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ABSTRACT

The performance of most of the visual computing tasks depends on the quality of

the features extracted from the raw data. Insightful feature representation increases the

performance of many learning algorithms by exposing the underlying explanatory factors

of the output for the unobserved input (Bengio et al., 2013). A good representation should

also handle anomalies in the data such as missing samples and noisy input caused by the

undesired, external factors of variation. It should also reduce the data redundancy. Over the

years, many feature extraction processes have been invented to produce good representations

of raw images and videos.

The feature extraction processes can be categorized into three groups. The first group

contains processes that are hand-crafted for a specific task. Hand-engineering features

requires the knowledge of domain experts and manual labor. However, the feature extraction

process is interpretable and explainable. Next group contains the latent-feature extraction

processes. While the original feature lies in a high-dimensional space, the relevant factors

for a task often lie on a lower dimensional manifold. The latent-feature extraction employs

hidden variables to expose the underlying data properties that cannot be directly measured

from the input. Latent features seek a specific structure such as sparsity or low-rank into

the derived representation through sophisticated optimization techniques. The last category

is that of deep features. These are obtained by passing raw input data with minimal pre-

processing through a deep network. Its parameters are computed by iteratively minimizing a

task-based loss.

In this dissertation, I present four pieces of work where I create and learn suitable data

representations. The first task employs hand-crafted features to perform clinically-relevant

retrieval of diabetic retinopathy images. The second task uses latent features to perform

content-adaptive image enhancement. The third task ranks a pair of images based on their

aestheticism. The goal of the last task is to capture localized image artifacts in small datasets
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with patch-level labels. For both these tasks, I propose novel deep architectures and show

significant improvement over the previous state-of-art approaches. A suitable combination

of feature representations augmented with an appropriate learning approach can increase

performance for most visual computing tasks.
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Chapter 1

INTRODUCTION

The success of many machine learning algorithms depends on having better input repre-

sentations that expose the underlying explanatory factors of the output for the observed

input (Bengio et al., 2013). An effective data representation should reduce the data redun-

dancy and adapt to the undesired, external factors of variation introduced by sensor noise,

labeling errors, missing samples, etc. All these properties help reduce the complexity of

the real-world data which is often high-dimensional. However, according to the manifold

hypothesis, the real-world data are expected to lie in a lower-dimensional manifold that

embeds the high-dimensional real-world input (Bengio et al., 2013). This assumption serves

us well in case of images. Real-world images lie in an extremely high-dimensional space.

For example, a two-dimensional space of size 32× 32 in which each point is either 0 or 1,

can produce 21024 images. However, the number of images recognizable to humans will

only be a small fraction of this. There must be an underlying low-dimensional manifold that

embeds the space of the original 1024D manifold. The challenge for representation learning

technique is to find this manifold while achieving high performance on the desired task.

In the following sections, I explain the various feature representation hierarchies broadly

categorized into three groups.

1.1 Hand-crafted features

In general, hand-crafted features refer to fundamental features such as image gradients as

well as sophisticated, computationally non-trivial features such as the histogram of oriented

gradients (Dalal and Triggs, 2005). These are designed by domain experts who have prior

knowledge about the data properties and the underlying data distribution. Hand-engineering
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features for each task requires a lot of manual labor. However, it is easy to integrate the

human knowledge of the real-world and of that specific task into the feature design process

(Paladugu et al., 2013; Chandakkar et al., 2014, 2015c), making it possible to obtain good,

interpretable results for the said task along with an explainable feature extraction process.

These properties are desirable when the feature extraction process is used for high-risk

tasks such as computer-aided diagnosis, automated trading, etc. However, note that it is not

entirely correct to call all traditional features as being hand-crafted since some of them are

general-purpose features with little task-specific tuning (such as outputs of simple gradient

filters).

1.2 Latent-feature representation

The raw data, especially images, lie in a very high-dimensional space. Most times, the

relevant factors for a task are contained in a lower-dimensional space that is hidden (Bengio

et al., 2013). Latent-feature extraction processes discover these low-dimensional spaces by

employing hidden variables. These representations measure the underlying properties of the

data that cannot be readily measured. These processes usually seek a specific structure into

the features such as sparsity, decorrelation of reduced dimensions, low-rank, etc. The sparsity

and the low-dimensionality are often encouraged as many real-world signals naturally have

sparse-representations in some fixed, appropriate bases (e.g., Fourier). These signals may

be embedded in a low-dimensional manifold (Wright et al., 2010). However, discovering

these latent representations is a complicated optimization process often requiring extensive

reformulation of the original task objective and advanced optimization techniques such as

alternating minimization.
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1.3 Deep representations

Deep representations are obtained by passing raw input data with minimal pre-processing

through a neural network consisting of a stack of convolutional layers that function as a

feature extractor and fully-connected layers that work as a classifier. As we traverse through

all the network layers, we obtain a different data representation that abstracts a specific

semantic concept at that layer. The captured concepts become progressively complex and of

semantically higher-level as we move deeper into the stack of network layers. For example,

earlier layers may encode simple concepts such as image edges, color differences, etc. The

higher layers may capture properties specific to each object such as object contour and

shape. The networks are trained iteratively by minimizing a task-specific loss that alters the

parameters/weights for all of those layers. Recently, deep features have been found highly

effective in many visual computing tasks. Their most attractive property is their ability to

learn from a raw input with minimal pre-processing. Moreover, representations obtained

from generic feature extractors provide a reasonable performance on many tasks, alleviating

the need for domain experts at every stage. However, learning deep representations needs

substantial computational resources and data collections. They also require extensive storage

making the processing suitable only on computing clusters.

This dissertation focuses on creating and learning different data representations for a set

of visual computing tasks. I present four pieces of work that employ feature representations

at all the three hierarchies.

Clinically-relevant Diabetic Retinopathy Image Retrieval: Diabetic retinopathy

(DR) is a consequence of diabetes and is the leading cause of blindness among working

adults (Centers for Disease Control and prevention and others, 2011). Regular screening is

critical to early detection and treatment of DR. Computer-aided diagnosis has the potential

of improving the practice of DR screening or diagnosis (Quellec et al., 2011). To this end,
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there is a need for an automated and unsupervised approach to retrieving clinically-relevant

images from a set of previously-diagnosed fundus camera images. Such computer-aided

procedures will improve the efficiency of screening and diagnosis of DR. Considering

the unique visual properties of DR images; I developed a feature space consisting of a

modified color correlogram appended with statistics of steerable Gaussian filter responses

selected by the fast radial symmetric transform points. Considering that many DR lesions

are often localized, I propose a multi-class multiple-instance retrieval framework. Extensive

experiments with real DR images collected from five different data-sets demonstrate that

the proposed approach outperforms existing methods (Venkatesan et al., 2012; Chandakkar

et al., 2013, 2017b).

Content-adaptive Image Enhancement: Social networking on mobile devices has

become a commonplace of everyday life. Also, the photo-capturing process has become

trivial due to the advances in mobile imaging. People are taking a lot of photos everyday

and they want them to be visually-attractive. This has given rise to automated, one-touch

enhancement tools. However, the inability of those devices to provide personalized and

content-adaptive enhancement has paved way for machine-learned methods to do the same

(Bychkovsky et al., 2011; Yan et al., 2014a; Chandakkar et al., 2015a; Kapoor et al., 2014;

Hwang et al., 2012; Kang et al., 2010; Kaufman et al., 2012; Joshi et al., 2010; Yan et al.,

2014c). The existing typical machine-learned methods heuristically predict the enhancement

parameters of a new image from a set of neighboring image parameters. Performing k-

nearest neighbor search on the training set makes the parameter prediction sub-optimal and

computationally expensive at test time. The cardinality of the set of possible enhancement

parameters is enormous, but only a fraction of those parameters produce “enhanced” images.

This suggests there lies a low-dimensional latent space for enhancement parameters. I present

a novel approach to predicting the enhancement parameters given a new image using only

its features, without using any training images. I propose to model the interaction between
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the image features and its corresponding enhancement parameters using latent variables.

This approach outperforms heuristic approaches as well as recent approaches in structured

prediction on synthetic and on real-world data of image enhancement (Chandakkar and Li,

2016). Motivated by this work, I propose an extension that uses the Gaussian-process (GP)

based joint regression and ranking for a unified image enhancement pipeline (Chandakkar

and Li, 2017b). Unlike the earlier approach, this GP-based approach traverses parameter

space, performs regression to find a set of possible enhancement parameters and ranks

them using a unified pipeline. Comparative evaluation using the ground-truth based on the

MIT-Adobe FiveK dataset (Bychkovsky et al., 2011) and subjective tests on an additional

data-set were used to demonstrate the effectiveness of the proposed approach.

Relative aesthetics estimation using deep features: Computational visual aesthetics

has recently become an active research area. Existing state-of-art methods formulate this as

a binary classification task where a given image is predicted to be aesthetic or not (Dhar

et al., 2011; Nishiyama et al., 2011; Lu et al., 2014, 2015). In many applications such as

visual search and image enhancement, it is more important to rank images based on their

aesthetic quality instead of merely categorizing them into two classes. Furthermore, in

such applications, it may be possible that all images belong to the same category. Hence

determining the aesthetic ranking of the images is more appropriate. To this end, I formulate

a novel problem of ranking images based on their aesthetic quality. I construct a new

dataset of image pairs with relative labels by carefully selecting images from the popular

AVA dataset. Unlike in aesthetics classification, there is no single threshold which would

determine the ranking order of the images across our entire dataset. I propose a deep

neural network based approach that is trained on image pairs by incorporating principles

from relative learning (Chandakkar et al., 2016). Results show that such relative training

procedure allows our network to rank the images with a higher accuracy than a state-of-art

network trained on the same set of images using binary labels.
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No-reference image quality estimation using hyper-image representation: Images

get distorted due to defects in acquisition devices, transmission-based errors, etc. The task of

image quality assessment (IQA) requires an automated method to estimate the visual quality

of an image. Conventional and simple error metrics such as RMSE/PSNR cannot capture the

correlation between image appearance and human-perception of the image quality (Wang

et al., 2004). Two variants of this problem exist - full-reference IQA and no-reference

IQA (NR-IQA). Full-reference IQA task gives access to an original image and its distorted

counterpart. The distorted image is assigned a quality score by considering the original

image as the reference. Few representative approaches that try to solve this problem are

SSIM (Wang et al., 2004), MSSIM (Wang et al., 2003), FSIM (Zhang et al., 2011a), VSI

(Zhang et al., 2014) etc. However, in real-world scenarios, one may not have a perfect,

non-distorted image available for comparison. Thus NR-IQA variant was proposed. In

NR-IQA, a single image needs to be assigned a quality score with respect to a non-distorted,

unobserved version of that image. This score must correlate well with human perception of

image quality. While creating ground-truth for this problem, a constant value is associated

with a non-distorted image. This value serves as a reference on the quality score scale.

This problem involves developing a discriminative feature space to different kinds and

degrees of distortions. Such setting is more suitable for learning schemes, which is reflected

by the fact that most of the approaches tackling this problem belong to the learning paradigm.

Few of the representative approaches include BRISQUE (Mittal et al., 2012), CORNIA (Ye

et al., 2012, 2013), DIIVINE (Moorthy and Bovik, 2011), BLIINDS (Saad et al., 2012),

CBIQ (Mittal et al., 2013), LBIQ (Tang et al., 2011) and the current convolutional neural

network (CNN)-based state-of-art (Kang et al., 2014).

The distortions could have a non-uniform distribution over the entire image. Also, the

observed effect of many distortions depends on the image texture and the saliency of the

distorted region. Learning-based approaches that utilize hand-crafted features fail to account
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for all such scenarios. It results in a reduced correlation between the predicted quality

scores and the ground-truth scores. To combat this, I propose a novel CNN-based approach

containing two network stages. The first stage is trained on image patches. The second stage

is trained on hyper-image representations that are derived from the last layer features of the

first stage. The proposed approach works well in case of non-uniform noise distributions. It

relaxes the requirement that all image regions should equally contribute to the quality score

prediction.

In the upcoming chapters, I will dive into the details of each task, the related literature,

the proposed approach and the experiments.
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Chapter 2

CLINICALLY-RELEVANT RETRIEVAL OF DIABETIC RETINOPATHY IMAGES

2.1 Introduction

Diabetic retinopathy (DR) is a consequence of diabetes, and it is one manifestation of a

systemic disease which can affect a myriad of organ systems. It can cause vision loss if not

treated early (Centers for Disease Control and prevention and others, 2011). Studies showed

that 381.8 million patients worldwide were diagnosed with diabetes in 2013 (Guariguata

et al., 2014). In 2010, 10.9 million US residents, aged 65 or older were suffering from

diabetes (Centers for Disease Control and prevention and others, 2011). According to the

recent estimates, the number of diabetic patients will rise to 591.9 million by 2035 which

indicates a 55% increase in the number of adults with diabetes (Guariguata et al., 2014).

Recent reports show that close to 25,000 people who have diabetes turn blind every year in

the US due to DR (Abràmoff et al., 2008). It is estimated that DR is the cause for 5% of

the world’s blind population (Salomão et al., 2009). The risk of vision loss due to DR can

be significantly reduced by early screening and treatment (Garg and Davis, 2009; Zhang

et al., 2010). Increasing population, cost, limitations of health-care facilities, lack of enough

providers in densely populated areas, lack of awareness on patients’ side and other factors

are constraints for regular screening of every diabetic patient. Thus to identify and treat DR

in its early stages requires a new perspective on the problem.

Two important stages of DR are non-proliferative diabetic retinopathy (NPDR) and

proliferative diabetic retinopathy (PDR). Microaneurysm (MA) is a sign of DR. MAs rarely

cause notable harm, but their presence indicates an underlying systematic disorder. Detailed

eye examinations can usually detect MAs. Neovascularization (NV) is a proliferation of
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Figure 2.1. Fundus Image of Eyes: Normal (Top Row), NPDR (Middle Row) and PDR

(Bottom Row)

functional blood vessels and is a symptom of PDR. Other complications such as vitreous

hemorrhages (extravasation of blood around the vitreous body) and/or tractional retinal

detachment follow. Timely and effective DR treatment to patients demands reliable detec-

tion. Assistance in the form of effective computer-aided technologies may help improve the

sensitivity, consistency, and efficiency of DR severity detection (Li and Li, 2013). Recent

advancements in computer-aided diagnosis and medical imaging have propelled the devel-

opment of automated image analysis techniques to solve the DR problem (Li and Li, 2013).

It was observed that a content-based image retrieval (CBIR) approach could help new and

experienced ophthalmologists (Quellec et al., 2011) in a diagnosis. For example, a CBIR
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system can provide them with both standard reference images and previously-diagnosed

images containing similar lesions, so that a more precise grading may be achieved.

Conventional CBIR techniques may not be helpful when directly applied on DR images.

Fig. 2.1 shows typical fundus images diagnosed with PDR and NPDR against normal

ones. Symptoms of NPDR include yellow, waxy exudates. It is noteworthy that very little

difference can be observed between the normal images and the NPDR images. Most parts of

an affected image would appear to be no different from a normal images as the lesions are

localized. A global representation of the image, which is often used in conventional CBIR,

may not capture its discriminative characteristics. Properly-designed feature extractors

evaluated on small regions would be needed to capture lesion-defining information, although

such regions need to be determined. Therefore, to achieve the goal of retrieving DR images

that are relevant to a given image, we would need a novel retrieval framework that can

take into consideration unknown, localized pathologies. Further, new features need to be

designed so that lesion-specific characteristics of an image may be captured.

In this chapter, I propose a multi-class multiple-instance clinically-relevant retrieval

framework called MIRank-KNN that addresses the problem of localized pathologies in

unknown regions (Chandakkar et al., 2013, 2017b). The proposed approach is based on

the observation that both color and gradient features occurring in small, localized regions

characterize the lesions of interest. Thus for feature extraction, I propose to use spectrally-

tuned color-correlogram (CC) (Venkatesan et al., 2012) and statistics of steerable Gaussian

filter (SGF) response (Freeman and Adelson, 1991) of the points selected by fast radial

symmetric transform (FRST) (Loy and Zelinsky, 2003). This approach gets its clinical

relevance from the multi-instance retrieval framework - MIRank-KNN (Chandakkar et al.,

2013, 2017b) - and the feature design. For example, MIRank-KNN allows the retrieval of

images with similar localization and number of lesions. The features determine the type of

lesions to be retrieved. To facilitate the evaluation of the proposed method, the database and
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the source code used to carry out most of the experiments in this chapter are posted on the

author’s web-page 1 .

2.2 Related Work

Several CBIR systems were previously used in the areas of dermatology, radiology,

pathology, and ophthalmology. Research groups have used CBIR for computed tomography,

magnetic resonance imaging, positron emission tomography, and retinal images (Quellec

et al., 2011; Cai et al., 2000; Chaum et al., 2008; Gupta et al., 1996; Chandakkar et al., 2013,

2017b; Chen et al., 2008; Deepak et al., 2010; Quellec et al., 2012b, 2010; Chu et al., 1994;

Kelly et al., 1995; Korn et al., 1998; Lamard et al., 2007). In the field of positron emission

tomography, physiological kinetic features were used to build a CBIR-based system (Cai

et al., 2000). The hierarchical, spatiotemporal and evolutionary semantics of neural images

were captured by Chu et al. to develop a semantic model for CBIR purpose (Chu et al.,

1994). Textures and histograms of pathologies were combined in a signature, which was

formed on a per-image basis, in a system developed by Kelly et al. (Kelly et al., 1995). This

system made use of query-by-example techniques to retrieve images. Korn et al. used fast

query using nearest neighbor search to retrieve medical tumor images (Korn et al., 1998).

Two of the significant works in previous CBIR investigations on ophthalmology include

the Structured Analysis of the Retina (STARE) project and the CBIR system developed in

1996 (Gupta et al., 1996; Goldbaum et al., 1989). STARE was developed for performing

automatic diagnosis of images, annotation of image contents and searching for similar

images. STARE used basic image features to define the similarity metric. Recent work by

Quellec et al. illustrates the importance of CBIR in DR diagnosis (Quellec et al., 2011). It

provides statistical support for the claim that CBIR systems will assist experienced as well as

relatively inexperienced ophthalmologists in DR diagnosis. A supervised learning approach
1www.public.asu.edu/˜bli24/DR-System-and-Data.html
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that employed features extracted on segmented lesions and macula was used for CBIR of

DR images (Chaum et al., 2008). A classifier is trained for detecting lesions with the help

of ground-truth data of manually segmented lesions. Similarly, some supervised learning

approaches use adaptive variants of wavelet transform (Quellec et al., 2011, 2010, 2012b).

The DR image retrieval problem was broken into two steps, namely, image background

learning and feature extraction (Deepak et al., 2010). Background of a normal (unaffected)

DR image was first learned, and then nearest-neighbor retrieval was performed with the help

of intensity and texture features. Most of the above state-of-art DR CBIR frameworks rely

on a training stage followed by a nearest-neighbor retrieval technique to give them accurate

results.

Lesion detection is handled as a separate problem by many since its an essential step in

DR image classification and retrieval. Many solutions have emerged for detecting retinal

landmarks such as MAs, NV, and hemorrhages from developments in the area of image

processing. A bag-of-words scheme was first employed to train individual lesion detectors

and then a high-level classifier was used to determine if patients met the criteria for referral-

warranted diabetic retinopathy (Pires et al., 2013). Interest point detection and the visual

dictionary was also used (Rocha et al., 2012) for individual DR lesion detection. Multiple-

instance-learning was used to find relevant patterns in a DR image after being trained on a

database consisting of relevant and irrelevant images (Quellec et al., 2012a). Active learning

has been employed to select the most informative examples for labeling, thus reducing the

load on human experts and obtaining the optimal classification accuracy at the same time

(Sánchez et al., 2010). Recent machine learning frameworks, such as multi-class multiple

instance learning frameworks has shown promising results with images without lesion-level

labels (Xu and Li, 2008; Chandakkar, 2012; Chandakkar et al., 2012; Venkatesan et al.,

2012; Chandakkar et al., 2013, 2017b; Venkatesan et al., 2015). An encouraging fact about

all these pioneering works is that all of them suggest that the clinicians will be benefited
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from CBIR systems or the introduction of advanced vision-based approaches has improved

the underlying systems.

Color and textures are proven to be competitive features in spite of their simplicity

(Deselaers et al., 2008). Color correlograms tried to model the color correlation in an image

(Huang et al., 1997; Li, 2007). Correlograms are considered better than color histograms

and most other color features (Huang et al., 1997). They incorporate spatial correlation of

image pixels that gives them an edge over histogram features. They describe the global

correlation of local spatial correlation of colors. Correlograms are a strong representation

of texture with considerably small dimensionality. Gabor features (Manjunath and Ma,

1996), and the histogram of neighborhood mean moments (HNM) (Chen et al., 2008) are

popular alternatives for describing texture and color of an image respectively. HNM and

Gabor features are widely used approaches in medical image retrieval, but both of them

may not produce discriminative features for DR images due to their unique color spectrum.

SIFT keypoint detection and description have been shown to be effective for retrieval of

radiograph images (Deselaers et al., 2008).

Though there is a significant amount of progress in the area of CBIR of ophthalmological

images, the lack of a widely accepted ophthalmological system remains. It shows that the

central problems are still unsolved. Some of the shortcomings of the mentioned DR-CBIR

retrieval systems are as follows. Most of the systems require a training stage and thus

labeled data. For example, manually segmenting lesions involves expertise, a lot of time

and labor. Parameters tuning may not be consistent across different types of images and

data-sets. These systems either use local features or extract features only on the detected

lesions (usually through another classifier) to characterize localized lesions. Though local

features are good at characterizing small regions, features of a small but relevant region may

get suppressed when features from all the regions are bundled into a long one-dimensional

vector. Such a vector is necessary if a nearest-neighbor retrieval scheme is to be used.
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Another option is to use multiple-instance learning, but that requires a training stage too.

The proposed approach is motivated by the need to overcome these shortcomings. To this

end, my contributions are as follows.

1. I develop a completely unsupervised DR image retrieval system. I use the labeling

information from the public DR data-sets only to calculate retrieval metrics.

2. I develop a new indexing and retrieval framework, which considers multiple regions of

an image simultaneously. It outperforms the nearest-neighbor and the Citation-KNN

retrieval scheme by a large margin, even when state-of-art local features are used.

3. I develop a spectrally-tuned color quantization scheme aimed towards DR images. I

show its superiority over the original correlogram feature through entropy analysis

and experiments.

4. The proposed approach works across five data-sets, and its performance varies only

slightly over a wide range of parameters.

5. Through my study on DR images and extensive experiments, I propose a unique

combination of color and texture features. The proposed features outperform several

other state-of-art features used in natural and medical image retrieval.

A detailed study of emerging trends in automated analysis of DR images and a discussion

on the need for better clinically-relevant CBIR systems by Li et al. shows the space and

scope for this research effort (Li and Li, 2013).

2.3 Proposed Approach

The proposed retrieval approach can be broken up and studied in two parts.

1. The feature extraction process consisting of color and texture features.
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Figure 2.2. Visualizing the Necessity of Multiple-instance Framework. NPDR Image (on

Left), Instances Marked in Red Are the Lesions. Normal Image (on Right).

2. MIRank-KNN - The multiple-instance retrieval framework.

2.3.1 Feature Extraction

I consider a holistic representation of a DR image as opposed to a cascade representation

that usually first identifies individual lesions and then forms the entire feature (Pires et al.,

2013; Rocha et al., 2012). Clinicians also work with a global representation of an image and

perform a diagnosis only after considering all the lesions. I use color and texture properties

of an image which will be detailed in this section.

Color is a distinguishing characteristic for DR images. However, accurate modeling of

the color spectrum of DR images can be challenging due to the variation in lighting among

the images of the same class. Fig. 2.1 shows some images with varying lighting conditions.

In spite of belonging to the same class, the images in the first and last row have a significant

difference in their color spectrum. On the other hand, images belonging to different classes

may have subtle differences in their color spectrum, and often those differences are localized.

Fig. 2.2 illustrates this perfectly.

The color feature should be invariant to light color change and shift. It should encode
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local correlation of colors to model small and localized differences in the color spectrum of

two images. Formally, light color change and shift is represented as,


R′

G′

B′

 =


cR 0 0

0 cG 0

0 0 cB



R

G

B

+


sR

sG

sB

 (2.1)

whereR,G,B andR′, G′, B′ are the current and modified pixel value respectively. cR, cG, cB

and sR, sG, sB are the factors contributing to the lighting change and shift respectively.

The color feature is called invariant if it produces identical feature vectors for both the pixel

sets - (R,G,B) and (R′, G′, B′).

I use color correlogram to represent DR images as it encodes global distribution of local

spatial correlation of colors. I modify the correlogram feature to be invariant to the lighting

changes, shifts and most importantly, the unique color spectrum of DR images. They have

an almost always saturated red channel as observed in Fig. 2.1. Additionally, DR images

of different classes may have similar histograms, making it difficult for traditional color-

based features to produce discriminative feature vectors. Effective retrieval of DR images,

therefore, demands spectrally-tuned color features. The following subsection describes the

details.

Spectrally-tuned Color Correlogram

Color correlogram (CC) was proposed as an effective color feature which encodes global

distribution of local spatial correlation of colors (Huang et al., 1997). The CC of an image

is a table indexed by color pairs such that the kth entry for the color pair (i, j) gives the

probability of finding a pixel of color j at a distance k from color i. I quantize the image

into (m =) 16 colors and use k = 1. I calculate the color correlation of the center pixel

with all other pixels in a 3× 3 block. A 2D histogram is then defined over entire image for
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i, j ∈ [m] as,

hci,cj(I) = Pr
p1∈ci(p1),p2∈I

[p2 ∈ cj(p2) | d(p1, p2) = 1]. (2.2)

This gives the probability that a pixel belonging to quantized color c1 has another pixel

of color c2 at a unit distance, where c1, c2 ∈ [m]. This models the global distribution of local

correlation of colors. The dimensionality of color correlogram is O(m2k). I quantize the

image into 16 colors which gives us a feature vector of 256 dimensions.

The choice of the quantization scheme is crucial to the performance of the CC features.

A popular quantization scheme proposed by Li et al. was designed based on human vision

and the stimulus reactions of human vision to various colors (Li, 2007). From Fig. 2.1, it can

be easily observed that the spectrum of DR images is entirely different than that of natural

images. Therefore, a new quantization scheme has to be designed which is spectrally-tuned

towards DR images.

I proposed a spectrally-tuned quantization scheme for the CC features tuned towards

DR images (Chandakkar et al., 2017b) that is robust to light color change and shift. I create

a transformed color space where all three channels have zero mean and unit variance. Let

the new color space be represented by (RT ,GT ,BT ).


RT

GT

BT

 =


R−µR
σR

G−µG
σG

B−µB
σB

 (2.3)

The transformed color space is invariant against arbitrary light color changes and shifts

due to normalization of all channels. Its invariance properties have also been analyzed

(Van De Sande et al., 2010). This transformed color space will henceforth be used for all

operations. The unique shades (i.e., < RT , GT , BT > triplets) in all the images are now

extracted and arranged in M × 3 matrix. K-means clustering is performed on the matrix to
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Figure 2.3. Quantization of a DR Image Using AutoCC (Li, 2007) (Middle) and the

Proposed Approach (Right).
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Figure 2.4. Histogram of Quantized Shades for Li’s and the Proposed Quantizers Respec-

tively.

generate the spectrally-tuned quantization bins (i.e., centroids). Once the bins are obtained,

the CC features are calculated for all possible color pairs (i, j) where i, j ∈ [1, . . . , 16]. It

is empirically observed that modeling the correlation of all the possible pairs gives better

retrieval results. However, changing the number of bins affects the performance only by a

small amount. The evaluation of the spectrally-tuned CC, as well as its comparison with

original CC, is given in section 2.5.

