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ABSTRACT

In UAVs and parking lots, it is typical to first collect an enormous number of pixels

using conventional imagers. This is followed by employment of expensive methods to

compress by throwing away redundant data. Subsequently, the compressed data is

transmitted to a ground station. The past decade has seen the emergence of novel

imagers called spatial-multiplexing cameras, which offer compression at the sensing

level itself by providing an arbitrary linear measurements of the scene instead of

pixel-based sampling. In this dissertation, I discuss various approaches for effec-

tive information extraction from spatial-multiplexing measurements and present the

trade-offs between reliability of the performance and computational/storage load of

the system. In the first part, I present a reconstruction-free approach to high-level

inference in computer vision, wherein I consider the specific case of activity analysis,

and show that using correlation filters, one can perform effective action recognition

and localization directly from a class of spatial-multiplexing cameras, called com-

pressive cameras, even at very low measurement rates of 1%. In the second part,

I outline a deep learning based non-iterative and real-time algorithm to reconstruct

images from compressively sensed (CS) measurements, which can outperform the tra-

ditional iterative CS reconstruction algorithms in terms of reconstruction quality and

time complexity, especially at low measurement rates. To overcome the limitations of

compressive cameras, which are operated with random measurements and not partic-

ularly tuned to any task, in the third part of the dissertation, I propose a method to

design spatial-multiplexing measurements, which are tuned to facilitate the easy ex-

traction of features that are useful in computer vision tasks like object tracking. The

work presented in the dissertation provides sufficient evidence to high-level inference

in computer vision at extremely low measurement rates, and hence allows us to think

about the possibility of revamping the current day computer systems.
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Chapter 1

INTRODUCTION

Persistent surveillance from camera networks, such as at parking lots, UAVs, etc.,

often results in large amounts of video data, resulting in significant challenges for

inference in terms of storage, communication and computation. All these applica-

tions are heavily resource-constrained and require low communication overheads in

order to achieve real-time implementation. Consider the application of UAVs which

provide real-time video and high resolution aerial images on demand. In these sce-

narios, it is typical to collect an enormous amount of data, followed by transmission

of the same to a ground station using a low-bandwidth communication link. This

results in expensive methods being employed for video capture, compression, and

transmission implemented on the aircraft. The transmitted video is decompressed

at a central station and then fed into a computer vision pipeline. Similarly, a video

surveillance system which typically employs many high-definition cameras, gives rise

to a prohibitively large amount of data, making it very challenging to store, transmit

and extract meaningful information. Thus, there is a growing need to acquire as

little data as possible and yet be able to perform high-level inference tasks like action

recognition, object tracking reliably.

Recent advances in the areas of compressive sensing (CS) [23, 11, 12] have led

to the development of new sensors like compressive cameras (also called single-pixel

cameras (SPCs)) [65, 80], which enable the acquisition of ‘more for less’ by greatly

reducing the amount of sensed data while preserving most of its information. Another

compelling application of SPC is in the area of infrared imaging. It is well known that

short-wave infrared (SWIR) cameras have applications in military surveillance and
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maritime navigation because of their ability to ‘see-through’ in environmental condi-

tions like fog, smoke, haze etc. However, the cost of a SWIR pixel is prohibitively

expensive, and this has prevented infrared cameras from being employed in the appli-

cations outlined above. SPCs provide a cost-effective solution for image acquisition

in such spectral regions. The SPC employs just a single photodiode sensitive to wave-

lengths of interest and a micro-mirror array to acquire images. This greatly reduces

the cost of the camera. Current CS imaging systems, such as the commercially avail-

able short-wave infrared single pixel camera from Inview Technology Corporation,

provide the luxury of reduced and fast acquisition of the image by optically comput-

ing only a small number random projections of the scene, thus enabling compression

at the sensing level itself. Such characteristics of the acquisition system are highly

sought-after in a) resource-constrained environments like UAVs where generally, com-

putationally expensive methods are employed as a post-acquisition step to compress

the fully acquired images, and b) applications such as Magnetic Resonance Imaging

(MRI) [61] where traditional imaging methods are very slow. As an undesirable con-

sequence, the computational load is now transferred to the decoding algorithm which

reconstructs the image from the CS measurements or the random projections. The

goal of this dissertation is to provide methods for effective information

extraction from compressive cameras for computer vision applications

and study the tradeoffs between reliability of performance and computa-

tional/storage load of the system in a resource constrained setting, that

these methods offer. SPCs differ from the conventional cameras in that they in-

tegrate the process of acquisition and compression by acquiring a small number of

linear projections of the original images. More formally, when a sequence of images

is acquired by a compressive camera, the measurements are generated by a sensing

strategy which maps the space of P × Q images, I ∈ RPQ to an observation space

2
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A frame at time instant t is
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correlating it with K random
patterns of the DMD array,
[φ1, φ2, .., φK ] to obtain

K measurements
[Z1(t), Z2(t), .., ZK(t)].
The sequence {Z(t)}

is the CS video.

Figure 1.1: Compressive Sensing (CS) of a scene: Every frame of the scene is compressively

sensed by optically correlating random patterns with the frame to obtain CS measurements.

The temporal sequence of such CS measurements is the CS video.

Z ∈ RK ,

Z(t) = φI(t) + w(t), (1.1)

where φ is a K × PQ measurement matrix, w(t) is the noise, and K � PQ. The

process is pictorially shown in Figure 1.1.

Difference between CS and video codecs It is worth noting at this point that

the manner in which compression is achieved by SPCs differs fundamentally from the

manner in which compression is achieved in JPEG images or MPEG videos. In the

case of JPEG, the images are fully sensed and then compressed by applying wavelet

transform or DCT to the sensed data, and in the case of MPEG, a video after having

been sensed fully is compressed using a motion compensation technique. However, in

the case of SPCs, at the outset one does not have direct access to full blown images,

{I(t)}. SPCs instead provide us with compressed measurements {Z(t)} directly by

optically calculating inner products of the images, {I(t)}, with a set of test functions
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given by the rows of the measurement matrix, φ, implemented using a programmable

micro-mirror array [65]. While this helps avoid the storage of a large amount of

data and expensive computations for compression, it often comes at the expense of

employing high computational load at the central station to reconstruct the video data

perfectly. Moreover, for perfect reconstruction of the images, given a sparsity level

of s, state-of-the-art algorithms require O(s log(PQ/s)) measurements [12], which

still amounts to a large fraction of the original data dimensionality. Hence, using

SPCs may not always provide advantage with respect to communication resources

since compressive measurements and transform coding of data require comparable

bandwidth [13].

In this dissertation, firstly we present two approaches to information extraction

from CS measurements, 1) a reconstruction-free approach to action recognition from

compressive cameras, and 2) a non-iterative algorithm to reconstruct images from

CS measurements, and secondly we present a method to design spatial-multiplexing

measurements which are tuned to facilitate the easy extraction of visual features that

are useful in computer vision applications like object tracking.

Spatio-temporal Smashed Filtering: First, we propose reconstruction-free meth-

ods for action recognition from compressive cameras at high compression ratios of

100 and above. Recognizing actions directly from CS measurements requires features

which are mostly nonlinear and thus not easily applicable. This leads us to search

for such properties that are preserved in compressive measurements. To this end,

we propose the use of spatio-temporal smashed filters, which are compressive domain

versions of pixel-domain matched filters. We conduct experiments on publicly avail-

able databases and show that one can obtain recognition rates that are comparable

to the oracle method in uncompressed setup, even for high compression ratios.
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A non-iterative CS reconstruction algorithm: Next, we present a non-iterative

and more importantly an extremely fast algorithm to reconstruct images from com-

pressively sensed (CS) random measurements. To this end, we propose a novel con-

volutional neural network (CNN) architecture which takes in CS measurements of an

image as input and outputs an intermediate reconstruction. We call this network,

ReconNet. The intermediate reconstruction is fed into an off-the-shelf denoiser to

obtain the final reconstructed image. On a standard dataset of images we show sig-

nificant improvements in reconstruction results (both in terms of PSNR and time

complexity) over state-of-the-art iterative CS reconstruction algorithms at various

measurement rates. Further, through qualitative experiments on real data collected

using our block single pixel camera (SPC), we show that our network is highly ro-

bust to sensor noise and can recover visually better quality images than competitive

algorithms at extremely low sensing rates of 0.1 and 0.04.

Reconstruction-free integral image estimation: Next, we propose a framework

called ReFInE to directly obtain integral image estimates from a very small number

of spatially multiplexed measurements of the scene without iterative reconstruction of

any auxiliary image, and demonstrate their practical utility in visual object tracking.

Specifically, we design measurement matrices which are tailored to facilitate extremely

fast estimation of the integral image, by using a single-shot linear operation on the

measured vector. Leveraging a prior model for the images, we formulate a nuclear

norm minimization problem with second order conic constraints to jointly obtain the

measurement matrix and the linear operator. Through qualitative and quantitative

experiments, we show that high quality integral image estimates can be obtained using

our framework at very low measurement rates. Further, on a standard dataset of 50

videos, we present object tracking results which are comparable to the state-of-the-art

5



methods, even at an extremely low measurement rate of 1%.

A summary of contributions:

• We propose a correlation-based framework for action recognition and localiza-

tion directly from compressed measurements, thus avoiding the costly recon-

struction process.

• We provide principled ways to achieve quasi view-invariance in a spatio-temporal

smashed filtering based action recognition setup.

• We further show that a single MACH filter for a canonical view is sufficient to

generate MACH filters for all affine transformed views of the canonical view.

• Next, we propose a non-iterative and extremely fast reconstruction algorithm

for block CS imaging [31]. To the best of our knowledge, there exists no pub-

lished work which achieves these desirable features.

• We introduce a novel class of CNN architectures called ReconNet which takes

in CS measurements of an image block as input and outputs the reconstructed

image block. Further, the reconstructed image blocks are arranged appropri-

ately and fed into an off-the-shelf denoiser to recover the full image.

• Through experiments on a standard dataset of images, we show that, in terms of

mean PSNR of reconstructed images, our algorithm beats the nearest competi-

tor by considerable margins at measurement rates of 0.1 and below. Further,

we validate the robustness of ReconNet to arbitrary sensor noise by conducting

qualitative experiments on real-data collected using our block SPC. We achieve

visually superior quality reconstructions than the traditional CS algorithms.
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• We demonstrate that the reconstructions retain rich semantic content even at a

low measurement rate of 0.01. To this end, we present a proof of concept real-

time application, wherein object tracking is performed on-the-fly as the frames

are recovered from the CS measurements.

• Next, we propose a novel framework to recover estimates of integral images

from a small number of spatially multiplexed measurements without itera-

tive reconstruction of any auxillary image. We dub the framework ReFInE

(Reconstruction-Free Integral Image Estimation).

• Leveraging the MGGD (multivariate generalized Gaussian distribution) prior

model for the vector of detailed wavelet coefficients of natural images, we pro-

pose a nuclear norm minimization formulation to obtain a new specialized mea-

surement matrix. We term the measurements acquired with such a measurement

matrix, as ReFInE measurements.

• On a large dataset of 4952 images, we present qualitative and quantitative

results to show that high quality estimates of integral images and box-filtered

outputs can be recovered from ReFInE measurements in real-time.

• We show object tracking results, which are comparable to state-of-the-art meth-

ods, on a challenging dataset of 50 videos to demonstrate the utility of the

box-filtered output estimates in tackling inference problems from SMCs at 1%

measurement rate.
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Chapter 2

RECONSTRUCTION-FREE ACTION INFERENCE FROM COMPRESSIVE

IMAGERS

While a great body of work has focused on the theory and algorithms for signal

recovery, much less attention has been paid to the question of whether it is possible

to perform high-level inference directly on CS measurements without reconstruction.

This question is interesting due to the following reasons: a) very often we want to

know some property of the scene rather than the entire scene itself, b) good qual-

ity reconstruction results are difficult to achieve at compression ratios of 100 and

above, and c) the parameters to be input to the reconstruction algorithm such as

signal sparsity, sparsifying basis are not known, and are chosen in an ad-hoc man-

ner. In this work, we consider the specific problem of action recognition

in videos, and show that it is indeed possible to perform action recogni-

tion at extremely higher compression ratios, by bypassing reconstruction.

We first show that approximate correlational features can be extracted directly from

CS measurements. Using this in conjunction with the widely used correlational fil-

ters approach to recognition tasks in computer vision, we propose a spatio-temporal

smashed filtering approach to action recognition, which results in robust performance

at extremely high compression ratios.

2.1 Related work

a) Action Recognition The approaches in human action recognition from cameras

can be categorized based on the low level features. Most successful representations of

human action are based on features like optical flow, point trajectories, background
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subtracted blobs and shape, filter responses, etc. The current state-of-the-art ap-

proaches [94, 95] to action recognition are based on dense trajectories, which are

extracted using dense optical flow. The dense trajectories are encoded by complex,

hand-crafted descriptors like histogram of oriented gradients (HOG) [17] , histogram

of oriented optical flow (HOOF) [15], HOG3D [51], and motion boundary histograms

(MBH) [94]. However, the extraction of the above features involves various non-linear

operations. This makes it very difficult to extract such features from compressively

sensed images. For a detailed survey of action recognition, the readers are referred to

[1].

b) Action recognition in compressed domain Though action recognition has

a long history in computer vision, little exists in literature to recognize actions in the

compressed domain. Yeo et al.[99] and Ozer et al.[71] explore compressed domain

action recognition from MPEG videos by exploiting the spatiotemporal local struc-

ture, induced by the motion compensation technique used for compression. However,

as stated above, the compression in CS cameras is achieved by randomly projecting

the individual frames of the video onto a much lower dimensional space and hence

does not easily allow leveraging motion information of the video. CS imagery acquires

global measurements, thereby do not preserve any local information in their raw form,

making action recognition much more difficult in comparison.

c) Reconstruction-free inference from CS videos Sankaranarayanan et al.[79]

attempted to model videos as a LDS (Linear Dynamical System) by recovering pa-

rameters directly from compressed measurements, but is sensitive to spatial and view

transforms, making it more suitable for recognition of dynamic textures than action

recognition. Thirumalai et al.[88] introduced a reconstruction-free framework to ob-
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tain optical flow based on correlation estimation between two compressively sensed

images. However, the method does not work well at very low measurement rates.

Calderbank et al.[74] theoretically showed that ‘learning directly in compressed do-

main is possible’, and that with high probability the linear kernel SVM classifier in

the compressed domain can be as accurate as best linear threshold classifier in the

data domain. Recently, Kulkarni and Turaga [45] proposed a novel method based

on recurrence textures for action recognition from compressive cameras. However,

the method is prone to produce very similar recurrence textures even for dissimilar

actions for CS sequences and is more suited for feature sequences as in [44].

