 1 are served or will continue to

be served after τ +
∑n−1

i=1 (ki + Xi). In this way, we see that there are finitely many

indexing policies within B′, since after given periods of time, an indexing policy of a

belief in B′ is either guaranteed to have completed service to a class, or continues to

serve that class until completion without attempting service at other classes.
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Since every policy takes the form of a hyperplane over B′, Vπb (X,b) must be

piecewise-linear on B′.

Proof of Theorem 2.2. We begin the proof by showing that the optimal policy must

be a subgradient to the value function. Suppose that π is optimal to the percentile

objective. Since policies are evaluated as linear functions of b, there exists (v̂, v) ∈

Rm × R such that Vπ (X,b) = v̂bT + v. Furthermore, since by definition V (X,b)

is optimal (minimized) at b, v̂bT + v ≥ V (X,b) so it lies completely within the

epigraph of V (X,b) for all b ∈ B.

Now, V(X,b) = min(v,v)∈V vbT + v for some set V ⊂ {(v, v) ∈ Rm × R} since

POMDPs are composed of linear hyperplanes of the belief. We consider the extended

POMDP value function for all b ∈ Rm defined as V(X,b) = min(v,v)∈V vbT +v. That

is, the extended value function that also considers b /∈ B defines these points using

the hyperplane set of the POMDP.

Suppose that (v̂, v̂) is in the epigraph of V (X,b) over B, but not for Rm. That

is, there exists some b̂ ∈ Rm such that v̂b̂T + v̂ < V(X, b̂). Then, let let us define

the convex set Q =
{
b ∈ Rm : V(X,b) ≥ v̂bT + v

}
. Then, either minb∈Q v̂bT + v̂ or

maxb∈Q v̂bT+v̂ is finite depending on if v̂bT is increasing or decreasing towardQ from

int(B). Then, let us define d = minb∈Q v̂bT + v̂ if it is finite, and d = maxb∈Q v̂bT + v̂

otherwise.

Consider S =
{
b ∈ R|v̂bT + v̂ = d

}
. This is a supporting hyperplane to Q. De-

fine S1 to be the halfspace defined by S containingQ. Likewise, let S2 be the opposing

halfspace defined by S which must contain B.

Now, there exists a subgradient to V (X,b) defined by v̄bT + v̄ where v̄bT + v̄ = d

for all b ∈ S because v̄bT + v̄ ≥ V (X,b) for all b ∈ S. Since it is a subgradient,

v̄bT + v̄ ≥ V(X,b) for all b ∈ Rm which implies that v̄bT + v̄ ≥ v̂bT + v̂ for all
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b ∈ S1. This implies that v̄bT + v̄ ≤ v̂bT + v̂ for all b ∈ S2. This implies, that if we

could find a policy πĥ such that Vπĥ (X,b) = v̄bT + v̄, then the associated Yπĥ(X, ε)

would be smaller too.

Now, V(X,b) can be composed of stationary, non-randomizing policies hence V

can be composed of policy vectors that are stationary and non-randomizing. Since

V (X,b) is concave, it is differentiable almost everywhere. According to Clarke (1975),

the subdifferential at any point b can be composed of the gradients of the function

within an open ball surrounding b. Since in our extended framework, all b can be

surrounded by such an open ball, it implies that the subdifferential at any point

b ∈ Rm is composed of the convex hull of such gradients, or, (v, v) ∈ V . Now, the

subdifferential is a convex set, which implies that by Carathèodory’s theorem, any

element of the subdifferential can be composed of a convex combination of finitely

many (at most m−1 elements) of the convex hull. Now, since randomization policies

are evaluated as convex combinations of the stationary policies of V , the proof that

there exists a randomization of stationary Markov policies that is optimal to the

percentile objective is complete.

Now, as we prove in Lemma A.8, V (X,b) is non-decreasing toward b0. Thus,

Zy = {b ∈ B|V (X,b) ≥ y} is a convex set that includes b0 so long as y ≤ V (X,b0).

(We need not consider any larger value for y by definition of the percentile objec-

tive). Suppose that π is optimal so that Vπ (X,b) = vbT + v. Then suppose that

Yπ (X, ε) = y. Consider the set H =
{
b ∈ B|vbT + v = y

}
. On one half-space,

H1 =
{
b ∈ B|vbT + v ≤ y

}
and on the other half-space H2 =

{
b ∈ B|vbT + v > y

}
.

For the percentile value assigned to policy to be valid, PB(B ∈ H2) < ε.We note that

Zy must be a subset of H2.

IfH is a supporting hyperplane to Zy, then it is a subgradient to V (X,b) for some

b ∈ H⋂Zε, hence it can be formed from a randomization of stationary policies at a
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point b∗ where V (X,b∗) = y. Now suppose that H is not a supporting hyperplane to

Zy. Now, there exists a subgradient (v̂, v̂) that forms a supporting hyperplane to Zy
while still satisfying the probability constraint. That is, Ĥ =

{
b ∈ B|v̂bT + v̂ = y

}
is a supporting hyperplane to Zy while for Ĥ2 =

{
b ∈ B|v̂bT + v̂ > y

}
we have

PB(B ∈ Ĥ2) < ε since Zy ⊂ S2. Thus, a policy that forms a supporting plane to

Zy can satisfy the same percentile objective, which by above argument, proves the

theorem.

Corollary A.1 (Generalized Chance-Constrained Policies). Theorem 2.2 holds

for any MDP that can express its parameter ambiguity in a learning context as a

POMDP.

Proof. If an MDP with parameter ambiguity can be expressed as a POMDP, we can

express its fully observed component as X and the current belief about its parameters

as b, hence we can describe the non-robust problem via a POMDP value function

V(X,b). Inspecting the proof of Theorem 2.2, we can see that the only properties

we use to prove the Theorem are shared by all POMDPs. Specifically, we use the

linearity of policies evaluated over the belief space and the convexity of V(X,b) with

respect to belief. Hence, the Theorem carries over to the other MDPs with parameter

ambiguity expressed as a POMDP.

Lemma A.8 (Value Function Nonincreasing on Line Segments). For any b ∈ B

and λ ∈ [0, 1], V(X, λb0 + (1− λ)b) is nonincreasing as λ increases.

Proof. The proof follows immediately as a special case of Lemma A.15.

Proof of Proposition 2.4. Letting yε denote the optimal value of the percentile ob-

jective, we first prove that yε ≥ V(X, b̂) for all b̂ ∈ Lε. Suppose by contradiction

177



that yε < V(X, b̂) for some b̂ ∈ Lε. Then PB (Vπ (X,B) ≥ yε) ≤ ε. Since Vπ

is linear in belief, Vπ (X,b) = bwT + w for some (w, w) ∈ Rm × R. Therefore,

since PB

(
BwT + w ≥ yε

)
≤ ε, (w, yε − w) ∈ Wε as in definition 2.1. However, since

b̂ ∈ Lε, we have b̂wT +w ≤ yε because this is true for all elements of Wε. Therefore,

V(X, b̂) ≤ Vπ(X, b̂) = b̂wT +w ≤ yε which is a contradiction, and thus, the assertion

holds.

Next, suppose that there exists b′ ∈ Lε such that V (X,b′) = R (X). By the

above argument, yε ≥ R (X). Furthermore, since V (X,b) is non-increasing as b

strays from b0 on a line segment (as proven in the proof of Lemma A.8, there must

exist b′′ ∈ δLε such that V (X,b′′) = R (X). Otherwise, there would exist b′ ∈

Lε \ δLε such that V (X,b′) = R (X) , while for the λ ∈ (0, 1) that satisfies λb0 + (1−

λ)b′ ∈ δLε, V (X, λb0 + (1− λ)b′) < R (X), which is a contradiction to the proof of

Lemma A.8. Letting π be the minimax cµ policy associated with R (X), by the proof

of Proposition 2.1, Vπ (X,b) ≤ R (X) for all b ∈ B. Therefore, V (X,b′′) = R (X) =

Vπ (X,b′′). Thus, Kb′′ = {π} is an optimal chance-constrained policy in this case.

Otherwise, suppose there does not exist b′ ∈ Lε such that V (X,b) = R (X).

Then, for b′ ∈ Lε, V (X,b′) is strictly decreasing as b′ strays from b0 on a line.

This is because, for any b′ ∈ Lε, and λ ∈ (0, 1] such that λb0 + (1 − λ)b′ ∈ Lε,

V (X, λb0 + (1− λ)b′) < V (X,b0) , so by the non-increasing result of the proof of

Lemma A.8 and the concavity of the value function, V (X, λb0 + (1− λ)b′) is strictly

increasing in λ while the belief remains in Lε.

Next, define

Qy = {b ∈ B|V (X,b) ≥ y} ,

and observe that Qy is convex, since V (X,b) is concave. Lε is formed through an

intersection of half-spaces, and thus, it must also be convex. If b0 ∈ Lε, then by

previous argument, b0 ∈ δLε (since it is composed of zeros and ones) and hence
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Kb0 = {π} can be composed of a single policy.

Otherwise, for large enough y, Qy and Lε are non-intersecting while Qy 6= ∅.

Consider the y for which Qy

⋂ {Lε \ δLε} = ∅ and Qy

⋂Lε 6= ∅. This y exists since

V (X,b) is continuously strictly decreasing as b ∈ Lε strays from b0 as shown above.

By the hyperplane separation theorem, there must exist a separating hyperplane de-

fined by the tuple (v, v) ∈ Rm×R such that for every b′ ∈ Lε, bvT ≤ v and for every

b ∈ Qy, bvT ≥ v. Now, by the definition of the convex floating body, there does

not exist (w, w) ∈ Rm × R such that PB

(
BwT ≥ w

)
≤ ε while for a point b′ ∈ Lε,

bwT > w. Therefore, since b′vT ≤ v for all b′ ∈ Lε, PB

(
BvT ≥ v

)
≤ ε because

otherwise there would exist some b′ ∈ Lε such that b′vT > v.

This separating hyperplane must intersect with some point b∗ ∈ δLε which implies

that b∗ = arg maxb∈δLε V (X,b) since if it were not, there would exist a larger y′ such

that Qy′
⋂ {Lε \ δLε} = ∅ while Qy′

⋂Lε 6= ∅. Thus, yε ≥ V (X,b∗) . Now, for every

indexing policy πb∗ , {b ∈ B|Vπb∗ (X,b) = Vπb∗ (X,b∗)} is a supporting hyperplane

of Qy since Vπb∗ (X,b) is linear in b.

Any supporting hyperplane of Qy can be formed from a convex combination of

supporting hyperplanes {b ∈ B|Vπb∗ (X,b) = V (X,b∗)} as proven in our proof of

Theorem 2.2. Thus, there exists πp∗

Kb∗
such that {b ∈ B|Vπp∗

Kb∗ (X,b) = V (X,b∗)} ={
b ∈ B|bvT = v

}
which implies that PB(V

πp∗
Kb∗ (X,b) ≥ V (X,b∗)) ≤ ε. Therefore,

yε = V (X,b∗) with optimal policy πp∗

Kb∗
.

Proof of Proposition 2.5. Proposition 2.4 asserts that the b∗ lies at the maximum

of the convex floating body. Thus, by contradiction, if b∗ ∈ Lε is not visible

from reference belief b0, it implies there exists λ ∈ (0, 1] such that V (X,b∗) ≤

V (X, λb0 + (1− λ)b∗) while λb0 + (1− λ)b∗ ∈ Lε. However, by Lemma A.8, this is

a contradiction, which implies that b∗ must be visible from b0.
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Lemma A.9 (Inner/Outer Approximations to Lε). For any nonempty convex sets

So and Si such that Si ⊆ Lε ⊆ So, the policies generated from So and Si are upper

and lower bounds to the optimal policy.

Proof. The proof is straightforward: If we generate policies assuming that So is in-

deed Lε in the same manner as Proposition 2.5 and Proposition 2.4, we know that the

minimax belief associated with So, which we denote b∗o must have a cost larger than

that of b∗ since Lε ⊆ So. Similarly, if we generate policies assuming that Si is indeed

Lε in the same manner as Proposition 2.5 and Proposition 2.4, we know that the

minimax belief associated with Si, which we denote b∗i must have a cost smaller than

that of b∗ since So ⊆ Lε. Obviously, as So → Lε and Si → Lε, V (X,b∗o)→ V (X,b∗)

and V (X,b∗i )→ V (X,b∗) since the minimax operation is performed on successively

smaller (larger) sets which implies that the policies converge to the percentile objec-

tive.

Corollary A.2 (Generalized Convex Floating Body). For any MDP that can

express its parameter ambiguity in a learning context as a POMDP, if there exists an

extreme belief point b0 composed of zeros and ones such that Lemma A.8 holds, then

Propositions 2.4, 2.5, and Lemma A.9 also hold.

Proof. Similar to our proof of Corollary A.1, if we inspect the proofs of Proposi-

tions 2.4, 2.5, and Lemma A.9, all they require is the general structural properties of

POMDPs as well as Lemma A.8. Hence if the MDP with ambiguity can be modeled

as a POMDP and there exists an extreme belief b0 such that Lemma A.8 holds, our

results related to the location of b∗ also transfer to this model.

Traditional priority policies such as the cµ rule seen in the literature serve a single

class until there are no customers left of that class, then move on to other classes in

a similar fashion. Evaluating these policies turns out to be a simple task that has a
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closed form solution. First we let S = {s1, s2, . . . , sn} index the priority of classes,

where s1 is the highest priority class, and sn is the lowest priority class.

We define

Dt(Xsi ,b, si) =

Ut(Xsi ,b, si) +
(1− β)

csi
Dt(Xsi+1

,b, si+1) (Ut(Xsi ,b, si)− Ut(Xsi − 1,b, si)) ,

and,

Dt(Xsn ,b, sn) = Ut(Xsn ,b, sn).

Lemma A.10. The priority policy πS associated with S is evaluated as

VπS (X,b) =
cXT

1− β − lim
t→∞

Dt(Xs1 ,b, s1).

Proof of Lemma A.10. Consider the dynamic program,

Ft+1(Xa,b, a) = β

(
E [µa|b]

(
Ft (Xa − 1, σ(b,+, a), a) +

ca
1− β + d1 {Xa − 1 = 0}

)
+ (1− E [µa|b]) Ft (Xa, σ(b,−, a), a)

)
,

with the terminal condition

F0(Xa,b, a) = Ft(0,b, a) = 0.

This dynamic programming value function is nearly identical to U except that a

reward of d is given upon the service of the final customer of the class. It is evident

that if we replace d by the reward generated by serving the remaining classes to

completion according to the priority policy S, Ft as t tends to infinity is the value of

priority discipline S. We wish to show that in this way, D is equivalent to F.

It is clear that all the value that comes from ca
1−β in t time periods in Ft is given

by Ut (Xsi ,b, si) as is proven in our proof of Theorem 2.1, which explains the first

term of Dt(Xsi ,b, si).
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Replacing Dt+1(Xsi+1
,b, si+1) to d in the dynamic program Dt+1(Xsi ,b, si), it is

easy to identify that,

Ut(Xsi ,b, si)− Ut(Xsi − 1,b, si),

is the value of the rewards obtained from serving the final person in class si. Since

this value is in terms of ca, multiplying by 1−β
ca

and multiplying by d gives the rewards

in terms of d which is what we wanted. Since we are counting total savings in

Dt(Xsi ,b, si), the value of the priority policy becomes the total idled system cost

minus the savings, or cXT

1−β − limt→∞Dt(Xs1 ,b, s1). This concludes the proof.

Proof of Proposition 2.6. To prove the lower bound, we begin by noting that the CDF

of a geometric distribution denoted Gp(k) is concave in success probability parameter

since its second derivative −(−1+k)k(1−p)−2+k is always negative. We show that in

any given sample path in the system associated with V (X,b) (which we call ‘system

1’ for the duration of the proof) every customer can be served as fast with a higher

probability in a system with known rate parameters V′ (X,b) (which we call ‘system

2’).