While the spectral-tuning of the quantizer attempts to maximize the entropy by keeping
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Figure 2.5. 3-D Visualization of Li’s Quantization and the Spectrally-tuned Quantization

Schemes for DR Image Color Space. The Centroids Are Indicated by Spheres and Points

Associated with Each Centroid Are Shown with Cross Marks in Appropriate Colors (Please

Zoom in for Better Viewing).

the density of points (shades) associated with each centroid (quantized color bin) uniform,

the one proposed by Li et al., has a highly varying density of points associated with each

centroid (Li, 2007). A 3D visualization of both the quantization scheme is shown in Fig. 2.5.

While the points get non-uniformly distributed by using Li’s quantization approach, I obtain

a reasonably well-distributed set of points from my approach. The effect clustering has on
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this can be noticed better in Fig. 2.4. The spectrally-tuned CC makes better utilization of

bandwidth provided by the 16 color bins than the other quantization scheme where most of

the shades fall under 4 out of 45 bins, thereby heavily affecting the ability of the CC feature

to encode the spatial and global correlation of colors in DR images.

Entropy Analysis: I provide a measure of the amount of information encoded in both

approaches using the given number of bins. I further show the superiority of the proposed

approach using the developed entropy measure. The entropy is a measure of randomness in

the data which in turn corresponds to the amount of information present in it. Entropy of a

random variable X consisting of values (x1, x2, . . . , xn) is given by

H(X) = −
∑
i

P (xi)logbP (xi) (2.4)

where P (xi) =
# shades falling under bin i

Total # of shades in the database
.

I use logarithm base 2 and define 0 ∗ log0 = 0. In Fig. 2.4, the distribution on the left is

denoted by D1 and the one on the right is denoted by D2. The entropies of both distributions

are H(D1) = 2.9201 and H(D2) = 3.7222 bits. Though the proposed quantization scheme

provides an increase of 27.47%, both the values cannot be compared due to different-

sized distributions (16 vs. 44 bins). Various methods such as scaled entropy, normalized

entropy, sliding window approach have been proposed to allow a fair comparison between

different-sized distributions (Liu et al., 2008; Heikinheimo et al., 2007). Instead of using a

normalizing/scaling approach, I compare the two distributions by using an indirect method

which uses a reference distribution possessing maximum entropy with the given number of

bins. Uniform distribution is chosen as reference since it provides the maximum entropy

among all discrete distributions supported on a finite set (x1, x2, . . . , xn) (Park and Bera,

2009). I measure the percentage difference in the entropy values of the original and its

corresponding uniform distribution. I define dE1 as the percentage difference between D1

and its corresponding uniform distribution, denoted by UD1. dE2 and UD2 is similarly
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defined. By performing entropy calculations, values of UD1 and UD2 are found to be 5.4594

and 4 bits respectively. By comparing dE1 and dE2, it is possible to evaluate the similarity

of two different-sized distributions. Since this approach initially compares a distribution

with its corresponding uniform distribution, the comparison between two different-sized

distributions always happens on a standard scale as desired. The values of dE1 and dE2

indicate 46.51% and 7.46% of decrease in entropy respectively. Thus the right-hand side

distribution (proposed) packs in much more information with less number of bins and thus

provides a better feature representation of a DR image as shown in Fig. 2.3. Though the

image on the right does not explicitly capture lesions, it better represents the DR image by

packing in more information with the help of spectrally-tuned bins and in turn, produces a

more discriminative feature space.

Steerable Gaussian Filter

To retrieve clinically relevant images for all the three classes, color features alone are not

sufficient. Since the shape and texture of DR lesions are significant factors in deciding the

severity level of the disease, I make use of the steerable Gaussian filter (SGF) coupled with

fast radial symmetric transform (FRST).

Steerable Gaussian filters are oriented filters and are used in many computer vision and

image processing tasks such as edge detection, classification of lines, edges and contours.

They are filters of desired orientation obtained from the linear combination of basis filters

(Freeman and Adelson, 1991). This process is called “steering”. The ability of SGF to

model edges and contours makes it useful for DR images since edges and contours at various

orientations are distinguishing features for different severity levels of DR. The filters shown

in Fig. 2.6 are separated by 45◦. These filters are used as kernels to calculate directional

derivatives of an image which help to model contours at different orientations.

In case of DR images, it means blood vessels, lesions, optic disk, etc. will have different
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Figure 2.6. Some of the Bases of Steerable Gaussians Filters.

Figure 2.7. SGF Filter Response to an NPDR Image. Input NPDR Image (Left) and Filter

Response on the Right.

filter response since each of them has a different structure. Fig. 2.7 shows the filter response

of a typical DR image to a filter orientated at 225◦. The peaks in the SGF response can be

attributed to the textural discontinuity at those particular locations. The statistical variation

in its values can be modeled by taking the standard deviation, skewness, and kurtosis. I form

a 24D feature vector for a total of eight angles by including the first three moments of the

SGF response for each angle. Fig. 2.7 shows the SGF response rightly peaking at locations

containing the DR lesions, but many blood vessels are also unnecessarily highlighted. Due to

such false-positives in the feature space, the SGF response alone cannot be used as features.

To filter out unwanted high SGF response regions, a second complementary stage is needed

which can select regions of interest. To detect such regions, I use FRST (Loy and Zelinsky,

2003).
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Fast Radial Symmetric Transform

Numerous context-free point-of-interest operators have been proposed in the literature.

These work on the principle that points which possess local radial symmetry are the ones

which draw human attention. The principle is based on the psychological findings proposed

by researchers in the past (Locher and Nodine, 1987; Richards and Kaufman, 1969; Kaufman

and Richards, 1969). Use of FRST is preferred over other point-of-interest operators because

of its superior performance and its speed. It works in linear time. The comparison of FRST

with other state-of-art interest point detectors is given in section 2.5.

FRST 2 uses local radial symmetry to highlight interest points. It accounts the con-

tribution of radial symmetry of gradients that are at a distance d from the point under

consideration. The pixel at a distance d to which the gradient points is called as the positive

pixel and the pixel from which the gradient points away is called as the negative pixel. The

coordinates of these positive and negative pixels are obtained as follows.

p +
(−)

ve(p) = p +
(−)
round

(
g(p)

||g(p)||n
)
, (2.5)

where g(p) is the gradient of pixel p and n is the radius. Therefore p+ve(p) ( p−ve(p) )

gives coordinates of a positive (negative) pixel at a distance n from pixel p. The transform

estimates the contribution of each pixel to the symmetry in its neighborhood by using the

concept of positive and negative pixels instead of calculating the contribution of the local

neighborhood to a central pixel. I have used a set of radii - {1, 3, 5}, to detect interest points

robustly and to negate the presence of nerves and other spurious components that may lead

to noisy feature space. Quantitative analysis shows that examining a small subset of radii

gives a good approximation to the output (Loy and Zelinsky, 2003). The values of radii

should be low enough to capture smallest of lesions. The retrieval performance worsens as
2FRST was implemented using publicly available code (Kovesi, 2000)
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Figure 2.8. Left Three Images: Interest Point Detection Using FRST on Normal, NPDR and

PDR Images. The Extreme Right Image: It Shows the FRST Interest Points Superimposed

on the SGF Response Shown in Fig. 2.7 (Please Zoom in for Better Viewing)

the values of radii increase. Effect of parameters of FRST on retrieval performance has been

analyzed in section 7.1.4.

In Fig. 2.8, though most of the detected points are lesions in images of affected eyes,

false detections do exist. FRST works on local maxima detection. The interest points are

then generated by performing non-maxima thresholding on the image created by FRST. The

detected interest points are superimposed on the original image for visualization purpose (See

Fig. 2.8). Fig. 2.8 illustrates that the FRST points (shown in red marks) are complementary

to the SGF response, thereby forming an effective combination. The procedure to couple

the SGF response and FRST is described below.

Once the interest points have been obtained through FRST, the image is divided into 64

blocks by an 8× 8 grid. Blocks containing a majority of the black background are removed

by thresholding. Every image block is considered independently, and a region of 15× 15 is

selected around each interest point. A 24D feature vector is calculated for the corresponding

15× 15 region in the filtered image (Fig. 2.7). Consider that there is n number of interest

points detected on a given image block, they would correspond to n feature vectors. I take

mean over each dimension to reduce the n feature vectors to a single 24D vector. The same

action is carried out when there are multiple interest points lying in the 15× 15 region. If
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there are no interest points detected in the region, then the feature vector is all zeros. For

PDR images, more interest points are likely to be found in the small region as compared to

NPDR and normal images. By taking the average of the features of all the interest points in

an image block, the NPDR image features obtain fewer values while normal image features

get even lesser values. Therefore instead of removing a region containing zero interest

points, replacing its feature vector with zeros produces a more discriminative feature space.

The feature space is now suitable for multiple-instance retrieval framework.

2.3.2 MIRank-KNN

The retrieval scheme I propose here is called MIRank-KNN (multiple-instance-rank

KNN), and it produces a ranked list of all the images in an archived data-set by considering

all the blocks in a given image simultaneously. Thus the proposed scheme emphasizes even

on a small block of an image containing a lesion. To the best of my knowledge, this is the

first attempt at developing an unsupervised approach that retrieves images based on multiple

blocks (instances) of the query image. Supervised multiple-instance retrieval methods have

been developed that borrow concepts from multiple-instance learning (MIL) (Zhang et al.,

2002, 2005; Yang and Lozano-Perez, 2000; Rahmani et al., 2005).

MIL was first introduced in Dietterich et al. (Dietterich et al., 1997). It is a form of

supervised learning where the data is in the form of labeled bags. Each bag contains a

variable number of instances. The labels are provided on a bag-level. A positive bag has

at least one positive instance. In a negative bag, all the instances are negative. The main

goal is to classify each bag as positive or negative and if possible, infer instance-level labels.

This is a difficult problem due to lack of knowledge of instance labels. There have been

a plethora of approaches developed to solve MIL problems. I list only those approaches

which laid the foundation and are relevant in this context.

Diverse density (DD) was proposed as a general purpose solution for the MIL problems
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(Maron and Lozano-Pérez, 1998). It attempts to find a concept point in the feature space

which is close to at least one instance from a positive bag and is away from all the instances

in a negative bag. It is also called as instance prototype and has maximum diverse density.

With the knowledge of these instance prototypes, each bag can now be classified based

on its distance from the prototype. The expectation-maximization procedure was coupled

with DD (EM-DD) to solve MIL problems (Zhang and Goldman, 2001). Support vector

machines were also employed for MIL (Andrews et al., 2002). KNN-based MIL method

called Citation-KNN was developed (Wang and Zucker, 2000). It uses the concept of

references and citers of a bag for its classification. References of a bag (say bag B) are its

nearest-neighbors, and citer is a bag which considers bag B among one of its neighbors.

Table 2.1 illustrates the concept of references and citers of a bag. Two nearest references

of bag B1 are B2, B4 while its two nearest citers are B4, B2. Assume that the query image

is B2, then the nearest-neighbor rank of B1 is 2 (since B1 is the second nearest neighbor

of B2) and the citer-rank of B1 is 1 (since B2 is the nearest neighbor of B1). For a more

formal definition of references and citers, readers are pointed to Wang and Zucker (Wang

and Zucker, 2000). Multiple instance learning techniques like diverse density (DD) and

expectation-maximization DD (EM-DD) are used for multiple-instance CBIR (Yang and

Lozano-Perez, 2000; Zhang et al., 2002). EM-DD was used in Rahmani et al. (Rahmani

Table 2.1. Nearest References and Citers of Four Bags.

N = 1 N = 2 N = 3

B1 B2 B4 B3

B2 B3 B1 B4

B3 B2 B1 B4

B4 B1 B2 B3
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et al., 2005). One-class support vector machine (SVM) was also used (Zhang et al., 2005).

All the methods mentioned above use a learning stage before starting the process of retrieval.

I describe the proposed unsupervised retrieval framework - MI-RankKNN - in detail.

Each image is divided into 64 blocks on a 8× 8 grid. CC features are extracted for each

block separately. The SGF and FRST features are also extracted for these blocks. This gives

us a 280-D (256-CC features + 24-statistics of SGF features) feature vector for each block.

It should be noted that the number of blocks per image may vary as the number depends on

the thresholding scheme. Recall that citation-KNN (Wang and Zucker, 2000) is one of the

most popular KNN-based-method used to solve multiple-instance classification problems.

It uses modified Hausdorff distance. Hausdorff distance is used to calculate the distance

between two subsets of metric space. In short, it gives a measure of dissimilarity between

the two metric spaces. Since the Hausdorff distance is very sensitive to outliers, minimal

Hausdorff distance was proposed (Wang and Zucker, 2000) which is defined as,

H(A,B) = min
bεB

min
aεA
‖a− b‖, (2.6)

where H(A,B) denotes the Hausdorff distance between two bags (non-empty subsets of a

metric space) A and B whereas a and b are instances in bags A and B respectively. When

applied to DR images, this may not give desired results. For example, in Fig. 2.2, only

two instances (marked by red borders) are different from the instances in the normal image.

Thus the minimal Hausdorff distance between an NPDR and a normal image will almost be

equal to the distance between two normal images. This calls for a new way of measuring

the distance between images which will effectively capture small, localized lesions.

Consider two images X and Y with m and n blocks each. The minimum distance

between features of ith block of X and all blocks of Y is given by,

D(i)(X, Y ) = min
y εY

d(xi, yj) ∀ j ε{1, 2, . . . , n}. (2.7)

Here, d(·, ·) represents Euclidean distance between features of two blocks . D is an m-
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dimensional vector which records the distance between each block of X and its closest

match in Y . The distances used in this chapter are Euclidean unless otherwise specified. I

use the above equation to calculate the D vector for each block in the query image with

every image in the database. I match each block of the query image to its closest image

in the database. A simple sorting of all the matches for each block in the query image

gives the list of best-matched blocks for each query block in the data-set and is called the

similarity ranked-list. An aggregated ranked-list is created for each image in the database

by averaging the similarity rank for each block in every image in the database. The sorted

list of aggregated ranks of images gives the m-rank list which is to be treated as the final

ranking. The algorithm to obtain the m-rank is as follows.

m-Rank algorithm:

1. Calculate D′ between Q (query image) and every image in the database.

2. Sort D’ along columns and its indices give similarity list. SL(x, y) = z represents

the yth best match for the xth block of Q and the best match is a block belonging to

image z.

3. Calculate aggregated ranked-list of all images in the database by averaging the simi-

larity rank for each block.

4. Sort aggregated ranked-list to obtain the m-Rank list.

The nearest-neighbor metric may not be sufficient always to generate optimum retrieval

results for DR images (Wang and Zucker, 2000). This problem is avoided by incorporating

the citer-rank to the framework of m-Rank. The citer-rank is calculated as mentioned in

section 2.3.2. This inclusion of citer-rank is accomplished by obtaining a final meanRank

which is the average of m-Rank and citer-rank of Q. The top-k retrieved images are then

based on the meanRank list.
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Since the distances in MIRank-KNN are calculated on the block-level, it is more sensitive

to the presence of localized lesions. For example, the distance between an affected image

that contains a small block of lesions, and a normal image will produce a vector D which has

one large value. That lone high value can improve the overall retrieval ranking. By storing

the distances between blocks of all the images in the databases (and thereby continuously

updating that distance matrix), the process of retrieval can be made significantly faster.

2.4 Experimental Setup

The data-set used to evaluate the proposed set of features consists of 493 images, assem-

bled from four well-known and publicly available databases. Those include DIARETDB0

(Kauppi et al., 2006), DIARETDB1 (Kauppi et al., 2007), STARE (McCormick and Gold-

baum, 1975) and Messidor 3 and an annotated data-set of 84 PDR images from Jaeb

Center for Health Research. For reviewing purpose, the data-set and the source code used in

this study is publicly available 4 . There are 164 normal images, 161 NPDR images, and

168 PDR images. Labeling of the first three data-sets was unambiguous since the labels

were well-defined and had three categories as desired. The Messidor data-set has three

categories apart from the normal condition. They are defined by the amount of presence

of microaneurysms, hemorrhage, and neovascularization. The images from the Messidor

data-set were classified as NPDR if the annotations indicated absence of neovascularization

in them, and accordingly, I also classified PDR images if their annotations indicated a strong

presence of microaneurysms, hemorrhages as well as neovascularization. It should be noted

that the database used consists of DR images from five different sources. The retrieval

results show that the results are consistent with all images. Therefore the proposed approach
3Kindly provided by the Messidor program partners, see http://messidor.crihan.fr
4The implementation, and the database is available at www.public.asu.edu/

˜bli24/DR-System-and-Data.html
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is robust in handling variations in color and brightness of images as well as other conditions

while capturing them. Due to the adaptive nature of the approach, it can be applied in various

places to get effective results.

The proposed approach was evaluated against prior state-of-art vision methods which

use Gabor features (Manjunath and Ma, 1996) and semantic of neighborhood color moment

histogram features (Chen et al., 2008). A short description of each approach follows.

1. Gabor Feature-based image retrieval: Gabor features have been used for textured

image retrieval (Manjunath and Ma, 1996). Gabor wavelet transform of an image is

calculated over four scales and six orientations. Mean, and standard deviation of the

transform is calculated over all orientations and scales. I Combine the statistics of all

the orientations and scales to form the final feature vector.

2. Histogram of Neighborhood Mean moments (HNM): HNM has been used for retrieval

of gastroscopic images which are predominantly red (Chen et al., 2008). The image

is first transformed into HSV color space and then quantized. Low-order moments are

known to express the color distribution well. Therefore, first three central moments

for each pixel in its 3× 3 neighborhood are calculated. After operating on each pixel,

three distinct histograms are calculated from the matrices of central moments. These

histograms are concatenated to form the final feature vector.

These two approaches use k-nearest neighbor based retrieval systems. Distances provid-

ing best retrieval results are selected. All 493 images were queried one-by-one and the top

(k =) 5 images were retrieved using the approach. Popular evaluation metrics were adopted

and used (Sigurbjörnsson and Van Zwol, 2008) and (Liu et al., 2007).
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2.5 Results and Analysis

This section presents the result of the proposed multiple-instance retrieval approach on

the DR image data-set. The approach produces state-of-art results even when there is a wide

variation in the lighting of images. There are two main parameters in this approach: number

of bins in CC features, FRST radii. I show the effect of parameter tuning on the results. I

compare the proposed approach with two state-of-art image retrieval systems: textured image

retrieval using Gabor features (Manjunath and Ma, 1996), medical image retrieval using

HNM (Chen et al., 2008). The proposed approach consists of several important components;

namely, CC features, FRST, SGF and the multiple-instance retrieval framework - MIRank-

KNN. I analyze the effect of individual components by comparing them with other widely

used features. I compare FRST with SIFT (Lowe, 2004a), FAST (Rosten and Drummond,

2005, 2006) and Harris corner with color saliency boosting (Van De Weijer et al., 2006) and

show that FRST produces better results. I also compare CC features with transformed color

histogram (Van De Sande et al., 2010), color moments (Van De Sande et al., 2010) and

original AutoCC features (Li, 2007). The MIRank-KNN framework considers image blocks

(instances) while retrieving images. To show its superiority, I replace it with the Citation-

KNN retrieval framework (explained later) which works on multiple-instance feature space

but does not concentrate on all the blocks of an image simultaneously. Finally, to justify the

choice of multiple-instance-based-retrieval framework, I compute the proposed features as

well as a set of state-of-art local features on the entire image and compare the results.

2.5.1 Results of the proposed approach

In this section, I present statistical analysis of the proposed retrieval approach and

compare it with three aforementioned retrieval approaches. I present four evaluation metrics:

1. ≥ k hit-rate 2. mean accuracy at kth rank 3. precision at kth rank and 4. mean average

precision (MAP ). P@k and MAP metrics were proposed for document retrieval (Liu
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Figure 2.9. Precision-recall Curves for Five Methods When Five Images Are Retrieved.

et al., 2007) but were also used effectively for image retrieval in (Faria et al., 2010). The

≥ k hit-rate (HR) is defined as the percentage of images for which at least k relevant

images were retrieved. Mean accuracy at kth rank denotes the percentage of relevant images

retrieved at that particular rank. Precision at kth rank (P@k) measures the relevance of top

k images in the ranking result with respect to the query image. It is also the probability of

finding a relevant image in the top k images, given by,

P@k =
# relevant images in top k images

k
. (2.8)

I average the P@k values for all the queries to get a single P@k value. Average precision

(AP ) is defined as average of P@k values for all relevant queries.

AP =

∑N
k=1(P@k ∗ rel(k))

# total relevant images for the query
, (2.9)

where N is the number of retrieved images, and rel(k) is an indicator function on the

relevance of the nth image given by:
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Table 2.2. Mean Accuracy and Precision at kth Rank (in %). Best Results Are in Bold.

Acc@1/P@1 Acc@2/P@2 Acc@3/P@3 Acc@4/P@4 Acc@5/P@5

Gabor 73.43/73.43 72.62/73.02 68.76/71.60 67.75/70.64 70.39/70.59

HNM 77.69/77.69 74.04/75.86 72.01/74.58 73.83/74.39 69.57/73.43

Proposed 84.38/84.38 81.54/82.96 83.37/83.10 79.51/82.20 80.93/81.95

Table 2.3. ≥ k Hit-rate (in %). Best Results Are in Bold.

≥ 1 HR ≥ 2 HR ≥ 3 HR ≥ 4 HR ≥ 5 HR Mean Acc. MAP

Gabor 93.91 86.61 76.06 60.24 36.10 70.59 79.68

HNM 94.52 87.22 77.28 64.50 43.61 73.43 82.49

Proposed 96.55 91.48 87.42 76.88 57.40 81.95 87.6

rel(k) =


1, if the kth image is relevant

0, otherwise.
(2.10)

MAP is obtained by averaging AP values for all the queries. It is clear that P@n and

MAP tends to emphasize the quality at higher ranks. But MAP is less affected by this

since it depends on the entire list of retrieved images.

Five ROC curves are shown in Fig. 2.9, each one corresponding to one of the five

retrieval approaches, namely, color name and SIFT on the entire image as well as blocks,

Gabor features, HNM and the proposed approach. Each curve was calculated as the average

of precision-recall curves for normal, NPDR and PDR images as follows. I retrieve five

images and calculate the precision and recall values in response to each query image. To get

precision and recall for the entire category, I average over all images of that category. To
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calculate precision at all recall values, I use the concept of interpolated precision (IP). IP

pinterp at a recall level r is defined as the maximum precision obtained for any recall level

r′ ≥ r. Mathematically,

pinterp(r) = max
r′≥r

p(r′). (2.11)

I get IP at recall values ranging from 0 to 1 in the steps of 0.2. For more details about

precision-recall curve calculation, I refer the reader to Manning et al. (Manning et al., 2008).

Mean accuracy at kth rank and precision at kth rank are given in table 2.2. Table 2.3

provides values of MAP , overall retrieval accuracy and the hit-rates at all ranks. Mean

accuracy produces consistently higher values which suggest that the proposed approach

retrieves clinically relevant images at all ranks. The ratio of relevant to irrelevant retrieved

images is high in the proposed approach as compared to the other methods. The proposed ap-

proach produces higher precision at every rank and higher MAP value than other approaches.

Therefore the proposed approach has produced better results by retrieving clinically relevant

images at all ranks instead of just at top ranks.

I conduct a visual inspection of the results produced by HNM. It shows that HNM did

not quite retrieve images with clinically similar lesions, particularly images containing

hemorrhages. HNM retrieved only those images which have similar brightness conditions

as the query image. Thus HNM reduced the clinical relevance and the generalization ability

in this case. Since HNM models the global distribution of patch-level statistics, it produces

higher performance than Gabor features. When compared to the results of the proposed

approach, the reduction in performance can be attributed to the following factors:

1. HNM quantization scheme is not tuned to DR images.

2. HNM fails to model the global distribution of local spatial correlation of colors, unlike

CC features.
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Figure 2.10. Retrieved Images Using the Proposed Approach. Each Row Contains a Query

Image (Leftmost) and Five Retrieved Images. A Retrieved Image Belongs to the Same

Category as the Query Image Unless the Retrieved Image Has a Red Bar over It. Query

and Its Corresponding Retrieved Images in Top Three Rows Belong to Normal, NPDR

and PDR Category, Respectively. In the Fourth Row, the Query Image Is NPDR and the

Fourth Retrieved Image Is Normal. The Fifth Row Contains a Normal Query and the Fifth

Retrieved Image Is PDR. In the Sixth Row, the Query Has PDR, and the Second Retrieved

Image Is Normal. Please View in Color.
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Table 2.4. Mean Confusion Matrix (in %)

Normal NPDR PDR

Normal 81.59 13.78 4.63

NPDR 9.81 80.50 9.69

PDR 8.45 7.86 83.69

3. HNM feature is calculated on an image level, whereas CC features in the proposed

approach are calculated on a block level. This makes CC features more descriptive.

I perform two experiments to show: 1. the compatibility and reproducibility of the

approach and 2. adaptability to various databases with minor updates. In the first experiment,

I perform 20 iterations and on each iteration, a random subset of 95% of total images

is selected and all the images are queried one-by-one. In the second experiment, the

quantization scheme is designed by using a randomly selected database of 95% of the

images, which ensures that algorithm performance does not heavily degrade by adding a

few images. In both experiments, accuracy and hit-rates remained consistent as desired.

A mean confusion matrix is created to better understand the results of the proposed

approach. It is shown in Table 2.4. The following example illustrates the process of

constructing a confusion matrix. Suppose all images are queried one-by-one resulting in n

retrieved images. The first row of the confusion matrix shows that 81.59% of the n images

were normal when a normal image was queried. Similarly, 13.78% images were NPDR and

4.63% images obtained were PDR, while querying a normal image. The second and third row

can be similarly explained. The rate of retrieving a normal image in response to a queried

PDR image (and vice versa) is less. This is following the requirements of the algorithm.

Retrieving a normal image for a PDR image can be quite harmful. Similarly, a retrieved

PDR image in response to a normal query image might mislead the ophthalmologist.
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Images retrieved by the proposed approach are shown in Fig. 2.10. Top three rows

contain successful retrievals for normal, NPDR and PDR images respectively. In spite of

varying illumination and exposure, my approach yields perfect results. However, there are

some cases when the approach fails. In the fourth row of Fig. 2.10, the query image is

NPDR where the lesions span only a few pixels. My approach retrieves a normal image on

the fourth rank. There are subtle differences in the retinal blood vessels of the query NPDR

and the retrieved normal image, which the proposed method fails to capture. In the fifth row,

a PDR image is retrieved in response to a normal image. In that PDR image, no lesions

are visible, and even optic disc is hardly visible. That makes the retrieval difficult. In the

last row, a normal image is retrieved when a PDR image is queried. The normal image is

extremely red and the retinal blood vessels have a different appearance as compared to the

other normal images. The goal of perfect retrieval on a variety of fundus images is still far

from achieved but I think the presented results are a promising step in that direction.

My approach is robust to exposure and lighting changes in an image to some extent.

Today, cameras are high-quality and usually do not produce noisy or poorly exposed images.

In a rare case, clinicians prefer to retake the picture so that their diagnosis is not affected.

However, I acknowledge that small changes in exposure can happen and may be acceptable

to an ophthalmologist as long as a correct diagnosis can be made. In the literature, many

approaches perform histogram equalization to try to correct effects of bad exposure. The

proposed spectral tuning method is better since it adapts to the color spectrum of retinal

images. The robustness of this system can be assessed by the fact that I get 87.6% MAP on

a data-set of varying illumination and exposure retinal images.

2.5.2 Effect of varying illumination

Through my interactions with ophthalmologists, I have observed that if the quality of the

retinal image captured is unacceptable, then another photo is captured. Thus it is reasonable

37



Table 2.5. ≥ k Hit-rate (in %) with Images of Varying Intensity.

≥ 1 HR ≥ 2 HR ≥ 3 HR ≥ 4 HR ≥ 5 HR
Mean

Acc.
MAP

No variation 96.55 91.48 87.42 76.88 57.40 81.95 87.6

Linear variation 97.36 94.73 90.47 82.76 64.71 86.00 90.85

Non-linear variation 99.19 95.74 90.67 82.56 63.69 86.37 92.32

to assume that the photos will always be of high-quality. However, photos captured in

different labs or settings can have different contrasts and illuminations. I show that the

proposed algorithm can handle these changes well through an experiment described as

follows. I change (i.e., increase or decrease, which is randomly chosen) the brightness

of each image by a random amount, ranging anywhere from 15% to 25% of the original

brightness. I change the brightness by mapping the values of the “V” channel of an image to

a new intensity curve. I also introduce a nonlinear effect by controlling the shape of the new

intensity curve using γ. The value of γ is also randomly chosen from the interval, [0.6, 1.4].

