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ABSTRACT 

 

 Synthetic gene networks have evolved from simple proof-of-concept circuits to 

complex therapy-oriented networks over the past fifteen years. This advancement has 

greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a 

mechanism that cells use to achieve a discrete number of mutually exclusive states in 

response to environmental inputs. However, complex contextual connections of gene 

regulatory networks in natural settings often impede the experimental establishment of 

the function and dynamics of each specific gene network.   

 In this work, diverse synthetic gene networks are rationally designed and 

constructed using well-characterized biological components to approach the cell fate 

determination and state transition dynamics in multistable systems. Results show that 

unimodality and bimodality and trimodality can be achieved through manipulation of the 

signal and promoter crosstalk in quorum-sensing systems, which enables bacterial cells to 

communicate with each other.  

 Moreover, a synthetic quadrastable circuit is also built and experimentally 

demonstrated to have four stable steady states. Experiments, guided by mathematical 

modeling predictions, reveal that sequential inductions generate distinct cell fates by 

changing the landscape in sequence and hence navigating cells to different final states.  

 Circuit function depends on the specific protein expression levels in the circuit. 

We then establish a protein expression predictor taking into account adjacent 

transcriptional regions’ features through construction of ~120 synthetic gene circuits 

(operons) in Escherichia coli. The predictor’s utility is further demonstrated in evaluating 
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genes’ relative expression levels in construction of logic gates and tuning gene 

expressions and nonlinear dynamics of bistable gene networks.  

 These combined results illustrate applications of synthetic gene networks to 

understand the cell fate determination and state transition dynamics in multistable 

systems. A protein-expression predictor is also developed to evaluate and tune circuit 

dynamics.    
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CHAPTER 1  

 

INTRODUCTION 

 

 Synthetic gene networks have evolved from simple proof-of-concept circuits to 

complex therapy-oriented networks over the past fifteen years. This advancement has 

greatly facilitated expansion of the emerging field of synthetic biology. Synthetic gene 

networks have been developed for understanding biological design principles, developing 

biosensors for diagnosis, producing industrial and biomedical compounds, and treating 

human diseases.   

 

1.1 Synthetic Gene Networks 

  After fifteen years of rapid development, synthetic biology has started to become 

an engineering discipline with the aim to create, control and program cellular behaviors 

for basic research, and industrial and biomedical applications1,2. By taking a bottom-up 

approach, synthetic biologists rationally assemble various biological modules like genetic 

parts (promoters, coding sequence, terminators, etc…) together to create a “circuitry”, 

which is often called a synthetic gene circuit or network, to carry out a wide range of 

functions. In an integrated circuitry, genes do not work independently but in a network. 

For example, the lysis-lysogeny decision of bacteriophage lambda is tightly regulated by 

CI-Cro genetic switch3. CI protein can repress Cro to maintain a lysogenic state, while 

Cro inhibits CI expression to promote lytic development.  
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 Most existing synthetic gene networks utilize one or more of the three regulation 

mechanisms: transcriptional, translational, and post-translational4,5. Transcriptional 

circuits are engineered based on cell transcriptional regulatory machinery involving 

promoters, transcriptional factors, and RNA polymerase. Early examples of such 

synthesized circuits include the toggle switch which is constructed from a pair of 

repressor genes that inhibit the transcription of each other, and can be induced to flip 

between two stable steady states6, and the repressilator which is composed of three 

repressor-promoter interactions to form a cyclic negative-feedback loop and exhibits 

periodic oscillating behavior7. Since then, a myriad of transcriptional networks for 

diverse purposes have been constructed, including negative feedbacks8, genetic counters9, 

synchronized oscillators10, band-pass filters11, pulse generator12, edge detector13, and 

various genetic logic gates such as AND, OR, and XNOR14,15. Similar to electronic 

circuits, logic functions can also operate in living cells producing certain outputs based 

on environmental and cellular inputs. For example, the lac operon in Escherichia coli 

works as an AND gate, where β-galactosidase is only produced in the presence of both 

lactose and cyclic adenosine monophosphate16. This presents living cells as a conducive 

environment for the operation of synthesized genetic circuits designed with synthetic 

biology tools for conducting different applications. 

 Moreover, many engineered riboswitches are developed to regulate gene 

expression at the translational level. These RNA-based genetic switches can be easily 

modulated to target gene networks and reprogram cellular behaviors. For example, Green 

and colleagues recently engineered “Toehold switches” using non-coding RNAs to 

construct multi-input AND logic evaluator and regulate endogenous gene expression17. 
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Post-translational circuits generally rely on creating novel chimeric proteins, such as 

protein receptors, to rewire natural signaling pathways and reshape the dynamics of 

signaling transduction4,18. Also, it is necessary to note that some hybrid synthetic circuits 

are engineered by integrating RNA devices into transcriptional regulatory networks19, 

and some synthetic gene networks are constructed and expressed in vitro20.   

 

1.2 Applications of Synthetic Gene Networks 

1.2.1 Build to Understand: Multistability 

 Whether in bacteria or in human, gene regulatory networks of thousands of genes 

and interactions play critical roles in fundamental biological processes such as 

metabolism, signaling transduction, cell differentiation and development21. However, it is 

almost impossible for traditional biologists to systematically investigate the large-scale 

interconnected networks in their natural context using conventional tools. Synthetic gene 

networks, on the other hand, provide a clear and isolated platform for uncovering the 

complex regulatory mechanisms, such as gene expression noise, multistability, cell 

decision-making, and cell-cell communications22,23. These network topologies are usually 

abstracted from natural analogues, built with standardized genetic modules from scratch, 

and investigated in living cells. Mathematical modeling as a complementary tool is also 

employed to quantitatively understand the network dynamics and guide experimental 

design.  

 Multistability is a mechanism that cells use to achieve a discrete number of 

mutually exclusive states in response to environmental inputs, which enables cells to 

make the appropriate decisions at each condition. In prokaryotic cells, multistable 
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switches are common for cellular decision-making, such as the lysis/lysogeny switch of 

phage lambda3,24 and sporulation/competence in Bacillus subtilis25,26. In multicellular 

organisms, multistable switches also play essential roles in the regulation of cell-cycle 

oscillator during cell mitosis27, Epithelial-to-Mesenchymal transition and cancer 

metastasis28,29, and the well-known cell differentiation process, which is a manifestation 

of cellular state determination in a multistable system30,31.  

 Bistability, the simplest case for multistability, enables cells to switch back and 

forth between two stable steady states, and has been largely investigated in natural and 

synthetic systems. In general, bistability can arise from mutually inhibitory networks or 

positive-feedback loops32. A myriad of modeling and experimental studies have been 

performed to investigate the nonlinear dynamics and state transitions of bistable 

systems6,23,27. As a milestone achievement in synthetic biology, the toggle switch6 in 

2000 paved the road to develop synthetic biology with their groundbreaking work on the 

“toggle switch” circuit, in which two genes inhibited each other through targeting 

corresponding promoters. By using external inducers, the circuit could be controlled to 

toggle between two stable steady states (bistable) predicted by their mathematical model.  

 This proof-of-concept design has also been implemented in mammalian cells and 

yeast. For example, the Fussenegger group33 engineered a mammalian epigenetic 

transgene switch in which E-KRAB and PIP-KRAB expressed on two individual 

plasmids could inhibit each other by binding to ETR and PIR operators in their respective 

promoters. The induction of antibiotics indicated that this epigenetic circuitry exhibited 

two stable expression states: high E-KRAB with low PIP-KRAB, and low E-KRAB with 

high PIP-KRAB. Furthermore, the bistable expression profiles were fully reversible even 
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after rounds of expression switching. Interestingly, the system also showed long-term 

bistability in mice, suggesting that synthetic gene networks could be used as therapeutic 

devices in clinic in the future.  

 Positive feedback is another ubiquitous topological structure found in nature that 

has the capacity to generate bistability. For example, the key regulatory mechanism for 

bacteria quorum-sensing systems is positive feedback motifs, which enable cells to make 

binary decisions in responding to environmental signals34. In eukaryotes, positive 

feedback loops embedded in gene networks regulate stem cell differentiation and 

development. For instance, positive feedback between the transcription factor PU.1 and 

the cell cycle controls lymphoid and myeloid differentiation35; positive feedback between 

Sox2 and Sox6 in neural progenitor cells represses neuronal differentiation36; and Cdkn1c 

interacts with Myod to form a positive feedback that drives muscle differentiation37.  

 Robust bistable responses can also be achieved through coupling multiple positive 

feedback loops. Guided by theoretical model-based calculations, Chang et al.38 tried to 

identify parameters controlling the size of a bitsable range in order to build ultrasensitive 

systems. The authors created a composite system with two coherent positive feedback 

loops, where promoter glnK drove expression of glnG and the lacZYA operon, 

respectively. The expression of glnG was simultaneously inhibited by the LacI protein 

and activated by the inducer IPTG. Functionally, glnG could auto-activate glnK 

transcription, forming a positive feedback, while the LacY gene product galactoside 

permease could facilitate cellular uptake of IPTG to promote glnG expression by 

deactivating LacI repression, forming another positive feedback. Experimental results 

showed that the double-positive feedback circuit exhibited potent bistability over a ~480-
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fold range of induction concentrations, whereas circuits with a single positive feedback 

showed a less than ~12-fold range. 

 The current experimental researches, however, mostly focus on bistable switches, 

involving transitions between only two states. And demonstrations, from a combination 

of experiments and computational modeling, for the existence and operation of such a 

landscape in a higher dimensional multistable system are still lacking. Our recent results 

found that quorum sensing (QS) crosstalk can be engineered to yield trimodal responses 

resulting from noise-induced state transitions and circuit-host interactions39 (Figure 1). 

 

1.2.2 Build to Understand: Pattern Formation 

 Cell-cell communication exists in unicellular and multicellular species, and is 

responsible for coordinating collective population behaviors, such as biofilm formation40, 

cell differentiation41 and vertebrate embryonic development42. Quorum sensing is a 

widespread cell-cell communication mechanism in the bacteria world43, such as the 

LuxR/LuxI system in Vibrio fischeri and the LasR/LasI system in Pseudomonas 

aeruginosa. So far, quorum-sensing mechanisms, coupled with engineering principles, 

have been employed to program population control44,45, build synchronized 

oscillations10,46, produce diverse cell phenotypes47,48, control biofilm signaling40, produce 

pattern formation49, 50, and to construct synthetic ecosystems51.  

 In 2005, Basu et al. programmed a synthetic multicellular system to form bullseye, 

ellipse, heart, and clover patterns based on local AHL gradients around sender cells52. 

Morphogen diffusion on the solid plate established a natural gradient that could be sensed 

by receiver cells and induced differential responses at distinct regions. By combining 
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mathematical modeling and experimental evidence, this study provided us with a better 

understanding of the multi-scale mechanisms underlying pattern formation in 

development. 

 In a recent study from the You group, a novel pattern forming mechanism was 

developed using a synthetic gene circuit in E. coli53. This circuit is composed of an auto-

activating motif driven by the activator T7 RNAP and negative regulation of the activator 

induced by AHL from a positive feedback module. Bacteria harbouring this circuit 

generated a self-organized ring pattern. This research sheds light on a novel morphogen 

timing mechanism to generate spatial patterns in developmental processes. Further 

studies also indicate that the synthetic circuit could generate robust scale invariance in 

bacterial colony growth by controlling the temporal dynamics of diffusible morphogens54.  

 To date, diverse mechanisms have been proposed about how cells produce spatial 

patterns, either dependent on or independent of morphogen gradients. Liu et al.50 recently 

used synthetic approaches to reveal another mechanism that could generate spatial 

patterns by coupling cell motility with density. The authors engineered a synthetic gene 

circuit having two modules: the constitutively expressed LuxR/LuxI system to monitor 

local cell density (density-sensing module), and a module with LuxR/LuxI regulating 

cheZ expression to control cell motility (motility-control module). At high cell densities, 

the LuxR-AHL complex will inhibit cheZ transcription, resulting in a loss of motility. 

However, cheZ reintroduction made cells regain motility at low cell densities. When 

placed in the middle of semi-solid agar plates, the engineered E. coli automatically and 

sequentially developed periodic stripes with alternative high and low cell densities as 

cells moved radially outwards. This study reveals that a recurrent spatial structure can be 
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generated by tuning the cell’s motility and density, which may provide novel insights for 

developmental systems.  

 

1.2.3 Synthetic gene networks in single-cell organisms: Biosensor, Biofuel, and 

Biopharmaceutical   

 Started with engineering of simple gene circuits in E. coli cells, today synthetic 

biology has upgraded into complex higher-order gene networks and systems with 

predictable functions in mammalian cells and real-world applications for human health1,55. 

Application-oriented synthetic gene networks in single-cell organisms for solving 

realistic problems are also underway. Biosensor is one of the major applications. 

Generally, biosensor is composed of two genetic parts, a sensing element responsible for 

recognizing and interacting with the analyte of interest, and a detector element to 

transform the interaction signal and report it in a user-friendly way4. For example, Wang 

et al. designed a set of single-input cellular biosensors which contain an environmental-

responsible promoter and corresponding transcriptional factors and a fluorescent output 

to detect the concentration of copper, mercury, zinc, and cadmium in an aqueous 

environment56. Moreover, Kotula et al. engineered living bacteria with synthetic genetic 

circuits comprising a trigger element and a memory element to sense, record and report 

environmental stimuli in the mammalian gut, which lays the foundation for developing 

living diagnostics and therapeutics for human57. Recently, Pardee et al. integrated 

synthetic gene networks with paper-based technology to develop low-cost and practical 

paper-based biosensors to monitor glucose and strain-specific Ebola virus58 (Figure 1). 
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 In addition, engineering of biosynthetic pathways for cost-effective and high-yield 

microbial production of interests (such as biofuels) is another important application of 

synthetic gene networks. Metabolic pathways of interests are often found in natural 

organisms but the natural yield is usually very low owning to host’s tight regulation. So it 

is promising to use synthetic biology approach to improve host’s production capacity 

either by optimizing the metabolic flux or by transplanting the whole biosynthetic 

pathway into industrial model microbes, such as E. coli and Saccharomyces cerevisiae4,59. 

For example, Atsumi and colleagues transferred the butanol-producing pathway from 

Clostridium acetobutylicum into E. coli and genetically modified a number of E. coli 

genes to improve 1-butanol production60. Also, S. cerevisiae was used as a cell factory to 

overproduce fatty acid ethyl esters (biodiesel) by eliminating non-essential fatty acid 

utilization pathways61. So far, bioproduction of many biofuels including ethanol, butanol, 

biodiesel, 2-propanol, and hydrogen have been successfully explored and scaled-up 

through engineering of biosynthetic pathways62,63. 

 Furthermore, biosynthetic pathway engineering is applied to produce rare 

pharmaceutical drugs. One of the successful examples is production of the antimalarial 

drug arteinsinin, which is a sesquiterpene endoperoxide originally produced by the plant 

Artemisia annua. In 2006, Keasling group programmed S. cerevisiae to produce high 

titres of arteinsinin precursor artemisinic acid by engineering of farnesyl pyrophosphate 

biosynthetic pathway and introducing amorphadiene synthase and a novel cytochrome 

P450 monooxygenase from A. annua64 (Figure 1). Recently, they further demonstrated 

the complete biosynthetic pathway for high-level production of artemisinic acid and 

developed an efficient bioprocess for conversion of artemisinic acid to artemisinin65.  
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Figure 1: Diagram of assembly and applications of synthetic gene networks66. From left 
to right: standardized biological blocks (biobricks) are employed to assemble synthetic 
gene networks for different applications. From up to bottom: Build synthetic gene 
network to understand biological mechanism; genetic circuits for paper-based biosensor; 
biosynthetic pathway for pharmaceutical drug; genetic circuit for anti-cancer therapy. 
 

1.2.4 Therapy-oriented synthetic gene networks in mammalian cells  

 The synthetic gene network is moving into clinical therapies67. Engineering 

synthetic gene networks as an alternative to the conventional pharmacotherapy to combat 

human diseases is promising. The basic idea is using synthetic gene circuits as a smart 

sensor-actuator device to functionally interface with the host’s complex endogenous 

networks to monitor disease signals in vivo and make therapeutic responses automatically. 

Here, we briefly introduce applications of synthetic gene networks to treat cancer, 

diabetes, obesity, and immunotherapy.  
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 One of the challenges for cancer therapy is to separate cancer cells from 

surrounding normal cells. So the principle is to design devices, which can specifically 

sense cancer signals such as overexpressed oncogenes and then initiate the killing process. 

For example, Nissim and colleagues constructed a dual-promoter integrator to target and 

kill cancer cells based on their cancerous context (Figure 1). Each of the two cancer cell-

specific promoters drive a chimeric protein expression, which are then combined together 

to activate the thymidine kinase expression to kill the cell. So this AND logic circuit will 

be only activated in host cells expressing the two signals simultaneously68. A similar 

strategy was also used in a recent study in which the authors engineered a multi-input 

RNAi-based logic circuit to specifically identify cancer cells69. This cancer cell classifier 

functions through detecting the expression levels of sets of endogenous microRNAs in 

HeLa cells and triggering cell apoptosis when the expression levels match a predefined 

profile.  

 Last but not the least, synthetic gene circuits are also applied for immunotherapy. 

For example, Chen et al. engineered a synthetic ribozyme switches to regulate gene 

expression and T-cell proliferation in vitro and in vivo70. Wendell Lim’s group developed 

synthetic feedback modulators and pause switches using bacterial virulence proteins to 

precisely tune T-cell response amplitude and control human primary CD4+ T-cell 

activation71.  
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CHAPTER 2 

 

QUORUM-SENSING CROSSTALK DRIVEN SYNTHETIC CIRCUITS: FROM 

UNIMODALITY TO TRIMODALITY 

 

2.1 Introduction 

 Quorum-sensing (QS) is a widespread mechanism bacteria use to regulate gene 

expression and coordinate population behavior based on local cell density72. It is 

achieved through the binding of QS regulators with their cognate signal molecules 

(autoinducers) to regulate downstream QS pathways. Autoinducers are produced inside 

the cell and diffuse into and out of bacterial cells. Therefore, an autoinducer’s 

intracellular concentration correlates with local cell density72. There are diverse QS 

mechanisms allowing for bacterial communication: gram-positive bacteria generally use 

two-component systems mediated by peptides while gram-negative bacteria primarily use 

LuxR/I-type systems mediated by acylated homoserine lactones (AHL)73,74. Many 

bacterial activities are regulated by QS, such as antibiotic production, biofilm 

development, bioluminescence, colonization, sporulation, symbiosis, and virulence72–76. 

 With well-defined and characterized biological properties, several QS regulators 

and corresponding autoinducers have also been used for synthetic gene networks. For 

example, LuxR/LuxI and/or LasR/LasI pairs were used to generate programmed 

patterns52,53, trigger biofilm formation77,78, develop synthetic ecosystems and program 

population dynamics40,51, and construct synchronized oscillators10,46, edge detectors13,  
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and pulse generators12. RhlR/RhlI has also been used in the study of generic mechanisms 

of natural selection79 and for carrying out biological computations as chemical ‘wires’80. 

 However, effects of QS crosstalk, functional interactions between QS components 

that are not naturally paired, remain unexplored. For example, widely used LuxR-family 

regulators share extensive homologies and structural similarities in their corresponding 

autoinducers. LuxR and LasR proteins bind their respective natural ligands, homoserine 

lactones (HSL) 3-oxo-C6-HSL (3OC6HSL, hereafter denoted as C6) and 3-oxo-C12-

HSL (3OC12HSL, hereafter denoted as C12) to activate promoter pLux and pLas, 

respectively (Table 1)72,81,82. However, the LuxR protein can also bind other HSLs, such 

as C7HSL and 3OC8HSL83. LasR can also bind C12 to activate the pLux promoter in 

addition to its natural pairing pLas promoter51. Implications of such crosstalk on gene 

regulation and cell response remain largely unknown. 

Table 1: Autoinducer information. 
 

Full name 
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n 

 
Molecular structure 

 
Coding gene 
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and 
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Organism 
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 Here, we use rationally designed gene networks to probe crosstalk between the 

LuxR/I and LasR/I systems and investigate their elicited bistable behaviors from positive 

feedback topologies. By using synthetic biology approaches, all combinations of 
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autoinducer, regulator gene, and promoter were tested to show that QS crosstalk can be 

dissected into signal crosstalk and promoter crosstalk. When studied in the context of a 

synthetic positive feedback gene network, our results indicate that QS crosstalk leads to 

distinct dynamic behaviors: signal crosstalk significantly decreases the circuit’s induction 

range for bistability, but promoter crosstalk causes transposon insertions into the 

regulator gene and yields trimodal responses due to a combination of mutagenesis and 

noise induced state transitions. To fully understand this complex response, we developed 

a mathematical model that takes into account all of these factors to simulate and predict 

how varying the transposition rate can modulate this trimodality, which was verified 

experimentally. This reveals a novel factor of host-circuit interactions in shaping complex 

responses of synthetic gene networks.  

 

2.2 Results 

2.2.1 Dissecting the crosstalk between LuxR/I and LasR/I using synthetic circuits.  

 To characterize possible crosstalk between LuxR/I and LasR/I signaling systems, 

four synthetic circuits, CP (constitutive promoter)-LuxR-pLux (Figure 2A), CP-LasR-

pLux (Figure 2B), CP-LasR-pLas (Figure 2C), and CP-LuxR-pLas (Figure 2D), were first 

built to test all autoinducer-regulator-promoter combinations’ impact on gene expression 

activation. C6 and C12 were applied respectively to all constructs, and green fluorescent 

protein (GFP) expression under regulation of pLux or pLas was measured as the readout. 

 It can be seen in Figure 2A that in addition to its natural partner C6, LuxR can 

also bind with C12 molecules to activate pLux, which suggests that the binding with C6 

or C12 results in a similar conformational change of LuxR and therefore its activating  
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Figure 2: QS crosstalk dissected using synthetic gene circuits. (A) LuxR can cross-talk 
with C12 to activate pLux. Top panel: schematic diagram of a synthetic gene circuit 
where a constitutive promoter (gray arrow) regulates LuxR (purple rectangle) expression. 
LuxR protein, when bound with C6 or C12 and dimmerization, can activate pLux (purple 
arrow) to induce GFP (green rectangle) expression. The autoinducers, genes, and 
promoters are color coded so that naturally paired partners are in the same color. Bottom 
panel: dose response of the circuit when induced with C6 (gray) or C12 (black). (B) LasR 
can cross-talk with pLux when bound with C12. Top panel: schematic diagram of a 
circuit similar to that in (A), where a constitutive promoter regulates LasR (cyan 
rectangle) expression. LasR protein, when bound with C6 or C12, can activate pLux to 
induce GFP expression. Bottom panel: Dose response of this circuit when induced with 
C6 (gray) or C12 (black). Bar heights are averages of three independent flow cytometry 
measurements. (C) High concentrations of C6 can crosstalk with LasR-pLas. Top panel: 
schematic diagram of the synthetic gene circuit (CP-LasR-pLas). Bottom panel: dose 
response of the circuit when induced with C6 or C12. Compared to original pair of LasR-
C12, pLas promoter can only be activated by LasR with extremely high C6 concentration 
(signal crosstalk). (D) Promoter crosstalk of C6-LuxR to pLas is observed under high 
concentrations of autoinducer. Top panel: schematic diagram of the circuit (CP-LuxR-
pLas). Bottom panel: Dose response of this circuit when induced with C6 or C12. LuxR 
can bind with C6 to activate pLas starting from 10-6 M doses (promoter crosstalk), while 
it cannot with C12. (E) Summary of crosstalk induction of all 16 different combinations, 
including inductions by both chemicals and corresponding synthase genes. The four 
combinations shown in (A) and (B) are highlighted with a gray background. 
 

functions remain uninterrupted. Such an activation of a natural QS regulator-promoter 

pair by a cross-talking autoinducer is here termed signal crosstalk. It can be seen that this 

signal crosstalk can fully activate the system with comparable induction dosages. 

However, similar tests of signal crosstalk of C6 with the Las regulator-promoter pair 

(Figure 2C) only show comparable induction when the autoinducer concentration is as 

high as 10-3 M. This suggests that the efficacy of signal crosstalk is QS system specific. 

 In addition to promiscuous autoinducer binding caused signal crosstalk, the 

systems studied also displayed crosstalk between regulators and promoters, here termed 

promoter crosstalk. It is shown in Figure 2B that, in addition to being able to activate 

pLas, LasR significantly activate pLux when induced with its natural cognate ligand C12, 
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though not with C6, which suggests that LasR’s DNA binding domain can recognize both 

pLas and pLux when bound with its natural partner. This promoter crosstalk is robust 

over a wide range of autoinducer concentrations. Similar tests of promoter crosstalk of 

C6-LuxR to pLas (Figure 2D) show only weak induction. This suggests that the efficacy 

of promoter crosstalk is also QS system specific. It should also be noted that a third type 

of crosstalk, regulator crosstalk, in which naturally paired autoinducer and promoter 

function through a cross-talking regulator protein, only exhibited minimal levels of 

activation (gray bar in Figure 2B and black bar in Figure 2D). 

 To further verify the crosstalk under physiologically relevant dosages of 

autoinducers, synthase genes LuxI and LasI were introduced to replace commercial 

chemicals in eight different circuits (Figure 3). The results further confirm that pLux 

could be activated by LuxR with LuxI or LasI, as well as LasR with LasI. This is 

consistent with the results above with commercial chemicals, indicating the crosstalk 

categorization is also applicable in vivo. All combinatorial activations between LuxR/I 

and LasR/I systems are summarized in Figure 2E, with crosstalk highlighted in red. 

Taken together, detectable crosstalk between LuxR/I and LasR/I systems can be 

categorized into two types: LasI (C12) can crosstalk with the LuxR protein to induce 

pLux transcription (signal crosstalk), and the LasR-LasI (C12) complex can also crosstalk 

with and activate the pLux promoter (promoter crosstalk).  

 

2.2.2 Signal crosstalk induces distinct responses from positive feedback circuits.  

 Next, synthetic positive feedback circuits were constructed to investigate the 

impact of QS crosstalk in the context of gene regulatory networks. It is shown that the 
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core of many bacteria’s QS decision-making circuits is a positive feedback motif 84–89. 

Because of its potential bistability, such a topology enables the bacteria to make 

appropriate binary decisions in response to changing environments32,90. Synthetic positive 

feedback circuits serve as suitable platforms to probe the effects of signal and promoter 

crosstalk within the framework of gene regulatory networks.  
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Figure 3: Characterizing the crosstalk to the pLux and pLas promoters using synthase 
genes. (A-B) LuxR, either with LuxI or with LasI, can activate pLux, while LasR with 
LasI can activate pLux. Left: schematic diagram of the synthetic gene circuits constructed 
to test crosstalk. LasI (cyan) and LuxI (purple) synthesize 3OC12HSL and 3OC6HSL 
molecules in cells, respectively. Right: GFP fluorescence in cells carrying the circuits 
was measured by flow cytometry at 12 hr. LasI with LuxR, and LasR with LasI can 
significantly activate pLux (signal crosstalk, and promoter crosstalk, respectively). (C-D) 
Characterizing the crosstalk to the pLas promoter using synthase genes. No significant 
crosstalk was observed for LuxR- or LasR-pLas combinations. Left: schematic diagram 
of the synthetic gene circuits constructed. Right: GFP fluorescence in cells carrying the 
circuits was measured at 12 hr. Both LasI-LuxR and LuxI-LuxR cannot activate pLas, 
and the latter shows ~ two-fold inhibition, and no signal crosstalk is observed for LasR-
pLas. All the data were averages of three independent measurements shown as mean ± 
SD (*p<0.05, and **p<0.01). 
 

 The design shown in Figure 4A was first constructed to study signal crosstalk. In 

this circuit, expression of LuxR is regulated by the promoter pLux, which can be 

activated by LuxR when induced, forming a positive feedback loop. pLux driven GFP 

expression serves as the readout for LuxR levels. Robustness of history-dependent 

responses (hysteresis), a hallmark of many positive feedback topologies, is used as the 

main measure of signal crosstalk impacts as it captures the effectiveness of the circuit’s 

decision-making functionality 6,23,91. 

 As a benchmark, uninduced (Initial OFF) cells with the circuit were first induced 

with different concentrations of LuxR’s natural inducer C6 and measured using flow 

cytometry (Figure 4B, blue). It can be seen that GFP is only turned on with 10-8 M or 

higher C6 induction. The cells treated with 10-4 M C6 (Initial ON) were then collected 

and diluted into new medium with the same concentrations of C6 (Figure 4B, red). These 

cells keep high GFP expression even with low C6 inductions (below 10-9 M) due to the 

self-sustaining nature of positive feedback loops. Taken together, these results illustrate 

this circuit’s hysteretic response with C6 inducer concentrations between 0 and 10-8 M.  
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Figure 4: Signal crosstalk causes shrinkage of bistable region. (A) Schematic diagram of 
a synthetic gene circuit where the pLux promoter regulates expression of LuxR, which in 
turn can bind with C6 or C12 to further activate pLux, forming a positive feedback loop 
(shown as simplified diagram). GFP under the regulation of pLux serves as the readout 
for LuxR levels. (B) The average of three replicate flow cytometry measurements is 
plotted as a square with error bar for each dose of C6 induction, where red indicates 
Initial ON cells while blue denotes Initial OFF cells. Solid lines represent results 
calculated from model fittings. The bistable region ranges from 0 to 10-9 M C6. Labels 1 
and 2 indicate representative experiments within the region to be shown as histograms in 
(D). (C) Similar experiments as in (B) but with C12 inductions. The bistable region 
ranges from 10-8 to 10-6 M C12. Labels 3 and 4 indicate representative experiments 
within the bistable region to be shown as histograms in (D). (D) Histograms of flow 
cytometry measurements labeled in (B) and (C). One representative measurement from 
each point is shown. No bimodal distributions are observed. 
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 This indicates that under C6 induction the positive feedback circuit is bistable 

between 0 and 10-8 M C6 induction. However, no bimodal distribution was observed 

within the bistable region based on flow cytometry measurements (Figure 4D, purple and 

light purple), suggesting that the barrier between the two states is too high for inherent 

gene expression stochasticity to overcome 6,91. 