Since the optimal policy to system 1 is non-idling, it must serve each customer

eventually. Suppose that in a given sample path of system 1, a customer of class

i is served in a total of k periods. The probability of serving this customer in k

or fewer periods in system 1 is simply
∑

j∈Ji bi,jGµi,j(k), whereas in system 2, the

probability of serving this customer in k or fewer periods is GE[µi|b](k). Since the

CDF of a geometric random variable is concave in its parameter,
∑

j∈Ji bi,jGµi,j(k) ≤

GE[µi|b](k). Therefore, in every sample path of system 1, every customer is served

slower than system 2 with known rate parameters E[µ|b] which proves the assertion.

The proof of the upper bound is immediate as the result of evaluating a suboptimal

policy.
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To prove result (i) we begin by showing that the second term of Dt(Xsi ,b, si) and

Dt(Xsi ,E[µsi |b], si) are decreasing as Xi increases for any given t. We note that in

the functions

Dt(Xsi ,b, si) =

Ut(Xsi ,b, si) + Dt(Xsi+1
,b, si+1) (Ut(Xsi ,b, si)− Ut(Xsi − 1,b, si))

1− β
csi

and

Dt(Xsi ,E[µsi |b], si) = Ut(Xsi ,E[µsi |b], si)

+ Dt(Xsi+1
,E[µsi+1

|b], si+1) (Ut(Xsi ,E[µsi |b], si)

−Ut(Xsi − 1,E[µsi |b], si))
1− β
csi

,

the second term falls to zero for large Xsi , since the reward resulting from serving the

last customer of class si is less than
csiβ

Xsi

1−β which decreases to zero as Xi increases.

All that is left is to compare Ut(Xsi ,b, si) and Ut(Xsi ,E[µ|b], si), for which the

difference becomes arbitrarily small as Xsi becomes large, since the reward gener-

ated between the two systems is identical for the first Xsi − 1 time periods, i.e.,

UXsi−1(Xsi ,b, si) = UXsi−1(Xsi ,E[µ|b], si). Since the reward generated in the peri-

ods greater than or equal to Xsi can be no more than Xsicsiβ
Xsi

1−β which goes to zero as

Xi tends to infinity property (i) is proven.

To prove result (ii), we show that Ut(Xsi ,E[µ|b], a) and Ut(Xsi ,b, a) approach

each other as a linear function of variance of b via a proof similar to that of Holder’s

defect formula. Denoting d(i, µa,l)t = µa,lg(t, i)a,l, notice that Ut(Xsi ,b, a) =

E [d(Xsi , µa)t] and Ut(Xsi ,E[µ|b], a) = d(Xsi ,E [µa|b])t. Furthermore, by earlier

statement, E [d(Xsi , µa,l)t] ≤ d(Xsi ,E [µa|b])t. Applying Taylor’s Theorem with the

Lagrange form of the remainder to d at point µ ∈ (0, 1), to obtain for each µa,l ∈Ma,

d(Xsi , µa,l)t = d(Xsi , µ)t + d′(Xsi , µ)t(µa,l − E[µ|b]) +
1

2
d′′(Xs,i, wl)(µa,l − µ)2,

183



where wl is a real number between µ and µa,l. Multiply the above equation by ba,k

and sum to obtain after simplification:

ma∑
k=1

ba,kd(Xsi , µa,k) = d(Xsi , µ) +
1

2

mi∑
k=1

ba,k(µa,k − µ)2d′′(Xsi , wk).

This implies that

E[d(Xsi , µa,l)t]− d(Xsi ,E [µa|b])t =
1

2

ma∑
k=1

ba,k(µa,k − E [µa|b])2d′′(Xsi , wk).

Since d(Xi, µ) is a polynomial (in terms of µ), there exists q, r ∈ R such that

q < d′′(Xs,i, wl) < r,

which implies

q

2
Var[µa|b] <

1

2

ma∑
k=1

ba,k(µa,k − E [µa|b])2d′′(Xsi , wa,k) <
r

2
Var[µa|b].

This in turn implies that there exists µ̂ ∈ [q, r] such that

µ̂

2

ma∑
k=1

ba,k(µa,k − E [µa|b])2 =
1

2

ma∑
k=1

ba,k(µa,k − E [µa|b])2d′′(Xsi , wk)

for all k ∈ N . Thus,

E[d(Xsi , µa,l)t]− d(Xsi ,E [µa|b])t = Ut(Xsi ,b, a)− Ut(Xsi ,E[µ|b], a)

=
µ̂

2

mi∑
k=1

pa,k(µa,k − E [µa|b])2,

which implies Ut(Xsi ,b, a)− Ut(Xsi ,E[µ|b], a) = qVar[µa|b] for some q ∈ R.

Lemma A.11. V (X,b) = limt→∞Vt (X,b) = infπ∈Π Jπ(X,b)

Proof. Under fully observed transition parameters, it is obvious that the continuous

system corresponds to the discrete system in the infinite horizon since when there is

no learning, this is a very standard uniformization procedure.
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Let Ŝ = {s ∈ Zn|si ∈ Ji} and define operator P (s|b) =
∏

i∈N bi,si . Furthermore,

let bs be the vector of ones and zeros corresponding to s (that is, bsi,j = 1 if si = j and

is 0 otherwise). For these “fully known” beliefs, it is easy to show that V (X,bs) =

Jπ(X,bs) (via the above argument).

Therefore, since

Jπ(X,b) =
∑
s∈Ŝ

P (s|b) Jπ(X,bs) =
∑
s∈Ŝ

P (s|b) Vπ(X,bs),

it is sufficient to show that Vπ (X,b) =
∑

s∈Ŝ P (s|b) Vπ(X,bs) to prove the assertion.

Proceeding via induction, the initial step is clear since

Vπ
0 (X,b) = cXT =

∑
s∈Ŝ

P (s|b) Vπ
0 (X,bs).

For the inductive step, note that

P(s|σ(b, a,+)) =
µa,sa

E [µa|b]
P(s|b)

and similarly

P(s|σ(b, a,−)) =
(1− µa,sa)

(1− E [µa|b])
P(s|b)

so that

Vπ
t+1 (X,b) = cXT + β

[
E [µa|b] Vπ

t (X− ea, σ(b, a,+))

+ (1− E [µa|b])Vπ
t (X, σ(b, a,−))

]
= cXT + β

[
E [µa|b]

∑
s∈Ŝ

P (s|b)µa,sa
E [µa|b]

Vπ
t (X− ea,b

s)

+ (1− E [µa|b])
∑
s∈Ŝ

P (s|b) (1− µa,sa)
(1− E [µa|b])

Vπ
t (X,bs)

]

= cXT + β

[∑
s∈Ŝ

P (s|b)µa,saV
π
t (X− ea,b

s)

+
∑
s∈Ŝ

P (s|b) (1− µa,sa)Vπ
t (X,bs)

]
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=
∑
s∈Ŝ

P (s|b)

{
cXT + β

[
µa,saV

π
t (X− ea,b

s)

+ (1− µa,sa)Vπ
t (X,bs)

]}
=
∑
s∈Ŝ

P (s|b) Vπ
t+1(X,bs)

where the action a is chosen by policy π. This concludes the proof.

Lemma A.12. V̂ (X,b) = limt→∞ V̂t (X,b) = infπ∈Π Ĵπ(X,b)

Proof. We prove the lemma in a similar fashion to the proof of Lemma A.11. Under

fully observed transition parameters, it is obvious that the continuous system corre-

sponds to the discrete system in the infinite horizon since when there is no learning,

this is a very standard uniformization procedure.

Let Ŝ = {s ∈ Zn|si ∈ Ji} and define operator P (s|b) =
∏

i∈N bi,si . Furthermore,

let bs be the vector of ones and zeros corresponding to s (that is, bsi,j = 1 if si = j and

is 0 otherwise). For these “fully known” beliefs, it is easy to show that V̂ (X,bs) =

Ĵπ(X,bs) (via the above argument).

Therefore, since

Ĵπ(X,b) =
∑
s∈Ŝ

P (s|b) Ĵπ(X,bs) =
∑
s∈Ŝ

P (s|b) V̂π(X,bs),

it is sufficient to show that V̂π (X,b) =
∑

s∈Ŝ P (s|b) V̂π(X,bs) to prove the assertion.

Proceeding via induction, the initial step is clear since

V̂π
0 (X,b) = cXT =

∑
s∈Ŝ

P (s|b) V̂π
0 (X,bs).

For the inductive step, note that

P(s|σ(b, a,+)) =
µa,sa

E [µa|b]
P(s|b)
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and similarly

P(s|σ(b, a,−)) =
(1−∑i∈N λi − µa,sa)

(1−∑i∈N λi − E [µa|b])
P(s|b)

so that

V̂π
t+1 (X,b) = cXT + β

[
E [µa|b] V̂π

t (X− ea, σ̂(b, a,+))

+
∑
i∈N

λiV̂
π
t (X + ei,b)

+ (1−
∑
i∈N

λi − E [µa|b])V̂π
t (X, σ̂(b, a,−))

]
= cXT + β

[
E [µa|b]

∑
s∈Ŝ

P (s|b)µa,sa
E [µa|b]

V̂π
t (X− ea,b

s)

+
∑
i∈N

λi
∑
s∈Ŝ

P(s|b)V̂π
t (X + ei,b

s)

+ (1−
∑
i∈N

λi − E [µa|b])
∑
s∈Ŝ

P (s|b) (1−∑i∈N λi − µa,sa)
(1−∑i∈N λi − E [µa|b])

V̂π
t (X,bs)

]

= cXT + β

[∑
s∈Ŝ

P (s|b)µa,saV
π
t (X− ea,b

s)

+
∑
s∈Ŝ

P(s|b)
∑
i∈N

λiV̂
π
t (X + ei,b

s)

+
∑
s∈Ŝ

P (s|b) (1−
∑
i∈N

λi − µa,sa)Vπ
t (X,bs)

]

=
∑
s∈Ŝ

P (s|b)

{
cXT + β

[
µa,saV

π
t (X− ea,b

s)

+
∑
i∈N

V̂π
t (X + ei,b

s) + (1−
∑
i∈N

λi − µa,sa)Vπ
t (X,bs)

]}
=
∑
s∈Ŝ

P (s|b) Vπ
t+1(X,bs)

where the action a is chosen by policy π. This concludes the proof.

Lemma A.13. In the Poisson arrivals case, for all a ∈ A(X), t ∈ N
⋃ {0} , and b ∈ B,

V̂t (X− ea,b) < V̂t (X,b) .
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Proof. Consider V̂πb
t (X,b) and V̂π

t (X−ea,b) where πb is an optimal stationary policy

to the system with starting state (X,b) and π is a policy that idles whenever the

system associated with starting state (X,b) under policy πb attempts to serve the

first customer of class a and is otherwise identical to πb. We refer to these as system

1 and system 2 respectively. Note that enacting such a policy is possible because the

decision-maker under system 2 knows the probabilities associated with each of the

sample paths of system 1 and hence can base a policy on the events in system 1.

Now, the probability of any given parameter configuration is identical for both sys-

tems since both have the same starting belief b. Therefore, the transition probabilities

(the chance of serving or failing to serve a given customer) under any action is identi-

cal for both systems. Hence, the difference in cost between the two systems after πb

has served the first customer of class a is identical, but the difference between the two

systems for every other period is exactly βtceT
a since system 1 always holds an iden-

tical number of customers to system 2 with the exception of the additional customer

of class a that has yet to be successfully served. Hence V̂π
t (X− ea,b) < V̂πb

t (X,b)

which implies that V̂t (X− ea,b) < V̂t (X,b) .

Lemma A.14. In the Poisson arrivals case, for all a ∈ A(X), t ∈ N
⋃ {0} , and b ∈ B,

V̂t (X− ea, σ̂ (b, a,+)) < V̂t (X, σ̂ (b, a,−)) .

Proof. Similar to Lemma A.13, consider V̂
πσ̂(b,a,−)

t (X, σ̂ (b, a,−)) and V̂π
t (X− ea, σ̂ (b, a,+))

where πσ̂(b,a,−) is an optimal stationary policy to the system with starting state

(X, σ̂ (b, a,−)) and π is a policy that idles whenever the system associated with

starting state (X, σ̂ (b, a,−)) under policy πσ̂(b,a,−) attempts to serve a customer of

class a and the system with starting state (X−ea, σ̂ (b, a,+)) has fewer customers of

class a and is otherwise identical to πb. We refer to these as system 1 and system 2

respectively. Note that enacting such a policy is possible because the decision-maker
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under system 2 knows the probabilities associated with each of the sample paths of

system 1 and hence can base a policy on the events in system 1.

Now, the probability of any given parameter configuration is identical for both

systems with the exception of class a customers where system 2 has a higher prob-

ability of serving customers since for any µa,j, the probability Pσ̂(b,a,−) (µ∗a ≥ µa,j) ≤

Pσ̂(b,a,+) (µ∗a ≥ µa,j). This implies that every time a customer of class a is successfully

served by system 2, that customer may or may not be served by system 1. In this

way, on any given sample path, system 1 is guaranteed to have at least as many

customers of class a as system 2, and an equal number of customers for every other

class. Since the initial system holding costs are cXT and c (X− ea)
T, the inequality

is strict, which proves the lemma.

Lemma A.15 (Value Function Nonincreasing on Line Segments: Arrivals

Case). For any b ∈ B and η ∈ [0, 1], V̂(X, ηb0 + (1 − η)b) is nonincreasing as η

increases. Similarly, V̂(X, ηb1 + (1− η)b) is nondecreasing as η increases.

Proof. For the first half of the proof, similar to Lemma A.8, choosing δ such that

η − δ > 0, we proceed by induction on t. In the base case, when t = 0, the assertion

is true since V̂0(X, (η − δ)b0 + (1− η + δ)b) = cXT = V̂0(X, ηb0 + (1− η)b).

For the inductive step, we suppose the assertion holds for t. Then, suppose that

the optimal action for V̂t+1(X, ηb0 + (1− η)b) is action a ∈ A (X). Then,
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V̂t+1 (X, (η − δ)b0 + (1− η + δ)b)

≤ cXT + β

[{
E [µa|(η − δ)b0 + (1− η + δ)b] V̂t (X− ea, σ̂ ((η − δ)b0 + (1− η + δ)b, a,+))

+
∑
i∈N

λiV̂t (X + ei, (η − δ)b0 + (1− η + δ)b)

+ (1−
∑
i∈N

λi − E [µa|(η − δ)b0 + (1− η + δ)b])V̂t (X, σ̂ ((η − δ)b0 + (1− η + δ)b, a,−))
}]

≤ cXT + β

[{
E [µa|ηb0 + (1 + δ)b] V̂t (X− ea, σ̂ ((η − δ)b0 + (1− η + δ)b, a,+))

+
∑
i∈N

λiV̂t (X + ei, (η − δ)b0 + (1− η + δ)b)

+ (1−
∑
i∈N

λi − E [µa|ηb0 + (1− η)b])V̂t (X, σ̂ ((η − δ)b0 + (1− η + δ)b, a,−))
}]

≤ cXT + β

[{
E [µa|ηb0 + (1 + δ)b] V̂t (X− ea, σ̂ (ηb0 + (1− η)b, a,+))

+
∑
i∈N

λiV̂t (X + ei, ηb0 + (1− η)b)

+ (1−
∑
i∈N

λi − E [µa|ηb0 + (1− η)b])V̂t (X, σ̂ (ηb0 + (1− η)b, a,−))
}]

= V̂t+1 (X, ηb0 + (1− η)b) ,

because for any X̂,

V̂t

(
X̂, σ̂ ((η − δ)b0 + (1− η + δ)b, a, θ)

)
≤ V̂t

(
X̂, σ̂ (δb0 + (1− η)b, a, θ)

)
,

by the inductive hypothesis, and since for any b̂,

V̂t

(
X̂− ea, σ̂

(
b̂, a,+

))
< V̂t

(
X̂, σ̂

(
b̂, a,−

))
,

by Lemma A.14.

