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ABSTRACT  

   

A major obstacle to sustainable solar technologies is end-of-life solar modules. In 

this thesis, a recycling process is proposed for crystalline-Si solar modules. It is a three-

step process to break down Si modules and recover various materials. Over 95% of a 

module by weight can be recovered with this process. Two new technologies are 

demonstrated to enable the proposed recycling process. One is sequential electrowinning 

which allows multiple metals to be recovered one by one from Si modules, Ag, Pb, Sn and 

Cu. The other is sheet resistance monitoring by the 4-point probe which maximizes the 

amount of solar-grade Si recovered from Si modules with high throughput. The purity of 

the recovered metals is above 99% and the recovery rate can achieve between 70~80%. 

The recovered Si meets the specifications for solar-grade Si and at least 91% of Si from c-

Si solar cells can be recovered. The recovered Si and metals are new feedstocks to the solar 

industry and generate over $12/module in revenue. This revenue enables a profitable 

recycling business for Si modules without any government support. The chemicals for 

recycling are carefully selected to minimize their environmental impact and also the cost. 

A network for collecting end-of-life solar modules is proposed based on the current 

distribution network for solar modules to contain the collection cost. As a result, the 

proposed recycling process for c-Si modules is technically, environmentally and 

financially sustainable. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Renewable energy becomes an important energy source in recent years. According to the 

data from international energy agency (IEA) [1], photovoltaics capacity in the world 

increased about 50% to achieve 75 GW in 2016. A major obstacle on the horizon to 

sustainable solar technologies is end-of-life solar modules. As module deployment expands 

rapidly, so will module waste.  

Fig. 1.1 shows the percentage of the annual production for different kinds of solar 

modules in 2016 [2]. Crystalline-Si (c-Si) solar modules including mono-Si modules and 

multi-Si modules have always been the dominant technology with a ~90% market share. 

In 2016, the production of c-Si modules reached 77.7 GWp. This is equal to over 310 

million modules, as c-Si modules are 250 Wp each typically. 

 

Fig. 1.1 Percentage of annual production for different solar technologies in 2016 [2]. 
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The power of solar modules will degrade after deployment. There are couple mechanisms 

of degradation such as light-induced degradation, UV-induced degradation, potential-

induced degradation, moisture corrosion…etc [3,4]. When the power of modules declines 

about 20% of the original power, the modules are categorized as end-of-life modules which 

will be decommissioned [5]. The average lifetime of c-Si solar modules is around 20-25 

years depending on the area where they are deployed [5]. With 25-year lifetime, the c-Si 

solar modules in 2016 would be decommissioned in around 2040. The International 

Renewable Energy Agency estimates that waste modules will appear in large quantities by 

the early 2030’s and by 2050, they will total 78 million tonnes. The c-Si solar modules 

contribute to the most of the waste modules.   

Since c-Si solar modules occupy~90% market share and they have their lifetime, in the 

future there will be a huge amount of c-Si solar modules wastes. As a result, a process is 

needed to take care of these end-of-life c-Si solar modules. 

1.2 Crystalline-Si Solar Cells and Module Introduction  

The working principle of solar cells is that sunlight absorbed by the p-n junction excites 

the electron-hole pairs in the semiconductors. The electron-hole pairs can be driven by the 

built-in voltage of the p-n junction to the outside circuits to provide the power. Fig. 1.2 is 

the cross section of a commercial c-Si solar cell. Ag is the front electrode. The SiNx thin 

film deposited by PECVD on the frontside is served as the antireflection layer [6,7] and 

passivated layer [7–9]. As the antireflection layer, the refractive index and thickness need 

to be controlled in order to have destructive interference for the reflected light and then 

increase the light absorption. As the passivated layers, SiNx bonds the surface of Si to 

decrease the number of dangling bonds on the Si surface, which can reduce the trapping of 
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the minority carriers by the dangling bonds. If the minority carriers get trapped, they are 

easy to be recombined and can not output the power. The roughness on the frontside created 

by wet etch can increase the trapping of sunlight [10]. The P-doped n+ Si and B-doped p Si 

base which is solar grade Si form the p-n junction to drive the electrons and holes excited 

by sunlight. On the backside, there are Al back contact, Al-Si alloy and Al-doped p+ Si 

formed from the reaction between the Al paste and p Si base by the high-temperature firing.  

There are different kinds of solar technologies including c-Si solar cells, thin film Si solar 

cells and solar cells made by compound semiconductors such as GaAs and CdTe. Since c-

Si is an indirect bandgap material, the absorption ability of sunlight is poor. As a result, the 

thickness of c-Si solar cells is thicker than other solar cells made from direct bandgap 

materials such as CdTe in order to increase the sunlight absorption.  The typical thickness 

of the c-Si solar cell is ~180-200 m. 

 

Fig. 1.2 Schematic of the working principle for a c-Si solar cell. 
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The c-Si solar module is formed by c-Si solar cells connected by interconnected wires, 

packaged by EVA (ethylene vinyl acetate) films, backsheets (polyvinyl fluoride), glasses, 

Al frames and junction boxes…etc. Commercially, there are 60-cell modules and 72-cell 

modules. The average power for a 60-cell module is about 250 Wp. Fig. 1.3(a) shows the 

top view of a c-Si solar cell and Fig. 1.3(b) represents the installation from cells to a 

module. 

         

(a) 
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(b) 

 

Fig. 1.3 Topview of a c-Si solar cell (a) the composition of a c-Si solar module (b).  

 

From Fig. 1.2, the thickness of a c-Si solar cell is 180–200 m thick. The P doped n+ Si 

which is front emitter is ~0.5 m thick. The Al-doped p+ Si which is a back surface field 

(BSF) is ~10 m thick. The SiNx antireflection layer is 75 nm thick. The front electrode is 

Ag and the back electrode Al. In a module, the cells are interconnected by soldering Cu 

wires onto them. The solder is made of Sn and Pb. The interconnected cells, two sheets of 

ethylene vinyl acetate (EVA) and a backsheet of polyvinyl fluoride (PVF) are laminated to 

the front glass. An Al frame seals the edges of the module. A junction box is attached to 

the backside of the module for electrical connection. 
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1.3 Previous Works on Recycling Crystalline-Si Solar Modules   

Recycling is rarely practiced for Si modules. As of today, only the European Union 

enforces solar module recycling. An organization, PV CYCLE, manages module recycling 

in Europe. The technology practiced by PV CYCLE for Si module recycling involves first 

stripping the Al frame and junction box from a module and then shredding the remaining 

module for glass [11]. Si modules have a complex structure (Fig. 1.3(b)). As a rule of 

thumb, shredding or milling Si modules does not effectively separate the various materials 

in them [12,13]. To finance PV CYCLE’s operation, the European Union imposes a fee on 

module manufacturers. This fee is ultimately passed onto consumers. 

Three approaches have been reported to recycle the Si cells from the modules. Before 

2005, the focus was on recovering the cells from the modules and then reusing the 

reclaimed cells in new modules. The key for this approach is a gentle method to separate 

the cells from the modules, so the cells remain intact. After the removal of the Al frame 

and junction box by mechanical measures, the backsheet can be peeled off [14]. There are 

three methods to detach the cells from the glass. The first method is to dissolve EVA in 

HNO3 [14]. This is a long process taking ~24 hrs, and HNO3 damages cell components 

including the Ag and Al electrodes. The second method is to dissolve EVA in an organic 

solvent [15]. A large number of organic solvents have been screened, and the process is 

really slow taking weeks. The process can be sped up with ultrasonic agitation [16], but 

the cost and energy input for the ultrasonic process are likely high. The third method is to 

thermally decompose EVA [17–20]. It can be carried out in a quartz-tube furnace, 

conveyor-belt furnace or fluidized-bed furnace in air or N2. The exothermic reaction of 

burning EVA serves as a heat source for the furnace [19], reducing the energy input for the 
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furnace. Since the reclaimed cells often suffer from damage [19], the second approach is 

to reclaim the Si wafers from the modules. New cells are then fabricated on the reclaimed 

wafers. Reclaiming wafers requires the removal of the Ag and Al electrodes, SiNx layer, 

emitter and back-surface field [19][21–24]. The chemicals for this purpose include HF for 

SiNx and Al, HNO3 for Ag, NaOH for Si, a mixture of HF and HNO3 for Si and SiNx, KOH 

for Al, or H3PO4 for Al. 

Since 2005, the thickness of the wafers has been reduced to 180–200 m. The thin wafers 

prevent cell or wafer reclamation since the cells will all break during separation from the 

glass [25]. Therefore, the most recent approach focuses on recovering the solar-grade Si 

from the cells [23][26][27]. On the other hand, few papers have discussed metal recovery 

from Si modules [28]. Two papers mentioned Ag recovery from Si cells by dissolving it in 

HNO3 and extracting it through electrowinning [22][27], but the Ag electrode in Si 

modules is actually covered under soldered Cu. There has been no report on the recovery 

of multiple metals from Si modules. 

In this thesis, recent progress in c-Si module recycling is reported. The objective is to 

develop a recycling technology for Si modules that is technically, environmentally and 

financially sustainable. It involves a multi-step process to break down Si modules and 

recover various materials including all the toxic and valuable materials, solar-grade Si, Ag, 

Pb, Cu and Sn. The process recovers over 95% of the module by weight. The chemicals 

for recycling are carefully chosen so their wastes have a minimal environmental impact. 

More importantly, this recycling process generates a revenue stream of over $12/module 

from the recovered solar-grade Si and Ag, which is more than enough to cover the cost of 

recycling. 
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1.4 Chapter Outline 

In the chapter, the background why c-Si solar modules should be recycled is introduced. 