 Next, C12 was used to induce the same construct to investigate the impact of 

signal crosstalk on gene network regulation. Similar induction experiments were carried 

out and the results are shown in Figure 4C. It can be seen that this circuit also displays 

hysteresis, but with a much smaller bistable region between 10-8 and 10-6 M C12. Flow 

cytometry results within the bistable region also show no bimodal distributions (Figure 

4D, cyan and light cyan). 

 To quantitatively understand the signal crosstalk caused shrinkage of the bistable 

region, an ordinary differential equation (ODE) model of LuxR-pLux auto-activation was 

developed (Details can be found in Mathematical Modeling). Two major kinetic events, 

LuxR transcription and translation, are described by two ODEs with all binding between 

chemical species incorporated into model terms. After fitting the parameters using 

existing literature and experimental measurements, the model can capture the 

experimental results (solid lines in Figure 4B and 4C) with accuracy. Inspection of model 

parameters reveals that the bistable region decrease caused by signal crosstalk can be 

largely accounted for by differential binding affinities between LuxR and C6 and C12. 

This suggests a new way to perturb QS decision-making through utilization of 

crosstalking autoinducers, which is useful for clinical therapies. 
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2.2.3 Promoter crosstalk induces unexpected and complex bimodal responses.  

 To study the impacts of promoter crosstalk, a positive feedback circuit was 

constructed with LasR under the regulation of pLux (Figure 5A). It is shown in Figure 2B 

that LasR can activate pLux when induced by C12. Therefore this circuit also forms a 

positive feedback loop in the presence of C12. GFP under regulation of pLux is again 

included as a readout for LasR. Experimental explorations of hysteresis were carried out 

and the results are shown in Figure 5B. It can be seen that initial OFF cells (blue) exhibit 

a non-monotonic response to C12 induction: GFP expression increases with C12 

concentration, but begins to uniformly decrease when C12 induction exceeds 10-8 M 

(Figure 5B, and Figure 6A-B). Cells induced with 10-4 M C12 were then collected and 

diluted into fresh medium with the same inducer concentrations as the initial OFF cells. 

Flow cytometry data show that all samples exhibit unimodal minimal fluorescence 

signals that are even lower than the basal GFP expression of initial OFF cells (Figure 5B 

and 5C green, and Figure 6B).  

 Considering that both C12 and exogenous gene overexpression may be toxic to 

cells, as well as the fact that initial OFF cells can be turned on with lower induction 

dosages, cells induced with lower than 10-4 M but higher than 10-10 M C12 were collected 

as new initial ON cells to further explore possible hysteresis of this circuit. Collected 

cells were diluted into fresh medium with the same concentrations of C12. These new 

initial ON cells demonstrate the same expression pattern as the initial OFF cells when 

grown in inducer concentrations from 0 to 10-9 M, but they show much lower 

fluorescence values at higher concentrations. For example, the red points in Figure 5B  
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Figure 5: Promoter crosstalk induces mutation and leads to population heterogeneity. (A) 
Schematic diagram of a synthetic LasR-pLux positive feedback circuit. GFP under the 
regulation of pLux serves as the readout for LuxR levels. (B) The average of three 
replicate flow cytometry measurements is plotted as a square with error bars for each 
dose of C12 induction. Blue denotes Initial OFF cells, while green and red indicate the 
Initial ON cells induced with 10-4 M C12 and 10-9 M C12 before being re-diluted into 
concentrations of C12, respectively. Labels 1, 2, 3, and 4 indicate experiments to be 
shown in detail as histograms in (C). (C) Histograms of flow cytometry measurements 
labeled in (B). One representative measurement from each point is shown. A bimodal 
distribution is only observed for label 3: which is Initial ON cells (induced with 10-9 M 
C12 before redilution) at 10-8 M C12. (D) DNA analysis for the Initial ON samples 
shown as red in (B). Top: Plasmid DNA was extracted and digested with EcoRI and PstI, 
and argarose gel electrophoresis results indicated gene mutation happened in samples 
with 10-8 M and higher doses of C12. Lane 1 is the wild-type plasmid as the control, 
lanes 2 to 9 are samples in 10-11 to 10-4 M C12, and Lane 10 is the 1kb DNA marker. V: 
vector; F: wild-type DNA fragment (the LasR-pLux positive feedback circuit); M: 
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mutated fragment. Bottom: Schematic representation of the mutation and the features of 
IS10 transposase insertion: the target site (first CGCGTAGCG) in the LasR gene, its 
duplication (second CGCGTAGCG) due to insertion of IS10 transposase, and the IS10 
sequence (red box and shown in italics). 
 

illustrate the GFP average of 10-9 M induced initial ON cells when collected and re-

diluted into a range of C12 concentrations (See Figure 6C for results with other initial 

induction dosages). Examination of the flow cytometry measurements of these ON cells 

reveals that bimodal distributions emerge within the concentration range of 10-8 M to 10-4 

M C12. Interestingly, one peak of the distribution is at the high state and the other is at 

the minimal expression state, even lower than basal expression (Figure 5C, red). So 

unlike classic bimodal responses due to bistability, LasR-pLux positive feedback exhibits 

bimodality with the lower peak’s expression even weaker than the OFF state. To exclude 

the possibility that this bimodality is triggered by inherent properties of the LasR-C12 

complex, similar hysteresis experiments were carried out for the linear CP-LasR-pLux 

circuit (Figure 2B). Results show that the initial OFF and ON cells both exhibit unimodal 

expression without hysteresis (Figure 6D). The bimodality is, therefore, unique to the 

initial ON cells with LasR-pLux positive feedback. 

 

2.2.4 Bimodality results from circuit-host interactions.  

 The remaining question is: what is the cause of the minimal expression state? To 

resolve this problem, new initial ON samples at concentrations of 10-11 M to 10-4 M C12 

(Figure 5B) were collected. Their plasmids were extracted and digested for genotyping. 

The argarose gel electrophoresis results show that a new band (~3.2 kb) replaces the 

original fragment band (wild type, ~1.9 kb) for samples in 10-8 ~10-4 M C12, and that a  
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Figure 6: Hysteresis of the LasR-pLux circuits. (A) Schematic representation of the LasR-
pLux positive feedback loop induced with C12. (B) Flow cytometry measurements of 
GFP expression for initial OFF cells (left) at 6 hr and initial ON cells (right) at 12 hr and 
37°C under different concentrations of C12 induction. For initial OFF cells, GFP 
expression increases with C12 concentration, but begins to decrease uniformly when C12 
induction exceeds 10-8 M. For initial ON cells (induced with 10-4 M C12 before 
redilution), all the samples exhibit unimodal minimal fluorescence signals that are even 
lower than the basal GFP expression of initial OFF cells. (C) Initial OFF cells were first 
induced with 10-9 or 10-8 M at 37°C for 6 hours to become the new Initial ON cells, 
which were then collected and rediluted into fresh media with different doses of C12. The 
two Initial ON cells show a similar GFP distribution pattern: unimodal distributions 
similar to the initial OFF cells for samples in the lower inducer concentrations of 0 to 10-9 
M, and bimodal distributions within the higher concentration range of 10-8 to 10-4 M C12. 
(D) C12 induced hysteresis of the CP-LasR-pLux circuit. Flow cytometry measurements 
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of GFP expression for initial OFF cells (left) at 12 hr and initial ON cells (right, induced 
with 10-4 M C12 for 6 hours before redilution) at 24 hr and 37°C under C12 induction. 
Results show that the initial OFF and ON cells show a similar distribution pattern, and 
both exhibit unimodal expression without hysteresis. 
 

faint original-fragment band can also be seen for samples with 10-8 and 10-7 M C12 

inductions (Figure 5D). Further sequencing analyses verify that an IS10 transposase is 

inserted into the LasR gene at the 682 bp site and this insertion is flanked by two 9 bp 

direct repeats 5’-CGCGTAGCG-3’ (Figure 5D), which is consistent with reported 

hotspots for IS10 insertion 92. 

 The insertion abolishes LasR’s ability to activate downstream GFP expression, 

which in turn causes the cells’ fluorescence signal to be even weaker than basal 

expression when LasR is intact. Cells with this type of mutation form the low GFP peak 

in the bimodal distributions in Figure 5C. On the other hand, cells that do not mutate are 

able to maintain a high GFP expression due to positive feedback, forming the GFP ON 

peak of the bimodal distributions. Taken together, the combination of gene network 

activated GFP expression and mutation caused GFP inhibition drive the emergence of a 

bimodal distribution.  

 

2.2.5 Trimodality predicted by expanded model.  

 In light of the verified mutation in the LasR-pLux positive feedback system, the 

mathematical model was expanded to take into account crosstalk triggered genetic 

changes to better describe the circuit. To enable comparison with flow cytometry results, 

the ODEs were transformed into corresponding biochemical reactions and simulated 

stochastically 93. In addition, each cell was assigned a probability of mutation throughout 
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the simulation (Figure 7C inset), which is dependent on the cell’s current LasR/GFP level 

and the transposition rate. Once mutated, the cells had only minimal GFP expression 

strength and remained mutated until the end of the simulation. Finally, growth rate 

differences between wild type and mutated cells were computed from experiments 

(Figure 8A) and taken into consideration in the simulation. Results of stochastic 

simulations of this expanded model are shown in Figure 7A, exhibiting the bimodal 

distribution observed experimentally (red curves in Figure 7A, simulation; and 7B, 

experiment). 

 To further investigate the impact of this mutation on the circuit’s functions, 

simulations were carried out with perturbed parameters to mimic various scenarios. First, 

the transposition rate was artificially set to zero, and the simulations show that the system 

can also exhibit a bimodal distribution (Figure 7A, blue), with the OFF peak exhibiting 

basal GFP expression. Bimodality has been reported to arise from stochastic state 

switching of a bistable system without any genetic changes 6,91,94. The same mechanism 

leads to simulated bimodality of this LasR-pLux circuit when there is no mutation. 

 While it is almost impossible to eliminate mutation, it is possible to decrease the 

transposition rate experimentally. To explore the impacts of mutation in a more realistic 

scenario, simulations were carried out with positive but smaller transposition rates. 

Interestingly, the system demonstrates a trimodal distribution (Figure 7A, green). In this 

distribution, there are three groups of cells: ON, OFF, and Mutated. Those cells 

initialized at the ON state freely transition to and from the OFF state, due to the system’s 

bistability. Meanwhile, all cells have the chance to mutate and stay mutated (Figure 7C). 
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Figure 7: Model predictions and experimental validations of mutation-induced 
trimodality. (A) Model predictions of GFP expression at several transposition rates: high 
(red, k3=3.6e-6), low (green, k3=4e-7), and none (blue, k3=0). Histograms were 
constructed from 8000 single cell stochastic simulations at 1000 (k3=3.6e-6) and 1900 
(k3=0 and k3=4e-7) minutes. (B) Experimental validation of the model predictions in (A). 
Red and green curves correspond to the high and low transposition rates from (A), and 
they exhibit similar bi- and trimodal responses, respectively. No blue curve is included 
because mutation could not be eliminated entirely experimentally. (C) Representative 
stochastic simulations of single cell fluorescence starting from the ON state. All possible 
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transitions are shown. Inset diagram illustrates all possible state transitions in the 
simulation. (D) Model predictions of GFP expression with low transposition rate showing 
temporal evolution of the population from primarily ON cells at an early time (green), to 
trimodal distributions at intermediate time (blue), eventually falling into a primarily 
Mutated state at late time (red). (E) Flow cytometry measurements taken at 12 hours 
(green), 24 hours (blue), and 36 hours (green). Populations show similar dynamics to 
those predicted by the model in (D), starting with a large ON peak, transitioning to a 
trimodal distribution, then into primarily Mutated or OFF cells. 
 

Given enough time and the right measurement window, all three groups of cell would be 

visible. Within this window, the portion of ON and OFF cells will gradually decrease and 

the number of mutated cells will increase because the mutation is irreversible. The effect 

of decreased transposition rate is essentially slowing down the ON to Mutation transition 

rate and giving enough time for ON to OFF transitions and hence the emergence of the 

OFF peak. Time courses of the simulations demonstrate gradual emergence and evolution 

of these three populations of cells (Figure 7D). 

 
2.2.6 Experimental validation of trimodal responses by lowering growth 

temperature.  

 Previous reports indicated that transposition frequency can be perturbed by 

growth temperatures 95–97. To tune the transposition rate, experiments were carried out 

with cells cultured at a lower 34 °C temperature, which was shown to obviously slow 

down crosstalk triggered mutation of this circuit (Figure 8B). Consistent with model 

predictions, initial ON cells induced with 10-8 M C12 exhibited a trimodal response when 

the growth temperature was tuned from 37 °C to 34 °C (Figure 7B, green). Moreover, 

temporal evolution of the proportion of each subpopulation was also consistent with 

model predictions: the portion of ON cells gradually decreased, the Mutation portion  
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Figure 8: Temperature influence on cell growth rate and population distribution. (A) 
Growth curves for initial ON, OFF and Mutated cells in 10-8 M C12 at 37 °C and 34 °C. 
The initial ON and OFF cells’ growth curves were similar, with a long lag phase in 10-8 
M C12, while the Mutated cells directly entered exponential growth phase. All 
populations reached stationary phase after about 15 hours. The three cell types show 
similar growth curves at 37 °C and 34 °C, indicating that growth temperature does not 
significantly influence their growth rate. (B) Temperature changes the transposition rate. 
Top: temporal evolution of the initial ON cells grown in 10-8 M C12 at 37 °C. Bottom: 
time course of the same initial ON cells grown in 10-8 M C12 but at 34 °C. Flow 
cytometry was used to measure the GFP fluorescence at 6 hr, 12 hr, and 24 hr. For each 
measurement, the percentage of Mutated state cells was calculated. Data shows that 
higher temperature increases the transposition rate and IS10 transposase insertion, which 
promotes the transition from the ON state to the Mutated state. 
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increased, and the OFF portion increased first and then decreased as time went on (Figure  

7E). Growth rates of cells at Mutated, ON, or OFF states were also measured and show 

no difference when cultured at these two different temperatures (Figure 8A). The 

emergence of the OFF peak, therefore, is fully accounted for by the decrease of 

transposition rate, which slows down the direct transitions from ON to Mutation and 

therefore gives the cells time to layover at the OFF state. This is also evidenced by the 

smaller portion of Mutated cells when grown at 34 °C compared with 37 °C (Figure 8B). 

 Furthermore, a microfluidic platform coupled with time-lapse imaging was also 

employed to verify model predictions 98. Cells were pretreated with 10-9 M C12 until 

steady state as the initial ON cells before being loaded into the device and induced with 

10-8 M C12 at 34 °C to mimic experimental protocols used in Figure 7E. Initially, there 

was only one ON cell loaded into the trap (Figure 9A). At the 8th hour, it can be seen that 

two populations began to emerge: some cells became OFF and some stayed ON. 

Mutations started to occur shortly after the 8th hour, and the OFF and Mutation cells 

accounted for around 90 percent of the population after 16 hours. Eventually mutation 

state cells took up the majority of the population. There also existed several OFF cells 

which became ON again, owing to stochastic gene expression noise, but they eventually 

exhibit a similar evolving process: ON to OFF and Mutation (Figure 9B), which is 

consistent with the stochastic model simulations shown in Figure 7C. 
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Figure 9: Fluorescence microscopy validation of mathematical model predictions. (A) 
GFP fluorescence (top) and phase contrast (bottom) images of cells growing in the 
microfluidic chamber at 0, 8, 16, and 24 hours. Magnification: 40x. (B) Normalized 
fluorescence expression of representative cells from (A), showing similar behavior to that 
predicted by the model from Figure 4C. Four cells are colored corresponding to the 
scenarios in Figure 7C, and the other 11 cells are grey. Each trajectory follows one cell, 
with the trajectory branching as the cells divide. One frame equals five minutes. (C) 
Diagram of the mechanism for trimodality. Each “valley” represents one state. Blue curve 
represents the landscape at 37 °C, and the dotted grey curve is the landscape at 34 °C. At 
37 °C, ON state cells can more easily transit to Mutated state because of the low barrier; 
while at 34 °C, the barrier between ON and Mutated states increases, resulting in more 
ON cells transit to OFF state and promote the emergence of trimodality. 
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 Altogether, the flow cytometry and microfluidic data confirmed the model 

predicted trimodality, which arises from bistability of positive feedback circuit and host-

circuit interactions. In the context of positive feedback circuit, the ON and OFF state can 

transit freely to each other, but it is easier for ON state cells to transit to the OFF state 

because of the asymmetric energy barrier (Figure 10). However, the ON cells can also go 

to the Mutated state, which has an extra advantage of growth (Figure 8A). So compared 

to OFF state, the majority of ON cells would choose to go to Mutated state at 37 °C, 

which leads to the bimodal distribution (Figure 5C). When the growth temperature tuned 

down to 34 °C, the transposition frequency obviously decreased, meaning that the barrier 

between ON and Mutated state increases. Hence, more ON cells would transit to OFF 

state, which promotes the emergence of trimodality (Figure 9C).  

 

Figure 10: Quasi-potential U and the transition dynamics between stable steady states in 
the LasR-pLux positive feedback system (without genetic mutation). The lower ‘valley’ 
(with lower potential U) is the stable OFF state and the higher is the stable ON state. 
According to the stochastic simulation, the energy barrier ∆UOFF→ON is much greater than 
∆UON→OFF, which suggests it is easier for ON state cells to transition to the OFF state. 
The energy function is calculated according to the probability density distribution of 
steady state LasR concentrations in each cell. 
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2.3 Discussion 

 QS is a ubiquitous mechanism in nature, and its regulator-autoinducer pairs, such 

as LuxR/LuxI and LasR/LasI, have been used in synthetic biology for a wide range of 

applications12,13,40,51–53,77–80,99,100. However, evolutionary pressures from limited resources 

in a competitive environment promote promiscuous bacterial communication, which 

takes the form of either different genera of bacteria producing the same types of 

autoinducers or non-specific regulator-autoinducer binding51,73,77,101–103. Therefore, QS 

regulator-autoinducer pairs are not orthogonal, and there is crosstalk between them. 

Dissecting the crosstalk is critical for unraveling the underlying principles of bacterial 

decision-making and survival strategies for both natural and synthetic systems. 

 In this work, we used synthetic biology approaches to dissect QS crosstalk 

between LuxR/I and LasR/I. By applying engineering principles to construct modular 

gene networks, we were able to characterize and categorize QS crosstalk into signal 

crosstalk, where LuxR can bind with non-originally paired C12 autoinducer to active 

pLux, and promoter crosstalk, where LasR bind with C12 autoinducer to activate non-

originally paired pLux. However, regulator crosstalk, in which the naturally paired 

autoinducer and promoter function through a cross-talking regulator protein, was not 

detected in this work. 

 When signal crosstalk is constructed and tested in the context of positive feedback, 

our results showed a significant shrinkage of the bistable region. Because of this 

topology’s bistable capability and wide presence in most bacterial QS decision-making 

circuits, such a decrease in bistability robustness due to QS crosstalk suggests a new 
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strategy for developing anti-infection therapeutics. Namely, we might exploit “artificial” 

crosstalk to disrupt intercellular communication specificity and collapse the group’s 

coordination, which could be an efficient and economic approach in medical treatments, 

especially for QS-dependent bacterial infection. 

 On the other hand, promoter crosstalk caused complex trimodal responses when 

embedded within a positive feedback circuit. This can only be explained when network 

bistability, gene expression stochasticity, and genetic mutations are all taken into 

consideration. These results highlight the potential for engineering gene networks to 

express complex behaviors due to host-circuit interactions. We computationally predicted 

and experimentally verified that the C12-LasR-pLux positive feedback circuit could drive 

the formation of three subpopulations from an isogenic initial culture: one population 

expressing high GFP expression, the second showing basal GFP expression, and the third 

population with no GFP expression. The high and low GFP states are the result of 

positive feedback enabled bistability and gene expression stochasticity-induced random 

state transitions: commonly reported as a hallmark of many bistable systems6,91,94. This 

population heterogeneity is not caused by genetic factors.  

 The third non-GFP population is the result of genetic mutation from IS10 

insertion. The mutation only happened in the C12-LasR-pLux positive feedback circuit 

but not in CP-LasR-pLux-C12 (Figure 6) or the C12-LuxR-pLux positive feedback circuit 

(Figure 4). It is, therefore, possible that the special sequence arrangements of the positive 

feedback circuit (for example, the symmetric pLux promoters flanking the LasR gene) on 

the plasmid coupled with the stress of exogenous protein overexpression led to 

transposon activation and gene network destruction. This stands in contrast to previously 
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reported host-circuit interactions, which are primarily related to resource limitation and 

resulting growth defects 104. Here we were able to illustrate that both the components 

used and the topology of the network constructed could contribute to resource 

independent host-circuit interactions. This concept of combining nonlinear dynamics and 

host-circuit interactions to enrich population diversity expands our understanding of 

mechanisms contributing to cell-cell variability, and suggests new directions in 

engineering gene networks to utilize hybrid factors. 

 Taken together, our studies not only showcase living cells’ amazing complexity 

and the difficulty in the refinement of engineered biological systems, but also reveal an 

overlooked mechanism by which multimodality arises from the combination of 

engineered gene circuit 46,105–108 and circuit-host interactions 104.  

 

2.4 Materials and Experimental Methods 

2.4.1 Strains, growth conditions and media.  

 All cloning experiments were performed in E. coli DH10B (Invitrogen, USA), 

and measurements of positive feedback response were conducted in DH10B and 

MG1655. Cells were grown at 37 °C (unless specified) in liquid and solid Luria-Bertani 

(LB) broth medium with 100 µg/mL ampicillin. Chemical 3OC6HSL and 3OC12HSL 

(Sigma-Aldrich, USA) were dissolved in ddH2O and DMSO, respectively. Cultures were 

shaken in 5 mL or 15 mL tubes at 220 rotations per minute (r.p.m), and inducers were 

added at OD600~0.1.  
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2.4.2 Plasmids construction.  

 Plasmids were constructed according to standard molecular cloning protocols and 

the genetic circuits were assembled using standardized BioBricks methods based on 

primary modules (Table 2) from the iGEM Registry (www.parts.igem.org). The receiver 

CP-LuxR-pLux was constructed from six BioBrick standard biological parts: 

BBa_K176009 (Constitutive promoter, CP), BBa_B0034 (Ribosome binding site, RBS), 

BBa_C0062 (luxR gene), BBa_B0015 (transcriptional terminator), BBa_R0062 (lux 

promoter), and BBa_E0240 (GFP generator, RBS-GFP-T). As an example, to produce 

the RBS-LuxR part, LuxR plasmid was digested by XbaI and PstI to produce a fragment 

while the RBS plasmid was digested by SpeI and PstI as the vector. The fragment and 

vector were purified by gel electrophoresis (1% TAE agarose gel) and extracted using a 

PureLink gel extraction kit (Invitrogen). Then, the fragment and vector were ligated 

together using T4 DNA ligase, the ligation products were transformed into E. coli 

DH10B and clones were screened by plating on 100 µg/mL ampicillin LB agar plates. 

Finally their plasmids were extracted and verified by double restriction digest (EcoRI and 

PstI) and DNA sequencing (Biodesign sequencing lab in ASU). After confirming that the 

newly assembled RBS-LuxR was correct, subsequent rounds to produce the RBS-LuxR-

Terminator were performed similarly until completing the entire receiver CP-LuxR-pLux 

construction. All the other receivers and positive feedback circuits were assembled 

similarly. Restriction enzymes and T4 DNA ligase were from New England Biolabs. All 

the constructs were verified by sequencing step by step. To keep all the constructs’ 

expression consistent in the cell, we transferred all the fragments into the pSB1A3 vector 

before testing them.  
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Table 2: Plasmids used in the circuits’ construction 
Biobrick number Abbreviation Description 

BBa_R0062 pLux Promoter activated by LuxR in concert with 3OC6HSL 
BBa_R0079 pLas Promoter activated by LasR in concert with 3OC12HSL 

BBa_K176009 CP Constitutive promoter family member J23107 actual sequence 
(pCon 0.36) 

BBa_B0034 RBS Ribosome binding site 
BBa_B0015 T Transcriptional terminator (double) 
BBa_C0062 LuxR LuxR repressor/activator 
BBa_C0079 LasR LasR activator 
BBa_C0161 LuxI Autoinducer synthetase for AI 

from Aliivibrio fischeri 
BBa_ C0178 LasI Autoinducer synthetase for PAI from Pseudomonas aeruginosa 
BBa_E0240 GFP GFP generator 

pSB1A3 pSB1A3 High copy BioBrick assembly plasmid 

 

2.4.3 Flow cytometry.  

 All the samples were analyzed at the time points indicated on an Accuri C6 flow 

cytometer (Becton Dickinson, USA) with 488 nm excitation and 530±15 nm emission 

detection (GFP). The data were collected in a linear scale and noncellular low-scatter 

noise was removed by thresholding. All measurements of gene expression were obtained 

from at least three independent experiments. For each culture, 20,000 events were 

collected at a medium flow rate. Data files were analyzed using MATLAB (MathWorks).  

 

2.4.4 Hysteresis experiment. 

 For OFF→ON experiments, initially uninduced overnight culture was diluted at 

1:100 ratio into fresh media, grown at 37 °C and 220 r.p.m for about 1.5 hr (OD600~0.1), 

then distributed evenly into new tubes and induced with various amounts of 3OC6HSL or 

3OC12HSL. Flow cytometry analyses were performed at 6, 12, and 21 hours to monitor 

the fluorescence levels, which generally became stable after 6 hours induction according 



 

39 

to our experience. For ON→OFF experiments, initially uninduced cells were induced 

with 10-4 M (or 10-9 M) autoinducer and tested by flow cytometry to ensure they were 

fully induced. Cells were then collected with low-speed centrifugation, washed twice, 

resuspended with fresh medium (same amount as original culture), and at last inoculated 

into fresh medium with varying inducer concentrations at a 1:80 ratio. For the LasR-pLux 

positive feedback system, we only diluted once and grew them for 6, 12, 18, 24, or 32 

hours, but for the other hysteresis experiments, the ON cells were collected and diluted 

twice into new medium with the same concentrations of 3OC6HSL or 3OC12HSL at 12 

hr and 24 hr. 

 

2.4.5 Growth curve assay. 

 First, different initial states cells were collected: initial OFF cells were cells 

grown overnight without inducers, initial ON cells were initial OFF cells induced with 

10-9 M C12 for 12 hours, and the Mutated cells were cells induced with 10-4 M C12 for 12 

hours, diluted into fresh media with 10-4 M C12, and grown at 37 °C for another 12 hr. 

Before the growth experiment, all the cells’ fluorescence was tested by flow cytometry to 

verify their states. Growth rate was measured by using absorbance at 600 nm with a plate 

reader (BioTek, USA). Cells from each state were then diluted into fresh LB media (1000 

µL, O.D. ~0.06) with 10-8 M C12 and grown at 37 or 34 °C. For each sample, OD was 

measured by using 200 µL cultures in a 96-well plate and tested over 24 hours. The 

experiments were independently replicated three times. 
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2.4.6 Microfludics, fluorescence microscopy, and image processing. 

 The use of microfluidic devices coupled with fluorescence measurement allowed 

us to measure gene network dynamics in single cells. Media flow direction and speed was 

controlled through hydrostatic pressure. A detailed description of the chip can be found in 

reference21. Once the cell was loaded into the trap, the flow was reversed and its rate was 

slowed to ~120 µm/min to ensure that the cells would not be washed away and would 

receive enough nutrients. Furthermore, care was taken to avoid introducing bubbles to 

any part of the chip as they considerably disrupt flow. The chip temperature was 

maintained at 34 °C with an external microscope stage (Tokai Hit, Japan). Inducer 

concentrations were controlled by adjusting the heights of the inducer-containing media 

syringes relative to one another. 

 Images were taken using a Nikon Eclipse Ti inverted microscope (Nikon, Japan) 

equipped with an LED-based Lumencor SOLA SE Light Engine with the appropriate 

filter sets. The excitation wavelength for GFP was 472 nm, and fluorescence emission 

was detected with a Semrock 520/35 nm band pass filter. Phase and fluorescent images 

were taken under a magnification of 100X, and perfect focus was maintained 

automatically using Nikon Elements software.  

 Initially OFF cells (K-12 MG1655) with the positive feedback loop plasmid were 

grown until log phase (OD600 ~0.3), collected and resuspended with fresh LB media with 

0.075% Tween-80 (Sigma-Aldrich, USA), then loaded into the traps (one or two cells for 

each trap, for best result). Initially ON cells (K-12 MG1655) induced with 10-9 M 

3OC12HSL (6 hours) were collected, washed, then resuspended with 10-9 M inducer and 

loaded into the trap. 100 µg/mL ampicillin was added into media 1 and 2, but only media 
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2 was augmented with the corresponding inducer. The microfluidic device was used to 

control the chemical concentration by switching between medias 1 and 2. For initial ON 

cells, media 2 was provided to the cells for the duration of the experiment. To prevent 

photobleaching and phototoxicity to the cells in the trap, exposure time was limited to 

100 ms for GFP.  

 Images were taken every 5 minutes for about 28 hours in total. The pixels in all 

images are normalized to 0 - 1 range before analysis. One image was chosen for 

quantification every 15 minutes (i.e. three images). For each cell, the intensity was 

calculated by averaging three selected points (left, middle, and right) in the cell and then 

subtracting the background. Since all the cells are offspring of the first initial ON cell, 

each branch in Figure 9B stands for one progeny. The cells that were washed away or had 

less than three generations were not analyzed. 

 

2.5 Mathematical Modeling 

2.5.1 Deterministic Model Construction 

 In the positive feedback loop circuit, LuxR production is controlled by the pLux 

promoter with only one LuxR-HSL binding site, which is bound and activated by the 

complex of LuxR and the autoinducer (3OC6HSL or 3OC12HSL, hereafter denoted as 

C6 and C12, respectively). GFP expression, as a reporter of the system, is regulated by 

the same pLux promoter and therefore follows the dynamics of LuxR. Therefore, we can 

directly analyze the LuxR dynamics in the model, comparing the output to the cells’ 

fluorescence, without any loss of explanatory power. Since the LuxR-pLux and LasR-

pLux positive feedback systems are characterized similarly and described by the same 
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mathematical equations, we explain only the technical details for the LuxR-pLux positive 

feedback loop. Our model is based on the following biochemical reactions: 

 

LuxR    +  HSL    ⇋    (LuxR-HSL)                                                              (1) 

2 (LuxR-HSL)     ⇋    (LuxR-HSL)2                                                              (2) 

 (LuxR-HSL)2  +  DNA      ⇋    (LuxR-HSL)2-DNA                                  (3) 

                          (LuxR-HSL)2-DNA    
!!

    mRNA + 2LuxR + 2HSL + DNA          (4) 

                                             mRNA     
!!