I pick an image from the original set of images and retrieve from the other set, having

modified values of brightness. I repeat this for each image and calculate the same metrics as

done previously. Note that I do not spectrally-tune the proposed color correlogram feature

using the modified images, which is needed for a fair assessment of the effect of varying

brightness on the performance. Table 2.5 shows the results of both the experiments. It is

interesting to see that the images with modified intensity values get better results than the

original images. Since the original database has a lot of intensity variation, it is possible

that the images which were too dark got benefited from this experiment and hence the

performance improvement. The results of both the experiments show that the proposed

approach can handle intensity variations with a reasonable tolerance.
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Table 2.6. Effect of Parameter Tuning on Retrieval Accuracy

Parameters Overall Accuracy MAP

FRST radii

{1, 3, 5} 81.95 87.60

{5, 7, 9} 80.57 87.17

{10, 15, 20} 78.34 86.33

Number of bins in CC

8 79.95 86.08

32 80.16 87.78

64 80.12 88.02

2.5.3 Effect of different feature combinations in the proposed approach

I analyze the contribution of color features and texture features in the proposed approach.

Images are retrieved using two separate sets of features: 1. CC features and 2. FRST + SGF

features. By using texture features in set 2 alone, I get 55.25% accuracy whereas by using

only color features of set 1, 77.32% can be obtained. The features are indeed complementary

since the results improve considerably after using both feature sets.

2.5.4 Effect of parameter tuning

The proposed approach has two main parameters: 1. The number of bins in CC features

2. Set of radii in FRST. I analyze the effect of those parameters on the retrieval accuracy.

1. Number of bins in CC features: The dimensionality of CC features is a function of

the number of bins - O(m2). I choose to quantize each image into 16 bins. However,

I show that the retrieval performance does not vary by a large amount with respect to

the number of bins.

2. FRST radii: The values of FRST radii should be small enough to capture smallest of
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Table 2.7. Analysis and Comparison Between the Proposed and the Other State-of-art

Approaches

Method Parameters Overall
Accuracy

MAP

Proposed approach FRST radii={1,3,5}
and # bins=16

81.95 87.6

FRST replaced with other interest point detectors

SIFT Peak Threshold=1 79.07 86.27
Harris Corner with

Boosted Color Saliency
Top 150 interest points 77.04 84.29

FAST Threshold=7.5 80.08 86.79

CC replaced with other color features

Transformed
color histogram

# bins=32 74.85 83.15
# bins=64 73.51 80.98
# bins=128 68.36 78.00

Color
moments

# bins=16 75.74 83.31
# bins=32 76.51 83.15

Original
AutoCC features

# bins=64 53.79 68.99

MIRank-KNN replaced with Citation-KNN retrieval framework

Citation-KNN
retrieval

FRST radii={1, 3, 5} and # bins=16 65.60 74.38

FRST radii={5, 7, 9} and # bins=16 65.23 73.81

FRST radii={1, 3, 5} and # bins=8 67.99 76.00

FRST radii={1, 3, 5} and # bins=32 69.70 79.27

Results without the use of multiple-instance framework

Whole image
features

FRST radii={1, 3, 5} and # bins=16 58.83 72.02
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lesions. A set containing small, arbitrary values of radii produces good results. As the

values of radii increase, the retrieval performance drops. If the lesion size is known

beforehand, values of radii can be set accordingly. I use three radii - {1, 3, 5} in my

implementation.

The results of parameter tuning are given in Table 2.6.

2.5.5 Comparison with other state-of-art interest point detectors

FRST is a crucial component of this system. Its main advantages are speed and quality

of detected interest points. By adjusting its parameters, it is possible to detect even smallest

of lesions. Interest point detectors are bound to produce false detections. The SGF stage

acts as a complementary stage to FRST. I compare three other state-of-art interest point

detectors, namely, SIFT (Lowe, 2004a), FAST (Rosten and Drummond, 2005, 2006) and

Harris corner with color saliency boosting 5 (Van De Weijer et al., 2006). Results in Table

2.7 show the superiority of FRST.

2.5.6 Comparison with other state-of-art color features

Color is a distinguishing characteristic for DR images and hence spectrally-tuned CC

features play a major role in the retrieval process. The CC features are invariant to lighting

color changes. I compare them with three other color features which are also invariant to

lighting color changes. The three color features are: 1. transformed color histogram (Van

De Sande et al., 2010) 2. color moments (Chen et al., 2008) 3. original AutoCC features

(Li, 2007).
5SIFT, FAST and Harris corner with color saliency boosting have been implemented

from publicly available code at (Vedaldi and Fulkerson, 2008), (Rosten and Drum-
mond, 2006) and http://lear.inrialpes.fr/people/vandeweijer/code/
ColorConstancy.zip
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Transformed color histogram

A transformed color space is created as shown in equation 2.1. Histograms of individual

color channels are then concatenated to obtain the final feature vector. This feature, though

invariant to light color changes, does not encode local spatial correlation of colors.

Color moments

The image is quantized by using the proposed quantization approach. Then the color moment

feature vector is calculated identically to HNM. Since the proposed quantization scheme is

used, the pros and cons of color moments can be analyzed.

Original AutoCC features

Original AutoCC features were used for content-based image retrieval. I use their human-

vision based quantization scheme and calculate the AutoCC features for all possible color

pairs (i, i) where i ∈ [1, . . . , 64]. I get a 64D feature vector for each image. From the

results in Table 2.7, the ineffectiveness of this quantization scheme in case of DR images is

observed.

2.5.7 Effect of MIRank-KNN on retrieval performance

MIRank-KNN considers features of all the image blocks simultaneously in the retrieval

process. The existing multiple-instance-retrieval algorithms (Yang and Lozano-Perez, 2000;

Zhang et al., 2002; Rahmani et al., 2005; Zhang et al., 2005) for natural images and DR-

CBIR algorithms (Quellec et al., 2011, 2012b, 2010) require training and some of them even

require user to specify the region of interest. On the other hand, the proposed algorithm

does not require labeled data for training and the entire approach is automated. The labeled

data is only used for calculating retrieval accuracy and other metrics. I show the superiority
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Table 2.8. Performance of Local Features

Method Overall Accuracy MAP

Color Name + SIFT + KNN

on the entire image
75.29 83.06

Color Name + SIFT + MIRank-KNN

on the image blocks
78.86 85.87

of MIRank-KNN through a three-fold experiment.

Firstly, I replace MIRank-KNN with a conventional k-nearest neighbor approach while

keeping the same feature space. I calculate the CC features for the entire image instead for

individual blocks. Averaging of the feature vectors of the interest points given by FRST is

done for the entire image instead on a block-level to produce the final features. As expected,

this fails to encode characteristics of small lesions and produces poor results. The results

are given in Table 2.7 (last row).

Secondly, I introduce another baseline framework - Citation-KNN retrieval - based

on the lazy-learning framework (Wang and Zucker, 2000). In the Citation-KNN retrieval

framework, the image is first divided into 64 blocks as done previously. The same feature set

is calculated for each block. Consider two images I1 and I2 consisting of n1 and n2 blocks

respectively. I measure the similarity between these two images by calculating the minimal

Hausdorff distance between them as shown in equation 2.6. This distance measure was

also used in Zucker and Wang (Wang and Zucker, 2000). Though this distance can work

with multiple blocks, it cannot capture the appearances of localized lesions in its distance

computation. For example, the minimal Hausdorff distance between a normal image and

an MA image, shown in Fig. 2.2, will be very small. Using maximal Hausdorff distance

is a bad option too since it is sensitive to outliers. On the other hand, MIRank-KNN will
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Figure 2.11. Left Column Shows a Query Image. Middle and Right Columns Show

Retrieved Images by Using Local Features with k-nearest Neighbor Retrieval and Local

Features with MIRank-kNN Retrieval Respectively. In the Top Two Rows, Left and Right

Images Are PDR Whereas the Middle Image Is Normal. In the Last Row, Left and Right

Images Are Normal and the Middle One Is PDR.

output large distance for at least two blocks in its distance vector, thus not recognizing the

other image as a clinically-relevant image. Table 2.7 contains the results of Citation-KNN

retrieval framework.

Finally, I show the importance of multiple-instance framework. I show that merely using
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state-of-art local features is not enough to characterize localized lesions. I do so in two parts

as follows.

1. I assess the performance of local features alone, without involving multiple-instance

framework. I use SIFT and color name descriptors which are excellent local shape

and color features respectively (Deselaers et al., 2008; Shahbaz Khan et al., 2012).

Color name descriptor has been recently shown to be effective for image retrieval

(Zheng et al., 2014). I follow a similar procedure for feature extraction. I extract

SIFT keypoints and their descriptors to characterize the shape of lesions. Color

name descriptors are extracted around SIFT keypoints and are appended to the SIFT

descriptors. I then use nearest-neighbor retrieval.

2. I show the effectiveness of multiple-instance framework. I divide the image into 64

patches (8 × 8 grid). I extract the same features as described above for each patch.

MIRank-KNN is used for retrieval.

Results in Table 2.8 show that the combination of local features and MIRank-KNN

produces better performance than local features alone. I also show three visual examples

in Fig. 2.11. It shows that using local features on the entire image can yield wrong results

when the lesions are small and localized. Thus normal images may be retrieved in response

to affected (NPDR or PDR) images and vice versa.

2.6 Discussion

This chapter presents a novel unsupervised approach for retrieving clinically-relevant

DR images 6 . The approach consists of a feature space which is spectrally-tuned to the

DR spectrum. Feature space makes near-optimal utilization of the quantization scheme and
6Most of the material in this chapter has appered in (Chandakkar et al., 2017b). See the

full credit statement in appendix A.
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thus produces a better representation of the image even with less number of bins. It makes

sure that shades in DR images are almost uniformly spread across all the quantization bins,

thereby creating a feature space with much higher entropy. The proposed approach also

consists of a multi-class multiple-instance retrieval framework called MIRank-KNN that

uses minimal Hausdorff distance and considers multiple regions of an image simultaneously.

The results using the proposed approach are reported and compared with other state-of-art

retrieval frameworks in the literature. The ability of multiple-instance framework to capture

localized lesions was also analyzed over state-of-art local features. It was found that in all

of the cases, the proposed multiple-instance retrieval framework provides a boost to the

results. The results based on the DR image data set suggest that the proposed method can

give good performance on a different data-set and is robust against varying illuminations

and exposures. It is also invariant to small additions or removal of data.
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Chapter 3

STRUCTURED PREDICTION OF IMAGE ENHANCEMENT PARAMETERS

3.1 Introduction

The growth of social networking websites such as Facebook, Google+, Instagram etc.

along with the ubiquitous mobile devices has enabled people to generate multimedia content

at an exponentially increasing rate. Due to the easy-to-use photo-capturing process of mobile

devices, people are sharing close to two billion photos per day on the social networking sites

1 . and they want their photos to be visually-attractive. This has given rise to the automated,

one-touch enhancement tools. However, most of these tools are pre-defined image filters

which lack the ability of doing content-adaptive or personalized enhancement. This has

fueled the development of machine-learning based image enhancement algorithms.

Many of the existing machine-learned image enhancement approaches first learn a model

to predict a score quantifying the aesthetics of an image. Then given a new low-quality

image 2 , a widely-followed strategy to generate its enhanced version is as follows:

• Generate a large number of candidate enhancement parameters 3 by densely sampling

the entire range of image parameters. Computational complexity may be reduced by

applying heuristic criteria such as, densely sampling only near the parameter space of

most similar training images.
1http://www.kpcb.com/internet-trends
2I call the images before enhancement as low-quality and those after enhancement as

high-quality in the rest of this chapter. The process of enhancing a new image is called “the
testing stage”.

3The brightness, saturation and contrast are referred to as “parameters” of an image in
this chapter.
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• Apply these candidate parameters to the original low-quality image to create a set of

candidate images.

• Perform feature extraction on every candidate image and then compute its aesthetic

score by using the learned model.

• Present the highest-scoring image to the user.

There are two obvious drawbacks for the above strategy. First, generating and applying

a large number of candidate parameters to create candidate images may be computation-

ally prohibitive even for low-dimensional parameter space. For example, a space of three

parameters where each parameter ∈ {0, ..., 9} produces 103 combinations. Second, even if

creating candidate images is efficient, extracting features from them is always computation-

ally intensive and is the bottleneck. Also, such heuristic methods need constant interaction

with the training database (which might be stored on a server) that makes the parameter

prediction sub-optimal. All these factors contribute to making the testing stage inefficient.

My approach assumes that a model quantifying image aesthetics has already been learned

and instead focuses on finding a structured approach to enhancement parameter prediction.

During training, the model learns the inter-relationship between the low-quality images, its

features, its parameters and the high-quality enhancement parameters. During the testing

stage, the model only has access to a new low-quality image, its features, parameters and the

learned model and it have to predict the enhancement parameters. Using these enhancement

parameters, the model can generate the candidate images and select the best one using the

learned model. The stringent requirement of not accessing the training images arises from

real-world requirements. For example, to enhance a single image, it would be inefficient to

establish a connection with the training database, generate hundreds of candidate images,

perform feature extraction on them and then find the best image.

The search space spanned by the parameters is huge. However, the enhancement

48



parameters are not randomly scattered. Instead they depend on the parameters and features of

the original low-quality image. Thus I hypothesize that the enhancement parameters should

have a low-dimensional structure in another latent space. I employ an MF-based approach

because it allows expressing the enhancement parameters in terms of three latent variables,

which model the interaction across: 1. the low-quality images 2. their corresponding

enhancement parameters 3. the low-quality parameters. The latent factors are learned

during inference by Gibbs sampling. Additionally, I need to incorporate the low-quality

image features since the enhancement parameters also depend on the color composition of

the image, which can be characterized by the features. The feature incorporation in this

framework is achieved by representing the latent variable which models the interaction

across these images as a linear combination of their features, by solving a convex `2,1-norm

problem. I show that the proposed approach outperforms the heuristic approaches as well

as the recent approaches in MF and structured prediction on synthetic as well as on the

real-world data of image enhancement. I review the related work on MF as well as image

enhancement in the following section.

3.2 Related Work

Automated image enhancement has recently been an active research area. Various

solutions have been proposed for this task. I review those works which aim to improve the

visual appeal of an image using automated techniques. A novel tone-operator was proposed

to solve the tone reproduction problem (Reinhard et al., 2002). A database named MIT-

Adobe FiveK of corresponding low and high-quality images was published in (Bychkovsky

et al., 2011). They also proposed algorithm to solve the problem of global tonal adjustment.

The tone adjustment problem only manipulates the luminance channel. In (Joshi et al.,

2010), an approach was presented, focusing on correcting images containing faces. They

built a system to align faces between a “good” and a “bad” photo and then use the good
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faces to correct the bad ones.

Content-aware enhancement approaches have been developed which aim to improve

a specific image region. Some examples of such approaches are (Berthouzoz et al., 2011;

Kaufman et al., 2012). A drawback of these is the reliance on obtaining segmented regions

that are to be enhanced, which itself may prove difficult. Pixel-level enhancement was

performed by using local scene descriptors. First, images similar to the input are retrieved

from the training set. Then for each pixel in the input, a set of pixels was retrieved from the

training set and they were used to improve the input pixel. Finally, Gaussian random fields

are used to maintain the spatial smoothness in the enhanced image. This approach does

not take the global information of an image into account and hence the local adjustments

may not look right when viewed globally. A deep-learning based approach was presented in

(Yan et al., 2014c). In (Kang et al., 2010), users were required to enhance a small amount of

images to augment the current training data.

Two closely related and recent works involve training a ranking model from low and

high-quality image pairs (Yan et al., 2014a; Chandakkar et al., 2015a). In a recent state-of-

art method (Yan et al., 2014a), a dataset of 1300 corresponding image pairs was reported,

where even the intermediate enhancement steps are recorded. A ranking model trained with

this information can quantify the (enhancement) quality of an image. In (Chandakkar et al.,

2015a), non-corresponding low and high-quality image pairs were used to train a ranking

model. Both the approaches use kNN search at the test time to create a pool of candidate

images first. After extracting features and ranking all of them, the best image is presented to

the user.

The task of enhancement parameter prediction could be related to the attribute prediction

(Parikh and Grauman, 2011a; Parikh et al., 2012; Li et al., 2013; Chen et al., 2014). However,

the goal of the work on attribute prediction has been to predict relative strength of an attribute

in the data sample (or image). I am not aware of any work of 2015 that predicts parameters
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of an enhanced version of a low-quality image given only the parameters and features of

that image. Since my approach is based on MF principles, I review the recent related work

on MF.

MF (Rennie and Srebro, 2005; Mnih and Salakhutdinov, 2007; Salakhutdinov and Mnih,

2008; Lawrence and Urtasun, 2009; Xiong et al., 2010) is extensively used in recommender

systems (Ma et al., 2008; Baltrunas et al., 2011; Ma et al., 2011; Wang et al., 2015; Marlin

et al., 2012; Song et al., 2015; Shi et al., 2014). These systems predict the rating of an item

for a user given his/her existing ratings for other items. For example, in Netflix problem, the

task is to predict favorite movies based on user’s existing ratings. MF-based solutions exploit

following two key properties of such user-item rating matrix data. First, the preferred items

by a user have some similarity to the other items preferred by that user (or by other similar

users, if we have sufficient knowledge to build a similarity list of users). Second, though this

matrix is very high-dimensional, the patterns in that that matrix are structured and hence they

must lie on a low-dimensional manifold. For example, there are 17, 770 movies in Netflix

data and ratings range from 1− 5. Thus, there are 517770 rating combinations possible per

user and there are 480, 189 users. Therefore, the number of actual variations in the rating

matrix should be a lot smaller than the number of all possible rating combinations. These

variations could be modeled by latent variables lying near a low-dimensional manifold.

This principle is formalized in (Mnih and Salakhutdinov, 2007) with probabilistic matrix

factorization (PMF). It hypothesizes that the rating matrix can be decomposed into two

latent matrices corresponding to user and movies. Their dot product should give the user-

ratings. This works fairly well on a large-scale data-set such as Netflix. However, a lot of

parameters have to be tuned. This requirement is alleviated in (Salakhutdinov and Mnih,

2008) by developing a Bayesian approach to MF (BPMF). BPMF has been extended for

temporal data (BPTF) in (Xiong et al., 2010). MF is used in other domains such as computer

vision to predict feature vectors of another viewpoint of a person given a feature for one
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viewpoint (Chen and Grauman, 2014). I adopt and modify BPTF since it allows us to model

joint interaction across low-quality images, corresponding enhancement parameters and the

low-quality parameters.

3.3 Problem Formulation

We have a training set consisting of N images {S1, . . . ,SN} 4 . Parameters of all

images are represented as A = {A1, . . . , AN} where Ai ∈ RK×1 ∀ i ∈ {1, . . . , N}. Each

image has M enhanced versions and each version has the same size as that of its corre-

sponding low-quality image. All versions corresponding to the ith image are represented as

{W 1
i , . . . ,W

M
i }. All versions are of higher quality as compared to its corresponding image.

Parameters of all M versions of the ith image (also called as candidate parameters) are

represented asA′ = {A′i1, . . . , A′iM}, where A′ji ∈ RK×1 ∀ i, j. Features of all low-quality

images are represented as F = {F1, . . . , FN} where Fi ∈ RL×1 ∀ i. In practice, I observe

that M � N,K < M . The goal of this work is to predict the candidate parameters for

all the versions of the ith image by only using the information provided by Ai and Fi. To

the best of my knowledge, this is a novel problem of real significance that has not been

addressed in the literature.

3.4 Proposed Approach

The task is to predict the candidate parameters for all the enhanced versions of a

low-quality image with the help of its parameters and features. The values for all the K

parameters corresponding to N images and their N ·M versions (total N +N ·M) can be

stored in three-dimensional matrix R ∈ RN×(M+1)×K . We need to predict R̂k
ij = Rk

i +∆Rk
ij

4In this chapter, I use bold letters to denote matrices. Non-bold letters denote
scalars/vectors which will either be clear from the context or will be mentioned.
X i, Xi,X

T , Xij and ||X||p denote row, column, transpose, entry at row i and column
j of a matrixX and pth norm of matrixX respectively.
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or in turn just ∆Rk
ij . Rk

i denotes the kth parameter value (k ∈ {1, . . . , K}) of the ith

low-quality image and R̂k
ij is the kth parameter value of jth version of the ith image. Given

a new nth low-quality image, we only need to predict ∆Rk
nj ∀ j = {1, . . . ,M},∀ k.

During training, one can compute ∆Rk
ij from available Rk

ij and R̂k
ij . Following MF

principles, I express ∆R as an inner product of three latent factors, U ∈ RD×N ,V ∈ RD×M

and T ∈ RD×K (Salakhutdinov and Mnih, 2008; Xiong et al., 2010). D is the latent factor

dimension. These latent factors should presumably model the underlying low-dimensional

subspace corresponding to the low-quality images, its enhanced versions and its parameters.

This can be formulated as:

∆Rk
ij =< Ui, Vj, Tk >≡

D∑
d=1

UdiVdjTdk, (3.1)

where Udi denotes the dth feature of the ith column of U. Presumably, as one increases

D, the approximation error ∆Rk
ij− < Ui, Vj, Tk > should decrease (or stay constant) if

the prior distributions for latent factors U,V and T are chosen correctly. The following

paragraph provides some details on how to choose the proper prior distributions for the

parameters.

Prior Distributions: The prior distributions on U,V and T are chosen as normal

distributions. I also consider a normal distribution to model the randomness in the attribute

difference values ∆R. The details are as follows:

p(∆R|U,V,T, α) = N1(< Ui, Vj, Tk >,α
−1)

Ui ∼ ND(0, σ2
UID), ∀ i = {1, . . . , N}

Vj ∼ ND(0, σ2
V ID), ∀ j = {1, . . . ,M}

Tk ∼ ND(0, σ2
T ID), ∀ k = {1, . . . , K},

(3.2)

where α is precision, ID is a D × D identity matrix, NZ(µ,Λ) is a Z-dimensional

multivariate Gaussian distribution withZ-dimensional mean vector µ and a Z×Z covariance
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matrix Λ. For both simulation and enhancement experiment, I use α = 2, σ2
U = σ2

V = σ2
T =

0.01.

I choose prior distributions for the hyper-priors.

p(α) =W(α|W̃0, ν̃0),

p(ΘU) = p(µU |ΛU) · p(ΛU) · N (µ0, (β0ΛU)−1)·

W(ΛU |W0, ν0),

p(ΘV ) = p(µV |ΛV ) · p(ΛV ) · N (µ0, (β0ΛV )−1)·

W(ΛV |W0, ν0),

p(ΘT ) = p(µT |ΛT ) · p(ΛT ) · N (µ0, (β0ΛT )−1)·

W(ΛT |W0, ν0).

(3.3)

Here,W is the Wishart distribution of a D×D random matrix Λ with ν0 degrees of freedom

and a D×D scale matrix W0. Wishart distribution is chosen since it is a conjugate prior for

multivariate normal distribution (with precision matrix). The parameters in the hyper-priors:

µ0, β0,W0, ν0, W̃0 and ν̃0 are treated as constants during training. They are set using prior

knowledge of the application. For both experiments, I use: µ0 = 0, β0 = 1,W0 = ID, ν0 =

D, W̃0 = 1, ν̃0 = 1. The Bayesian formulation of the factorization adjusts the parameters

within a reasonable range.

The latent factors U,V and T are found by doing inference through Gibbs sampling.

It will sample each latent variable from its distribution, conditional on the values of other

variables. The predictive distribution for ∆Rk
ij is found by using Monte-Carlo approximation

(explained later). However, it is important to note the following major differences in the

proposed task when compared with the previous work on MF (Salakhutdinov and Mnih,

2008; Xiong et al., 2010). In product or movie rating prediction problems, an average

(non-personalized) recommendation may be provided to a user who has not provided any
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preferences (not necessarily constant for all users). For the proposed task, each image may

require a different kind of parameter adjustment to create its enhanced version and thus

no “average” adjustment exists. The adjustment should depend on the image’s features

that characterize the image (e.g. bright vs. dull, muted vs. vibrant). In this task, it is

particularly difficult to get a good generalizing performance on the testing set as illustrated

later. The loss in performance of existing approaches on the testing set can be attributed

to the different requirements for parameter adjustments for each image. Thus it becomes

necessary to include the information obtained from image features into the formulation. I

show that simply concatenating the parameters and features and applying MF techniques

presented in (Salakhutdinov and Mnih, 2008; Xiong et al., 2010) does not provide good

performance, possibly because they lie in different regions of the feature space.

To overcome this problem, I observe that the conditional distribution of eachUi factorizes

with respect to the individual samples. I propose to express U as a linear function of F by

using a convex optimization scheme. I integrate it into the inference algorithm to find out

the latent factors. The linear transformation can be expressed as,

Ui = F T
i P +Q, ∀ i ∈ {1, . . . , N}, (3.4)

where Fi ∈ RL×1, Ui ∈ RD×1,P ∈ RD×D and Q ∈ R1×D. Note that to carry out this

decomposition, I have to set D = L. This is not a severe limitation since L is usually large

(∼ 1000) and as I have mentioned before, increasing D should decrease the approximation

error at the cost of increased computation. Henceforth I assume that the feature extraction

process generates Fi ∈ RD×1. Also, note that large L does not mean that the latent space

is no longer low-dimensional, because L is still smaller as compared to all the possible

combinations of parameters (e.g. 517770).

I propose an iterative convex optimization process to determine coefficients P and Q of

Equation 3.4. I propose the following objective function to determine them:
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min
P,Q

N∑
i=1

||F T
i P +Q− UT

i ||2 + β||P||2,1 + γ||Q||2 (3.5)

The objective function tries to reconstruct U using P, Q and F while controlling the

complexity of coefficients. Let us concentrate on the structure of P (by neglecting the effect

of Q momentarily). The columns of P act as coefficients for Fi. Ideally, we would want the

elements of Ui to be determined by a sparse set of features, which implies sparsity in the

columns of P. To this end, I impose `2,1-norm on P, which gives a block-row structure for

P.

Let us consider the structure of Q along with P. Equation 3.4 shows that different

columns of Ui depend on different image features Fi. Also, a different set of columns of

P should get activated (take on large values) for different Fi. I add an offset Q ∈ R1×D

for regularization. Thus the offset introduced by Q remains constant across all the images

but changes for each Fi,j . Making Q to be a row vector also forces P to play a major role

in Equation 3.5. This in turn increases the dependence of Ui on Fi. If I were to define Q

as the same size of U (which would mean different offsets for each image as well as its

features), it would pose two potential disadvantages. Firstly, optimal P and Q could be

(trivially) obtained by just setting each entry of P to a very small value and letting a column

of Q ≈ Ui (which makes Fi redundant). Secondly, while testing for a new image, I would

have to devise a strategy to determine the suitable value for Q. For example, I could take

the column of Q that corresponds to the nearest training image. This adds unnecessary

complexity and reduces generalization. By making Q a row vector, I consider that it may

be possible to arrive to the space of enhancement parameters by linearly transforming the

low-quality image features with a constant offset. In other words, I want P to transform

the features into a region in the latent space where all the other high-quality images lie

and Q provides an offset to avoid over-fitting. This is a joint `2,1-norm problem which can

be solved efficiently by reformulating it as convex. I reformulate Equation 3.5 as follows,
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inspired by (Nie et al., 2010):

min
P,Q

1

β

N∑
i=1

||F T
i P +Q− UT

i ||2 + ||P||2,1 +
γ

β
||Q||2. (3.6)

The `2,1-Norm of a matrix X ∈ RM×N is defined as, `2,1(X) =
M∑
i=1

||Xi||2. Also, for a

row vector Q, I have ||Q||2 = ||Q||2,1. Thus Equation 3.6 can be further written as:

min
P,Q

1

β
||FTP + 1NQ−UT ||2,1 + ||P||2,1 + δ||Q||2,1, (3.7)

where δ = γ
β

and 1N is a column vector of ones ∈ RN . Now, put FTP + 1NQ− βE = UT .