Now, we remind the reader from the proof of Proposition 2.1, b1 is the belief with

components

b1
i,j =

 1 : if µi,j = maxk∈Ji µi,k

0 : otherwise.
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Following the same strategy of the first portion of the proof, the base case with

t = 0 is trivial. For the inductive step, we suppose the assertion holds for t. Then,

suppose that the optimal action for V̂t+1(X, ηb + (1 − η)b1) is action a ∈ A (X).

Then, with δ > 0 such that η − δ ≥ 0,

V̂t+1 (X, (η − δ)b + (1− η + δ)b1)

≤ cXT + β

[{
E [µa|(η − δ)b + (1− η + δ)b1] V̂t (X− ea, σ̂ ((η − δ)b + (1− η + δ)b1, a,+))

+
∑
i∈N

λiV̂t (X + ei, (η − δ)b + (1− η + δ)b1)

+ (1−
∑
i∈N

λi − E [µa|(η − δ)b + (1− η + δ)b1])V̂t (X, σ̂ ((η − δ)b + (1− η + δ)b1, a,−))
}]

≤ cXT + β

[{
E [µa|ηb + (1 + δ)b1] V̂t (X− ea, σ̂ ((η − δ)b + (1− η + δ)b1, a,+))

+
∑
i∈N

λiV̂t (X + ei, (η − δ)b + (1− η + δ)b1)

+ (1−
∑
i∈N

λi − E [µa|ηb + (1− η)b1])V̂t (X, σ̂ ((η − δ)b + (1− η + δ)b1, a,−))
}]

≤ cXT + β

[{
E [µa|ηb + (1 + δ)b1] V̂t (X− ea, σ̂ (ηb + (1− η)b1, a,+))

+
∑
i∈N

λiV̂t (X + ei, ηb + (1− η)b1)

+ (1−
∑
i∈N

λi − E [µa|ηb + (1− η)b1])V̂t (X, σ̂ (ηb + (1− η)b1, a,−))
}]

= V̂t+1 (X, ηb + (1− η)b1) ,

because for any X̂,

V̂t

(
X̂, σ̂ ((η − δ)b + (1− η + δ)b1, a, θ)

)
≤ V̂t

(
X̂, σ̂ (δb + (1− η)b1, a, θ)

)
,

by the inductive hypothesis, and since for any b̂,

V̂t

(
X̂− ea, σ̂

(
b̂, a,+

))
< V̂t

(
X̂, σ̂

(
b̂, a,−

))
,

by Lemma A.14.
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Lemma A.16 (Minimax/Minimin cµ Optimal Policies: Arrivals Case). At any

state (X,b), the optimal policies to the minimax and minimin objectives within the

Poisson arrivals case serve classes arg maxa∈A(X)(minj∈Ja caµa,j) and

arg maxa∈A(X)(maxj∈Ja caµa,j), respectively.

Proof. Using Lemma A.15, we can prove the lemma using a condensed argument of

that used in Proposition 2.1. First, since our system is identical to that of Buyukkoc

et al. (1985) when the belief is composed of only ones and zeros, the cµ policy

(we denote π0) that prioritizes arg maxa∈A(X)(minj∈Ja caµa,j) is optimal to the system

when the belief is b0 and the policy (we denote π1) arg maxa∈A(X)(maxj∈Ja caµa,j)

is optimal to the system when the belief is b1 respectively. The value function is

concave and formed from the minimum of a set of hyperplanes (as a result of being

a POMDP). Now, V̂π0 (X,b) is one of these hyperplanes, and due to Lemma A.15,

arg maxb∈B V̂π0 (X,b) = b0 hence we know that R̂ (X) = V̂π0 (X,b0). Using this

same logic, arg minb∈B V̂π1 (X,b) = b1 hence we know that N̂ (X) = V̂π1 (X,b1).

Proof of Corollary 2.1. Each Ecµ policy forms a hyperplane over the belief space so

that an Ecµ policy based on initial state b̂ is evaluated as Vπcµ
b̂ (X,b) = vbT + v

for all b ∈ B. Now consider the set of Ecµ policies expressed as a set V = {(v, v) ∈

Rn × R|∃b̂ ∈ B s.t. Vπcµ
b̂ (X,b) = vbT + v}.

Consider the function Z(b) = min(v,v)∈V vbT + v defined for b ∈ B. Let Zπ̄b̂(b) =∑r
i=1(vib

T + vi)pi where vib
T + vi = Z(b̂) for all (vi, vi) ∈ V for {1, 2, . . . , r} denote

the evaluation of a finite randomization of Ecµ policies based on belief point b̂. Note

that Zπ̄b̂(b) = Vπ̄b̂(X,b). For the proof we define Z to avoid confusion since π̄b̂ may

be composed of policies that are not within πcµ
b̂
. Instead, π̄b̂ is composed of policies

that satisfy minb∈B Vπcµb (X, b̂).

Z(b) is concave since it is the minimum of concave functions. Furthermore, since
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the traditional cµ policy is optimal to V (X,b0) as established in Proposition 2.1,

we are assured that Z(b) is non-decreasing on linear segments from b0 via the same

argument in Proposition 2.1.

Note that the only properties that Theorem 2.2 and Proposition 2.4 relied on was

the concavity of V (X,b), and the fact that it is non-increasing on lines from b0,

hence if we replace V (X,b) with Z (b) in these proofs, we are guaranteed that there

exists π̄b̂, a finite randomization of Ecµ policies based on point b̂ = arg maxb∈δLε Z(b)

such that PB

(
Zπ̄b̂(B) ≥ Zπ̄b̂(b̂)

)
≤ ε. Hence, Yπ̄b̂(X, ε) = Zπ̄b̂(b̂).

Now, Zπ̄b̂(b̂) ≤ maxb∈δLε Vπcµb (X,b), so we have that

Yπ̄b̂(X, ε)− Y(X, ε) = Zπ̄b̂(b̂)− V(X,b∗) ≤ max
b∈δLε

Vπcµb (X,b)− V(X,b∗)

Lemma A.17 (Non-idling under Arrivals). There exists an optimal non-idling

policy to a system under general arrivals

Proof of Lemma A.17. The proof follows via a simple sample path argument.

Consider a system that experiences arrivals in the following manner: If the system

at time t has a positive level of customers, for any non-idling policy, let t′ denote the

first time after t that the policy π clears the system of a given class (i.e., Xπ
i (t′) = 0

and Xπ
i (t′ − δ) = 1 for small enough δ > 0). Let t′′ be the first time in which, under

π, X(t′′) = 0. If the probability of a path occurring such that an arrival in the time

interval (t′, t′′) is bounded by p, then we say that the arrival process is bursty at

level (1 − p). We show in Corollary A.3, that as p → 0, the Ecµ policy becomes

asymptotically optimal to such a system.

It is useful to consider bursty arrival processes since it naturally occurs in systems

that become heavily overloaded due to high levels of arrivals for a period of time
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then experience extended lull periods that allows the system to clear. For example,

consider a multiclass queue with arrivals that occur as an interrupted Poisson process

(which is a type of Markov modulated Poisson process). In this system, alongside

the queue and belief state, another state I(t) denotes whether the system is open

(I(t) = 0) or closed (I(t) = 1). When I(t) = 0, arrivals of each class occur according

to a Poisson process with rate λi. However, when the system is closed (I(t) = 1), no

arrivals occur. The open system transitions to the closed system in an exponentially

distributed amount of time with rate ω, and likewise, the closed system transitions

to the open system in an exponentially distributed amount of time with rate γ. We

assume that the system is stable, which can always be ensured by large enough ω and

small enough γ.

Now, to show that such a system is arbitrarily bursty, (in accordance with our

definition), we first show that the probability of serving a class to zero during a

busy period goes to zero as ω and λi increase. Let us consider the scenario that

maximizes this probability, that is, policies that serve a single class with priority. If

the initial state for a given class of customers is Xi(0) = Xi > 0, and the system

is “open”, (i.e., I(0) = 0), then the initial state of interest is (I(0), Xi(0)) = (0, Xi).

Then, under the policy that prioritizes class i, (say πi), if we let p1 be the probability

that (Iπi(t), Xπi
i (t)) = (0, 0) before (Iπi(t), Xπi

i (t)) = (1, Xπi
i (t)), (that is, p1 is the

probability that the system clears the system of class i before to transitioning to the

“closed” system), then, assuming that the true service parameter is given by µi,

p1 =
∞∑

t=Xi

(
λ

µi + λi + ω

)t−1(
µi

µi + λi + ω

)t
=

( λi
µi+λi+ω

)Xi( µi
µi+λi+ω

)Xi(ω + λi + µi)
3

λ(ω2 + 2ωλ+ λ2 + 2ωµi + λµi + µ2
i )
,

since the number of services that must occur to empty the system of class i customers

is exactly Xi plus the number of arrivals that occur to the system. Obviously, p1 goes

to zero as ω and λ increase. Now, under any non-idling policy π let us examine the
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probability of a state (I(0),X(0)) = (1,X(0)) transitioning to (1,0) before (0,Xπ(t))

where X(t) > 0. That is, let p2 be the probability of the system clearing under any

non-idling policy before it transitions to an open system. Then, p2 can easily be

expressed as

p2 =

(
µ1

µ1 + γ

)X1
(

µ2

µ2 + γ

)X2

. . .

(
µn

µn + γ

)Xn
,

which goes to 1 as γ → 0. Since this can be done for arbitrarily large starting state,

and the system can be made stable for large enough ω, the probability of seeing a path

under any non-idling policy that experiences an arrival in the time interval (t′, t′′) is

bounded.

As another example of a bursty process, consider the batch process for which

arrivals occur according to a Poisson process with parameter λ in batches according

to some distribution f . Thus, a batch containing customers X occur according to f

at exponentially distributed time periods with parameter λ. If the current system

state is given by X(0) = {X1, X2, . . . , Xn} and we let p3 be the probability of clearing

the system under any non-idling policy before another batch arrival occurs, this can

be calculated in a similar manner to p2 by

p3 =

(
µ1

µ1 + λ

)X1
(

µ2

µ2 + λ

)X2

. . .

(
µn

µn + λ

)Xn
.

Naturally, p3 increases to 1 as λ→ 0, so if the system is stable (which can be ensured

by small enough λ), p must be bounded.

Corollary A.3 (Ecµ with Bursty Arrivals). The Ecµ policy is asymptotically

optimal to a system with bursty arrivals as p→ 0.

Proof of Corollary A.3. By Lemma A.17, there exists an optimal policy that is non-

idling for any system with arrivals. Let π be such a policy. Furthermore, let π0 be

the policy that always idles. Hence Xπ0(t) is the cumulative number of customers
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from each class within the system at time t when no services are completed. Hence,

if we define Wπ(t) = {W π
1 (t),W π

2 (t), . . . ,W π
n (t)} ∈ Zn+ as the number of customers

in each class successfully served by policy π at time t, it is obvious that Xπ(t) =

Xπ0(t)−Wπ(t) hence we can write

arginfπ∈ΠEπ,b(0)

[∫ ∞
t=0

e−αtĉXπ (t)T dt|X (0)

]
= arginfπ∈Π Eπ,b(0)

[∫ ∞
t=0

e−αtĉ(Xπ0 (t)−Wπ (t))Tdt|X (0)

]
= argsupπ∈Π Eπ,b(0)

[∫ ∞
t=0

e−αtĉWπ (t)T dt|X (0)

]
.

Now, for any two non-idling policies π1, π2 Xπ1(t) = 0 implies Xπ2(t) = 0 and likewise

Xπ2(t) = 0 implies Xπ1(t) = 0 since the cumulative service time remains the same

across policies. Therefore, at the time in which non-idling policies experience a zero-

state, they have identical queue state as well as observation histories (i.e., belief).

Hence, letting t′′ be the first time to a zero-state (cleared system) under a non-idling

policy,

arginfπ∈ΠEπ,b(0)

[∫ ∞
t=0

e−αtĉXπ (t)T dt|X (0)

]
=

arginfπ∈Π Eπ,b(0)

[∫ t′′

t=0

e−αtĉXπ (t)T dt|X (0)

]

which can be expressed (as before) as

arginfπ∈Π Eπ,b(0)

[∫ t′′

t=0

e−αtĉ(Xπ0 (t)−Wπ (t))Tdt+

∫ ∞
t=t′′

e−αtĉ(Xπ0 (t′′)−Wπ (t′′))Tdt|X (0)

]

= argsupπ∈Π Eπ,b(0)

[∫ t′′

t=0

e−αtĉWπ (t)T dt+

∫ ∞
t=t′′

e−αtĉWπ (t′′)
T
dt|X (0)

]
.

Now, suppose that the arrival times for the first arrival of each class i before t′′

occur at ti. If there are no arrivals, let ti = ∞. Consider a system closely related

to our original non-robust clearing system and the arrivals systems discussed above.
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With starting state

X̂(0) = {1 {X1(0) > 0}Xπ0
1 (t′′), . . . ,1 {Xn(0) > 0}Xπ0

n (t′′)} ,

the only arrivals that can occur in this system are from those classes with X̂i(0) = 0.

If arrivals of this class do occur, they occur at the same moment in time, specifically

at time ti so that X̂π
i (ti) = Xπ0

i (t′′) regardless of policy π, and no further arrivals of

this class can occur. Such a system is a branching-bandit (or arm-acquiring bandit)

version of our original clearing system, hence, the Ecµ policy is asymptotically optimal

to the system since the index-rule is still optimal, and the class with highest Ecµ value

that is non-empty should be served in this system.

Now, in this branching-bandit system, we know that X̂π(t′′) = 0, under any non-

idling policy π since the cumulative time to serve the customers remains the same as

the previous arrivals system. Furthermore, so long as no arrivals occur after the first

time a class is cleared of customers, Ŵπ(t) = Wπ(t) since the two systems have the

same classes available to them at each moment in these cases, and hence can serve

customers at the same times. Due to the bursty condition on arrivals, this occurs

at least (1 − p) of the time, since the probability of clearing a class before the last

arrival prior to t′′ is bounded by p. Hence, since Ŵπcµ(t) is asymptotically optimal

to the branching bandit, and is identical to the bursty arrivals case at least (1− p) of

the time, the Ecµ policy is asymptotically optimal to the bursty arrivals case at least

(1− p) of the time, hence Ecµ is optimal as p→ 0.
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APPENDIX B

ROBUST FORECASTING AND INVENTORY MANAGEMENT
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B.1 India Numerical Example

For our numerical examples, we provide the parameters determined by the nominal

model, and the ambiguity set we design surrounding them.

In our first example to the outreach center with population 10,749, we assume

bimonthly outreach sessions. Since BCG/HepB and JE/Measles share immunization

schedules, it is reasonable to assume that the demand for these vaccines are identical

(or close to identical) in each period. Hence, we fit a 6-dimensional VAR(p) with

lag 2 where each dimension represents BCG/HepB, TT, JE/Measles, DTP, Penta,

and OPV for dimensions 1, . . . , 6 respectively to a time series with perfect vaccine

adherence. As per WHO recommendations (see, e.g. WHO (2010)), the expected

number of newborns at each session for our population can be given by 10, 749 ×

.03 × 1/24 = 13.44. Hence, to account for the variability in these births, we let a

N(13.44, 3) random variable dictate the arrivals to the system. Fitting the data to a

VAR(2) yields

a0 =



11.672

28.104

27.092

11.638

3.817

29.16


, A1 =



−0.073 0.023 −0.048 −0.002 −0.019 0.044

−0.016 −0.067 −0.036 0.01 −0.042 0.023

−0.063 0.025 −0.079 0.014 −0.025 0.027

−0.008 0.026 0.042 −0.059 0.356 −0.007

0.009 0.001 −0.01 −0.399 −0.013 0.009

−0.124 0.03 −0.107 −0.403 −0.034 0.064


,

A2 =



0.048 −0.002 0.027 −0.01 0.023 −0.009

0.082 0.036 0.018 0.031 0.033 −0.044

−0.073 0.015 0.019 0.039 −0.050 0.030

0.006 −0.018 −0.003 0.019 0.025 0.004

1.028 0.020 0.005 0.019 0.813 −0.007

0.985 0.039 0.012 0.008 0.792 0.046


,
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Ω =



8.885 −0.240 −0.295 −0.298 −0.151 8.485

−0.240 17.673 −0.866 −0.134 −0.045 −0.847

−0.295 −0.866 17.600 −0.150 0.169 8.675

−0.298 −0.134 −0.150 15.103 −0.017 −0.692

−0.151 −0.045 0.169 −0.017 3.406 3.306

8.485 −0.847 8.675 −0.692 3.306 20.476


.