    LuxR + mRNA                                        (5) 

                                            mRNA      
!!

     Ø                                                            (6) 

       mRNA     
!!

      Ø                                       (7) 

 

where LuxR is the monomer form of LuxR protein; HSL is the autoinducer 3OC6HSL; 

(LuxR-HSL) is the complex of LuxR bound with HSL; (LuxR-HSL)2 is the dimer of  

(LuxR-HSL); (LuxR-HSL)2-DNA represents (LuxR-HSL)2 binding to the pLux promoter; 

mRNA is the messenger RNA of the LuxR gene; k1 and k2 are the transcription and 

translation rates, respectively; d1 and d2 are the degradation rates of mRNA and LuxR, 

respectively. 

 After C6 concentration reaches a certain threshold, LuxR binds to HSL molecules 

and forms the active LuxR monomers in the form of (LuxR-HSL) (Reaction 1). To 

quantitatively capture the relationship between the autoinducer concentration and the 

active LuxR monomers, a Hill function is employed to represent the fraction of LuxR 

monomers bound by HSL (f): 
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f = [HSL]ni /([HSL]ni + Ki
ni)                                    [Eq1] 

where ni is the binding cooperativity (Hill coefficient) between LuxR and HSL, and Ki  

represents the dissociation constant between LuxR and HSL (the HSL concentration 

producing half conversion of LuxR monomers into LuxR-HSL complexes). It should be 

noted that different autoinducers will have different Ki values. Here we assume that the 

activator LuxR is abundant, and the fraction of active LuxR is independent from LuxR 

abundance in the cell.  

 LuxR needs to form a dimer to bind the promoter and activate transcription. We 

describe the relationship between the dimer and the monomer as the following expression:   

[LuxR2] = [LuxR]2/Kd                                   [Eq2] 

where Kd is the dissociation constant for LuxR dimerization. According to reaction (2), 

two (LuxR-HSL) molecules bind together to form a dimer and activate transcription. 

Additionally, it is necessary to point out that even without autoinducer LuxR2 can still 

bind the pLux promoter and initiate leaky transcription of downstream genes. Taken 

together, the concentration of the functional LuxR dimer that will bind to pLux and 

activate its transcription is: 

C = (c0 + f2)*[LuxR]2/Kd                                 [Eq3] 

where C represents the concentration of functional LuxR dimer ((LuxR-HSL)2 and LuxR2); 

c0 is the fraction of LuxR2 that can recognize and bind pLux in the absence of 

autoinducers; Kd is the dissociation constant for dimerization.  

 (LuxR-HSL)2 then recognizes and binds to the pLux promoter to form the (LuxR-

HSL)2-DNA complex together with RNA polymerase and other transcription factors to 

initiate transcription and produce mRNA (Reactions 3 and 4). So the expression of 



 

44 

mRNA can be modeled as:  

Sm = c1 + k1C/(C + Kn)                                 [Eq4] 

where Sm represents the production of mRNA; c1 represents the basal mRNA expression 

without LuxR protein; k1 is the transcription rate; Kn is the dissociation constant between 

C and pLux promoter.   

 After transcription, mRNA is translated into LuxR protein (Reaction 5). Here we 

simplify the whole translation process and capture the production of LuxR protein in the 

form of: 

Sp = k2*[mRNA]                                               [Eq5] 

where Sp represents the synthesis of LuxR and k2 is the translation rate. 

 Next, we take the constitutive degradation of mRNA in the cell into account 

(Reaction 6) with the equation: 

Dm = d1*[mRNA]                                               [Eq6] 

where d1 is the degradation rate of mRNA. 

 Similarly, the degradation of LuxR protein (Reaction 7) is: 

Dp = d2*[LuxR]                  [Eq7] 

where d2 is the degradation rate of LuxR. 

 Finally, we combine the synthesis and degradation (Eq4, 5, 6, and 7) to find the 

rates of change of the concentrations of mRNA and LuxR: 

                                            d[M]/dt = Sm - Dm 

       d[R]/dt = Sp - Dp                                                             [Eq8] 

where M and R represents mRNA of LuxR and LuxR monomers, respectively. 

Combining all the parameters, the two ODE equations can be rewritten as follows: 
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                    [Eq9] 

 These two ordinary differential equations were used to model the three positive 

feedback loops: LuxR-pLux-C6, LuxR-pLux-C12, and LasR-pLux-C12. Owing to the 

signal and promoter crosstalk, the dissociation constants Ki, Kd, and Kn may be different, 

as may also be the case with the Hill coefficients and leaky expression without 

autoinducer. Setting of parameter values is introduced below.  

 

2.5.2 Stochastic Simulation Coupled with Genetic Mutation  

 The Gillespie algorithm was employed to perform stochastic simulations of the 

positive feedback loops93. According to our deterministic model (Eq9), two equations 

capture the time evolution of the biochemical reactions. In this model, there are four 

independent events in total – mRNA production, mRNA decay, LuxR production, and 

LuxR decay – which are translated directly to the stochastic model. Simulation data was 

collected for 8000 cells, and each simulation was run for 40000 steps.  

 The energy-like function U(x), which denotes the probability and direction of 

transitions between attractors in a noisy environment, can also be used to interpret state 

transitions109. After finishing all simulations, we first calculated the amount of LasR 

present in each cell (assuming the cells had reached steady state), then divided by the 

total number of cells. This yielded a probability density distribution of steady state LasR 

concentrations, which was used to calculate the energy function U(LasR) by the 

following approach109:  

d[M]
dt = c1 +

k1C
C + Kn

d1[M]_
;

d[R]
dt = k2[M] d2[R]_ .

Where 
=f

[HSL]ni

[HSL]ni + Ki
ni

=
(c0 +

Kd
C

f2 ) [R]2•d[M]
dt = c1 +

k1C
C + Kn

d1[M]_
;

d[R]
dt = k2[M] d2[R]_ .

d[M]
dt = c1 +

k1C
C + Kn

d1[M]_
;

d[R]
dt = k2[M] d2[R]_ .

d[R]
dt = k2[M] d2[R]_ .

Where 
=f

[HSL]ni

[HSL]ni + Ki
ni=f

[HSL]ni

[HSL]ni + Ki
ni

[HSL]ni

[HSL]ni + Ki
ni

=
(c0 +

Kd
C

f2 ) [R]2•
=

(c0 +
Kd

C
f2 ) [R]2•
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U(LasR, t)  ~  – ln(P(LasR), t)                                     [Eq10] 

where P(LasR, t) is the steady-state probability for each LasR concentration at a given 

time t. In practice, the P(LasR, t) was derived from the following equation: 

P(LasR) = hist(LasR)/Cellnum                                    [Eq11] 

where hist(LasR) is a histogram of the amount of LasR in each cell and Cellnum is the 

total number of simulated cells. The energy-like function U gave us a more vivid and 

direct understanding of the quasi-potential landscape and the transition dynamics between 

stable steady states in this positive feedback system. The transition rates between ON and 

OFF states are decided by the energy barrier ΔU (Figure 10). Unlike the typical 

bimodality emerged from bistable systems, C12-LasR-pLux positive feedback loop 

displayed an asymmetric bimodal distribution at a population level, which only happened 

from ON state to OFF state. The model suggests that this asymmetry comes from the 

different energy barrier of switching between ON and OFF states (Figure 10). 

 To take the genetic mutation in the LasR-pLux positive feedback circuit into 

account, we added another event in addition to mRNA and LasR production and 

degradation. Since the genetic mutation only happened in initial ON cells, and because it 

is easier for cells in high C12 concentration to mutate, we inferred that more LasR in the 

cell resulted in a higher mutation probability. Moreover, the mutation occurred in the 

LasR open reading frame, so theoretically the mutation probability is positive as long as 

the LasR gene is present. Here, we used a Hill function to describe the probability of 

mutation:  

 Pm = [LasR]n/(Kn + [LasR]n)                                          [Eq12] 

where Pm represents the probability of mutation; n is the Hill coefficient indicating the 
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cooperativity of mutation causing factors related to LasR concentration; and K represents 

the dissociation constant in the complicated biochemical reactions. In the Gillespie 

simulation, the mutation event, independent of the other four events, was described 

mathematically as: 

Mu = k3*Pm*[LasR]                                     [Eq13] 

where k3 is the transposition rate; [LasR] is the amount of LasR in the cell at a given time, 

and Pm is the probability of mutation as described above. Generally, once the mutation 

has happened, the LasR gene is broken into two parts and the functional mRNA of LasR 

cannot be produced any more. Mutated cells theoretically retain the ability to switch state. 

However, the probability of this occurring is small. In practice, for each cell, when the 

mutation event had occurred, the transcription rate (k1) and leaky expression from pLux 

(c1) were reduced to very low values, the cell would remain mutated, and the simulation 

was ended. By tuning the transposition rate, we fit the parameters according to 

experimental data, which we then used to make predictions.  

 Next, since the ON, OFF, and Mutation cells have different growth curves under 

the same experimental conditions, growth rate differences between the three populations 

were added into the model. From the growth curves, it can be seen that the initial ON and 

OFF cells’ growth curves were similar, with a long lag phase in 1e-8 M C12, while the 

Mutation cells directly entered exponential growth. All three populations went to 

stationary phase after about 15 hours (Figure 8A). Instead of using a population balance 

model, we employed a simple and efficient method to combine the stochastic model with 

population dynamics. The cells with greater growth rate would acquire an extra 
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advantage in their final quantity: each of the three original populations was multiplied by 

its relative growth rate and then its ratio in the three populations was adjusted.  

 To simplify the case, we chose three time points (2.5 hr, 7.1 hr and 12.5 hr) and 

compared their O.D. values (by ODMutation/ODON, ODOFF/ODON, and ODON/ODON: ON 

cells grew slowest) and then made an average to get an averaged relative growth rate, 

which then was taken into the simulation results. So the final amount of Mutation cells 

(Fmu), OFF cells (Foff) and ON cells (Fon) are:  

                                    Fmu = Smu * (ODMutation/ODON); 

                                    Foff = Soff * (ODOFF/ODON); 

                                    Fon = Son * 1; 

where Smu, Soff, and Son are the primary number of cells which finished the simulation 

in the Mutation, OFF, and ON states, respectively. Therefore, the proportions of Mutation 

cells (Pmu), OFF cells (Poff), and ON cells (Pon) are: 

                                     Pmu = Fmu/(Fmu + Foff + Fon); 

                                     Poff = Foff/(Fmu + Foff + Fon); 

                                     Pon = Fon/(Fmu + Foff + Fon); 

 In this way, the population with a greater growth rate acquired an advantage in its 

quantity under identical conditions. 

 

2.5.3 Determinations of parameter values 

 In the E. coli cells, even though the transformed plasmid is high-copy, there is 

also a maximum expression value. According to the BioNumber database110, each protein 

generally has no more than 1000 copies. Therefore, we chose 1000 molecules per cell to 
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be the maximum expression value of LuxR and LasR. All other parameters were adjusted 

under this assumption.  

 Specifically, the transcription rate (k1), translation rate (k2), and degradation rates 

of mRNA and LuxR (d1 and d2, respectively) were estimated from previous reports and 

the BioNumbers database (Table 3). Since pLux was the only promoter used in the 

positive feedback circuits, the leaky expression without LuxR or LasR (c1) did not change 

between simulations, and it was estimated to be 0.08 min-1. In addition, according to 

experimental results, basal GFP expression in the absence of autoinducers (c0) in the 

LasR-pLux positive feedback circuit is about three times larger than in its LuxR-pLux 

counterpart (Figure 11A-B). Therefore c0 was set to 0.03 and 0.007 for LasR-pLux and 

LuxR-pLux, respectively. The Hill coefficients (ni) and dissociation constants (Ki) 

between LuxR/LasR and the C6/C12 were fitted from the dose response curves (Figure 

11C-F) by the same fitting method used in our previous work23,105. Considering 

experimental variations, parameters were adjusted within 10% relative error. The generic 

parameters Kd and Kn are constant and fit to make the model consistent with experimental 

results (Figure 4B-C). With these fitted parameters, our model captured the experimental 

hysteresis results and provided insights to understand the difference between the three 

positive feedback loop variants induced by QS crosstalk. For example, Kd in LuxR-pLux-

C12 positive feedback was smaller than in LuxR-pLux-C6, while Kn was larger for LuxR-

pLux-C12. This suggests that C12 might bind more easily to LuxR (relative to C6), but 

the original LuxR-C6 pair has higher affinity for the pLux promoter. Additionally, Kn in 

the LasR-pLux positive feedback loop is much bigger for LasR-C12 than for either  
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Figure 11: Parameters determination in the model. (A) Comparison of the basal GFP 
expression from the pLux promoter between the two linear CP-LuxR-pLux and CP-LasR-
pLux circuits. (B) Comparison of the basal GFP expression from the pLux promoter 
between the two LuxR-pLux and LasR-pLux positive feedback circuits. All the data 
shows that the leakage from the pLux promoter in LasR-pLux circuits is greater than in 
LuxR-pLux circuits. All the data were averages of three independent measurements 
shown as mean ± SD (*p<0.05, and **p<0.01). Parameters determination from 
experimental tests: (C) the CP-LuxR-pLux circuit induced with C6; (D) the CP-LasR-
pLas circuit induced with C12; (E) the CP-LuxR-pLux circuit induced with C12; (F) the 
CP-LasR-pLux circuit induced with C12. (C) and (D) are the original pairs used to test 
the functionality of all modules, while (E) and (F) were used to characterize the signal 
and promoter crosstalk. All of the red data points represent the mean of three independent 
measurements shown as mean ± SD. The solid black curves, corresponding Hill 
coefficients (ni), and dissociation constants (Ki) between LuxR/LasR and C6/C12 were 
fitted from the dose response curves by the same fitting method used in our previous 
work. 
 

LuxR-C6 or LuxR-C12, which indicates that the LasR-C12 dimer has less affinity for 

pLux, and therefore it is more difficult for the system to reach saturation. The parameter 

combination for the LasR-pLux positive feedback loop was used in the stochastic 

simulation and for predicting trimodality.  

 To fit the probability of the LasR gene’s mutation against experimental results at 

37°C, we first approximated the Hill coefficient (n) and the dissociation constant (K) 

based on the difference between fluorescence values at the ON and OFF states. Different 

n and K combinations were generated, and it was discovered that n = 5 and K = 400 best 

fit the experimental data (Figure 7A-B). In addition, previous reports indicated that 

transposition rates of IS elements in E. coli usually range from 1e-3 to 1e-7 min-1 96,111. 

So the transposition rate in our model was estimated (k3 = 3.6e-6 min-1) according to the 

final experimental data (Figure 7B). To predict the trimodal response, k3 was adjusted but 

all the other parameters were held constant. With k3 = 4.0e-7 min-1, the simulation 

exhibited trimodality, validated by the experimental results at 34 °C (Figure 7D-E). 
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All the parameter values are listed in Table 3 and 4. 

Table 3: Parameters for the genetic mutation event in the stochastic simulation of LasR-
pLux positive feedback system. 
 

Parameters Description Value Source 

n Cooperativity of IS10 

transposase binding to the 

plasmid of LasR 

5 Estimated and 

experiment indicated 

K Dissociation constant between 

transposase and the 

plasmid DNA 

400 Estimated and 

experiment indicated 

k3 (37 °C) Transposition rate 

at 37 °C (min-1) 

3.6e-6 Approximated 

according to experimental 

results and Ref.96,111 

k3 (34 °C) Transposition rate 

at 34 °C (min-1) 

4.0e-7 Approximated 

according to experimental results 

c1 Transcription rate after gene 

mutation (min-1) 

0.01 Estimated and 

experiment indicated 

k1 Leakage without LasR 

protein after 

gene mutation (min-1) 

0.005 Estimated and 

experiment indicated 
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Table 4: Parameters for the three positive feedback models. 

 

 

 

 

 

 

Paramete

r 

Description LuxR-pLux 

-3OC6HSL 

LuxR-pLux 

-3OC12HSL 

LasR-pLux 

-3OC12HSL 

 

Source 

k1 Transcription rate (min-1) 1.8 1.8 1.8 Ref.110 

k2 Translation rate (min-1) 1.6 1.6 1.6 Ref.110 

d1 LuxR/LasR degradation 

rate (min-1) 

0.01 0.01 0.01 Ref.52,112 

d2 mRNA degradation rate 

(min-1) 

0.33 0.33 0.33 Ref.110,113 

c1 Leakage without LuxR 

or 

LasR protein (min-1) 

0.08 0.08 0.08 Approximated 

c0 Leakage without 

AHL 

0.007 0.007 0.03 Approximated 

Kd Dissociation constant of 

LuxR-HSL dimerization 

600 180 

 

720 

 

Approximated 

Kn Dissociation constant of 

[LuxR-HSL]2 binding DNA 

2.6 14.7 177 Approximated 

Ki HSL concentration 

producing half 

occupation of pLux 

promoter 

1.6e-8 6.6e-7 6.9e-9 Measured by   

experiments 

ni Hill coefficient 1.3 1.1 6.4 Measured by 

experiments 
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CHAPTER 3 

 

ENGINEERING OF A SYNTHETIC QUADRASTABLE GENE NETWORK TO 

APPROACH WADDINGTON LANDSCAPE AND CELL FATE DETERMINATION  

 

3.1 Introduction 

 Multistability is a mechanism that cells use to achieve a discrete number of 

mutually exclusive states in response to environmental inputs, such as the lysis/lysogeny 

switch of phage lambda3,24 and sporulation/competence in Bacillus subtilis25,26. In 

multicellular organisms, multistable switches are also common in the cellular decision-

making including the regulation of cell-cycle oscillator during cell mitosis27, Epithelial-

to-Mesenchymal transition and cancer metastasis28,29, and the well-known cell 

differentiation process, which is a manifestation of cellular state determination in a 

multistable system30,31. However, loss of multistability can drive cells to acquire 

metastatic characteristics and stabilize highly proliferative, pathogenic cellular states in 

cancer114.  

 C. H. Waddington in 1957 hypothesized the “epigenetic landscape” to explain 

canalization and fate determination mechanism during cell differentiation 115. In this 

hypothesis, differentiation is depicted as a marble rolling down a landscape with multiple 

bifurcating valleys and eventually settles at one of the local minima, corresponding to 

terminally differentiated cells. More recent theoretical studies further proposed the local 

minima to be modeled as steady states or attractors of dynamical systems, which can be  
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mathematically described using differential equations116,117. As such, cell differentiation 

can be interpreted as a state transition process on a multistable dynamic system.  

 A myriad of theoretical analysis have investigated the functioning of such systems 

and quantified the Waddington landscape and developmental paths through computation 

of the probability landscape for the underlying gene regulatory networks117–119. Recent 

studies also revealed that the potential landscape and the corresponding curl flux are 

crucial for determining the robustness and global dynamics of non-equilibrium biological 

networks120,121. Furthermore, the multiple stable steady states have been predicted beyond 

the bistable switches with or without epigenetic effects, which is reflected in slow 

timescales120,122. Experimental researches, however, mostly focus on bistable switches, 

involving transitions between only two states. And demonstrations, from a combination 

of experiments and computational modeling, for the existence and operation of such a 

landscape in a higher dimensional multistable system are still lacking. Moreover, it 

remains unknown how gene regulatory networks (GRNs), gene expression noise, and 

signal induction together shape the attractor landscape and determine a cell’s 

developmental trajectory to its final fates123–125.  

 Complex contextual connections of GRNs have impeded experimentally 

establishing the shape and function of the cell fate landscape. Rationally designed and 

tunable synthetic multistable gene networks in E. coli, however, could form well-

characterized attractor landscapes to enable close experimental investigations of general 

principles of GRN regulated cellular state transitions. Since the functioning of these 

principles only requires the most fundamental aspects of gene expression regulation, they 

would also be applicable for cell differentiation regulations in mammalian cells. Here, we 
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combine mathematical theory, numerical simulations, and synthetic biology to probe all 

possible sub-networks of mutually inhibitory network with positive autoregulations 

(MINPA, Figure 12A), which has been hypothesized to have multistability potentials 

31,119. Moreover, MINPA and its sub-networks are recurring motifs enriched in GRNs 

regulating hematopoietic development (Gata1-Pu.1, 126), trophectoderm differentiation 

(Oct3/4-Cdx2, 126), endoderm formation (Gata6-Nanog, 117,128), and bone, cartilage, and 

fat differentiation (RUNX2-SOX9-PPAR-γ, 129,130).  

 

3.2 Results 

3.2.1 MINPA circuit construction and multistability analysis 

 Engineered circuit of MINPA (Figure 12B) is designed to use two hybrid 

promoters, Para/lac and PLux/tet, which are characterized experimentally to show small 

leakage and high nonlinearity (Figure 12D-E). For MINPA topology, hybrid promoter 

Para/lac drives AraC and TetR expression, representing the node X in Figure 12A, 

whereas PLux/tet controls LuxR and LacI transcription, representing the node Y. AraC 

and LuxR activate Para/lac and PLux/tet in the presence of Arabinose and AHL 

(3OC6HSL) respectively, forming positive autoregulations. IPTG inhibits the repressive 

effect of LacI on TetR expression, while aTc counteracts TetR repression on LacI. Hence, 

the two nodes form the topology presented in the conceptual design shown in Figure 12A. 

Green fluorescent protein (GFP) and mCherry serve as the corresponding readouts of 

PLux/tet and Para/lac activities in living cells (Figure 12B). 

 Topologies of MINPA and all its subnetworks can be divided into four layers, 

from one- to four-dimensional networks based on the number of regulatory edges (Figure  
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12C) and further categorized into nine groups (R, A, R-A, RA, R2, A2, RA2, R2A, R2A2) 

based on the configurations of activation and inhibition.  
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Figure 12: Conceptual and experimental design of MINPA and its sub-networks. (A) 
Abstract diagram of MINPA topology, where X and Y mutually inhibit (T-bars) each 
other and auto-activate (arrowheads) itself. Four inducers to regulate the four color-coded 
regulatory edges are also listed. (B) Molecular implementation of the MINPA network. 
Para/lac (purple arrow) is activated by AraC (yellow) and repressed by LacI (light green), 
while PLux/tet (cyan arrow) is activated by LuxR (blue) and repressed by TetR (red). 
Arabinose and AHL (oval) can induce AraC and LuxR activation, respectively. IPTG and 
aTc (hexagon) can respectively relieve LacI and TetR inhibition. GFP and mCherry serve 
as the readout of Para/lac and PLux/tet, respectively. Therefore, TetR and AraC 
collectively form the node X in (A), color-coded as purple rectangle. Similarly, LuxR and 
LacI collectively form the node Y in (A), color-coded as cyan rectangle. Genes, 
promoters and regulations are color-coded corresponding to the topology in (A). (C) List 
of MINPA and its 14 sub-networks. T represents “topology”. R represents “repression”, 
and A represents “autoactivation”. Superscript is used to describe the number of such 
types of edges. Topologies with shaded background were later constructed and analyzed 
experimentally. (D-E) Top: Biological devices for testing promoter Para/lac (B) and 
PLux/tet (C), respectively. Fluorescence was measured by flow cytometry at 12 hr and 24 
hr (not shown) after adding the inducers. All the data points were averaged from three 
repeated experiments. Grey arrows represent constitutive promoters (BBa_K176009). 
Bottom: Dynamic responses for Para/lac (D) and PLux/tet (E) through induction with 
Arabinose (Ara) and IPTG, and AHL and aTc, respectively. Presented data was the mean 
value of three replicates. mCherry and GFP serves as the readout of the two promoters. 
 

3.2.2 Systematical multistability evaluation of MINPA and its sub-networks. 

 In order to experimentally evaluate dynamic properties of these networks, we 

constructed nine circuits including tunable positive feedbacks (T6 and T9), mutual 

inhibition (T5), dual-positive feedbacks (T10), and their combinations (T7, T11, T13, 

T14 and T15, Figure 13). One-dimensional networks (T1, T4, T2 and T8) and trivial two-

dimensional networks (T3 and T12) are excluded for their low multistability probability. 

All motifs were constructed using the same set of components (Figure 12). 
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Figure 13: Abstract diagrams and molecular implementation of the eight MINPA sub-
network topologies. The subnetworks include tunable positive feedbacks (T6 and T9), 
mutual inhibition (T5), dual-positive feedbacks (T10), and their combinations (T7, T11, 
T13, and T14). Genes, promoters, and regulations are color-coded corresponding to the 
topology on the left side. 
 

 Probing a circuit’s multistability typically requires thorough hysteresis 

experiments covering wide ranges of doses for all inducers6,91,131, which becomes 

infeasible for nine complex networks with four inducers. To improve the efficiency of 

probing multistability and tunability, we designed a “sequential induction” method to 

accelerate exploration of unknown high dimensional bifurcation spaces, instead of 

conventional “back and forth” hysteresis on one parameter dimension. The main concept 

relies on the fact that multistable gene networks could exhibit discontinuous jump from 

one state to another in response to changing parameter (inducer) combinations. Taking 

the classic “toggle switch” as an example, the circuit can be tuned by two external 

inducers and its two-parameter bifurcation diagram has a stretched S shape (Figure 14A). 

Initialized at an arbitrary state A, the cells could reach State C in the bistable region 

directly when induced with both inducers simultaneously. If the cells are first induced by 

Inducer I to go to state B, they will also reach State C after Inducer II is added. However, 

if the same dose of Inducer II is applied first, cells will cross the bifurcation plane to state 

D on the low-Response surface and then reach state E with addition of Inducer I (Figure 

14A). State C and E are two different steady states with the same induction dosages, 

illustrating hysteresis and verifying multistability.  

 To test our theoretical analysis, a synthetic toggle switch circuit was constructed 

(Figure 14B-C). Following experimental design principles, we designed a protocol to 
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Figure 14: Sequential induction rational and experimental validation in synthetic toggle 
switch circuit. (A) Schematic illustration of rationale for sequential induction. This two-
parameter bifurcation diagram of a bistable toggle-switch depicts all steady state values 
of response (Z-axis) with combinations of inducer I and II (X and Y axes). Arrows 
illustrate order and direction of inductions and consequent steady state value changes. 
Solid lines on the X-Y plane are the boundaries of bistability. Dashed lines on the X-Y 
plane are projections of solid white arrowheads. (B) Abstract diagram and molecular 
implementation of the toggle switch circuit. TetR (R) and LacI (I) mutually inhibit each 
other through binding to Ptet and Plac promoter, respectively. IPTG and aTc (hexagon) 
can respectively relieve LacI and TetR inhibition. GFP serves as the readout of Ptet. (C) 
Time course results of the sequential induction. The y-axis represents forward scatter 
(FSC-A), and the x-axis indicates GFP fluorescence. IPTG and aTc were sequentially 
(left and middle columns) or simultaneously (right column) applied to induce the toggle 
circuit. The first inducer was added to the media for 5 hr, and then the second inducer 
was added. Fluorescence was measured by flow cytometry at 0, 5, 12, and 24 hr after the 
second inducer was added into the cultures. The concentration of IPTG and aTc is 8*10-5 
M, and 100 ng/ml, respectively. Experiments were repeated for at least three times, and 
representative results were shown.  
 

show the sequential induction effects. We first employed IPTG to induce the circuit for 5 

hr, and then aTc was added. Time course results showed that cells stayed at low-GFP 

state till 24 hours (Figure 14C). However, cells induced with aTc first, and then IPTG 

mainly stayed at high-GFP state, another stable steady state under this condition. 

Simultaneous aTc and IPTG induction produced similar cell distributions. These results 

show that sequential induction can be used as a strategy to quickly explore a multistable 

potential landscape for complex non-equilibrium systems.  

 Without knowing the exact bifurcation range beforehand, such ordered sequential 

inductions could help quickly explore the irregular bifurcation space to reveal 

multistability for systems with complicated bifurcations, which is typically caused by 

interfering parameters. Similar sequential induction techniques have been shown to 

enable access of otherwise hard-to-reach cell death states in breast cancer cells 136. This 

strategy has also been widely employed in directed differentiation of stem cells to 
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specific lineages 133–135 and reprogramming somatic cells to induced pluripotent stem 

cells 136. Although specific inducer concentrations are required to observe the effects of 

this strategy in synthetic circuits, sequential induction with pre-selected inducer 

combinations can help perform a coarse-grained exploration from different directions in 

the parameter space. Furthermore, stochastic gene expression of the circuits also 

contributes to cellular population distribution thus leads to pronounced sequential 

induction effects, given experimentally feasible amount of time, when the system is 

entering its multistable region from different directions. Therefore, distinct final states, or 

even different population distributions, under sequential induction strongly suggests the 

existence of nonlinear dynamics, including multistability. 