Thus Equation 3.7 becomes:

min
E,P,Q

||E||2,1 + ||P||2,1 + δ||Q||2,1,

s.t. FTP + 1NQ− βE = UT ,

min
E,P,Q

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣


E

P

δQ


∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2,1

s.t.
[
−βIN FT δ−11N

]


E

P

δQ

 = UT

(3.8)

Equation 3.8 is now in the form of: min
X
||X||2,1 s.t. ZX = B and is convex. It can be

iteratively solved by an efficient algorithm mentioned in (Nie et al., 2010). I set β = 0.1 and

δ = 3. Once U has been expressed as a function of F, I use Gibbs Sampling to determine the

latent factors P, Q,V and T (Salakhutdinov and Mnih, 2008). The predictive distribution

for a new parameter value ∆R̂k
ij is given by a multidimensional integral as:

p(∆R̂k
ij|∆R) =

∫
p(∆R̂k

ij|Ui, Vj, Tk, α)·

p(U,V,T, α,ΘU ,ΘV ,ΘT |∆R)·

d(U,V,T, α,ΘU ,ΘV ,ΘT ).

(3.9)
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I resort to numerical approximation techniques to solve the above integral. To sample

from the posterior, I use Markov Chain Monte Carlo (MCMC) sampling with Gibbs sampling

as the algorithm. The integral can be approximated as,

p(∆R̂k
ij|∆R) ≈

Y∑
y=1

p
(

∆R̂k
ij|U (y)

i , V
(y)
j , T

(y)
k , α(y)

)
. (3.10)

Here I draw Y samples and the value of Y is set by observing the validation error. The

following paragraph explains the sampling process for all the hyper-parameters in detail.

Conditional distributions in Gibbs Sampling: The joint posterior distribution can be

factorized as:

p(U,V,T, α,ΘU ,ΘV ,ΘT |∆R) ∝ p(∆R|U,V,T, α)·

p(U|ΘU) · p(V|ΘV )·

p(T|ΘT ) · p(ΘU)·

p(ΘV ) · p(ΘT ) · p(α).

(3.11)

I derive the desired conditional distribution by substituting all the model components

previously described.

Hyper-parameters: I use the conjugate prior for the parameter value precision α, I

have that the conditional distribution of α given ∆R,U,V and T follows the Wishart

distribution:

p(α|∆R,U,V,T) =W(α|W ∗
0 , ν

∗
0),

ν∗0 = ν̃0 +
N∑
i=1

M∑
j=1

K∑
k=1

Ikij,

(W̃ ∗
0 )−1 = W̃−1

0 +

N∑
i=1

M∑
j=1

K∑
k=1

(∆Rk
ij− < F T

i P∗ +Q∗, V ∗j , T
∗
k >)2,

(3.12)
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where Ikij = 1 if an attribute value ∆Rk
ij is present (not missing), otherwise Ikij = 0. Also,

U∗ = F T
i P∗ +Q∗. For ΘU = {µU ,ΛU}, I can integrate out all the random variables given

in Equation 3.11 except U and obtain the Gaussian-Wishart distribution:

p(ΘU |U) = N (µU |µ∗0, (β∗0ΛU)−1) · W(ΛU |W∗
0, ν
∗
0),

µ∗0 =
β0µ0 +NŪ

β0 +N
, β∗0 = β0 +N, ν∗0 = ν0 +N ;

(W∗
0)
−1 = W−1

0 +N S̄ +
β0N

β0 +N
· (µ0 − Ū)(µ0 − Ū)T ,

where, Ū =
1

N

N∑
i=1

Ui, S̄ =
1

N

N∑
i=1

(Ui − Ū)(Ui − Ū)T .

(3.13)

Similarly, ΘV = {µV ,ΛV } is conditionally independent of all other parameters given

V, and its conditional distribution has the form:

p(ΘV |V) = N (µV |µ∗0, (β∗0ΛV )−1) · W(ΛV |W∗
0, ν
∗
0),

µ∗0 =
β0µ0 +NV̄

β0 +N
, β∗0 = β0 +N, ν∗0 = ν0 +N ;

(W∗
0)
−1 = W−1

0 +N S̄ +
β0N

β0 +N
· (µ0 − V̄ )(µ0 − V̄ )T ,

V̄ =
1

N

N∑
i=1

Vi, S̄ =
1

N

N∑
i=1

(Vi − V̄ )(Vi − V̄ )T .

(3.14)

Similarly, ΘT = {µT ,ΛT} is conditionally independent of all other parameters given T,

and its conditional distribution has the form:

p(ΘT |T) = N (µT |µ∗0, (β∗0ΛT )−1) · W(ΛT |W∗
0, ν
∗
0),

µ∗0 =
β0µ0 +NT̄

β0 +N
, β∗0 = β0 +N, ν∗0 = ν0 +N ;

(W∗
0)
−1 = W−1

0 +N S̄ +
β0N

β0 +N
· (µ0 − T̄ )(µ0 − T̄ )T ,

T̄ =
1

N

N∑
i=1

Ti, S̄ =
1

N

N∑
i=1

(Ti − T̄ )(Ti − T̄ )T .

(3.15)
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Model Parameters: Firstly, I consider the latent example (data sample) features U.

Since its columns affect the example features independently, its conditional distribution

factorizes w.r.t. individual Ui.

p(U|∆R,V,T, α,Θ) =
N∏
i=1

p(Ui|∆R,V,T, α,ΘU). (3.16)

Then for each latent example feature vector Ui,

p(Ui|∆R,V,T, α,ΘU) = N (Ui|µ∗i , (Λ∗i )−1),

µ∗i ≡ (Λ∗i )
−1(ΛUµU + α

M∑
j=1

K∑
k=1

IkijR
k
ijYjk)

Λ∗i ≡ ΛU + α
K∑
k=1

M∑
j=1

IkijYjkY
T
jk,

(3.17)

where Yjk ≡ Vj · Tk, which represents element-wise product between Vj and Tk.

Similarly, for each latent modified version feature Vj , I have:

p(Vj|∆R,U,T, α,ΘV ) = N (Vj|µ∗j , (Λ∗j)−1),

µ∗j ≡ (Λ∗j)
−1(ΛV µV + α

N∑
i=1

K∑
k=1

IkijR
k
ijYik)

Λ∗j ≡ ΛV + α

K∑
k=1

M∑
j=1

IkijYikY
T
ik ,

(3.18)

where Yik ≡ (F T
i P +Q) · Tk

For each latent attribute feature Tk, I have:
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p(Tk|∆R,U,V, α,ΘT ) = N (Tk|µ∗k, (Λ∗k)−1),

µ∗k ≡ (Λ∗k)
−1(ΛTµT + α

N∑
i=1

M∑
j=1

IkijR
k
ijYij)

Λ∗k ≡ ΛT + α
K∑
k=1

M∑
j=1

IkijYijY
T
ij ,

(3.19)

where Yij ≡ (F T
i P +Q) · Vj

This illustrates how to sample all the hyper-parameters used in this chapter. This

sampling process is repeatedly used by the Gibbs Sampling method presented in Algorithm

1.

Note that it is required in the algorithm to reconstruct U(y+1) at every iteration since there

will always be a small reconstruction error ||Û(y+1) −U(y+1)||. The error occurs because

Q is forced to be a row vector, which makes the exact recovery of U(y+1) difficult. The

reconstructed error causes adjustment of V and T. Once the four latent factors are obtained,

the next task is to predict the parameter values forM enhanced versions havingK parameters

each. Suppose Ft is the feature vector of a new image, then the parameter values ∆R̂k
tj

can be simply obtained by computing, ∆R̂k
tj =< F T

t P + Q, Vj, Tk > ∀ j ∈ {1, . . . ,M}

and k ∈ {1, . . . , K}. If the parameter value predictions lie beyond a certain range then a

thresholding scheme can be used based on the prior knowledge. For example, to constrain

the predictions between [0, 1], a logistic function may be used.

3.5 Experiments and Results

I conduct two experiments to show the effectiveness of the proposed approach. I

performed the first one on a synthetic data and compared it with: 1. BPMF 2. a discrete

version of BPTF, called D-BPTF. 3. multivariate linear regression (MLR) 4. twin Gaussian

processes (TGP) (Bo and Sminchisescu, 2010) 5. Weighted kNN regression (WKNN).
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Algorithm 1 Gibbs Sampling for Latent Factor Estimation

Initialize model parameters {P(1), Q(1),V(1),T(1)}. Obtain
(
U(1)

)T
= FTP(1) +Q(1)

For y = 1, 2, . . . , Y

• Sample the hyper-parameters according to the derivations 5:

α(y) ∼ p(α(y)|U(y),V(y),T(y),∆R),

Θ
(y)
U ∼ p(Θ

(y)
U |U(y)), Θ

(y)
V ∼ p(Θ

(y)
V |V(y)), Θ

(y)
T ∼ p(Θ

(y)
T |T(y))

• For i = 1, ..., N , sample the latent features of an image (in parallel):

U
(y+1)
i ∼ p(Ui|V(y),T(y),Θ

(y)
U , α(y),∆R)

Determine P(y+1) and Q(y+1) using the iterative

optimization by substituting B =
(
U(y+1)

)T .

Reconstruct U(y+1):
(
Û(y+1)

)T
= FTP(y+1) +Q(y+1)

• For j = 1, ...,M , sample the latent features of the enhanced versions (in parallel):

V
(y+1)
j ∼ p(Vj|Û(y+1),T(y),Θ

(y)
V , α(y),∆R)

• For k = 1, ..., K, sample the latent features of parameter (in parallel):

T
(y+1)
k ∼ p(Tk|Û(y+1),V(y+1),Θ

(y)
T , α(y),∆R)

To develop D-BPTF, I make minor modifications in the original BPTF approach (Xiong

et al., 2010) by removing the temporal constraints on their temporal variable, since there

are no temporal constraints in this case. The inference for their temporal variable is then

done in the exactly same manner as the other non-temporal variables. This gave a marginal

boost in the performance. For MLR, I use a standard multivariate regression by maximum

likelihood estimation method. Specifically, I use MATLAB’s mvregress command. TGP

is a generic structured prediction method. It accounts correlation between both input and

output resulting in improved performance as compared to MLR or WKNN. The WKNN

approach predicts the test sample as a weighted combination of the k-nearest inputs. The first
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Figure 3.1: Top Plots: Train and Test RMSEs for Both the Experiments. Bottom Plot: First

5 Sets of Bars Show Votes for Version 1 to 5 of knn Versus the Best Image of the Proposed

Approach. The Last Set of Bars Shows Votes for the Best Image of Both Approaches. Please

Zoom in for Better Viewing. See in Color c©2016 IEEE.

two algorithms do not allow features inclusion. For MLR, TGP and WKNN, I concatenate

Ai and Fi, and use it to predict A′i
j . Even for the proposed approach, I concatenate Ai and

sample feature to form Fi. The intuition behind this concatenation is that the enhancement

parameters should be a function of input parameters as well along with the features. I did

observe performance boost after concatenating the features and parameters.

The second experiment demonstrates the usefulness of this approach in a real-world

setting where one has to predict parameters of the enhanced versions of an image (then

generate those versions by applying predicted parameters to the input low-quality image)

without using any information about the versions. I compare the propsoed approach with the
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Figure 3.2: Left: Original Image, Middle: Enhanced Image by knn and Right: Proposed

Approach 6. View in Color c©2016 IEEE.

competing 5 algorithms in addition to kNN-search as it is also used in (Yan et al., 2014b;

Chandakkar et al., 2015b). I also analyzed the effect of Q in the proposed solution by:

removing Q i.e. U = FTP.

3.5.1 Data set description and experiment protocol

The synthetic data is carefully constructed by keeping the following task in mind. I am

given a training set consisting of: 1. F ∈ RD×N ; 2. A ∈ RK×N ; and 3. only parameters

of M versions for each input sample - A′ ∈ RK×N×M . The goal of the task is to predict

parameters for a set of M versions given a new Fi and Ai. In real-world problems, A and F

are interdependent. The parameters of M versions are dependent on both A,F. Hence I

construct the synthetic data as follows.
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Firstly, I generate a set of 3-D input parameters - A - drawn from a uniform distribution

[0, 1]. Then I generate a 50-D feature set F, where each element of Fi is related to all

Ak,i ∀ i = {1, . . . , 103}, k = {1, 2, 3} by a nonlinear function. For example, Fj,i =

r
A1,i

1 + 1

1+e−r2A2,i
+Ar33,i,∀ j ∈ {1, . . . , 50} and r1, r2, r3 are random numbers. The parameters

of enhanced versions, A′k,i,m, are also non-linearly related to Ak,i ∀ k,∀m ∈ {1, . . . , 4} and

Fi. For example, A′k,i,m = η
(
r
A1,i

1 + 1

1+e−r2A2,i
+ Ar33,i

)
+ (1− η) · ||Fi||2. The contribution

of Fi is decided by η. I perform a 3-fold cross-validation. The values of A′ are predicted

for the test set (disjoint from training) using corresponding A and F. RMSE is computed

between the predicted and actual A′.

The MIT-Adobe FiveK data-set contains 5000 high-quality photographs taken with SLR

cameras. Each photo is then enhanced by five experts to produce 5 enhanced versions. I

extract average saturation, brightness and contrast for every image, which are parameters

∈ A. I also extract 1274-D color histogram with 26 bins for hue, 7 bins each for saturation

and value. I calculate localized features of 144-D each for contrast, brightness and saturation.

Finally, the average saturation, brightness and contrast of the input low-quality image are

appended. These are also called as the parameters of an image. Thus I get a 1709-D

(= 1274 + 3× 144 + 3) representation for every image ∈ F. I train using 4000 images and

use 500 images each for validation and testing. The parameters are predicted for 5 versions

in a 3× 5 matrix for each image in the testing set. An entry A′i,j denotes the value for ith

parameter of jth enhanced version. To enable comparison with the expert-enhanced images

of the data-set, the parameters for 5 enhanced versions for each image are also computed,

which I treat as ground-truth. I evaluate this experiment in two ways. Firstly, I calculate

RMSE between the parameters of 5 expert-enhanced photos and the parameters of the

predicted versions using five aforementioned algorithms. Secondly, I conduct a subjective

test under standard test settings (constant lighting, position, distance from the screen). In

this case, I compare my approach with the popular kNN-search-based approach. It first finds
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the nearest original image in the training set to the testing image - im - and then applies the

same parameter transformation to im to generate 5 version. In the proposed approach, the

parameters for enhanced versions are predicted using the proposed formulation. I threshold

the parameter values as:

A′k,i,m = min(A′k,i,m, Ak,i + λkAk,i),

A′k,i,m = max(A′k,i,m, Ak,i − ζkAk,i),
(3.20)

where λ and ζ are multipliers for the kth parameter. In this case, the multipliers for saturation,

brightness and contrast are: λ = {0.4, 0.4, 0.05}, ζ = {0.3, 0.3, 0.01}. As mentioned before,

the clipping scheme in the proposed formulation should be set using prior knowledge. Here,

I know that the enhanced images usually have a larger increase (as compared to decrease)

associated with their parameters. Also, changing contrast by a very small amount affects the

image greatly.

The predicted parameters are applied to the input image to obtain its enhanced versions.

The procedure is the same for both the approaches and is as follows. First I change

contrast till the difference between the updated and the predicted contrast is marginal. I

update contrast first since changing it updates both brightness and saturation. I then update

brightness and saturation till they come significantly closer to their corresponding predicted

values. This provides 5 versions for both approaches. To allow comparisons within a

reasonable amount of time, I use a pre-trained ranking weight vector w (from (Chandakkar

et al., 2015b)) to select the best image of my approach (im-proposed) and kNN-approach (im-

kNN). For the subjective test, people are told to compare im-proposed with the 5 enhanced

versions of kNN-approach as well as with im-kNN. Thus for every input image, people

perform 6 comparisons. The image order was randomized. I conducted the test with 11

people and 35 input images. Thus every person compared 210 pairs of images. They were

told to choose a visually-appealing image. The third option of simultaneously preferring
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both images was also provided. This option has no effect on cumulative votes.

3.5.2 Results

The parameters for the synthetic data were more accurately predicted by the proposed

approach than BPMF, D-BPTF, MLR, TGP and WKNN. It is worth noting that though

the training error continues to decrease for the proposed approach, BPMF and D-BPTF,

the testing error starts increasing after only 5 and 8 iterations for BPMF and D-BPTF,

respectively. However, testing error in the proposed approach decreases rapidly for 4

iterations and then it decreases very slowly for the next 12, as shown in Fig. 3.1. The

RMSE on test set for BPMF, D-BPTF, MLR, TGP, WKNN and the proposed approach is

0.4933, 0.4865, 0.6293, 0.4947, 0.8014 and 0.3644. The numbers show that my approach is

able to effectively use the additional information provided by features and the interaction

between A,F and all versions to provide better prediction. On the other hand, BPMF and

D-BPTF start over-fitting quickly due to lack of sample feature information while MLR

and WKNN fail to model the complex interaction between variables. TGP performs better

because of its ability to capture correlations between input and output. However, TGP still

treats each version independently and thus its performance still falls short of the proposed

approach.

In the second experiment, the RMSE for BPMF, D-BPTF, MLR, TGP, WKNN and

the proposed approach is 0.1251, 0.1328, 1.2420, 0.1268, 0.1518 and 0.0820 respectively.

The testing error starts increasing after only 3 and 5 iterations for BPMF and D-BPTF,

respectively. It is important to note that I do not use the clipping scheme mentioned in

Equation 3.20 in order to do a fair comparison of RMSEs between all the five approaches

and the proposed appraoch. For the subjective evaluation, Fig. 3.1 shows cumulative votes

obtained for ours and the kNN-based approach for comparison between 5 images chosen

by kNN and the best image chosen by the proposed approach. Fig. 3.1 also shows votes
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Table 3.1: Effect of Varying β and δ c©2016 IEEE

Parameter setting RMSE (lower the better)

β = 0.001, γ = 6 0.3162

β = 0.01, γ = 6 0.0962

β = 0.02, γ = 0.1 0.0907

β = 0.2, γ = 0.05 0.0930

β = 0.8, γ = 0.05 0.0872

β = 0.1, γ = 0.3 0.0820

β = 0.1, γ = 0.8 0.0821

β = 0.1, γ = 2 0.0820

obtained for the best images chosen by both approaches. Fig. 3.2 shows two input images

enhanced by both the approaches. The top row of Fig. 3.2 shows that kNN reduces the

saturation while increasing the brightness. The proposed approach balances both of them to

obtain a more appealing image. In the bottom row, however, both approaches fail to produce

aesthetic images as images become too bright. It is probably due to the portion of the sky in

the input image. For both the images, most people prefer images enhanced by the proposed

approach. Computationally, the proposed approach is superior than kNN. Complexity of my

approach is independent of data-set size at testing time whereas kNN searches the entire

data-set for the closet image and then applies its parameters.

I reconstructed U = FTP and observed performance drop as it overfits. I get RMSE

of 0.9305 and 0.3762 on enhancement and simulation data, respectively. I believe the

real-world enhancement data has correlations naturally embedded in it unlike in synthetic

data. Thus the performance drop is drastic in case of enhancement since the problem of
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recovering P only from U and F is ill-posed.

I also analyzed the effect of varying β and δ. Since the proposed approach uses Bayesian

probabilistic inference, small variations in β and δ do not significantly affect the performance.

Table 3.1 lists the various parameter settings and its effect on the performance of the second

experiment (i.e. image enhancement):

3.6 Discussion

In this chapter 7 , I introduced a novel problem of predicting parameters of enhanced

versions for a low-quality image by using its parameters and features. I developed an MF-

inspired approach to solve this problem. I showed that by modeling the interactions across

low-quality images, its parameters and its versions, one can outperform five state-of-art

models in structured prediction and MF. I proposed inclusion of feature information into the

formulation through a convex `2,1-norm minimization, which works in an iterative fashion

and is efficient. Thus the proposed approach utilizes information which helps characterize

input image. This leads to better generalization and prediction performance. Since other

approaches do not model interdependence between image features and parameters of their

corresponding enhanced versions, they start over-fitting quickly and produce an inferior

prediction performance on the test set. Experiments on synthetic and real data demonstrated

superiority of the proposed approach over other state-of-art methods.

The matrix-factorization based approaches are used for personalization purposes. How-

ever, the current image enhancement datasets are not suitable for personalized image

enhancement. To that end, one would need access to the favorite images of a specific person.

In other words, rows should correspond to the various people and the columns should

contain the images. Each entry is the rating that a person provided for that image. This is
7Most of the material in this chapter has appered in (Chandakkar and Li, 2016). See the

full credit statement in appendix.
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similar to the Netflix challenge dataset (Bennett et al., 2007) where rows contain users and

the columns contain movies, and each entry is an integer rating. Current datasets have a

variable number of anonymized ratings for each image. Thus favorite images of a person

cannot be inferred from the available information. However, a structured dataset from the

social media websites such as Facebook, Instagram and Flickr can propel the development

of personalized image enhancement methods.
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Chapter 4

TOWARDS UNIFIED, CONTENT-ADAPTIVE IMAGE ENHANCEMENT

4.1 Introduction

The previous chapter describes the motivation and the need for content-adaptive image

enhancement methods. The size of the corpus of images on the Web is increasing at an

exponential rate due to multiple people sharing their pictures on social media. Easy-to-use

smart-phone cameras have played an equally significant role in this explosion of multimedia

data. As a result, enhancing the captured images has become an essential feature for many

social media websites and for smart-phones to have. Therefore, there is a need to modify

the current content-adaptive image enhancement pipeline and make it fast and adaptable to

users’ needs.

The previous chapter describes a structured prediction technique for image enhancement

parameters. It significantly reduces the amount of time spent in creating the enhanced

versions of an image. It may also find better-enhanced versions due to the structured

exploration of the parameter space. Though the approach alleviates the need to interact with

the training set constantly, the enhancement process is still split into two stages:

1. Train a model to rank low and high-quality images.

2. Given a new image, predict the enhancement parameters using the image parameters

and features.

I propose a Gaussian process (GP) based joint regression and ranking methodology that

unifies these two pipelines. The comparison between the current approaches and the

proposed approach is illustrated in Fig. 4.1.
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Figure 4.1: Pipelines of Image Enhancement Approaches c©2017 IEEE.

First, I model the problem as a joint regression and ranking problem. Given an image,

multiple sets of enhancement parameters need to be predicted, which can be modeled as a

regression problem. After obtaining the parameters, numerous enhanced versions need to

be generated, and the highest-ranked image needs to be shown to the user. The proposed

approach unifies the regression and the ranking using GPs. GP has widely been used as

a regressor. The parameters of a GP kernel are determined from the training data. The

proposed approach employs GP to predict the mean and the variance of the parameters of the

enhanced versions. During training, it takes the feature vector of the original (low-quality)

image, its parameters as the input. The parameters of the enhanced image are the target

variables for the GP regressor.

The parameters predicted also need to be ranked. With the availability of a suitable

ranking system, the top-ranked parameter set can be used to generate a single enhanced

version which can be directly shown to the user. This saves a lot of time since multiple

enhanced versions need not be generated.

To achieve this, I train a ranking model on the GP-covariance-kernel-induced feature
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space. I develop a dual form of ranking SVM (Joachims, 2002) and replace that kernel with

the GP kernel. Thus the same GP kernel regresses to the target enhancement parameters

as well as ranks them. The GP kernel builds a mapping between the image feature space

and the enhanced parameter space. It automatically learns a weighting strategy for image

features so that more weight can be assigned to the image features that are crucial for making

a higher-quality image. I put an additional constraint that all the low-quality images should

be clustered together in the GP-kernel-induced feature space. Similar constraints are placed

on high-quality images. This facilitates a structured exploration of the parameter space in

the GP-kernel feature space.

The process to enhance a new image is as follows:

1. The GP model predicts the target values of the enhancement parameters and sorts

them by their ranks. It also provides their mean and variance. This significantly

reduces the computation since the model does not interact with the training set at all.

2. By using the mean and variance values, I generate some enhanced versions by applying

parameters that lie k standard deviations away from the mean value. Here, k is a

user-defined parameter and increasing it will result in more images being shown to

the user. It can also be changed on-the-fly so that user can override the model ranking

and choose a lower ranked image as the best-enhanced version. In the future, this

feedback can be used to improve the overall pipeline.

I perform extensive experiments to illustrate the benefits of the proposed approach. It

is computationally efficient during the testing phase. GP model provides a high-quality

prediction of the target parameters. It also correctly predicts the ranking order between

the new images and its enhanced counterparts. I perform subjective tests and quantitative

analyses to show the effectiveness of the proposed approach.
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4.2 Related Work

Content-adaptive image enhancement has become a topic of active research in the past

few years. The previous chapter covered the literature on enhancement techniques. In this

chapter, we cover techniques related to Gaussian processes that are relevant in this context.

The strength of a GP lies in learning in complex mappings between several variables

using a small amount of data (in the order of several hundred) (Urtasun and Darrell, 2007).

GP-based view-invariant face recognition was presented in (Eleftheriadis et al., 2015). A

GP latent-variable model was used to learn a discriminative feature space using LDA prior.

In that feature space, examples from similar classes form clusters. In (Rudovic et al., 2010),

GP regression builds a mapping between the non-frontal facial points and the frontal view.

These projected frontal view-points can be used by the facial expression methods. Facial

expression recognition performance can be further improved by employing coupled GPs to

capture dependencies between the mappings learned between non-frontal and frontal poses

(Rudovic et al., 2013).

As in the previous chapter, the considered parameters for enhancement are brightness,

saturation, and contrast of an image. I describe the proposed approach in the following

section.

4.3 Proposed Approach

The task involves prediction of the set of image parameters that enhances a given image.

The proposed approach should simultaneously achieve the following two objectives: 1.

Probabilistic estimation of the parameters from a given low-quality image feature: These

predicted parameters should generate the enhanced counterpart. 2. The predicted parameters

should be ranked in the GP-kernel-induced feature space: This would allow structured

exploration in the parameter space and thereby discover the features essential for making an
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enhanced, higher-quality image.

The training data contains pairs of low and high-quality images along with their pa-

rameters. Features of N low-quality images are represented by F = {f1,f2, . . . ,fN}
1 . There exist p high-quality versions for a given low-quality image in the database.

Its features are represented by F+ = {F+
1 , . . . ,F

+
N }, where F+

i = {f+
i1 , . . . ,f

+
ip}, and

fi,f
+
ij ∈ RD×1 ∀ i, j. There also exist p sets of high-quality parameters for a given low-

quality image. For simplicity of illustration, I predict parameters only for the first set. It

should be noted that all the p sets of high-quality images are used to train a ranking model.

The parameter sets for low and high-quality images are represented by Y = {y1, . . . ,yN}

and Y + = {y+
1 , . . . ,y

+
N} respectively. Three image parameters were used to enhance an

image, namely, brightness, contrast and saturation, hence yi,y+
i ∈ R3×1 ∀ i. The task is

to predict y+
i from fi and yi. I predict each parameter using a separate GP. I concatenate

the mth parameter of all low and high-quality images to form ȳm = (y1m, . . . , yNm)T and

ȳ+
m = (y+1m, . . . , y

+
Nm)T , respectively and train a separate GP model that predicts a single

parameter.

4.3.1 GP Regression

GPs define a prior distribution over functions that becomes a posterior over functions

after observing the data. GPs assume that this distribution over functions is jointly Gaussian

that has a positive definite covariance kernel. GPs provide well-calibrated, probabilistic

outputs (Murphy, 2012). This property plays a vital role in our application. The prior on the

regression function is a GP, and it is represented as: GP (m(f), κ(f ,f ′)) where f and f ′

are image features ∈ RD×1, m(f) is a mean function and κ(f ,f ′) is a covariance function.