To fit a model describing vaccine demand to the IHC as a whole to a 6-dimensional

VAR(p) with lag 2, we must consider other factors such as wastage rates in our

considerations. According to WHO (WHO (2000) and WHO (2017)), about 4.4 liters

of cold storage volume is required per 10,000 population for a 6 week’s worth of stock

when the volume to fully immunize a child is 54.2. This implies that, when we use a

wastage factor of 1.4, the average stock used in a month is

4400

54.2
× 57734

10000
× 98.42× 4

6
= 30752.3

or, 30.752 liters. Then, a 6 week stock (as recommended by WHO) necessitates

46.128 liters of storage capacity. Calibrating this to our model and treating inevitable

wastes (via the wastage factor) as fictitious demands, we let arrivals occur according

to N(156.23, 30.) random variables

a0 =



236.390

440.357

433.995

221.564

67.704

529.555


, A1 =



−0.023 0.019 −0.023 −0.029 −0.026 0.018

−0.072 −0.002 −0.004 0.009 −0.052 0.04

−0.039 −0.006 0.003 0.009 −0.047 0.034

0.007 −0.027 −0.001 −0.023 0.31 0.003

0.065 0.005 0.032 −0.405 0.054 −0.047

0.081 0.015 0.023 −0.425 0.043 −0.052


,
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A2 =



0.053 0.008 0.033 −0.003 0.03 −0.043

0.045 0.006 −0.044 0.033 0.021 −0.016

0.072 −0.001 0.025 −0.013 0.024 −0.027

0.052 0.023 0.021 −0.006 0.002 0.003

0.999 0.003 0.005 −0.004 0.77 0.024

1.043 0.029 0.049 −0.014 0.771 −0.013


,

Ω =



1529.42 12.581 −45.207 59.274 6.77 1522.11

12.581 3061.15 63.552 −34.332 25.446 60.144

−45.207 63.552 3119.46 −53.924 17.026 1534.83

59.274 −34.332 −53.924 2624.7 11.727 31.727

6.77 25.446 17.026 11.727 583.566 603.764

1522.11 60.144 1534.83 31.727 603.764 3656.55


.

B.2 Bound Performance

We investigate the analytical bounds (see Proposition 3.2, 3.4, and Corollary 3.1) in

the infinite capacity case. In the discussion following Proposition 3.4, we observed

that the bounds of Proposition 3.2 and Corollary 3.1 could be tightened by exploiting

the monotonicity of x̂αi in α. To understand the magnitude of this effect, we evaluate

the percentage gap, calculated as |x̃ − x̂∗α|/x̂∗α, between x̂αi and the upper/lower

bounds with and without these improvements via the expression, where x̃ represents

the upper or lower bound to x̂∗α. Comparing the non-improved percentage gap shown

in Figures B.1a and B.1a against their improved counterparts, shown in Figures B.1b

and B.1d, indicates that these improvements can significantly tighten the bounds

until x̂i +
uiσ

2
i

α
becomes the upper bound at α ≈ 325. These bounds can provide

valuable service to a policy-maker who wishes to determine an appropriate level of

ambiguity. Since x̂αi acts as a “target” ordering quantity, if α∗ is found to imply an

extremely large x̂∗αi (via our easily calculable bounds), the level of capacity necessary

to carry these quantities can be assessed, allowing for the policy-maker to more easily

201



Upper Bound

Lower Bound

20 40 60 80 100
α

1

2

3

4

%Error
Infinite Capacity: Percentage Error

(a) Error of Proposition 3.2/Corollary 3.1

bounds.
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(b) Improved bounds α ∈ (0, 100).
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(c) Error of Proposition 3.2/Corollary 3.1

bounds.
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(d) Improved Bounds α ∈ (50, 800).

Figure B.1: Percentage error of the infinite capacity bounds via Proposition 3.2 and

Corollary 3.1 and improved bounds (via Proposition 3.4) for a BCG vaccine with

µi = 220, σi = 40, hi = 0.75, ui = 1, and si = 0 with large and small α.

gauge whether his/her level of optimism is overly pessimistic.

Figure B.1 also demonstrates the asymptotic results implied by the bounds of

Proposition 3.2 as α becomes large, or approaches 0. Interestingly, Figure B.1b shows

that the lower bounds quickly reach x̂i as α increases, whereas the upper bounds cling

closer to the upper bound for small values of α. This behavior suggests that when

the level of ambiguity is large, the upper bound provides a better approximation for

x̂αi than the lower bound. However, when the ambiguity is small, the lower bound
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becomes a better approximation for x̂αi than the upper bound.

To study the performance of our bounds under larger/smaller variance, Fig-

ures B.2a and B.2b show the percentage gap on the improved bounds (via Propo-

sition 3.4) when σi is set to 60 and 20. As expected, since Figure B.2a experiences a

percentage gap as large as 2.5% as opposed to the less than 1% gap of Figure B.2b,

larger variances correspond to higher percentage gap, though even with these large

deviations in variance, our bounds remain relatively close throughout the spectrum

of α. Additionally, we can see that the α necessary to make x̂i+
uiσ

2
i

α
the lower bound

is increasing in σi, which implies that the upper bound remains a closer bound to x̂αi

for larger α as σi increases.

Changes in cost result in similar behaviors to those experienced in σi. Figures B.2c

and B.2d consider the case when hi is 0.85 and 0.5; comparing these with Figure B.1b

shows that as hi/ui approach 1, bounds are observed to become tighter. Hence, for

a policy-maker who places equal weight on missed opportunities between vaccines,

requirements for vaccines with large overage costs (i.e., vaccines that are expensive or

highly subject to deterioration) can be more accurately estimated than those with low

overage costs. Furthermore, α necessary to make x̂i+
uiσ

2
i

α
the lower bound increases as

hi/ui approach 1. This is because the term α ln(ui/hi)
ui+hi

becomes small as hi approaches

ui.

B.3 Proofs of Propositions, Lemmas, and Theorems

Lemma B.1 (πi Properties). For i ∈ N , if x̂i > si,

1. πi(xi) is non-decreasing.

2. −ui/wi ≤ πi(xi) for all xi ≥ 0.

3. π−1
i (q) is strictly increasing on q ≥ −ui/wi.
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(a) σi = 60, hi = 0.75.
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(b) σi = 20, hi = 0.75.
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(c) σi = 40, hi = 0.85.
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(d) σi = 40, hi = 0.5.

Figure B.2: Percentage error of the infinite capacity bounds via Propositions 3.2,

3.4, and Corollary 3.1 for a vaccine with µi = 220, ui = 1, and si = 0 with bound

improvements from Proposition 3.4.

Proof. Property (i) is easily established since Fi(xi) is non-decreasing. Due to this

fact, for all xi ∈ [0, x∗i ],

−ui ≤ −ui + (hi + ui)Fi(xi) ≤ −ui + (hi + ui)Fi(x
∗
i ) = 0.

Dividing by wi gives result (ii): −ui/wi ≤ πi(xi) ≤ 0. Result (iii) follows easily from

our definition of F−1
i .

Proof of Proposition 3.1: We want to show that the problem

min
x∈X (s)

Ef

[
n∑
i=1

Hi(xi, si)

]
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s.t.
n∑
i=1

∫
Vi
fi(vi) ln

fi(vi)

f̂i(vi)
dvi ≤ η

is equivalent to solving

minimize
x∈X (s),α≥0

α

n∑
i=1

ln Ef̂

[
eHi(xi,Vi)/α

]
+ αη.

To show this, we define the density

g(v) =
n∏
i=1

f̂i(vi)

which is a density that induces independence on the components of V. Let V =

{v ∈ Rn|g(v) > 0} and consider the problem

min
x∈X (s)

Ef

[
n∑
i=1

Hi(xi, Vi)

]
(B.1)

s.t.
∫
V
f(v) ln

f(v)

g(v)
dv ≤ η.

Now, Hu and Hong (2012) show that Problem (B.1) can be solved via

minimize
x∈X (s),α≥0

α ln Eg

[
e
∑n
i=1 Hi(xi,Vi)/α

]
+ αη (B.2)

so long as there exists α > 0 such that Eg

[
e
∑n
i=1Hi(xi,Vi)/α

]
is finite, which is an

equivalent condition to
∑n

i=1 Ef̂

[
eHi(xi,Vi)/α

]
<∞. Now, Problem (B.2) is equivalent

to

minimize
x∈X (s),α≥0

α
n∑
i=1

ln Ef̂

[
eHi(xi,Vi)/α

]
+ αη

since the marginals of g and f̂ are identical by definition.

Hu and Hong (2012) also show that we can recast (B.1) as

maximize Eg

[
L(V)

n∑
i=1

Hi(xi, Vi)

]
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s.t. Eg [L(V) lnL(V)] ≤ η.

where L(v) = f(v)/g(v) is the likelihood ratio. Furthermore, they show that the

optimal solution to L which we denote L∗ takes the form

L∗(v) =
e
∑n
i=1Hi(xi,vi)/α

Eg

[
e
∑n
i=1 Hi(xi,Vi)/α

] =
n∏
i=1

eHi(xi,vi)/α

Eg [eHi(xi,Vi)/α]

via the independence obtained by density g. Since L∗ can be expressed in product

form and L∗(v) = f(v)/g(v) we obtain

n∏
i=1

eHi(xi,vi)/α

Eg [eHi(xi,Vi)/α]
gi(vi) = f(v)

which implies that L∗ induces an independent distribution f . Hence, we can write

L∗(v) =
n∏
i=1

fi(vi)

gi(vi)
.

With these results, Problem (B.1) can be restated as

min
x∈X (s)

Ef

[
n∑
i=1

Hi(xi, Vi)

]
(B.3)

s.t.
∫
V
f(v) ln

fi(vi)

gi(vi)
dv ≤ η.

Now, the constraint of (B.3) can be restated as∫
V
f(v) ln

n∏
i=1

fi(vi)

gi(vi)
dv =

n∑
i=1

∫
Vi
fi(vi) ln

fi(vi)

gi(vi)
dvi =

n∑
i=1

∫
Vi
fi(vi) ln

fi(vi)

f̂i(vi)
dvi

since the marginals of g and f̂ are obviously identical (via the definition of g. This

means that Problem (B.1) can be restated as

min
x∈X (s)

Ef

[
n∑
i=1

Hi(xi, Vi)

]

s.t.
n∑
i=1

∫
Vi
fi(vi) ln

fi(vi)

f̂i(vi)
dvi ≤ η.
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and as we have shown above, can be solved via

minimize
x∈X (s),α≥0

α
n∑
i=1

ln Ef̂

[
eHi(xi,Vi)/α

]
+ αη.

so long as
∑n

i=1 Ef̂

[
eHi(xi,Vi)/α

]
< ∞. The fact that the objective is convex follows

directly from Hu and Hong (2012), who shows that if Hi(xi, vi) is convex in xi for

every vi, the function α ln Ef̂ [e
Hi(xi,Vi)] is convex in α and xi.

The fact that

f(v) =
n∏
i=1

f̂i(vi)
eHi(xi,vi)/α

Eg [eHi(xi,Vi)/α]
.

follows directly from the fact that L∗(v)g(v) = f(v).

Proof of Lemma 3.1. First, we note that by Hu and Hong (2012), the function α ln Ef̂ [e
Hi(xi,Vi)/α]

is convex in α since Hi(xi, vi) is convex in xi for every vi. Hence, if the derivative

is non-positive as α → ∞, the derivative must be non-positive for all α > 0 since

convex functions see increasing derivatives. The partial derivative

∂(α ln Ef̂ [e
Hi(xi,Vi)/α])

∂α
= ln Ef̂ [e

Hi(xi,Vi)/α]−
Ef̂ [

Hi(xi,Vi)
α

eHi(xi,Vi)/α]

Ef̂ [e
Hi(xi,Vi)/α]

= ln Ef̂ [e
Hi(xi,Vi)β]−

Ef̂ [βHi(xi, Vi)e
βHi(xi,Vi)]

Ef̂ [e
βHi(xi,Vi)]

when we substitute β = 1
α
. Now,

lim
β→0

[
ln Ef̂ [e

Hi(xi,Vi)β]−
Ef̂ [βHi(xi, Vi)e

βHi(xi,Vi)]

Ef̂ [e
βHi(xi,Vi)]

]
= 0,

which implies that the derivative is non-positive as α → ∞, hence our function is

decreasing in α.

Lemma B.2 (Robust Marginal Properties). For i ∈ N ,
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1. παi (xi) is non-decreasing.

2. −ui/wi ≤ παi (xi) for all xi ≥ 0.

3. πα,−1
i (q) is strictly increasing on q ≥ −ui/wi.

Proof. Examining the partial derivative of G reveals

Gxi(xi, α) =
Ef̂ [e

Hi(xi,vi)/α d
dxi
Hi(xi, vi)]

Ef̂ [e
Hi(xi,vi)/α]

,

hence, when xi is set to zero (assuming a non-negative distribution f̂), we gain

Gxi(0, α) =
Ef̂ [e

Hi(xi,vi)/α(−ui)]
Ef̂ [e

Hi(xi,vi)/α]
< 0. (B.4)

Hence, since by Hu and Hong (2012), the function α ln Ef̂ [e
Hi(xi,Vi)/α] is convex in xi

since Hi(xi, vi) is convex in xi for every vi and the derivatives of convex functions are

monotone, we gain Property (i). Further examining the inequality (B.4), we can see

that

Gxi(0, α) = −ui

Gxi(x̂
α
i , α) ≥ 0

by the definition of x̂αi . Hence, Property (ii) is established dividing the expressions

by wi.

Property (iii) follows naturally due to the monotonic properties (i) and (ii).

Proof of Theorem 3.1. The Lagrangian Dual problem to

minimize
x∈X (s),α≥0

G(x, α)

can be expressed

maximize
k,λ1,λ2≥0

{
inf

x∈Rn+,α≥0
G(x, α) +

n∑
i=1

(si − xi)ki (B.5)
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+ λ1

n∑
i=1

(ki(xi − si)− bk) + λ2

n∑
i=1

(rixi − br)
}

Now, the derivative of the Lagrangian Dual problem with respect to xi set to zero

becomes

wiπ
α
i (xi)− ki + λ1wi + λ2ri = 0. (B.6)

For a zero order, παi (xi) = ki/wi − λ1 − λ2, hence παi (xi) ≥ παj (xj) for any non-zero

order j ∈ Oc if i ∈ Oc or j ∈ Or if i ∈ Or.

For a non-zero order, ki = 0, hence, setting the partial to zero results in

παi (xi) = −λ1 − λ2

for all non-zero orders for i ∈ Or and

παi (xi) = −λ1

for all non-zero order for i ∈ Oc since wi = 0 for all i ∈ Oc.

(i) If
∑n

i=1(x̂αi − si)wi ≤ bc and
∑n

i=1 rix̂
α
i ≤ br, then the problem is unconstrained

and λ1 = λ2 = 0, hence x∗αi = x̂αi for all i = 1, . . . n.

(ii) If
∑n

i=1(x̂αi −si)wi ≤ bc and
∑n

i=1 rix̂
α
i > br, then λ1 = 0 since it is a non-binding

constraint, hence x∗αi = x̂αi for all i ∈ Oc. However, refrigeration is a binding

constraint, thus λ2 > 0 and x∗αi = πα,−1
i (−λ2) for all non-zero orders i ∈ Or.