 Using the sequential induction approach, we tested the nine circuits using flow 

cytometry. Cells were first induced by inducer I, inducer II was then added into the media 

for another 24 hours. Depending on the network configuration, four different dual-

inducer combinations were used. For example, Arabinose and IPTG were applied 

sequentially and simultaneously to T9, T13, T11 and T15, respectively (Figure 15A). It 

can be seen only T15 exhibits significant expression difference between three induction 

patterns, while the others show little change (Figure 15A and Figure 16A). It should be 

noted that T15 also exhibits tri-modality of fluorescence expression, suggesting 

multistability given the presence of gene expression noise, which is partially consistent 

with our computational predictions. Similarly, AHL and aTc were applied to T6, T7, T14, 

and T15, respectively (Figure 15B and Figure 16B). Results show that only T15 exhibits 

significant fluorescence pattern change with different inductions, whereas T6 and T7  
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Figure 15: Sequential induction of MINPA and its sub-networks. (A) Arabinose (Ara) 
and IPTG were sequentially (left and middle columns) or simultaneously (right column) 
applied to induce T9, T13, T11, and T15. T: topology. The concentration of Arabinose 
and IPTG is 2.5*10-5 m/v, and 5*10-5 M, respectively. To indicate the effects of inducers, 
we used the same color for applied inducers and its regulated connections, which were 
also shown in bold lines. The other non-regulated connections are represented by thin 
lines. (B) AHL and aTc were sequentially (left and middle) or simultaneously (right) 
applied to induce T6, T7, T14, and T15. The concentration of AHL and aTc is 1*10-4 M, 
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and 200 ng/ml, respectively. (C) Ara and AHL were sequentially (left and middle) or 
simultaneously (right) applied to induce T10, T14, T11, and T15. The concentration of 
Arabinose and AHL is 2.5*10-5 m/v, and 1*10-8 M, respectively. (D) IPTG and aTc were 
sequentially or simultaneously applied to induce T5, T7, T13, and T15. The concentration 
of IPTG and aTc is 1*10-4 M and 200 ng/ml, respectively. Samples were treated with the 
first inducer till OD600 is about 0.15 and then the second inducer was added. Cells were 
grown for another 24 hours before measured by flow cytometry. The experiments were 
performed in triplicate and repeated two times, and representative results are presented. 
The inducers are color-coded as visual assistance to indicate which edge of inset diagram 
it regulates. 
 

exhibit minor uniform shifts of expression. T14, although exhibiting bimodality, only 

shows a ratio change of two populations between three inductions and no sign of 

bifurcation. Sequential induction by Arabinose and AHL combinations has little effect on 

T10, T14 and T11, but T15 displays three notable populations for AHL-then-Arabinose 

induction (Figure 15C and Figure 16C). IPTG and aTc were also tested on T5, T7, T13 

and T15, but no notable dynamics were observed (Figure 15D and Figure 16D). Taken 

together, T15, the full MINPA topology, shows the most variety and complexity in 

population heterogeneity under sequential inductions, suggesting this circuit has the 

highest potential to generate complex multistability within our induction range and hence 

enable us to approach the Waddington landscape. 

 

3.2.3 Bifurcation and hysteresis verification of multistability 

 Next, operating principles and full tunability of T15 (MINPA) were further 

examined by using four inducers (Arabinose, AHL, aTc, and IPTG) to fine tune the 

strength of regulations and perturb the system (Figure 17A). Uninduced cells showed low 

GFP and low mCherry expression (low-low state, LL). In the presence of AHL and aTc, 

high GFP and low mCherry (GFP state) is observed; low GFP and high mCherry  
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Figure 16: Time course results of sequential induction for the MINPA (T15) circuit. (A) 
Arabinose (Ara) and IPTG were sequentially (left and middle columns) or simultaneously 
(right column) applied to induce T15. The first inducer was applied for 5 hr, and then the 
second inducer was added into the culture. Fluorescence was measured by flow 
cytometry at 0, 12, and 24 hr after the second inducer was added into the culture. The 
concentration of Ara and IPTG is 2.5*10-5 m/v, and 5*10-5 M, respectively. (B) AHL and 
aTc were sequentially (left and middle) or simultaneously (right) applied to induce T15. 
The first inducer was applied for 6.5 hr, and then the second inducer was added into the 
culture. The concentration of AHL and aTc is 1*10-4 M, and 200 ng/ml, respectively. (C) 
Ara and AHL were sequentially (left and middle) or simultaneously (right) applied to 
induce T15. The first inducer was applied for 5 hr, and then the second inducer was 
added into the culture. The concentration of Arabinose and AHL is 2.5*10-5 m/v, and 
1*10-8 M, respectively. (D) IPTG and aTc were sequentially (left and middle) or 
simultaneously (right) applied to induce T15. The first inducer was applied for 6.5 hr, and 
then the second inducer was added into the culture. The concentration of IPTG and aTc is 
1*10-4 M, and 200 ng/ml, respectively. The inducers are color-coded as visual assistance 
to indicate which edge of inset diagram it regulates. 
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(mCherry state) emerged with induction of Arabinose; and high GFP and high mCherry 

(high-high state, HH) was achieved when induced with Arabinose and AHL. These 

results verify that our engineered MINPA circuit is functioning as designed and fully 

controllable with four distinct states reachable through appropriate inductions, 

respectively. 

 To help design experiments to further investigate the circuit’s quadrastability, a 

detailed mathematical model was developed to describe the system. Using parameters 

derived from hybrid promoter testing experiments, bifurcation analysis was carried out to 

systematically quantify MINPA’s dynamic behavior (Figure 17B). Figure 17B is the 

three-dimensional bifurcation diagram, where levels of GFP and mCherry represent the 

states of node X and Y, and “AR/AL” is a lumped parameter composed of a fixed ratio of 

the concentrations of Arabinose and AHL. Overall, it can be seen that the system, 

initialized without induction, is predicted to be quadrastable (shown as four colored 

spheres, representing LL (grey), GFP (green), mCherry (rose), and HH (golden) state, 

respectively) but with the low-low state to have dominant attractiveness (shown as the 

big gray sphere) when AR/AL is low (C1). However, when AR/AL level is within an 

intermediate range, relative stabilities between different states become comparable. When 

AR/AL level increased from C1 to C2, the circuit’s quadrastability becomes well 

pronounced, illustrated as four similar-sized colored spheres on the same gray plane, 

which represents the low-low, GFP, mCherry, and high-high state, respectively (Figure 

17B). As AR/AL continues to increase from C2 to C3, while the other three SSS remain 

stable, the stability of the GFP branch disappears. Further increase of AR/AL results in 

only one stable state-the high-high state, shown as the orange sphere with biggest size. 
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Figure 17: MINPA has four individual cell states and bifurcation analysis of MINPA. (A) 
Engineered MINPA is tunable to reach four individual states: low-low, GFP, mCherry, 
and high-high, under no induction, 1*10-4 M AHL and 100 ng/ml aTc, 2.5*10-5 m/v 
Arabinose, 1*10-4 M AHL and 2.5*10-3 m/v Arabinose, respectively. To indicate the 
effects of inducers, we used the same color for applied inducer and its regulated 
connection (bolder lines) in the MINPA topology. (B) 3-D bifurcation diagram of 
MINPA. AR/AL is a lumped parameter composed of increasing concentrations of 
Arabinose and AHL, but the ratio of Arabinose and AHL is fixed, i.e., [Arabinose]/[AHL] 
is a constant. GFP and mCherry represent the states of node X and Y. Blue lines represent 
stable steady states, while red ones are unstable steady states. Grey, green, rose, and 
golden spheres represent low-low, GFP, mCherry, and high-high state, respectively. And 
the size of spheres correlates with the attractiveness of each state. C1, C2, C3, and C4 are 
four increasing concentrations of Arabinose and AHL used for experimental probing. 
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 To establish MINPA’s quadrastability and tristability as predicted, hysteresis, a 

hallmark of multistability23,39,91 , of the network was tested. Initialized at the low-low 

state, cells were induced by increasing doses of AR/AL corresponding to C1 to C4 and 

measured by flow cytometry (Figure 18A). As predicted, C1LL (cells with initial Low-

Low state grown at C1 condition) experiment demonstrates uniform low-low 

fluorescence profile, due to the low-low state’s dominant attractiveness, and C4LL shows 

a uniform high-high profile. Interestingly, C3LL indeed illustrates tri-modality, which is 

the result of predicted tristability. C2LL experiment, on the other hand, exhibits enough 

heterogeneity to signal high-high, low-low, and mCherry state, but does not illustrate 

significant trace of GFP state. Given that GFP state is achieved through combinational 

induction of AHL and aTc (Figure 17A), we hypothesize that the GFP state here is not 

easily accessible with AHL induction only. Next, cells initialized at high-high states were 

collected and diluted into fresh media with the same concentrations of AR/AL (Figure 

18B). As predicted, these cells keep high-high expression profile even with inductions as 

low as C1, another demonstration that the system is already multistable at C1. Taken 

together, the two sets of experiments demonstrated clear hysteresis and verified existence 

of three of the four predicted SSS. 

 

3.2.4 Experimental demonstration of model-guided quadrastability of MINPA  

 To further investigate what determines the accessibility of certain SSS in this 

quadrastable system and how cells navigate this attractor landscape, we take into account 

gene expression stochasticity23 to sketch out MINPA’s quasi-potential attractor landscape 
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Figure 18: Hysteresis of MINPA with induction of Arabinose and AHL (AR/AL). Cells 
with initial low-low state were induced with a series of concentrations of Arabinose 
C1LL-C4LL: cells with low-low initial state (A) are induced with AR/AL at C1 to C4; 
C1HH-C4HH: cells with high-high initial state (B) are induced with AR/AL for 24 hr at C1 
to C4. C1: no inducers; C2: 2.5*10-6 m/v Arabinose and 1*10-7 M AHL; C3: 2.5*10-5 m/v 
Arabinose and 1*10-6 M AHL; C4: 2.5*10-3 m/v Arabinose and 1*10-4 M AHL. 
Arabinose and AHL were added at the same time to induce the cells. 100,000 cells were 
recorded for each sample by flow cytometry. 
 

 (Figure 19), which is calculated as the negative logarithmic function of stationary 

distribution density in the phase space of GFP and mCherry. Using the weighted 
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ensemble random walk algorithm137,138, the stationary density distribution can be 

efficiently calculated from the initial uniform distribution. It can be seen that when there 

is no inducer, MINPA is already quadrastable with four local minima, which is consistent 

with bifurcation analysis for C1 condition. Furthermore, the much stronger stability of the 

low-low state (deepest well, Top landscape) and high state-transition barrier explain 

homogeneous low-low population (C1 experiment in Figure 18A) when cells were 

initialized with no inductions.  

 Since Arabinose and AHL combination is not sufficient to enable the cells to 

reach all four SSS, we chose to add aTc to the mix to further facilitate cell transitions 

among these four SSS. Using our expanded model, we simulated simultaneous and 

sequential inductions and computed corresponding quasi-potential landscape (Figure 19), 

showing cells harboring the same MINPA network exhibiting distinct landscapes under 

different inductions. AHL and aTc promote a more stable GFP state (Left center), while 

Arabinose induction modulates the landscape to be biased toward mCherry state (Right 

center). When the three inducers were applied simultaneously, the landscape changes and 

the four states show comparable stabilities (Bottom), suggesting a higher possibility of 

quadramodal cell population experimentally. Experimental validation is shown as flow 

cytometry measurements of cells treated with Arabinose, AHL, and aTc simultaneously 

for 24 hours (Figure 20A and Figure 21A). Such a hybrid induction greatly facilitates the 

cells’ transition from low-low state to the other three states so that a quadramodal 

distribution emerges. Single-cell time lapse microscopy results also showed that the 

initial low-low state cells could differentiate into GFP, mCherry and high-high state cells 

(Figure 21B-D). This also finally verifies predicted quadrastability of MINPA. It is 
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Figure 19: Model-guided quadrastability of MINPA through triple induction. Dynamic 
evolution of computed energy landscapes of MINPA under sequential/simultaneous 
inductions of Arabinose, and/or AHL and aTc. Center route: simultaneous induction with 
three inducers; Left route: sequential induction with AHL and aTc first, and then 
Arabinose. Right route: sequential induction with Arabinose, and then AHL and aTc. 
Deeper wells represent higher stability of corresponding states. For each three-
dimensional landscape, corresponding two-dimensional state-potential plots were also 
shown. Red line sketches the potentials from mCherry state to high-high to GFP state 
while green one represents the potentials from mCherry state to low-low to GFP states. 
mC: mCherry; HH: high-high; LL: low-low. GFP* and mCherry* is the computed GFP 
and mCherry abundance from the model. To indicate the effects of inducers, we used the 
same color for applied inducers and its regulated connections, which were also shown in 
bolder lines. 
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Figure 20: Experimental validations of model-predicted quadrastability using flow 
cytometry. Quadrastable steady states were observed when Arabinose, AHL and aTc 
were simultaneously added into the media (A, corresponding to the Center route in Figure 
19). Four populations were also observed when AHL and aTc were first added to growth 
media for 6.5 hr and then Arabinose was added, and cells were grown for another 24 
hours before measurement (B, corresponding to the Left route in Figure 19. Bimodality 
(low-low and mCherry states) was generated when Arabinose was first applied and then 
AHL and aTc were added (C, corresponding to the Right route in Figure 19). 
Concentrations for Arabinose, AHL and aTc are 2.5*10-5 m/v, 1*10-4 M, and 400 ng/ml, 
respectively. Representative results from three replicates are showed and 100,000 cells 
were recorded for each sample by flow cytometry. 
 

possible that the multimodal distribution might be resulted from the different growth rates 

of each population under inductions. We then measured chemical inducers’ effect on cell 

growth. As shown in Figure 22, aTc addition (aTc, AHL + aTc, and Ara + AHL + aTc) 

influenced cells growth and increased the lag phase for about 2.5 hours, compared to 

Compared to AHL or Arabinose individually. But at about 13 hours, the growth rates are 

almost the same. Since the timescale in the experiments is much longer (>= 24 hr) than 

13 hours, we reason the effect of inducers on the cellular growth rates would not change 

interpretations of experimental observations. 

 There are two other strategies to reach this condition: sequential inductions with 

AHL-and-aTc and then Arabinose (Figure 19, Left route) or Arabinose and then AHL- 

and-aTc (Right route). Even though the initial and final landscapes are the same, the 

dynamics for each route are quite different, which could lead to distinct outcomes. By 

comparing state barrier heights (Figure 19), we hypothesize that cells walking through 

the left route would start transitioning from low-low state to GFP state upon induction of 

AHL and aTc. Following Arabinose induction would then make the mCherry state 
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Figure 21: Cells’ states under induction with the first inducer, microfluidic results to 
demonstrate quadrastability with IPTG and aTc induction, and time course of sequential 
induction of AHL, aTc and Ara. (A) Up left: Flow cytometry result for cells 
simultaneously induced with 2.5*10-5 m/v Arabinose, 1*10-4 M AHL and 200 ng/ml aTc 
for 6.5 hr. Up right: Cells were first induced with 1*10-4 M and 400 ng/ml aTc for 6.5 hr, 
and then measured by flow cytometry. About 12% cells were moving from low-low state 
to GFP state at 6.5 hr. Bottom left: Cells were first induced with 2.5*10-5 m/v Arabinose 
and no obvious state transition was observed at 6.5 hr. However, at 9.5 hr, most cells 
(84.6%) were transitioned to mCherry state (Bottom right). (B) Microfluidic setup and 
device design (adopted from Dr. Hasty lab. (C) Images showing E. coli growing in the 
device. White arrows indicate the flow direction. (D) Time course of the cells growing 
and fluorescence state change with 2*10-4 M IPTG and 200 ng/ml aTc induction in the 
trap. The red flow is medium without inducer for 6 hr, and then cells switch to medium 
with inducers for 18 hr. Small white arrows show single cells with state change from GFP 
to mCherry. Magnification: 40x. (E) Time-course sequential induction with AHL, aTc 
first and then Arabinose (corresponding to the Left route in Figure 4A). The indicated 
time point is the time after Arabinose added into the culture. 10,000 events were recorded. 
The low-low state cells changed from 21.2% (12 hr) to 24.6% (24 hr) to 30.6% (36 hr). 
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Figure 22: Cell growth rates under each inducer and inducer combinations. Growth 
curves for the cells under the four individual inducers: Ara; AHL; aTc; IPTG, and 
inducer combinations: AHL and aTc; AHL, aTc, and Ara. Ara: 2.5*10-5 m/v; AHL: 1*10-

5 M, aTc: 200 ng/ml, IPTG: 1*10-4 M. Cells under induction with aTc has a longer lag 
phase (~2.5 hr), and all the samples reached stationary phase after ~13 hr. Data indicate 
mean ± SD of three independent replicates.   
 

accessible. So some cells with GFP state would transition to high-high state while some 

low-low state cells transition to mCherry state, resulting in cells in all four states.  

 Experimental testing indeed shows four stable populations (Figure 20B). At 6.5 hr 

of AHL and aTc induction, about 12% cells were moving to GFP state while the rest of 

them still stay “undecided” at low-low state (Figure 21A and 21E). This is consistent 

with the simulated landscape as these two states are more stable and accessible to each 

other (Figure 19, Left). Arabinose induction promoted some cells to transition into 

mCherry state while some cells continued moving into GFP state, of which some further 

transitioned to high-high state. 
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 Interestingly, the right route is predicted to generate different results. When first 

induced with Arabinose, the mCherry valley is so deep that it would be difficult for cells 

to jump out to high-high state, and low-low state cells also hardly transition to GFP state 

due to its low attractiveness, and thus most cells would stay at mCherry and low-low state 

even with AHL and aTc inductions (Figure 19, Right). Experimental testing of the right 

route indeed only produces two populations with low-low and mCherry state (Figure 

20C). With 5 hr of Arabinose induction, most cells still stay at low-low state because of 

slow transition to the mCherry state (Figure 21A), but 84.6% cells transitioned to 

mCherry state with 15.3% cells at low-low state at 9.5 hr (Figure 21A). This is consistent 

with our model predictions. The high barrier between the mCherry state and high-high 

state blocks the transition from mCherry state to high-high state, while the low 

attractiveness and relatively high barrier of the GFP state also decreases the probability of 

cells transitioning from low-low to GFP state. Hence, when AHL and aTc are applied, 

cells are predominantly in mCherry state with a small portion in low-low state with low 

probability of transitioning out, resulting in a bimodal distribution. 

 

3.3 Discussion 

 Multistability and the resulting landscape has long been proposed as an 

underlying mechanism that cells use to maintain pluripotency and guide differentiation 

30,31,119,139,140. Theoretical frameworks have also been established to quantify the 

Waddington landscape and biological paths for cell development 117,122,141. Experimental 

validation of this hypothesis and a full understanding of this mechanism will help reveal 

differentiation dynamics and routes for all cell types, which remains an outstanding 
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problem in biology. In this study, we engineered the quadrastable MINPA circuit and 

show that it can guide cell fate choices, represented by fluorescence expression, through 

shaping the potential landscape. MINPA represents one of the most complicated two-

node network topologies and includes four genes to implement a web of regulations. 

Biological complexity correlates with the number of regulatory connections 142, not the 

number of genes. Hence, dense connectivity and complex dynamics of MINPA may 

provide a framework to understand similarly densely connected gene regulatory networks.  

 Combining mathematical modeling and experimental investigation, this study 

serves as a proof-of-principle demonstration of the Waddington landscape. Furthermore, 

we used this circuit to demonstrate how different sequential inductions can change the 

landscape in a specific order and navigate cells to different final states. Such illustrations 

suggest mechanistic explanations of the need for fixed induction sequences for targeted 

differentiation to desired cell lineage. Overall, this study helps reveal fundamental 

mechanisms of cell-fate determination and provide a theoretical foundation for systematic 

understanding of the cell differentiation process, which will lead to development of new 

strategies to program cell fate. 

 

3.4 Materials and Experimental Methods 

3.4.1 Strains, Media, and Chemicals 

 All the molecular cloning experiments were performed in E. coli DH10B 

(Invitrogen, USA), and measurements of MINPA and sub-networks were conducted in E. 

coli K-12 MG1655ΔlacIΔaraCBAD strain as previously described (from Dr. Collins Lab 

107). The sequential induction for the toggle circuit was conducted in E. coli 
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MG1655ΔlacI strain as previously described 107. Cells were grown at 37 °C in liquid 

and/or solid Luria-Bertani broth medium with 100 µg/mL ampicillin or kanamycin. 

Chemicals AHL (3oxo-C6-HSL, Sigma-Aldrich), Arabinose (Sigma-Aldrich, USA), 

isopropyl β-D-1-thiogalactopyranoside (IPTG, Sigma-Aldrich), and anhydrotetracycline 

(aTc, Sigma-Aldrich) were dissolved in ddH2O and diluted into indicated working 

concentrations. Chemical aTc solution was stocked in brown vials, and experiments 

involving aTc were performed in cabinet without light, and cell cultures were grown in 

darken incubator at 37 °C. Cultures were shaken in 5 mL and/or 15 mL tubes at 220 

rotations per minute (r.p.m). 

 

3.4.2 Plasmids construction 

 All the plasmids (MINPA and its nine sub-networks) in this study were 

constructed using standard molecular cloning protocols and assembled by standardized 

BioBricks methods based on primary modules (Table 5) from the iGEM Registry 

(www.parts.igem.org). Hybrid promoter Para/lac was from Dr. Collins lab and amplified 

using forward primer: CGGAATTCGCTTCTAGAGAATTGTGAGCGGATAAC; and 

reverse primer: CGCTGCAGGCACTAGTTTGTGTGAAATTGTTATCCG. PCR product 

was purified using GenElute™ PCR Clean-Up Kit (Sigma-Aldrich), and then cut by 

restriction enzymes EcoRI and PstI. The purified product was inserted into pSB1K3 

backbone, and finally verified by DNA sequencing. The MINPA circuit was constructed 

from promoter Para/lac and 9 other Biobrick standard biological parts: BBa_B0034 

(ribosome binding site, RBS), BBa_C0080 (AraC gene), BBa_C0040 (tetR gene), 

BBa_K176000 (PLux/tet hybrid promoter), BBa_C0062 (luxR gene), BBa_C0012 (lacI 
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gene), BBa_B0015 (transcriptional terminator), BBa_E0240 (GFP generator), and 

BBa_J06702 (mCherry generator). The fragment and vector were separated by gel 

electrophoresis (1% TAE agarose) and purified using GenElute Gel Extraction Kit 

(Sigma-Aldrich). Then, fragment and vector were ligated together using T4 DNA ligase, 

and the ligation products were transformed into E. coli DH10B and clones were screened 

by plating on 100 µg/ml ampicillin LB agar plates. Finally, their plasmids were extracted 

and verified by double digestion (EcoRI and PstI). The detailed procedures of assembling 

by plating on 100 µg/ml ampicillin LB agar plates. Finally, their plasmids were extracted 

and verified by double digestion (EcoRI and PstI). The detailed procedures of assembling 

DNA constructs were described in our previous study 39. Restriction enzymes (EcoRI, 

XbaI, SpeI, and PstI) and T4 DNA ligase were purchased from New England Biolabs. All 

the constructs were inserted into high copy number plasmid pSB1A3 and pSB1K3. All 

the constructs were verified by DNA sequencing (Biodesign sequencing lab in ASU) step 

by step.  

 

3.4.3 Flow cytometry 

 All the samples were analyzed at the indicated time points on an Accuri C6 flow 

cytometer (Becton Dickinson, USA) with excitation/emission filters (488/530 nm for 

GFP, and 610 LP for mCherry). The data were collected in a linear scale and non-cellular 

low-scatter noise was removed by thresholding. All measurements of gene expression 

were obtained from at least three independent experiments. For each culture, 100,000 

events were collected at a slow flow rate. Data files were analyzed using MATLAB 

(MathWorks).  
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Table 5: Components from the Registry of standard biological parts. 
 

Biobrick number Abbreviation in the 

paper 

Description 

BBa_C0080 AraC AraC arabinose operon regulatory protein from 

E. coli 

BBa_C0040 TetR Tetracycline repressor from transposon Tn10 

BBa_C0062 LuxR LuxR activator from Aliivibrio fischeri 

BBa_C0012 LacI LacI repressor from E. coli 

BBa_E0240 GFP GFP generator 

BBa_J06702 mCherry RFP generator 

BBa_K176002 PLux/tet Hybrid promoter with LuxR/HSL- and TetR-

binding sites 

BBa_B0034 RBS Ribosome binding site 

BBa_B0015 Terminator Transcriptional terminator (double) 

BBa_K176009 CP Constitutive promoter 

pSB1K3 pSB1K3 High copy BioBrick assembly plasmid with 

kanamycin resistance 

pSB1A3 pSB1A3 High copy BioBrick assembly plasmid with 

ampicillin resistance 

 

3.4.4 Sequential induction and hysteresis 

 For sequential induction, initially uninduced overnight cell culture was diluted 

into fresh media without or with inducer I, grown at 37 °C and 220 r.p.m till OD600 is 

0.15~0.25 (the time usually takes 5~6.5 hr, depends on the inducers and concentrations). 

For samples induced individually by Ara, or AHL, or IPTG, it is ~5 hr; for samples 

induced with aTc, it takes ~6.5 hr. According to our experience, gene (GFP) is starting to 
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be partially expressed while steady states are not yet stable. Then inducer II was added 

into the culture, and grown for another 24 hr. Flow cytometry was performed at 0, 12, 

and 24 hr after the second inducer was added into the culture. For each set of sequential 

induction, the 1st scenario: add inducer I first, then add inducer II; the 2nd scenario: add 

inducer II first, then add inducer I; the 3rd scenario: add inducers I and II at the same time. 

As a control, cells without any inducer were also prepared and measured. Inducer I and II 

were the two of four commercial chemicals: AHL, Arabinose, IPTG, and aTc. All the 

experiments were repeated for at least three times and only representative results were 

showed.  

 For hysteresis experiments, initially uninduced cells were diluted into fresh media 

and distributed into new 5 ml tubes. Various amounts of Arabinose and AHL (3oxo-C6-

HSL) were added into the media, and cells were then grown at 37 °C shaker. The initially 

high-high state cells induced with 2.5 *10-3 m/v Arabinose and 1*10-4 M AHL were 

collected with low-speed centrifugation, washed twice, resuspended with fresh medium, 

and at last inoculated into fresh medium at a 1:100 ratio with the same series of inducer 

(Arabinose and AHL) concentrations. C1, C2, C3, and C4 (Figure 17B and Figure 18) are 

four increasing concentrations of Arabinose and AHL used for experimental probing, but 

the ratio of Arabinose and AHL is fixed. Specifically, cells were induced with the 

Arabinose and AHL at the same time (the 3rd scenario), at concentrations from C1 to C4. 

C1: no inducers; C2: 2.5*10-6 m/v Arabinose and 1*10-7 M AHL; C3: 2.5*10-5 m/v 

Arabinose and 1*10-6 M AHL; C4: 2.5*10-3 m/v Arabinose and 1*10-4 M AHL. Flow 

cytometry analyses were performed at 12 hr and 24 hr to monitor the fluorescence levels. 

Experiments were repeated two times with three replicates. 
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3.4.5 Cell growth array under inductions  

 Cells with the MINPA plasmid were cultured overnight at 37 °C and diluted into 

fresh media with corresponding inducers at 1:100 ratio (O.D. ~0.066). The four 

individual inducers are Ara (2.5*10-5 m/v), AHL (1*10-5 M), aTc (200 ng/ml), IPTG 

(1*10-4 M), and inducer combinations: AHL and aTc, AHL, aTc, and Ara. Cellular 

growth rates were measured by using 200 µL cultures in a 96-well plate with absorbance 

at 600 nm on a plate reader (BioTek, USA). Three replicates were tested for each 

condition.  

 Compared to AHL or Arabinose individually, aTc addition (aTc, AHL + aTc, and 

Ara + AHL + aTc) influenced cells growth and increased the lag phase for about 2.5 

hours. But at about 13 hours, the growth rates are almost the same. Since the timescale in 

our experiments is much longer (>= 24 hr) than 13 hours, we reason the effect of inducers 

on the cellular growth rates would not change interpretations of experimental 

observations. 

 

3.4.6 Microfluidics and microscopy 

 Microfluidics coupled with time-lapse imaging was employed to visualize the 

state transitions at the single-cell level. Cells with MINPA circuit were grown overnight, 

which was then re-diluted into 5 mL fresh LB medium with Kanamycin the next day. 

When OD600 of the cells reached about 0.2, cells were spun down with low speed and 

resuspended in 5 ml of fresh medium and loaded into the device. Detailed description of 

chip design and device setup could be found from Hasty Lab 98. Two media were 
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prepared: one with inducers and the other without. Cells in the trap were first supplied by 

the medium without inducer for 6 hours, and then switched to medium with inducers for 

anther 18 hours, which was controlled by adjusting the heights of the medium syringes 

relative to one another. Images were taken by using Nikon Eclipse Ti inverted 

microscope (Nikon, Japan) equipped with an LED-based Lumencor SOLA SE. Phase and 

fluorescence images were taken every 5 minutes for 24 hours in total under the 

magnification 40x. Perfect focus was maintained automatically using Nikon Elements 

software.  

 Specifically, two media were prepared: one with inducers (Arabinose, AHL and 

aTc) and the other without. After cells were loaded into the trap (1 to 5 cells for a trap), 

the device was heated up to 37 degree and cells were supplied with LB media without 

inducers for 6 hours. Sulforhodamine was added as a dye to monitor nutrient transport. 

Then, the supplied media was switched to the media added with Arabinose, AHL and aTc 

for another 18 hours. Media switching was controlled by adjusting the heights of the 

medium syringes relative to one another. 

 However, cells treated with the three inducers demonstrate symptoms of 

significant stress and cell death, presumably due to photo toxicity compounded with 

flow-induced sheer stress and other mechanical stresses in the microenvironment 143–145. 

Lower concentrations of three inducer combinations were also tested but yield no 

significant improvement of cells viability. 

 Since the logic of emergence of quadrastability is enhancing the two positive 

feedbacks of MINPA through adding inducers Arabinose, AHL and aTc, quadrastability 

could also be achieved through weakening the mutual inhibition using IPTG and aTc. 
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Depending on the basal expression of two hybrid promoters, IPTG and aTc can promote 

GFP and mCherry expression to a limited extent, which in turn attenuates fluorescent 

proteins toxicity. Hence, we tried to use IPTG and aTc to induce quadrastability instead 

of the three inducers tried in flow cytometry. Experimental result showed that the initial 

low-low state cells could differentiate into GFP, mCherry and high-high state cells with 2 

× 10−4 M IPTG and 200 ng/ml aTc induction (Figure 21D). It is interesting that the 

trajectory for many cells were from GFP to high-high to mCherry state. Altogether, this 

result further verified MINPA has the potential to generate quadrastability in living cells. 

 

3.5 Mathematical Modeling 

 Ordinary differential equations are developed based on the MINPA structure. 

Details can be found in our paper137. 
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CHAPTER 4 

 

DEVELOPMENT OF A PROTEIN EXPRESSION PREDICTOR TO TUNE GENE 

EXPRESSION AND CIRCUIT DYNAMICS 

 

4.1 Introduction 

 Gene circuit engineering as one of the foundation technologies has helped start 

the burgeoning development of synthetic biology. Based on a large collection of well-

characterized biological components including promoters, ribosome binding sites, 

transcriptional factors, terminators, and RNA elements, complex gene circuits with 

designed functions can be wired using established biological principles. Toggle switch 

and repressilator are two of the earliest examples of engineered gene circuits6,7. Now 

synthetic biologists are paying increasing attention to develop innovative gene circuits for 

drug development146,147, gene therapy148–150, cancer therapy151, immunotherapy152,153, 

pathogen detection58,154, in vivo delivery155, and other biotechnological applications 

including nitrogen fixation156,157 and environmental bioremediation158,159. 