The posterior predictive density for a single test input can be written as:
1In this chapter, I represent vectors by lower-case bold letters. Matrices are represented

by upper-case bold letters. Scalars are denoted by non-bold letters.
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p(ȳ+∗m|f∗,F ,Y ) = N (ȳ+∗m|kT∗K−1y ȳ+
m, k∗∗ − kT∗K−1y k∗) (4.1)

where k∗ = [κ(f∗,f1), . . . , κ(f∗,fN)], N is the number of samples, k∗∗ = κ(f∗,f∗) and

Ky = K + σ2
yIN . K is a kernel function between all training inputs f , and (·)∗ denotes a

new data point. The noise variance σ2
y accommodates the real-world uncertainty.

The log-likelihood function of a GP regression model can be derived by using a standard

multivariate Gaussian distribution. It is as follows:

log p(ȳ+
m|F ) = −0.5

(
ȳ+
m

)T
K−1y ȳ

+
m − 0.5log|Ky|−

0.5Nlog(2π)

(4.2)

I choose a standard squared exponential kernel for this task. It is as follows:

κ(fi,fj) = σ2
f exp(−1

2
(fi − fj)T ·Λ · (fi − fj)) + σ2

yδij (4.3)

The parameter σ2
f controls the vertical scale of the regression function, σ2

y models uncertainty,

Λ is a diagonal matrix with entries {θ1, . . . , θD} and δpq is a Kronecker delta function that

takes the value 1 if p = q and zero elsewhere. The h = {σ2
f ,Λ, σ

2
y} are hyper-parameters.

The prediction in Equation 4.1 is dependent on the kernel and in turn on the hyper-parameters:

σf ,Λ and σ2
y . The procedure of obtaining optimal hyper-parameters is described later.

4.3.2 GP Ranking

By building a ranking relation in the GP-kernel-induced feature space, the GP kernel

can determine the subset of features responsible for enhancing an image. It assigns higher

weight to such features by adjusting the hyper-parameters. The primal form of rank SVM

(Joachims, 2002) is given by:

min
w,ξij

1

2
wTw + C

∑
i,j

ξij, subject to: ui � uj ∀ (i, j) (4.4)
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where ui � uj indicates that ui is ranked higher than uj .

In one of my previous papers, I have observed that a learned mapping between low

and high-quality images alone does not ensure high ranking accuracy on new images. The

enhanced images are often characterized by high saturation, brightness or contrast. Training

only on the pairs of low and high-quality images biases the ranking model in a way that it

sometimes assigns a higher score to over-saturated and over-exposed images. This could

have been avoided by having intermediate information about the enhancement steps. This

information was available in the database created by the authors of (Yan et al., 2014a).

However, creating such database requires the availability of experts. As a workaround, I

deteriorate the original low-quality images by introducing an additional shift to the image

parameters. To determine the amount of parameter shift for each image, I initially deteriorate

20 images in a photo-manipulation software such as Adobe Photoshop. It provides me with

heuristics that help define a relation between existing image parameters and the amount of

parameter shift required for a significant deterioration of an image. I call these deteriorated

images as poor-quality images. I create p poor-quality images for every low-quality image.

This provides features for poor, low and high-quality images, denoted by F−,F and F+

respectively. Primal form for the proposed ranking model can be written as follows:

min
w,ξij

1

2
wTw + C1

∑
i,j

ξij + C2

∑
i,k

ξ′ik,

subject to: wTf+
ij ≥ wTfi + 1− ξij,

subject to: wTfi ≥ wTf−ik + 1− ξ′ik,

subject to: wTf+
ij ≥ wTf−ik + 1− ξ′′ik, ξij, ξ′ik, ξ′′ik ≥ 0

∀ i = {1, . . . , N},∀j = {1, · · · , p},∀k = {1, · · · , p}.

(4.5)

To incorporate the GP kernel κ, a dual form of the ranking SVM is needed. The dual form

of the Equation 4.5 would be cumbersome to derive unless its representation can be slightly
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altered. To this end, I define a new set of data D consisting of fi − f+
ij , f−ik − fi and

f−ik − f+
ij ∀ i, j, k. The data D has N ′ = N(2p + p2) elements. The primal form can be

written as follows:

min
w,ξi

1

2
wTw + C

∑
i

ξi,

subject to: wTDi + 1− ξi ≤ 0, ξi ≥ 0,∀i = {1, . . . , N ′}.
(4.6)

Lagrangian multipliers are used to convert the above equation into an unconstrained opti-

mization problem.

L(w,α,β) =
1

2
wTw + C

∑
i

ξi +

∑
i

αi(w
TDi + 1− ξi)−

∑
i

βiξi

(4.7)

Differentiating with respect to w and ξ and equating them to zero, I get,

∇wL(w,α,β) = 0⇒ w = −
∑
i

αiDi

∇ξL(w,α,β) = C − αi − βi = 0⇒ αi ≤ C.

(4.8)

Substitutingw back into Equation 4.6 and doing some algebraic manipulation, I get a dual

maximization problem as follows:

max
α

∑
i

αi −
1

2

∑
i

∑
j

αiαjD
T
i Dj, subj. to: 0 ≤ αi ≤ C. (4.9)

Following the kernel trick, I replace the inner product in the above equation with the GP

kernel. Now, the final optimization problem to determine α becomes,

max
α

1Tα− 1

2
αTKyα. (4.10)

Here, 1 is a column vector of ones. The length of both α and 1 is N(2p + p2). The

dimensions ofKy are N(2p+ p2)×N(2p+ p2). The (i, j)th element ofKy is κ(Di,Dj).
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4.3.3 Clustering high-quality images together

In this subsection, I introduce the third constraint. For a low-quality image: 1. it tries to

cluster all its high-quality counterparts and 2. it attempts to pull apart the poor-quality and

the high-quality images in the GP-kernel-induced feature space. The intuitive reasoning in

introducing this constraint is as follows: For an unseen query image, multiple parameter sets

corresponding to its enhanced counterparts should be predicted. If the enhanced counterparts

are clustered in the GP-feature-space, then the parameter sets obtained in a single traversal

can be high. Multiple parameter sets need to be predicted since image enhancement is a

subjective task and a single set of parameters would not do justice. This constraint minimizes

distance between fi and f+
ij ∀j. Therefore, by definition of GP, the corresponding output

parameters, y+
ij ∀j, will be clustered, that achieves the said traversal. The rest of the

constraint pulls apart the predicted parameters and the low-quality image parameters. The

traversal of the parameter space post GP predictions is detailed later. I formulated the above

constraints as follows:

min
h

(∑
i

||KF+
i

y ||2F − ||K
F+
i ,F

−
i

y ||2F

)
, (4.11)

where || · ||2F indicates squared Frobenius norm. The termKF+
i ,F

−
i

y is a p× p matrix defined

as follows:

K
F+
i ,F

−
i

y =



κ(f+
i1 ,f

−
i1) · · · κ(f+

i1 ,f
−
ip)

κ(f+
i2 ,f

−
i1) · · · κ(f+

i2 ,f
−
ip)

... . . . ...

κ(f+
ip ,f

−
i1) · · · κ(f+

ip ,f
−
ip)


(4.12)

The termK
F+
i

y is equal toKF+
i ,F

+
i

y .

I form the objective function by combining Equations 4.2, 4.10 as follows:
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min
h

Z =
1

2

(
ȳ+
m

)T
K−1y ȳ

+
m +

1

2
log |Ky| − 1Tα+

1

2
αTKyα +

∑
i

(
||KF+

i
y ||2F − ||K

F+
i ,F

−
i

y ||2F
) (4.13)

Note that the constant term has been removed. Equations 4.10 and 4.13 can now be solved

to get α and h.

4.3.4 Optimization

The optimization problem is separable inα and h. I optimizeα by employing a standard

rank-SVM solver. It could also be solved by using quadratic programming. However, that

would be memory inefficient. In particular, I use a rank-SVM implementation which uses

the LASVM algorithm proposed in (Bordes et al., 2005). LASVM employs active example

selection to significantly reduce the accuracy after just one pass over the training examples.

After optimizing α, I find the local minimizer of Equation 4.13, denoted by h∗. I use

scaled conjugate gradient descent (SCG) algorithm for the same. SCG is chosen due to its

ability to handle tens of thousands of variables. SCG has also been widely used in previous

approaches involving GPs (Rasmussen, 2006; Eleftheriadis et al., 2015; Rudovic et al.,

2013). I use chain rule to compute ∂Z
∂h

by evaluating first ∂Z
∂Ky

and then ∂Ky

∂h
. The matrix

calculus identities from (Petersen et al., 2008) are used while computing the following

expressions:
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∂Z

∂Ky

= −1

2
K−1y y

+
m

(
y+
m

)T
K−1y +

1

2
K−1y +

1

2
ααT+

2
∑
i

(
K
F+
i

y −KF+
i ,F

−
i

y

)
,[

∂Ky

∂θq

]
ij

= −1

2
σ2
f exp

(
−1

2
(fi − fj)TΛ(fi − fj)

)
·

(f
(q)
i − f (q)

j )2,

∂Ky

∂σ2
f

= σ2
f exp(−1

2
(fi − fj)T · Λ · (fi − fj)),[

∂Ky

∂σ2
y

]
ij

= δij,

∂Z

∂θq
= tr

[(
∂Z

∂Ky

)T (
∂Ky

∂θq

)]
∀q ∈ {1, . . . , D},

(4.14)

where tr denotes matrix trace. Similarly, ∂Z
∂σ2

f
and ∂Z

∂σ2
y

are computed to construct ∂Z
∂h
∈ RD+2.

This derivative can be used to obtain the optimal set of hyper-parameters, h. In practice, all

the matrix inverses are implemented using Cholesky decomposition. I alternately optimize

for α and h till Equation 4.13 converges or the maximum cycles are reached. I set the

convergence criterion to be 10−3 and the maximum cycles to 20.

4.3.5 Testing

After obtaining the optimal α and h, I predict the parameters, {ȳ+∗1, ȳ+∗2, ȳ+∗3}, for the

enhanced counterpart by using three trained GP models in Equation 4.1. Let us call the

mean and variances of the predicted parameters asm = {m1,m2,m3} and s = {s1, s2, s3}

respectively. With their availability, I explain the proposed parameter space traversal.

People’s choices vary a lot in such applications. Thus, it is essential to explore the

parameter space to generate additional enhancement parameters. The first advantage of the

proposed approach is that it can generate such parameters without referring to the training

set. Since it explores the parameter space in a structured manner (with a certain mean and
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variance), it is plausible to generate only 32 parameters per image instead of hundreds as

done in conventional kNN-based heuristic methods.

The First step in parameter space traversal is to determine lower and upper bounds. Those

can be decided heuristically. For example, I decrease the saturation, brightness and contrast

at most by an amount of {15%, 15%, 5%} and increase it at most by {35%, 35%, 20%} of

the original image parameter values. I observed that these limits are not critical to the quality

since the generated images will be ranked later using the learned α and the images with

extreme parameter settings will usually be filtered out.

Now, I change (increase and decrease) the mean value of the parameters by µs till it

reaches the pre-specified thresholds. Intuitively, s should provide the direction of the stride

in the parameter space and µ provides the length of that stride. The value of µ is determined

by the number of enhanced counterparts the user wants to generate for each low-quality

image. I set that value to be 30. This value could be decreased if the user is on a mobile

device with a smaller screen and similarly increased when operating on a desktop. These

settings can be changed on-the-fly.

4.3.6 Image feature representation

I extract 432-D color histogram with 12 bins for hue, six bins each for saturation and

value, which acts as a global feature. The image is divided into a 12 × 12 grid. For each

grid, I calculate its saturation, value by taking the mean values of those image blocks in the

HSV color space. I also calculate RMS contrast on that grid. These act as localized features

of 144-D each. I finally append the image parameters, which are average saturation, value

and RMS contrast. Appending the image parameters allows GP to express the parameters of

the enhanced counterparts as a function of both, the low-quality parameters and its feature

vector. Finally, I get a 867-D (= 432 + 3× 144 + 3) representation for every image.
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4.3.7 Implementation Details and Efficiency

GPs are known to be computationally intensive. They take aboutO(N3) time for training,

where N are the number of training examples. The matrix inversion of an N ×N matrix

and the computation of the derivative of the kernel are the bottlenecks in the GP training

procedure. I train a GP model using about 1200 low-quality images and six counterparts per

image in about 18 hours on an Intel Xeon @2.4 GHz × 16. The computational efficiency

can be improved by using GP regression techniques proposed for large data (Hensman et al.,

2013; Ambikasaran et al., 2014) or using efficient data-structures such as KD-trees (Shen

et al., 2006). During testing, the proposed approach executes fast. I tested it on two systems,

Intel Xeon, and a modern desktop system with Intel i7 @3.7GHz. It can predict all the

three parameters for 3150 and 1287 images per second using Intel Xeon and i7 systems

respectively. A built-in kNN-search function processes only 224 images per second when

asked to find one nearest-neighbor in 5000 image data-set on the Intel Xeon system. All

the implementations are done in MATLAB. Since the proposed approach need not query

the training database, it could be portable and potentially allow for enhancements being

performed on mobile devices.

4.4 Data-sets and Experimental Setup

In this section, I describe the data and the experimental setup. Results of these exper-

iments are presented in the Section 7.1.4. I perform four kinds of experiments. The first

experiment provides a weak quantitative measure of the accuracy of the proposed approach.

I use the MIT-Adobe FiveK (Bychkovsky et al., 2011) data-set for this experiment. This

data-set has 5000 low-quality images with 5 expert-enhanced counterparts for each image.

This is the largest such data-set available. I use 1200 images and six counterparts (three each

for poor and high-quality) per low-quality image to train the GP models. I use 1500 and
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800 images for validation and testing respectively. I predict the parameters (i.e., brightness,

contrast, and saturation) for the first enhanced counterpart of all the images in the test

set. Then, I calculate the root mean square error (RMSE) and a more stringent criterion

- Pearson’s correlation - between the ground-truth parameters computed from the expert-

enhanced image and the predicted parameters. I compare the obtained quantitative results

against twin Gaussian processes (TGP) (Bo and Sminchisescu, 2010). TGP is a structured

prediction method which considers the correlation between both input and output to produce

predictions. Though a low RMSE between ground truth and predicted parameters does not

guarantee that the enhancement will be visually appealing (unless the RMSE tends to zero),

it confirms that the prediction is lying near the ground-truth in the parameter space. Also,

this experiment validates the effectiveness of the GP regressor.

The second experiment is a qualitative measure of the image quality produced by the

proposed and the competing algorithms, namely kNN, Picasa and that of (Yan et al., 2014a).

The metric of L2 error in the L*ab space was adopted in (Yan et al., 2014a). I believe that

it is a poor indicator of the enhancement quality and instead opt for Visual Information

Fidelity (VIF) metric (Sheikh and Bovik, 2006). This metric can predict whether the visual

quality of the other image has been enhanced in comparison with the reference image by

producing a value greater than one. This is unlike other quality metrics such as SSIM (Wang

et al., 2004), FSIM (Zhang et al., 2011b), VSI (Zhang et al., 2014) etc. I use the publicly

available implementation of VIF 2 . I calculate the VIF between the proposed enhancement

and the enhancement by 1. kNN 2. Picasa and 3. the approach of (Yan et al., 2014a). Thus

VIF < 1 implies that the proposed enhancement is better than the one produced by the

competing algorithm and vice-versa. This comparison is made for 60 pairs where 15 images

each are enhanced using Picasa and (Yan et al., 2014a), whereas the remaining 30 images

are enhanced using the kNN approach.
2available at live.ece.utexas.edu/research/quality/
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The third experiment is aimed towards evaluating the effectiveness of GP ranking. For

each image, I generate only 32 enhanced versions. Our GP ranker selects the highest ranked

image out of those 32 and presents it to the user. The top-ranked image is supposed to have

the best quality. I compute the VIF metric between the best image selected by the ranker and

the other 31 images. Ideally, for all these 31 images, the proposed approach should obtain

values less than one indicating that GP ranker has indeed selected the best image.

I also carry out a subjective evaluation test to assess if people prefer the enhanced

counterparts generated by our approach. I compare the proposed approach against three

other methods. First one is the kNN-based approach. Given a low-quality image, I search

for the nearest non-duplicate image from the 5000 images of MIT-Adobe dataset. The

parameters of the expert-enhanced counterparts of the nearest image are applied to the

given low-quality image. In this manner, I generate 5 enhanced counterparts per low-quality

image. Note that, kNN utilizes all other 4999 images whereas I only use the model trained

on 1200 images for prediction. Then I compare against Picasa’s one-touch-enhance tool.

The third approach is from (Yan et al., 2014a), which also is a learning-to-rank based image

enhancement approach that uses the pipeline shown at the top in Fig. 4.1.

I use 60 images for the subjective test which was performed by 15 people. Thirty images

are selected from the testing set of the MIT-Adobe data-set. The rest of the images are from

the data-set used in the paper (Yan et al., 2014a). Since I only have access to their testing set,

I use that data-set solely for subjective test purposes. It contains 124 images out of which I

randomly select 30 images. I enhance all the 60 images using the proposed approach. The

comparison against other methods is made as follows.

The first 30 images from the MIT-Adobe data is split into two halves. The first half

is enhanced using the kNN approach and the second half is enhanced using Picasa. The

remaining 30 images from (Yan et al., 2014a) are split into two halves. The first half is

enhanced using the kNN approach, and for the second half, I directly use the high-resolution
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results of the test data-set of (Yan et al., 2014a). Thus each person compares 60 image

pairs. One of the image in that pair has been enhanced using the proposed approach, and the

other image has been enhanced using either kNN approach, Picasa or the approach of (Yan

et al., 2014a). The subject has to choose the image which he/she finds “visually-appealing”.

If the subject feels that both images have almost the same visual appeal, a third option of

preferring neither image is provided. The order in which the images appear in front of a

subject is always randomized. The pairing order is also randomized. The subjects do the

evaluation test in standard lighting conditions and at a comfortable and constant distance

from the screen.

4.5 Results

I present results of the quantitative analysis first. I have trained three GP models to predict

saturation, brightness, and contrast for 800 images from the test set of MIT-Adobe data-set.

When compared with the parameters of expert-enhanced counterparts, the models achieve

RMSEs of 0.0057, 0.0022, 0.0037 and correlations of 0.5359, 0.5553, 0.8023 respectively,

for the above three parameters. TGP gets an average RMSE of 0.0022, but it suffers while

producing an average correlation of only 0.3326. It is relatively easier for a GP to relate the

contrast to the image quality, which is intuitive since contrast variation changes the image

drastically and it also makes the image look vibrant or dull. This, in turn, contributes most

to the visual appeal of an image.

The left bar chart in Fig. 4.3 shows the results of the second experiment. VIF between

the proposed enhancement and competing enhancements produces values which are, in

most cases, less than one. Thus according to VIF metric, the proposed approach produces

better enhancements than Picasa, kNN-based heuristics, and (Yan et al., 2014a). For the

third experiment, I get 32 VIF values for each image, which correspond to 32 enhanced

versions generated by the proposed approach. The GP ranker selects one, as mentioned
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earlier. I compute the average VIF value and its standard deviation over 31 other images.

This process is repeated for all the 60 images, and the VIF values are shown in the right bar

chart of Fig. 4.3.

I now analyze the results of the subjective tests. I provide the following five metrics

about the subjective test in Fig. 4.2. 1. I count votes gathered by the proposed approach and
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Figure 4.4: The Left Column Always Contains an Original Low-quality Image. Row 1 and

3: Columns 2, 3 and 4 Contain Images Enhanced by knn, Picasa, and GP. Row 2: The Right

Three Columns Contain Enhanced Versions Generated by GP. Please Read Text for Details3

c©2017 IEEE.

by all other competing approaches bundled into one. This is a coarse measure of how much

preference people have towards enhancements generated by the proposed approach. 2. I

count votes gathered by the proposed approach and by the kNN approach on the MIT-Adobe

data-set. 3. comparison of votes gathered by the proposed approach and by the kNN

approach on the data-set of (Yan et al., 2014a). 4. comparing the proposed approach against

the results of (Yan et al., 2014a) on their data. 5. Lastly, I compare the proposed approach

versus Picasa on the MIT-Adobe data. Fig. 4.2 shows all these metrics. On top of each

bar, I indicate the mean and standard deviation for that particular approach and metric. For

example, the second set of bars denote that for the MIT-Adobe data, the proposed approach

gathered 133 votes against 104 votes gathered by the kNN approach. The average number

of votes obtained per user for our and the kNN approach were 8.9 and 6.9 with the standard
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deviations of 2 and 1.6, respectively. Fig. 4.2 shows that people consistently prefer the

proposed approach over other state-of-art approaches.

Fig. 4.4 shows some of the results obtained by the proposed, the approach of (Yan et al.,

2014a), kNN and Picasa’s auto-enhance tool. The first and the third row illustrate that the

kNN approach is not always effective and sometimes may give over(under)-exposed results

due to its dependence on the nearest training image parameters. The second row shows three

representative versions generated by GP. We can see that the image in the fourth column is

over-exposed. However, my ranking model successfully filters out that image and selects

the one in the third column. In general, I observed that kNN could only get comparable

results to Picasa and the proposed approach if it finds a good match in the training set. Thus

kNN is unlikely to scale to large-scale enhancement tasks.

4.6 Discussion

GPs for image enhancement work well given that proper constraints are imposed over

the covariance function. As mentioned before, the proposed approach learns a separate GP

model for each image parameter. This makes the training computationally expensive. Testing

is affected by a little amount given its current execution speed. A non-trivial extension of this

approach would be to use multi-output (Alvarez et al., 2010; Nguyen et al., 2014; Alvarez

and Lawrence, 2011) or multi-task (Bonilla et al., 2007; Yu et al., 2005) GPs. Multi-output

GPs will be able to predict all parameters jointly whereas multi-task GPs can predict all

enhancement versions (e.g., five in case of MIT-Adobe data-set) as well as all parameter

outputs jointly.

The proposed approach, though computationally expensive while training, should not

be highly affected by the interaction between the three image parameters. The reason lies

in the fact that the GP models are trained on the images that have corresponding enhanced

counterparts. If I denote the high-quality parameters by p+1 , p
+
2 , p

+
3 and the low-quality
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image feature along with its parameters denoted by u, then I can write,

Pr(p+1 , p
+
2 , p

+
3 |u) = Pr(p+1 |p+2 , p+3 ,u) · Pr(p+2 |p+3 ,u) · Pr(p+3 |u). (4.15)

Due to corresponding low and high-quality images, the changes in the image feature

across the low and high-quality versions can be directly related to the parameter changes.

Thus I believe that, it is possible for a GP to model Pr(p+1 |p+2 , p+3 ,u) without having access

to p+2 and p+3 , i.e., Pr(p+1 |u). The multi-task GPs could be valuable while training them on

data-sets which have non-corresponding low and high-quality images.

In this chapter 4 , I presented a novel approach to content-adaptive image enhancement

using joint regression and ranking by employing GPs. I train the GP models on the pairs

formed from poor, low and high-quality images. The learned GP models predict the desired

parameters for a low-quality image from its features, which may produce its enhanced

counterparts. I also described a strategy to traverse the parameter space without referring

to the training images, which makes the proposed approach efficient during testing. The

GP prediction is defined by the covariance kernel, on which two constraints are imposed.

The first one enables the kernel to learn the feature dimensions responsible for making

an image of higher-quality. The other constraint clusters all the enhancement parameters

corresponding to a low-quality image, thereby allowing for effective parameter traversal.

I perform quantitative and subjective evaluation experiments on two-data sets to assess

the effectiveness of the proposed approach. The two data-sets used are the MIT-Adobe

data (Bychkovsky et al., 2011) and the one proposed in (Yan et al., 2014a). Quantitative

experiments show that the proposed predictions produce a low RMSE when compared

with the ground-truth parameters of the MIT-Adobe data. The results show that people

consistently prefer the enhancements produced by the proposed approach over the other
4Most of the material in this chapter has appered in (Chandakkar and Li, 2017b). See

the full credit statement in appendix.
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state-of-art approaches.
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Chapter 5

A COMPUTATIONAL APPROACH TO RELATIVE AESTHETICS

5.1 Problem Introduction

This chapter introduces the topic of automatic assessment of image aesthetics which

has recently become an active area of research due to its wide-spread applications. Most

of the existing state-of-art methods treat this as a classification problem where an image

is categorized as either beautiful (having high aestheticism) or non-beautiful (having low

aestheticism) 1 . In (Datta et al., 2006; Ke et al., 2006), this problem has been formulated as a

classification/regression problem by mapping an image to a rating value. Various approaches

such as (Datta et al., 2006; Ke et al., 2006; Bhattacharya et al., 2010; Luo and Tang, 2008;

Dhar et al., 2011; Luo et al., 2011; Nishiyama et al., 2011; O’Donovan et al., 2011; Su et al.,

2011; Marchesotti et al., 2011) have been proposed which either use photographic rules or

hand-crafted features to assess the aesthetics of an image. Due to the recent success of deep

convolutional networks, approaches such as (Lu et al., 2014, 2015) claim to have learned

the feature representations necessary to categorize the given image as either beautiful or

non-beautiful.

The approaches based on photographic rules have certain limitations. For example, the

implementations of these rules may be an approximation, thus affecting the accuracy of

the aesthetic assessment. Also, the rules may not sufficiently govern the process of how

the aesthetic quality of an image is decided. It is possible that some of the essential rules

have been left out or some erroneous ones have been included. These rules are mostly

accompanied by generic image descriptors or task-specific hand-crafted features. Such
1This terminology is used throughout the chapter.
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approaches suffer from the disadvantages of generic/hand-crafted features that they may

not be suited for a particular task such as aesthetic assessment or the feature space does

not adequately represent the key characteristics which make an image aesthetic. The deep

neural network based approaches may overcome these disadvantages by learning the feature

representations.

While deep learning approaches have advanced the state-of-art for this task, I observe that

classifying a given image as beautiful or non-beautiful may not always be the natural choice

for some applications. It may also be more intuitive for humans to compare two images

rather than giving an absolute rating to an image based on its aesthetic quality. Moreover,

all images in a set could belong to the beautiful or non-beautiful category according to a

classification model. In such cases, it may often be necessary to rank the images according

to their aesthetic quality. For example, a machine-learned enhancement system (Yan et al.,

2014a) has to provide an enhanced version of the query image to the user. To do so, it needs

to compare two images with respect to their aesthetics to determine which enhancement

results in a more beautiful image. In an image retrieval engine, it would be desirable to have

an option to retrieve images having low/similar/high aesthetic quality as compared to the

query image.

Motivated by these observations, I introduce a novel problem of picking a more beautiful

image from a pair. I term this problem as “Relative Aesthetics”. I build a new dataset of

image pairs for this task by carefully choosing images from the popular AVA dataset (Murray

et al., 2012) to satisfy certain constraints. For example, I observed that comparing images

from unrelated categories (for example, a close-up of a car and a wedding scene) does not

make sense and hence such pairs are avoided. There exists no single threshold which can

binary-classify the pairs correctly across the entire dataset. In other words, if images were

categorized into beautiful and non-beautiful, then some of the pairs in the data used could

contain both beautiful or both non-beautiful images. The details of dataset creation and its
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statistical analysis are provided in Section 5.4.

The proposed problem draws certain parallels with “relative attributes” (Parikh and

Grauman, 2011b), where it was observed that training on relatively-labeled data leads to

models that capture more general semantic relationships. They also mention that by using

attributes as a semantic bridge, their model can relate to an unseen object category quite

well. On the other hand, the proposed problem presents different challenges. In (Parikh

and Grauman, 2011b), they compare two images with respect to attributes (for example,

more natural, furrier, narrower, etc.), which are better defined than the aesthetics of two

images. Thus even though it is trivial to use models trained on categorical data to solve

these ranking tasks, I found that using relative learning principles allows us to outperform

previous state-of-art classification models by gaining a more general and a semantic-level

understanding of the proposed problem.

My contributions are as follows:

1. I propose a novel problem termed as “relative aesthetics”, which involves picking a

more beautiful image from a given pair of images. I create a new dataset which has

such relative labels from the popular AVA dataset by careful and constrained selection

of image pairs.