Since their huge market share and lifetime, the recycling process needs to be developed to 

achieve sustainable solar energy. Several works regarding the recycling process are also 

discussed in the chapter. 

In Chapter 2, the profit for recycling c-Si solar modules is analyzed, which is an 

important factor of incentives as a business. The Ag and solar grade Si are the target 

materials for recycling due to their high value and energy cost, respectively. The network 

of collecting c-Si solar modules is also suggested to reduce the cost of collection. 

In Chapter 3, the proposed recycling process for c-Si solar modules is described. It 

includes the breakdown of modules, metal recycling and solar grade Si recycling. First, the 

breakdown of the modules contains Al frames and junction boxes recycling, EVA burning 

and the separation of the interconnected cells. Second, the metals on the interconnected 

cells are leached by the solution and then recovered by electrowinning. Then the heavily 

doped Si parts of the cells are removed to recover solar grade Si.  

In Chapter 4, the equipments used for the proposed recycling process including the 4-

point probe, scanning electron microscope (SEM) and electrochemical capacitance-voltage 

profiler (ECV) are introduced. 

In Chapter 5, the experimental part of the metal recycling from c-Si solar modules is 

reported. The metals are leached by the optimized solution and then recovered by 

sequential electrowinning. The Ag and Cu are successfully recovered with the high purity 

and recovery rate. The challenge about further improving the recovery rate and the stability 

of the materials of the electrode is discussed. 
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In Chapter 6, the solar grade Si recovered from c-Si solar cells is reported. The wet etch 

process is optimized to remove the heavily doped Si to recover the solar grade Si. The 4-

point probe technique is developed to monitor the etch process to recover the maximum 

amount of solar grade Si. SEM and ECV are used to verify whether the heavily doped Si 

is removed completely. 
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CHAPTER 2 

INCENTIVES TO RECYCLE CRYSTALLINE-Si MODULES 

2.1 What to Recycle? 

There are two valuable materials which should be recovered from the c-Si cell in Fig. 

1.2, solar-grade Si (p-Si base) and Ag. 

The availability of Ag is limited. The worldwide known reserve of Ag is ~530,000 tonnes 

[29]. At the current mining rate of 26,100 tonnes/year, the Ag reserve would be depleted 

in 20 years. Recovering Ag from waste Si modules is mandatory to sustain the current solar 

industry. There are also significant energy savings by recovering solar grade Si from waste 

Si modules. One of the most energy-intensive steps in the production of c-Si modules is 

the Siemens process, which reduces SiHCl3 to solar-grade Si [30][31]. Recovering solar 

grade Si from Si modules bypasses the Siemens process. It is suggested that the energy 

input to produce a c-Si module is 400 kWh with freshly-produced Si, but only 186 kWh 

with recycled solar grade Si [32]. This is a ~55% energy saving. 

The SiNx layer and Al back electrode are hard to recover. For the Si wafer in c-Si solar 

cells, the front emitter and back-surface field are heavily doped. They are out of the 

specifications for solar-grade Si. Only the base can be recovered as solar-grade Si, which 

is boron doped to ~1×1016 cm–3. Once the cells are soldered to modules (Fig. 1.2), there 

are three more metals to consider, Pb and Sn from the solder and Cu from the wires. While 

Sn and Cu may have enough values to recover, Pb is a toxic metal and should be removed 

from the recycling sludge [33][34]. Besides the valuable and toxic materials, the Al frame, 

junction box, front glass and polymer sheets (EVA and PVF) should be recycled as well. 
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These components have little values as raw materials [35], but their recovery is 

environmentally sound. 

2.2 Revenue from Crystalline-Si Modules Recycle 

A typical 60-cell Si module contains ~0.65 kg of Si. If 85% of the Si is recovered as 

solar-grade Si, it is worth $8.20/module at $15/kg for solar-grade Si. The module also 

contains ~6.5 g of Ag. If 95% of the Ag is recovered, it is another $4.30/module at $20/oz 

for Ag. As a result, the valuable materials in a typical Si module add to over $12, which is 

more than enough to cover the cost of recycling for a profitable recycling business without 

any government support. The estimation is much higher than the analysis by the 

International Renewable Energy Agency, which predicts $15 billion in revenue from 

recycling 78 million tonnes of solar modules. The estimation is ~$45 billion from 78 

million tonnes of solar modules. This is because the process in the thesis keeps high-value 

materials in their pure, high-value forms. 

2.3 Network for Collecting Solar Modules 

A major contributor to the cost of solar module recycling is the cost to collect and 

transport solar modules which are scattered around in small quantities [35]. To contain the 

collection cost, we propose to utilize the current distribution network of solar modules in 

the reverse order as a collection network (Fig. 2.1). Installers go to homes to perform repair 

and pick up waste modules. The waste modules are shipped to retailers, then to distributors 

and finally to recyclers who operate centralized recycling plants and generate revenues by 

selling the recovered solar-grade Si and Ag to the solar industry. To finance the network, 

each party in this collection network receives monetary compensation from the next party 

in the value chain. 
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Fig. 2.1  A collection network for solar module recycling based on the current distribution 

network. 
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CHAPTER 3 

PROPOSED PROCESS TO RECYCLE CRYSTALLINE-Si MODULES 

3.1 Overview of Proposed Process to Recycle Crystalline-Si Solar Modules  

Fig. 3.1 is the proposed process to break down c-Si modules and recover various 

materials. It involves three steps, module recycling, cell recycling and waste handling. In 

the first step, the junction box and Al frame are mechanically removed from a module. The 

polymer sheets (EVA and PVF) are then burned off to separate the cells from the glass in a 

furnace [36], which serve as a heat source for the furnace. This is different from the report 

on peeling off the PVF [14], as PVF wastes can be either burned or buried. The glass is 

recycled and what is left is a string of interconnected cells. In cell recycling, interconnected 

cells are first immersed into a leaching solution to dissolve four metals, Ag, Pb, Cu and Sn. 

These metals are then recovered from the leaching solution one by one through 

electrowinning. The remaining cells are immersed into an etching solution to remove the 

SiNx layer and Al back electrode. Finally the cells are immersed into another etching 

solution to remove the emitter and back-surface field and to recover the base as solar-grade 

Si. The remaining sludge goes to landfill. 
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Fig. 3.1 A proposed process to break down c-Si solar modules and recover various 

materials. 

The chemicals selected for cell recycling are critical as they determine the waste 

chemicals people have to deal with. On the other hand, it is desirable to employ selective, 

self-limited chemistries for cell recycling (Fig. 3.2). We have purposely chosen HNO3 

which dissolves only Ag, Pb, Sn and Cu from the cells (Fig. 3.2(b)), and HF which etches 

only Al, Al-Si alloy and SiNx on the cells (Fig. 3.2(c)). With self-limited chemistry, process 

control becomes simpler as there is no over-etch to worry about. Finally NaOH is used to 

remove emitter and back-surface field (Fig. 3.2(d)). This is not a self-limited process, so a 

method to monitor the Si etch process is needed to maximize the amount of solar-grade Si 

recovered. 

The last step is waste handling. Our recycling process generates three waste solutions, 

NaOH, HNO3 and HF. NaOH and HNO3 can neutralize each other to form a solution of 

NaNO3, which is a fertilizer [37]. There is a well-established practice to treat HF wastes, 

i.e. Ca(OH)2 is added to HF to precipitate fluorine out as CaF2 [38]. There are also two 

gaseous exhausts from the recycling process. One is the exhaust from the polymer-burning 
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furnace, which contains fluorine. The other is the exhaust from metal dissolution in HNO3, 

which contains NO and/or NO2. Scrubbers are required to trap fluorine in water as HF and 

to trap NO and NO2 in water as HNO3. It is possible to use the acids from the scrubbers in 

the recycling process. 
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Fig. 3.2 Self-limited chemistries for cell recycling: before HNO3 (a); after HNO3 (b); after 

HF (c) and after NaOH (d). 
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It is estimated that over 95% of the module by weight can be recovered through our 

recycling process, as it can recover all the glass, Al frame, junction box, polymers (as heat 

source), 85–90% of the Si and 90–95% of the metals. On top of 95% recovery, this process 

can generate over $12/module in revenue by selling the recovered solar-grade Si and Ag to 

the solar industry. 

For the proposed recycling process in Fig. 3.1, the technologies for module recycling and 

waste handling have been more or less developed or at least explored. However, the 

technology for cell recycling is not ready yet. In particular, the technology to recover 

multiple metals from Si modules and the technology to maximize the amount of solar-

grade Si recovered need to be developed, which are circled in Fig. 3.1. In the next chapters, 

multiple metals recovery by electrowinning [28] and solar-grade Si recovery by wet etch 

[26] will be reported.  

3.2 Techniques Introduction for Recycle 

The techniques used for metals and solar grade Si recycle are electrowinning and wet 

etch. 