First, the training examples are affine
transformed to a canonical viewpoint.

Next, for each action class a single
composite 3D template called ‘Ac-
tion MACH’ filter, which captures

intra-class variability is synthesized.

Synthesize Action MACH filter

...

3D MACH Filter

Training phase

Training examples

The compressively sensed
test video is correlated with
smashed filters for all action

classes to obtain respec-
tive correlation volumes.

Spatio-temporal Smashed Filtering

,〈 〉=F1(t)

F2(t) ,〈 〉=

,〈 〉=FK(t)

...

Each frame of a 3D MACH filter is
correlated with the same K random

functions, as used by CS cameras
to obtain a K-length

vector [F1(t), F2(t), .., FK(t)].
The temporal sequence {F (t)} of

such vectors form the corresponding
‘SMASHED FILTER’.

Scene
,〈 〉

φ1

φ2

φK

〈 〉,

,〈 〉
...

=

=

=

Z1(t)

Z2(t)

ZK(t)

{ }Compressive cameras optically correlate each
frame (size PQ) of the test video with K
random functions [φ1, φ2, .., φK ] to obtain
K measurements [Z1(t), Z2(t), .., ZK(t)],

without sensing the full frame.

Sensing the test video

CS measurements of test video Testing phase

3D Correlation volume

Figure 2.1: Overview of our approach to action recognition from a compressively sensed

test video. First, MACH [77] filters for different actions are synthesized offline from training

examples and then compressed to obtain smashed filters. Next, the CS measurements of

the test video are correlated with these smashed filters to obtain correlation volumes which

are analyzed to determine the action in the test video.
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d) Correlation filters in computer vision Even though, as stated above, the

approaches based on dense trajectories extracted using optical flow information have

yielded state-of-the-art results, it is difficult to extend such approaches while deal-

ing with compressed measurements. Earlier approaches to action recognition were

based on correlation filters, which were obtained directly from pixel data [49, 82, 81,

77, 18, 78]. The filters for different actions are correlated with the test video and

the responses thus obtained are analyzed to recognize and locate the action in the

test video. Davenport et al.[63] proposed a CS counterpart of the correlation filter

based framework for target classification. Here, the trained filters are compressed

first to obtain ‘smashed filters’, then the compressed measurements of the test ex-

amples are correlated with these smashed filters. Concisely, smashed filtering hinges

on the fact that correlation between a reference signal and an input signal is nearly

preserved even when they are projected onto a much lower-dimensional space. In

this chapter, we show that spatio-temporal smashed filters provide a natural solution

to reconstruction-free action recognition from compressive cameras. Our framework

(shown in Figure 2.1) for classification includes synthesizing Action MACH (Max-

imum Average Correlation Height) filters [77] offline and then correlating the com-

pressed versions of the filters with compressed measurements of the test video, instead

of correlating raw filters with full-blown video, as is the case in [77]. Action MACH

involves synthesizing a single 3D spatiotemporal filter which captures information

about a specific action from a set of training examples. MACH filters can become

ineffective if there are viewpoint variations in the training examples. To effectively

deal with this problem, we also propose a quasi view-invariant solution, which can be

used even in uncompressed setup.
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2.2 Compressive action recognition

To devise a reconstruction-free method for action recognition from compressive

cameras, we need to exploit such properties that are preserved robustly even in the

compressed domain. One such property is the distance preserving property of the

measurement matrix φ used for compressive sensing [12, 43]. Stated differently, the

correlation between any two signals is nearly preserved even when the data is com-

pressed to a much lower dimensional space. This makes correlation filters a natural

choice to adopt. 2D correlation filters have been widely used in the areas of auto-

matic target recognition and biometric applications like face recognition [106], palm

print identification [73], etc., due to their ability to capture intraclass variabilities.

Recently, Rodriguez et al.[77] extended this concept to 3D by using a class of corre-

lation filters called MACH filters to recognize actions. As stated earlier, Davenport

et al.[63] introduced the concept of smashed filters by implementing matched filters

in the compressed domain. In the following section, we generalize this concept of

smashed filtering to the space-time domain and show how 3D correlation filters can

be implemented in the compressed domain for action recognition.

2.2.1 Spatio-temporal smashed filtering (STSF)

This section forms the core of our action recognition pipeline, wherein we outline

a general method to implement spatio-temporal correlation filters using compressed

measurements without reconstruction and subsequently, recognize actions using the

response volumes. To this end, consider a given video s(x, y, t) of size P × Q × R

and let Hi(x, y, t) be the optimal 3D matched filter for actions i = 1, .., NA, with size

L×M ×N and NA is the number of actions. First, the test video is correlated with

the matched filters of all actions i = 1, ..NA to obtain respective 3D response volumes
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as in (2.1).

ci(l,m, n) =
N−1∑
t=0

M−1∑
y=0

L−1∑
x=0

s(l + x,m+ y, n+ t)Hi(x, y, t). (2.1)

Next, zero-padding each frame in Hi upto a size P × Q and changing the indices,

(2.1) can be rewritten as:

ci(l,m, n) =
N−1∑
t=0

Q−1∑
β=0

P−1∑
α=0

s(α, β, n+ t)Hi(α− l, β −m, t). (2.2)

This can be written as the summation of N correlations in the spatial domain as

follows:

ci(l,m, n) =
N−1∑
t=0

〈Sn+t, H
l,m,t
i 〉, (2.3)

where, 〈, 〉 denotes the dot product, Sn+t is the column vector obtained by concate-

nating the Q columns of the (n + t)th frame of the test video. To obtain H l,m,t
i , we

first shift the tth frame of the zeropadded filter volume Hi by l and m units in x and y

respectively to obtain an intermediate frame and then rearrange it to a column vector

by concatenating its Q columns. Due to the distance preserving property of measure-

ment matrix φ, the correlations are nearly preserved in the much lower dimensional

compressed domain. To state the property more specifically, using JL Lemma [43],

the following relation can be shown:

ci(l,m, n)−Nε ≤
N−1∑
t=0

〈φSn+t, φH
l,m,t
i 〉 ≤ ci(l,m, n) +Nε. (2.4)

The derivation of this relation and the precise form of ε is as follows. In the following,

we derive the relation between the response volume from uncompressed data and

response volume obtained using compressed data. According to JL Lemma [43], given

0 < ε < 1 , a set S of 2V points in RPQ, each with unit norm, and K > O( log(V )
ε2

),

there exists a Lipschitz function f : RPQ → RK such that

(1− ε)‖Sn+t −H l,m,t
i ‖2 ≤ ‖f(Sn+t)− f(H l,m,t

i )‖2

≤ (1 + ε)‖Sn+t −H l,m,t
i ‖2, (2.5)

13



and

(1− ε)‖Sn+t +H l,m,t
i ‖2 ≤ ‖f(Sn+t) + f(H l,m,t

i )‖2

≤ (1 + ε)‖Sn+t +H l,m,t
i ‖2, (2.6)

∀ Sn+t and H l,m,t
i ∈ S. Now we have:

4〈f(Sn+t), f(H l,m,t
i )〉

= ‖f(Sn+t) + f(H l,m,t
i )‖2 − ‖f(Sn+t)− f(H l,m,t

i )‖2

≥ (1− ε)‖Sn+t +H l,m,t
i ‖2 − (1 + ε)‖Sn+t −H l,m,t

i ‖2

= 4〈Sn+t, H
l,m,t
i 〉 − 2ε(‖Sn+t‖2 + ‖H l,m,t

i ‖2)

≥ 4〈Sn+t, H
l,m,t
i 〉 − 4ε. (2.7)

We can get a similar relation for opposite direction, which when combined with (2.7),

yields the following:

〈Sn+t, H
l,m,t
i 〉 − ε ≤ 〈f(Sn+t), f(H l,m,t

i )〉

≤ 〈Sn+t, H
l,m,t
i 〉+ ε. (2.8)

However, JL Lemma does not provide us with a embedding, f which satisfies the above

relation. As discussed in [19], f can be constructed as a matrix, φ with size K×PQ,

whose entries are either independent realizations of Gaussian random variables or

independent realizations of ± Bernoulli random variables. Now, if φ constructed as

explained above is used as measurement matrix, then we can replace f in (2.8) by φ,

leading us to

〈Sn+t, H
l,m,t
i 〉 − ε ≤ 〈φSn+t, φH

l,m,t
i 〉

≤ 〈Sn+t, H
l,m,t
i 〉+ ε. (2.9)

Hence, we have,
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N−1∑
t=0

〈Sn+t, H
l,m,t
i 〉 −Nε ≤

N−1∑
t=0

〈φSn+t, φH
l,m,t
i 〉

≤
N−1∑
t=0

〈Sn+t, H
l,m,t
i 〉+Nε. (2.10)

Using equations (4) and (2.10), we arrive at the following desired equation.

ci(l,m, n)−Nε ≤
N−1∑
t=0

〈φSn+t, φH
l,m,t
i 〉 ≤ ci(l,m, n) +Nε. (2.11)

Now allowing for the error in correlation, we can compute the response from com-

pressed measurements as below:

ccompi (l,m, n) =
N−1∑
t=0

〈φSn+t, φH
l,m,t
i 〉. (2.12)

The above relation provides us with the 3D response volume for the test video

with respect to a particular action, without reconstructing the frames of the test

video. To reduce computational complexity, the 3D response volume is calculated in

frequency domain via 3D FFT.

Feature vector and Classification using SVM For a given test video, we obtain

NA correlation volumes. For each correlation volume, we adapt three level volumetric

max-pooling to obtain a 73 dimensional feature vector [78]. In addition, we also

compute peak-to-side-lobe-ratio for each of these 73 maxpooled values. PSR is given

by PSRk = peaki−µi
σi

,where peakk is the kth max-pooled value, and µk and σk are the

mean and standard deviation values in its small neighbourhood. Thus, the feature

vector for a given test video is of dimension, NA × 146. This framework can be

used in any reconstruction-free application from compressive cameras which can be

implemented using 3D correlation filtering. Here, we assume that there exists an

optimal matched filter for each action and outline a way to recognize actions from

15



compressive measurements. In the next section, we show how these optimal filters

are obtained for each action.

2.2.2 Training filters for action recognition

The theory of training correlation filters for any recognition task is based on syn-

thesizing a single template from training examples, by finding an optimal tradeoff

between certain performance measures. Based on the performance measures, there

exist a number of classes of correlation filters. A MACH filter is a single filter that

encapsulates the information of all training examples belonging to a particular class

and is obtained by optimizing four performance parameters, the Average Correlation

Height (ACH), the Average Correlation Energy (ACE), the Average Similarity Mea-

sure (ASM), and the Output Noise Variance (ONV). Until recently, this was used

only in two dimensional applications like palm print identification [73], target recog-

nition [84] and face recognition problems [106]. For action recognition, Rodriguez et

al. [77] introduced a generalized form of MACH filters to synthesize a single action

template from the spatio-temporal volumes of the training examples. Furthermore,

they extended the notion for vector-valued data. In our framework for compressive

action recognition, we adopt this approach to train matched filters for each action.

Here, we briefly give an overview of 3D MACH filters which was first described in

[77].

First, temporal derivatives of each pixel in the spatio-temporal volume of each

training sequence are computed and the frequency domain representation of each vol-

ume is obtained by computing a 3D-DFT of that volume, according to the following:

F (u) =
N−1∑
t=0

M−1∑
x2=0

L−1∑
x1=0

f(x)e(−j2π(u·x)), (2.13)

where, f(x) is the spatio-temporal volume of L rows, M columns and N frames, F (u)
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is its spatio-temporal representation in the frequency domain and x = (x1, x2, t) and

u = (u1, u2, u3) denote the indices in space-time and frequency domain respectively.

If Ne is the number of training examples for a particular action, then we denote

their 3D DFTs by Xi(u), i = 1, 2, .., Ne, each of dimension, d = L ×M × N . The

average spatio-temporal volume of the training set in the frequency domain is given

by Mx(u) = 1
Ne

∑Ne
i=1Xi(u). The average power spectral density of the training set is

given by Dx(u) = 1
Ne

∑Ne
i=1 |Xi(u)|2, and the average similarity matrix of the training

set is given by Sx(u) = 1
Ne

∑Ne
i=1 |Xi(u) −Mx(u)|2. Now, the MACH filter for that

action is computed by minimizing the average correlation energy, average similarity

measure, output noise variance and maximizing the average correlation height. This

is done by computing the following:

h(u) =
1

[αC(u) + βDx(u) + γSx(u)]
Mx(u), (2.14)

where, C(u) is the noise variance at the corresponding frequency. Generally, it is set to

be equal to 1 at all frequencies. The corresponding space-time domain representation

H(x, y, t) is obtained by taking the inverse 3D DFT of h. A filter with response

volume H and parameters α, β and γ is compactly written as H = {H,α, β, γ}.

2.3 Affine Invariant Smashed Filtering

Even though MACH filters capture intra-class variations, the filters can become

ineffective if viewpoints of the training examples are different or if the viewpoint of the

test video is different from viewpoints of the training examples. Filters thus obtained

may result in misleading correlation peaks. Consider the case of generating a filter of

a translational action, walking, wherein the training set is sampled from two different

views. The top row in Fig 2.2 depicts some frames of the filter, say ‘Type-1’ filter,

generated out of such a training set. The bottom row depicts some frames of the filter,
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say ‘Type-2’ filter, generated by affine transforming all examples in the training set

to a canonical viewpoint. Roughly speaking, the ‘Type-2’ filter can be interpreted as

Filter without flipping

(a)

Filter with flipping

(b)

Figure 2.2: a) ‘Type-1’ filter obtained for walking action where the training examples

were from different viewpoints b) ‘Type-2’ filter obtained from the training examples by

bringing all the training examples to the same viewpoint. In (a), two groups of human

move in opposite directions and eventually merge into each other, thus making the filter

ineffective. In (b), the merging effect is countered by transforming the training set to the

same viewpoint.

many humans walking in the same direction, whereas the ‘Type-1’ filter, as 2 groups

of humans, walking in opposite directions. One can notice that some of the frames

in the ‘Type-1’ do not represent the action of interest, particularly the ones in which

the two groups merge into each other. This kind of merging effect will become more

prominent as the number of different views in the training set increases. The problem

is avoided in the ‘Type-2’ filter because of the single direction of movement of the

whole group. Thus, it can be said that the quality of information about the action in

the ‘Type-2’ filter is better than that in the ‘Type-1’ filter. As we show in experiments,

this is indeed the case. Assuming that all views of all training examples are affine

transforms of a canonical view, we can synthesize a MACH filter generated after

transforming all training examples to a common viewpoint and avoid the merging
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effect. However, different test videos may be in different viewpoints, which makes

it impractical to synthesize filters for every viewpoint. Hence it is desirable that a

single representative filter be generated for all affine transforms of a canonical view.