2. I build a deep network incorporating the relative learning paradigm and train it end-to-

end. To the best of my knowledge, there is no prior work on studying aesthetics in a

relative manner using deep neural networks.

3. I show that the proposed model trained on relatively-labeled data can outperform a

recent state-of-art method (Lu et al., 2014) trained on a similar sized, categorically

labeled dataset for the proposed task.
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5.2 Related Work

Computational aesthetics research in the earlier years was focused on employing pho-

tographic rules, hand-crafted features or generic image descriptors. Intuitive and common

properties such as color (Datta et al., 2006; Nishiyama et al., 2011; O’Donovan et al.,

2011), texture (Datta et al., 2006; Ke et al., 2006), content (Luo et al., 2011; Dhar et al.,

2011), combination of photographic rules, picture composition and hand-crafted features

(Dhar et al., 2011; Luo and Tang, 2008; Luo et al., 2011) have been used. One of the most

commonly used photographic rules is the Rule of Thirds used in (Dhar et al., 2011; Luo

and Tang, 2008; Datta et al., 2006). Other compositional rules include low depth of field,

opposing colors, etc. (Dhar et al., 2011). Common color features such as lightness, color

harmony, and distribution, colorfulness have been quantified for aesthetics assessment by

computational models (Datta et al., 2006; Nishiyama et al., 2011; O’Donovan et al., 2011).

Texture features based on wavelets edge distribution, low depth of field, amount of blur

have also been used (Ke et al., 2006; Dhar et al., 2011). Approaches specifically trying to

model content in the image by detecting people (Luo et al., 2011; Dhar et al., 2011; Luo and

Tang, 2008), generic image descriptors such as SIFT (Lowe, 2004b) have been proposed

in (Dhar et al., 2011). Inspired by the then success of deep neural network on various

tasks such as image classification (Krizhevsky et al., 2012; Ciresan et al., 2012), object

segmentation (Chen et al., 2013), facial point detection (Sun et al., 2013), Decaf features

(Donahue et al., 2013) for style classification (Karayev et al., 2014) etc., (Lu et al., 2014)

proposed a deep-learning-based approach to aesthetics assessment. This approach classifies

a given image as beautiful or non-beautiful depending on the entire image as well as its

local patches. Another such approach was presented in (Lu et al., 2015) where the authors

aggregate the information from multiple patches in a multiple-instance-learning manner

to improve the result of aesthetics assessment. Most of these approaches treat aesthetics
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assessment as a binary classification task, which may not always be the best choice for many

applications, as discussed before.

The concept of training on relatively-labeled data to improve model performance and

provide it with a certain semantic understanding of the problem has been well-explored.

The work on relative attributes (Parikh and Grauman, 2011b) predicts the relative strength

of individual property in images. It allows for comparison with an unseen object category

in the attribute space. Models learned in such a way enable richer text descriptions of

images. Relative attribute feedback was used in conjunction with semantic language queries

to improve the image search capability in (Kovashka et al., 2012). There are many such

applications where relative learning has explored a new dimension of the problem and

improved the overall understanding of the model of a given task.

In this chapter, I propose to employ the relative learning principles for the task of image

aesthetics assessment. This task is extremely subjective and has vaguely-defined properties

than other general attributes like size, being more natural, etc. Various datasets have been

proposed such as Photo.net, DpChallenge.com, AVA datasets to allow for learning using

hand-crafted features. The first two datasets contain 20,278 and 16,509 images respectively

2 , whereas the AVA dataset (Murray et al., 2012) contains 250,000 images. Thus I use AVA

to form image pairs which in turn will facilitate the learning of the proposed approach. I

propose a Siamese deep neural network architecture (Bromley et al., 1993) with a relative

ranking loss, which takes an image pair as input and ranks them with respect to their aesthetic

quality. The back-propagation happens with the loss obtained from the ranking function,

which, I believe, helps the network explore the attributes of certain images that make them

more beautiful than others.
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Table 5.1. The Architecture of a Column in the Proposed Network. Convolution Is Repre-

sented as (Padding, # Filters, Receptive Field, Stride).

layers specifications

Padded Input 3× 230× 230

Conv 2, 64, 11, 2

Max-pooling 2× 2

Conv 1, 64, 5, 1

Max-pooling 2× 2

Conv 1, 64, 3, 1

Conv −, 64, 3, 1

Dropout 0.5

Dense 1000

Dropout 0.5

Dense 256

Dropout 0.5

5.3 Proposed Approach

The comparison of the aesthetics of two images is dependent on many factors and

people’s visual preferences. Some of the factors include color harmony (Nishiyama et al.,

2011), colorfulness (Datta et al., 2006), inclusion of opposing colors (Dhar et al., 2011),

composition (Litzel, 1975), visual balance (Niekamp, 1981) etc. They are also affected by

the content in the image (Luo and Tang, 2008; Luo et al., 2011). Though determination of

aesthetics is a subjective process, there are some well-established rules in the photography
2Datasets hosted on ritendra.weebly.com/aesthetics-datasets.html
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community such as low depth-of-field, the rule of thirds, golden ratio (Joshi et al., 2011).

However, making hand-crafted features for such rules is difficult and often will lead to

approximation or misrepresentation of those rules. Therefore, I take a deep neural network

based approach in which I incorporate relative ranking by designing a suitable loss function.

Most of the rules or aesthetic criteria can be defined using either an entire image or a part of

it. Therefore, for each image in the pair, the proposed network is trained on two views of

an image as also done in (Lu et al., 2014): the entire image and a local patch. This enables

the network to see different aspects of the input. For example, a view of the entire image

may provide the network with the knowledge of color composition while the local patch

may help with resolution, depth-of-field, etc. I now describe the network architecture and its

training procedure in detail.
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5.3.1 Network Architecture

The proposed deep convolutional neural network (DCNN) architecture takes an image

pair as input. For each image in the pair, it takes as input that image itself and its local

patch. Since all images have to be of the same size, they are warped to be 224× 224× 3.

A same-sized local patch is cropped from the original image. I choose to warp the image

based on the findings in (Lu et al., 2014), which shows that local patches along with warped

image give the best result. The proposed network has two “channels” as shown in Fig. 5.1,

corresponding to the input pair of images. A channel is defined as the part of the proposed

CNN which takes an image along with its local patch as input. Each channel has two

“columns”. One column takes the warped image, and the other one takes its local patch as

input.

The proposed architecture is a Siamese network where each channel shares weights in a

certain way, which is shown in Fig. 5.1 by means of color coding. The columns with the

same color (i.e., either red or green) share the weights. This is because the ranking produced

by the network should be invariant to the order of the images in the pair. Both channels have

an identical architecture until they are merged at the final dense layer of 512 −D. I now

describe the architecture of the upper channel (channel 1). This channel has two columns

which take the image and its local patch as input. Since these two inputs are on a different

spatial scale and trying to convey different aesthetic properties as discussed earlier, I do

not set constraints on the weights of both the columns in a channel. The upper column in

channel 1 (C11) takes the entire image as input which is of size 224× 224× 3, zero-padded

with 3 pixels on all sides. The column has five convolutional layers. The first convolutional

layer has 64 filters each of size 11×11×3 with stride 2. The second convolutional layer has

64 filters of size 5× 5 with stride 1. Third and fourth layer have 64 filters of size 3× 3 with

stride 1. These are followed by two dense layers of size 1000 and 256 respectively. Then
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50% Dropout at these two dense layers is applied. Max-pooling is applied after first two

convolutional layers. Each max-pooling operation halves the input in both the directions.

ReLU activation is used in the entire network. The architecture of C11 is also detailed

in Table 5.1. The lower column of channel 1 (C12) and both the columns of channel 2

(i.e. C21 and C22) have the same architecture as C11 including dropout, max-pooling and

zero-padding operations.

The key thing to note here is that the weights are shared for (i) the two columns which

take the entire image as input i.e. C11 and C21, and (ii) the remaining two columns which

take the local patches as input i.e. C12 and C22. C11 and C21 each generate a 256 − D

representation (i.e. of the entire image). Similarly, C12 and C22 also generate 256 − D

features (i.e. of the local patch). The 256−D representations from (C11, C12) as well as

from (C21, C22) are concatenated to form two 512−D representations. Fig. 5.1 shows this

architecture and the sharing of weights.

I explain the proposed ranking loss function which takes the above two 512 − D

representations and gives a quantitative measure comparing the aesthetics of the two images

in a pair.

5.3.2 Ranking Loss Layer

The proposed network aims at correctly ranking two input images based on their under-

lying aesthetic quality. Formally, given two input images I1 and I2, I1 is more beautiful than

I2 (also denoted as I1 > I2 here onward) if a positive value is obtained for d(I1, I2) and vice

versa. In other words, d(I1, I2) is a measure comparing aesthetics of two images.

d(I1, I2) = wT · (g(I1)− g(I2)) (5.1)

Here, g(I1) and g(I2) are the CNN representations. In the proposed network, g(I1) and

g(I2) are represented by C1 and C2 respectively, as shown in Fig. 5.1. To increase the
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representational power, (C1 − C2) is passed through two dense layers separated by a ReLU

non-linearity. Thus for the proposed network, Equation 5.1 takes a slightly modified form as

follows:

d(I1, I2) = wT2 · (f(wT1 · (C1 − C2)), (5.2)

where f(·) denotes an ReLU non-linearity.

Keeping this in mind, I design the final loss function with the following properties:

1. It should propagate zero loss when all image pairs are ranked “correctly” (i.e., the

representations of the images in these pairs are separated by a margin δ).

2. It should only be able to produce a non-negative loss.

Hence the loss function is designed as follows:

L = max(0, δ − y · d(I1, I2)), (5.3)

where y is a ground-truth label which takes value 1 if the first image in the pair is more

beautiful than the second (i.e. I1 > I2) and it equals -1 if I1 < I2. The term max(0, ·) is

necessary to ensure that only non-negative loss gets back-propagated. The δ is a user-defined

parameter which serves two purposes. First, it defines a required separation to declare

I1 > I2 (or I1 < I2). That means if y ·d(I1, I2) > δ, then no loss should be back-propagated

for such pairs. Secondly, and more importantly, δ > 0 avoids a trivial solution to the

optimization objective. To clarify further, if δ = 0, then for y = 1 and y = −1, a common

trivial solution exists which makes either w1 = 0 or w2 = 0. I set δ = 3 as I do not find any

performance boost by further increasing the separation between CNN feature representations

of I1 and I2.
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In the further subsections, I explain the training and testing procedures of the proposed

network. Then I compare the aesthetic ranking results of the proposed network against a

state-of-art network that is trained on a categorical data.

5.3.3 Training the Architecture

This architecture is trained using mini-batch SGD with a learning rate of 0.001, momen-

tum = 0.9, weight decay of 10−6 and by employing Nesterov momentum. The learning rate

is reduced by 15% after every ten epochs. The batch size is set to 50. Apart from warping

and cropping out the local patch, only the mean RGB value computed on the training set is

subtracted from each pixel of the image. During training, when the network makes a wrong

decision, it is forced to learn by exploiting the difference between some other characteristics

of the image in the next iteration. Over many epochs, it manages to discover the relevant

image properties which better define image aesthetics.

The dataset has 23, 000 image pairs containing all unique images (i.e. total 46, 000

images). I use subsets of 20, 000 and 3, 000 pairs for training and validation respectively.

I stop the training when the accuracy on the validation set does not show significant

improvement for 10 consecutive epochs. I train using relative labels i.e. a pair is labeled as

1 if r1 − r2 > 1, otherwise it is labeled as −1. Here, ri is the average rating of Ii in AVA

dataset. More details on the data creation are given in Section 5.4.

5.3.4 Testing the Architecture

Given a new pair of images, initially, I subtract the mean of the training data from each

pixel of both the images. I would like to point out that the test set does not share any pairs

or any individual images with the training and validation set. I pass both the images and

their patches into the network and get the value of d(I1, I2) from Equation 5.2. I1 is then

predicted as a more beautiful image than I2 if d(I1, I2) > 0 and vice versa. The test set
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contains 20, 000 image pairs. I use the weights of the epoch where the highest ranking

accuracy with the least amount of loss was achieved on the validation set.

5.3.5 Ranking using a Network Trained on Categorical Labels

I train a network on categorically-labeled data using our implementation of the RAPID

approach (Lu et al., 2014), which is a recent state-of-art method for aesthetics assessment.

It is trained on the same set of 40,000 images that is used to train the proposed network.

However, in this case, these images have been categorized as either beautiful or non-beautiful

depending on the average ratings obtained directly from the AVA dataset. The ratings in the

AVA dataset range from 1-10. I set the threshold to 5.5, and that determines the class of an

image. This network consists of stacks of convolutional layers, followed by dense layers

and finally a sigmoid to convert the raw scores into a probability measure, p(y = 1|I), i.e.,

the probability of an image I belonging to the beautiful class. I point the reader to (Lu et al.,

2014) for more details about the RAPID network architecture. While testing for a pair of

input images, the first image is passed through the network, and the probability measure -

p(y = 1|I1) - is obtained. Passing the second image provides p(y = 1|I2). The first image is

judged to be more beautiful than the second one if p(y = 1|I1) > p(y = 1|I2). This test set

contains 20, 000 image pairs and is identical to the test set used for the proposed approach

as mentioned in Section 5.3.4. Despite RAPID network being similar in size to the proposed

network, it gets a significantly lower accuracy on this relative ranking problem, which

suggests that a network trained on categorically-labeled data fails to learn the complex,

relative ranking order in the data.

5.4 Dataset

The task is to determine the more beautiful image in a pair. To the best of my knowledge,

there exists no such dataset containing relatively-labeled pairs with respect to their aesthetic
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rating. I created a dataset containing 43, 000 image pairs. The individual images in these

pairs belong to the AVA dataset (Murray et al., 2012). I use 20, 000 pairs for training, 3, 000

for validation and the rest for testing. I now describe the protocol used to form the pairs out

of the images from the AVA dataset. The protocol can be defined by these three constraints:

1. The difference between the average ratings of images in a pair should be≥ 1. Constraining

this difference ensures that the training/test pairs are more likely to be aesthetically different.

2. Each image in the AVA dataset has 210 ratings on an average. I computed the variance

of all the ratings for each image. I observed that the distribution of all these variances over

the entire the AVA dataset takes the form of a Gaussian with a mean of 2.08 and a standard

deviation of 0.6. The minimum and maximum variance in the image ratings are 0.8 and

4.5 respectively. As mentioned in (Murray et al., 2012), high variances among the image

ratings are a result of the collective disagreement between the raters, which suggests that

such images may have certain abstract/novel content or photographic style, preferred only

by a certain group of people. I avoid the images which cause such significant disagreements

among the raters by only considering the images having rating-variance less than 2.6.

3. I avoid including pairs from different categories since the characteristics which make

an image aesthetic may vary with the category. For example, a beautiful picture of a car

may have bright colors whereas a beautiful picture of a human face may have low-depth of

field and better details. Additionally, since the ratings in the AVA dataset are crowd-sourced

ratings, the opinions may exhibit a preference towards some category. The effect of these

two factors can be mitigated by using pictures from the same category to form pairs.

After such selection of pairs, the relative labels can be formed. A pair is labeled as

1 if the average rating of the first image is greater than that of the second image and −1

otherwise. The majority of the pairs in the dataset have the rating-difference ≈ 1. To

quantify, the rating-difference for about 85% of the training and test data is between 1 and

1.5. As the rating difference between the images of a pair decreases, choosing the more
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Figure 5.2: Rankings Produced by the Proposed Network Are Shown Above. Top and

Bottom Rows Show Correct and Wrong Predictions Respectively for a Total of Four Pairs.

Each of Them Is Enclosed in Either Red/Green Boxes. For Every Pair, the Network Ranks

the Right Image Higher than the Left Image. Please View in Color c©2016 IEEE.

beautiful image in that pair gets difficult. Also, to ensure that the proposed network is not

biased towards this dataset, I replicate the experiments on another reference test-set provided

by the creators of the AVA dataset (Murray et al., 2012). This reference test-set contains

20, 000 images and has also been used by (Lu et al., 2014). By following the aforementioned

protocol, these 20, 000 images yield us 7, 670 pairs. I call these set of pairs as the standard

test set. I now describe the experiments and give an analysis of results.

5.5 Experiments and Results

I run the proposed network on the test set and the standard test set containing 20, 000

and 7, 670 image pairs respectively. I achieve a ranking accuracy of 70.51% and 76.77% on

the test-set and the standard test-set respectively. Here, ranking accuracy is defined as the

fraction of pairs for which the model correctly picks the more beautiful image according
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Table 5.2: Results for Ranking and Binary Classification c©2016 IEEE

Ranking

on the

test-set

Ranking on

the pairs from

standard test-set

Classification

on the test-set

Classification

on standard

test-set

RAPID (Lu et al., 2014) 62.21 65.87 59.92 69.18

Proposed 70.51 76.77 59.41 71.60

to the ground-truth labels. I compare the proposed approach with a state-of-art aesthetics

classification network called RAPID (Lu et al., 2014), trained as described in Section 5.3.5:

both the images are passed one-by-one to the RAPID network, and the more beautiful image

is chosen. RAPID produces a ranking accuracy of 62.21% and 65.87% on the test set and

the standard test-set respectively. Since each channel of the proposed architecture is a replica

of (Lu et al., 2014) with the modified ranking loss, I compare the proposed architecture only

with (Lu et al., 2014). However, I believe that similar performance improvements can be

obtained if a different state-of-art model (e.g., (Lu et al., 2015)) was used for each of the

channels.

5.5.1 Performing Binary Classification using the Proposed Network

Due to the proposed relative-learning-based approach, I believe that the network has

gained a semantic-level understanding of the properties which make an image highly

aesthetic. To verify this, I attempted binary classification on the test set as well as the

standard test-set. For this purpose, I extracted the top channel of the network i.e. C11 and

C12 (see Fig. 5.1). I use the best weights learned from the ranking task for this channel.

After the last node, I append a sigmoid layer to convert the values into decision values.
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The input image is passed through the network to obtain the probability of that image

being beautiful. I compute the results on a subset of 10, 000 images taken from the test set

and the entire standard test set (Murray et al., 2012). On the test set, proposed approach

obtains 59.41% classification accuracy as compared to 59.92% obtained by RAPID. On

the standard test set, the proposed approach obtain an accuracy of 71.60% as compared to

69.18% obtained by RAPID. Note that no additional training has been performed to adopt

the network for classification, which shows that the learned features may be capturing the

characteristics that are responsible for making an image aesthetic. The proposed network

outperforms RAPID on the ranking task and produces a competitive performance on the

classification task without any additional training. Note that the performance of both the

networks is significantly lower on the test-set as compared to that of on the standard test-set.

This performance difference could be attributed to the fact that all images in the standard

test-set are distributed only over eight categories, whereas the images in the test-set are

distributed over all 65 categories. The results of all the experiments are summarized in Table

5.2

Fig. 5.2 illustrates some ranking results obtained by the proposed network. The wrong

predictions in the bottom row show that the network lacks semantic knowledge about objects

and natural phenomena. For example, even though the picture containing two birds has

better color harmony/contrast, the lightning phenomena is a rare capture, making it more

picturesque.

5.6 Discussion

In this chapter 3 , I introduced a novel problem of relative aesthetics which could have

widespread applications in image search, enhancement, retrieval, etc. I created a dataset with
3Most of the material in this chapter has appeared in the paper (Chandakkar et al., 2016).

See the full credit statement in the appendix. I and my co-author equally contributed to this
paper.
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a careful and constrained selection of 43, 000 pairs of images from the AVA dataset where

one image is always more beautiful than the other. I showed that a deep neural network

trained with an appropriate loss function which accounts for such relatively-labeled data

significantly outperforms a state-of-art network trained on same data with categorical labels.

The proposed network is also able to achieve a competitive performance on an aesthetics

classification problem with trivial modifications to its architecture and no fine-tuning at all.

This shows that it has gained a certain semantic-level understanding of the factors involved

in making an image aesthetic.

We will now discuss a case where the true labels of an image are reversed i.e. for any

pair of Image A and B, if the true ranking is “A better than B”, we change that to “B better

than A”). Now, the question is will the model still learn (i.e. after re-training) a consistent

ranking function except that the ranking is reversed? That is, can the model now tell (with

high probability of being correct) an image C is better than an image D when the true label

is “D better than C”?

The loss function is,

L = max(0, δ − y · (w · (C1 − C2))), (5.4)

The reversed labels are represented by ŷ = −y. The loss function (with the reversed

labels) becomes,

L = max(0, δ − ŷ · (w · (C1 − C2))), (5.5)

Consider a case where the true label is 1 indicating “image A better than image B”.

However, after reversal the label becomes -1 indicating “image B better than image A”. The

loss function when the reversed label is -1 is L = max(0, δ + (w · (C1 − C2))). To back-

propagate a non-negative loss, it is now necessary that wTC1 < wTC2 − δ. After sufficient
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learning iterations the model would learn to predict -1 since sign(w · (C1 − C2)) = −1.

Thus the model will predict that “image B is better than image A” with a high confidence.

Similar argument can be made if we start with a true label of -1.
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Chapter 6

EMPLOYING DEEP FEATURES TO CAPTURE LOCALIZED IMAGE ARTIFACTS

6.1 Problem Introduction

In this chapter, I will employ deep networks to capture localized image artifacts. Before

we dive in and see the particular challenges posed by this task, I will briefly describe the

areas that deep networks have excelled in. CNNs have surpassed the performance of previous

state-of-art approaches by significant margins in various fields. For example, CNNs have

shown considerable superiority in object recognition (Simonyan and Zisserman, 2014; He

et al., 2015), face recognition (Taigman et al., 2014), semantic segmentation (Dai et al.,

2016) etc. The previous chapter showed that CNNs could assess aesthetics value of images,

which is a subjective task and is quite different from tasks such as object detection. CNNs

have also shown good results in some understudied but long-standing and difficult problems

such as gaze-following (Recasens et al., 2015). Since the advent of (Krizhevsky et al.,

2012), deep network architectures have also been continuously evolving for tasks such as

segmentation (Zheng et al., 2015), object detection and image classification (He et al., 2015;

Goodfellow et al., 2014; Salimans et al., 2016).

However, training CNNs to characterize localized image artifacts and label the image

accordingly on a relatively small dataset remains a challenging task. With large amounts

of data, deep CNNs may be able to learn a good representation for localized artifacts

using a conventional pipeline (i.e., end-to-end training on images). Unfortunately, there

are many applications where the labeled data is scarce, and the only way to obtain more

data is by employing human experts, which is expensive and subject to their availability.

This real-world constraint hinders the widespread use of advanced CNN architectures in
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(a)

(b)

(c)

Figure 6.1. (a) and (b) Clean (Left) and Distorted (Right) Image Pairs in the TID 2013

Dataset. The Images on the Right in (a) and (b) Are Distorted by Non-uniform and Uniform

Noise Respectively. (c) Authetic and Forged Image Pair from CASIA v2.0 Dataset. Red

Overlay Shows the Distorted/Forged Regions in an Image. Please Zoom in to See Details

and View the Online Version.
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such problems. On the other hand, the nature of some of these problems may exhibit

properties that can be leveraged to increase the localization power as well as the volume

of useful training data. For example, the images can be divided into smaller patches, and

the labels of these patches could be derived from the original image, the number of labeled

training samples could be increased potentially by a factor of, say 10-100, depending on

how the patches are formed. Then CNNs could be trained on the augmented data, and

image-level results could be derived by averaging patch-level results. Such patch-level

training followed by averaging is the current state-of-art for the problem of no-reference

image quality estimation (NR-IQA) (Kang et al., 2014) (see Section 6.4 for details on

NR-IQA).

The effectiveness of this patch-level training technique is only observed if one would

assume that the artifacts are uniformly spread over the entire image, which is unfortunately

too strong a constraint in practice. Certain real-world problems such as NR-IQA and image

forgery classification are good examples where these strong constraints are often violated.

Fig. 6.1a and 6.1b shows NR-IQA examples containing original (left) and distorted (right)

images. The red overlay shows the distorted region in both the images. The distortions are

localized, and thus only few image patches are responsible for degrading its quality. Note

that in the bottom image, the flower in the salient central region is distorted whereas, in

the upper image, some parts towards the lower non-salient region are distorted, preserving

the quality of salient face. This affects the perceived image quality as the top image (score

= 5.56) has been judged to be of higher quality than the bottom one (score = 3.53) based

on the extensive subjective tests conducted in (Ponomarenko et al., 2015). Interestingly,

the type and the severity of the distortion added are identical for both images. Thus the

image quality is dependent on various factors such as distortion type, severity, affected patch

locations and their texture, etc. This cannot be handled by the aforementioned patch-level

training technique. Similar observations can be made about Fig. 6.1c. The image needs
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to be categorized into authentic or forged. The forgery is localized (shown by the red

bounding box) and may not be effectively captured by a conventional deep CNN-pipeline or

independent patch-level training, especially when the training data is only in the order of

thousands. Patch-level training is only effective in case of uniform distortion as shown in

Fig. 6.1b.

To combat these scenarios, I present a novel CNN-based approach focused towards

such type of data (Chandakkar and Li, 2017a). The proposed approach does not require

the image and its patches to share a similar distribution. It works well even if there is only

one patch per image which plays an important role in determining the image label (relaxing

the requirement that all patches from an image should each contribute to the decision, e.g.,

employing patch-result averaging). I evaluate the approach on one synthetic data and two

real-world, challenging vision tasks - NR-IQA and image forgery classification. I will

demonstrate that the proposed method produces a state-of-art performance for both the

applications.

6.2 Problem Setup

I consider a problem where the data has some localized information embedded in it

that is crucial to getting the desired output. Additionally, the quantity of available data is

limited, and its artificial generation is non-trivial or even impossible. I assume that inferring

important patches is possible or this information is provided as ground-truth.

Consider a database of images X containing N images, and their labels, denoted by

(Xi, Yi) ∀ i. An image has m patches, x1i , ..., x
m
i . Here, xji denotes j th patch in the ith image.

I denote the patch-level labels by y1i , . . . , y
m
i . Patch-level labels can be inferred from the

image, or they can be a part of ground-truth labels. Thus training on patches and then

averaging all the patch scores to obtain the image label is a naı̈ve way which, actually, works

reasonably well in practice. However, the learner has not been fully-equipped to understand
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the relation between patch scores and the image score. In other words, the network cannot

learn an optimal weighing strategy for all image regions, especially when only a few regions

contain the important localized artifacts. Training on the entire image with a deep stack of

convolutional filters may achieve the desired result, but then limited amounts of data prevent

CNN from generalizing well. Thus the problem becomes: given an image Xi and its patches

x1i , . . . , x
m
i , first obtain the patch-level labels - y1i , . . . , y

m
i . Subsequently, develop a CNN

framework which aggregates the information from the collection (xji , y
j
i ) ∀i, ∀j and forms a

mapping function f : Xi → Yi, ∀ i.

6.3 Proposed Approach

The proposed approach has two CNN stages out of which the first one is trained on a

collection of labeled patches. Given a database of labeled images - X ,Y - I extract all the

patches and derive their corresponding labels. As mentioned earlier, the patch-level labels

are either inferred from the image label or are provided as ground-truth, if available.

6.3.1 Training the First Stage

The first stage CNN follows a conventional training pipeline and is trained on a collection

of labeled patches. I detail the CNN architectures, preprocessing techniques used and the

specifics of the training procedure in Section 6.4 as they vary by application.

It is well-known and empirically verified that deeper layers encode increasingly powerful

features (Zeiler and Fergus, 2014; Yosinski et al., 2015) that are semantically more mean-

ingful (Zhou et al., 2014). Thus after training the first stage, I extract the ReLU-activated

responses of the last but one layer for all the patches in the train and validation set. During

my experiments, I observed that ReLU-activated sparse response provides better validation

loss than the pre-ReLU responses. This will be used as the input representation for the

second stage described as follows.
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Figure 6.2: Illustration of a Hyper-image. The Yellow Circles along the Depth Axis Denote

the D-dimensional Representation for That Patch.