 Electrowinning 

Electrowinning is the process which extracts pure metals from impure metals. Impure 

metal is leached by the solution. Energy is applied via voltage source to reduce metal ions 

from the solution. Cu is one of the metals recovered by the electrowinning in the industry 

[39–43]. When the applied voltage reaches the certain value to reduce the certain metal, 

the applied voltage is the minimal energy to reduce the metal ion which is called the 

reduction potential. The reduction potential of a material is affected by the material 
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property and activity of the material. Nernst equation describes the relationship between 

equilibrium reduction potentials and the activities with different materials: 

𝑬𝒓𝒆𝒅 = 𝑬𝟎 +
𝑹𝑻

𝒏𝑭
𝒍𝒏(𝒂𝑴)     (3.1) 

where Ered is the reduction potential under nonstandard conditions, E˚ the standard 

reduction potential (reduction potential under 298 K, 1 atm and 1 M solution), R the gas 

constant, T the absolute temperature, n the number of electron involved in the reaction, F 

the Faraday constant and aM the activity of the metal ion. For the dilute aqueous solution, 

the activity of the metal ion is equal to the concentration of the metal ion. The reduction 

potentials of different metals leached from c-Si solar modules can be determined by Nernst 

equation. After determining the reduction potential for each metal, the voltage can be 

applied to recover the metals. 

Wet Etch 

Wet etch has several advantages for the c-Si solar modules recycle. It does not need 

expensive equipment such as dry etch and can process huge amounts of solar modules fast. 

Wet etch has the very high selectivity between different materials. In the recycle process, 

HNO3 is used for metal dissolution and does not affect SiNx and Si. HF only removes 

SiNx. NaOH is then used for the heavily doped Si removal. Due to high selectivity between 

different materials, the wet etch can be a self-limited process to precisely remove the 

desired materials without monitoring. However, for the heavily-doped Si removal, the 

process needs to be monitored to control the etch time since NaOH does not have the 

selectivity between heavily doped Si and solar grade Si. A 4-point probe is used to measure 

the sheet resistance to monitor the etch process in order to control etch time to recover the 

maximum amount of the solar grade Si.  
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CHAPTER 4 

INTRODUCTION OF EQUIPMENTS FOR RECYCLE 

4.1 4-point Probe 

The 4-point probe is used for measuring the resistance of semiconductors. It can measure 

bulks or thin films. Fig. 4.1 is the illustration of the 4-point probe. The principle of the 4-

point probe is that the 4 probes inserted into the material and then the current flows from 

the first probe to the measured material and then to the fourth probe. The second probe and 

third probe are connected to the voltmeter to measure the voltage drop and only trace 

amount of the current flows to the second and third probes due to the high resistance of the 

voltmeter. 

.  

Fig. 4.1 Schematic of 4-point probe 

 

Fig. 4.2 is the circuit diagram of a material measured by a 4-point probe. By separating 

the voltage measurement and applied current, the voltage drop measured by the voltmeter 

is only caused by Rmaterial due to almost no current flowing into the voltmeter. As a result, 
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the resistance by the measurement can be assumed as Rmaterial by dividing the voltage 

measured with the current applied. 

 

Fig. 4.2 Circuit diagram for a 4-point probe measurement. 

 

However, if only two probes are used for the resistance measurement as Fig. 4.3, the 

voltage drop is caused by Rmaterial, Rcontact and Rwire. The measuring resistance has a larger 

deviation from the Rmaterial by dividing the voltage measured by the applied current.    
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Fig. 4.3 Circuit diagram for a 2-point measurement. 

 

Depending on different thicknesses of material, the 4-point probe can measure its 

resistivity and sheet resistance by measuring the resistance. Fig 4.4 uses spreading current 

to explain how to measure the resistivity and sheet resistance of a material. The thickness 

of the material is t and the spacing between probes is d. Assuming t > 0.5d. The current 

spreads into material spherically. The radius of the spreading current is r. The voltage at 

the second probe is shown as: 

𝑽𝟐 = 𝑰𝑹 = 𝑰 × 𝝆
𝑳

𝑨
= −𝑰 ∫

𝝆𝒅𝒓

𝟐𝝅𝒓𝟐

𝒅

𝟐𝒅
=

𝑰𝝆

𝟐𝝅
×

𝟏

𝟐𝒅
     (4.1) 

The voltage at the third probe is: 

𝑽𝟑 = −𝑰 ∫
𝝆𝒅𝒓

𝟐𝝅𝒓𝟐

𝟐𝒅

𝒅
= −

𝑰𝝆

𝟐𝝅
×

𝟏

𝟐𝒅
     (4.2) 
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where ρ is the resistivity of the material, A the cross-section area which the current flows 

through, L the length which the current flows through The voltage between the second and 

the third probe is then as follows: 

∆𝑽𝟐𝟑 =
𝑰𝝆

𝟐𝝅𝒅
     (4.3) 

According to the applied current and the measured voltage, the resistivity can be 

calculated as: 

𝝆 = 𝟐𝝅𝒅
∆𝑽𝟐𝟑

𝑰
     (4.4) 

This is the resistivity measurement for a bulk material with the thickness t > half of the 

probe spacing d. However, for a thin film material, the thickness t < half of the probe 

spacing d. The voltage at the second probe can be rewritten as follows: 

𝑽𝟐 = 𝑰 × 𝝆
𝑳

𝑨
= −𝑰 ∫

𝝆𝒅𝒓

𝟐𝝅𝒓𝒕

𝒅

𝟐𝒅
     (4.5) 

where 2πrt replaces 2πr2. Then the voltage difference between the second and third probe 

is: 

∆𝑽𝟐𝟑 =
𝑰𝝆

𝝅𝒕
𝒍𝒏𝟐     (4.6) 

From the equation, the sheet resistance can be measured as follows: 

𝝆

𝒕
=

𝝅×∆𝑽𝟐𝟑

𝒍𝒏𝟐×𝑰
     (4.7) 

As a result, for a thin film material, the sheet resistance can be measured by the 4-point 

probe.  
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Fig. 4.4 Schematic of the spreading current from a 4-point probe 

 

In this research, 4-point probe is used for measuring c-Si solar cells. The average 

thickness of c-Si solar cells is about 180-200 m. The probe spacing is about 0.5-1 mm. 

As a result, the sheet resistance is measured from c-Si solar cells by the 4-point probe. 

4.2 Scanning Electron Microscope (SEM) 

Scanning electron microscope (SEM) is a characterization tool for microstructures of 

materials. The electron gun emits the electron beam to scan the surface of the materials. 

The interaction between the electron beam and the atoms in the material creates a lot of 

signals. The signals can be detected by their specific detectors, which reveals the 

information of the materials such as topography, morphology, chemical composition, 

crystallographic information.  

The electron beam is generated by the electron gun and then focused on the specimen by 

the magnetic lens. Fig. 4.5 shows the signals which are generated from the material by the 

incident electron beam. 
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Fig. 4.5 Signals from the specimen interacted with electron beams in SEM   

Backscattered electron (BSE)  

Backscattered electron (BSE) is produced from the elastic interaction between beam 

electrons and nuclei in an atom of the specimen and they have high energy and the large 

escape depth. BSE is sensitive to the atomic number (Z). The BSE yield is proportional to 

Z. If there is the region on the specimen with higher Z, the BSE image will show brighter 

in the region. As a result, BSE image can show Z contrast for the specimen. 

Secondary electron (SE) 

Secondary electron (SE) is produced by inelastic interactions of beam electrons with 

electrons in the valence or conduction band of atoms in the specimen, resulting in the 

ejection of the electrons from the atoms. These ejected electrons are termed secondary 

electrons. Typically the energy of secondary electrons is less than 50 eV. SE yield is 

independent of Z and decreases with increasing incident beam energy and increases with 

decreasing the grazing angle of the incident beam. 
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SE production is very sensitive to the topography. The contrast of the topography can be 

produced by SE. SE has very low energy, which results in their small escape depth. Only 

SE produced near the surface can be detected. 

Auger electron 

The incident beam electrons cause ionization of atoms. Subsequent relaxation of the 

ionized atoms causes the emission of Auger electrons revealing the characteristic of the 

elements presenting in this part of the sample surface. As a result, Auger electrons can 

provide the chemical composition information on the surface of the specimen as the escape 

depth of Auger electrons is very small (~few nm).  

Energy dispersion spectrometer (EDS) 

Energy dispersion spectrometer (EDS) uses the X-rays generated from the specimen to 

characterize the chemical composition of the specimen. The X-rays are produced by the 

interaction between the incident electron beam and the electrons of the atoms in the 

specimen. When the electrons in the inner shells are emitted by the incident beam electrons, 

the vacancies in the inner shells are filled by the electrons from the outer shells, which will 

generate the X-rays. The energy of the X-rays is the energy difference between outer-shell 

electrons and inner-shell electrons. Since the energy difference between shells is the 

characteristic for individual elements, the X-rays are called characteristic X-rays. Thus, 

characteristic X-rays are used for chemical composition characterization. Fig. 4.6 is the 

illustration for the generation of characteristic X-rays. The characteristic X-rays which are 

generated from K shell are called K lines. If the characteristic X-rays are generated from L 

and M, they are called L lines and M lines, respectively. Furthermore, if the incident 
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electrons are decelerated by atomic nuclei, the different X-rays without atom information 

are generated. These X-rays are called continuous X-rays. 

The energy dispersion spectrometer (EDS) is used to analyze the characteristic X-rays 

from the specimen. The characteristic X-rays with certain energy emit into the 

semiconductor detector and then generated the electron-hole pairs. The process of X-rays 

detection then becomes measuring the number of free charge carriers (electrons and holes) 

created in the crystal during the absorption of each X-rays. By separating each X-rays 

photon and measuring the amount of current produced by each X-ray photon to determine 

its energy, the intensity versus different energy of X-rays can be found. From the intensity 

and energy of X-rays, the concentration and the species of atoms can be determined, 

respectively. Typically, the detection limit of EDS is about 1%. 
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Fig. 4.6 The Generation of characteristic X-rays by SEM. 

These are the signals which are usually detected by SEM. These signals represent the 

information from different depths in the specimen since they have different escape depths. 