The following proposition asserts that, from a MACH filter defined for the canonical

view, it is possible to obtain a compensated MACH filter for any affine transformed

view.

Proposition 1 Let H = {H,α, β, γ} denote the MACH filter in the canonical view,

then for any arbitrary view V , related to the canonical view by an affine transfor-

mation, [A|b], there exists a MACH filter, Ĥ = {Ĥ, α̂, β̂, γ̂} such that: Ĥ(xs, t) =

|∆|2H(Axs + b, t), α̂ = |∆|2α, β̂ = β and γ̂ = γ where xs = (x1, x2) denote the

horizontal and vertical axis indices and ∆ is the determinant of A.

Proof: Consider the frequency domain response ĥ for view V , given by the fol-

lowing.

ĥ(u) =
1

(αĈ(u) + βD̂x(u) + γŜx(u))
M̂x(u). (2.15)

For the sake of convenience, we let u = (us, u3) where us = (u1, u2) denotes the

spatial frequencies and u3, the temporal frequency. Now using properties of the

Fourier transform [7], we have,

M̂x(us, u3) =
1

Ne

Ne∑
i=1

X̂i(us,u3)

=
1

Ne

Ne∑
i=1

ej2πb·(A−1)TusXi((A
−1)Tus, u3)

|∆| .

Using the relation Mx(u) = 1
Ne

∑Ne
i=1Xi(u), we get,

M̂x(us, u3) =
ej2πb·(A−1)TusMx((A

−1)Tus, u3)

|∆| . (2.16)
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Now,

D̂x(us, u3) =
1

Ne

Ne∑
i=1

|X̂i(us, u3)|2

=
1

Ne

Ne∑
i=1

|e
j2πb·(A−1)TusXi((A

−1)Tus, u3)

|∆| |2

=
1

Ne

Ne∑
i=1

|Xi((A
−1)Tus, u3)

|∆| |2.(∵ |ej2πb·(A−1)Tus| = 1)

Hence, using the relation Dx(u) = 1
Ne

∑Ne
i=1 |Xi(u)|2, we have

D̂x(us, u3) =
1

|∆|2Dx((A
−1)Tus, u3). (2.17)

Similarly, it can be shown that

Ŝx(us, u3) =
1

|∆|2Sx((A
−1)Tus, u3). (2.18)

Using (2.16), (2.17) and (2.18) in (2.15), we have,

ĥ(u) = (ej2πb·(A−1)TusMx((A−1)Tus, u3))∆

1

(α̂|∆|2Ĉ(u) + β̂Dx((A−1)Tus, u3) + γ̂Sx((A−1)Tus, u3)
. (2.19)

Now letting, α = α̂|∆|2, β = β̂, γ = γ̂, Ĉ(u) = C(u) = C((A−1)Tus, u3)) (since C

is usually assumed to be equal to 1 at all frequencies if noise model is not available)

and using (2.14), we have,

ĥ(u) = ∆h((A−1)Tus, u3))ej2πb·(A−1)Tus . (2.20)

Now taking the inverse 3D-FFT of ĥ(u), we have,

Ĥ(xs, t) = |∆|2H(Axs + b, t). (2.21)

Thus, a compensated MACH filter for the view V is given by Ĥ = {Ĥ, α̂, β̂, γ̂}.

This completes the proof of the proposition. Thus a MACH filter for view V , with

parameters |∆|2α, β and γ can be obtained just by affine transforming the frames of
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the MACH filter for the canonical view. Normally |∆| ≈ 1 for small view changes.

Thus, even though in theory, α̂ is related to α by a scaling factor of |∆|2, for small

view changes, ĥ is the optimal filter with essentially the same parameters as those for

the canonical view. This result shows that for small view changes, it is possible to

build robust MACH filters from a single canonical MACH filter.

Robustness of affine invariant smashed filtering To corroborate the need of

affine transforming the MACH filters to the viewpoint of the test example, we con-

duct the following two synthetic experiments. In the first, we took all examples in

Weizmann dataset and assumed that they belong to the same view, dubbed as the

canonical view. We generated five different datasets, each corresponding to a different

viewing angle. The different viewing angles from 0◦ to 20◦ in increments of 5◦ were

simulated by means of homography. For each of these five datasets, a recognition ex-

periment is conducted using filters for the canonical view as well as the compensated

filters for their respective viewpoints, obtained using (2.21). The average PSR in

both cases for each viewpoint is shown in Figure 2.3. The mean PSR values obtained

using compensated filters are more than those obtained using canonical filters.

In the second experiment, we conducted five independent recognition experiments

for the dataset corresponding to fixed viewing angle of 15◦, using compensated filters

generated for five different viewing angles. The results are tabulated in table 2.1. It

is evident that action recognition rate is highest when the compensated filters used

correspond to the viewing angle of the test videos. These two synthetic experiments

clearly suggest that it is essential to affine transform the filters to the viewpoint of

the test video before performing action recognition.
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Viewing angle Canonical 5◦ 10◦ 15◦ 20◦

Recognition rate 65.56 68.88 67.77 72.22 66.67

Table 2.1: Action recognition rates for the dataset corresponding to fixed viewing angle

of 15◦ using compensated filters generated for various viewing angles. As expected, action

recognition rate is highest when the compensated filters used correspond to the viewing

angle of the test videos.

2.4 Experimental results

For all our experiments, we use a measurement matrix, φ whose entries are drawn

from i.i.d. standard Gaussian distribution, to compress the frames of the test videos.

We conducted extensive experiments on the widely used Weizmann [6], UCF sports

[77], UCF50 [76] and HMDB51 [54] datasets to validate the feasibility of action recog-

nition from compressive cameras. Before we present the action recognition results, we

briefly discuss the baseline methods to which we compare our method, and describe a

simple to perform action localization in those videos in which the action is recognized

successfully.

Baselines As noted earlier, this is the first work to tackle the problem of action

recognition from compressive cameras. The absence of precedent approach to this

problem makes it difficult to decide on the baseline methods to compare with. The

state-of-the-art methods for action recognition from traditional cameras rely on dense

trajectories [95], derived using highly non-linear features, HOG [17], HOOF [15], and

MBH [94]. At the moment, it is not quite clear on how to extract such features

directly from compressed measurements. Due to these difficulties, we fixate on two

baselines. The first baseline method is the Oracle MACH, wherein action recognition
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Figure 2.3: The mean PSRs for different viewpoints for both canonical filters and compen-

sated filters are shown. The mean PSR values obtained using compensated filters are more

than those obtained using canonical filters, thus corroborating the need of affine transform-

ing the MACH filters to the viewpoint of the test example.

is performed as in [77] and for the second baseline, we first reconstruct the frames from

the compressive measurements, and then apply the improved dense trajectories (IDT)

method [95], which is the most stable state-of-the-art method, on the reconstructed

video to perform action recognition. There are two approaches that one can follow

to reconstruct the frames of a CS video. One of them is the naive frame-by-frame

reconstruction approach, and the other one, a more sophisticated approach dubbed

as video compressive sensing, involves alternating between motion estimation and

motion-compensated signal recovery. We note that even the best performing video

CS reconstruction algorithms [80] take about 2-3 hours to recover the video clips we

deal with in this work. We have around 7000 clips in each of the two datasets, UCF50

and HMDB51. We realized that adopting video CS reconstruction for such a large

dataset is computationally infeasible. Hence, we adopt the former approach, more
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specifically the CoSamP algorithm [70] to reconstruct the frames of the video. We use

the code made publicly available by the authors, and set all the parameters to default

to obtain improved dense trajectory (IDT) features. The features thus obtained are

encoded using Fisher vectors, and a linear SVM is used for classification. Henceforth,

we refer this method as Recon+IDT.

Spatial Localization of action from compressive cameras without recon-

struction Action localization in each frame is determined by a bounding box cen-

tred at location (lmax) in that frame, where lmax is determined by the peak response

(response corresponding to the classified action) in that frame and the size of the

filter corresponding to the classified action. To determine the size of the bounding

box for a particular frame, the response values inside a large rectangle of the size of

the filter, and centred at lmax in that frame are normalized so that they sum up to

unity. Treating this normalized rectangle as a 2D probability density function, we

determine the bounding box to be the largest rectangle centred at lmax, whose sum

is less than a value, λ ≤ 1. For our experiments, we use λ equal to 0.7.

Computational complexity In order to show the substantial computational sav-

ings achievable in our STSF framework of reconstruction-free action recognition from

compressive cameras, we compare the computational time of the framework with that

of Recon+IDT. We ran our experiments on a Intel i7 quad core machine with 16GB

RAM to report the timing numbers.

Compensated Filters In section 3, we experimentally showed that better action

recognition results can be obtained if compensated filters are used instead of canonical

view filters (table 2.1). However, to generate compensated filters, one requires the

information regarding the viewpoint of the test video. Generally, the viewpoint of the
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test video is not known. This difficulty can be overcome by generating compensated

filters corresponding to various viewpoints. In our experiments, we restrict our filters

to two viewpoints described in section 3, i.e we use ‘Type-1’ and ‘Type-2’ filters.

2.4.1 Reconstruction-free recognition on Weizmann dataset

Even though it is widely accepted in the computer vision community that Weiz-

mann dataset is an easy dataset, with many methods achieving near perfect action

recognition rates, we believe that working with compressed measurements precludes

the use of those well-established methods, and obtaining such high action recognition

rates at compression ratios of 100 and above even for a simple dataset as Weizmann

is not straightforward. The Weizmann dataset contains 10 different actions, each

performed by 9 subjects, thus making a total of 90 videos. For evaluation, we used

the leave-one-out approach, where the filters were trained using actions performed by

8 actors and tested on the remaining one. The results shown in table 2.2 indicate that

our method clearly outperforms the Recon+IDT. It is quite evident that with full-

blown frames (indicated in table 2.2) that Recon+IDT method performs much better

than STSF method. However, at compression ratios of 100 and above, recognition

rates are very stable for our STSF framework, while Recon+IDT fails completely.

This is due to the fact that Recon+IDT operates on reconstructed frames, which

are of poor quality at such high compression ratios, while STSF operates directly on

compressed measurements. The recognition rates are stable even at high compression

ratios and are comparable to the recognition accuracy for the Oracle MACH (OM)

method [2]. The average time taken by STSF and Recon+IDT to process a video

of size 144× 180× 50 are shown in parentheses in table 1. Recon+IDT takes about

20-35 minutes to process one video, with the frame-wise reconstruction of the video

being the dominating component in the total computational time, while STSF frame-
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Compression factor STSF Recon + IDT

1 81.11 (3.22s) (OM [2, 77] ) 100 (3.1s)

100 81.11 (3.22s) 5.56 (1520s)

200 81.11 (3.07s) 10 (1700s)

300 76.66 (3.1s) 10 (1800s)

500 78.89 (3.08s) 7.77 (2000s)

Table 2.2: Weizmann dataset: Recognition rates for reconstruction-free recognition from

compressive cameras for different compression factors are stable even at high compression

factors of 500. Our method clearly outperforms Recon+IDT method and achieves a recog-

nition rate which is comparable to the recognition rate of 81.11 in the case of Oracle MACH

[2, 77].

work takes only a few seconds for the same sized video since it operates directly on

compressed measurements.

Spatial localization of action from compressive cameras without recon-

struction Further, to validate the robustness of action detection using the STSF

framework, we quantified action localization in terms of error in estimation of the sub-

ject’s centre from its ground truth. The subject’s centre in each frame is estimated

as the centre of the fixed sized bounding box with location of the peak response (only

the response corresponding to the classified action) in that frame as it left-top cor-

ner. Figure 2.4 shows action localization in a few frames for various actions of the

dataset. Figure 2.5 shows that using these raw estimates, on average, the error from

the ground truth is less than or equal to 15 pixels in approximately 70% of the frames,

for compression ratios of 100, 200 and 300. It is worth noting that using our frame-

work it is possible to obtain robust action localization results without reconstructing

the images, even at extremely high compression ratios.
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Figure 2.4: Reconstruction-free spatial localization of subject at compression ratio = 100

for different actions in Weizmann dataset. a) Walking b) Two handed wave c) Jump in
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Figure 2.5: Localization error for Weizmann dataset. X-axis : Displacement from ground

truth. Y-axis: Fraction of total number of frames for which the displacement of subject’s

centre from ground truth is less than or equal to the value in x-axis. On average, for

approximately 70% of the frames, the displacement of ground truth is less than or equal to

15 pixels, for compression ratios of 100, 200 and 300.
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2.4.2 Reconstruction-free recognition on UCF sports dataset

The UCF sports action dataset [77] contains a total of 150 videos across 9 different

actions. The dataset is a challenging dataset with scale and viewpoint variations.

For testing, we use leave-one-out cross validation. At compression ratio of 100 and

300, the recognition rates are 70.67% and 68% respectively. The rates obtained are

comparable to those obtained in Oracle MACH set-up [77] (69.2%). Considering the

difficulty of the dataset, these results are very encouraging. The confusion matrix for

compression ratios 100 is shown in table 2.3.

Action Golf-Swing Kicking Riding Horse Run-Side Skate-Boarding Swing Walk Diving Lifting

Golf-Swing 77.78 16.67 0 0 0 0 5.56 0 0

Kicking 0 75 0 5 5 10 5 0 0

Riding Horse 16.67 16.67 41.67 8.33 8.33 0 8.33 0 0

Run-Side 0 0 0 61.54 7.69 15.38 7.69 7.69 0

Skate-Boarding 0 8.33 8.33 25 50 0 5 0 0

Swing 0 3.03 12.12 0.08 3.03 78.79 3.03 0 0

Walk 0 9.09 4.55 4.55 9.09 9.09 63.63 0 0

Diving 0 0 0 0 7.14 0 0 92.86 0

Lifting 0 0 0 0 0 0 0 16.67 83.33

Table 2.3: Confusion matrix for UCF sports database at a compression factor = 100.

Recognition rate for this scenario is 70.67 %, which is comparable to Oracle MACH [77]

(69.2%).

Spatial localization of action from compressive cameras without recon-

struction Figure 2.6 shows action localization for some correctly classified instances

across various actions in the dataset, for Oracle MACH and compression ratio = 100.