 Currently circuit assembly has two main strategies: one is monocistronic construct, 

in which one promoter drives one gene expression and ensures each gene being expressed 

independently; the other is polycistronic construct, in which one promoter transcribes 

multiple structural genes (operon) into a single messenger RNA but is translated into 

individual products (Figure 23A). Operon, a cluster of genes with functional associations, 

is a major genomic organization method in prokaryotic cells and also widely found in 

eukaryotes and viruses160. This operon organization strategy ensures a coordinated gene 
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expression and regulation, and enables bacteria cells to rapidly respond to environmental 

changes. In synthetic biology, this organization (synthetic operon) facilitates rapid 

constructions of genetic cascades and decreases the number of wired biological 

components, and therefore is widely used in circuit engineering46,107,161–165. 

 However, it remains unknown whether/how structural gene expression is 

impacted by immediately adjacent genes in a polycistronic operon. Two previous reports 

have indicated that gene position and transcriptional distance can affect gene expression 

in an operon166,167. But little research has systematically studied the effects of adjacent 

gene organizations in synthetic operons on circuit gene expression, dynamics, and 

functionality. This factor is more prominent for synthetic operons containing a cluster of 

genes and complex multi-layered genetic circuits. Deciphering the effects of adjacent 

transcriptional region’s (ATRs) regulation on gene expression would advance our 

understanding of determinants of gene expression in synthetic circuits, and accelerate 

circuit design and assembly. Such adjacent gene regulation effect has been generally 

neglected during engineering of synthetic gene networks, leading to unexpected circuit 

performance or failure. Hence, development of a predictive method to evaluate each 

gene’s expression level in a circuit would be of great importance to circumvent the need 

for trial and error in circuit design and assembly.   

 To quantify ATRs effects on gene expression, we herein systematically analyzed 

the effect of adjacent genes and non-coding regions on green fluorescence protein (GFP) 

expression level through construction of ~120 synthetic gene circuits (operons) in 

Escherichia coli. Data-driven analysis yields a new gene expression-prediction method 

that strongly correlates with ATRs features including GC content, size, and stability of 
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mRNA folding near ribosomal binding site (RBS). We demonstrated this method’s utility 

in evaluating genes’ relative expression levels by incorporating it in the design and 

construction of logic gates with lower basal expression and higher sensitivity and 

nonlinearity. Furthermore, we designed synthetic 5’ATRs to tune protein expression 

levels over a 300-fold range. Finally, by combining ATR regulation and mathematical 

modeling, we illustrated the application of synthetic ATRs in quantitatively tuning 

nonlinear dynamics of bistable gene networks. 

 

4.2 Results 

4.2.1 Protein expression is significantly influenced by its adjacent genes and position 

in the operon 

 To examine whether protein expression is affected by its neighbors in a 

polycistronic setting, we first constructed a two-gene operon (gene X and GFP), which is 

driven by a constitutive promoter (Figure 23B). Flow cytometry results showed that for 

different X, GFP expression is highly diverse. Specifically, circuits with AraC and RhIR 

as X showed a comparable level of GFP fluorescence to the control (without X gene), 

while the others (LuxI, TetR, and dnMyD88) showed high expression variations, ranging 

from 6-fold to over 120-fold decrease compared to control. It is interesting to note that 

membrane protein dnMyD88 shows the most significant influence on its neighbor GFP 

expression (Figure 23B). RT-qPCR results showed that there is little correlation between 

GFP fluorescence and mRNA concentration, for P1:P2 (GFP N terminal) or P3:P4 (GFP 

C terminal) primer pairs,  (Figure 23C and Figure 24). So the variation of mRNA 

concentrations for each construct is insufficient to explain the fluorescence differences,  



 

89 

Figure 23: Protein expression is significantly influenced by its adjacent genes and 
position in synthetic operons. (A) Illustration of the operon structure and genes 
expression. The three structural genes are transcribed as a polycistronic mRNA, but 
translated into individual proteins. P: promoter; O: operator. Yellow oval: ribosome; (B) 
Top: Schematic representation of synthetic bi-cistronic gene circuits with gene X and 
GFP. Grey arrow: constitutive promoter; Orange oval: ribosome binding site; Red 
hexagon: transcriptional terminator. Bottom: Flow cytometry results show GFP 
expression is influenced by its 5’ATRs. X represents a gene name (i.e. LuxI, AraC, TetR, 
RhIR, and dnMyD88). “Control” is without X gene in the circuit. Grey arrow represents 
constitutive promoter; yellow oval represents ribosome-binding site; red octagon 
represents transcriptional terminator. Rectangles with filled colors represent different 
genes. X represents different gene names used in the circuit. Data represent the mean ± 
s.e. of eight replicates. (C) Relative GFP mRNA concentrations (normalized to 16S 
rRNA control) for the circuits in (B) determined by RT-qPCR. Primer pair P1:P2 was 
designed to amplify GFP gene from the sample cDNA. (D) Top: Schematic 
representation of synthetic bi-cistronic gene circuits with gene X and GFP, but with 
switched positions in the circuit. Gene position in the operon impacts GFP expression. 
Data represent the mean ± s.e. of eight replicates. *P<0.05, **P <0.001 and ***P<0.0001 
by student’s t-test. 
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Figure 24: RT-qPCR result indicates there is little correlation between GFP protein 
fluorescence intensity and mRNA level for the circuits in Figure 23B. (A) Two pairs of 
primers (P1:P2, and P3:P4) designed to amplify GFP gene from the sample cDNA. The 
binding sites of the four primers are also indicated. (B) RT-qPCR result using primer pair 
P3:P4 to amplify GFP gene. The GFP mRNA concentrations were normalized to the 16S 
rRNA control. Error bar represents standard deviation of three biological replicates. (c) 
Correlation between the GFP fluorescence intensities and the relative GFP mRNA 
concentrations. Little correlation was found using primer pair P1:P2 or P3:P4. 
 

which is in agreement with previous studies that protein and mRNA copy numbers in E. 

coli cells for any given gene are uncorrelated 170,172. These results indicate that a gene’s 

expression in an operon-based gene circuit is substantially regulated by its neighboring 

genes, mostly at the translational level. 

 Next, we further investigated the influence of a gene’s position on its expression. 

As shown in Figure 23D, higher GFP expression is observed when GFP is arranged distal 

to the promoter for the bi-cistronic constructs that X gene is RhII, AraC, or LacI, while 

there are three cases showing similar level GFP fluorescence (LuxR) or higher (LuxI)  
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Figure 25: Gene position in the tri-cistronic circuit impacts GFP expression.  (A) GFP is 
arranged at proximal (P1) or middle (P2) or distal (P3) positions to the constitute 
promoter in the tri-cistronic circuit with two more genes LuxR and RhIR. Circuit with 
GFP at P1 position shows the highest GFP expression.  (B) GFP is arranged at P1, P2, 
and P3 positions in the tri-cistronic circuit with genes LuxR and AraC. Circuit with GFP 
at P3 position shows the highest GFP expression. (C) GFP is arranged at P1, P2, and P3 
positions in the tri-cistronic circuit with two copies of LuxR genes. Circuit with GFP at 
P1 position shows the highest GFP expression. (D) GFP is arranged at P1, P2, P3 
positions to the constitute promoter in the tri-cistronic circuit with genes LuxR and LacI. 
Circuit with GFP at P3 position shows the highest GFP expression. Data represent the 
standard deviation of eight replicates. Gray arrow: constitutive promoter; Orange oval: 
ribosome binding site; Red hexagon: transcriptional terminator. Rectangles with filled 
colors represent different genes. 
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when GFP is arranged right downstream of the promoter. Results from tri-cistronic 

constructs also indicate that GFP expression is varied for different positions in the circuit 

and adjacent genes (Figure 25). Moreover, for different Xs with the same position, GFP 

shows substantial variations, consistent with results shown in Figure 23B. Altogether, 

these results demonstrate that a gene’s sequence and position in operons have 

considerable effects on adjacent genes’ expression. 

 

4.2.2 Quantitative characterizations of adjacent gene regulation in synthetic operons 

 To quantify ATRs impacts on protein expression, we designed and constructed 

~80 circuits with different neighbor genes and varying sizes (X and Y) to cover a wide 

range of GFP gene position and neighbor features (GC content, size, and mRNA 

secondary structure). These genes are commonly used in synthetic biology, including 

transcriptional factors, quorum-sensing components, and other functional genes. 

Membrane-protein coding genes were excluded from consideration due to their complex 

structures. To ensure experimental consistency, all circuits are constructed using the same 

constitutive promoter, RBS, terminator, and expression vector. 

 First, GFP was arranged to the distal end of synthetic operons with two or three 

genes (Figure 26A). It is found that GFP expression increased with the total 5’ATRs GC 

content (correlation coefficient r = 0.66), while 5’ATR length has a negative effects on 

GFP expression (r = 0.53, Figure 26A). Sliding window analysis of 5’ATR GC content 

suggested that the GC content of the whole 5’ATR has the highest fitting efficiency 

(Figure 27A). We speculate that high GC content could increase total mRNA stability, 

while long transcription process could consume more energy and decrease the probability 
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of complete GFP transcription/translation. Additionally, previous studies reported that  

RNA secondary structure near the RBS influences a gene’s expression, so local folding 

energy from -70-nt to +38-nt region around GFP’s RBS (GFP’s translation starting site is 

denoted as +1) were calculated. Consistent with previous reports169–171, our analysis also 

shows that GFP expression is negatively correlated with folding energy around RBS of 

GFP (r = 0.5, Figure 26A). Overall, these three factors together explain 63% GFP 

variation (Figure 26B).  

Figure 26: Quantitative characterization of adjacent gene regulation in synthetic operons. 
(A-B) Scenario 1: GFP is arranged distal to the promoter. Top: Schematic representation 
of synthetic polycistronic gene circuits X-GFP. Grey arrow: constitutive promoter; 
Orange oval: ribosome binding site; Red hexagon: transcriptional terminator. X and Y 
represent different gene names. Bottom: GFP expression is significantly impacted by its 
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5’ATRs’ GC content, size and local folding free energy. 35 genetic circuits with one or 
two genes placed in front of GFP, which are labeled with different symbols in the 
regression results. The red lines are the linear regression results from the data. Variables 
are in log scale. Variable “Free energy” is first transformed to positive values and then 
changed to log scale. Error bars are s.d. of eight measurements performed in three 
different days. (B) is the experimentally measured GFP fluorescence compared to the 
linear regression model predicted GFP expression with the three variables and fitted 
coefficients. If the model predicted values and experimentally observed values agreed 
perfectly (R2 = 100%), all the data points would fall on the dotted diagonal line of the 
squares. N is the total measurements for the 35 circuits. (C-D) Scenario 2: GFP is placed 
in the middle of the three-gene operons (X-GFP-Y). 20 circuits with different X and Y 
gene combinations were constructed. (D) is the experimentally measured GFP 
fluorescence compared to model predicted GFP expression with the three variables in (C). 
N is the total measurements for the 20 circuits. (E-F) Scenario 3: GFP is placed proximal 
to promoter (GFP-X). 24 circuits with different 3’ATRs (including one or two genes) 
were constructed, and different symbols are used to indicate bi- or tri-cistronic constructs 
in the regression results. (F) is the experimentally measured GFP fluorescence compared 
to model predicted GFP expression with the two variables of 3’ATR in (E). Only 3’ATR 
data are used to fit the model (without 5’ATR). (G) A combined model analysis for all 
three scenarios compared to five independent variables including 5’ATR GC content, 
5’ATR size, 3’ATR GC content (100-nt), 3’ATR size, and local mRNA folding free 
energy. The five variables together explain 64% of GFP fluorescence variation. Dots with 
different colors indicate the data source from the above three scenarios. 
 

Next, GFP was placed in the middle of the operon. In this case, we found that 5’ and 

3’ATRs GC content and local mRNA folding free energy have the most significant 

impacts on GFP expression (Figure 26C), and explains more than half of variation in 

fluorescence variations (Figure 26D). 

 Finally, circuits with GFP engineered proximally to the promoter were also 

constructed and investigated to probe the relationship between GFP expression and its 

3’ATR. Similarly, results show 3’ATR GC content and size has a positive and negative 

correlation with GFP fluorescence, respectively (Figure 26E). Sliding window analysis 

further revealed that the GC content of first 100 nt of 3’ATR has the highest fitting 

efficiency, suggesting the rear 100 nt is important for GFP expression (Figure 27B). 
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These two variables of 3’ATR together can account for 79% GFP variations (Figure 26F). 

It is worth noting that the 5’ATR GC content has a bigger impact on GFP expression than 

its size, while 3’ATR size is more influential than its GCcontent (Figure 26A and E). On 

average, GFP in the middle shows the lowest expression (µ = 4.908, σ2 = 0.088) and GFP 

in the distal shows the highest variation (µ = 5.293, σ2 = 0.334; Figure 26B,D,E). 

 A combined model integrating the above three scenarios was then developed. The 

five variables (predictors) combined have significant correlations with the GFP 

expression, and explain nearly two-thirds of the variations in GFP fluorescence (Figure 

26G), of which 95.6% can be accounted for by four of the five predictors, namely GC 

content and sizes of 5’ and 3’ATRs. 

 

Figure 27: Sliding window analysis for local GC content and model fitting. (A) TOP: 
Schematic representation of constructs with GFP distal to the constitutive promoter. The 
black lines with arrows indicate 5’ATRs with different lengths. Bottom: GC content of 
5’ATRs with different lengths from 400 nucleotides to the whole transcriptional region 
are calculated and then fitted to the model. The coefficients of determination (R2) are 
compared to 5’ATRs with different lengths. Linear model results show that GC content 
with the whole 5’ATR has the highest fitting efficiency. Gray arrow: constitutive 
promoter; Orange oval: ribosome binding site; Red hexagon: transcriptional terminator. X 
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represents different genes used in the circuit. (B) TOP: Schematic representation of 
constructs with GFP proximal to the constitutive promoter. The black lines with arrows 
indicate 3’ATRs with different lengths. Bottom: GC content of 3’ATRs with different 
lengths from 50 nucleotides to the whole transcriptional region are calculated and then 
fitted to the model. The coefficients of determination (R2) are compared to 3’ATRs with 
different lengths. Model fitting results show that GC content of the first 100 nucleotides 
3’ATR has the highest fitting efficiency.   
 

4.2.3 Protein expression is also affected by non-coding ATR sequences 

 Non-coding DNA sequences also have important regulatory functions. To 

investigate whether non-coding sequences would similarly affect adjacent gene 

expression in synthetic operons, we engineered 32 synthetic circuits with 32 genes, of 

which 23 are transcriptional factors (common repressors/activators) and three are 

membrane protein genes. All of the 32 genes are placed immediately downstream of the 

promoter without RBS, thus they would not be translated (Figure 28). We reasoned that if 

GFP variations in Figure 26 were not resulted from the interference of adjacent proteins’ 

expression, the adjacent gene regulation would be similar for non-coding ATRs.  

 Our results showed strong correlations between GFP expression and non-coding 

5’ATR GC content, size, and local mRNA folding energy (Figure 28). Overall, with the 

three variables the model can explain about 65% variation of GFP expression for operons 

with non-coding regions (Figure 28). However, the coefficients for the three variables are 

slightly different from cases with RBS in Figure 26A. Higher GFP expression was 

observed for circuits with the same genes with RBS than those without RBS (Figure 29), 

suggesting the RBS of 5’ATR may be important for mRNA stabilization and expression 

efficacy.  
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 Non-coding DNA sequence has been demonstrated to make up about 98% of the 

whole human genome and is capable of regulating gene expression and modulate 

chemotherapeutic resistance172–174. Our findings offer direct evidence that adjacent non-

coding DNA fragments can also regulate gene expression in synthetic operons. Moreover, 

this result also suggests that the GFP variation does not result from its neighbor proteins’ 

expression, but more related to the mRNA transcript itself.  

Figure 28: Quantitative characterization of non-coding ATRs regulation on gene 
expression. Top: Schematic representation of synthetic gene circuits with non-coding 
5’ATR. Grey arrow: constitutive promoter; Orange oval: ribosome binding site; Red 
hexagon: transcriptional terminator. Rectangles with filled colors represent different 
genes. 29 genetic circuits with different genes (X) were constructed. These genes would 
not be expressed owing to a lack of ribosome binding sites. Linear regression results 
indicate that 5’ATR GC content, size and local folding free energy are significantly 
correlated with GFP expression and the three variables together explain 65% GFP 
fluorescence variation. 
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Figure 29: Comparison of GFP expression between coding ATRs and noncoding ATRs. 
(A) Schematic representations of synthetic bi-cistronic gene circuits. GFP reporter was 
expressed downstream of a coding ATR (with RBS) or noncoding ATR (without RBS), 
respectively. Gray arrow: constitutive promoter; Orange oval: ribosome binding site; Red 
hexagon: transcriptional terminator. Rectangles with filled colors represent different 
genes. X represents different genes used in the circuit. (B) Higher GFP expression was 
observed for circuits with the same genes (TetR, or LacI, or LuxR, or cI, or LuxI, or AraC) 
with RBS than those without RBS. Fluorescence was measured by flow cytometry. Error 
bar represents standard deviation of eight biological replicates.  
 

4.2.4 Comprehensive model of ATR regulation 

 Our results revealed that gene expression in operons is significantly regulated by 

its adjacent genes’ sequence features and local mRNA secondary structures. The explicit 

mechanism of these effects remains unclear. Since the mRNA is transcribed from a single 

constitutive promoter and the amount of GFP mRNA is roughly equal, we attribute 

observed fluorescence variations to translation and degradation of mRNA, which occur 

simultaneously in E. coli through their machinery’s competitively binding to mRNA after 

transcription initiation. Moreover, the same RBS for each construct ensures a similar  
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Figure 30: A general model for ATR regulation on gene expression. (A) Co-
transcriptional translation and degradation. After RBS is transcribed, RNase and 
ribosome competitively bind to mRNA to initiate translation or degradation. Generally, 
gene expression is influenced by overall stability and local secondary structure. (B) 
Illustration of the five variables in the model: ∆G5’ATR, ∆G3’ATR_100, ∆G-70~+38, and 
transcriptional size (i, j). -70 and +38 is corresponding to the position of start codon 
(AUG) of interested gene. (C) Experimentally observed GFP expressions are plotted 
against the model predicted GFP values with the five energetic terms for all the three 
scenarios’ data in Figure 26. The comprehensive model shows similar level of fitting 
efficiency to Figure 26G. Dots with different colors indicate the data source from the 
three scenarios in Figure 26 (D) is the experimentally measured GFP fluorescence from 
the non-coding ATR regulation data in Figure 28 compared to the linear regression model 
predicted GFP expression with the three energetic terms. The model shows a slightly 
higher fitting efficiency compared to the result in Figure 26.  
 

efficacy of translational initiation. Thus, mRNA degradation and secondary structures 

play major roles in GFP expression variations. E. coli mRNAs are unstable in the cell 

with short half-lives (few minutes), and generally degraded by RNA degradosome 
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assembled on RNase E, which catalyzes the rate-limiting cleavage of many mRNAs from 

5’ to 3’ direction with a preference for AU-rich sequences175–180. Previous reports have 

also shown that a structured mRNA with high GC content is likely to have more stable 

secondary structure, conferring stability for downstream sequences180,181. Thus, we infer 

that a high GC-content 5’ATR may help stabilize the GFP transcript and slow the 

degradation process, leading to higher GFP expression. Our results in Figure 26 also 

showed that constructs with GFP distal to promoter has the highest variation (σ2 = 0.334) 

while GFP proximal to promoter has the much lower variance (σ2 = 0.121), suggesting 

the 5’ATR secondary structure probably influences GFP expression. 

 We then develop a comprehensive linear model based on measurements of 

sequence-dependent energetic changes during polycistronic mRNA folding/translation 

and costs of protein bio-synthesis182–184. The energetic changes are corresponding to the 

translation efficiency and protein abundance (c).  

c ∝ exp(-Σβx ∆Gx,),    x = 1,2,3,… 

where ∆G is the energy term and β is the scaling coefficient183,185. For a given gene in an 

operon, the size of 5’ and 3’ ATR is denoted as i nt and j nt, respectively (Figure 30A-B). 

The minimum free energy of local GFP mRNA secondary structure around RBS is ∆G-

70~+38. The entire folding energy for 5’ATR is ∆G5’ATR, and the 100-nt 3’ATR is 

∆G3’ATR_100. So the sum of energy changes can be quantified to assess the abundance of a 

given gene expression:  

 

-Σβx ∆Gx = β0 + β1 * ∆G5’ATR + β2 * ∆G3’ATR_100 + β3 * i * Gm + β4 * j * Gm + β5 * ∆G-70~+38 
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where the folding energy of ∆G5’ATR, ∆G3’ATR_100 and ∆G-70~+38  are totally sequence-

dependent and Gm is an average energy cost for synthesizing a nucleotide, which here for 

simplicity we assume it is a constant. Based on the computed free energy and sequence 

length for the constructs, we found that the model has significant correlation with 

experimental data and explains 63% of the GFP variation for constructs with coding 

ATRs (Figure 30C) and 67% for circuits with non-coding ATRs (Figure 30D). With this 

comprehensive tool, we can evaluate the influence of the adjacent transcriptional 

sequences on a certain gene’s expression in the operon, which provides a guide for circuit 

design and optimization during circuit engineering. 

 

4.2.5 Predictor-guided circuit design for synthetic logic gates 

 To illustrate how the tool could be used to guide circuit design, synthetic AND 

logic gate was designed and tested. The gate is composed of a hybrid promoter pLux/tet, 

which has one LuxR-AHL and one TetR binding site. GFP is the output. Maximized GFP 

expression is achieved in presence of two inputs AHL and aTc (Figure 31A), where AHL 

binds with LuxR protein to activate pLux/tet transcription and aTc can block TetR 

repression to pLux/tet. LuxR and TetR are constitutively expressed from the same 

promoter.  

 There are two possible ways to assemble this circuit, one is LuxR-TetR (LT) 

combination, and the other is TetR-LuxR (TL). The GC content of LuxR (30.3% GC, 781 

bp) is lower than TetR (40.4% GC, 685 bp). So in AND-gate LT, TetR expression is 

lowered by its 5’-low-GC-content neighbor while the impact of LuxR to TetR expression 

in logic TL is minor because the size of 3’ATR is a more significant factor compared to 
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GC content. We then calculated the equation for each circuit design and feed it into our 

model, results indicate that LuxR expression in TL decreases by 4.4% compared to gate 

LT, however, TetR expression increases by 93.6% in circuit TL (Table 6). Therefore, we 

infer that the basal GFP expression in circuit LT would be greater than in TL, whereas 

TL would harbor more dynamic responses with induction of aTc because of higher TetR 

 

 
 

Figure 31: Model guided circuit design for synthetic logic gates. (A) Two designs for 
pLux/tet–AND logic gate. A constitutive promoter (grey arrow) drives LuxR (orange 
rectangle) and TetR (green rectangle) expression. pLux/tet is highly activated in presence 
of both AHL and aTc. LT and TL represent the order of LuxR and TetR positions in the 
operon. LuxR can bind with AHL (grey oval) to activate pLux/tet promoter (blue arrow), 
while aTc (green hexagon) can block the TetR inhibition to pLux/tet promoter. Lines with 
arrowheads indicate activation, and lines with T-bars indicate inhibition. Orange oval: 
ribosome binding site; Red hexagon: transcriptional terminator. (B) Dose responsive 
curves for different concentrations of AHL and aTc. The solid lines are from ODE model 
simulations based on the calculated relative changes of LuxR and TetR concentrations in 
LT and TL from our linear comprehensive model. Data points with error bar are  
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experimental results, showing good match with model predictions. Inserted diagram is 
the basal expression of GFP for design LT and TL. Data represent the mean ± s.d. of 
three replicates. Color curves are inductions with different aTc concentrations (20 ng/ml, 
100 ng/ml, and 200 ng/ml). (C) Two designs for pLux/lac–AND logic gate. A constitutive 
promoter (grey arrow) drives LuxR and LacI expression. pLux/lac (purple arrow) is 
highly activated in presence of both AHL and IPTG (blue hexagon). LuxR can bind with 
AHL to activate pLux/lac promoter, while IPTG can block the LacI inhibition to pLux/lac 
promoter. LI and IL represent the order of LuxR and LacI positions in the operon. (D) 
Dose responsive curves for different concentrations of AHL and IPTG. The solid lines 
are model simulations based on the calculated relative changes of LuxR and LacI 
concentrations in LI and IL from our linear comprehensive model. Experimental results 
(data point with error bar) show good match with model predictions. Color curves are 
inductions with different IPTG concentrations (1 µM, 10 µM and 100 µM). Inserted 
diagram is the basal expression of GFP for design LI and IL. Data represent the mean ± 
s.d. of three replicates. p-value is calculated from student’s t-test. 
 

 
 
Figure 32: Model simulation and experimental validation of GFP dynamics for synthetic 
logic gates. (A) Dose responsive curves for different concentrations of AHL and aTc. The 
solid lines are from ODE model simulations based on the calculated relative changes of 
LuxR and TetR concentrations in LT and TL from our linear comprehensive model. Data 
points with error bar are experimental results, showing good match with model 
predictions. Color curves are inductions with different aTc concentrations (0 ng/ml, 0.2 
ng/ml, and 2 ng/ml). Data represent the mean ± s.d. of three replicates. (B) Dose 
responsive curves for different concentrations of AHL and IPTG. The solid lines are 
model simulations based on the calculated relative changes of LuxR and LacI 
concentrations in LI and IL from our linear comprehensive model. Experimental results 
(data point with error bar) show good match with model predictions. Color curves are 
inductions with different IPTG concentrations (0, 0.1 µM, 200 µM and 400 µM). Data 
represent the mean ± s.d. of three replicates. 
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                 Table 6: Model evaluation for each gene's expression in the AND logic gate.  

 Coefficients of the comprehensive model   
 5’ATR Size 3’ATR Size Free energy 

 (∆G-70~+38) 
∆G5’ATR ∆G3’ATR 

(100nt) Intercept   

 -3.10443 -1.15864 -1.1206 -1.80151 -0.28049 11.4635   
AND-Gates         
CP-LuxR-LacI(LacI) 815 8 -16.9 -121.6 -0.00001    
CP-LuxR-LacI(LuxR) 8 1187 -70 -0.05 -16.6    

      
Predicted 
expression 

Relative 
expression 
(10^(IL-LI)) 

Overall 
efficiency 

CP-LuxR-LacI(LacI) 2.911157609 0.903089987 -1.227886705 -2.084933575 5 5.109207328   
CP-LuxR-LacI(LuxR) 0.903089987 3.074450719 -1.84509804 1.301029996 -1.220108088 5.163765204   
         CP-LacI-LuxR(LacI) 8 815 -70 -0.05 -7.1 

 
1.38132904 2.762658081 

CP-LacI-LuxR(LuxR) 1187 8 -15 -365.5 -0.00001 
 

1.743840175 1.743840175 

         
CP-LacI-LuxR(LacI) 0.903089987 2.911157609 -1.84509804 1.301029996 -0.851258349 5.222548745   
CP-LacI-LuxR(LuxR) 3.074450719 0.903089987 -1.176091259 -2.562887381 5 5.404555747   
         CP-LuxR-TetR(TetR) 815 8 -12.5 -121.6 -0.00001    
CP-LuxR-TetR(LuxR) 8 719 -70 -0.05 -11.6    
       (10^(TL-LT))  
CP-LuxR-TetR(TetR) 2.911157609 0.903089987 -1.096910013 -2.084933575 5 4.96342505   
CP-LuxR-TetR(LuxR) 0.903089987 2.85672889 -1.84509804 1.301029996 -1.064457989 5.381238175   
         CP-TetR-LuxR(TetR) 8 815 -70 -0.05 -7.1  1.936732422 1.936732422 
CP-TetR-LuxR(LuxR) 719 8 -13.7 -152.5 -0.00001  0.956758533 0.956758533 

         
CP-TetR-LuxR(TetR) 0.903089987 2.911157609 -1.84509804 1.301029996 -0.851258349 5.222548745   
CP-TetR-LuxR(LuxR) 2.85672889 0.903089987 -1.136720567 -2.183269844 5 5.35336342   
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expression. An ordinary differential equation (ODE) model was then developed to 

simulate GFP expression based on the computed LuxR and TetR production changes in 

the LT and TL gates (more detail in Supplementary methods). Through tuning the 

relative production rates of LuxR and TetR in the model, we can predict the GFP 

dynamics under induction of AHL and aTc (Figure 31B and Figure 32A, solid lines).  

 Experimental dose-response results further supported our model analysis that for 

all aTc concentrations, basal expression of pLux/tet in circuit LT is significantly higher 

(~35 fold) than in circuit TL (Figure 31B and Figure 32A, data points with error bar). 

Moreover, the maximum GFP fluorescence is also higher in circuit LT, owing to 

decreased LuxR expression in gate TL. However, the sensitivity to AHL (concentration 

for half-maximal activation of GFP, K0.5) is improved 2.4 ~ 64.5 fold in circuit TL 

compared to LT for different concentrations of aTc. And the nonlinearity (hill coefficient) 

is generally increased 2 ~ 5 fold with high concentrations of aTc induction. These data 

are in accordance with the model calculations that TetR expression is relatively increased 

in circuit TL than in LT, which suppresses the basal expression of pLux/tet and improves 

the sensitivity and nonlinearity of the promoter to AHL and aTc. 

 To further validate the method’s utility, another two AND-gate gene circuits (LI 

and IL) with switched genes’ (LuxR and LacI) position were designed (Figure 31C). 