Fig. 4.7 is the spatial resolution of signals from the interaction between the electron beam 

and the specimen. The Auger electrons are generated from the depth < 1 nm so the 

information of that is highly surface sensitive. Then the secondary electrons originate from 

about 10 nm depth and 10 nm lateral radius. Backscattered electrons are created from 1 m 

depth and 1 m lateral radius, and the X-rays have about 5 m in both depth and lateral 

radius.  
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Fig. 4.7 The spatial resolution of the signals by SEM 

 

4.3 Electrochemical Capacitance-Voltage (ECV) 

The Electrochemical Capacitance-Voltage (ECV) profiling technique is used to measure 

the active carrier concentration profiles in semiconductor layers. 

The technique uses an electrolyte-semiconductor Schottky contact to create a depletion 

region, a region which is without electrons and holes, but contains ionized donors. The 

depletion region with its ionized charges inside behaves like a capacitor. The measurement 

of the capacitance provides information of the doping and electrically active defect 

densities. Depth profiling is characterized by practicing both electrolytically etching the 

semiconductor and the capacitance measurements. The next section will introduce the 

principle of capacitance measurement for carrier density. 
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Capacitance-Voltage (C-V) 

The principle of carrier density characterization by the capacitance-voltage method is 

from the depletion region as a capacitor by applying a DC voltage. Fig. 4.8 is a p-type 

semiconductor. In order to create the depletion region, the DC positive voltage V needs to 

be applied on the metal deposited on the p-type Si in order to deplete majority carriers in 

the p-type Si and then the depletion region is created. The AC voltage  is used to measure 

the capacitance. 

DC voltage V plus an AC voltage  are used. When the AC voltage increases from zero 

to a small positive voltage, a charge dQm will be added to the metal contact. The charge 

increment dQm must be balanced by an equal semiconductor charge increment dQs for 

charge neutrality. The semiconductor charge is given: 

𝑸𝒔 = 𝒒𝑨 ∫ (𝒑 − 𝒏 + 𝑵𝑫
+𝑾

𝟎
− 𝑵𝑨

−)𝒅𝒙     (4.8) 

where q is a unit charge, A the area of the cross-section of the semiconductor, W the depth 

of the depletion region, p hole density, n is electron density, N D
 donor density and NA the 

acceptor density. Since p-type Si is used, ND and n are almost zero. In the depletion region, 

p is almost zero. The equation is then as follow: 

𝑸𝒔 = −𝒒𝑨 ∫ 𝑵𝑨
𝑾

𝟎
𝒅𝒙     (4.9) 

The measured capacitance is as follows: 

𝑪 = −
𝒅𝑸𝒔

𝒅𝑽
= 𝒒𝑨

𝒅

𝒅𝑽
∫ 𝑵𝑨𝒅𝒙 = 𝒒𝑨𝑵𝑨

𝑾

𝟎
(𝑾)

𝒅𝑾

𝒅𝑽
     (4.10) 

The above equation, assuming NA does not change over dW distance. As a result, 

dNA(W)/dV is neglected.  
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The capacitance of the reversed junction can be considered as the parallel plate 

capacitors: 

𝑪 =
𝑲𝒔𝜺𝟎𝑨

𝑾
     (4.11) 

where Ks is relative permittivity, ε0 vacuum permittivity. 

Differentiating Eq. (4.11) with respect to voltage and replacing dW/dV into Eq. (4.10) 

: 

𝑵𝑨(𝑾) = −
𝟐

𝒒𝑲𝒔𝜺𝟎𝑨𝟐𝒅(𝟏 𝑪𝟐)⁄ 𝒅𝑽⁄
     (4.12) 

W can be calculated from Eq (4.11), C as the voltage can be measured. From the Eq. 

(4.12), the carrier density at W can be characterized. This is the principle how capacitance-

voltage measures the carrier density. With applied different DC voltages, different depths 

of the depletion region are achieved. The carrier profile can be characterized [44]. 

 

 

Fig. 4.8 Schematic of Capacitance-Voltage (C-V) measurement. 
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ECV setup 

Fig. 4.9 is the ECV setup. The semiconductor specimen is pressed on a sealing ring in 

the electrochemical cell with an electrolyte. The area of ring opening defines the contact 

area of the specimen with the electrolyte. The electrolyte forms a Schottky barrier junction 

at the semiconductor interface. The depletion region is created in the semiconductor 

specimen by applying a constant potential between the semiconductor specimen and the 

platinum electrode measured with the reference saturated calomel electrode. By forming 

the depletion region, the carrier density at a certain depth can be measured. Then, the 

etching conditions are controlled by the current circuit between the semiconductor 

specimen and the counter electrode. The contact area between the electrolyte and the 

semiconductor specimen is dissolved electrolytically. The etch depth can be calculated by 

the etch current and then another carrier density with deeper depth can be measured. The 

carrier profile can be achieved by etching into semiconductor specimen.     

 

Fig. 4.9 Schematic of ECV profiler setup. 
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CHAPTER 5 

RECYCLE METALS FROM CRYSTALLINE-Si SOLAR MODULES  

5.1. Introduction    

After module recycling, interconnected cells are separated from the glass. These cells, 

intact or broken, are first immersed in HNO3 to dissolve four metals from the cells, Ag, Pb, 

Sn and Cu. Although there has been no report on recovering multiple metals from Si 

modules, there are reports on recovering three of the four metals from printed circuit boards 

by leaching them in HNO3 [45,46]. Yoo et al. [45] added NaCl to the leaching solution to 

precipitate Ag out as AgCl. This requires an extra step to convert AgCl to metallic Ag. 

Mecucci et al. [46] used electrowinning to recover Cu and Pb from the leaching solution. 

We believe that electrowinning is a more cost-effective approach as it can recover metals 

in their pure metallic forms. Furthermore, sequential electrowinning can recover multiple 

metals one by one from the leaching solution. 

Fig. 5.1 shows the structure of cells with interconnected wires. Totally, five metals 

involve in the c-Si solar modules, Ag from front contacts, Al from backcontacts, Cu from 

interconnected wires, Pb and Sn from solders. HNO3 is used to dissolve the metals into 

solution and then the metals are recovered by electrowinning. 
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Fig. 5.1 Top view of solar cells with interconnected wires (a) cross section of cells with 

interconnected wires (b). 

5.2 Metal Dissolution from Crystalline-Si Solar Modules 

HNO3 is used to dissolve the metals from c-Si solar modules. HNO3 can dissolve Ag, 

Cu, Pb into solution. Sn reacts with HNO3 to become SnO2 powder and forms the 

precipitate. Al can not dissolve into HNO3 since HNO3 solution reacts with Al to form a 

uniform passivated Al2O3 film on the Al surface to protect Al. As a result, Al is stable in 

the HNO3 solution. Fig. 5.2 shows the flowchart of the metal dissolution. After the process, 

the SnO2 precipitate is filtrated from the solution. The final solution will be used for 

electrowinning to recover the metals. 
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Fig. 5.2 Flow chart of the metal dissolution from c-Si solar modules 

 

During the process, there are three parameters to be controlled. (1) the concentration of 

the HNO3 solution (2) the amount of the HNO3 solution applied (3) temperature. 

Concentration of HNO3 solution 

The concentration of HNO3 affects the dissolution rate in the process. If the concentration 

of HNO3 is too low, the dissolution rate of the metals is too low, which will affect the 

throughput. However, if the concentration of HNO3 is too high, the reaction is too strong 

and generates a lot of heat and gas such as NO2 or NO suddenly, which will cause danger 

during the process. As a result, controlling the concentration of HNO3 is necessary. 

Amount of HNO3 solution 

The second parameter in the process which needs to be controlled is the amount of HNO3 

solution applied. If the amount of HNO3 solution is too small, the metals can not be 

dissolved into the solution completely. Table I shows the weight percentage of each metal 
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in c-Si solar modules. The amount of Cu is much larger than that of Ag. During the process, 

if Cu can not be dissolved completely, the Ag ions in the solution will replace the 

undissolved Cu and then precipitate on it, which will lower the dissolution of Ag. If the 

dissolution of Ag is low, the recovery rate for Ag by electrowinning will be lower. 

If the amount of HNO3 is too large, after dissolving all the Ag, Cu and Pb, the final 

solution will contain a lot of residual HNO3. When the solution is used for electrowinning, 

the residual HNO3 will redissolve the recovered Ag into solution and lower the recovery 

rate of Ag.  

Temperature 

The temperature of the HNO3 solution can be adjusted by the hotplate in order to have a 

reasonable dissolution rate of the metals. The dissolution rate decreases with time since the 

concentration of HNO3 solution decreases with time. The process can be accelerated by 

increasing temperature. However, in order to reduce the energy consumption of the process, 

the highest temperature is controlled between 50-60 ℃. 
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Table 5.1 

Metal contents in crystalline-Si solar modules by weight [47]. 

Metal in wafer-Si module Content (weight %) 

Al 10% 

Si ~3% 

Pb <0.1% 

Cu 0.6% 

Ag <0.006% 

 

5.3 Sequential Electrowinning 

After metal dissolution, the metals will be recovered by electrowinning. These metals 

can be recovered sequentially from the solution according to their reduction potentials, 

which is called sequential electrowinning. Since the solution contains multiple metals 

which have different reduction potentials, the applied voltage needs to be controlled 

precisely in order to recover these metals one by one.  