It can be seen that action localization is estimated reasonably well despite large scale

variations and extremely high compression ratio.
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Figure 2.6: Reconstruction-free spatial localization of subject for Oracle MACH (shown as

yellow box) and STSF (shown as green box) at compression ratio = 100 for some correctly

classfied instances of various actions in the UCF sports dataset. a) Golf b) Kicking c) Skate-

Boarding. Action localization is estimated reasonably well directly from CS measurements

even though the measurements themselves do not bear any explicit information regarding

pixel locations.

2.4.3 Reconstruction-free recognition on UCF50 dataset

To test the scalability of our approach, we conduct action recognition on large

datasets, UCF50 [76] and HMDB51 [54]. Unlike the datasets considered earlier,

these two datasets have large intra-class scale variability. To account for this scale

variability, we generate about 2-6 filters per action. To generate MACH filters, one

requires bounding box annotations for the videos in the datasets. Unfortunately

frame-wise bounding box annotations are not available for these two datasets. Hence,
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we selected 190 video clips from UCF50 dataset with 2-6 video clips per action. We

manually annotated these clips with frame-wise bounding boxes. Each MACH filter

is generated with just one of these videos as a training example. In total we generate

380 filters (190 canonical filters, i.e ‘Type-1 filters’ + 190 their flipped versions, i.e

‘Type-2’ filters). The UCF50 database consists of 50 actions, with around 120 clips

per action, totalling upto 6681 videos. The database is divided into 25 groups with

each group containing between 4-7 clips per action. We use leave-one-group cross-

validation to evaluate our framework. The recognition rates at different compression

ratios, and the mean time taken for one clip (in parentheses) for our framework and

Recon+IDT are tabulated in table 2.4. Table 2.4 also shows the recognition rates for

various state-of-the-art action recognition methods, while operating on the full-blown

images, as indicated in the table by (FBI). Two conclusions follow from the table. 1)

Our approach outperforms the baseline method, Recon+IDT at very high compression

ratios of 100 and above, and 2) the mean time per clip is less than that for Recon+IDT

method. This clearly suggests that when operating at high compression ratios, it

is better to perform action recognition without reconstruction than reconstructing

the frames and then applying a state-of-the-art method. The recognition rates for

individual classes for Oracle MACH (OM), and compression ratios, 100 and 400 are

given in table 2.5. The action localization results for various actions are shown in

figure 2.7. The bounding boxes in most instances correspond to the human or the

moving part of the human or the object of interest. Note how the sizes of the bounding

boxes are commensurate with the area of the action in each frame. For example,

for the fencing action, the bounding box covers both the participants, and for the

playing piano action, the bounding box covers just the hand of the participant. In

the case of breaststroke action, where human is barely visible, action localization

results are impressive. We emphasize that action localization is achieved directly from
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compressive measurements without any intermediate reconstruction, even though the

measurements do not bear any explicit information regarding pixel locations. We

note that the procedure outlined above is by no means a full-fledged procedure for

action localization and is fundamentally different from the those in [56, 89], where

sophisticated models are trained jointly on action labels and the location of person in

each frame, and action and its localization are determined simultaneously by solving

one computationally intensive inference problem. While our method is simplistic in

nature and does not always estimate localization accurately, it relies only on minimal

post-processing of the correlation response, which makes it an attractive solution for

action localization in resource-constrained environments where a rough estimate of

action location may serve the purpose. However, we do note that action localization is

not the primary goal of the work and that the purpose of this exercise is to show that

reasonable localization results directly from compressive measurements are possible,

even using a rudimentary procedure as outlined above. This clearly suggests that

with more sophisticated models, better reconstruction-free action localization results

can be achieved. One possible option is to co-train models jointly on action labels

and annotated bounding boxes in each frame similar to [56, 89], while extracting

spatiotemporal features such as HOG3D [51] features for correlation response volumes,

instead of the input video.

2.4.4 Reconstruction-free recognition on HMDB51 dataset

The HMDB51 database consists of 51 actions, with around 120 clips per action,

totalling upto 6766 videos. The database is divided into three train-test splits. The

average recognition rate across these splits is reported here. For HMDB51 dataset, we

use the same filters which were generated for UCF50 dataset. The recognition rates

at different compression ratios, and mean time taken for one clip (in parentheses)
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Figure 2.7: Action localization: Each row corresponds to various instances of a particular

action, and action localization in one frame for each of these instances is shown. The

bounding boxes (yellow for Oracle MACH, and green for STSF at compression ratio = 100)

in most cases correspond to the human, or the moving part. Note that these bounding

boxes shown are obtained using a rudimentary procedure, without any training, as outlined

earlier in the section. This suggests that joint training of features extracted from correlation

volumes and annotated bounding boxes can lead to more accurate action localization results.

32



Method CR = 1 CR = 100 CR =400

Our method (‘Type 1’ + ‘Type 2’) 60.86 (2300s) (OM) 54.55 (2250s) 46.48 (2300s)

Recon + IDT 91.2 (FBI) 21.72 (3600s) 12.52 (4000s)

Action Bank [78] 57.9 (FBI) NA NA

Jain et al.[39] 59.81 (FBI) NA NA

Kliper-Gross et al.[52] 72.7 (FBI) NA NA

Reddy et al.[76] 76.9 (FBI) NA NA

Shi et al.[83] 83.3 (FBI) NA NA

Table 2.4: UCF50 dataset: The recognition rate for our framework is stable even at very

high compression ratios, while in the case of Recon + IDT, recognition rates are much

lower. The mean time per clip (given in parentheses) for our method is less than that for

the baseline method (Recon + IDT).

Action CR =1 (OM) CR = 100 CR = 400 Action CR =1 (OM) CR = 100 CR = 400 Action CR =1 (OM) CR = 100 CR = 400 Action CR =1 (OM) CR = 100 CR = 400

BaseballPitch 58.67 57.05 50.335 HorseRiding 77.16 60.4 60.4 PlayingPiano 65.71 60.95 58.1 Skiing 35.42 34.72 29.86

Basketball 41.61 38.2353 25.7353 HulaLoop 55.2 56 55.2 PlayingTabla 73.88 56.75 36.94 Skijet 44 37 29

BenchPress 80 73.75 65.63 Javelin Throw 41.0256 41.0256 32.48 PlayingViolin 59 52 43 SoccerJuggling 42.31 31.61 28.38

Biking 60 42.07 33.01 Juggling Balls 64.75 67.21 65.57 PoleVault 56.25 58.12 53.75 Swing 54.01 35.03 19.7

Billiards 94.67 89.33 79.33 JumpRope 71.53 75 74.31 PommelHorse 86.07 81.3 69.1 TaiChi 66 68 61

Breaststroke 81.19 46.53 17.82 JumpingJack 80.49 80.49 72.357 PullUp 64 59 49 TennisSwing 46.11 41.92 30.53

CleanAndJerk 56.25 59.82 41.96 Kayaking 58.6 47.14 43.12 Punch 80.63 73.12 62.5 ThrowDiscus 62.6 51.14 45

Diving 76.47 71.24 51.63 Lunges 44.68 36.17 32.62 PushUps 66.67 60.78 61.76 TrampolineJumping 45.39 28.57 18.48

Drumming 63.35 50.93 44.1 MilitaryParade 80.32 78.74 59.05 RockClimbing 65.28 58.33 63.2 VolleyBall 60.34 48.27 39.65

Fencing 71.171 64.86 62.16 Mixing 51.77 56.02 48.93 RopeClimbing 36.92 34.61 29.23 WalkingwithDog 31.71 27.64 25.4

GolfSwing 71.13 58.86 48.93 Nunchucks 40.9 34.1 31.82 Rowing 55.47 40.14 29.2 YoYo 54.69 58.59 47.65

HighJump 52.03 52.84 47.15 Pizza Tossing 30.7 33.33 22.8 Salsa 69.92 63.16 46.62

HorseRace 73.23 66.92 59.84 PlayingGuitar 73.75 64.37 60.62 SkateBoarding 55.82 46.67 38.33

Table 2.5: UCF50 dataset: Recognition rates for individual classes at compression ratios,

1 (Oracle MACH), 100 and 400.

for our framework and Recon+IDT are tabulated in table 2.6. Table 2.6 also shows

the recognition rates for various state-of-the-art action recognition approaches, while

operating on full-blown images. The table clearly suggests that while operating at

compression ratios of 100 and above, to perform action recognition, it is better to

work in compressed domain rather than reconstructing the frames, and then applying

a state-of-the-art method. While the recognition rates obtained using our method at

different compression ratios are lower than state-of-the-art methods, they are very

much comparable with Action Bank [78]. Action Bank method is the only filter

based approach compared with in table 2.6, where linear features are extracted like in
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our method, whereas in the other methods highly non-linear features were extracted,

which boosted action recognition accuracy substantially. The above mentioned trend

can also be seen in the case of UCF50 dataset in table 2.4. This greatly underlines

the limitations of linear features and the need to devise methods to extract non-linear

features from CS videos.

Method CR = 1 CR = 100 CR =400

Our method (‘Type 1’ + ‘Type 2’) 22.5 (2200s) (OM) 21.125 (2250s) 17.02 (2300s)

Recon + IDT 57.2 (FBI) 6.23 (3500s) 2.33 (4000s)

Action Bank [78] 26.9 (FBI) NA NA

Jain et al.[40] 52.1 (FBI) NA NA

Kliper-Gross et al.[52] 29.2 (FBI) NA NA

Jiang et al.[42] 40.7 (FBI) NA NA

Table 2.6: HMDB51 dataset: The recognition rate for our framework is stable even at very

high compression ratios, while in the case of Recon+IDT, it is much lower.

2.4.5 Comments on computational complexity and storage

From tables 2.2, 2.4 and 2.6, it is evident that time taken for our framework is

substantially less than that for Recon+IDT. In the case of Recon+IDT, the compu-

tational bottleneck stems from the reconstruction of the frames. Further, we note

that for most frames, the reconstruction algorithm did not converge, owing to the

high compression ratio. To avoid this, we ran the reconstruction algorithm for a fixed

number of iterations. We also compared the storage and communication requirements

of full blown videos and their compressed counterparts. It was observed that the raw

data of a full blown video of size 240× 320× 106 occupies 64873 KB, whereas the CS

video at CR = 100 occupies 589 KB, leading to memory savings of 99.1%. Similarly,

the CS video at CR = 400 occupies 147 KB, leading to memory savings of 99.77%.
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Chapter 3

RECONNET: NON-ITERATIVE RECONSTRUCTION OF IMAGES FROM

COMPRESSIVELY SENSED MEASUREMENTS

The easy availability of vast amounts of image data and the ever increasing compu-

tational power has triggered the resurgence of convolutional neural networks (CNNs)

in the past three years and consolidated their position as one of the most powerful

machineries in computer vision. Researchers have shown CNNs to break records in

the two broad categories of long-standing vision tasks, namely: 1) high-level inference

tasks such as image classification , object detection, scene recognition , fine-grained

categorization and pose estimation [53, 32, 105, 103, 104] and 2) pixel-wise output

tasks like semantic segmentation, depth mapping, surface normal estimation, image

super resolution and dense optical flow estimation [60, 27, 96, 21, 93]. However, the

benefits of CNNs have not been explored for one such important task belonging to

the latter category, namely reconstruction of images from compressively sensed mea-

surements. In this work we adapt CNNs to develop an algorithm to recover images

from block CS measurements.

Motivation: Over the past decade, a plethora of reconstruction algorithms [9, 25,

72, 5, 57, 50, 100, 85, 66, 22] have been proposed. However, almost all of them

are plagued by a number of similar drawbacks. Firstly, current approaches solve an

optimization problem to reconstruct the images from the CS measurements. Very

often, the iterative nature of the solutions to the optimization problems renders the

algorithms computationally expensive with some of them even taking as many as 20

minutes to recover just one image, thus making real-time reconstruction impossible.

Secondly, in many resource-constrained applications, one may be interested only in
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some property of the scene like ‘Where is a particular object in the image?’ or ‘What

is the person in the image doing?’, rather than the exact values of all pixels in the

image. In such scenarios, there is a great urge to acquire as few measurements as

possible, and still be able to recover an image which retains enough information re-

garding the property of the scene that one is interested in. The current approaches,

although slow, are capable of delivering high quality reconstructions at high measure-

ment rates. However, their performance degrades appreciably as measurement rate

decreases, yielding reconstructions which are not useful for any image understanding

task. Motivated by these, in this chapter we present a CS image recovery algorithm

which has the desired features of being computationally light as well as being capable

of delivering reasonable quality reconstructions useful for image understanding tasks,

even at extremely low measurement rates of 0.01.

Background: As stated earlier in this dissertation, compressive Sensing (CS) is

a signal acquisition paradigm which provides the ability to sample a signal at sub-

Nyquist rates. Unlike traditional sensing methods, in CS, one acquires a small number

of random linear measurements, instead of sensing the entire signal, and a reconstruc-

tion algorithm is used to recover the original signal from the measurements. Math-

ematically, the measurements are given by y = Φx + e, where x ∈ Rn is the signal,

y ∈ Rm, known as the measurement vector, denotes the set of sensed projections,

Φ ∈ Rm×n is called the measurement matrix defined by a set of random patterns, and

e ∈ Rm is the measurement noise. Reconstructing x from y when m < n is an ill-

posed problem. However, CS theory [23, 11] states that the signal x can be recovered

perfectly from a small number of m = O(s log(n
s
)) random linear measurements by

solving the optimization problem in Eq. 3.1, provided the signal is s-sparse in some
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sparsifying domain, Ψ.

min
x

||Ψx||1 s.t ||y −Φx||2 ≤ ε. (3.1)

Variants of the optimization problem with relaxed sparsity assumption in Eq. 3.1

have been proposed for the compressible signals as well. However, all such algorithms

suffer from drawbacks as already discussed.

Figure 3.1: Overview of our non-iterative block CS image recovery algorithm.

3.1 Related Work

We can divide related work into two broad categories, namely CS image recon-

struction algorithms and CNNs for per-pixel output tasks.