Hybrid promoter pLux/lac was used to indicate the relative concentrations of LuxR and 

LacI produced from the operon. LacI (53.3%, 1153 bp) has a high GC content, which 

may increase LuxR expression. Our model calculations showed that LuxR expression 

increases by 74.3% and LacI increases by 38.1% in circuit IL than in LI (Table 6). Since 

promoter pLux/lac has two LacI-binding sites (one is in the region between -35 and -10, 
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and the other is downstream of -10 element), so the overall LacI inhibition efficiency is 

increased ~ 76.2% considering the importance of spacing between -35 and -10 element to 

RNA polymerase binding. Therefore, the basal GFP expression of logic IL would be 

lowered compared to LI. The ODE model also indicates higher GFP expression in gate LI 

(Figure 31D and Figure 32B, solid lines). Experimental results confirmed that the basal 

expression for circuit LI is ~ 54-fold higher than IL, and GFP expression under each 

inductions are higher in gate LI, which is consistent with the ODE model results (Figure 

31D and Figure 32B, data points with error bar).  

 Taken together, the two sets of AND logic gates showed an example of applying 

our comprehensive model based tool to evaluate each gene’s relative expression level in 

synthetic AND gate gene circuits, and verified that ATRs’ features and local mRNA 

stability changes in an operon-based gene network affect genes expression and the circuit 

performance, including basal level, sensitivity, and nonlinearity. Furthermore, the tool 

could serve as a much-needed quantitative guidance to rational design and optimization 

of gene expression for large genetic circuits. 

 

4.2.6 Tuning gene expression with synthetic 5’ adjacent transcriptional regions  

 Next, we seek to use synthetic non-coding DNA fragment to fine-tune gene 

expression. Since GC content has been shown as a critical factor, we synthesized six 

short DNA fragments (with a constant size 200 bp) with varying GC content from 28% to 

53%, which were inserted downstream of LuxR gene but upstream of GFP in the two-

gene operon (Promoter-LuxR-Synthetic fragment-GFP). According to our model, 

synthetic fragments with varying GC content could tune GFP expression.  
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Figure 33: Tuning gene expression with synthetic 5’ adjacent transcriptional regions. (A) 
Synthetic 5’ATRs (SynF) to tune GFP expression for circuit CP-LuxR-GFP. 200 bp 
ATRs were inserted between LuxR and GFP genes to tune GFP expression, and control 
(Ctl) is constructed without ATR insert. Flow cytometry results indicate that GFP 
fluorescence increases with gradually increasing 5’ATRs GC content from 28% to 54%. 
(B) Microscopic results of GFP fluorescence for the constructs in (A). Scar bar: 5 µm. 
Magnification: 40x. (C) Synthetic 5’ATRs (SynF) with different GC content to tune GFP 
expression for circuit CP-GFP. All the SynF have the same size (200 bp) and are inserted 
upstream of GFP gene (Top). Flow cytometry results of GFP fluorescence for 5’ATRs 
with GC content from 28% to 67% (Bottom). (D) Circuits with different 5’ATR sizes 
(through shortening and adding a common sequence S44, GC: 44%, Size: 200 bp) were 
constructed to tune GFP expression. Flow cytometry results show that GFP fluorescence 
intensity gradually decreases with increasing 5’ATR sizes.  
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 Experimental results show that GFP expression is continuously increased for 

synthetic fragments with increasing GC content from 28% to 53% (Figure 33A). Low 

GC-content fragments down-regulated GFP expression for about 25 fold. Microscopy 

results further confirmed flow cytometry data and visualized gradual increase of 

fluorescence intensity with increasing GC-content ATRs (Figure 33B). Using this 

strategy, we further synthesized 13 DNA fragments as 5’ATRs with varying GC content 

but having a constant size (200 bp), and placed downstream of the promoter (Figure 33C). 

Results indicate that synthetic short DNA sequences have a substantial impact on GFP 

expression: low GC-content ATRs largely decrease its neighbor’s expression (up to 366 

fold), and exhibit a gradually increasing pattern from 28% to 48%, while high GC-

content (48% to 67%) ATRs drive GFP expression to a comparable level to the control 

(without synthetic fragments). It is possible that GFP achieves its maximum expression 

when the upstream ATR mRNA piece has a relatively stable structure. To further verify 

the ATR regulation, we changed the size of 5’ATR through shortening and adding a 

common sequence. Using S44 (GC: 44%; Size: 200 bp) in Figure 33C as the seed 

sequence, we shortened to 100 bp and 50 bp, and added to 400 bp (combined with two 

pieces of S44) to 4600 bp (combined with 23 pieces of S44), and all the ten fragments 

have the same GC content (44%, Figure 33D). Flow cytometry results show that GFP 

fluorescence intensity gradually decreases with increasing 5’ATR sizes (Figure 33D). 

Taken together, we demonstrate that synthetic non-coding 5’ATRs with designed GC 

content and sizes can be used to accurately tune gene expression and achieve expression 

levels spanning more than 300-fold.   
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4.2.7 Using synthetic ATRs to tune toggle switches 

 To further test the utility of synthetic non-coding 5’ ATR in tuning gene 

expression, we applied synthetic 5’ATRs to tune the classical “toggle switch”. As 

illustrated in Figure 34A, LacI protein could inhibit TetR by binding the pLac promoter 

while TetR could bind pTet to block LacI expression, forming a mutually inhibitory 

network. Here, we positioned 200 bp synthetic ATRs with 28% and 67% GC content 

upstream of RBS-TetR module to tune TetR production (T_S28 and T_S67). According 

to our analysis above, low GC-content 5’ATR can down-regulate TetR expression while 

high GC-content can keep TetR at a high level. 

 Flow cytometry was employed to analyze the initial state and population 

distribution for cells harboring the three toggle switches. As shown in Figure 34B, T_WT 

initially shows bimodal distribution, GFP-ON and GFP-OFF populations, resulting from 

gene expression noise in a relatively balanced system. In contrast, both T_S28 and T_S67 

exhibited unimodal distributions. Synthetic ATR S28 decreased TetR expression leading 

to higher LacI and GFP expression, whereas fragment with 67% GC content showed a 

lower GFP expression than T_S28 and slightly lower than the high-GFP population cells 

in T_WT (Figure 34B). The results indicated that the synthetic ATRs could tune TetR 

expression and initial steady states of the toggle switches.  
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Figure 34: Using synthetic ATRs to modulate bistability of toggle switches. (A) Left: 
Abstract diagram of toggle switch topology, where X and Y mutually inhibit each other. 
Right: Molecular implementation of the toggle switch. LacI inhibits TetR by binding the 
pLac promoter while TetR binds pTet to block LacI expression, forming a mutually 
inhibitory network.  Inducers IPTG and aTc (hexagon) can respectively relieve LacI and 
TetR inhibition. GFP serves as the readout of pTet promoter. Synthetic ATRs (SynF) 
were engineered upstream of TetR gene. (B) Initial steady states for the three toggles. 
Toggle without ATR insertion (T_WT) shows bimodal distribution (GFP-OFF and GFP-
ON), while T_S28 (ATR with 28% GC content) shows higher GFP expression and 
T_S67 (ATR with 67% GC content) shows lower GFP expression than the GFP-ON 
population of T_WT. (C) Bifurcation analysis for GFP (LacI) expression with different 
TetR production rates under induction of varying concentrations of aTc. A low 
production rate for TetR, corresponding to T_S28, has the smallest bistable region, while 
a high rate (corresponding to T_WT) has the broadest bistable region. Solid lines 
represent stable steady-state solutions and dotted lines are unstable steady-state solutions. 
GFP* is the computed GFP abundance from the model. (D-F) Hysteresis results for 
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toggles T_S28, T_S67 and T_WT under induction of varying concentrations of aTc. Red 
lines indicate the initial OFF cells with basal GFP expression while green lines indicate 
the initial ON cells with high GFP expression. Data represent the mean ± s.e. of three 
replicates. Grey area is the presumable bistable region for each circuit.  
 

 To achieve a quantitative understanding of the ATR’s regulation on bistability, we 

performed bifurcation analysis from the same mathematical model as the classical toggle 

switch6. We found that the production rate of TetR has a considerable effect on bistability 

and bistable region (Figure 34C). A small production rate, corresponding to low-GC ATR, 

has a small bistable region, whereas increase of production rate leads to larger bistable 

regions. Experimentally, hysteresis of the three toggles were tested to verify the model 

analysis. Results indicated that all the three toggles exhibited hysteresis and T_WT 

harbors the broadest bistable region (Figure 34D-F). Moreover, consistent with model 

analysis, the bistable regions are gradually decreased from T_WT to T_S67 to T_S28. 

Collectively, these results validate a novel strategy of using synthetic ATRs to tune gene 

networks’ initial steady states and bistability. Furthermore, this example demonstrates the 

feasibility of bridging ATR regulation with mathematical modeling to quantitatively 

understand and tune gene network dynamics.  

 

4.3 Discussion 

 Circuit engineering is the first step for synthetic biologists to achieve designed 

functionalities with synthetic gene circuits. A successful synthetic gene circuit depends 

on the full characterization of biological components and the emerged interactions 

between modules when assembled into a complete gene network23,104,186,187. Development 

of a reliable tool to predict protein expression in the circuit has wide applications in 
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biotechnology. For example, RBS Calculator is a well-developed design tool to predict 

and control translation initiation and protein expression in bacteria183,185. Further 

systematic investigation revealed that mRNA translation initiation rate is controlled by 

coupled trade-offs between site accessibility, partial RNA unfolding and ribosomal 

sliding in the structured upstream standby sites, which leads to a more accurate prediction 

of RBS strength and protein expression188. 

 Here, we systematically investigated how the adjacent transcriptional regions 

regulate gene expression in synthetic operon-based gene circuits. Through placing the 

GFP at different positions (proximal, middle, and distal) to the promoter, we developed a 

new gene expression-prediction method that takes into account the adjacent 

transcriptional regions’ features including GC content, size and stability of mRNA 

folding near RBS (Figure 26), of which 5’-ATR GC content and 3’-ATR size are two 

most significant factors. It is necessary to point out that most ATRs’ sizes in the circuits 

are 500 - 2000 bp, and the maximum is 2422 bp, which may undermine the contribution 

of ATR’s size to GFP variation. Moreover, because of the limitation in sample size and 

available gene resources, the collected data is not perfectly normally distributed, 

especially for circuits with GFP in the middle (X-GFP-Y), which may compromise the 

robustness of the model. We also found that membrane protein genes cause significant 

inhibitions to GFP expressions (Figure 23), suggesting gene types may also have 

pronounced effects on the adjacent genes expression. It is possible that the secondary 

structure of membrane protein transcripts induced ribosome stalling189 or mRNA-

programmed translation pausing during membrane protein targeting190 may also influence 

the adjacent genes expression. 
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 Consistent with previous results that gene position in operons can affect gene 

expression166,167, our results further demonstrated that gene position (corresponding to 

ATR’s change) significantly altered gene network dynamics including basal expression, 

system sensitivity, and nonlinearity, which has profound impacts for nonlinear dynamic 

systems. Such adjacent gene regulation effect has been generally neglected during 

construction of synthetic gene networks. Furthermore, we validated that the usage of 

designed synthetic DNA fragments as 5’ATRs to tune gene expression and modulate 

bistable regions of genetic toggle switches.  

 The explicit mechanism about how the ATR’s GC content and size regulates gene 

expression is not well understood. Here there are several possible explanations. Previous 

studies and our results share a common conclusion that the difference mostly comes from 

post-transcriptional regulation because of little mRNA concentration change for different 

transcript length and gene position in the operon166–168. Since there is a lack of 

complicated post-translational modifications in E. coli, we believe that the ATR alters the 

secondary or tertiary structures of mRNA locally and/or globally, which perturbs the GFP 

mRNA translation and degradation process. After ribosome binding site is transcribed, 

ribosome and RNase competitively bind to mRNA177,191 and a GC-rich ATR, which is 

likely to be more stable, could help stabilize GFP transcript and decrease the risk of 

degradation by RNase, and thus result in higher GFP expression. Another possible 

explanation is GC-rich isochores may correspond to open chromatin structure and favor 

the accessibility of transcriptional factors, leading to increased transcription and 

translation192–194. On the other hand, a large size of neighbor gene increases the 

probability of elongation pausing (RNA polymerase or ribosome drop off the template) 
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and degradation by RNase, and competitively recruits more protein synthesis machinery 

resources in the cell, resulting in decreased gene expression. It is noteworthy that during 

the manuscript preparation, a latest study reported that the engineered non-coding 

adjacent region mutations could alter transcriptional factor occupancy and local 

epigenetic environments to modulate gene regulation and chemotherapeutic resistance in 

melanoma 174.  

 This work established a novel regulation of gene expression – adjacent 

transcriptional region (including 5’ and 3’ coding and non-coding regions) regulation, 

which expands current considerations of untranslated transcriptional region (UTR) or 

upstream open reading frame (uORF). Our quantitative results demonstrated that ATR 

regulation could explain 56% - 79% of gene expression variation, depending on different 

circuit organizations. Hence, this finding broadens our understanding of natural gene 

regulation strategies and helps refine the determinants for gene expression in an operon 

or even genome. 

 A central goal of synthetic biology is to develop genetic circuits to program cell 

behaviors in a predictable way. With the increasing complexity of integrated multi-layer 

circuits, specific bio-components’ organization and circuitry structure design become 

extremely important for its functionality39,187,195. The tool we provided here to evaluate 

each gene’s expression level in a circuit would save experimentalists’ time and resources 

to screen and test modules’ combinations, and thus should greatly facilitate optimization 

of circuit design and accelerate the engineering of complex gene networks.  
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4.4 Materials and Experimental Methods 

4.4.1 Strains, media and chemicals.  

 All cloning experiments and fluorescent measurements were performed in 

Escherichia coli DH10B (Invitrogen). Synthetic toggle switches (T_S28, T_S67 and 

T_WT) were tested in E. coli K-12 MG1655 strain with lacI-/- 116. Cells were cultured in 

liquid or solid Luria-Bertani (LB) broth medium with 100 µg/ml ampicillin at 37°C. 

Chemicals AHL (3oxo-C6-HSL, Sigma-Aldrich), Arabinose (Sigma-Aldrich, USA), 

isopropyl β-D-1-thiogalactopyranoside (IPTG, Sigma-Aldrich), and anhydrotetracycline 

(aTc, Sigma-Aldrich) were dissolved in ddH2O and diluted into indicated working 

concentrations. Cultures were shaken in 5 mL and/or 15 mL tubes at 220 rotations per 

minute (r.p.m). 

 

4.4.2 Plasmid construction.  

 Most genes are obtained from iGEM Registry (http://parts.igem.org/Main_Page). 

These genes are often used in synthetic biology projects, including transcriptional factors, 

quorum-sensing components, and other functional genes (Table 7). Plasmids were 

constructed using standard molecular biology techniques and all genetic circuits were 

assembled based on standardized BioBrick methods. As an example, construct Promoter-

TetR-GFP is composed of five BioBrick standard biological parts: BBa_J23104 

(constitutive promoter, CP), BBa_B0034 (ribosome binding site, RBS), BBa_C0040 

(tetR), BBa_E0040 (green fluorescent protein, GFP) and BBa_B0015 (transcriptional 

terminator). To produce RBS-TetR module, plasmid containing TetR was digested by 

XbaI and PstI as the insert fragment while RBS vector was cut by SpeI and PstI. Both 
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fragment and vector were separated on 1% TAE agarose gel electrophoresis and purified 

using PureLink gel extraction Kit (Invitrogen). Purified fragment and vector were then 

ligated by T4 DNA ligase (New England Biolabs, NEB). The ligation products were 

further transformed into E. coli DH10B and plated on LB agar plate with 100 µg/ml 

ampicillin for screening. Finally, plasmids extracted by GenElute HP MiniPrep Kit 

(SIGMA-ALDRICH) were confirmed through gel electrophoresis (digested by EcoRI and 

PstI) and DNA Sequencing (Biodesign sequencing Lab, ASU). Similar steps were carried 

out for subsequent rounds of cloning to assemble the whole construct. All the circuits’ 

DNA sequences are provided in the Supplementary information. 

 Also, 17 transcriptional factors with varying GC content and sizes were amplified 

from E. coli genome with designed primers (Table 8). Synthetic sequences were 

randomly generated with the same length (200 bp) but various GC contents (28%-67%). 

Sequences with ribosome binding site-features (AGGAGG) were redesigned to exclude 

its translation potential. All synthetic sequences and primers were synthesized as custom 

DNA oligos or gBlocks gene fragments from Integrated DNA Technologies (IDT). In 

order to express consistently in the cell, all constructs were finally subcloned into 

pSB1A3 vector prior to the test. The sequence for the constructs can be found in 

Supplementary information.  

 

4.4.3 Flow cytometry measurements.  

All confirmed constructs were re-transformed into DH10B strain and twelve individual 

colonies in total (repeated in three different days, four colonies each time) for each 

construct were randomly picked up to grow. Samples were then cultured in 4 ml LB 
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medium (100 µg/ml ampicillin) for 24hrat 37°C for testing. Flow cytometry 

measurements were performed using Accuri C6 flow cytometer (Becton Dickinson) and 

all samples were analyzed at twelve hour (data not shown) and twenty-four hour time 

points with 488 nm excitation and 530 ± 15 nm emission detection for GFP. 20,000 

individual cells were analyzed for each sample at a slow flow rate. All fluorescence 

distributions were unimodal, and data with obvious errors was excluded for analysis. 

Data files were further analyzed by MATLAB (MathWorks). 

 

Table 7: iGEM Registry of standard biological parts used in this study. 
 

Biobrick number Abbreviation 
in the paper 

Gene description 

BBa_J23104 CP Constitutive promoter family member 
BBa_B0034 RBS Ribosome binding site 
BBa_B0015 T Transcriptional terminator (Double) 
BBa_E0040 GFP Green fluorescent protein  
BBa_C0040 TetR tetracycline repressor from transposon Tn10 (+LVA) 
BBa_C0012 LacI lacI repressor from E. coli (+LVA) 
BBa_C0071 RhIR rhlR repressor/activator from P. aeruginosa PA3477 

(+LVA) 
BBa_C0062 LuxR LuxR repressor/activator 
BBa_C0161 LuxI Autoinducer synthetase for AHL (no LVA) 
BBa_C0050 CI HK022 cI repressor from phage HK022 
BBa_C0053 C2 P22 c2 repressor from Salmonella phage P22 (+LVA) 
BBa_C2001 Zif23-GCN4 Zif23-GCN4 engineered repressor (+LVA, C2000 codon-

optimized for E. coli) 
BBa_C0056 CI 434 cI repressor from phage 434  
BBa_C0170 RhII Autoinducer synthetase for N-butyryl-HSL (BHL) and HHL  
BBa_J45014 ATF1-1148 mutant Alcohol acetyltransferase I; converts isoamyl alcohol to 

isoamyl acetate 
BBa_C0080 AraC araC arabinose operon regulatory protein 

(repressor/activator) from E. coli (+LVA) 
BBa_C0178 LasI Autoinducer synthetase for PAI from Pseudomonas 

aeruginosa 
BBa_C0052 CI 434-LVA cI repressor from phage 434 (+LVA) 
BBa_C0072 Mnt mnt repressor (strong) from Salmonella phage P22 (+LVA) 
BBa_C0179 LasR lasR activator from P. aeruginosa PAO1 
BBa_K863001 BPUL bpul laccase from Bacillus pumilus 
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BBa_K863006 ECOL ecol laccase from E. coli 
BBa_K863021 BHAL bhal laccase from Bacillus halodurans 
BBa_K105007 Gal4 Gal4 - DNA binding domain 
BBa_K165009 LexA LexA DNA-binding domain 
BBa_K079015 LacY LacY transporter protein from E. coli 
BBa_K747000 TAL TAL-Protein_AA1_DiRepeat 
BBa_J06504 mCherry2 monomeric RFP optimized for bacteria 
BBa_K629005 TrkD trkD, a functional Kup (formerly TrkD) system took up Cs+ 

with a moderate rate and affinity 

BBa_K118001 AppY appY coding sequence encoding a DNA-binding 
transcriptional activator 

BBa_J52035 dnMyD88 Dominant negative form of MyD88 
BBa_K165006 Zif268-HIV Zif268-HIV DNA-binding domain 
BBa_E1010 mRFP1 Highly engineered mutant of red fluorescent protein from 

Discosoma striata  
BBa_E0020 ECFP Engineered cyan fluorescent protein derived from A. 

victoria GFP 
BBa_K592009 AmilCP amilCP, blue chromoprotein 
BBa_C0074 
 
BBa_K141000 

PenI 
 
Ucp1 

penI repressor from Bacillus licheniformis (+LVA) 
Integral protein present in inner mitochondrial membrane 

E344015 GFP Generator RBS-GFP-Terminator 
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Table 8: Transcriptional factors amplified from E. coli wild type strain. 
 

Protein name Gene size (bp) Abbreviation in 
the paper 

Gene description 

MarA 384 Tr1 Multiple antibiotic resistance transcriptional 
regulator 

MazF 336 Tr2 mRNA interferase toxin, antitoxin is MazE 
IdnR 999 Tr3 Transcriptional repressor, 5-gluconate-binding 
AsnC 459 Tr4 Transcriptional activator of asnA; autorepressor 
MprA 531 Tr5 Transcriptional repressor of microcin B17 

synthesis and multidrug efflux 
RbsR 993 Tr6 Transcriptional repressor of ribose metabolism 
ArcA 717 Tr7 Response regulator in two-component 

regulatory system with ArcB or CpxA 
CpxR 699 Tr8 Response regulator in two-component 

regulatory system with CpxA 
SoxR 465 Tr9 Redox-sensitive transcriptional activator of 

soxS; autorepressor 
CytR 1026 Tr10 Anti-activator for CytR-CRP nucleoside 

utilization regulon 
IscR 489 Tr11 isc operon transcriptional repressor; suf operon 

transcriptional activator; oxidative stress- and 
iron starvation-inducible; autorepressor 

GlpR 758 Tr12 Repressor of the glycerol-3-phosphate regulon 
CynR 900 Tr13 Transcriptional activator of cyn operon; 

autorepressor 
PdhR 765 Tr14 Pyruvate dehydrogenase complex repressor; 

autorepressor 
MetR 954 Tr15 Methionine biosynthesis regulon transcriptional 

regulator 
IlvY 894 Tr16 Transcriptional activator of ilvC; autorepressor 
BetI 588 Tr17 Choline-inducible betIBA-betT divergent 

operon transcriptional repressor 
 

4.4.4 RT-qPCR.  

 Total RNA was extracted from three individual cell cultures (1.5 mL 

exponentially growing cell cultures, fresh cultures) for each construct in Fig. 1b using 

Trizol (Invitron). “Control” is without X gene in the circuit, i.e. a constitute promoter 

drives GFP expression (Constitutive promoter-RBS-GFP). DNase I (NEB) was used to 

remove traces of genomic DNA and then the total RNA was further purified using 

purelink RNA Mini Kit (Life technologies), and the eluted total RNA was quantified 
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using BioTek's Synergy H1multi-mode Reader (A260/A280 are 1.91 ~ 2.13, the 

concentrations are 67.45 ~118.44 ng/µL). After DNase I treatment, 2 µL RNA samples 

were loaded on 1% agarose gel (Biosciences) for electrophoresis to check the DNA 

contamination. cDNA was synthesized from RNA using an iScript cDNA synthesis kit 

and random primers (Cat.# 1708841, Bio-Rad). The reaction volume is 20 µL and ~1 µg 

RNA were used for reaction. The procedure for the reverse transcription is: 25°C 5 min 

for priming, then 46°C 20 min for reverse transcription, and finally 95°C 1 min for 

inactivation. Concentrations of cDNA are then quantified by qPCR using iTaq Universal 

SYBR Green Supermix (Cat.# 172-5120, Bio-Rad) with the iQ5 Real-Time PCR 

detection system (CFX384TM, Bio-Rad). Prokaryotic 16S rRNA was employed as 

endogenous control. The total reaction volume is 10 µL, with 0.1 µL cDNA. The 

procedure for the qPCR is: initial denaturation 95°C for 2 mins, followed by 40 cycles of 

95°C 5 s (denaturation), and 60°C for 30 s (annealing, extension and fluorescence 

reading). Primers (IDT) used for amplifying 16S rRNA: 5’-

GAATGCCACGGTGAATACGTT-3’ (rrnB, forward, starting at the 1361st nucleotide), 

and 5’-CACAAAGTGGTAAGCGCCCT-3’ (rrnB, reverse, starting at the 1475th nucleotide) 

167. Two pairs of primers were designed to amplify GFP are P1: 5’-

CAGTGGAGAGGGTGAAGGTGA-3’ (forward, starting at the 87th nucleotide); and P2: 

5’-CCTGTACATAACCTTCGGGCAT-3’ (reverse, starting at the 283th nucleotide); P3: 5’-

AGACACGTGCTGAAGTCAAG-3’ (forward, starting at the 320th nucleotide); and P4: 5’-

TCTGCTAGTTGAACGCTTCCAT-3’ (reverse, starting at the 539th nucleotide). qPCR 

result is analyzed using Bio-rad CFX Manager software version 3.1. Each sample was 

performed two replicates for both 16S rRNA and GFP cDNAs, and gene expression was 
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normalized to 16S rRNA. Delta Ct values were calculated (Ct
target – Ct

16S) and compared 

with the biological control (Constitutive promoter-RBS-GFP) to calculate the relative 

GFP mRNA concentrations.   

 

4.4.5 Sample preparation and microscopy.  

Single colonies were picked and grew at 37°C in liquid LB medium. After 24 hours, 1 

mL cells were collected and spun down at 2500 g for 5 min, washed with 1x phosphate 

buffer solution (PBS), and resuspended by 200 µL 1xPBS. 5 µL of concentrated cell 

solution was placed on glass microscope slides and images were captured with a Nikon 

Ti-Eclipse inverted microscope (magnification 40x). GFP was visualized with an 

excitation at 472 nm and emission at 520/35 nm using a Semrock band-pass filter. The 

exposure time for each sample is kept the same.  

 

4.4.6 Hysteresis experiment.  

All synthetic toggle switch plasmids (T_S28, T_S67 and T_WT) were transformed into 

K-12 MG1655 strain with lacI-/-, and cells cultured overnight in LB medium. For OFF-

ON experiment, samples were diluted evenly into 5 ml polypropylene round-bottom 

tubes (Falcon) and induced with different amounts of aTc. Fluorescence was then 

measured at 6, 8 and 21 hr time points to monitor the fluorescence level. In our 

experiment, the intensity of fluorescence became stable after ~8 hr induction. For the On-

OFF experiment, cells were induced with 40 ng/ml aTc initially and fluorescence was 

measured at 8 hr to ensure they were fully induced. Cells were then collected by low-

speed centrifugation, washed once, resuspended with LB medium, diluted and transferred 
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into fresh medium with various aTc concentrations at 1:100 ratio. Flow cytometry 

measurement was performed for each sample after 6, 10 and 18 hr culturing, respectively. 

Data shown in Fig. 7 are 18 hr results. 

 

4.4.7 Minimum free energy calculation.  

 All minimum free energy (MFE) of mRNAs were computed on Nucleic Acid 

Package (NUPACK) web server (http://www.nupack.org). ∆G5’ATR and ∆G3’ATR_100 were 

calculated from sequence including ATR (with or without RBS), and the two scar 

sequences introduced during cloning process. ∆G-70~+38 is obtained from 70 nt upstream 

sequence and 38 nt downstream around ATG (+1) codon of GFP gene. For analysis, the 

value is first transformed into positive number and then changed to log scale. 

 

4.5 Statistical analysis and Mathematical Modeling  

4.5.1 Statistical analysis and model fitting 

 To investigate the correlate on between GFP expression and sequence 

characteristics in different circuits with different genes and organizations, we performed 

multiple linear regression analysis using the classical statistical software SAS 9.4. Here, 

we mainly focused on five different independent variables including 5’- and 3’-ATR GC 

content (or ∆G5’ATR and ∆G3’ATR_100), size, and ∆G-70~+38, all of which can be computed 

from the DNA sequence in each circuit. The dependent variable is GFP fluorescence 

measured by flow cytometry, which was transformed to log scale during analysis. At 

least 8 data points from three independent measurements were acquired for each 

construct, and error bar: mean ± standard deviation (s.d.) unless specified. All of the 



 

123 

collected data points are imported to SAS for analysis.  

 All the information of the five variables is calculated from the specific DNA 

sequence. The 5’ATR includes the sequence from the scar right after the promoter to the 

scar right before the RBS of GFP. And the 3’ATR includes the sequence from the scar 

right after the GFP to the scar right before the terminator. The scar sequence is generated 

from the molecular cloning using biobrick modules, and the size is 6 or 8 nucleotides. GC 

content and size of ATRs are calculated using the web server Endmemo 

(http://www.endmemo.com/index.php). The minimum free energy of mRNAs for 5’ and 

3’ATR (∆G5’ATR and ∆G3’ATR_100) and ∆G-70~+38 were computed using NUPACK web tool 

(http://www.nupack.org). Since the ∆G are negative values, log transformations were 

performed to the absolute value of ∆G, and then set to negative value. To build a 

comprehensive model for all the scenarios in Figure 26 (GFP-X, X-GFP-Y, and X-GFP), 

some dummy values were introduced in the regression analyses. For example, construct 

GFP-X (Figure 26E) has no “real” 5’ATR (only 8-nt scar sequence), and the ∆G5’ATR is 0, 

which is inappropriate for log transformation. And although the GC content for the 8-nt 

scar sequence is not 0, we assumed it is a small number close to 0. Similar assumptions 

were applied for 3’ATR. In the comprehensive model, the constant Gm is set to 1, and for 

cases of non-coding ATRs, the coefficients for j and ∆G3’ATR_100 are set to 0, owing to a 

lack of 3’ATRs.  

 Multiple linear regression as a standard statistical tool was then employed to 

discover the relationship between GFP expression and the five possible variables. The 

model has the form of y = Xβ + ε, where y is the GFP fluorescence, X is the design 

matrix of all predictors, and β is the slope vector including intercept, and ε is the error 
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vector. To find the linear model having the best prediction of dependent variable from the 

independent variables, we performed stepwise regression, which is an automated tool for 

model selection through adding the most significant variable or removing the least 

significant variable as needed for each step (all variables left in the model are significant 

at the level of 0.05).  