The electrochemical system for sequential electrowinning is the three-electrode system 

which is shown in Fig. 5.3. Three electrodes contain a working electrode (W.E.), counter 

electrode (C.E.) and reference electrode (R.E.). The voltage is applied between the working 

electrode and reference electrode to introduce an electron current to the working electrode 

to recover metals. The system will apply an opposite voltage to the counter electrode to 

extract the same electron current in order to balance the electron current on working 

electrode.  Very small current flows to the reference electrode due to the high resistance in 

the voltmeter. Since almost no current flows to the reference electrode, the potential on it 
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is fixed. As a result, the voltage applied between the working and reference electrode is 

precise, which can be used for sequential electrowinning. 

 

Fig. 5.3 Schematic of the three-electrode system for sequential electrowinning of 

multiple metals. 

With the reference electrode, the voltage can be precisely controlled. The reduction 

potentials for metal ions can be identified by linear sweep voltammetry. By that, the voltage 

can be scanned versus the reference electrode linearly as Fig. 5.4(a). When the voltage is 

scanned to V1, in Fig. 5.4(b) it starts to show a current at V1, which means an 

electrochemical reaction occurs for certain metal ions due to electron transfer. Since the 

negative current refers to the cathodic current, the V1 will be roughly assigned as the 

reduction potential of the metal ions which is the minimum energy to facilitate the 

reduction reaction of the metal ions. When the voltage is scanned to V2, the current reaches 

the maximum, which gives highest reduction reaction rate. However, when the voltage is 

scanned to the voltage larger than V2, the current starts to decrease because the metal ions 
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near the electrode are depleted too fast to supply for the reduction reaction. In the leached 

solution from c-Si solar modules, Ag+, Cu2+ and Pb2+ have different reduction potentials. 

With the linear sweep voltammetry, their reduction potentials can be identified, 

respectively.   

 

Fig. 5.4 Voltage versus time for linear sweep voltammetry (a) Current versus voltage for 

linear sweep voltammetry (b). 

5.4 Experimental 

To measure the metal recovery rate in electrowinning, a simulated leaching solution is 

utilized for the experiment. Metal contents in typical c-Si modules are listed in Table 5.1 



  39 

[47]. As Table 5.1 does not specify the Sn content in Si modules, it is assumed that the Sn 

content is the same as Pb. Al does not dissolve in HNO3 and its reduction potential is too 

negative to allow recovery by electrowinning from an aqueous solution. As a result, Al is 

not included in this study. 0.0431 g of Ag, 0.72 g of Sn, 0.72 g of Pb and 4.31 g of Cu 

pellets are added to a 100-ml beaker. Their weight ratios follow Table 5.1. The 

concentration of the HNO3 solution is diluted to 11.4% to lower the risk of the process.  An 

aqueous solution of 11.4% HNO3 is poured into the beaker to dissolve the Ag, Pb, Sn and 

Cu pellets. The amount of HNO3 solution is controlled to react with all the metals in the 

beaker and the pH of the final solution is between 0 and 1. If the pH is less than 0, it is 

found that Ag does not deposit on the Ti working electrode in electrowinning. The beaker 

is heated on a hotplate to 60˚C. After the metal pellets are completely dissolved, the 

solution is cooled down to 25˚C. The leaching solution after metal dissolution is shown in 

Fig. 5.5. The blue color is due to Cu2+ ions in the solution. The white precipitate at the 

bottom is SnO2, as observed in previous studies [45,46]. The precipitated SnO2 is recovered 

by filtration, but can be recovered by sedimentation as well.  
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Fig. 5.5 The HNO3 leaching solution after dissolution of four metals, Ag, Pb, Sn and Cu. 

 

The leaching solution undergoes sequential electrowinning to recover the remaining 

metals, Ag, Cu and Pb. Fig. 5.3 illustrates the setup for sequential electrowinning, which 

involves three electrodes, a working electrode (W.E.), a counter electrode (C.E.) and a 

reference electrode (R.E.). Pt and Ti foils are used as the counter electrode and working 

electrode, respectively, since they are stable in concentrated HNO3. An Ag/AgCl electrode 

is used as the reference electrode. A Gamry Reference 3000 potentiostat is used for 

electrowinning. Linear sweep voltammetry is performed on the leaching solution to 

measure the reduction potential for each of the three remaining metals, Ag, Pb and Cu. The 

scan rate is 10 mV/s. A progressively more negative voltage is then applied to the Ti 

working electrode to recover the metals one at a time. Each voltage is applied for 7000s. 

The deposit on the working electrode for each voltage is characterized by energy-dispersive 

x-ray spectroscopy (EDX). For maximum recovery rates, Ag recovery and Cu recovery 

with applying specific voltage characterized above are performed from another new 
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leached solution until the reaction current approaches zero. The solution is stirred to speed 

up the diffusion of Ag+ and Cu2+ ions.  

 

5.5 Results and Discussions 

Fig. 5.6(a) is the linear sweep voltammetry of the leaching solution. There is a large 

cathodic current at ~0.1 V vs. the Ag/AgCl reference electrode, indicating that something 

is reduced. If Fig. 5.6(a) is zoomed in between 0.45 V and 0 V as shown in Fig. 5.6(b), it 

shows two reduction reactions. The first reduction reaction begins at ~0.43 V and reaches 

a peak at ~0.35 V. The second reduction reaction occurs at ~0.1 V. Since Ag is the noblest 

metal and Cu is the second noblest in the solution, the first and second reduction reactions 

are attributed to Ag and Cu reduction, respectively. The window to separate Ag from Cu is 

between 0.43 V and 0.25 V from Fig. 5.6(b). 
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Fig. 5.6 Voltammetry of the leaching solution (a) and zoom-in of (a) between 0.5 V and 0 

V vs. Ag/AgCl (b). 

 

 

The concentrations of Ag+, Cu2+ and Pb2+ in the simulated leaching solution are 5×10–3 M, 

0.85 M and 0.04 M, respectively. Their reduction potentials from the Nernst equation are 

0.45 V, 0.128 V and –0.38 V vs Ag/AgCl. The theoretical reduction potentials for Ag and 

Cu are very close to those from the voltammetry. Since the concentration of Cu2+ is much 

higher than Pb2+, its large reduction current shadows the reduction reaction of Pb2+ in the 

voltammetry. 

Fig. 5.7 shows EDX analysis of the deposits under different voltages on the Ti working 

electrode. Ti peaks show up due to the Ti electrode. Between 0.35 V and 0.25 V, the deposits 

contain only Ag. However, when the voltage is less than 0.2 V, Cu starts to show up in the 

EDX spectra. As a result, the window to recover 99% pure Ag is between 0.45 V and 0.25 
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V vs. Ag/AgCl since the detection limit of EDX is typically about 1%. The concentration 

of Ag in the solution decreases with time. The Nernst equation states that, when the 

concentration decreases, the reduction potential becomes more negative. 0.3 V vs. Ag/AgCl 

is chosen for Ag recovery. 

 

 

 

Fig. 5.7 EDX spectra of the deposits on the Ti working electrode under different voltages 

vs. Ag/AgCl. 

 

Fig. 5.8 is the current vs. time plot for Ag recovery with the voltage on the Ti working 

electrode at 0.3 V vs. Ag/AgCl. The total electrowinning time is 20,000 s. The reduction 

current decreases with time as the concentration of Ag+ decreases over time until it 

approaches zero. Fig. 5.9 is EDX analysis of the deposit at 0.3 V vs. Ag/AgCl for 20,000 

s. It shows only Ag peaks from the recovered Ag and Ti peaks from the Ti electrode. The 
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purity of the recovered Ag is at least 99%. The recovery rate of Ag in this experiment is 

74%. This is obtained by measuring the weight gain of the Ti electrode and comparing it 

with the amount of Ag in the solution. By minimizing kinetic factors, the recovery rate of 

Ag can be significantly improved. The current efficiency of Ag recovery is 99.7%. 

 

Fig. 5.8 Current-time plot for Ag recovery at 0.3 V on the Ti working electrode vs. 

Ag/AgCl. 
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Fig. 5.9 EDX spectrum of the deposit on the Ti working electrode at 0.3 V vs. Ag/AgCl for 

20,000 s. 

 

Fig. 5.10 compares the voltammetry of the leaching solution before and after Ag 

recovery. After Ag recovery, the Ag+ reduction reaction at ~0.35 V disappears and only the 

reduction reaction of Cu2+ is still present. This further proves that only Ag is removed from 

the solution during Ag recovery. 

Cu recovery is performed after Ag recovery. –0.3 V vs. Ag/AgCl is applied to the Ti 

electrode. The reduction reaction of Pb2+ is shadowed by the reduction reaction of Cu2+ in 

Figs. 5.6 and 5.10, and the theoretical reduction potential of Pb2+ from Eq. (1) is –0.38 V 

vs. Ag/AgCl. Fig. 5.11 shows EDX analysis of the deposit on the Ti electrode at –0.3 V for 

24 hrs. There are Cu peaks but there is no Pb peak in EDX, indicating that Cu with 99% 

purity is recovered from the Pb2+-containing solution. The Ti peaks are not present as the 
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Cu deposit is thick. The oxygen peak is due to oxidation of Cu on the Ti working electrode. 

The recovery rate of Cu is currently 83%. 

 

 

Fig. 5.10 Comparison of voltammetry of the leaching solution before and after Ag recovery. 