CS image reconstruction: Several algorithms have been proposed to reconstruct

images from CS measurements. The earliest algorithms leveraged traditional CS

theory described above [23, 11, 9] and solved the l1-minimization in Eq. 3.1 with the

assumption that the image is sparse in some transform-domain like wavelet, DCT, or

gradient. However, such sparsity-based algorithms did not work well, since images,

though compressible, are not exactly sparse in the transform domain. This heralded

an era of model-based CS recovery methods, wherein more complex image models

that go beyond simple sparsity were proposed. Model-based CS recovery methods

come in two flavors. In the first, the image model is enforced explicitly [25, 5, 50, 85],
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where in each iteration the image estimate is projected onto the solution set defined

by the model. These models, often considered under the class of ‘structured-sparsity’

models, are capable of capturing the higher order dependencies between the wavelet

coefficients. However, generally a computationally expensive optimization is solved

to obtain the projection. In the second, the algorithms enforce the image model

implicitly through a non-local regularization term in the objective function [72, 100,

22]. Recently, a new class of recovery methods called approximate message passing

(AMP) algorithms [24, 87, 66] have been proposed in which the image estimate is

refined in each iteration using an off-the-shelf denoiser. To the best of our knowledge

there exists no published work which proposes a non-iterative solution to the CS

image recovery problem. However, there has been one concurrent and independent

investigation ([67]) that presents stacked denoising auto-encoders (SDAs) based non-

iterative approach for this problem. Different from this, in this chapter we present

a convolutional architecture, which has fewer parameters, and is more easily scalable

to larger block-size at the sensing stage, and also results in better performance than

SDAs.

CNNs for per-pixel prediction tasks: Computer vision researchers have applied

CNNs to per-pixel output tasks like semantic segmentation [60], depth estimation

[27], surface normal estimation [96], image super-resolution [21] and dense optical

flow estimation from a single image[93]. However, these tasks differ fundamentally

from the one tackled in this dissertation in that they map a full-blown image to a

similar-sized feature output, while in the CS reconstruction problem, one is required

to map a small number of random linear measurements of an image to its estimate.

Hence, we cannot use any of the standard CNN architectures that have been proposed

so far. Motivated by this, we introduce a novel class of CNN architectures for the CS
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recovery problem at any arbitrary measurement rate.

3.2 Overview of Our Algorithm

Unlike most computer vision tasks like recognition or segmentation to which CNNs

have been successfully applied, in the CS recovery problem, the images are not inputs

but rather outputs or labels which we seek to obtain from the networks. Hence, the

typical CNN architectures which can map images to rich hierarchical visual features

are not applicable to our problem of interest. How does one design a network architec-

ture for the CS recovery problem? To answer this question, one can seek inspiration

from the CNN-based approach for image super-resolution proposed in [21]. Similar

to the character of our problem, the outputs in image super-resolution are images,

and the inputs – lower-resolution images – are of lower dimension. In [21], initial

estimates of the high-resolution images are first obtained from low-resolution input

images using bicubic interpolation, and then a 3-layered CNN is trained with the

initial estimates as inputs and the ground-truth of the desired outputs as labels. If

we were to adapt the same architecture for the CS recovery problem, we will have

to first generate the initial estimates of the reconstructions from CS measurements.

A straightforward option would be to run one of the several existing CS recovery

algorithms and obtain initial estimates. But how many iterations do we need to run

to ensure a good initial estimate? Running for too many increases computational

load, defeating the very goal of this work of developing a fast algorithm, but running

for too few could lead to extremely poor estimates.

Due to the aforementioned reasons, we relinquish the idea of obtaining initial

estimates of the reconstructions, and instead propose a novel class of CNN architec-

tures called ReconNet which can directly map CS measurements to image blocks.

The overview of our ReconNet driven algorithm is given in Figure 3.1. The scene
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is divided into non-overlapping blocks. Each block is reconstructed by feeding in

the corresponding CS measurements to ‘ReconNet’. The reconstructed blocks are

arranged appropriately to form an intermediate reconstruction of the image, which

is input to an off-the-shelf denoiser to remove blocky artifacts and obtain the final

output image.

Network architecture: Here, we describe the proposed CNN architecture, ‘Re-

conNet’ shown as part of Figure 3.1. The input to the network is an m-dimensional

vector of compressive measurements, denoted by Φx, where Φ is the measurement

operator of size m × n, m is the number of measurements and x is the vectorized

input image block. In our case, we train networks capable of reconstructing blocks

of size 33 × 33, hence n = 1089. This block size is chosen so as to reduce the net-

work complexity and hence, the training time, while ensuring a good reconstruction

quality.

The first layer is a fully connected layer that takes compressive measurements

as input and outputs a feature map of size 33 × 33. The subsequent layers are

all convolutional layers inspired by [21]. Except the final convolutional layers, all

the other layers use ReLU following convolution. All feature maps produced by all

convolutional layers are of size 33 × 33, which is equal to the block size. The first

and the fourth convolutional layers use kernels of size 11×11 and generate 64 feature

maps each. The second and the fifth convolutional layers use kernels of size 1×1 and

generate 32 feature maps each. The third and the last convolutional layer use a 7× 7

kernel and generate a single feature map, which, in the case of the last layer, is also

the output of the network. We use appropriate zero padding to keep the feature map

size constant in all layers.
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Denoising the intermediate reconstruction: The intermediate reconstruction

(see Figure 3.1) is denoised to remove the artifacts resulting due to block-wise pro-

cessing. We choose BM3D [16] as the denoiser since it gives a good trade-off between

computational complexity and reconstruction quality.

3.3 Learning the ReconNet

In this section, we discuss in detail training of deep networks for reconstruction

of CS measurements. We use the network architecture shown in Figure 3.1 for all the

cases.

Ground truth for training: We use the same set of 91 images as in [21] and can

be downloaded from their website 1 . We uniformly extract patches of size 33 × 33

from these images with a stride equal to 14 to form a set of 21760 patches. We retain

only the luminance component of the extracted patches (During test time, for RGB

images, we use the same network to recover the individual channels). These form

the labels of our training set. We obtain the corresponding CS measurements of the

patches. These form the inputs of our training set. Experiments indicate that this

training set is sufficient to obtain very competitive results compared to existing CS

reconstruction algorithms, especially at low measurement rates.

Input data for training: To train our networks, we need CS measurements cor-

responding to each of the extracted patches. To this end, we simulate noiseless CS as

follows. For a given measurement rate, we construct a measurement matrix, Φ by first

generating a random Gaussian matrix of appropriate size, followed by orthonormal-

izing its rows. Then, we apply y = Φx to obtain the set of CS measurements, where

x is the vectorized version of the luminance component of an image patch. Thus, an

1
http://mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN_train.zip
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input-label pair in the training set can be represented as (Φx,x). We train networks

for four different measurement rates (MR) = 0.25, 0.10, 0.04 and 0.01. Since, the total

number of pixels per block is n = 1089, the number of measurements n = 272, 109, 43

and 10 respectively.

Learning algorithm details: All the networks are trained using Caffe [41]. The

loss function is the average reconstruction error over all the training image blocks,

given by L({W}) = 1
T

∑T
i ||f(yi, {W}) − xi||2, and is minimized by adjusting the

weights and biases in the network, {W} using backpropagation. T is the total num-

ber of image blocks in the training set, xi is the ith patch and f(yi, {W}) is the

network output for ith patch. For gradient descent, we set the batch size to 128 for all

the networks. For each measurement rate, we train two networks, one with random

Gaussian initialization for the fully connected layer, and one with a deterministic ini-

tialization, and choose the network which provides the lower loss on a validation test.

For the latter network, the jth weight connecting the ith neuron of the fully connected

layer is initialized to be equal to ΦT
i,j. In each case, weights of all convolutional layers

are initialized using a random Gaussian with a fixed standard deviation. The learning

rate is determined separately for each network using a linear search. All networks are

trained on a Nvidia Tesla K40 GPU for about a day each.

3.4 Experimental Results

In this section, we conduct extensive experiments on both simulated data and real

data, and compare the performance of our CS recovery algorithm with state-of-the-

art CS image recovery algorithms, both in terms of reconstruction quality and time

complexity.
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Image Name Algorithm
MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D w/o BM3D w/ BM3D

Monarch

TVAL3 [57] 27.77 27.77 21.16 21.16 16.73 16.73 11.09 11.11

NLR-CS [22] 25.91 26.06 14.59 14.67 11.62 11.97 6.38 6.71

D-AMP [66] 26.39 26.55 19.00 19.00 14.57 14.57 6.20 6.20

SDA [67] 23.54 23.32 20.95 21.04 18.09 18.19 15.31 15.38

ReconNet (Ours) 24.31 25.06 21.10 21.51 18.19 18.32 15.39 15.49

Parrot

TVAL3 27.17 27.24 23.13 23.16 18.88 18.90 11.44 11.46

NLR-CS 26.53 26.72 14.14 14.16 10.59 10.92 5.11 5.44

D-AMP 26.86 26.99 21.64 21.64 15.78 15.78 5.09 5.09

SDA 24.48 24.36 22.13 22.35 20.37 20.67 17.70 17.88

ReconNet (Ours) 25.59 26.22 22.63 23.23 20.27 21.06 17.63 18.30

Barbara

TVAL3 [57] 24.19 24.20 21.88 22.21 18.98 18.98 11.94 11.96

NLR-CS [22] 28.01 28.00 14.80 14.84 11.08 11.56 5.50 5.86

D-AMP [66] 25.89 25.96 21.23 21.23 16.37 16.37 5.48 5.48

SDA [67] 23.19 23.20 22.07 22.39 20.49 20.86 18.59 18.76

Ours 23.25 23.52 21.89 22.50 20.38 21.02 18.61 19.08

Boats

TVAL3 28.81 28.81 23.86 23.86 19.20 19.20 11.86 11.88

NLR-CS 29.11 29.27 14.82 14.86 10.76 11.21 5.38 5.72

D-AMP 29.26 29.26 21.95 21.95 16.01 16.01 5.34 5.34

SDA 26.56 26.25 24.03 24.18 21.29 21.54 18.54 18.68

ReconNet (Ours) 27.30 27.35 24.15 24.10 21.36 21.62 18.49 18.83

Cameraman

TVAL3 25.69 25.70 21.91 21.92 18.30 18.33 11.97 12.00

NLR-CS 24.88 24.96 14.18 14.22 11.04 11.43 5.98 6.31

D-AMP 24.41 24.54 20.35 20.35 15.11 15.11 5.64 5.64

SDA 22.77 22.64 21.15 21.30 19.32 19.55 17.06 17.19

ReconNet (Ours) 23.15 23.59 21.28 21.66 19.26 19.72 17.11 17.49

Fingerprint

TVAL3 22.70 22.71 18.69 18.70 16.04 16.05 10.35 10.37

NLR-CS 23.52 23.52 12.81 12.83 9.66 10.10 4.85 5.18

D-AMP 25.17 23.87 17.15 16.88 13.82 14.00 4.66 4.73

SDA 24.28 23.45 20.29 20.31 16.87 16.83 14.83 14.82

Ours 25.57 25.13 20.75 20.97 16.91 16.96 14.82 14.88

Flintstones

TVAL3 24.05 24.07 18.88 18.92 14.88 14.91 9.75 9.77

NLR-CS 22.43 22.56 12.18 12.21 8.96 9.29 4.45 4.77

D-AMP 25.02 24.45 16.94 16.82 12.93 13.09 4.33 4.34

SDA 20.88 20.21 18.40 18.21 16.19 16.18 13.90 13.95

Ours 22.45 22.59 18.92 19.18 16.30 16.56 13.96 14.08

Foreman

TVAL3 35.42 35.54 28.69 28.74 20.63 20.65 10.97 11.01

NLR-CS 35.73 35.90 13.54 13.56 9.06 9.44 3.91 4.25

D-AMP 35.45 34.04 25.51 25.58 16.27 16.78 3.84 3.83

SDA 28.39 28.89 26.43 27.16 23.62 24.09 20.07 20.23

ReconNet (Ours) 29.47 30.78 27.09 28.59 23.72 24.60 20.04 20.33

House

TVAL3 32.08 32.13 26.29 26.32 20.94 20.96 11.86 11.90

NLR-CS 34.19 34.19 14.77 14.80 10.66 11.09 4.96 5.29

D-AMP 33.64 32.68 24.84 24.71 16.91 17.37 5.00 5.02

SDA 27.65 27.86 25.40 26.07 22.51 22.94 19.45 19.59

ReconNet (Ours) 28.46 29.19 26.69 26.66 22.58 23.18 19.31 19.52

Lena

TVAL3 28.67 28.71 24.16 24.18 19.46 19.47 11.87 11.89

NLR-CS 29.39 29.67 15.30 15.33 11.61 11.99 5.95 6.27

D-AMP 28.00 27.41 22.51 22.47 16.52 16.86 5.73 5.96

SDA 25.89 25.70 23.81 24.15 21.18 21.55 17.84 17.95

Ours 26.54 26.53 23.83 24.47 21.28 21.82 17.87 18.05

Peppers

TVAL3 29.62 29.65 22.64 22.65 18.21 18.22 11.35 11.36

NLR-CS 28.89 29.25 14.93 14.99 11.39 11.80 5.77 6.10

D-AMP 29.84 28.58 21.39 21.37 16.13 16.46 5.79 5.85

SDA 24.30 24.22 22.09 22.34 19.63 19.89 16.93 17.02

ReconNet (Ours) 24.77 25.16 22.15 22.67 19.56 20.00 16.82 16.96

Mean PSNR

TVAL3 27.84 27.87 22.84 22.86 18.39 18.40 11.31 11.34

NLR-CS 28.05 28.19 14.19 14.22 10.58 10.98 5.30 5.62

D-AMP 28.17 27.67 21.14 21.09 15.49 15.67 5.19 5.23

SDA 24.72 24.55 22.43 22.68 19.96 20.21 17.29 17.40

Ours 25.54 25.92 22.68 23.23 19.99 20.44 17.27 17.55

Table 3.1: PSNR values in dB of the test images using different algorithms at different

measurement rates. At low measurement rates of 0.1, 0.04 and 0.01, our algorithm yields

superior quality reconstructions than the traditional iterative CS reconstruction algorithms,

TVAL3, NLR-CS, and D-AMP. It is evident that the reconstructions are very stable for

our algorithm with a decrease in mean PSNR of only 8.37 dB as the measurement rate

decreases from 0.25 to 0.01, while the smallest corresponding dip in mean PSNR for classical

reconstruction algorithms is in the case of TVAL3, which is equal to 16.53 dB.
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Baselines: We compare our algorithm with three iterative CS image reconstruction

algorithms, TVAL3 [57], NLR-CS [22] and D-AMP [66]. We use the code made avail-

able by the respective authors on their websites. Parameters for these algorithms,

including the number of iterations, are set to the default values. We use BM3D [16]

denoiser since it gives a good trade-off between time complexity and reconstruction

quality. The code for NLR-CS provided on author’s website is implemented only for

random Fourier sampling. The algorithm first computes an initial estimate using a

DCT or wavelet based CS recovery algorithm, and then solves an optimization prob-

lem to get the final estimate. Hence, obtaining a good estimate is critical to the

success of the algorithm. However, using the code provided on the author’s website,

we failed to initialize the reconstruction for random Gaussian measurement matrix.