(iii) If
∑n

i=1(x̂αi − si)ki > bc and
∑n

i=1 rix̂i ≤ br, then λ2 = 0 since it is a non-

binding constraint. However, the carrier constraint is still active, thus λ1 > 0

and x∗αi = πα,−1
i (−λ1) for all non-zero orders i = 1, . . . , n.

(iv) If
∑n

i=1(x̂αi − si)ki > bc and
∑n

i=1 rix̂
α
i > br, then λ1 > 0. This implies that

x∗αi = πα,−1
i (−λ1) for all non-zero orders i ∈ Oc and x∗i = πα,−1

i (−λ1 − λ2) for
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all non-zero orders i ∈ Or. This directly implies that πi(x∗αi ) ≥ πj(x
∗α
j ) for all

non-zero orders i ∈ Oc and j ∈ Or.

Proposition B.1 (Expected Exponential Cost Function). The expectation within

(3.7) can be expressed as:

Ef̂

[
eHi(xi,Vi)/α

]
= e

hi(xi−µi)
α

+
σ2
i h

2
i

2α2 Φ

(
xi − µi
σi

+
σihi
α

)
(B.7)

+ e
ui(µi−xi)

α
+
σ2
i u

2
i

2α2 Φ

(
µi − xi
σi

+
σiui
α

)
.

Proof. We first note that

Ef̂

[
eHi(xi,Vi)/α

]
= Ef̂

[
exp

((
ui(Vi − xi)+ + hi(xi − Vi)+

)
/α
)]

=

∫ ∞
xi

exp (ui(Vi − xi)/α) f̂i(Vi)dVi

+

∫ xi

0

exp (hi(xi − Vi)/α) f̂i(Vi)dVi

Now, we know that the moment generating function for a truncated normal distribu-

tion with bounds a and b can be expressed as

eµit+σ
2
i t

2/2

[
Φ((b− µi)/σi − σit)− Φ((a− µi)/σi − σit)

Φ((b− µi)/σi)− Φ((a− µi)/σi)

]
.

Furthermore, noting that the expectations are identical to the moment generating

functions without the normalization (which is the denominator of the expression), it

is easy to see that the expectations can be decomposed into expectations of truncated

distributions∫ ∞
xi

exp (ui(Vi − xi)/α) f̂i(Vi)dVi = e−uixi/α
∫ ∞
xi

euiVi/αf̂i(Vi)dVi

= e
uiµi
α

+
σ2
i u

2
i

2α2 −
uixi
α

(
1− Φ

(
xi − µi
σi

− σiui
α

))
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= e
ui(µi−xi)

α
+
σ2
i u

2
i

2α2 Φ

(
µi − xi
σi

+
σiui
α

)
,

where ui
α

is substituted for t, and∫ xi

0

exp
(
hi(xi − Vi)+/α

)
f̂i(Vi)dVi = ehixi/α

∫ xi

0

e−hiVi/αf̂i(Vi)dVi

= e
−hiµi
α

+
σ2
i h

2
i

2α2 +
hixi
α Φ

(
xi − µi
σi

+
σihi
α

)
= e

hi(xi−µi)
α

+
σ2
i h

2
i

2α2 Φ

(
xi − µi
σi

+
σihi
α

)
,

where −hi
α

is substituted for t assuming that Φ
(
−µi
σi
− σiui

α

)
is near zero (which

identical to the assumption of positive demand).

Proposition B.2 (Cost Function Partials). The partial derivative of (3.7) with

respect to xi is given by:

Gxi(xi, α) =
hie

hi(xi−µi)
α

+
σ2
i h

2
i

2α2 Φ
(
xi−µi
σi

+ σihi
α

)
− uie

ui(µi−xi)
α

+
σ2
i u

2
i

2α2 Φ
(
µi−xi
σi

+ σiui
α

)
e
hi(xi−µi)

α
+
σ2
i
h2
i

2α2 Φ
(
xi−µi
σi

+ σihi
α

)
+ e

ui(µi−xi)
α

+
σ2
i
u2
i

2α2 Φ
(
µi−xi
σi

+ σiui
α

)
(B.8)

Proof. With the form of the expected cost known via Proposition B.1, via the chain

rule, it can be shown that

∂

∂xi
e
hi(xi−µi)

α
+
σ2
i h

2
i

2α2 Φ

(
xi − µi
σi

+
σihi
α

)
=
hi exp

(
h2
i σ

2
i

2α2 + hi(xi−µi)
α

)
Φ
(
hiσ
α

+ xi−µi
σi

)
α

+

exp

(
h2
i σ

2

2α2 − 1
2

(
−hiσi

α
− xi−µi

σi

)2

+ hi(xi−µi)
α

)
√

2πσi

=
hi exp

(
h2
i σ

2
i

2α2 + hi(xi−µi)
α

)
Φ
(
hiσ
α

+ xi−µi
σi

)
α

+
exp

(
− µ2

i

2σ2
i
− x2

i

2σ2
i

+ µixi
σ2
i

)
√

2πσi

211



=
hi exp

(
h2
i σ

2
i

2α2 + hi(xi−µi)
α

)
Φ
(
hiσ
α

+ xi−µi
σi

)
α

+
exp

(
− (xi−µi)2

2σ2
i

)
√

2πσi

with respect to the first term of the expectation, and

∂

∂xi
e
ui(µi−xi)

α
+
σ2
i u

2
i

2α2 Φ

(
µi − xi
σi

+
σiui
α

)
= −

ui exp
(
σ2
i u

2
i

2α2 + ui(µi−xi)
α

)
Φ
(
µi−xi
σi

+ σiui
α

)
α

−
exp

(
σ2
i u

2
i

2α2 − 1
2

(
σiui
α
− xi−µi

σi

)2

+ ui(µi−x)
α

)
√

2πσi

= −
ui exp

(
σ2
i u

2
i

2α2 + ui(µi−xi)
α

)
Φ
(
µi−xi
σi

+ σiui
α

)
α

−
exp

(
− (xi−µi)2

2σ2
i

)
√

2πσi

with respect to the second term of the expectation. Adding these expressions leads

to the cancellation of the second exponential terms, giving

1

α

(
hie

hi(xi−µi)
α

+
σ2
i h

2
i

2α2 Φ

(
xi − µi
σi

+
σihi
α

)
− uie

ui(µi−xi)
α

+
σ2
i u

2
i

2α2 Φ

(
µi − xi
σi

+
σiui
α

))
.

Now, using the closed form results from Proposition B.1, the partial derivativeGxi(xi, α)

is given by

∂

∂xi
α

n∑
i=1

ln Ef̂

[
eHi(xi,Vi)/α

]
+ αη

=
hie

hi(xi−µi)
α

+
σ2
i h

2
i

2α2 Φ
(
xi−µi
σi

+ σihi
α

)
− uie

ui(µi−xi)
α

+
σ2
i u

2
i

2α2 Φ
(
µi−xi
σi

+ σiui
α

)
e
hi(xi−µi)

α
+
σ2
i
h2
i

2α2 Φ
(
xi−µi
σi

+ σihi
α

)
+ e

ui(µi−xi)
α

+
σ2
i
u2
i

2α2 Φ
(
µi−xi
σi

+ σiui
α

) .

Proof of Proposition 3.2. We prove the middle terms of the bounds found in Propo-

sition 3.2 in the following. To prove the third terms, we separate the proofs into
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Lemmas B.3 and B.4 respectively. We begin by noting that the max {si, ·} term is

immediate for each case, since we are restricted from ordering less than is currently

in stock. Now, in the first case, when λwi < 1, we begin by establishing the lower

bound. We investigate the numerator of (B.8) when xi = µi +
σ2
i (ui−hi)

2α
. In this case,

Φ

(
xi − µi
σi

+
σihi
α

)
= Φ

(
(ui + hi)σi

2α

)
= Φ

(
µi − xi
σi

+
σiui
α

)
hence, the Φ terms of the positive and negative sides of expression (B.8) are equal.

Now, the numerator of (B.8) simplifies to

Φ

(
(1 + λwi)σi

2α

)(
hie

hiuiσ
2
i

2α2 − uie
hiuiσ

2
i

2α2

)
< 0.

Therefore, it is negative at this point, and by Hu and Hong (2012) the problem is

convex (which implies monotonicity of derivatives), we have established a lower bound

for the problem.

To establish the upper bound in the case with hi < ui, we set xi = µi +
σ2
i (ui−hi)

2α
+

α ln(ui/hi)
ui+hi

. Via our previous result, clearly

Φ

(
xi − µi
σi

+
σihi
α

)
> Φ

(
µi − xi
σi

+
σiui
α

)
.

Now, substituting xi in the expression sans Φ terms yields

hie
hi(xi−µi)

α
+
σ2
i h

2
i

2α2 − uie
ui(µi−xi)

α
+
σ2
i u

2
i

2α2

= hie

(
hi(2α2 ln(ui/hi)+σ2

i ui(hi+ui))
2α2(hi+ui)

)
− uie

(
ui(hiσ2

i (hi+ui)−2α2 ln(u/h))
2α2(hi+ui)

)
.

Hence, examining conditions under which previous expression is greater than zero,

hie

(
hi(2α2 ln(ui/hi)+σ2

i ui(hi+ui))
2α2(hi+ui)

)
≥ uie

(
ui(hiσ2

i (hi+ui)−2α2 ln(u/h))
2α2(hi+ui)

)

=⇒ hi
(
2α2 ln (ui/hi) + σ2

i ui(hi + ui)
)
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− ui
(
hiσ

2
i (hi + ui)− 2α2 ln (ui/hi)

)
+ 2α2(hi + ui) ln (ui/hi) ≥ 0

However, the expression on the left hand side of the inequality is equal to zero. Hence,

since we have found an xi which gives positive derivative, we have found an upper

bound on the order quantity. The proofs for the case when λwi > 1 follow naturally

by exchanging ≤ for ≥ and vice versa.

Now to the case when λwi = 1, it is easy to see that when xαi = µi, we have that

Φ

(
xi − µi
σi

+
σihi
α

)
= Φ

(σi
α

)
= Φ

(
µi − xi
σi

+
σiui
α

)
,

and furthermore,

hi
α
e
hi(σ

2
i hi)

2α2 =
ui
α
e
ui(σ

2
i ui)

2α2 ,

which implies we have a zero to the derivative.

Lemma B.3 (Converging Upper/Lower Bounds). For i = 1, . . . , n, if hi ≤ ui,

x̂αi ≤ max{x̄i +
uiσ

2
i

α
, si}. Otherwise if hi ≥ ui, x̂αi ≥ max{x̄i − hiσ

2
i

α
, si}.

Proof. Suppressing the indices for the duration of the proof, in the case that u ≥ h,

using the substitutions z = (x− µ)/σ and θ = σ/α, and letting z̄ = Φ−1 (u/(u+ h)).

Consider the value uθ + z̄. We want to show that this is an upper bound. Via

equation (B.8), it suffices to show

h exp

(
h2θ2

2
+ hθz

)
Φ(hθ + z) ≥ u exp

(
u2θ2

2
− uθz

)
Φ(uθ − z).

Now, to compare the terms and show that hΦ(hθ+ z) ≥ uΦ(uθ− z), we can see that

hΦ(hθ + uθ + z̄) ≥ hu

u+ h

214



= uΦ(−z̄))

= uΦ(θu− (uθ + z̄)).

Furthermore, to the exponential terms and show that

exp

(
h2θ2

2
+ hθz

)
≥ exp

(
u2θ2

2
− uθz

)
,

examining the terms reveals

h2θ2

2
+ hθz =

h2θ2

2
+ hθ(uθ + z̄)

≥ −u
2θ2

2
− uθz̄

=
u2θ2

2
− θuz,

which proves that uθ + z̄ is an upper bound.

The case when u ≥ h holds in a similar fashion: via equation (B.8), it suffices to

show

h exp

(
h2θ2

2
+ hθz

)
Φ(hθ + z) ≤ u exp

(
u2θ2

2
− uθz

)
Φ(uθ − z).

Now, to compare the terms and show that hΦ(hθ+ z) ≤ uΦ(uθ− z), we can see that

uΦ(hθ + uθ − z̄) ≥ hu

u+ h

= hΦ(z̄))

= uΦ(hθ + (z̄ − hθ)).

Furthermore, to the exponential terms and show that

exp

(
h2θ2

2
+ hθz

)
≤ exp

(
u2θ2

2
− uθz

)
,

examining the terms reveals

h2θ2

2
+ hθz =

h2θ2

2
+ hθ(−hθ + z̄)
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= −h
2θ2

2
+ hθz̄

≤ u2θ2

2
+ hθ2u− uθz̄

=
u2θ2

2
− θuz,

which proves that z̄ − hθ is an lower bound.

Lemma B.4 (Critical Fractile Upper/Lower Bounds). For i = 1, . . . , n, if hi ≤

ui, x̂αi ≥ max{x̄i, si}. Otherwise if hi ≥ ui, x̂αi ≤ max{x̄i, si}.

Proof. Suppressing the indices for the duration of the proof, it is immediate that

x̂α ≥ si. In the case that u ≥ h, using the substitutions z = (x− µ)/σ and θ = σ/α,

and letting z̄ = Φ−1 (u/(u+ h)), in the case that z̄σ + µ > si, we want to show that

z̄ is a lower bound. Via equation (B.8), it suffices to show

h exp

(
h2θ2

2
+ hθz

)
Φ(hθ + z) ≤ u exp

(
u2θ2

2
− uθz

)
Φ(uθ − z).

Now, this implies that

hΦ(hθ + z)

uΦ(uθ − z)
exp

(
h2θ2

2
+ hθz − u2θ2

2
+ uθz

)
≤ 1. (B.9)

Letting q = u/(u+ h), ĥ = θh, and û = θu, it is equivalent to show that

ĥΦ(ĥ+ z)

ûΦ(û− z)
exp

(
ĥ2

2
+ ĥz − û2

2
+ ûz

)
≤ 1.

Now, ĥ = û(1−q)
q

, and

exp

(
ĥ2

2
+ ĥz − û2

2
+ ûz

)
= exp

(
(1− 2q)û2

2q2
+

z̄

qû

)
which is a decreasing function of û. Furthermore,

Φ(ĥ+ z)

Φ(û− z)
=

Φ(û/q − û+ z̄)

Φ(û− z̄)
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is a decreasing function of û. Hence, as θ increases, the expression

hΦ(hθ + z)

uΦ(uθ − z)
exp

(
h2θ2

2
+ hθz − u2θ2

2
+ uθz

)
decreases. Therefore, since we know that at θ = 0, the inequality (B.9) is satisfied

due to

hΦ(z̄)

uΦ(−z̄)
=
h u
u+h

u h
u+h

= 1,

we know that (B.9) is satisfied for all θ > 0, which shows that z̄ is a lower bound.

The case when u ≤ h is identical with (≤) replaced with (≥).

Proof of Corollary 3.1. Suppressing the indices for the duration of the proof, since the

denominator of Gx is always non-negative, we can focus on its numerator, which we

denote Ḡx. Using the substitutions z = x−µ
σ

and θ = σ
α
, we can write the numerator

of Gx as

Ḡx(z, θ) = h exp

(
h2θ2

2
+ hθz

)
Φ(hθ + z)− u exp

(
θ2u2

2
− θuz

)
Φ(θu− z).

When we let z = (u− h) θ, the expression becomes

e−
1
2
hθ2(h−2u)

(
hΦ(θu)− uΦ(hθ)e

1
2
θ2(h2−u2)

)
.