 

 

Fig.5.11 EDX spectrum of the deposit on the Ti working electrode at –0.3 V vs. Ag/AgCl 

for 24 hrs. 
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It is found that Pb2+ ions deposit on the Pt counter electrode as PbO2 during Cu recovery, 

which is observed in a previous study [46]. The reaction of PbO2 does not occur during Ag 

recovery. The reason for that is the concentration of Cu is much higher than that of Ag in 

the solution. During the recovery, the current of Cu recovery is much higher than that of 

Ag recovery on the working electrode. As a result, the potentiostat will drive a higher 

opposite voltage on the counter electrode in order to balance this higher current and then 

the higher opposite voltage drives the PbO2 reaction on the counter electrode. Fig. 5.12 is 

EDX analysis of the Pt electrode after Cu recovery. Pb peaks are present, indicating that 

when Cu is recovered on the Ti working electrode, Pb is also recovered on the Pt counter 

electrode from the solution. The oxygen peak is small, maybe due to the nonstoichiometric 

PbOx (x<2) on the Pt counter electrode. The solution after Cu recovery for 48 hrs is 

investigated by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 

results are listed in Table 5.2. Ag and Cu are largely removed. The Sn concentration is high 

because the filtration of SnO2 was done only with a simple filter paper. With the Pb 

concentration at 92 ppm and the volume of the solution at 60 ml, the amount of Pb in the 

solution is ~5.5 mg. This is only 0.76% of the Pb in the starting solution, i.e. over 99% of 

the Pb2+ ions are removed from the solution during Cu recovery and the solution is almost 

free of toxic Pb. 



  48 

 

Fig. 5.12 EDX spectrum of the deposit on the Pt counter electrode after Cu recovery for 24 

hrs. 

Table 5.2 

Metal contents in leaching solution after Cu recovery for 48 hours. 

Metal Content (ppm) 

Ag 0.034 

Cu 3.38 

Pb 92.1 

Sn 426 

 

74% Ag and 83% Cu are recovered. However, there are several reasons to restrict the 

recovery rate for the sequential electrowinning.   
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Limitation of Thermodynamics  

From Nernst equation, the reduction potential of Ag will become more negative as the 

concentration of Ag ion in the solution becomes less. When the reduction potential of Ag 

decreases to the reduction potential of Cu, which means their reduction potentials overlap, 

Ag and Cu will be recovered together and the pure Ag can not be recovered. As a result, 

there is a certain amount of Ag which can not be recovered individually due to the overlap 

of the reduction potentials, which is the limitation of thermodynamics.       

Amount of HNO3 in the solution 

The amount of HNO3 needs to be controlled to dissolve the metals from c-Si solar 

modules. If the amount of HNO3 applied is too large, the huge amount of residual HNO3 

in the solution will redissolve the recovered metal during the electrowinning and then lower 

the recovery rate. The efficient way to control the amount of HNO3 applied is that 

monitoring pH value change during the metal dissolution. 

Filtration 

SnO2 is filtrated during the process. During the process there is some residual solution 

remaining on the filter paper. The mass loss can be improved if the vacuum system can be 

introduced to assist the process of the SnO2 filtration to reduce the residual solution on the 

filter paper. 

Dendritic Deposition 

The morphology of electrodeposition is affected by the current density. The electrode for 

the working electrode is the Ti foil. On the surface of the Ti foil, the recovered metals 

represent the morphology of thin films. However, at the edge of Ti foil, the deposition of 

dendrites is formed by the recovered metals. The dendrites are brittle and very easy to drop 
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from the Ti foil. Some of the dendritic metals dropped to the bottom of the beaker during 

electrowinning and some of them are lost during the rinse after electrowinning.  

The issue can be improved if a larger size of Ti foil is used. A larger Ti foil has a larger 

surface to edge area ratio, which can reduce the proportion of the edge effect of the Ti foil. 

Another solution is to use metallic beaker as the working electrode, which can preserve all 

the recovered metal in the beaker to reduce the loss.       

 

5.6 Metal Recycle for Crystalline-Si Solar Modules on a Large Scale 

Fig. 5.13 shows scaling up for the process of the metal recycling. The HNO3 with a 

certain concentration in the large tank is prepared and then c-Si solar modules are put into 

the solution for metal dissolution. A pH meter is used to measure the pH value of the 

solution to monitor the concentration of HNO3 in the solution. When the pH of the solution 

increases to a certain value, which means all the HNO3 in the solution is almost consumed, 

then the solution can be used for electrowinning due to higher recovery rate with less HNO3 

in the solution. 

The material of the counter electrode is an issue for the mass production, which suffers 

from the oxidation potential and the low pH solution. Pt shows its stability under the 

oxidation potential plus the low pH environment. However, Pt is too expensive for scaling 

up. The replacement of the materials for the counter electrode needs to be found.  

When Ti is used as the counter electrode, Ti electrode will react with the solution and 

then be etched during the Cu recovery. As a result, Ti is not suitable as the counter electrode 

for the process.  
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W and Mo look stable under the condition. However, the three-electrode system can not 

sustain the desired voltage due to overload when W and Mo are used as the counter 

electrode, which means the counter electrode can not supply enough current to balance the 

current on the working electrode so the voltage between working and reference electrode 

can not be fixed. The reason is that W and Mo under low pH and oxidation potential will 

form the oxide on their surface as the passivated film from their Pourbaix diagrams. The 

counter electrode becomes an insulator and can not conduct the current. The entire system 

suffers from the overload and can not control the voltage. As a result, W and Mo are not 

suitable as the counter electrode. A possible solution is Ti electrode with Pt coating, which 

can lower the cost of the counter electrode and also sustain the chemical and electrical 

stability during the electrowinning.  

 

Fig. 5.13 Scaling up for metal recycling from c-Si solar modules. 
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5.7 Summary 

The metal recycling process from c-Si solar modules is developed. The nitric acid 

solution with 11.4% concentration is used for Ag, Cu, Sn, Pb leaching. Ag, Cu, Pb are 

dissolved into solution and Sn reacts with HNO3 to form SnO2 which can be filtered. The 

amount of HNO3 solution is controlled to completely leach and react all of Ag, Cu, Sn and 

Pb and also have pH >0 of the solution after leaching. Then the solution with Ag+, Cu2+ 

and Pb2+ is sent for the electrowinning. Three-electrode system is used for applying the 

accurate voltage to recover these metals one by one. Ag and Cu at least 99% purity can be 

recovered on the working electrode with 74% and 83% recovery rate, respectively. Pb will 

be recovered as PbO2 on the counter electrode during Cu recovery. Larger than 99% 

amount of Pb is gone from the solution after Cu recovery. The final solution is almost Pb 

free.  



  53 

CHAPTER 6 

RECYCLE SOLAR GRADE Si FROM C-Si SOLAR CELLS 

6.1 Introduction 

The cells after metal dissolution have the structure in Fig. 3.2(b). They are immersed into 

an aqueous solution of 10% HF for 15 min to remove the SiNx layer, Al-Si alloy and Al 

back electrode. The structure of the remaining cells is shown in Fig. 3.2(c) which is the Si 

part of c-Si solar cells. The purpose of solar-grade Si recovery is to etch off the front emitter 

(n+ Si) and back-surface field Si (p+Si) and to recover the base (p Si). 

Heavily doped n+ Si emitter  

On the fronside, the n+ heavily doped Si which is emitter is formed by P diffusion. Fig. 

6.1 is the P diffusion process by POCl3. Liquid state POCl3 is the common source of P. 

Carrier gas nitrogen (N2) and reaction gas oxygen (O2) flow through liquid POCl3 and bring 

it into the tube furnace. POCl3 reacts with O2 forming solid P2O5 on the Si wafer surface, 

and then P2O5 further reacts with Si to generate P. With the high temperature, P diffuses 

into Si surface and forms n+ emitter. The reactions are: 

𝑷𝑶𝑪𝒍𝟑 + 𝑶𝟐 → 𝑷𝟐𝑶𝟓 + 𝑪𝒍𝟐     (6.1) 

𝑷𝟐𝑶𝟓 + 𝑺𝒊 → 𝑺𝒊𝑶𝟐 + 𝑷     (6.2) 

 A layer of PSG is formed on the Si and then removed by HF. The highest temperature 

for the process is about 900℃ in order to drive P into Si to form n+ Si emitter. Typically, 

the thickness of the emitter is about 0.7 to1 m. The purpose of n+ Si emitter is to form the 

p-n junction with p-type Si base for driving minority carriers to provide the power. 
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Fig. 6.1  Schematic of POCl3 diffusion by diffusion furnace [48]. 

 

Heavily doped p+ Si back surface field 

On the backside, p+ Si back surface field (BSF) is formed by the interaction between Si 

and Al paste printed on the Si by screen printing at high temperature. The purpose of BSF 

is to passivate the rear surface to minimize the impact of rear surface recombination 

velocity. With BSF p+ Si adding on the rear side of the p-Si base, the minority carriers in p 

Si which are electrons have less chance to be trapped by the rear surface due to the potential 

difference between p+ and p Si.  As a result, the surface recombination decreases, and the 

efficiency of the solar cell increases by BSF [49–51]. 