Similar observation was reported by [66]. Following the procedure outlined in [66],

the initial image estimate for NLR-CS is obtained by running D-AMP (with BM3D

denoiser) for 8 iterations. Once the initial estimate is obtained, we use the default

parameters and obtain the final NLR-CS reconstruction. We also compare with a

concurrent work [67] which presents an SDA based non-iterative approach to recover

from block-wise CS measurements. Here, we compare our algorithm with our own

implementation of SDA, and show that our algorithm outperforms the SDA. For fair

comparison, we denoise the image estimates recovered by baselines as well. The only

parameter to be input to the BM3D algorithm is the estimate of the standard Gaus-

sian noise, σ. To estimate σ, we first compute the estimates of the standard Gaussian

noise for each block in the intermediate reconstruction given by σi =
√
||yi−Φxi||2

m
, and

then take the median of these estimates.
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3.4.1 Simulated data

For our simulated experiments, we use a standard set of 11 grayscale images,

compiled from two sources 2 , 3 . We conduct both noiseless and noisy block-CS

image reconstruction experiments at four different measurement rates 0.25, 0.1, 0.04

and 0.01.

Ground Truth
Parrot

House

NLR-CS
PSNR: 14.1562 dB

PSNR: 14.7976 dB

TVAL3
PSNR: 23.1616 dB

PSNR: 26.3154 dB

D-AMP
PSNR: 21.6421 dB

PSNR: 24.7059 dB

SDA
PSNR: 22.3468 dB

PSNR: 26.0677 dB

Ours
PSNR: 23.2287 dB

PSNR: 26.6573 dB

Figure 3.2: Reconstruction results for parrot and house images from noiseless CS measure-

ments at measurement rate of 0.1. It is evident that our algorithm recovers more visually

appealing images than other competitors. Notice how fine structures are recovered by our

algorithm.

Reconstruction from noiseless CS measurements: To simulate noiseless block-

wise CS, we first divide the image of interest into non-overlapping blocks of size 33×33,

and then compute CS measurements for each block using the same random Gaussian

measurement matrix as was used to generate the training data for the network cor-

responding to the measurement rate. The PSNR values in dB for both intermediate

reconstruction (indicated by w/o BM3D) as well as final denoised versions (indicated

by w/ BM3D) for the measurement rates are presented in Table 3.1. It is clear

2
http://dsp.rice.edu/software/DAMP-toolbox

3
http://see.xidian.edu.cn/faculty/wsdong/NLR_Exps.htm
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from the PSNR values that our algorithm outperforms traditional reconstruction al-

gorithms at low measurement rates of 0.1, 0.04 and 0.01. Also, the degradation in

performance with lower measurement rates is more graceful.

Further, in Figure 3.2, we show the final reconstructions of parrot and house

images for various algorithms at measurement rate of 0.1. From the reconstructed

images, one can notice that our algorithm, as well as SDA are able to retain the

finer features of the images while other algorithms fail to do so. NLR-CS and DAMP

provide poor quality reconstruction. Even though TVAL3 yields PSNR values com-

parable to our algorithm, it introduces undesirable artifacts in the reconstructions.

Algorithm MR = 0.25 MR = 0.10 MR = 0.04 MR = 0.01

TVAL3 2.943 3.223 3.467 7.790

NLR-CS 314.852 305.703 300.666 314.176

D-AMP 27.764 31.849 34.207 54.643

ReconNet 0.0213 0.0195 0.0192 0.0244

SDA 0.0042 0.0029 0.0025 0.0045

Table 3.2: Time complexity (in seconds) of various algorithms (without BM3D) for re-

constructing a single 256 × 256 image. By taking only about 0.02 seconds at any given

measurement rate, ReconNet can recover images from CS measurements in real-time, and

is 3 orders of magnitude faster than traditional reconstruction algorithms.

Time complexity: In addition to competitive reconstruction quality, for our al-

gorithm without the BM3D denoiser, the computation is real-time and is about 3

orders of magnitude faster than traditional reconstruction algorithms. To this end,

we compare various algorithms in terms of the time taken to produce the intermediate

reconstruction of a 256× 256 image from noiseless CS measurements at various mea-

surement rates. For traditional CS algorithms, we use an Intel Xeon E5-1650 CPU
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to run the implementations provided by the respective authors. For ReconNet and

SDA, we use a Nvidia GTX 980 GPU to compute the reconstructions. The average

time taken for the all algorithms of interest are given in table 3.2. Depending on

the measurement rate, the time taken for block-wise reconstruction of a 256 × 256

for our algorithm is about 145 to 390 times faster than TVAL3, 1400 to 2700 times

faster than D-AMP, and 15000 times faster than NLR-CS. It is important to note

that the speedup achieved by our algorithm is not solely because of the utilization

of the GPU. It is mainly because unlike traditional CS algorithms, our algorithm

being CNN based relies on much simpler convolution operations, for which very fast

implementations exist. More importantly, the non-iterative nature of our algorithm

makes it amenable to parallelization. SDA, also a deep-learning based non-iterative

algorithm shows significant speedups over traditional algorithms at all measurement

rates.

Performance in the presence of noise: To demonstrate the robustness of our

algorithm to noise, we conduct reconstruction experiments from noisy CS measure-

ments. We perform this experiment at three measurement rates - 0.25, 0.10 and 0.04.

We emphasize that for ReconNet and SDA, we do not train separate networks for

different noise levels but use the same networks as used in the noiseless case. To first

obtain the noisy CS measurements, we add standard random Gaussian noise of in-

creasing standard deviation to the noiseless CS measurements of each block. In each

case, we test the algorithms at three levels of noise corresponding to σ = 10, 20, 30,

where σ is the standard deviation of the Gaussian noise distribution. The interme-

diate reconstructions are denoised using BM3D. The mean PSNR for various noise

levels for different algorithms at different measurement rates are shown in Figure 3.4.

It can be observed that our algorithm beats all other algorithms at high noise levels.
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Ground Truth
Monarch

Foreman

NLR-CS
PSNR: 20.3734 dB

PSNR: 23.842 dB

TVAL3
PSNR: 21.3589 dB

PSNR: 20.6882 dB

D-AMP
PSNR: 21.6889 dB

PSNR: 27.168 dB

SDA
PSNR: 21.7783 dB

PSNR: 26.8482 dB

Ours
PSNR: 22.5375 dB

PSNR: 27.0819 dB

Figure 3.3: Reconstruction results for monarch and foreman images from 25% noisy CS

measurements with noise standard deviation equal to 30. One can observe that our algo-

rithm provides visually appealing reconstructions despite high noise level.

This shows that the method proposed in this work is extremely robust to all levels of

noise. Further, in figure 3.3, we show the final reconstructions of monarch and fore-

man images for various algorithms at measurement rate of 0.25 and noise standard

deviation equal to 30. From the reconstructed images, one can notice that our al-

gorithm is extremely robust to noise and provides visually appealing reconstructions

despite the very large amount of noise. On the other hand, NLR-CS and TVAL3

provide poor quality reconstruction.

3.4.2 Experiments with real data

The previous section demonstrated the superiority of our algorithm over tradi-

tional algorithms for simulated CS measurements. Here, we show that our networks

trained on simulated data can be readily applied for real world scenario by recon-

structing images from CS measurements obtained from our block SPC. We compare

our reconstruction results with other algorithms.
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Figure 3.4: Comparison of different algorithms in terms of mean PSNR (in dB) for the test

set in presence of Gaussian noise of different standard deviations at MR = 0.25, 0.10 and

0.04.

Scalable Optical Compressive Imager Testbed: We implement a scalable op-

tical compressive imager testbed similar to the one described in [48, 47]. It consists

of two optical arms and a discrete micro-mirror device (DMD) acting as a spatial

light modulator as shown in Figure 3.5. The first arm, akin to an imaging lens in

a traditional system, forms an optical image of the scene in the DMD plane. It has

a 40◦ field of view and operates at F/8. The DMD has a resolution of 1920 × 1080

micro-mirror elements, each of size 10.8µm. However, in our system the field of view

(FoV) is limited to an image circle of 7.5mm, which is approximately 700 DMD pixels.

The DMD micro-mirrors are bi-stable and each is either oriented half-way toward the

second arm or in the opposite direction (when the flux is discarded). The micro-

mirrors can be switched in either direction at a very high rate to effectively achieve

8 bits gray-scale modulation via pulse width modulation. The optically modulated

scene on the DMD plane is then imaged (by the second arm) and spatially integrated

by a 1/3”, 640 × 480 CCD focal plane array with a measurement depth of 12 bits.
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In the CCD plane, the field of view is 3mm in diameter (≈ 400 CCD pixels). Thus,

in effect, this testbed implements several single pixel cameras [86] in parallel. Each

block on the DMD effectively maps to a super pixel (e.g. 2 × 2 binned pixels) on

the CCD. The DMD sequences (in time) through m projections, implementing the

m rows of the m × n projection matrix Φ, where each projection vector appears as

a
√
n × √n block pattern, replicated across the scene FoV. Before data acquisition,

a calibration step is performed to map the DMD blocks to CCD detector pixels to

characterize any deviation from the idealized system model.

Figure 3.5: Compressive imager testbed layout with the object imaging arm in the center,

the two DMD imaging arms are on the sides.

Reconstruction experiments: We use the set up described above to obtain the

CS measurements for 383 blocks (size of 33 × 33) of the scene. Operating at MR’s

of 0.1 and 0.04, we implement the 8-bit quantized versions of measurement matrices
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TVAL3 D-AMP Ours

Figure 3.6: The figure shows reconstruction results on 3 images collected using our block

SPC operating at measurement rate of 0.1. The reconstructions of our algorithm are qual-

itatively better than those of TVAL3 and D-AMP.

(orthogonalized random Gaussian matrices). The measurement vectors are input to

the corresponding networks trained on the simulated CS measurements to obtain the

block-wise reconstructions as before and the intermediate reconstruction is denoised

using BM3D. Figures 3.6 and 3.7 show the reconstruction results using TVAL3, D-

AMP and our algorithm for three test images at MR = 0.10 and 0.04 respectively. It

can be observed that our algorithm yields visually good quality reconstruction and

preserves more detail compared to others, thus demonstrating the robustness of our

algorithm.
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TVAL3 D-AMP Ours

Figure 3.7: The figure shows reconstruction results on 3 images collected using our block

SPC operating at measurement rate of 0.04. The reconstructions of our algorithm are

qualitatively better than those of TVAL3 and D-AMP.

3.4.3 Training strategy for a different Φ

We surmise that for a new Φ of a desired measurement rate, one does not need to

train the network from scratch, and that it may be sufficient to follow a suboptimal,

yet effective and computationally light training strategy outlined below, ideally suited

to practical scenarios. We adapt the convolutional layers (C1-C6) of a pre-trained

network for the same or slightly higher MR, henceforth referred to as the base network,

and train only the fully connected (FC) layer with random initialization for 1000

iterations (or equivalent time of around 2 seconds on a Titan X GPU), while keeping

C1-C6 fixed. The mean PSNR (without BM3D) for the test-set at various MRs, the

time taken to train models and the MR of the base network are given in table 3.3.
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From the table, it is clear that the overhead in computation for new Φ is trivial, while

New Φ MR 0.1 0.08 0.04 0.01

Base network MR 0.25 0.1 0.1 0.25

Mean PSNR (dB) 21.73 20.99 19.66 16.60

Training Time (seconds) 2 2 2 2

Table 3.3: Networks for a new Φ can be obtained by training only the FC layer of the base

network at minimal computational overhead, while maintaining comparable PSNRs.

the mean PSNR values are comparable to the ones presented in Table 3.1. We note

that one can obtain better quality reconstructions at the cost of more training time

if C1-C6 layers are also fine-tuned along with FC layer.

3.5 Relation to super resolution

Although both reconstruction of CS measurements and super resolution (SR) can

be cast as inversion of a undetermined linear-system y = Φx, in practice, they are

not considered under the same umbrella for the following reason. Φ in the case

of SR has a special structure with uniformly spaced 1s and 0s. This allows access

to measurements of all patches (non-overlapping or otherwise), which are directly

available as certain pixel values. Most techniques, including SRCNN [21], exploit

this by averaging out the pixels which belong to multiple patches, thus obtaining

far superior results than can be obtained if they are applied to only non-overlapping

blocks. However, in the CS recovery problem, Φ is a random (Gaussian) matrix,

which is devoid of a structure similar to the one, Φ in SR possesses. If we wish to

process overlapping patches, then we need to sense each patch explicitly and obtain

corresponding measurements. This would require a moving part in the optical system,

such as a moving lens! These adjustments are not only difficult, but also beyond the
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scope of this work. Moreover, sensing overlapping patches amounts to increase in

measurement rate. Hence, we consider only non-overlapping patches, which is also

optically implemented in our prototype.

3.6 Real-time high level vision from CS imagers
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Figure 3.8: The figure shows the variation of average precision with location error thresh-

old for ReconNet+KCF and original videos. For a location error threshold of 20 pixels,

ReconNet+KCF achieves an impressive average precision of 65.02%.

In the previous section, we have shown how our approach yields good quality

reconstruction results in terms of PSNR over a broad range of measurement rates.

Despite the expected degradation in PSNR as the measurement rate plummets to

0.01, our algorithm still yields reconstructions of 15-20 dB PSNR and rich semantic

content is still retained. As stated earlier, in many resource-constrained inference

applications the goal is to acquire the least amount of data required to perform
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high-level image understanding. To demonstrate how CS imaging can applied in

such scenarios, we present an example proof of concept real-time high level vision

application - tracking. To this end we simulate video CS at a measurement rate of

0.01 by obtaining frame-wise block CS measurements on 15 publicly available videos

[98] (BlurBody, BlurCar1, BlurCar2, BlurCar4, BlurFace, BlurOwl, Car2, CarDark,

Dancer, Dancer2, Dudek, FaceOcc1, FaceOcc2, FleetFace, Girl2) used to benchmark

tracking algorithms. Further, we perform object tracking on-the-fly as we recover the

frames of the video using our algorithm without the denoiser. For object tracking we

use a state-of-the-art algorithm based on kernelized correlation filters [38]. We call

the aforementioned pipeline, ReconNet+KCF. For comparison, we conduct tracking

on original videos as well. Figure 3.8 shows the average precision curve over the 15

videos, in which each datapoint is the mean percentage of frames that are tracked

correctly for a given location error threshold. Using a location error threshold of 20

pixels, the average precision over 15 videos for ReconNet+KCF at 1% MR is 65.02%,

whereas tracking on the original videos yields an average precision value of 83.01%.