6.3.2 Training the Second Stage

A trained first stage CNN provides a D-dimensional representation obtained from the

last but one layer for any given image patch. Let us denote the m overlapped patches for the

ith image by x1i , . . . , x
m
i . I extract the D-dimensional representations from these m patches

and arrange them in a U × V ×D hyper-image denoted by Hi. The arrangement is done

such that the (u, v) element of the hyper-image - Huv
i - corresponds to the representation

of (u, v) patch in the original image. In other words, each patch in the original image now
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corresponds to a point in D-dimensions in the hyper-image. Note that U and V are smaller

as compared with the image height and width respectively, by a factor proportional to the

patch size and overlap factor. An illustration of the hyper-image can be seen in Fig. 6.2.

Now, a second stage CNN can be trained on the hyper-images and their labels. This

CNN shares architectural similarities with its counterpart - the first stage CNN. I do not

perform mean-centering or any other pre-processing since these representations are obtained

from normalized images.

Each pixel in the hyper-image being inputted to the second stage CNN is of the form

Huv
i = f1(f2(. . . (fn(xuvi )) . . .)) ∀ u, v, where f1, . . . , fn represent the non-linear operations

(i.e. max-pooling, convolutions, ReLUs etc.) on an image as it makes a forward pass through

the first stage. Then in the second stage, the label is inferred as, yi = g1(g2(. . . (gn(Hi)) . . .)),

where Hi denotes the hyper-image being inputted to the second stage corresponding to the

ith image and g1, . . . , gn denote the non-linear operations in the second stage. The following

equation expresses yi as a highly nonlinear function of xuvi ∀ u, v.

yi = g1(g2(. . . (gn({H11
i , . . . , H

uv
i })) . . .)),

where, Huv
i = f1(f2(. . . (fn(xuvi )) . . .)) ∀ u, v

(6.1)

This allows the multi-stage CNN to take decisions based on context and by jointly consider-

ing all the image patches. Both the stages combined provide higher representational capacity

than had a single stage been trained merely with patches followed by averaging.

Note that the convolutional filters of the second stage CNN only operate on a small

neighborhood at a time (usually 3× 3), where each point in this neighborhood corresponds

to the D-dimensional representation of a patch. So if the receptive field of a neuron in the

first layer is 3 × 3, it is looking at nine patches arranged in a square grid. Thus filters in

the early layers learn simple relations between adjacent patches whereas the deeper ones

will start pooling in patch statistics from all over the image to build a complex model which

116



relates the image label and all patches in an image.

This two-stage training scheme raises an issue that it needs the first stage to produce a

good representation of the data since the second stage is solely dependent on it. Any errors

in the initial stage may be propagated. However, in the experiments, I find that the accuracy

of the entire architecture is always more than the accuracy obtained by:

1. Training end-to-end with a deep CNN.

2. Training on patches and averaging patch scores over the entire image.

3. End-to-end fine-tuning of a pre-trained network.

This points to two possibilities. Firstly, the second stage is powerful enough to handle slight

irregularities in the first stage representation. This is expected since CNNs are resilient even

in the presence of noise or with jittered/occluded images to some extent (Dodge and Karam,

2016). Secondly, inputting a hyper-image containing D-dimensional points to a CNN results

in a performance boost. For example, predicting a quality score for the distorted images

shown in Fig. 6.1a and Fig. 6.1b can be viewed as a regression task with multiple instances.

A single patch having a lower quality will not necessarily cause the entire image to have a

lower quality score. Similarly, an image with multiple mildly distorted patches at corners

may have higher quality score than an image with a single severely distorted patch placed

in a salient position. Thus quality score is related to the appearance/texture of all patches,

their locations, distortion severity, etc. The proposed network acquires location sensitivity

to a certain extent (shown in experiments on synthetic data) as it learns on a U × V ×D

grid. Distortion strengths of the individual patches are encoded in the D-dimensions, which

are unified by the second stage to get desired output for a given image. On the other hand,

an end-to-end conventional network pipeline will need to learn both - 1. the discriminative

feature space and 2. the patches which contribute to the image label. The patch-averaging

technique will fail as it will assign equal weight to all the individual patches potentially
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containing distortions of different strengths. To summarize, the proposed architecture

attempts to learn the optimal mapping between image label and spatially correlated patches

of that image.

6.3.3 Testing

Initially, a fixed number of patches from an image are extracted. Their representations are

computed using the first stage and arranged in a U ×V ×D grid to form a hyper-image. The

proposed approach does not require resizing of input images. Instead, the strides between

patches are changed at run-time to obtain the desired shape. In applications where resizing

images could change the underlying meaning of images or introduce additional artifacts (e.g.,

image quality, image forgery classification), this approach could be useful. The procedure

to compute the strides at run-time is as follows. I first compute (or assume) the maximum

height and width of all the images in the dataset. If a test image exceeds those maximum

dimensions, I scale it isotropically so that both its dimensions meet the size constraints. Let

the maximum height and width be denoted by M and N respectively. Thus the number of

patches required in the x and y direction of the grid are npx = d N
szx
e, npy = d M

szy
e. Here,

szy × szx is the patch size that is used in the first stage. For any new M̂ × N̂ image, the

required strides (denoted by sx and sy) to obtain a fixed number of patches in the grid are as

follows:

sx = rnd

(
N̂ − szx
npx − 1

)
, sy = rnd

(
M̂ − szy
npy − 1

)
(6.2)

After obtaining the hyper-image ∈ RU×V×D from the first stage, it is forward propagated

through the second stage to obtain the desired output. In the upcoming sections, I apply

the proposed approach to a synthetic problem and two real-world challenging vision tasks,

review relevant literature and discuss other aspects of the proposed approach.
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Table 6.1: Results of Experiments on Synthetic Data

Experiment 1 on synthetic data

Approach SROCC PLCC

Patch-averaging 0.9132 0.8982

Proposed 0.9611 0.9586

Experiment 2 on synthetic data

Approach Mean of SROCC and PLCC

Patch-averaging 0.665, 0.7, 0.544, 0.5, 0.439

Proposed 0.886,0.811,0.738,0.744,0.718

6.4 Experiments and Results

I evaluate my approach on a synthetic task and two challenging real-world problems -

1. no-reference image quality assessment (NR-IQA) and 2. image forgery classification.

Apart from the dependence on localized image artifacts, an additional common factor which

aggravates the difficulty level of both these problems is that the amount of data available

is scarce. Manual labeling is expensive as subject experts need to be appointed to evaluate

the image quality or to detect forgery. Additionally, artificial generation of data samples is

non-trivial in both these cases. I will begin by describing the setup for the synthetic task.

Synthetic task: While this task is constructed to be simple; I have included certain

features that will examine the effectiveness of the proposed approach. The task is to map

an image to a real-valued score that quantifies the artifacts introduced in that image. The

dataset contains 128× 128 gray-scale images that have a constant colored background. The

color is chosen randomly from [0, 1]. I overlay between one to five patches on that image.

Each patch contains only two shades - a dark one ∈ [0, 0.5) and a bright one ∈ [0.5, 1]. A

random percentage of pixels in a patch is made bright, and the others are set to dark. Finally,
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Figure 6.3: Images Used in Both the Synthetic Tasks. Left 2× 2 Grid Shows the Images

Used in the First Task and the Other Grid Shows Images Used in the Second Task.

all the pixels are scrambled. Size of each patch is 16× 16. Some of the images belonging to

the first synthetic task are shown in Fig. 6.3.

Let the synthetic image be denoted by S and the ith patch by pi. The number of patches

overlaid on S is η (≤ 5). Let s0 denote the constant background value of S. pjki denotes the

(j, k) pixel of pi. The center of the patch pi is denoted by ci. The image center is denoted by

ĉ. The score of this image can now be defined as 5−
√∑η

i=1 α
2
i , where αi is:

αi =

(
16∑
j=1

16∑
k=1

(
|s0 − pjki |
16× 16

))
+

(
1− ||ci − ĉ||2

distN

)
(6.3)

The first term computes the Manhattan distance between a background pixel and all the

pixels of a patch. This can be viewed as a dissimilarity metric between the background and

a patch. The second term imposes a penalty if the patch is too close to the image center.

The term distN is a normalization factor. If the patch lies at any of the four corners, then

||ci − ĉ||2 = distN and the penalty reduces to zero. A Higher score indicates the presence of

lower artifacts in an image.
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I perform another experiment to test the sensitivity of the proposed approach to the patch

locations. To this end, I created 1K images that all had an identical background. The number

of patches and their content (i.e., two shades and pixel scrambling) was also fixed across all

1K images. The only variable was their positions in the image. I compared the two-stage

approach and patch-averaging. Patch-averaging assigns nearly identical scores to all 1K

images whereas the proposed approach gives higher correlation with the ground truth. When

everything except patch positions was fixed, the proposed approach had higher correlation

and slow degradation with increasing number of patches. See Table 6.1 for results. See Fig.

6.3 for example images belonging to the second task.

No-reference image quality assessment (NR-IQA): Images may get distorted due to

defects in acquisition devices, transmission-based errors, etc. The task of IQA requires us

to build an automated method to assess the visual quality of an image. Conventional error

metrics such as RMSE/PSNR cannot capture the correlation between the image appearance

and human-perception of the image quality. Two variants of this problem exist - full-

reference IQA and no-reference IQA (NR-IQA). In the former task, an original image and

its distorted counterpart are given. A quality score needs to be assigned to the distorted

one with respect to the original image. Few representative approaches that try to solve this

problem are SSIM (Wang et al., 2004), MSSIM (Wang et al., 2003), FSIM (Zhang et al.,

2011a), VSI (Zhang et al., 2014) etc. However, in real-world scenarios, one may not have

a perfect, non-distorted image available for comparison. Thus NR-IQA variant has been

proposed. In NR-IQA, we are given a single image that needs to be assigned a quality score

with respect to a non-distorted, unobserved version of that image. This score must correlate

well with human perception of image quality. While creating ground-truth for this problem,

a constant value is associated with a non-distorted image. This serves as a reference on

the quality score scale. This problem involves developing a discriminative feature space to

different kinds and degrees of distortions. Such setting is more suitable for learning schemes,
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which is reflected by the fact that most approaches used to tackle this problem belong to the

learning paradigm. Few of the representative approaches include BRISQUE (Mittal et al.,

2012), CORNIA (Ye et al., 2012, 2013), DIIVINE (Moorthy and Bovik, 2011), BLIINDS

(Saad et al., 2012), CBIQ (Mittal et al., 2013), LBIQ (Tang et al., 2011) and the current

state-of-art, a CNN-based approach (Kang et al., 2014).

I perform all the NR-IQA experiments on two widely used datasets - 1. LIVE (Sheikh

et al., 2005) containing 29 reference images, 779 distorted images, 5 distortion types and

5-7 distortion levels. The images are gray-scale. Through subjective evaluation tests, each

user has assigned a score to an image according to its perceptual quality. A metric named

difference of mean opinion scores (DMOS) ∈ [0, 100] was then developed, where 0 indicates

highest quality image. 2. TID 2013 (Ponomarenko et al., 2015) has 25 reference RGB

images, 3000 distorted images, 24 distortion types and 5 distortion levels. In subjective tests,

each user was told to assign a score between 0-9 where 9 indicates best visual quality. Mean

opinion scores (MOS) were calculated and were provided as ground truth scores/labels for

each image. Four of the 24 distortions are common to LIVE and TID datasets. LIVE has all

uniform distortions whereas 12 distortions out of total 24 in TID 2013 are non-uniform. See

Fig. 1 for an example of uniform/non-uniform distortion. The aim is to learn a mapping

between the images and the scores which maximizes Spearman’s (SROCC), Pearson’s

correlation coefficient (PLCC) and Kendall’s correlation as those are the standard metrics

used for IQA. Since the number of images is so small, I run the proposed and the competing

algorithms for 100 splits to remove any data-split bias in all four experiments. As a widely

followed convention in IQA, I use 60% of reference and distorted images for training, 20%

each for validation and testing everywhere.

The subjective tests conducted for these datasets are extensive. Extreme care was taken

to make them statistically unbiased, and it is non-trivial to reproduce them. LIVE data

creation needed more than 25K human comparisons for a total of 779 images. TID 2013
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data creation had over 1M visual quality evaluations and 524, 340 comparisons. To avoid

geographical bias, the participants came from five countries. In summary, the constraint of

small data in such applications comes from the real-world, and it is difficult to generate new

data or conduct additional tests.

In all the experiments, before I feed training images to the first stage CNN, I preprocess

it following the approach of (Mittal et al., 2012) that performs local contrast normalization

as follows.

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + ε
, µ(i, j) =

3∑
k,l=−3

wk,lIk,l(i, j),

and σ(i, j) =

√√√√ 3∑
k,l=−3

wk,l (Ik,l(i, j)− µ(i, j))2.

(6.4)

Here, w is a 2-D circular symmetric Gaussian with three standard deviations and normalized

to unit volume.

Data generation: The data preparation method of (Kang et al., 2014) is common to

both datasets. It extracts overlapping 32 × 32 patches and then assigns them equal score

as that of the image. This strategy works well for (Kang et al., 2014) as they only handle

LIVE and specific TID distortions that are shared by LIVE. However, to handle non-uniform

distortions, I make a slight but important modification to their method. I compare the

corresponding patches of the original image and its distorted counterpart with the help of

SSIM (Wang et al., 2004). SSIM is used to measure the structural similarity between two

images and is robust to slight alterations, unlike RMSE. I keep all the patches belonging to

a distorted image that has low SSIM scores with their original counterparts. This indicates

low similarity between patches which could only point to distortion. For patches belonging

to reference (or clean) images, I select them all. Finally, I make the number of reference and

distorted patches equal. I call this method as selective patch training (SPT). I now describe

certain protocols common to all the NR-IQA experiments.
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Table 6.2: Architectures of the Deep Networks Used. The Term C(n) Denotes 3× 3 “Same”

Convolutions With Stride 1. MP(N) Is a Max-pooling That Reduces the Image Size by a

Factor of n. FC(n) and Drop(n) Denote a Dense Layer with n Neurons and a Dropout Rate

of n Respectively.

Architecture Layer descriptions

Synthetic stage 1
Input(128, 128) - C(16) - MP(2) - C(32) – MP(2) - 2 × C(48) -
MP(2) - 2 × C(64) - MP(2) -2 × C(128) - MP(2) - FC(400) -

Drop(0.5) - FC(400) - Drop(0.5) - FC(1,‘linear’)

Synthetic stage 2
Input(10,10,400) - 2 × C(16) - MP(2) - 2 × C(32) -
MP(2) - 2 × C(64) - MP(2) - FC(400) - Drop(0.5) -

FC(400,‘tanh’) - Drop(0.5) - FC(1,‘linear’)

LIVE/TID stage 1 Please refer to (Kang et al., 2014).

LIVE stage 2
Input(24,23,800) - 2 × C(32) - MP(2) - 2 × C(48) -
MP(2) - 2 × C(64) - MP(2) - 2 × C(128) - MP(2) -

FC(500) - Drop(0.5) - FC(500,‘tanh’) - Drop(0.5) - FC(1,‘linear’)

TID stage 2
Input(23,31,800) - 2 × C(64) - MP(2) - 2 × C(64) - MP(2) -

2 × C(128) - MP(2) - 2 × C(128) - MP(2) - FC(500) -
Drop(0.5) - FC(500,‘tanh’) - Drop(0.5) - FC(1,‘linear’)

Forgery channel
Input(64,64,3) - 2 × C(64) - MP(2) - 2 × C(128) -

MP(2) - 2 × C(128) - MP(2) - 2 × C(256) - MP(2) -
FC(500) - Drop(0.5) - FC(500) - Drop(0.5)

Forgery stage 2
Input(15,15,500) - 3 × C(64) - MP(2) - 3 × C(128) -

MP(2) - 3 × C(256) - MP(2) - FC(800) -
Drop(0.5) - FC(800) - Drop(0.5) - FC(1,‘sigmoid’)

Forgery end-
to-end CNN

Input(256,384,3) - C(32) - MP(2) - C(64) - MP(2) -
2 × C(64) - MP(2) - 2 × C(128) - MP(2) - 2 × C(128) -

MP(2) - 2 × C(256) - MP(2) -FC(500) -
Drop(0.5) - FC(500) - Drop(0.5) - FC(1,‘sigmoid’)
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Training/testing pipeline: The method of (Kang et al., 2014) trains on 32× 32 patches

and averages patch-level scores to get a score for an entire image. I train the first stage

on 32× 32 patches obtained by my selection method. The second stage is then trained by

hyper-images that are formed using the first-stage patch representations. In the first three

NR-IQA experiments, I use the same first stage as that of (Kang et al., 2014) to be able to

assess the impact of adding a second stage. Addition of a second stage entails little overhead

as on LIVE (TID) data; one epoch requires 23 (106) and 3 (43) seconds for both stages

respectively. Both the stages as well as (Kang et al., 2014) uses mean absolute error as the

loss function.

All the networks are trained using SGD with initial learning rate 0.005 and decaying at a

rate of 10−5 with each update. Nesterov momentum of 0.9 was also used. The learning rate

was reduced by 10 when the validation error reached a plateau. The first stage was trained

for 80 epochs, and training was terminated if no improvement in validation error was seen

for 20 epochs. The second stage was trained for 200 epochs with the termination criterion

set at 40 epochs. Implementations were done in Keras (Chollet et al., 2015) (with Theano

(Theano Development Team, 2016) as a backend) on an Nvidia Tesla K40. I now describe

individual experiments.

Experiment 1: I evaluate the proposed and the competing approaches on the LIVE data.

The architecture used is given in Table 6.2. The input sizes for both the stages are 32× 32

and 24× 23× 800 respectively. Even though LIVE contains only uniform distortions, the

proposed approach marginally improves over (Kang et al., 2014) over 100 splits. This could

be due to the better representational capacity of the two-stage network as all the image

patches contain the same kind of distortion. The results obtained for all the approaches are

given in Table 6.3.

Experiment 2: Intuitively, the SPT should give us a significant boost in case of TID

2013 data. Since only a few patches are noisy, assigning the same score to all patches will

125



corrupt the feature space during training. To verify this, I train on TID 2013 data using the

approach of (Kang et al., 2014) - with and without the selection strategy. Input sizes for

both stages are 32 × 32 × 3 and 23 × 31 × 800. I also evaluate the two-stage network to

show its superiority over both these approaches. I find that SPT boosts Spearman (SROCC)

by 0.0992 and Pearson correlation coefficient (PLCC) by 0.072. Two-stage training further

improves SROCC by 0.0265 and PLCC by 0.0111. The architecture and results are in Table

6.2 and 6.3 respectively. From now on, I compare with (Kang et al., 2014) assisted with the

SPT to understand the benefits of the second stage.

Experiment 3: First, I take the four distortions from TID that are shared with LIVE

(thus these are uniform). I observe a marginal improvement here for similar reasons as the

first experiment. The second part is designed to show the adverse effects of non-uniform,

localized distortions on the correlations. Out of 24 distortions, there are four common

ones. I add just two most non-uniform distortions - 1. Non-eccentricity pattern noise and 2.

Local block-wise distortions. On these six distortions, the proposed approach significantly

outperforms that of (Kang et al., 2014) with patch selection. Thus to characterize non-

uniform distortions, one needs to weight every patch differently, which is exactly what

the second stage achieves. Finally, in the third part, I test on the entire TID 2013 data.

To the best of my knowledge, no other learning-based approach has attempted the entire

data. The only approach I am aware of that tested on TID is CORNIA (Ye et al., 2012,

2013). However, even they skip two kinds of block distortions. The reasons could be lack

of training samples or the severe degradation in performance as observed here. I compare

the proposed approach with the approach of (Kang et al., 2014) augmented with SPT. The

detailed results are listed in Table 6.3. The architecture used was identical to that used in the

second experiment.

Experiment 4: I verify that training networks end-to-end from scratch gives a poor

performance with such low amounts of training data. I define a shallow and a deep CNN
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of 8 and 14 layers respectively and train them end-to-end on 384× 512 images from TID

2013. Out of all the experiments, this produces the worst performance, making it clear that

end-to-end training on such small data is not an option. See Table 6.3 for results. I provide

these CNN architectures in the supplementary material for conciseness.

Experiment 5: A popular alternative when the training data is scarce is to fine-tune a

pre-trained network. I took VGG-16, pre-trained on ILSVRC 2014. I used it as the first

stage to get patch representations. VGG-16 takes 224× 224 RGB images whereas I have

32× 32 RGB patches. Thus I only consider layers till “conv4 3” and get its ReLU-activated

responses. All the layers till “conv4 3” reduce a patch to a size of 2× 2× 512. I append

two dense layers of 800 neurons each and train them from scratch. Rest of the layers are

frozen. Please refer to the Caffe VGG prototxt for further architectural details. To train this

network, I use a batch size of 256 and a learning rate of 0.01. I average the patch scores

obtained from fine-tuned VGG and compute the correlations over 5 splits. In principle, I

should get a performance boost by appending the second stage after VGG, since it would

pool in VGG features for all patches and regress them jointly. I use a second stage CNN

identical to the one used in experiment 2. I observe that SROCC and PLCC improve by

0.06 and 0.0287 respectively. For detailed results, see Table 6.3. On the other hand, I see a

sharp drop in performance for VGG despite it being deep and pre-trained on ImageNet. The

reasons for this could be two-fold. As also observed in (Kang et al., 2014), the filters learned

on NR-IQA datasets turn out to be quite different than those learned on ImageNet. Thus the

semantic concepts represented by the deeper convolutional layers of pre-trained VGG may

not be relevant for NR-IQA. Secondly, VGG performs a simple mean subtraction on input

images versus the pre-processing for this task involves local contrast normalization (LCN).

The latter helps in enhancing the discontinuities (e.g., edges, noise, etc.) and suppresses

smooth regions, making LCN more suitable for NR-IQA.

The extensive evaluations on NR-IQA show that the proposed approach is better at
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Table 6.3: Results of the NR-IQA Experiments

Experiment 1 on LIVE data - 100 Splits

Approach SROCC PLCC

DIIVINE (Moorthy and Bovik, 2011) 0.916 0.917

BLIINDS-II (Saad et al., 2012) 0.9306 0.9302

BRISQUE (Mittal et al., 2012) 0.9395 0.9424

CORNIA (Ye et al., 2012) 0.942 0.935

CNN (Kang et al., 2014) + SPT 0.956 0.953

Proposed 0.9581 0.9585

Experiment 2 on TID data - 100 Splits

CNN 0.6618 0.6907

CNN + SPT 0.761 0.7627

CNN + SPT + Stage 2 CNN (proposed) 0.7875 0.7738

Experiment 3 on select distortions of TID - 100 splits

# distortions CNN + SPT
(SROCC, PLCC)

Proposed
(SROCC,PLCC)

Four 0.92,0.921 0.932,0.932

Six 0.625,0.653 0.76,0.755

All (24) 0.761,0.763 0.788,0.774

Experiment 4 on TID data - 10 splits

Approach SROCC PLCC

Shallow end-to-end CNN 0.2392 0.4082

Deep end-to-end CNN 0.3952 0.52

Experiment 5 on TID using pre-trained VGG - 10 splits

VGG + patch-averaging 0.6236 0.6843

VGG + second stage CNN 0.6878 0.713
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characterizing local distortions present in an image. It improves on the current state-of-art

(Kang et al., 2014) and various other approaches, such as training a shallow/deep network

from scratch or fine-tuning a pre-trained network.

Image forgery classification: In today’s age of social media, fake multimedia has

become an issue of extreme importance. To combat this, it is necessary to improve detection

systems to categorize fake posts. Here, I focus on image forgery/tampering, which is defined

as altering an image by various means and then applying post-processing (e.g., blurring)

to conceal the effects of forging. Image tampering comes in various forms, for example,

copy-move forgery (Bayram et al., 2009; Sutthiwan et al., 2011) and manipulating JPEG

headers (Farid, 2009a; He et al., 2006). Some other techniques have also been developed to

detect forgeries from inconsistent lighting, shadows (Fan et al., 2012; Kee and Farid, 2010)

etc. See the surveys for more information (Bayram et al., 2008; Farid, 2009b). However, the

problem of tampering detection from a single image without any additional information is

still eluding researchers. The current state-of-art uses a block-based approach (Sutthiwan

et al., 2011) which use block-DCT features. It forms a Markov transition matrix from these

features and finally feeds them into a linear SVM. They carry out their experiments on

the CASIA-2 tampered image detection database 1 . It contains 7491 authentic and 5123

tampered images of varying sizes as well as types. I have also done some studies in the past

investigating effect of human factors in image forgery detection (Chandakkar and Li, 2014).

Data generation: Given a database of authentic and (corresponding) tampered images;

I focus on getting the contour of the tampered region(s) by doing image subtraction followed

by basic morphological operations. The resultant contour is shown in Fig. 6.4. I sample

15 pixels along this contour and crop 64 × 64 patches by keeping the sampled points as

the patch-centroids. Similar to (Sutthiwan et al., 2011), I train on 2
3

rd of the data and use

1
6

th data each for validation and testing. I subtract the mean of training patches from each

1http://forensics.idealtest.org/casiav2/
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Figure 6.4: Authentic (Left) and Tampered (Middle) Image. The Resultant Contour of the

Tampered Region (Right). Please Zoom-in and View in Color.

Table 6.4: Results of Image Forgery Classification

Approach Classification accuracy

End-to-end CNN 75.22%

Current state-of-art (Sutthiwan et al., 2011) 79.20%

Proposed two stage CNN 83.11%

patch and do on-the-fly data augmentation by horizontally-flipping the images. Instead of

categorizing patches as authentic/tampered, I develop a ranking-based formulation, where

the rank of an authentic patch is higher than its counterpart. Note that during testing, a

single image is given to be classified as authentic or forged and thus a contour of the forged

region cannot be found (or used).

Experiment 1: I train an end-to-end deep CNN that takes an entire image as input and

categorizes it as authentic or tampered. The architecture used is shown in Table 6.2. It takes

256× 384 RGB images as input. This size is chosen since it needs a minimum number of

resizing operations over the dataset. The classification accuracy is shown in Table 6.4.

Experiment 2: The first stage CNN learns to rank authentic patches higher than tam-

pered ones. I propose ranking because every patch may contain different amount of forged

region or blur. This CNN has two identical channels that share weights. Its architecture
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is shown in Table 6.2. Let the last dense layer features obtained from an authentic and

a tampered patch be denoted by CAu and CTp respectively. A weight vector needs to be

learned such that wTCAu − wTCTp > 0. However, the network trains poorly if I keep

feeding authentic patches into the first channel and the tampered ones into the second

channel. Shuffling of patches is necessary to achieve convergence. I assign a label of 1

if two channels get authentic and tampered patches (in that order), else -1. Thus I need

d(C1, C2) = wT2 y · (f(wT1 · (C1 − C2)) > 0, where Ci is the feature from the ith channel,

whereas y ∈ {−1, 1} denotes the label. The transformations achieved through two dense

layers and an ReLU are denoted by w2(·), w1(·) and f(·) respectively, as shown in Fig. 6.5.

The loss function becomes, L = max(0, δ− y · d(C1, C2)). The term max(0, ·) is necessary

to ensure that only non-negative loss gets back-propagated. The δ(= 3) is a user-defined

parameter that avoids trivial solutions and introduces class separation.

The first stage representation should discriminate between neighborhood patterns along

a tampered and an authentic edge (since I chose patches centered on the contour of the

tampered region). Given an image, I extract patches and form the hyper-image required to

train the second stage. I use binary labels, where 1 denotes authentic image and vice-versa

along with a binary cross-entropy loss. The architecture of the second stage is shown in

Table 6.2. To overcome class imbalance, I weigh the samples accordingly. I compare the

proposed approach with an end-to-end CNN network (experiment 1) and the current state-of-

art in passive, generic image forgery classification (Sutthiwan et al., 2011). CNN-baseline

gives the worst performance followed by the current state-of-art. This is expected since

the latter extracts block-level DCT features whereas the CNN-baseline tries to learn from

an entire image - a considerably difficult task especially when the tampered/forged parts

are localized and well camouflaged. My hybrid approach beats the CNN-baseline and the

state-of-art by 8% and 4% respectively. All these experiments underline the importance of

collectively learning from image patches when the data is scarce and shows the flexibility of
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Figure 6.5: Proposed Channel Architecture. Weight Sharing Occurs Between Both Channels.