The Al paste first is printed on c-Si solar cells on the backside by screen printing. For 

most of the c-Si solar cells, they have full area Al printing. After full area Al printing, the 

cells are sent to the belt furnace for high-temperature firing. The firing temperature is 

typically around 800℃ which is higher than the melting point of Al (660℃) to accelerate 

the Al-Si alloying to form BSF. Figs. 6.2 (a) to (e) are the BSF forming process on the 
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backside of c-Si solar cells step by step [52,53]. The Al paste is printed on the Si cell as 

Figs. 6.2(a) to (b). Then Fig. 6.2 (c) shows the cell is put into high-temperature belt furnace 

for firing. The Al paste starts to melt. Then the Si in the p-Si base diffuses into the melting 

Al paste to form the Al-Si melt. Fig. 6.2(d) is the cells during the cooling stage. The Al-Si 

melt begins to solidify. Si atoms in the melt diffuse to the bottom of the melt to form the 

Al p+ Si BSF since the p-type Si base provides the nucleation sites with lower activation 

energy for the nucleation. As the Si atoms in the melt diffuse to form the p+ Si BSF, the 

concentration of Si in the melts decreases. Fig. 6.2(e) is the cell cooled down to room 

temperature. The Al-Si melt becomes Al-Si alloy. The doping concentration of the Al p+ 

BSF in commercial c-Si solar cells is about 1019 cm-3. Typically, the thickness of the Al p+ 

BSF is about 7-10 m.  
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Fig. 6.2 Schematic for the screen printing and firing for c-Si solar cells: before Al printing 

(a); after Al printing (b); firing (c); cooling (d); finish (e) 
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Two studies for solar grade Si recovery [26]. The first study is to optimize the conditions 

of NaOH etch for the highest etch rate of Si. The reason why NaOH is used for Si etch is 

the reasonable etch rate and safety. The etch rate of NaOH for Si is less than 1 m/min. 

Another Si etch solution such as HNO3/HF solution has higher etch rate but is more 

dangerous [54–57]. Since the heavily doped Si in c-Si solar cells is around 10 m, the etch 

rate of Si can not be too fast in order to control the etch time precisely to just remove the 

heavily doped Si in c-Si solar cells to recover the maximum amount of the solar grade Si 

for recycling. Furthermore, HNO3 is used for metal recycling, which will generate the 

acidic waste. In the solar grade Si recycling, NaOH is chosen as the etch solution which 

can neutralize the acidic waste to lower the risk of the final waste.  

The second study is to maximize the amount of solar-grade Si recovered. There are many 

ways to monitor the etch process such as secondary ion mass spectrometer (SIMS), 

electrochemical capacitance profiler (ECV) or glow discharge mass spectrometry (GDMS) 

which can show the doping profile of Si. The techniques listed above are destructive, time- 

consuming. However, the technique to monitor the etch process needs to be time-efficient. 

Fig. 6.3 is the flowchart for recycling solar grade Si. There are a lot of solar cells from 

different companies and their heavily doped Si thicknesses are different. In the case, the 

throughput will be affected seriously if the technique to monitor the etch process is too 

complicated and time-consuming. As a result, the technique to monitor the process must 

be easy and quick. 
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Fig. 6.3 Process flow for solar grade Si recycle from c-Si solar cells 

 

6.2 Experimental 

To optimize the NaOH etch conditions, Si wafers are immersed into aqueous NaOH 

solutions of various concentrations from 1% to 50% at 25˚C, as the saturated NaOH 

concentration in water is ~50% at 25˚C. The weight of the Si wafers is measured every 15 

min and then converted to wafer thickness by the following equation: 

DensityArea

Weight
Thickness


     (6.3) 

It is assumed that the area of the Si wafer does not change after etch. Once the NaOH 

concentration for the highest etch rate is determined, the temperature of the NaOH solution 

is raised to 50˚C to further increase the etch rate. 

To remove the emitter and back-surface field, commercial monocrystalline-Si (mono-Si) 

solar cells are used. They go through HNO3 and HF to remove the front electrode, back 

electrode and SiNx layer. The remaining cells have the structure in Fig. 3.2(c). They are 
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etched in an aqueous NaOH solution under the conditions identified above. Every 15 min, 

the cells are lifted from the NaOH solution and their sheet resistances are measured by a 4-

point probe on both the front and back sides. The reciprocal sheet resistances are then 

plotted against etch time to determine the precise moment when the heavily-doped emitter 

and back-surface field are just removed. 

 

6.3 Results and Discussion 

Fig. 6.4(a) shows the thickness loss of Si wafers as a function of etch time at 25˚C under 

different NaOH concentrations from 10% to 50%. Etch of Si starts after 15 min with stable 

slopes, i.e. constant etch rates, for all concentrations. The slow etch during the first 15 min 

suggests the presence of native oxide which hinders the etch rate. This assumption is 

verified in Fig. 6.4(b), which shows the thickness loss of two Si wafers in 10% NaOH, one 

with and the other without 10% HF pretreatment for 15 min. With HF pretreatment, the 

wafer shows a stable slope from the beginning, while the other wafer initially has little etch 

and then a stable slope after 15 min. The etch rate of native oxide by NaOH is lower than 

that of Si. With native oxide, there are two stages in the etch: (1) an oxide etch stage (first 

15 min) and (2) a Si etch stage (dashed circle). It is noted that the etch rate, i.e. the slope, 

for the HF-treated wafer is the same as the wafer without HF pretreatment after 15 min. 

This is clearly the Si etch stage. 

From Fig. 6.4(a), the etch rate in the Si etch stage increases when the NaOH concentration 

decreases. In order to increase the etch rate, the NaOH concentration is reduced below 

10%.  
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Fig. 6.4 Thickness loss of Si in NaOH solutions of various concentrations at 25˚C (a) and 

with or without HF pretreatment (b). 
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Fig. 6.5 is the thickness loss of Si wafers as a function of etch time in 1%, 3%, 5% and 

10% NaOH aqueous solutions at 25˚C. None of these wafers goes through HF pretreatment, 

so they all have the oxide etch stage. The time for oxide etch is 15 min, 30 min, 45 min and 

60 min for 10%, 5%, 3% and 1% NaOH, respectively. After oxide etch, all the wafers show 

stable slopes indicative of Si etch. From the slopes the etch rate of Si is determined, as 

shown in Fig. 6.6 The 3% NaOH solution shows the highest Si etch rate, which is 0.082 

m/min. 

The etch reaction of Si by NaOH as follow: 

)(2)(32)(2)()( 2 gaqaqaqs HSiONaOHNaOHSi   (6.4) 

From the reaction, NaOH and H2O must exist simultaneously to etch Si. As result, the 

etch rate is determined by the concentration of NaOH and H2O. The maximum etch rate is 

also compromised between the concentrations of NaOH and H2O and is reached at 3% 

NaOH solution. However, the native oxide etch reaction is 

)(2)(32)()(2 2 aqaqaqs OHSiONaNaOHSiO   (6.5) 

Native oxide only needs NaOH for etching. The etch rate is determined only by NaOH. 

As a result, when the concentration of NaOH increases, the etch rate of the native oxide 

increases and the time for native oxide etch decreases.  



  62 

 

Fig. 6.5 Thickness loss of Si in 1%, 3%, 5% and 10% NaOH aqueous solutions at 25˚C. 

 

Fig. 6.6 Si etch rate in 1%, 3%, 5% and 10% NaOH aqueous solutions at 25˚C. 
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The back-surface field is ~10 m thick. Even at 0.082 m/min, the etch rate is still too 

low for the back-surface field. In order to increase the etch rates of native oxide and Si, the 

3% NaOH solution is heated to 50˚C. This temperature can be achieved by exposing the 

NaOH solution under sunlight. Fig. 6.7 shows the thickness loss of a Si wafer as a function 

of etch time in a 3% NaOH aqueous solution at 50˚C. There is no oxide etch stage at 50˚C 

and the Si etch rate is around 0.53 m/min. At this etch rate, the back-surface field can be 

removed in ~20 min. 3% NaOH at 50˚C are the conditions used for actual cell etch. 

Commercial mono-Si cells with the structure in Fig. 3.2(c) are immersed into a 3% NaOH 

aqueous solution at 50˚C. Every 15 min, the cells are lifted out of the NaOH solution and 

their sheet resistances are measured from both the front and back sides by a four-point 

probe. Fig. 6.8 plots the reciprocal sheet resistance of a cell as a function of etch time. 

Initially, the sheet resistances from the two sides are different because the sheet resistance 

from the front side is that of the n+ emitter, and the sheet resistance from the backside is 

that of the p+ back-surface field in parallel with the p-type base. After 15 min, the two sheet 

resistances become identical. This happens when the n+ emitter is completely removed. As 

a result, no matter which side the sheet resistance is measured from, it is always the sheet 

resistance of the p+ back-surface field in parallel with the p-type base. After 30 min, the 

plot changes its slope. This indicates the complete removal of the p+ back-surface field and 

only the lightly-doped p-type base is left. As soon as the slope changes, the etch should be 

stopped to recover the maximum possible amount of solar-grade Si from the cell. 

The backside of the cell contains a p layer and a p+ layer in parallel. The reciprocal sheet 

resistance of the backside is: 
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where RS is the measured sheet resistance, p+ the resistivity of the p+ layer, p the 

resistivity of the p layer, wp+ the thickness of the p+ layer and wp the thickness of the p 

layer. Eq. (6.6) indicates that the measured sheet resistance of the backside is a function of 

the thicknesses of the p and p+ layers. In Fig. 6.7, the thickness of the Si wafer has a linear 

relation with etch time in 3% NaOH at 50˚C. As a result, the reciprocal sheet resistance of 

the backside is a linear function of etch time. This is verified by the straight line for the 

backside between 0 min and 30 min in Fig. 6.8. 

 

Fig. 6.7 Thickness loss of Si in a 3% NaOH aqueous solution at 50˚C. 