ReconNet+KCF operates at around 10 Frames per Second (FPS) for a video with

frame size of 480 × 720 to as high as 56 FPS for a frame size of 240 × 320. This

shows that even at an extremely low MR of 1%, using our algorithm, effective and

real-time tracking is possible by using CS measurements. In figure 3.9 we present

qualitative results for 8 of those videos by overlaying on the original frames, the

bounding boxes predicted for ReconNet+KCF (in red) and original videos+KCF (in

blue). It can be seen that for the videos where the target object is of reasonably large

size, ReconNet+KCF performs nearly as well as original videos + KCF. This indicates

that the reconstruction output by ReconNet retain enough semantic information to

reliably track medium to large sized targets. However, for very small sized targets,

ReconNet+KCF performs poorly indicating that at measurement rate of 0.01, the
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reconstructed frames do not retain fine-grained information in the image

Figure 3.9: The figure shows the variation of average precision with location error thresh-

old for ReconNet+KCF and original videos. For a location error threshold of 20 pixels,

ReconNet+KCF achieves an impressive average precision of 65.02%.
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Chapter 4

FAST INTEGRAL IMAGE ESTIMATION AT 1% MEASUREMENT RATE

In this chapter, we study the problem of obtaining integral image estimates

from emerging flexible programmable imaging devices. These novel imaging de-

vices, often considered under the broad umbrella of spatial-multiplexing cameras

(SMCs)[68, 65, 80] provide a number of benefits in reducing the amount of sens-

ing for portable and resource constrained acquisition. The imaging architectures in

these cameras employ spatial light modulators like digital micromirror arrays to opti-

cally compute projections of the scene. Mathematically, the projections are given by

y = φx, where x ∈ Rn is the image, y ∈ Rm, known as the measurement vector, de-

notes the set of sensed projections and φ ∈ Rm×n is called measurement matrix defined

by the set of multiplexing patterns. The nature of the acquisition framework enables

us to deploy SMCs in resource constrained settings, wherein one can employ m << n

number of photon detectors to sense otherwise high-resolution imagery [65, 79] and ob-

tain a very small number of measurements. Later, a reconstruction algorithm is used

to recover the image x. However, reconstructing x from y when m < n is an ill-posed

problem. Researchers in the past have attempted to provide solutions by carefully de-

signing the measurement matrix φ in the hope of easier recovery of x from y. Recent

compressive sensing (CS) theory provides one possible solution to tackle the above

mentioned ill-posed problem. According to CS theory, a signal can be recovered per-

fectly from a small number of m = O(s log(n
s
)) such pseudo-random (PR) multiplexed

measurements, where s is the sparsity of the signal. However, a significant research

shows that high-quality reconstruction is computationally intensive [23, 11, 90, 69].

Hence, despite the promise of CS-based SMCs [65, 80], the computational bottleneck
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of non-linear, iterative reconstruction has withheld their wide-spread adoption in ap-

plications which require fast inference of objects, actions, and scenes. This has led

to researchers exploring the option of tackling inference problems directly from these

pseudo-random multiplexed measurements [79, 88, 45, 63, 74, 55, 59] (more on these

later in the section in related work). However, the ‘universal’ nature of such mea-

surements has made it challenging to devise new or adopt existing computer vision

algorithms to solve the inference problem at hand.

The need to acquire as less data as possible combined with the limitations of

pseudo-random multiplexers props us to outline the following goal. The goal is to

propose a novel sensing framework for SMCs such that acquired measurements satisfy

the following properties. 1) The measurements are not random in nature but are

tailored for a particular application. 2) The number of measurements is 2 orders less

than the number of pixels, so that SMCs based on our framework can be employed in

resource constrained applications. 3) A simple linear operation on the measurement

vector y yields a ‘proxy’ representation (e.g integral images, gradient images) from

which the required features are extracted for the application in hand, thus avoiding

the computationally expensive iterative and non-linear reconstruction.

In this chapter, we focus on one such ‘proxy’ representation, integral images.

Integral images are extremely attractive representation since Haar-like features and

box-filtered image outputs can be computed from integral images with a small and

fixed number of floating point operations in constant time [91]. These advantages

have led to their widespread use in real time applications like face detection [91],

pedestrian detection [20], object tracking [34, 102, 4, 46] and object segmentation

[75].

Instead of setting a fixed number of measurements, we formulate an optimiza-

tion problem to minimize the number of measurements while incorporating the other
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two (1 and 3) properties of measurements (as mentioned above) in the constraints.

Minimizing the number of measurements is akin to minimizing the rank of the mea-

surement matrix. In more concrete terms, the problem is posed to jointly minimize

the rank of the measurement matrix, φ and learn the linear operator, L which when

applied on the measurement vector yields the approximate integral image, with the

probabilistic constraint that the error between the approximate integral image and

the exact integral image is within allowable limits with high probability. By con-

trolling the allowable error limit, we can obtain measurement matrix of the desired

rank. Incorporating a wavelet domain prior model for natural images combined with

a relaxation (explained in section 2) allows us to convert the probabilistic constraint

into a series of second conic constraints. Rank minimization is a NP-hard problem.

Relaxing the objective function to nuclear norm allows to use off-the-shelf convex

optimization tools to solve the problem and obtain the measurement matrix and the

linear operator.

Related Work: The related previous works in literature follow one of the two

themes. Some attempt to tackle inference problems directly from PR measurements

without optimizing for the measurement matrix for the inference task at hand, some

others attempt to optimize measurement matrix for a particular signal model so as

to minimize reconstruction error.

a) Design of measurement matrix: A closely related work can be found in

[26], wherein a framework is proposed to jointly optimize for a measurement matrix

and an overcomplete sparsifying dictionary for small patches of images. Results sug-

gest that better reconstruction results can be obtained using this strategy. However,

learning global dictionaries for entire images is not possible, and hence the framework

is not scalable. Goldstein et al.[33] designed measurement matrices called ‘STOne’

Transform which facilitate fast low resolution ‘previews’ just by direct reconstruction,
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and the hope is that ‘previews’ are of high enough quality so that conventional meth-

ods for inference tasks can be applied. Assuming a multi-resolutional signal model

for natural images, Chang et al.[14] proposed an algorithm to obtain measurements

which have the maximum mutual information with natural images.

b) Inference problems from CS videos: A LDS (Linear Dynamical System)

based approach was proposed by Sankaranarayanan et al.[79] to model CS videos and

recover the LDS parameters directly from PR measurements. However, the method

is sensitive to spatial and view transforms. Calderbank et al.[74] theoretically proved

that one can learn classifiers directly from PR measurements, and that with high prob-

ability the performance of the linear kernel support vector machine (SVM) classifier

operating on the CS measurements is similar to that of the the best linear threshold

classifier operating on the original data. A reconstruction-free framework was pro-

posed by Thirumalai et al.[88] to compute optical flow based on correlation estimation

between two images, directly from PR measurements. Davenport et al.[63] proposed a

measurement domain based correlation filter approach for target classification. Here,

the trained filters are first projected onto PR patterns to obtain ‘smashed filters’, and

then the PR measurements of the test examples are correlated with these smashed

filters. Recently, Kulkarni et al.[55] and Lohit et al.[59] extended the ‘smashed filter’

approach to action recognition and face recognition respectively, and demonstrated

the feasibility and scalability of tackling difficult inference tasks in computer vision

directly from PR measurements.

4.1 Background

In this section, we provide a brief background on the probability model for natural

images, which we rely on, and introduce notations required to set up the optimization

problem to derive measurement matrix and above referred linear operator.
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Probability Model of natural images: There is a rich body of literature which

deals with statistical modeling of natural images. We refer to some works which are

related to the probability model we use here. Many successful probability models for

wavelet coefficients fall under the broad umbrella of Gaussian scale mixtures (GSM)

[3], [92]. Typically the coefficient space is partitioned into overlapping blocks, and

each block is modeled independently as a GSM, which captures the local dependen-

cies. This implicitly gives rise to a global model of the wavelet coefficients. Building

on this framework, Lyu et al.[62] proposed a field of Gaussian scale mixtures (FoGSM)

to explicitly model the subbands of wavelet coefficients, while treating each subband

independently. However, incorporating such a general model for wavelet coefficient

vector makes it very difficult to compute the distribution for even simple functions

like a linear function of the wavelet coefficient vector. Therefore, it is vital to as-

sume a prior model which can lead to tractable computation of the distribution. It

is well-known that marginal distributions of detailed wavelet coefficients follow gen-

eralized Gaussian distribution [64]. We extend this notion to multi-dimensions and

model the vector of detailed wavelet coefficients by multivariate generalized Gaussian

distribution (MGGD).

To put it formally, let UT ∈ Rn×n be the orthogonal matrix representing the

log2(n) level wavelet transform, so that x = Uw, where w ∈ Rn is the corresponding

wavelet coefficient vector. Without loss of generality, we assume that all entries in

the first row of UT are 1/
√
n so that the first entry in w corresponds to

√
n times the

mean of all entries in x. Also we denote the rest n− 1 rows in UT by UT
2:n. Now we

can write w = [
√
nx̄, wd], where x̄ is the mean of x and wd is the vector of detailed

coefficients. As explained above, the probability distribution of wd (MGGD) is given

by

f(w) = K|Σwd |−0.5exp(−(wTd Σ−1
wd
wd)

β), (4.1)
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where Σwd , commonly known as the scatter matrix, is equal to

rank(Σwd) Γ((2 + n− 2)/2β)/Γ((2 + n)/2β) times the covariance matrix of wd,

β ∈ (0, 1], and K is a normalizing constant. For β = 1, we obtain the probability

distribution for the well-known multivariate Gaussian distribution. In the follow-

ing we briefly provide a background regarding the multivariate generalized Gaussian

distribution.

A linear transformation of the multivariate generalized Gaussian random vector

is also a multivariate generalized Gaussian random vector.

Proposition 2 [29] Let u be the a n × 1 multivariate generalized Gaussian random

vector with mean µu ∈ Rn, and scatter matrix, Σu ∈ Rn×n. Let A be a l × n full

rank matrix. Then the l × 1 random vector, v = Au has the multivariate generalized

Gaussian distribution with mean µv = Aµu ∈ Rl, and scatter matrix, Σv = AΣuA
T ∈

Rl×l.

If v is a univariate generalized Gaussian random variable, then the probability of v

falling in the range of [δ − µv, δ + µv], for δ ≥ 0, can be found in terms of lower

incomplete gamma function.

Proposition 3 If v is a univariate generalized Gaussian random variable with mean

µv ∈ R and scatter matrix, Σv ∈ R, then the probability of v falling in the range of

[−δ + µv, δ + µv], for δ ≥ 0, is given by,

P(|v − µv| ≤ δ) = 2γ

 1

2β
,

 δ

Σv

√√√√Γ( 3
2β

)

Γ( 1
2β

)

2β
 , (4.2)

where γ(., .) is the lower incomplete gamma function, and Γ(.) is the ordinary gamma

function.

Preliminaries: Let H ∈ Rn×n be the block Toeplitz matrix representing the

integral operation so that the integral image, I = Hx ∈ Rn, and hTi for i = 1, .., n
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be the rows of H. Hence, Ii = hTi x. We wish to recover the approximate integral

image, Î from the measured vector y = φx, just by applying a linear operator L on

y, so that Î = Ly. For reasons which will be apparent soon, we assume L = H(φd)T ,

where φd ∈ Rm×n such that rank(φd) = rank(φ). We call φd as the dual of φ. Thus

by construction L ∈ Rn×m. The value at location i in the approximate integral image

is given by Îi = hTi (φd)Tφx. The distortion in integral image at location i is given by

di = Îi − Ii = hTi ((φd)Tφx− x). Noting Q = (φd)Tφ, and n× n identity matrix by I,

the distortions can be compactly written as di = hTi (Q− I)x. We call d = [d1, ..., dn]

as distortion vector.

4.2 Optimization problem

Our aim is to search for a measurement matrix φ of minimum rank such that

distortions, di are within allowable limits for all i, jointly, with high probability. Q

by construction is the product of two matrices of identical ranks, φ and (φd)T . Hence,

we have the relation, rank(Q) = rank(φ). Inspired by the phase-lifting technique

used in [10] and [36], instead of minimizing the rank of φ, we minimize the rank of

Q. Now, we can formally state the optimization problem as follows.

minimize
Q

rank(Q)

s.t P(|d1| ≤ δ1, .., |di| ≤ δi.., |dn| ≤ δn) ≥ 1− ε,
(4.3)

minimize
Q

rank(Q)

s.t P(|di| ≤ δi) ≥ 1− ε, i = 1, .., n.

(4.4)

where δi ≥ 0 denotes the allowable limit of distortion at location i of integral

image, and 0 < ε < 1. Once Q∗ is found, we show later in the section that the SVD

63



decomposition of Q∗ allows us to write Q∗ as a product of two matrices of identical

ranks, thus yielding both the measurement matrix, φ∗ and the desired linear operator,

L∗. The constraint in (4.3) is a probabilistic one. Hence to compute it, one needs

to assume a statistical prior model for x. Using the model in 4.1, and its properties

given in proposition (1) and (2), we arrive at a solvable optimization problem.

Computation of probabilistic constraint in (4.3): Substituting for x, we

can write the distortion at location i as di = hTi (Q− I)Uw. We let all the entries in

the first row of φ and φd to be equal to 1/
√
n, so that one of the m measurements is

exactly equal to
√
nx̄. Further, we denote the rest m− 1 rows of the two matrices by

φ2:m and φd2:m. Now, if we restrict φ2:m and φd2:m to be respectively equal to CUT
2:n and

DUT
2:n for some C, D in Rm−1×n−1, then from basic linear algebra we can show that

di = hTi (P − I)UT
2:nwd, where P = (φd2:m)Tφ2:m. It is easy to see that Q = P + 1

n
O,

and rank(Q) = rank(P) + 1, where O is the matrix with all its entries equal to unity.