Attending to the case of upper bound first, when we let Ḡx ≥ 0 we gain the expression

e
h2θ2

2 Φ(hθ)

h
≤ e

θ2u2

2 Φ(θu)

u
. (B.10)

Now, the sides of the inequality are identical except for u and h, hence investigating

the derivative

d

dt

e
θ2t2

2 Φ(θt)

t
=
e
θ2t2

2 ((θ2t2 − 1) Φ(θt) + θtΦ′(θt))

t2
,
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so long as

(
θ2t2 − 1

)
Φ(θt) + θtΦ′(θt) ≥ 0,

when we substitute u and h for t in the above, the inequaltity (B.10) is true since

the function is increasing in t at these values. Now, the derivative is positive for

θt ≥ 0.8399 and negative for θt ≤ 0.8399, hence (B.10) is true so long as uσ/α >

hσ/α > 0.8399 or uσ/α < hσ/α < 0.8399. To prove the lower bound case, it is easy

to see that when (≤) is replaced for (≥) in (B.10), so long as

(
θ2t2 − 1

)
Φ(θt) + θtΦ′(θt) ≤ 0,

when we substitute u and h for t in the above, the lower bound is true.

Proposition B.3 (Monotonic Ordering in µi). The quantity x∗αi is non-decreasing

in µi.

Proof. Examining the partial derivative Gxi defined in (B.8), increasing µi to µi + δ

for δ > 0 is identical to decreasing xi to xi − δ. Since (B.7) is convex in xi, and the

derivatives of convex functions are monotone, clearly (B.8) is decreasing in µi. Thus

by Theorem 3.1, increases in µi decrease Gxi , and hence must increase x∗αi .

Proof of Proposition 3.3. We first prove that the proof that δGxi
δσi
≤ 0 when u ≥ h for

all xi ≥ µi. The partial derivative of Gxi with respect to σi can be expressed

∂Gxi

∂σi
= (h + u) exp

h2σ2 + 2αh(x− µ) + u
(
−2αµ + σ2u + 2αx

)
2α2


(
Φ
(
hσ
α

+ x−µ
σ

) (
σ3
(
h2 − u2

)
Φ
(
uσ
α

+ µ−x
σ

)
− α

(
−αµ + σ2u + αx

)
Φ′
(
uσ
α

+ µ−x
σ

))
+ α

(
αµ + hσ2 − αx

)
Φ
(
uσ
α

+ µ−x
σ

)
Φ′
(
hσ
α

+ x−µ
σ

))
α2σ2

(
Φ
(
hσ
α

+ x−µ
σ

)
exp

(
h2σ2+2αh(x−µ)+2αu(x−µ)

2α2

)
+ e

σ2u2

2α2 Φ
(
uσ
α

+ µ−x
σ

))2

which implies that when we let ∂Gxi (xi,α)

∂σi
≤ 0, the expression simplifies to

h2σ3 + α
(
αµ+ hσ2 − αx

) Φ′
(
hσ
α

+ x−µ
σ

)
Φ
(
hσ
α

+ x−µ
σ

) ≤ σ3u2 + α
(
−αµ+ σ2u+ αx

) Φ′
(
σu
α

+ µ−x
σ

)
Φ
(
σu
α

+ µ−x
σ

) .
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Letting z = x−µ
σ

, we can rewrite the expression to

h2σ3 +
(
−zασ + hσ2

) Φ′
(
hσ
α

+ z
)

Φ
(
hσ
α

+ z
) ≤ u2σ3 +

(
zασ + σ2u

) Φ′
(
σu
α
− z
)

Φ
(
σu
α
− z
) . (B.11)

Now, when z = 0 we have

h2σ3 + αhσ2 Φ′
(
hσ
α

)
Φ
(
hσ
α

) ≤ σ3u2 + ασ2u
Φ′
(
σu
α

)
Φ
(
σu
α

) .
When u = h, we have equality in the above. If the gap increases in u, then we know

that at z = 0, we have shown that the inequality (B.11) is true. To show this, we

show that

σ3u2 + ασ2u
Φ′
(
σu
α

)
Φ
(
σu
α

) = σ2u

(
α

Φ′
(
σu
α

)
Φ
(
σu
α

) + σu

)
(B.12)

is increasing in u. Now, if

α
Φ′
(
σu
α

)
Φ
(
σu
α

) + σu

is increasing in u, then, certainly we have the increasing property for (B.12). Now,

via the substitution t = σu
α

we can rewrite this as αΦ′(t)
Φ(t)

+ αt, so if

Φ′(t)

Φ(t)
+ t

is increasing in t, we have our monotonicity result. Now,

d

dt

Φ′(t)

Φ(t)
+ t = 1 +

Φ′′(t)

Φ(t)
− Φ′(t)2

Φ(t)2
= 1− e−t

2/2t∫ t
−∞ e

−s2ds
− e−t

2/2(∫ t
−∞ e

−s2ds
)2

≤ −
√

2

π
te−

t2

2 − 2

π
e−

t2

2 + 1,

since ∫ t

−∞
e−s

2

ds =

√
π

2

(
erf
(

t√
2

)
+ 1

)
≥
√
π

2
,
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for all t ≥ 0. Now,

max
t∈R

{
−
√

2

π
te−

t2

2 − 2

π
e−

t2

2 + 1

}
≈ 0.0642

when t =
√

1+2π−1√
2π

. Hence, (B.12) is increasing in u. Now, we know that

(
zασ + σ2u

) Φ′
(
σu
α
− z
)

Φ
(
σu
α
− z
)

is increasing in z for all 0 ≤ z ≤ σh
α
, since Φ′

(
σu
α
− z
)
and Φ

(
σu
α
− z
)
are respectively

increasing and decreasing from 0 ≤ z ≤ σu
α
, and certainly (zασ + σ2u) is increasing

for all z ≥ 0.

Furthermore, we have that

(
−zασ + hσ2

) Φ′
(
hσ
α

+ z
)

Φ
(
hσ
α

+ z
)

is decreasing in z for all 0 ≤ z ≤ σh
α

since Φ′
(
hσ
α

+ z
)
and Φ

(
hσ
α

+ z
)
are respectively

decreasing and increasing from 0 ≤ z ≤ σu
α
, and certainly (−zασ + hσ2) is decreasing

for all z ≥ 0. Thus, for all 0 ≤ z ≤ σh
α
, we have that

(
−zασ + hσ2

) Φ′
(
hσ
α

+ z
)

Φ
(
hσ
α

+ z
) ≤ (zασ + σ2u

) Φ′
(
σu
α
− z
)

Φ
(
σu
α
− z
) .

Now, when z ≥ σh
α
,

(
−zασ + hσ2

) Φ′
(
hσ
α

+ z
)

Φ
(
hσ
α

+ z
) ≤ 0

but

(
zασ + σ2u

) Φ′
(
σu
α
− z
)

Φ
(
σu
α
− z
) ≥ 0

hence, we have that

(
−zασ + hσ2

) Φ′
(
hσ
α

+ z
)

Φ
(
hσ
α

+ z
) ≤ (zασ + σ2u

) Φ′
(
σu
α
− z
)

Φ
(
σu
α
− z
) .
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for all z ≥ 0.

When h ≥ u, the proof that δGxi
δσi
≥ 0 for all xi ≤ µi follows in a similar manner.

Letting δGxi
δσi
≥ 0, the expression that must be satisified can be written

h2σ3 +
(
−zασ + hσ2

) Φ′
(
hσ
α

+ z
)

Φ
(
hσ
α

+ z
) ≥ u2σ3 +

(
zασ + σ2u

) Φ′
(
σu
α
− z
)

Φ
(
σu
α
− z
) . (B.13)

When z = 0, we have

h2σ3 + αhσ2 Φ′
(
hσ
α

)
Φ
(
hσ
α

) ≥ σ3u2 + ασ2u
Φ′
(
σu
α

)
Φ
(
σu
α

) .
When u = h, we have equality in the above. If this gap increases in h, we know that

at z = 0, we have shown that the inequality (B.13) is true. To show this, we show

that

σ2h

(
α

Φ′
(
σh
α

)
Φ
(
σh
α

) + σh

)

is increasing in h. However, this is identical to our claim that (B.12) is increasing in

u, hence when z = 0, (B.13) holds.

Now, we know that

(
−zασ + hσ2

) Φ′
(
hσ
α

+ z
)

Φ
(
hσ
α

+ z
)

is decreasing in z for all −σu
α
≤ z ≤ 0, since Φ′

(
σh
α

+ z
)
and Φ

(
σh
α

+ z
)
are respec-

tively decreasing and increasing from −σu
α
≤ z ≤ 0, and certainly (−zασ + hσ2) is

decreasing for all z ≤ 0.

Furthermore, we have that

(
zασ + σ2u

) Φ′
(
σu
α
− z
)

Φ
(
σu
α
− z
)

is increasing in z for all −σu
α
≤ z ≤ 0 since Φ′

(
σu
α
− z
)
and Φ

(
σu
α
− z
)
are respectively

increasing and decreasing from −σu
α
≤ z ≤ 0, and certainly (zασ + σ2u) is increasing
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for all z ≤ 0. Thus, for all −σu
α
≤ z ≤ 0, we have that

(
−zασ + hσ2

) Φ′
(
hσ
α

+ z
)

Φ
(
hσ
α

+ z
) ≥ (zασ + σ2u

) Φ′
(
σu
α
− z
)

Φ
(
σu
α
− z
) .

Now, when z ≤ −σu
α
,

(
zασ + σ2u

) Φ′
(
σu
α
− z
)

Φ
(
σu
α
− z
) ≤ 0

but

(
−zασ + hσ2

) Φ′
(
hσ
α

+ z
)

Φ
(
hσ
α

+ z
) ≥ 0

hence, we have that

(
−zασ + hσ2

) Φ′
(
hσ
α

+ z
)

Φ
(
hσ
α

+ z
) ≥ (zασ + σ2u

) Φ′
(
σu
α
− z
)

Φ
(
σu
α
− z
) .

for all z ≤ 0.

Proof of Proposition 3.4. Suppressing the indices for the duration of the proof, when

u ≥ h, we want to show that x̂α is decreasing in α. Clearly, if x̂α = s, if the zeros

associated with (B.8) are decreasing in α, the result holds, hence we turn our attention

the zeros of (B.8) and refer to x̄α to these zeros. Letting z = x̄α−µ
σ

, via equation (B.8),

it suffices to show

h exp

(
h2θ2

2
+ hθz

)
Φ(hθ + z) ≤ u exp

(
u2θ2

2
− uθz

)
Φ(uθ − z)

for all θ ≥ σ/α. Now, this implies that

hΦ(hθ + z)

uΦ(uθ − z)
exp

(
h2θ2

2
+ hθz − u2θ2

2
+ uθz

)
≤ 1, (B.14)

for all θ ≥ σ/α. Letting q = u/(u + h), ĥ = θh, and û = θu, it is equivalent to show

that

ĥΦ(ĥ+ z)

ûΦ(û− z)
exp

(
ĥ2

2
+ ĥz − û2

2
+ ûz

)
≤ 1.
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Now, ĥ = û(1−q)
q

, and

exp

(
ĥ2

2
+ ĥz − û2

2
+ ûz

)
= exp

(
(1− 2q)û2

2q2
+

z̄

qû

)
which is a decreasing function of û. Furthermore,

Φ(ĥ+ z)

Φ(û− z)
=

Φ(û/q − û+ z̄)

Φ(û− z̄)

is a decreasing function of û. Hence, as θ increases, the expression

hΦ(hθ + z)

uΦ(uθ − z)
exp

(
h2θ2

2
+ hθz − u2θ2

2
+ uθz

)
decreases. Therefore, since we know that at θ = σ/α, the inequality (B.14) is satisfied

by definition, we know that (B.14) is satisfied for all θ > σ/α.

The case when u ≤ h is identical with (≤) replaced with (≥).

Proof of Corollary 3.2. By Theorem 3.1, it suffices to show that παi (x∗α
′

i ) remains

negative for all α < α′ since under optimality, if the carrier constraint is tight,

πα
′

i (x∗α
′

i ) < 0 for all nonzero orders within i = 1, . . . , n, and if the refrigeration con-

straint is tight, πα′i (x∗α
′

i ) < 0 for all nonzero orders in i ∈ Or. That is, all marginal

benefit functions are either negative or zero for non-zero orders. Hence, if we can

show that all of the marginal benefit functions (of non-zero orders) remain negative

for all α < α′, the capacity constraint must remain tight.

Now, since (B.7) is convex and by Proposition 3.2, the α that makes παi (x∗α
′

i ) zero

must lie above α′, hence each π is negative for every α less than α′. Thus, since παi is

monotonically increasing in xi, and since either all of παi are zero or all are negative

under optimality via Theorem 3.1, this concludes the proof.
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Proof of Proposition 3.5. Part (i) is immediate from the bounds established in Propo-

sition 3.2 since the upper bound when ui < hi tends to si when α approaches zero.

To prove (ii) and (iii), for vaccines with ui > hi, we first prove that limα→0 π
α(xi) =

−ui/wi. To accomplish this, we show that there exists α such that Gxi(xi, α) ≤ −ui+δ

for any δ > 0. This is equivalent to

(−δ + h+ u)e
h2σ2

2α2 +
h(x−µ)

α Φ

(
hσ

α
+
x− µ
σ

)
≤ δe

σ2u2

2α2 +
u(µ−x)

α Φ

(
σu

α
+
µ− x
σ

)
=⇒ 2α2 ln

(
(−δ + h+ u)Φ

(
hσ
α

+ x−µ
σ

)
δΦ
(
σu
α

+ µ−x
σ

) )
+ (h+ u)

(
−2αµ+ σ2(h− u) + 2αx

)
≤ 0

and since all of these terms tend toward zero with the exception of σ2(h− u), hence

limα→0 π
α(xi) = −ui/wi for any order quantity xi.

To prove (ii), since limα→0 π
α(xi) = −ui/wi, for α small enough, any feasible

order x ∈ X (s) will result in παi (xi) > γc for vaccines that do not have −ui/wi = γc.

As seen in Theorem 3.1, this implies that such vaccines become zero-order since all

non-zero orders have παi (x∗αi ) = minj∈Or π
α
j (x∗αj ) for all i ∈ Or and likewise παi (x∗αi ) =

minj∈Oc π
α
j (x∗αj ) for all i ∈ Oc.

Now, since γc ≤ γr, this implies that there exists a vaccine i ∈ Oc such that

ui/wi = γc. Furthermore, since παi (xi) < 0, this implies that the vaccine carrier is

filled, hence limα→0 bc −
∑n

i=1(x∗αi − si)wi = 0.

The proof for (iii) follows in a similar manner. Since limα→0 π
α(xi) = −ui/wi, for

α small enough, any feasible order x ∈ X (s) will result in παi (xi) > γr for vaccines

that do not have −ui/wi = γr. As seen in Theorem 3.1, this implies that all vaccines

in Or that do not have −ui/wi = γr become zero-order since all non-zero orders have

παi (x∗αi ) = minj∈Or π
α
j (x∗αj ) for all non-zero orders i ∈ Or.

Furthermore, since παi (x∗αi ) < 0 for some i ∈ Or, this implies that either the

vaccine carrier or the refrigeration is filled (whichever has less capacity). In the case

that γc < 0 and there is remaining carrier capacity, the problem is the same as case
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(ii), and the carrier is filled with vaccines that have −ui/wi = γc for i ∈ Oc.

Proposition B.4 (Monotone Cost in σi and µi.). The robust objective (3.8) is

increasing in σi and convex in µi for all i ∈ N . Furthermore, if s = 0, (3.8) is

increasing in µi for all i ∈ N .

Proof. To show that G is non-decreasing in µi, we first note that since we assume non-

negative demand x∗,αi ≥ 0. Using the substitutions zi = (xi − µi)/σi and θi = σi/α,

it is easy to show that the components of Ef̂

[
eHi(xi,Vi)/α

]
can be expressed

ehiziθi+
θ2i h

2
i

2 Φ (zi + θihi) + e−ziuiθi+
θ2i u

2
i

2 Φ (−zi + θiui) .

Therefore, the cost of a system when µi is increased by any δ > 0 does not increase so

long as xi can also be increased by δ. The only difference between these two systems

is in the restrictiveness of the constraints. Hence, since µi + δ experiences strictly

tighter constraints than the system under µi, the cost is non-increasing in µi. Now,

to show that G is convex in µi, we can easily see from above that shifting µi to µi + δ

results in an identical cost to shifting xi to xi − δ since zi = xi−(µi+δ)
σi

= (xi−δ)−µi
σi

.