 

When the p+ layer is completely removed, the reciprocal sheet resistance of the backside 

becomes: 
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At this stage, the reciprocal sheet resistance is also linear with etch time because the 

thickness of the p layer has a linear relation with etch time. However the reciprocal sheet 

resistance shows a different slope. This is why the slope changes at 30 min in Fig. 6.8, and 

the point of slope change indicates that the p+ back-surface field has just been completely 

removed. Since wp decreases with etch time at a constant rate, Eq. (6.7) can be rewritten 

as: 

C
tr

R pS







1
   (6.8) 

where r is the Si etch rate, t the etch time and C a constant related to the initial thickness of 

the p-type base. With Eq. (6.8), one can find the resistivity of the p-type base, p, by 

dividing the Si etch rate with the absolute value of the slope between 30 min and 120 min 

in Fig. 6.8. The etch rate of Si is 0.53 m/min and the fitted slope is –3.77×10–5 / -min. 

The p calculated is thus 1.41 -cm, which is in agreement with the specifications of the 

solar grade Si. 
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Fig. 6.8 Reciprocal sheet resistance of a Si cell in a 3% NaOH solution at 50˚C as a function 

of etch time. 
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Figure 6.9 Remaining weight of a Si cell in a 3% NaOH solution at 50˚C as a function of 

etch time. 

 

The remaining weight of a Si cell as a function of etch time has also been measured, as 

shown in Fig. 6.9. A 30-min etch removes all the heavily-doped layers. Fig. 6.9 reveals that 

after 30 min, the remaining weight is ~91% of the starting Si, i.e. the amount of solar-grade 

Si recovered by sheet resistance monitoring is over 90%. 

6.4 Scanning Electron Microscope for Proving BSF p+ Si Removal 

Scanning electron microscope (SEM) can show the contrast on semiconductors between 

different doping concentrations, which could be used to show the contrast between back 

surface field p+ Si and p-type Si base. By the observation of the contrast, the etch time to 

remove back surface field p+ Si can be controlled.  

The mechanism of contrast between p+ Si and p Si by SEM can be explained by the 

energy band diagram. Fig. 6.10 is the energy band diagram of p+ Si and p Si. From the 

working principle of SEM, the electron beam is emitted from the electron gun to the 
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material and the secondary electrons are knocked out from the materials. The secondary 

electrons are collected by the detector of SEM to form the image. From Fig. 6.10, the 

energy requirement of the secondary electrons from the valence band of p+ Si to the detector 

is less than that of secondary electrons from the valence band of p Si to the detector.  As a 

result, more secondary electrons from p+ Si can reach the detector than those from p Si. 

The p+ Si in the image of SEM will show brighter than p Si to form the contrast.  

 

Fig. 6.10 Principle of contrast between p+ and p Si under SEM 

 

The contrast between p and p+ Si can be adjusted by several parameters of SEM. The 

parameters include the accelerating voltage of the incident electron beam, the bias applied 

to Si and the surface condition of the Si sample…etc [58,59].  

Accelerating voltage of the incident electron beam 

The high accelerating voltage of the incident electron beam will excite many electron-

hole pairs. If the density of excited carriers exceeds the original density of carriers of Si, 

the Si will perform the intrinsic properties and the contrast between p and p+ Si decreases. 

On the other hand, the low accelerating voltage could cause larger spreading of energy for 
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the incident electron beam, which results in the spherical aberration. Then the SEM image 

becomes blurred. The optimal accelerated voltage of the incident electron beam is around 

1 kV for the p and p+ Si contrast in the Si solar cell. 

The bias applied to Si 

The bias applied to Si will affect the band bending between p Si and p+ Si. As Fig. 6.10, 

if the bias can be applied between p+ and p Si to increase the band bending, the energy 

requirement difference of secondary electrons to reach detector between p and p+ Si 

increases, which will result in the images with higher contrast between p and p+ Si.  If the 

band bending decreases after applying the bias, the contrast between p and p+ Si decreases.  

The surface condition of Si 

The roughness of Si surface will create contrasts on SEM images. These contrasts can 

interference the contrast between p and p+ Si. As a result, the surface of the Si sample 

should be polished to eliminate the roughness of the surface and enhance the p and p+ Si 

contrast. 

Fig. 6.11(a) is the SEM image for the Si part from c-Si solar cells with 0 min, 10 min, 

20min NaOH etch. The brighter region in the image is the BSF p+ Si. The thickness of BSF 

p+ Si decreases as etch time increases. Fig. 6.11(b) shows the average BSF p+ Si thickness 

for each etch time. The error bars show 95% confidence for the overall average thickness 

of BSF p+ Si. Since Si thickness is the linear function of the etch time in 3% NaOH solution 

at 50℃, these data are fitted by a linear equation. From the equation, when the thickness 

of BSF p+ Si is zero, the etch time is ~24 min. As a result, the etch time for the complete 

removal of the heavily doped Si is around 24 min to 30 min. From the result, at least 91% 

of Si which is solar grade Si can be recovered for 30 min etch.  
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(a) 

 

(b) 

 

Fig. 6.11 SEM images for BSF p+ and p Si contrast under different NaOH etch time (a) the 

average BSF p+ Si thickness versus etch time (b) 
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6.5 Characterization of ECV on BSF  

Electrochemical capacitance-voltage (ECV) is a technique which is used for the 

characterization of the carrier density profile. The voltage is applied to form the depletion 

region on the semiconductor specimen to measure the carrier density. The profile can be 

achieved by measuring C-V with etching into the specimen electrolytically. 

The Si part of a c-Si solar cell with 30 min NaOH etch is used for back surface field p+ 

Si characterization by ECV. The electrolyte used is 0.1 M NH4F/HF [60]. The I-V curve is 

measured to confirm the voltage range for the depletion without current leakage. Fig. 6.12 

is the I-V curve for the sample. The range without leakage current is about -1.2V to -0.4V, 

which is the voltage range to create the depletion region in the sample. The sign of the 

voltage in Fig. 6.12 is opposite to the real applied voltage on the sample so more negative 

voltage will create a deeper depletion region in the p-type Si sample. 

 

Fig. 6.12 I-V curve of Si part in the c-Si solar cell after 30 min NaOH etch. 
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The capacitance of the sample is also measured over a range of voltages. Fig. 6.13 is the 

capacitance measurement and 1/C2. From -0.4 V, the sample starts to be depleted. At around 

-0.5 to -0.8 V, the flat band voltage is in the range and then the depletion condition is 

sustained between -0.8 V to -1.2V.   

 

Fig. 6.13 Capacitance measurement for Si part of c-Si solar cells with 30 min NaOH etch. 

 

The voltage chosen for ECV is -1 V for stable measurement since the measurement 

voltage too close to flat band voltage often showed a discrepancy between the measured 

doping concentrations by ECV and SIMS data. The profile which is shallower than the 

depletion depth created by -1 V can be achieved by C-V measurement. Fig. 6.14 is the 

carrier profile measurement by C-V and ECV. The red points are the C-V data which are 

measured under the voltage more positive than -0.4 V. As a result, the red points are 

inaccurate data. The accurate data is not achieved until the depth is deeper than 200 nm. 
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Between 200 nm and 300 nm, the data are from accurate C-V which is measured under the 

voltage range between -0.4 V and -1 V. The data from the region which is deeper than 300 

nm are measured by ECV with constant -1 V plus etching the contact area with the 

electrolyte on the sample. From the overall results, the solar grade Si whose doping 

concentration is about 1016 cm-3 exists in the region deeper than 200 nm. However, for the 

depth shallower than 200 nm, the carrier or doping density can not be sure since the data 

from C-V measurement is not accurate because the measurement voltage is beyond the 

range of that resulting in depletion condition on the sample. As a result, the ECV 

measurement can not identify whether the BSF p+ Si is removed 

 

Fig. 6.14 Carrier profile of Si part of c-Si solar cells after 30 min NaOH etch 
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6.6 Summary 

Solar grade Si can be recovered with high recovery rate, at least 91% Si from the cell as 

the solar grade Si in 30 min by the wet etch process to remove the heavily doped Si in a c-

Si solar cell. NaOH is chosen as etch solution due to its cost and reasonable etch rate. The 

etch mechanism for Si by NaOH is studied and the etch rate for Si is optimized. The 4-

point probe is selected as the method for monitoring the etch process due to its convenience 

for high throughput. SEM contrast for BSF p+ Si and p Si further proves all the heavily 

doped Si removal. The NaOH waste can be neutralized by the HNO3 waste left from metal 

recycling to lower the danger of final waste.       
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CHAPTER 7 

CONCLUSION 

A recycling process is proposed for c-Si solar modules that is technically, 

environmentally and financially sustainable. It is a three-step process, module recycling, 

cell recycling and waste handling, to break down Si modules and recover various materials. 

Over 95% of a module by weight can be recovered by the proposed process including all 

the glass, Al frame, polymers (as heat source), junction box, ~90% of the Si as solar-grade 

Si and over 90% of the valuable and toxic metals. Two new technologies are demonstrated 

to enable the practice of the proposed recycling process. One is sequential electrowinning 

which allows multiple metals to be recovered one by one from Si modules, Ag, Pb, Cu and 

Sn. The recovery rates of Ag and Cu are currently 74% and 83%, respectively, but can be 

increased to 95%. The purity of the recovered metals is above 99%. The other technology 

is sheet resistance monitoring which maximizes the amount of solar-grade Si recovered 

from the modules. Over 90% of the Si in the original modules can be recovered, and the 

recovered Si meets the specifications for solar-grade Si. The recovered metals and Si are 

new feedstocks to the solar industry and generate over $12/module in revenue at today’s 

prices for Ag and solar-grade Si. This revenue eliminates a major obstacle to Si module 

recycling, enabling a profitable recycling business without any government support. The 

chemicals for recycling are carefully selected so their wastes can neutralize each other for 

a minimal environmental impact. A network for collecting end-of-life solar modules is 

proposed based on the current distribution network for solar modules to contain the 

collection cost. 
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