 For scenario 1 (i.e. construct X-GFP), results indicated that 5’ATR size, GC 

content and local mRNA folding energy (-70 nt ~ +38 nt region around GFP’s starting 

codon (+1)) are necessary for the best fitting of the experimental data, and the three 

variables explain about 63% GFP variations (Table 9). For scenario 2 (i.e. construct X-

GFP-Y), results indicated that only 5’ and 3’ATR GC content and local mRNA folding 

energy are needed variables for the best fitting of the data (Table 10), but the sizes of 5’ 

ATR and 3’ATR don’t have significant effect on the model fitting, which may be because 

of the limited sample size and variation (5’ATR size ranging from 719 to 974 bp, and 

3’ATR size is from 719 to 1187 bp). For scenario 3 (i.e. construct GFP-X), results 

indicated that 3’ATR size and GC content are necessary for the best fitting of the 

experimental data (Table 11). 

 To specify the effect of ATR scope on protein expression, we performed sliding 

window analysis. Our results indicated that the full length of 5’ATR or 3’ATR has the 

best data fitting in the comprehensive model (data not shown). For the GC content, 

however, we found that the GC content of the full length 5’ATR has the highest fitting 

efficiency (Figure 27A) and the GC content of first 100 nucleotides of 3’ATR has the 
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Table 9: Model selection for construct of X-GFP in Figure 26A. 
 Top: Stepwise approach was used to determine the model selection for construct X-GFP 
(all variables left in the model are significant at the level of 0.05). Result indicated that 
5’ATR size, GC content and local mRNA folding energy (-70 nt ~ +38 nt) are necessary 
for the best fitting of the experimental data. Middle: Analysis of variance for the selected 
regression model, and the three variables explain 62.6% variation of GFP expression. 
Bottom: Parameter estimates and standard errors for the three predictors and intercept. 
N_ATR_GC: 5’ATR GC content; N_ATR_Size: 5’ATR size; dG: mRNA folding energy 
(-70 nt ~ +38 nt). 
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Table 10: Model selection for construct of X-GFP-Y in Figure 26C. 
Top: Stepwise approach was used to determine the model selection for construct X-GFP-
Y (all variables left in the model are significant at the level of 0.05). Result indicated that 
only 5’ and 3’ATR GC content and local mRNA folding energy (-70 nt ~ +38 nt) are 
necessary for the best fitting of the experimental data. 5’ and 3’ ATR size don’t have 
significant effect on the model. Middle: Analysis of variance for the selected regression 
model, and the three variables explain 56% variation of GFP expression. Bottom: 
Parameter estimate and standard error for the three predictors and intercept. N_ATR_GC: 
5’ATR GC content; C_ATR_GC: 3’ATR GC content; dG: mRNA folding energy (-70 nt 
~ +38 nt). 
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Table 11: Model selection for construct of GFP-X in Figure 26E. 
Top: Stepwise approach was used to determine the model selection for construct GFP-X 
(all variables left in the model are significant at the level of 0.05). Result indicated that 
3’ATR size and GC content are necessary for the best fitting of the experimental data. 
Bottom left: Regression analysis performed with 3’ATR size and the whole 3’ATR GC 
content. The two variables explain 71.5% variation of GFP expression. Bottom right: 
Regression analysis performed with 3’ATR size and the 3’ATR GC content for the first 
100 nt. The two predictors explain 78.6% GFP variation. Parameter estimates and 
standard errors for the two predictors and intercept are also listed. C_ATR_Size: 3’ATR 
size; C_ATR_GC: 3’ATR GC content. 3’ATR GC content (the closest 100 nt after GFP 
sequence). 

 

 

 

best fitting efficiency (Figure 27B). These results suggest that the protein expression is 

influenced by ATRs, globally for the transcription size and partially for the GC content. 

We also performed the regression with the first 100 nucleotides of 3’ATR GC content for 

construct GFP-X, and found the two variables (3’ATR size and 3’ATR GC content (100 

bp) can explain 79% variation of GFP expression (Table 11).  
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 Finally, a combined model combining the three scenarios was then constructed 

with the variables 5’ATR size and GC content, 3’ATR size and GC content (100 bp), and 

local mRNA free folding energy. Results showed that all the five variables are needed for 

the best prediction of GFP expression in the combined model, and explains nearly two-

thirds of GFP variation in those synthetic circuits (Figure 26G and Table 12). The fitting 

diagnostics also indicated that there is no apparent trend for the residuals, and the data is 

roughly normally distributed, and the variables in the model explain most variation in the 

response variable from the residual-fit result (Figure 35).   

 The predicted value by observed GFP plot (Predicted Value - logGFP) reveals a 

reasonably successful model for explaining the variation in GFP for most of the circuits 

(Figure 26G and Figure 35). The predicted responses (logGFP value) are calculated 

according to the generated linear regression model, with the corresponding inputs from 

each circuit. And the plots of predicted GFP against experimentally observed GFP values 

are then generated to evaluate and visualize the model-fitting efficacy (Figure 26B,D,F,G, 

and Figure 28, and Figure 30C-D). If the model predicted values and observed values 

agreed perfectly (R2 = 100%), all the data points would fall on the dotted diagonal line of 

the squares. However, several outliers are also observed and some observations with high 

leverages might also be overly influencing the fit result (Figure 36). Of the outliers, most 

of them are corresponding to specific circuits, such as outliers 217~224 corresponding to 

the tricistronic circuit (promoter-luxR-appY-GFP, has 8 data points). Observations with 

high leverages such as 113~120 are corresponding to the circuit promoter-mnt-GFP. 

Moreover, some outliers are also high-leverage observations. Given the data sample size 

(N = 632), the original data collection, and the overall data-fitting  
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Table 12: A combined linear model for all the constructs in Figure 28. 
Top: Stepwise approach was used to determine the model selection for all the three 
scenarios (variables left in the model are significant at the level of 0.05). Result indicated 
that 5’ATR size and GC content, 3’ATR size and GC content (the first 100 nt of 3’ATR), 
and local mRNA folding energy (-70 nt ~ +38 nt) are necessary for the best fitting of the 
experimental data. Middle: Analysis of variance for the selected regression model, and 
the five variables explain 64% variation of GFP expression. Bottom: Parameter estimates 
and standard errors for the five predictors and intercept. N_ATR_GC: 5’ATR GC content; 
N_ATR_Size: 5’ATR size; C_ATR_Size: 3’ATR size; C_ATR_100_GC: 3’ATR GC 
content (100 nt); dG: mRNA folding energy (-70 nt ~ +38 nt). 
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Figure 35: Fit diagnostics for the GFP in the combined model integrating the three 
scenarios in Figure 26. The Predicted value-Residual plot indicates that there is no 
apparent trend for the residuals, and the data is roughly normally distributed (Quantile-
Residual plot and histogram), and the variables in the model explain most variation in the 
response variable from the residual-fit result (Fit-Mean and Residual). Leverage-
RStudent plot and Cook’s D value indicate there are some outliers and high-leverage 
observations, which may influence the model. Overall, the generated model has a good 
fitting of the experimental data.  
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Figure 36: Outlier and leverage diagnostics for the response (GFP) in the combined 
model. High-leverage data points and outliers are labeled out. Of the outliers, most of 
them are corresponding to a specific circuit, such as outliers 217~224 corresponding to 
the tricistronic circuit (promoter-luxR-appY-GFP, has 8 data points). Observations with 
high leverage such as 113~120 are corresponding to the circuit promoter-mnt-GFP. 
Moreover, some outliers are also high- leverage observations.  
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efficacy, we here didn’t exclude the outliers or data with very high leverages (although 

that would improve the model-fitting efficacy).      

 For the noncoding ATR regulation in Figure 28, similar statistical analysis was 

performed. Stepwise regression showed the 5’ATR size and GC content, and the local 

mRNA folding energy are crucial for the model fitting, and the three could explain 64.8% 

variation of GFP expressions in those synthetic circuits (Table 13).  

 To have a general understanding of ATR regulation, we next developed a 

comprehensive linear model based on the sequence-dependent energetic changes during 

the polycistronic mRNA folding and translation and the costs of protein biosynthesis. The 

biophysical model was based on previous pioneer work characterizing the relationship 

between free energy changes and protein translation initiation203,205. We calculated the 

free energies for 5’ATR and the first 100 nucleotides of 3’ATR (∆G5’ATR and ∆G3’ATR_100) 

using NUPACK. Since all the energy terms are negative values, absolute values were 

first acquired for each of them and then set to negative values for data analysis. Stepwise 

regression was performed with the five variables: ∆G5’ATR, ∆G3’ATR_100, 5’ATR size, 

3’ATR size and ∆G-70~+38. Results showed that all the five variables are necessary for the 

best fitting of experimental data with R2 0.64 (Table 14). It is necessary to note that the 

negative correlation between protein abundance (c) and the sum of energetic terms (Σβx 

∆Gx,) in the equation is already reflected in the coefficients of each term. Similar analysis 

was also applied to the data with noncoding ATR, and results showed that 5’ATR size 

and folding energy ∆G5’ATR, local mRNA folding energy ∆G-70~+38 are crucial for the best 

fitting of the experimental data (Table 15).   
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Table 13: Model selection for noncoding ATR constructs in Figure 28. 
Top: Stepwise approach was used to determine the model selection for the noncoding 
5’ATR regulation (variables left in the model are significant at the level of 0.05). Result 
indicated that 5’ATR size and GC content, local mRNA folding energy (-70 nt ~ +38 nt) 
are crucial for the best fitting of the experimental data. Middle: Analysis of variance for 
the selected regression model, and the three variables explain 64.8% variation of GFP 
expression. Bottom: Parameter estimates and standard errors for variables and intercept. 
N_ATR_GC: 5’ATR GC content; N_ATR_Size: 5’ATR size; dG: mRNA folding energy 
(-70 nt ~ +38 nt). 
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Table 14: A comprehensive model with energetic changes for the constructs in Figure 26. 
Top: Stepwise approach was used to determine the model selection for all the 79 
constructs (variables left in the model are significant at the level of 0.05). Result 
indicated that ∆G5’ATR, ∆G3’ATR_100, 5’ATR size, 3’ATR size and ∆G-70~+38 are necessary 
for the best fitting of the experimental data. Middle: Analysis of variance for the selected 
regression model, and the five variables explain 63% variation of GFP expression. 
Bottom: Parameter estimates and standard errors for the five predictors and intercept. 
N_ATR_dG: ∆G5’ATR; N_ATR_Size: 5’ATR size; C_ATR_Size: 3’ATR size; 
C_ATR_100_dG: ∆G3’ATR_100; dG: mRNA folding energy (∆G-70~+38). 
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Table 15: A comprehensive model with energetic changes for noncoding ATR constructs 
in Figure 28. Top: Stepwise approach was used to determine the model selection for the 
noncoding 5’ATR regulation (variables left in the model are significant at the level of 
0.05). Result indicated that 5’ATR size and folding energy, local mRNA folding energy 
(-70 nt ~ +38 nt) are crucial for the best fitting of the experimental data. Middle: Analysis 
of variance for the selected regression model, and the three variables explain 67.4% 
variation of GFP expression. Bottom: Parameter estimate and standard error for variables 
and intercept. N_ATR_dG: 5’ATR folding energy; N_ATR_Size: 5’ATR size; dG: 
mRNA folding energy (-70 nt ~ +38 nt). 
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 In summary, we have demonstrated that the 5’ and 3’ adjacent transcription 

regions have remarkable effects on GFP expression from the results in Figure 26 and 

Figure 28. Furthermore, we can use a general model with sequence-dependent energetic 

changes to explain the ATR regulation on gene expression. In this study, we mainly 

investigated five factors involved in ATR regulation: 5’ and 3’ ATRs free energies 

∆G5’ATR and ∆G3’ATR_100, transcriptional sizes and the mRNA folding energy near the 

GFP starting codon. It is possible that there are some other unknown or uncharacterized 

factors influencing GFP expression, such as the codon degeneracy for the coding ATRs. 

Furthermore, there may have some special local secondary or higher structures in some 

ATRs, which may impact the degradation or translation of GFP.     

 

4.5.2 Deterministic Model construction and prediction for the logic gate 

 In the four logic gates, GFP expression depends on the relative concentrations of 

activator (LuxR) and repressor (TetR or LacI) produced from a constitutive promoter. 

AHL binds with LuxR protein to activate pLux/tet transcription and aTc can block TetR 

repression to pLux/tet. Since the two sets of logic gates  (LT/TL and LI and IL) are 

constructed similarly and described by the same deterministic equations, we here only 

explain the technical details for the gate LT. The model was built based on our previous 

work39. From the biochemical reactions depicted in Fig. 5a, we derived the following 

ordinary differential equations for intercellular concentrations of LuxR (U), TetR (R) and 

GFP (G): 
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 The first two equations describe the concentrations of LuxR and TetR, both of 

which are driven by a constitutive promoter at a constant level (!!). !! and !! are 

constants used to describe the relative changes of LuxR and TetR production, owing to 

the position changes in the And-gate circuit.  !! and  !! are the degradation rates for the 

LuxR and TetR protein, respectively. The third equation describes the concentration of 

GFP, which is determined by the relative concentrations of LuxR and TetR. LuxR binds 

to AHL molecules and forms the active LuxR monomers in the form of (LuxR-AHL), 

when the AHL concentration reaches a certain threshold (quorum-sensing mechanism). 

So the fraction of LuxR monomers (f) bound by AHL can be described by Eq4, where ni 

is the binding cooperativity (Hill coefficient) between LuxR and AHL, and Ki represents 

the dissociation constant between LuxR and AHL. LuxR needs to form a dimer to bind 
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 the promoter and activate transcription, so the concentration of the functional LuxR 

dimer (C) that binds to the hybrid promoter pLux/tet and activates its transcription can be 

described by Eq5, where Kd is the is the dissociation constant for dimerization. Thus, 

GFP expression driven by LuxR and inducer AHL is represented by the first part of Eq3. 

c1 is the basal mRNA expression without LuxR protein; K1 is the production rate; and Kn 

is the dissociation constant between C and pLux/tet promoter. TetR protein can bind and 

inhibit GFP transcription, and the inhibition can be repressed by inducer aTc. So high 

GFP expression is achieved in presence of high doses of aTc, and vice versa (Eq6). The 

second part of Eq3 describes TetR inhibition to GFP expression, under induction of aTc. 

And the third part of Eq3 is the degradation of GFP.  

 The three ordinary differential equations were used to model the two sets of 

AND-gate circuits: LT and TL, LI and IL. For each of the two sets, most parameters 

should be the same except !!, !!, c1, and Ki. Based on the parameter used in our previous 

studies 39, we used the following parameters in our simulations: k0 = 1.0, d1 = 0.2, d2 = 

0.2, d3 = 0.2, c1 = 0.002 (for TL) or 0.08 (for LT), K1 = 1.7, Kn = 4.4, Kd = 13, Kt = 400, 

Kr = 3.2, ni = 1.2, nt = 2, ni = 1.2, nr = 2. For circuits LI and IL, c1 = 0.002 (for IL) or 

0.05 (for LI), Kt = 1000, and the other parameters are the same.  

 From our comprehensive linear model, we calculated that LT has more LuxR than 

TetR production (Table 6), so the basal expression c1 is set to a bigger value in LT model. 

Ki has little effect on the shape of the GFP dynamic curves, but determines the AHL 

concentration producing half conversion of LuxR monomers into LuxR-HSL complexes 

(half GFP activation). So the Ki value in the model is acquired from the experimental data. 

Through changing the relative expression of LuxR and TetR (i.e. !! and !!), we can 
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modulate GFP production dynamics (Figure 31). To predict the GFP responses in circuit 

TL with AHL and aTc inductions, we use the parameter α1 and α2 in LT as a control to 

tune the parameter α1 and α2 in TL. According to the linear model calculations, the 

production rate for LuxR in LT and TL almost doesn’t change, but production rate of 

TetR in TL increases by ~93% (Table 6). For example, we set the production rates for 

LuxR and TetR in circuit LT to 1.0 (k0 + α1) and 0.6 (k0 + α2), respectively. So in the 

circuit TL, the two rates should be 1.0 (k0 + α1) and 1.15 (k0 + α2) based on calculations. 

For different doses of aTc induction, we allowed ~10% parameter variations for α1 and α2. 

We found that the model simulations have a good match with our experimental data. The 

parameters for α1 and α2 in TL and LT under different doses of aTc are listed below: 

Circuit aTc 
(0 ng/ml) 

aTc 
(0.2 ng/ml) 

aTc 
(2 ng/ml) 

aTc 
(20 ng/ml) 

aTc 
(100 ng/ml) 

aTc 
(200 ng/ml) 

LT α1 = 0 
α2 = −0.3 

α1 = 0 
α2 = −0.4 

α1 = 0 
α2 = −0.38 

α1 = 0 
α2 = −0.3 

α1 = 0 
α2 = −0.35 

α1 = 0 
α2 = −0.25 

TL α1 = 0.1 
α2 = 0.1 

α1 = 0.1 
α2 = 0.05 

α1 = 0.1 
α2 = 0 

α1 = 0.1 
α2 = 0.1 

α1 = 0.1 
α2 = 0.1 

α1 = 0.1 
α2 = 0.25 

 
  

 Compared to circuit LI, the production rate for LuxR in IL increases by ~74%, 

and ~38% for LacI (the overall inhibition efficiency may increase by ~76%, 

Supplementary Table 12). For example, we set the production rates for LuxR and LacI in 

circuit LI to 1.0 (k0 + α1) and 0.8 (k0 + α2), respectively. So in the circuit IL, the two rates 

should be 1.74 (k0 + α1) and ~1.41 (k0 + α2) based on calculations. For different doses of 

IPTG induction, we allowed ~10% parameter variations for α1 and α2. And the parameters 

for α1 and α2 in LI and IL under different doses of IPTG are listed below: 
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Circuit IPTG 
(0 µM) 

IPTG  
(0.1 µM) 

IPTG  
(1 µM) 

IPTG  
(10 µM) 

IPTG  
(100 µM) 

IPTG 
(200 µM) 

IPTG  
(400 µM) 

LI α1 = 0 
α2 = −0.1 

α1 = 0 
α2 = −0.12 

α1 = 0 
α2 = −0.1 

α1 = 0 
α2 = −0.15 

α1 = 0 
α2 = −0.25 

α1 = 0 
α2=−0.28 

α1 = 0 
α2 = −0.2 

IL α1 = 0.57 
α2 = 0.57 

α1 = 0.6 
α2 = 0.5 

α1 = 0.69 
α2 = 0.5 

α1 = 0.82 
α2 = 0.35 

α1 = 0.7 
α2 = 0.4 

α1 = 0.87 
α2 = 0.5 

α1 = 0.57 
α2 = 0.56 

 

4.5.3 Parameter and bifurcation analysis for the synthetic toggle switch circuit.  

 For the toggle switch model in Figure 29, we used the same mathematical model 

and most parameters in the Gardner et al. paper6. Here we think the synthetic ATRs 

mainly influenced the tetR production rate, with low rate corresponding to T_S28 (α1 = 

400, β = 2.7), medium rate corresponding to T_S67 (α1 = 600, β = 3.0), and high rate 

corresponding to T_WT (α1 = 1000, β = 3.245). All the other parameters are set the same 

as in Gardner et al. paper. Bifurcation analyses are performed using XPP-AUTO software 

(www.math.pitt.edu).  
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CHAPTER 5 

 

CONCLUSIONS AND OUTLOOK 

 

5.1 Conclusions 

 This dissertation predominantly focuses on synthetic biology projects centered on 

the theme of engineering synthetic gene networks with mathematical modeling to probe 

the underlying principles for cell fate determination in multistable systems and develop a 

tool to pre-evaluate protein expression levels in synthetic circuits. In the very last chapter, 

I am trying to summarize all the projects and research contributions to synthetic biology 

field, and discuss future directions of synthetic gene networks.  

 In the first chapter, I highlighted the main applications of synthetic gene networks 

in various aspects in understanding the fundamental cellular design principles, 

development of diagnostic bio-devices, and production of industrial and biomedical 

compounds. This brief introduction offers an insight into the history of synthetic biology, 

and helps to guide and inspire future research in the field. 

 My first project is to investigate quorum-sensing crosstalk and it induced distinct 

dynamics (Chapter 2). I systematically studied the crosstalk between LuxR/I and LasR/I 

systems and found that QS crosstalk can be dissected into signal crosstalk and promoter 

crosstalk. Further investigations using synthetic positive feedback circuits revealed that 

signal crosstalk significantly decreases the circuit’s bistable potential while maintaining 

unimodality. Promoter crosstalk, however, reproducibly generates a complex trimodal 

response resulting from noise-induced state transitions and host-circuit interactions. This 
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work reveals a new hybrid multimodality arising from gene circuit, gene expression 

stochasticity and host-circuit interactions, which could be exploited for therapeutics and 

biotechnology. 

 The second project is about engineering of a synthetic quadrastable gene network 

to approach Waddington landscape and cell fate determination (Chapter 3). In this work, 

I engineered and tested different synthetic two-node network topologies and verified a 

synthetic mutual inhibition network with positive auto-activations (MINPA) to be 

quadrastable. We show that cells indeed gravitate towards local minima and signal 

inductions dictate cell fates through modulating the shape of the multistable landscape. 

Experiments, guided by model predictions, reveal that sequential inductions generate 

distinct cell fates by changing landscape in sequence and hence navigating cells to 

different final states. This study serves as a proof-of-principle demonstration of the 

Waddington landscape and provides a synthetic biology framework to understand cell 

differentiation process and suggests a landscape-based explanation of fixed induction 

sequences for directed differentiation. 

 The third project is to develop a synthetic circuit performance evaluator, taking 

into account the properties of adjacent transcriptional regions, to calculate each gene’s 

relative expression level in a synthetic operon-based gene circuit (Chapter 4). We 

demonstrated the tool’s utility in guiding synthetic logic gate design, and tuning gene 

expression and nonlinear dynamics of bistable gene networks. This tool can save 

experimentalists’ time and resources to test different biomodules’ combinations, and thus 

should greatly facilitate optimization of circuit design and accelerate the engineering of 

complex gene networks. 
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5.2 Outlook 

 The work in this thesis illustrated applications of designed synthetic gene 

networks to understand cellular multistability in a predictable way. Synthetic circuitry 

engineering as one of the foundation technologies has helped advance the burgeoning 

development of synthetic biology for about twenty years. In the next decade, we expect 

that synthetic gene networks will become increasingly complex for more sophisticated 

tasks. Based on my research, I think synthetic gene networks will progress toward at least 

the following three directions. 

 First, synthetic gene networks are becoming more complex. Our results indicated 

that the observed multistability could be generated either from a combination of a 

bistable gene circuit and host-circuit interactions or from a coherently regulated MINPA 

circuit. Positive feedback loop and MINPA are recurring motifs in natural gene 

regulatory networks, especially in developmental gene regulation. Although these 

synthetic networks including MINPA can serve as suitable prototypes to probe the 

fundamental principles of cellular decision-making in complex networks, most of them 

are relatively simple both topologically and functionally. So how to construct 

experimentally complex and multi-node networks with predicted functions is a big 

challenge. For example, it is still difficult experimentally to build gene networks of fully 

connected triads with complete auto-activation (such as the Oct4-Sox2-Nanog triad), 

which are important to understand multistability in cell differentiation and human 

development198. To achieve this, more standardized and well-characterized biobricks and 

devices will be necessary for advanced multi-layer circuits engineering. Recent study 
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indicated that we might use a programming language to realize the automation of 

synthetic circuit design and performance simulation187.  

 Second, synthetic gene networks will find a broader application in mammalian 

cells. Complementary to the synthetic gene networks in single-cell organisms (bacteria 

and yeast cells), synthetic mammalian gene networks is essential to elucidate the complex 

mechanisms for cellular regulations and behaviors in higher organisms199,200. Compared 

to prokaryotic systems, mammalian synthetic biology enables us to investigate more 

biological events such as epigenetics, signaling transductions, and alternative splicing. 

For example, synthetic biologists designed synthetic transcription factors Pc-TFs to target 

trimethyl-histone H3 lysine 27 and control the chromatin dynamics from a closed state to 

open state201. Furthermore, mammalian synthetic biology enables to develop therapeutic 

interventions for human diseases. Compared to traditional drugs, synthetic gene networks 

have unique advantages such as sensing disease states and making corresponding 

therapeutic decisions in a self-sufficient manner, easy engineering and manipulation, and 

providing sustainable protection66,202,203. Recent studies indicated that T cells engineered 

with chimeric antigen receptors or T cell receptors could be designed to attack cancer 

cells. The newly developed synthetic Notch receptors have been demonstrated higher 

therapeutic efficacy in precisely recognizing and clearing tumor cells152,204.   

 Nonlinear multistability has long been proposed as the underlying mechanism that 

cells used to maintain pluripotency and guide differentiation31,137. Although we here tried 

to understand the principles of achieving multistability and cell state transitions in E. coli 

cells, we are also interested in engineering synthetic multistable circuits in mammalian 

cells and pluripotent stem cells to investigate the fate determination process in a more 
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complex cell context. Also, synthetic gene circuits can be engineered to rewire the GRNs 

in stem cells to modulate cells’ self-renewal and differentiation.  

 Last but not the least, synthetic gene networks will accelerate the process towards 

practical applications, especially in the industrial and biomedical fields. So far, 

engineering of biosynthetic pathways using simple microbes for large-scale and cost-

effective renewable energy and pharmaceuticals is still immature and awaits further 

development. This will rely on our complete understanding of the natural biosynthetic 

pathways, metabolic flux and regulatory mechanisms205. On the other hand, the 

overexpressed networks place a metabolic burden on the host cells, so synthetic 

biologists need to balance the final output and the microbes’ stresses for product 

maximization.  

 As a summary, synthetic biology holds promise for understanding of cell design 

principles, biomedical and industrial products, and development of effective diseases 

therapies including cancer. And synthetic gene networks will be an essential part to 

advance these applications and realize the full potential of synthetic biology.    

  

 

 

 

 

 

 

 



 

146 

REFERENCES 

1. Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. 
Nat. Rev. Microbiol. 12, 381–390 (2014). 

2. Elowitz, M. & Lim, W. A. Build life to understand it. Nature 468, 889–890 (2010). 

3. Oppenheim, A. B., Kobiler, O., Stavans, J., Court, D. L. & Adhya, S. Switches in 
Bacteriophage Lambda Development. Annu. Rev. Genet. 39, 409–429 (2005). 

4. Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nat. Rev. 
Genet. 11, 367–379 (2010). 

5. Lu, T. K., Khalil, A. S. & Collins, J. J. Next-generation synthetic gene networks. Nat. 
Biotechnol. 27, 1139–1150 (2009). 

6. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch 
in Escherichia coli. Nature 403, 339–342 (2000). 

7. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional 
regulators. Nature 403, 335–338 (2000). 

8. Nevozhay, D., Adams, R. M., Murphy, K. F., Josić, K. & Balázsi, G. Negative 
autoregulation linearizes the dose–response and suppresses the heterogeneity of 
gene expression. Proc. Natl. Acad. Sci. pnas.0809901106 (2009). 
doi:10.1073/pnas.0809901106 

9. Friedland, A. E. et al. Synthetic Gene Networks That Count. Science 324, 1199–1202 
(2009). 

10. Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized 
quorum of genetic clocks. Nature 463, 326–330 (2010). 

11. Sohka, T. et al. An externally tunable bacterial band-pass filter. Proc. Natl. Acad. Sci. 
106, 10135–10140 (2009). 

12. Basu, S., Mehreja, R., Thiberge, S., Chen, M.-T. & Weiss, R. Spatiotemporal control 
of gene expression with pulse-generating networks. Proc. Natl. Acad. Sci. U. S. A. 
101, 6355–6360 (2004). 

13. Tabor, J. J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 
(2009). 

14. Siuti, P., Yazbek, J. & Lu, T. K. Synthetic circuits integrating logic and memory in 
living cells. Nat. Biotechnol. 31, 448–452 (2013). 

15. Stanton, B. C. et al. Genomic mining of prokaryotic repressors for orthogonal logic 



 

147 

gates. Nat. Chem. Biol. 10, 99–105 (2014). 

16. Görke, B. & Stülke, J. Carbon catabolite repression in bacteria: many ways to make 
the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624 (2008). 

17. Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Toehold switches: de-novo-
designed regulators of gene expression. Cell 159, 925–939 (2014). 

18. Bashor, C. J., Helman, N. C., Yan, S. & Lim, W. A. Using Engineered Scaffold 
Interactions to Reshape MAP Kinase Pathway Signaling Dynamics. Science 319, 
1539–1543 (2008). 

19. Deans, T. L., Cantor, C. R. & Collins, J. J. A Tunable Genetic Switch Based on RNAi 
and Repressor Proteins for Regulating Gene Expression in Mammalian Cells. Cell 
130, 363–372 (2007). 

20. Padirac, A., Fujii, T. & Rondelez, Y. Bottom-up construction of in vitro switchable 
memories. Proc. Natl. Acad. Sci. U. S. A. 109, E3212-3220 (2012). 

21. Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. 
Rev. Mol. Cell Biol. 9, 770–780 (2008). 

22. Mukherji, S. & van Oudenaarden, A. Synthetic biology: understanding biological 
design from synthetic circuits. Nat. Rev. Genet. 10, 859–871 (2009). 

23. Wu, M. et al. Engineering of regulated stochastic cell fate determination. Proc. Natl. 
Acad. Sci. U. S. A. 110, 10610–10615 (2013). 

24. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental 
pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 
1633–1648 (1998). 

25. Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M. & Elowitz, M. B. An excitable gene 
regulatory circuit induces transient cellular differentiation. Nature 440, 545–550 
(2006). 

26. Schultz, D., Wolynes, P. G., Jacob, E. B. & Onuchic, J. N. Deciding fate in adverse 
times: Sporulation and competence in Bacillus subtilis. Proc. Natl. Acad. Sci. 106, 
21027–21034 (2009). 

27. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle oscillator: 
hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 5, 346–351 
(2003). 

28. Jolly, M. K. et al. Stability of the hybrid epithelial/mesenchymal phenotype. 
Oncotarget 7, 27067–27084 (2016). 



 

148 

29. Lee, J. et al. Network of mutually repressive metastasis regulators can promote cell 
heterogeneity and metastatic transitions. Proc. Natl. Acad. Sci. U. S. A. 111, E364-
373 (2014). 

30. Laurent, M. & Kellershohn, N. Multistability: a major means of differentiation and 
evolution in biological systems. Trends Biochem. Sci. 24, 418–422 (1999). 

31. Guantes, R. & Poyatos, J. F. Multistable Decision Switches for Flexible Control of 
Epigenetic Differentiation. PLoS Comput Biol 4, e1000235 (2008). 