Please Zoom in to See Details.

the proposed approach.

6.5 Discussion

The proposed approach shares certain conceptual similarities with the approach of

(Hariharan et al., 2015). They consider a vector of activations of all the CNN units “ahead”

a pixel. They refer to this vector as a “hypercolumn” of activations. I consider all the

responses of the last fully-connected layer belonging to an image patch. There are some

major differences between these two approaches as follows. To make a location-aware

classifier, they need to train a 10× 10 interpolated, coarse grid of classifiers, whereas my

approach needs only one coherent classifier (i.e., the second stage) irrespective of how fine

the grid is. They note that training their coarse classifier grid is a hard optimization problem

and they ignore this interpolation at training time. Using the notion of hyper-image, I can

train the second stage and observe a considerable improvement over training with the whole

image or simple patch averaging, feature-pooling, etc. A recent paper uses pre-trained object
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detection models such as VGG-19 and simultaneously trains just the fully-connected layers

and region-adaptation modules on multiple image regions (Gidaris and Komodakis, 2015).

This multi-region protocol gives them a boost in the classification performance on PASCAL

VOC 2007 and 2012. In comparison, the proposed approach can be trained on patches first

(i.e., the object parts) and then those patches (parts) can be combined to learn the entire

object representation. This may handle occlusions and deformations well since the trained

first stage may have a better idea of which patches belong to either an object, context or

irrelevant background. Also, even if one of the object parts have been deformed/occluded,

the other parts can guide the classifier in the second stage in the right direction. Training the

first stage, in this case, requires patch-level labels for objects. A promising future direction

could be to apply the proposed approach on pixel-level labeled data such as MS-COCO.

I presented the notion of CNN-based hyper-image representations. The training scheme

involving these hyper-images excels in scenarios where the label is dependent on the local-

ized artifacts in an image. In these networks, the first stage is only responsible for learning

the discriminative representations of small image patches. The second stage collectively

considers all the patches of an image, unlike many other previous approaches. It optimally

weighs and pools all the patches, and develops a mapping between them and the image

label. The proposed approach enables training deep networks with greater representational

capacity than their conventional counterparts in specific cases where patch-level labels

are available. I observe in all the experiments that the second stage always provides a

significant improvement. I apply the approach to a synthetic and two challenging vision

tasks - NR-IQA and image forgery classification. The approach comfortably outperforms

other CNN-baselines as well as the existing state-of-art approaches.
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Chapter 7

FUTURE WORK AND CONCLUSION

7.1 Future Work

In chapter 5 and 6, I presented two visual computing tasks that employ deep features

and obtain state-of-art performance. Given the recent success of deep features, it is possible

that increasingly large number of applications hosted on smart devices will start delivering

results that utilize deep neural networks (DNN). The sensing ability of smart devices and

the network connectivity to other such devices makes them attractive for users. Sensors that

continuously monitor users’ activity coupled with sharing of information with other devices

allows them to provide proactive, smart and most importantly personalized suggestions to

their users. Their non-trivial computational ability coupled with clever algorithms is what

makes them smart.

7.1.1 Problem Introduction

There is great potential in developing on-device, intelligent applications that analyze

every aspect of our life and provide proactive suggestions. However, the ubiquity of smart

devices combined with DNN-based intelligent applications means increased computational

load on the servers. To reduce the ever-increasing load, the applications need to move to the

edge of the cloud. This has given rise to a new field called “edge computing” (Shi et al.,

2016).

However, the downside of DNNs used in such tasks is that their training requires massive

computational resources in order to achieve effective performance (Bhattacharjee et al.,

2017). DNNs also require a large storage space. As a result, DNN deployment has not
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Figure 7.1: Role of DNN Hosted on an Edge Device in Case of Speech Recognition. Left of

the Dotted Line Shows a Conventional Speech Recognition Pipeline. On the Right, an Edge

Device Could Be Used to First Pre-process the Speech That Normalizes Different Accents

and Sends It to the Cloud c©2017 IEEE.

yet moved towards the edge of the cloud. Operating on the edge of the cloud provides

several advantages. Firstly, if we were able to train DNNs on edge devices (such as a

smartphone), then DNNs could extract and store knowledge from the users’ behavior on the

source device. This would aid in personalization as DNN develops a tailor-made algorithm

for each user depending on his/her needs. In overly complex tasks where a large DNN is

unavoidable, this could provide a customized pre-processing step and aids the large DNN
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to take a correct decision. For example, in speech recognition, it is unlikely that accents

from different geographical parts could be understood equally well by a single DNN. Thus a

network hosted on an edge device could extract the acoustic features from its user’s speech,

pre-process them to aid the large DNN identify the speech in a better manner. To summarize,

an edge device DNN could be used to introduce a transformation that increase invariance of

the features with respect to different accents. This is shown in Figure 7.1.

Reducing the storage footprint and thereby reducing the computational complexity is

key to hosting a DNN on an edge device. Most of the memory in DNNs is consumed

by the weight matrices. It is well-known that DNN are typically over-parameterized and

thereby their weights have significant redundancy in them (Denil et al., 2013). Storage

footprint can thus be reduced by doing weight pruning. A typical pruning procedure removes

weights with small magnitude. This has shown to reduce the DNN model size by an order

of magnitude (Han et al., 2015a,b). However, DNNs would need to continuously learn from

the sensory data in order to provide personalization as discussed earlier. In this work, I study

the re-training of the pruned networks, aiming at improving the overall performance of the

retrained, pruned network (Chandakkar et al., 2017a).

I show that modifying the pruning strategies before re-training helps the DNN to better

generalize to new data while minimizing the performance reduction on the original data.

7.1.2 Related Work

Deployment of DNNs on embedded systems have attractive prospects (Han et al., 2016,

2017). One of the early works applies singular value decomposition (SVD) to a pre-trained

model to achieve weight compression (Denton et al., 2014). Magnitude-based weight

pruning was introduced in (Han et al., 2015b,a). The authors observed that many weights

have small values that produce negligible output response. Making these weights zero could

remove connections between neurons which saves memory. Adaptive quantization and
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weight sharing can also be applied to reduce the number of bits needed per weight. Huffman

coding has also been explored to quantize the weights in (Han et al., 2015a).

Modifying the original architecture of large DNNs is explored in (Iandola et al., 2016).

The modification is based on certain guidelines such as replacing most 3×3 filters with those

of 1× 1, thereby saving 9× parameters. Delayed downsampling is employed to produce

large activation maps early on in the network that helps maximize accuracy with a given

number of parameters (Iandola et al., 2016). Other line of research includes developing

specialized hardware accelerators (Han et al., 2016, 2017).

Binarized neural networks (BNN) that have binary weights and activations (1 or −1)

are proposed in (Courbariaux et al., 2016). Only real-valued quantities in these networks

are the gradients that are obtained through standard DNN optimization algorithms such as

stochastic gradient descent or Adam. BNN reduces time complexity by almost 60%.

All the network compression techniques mentioned above are useful for cases where the

only purpose of DNN is to make inference. However, in the proposed problem, a DNN is

deployed on an edge device that is supposed to constantly learn from a dynamic environment.

In the upcoming section, I describe the proposed DNN pruning and re-training strategies

and then compare them with some obvious baselines.

7.1.3 Proposed Approach

The focus of this task is on re-training a pruned DNN that will maximize performance

on the new data while minimizing the performance reduction on the old data. I describe the

weight pruning in detail.

There is a large redundancy in parameters of a DNN (Denil et al., 2013). Thus a

magnitude-based weight pruning method was proposed in (Han et al., 2015b). As mentioned

before, the method is only suitable if we were to just deploy (and not update) the pruned

DNN on an edge device. Consider a simple three layer MLP that two weight matrices

137



w(1, 2) and w(2, 3). The response of layer l is denoted by f(w(l − 1, l)T · x), where f(·)

is a non-linearity such as ReLU. A loss can be computed between the response of the last

layer and the ground-truth labels. The weight matrices can then be updated layer by layer,

starting from the last one, using backpropagation. The skeleton of the weight update rule is

as follows:

w(l − 1, l) := w(l − 1, l) + α ∗ δ(l) ∗ a(l − 1), (7.1)

where bold letters indicate matrices throughout this chapter. The gradient step is denoted

by α, wheras δ(l) denotes the error at layer l. All the weights are updated in the above

manner. Data for DNN training is usually fed in minibatches. Once all data has been

covered, it is called an epoch. A DNN almost always needs multiple epochs depending on

its complexity. I develop two different styles of pruning strategies as follows by adapting

the weight-magnitude pruning strategy defined in (Han et al., 2015b).

Weight Pruning

Global pruning: Once the network is trained, I set the (i, j) element of a weight matrix

between layer (l − 1, l) - wi,j(l − 1, l) - to zero if it is less than (T× maximum weight in

the entire network), where T is a user defined threshold. I repeat this for all layers. Since

the threshold remains the same for all layers, I call this the global pruning method.

Layer-wise pruning: The only difference between this and global pruning is that

there are different thresholds for different layers i.e. wi,j(l − 1, l) = 0 if wi,j(l − 1, l) <

(Tl−1,l ×max(w(l − 1, l)).

It was observed in (Han et al., 2015b) that magnitude-based weight pruning methods

achieve between 9-13 times compression on DNNs such as AlexNet and VGG-16. I now

propose re-training of pruned networks and integrate the above two approaches.
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Figure 7.2: A Three-layer MLP for a 10-class Classification Task. c©2017 IEEE.

Re-training of Pruned Networks

Pruning a weight matrix element actually removes a connection in a DNN. For example,

in Figure 7.2, pruning the element - w2,1(2, 3) - will remove the connection denoted by red

dotted line. It is necessary to keep track of such removed connections as not only those

weights do not get updated in the forward propagation but no gradients can flow backwards

through such connections. This will affect neurons in earlier layers as the gradients from

the pruned neuron will not be added anymore into its update equation. As mentioned

before, I re-train the network on a different data after pruning is complete. Since the data

distribution is not identical (but similar), I need to come up with new pruning strategies if a

high performance on both - old and new data has to be maintained.

A naı̈ve way is to lower the pruning threshold T that will reduce the number of weights

getting pruned. In other words, DNN has more feature dimensions available when it retrains

on the new data, resulting in a richer representation and in turn increased accuracy on the

new data. I present results for various values of T in Section 7.1.4. Based on this intuition, I

propose following three re-training strategies.

Global re-training with global pruning: I train the DNN to convergence and apply
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global pruning with a user-defined threshold T . Then I re-train the pruned network till

convergence. During re-training, no additional modification/pruning to weights is performed

i.e. the indices of the pruned weight elements stay constant during re-training. Thus this

method is the simplest to implement.

Global re-training with layer-wise pruning: The only difference between this and the

above technique is that I apply layer-wise pruning and then I re-train the pruned network till

convergence.

Iterative re-training with layer-wise pruning: This technique performs the following

steps in cyclic order.

1. DNN is trained on the original data for an epoch.

2. Then at the end of the epoch, layer-wise pruning is performed with threshold Tl−1,l ×

max(w(l − 1, l).

3. The pruned indices are now collected and the weight values as well as the backpropa-

gated gradients from the elements at that indices are cut off. While training the next

epoch, these indices are used and continuously accumulated throughout the training.

Since the pruned indices are accumulated, I get a monotonic decrease in the number of DNN

weights. After the DNN has finished the desired number of epochs or reached convergence,

I re-train the DNN with new data by keeping in mind the pruned indices.

All the above re-training strategies only use variations of the weight-magnitude-based

pruning methods and do not exploit the fact that the new data distribution is similar to that

of the original training data. Below I present a technique that utilizes the back-propagated

gradients of weight matrices.

Gradient-based pruning for re-training of DNNs: Due to the similarity in the distri-

bution of old and new training data, I hypothesize that the good features for the old, original
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training data work well even for the new data. Consider the face recognition example to

elaborate this. For example, a person’s eyes is his/her one of the most distinctive features.

Changing the eyes on someone’s face will cause a large amount of change in their facial

features (that is why people put a black mask on eyes when they want to hide identity). If a

feature is distinctive, a small change in its weight coefficient could introduce a large change

in the loss. If such weight coefficients are identified, then they could be preserved under the

hypothesis that the features they are acting on will still be relevant for the new data.

Identifying such weights from just magnitude turns out to be difficult. However, the

back-propagated gradients over the entire data - ∂L
∂wi,j

- give us an estimate of how much the

loss changes by introducing an infinitesimal change in the weight element (i, j). I compute

the entire matrix - ∂L
∂w

- that quantifies the “importance” of the all the weight elements. I sort

the elements of ∂L
∂w

in ascending order and then record the indices of the top T ′ elements

in the sorted array. Ascending sort implies the index of weight causing the least (or most

negative) change in loss will be one. Thus top T ′ indices give us most important weights.

Here, T ′ is a user-defined parameter.

I outline the steps for the gradient-based pruning re-training below.

1. DNN is trained on the original data for an epoch.

2. With threshold Tl−1,l × max(w(l − 1, l), only indices produced from layer-wise

pruning are recorded and stored in an index array (i.e. weights are not yet pruned).

3. With gradient-based pruning and threshold of T ′, I obtain the indices of most important

weights. These indices are now removed from the array produced above.

4. Actual layer-wise pruning is now performed with the filtered indices. Once the indices

are obtained, this step is same as the iterative training explained before.
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Table 7.1: Results of Pruning and Re-training Experiments. Bold Typeface Indicates Best

Results among Pruned Networks c©2017 IEEE.

Global pruning

T T ′

Post-prune

pre-retrain

Clean test

Post-prune

Pre-retrain

noisy test

Post-prune

Post-retrain

Clean test

Post-prune

Post-retrain

Noisy test

compression

factor

0.08 - 0.9423 0.5564 0.8798 0.9235 7.3×

0.12 - 0.8417 0.4479 0.8489 0.9022 19.1×

Layer-wise pruning

0.08 - 0.9576 0.5888 0.875 0.9338 1.6×

0.12 - 0.9542 0.5651 0.8765 0.9317 2.1×

0.15 - 0.9505 0.5347 0.8769 0.9301 2.9×

0.3 - 0.8499 0.4039 0.8352 0.902 17.2×

Iterative pruning

0.3 - 0.938 0.5736 0.8492 0.9031 21.8×

Iterative gradient pruning

0.3 0.1 0.9445 0.5736 0.8646 0.9056 7.1×

0.3 0.2 0.9451 0.5618 0.8765 0.9134 4.3×

0.3 0.3 0.9461 0.6147 0.8831 0.9147 3×

Reference - No pruning

T T ′ Clean test Noisy test Clean test Noisy test factor

- - 0.9580 0.5957 0.862 0.9376 0
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7.1.4 Results

I test the proposed pruning and re-training strategies on the popular MNIST data. In

order to generate new data, I apply Gaussian blur to the original data with kernel size = 9

and sigma= 3. I build a simple three layer MLP following the standard LeNet. The first

layer contains 784 neurons, the hidden and the output layer contains 50 and 10 neurons

respectively. The network is trained till validation loss shows no improvement for 10

consecutive epochs. I use stochastic gradient descent (SGD) with 0.9 nesterov momentum

and weight decay to train the network. All implementations were done in Theano. Even

though I use a three-layer MLP, extending these results to a deep network is trivial in theory,

since the pruning is always done one layer at a time.

The results are shown in Table 7.1. Gradient-based pruning strategy gives best results

on a clean test set post-pruning. Layer-wise pruning gives best results for a noisy set post

pruning and post re-training. With respect to compression, iterative pruning gives best

results by reducing the parameters from 39, 760 to just 1, 833. Global pruning gives good

compression but its results vary drastically depending on the threshold T unlike layer-wise

pruning. The heavy dependence of global weight pruning on T is highly undesirable.

Interestingly, all but two methods beat the uncompressed network on clean test data post-

pruning and post training. The reference network performs best on the noisy test post

training on noisy data. This is due to the catastrophical forgetting phenomenon observed

in neural networks. Catastrophical forgetting is widely studied but only on the un-pruned

networks. It would be an interesting future direction to integrate catastrophical forgetting

techniques along with the pruning techniques to enable re-training on smart devices.
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7.1.5 Discussion

In this chapter, I proposed and evaluated various strategies for re-training a pruned

network. While this is extremely useful in today’s edge computing paradigm, I found that

the best algorithm is usually a trade-off between the compression factor and the accuracy. I

observed that though naı̈ve re-training gives the best performance on the new data (i.e. noisy),

it suffers on the original data due to catastrophic forgetting. Most re-training approaches

significantly boost the performance on the noisy data while minimizing the performance

reduction on the old data. Further studies are needed to investigate catastrophic forgetting in

pruned networks and to maximize the performance of DNNs on both original as well as new

data.

7.2 Conclusion

I described three hierarchies of feature representations, namely, hand-crafted, latent and

those obtained from deep neural networks. Every type of representation has its own pros

and cons. Hand-crafted features are easy to interpret and they have explainable behavior,

a characteristic that is crucial in high-risk tasks such as automated medical diagnosis or

financial transactions. Hand-crafted also allow easy-inclusion of the prior knowledge,

potentially allowing machines to handle real-world scenarios where ambiguity is present

or a scenario that is absent from the training samples. In such cases, prior knowledge can

help choose an appropriate action. Latent-features try to discover the underlying structure in

the feature-space such as sparsity, decorrelation of reduced dimensions, low-rank, etc. The

discovered structure helps in reducing feature redundancy, and the transformed feature space

usually highlights explanatory variables that helps increase performance. Finally, I introduce

deep features. Since the advent of AlexNet (Krizhevsky et al., 2012) in 2012, deep features

have proven most effective for many visual computing tasks. A desirable property of deep
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networks is that they directly operate on the raw data with minimal pre-processinhg and

discover task-specific data representations. Deep networks do so by iteratively minimizing a

task-based loss and updating its parameters/weights in that process. To train deep networks

from scratch, one needs large amounts of data as well as massive computing power. However,

the learned deep features can be easily transferred to other tasks by means of fine-tuning.

Fine-tuning requires small amount of data and training time (in comparison to the amount

of data/time needed to train networks from scratch) that helps with small datasets.

I presented five visual computing tasks employing various representation hierarchies.

The task of clinically-relevant retrieval of diabetic retinopathy fundus image data that

has unique color spectrum and other unique attributes that decide the category of that

image. Fundus data from hospitals is difficult to obtain. Thus DR image datasets at that

time contained only thousands of images. The retrieval was unsupervised. As a result,

hand-crafted feature representations were most suited for this task.

The next task of image enhancement has two parts: 1. structured prediction of image

enhancement parameters, and 2. content-adaptive, unified image enhancement using GPs

employed latent feature space. For the first part, I hypothesize that there exists a traversal

pattern in some feature space that would lead to structured exploration and prediction of

enhancement parameters. I construct the objective function such that predicted parameters

will be an inner-produce of three latent factors. The three latent factors are derived using

iterative optimization techniques. The second part unifies the image enhancement pipeline

by employing GPs. In the GP-kernel-induced feature space, the parameters are ranked.

Each predicted parameter also has a mean and a variance. This automatically paves way for

structured exploration of the parameter space and allows for generation of small number of

candidate enhancements. This makes the enhancement process efficient.

The next two tasks utilize deep features. First task is defined as ranking a pair of images

with respect to their aestheticism. In the literature, aesthetic estimation has often been
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approached as a classification task. However, I argue that in many applications such as

image search, image enhancement, etc., ranking will be more intuitive and will produce

better results than binary-categorization of the images. I propose a Siamese network that

takes a pair of images with a label indicating the ranking order, and learns the parameters

with a ranking-loss. The ranking-loss is non-negative if the network produces an incorrect

ranking order. I also show that the proposed network can perform binary classification

with almost no re-training and with minor structural modifications. The network is able

to produce a state-of-art performance but still there are challenges on the semantic level.

For example, the proposed network often labels an image as non-aesthetic if it captures

some rare phenomenon but does not follow photographic rules (such as high contrast,

rule-of-thirds, etc.). Humans will often overlook the photography style in such cases and

consider the difficulty in capturing that brilliant phenomenon. The proposed network lacks

in understanding such semantics.

Second task utilizing deep features involves capturing localized image artifacts. Training

CNNs to capture localized artifacts and label the image accordingly on relatively small

datasets is challenging. On the other hand, the nature of some of these datasets may exhibit

properties that can be leveraged to increase the localization power as well as the volume

of useful training data. For example, the images can be divided into smaller patches, and

if the labels of these patches could be derived from the original image, then the training

data could be augmented by upto a couple of orders of magnitude. However, to the best of

my knowledge, there did not exist any approach that can collectively consider all patches

to predict a label for the given image. To combat this problem, I propose a two-stage deep

network architecture that utilizes hyper-image representation. I evaluate my approach on a

syntetic and two real-world vision problems: 1. no-reference image quality estimation and

2. image forgery classification. I show that the two-stage CNN is able to beat the current

state-of-art by pooling in statistics from all the patches and integrating them to arrive at a
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prediction.

In this chapter, I describe some future directions to my work. Deep networks may be

adapted into many fields, increasing the need of massive computational resources by a few

orders of magnitude. Moreover, the world is becoming highly interconnected and there

is a push for moving the computation away from the center of the cloud (i.e. servers) to

the edge of the cloud (i.e. individual devices). This will reduce the computational load

on servers as well as allow the devices to learn on-the-fly. The devices will also have the

opportunity to observe human lives more closely, allowing them to learn finer nuances of

personal life. In turn, this will result smarter devices that can predict many aspects of our

lives with higher precision. The first obstacle in pushing the computation to the edge is the

size of deep networks and their need for significant computational resoruces - even during

inference. Reducing the size of deep networks without sacrificing performance will alleviate

both these problems as reduction in size translates to reduced number of parameters. If the

parameters are removed appropriately, then it can also speed up execution on deep networks.

This process is called deep network pruning. However, in the literature, deep networks

cannot be trained once the pruning is done. I propose a problem where a network should

retain its ability of learning to perform different tasks with a pruned architecture. I conduct a

pilot study where I prune the architecture and re-train it with a perturbed version of the same

dataset used in the initial training. Results show that the pruned network behaves differently

with different types of pruning techniques. The results suggest that the pruned networks

may be forgetting the earlier task. This phenomenon is widely studied and is known as

catestrophical forgetting. However, integrating it with pruning algorithms has never been

done before. I believe that is an interesting future direction to take.
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and J. Pietilä, “Diaretdb0: Evaluation database and methodology for diabetic retinopathy
algorithms”, Machine Vision and Pattern Recognition Research Group, Lappeenranta
University of Technology, Finland (2006).

Ke, Y., X. Tang and F. Jing, “The design of high-level features for photo quality assessment”,
in “IEEE CVPR”, vol. 1, pp. 419–426 (2006).

Kee, E. and H. Farid, “Exposing digital forgeries from 3-d lighting environments”, in “2010
IEEE International Workshop on Information Forensics and Security”, pp. 1–6 (IEEE,
2010).

Kelly, P. M., T. M. Cannon and D. R. Hush, “Query by image example: the CANDID
approach”, SPIE Storage and Retrieval for Image and Video Databases III 2420, 238–248
(1995).

Korn, P., N. Sidiropoulos, C. Faloutsos, E. Siegel and Z. Protopapas, “Fast and effective
retrieval of medical tumor shapes”, Knowledge and Data Engineering, IEEE Transactions
on 10, 6 (1998).

Kovashka, A., D. Parikh and K. Grauman, “Whittlesearch: Image search with relative
attribute feedback”, in “IEEE CVPR”, pp. 2973–2980 (2012).

Kovesi, P. D., “MATLAB and Octave functions for computer vision and
image processing”, Centre for Exploration Targeting, School of Earth
and Environment, The University of Western Australia, available from:
<http://www.csse.uwa.edu.au/∼pk/research/matlabfns/> (2000).

Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks”, in “Advances in neural information processing systems”, pp.
1097–1105 (2012).

154



Lamard, M., G. Cazuguel, G. Quellec, L. Bekri, C. Roux and B. Cochener, “Content based
image retrieval based on wavelet transform coefficients distribution”, in “Engineering in
Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference
of the IEEE”, pp. 4532–4535 (IEEE, 2007).

Lawrence, N. D. and R. Urtasun, “Non-linear matrix factorization with gaussian processes”,
in “Proceedings of the 26th Annual International Conference on Machine Learning”, pp.
601–608 (ACM, 2009).

Li, B. and H. K. Li, “Automated analysis of diabetic retinopathy images: Principles, recent
developments, and emerging trends”, Current diabetes reports pp. 1–7 (2013).

Li, M., “Texture moment for content-based image retrieval”, in “Multimedia and Expo, 2007
IEEE International Conference on”, pp. 508–511 (IEEE, 2007).

Li, S., S. Shan and X. Chen, “Relative forest for attribute prediction”, in “Computer Vision–
ACCV 2012”, pp. 316–327 (Springer, 2013).

Litzel, O., On Photographic Composition (Amphoto, 1975).

Liu, T.-Y., J. Xu, T. Qin, W. Xiong and H. Li, “Letor: Benchmark dataset for research on
learning to rank for information retrieval”, in “Proceedings of SIGIR 2007 workshop on
learning to rank for information retrieval”, pp. 3–10 (2007).

Liu, X., C.-T. Lu and F. Chen, “An entropy-based method for assessing the number of
spatial outliers”, in “IEEE International Conference on Information Reuse and Integration,
2008.”, pp. 244–249 (IEEE, 2008).

Locher, P. J. and C. Nodine, “Symmetry catches the eye”, Eye movements: From physiology
to cognition pp. 353–361 (1987).

Lowe, D. G., “Distinctive image features from scale-invariant keypoints”, International
journal of computer vision 60, 2, 91–110 (2004a).

Lowe, D. G., “Distinctive image features from scale-invariant keypoints”, International
journal of computer vision 60, 2, 91–110 (2004b).

Loy, G. and A. Zelinsky, “Fast radial symmetry for detecting points of interest”, IEEE
TPAMI 25, 8, 959–973 (2003).

Lu, X., Z. Lin, H. Jin, J. Yang and J. Z. Wang, “Rapid: Rating pictorial aesthetics using deep
learning”, in “The ACM International Conference on Multimedia”, pp. 457–466 (2014).

Lu, X., Z. Lin, X. Shen, R. Mech and J. Z. Wang, “Deep multi-patch aggregation network
for image style, aesthetics, and quality estimation”, in “IEEE ICCV”, pp. 990–998 (2015).

Luo, W., X. Wang and X. Tang, “Content-based photo quality assessment”, in “IEEE ICCV”,
pp. 2206–2213 (2011).

Luo, Y. and X. Tang, “Photo and video quality evaluation: Focusing on the subject”, in
“ECCV”, pp. 386–399 (Springer, 2008).

155



Ma, H., H. Yang, M. R. Lyu and I. King, “Sorec: social recommendation using probabilistic
matrix factorization”, in “Proceedings of the 17th ACM conference on Information and
knowledge management”, pp. 931–940 (ACM, 2008).

Ma, H., D. Zhou, C. Liu, M. R. Lyu and I. King, “Recommender systems with social
regularization”, in “Proceedings of the fourth ACM international conference on Web
search and data mining”, pp. 287–296 (ACM, 2011).

Manjunath, B. S. and W.-Y. Ma, “Texture features for browsing and retrieval of image data”,
IEEE TPAMI 18, 8, 837–842 (1996).

Manning, C. D., P. Raghavan and H. Schütze, Introduction to information retrieval, vol. 1
(Cambridge university press Cambridge, 2008).

Marchesotti, L., F. Perronnin, D. Larlus and G. Csurka, “Assessing the aesthetic quality of
photographs using generic image descriptors”, in “IEEE ICCV”, pp. 1784–1791 (2011).

Marlin, B., R. S. Zemel, S. Roweis and M. Slaney, “Collaborative filtering and the missing
at random assumption”, arXiv preprint arXiv:1206.5267 (2012).
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