Therefore, since G is convex in xi, G must also be convex in µi.

To show that G is non-decreasing in σi, the partial derivative of G with respect

to σi can be expressed:

∂G

∂σi
= α

(
h2σe

h(−2αµ+hσ2+2αx)
2α2 Φ

(
hσ
α + x−µ

σ

)
α2

+ e
h(−2αµ+hσ2+2αx)

2α2

(
h

α
+
µ− x
σ2

)
Φ′
(
hσ

α
+
x− µ
σ

)

+
σu2e

u(2αµ+σ2u−2αx)
2α2 Φ

(
σu
α + µ−x

σ

)
α2

+
e
u(2αµ+σ2u−2αx)

2α2
(
−αµ+ σ2u+ αx

)
Φ′
(
σu
α + µ−x

σ

)
ασ2

)
/(

e
h(−2αµ+hσ2+2αx)

2α2 Φ

(
hσ

α
+
x− µ
σ

)
+ e

u(2αµ+σ2u−2αx)
2α2 Φ

(
σu

α
+
µ− x
σ

))

Setting ∂G
∂σi

> 0, we can simplify the above expression to
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h2σe
h(−2αµ+hσ2+2αx)

2α2 Φ
(
hσ
α

+ x−µ
σ

)
α2

+ e
h(−2αµ+hσ2+2αx)

2α2

(
h

α
+
µ− x
σ2

)
Φ′
(
hσ

α
+
x− µ
σ

)

+
σu2e

u(2αµ+σ2u−2αx)
2α2 Φ

(
σu
α

+ µ−x
σ

)
α2

+ e
u(2αµ+σ2u−2αx)

2α2

(
u

α
+
x− µ
σ2

)
Φ′
(
σu

α
+
µ− x
σ

)
> 0

which, by substituting z = x−µ
σ

and θ = σ
α
can be expressed

e
h(−2αµ+hσ2+2αx)

2α2

(
h2σ2Φ

(
hσ

α
+ z

)
+ α(hσ − αz)Φ′

(
hσ

α
+ z

))
+e

u(2αµ+σ2u−2αx)
2α2

(
σ2u2Φ

(σu
α
− z
)

+ α(σu+ αz)Φ′
(σu
α
− z
))

> 0

which is equivalent to

e
1
2
hθ(hθ+2z)

(
h2θ2Φ(hθ + z) + (hθ − z)Φ′(hθ + z)

)
+e

1
2
θu(θu−2z)

(
θ2u2Φ(θu− z) + (θu+ z)Φ′(θu− z)

)
> 0

which is equivalent to

√
πθh2e

1
2

(hθ+z)2

erfc
(
−hθ + z√

2

)
+
√
πθu2e

1
2

(z−θu)2

erfc
(
z − θu√

2

)
+
√

2(h+ u) > 0

which is obviously true due to all positive components.

Proof of Proposition 3.6 and Corollary 3.3. When N = Oc, the proposition follows

immediately since st = 0 at each period, regardless a decision-maker’s action. When

vaccine return is enabled with bc =∞, even if st 6= 0, the decision-maker can choose

to return all vaccines and order up to any given value. Hence it is equivalent to

assume that st = 0 at each period.

Similarly, when vaccines are delivered to an IHC, this can be viewed as two sepa-

rate single-period problems, one with refrigerated vaccines, and the other with OCC

vaccines. If the OCC vaccines are treated with fictitious “refrigeration” constraint bc

and have an infinite fictitious transportation constraint, while the refrigerated vaccines

226



treat br as their usual refrigerated constraint with infinite transportation constraint,

the problem instance is recovered. Since order quantities of Oc and Or do not limit

each other, the problem can be solved up to the term α using two separate problem

instances.

To show basestock optimality in systems with backordering, we generate a dy-

namic formulation whose statespace includes the previous p forecasts and inventory

state. We let Ŵ ∈ Rp×n be composed of the previous p forecasts, let ℵ : Rp×n → Rp×n

which updates Ŵ to include the current forecast and discard the pth forecast. Then,

letting fŴ denote the forecast with respect to p previous forecasts Ŵ , we define the

following dynamic program with backordering

Jt(s, Ŵ ) = min
x∈X (s)

max
f∈D(fŴ ,η)

Ef

[
n∑
i=1

Hi(xi, Vi) + β

∫
v≥0

Jt−1(x−V,ℵ(Ŵ ))f(v)dv

]
(B.15)

with terminating condition J0(s, Ŵ ) = 0. Also, we introduce the equation

Ĵt(x, Ŵ ) = max
f∈D(fŴ ,η)

Ef

[
n∑
i=1

Hi(xi, Vi) + β

∫
v≥0

Jt−1(x−V,ℵ(Ŵ ))f(v)dv

]
(B.16)

Proof of Proposition 3.7. The proof follows in a nearly identical fashion to the Decroix

and Arreola-Risa (1998). There exists an infinite-horizon policy that has finite ex-

pected discounted cost (see, e.g., Lemma B.5). This implies that Jt(s, Ŵ ) is bounded

above by a function M̂(s, Ŵ ).

Jt(s, Ŵ ) is clearly increasing in t, hence, there exists a function M(s, Ŵ ) that

satisfies

M(s, Ŵ ) = lim
t→∞

Jt(s, Ŵ ).

Ĵt(ŝ, Ŵ ) and Jt(s, Ŵ ) are convex for each t (see, e.g., Lemma B.6). Also, Jt(s, Ŵ )→

∞ as ||s|| → ∞ and Ĵt(ŝ, Ŵ )→∞ as ||ŝ|| → ∞. By taking limits, K(s, Ŵ ) is convex

and K(s, Ŵ )→∞ as ||s|| → ∞.
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We now show that K(s, Ŵ ) satisfies the inventory functional equation (B.15),

thereby establishing that J(s, Ŵ ) = K(s, Ŵ ), i.e., K(s, Ŵ ) is the infinite-horizon

minimum-cost function. We establish equality in (B.15) by showing that the inequal-

ity holds in both directions. First, note that

K(s, Ŵ ) = lim
t→∞

Jt(s, Ŵ )

= lim
t→∞

{
min

x∈X (s)
max

f∈D(fŴ ,η)
Ef

[
n∑
i=1

Hi(xi, Vi) + β

∫
v≥0

Jt−1(x−V,ℵ(Ŵ ))f(v)dv

]}

≤ lim
t→∞

{
min

x∈X (s)
max

f∈D(fŴ ,η)
Ef

[
n∑
i=1

Hi(xi, Vi) + β

∫
v≥0

K(x−V,ℵ(Ŵ ))f(v)dv

]}

= min
x∈X (s)

max
f∈D(fŴ ,η)

Ef

[
n∑
i=1

Hi(xi, Vi) + β

∫
v≥0

K(x−V,ℵ(Ŵ ))f(v)dv

]

Now since Jt(s, Ŵ ) converges monotonically to K(s, Ŵ ), the Monotone Convergence

Theorem implies that Ĵt(ŝ, Ŵ ) converges monotonically to Ĵ(ŝ, Ŵ ). Since Ĵt(ŝ, Ŵ )

and Ĵ(ŝ, Ŵ ) are continuous everywhere, Ĵt(ŝ, Ŵ ) converges uniformly to Ĵ(ŝ, Ŵ ) on

the compact set

Y(u) = {y ∈ Rn
+ : yi ≥ ui,w

′(y − u) ≤ bc, r
′y ≤ br}.

From the earlier discussion,

K(s, Ŵ ) ≥ Jt(s, Ŵ ) = min
ŝ≥s,ŝ∈X (s)

Ĵt(ŝ, Ŵ ).

For any ε > 0, there exists T such that for all t ≥ T , 0 ≤ Ĵ(ŝ, Ŵ )− Ĵt(ŝ, Ŵ ) < ε for

all ŝ ∈ Y(s). Let zt be a minimizer of Ĵt(ŝ, Ŵ ) and z be a minimizer of Ĵ(ŝ, Ŵ ) on

Y(s). Then

0 ≤ Ĵ(zt, Ŵ )− Ĵt(z
t, Ŵ ) < ε,

and clearly

Ĵ(z, Ŵ )− Ĵ(zt, Ŵ ) ≤ 0 and Ĵ(z, Ŵ )− Ĵt(z
t, Ŵ ) ≥ 0,
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so we have that

0 ≤ Ĵ(z, Ŵ )− Ĵt(z
t, Ŵ )

=
[
Ĵ(z, Ŵ )− Ĵ(zt, Ŵ )

]
+
[
Ĵ(zt, Ŵ )− Ĵt(z

t, Ŵ )
]

< 0 + ε = ε,

i.e.,

min
z∈Y(s)

Ĵ(z, Ŵ ) < min
z∈Y(s)

Ĵt(z, Ŵ ) + ε,

for all t ≥ T . Taking the limit of the right-hand side as t → ∞ and then as ε → 0

yields

min
z∈Y(s)

Ĵ(z, Ŵ ) ≤ lim
t→∞

min
z∈Y(s)

Ĵt(z, Ŵ )

Combining this with K(s, Ŵ ) ≥ Jt(s, Ŵ ) yields

K(s, Ŵ ) ≥ min
x∈X (s)

max
f∈D(fŴ ,η)

Ef

[
n∑
i=1

Hi(xi, Vi) + β

∫
v≥0

K(x−V,ℵ(Ŵ ))f(v)dv

]
Therefore

J(s, Ŵ ) = K(s, Ŵ ) = lim
t→∞

Jt(s, Ŵ ),

so J(s, Ŵ ) is convex and J(s, Ŵ ) → ∞ as ||s|| → ∞. As a result, Ĵ(ŝ, Ŵ ) is convex

and Ĵ(ŝ, Ŵ ) → ∞ as ||ŝ|| → ∞. Therefore, Ĵ(ŝ, Ŵ ) achieves its minimum at some

finite ŝ, which implies our base-stock optimality conditions.

Lemma B.5 (Finite Expected Cost). There exists an infinite-horizon policy in the

backorder case that has finite expected cost.

Proof. Consider the policy that always orders zero vaccines. For any state s ∈ Rn,

we have already shown that the cost of

max
f∈D(fŴ ,η)

Ef

[
n∑
i=1

Hi(xi, Vi)

]
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for any order quantity x ∈ X (s) is finite. Hence, the costs due to underage demands

occurring in period t can be bounded by some cut for each period, and likewise the

overage costs can be bounded by co for each period. Denote cu = supt≥1 c
u
t . Then the

costs can be bounded by
∞∑
t=1

βt
t∑

τ=1

(cut + co) ≤
∞∑
t=1

βtt(cu + co) =
β

(1− β)2
(cu + co)

which completes the proof.

Lemma B.6 (J and Ĵt Convexity). Ĵt(x, Ŵ ) is convex in x and Jt(s, Ŵ ) is convex

in s.

Proof. We prove via induction. Now, in the base case, when t = 1,

Ĵ1(x, Ŵ ) = max
f∈D(fŴ ,η)

Ef

[
n∑
i=1

Hi(xi, Vi)

]
(B.17)

Now, obviously, each Hi(xi, vi) is convex in xi, hence
∑n

i=1Hi(xi, vi) is convex in x.

Moreover, for any fixed f , Ef [
∑n

i=1 Hi(xi, Vi)] is convex in x since

Ef

[
n∑
i=1

Hi(λx
1
i + (1− λ)x2

i , Vi)

]
≤ Ef

[
n∑
i=1

λHi(x
1
i , Vi) + (1− λ)Hi(x

2
i , Vi)

]

= λEf

[
n∑
i=1

Hi(x
1
i , Vi)

]
+ (1− λ)Ef

[
n∑
i=1

Hi(x
2
i , Vi)

]
for any x1 = (x1

1 . . . , x
1
n)′, x2 = (x2

1 . . . , x
2
n) ∈ Rn, and λ ∈ [0, 1]. Since the maximum

of convex functions is convex, the base case is complete. By similar reasoning, we can

show that J1(s, Ŵ ) is convex in s:

min
x∈X (s1)

max
f∈D(fŴ ,η)

λEf

[
n∑
i=1

Hi(xi, Vi)

]
+ min

x∈X (s2)
max

f∈D(fŴ ,η)
(1− λ)Ef

[
n∑
i=1

Hi(xi, Vi)

]

≥ min
x1∈X (s1)
x2∈X (s2)

max
f∈D(fŴ ,η)

Ef

[
λ

n∑
i=1

Hi(x
1
i , Vi) + (1− λ)

n∑
i=1

Hi(x
2
i , Vi)

]
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≥ min
x1∈X (s1)
x2∈X (s2)

max
f∈D(fŴ ,η)

Ef

[
n∑
i=1

Hi(λx
1
i + (1− λ)x2

i , Vi)

]

= min
x∈X (s)

max
f∈D(fŴ ,η)

Ef

[
n∑
i=1

Hi(xi, Vi)

]

since λx1 + (1− λ)x2 ∈ X (λs1 + (1− λ)s2).

For the inductive step, we assume both Jt and Ĵt are true up to t − 1. For the

inductive step to

min
x∈X (s1)

max
f∈D(fŴ ,η)

λEf

[
n∑
i=1

Hi(xi, Vi)

]
+ λβEf

[
Jt−1(x−V,ℵ(Ŵ ))

]
+ min

x∈X (s2)
max

f∈D(fŴ ,η)
(1− λ)Ef

[
n∑
i=1

Hi(xi, Vi)

]
+ (1− λ)βEf

[
Jt−1(x−V,ℵ(Ŵ ))

]
≥ min

x1∈X (s1)
x2∈X (s2)

max
f∈D(fŴ ,η)

Ef

[
λ

n∑
i=1

Hi(x
1
i , Vi) + (1− λ)

n∑
i=1

Hi(x
2
i , Vi)

]

+ Ef

[
λJt−1(x1 −V,ℵ(Ŵ )) + (1− λ)Jt−1(x2 −V,ℵ(Ŵ ))

]
≥ min

x1∈X (s1)
x2∈X (s2)

max
f∈D(fŴ ,η)

Ef

[
n∑
i=1

Hi(λx
1
i + (1− λ)x2

i , Vi)

]

+ Ef

[
λJt−1(λx1 + (1− λ)x2 −V,ℵ(Ŵ ))

]
= min

x∈X (s)
max

f∈D(fŴ ,η)
Ef

[
n∑
i=1

Hi(xi, Vi)

]
+ Ef

[
J(x−V,ℵ(Ŵ ))

]
since λx1 + (1− λ)x2 ∈ X (λs1 + (1− λ)s2). The case for Ĵ(x, Ŵ ) follows in a nearly

identical fashion.
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DISTRICT-MANGED VACCINE SUPPLY NETWORKS

233



C.1 Heuristic Details

To further detail our heuristic approach (in particular, our routing strategies), we let

T (i) = {t ∈ N|t mod i = 0
⋂

t ≤ τ̄}, (C.1)

and let ν = (ν1, . . . , ντ̄ ) represent the number of each class in a given grouping.