32. Xiong, W. & Ferrell, J. E. A positive-feedback-based bistable ‘memory module’ that 
governs a cell fate decision. Nature 426, 460–465 (2003). 

33. Kramer, B. P. et al. An engineered epigenetic transgene switch in mammalian cells. 
Nat. Biotechnol. 22, 867–870 (2004). 

34. Ferrell Jr., J. E. et al. Simple, realistic models of complex biological processes: 
Positive feedback and bistability in a cell fate switch and a cell cycle oscillator. 
FEBS Lett. 583, 3999–4005 (2009). 

35. Kueh, H. Y., Champhekar, A., Nutt, S. L., Elowitz, M. B. & Rothenberg, E. V. 
Positive Feedback Between PU.1 and the Cell Cycle Controls Myeloid 
Differentiation. Science 341, 670–673 (2013). 

36. Lee, K. E. et al. Positive feedback loop between Sox2 and Sox6 inhibits neuronal 
differentiation in the developing central nervous system. Proc. Natl. Acad. Sci. 111, 
2794–2799 (2014). 

37. Osborn, D. P. S., Li, K., Hinits, Y. & Hughes, S. M. Cdkn1c drives muscle 
differentiation through a positive feedback loop with Myod. Dev. Biol. 350, 464–
475 (2011). 

38. Chang, D.-E. et al. Building biological memory by linking positive feedback loops. 
Proc. Natl. Acad. Sci. 107, 175–180 (2010). 

39. Wu, F., Menn, D. J. & Wang, X. Quorum-sensing crosstalk-driven synthetic circuits: 
from unimodality to trimodality. Chem. Biol. 21, 1629–1638 (2014). 

40. Brenner, K., Karig, D. K., Weiss, R. & Arnold, F. H. Engineered bidirectional 
communication mediates a consensus in a microbial biofilm consortium. Proc. Natl. 
Acad. Sci. 104, 17300–17304 (2007). 

41. Becskei, A. Positive feedback in eukaryotic gene networks: cell differentiation by 
graded to binary response conversion. EMBO J. 20, 2528–2535 (2001). 

42. Sanders, T. A., Llagostera, E. & Barna, M. Specialized filopodia direct long-range 
transport of SHH during vertebrate tissue patterning. Nature 497, 628–632 (2013). 



 

149 

43. Lee, A. J. & You, L. Cells Listen to Their Inner Voice. Science 343, 624–625 (2014). 

44. Youk, H. & Lim, W. A. Secreting and Sensing the Same Molecule Allows Cells to 
Achieve Versatile Social Behaviors. Science 343, 1242782 (2014). 

45. Srimani, J. K. et al. Linear Population Allocation by Bistable Switches in Response to 
Transient Stimulation. PLoS ONE 9, e105408 (2014). 

46. Prindle, A. et al. Rapid and tunable post-translational coupling of genetic circuits. 
Nature 508, 387–391 (2014). 

47. Guet, C. C., Elowitz, M. B., Hsing, W. & Leibler, S. Combinatorial Synthesis of 
Genetic Networks. Science 296, 1466–1470 (2002). 

48. Cox, R. S., Surette, M. G. & Elowitz, M. B. Programming gene expression with 
combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007). 

49. Reeves, G. T., Muratov, C. B., Schüpbach, T. & Shvartsman, S. Y. Quantitative 
Models of Developmental Pattern Formation. Dev. Cell 11, 289–300 (2006). 

50. Liu, C. et al. Sequential Establishment of Stripe Patterns in an Expanding Cell 
Population. Science 334, 238–241 (2011). 

51. Balagaddé, F. K. et al. A synthetic Escherichia coli predator–prey ecosystem. Mol. 
Syst. Biol. 4, (2008). 

52. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic 
multicellular system for programmed pattern formation. Nature 434, 1130–4 (2005). 

53. Payne, S. et al. Temporal control of self-organized pattern formation without 
morphogen gradients in bacteria. Mol. Syst. Biol. 9, (2013). 

54. Cao, Y. et al. Collective Space-Sensing Coordinates Pattern Scaling in Engineered 
Bacteria. Cell 165, 620–630 (2016). 

55. Cheng, A. A. & Lu, T. K. Synthetic biology: an emerging engineering discipline. 
Annu. Rev. Biomed. Eng. 14, 155–178 (2012). 

56. Wang, B., Barahona, M. & Buck, M. A modular cell-based biosensor using 
engineered genetic logic circuits to detect and integrate multiple environmental 
signals. Biosens. Bioelectron. 40, 368–376 (2013). 

57. Kotula, J. W. et al. Programmable bacteria detect and record an environmental signal 
in the mammalian gut. Proc. Natl. Acad. Sci. 111, 4838–4843 (2014). 

58. Pardee, K. et al. Paper-Based Synthetic Gene Networks. Cell 159, 940–954 (2014). 



 

150 

59. Wu, M.-C., Law, B., Wilkinson, B. & Micklefield, J. Bioengineering natural product 
biosynthetic pathways for therapeutic applications. Curr. Opin. Biotechnol. 23, 931–
940 (2012). 

60. Atsumi, S. et al. Metabolic engineering of Escherichia coli for 1-butanol production. 
Metab. Eng. 10, 305–311 (2008). 

61. Valle-Rodríguez, J. O., Shi, S., Siewers, V. & Nielsen, J. Metabolic engineering of 
Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced 
biofuel, by eliminating non-essential fatty acid utilization pathways. Appl. Energy 
115, 226–232 (2014). 

62. Savage, D. F., Way, J. & Silver, P. A. Defossiling fuel: how synthetic biology can 
transform biofuel production. ACS Chem. Biol. 3, 13–16 (2008). 

63. Peralta-Yahya, P. P., Zhang, F., del Cardayre, S. B. & Keasling, J. D. Microbial 
engineering for the production of advanced biofuels. Nature 488, 320–328 (2012). 

64. Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in 
engineered yeast. Nature 440, 940–943 (2006). 

65. Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial 
artemisinin. Nature 496, 528–532 (2013). 

66. Wu, F. & Wang, X. Applications of synthetic gene networks. Sci. Prog. 98, 244–252 
(2015). 

67. Ruder, W. C., Lu, T. & Collins, J. J. Synthetic Biology Moving into the Clinic. 
Science 333, 1248–1252 (2011). 

68. Nissim, L. & Bar-Ziv, R. H. A tunable dual-promoter integrator for targeting of 
cancer cells. Mol. Syst. Biol. 6, 444 (2010). 

69. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-
based logic circuit for identification of specific cancer cells. Science 333, 1307–
1311 (2011). 

70. Chen, Y. Y., Jensen, M. C. & Smolke, C. D. Genetic control of mammalian T-cell 
proliferation with synthetic RNA regulatory systems. Proc. Natl. Acad. Sci. 107, 
8531–8536 (2010). 

71. Wei, P. et al. Bacterial virulence proteins as tools to rewire kinase pathways in yeast 
and immune cells. Nature 488, 384–388 (2012). 

72. Ng, W.-L. & Bassler, B. L. Bacterial Quorum-Sensing Network Architectures. Annu. 
Rev. Genet. 43, 197–222 (2009). 



 

151 

73. Miller, M. B. & Bassler, B. L. Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 55, 
165–199 (2001). 

74. LaSarre, B. & Federle, M. J. Exploiting Quorum Sensing To Confuse Bacterial 
Pathogens. Microbiol. Mol. Biol. Rev. 77, 73–111 (2013). 

75. Jayaraman, A. & Wood, T. K. Bacterial quorum sensing: signals, circuits, and 
implications for biofilms and disease. Annu. Rev. Biomed. Eng. 10, 145–167 (2008). 

76. Solano, C., Echeverz, M. & Lasa, I. Biofilm dispersion and quorum sensing. Curr. 
Opin. Microbiol. 18, 96–104 (2014). 

77. Hong, S. H. et al. Synthetic quorum-sensing circuit to control consortial biofilm 
formation and dispersal in a microfluidic device. Nat. Commun. 3, 613 (2012). 

78. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene 
networks. Proc Natl Acad Sci U A 101, 8414–9 (2004). 

79. Chuang, J. S., Rivoire, O. & Leibler, S. Simpson’s paradox in a synthetic microbial 
system. Science 323, 272–275 (2009). 

80. Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using 
genetically encoded NOR gates and chemical /`wires/’. Nature 469, 212–215 
(2011). 

81. Stevens, A. M. & Greenberg, E. P. Quorum sensing in Vibrio fischeri: essential 
elements for activation of the luminescence genes. J. Bacteriol. 179, 557–562 
(1997). 

82. Schuster, M., Urbanowski, M. L. & Greenberg, E. P. Promoter specificity in 
Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified 
LasR. Proc. Natl. Acad. Sci. U. S. A. 101, 15833–15839 (2004). 

83. Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic 
biological parts and devices. Nat Biotechnol 26, 787–93 (2008). 

84. Kaplan, H. B. & Greenberg, E. P. Diffusion of autoinducer is involved in regulation 
of the Vibrio fischeri luminescence system. J. Bacteriol. 163, 1210–1214 (1985). 

85. Seed, P. C., Passador, L. & Iglewski, B. H. Activation of the Pseudomonas aeruginosa 
lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction 
regulatory hierarchy. J. Bacteriol. 177, 654–659 (1995). 

86. Pestova, E. V., Håvarstein, L. S. & Morrison, D. A. Regulation of competence for 
genetic transformation in Streptococcus pneumoniae by an auto-induced peptide 
pheromone and a two-component regulatory system. Mol. Microbiol. 21, 853–862 
(1996). 



 

152 

87. de Kievit, T. R. & Iglewski, B. H. Bacterial quorum sensing in pathogenic 
relationships. Infect. Immun. 68, 4839–4849 (2000). 

88. Ji, G., Beavis, R. C. & Novick, R. P. Cell density control of staphylococcal virulence 
mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. U. S. A. 92, 12055–
12059 (1995). 

89. Piper, K. R., Beck von Bodman, S. & Farrand, S. K. Conjugation factor of 
Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 
362, 448–450 (1993). 

90. Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. & Van Oudenaarden, A. 
Multistability in the lactose utilization network of Escherichia coli. Nature 427, 
737–40 (2004). 

91. Acar, M., Becskei, A. & van Oudenaarden, A. Enhancement of cellular memory by 
reducing stochastic transitions. Nature 435, 228–232 (2005). 

92. Kovarík, A., Matzke, M. A., Matzke, A. J. & Koulaková, B. Transposition of IS10 
from the host Escherichia coli genome to a plasmid may lead to cloning artefacts. 
Mol. Genet. Genomics MGG 266, 216–222 (2001). 

93. Gillespie, D. Exact stochastic simulation of coupled chemical reactions. J Phys Chem 
81, 2340–2361 (1977). 

94. Tan, C., Marguet, P. & You, L. Emergent bistability by a growth-modulating positive 
feedback circuit. Nat. Chem. Biol. 5, 842–848 (2009). 

95. McClintock, B. The significance of responses of the genome to challenge. Science 
226, 792–801 (1984). 

96. Sousa, A., Bourgard, C., Wahl, L. M. & Gordo, I. Rates of transposition in 
Escherichia coli. Biol. Lett. 9, 20130838 (2013). 

97. Ohtsubo, Y., Genka, H., Komatsu, H., Nagata, Y. & Tsuda, M. High-temperature-
induced transposition of insertion elements in burkholderia multivorans ATCC 
17616. Appl. Environ. Microbiol. 71, 1822–1828 (2005). 

98. Ferry, M. S., Razinkov, I. A. & Hasty, J. Microfluidics for synthetic biology: from 
design to execution. Methods Enzym. 497, 295–372 (2011). 

99. Prindle, A. et al. A sensing array of radically coupled genetic /`biopixels/’. Nature 
481, 39–44 (2012). 

100. Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with 
engineered cells. Nat. Mater. 13, 515–523 (2014). 



 

153 

101. Pérez, P. D., Weiss, J. T. & Hagen, S. J. Noise and crosstalk in two quorum-sensing 
inputs of Vibrio fischeri. BMC Syst. Biol. 5, 153 (2011). 

102. Winzer, K. et al. The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are 
controlled by quorum sensing and by RpoS. J. Bacteriol. 182, 6401–6411 (2000). 

103. Gray, K. M., Passador, L., Iglewski, B. H. & Greenberg, E. P. Interchangeability and 
specificity of components from the quorum-sensing regulatory systems of Vibrio 
fischeri and Pseudomonas aeruginosa. J. Bacteriol. 176, 3076–3080 (1994). 

104. Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 
11, 508–520 (2014). 

105. Ellis, T., Wang, X. & Collins, J. J. Diversity-based, model-guided construction of 
synthetic gene networks with predicted functions. Nat. Biotechnol. 27, 465–471 
(2009). 

106. Hussain, F. et al. Engineered temperature compensation in a synthetic genetic clock. 
Proc. Natl. Acad. Sci. 201316298 (2014). doi:10.1073/pnas.1316298111 

107. Litcofsky, K. D., Afeyan, R. B., Krom, R. J., Khalil, A. S. & Collins, J. J. Iterative 
plug-and-play methodology for constructing and modifying synthetic gene 
networks. Nat. Methods 9, 1077–1080 (2012). 

108. Nevozhay, D., Zal, T. & Balazsi, G. Transferring a synthetic gene circuit from yeast 
to mammalian cells. Nat. Commun. 4, 1451 (2013). 

109. Zhou, J. X., Aliyu, M. D. S., Aurell, E. & Huang, S. Quasi-potential landscape in 
complex multi-stable systems. J. R. Soc. Interface R. Soc. 9, 3539–3553 (2012). 

110. Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. BioNumbers--the 
database of key numbers in molecular and cell biology. Nucleic Acids Res. 38, 
D750-753 (2010). 

111. Craig, N. L. Mobile DNA II. (ASM Press, 2002). 

112. Sayut, D. J. & Sun, L. Slow activator degradation reduces the robustness of a 
coupled feedback loop oscillator. Mol. Biosyst. 6, 1469–1474 (2010). 

113. Bakshi, S., Siryaporn, A., Goulian, M. & Weisshaar, J. C. Superresolution imaging 
of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 
85, 21–38 (2012). 

114. Lee, J. et al. Unraveling the regulatory connections between two controllers of 
breast cancer cell fate. Nucleic Acids Res. 42, 6839–6849 (2014). 

115. Waddington, C. H. The strategy of the genes; a discussion of some aspects of 



 

154 

theoretical biology. (Allen & Unwin, 1957). 

116. Zhang, B. & Wolynes, P. G. Stem cell differentiation as a many-body problem. Proc. 
Natl. Acad. Sci. U. S. A. 111, 10185–10190 (2014). 

117. Li, C. & Wang, J. Quantifying Cell Fate Decisions for Differentiation and 
Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths. 
PLoS Comput Biol 9, e1003165 (2013). 

118. Ferrell, J. E. Bistability, bifurcations, and Waddington’s epigenetic landscape. Curr. 
Biol. 22, R458–R466 (2012). 

119. Huang, S., Guo, Y.-P., May, G. & Enver, T. Bifurcation dynamics in lineage-
commitment in bipotent progenitor cells. Dev. Biol. 305, 695–713 (2007). 

120. Wang, J. Landscape and flux theory of non-equilibrium dynamical systems with 
application to biology. Adv. Phys. 64, 1–137 (2015). 

121. Xu, L., Zhang, K. & Wang, J. Exploring the mechanisms of differentiation, 
dedifferentiation, reprogramming and transdifferentiation. PloS One 9, e105216 
(2014). 

122. Li, C. & Wang, J. Quantifying Waddington landscapes and paths of non-adiabatic 
cell fate decisions for differentiation, reprogramming and transdifferentiation. J. R. 
Soc. Interface 10, 20130787 (2013). 

123. Schmiedel, J. M. et al. Gene expression. MicroRNA control of protein expression 
noise. Science 348, 128–132 (2015). 

124. Tanouchi, Y. et al. A noisy linear map underlies oscillations in cell size and gene 
expression in bacteria. Nature 523, 357–360 (2015). 

125. Chalancon, G. et al. Interplay between gene expression noise and regulatory 
network architecture. Trends Genet. 28, 221–232 (2012). 

126. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009). 

127. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 Determines Trophectoderm 
Differentiation. Cell 123, 917–929 (2005). 

128. Bessonnard, S. et al. Gata6, Nanog and Erk signaling control cell fate in the inner 
cell mass through a tristable regulatory network. Development 141, 3637–3648 
(2014). 

129. MacArthur, B. D., Please, C. P. & Oreffo, R. O. C. Stochasticity and the Molecular 
Mechanisms of Induced Pluripotency. PLoS ONE 3, e3086 (2008). 



 

155 

130. Rabajante, J. F. & Babierra, A. L. Branching and oscillations in the epigenetic 
landscape of cell-fate determination. Prog. Biophys. Mol. Biol. 117, 240–249 
(2015). 

131. Angeli, D., Ferrell, J. E. & Sontag, E. D. Detection of multistability, bifurcations, 
and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. 
Acad. Sci. U. S. A. 101, 1822–1827 (2004). 

132. Lee, M. J. et al. Sequential Application of Anticancer Drugs Enhances Cell Death by 
Rewiring Apoptotic Signaling Networks. Cell 149, 780–794 (2012). 

133. Paşca, A. M. et al. Functional cortical neurons and astrocytes from human 
pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015). 

134. Pagliuca, F. W. et al. Generation of Functional Human Pancreatic β Cells In Vitro. 
Cell 159, 428–439 (2014). 

135. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells 
generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 
443–452 (2008). 

136. Liu, X. et al. Sequential introduction of reprogramming factors reveals a time-
sensitive requirement for individual factors and a sequential EMT–MET mechanism 
for optimal reprogramming. Nat. Cell Biol. 15, 829–838 (2013). 

137. Wu, F., Su, R.-Q., Lai, Y.-C. & Wang, X. Engineering of a synthetic quadrastable 
gene network to approach Waddington landscape and cell fate determination. eLife 
6, e23702 (2017). 

138. Zhang, B. W., Jasnow, D. & Zuckerman, D. M. The “weighted ensemble” path 
sampling method is statistically exact for a broad class of stochastic processes and 
binning procedures. J. Chem. Phys. 132, (2010). 

139. Palani, S. & Sarkar, C. A. Integrating Extrinsic and Intrinsic Cues into a Minimal 
Model of Lineage Commitment for Hematopoietic Progenitors. PLOS Comput Biol 
5, e1000518 (2009). 

140. Narula, J., Smith, A. M., Gottgens, B. & Igoshin, O. A. Modeling Reveals 
Bistability and Low-Pass Filtering in the Network Module Determining Blood Stem 
Cell Fate. PLOS Comput Biol 6, e1000771 (2010). 

141. Wang, J., Zhang, K., Xu, L. & Wang, E. Quantifying the Waddington landscape and 
biological paths for development and differentiation. Proc. Natl. Acad. Sci. 108, 
8257–8262 (2011). 

142. Szathmáry, E., Jordán, F. & Pál, C. Can Genes Explain Biological Complexity? 
Science 292, 1315–1316 (2001). 



 

156 

143. Kohles, S. S., Nève, N., Zimmerman, J. D. & Tretheway, D. C. Mechanical Stress 
Analysis of Microfluidic Environments Designed for Isolated Biological Cell 
Investigations. J. Biomech. Eng. 131, 121006 (2009). 

144. Shen, F., Li, X. & Li, P. C. H. Study of flow behaviors on single-cell manipulation 
and shear stress reduction in microfluidic chips using computational fluid dynamics 
simulations. Biomicrofluidics 8, (2014). 

145. Shemesh, J. et al. Flow-induced stress on adherent cells in microfluidic devices. 
Lab. Chip 15, 4114–4127 (2015). 

146. Smanski, M. J. et al. Synthetic biology to access and expand nature’s chemical 
diversity. Nat. Rev. Microbiol. 14, 135–149 (2016). 

147. Wright, G. Perspective: Synthetic biology revives antibiotics. Nature 509, S13 
(2014). 

148. Cai, M. & Yang, Y. Targeted genome editing tools for disease modeling and gene 
therapy. Curr. Gene Ther. 14, 2–9 (2014). 

149. Jusiak, B., Cleto, S., Perez-Piñera, P. & Lu, T. K. Engineering Synthetic Gene 
Circuits in Living Cells with CRISPR Technology. Trends Biotechnol. 34, 535–547 
(2016). 

150. Rusk, N. Synthetic biology: CRISPR circuits. Nat. Methods 11, 710–711 (2014). 

151. Chakravarti, D. & Wong, W. W. Synthetic biology in cell-based cancer 
immunotherapy. Trends Biotechnol. 33, 449–461 (2015). 

152. Morsut, L. et al. Engineering Customized Cell Sensing and Response Behaviors 
Using Synthetic Notch Receptors. Cell 164, 780–791 (2016). 

153. Roybal, K. T. et al. Precision Tumor Recognition by T Cells With Combinatorial 
Antigen-Sensing Circuits. Cell 164, 770–779 (2016). 

154. Pardee, K. et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable 
Biomolecular Components. Cell 165, 1255–1266 (2016). 

155. Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 
536, 81–85 (2016). 

156. Mus, F. et al. Symbiotic Nitrogen Fixation and Challenges to Extending it to Non-
Legumes. Appl. Environ. Microbiol. AEM.01055-16 (2016). 
doi:10.1128/AEM.01055-16 

157. Rogers, C. & Oldroyd, G. E. D. Synthetic biology approaches to engineering the 
nitrogen symbiosis in cereals. J. Exp. Bot. eru098 (2014). doi:10.1093/jxb/eru098 



 

157 

158. König, H., Frank, D., Heil, R. & Coenen, C. Synthetic Genomics and Synthetic 
Biology Applications Between Hopes and Concerns. Curr. Genomics 14, 11–24 
(2013). 

159. Zhang, W. & Nielsen, D. R. Synthetic biology applications in industrial     
         microbiology. Front. Microbiol. 5, (2014). 

160. Rocha, E. P. C. The Organization of the Bacterial Genome. Annu. Rev. Genet. 42, 
211–233 (2008). 

161. Yang, L. et al. Permanent genetic memory with >1-byte capacity. Nat. Methods 11, 
1261–1266 (2014). 

162. Cameron, D. E. & Collins, J. J. Tunable protein degradation in bacteria. Nat. 
Biotechnol. 32, 1276–1281 (2014). 

163. Farasat, I. et al. Efficient search, mapping, and optimization of multi‐protein genetic 
systems in diverse bacteria. Mol. Syst. Biol. 10, 731 (2014). 

164. Lee, J. W. et al. Creating Single-Copy Genetic Circuits. Mol. Cell 63, 329–336 
(2016). 

165. Ma, K. C., Perli, S. D. & Lu, T. K. Foundations and Emerging Paradigms for 
Computing in Living Cells. J. Mol. Biol. 428, 893–915 (2016). 

166. Chizzolini, F., Forlin, M., Cecchi, D. & Mansy, S. S. Gene Position More Strongly 
Influences Cell-Free Protein Expression from Operons than T7 Transcriptional 
Promoter Strength. ACS Synth. Biol. 3, 363–371 (2014). 

167. Lim, H. N., Lee, Y. & Hussein, R. Fundamental relationship between operon 
organization and gene expression. Proc. Natl. Acad. Sci. 108, 10626–10631 (2011). 

168. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-
molecule sensitivity in single cells. Science 329, 533–538 (2010). 

169. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-Sequence 
Determinants of Gene Expression in Escherichia coli. Science 324, 255–258 (2009). 

170. Mao, Y., Liu, H., Liu, Y. & Tao, S. Deciphering the rules by which dynamics of 
mRNA secondary structure affect translation efficiency in Saccharomyces 
cerevisiae. Nucleic Acids Res. 42, 4813–4822 (2014). 

171. Tuller, T., Waldman, Y. Y., Kupiec, M. & Ruppin, E. Translation efficiency is 
determined by both codon bias and folding energy. Proc. Natl. Acad. Sci. 107, 
3645–3650 (2010). 

172. Kaikkonen, M. U., Lam, M. T. Y. & Glass, C. K. Non-coding RNAs as regulators of 



 

158 

gene expression and epigenetics. Cardiovasc. Res. 90, 430–440 (2011). 

173. Mihailescu, R. Gene expression regulation: lessons from noncoding RNAs. RNA 21, 
695–696 (2015). 

174. Sanjana, N. E. et al. High-resolution interrogation of functional elements in the 
noncoding genome. Science 353, 1545–1549 (2016). 

175. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. 
Science 277, 1453–1462 (1997). 

176. Carpousis, A. J. The RNA Degradosome of Escherichia coli: An mRNA-Degrading 
Machine Assembled on RNase E. Annu. Rev. Microbiol. 61, 71–87 (2007). 

177. Chen, H., Shiroguchi, K., Ge, H. & Xie, X. S. Genome-wide study of mRNA 
degradation and transcript elongation in Escherichia coli. Mol. Syst. Biol. 11, 781 
(2015). 

178. Hui, M. P., Foley, P. L. & Belasco, J. G. Messenger RNA degradation in bacterial 
cells. Annu. Rev. Genet. 48, 537–559 (2014). 

179. Salvador, M. L., Suay, L. & Klein, U. Messenger RNA degradation is initiated at the 
5′ end and follows sequence- and condition-dependent modes in chloroplasts. 
Nucleic Acids Res. 39, 6213–6222 (2011). 

180. Selinger, D. W., Saxena, R. M., Cheung, K. J., Church, G. M. & Rosenow, C. Global 
RNA half-life analysis in Escherichia coli reveals positional patterns of transcript 
degradation. Genome Res. 13, 216–223 (2003). 

181. Emory, S. A., Bouvet, P. & Belasco, J. G. A 5’-terminal stem-loop structure can 
stabilize mRNA in Escherichia coli. Genes Dev. 6, 135–148 (1992). 

182. Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence 
dependence of thermodynamic parameters improves prediction of RNA secondary 
structure. J. Mol. Biol. 288, 911–940 (1999). 

183. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated Design of Synthetic Ribosome 
Binding Sites to Precisely Control Protein Expression. Nat. Biotechnol. 27, 946–950 
(2009). 

184. Xia, T. et al. Thermodynamic parameters for an expanded nearest-neighbor model 
for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry (Mosc.) 
37, 14719–14735 (1998). 

185. Espah Borujeni, A. & Salis, H. M. Translation Initiation is Controlled by RNA 
Folding Kinetics via a Ribosome Drafting Mechanism. J. Am. Chem. Soc. 138, 
7016–7023 (2016). 



 

159 

186. Bennett, M. R. & Hasty, J. Overpowering the component problem. Nat. Biotechnol. 
27, 450–451 (2009). 

187. Nielsen, A. A. K. et al. Genetic circuit design automation. Science 352, aac7341 
(2016). 

188. Espah Borujeni, A., Channarasappa, A. S. & Salis, H. M. Translation rate is 
controlled by coupled trade-offs between site accessibility, selective RNA unfolding 
and sliding at upstream standby sites. Nucleic Acids Res. 42, 2646–2659 (2014). 

189. Campo, C. D., Bartholomäus, A., Fedyunin, I. & Ignatova, Z. Secondary Structure 
across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation 
and Function. PLOS Genet. 11, e1005613 (2015). 

190. Fluman, N., Navon, S., Bibi, E. & Pilpel, Y. mRNA-programmed translation pauses 
in the targeting of E. coli membrane proteins. eLife 3, e03440 (2014). 

191. Mackie, G. A. RNase E: at the interface of bacterial RNA processing and decay. Nat. 
Rev. Microbiol. 11, 45–57 (2013). 

192. Konu, O. & Li, M. D. Correlations between mRNA expression levels and GC 
contents of coding and untranslated regions of genes in rodents. J. Mol. Evol. 54, 
35–41 (2002). 

193. Kudla, G., Lipinski, L., Caffin, F., Helwak, A. & Zylicz, M. High Guanine and 
Cytosine Content Increases mRNA Levels in Mammalian Cells. PLoS Biol. 4, 
(2006). 

194. Sémon, M., Mouchiroud, D. & Duret, L. Relationship between gene expression and 
GC-content in mammals: statistical significance and biological relevance. Hum. 
Mol. Genet. 14, 421–427 (2005). 

195. Chen, Y., Kim, J. K., Hirning, A. J., Josić, K. & Bennett, M. R. Emergent genetic 
oscillations in a synthetic microbial consortium. Science 349, 986–989 (2015). 

196. Smit, M. H. de & Duin, J. van. Secondary structure of the ribosome binding site 
determines translational efficiency: a quantitative analysis. Proc. Natl. Acad. Sci. 87, 
7668–7672 (1990). 

197. Espah Borujeni, A. et al. Precise quantification of translation inhibition by mRNA 
structures that overlap with the ribosomal footprint in N-terminal coding sequences. 
Nucleic Acids Res. doi:10.1093/nar/gkx061 

198. Faucon, P. C. et al. Gene Networks of Fully Connected Triads with Complete Auto-
Activation Enable Multistability and Stepwise Stochastic Transitions. PLoS ONE 9, 
(2014). 



 

160 

199. Mathur, M., Xiang, J. S. & Smolke, C. D. Mammalian synthetic biology for 
studying the cell. J Cell Biol jcb.201611002 (2016). doi:10.1083/jcb.201611002 

200. Lienert, F., Lohmueller, J. J., Garg, A. & Silver, P. A. Synthetic biology in 
mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. 
Cell Biol. 15, 95–107 (2014). 

201. Haynes, K. A. & Silver, P. A. Synthetic reversal of epigenetic silencing. J. Biol. 
Chem. 286, 27176–27182 (2011). 

202. Ye, H., Aubel, D. & Fussenegger, M. Synthetic mammalian gene circuits for 
biomedical applications. Curr. Opin. Chem. Biol. 17, 910–917 (2013). 

203. Ye, H. & Fussenegger, M. Synthetic therapeutic gene circuits in mammalian cells. 
FEBS Lett. 588, 2537–2544 (2014). 

204. Roybal, K. T. et al. Engineering T Cells with Customized Therapeutic Response 
Programs Using Synthetic Notch Receptors. Cell 167, 419–432.e16 (2016). 

205. Yadav, V. G., De Mey, M., Giaw Lim, C., Kumaran Ajikumar, P. & Stephanopoulos, 
G. The future of metabolic engineering and synthetic biology: Towards a systematic 
practice. Metab. Eng. 14, 233–241 (2012). 

 