Then, if s is the targeted class of reduction and νs mod m +
∑τ̄+1

i=s+1 νi ≥ m, (where

ντ̄+1 = 0 for notational convenience), we can employ the following MIP to make

routing decisions. We let T = s2/s1, then we define the following two MIPs:

η1(ν,M) = min
∑

i∈M
⋃
{0}

∑
j∈M

⋃
{0}

j 6=i

di,jui,j,t (C.2)

s.t.
∑
j∈M

(u0,j + uj,0) = 2

∑
i∈M

⋃
{0}

i6=j

ui,j = yj j ∈M

∑
j∈M

⋃
{0}

i 6=j

ui,j = yi, i ∈M

bi − bj + nui,j ≤ n− 1 + n
(
2− (yi + yj)

)
i, j ∈M, i 6= j∑

i∈M(j)

yi = νj j = 1, . . . , τ̄

yi ∈ B, ui,j ∈ B, bi ∈ N

η2(s1, s2, νs2 ,W1,W2) = min
T−1∑
t=0

∑
i∈W

⋃
{0}

∑
j∈W

⋃
{0}

j 6=i

di,jui,j,t (C.3)

s.t.
∑
j∈W

(u0,j,t + uj,0,t) = 2 t = 0, . . . , T − 1

∑
i∈W

⋃
{0}

i 6=j

ui,j,t = yj,t j ∈ W , t = 0, . . . , T − 1

234



∑
j∈W

⋃
{0}

i6=j

ui,j,t = yi,t, i ∈ W , t = 0, . . . , T − 1

bi,t − bj,t +mui,j,t ≤ m− 1 + n
(
2− (yi,t + yj,t)

)
i, j ∈ W , i 6= j, t = 0, . . . , T − 1∑

i∈W2

yi,t = νs2/T t = 0, . . . , T − 1

T−1∑
t=0

yi,t ≤ 1 i ∈ W2

yi,t = 1 i ∈ W1, t = 0, . . . , T − 1

yi,t ∈ B, ui,j ∈ B, bi ∈ N

Otherwise, if νs mod m +
∑τ̄+1

i=s+1 νi < m, routes can be determined by ψ. Here,

yi,t = 0 signifies that IHC i is visited and the routes are determined via the ui,j,t.

Though this handles the fully-observed case, the Bayesian case is handled nearly

identically by denoting η̂1 and η̂2 as η1 and η2 with θ replaced with θ̂.

Combining these tools allows us to create a heuristic which works to create high-

density routes while visiting each IHC near their class. This heuristic, expressed in

Algorithm 3, iteratively groups and provides routing policies for IHCs with a priority

on routing smaller classes and is based on fixed-τ policies like (4.19) and (4.20).

Here, W is an n× τ̄ matrix with components wi,t that act as storage for the routing

strategies and ȳ is the n-vector that stores the fixed-τ policy for each IHC. In the

fully-observed case, wi,t = j if the edge from i to j is used whenever the current

period t̂ = t mod τ̄ + 1 and ȳi = τ if IHC i ∈ N is served every τ periods. In the

Bayesian case, as discussed in Section 4.6, we consider routing decisions for periods

t̂ < T1, and similarly let wi,t = j if edge i to j is used in period t̂ = t mod τ̄ + 1, and

ȳi = τ if IHC i ∈ N is served every τ periods.
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Algorithm 3 Heuristic Route Assignment
1: function Heuristic_Assignment

2: M←N
3: for s = 1, s+ +, while s ≤ τ̄ andM 6= ∅ do
4: ȳ← 0

5: a← Soft_Reduce((|M(1)|, . . . , |M(τ̄)|), s)
6: (a,u)← Hard_Reduce(a, s)

7: b← (|M(1)|, . . . , |M(τ̄)|)− a
8: if bs mod m = 0 then
9: zi ← (s, s) for all i ∈M(s)

10: M←M\M(s)

11: else if s < τ̄ and bs mod m+
∑τ̄

τ=s+1 bτ ≤ m then
12: Solve η1((0, . . . , 0, bs mod m, bs+1, . . . , bτ̄ ),M)

13: W = {i ∈M|yi > 0} andM←M\ (W⋃M(s))

14: zi ← (s, s) for all i ∈ W⋃M(s)

15: else if s < τ̄ and
∑τ̄

i=s bi ≥ m then
16: Solve η1((0, . . . , 0, bs mod m, bs+1, . . . , bτ̄ ),M)

17: W = {i ∈M|yi > 0} andM←M\W
18: Solve η1((0, . . . , 0, bs mod m,us+1, . . . , uτ̄ ),W)

19: W1 = {i ∈ W|yi > 0} and W2 =W \W1

20: zi ← (s, s) for all i ∈ W1

⋃M(s)

21: for s2 = s+ 1, s2 + +, while s2 ≤ τ̄ do
22: if s2 mod s = 0 and |W2(s2)| > 0 then
23: Solve η2(s, s2, |W2(s2)|,W1,W2(s2))

24: ȳi ← maxt=0,...,s2/s−1 s(t+ 1)yi,t for all i ∈ W2(s2)

25: zi ← (ȳi, θ(i)) for all i ∈ W2(s2)

26: M←M\M(s)

27: else
28: zi ← (s, s) for all i ∈M
29: break
30: return z1, z2, . . . , zn

C.2 Vehicle Capacity Restrictions

If the manager wishes to modify the assumption of a m IHC visits per excursion for

the purpose of reflecting the vehicle’s capacity, this can easily be accomplished via our236



MIP formulations if we restrict the policy space to only fixed-τ policies. Therefore,

letting m ∈ N now refer to the number of demand units a vehicle holds and letting

aj,τ ∈ N for j ∈ N and τ ∈ {1, . . . , τ̄} denote the level of capacity that is taken up by

IHC j when it is visited every τ time periods. For example, if a manager insists that

a vehicle must carry at least 1.5 times the mean demand (within the associated order

fixed-τ ordering interval), and λ1 = 150 or α1/β1 = 150, if vehicle capacity m = 10

(in hundreds of demand units), then a1,1 = 2, a1,2 = 5, and a1,3 = 7.

Then, changing the constraint

bi,t − bj,t +mui,j,t ≤ m− 1, i, j ∈ N , i 6= j, t = 1, ..., T

in equations (4.19) and (4.20) (where T represents Tτ̄ in the fully-observed case and

T1 − 1 in the Bayesian case) to

bi,t − bj,t +mui,j,t ≤ m−
τ̄∑
τ=1

yj,τ,t mod τaj,τ , i, j ∈ N , i 6= j, t = 1, ..., T

results will generate vehicle routes that never exceed the capacity constraints implied

by ai,τ , and can be accomplished with the same number of constraints as those in

equations (4.19) and (4.20). However, since m now represents demand, the variables

bi,t may be required to take on larger values, which can moderately increase the

complexity of the programs.
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C.3 Proofs of Propositions, Lemmas, and Theorems

Lemma C.1 (Dynamic Program Equivalence). VT (λ) and V̂T (α, β) correspond

to the fully-observed and learning objectives (4.3) and (4.5).

Proof. The base case in both (4.3) and (4.5) (where t = T ) is immediate so long as

ci(τλ) = Eλ

[
τ∑
i=1

(Yi − s)+

]
and ĉi(α, β, τ) = Eg

[
τ∑
i=1

(Yi − s)+

]
, (C.4)

which we will show at the end of the proof. Therefore, we first show that Vt(λ) is

equivalent to (4.3). When t < T in (4.3), this corresponds to the case where t > 0 in

Vt(λ). Now,

E

[
T∑
t̄=t

Zπ
t̄

]
− Vt(τ ) =

T∑
t̄=t

ν
n∑
i=1

aπit

( t∑
t̂=t−τπit

Xit̂ − qi
)+

−
n∑
i=1

aici(λiτi)− Vt−1(((1− a1)τ1 + 1, . . . , (1− an)τn + 1)),

= ν
n∑
i=1

aπit

( t∑
t̂=t−τπit

Xit̂ − qi
)+

−
n∑
i=1

aici(λiτi),

by the inductive hypothesis, hence so long as (C.4) holds, the dynamic program

follows. V̂T (α, β) hold in an identical fashion.

For showing the equivalence of ci(τλ), it is well known that
∑τ

i=1 Yi is Poisson

with parameter τλ since it is the sum of τ independent Poisson random variables.

Letting µ = τλ and Y denote a Poisson random variable with parameter µ, as shown

in Geyer (2017),

Eµ [Y 1(Y > k)] = µ(1− F (k − 1, µ)),

hence

Eµ

[
(Y − s)+

]
= Eµ [(Y − s)1(Y > s)]

= µ(1− F (s− 1, µ))− s(1− F (s, µ)),
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which proves our assertion for the λ fully-known case.

Similarly, for showing the equivalence of ci(α, β, τ), when Y =
∑τ

i=1 Yi is Pois-

son with Gamma prior, it is well known that the posterior distribution is negative

binomial. As shown in Geyer (2017),

Eg [Y 1(Y > k)] =
(k + τα)(1− p)h(k) + τα(1− p)(1−H(k))

p
,

for negative binomial random variables where p = β/(1 + β), hence,

Eµ

[
(Y − s)+

]
= Eµ [(Y − s)1(Y > s)]

=
(H(s, τα, β)− 1)(p(τα + s)− τα)− (p− 1)h(s, τα, β)(τα + s)

p

=
(s+ τα)h(s, τα, β) + (βs− τα)(−1 +H(s, τα, β))

β

which proves our assertion.

Lemma C.2 (Full-Observed Convexity). Cost function c(τλ) is convex increasing

in λ.

Proof. It suffices to show the lemma is true for ci(λ) with ν = 1. Investigating the

second derivative of ci,

d2

dλ2
ci(λ) =

e−λλ−1+q (q(1− q + λ)Γ(q − 1) + (q − λ)Γ(q))

Γ(q − 1)Γ(q)

and observing that

q(1− q + λ)Γ(q − 1) + (q − λ)Γ(q) = Γ(q − 1)(q(1− q + λ) + (q − λ)(q − 1))

= Γ(q − 1)λ > 0,

hence ci(τλ) is convex in λ.

Proof of Proposition 4.1. To point (i), in the infinite horizon case, it suffices to show

that per-period cost over any horizon is dominated by our proposed policy. Let
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τ̂ = arg minτ≥1
1
τ

(k + 2d1,0 + c1(τλ)). Each τ̂ order results in 1
τ̂

(k + 2d1,0 + c1(τλ))

per period over the course of τ̂ periods. Comparing the policy that always orders τ

to the policy that orders τ̂ at some time t, the τ̂ policy obviously experiences smaller

per period costs by definition.

To point (ii), when T + 1 mod τ̂ = 0, it can be observed that a manager can

order according to τ̂ at every period, which allows for the average per period cost

of 1
τ̂

(k + 2d1,0 + c1(τ̂λ)), which is a lower bound on per period costs (in accordance

with the proof of (i)), which also proves (iii).

Proof of Proposition 4.2 and 4.5. Via Proposition 4.1, a lower bound on the per-

period cost for a single IHC i can 1
τ̂

(k + 2di,0 + c1(τ̂λ)) if m = 1. When m > 1,

if m IHCs are located at exactly the same position as IHC i and served only when

IHC i is served, minimizing costs with respect to IHC in the same manner as Propo-

sition 4.1 will yield

min
τ≥1

1

τ

(
k + 2d0,i

m
+ ci(τλi)

)
of costs per period since IHC i only contributes (k + 2d0,i)/m to the total travel

costs in this (potentially fictitious) scenario. Hence, this serves as a lower bound

on per-period costs possible for IHC i, and considering this for each IHC proves the

proposition. The proof for the Bayesian case follows in exactly the same manner using

Proposition 4.3.

Proof of Proposition 4.3. For Part (i), we first show that ci(τα/β) ≤ ĉi(α, β, τ). This

is true since ci(τα/β) is convex in α/β, and τα
β

= Eg [τλ], hence by Jensen’s inequality

we have

ci(τα/β) ≤ Eg [ci(τλ)] = ĉi(α, β, τ).
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Now, moving forward by induction, the base case, where t = 1 is automatically

satisfied by ci(τα/β) ≤ ĉi(α, β, τ). For the inductive step, suppose that τ , associated

π, is the best fixed-τ policy for Vπ
t (α, β). Then if τ < t,

Vπ
t (α/β) = k + 2d1,0 + c1(τ̂α/β) + Vπ

t−τ̂ (α/β)

≤ k + 2d1,0 + c1(τ̂α/β) +
∞∑
y=0

Vπ
t−τ̂

(
α + y

β + τ̂

)
h(y, α, β)

≤ k + 2d1,0 + ĉ1(α, β, τ̂) +
∞∑
y=0

V̂π
t−τ̂ (α + y, β + τ̂)h(y, α, β)

where the first line to second occurs via Jensen’s inequality since Vπ
t−τ̂ (α/β) is a convex

function in α/β. The second to third inequality takes place due to the inductive

hypothesis. Otherwise, if τ ≥ t, the proof is the same as the base case.

To show Part (ii), note that as limβ→∞ h(τ, βλ, β) = f(τλ) since negative bi-

nomial is known to converge to the Poisson distribution in this limit. As such,

limβ→∞ ĉi(βλ, β, τ) = ĉ(τλ), hence, proceeding by induction, the base case when t = 1

is obvious. To the inductive step, suppose that the optimal action for limβ→∞ V̂t(λ1β, β)

is associated with τ < t. Then,

lim
β→∞

V̂t(βλ, β) = lim
β→∞

k + 2d1,0 + ĉ1(βλ, β, τ) +
∞∑
y=0

V̂t−τ (λβ + y, β)h(y, τβλ, β)

= k + 2d1,0 + c(τλ) +
∞∑
y=0

Vt−τ (λ)f(y, λ)

≥ Vt(λ),

which achieves equality if τ minimizes Vt(λ). Hence in this case, τ must be identical

to the τ that minimizes Vt(λ). Otherwise, if τ ≥ t, the proof is the same as the base

case.

Finally, to show part (iii), we note that the left hand side of the inequality is

immediate since this is the case of fully observed λ. The right hand side of the
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inequality is the evaluation of the potentially suboptimal fixed-τ policy, hence it is

an upper bound to the optimal policy for V̂t(α, β).

Proof of Corollary 4.1. By Proposition 4.3, t+1
τ̂

(k+2d1,0+ĉ1(τ, α, β)) and Eg [Vt−τ (λ)]

act as upper and lower bounds to Vt(α, β) and hence, so long as Eĝ [Vt−τ (λ)] acts as

a lower bound to
∑∞

y=0 V̂t−τ (α + y, β + τ)h(y, α, β), if there exists a τ that satisfies

the conditions of the Corollary, an upper bound to V̂t(α, β) has less cost than a lower

bound after first action, which proves the assertion. To show that this is a lower

bound,

∞∑
y=0

V̂t−τ (α + y, β + τ)h(y, τα, β) ≥
∞∑
y=0

Eα+y,β+τ [Vt−τ (λ)]h(y, τα, β)

=
∞∑
y=0

(∫ ∞
λ=0

Vt−τ (λ)g(λ, α + y, β + τ)dλ

)
h(y, τα, β)

=

∫ ∞
λ=0

Vt−τ (λ)

(
∞∑
y=0

g(λ, α + y, β + τ)h(y, τα, β)

)
dλ

= Eĝ [Vt−τ (λ)]

where, as discussed in Xekalaki (1981), summing gamma over negative binomial dis-

tribution yields distributions of the form ĝ given by

λα−1
(

β
β+1

)ατ
(β + τ)αe−λ(β+τ)

1F1

(
ατ ;α; λ(β+τ)

β+1

)
Γ(α)

where 1F1 is the hypergeometric function which concludes the proof so long as τ < t.

If τ ≥ t, the problem reduces to the myopic case, and hence is immediate.

Proof of Proposition 4.4. Consider two policies: π1 chooses action τ at time t and τ

again at time t− τ , then follows the optimal policy for all remaining decision epochs.

The other policy π2 chooses action 2τ at time t, then follows the optimal policy for

all remaining decision epochs. Obviously, both π1 and π2 yield identical costs to go
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from time t− 2τ , yet π1 experiences 2k + 4d1,0 + 2ĉ1(τ, α, β) whereas π2 experiences

k + 2d1,0 + c(2τ, α, β) from periods t to t− 2τ . Thus, if

2k + 4d1,0 + 2ĉ1(τ, α, β) ≤ k + 2d1,0 + ĉ(2τ, α, β)

=⇒ k + 2d1,0 ≤ ĉ1(2τ, α, β)− 2ĉ1(τ, α, β)

this implies that two fills can occur for less cost than a single fill over the course of

2τ periods, hence for any policy calling for an action larger than 2τ , there exists a

policy with less cost that orders twice during that interval.
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