Hence we can replace the objective function in (4.3) by rank(P). Rank minimization

is a non-convex problem. Hence we relax the objective function to nuclear norm,

as is done typically. To compute the constraint in (4.3), one needs to first compute

the joint probability of d = [d1, .., dn], and then compute a n dimensional definite

integral. Now that di’s are linear combinations of wd, it follows from proposition 1,

that d also has a multivariate generalized Gaussian distribution. However, no closed

form for the definite integral is known. Hence, we relax the constraint by decoupling

it into n independent constraints, each enforcing the constraint that the distortion at

a specific location is to be within allowable limits with high probability, independent

of the distortions at other locations. The optimization with relaxed constraints is

thus given by
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minimize
P

‖P‖∗

s.t P(|di| ≤ δi) ≥ 1− ε, i = 1, .., n.

(4.5)

Now, di = hTi (P − I)UT
2:nwd, is a linear combination of the entries of wd. From the

proposition 2, di has a one-dimensional generalized Gaussian distribution with zero

mean and scatter parameter,
∥∥∥Σ1/2

wd UT
2:n(P− I)Thi

∥∥∥, and the probability in equation

4.5 can be explicitly written as follows.

P(|di| ≤ δi)

= 2γ

 1

2β
,

 δi∥∥∥Σ1/2
wd

UT
2:nQT hi −Σ

1/2
wd

UT
2:nhi

∥∥∥
2

√√√√Γ( 3
2β

)

Γ( 1
2β

)


2β .

(4.6)

P(|di| ≤ δi)

= 2γ

 1

2β
,

 δi∥∥∥Σ1/2
wd

UT
2:nPT hi −Σ

1/2
wd

UT
2:nhi

∥∥∥
2

√√√√Γ( 3
2β

)

Γ( 1
2β

)


2β .

(4.7)

The optimization problem now can be rewritten as

minimize
P

‖P‖∗ s.t

2γ

 1

2β
,

 δi∥∥∥Σ1/2
wd UT

2:nP
Thi −Σ

1/2
wd UT

2:nhi

∥∥∥
2

√√√√Γ( 3
2β

)

Γ( 1
2β

)

2β


≥ 1− ε .

We compactly write Σ
1/2
wd UT

2:nP
Thi asAi(P), Σ

1/2
wd UT

2:nhi as bi and δi

(γ−1( 1
2β
, 1−ε

2
))

1
2β

√
Γ( 3

2β
)

Γ( 1
2β

)

as ∆i. Plugging above in equation (4.7), and rearranging terms, we have

minimize
P

‖P‖∗

s.t ‖Ai(P)− bi‖2 ≤ ∆i i = 1, .., n.

(4.8)
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We can rewrite the problem in conic form as below.

(P1) minimize
Q

‖Q‖∗ s.t bi −Ai(Q)

∆i

 ∈ Ki, i = 1, .., n,

(4.9)

(P1) minimize
P

‖P‖∗ s.t bi −Ai(P)

∆i

 ∈ Ki, i = 1, .., n,
(4.10)

where Ki is a second order cone Ki = {(xi, ti) ∈ Rn+1 : ‖xi‖ ≤ ti}. Let b = [b1, .., bn],

and A(P) = [A1(P), ..,An(P)]. Let A∗ denote the adjoint of the linear operator

A. It is easy to recognize that the optimization above is a convex problem, since

nuclear norm is convex and the constraints enforce finite bounds on the norms of

affine functions of the decision variable, P and hence are also convex. Even though

the constraints are second-order cone constraints, the standard second order conic

programming methods cannot be used to solve (P1) since nuclear norm is non-smooth.

The nuclear norm is smoothened by the addition of a square of Forbenius norm of the

matrix, and is replaced by τ ‖P‖∗+ 1
2
‖P‖2

F , where τ > 0. The optimization problem

with the smoothened objective function is given in 4.11.

(P2) minimize
P

τ ‖P‖∗ +
1

2
‖P‖2

F

s.t

 bi −Ai(P)

∆i

 ∈ Ki, i = 1, .., n.
(4.11)

Recently, many algorithms [58, 8] have been developed to tackle nuclear norm min-

imization problem of this form in the context of matrix completion. We use SVT

(singular value thresholding) algorithm [8] to solve (P2).
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SVT iteration to solve (P2): Here, we first briefly describe the SVT algorithm

for smoothened nuclear norm minimization with general convex constraints, and later

we show how we adapt the same to our problem P2 which has n second-order con-

straints. Let the smoothened nuclear norm with general convex constraints, be given

as below.

minimize
P

τ ‖P‖∗ +
1

2
‖P‖2

F

s.t fi(P) ≤ 0, i = 1, .., n,

(4.12)

where fi(P) ≤ 0, i = 1, .., n denote the n convex constraints. Let F(P) = [f1(P), .., fn(P)].

The SVT algorithm for the 4.12 with the modified objective function is given as below.

Pk = arg min
P

τ ‖P‖∗ + 1
2
‖P‖2

F + 〈zk−1,F(P)〉

zi
k = Pi

(
zi
k−1 + ηkfi(P

k)
)
, i = 1, .., n

 (4.13)

where zk is a short form for [z1
k, .., zn

k], and Pi(q) denotes the projection of q onto the

convex set defined by the constraint fi(P) ≤ 0. Let zi
k = [yi

k, ski ], so that the vector

yi
k denotes the first n elements of zi

k and ski denotes the last element of zi
k. Let yk be

a short form for [y1
k, ..,yn

k], and sk is a short form for [sk1, .., s
k
n]. To obtain a explicit

form of the update equations in 4.13 for our problem, P1, let us consider the first

equation of the same. F(P) for P1 is given by [b1 −A1(P),∆1, .., bn −An(P),∆n]T .

We substitute for F(P), and after removal of the terms not involving P, we have

Pk = arg min
P

τ ‖P‖∗ +
1

2
‖P‖2

F + 〈yk−1,b−A(P)〉. (4.14)

Equation 4.14 can be rewritten as below.

Pk = arg min
P

τ ‖P‖∗ +
1

2

∥∥P−A∗(yk−1)
∥∥2

F

−1

2

∥∥A∗(yk−1)
∥∥2

F
+ 〈P,A∗(yk−1)〉

+〈yk−1,b〉 − 〈yk−1,A(P)〉.
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Removing the terms not involving P and noting that 〈P,A∗(yk−1)〉 = 〈yk−1,A(P)〉,

we have the following.

Pk = arg min
P

τ ‖P‖∗ +
1

2

∥∥P−A∗(yk−1)
∥∥2

F
. (4.15)

Before we write down the solution to equation 4.15, we first define Dτ , the singular

value shrinkage operator. Consider the SVD of a matrix X, given by X = WΣVT .

Then for τ ≥ 0, the singular value shrinkage operator, Dτ is given by Dτ (X) =

WDτ (Σ)VT ,Dτ (Σ) = diag({(σi − τ)+}), where t+ = max(0,t). The solution to

equation 4.15 is given by Pk = Dτ (A∗(yk−1)). Now, it remains to calculate A∗(yk−1).

We achieve it according to the following. Consider 〈A∗(yk−1),P〉.

〈P,A∗(yk−1)〉

= 〈A(P),yk−1〉 =
n∑
i=1

〈Ai(P),yi
k−1〉

=
n∑
i=1

〈P,A∗i (yi
k−1)〉 = 〈P,

n∑
i=1

A∗i (yi
k−1)〉

Hence, we have A∗(yk−1) =
∑n

i=1A∗i (yi
k−1). Thus, the first equation of SVT iteration

for our problem is given by

Pk = Dτ
(

n∑
i=1

A∗i (yi
k−1)

)
. (4.16)

Using basic linear algebra, it can be shown that A∗i (yi
k−1) = U2:n(Σ

1/2
wd )Tyi

k−1hTi .

We now provide the projection onto the convex cone Ki. The projection operator,

PKi as derived in [30] is given as follows.

PKi : (x, t) 7→
(x, t), ‖x‖ ≤ t,

‖x‖+t
2‖x‖ (x, ‖x‖), −‖x‖ ≤ t ≤ ‖x‖ ,

(0, 0), t ≤ −‖x‖ .

(4.17)
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To solve (P2), starting with

 y0
i

s0
i

 = 0 for all i = 1, ..n, the kth SVT iteration

is given by (4.18).

Pk = Dτ
(

n∑
i=1

U2:n(Σ
1/2
wd )Tyi

k−1hTi

)
 yki

ski

 = PKi


 yk−1

i

sk−1
i

+ ηk

 bi −Ai(Pk)

−∆i


 ,


(4.18)

where, A∗i are the adjoints of linear operatorsAi. For the iterations (4.18) to converge,

we need to choose the step sizes, ηk ≤ 2
‖A‖22

, where ‖A‖2 is the spectral norm of the

linear transformation A [8].

Once the solution P∗ is found, using the relation noted earlier in the section,

we have Q∗ = P∗ + 1
n
O. Having obtained Q∗, the task now is to express it into

a product of two matrices of identical ranks. This is done almost trivially as fol-

lows. Noting the singular value decomposition of Q∗ as Q∗ = WMΣMVT
M , where

ΣM = diag{λ1, .., λM} denote the diagonal matrix with the non-zero singular values

arranged along its diagonal, and WM and VT
M are the matrices whose columns are

the left and right singular vectors respectively. We can choose φ∗ = Σ
1/2
M VT

M , so that

((φd)∗)T = WMΣ
1/2
M and rank(φ∗) = rank((φd)∗) = rank(Q∗). We, henceforth refer

to φ∗ as ReFInE φ, and the corresponding measurements, y = φ∗x as ReFInE mea-

surements. The desired linear operator L∗ is given by HWMΣ
1/2
M . By construction,

the approximate integral image Î is given by Î = L∗y = (HWMΣ
1/2
M )y.

Computational Complexity: Since the length of the image x is n, the num-

ber of entries in P is n2. Hence, the dimension of the optimization problem P2 is

n2. This means that if we are to optimize for a measurement matrix to operate on

an image of size, 256 × 256, the dimension of the optimization problem would be

232! Optimizing over a large number of variables is computationally expensive, if

69



not impractical. Hence we propose the following suboptimal solution to obtain the

measurement matrix. We divide the image into non-overlapping blocks of fixed size,

and sense each block using a measurement matrix, optimized for this fixed size, in-

dependently of other blocks. Let the image, x be divided into B blocks, x1, x2, .., xB,

each of a fixed size, f × f , and φf ∈ Rm×f2 be the measurement matrix optimized

for images of size f × f , and (φdf )
T be the corresponding dual matrix. Then the

‘ReFInE’ measurements, y are given by the following,

y =



y1

y2

...

yB


=



φf 0 · · · 0

0 φf · · · 0

...
...

. . .
...

0 0 · · · φf





x1

x2

...

xB


. (4.19)

Once the measurements, y are obtained, the integral image, Î is given by

Î = H



(φdf )
T 0 · · · 0

0 (φdf )
T · · · 0

...
...

. . .
...

0 0 · · · (φdf )
T





y1

y2

...

yB


. (4.20)

4.3 Experiments

Before we can conduct experiments to evaluate our framework, we first need to

estimate the parameters of the probability model in 4.1. Estimating parameters of the

probability model and optimizing measurement matrices for any arbitrary large sized

image blocks is not practical since the former task requires an enormous amount of

image data and the latter requires prohibitive amount of memory and computational

resources. Hence, we fix the block size to be 32× 32 images. The scatter matrix Σwd

is a scalar multiple of the covariance matrix of wd. Hence it suffices to compute the

covariance matrix. To this end, we first downsample all the 5011 training images in
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PASCAL VOC 2007 dataset [28] to a size of 32×32, so that n = 1024 and then obtain

the level 7 Daubechies wavelet coefficient vectors. We compute the sample covariance

matrix of thus obtained wavelet coefficient data. For various values of β, we evaluate

the χ2 distance between the histograms of the individual wavelet coefficients and their

respective theoretical marginal distributions with the variances computed above. We

found for β = 0.68, the distance computed above is minimum.

Computing measurement matrix: To obtain a measurement matrix, we need

to input a desired distortion vector δ to the optimization problem in (P2). The

desired distortion vector is computed according to the following. We first perform

principal component analysis (PCA) on the downsampled 5011 training images in the

PASCAL VOC 2007 dataset [28]. We use only the top 10 PCA components as φ to

‘sense’ these images. We obtain the desired distortion vector by first assuming φd = φ

and calculating distortions, |dji | at each location for all training images, j = 1, .., 5011.

Now, the entry in location i of the desired δ is given by the minimum value α, so that

95% of the values, |dji |, j = 1, .., 5011 are less than α. We use ε = 0.95 and solve (P2)

to obtain P∗, and hence also Q∗. The rank of ReFInE φ is simply the rank of Q∗.

Estimation of integral images: We show that good quality estimates of in-

tegral images can be obtained using our framework. To this end, we first construct

ReFInE measurement matrices of various ranks, M . We achieve this by consider-

ing the SVD of Q∗ obtained above. For a particular value of M , the ReFInE φ is

calculated according to φM = Σ
1/2
M VT

M , where ΣM = diag{λ1, .., λM} is a diagonal

matrix with M largest singular values arranged along the diagonal and VT
M denote

the corresponding rows in VT . Its dual, φd, is calculated similarly. For each partic-

ular measurement rate, determined by the value of M , the integral image estimates

are recovered from M ReFInE measurements for all the 4952 test images in the

PASCAL VOC 2007 dataset [28]. Similarly integral image estimates are recovered
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Method ReFInE RG-CoSamP ReFInE RG-CoSamP ReFInE RG-CoSamP

M (measurement ratio) 20 (0.005) 20 (0.005) 40 (0.01) 40 (0.01) 60 (0.015) 60 (0.015)

Time in s 0.0034 0.38 0.0036 0.58 0.0031 0.97

RSNR in dB 38.95 -16.76 38.96 -11.22 38.96 -10.9

Table 4.1: Comparison of average RSNR and time for recovered integral image es-

timates obtained using our method with RG-CoSamP. Our framework outperforms

RG-CoSamP in terms of both recovery signal-to-noise ratio and time taken to esti-

mate the integral image, at all measurement rates.

from random Gaussian measurements by first performing non-linear iterative recon-

struction using the CoSamP algorithm [69] and then applying the integral operation

on the reconstructed images. This pipeline is used as baseline to compare integral

estimates, and henceforth is referred to as ‘RG-CoSamP’. We then measure the re-

covered signal-to-noise ratio (RSNR) via 20 log10

(
‖Î‖

F

‖Î−I‖
F

)
. The average RSNR for

recovered integral image estimates as well as the time taken to obtain integral images

are tabulated in the table 4.1. Our framework outperforms RG-CoSamP in terms

of both recovery signal-to-noise ratio and time taken to estimate the integral image,

at all measurement rates. This shows that ReFInE φ, the measurement matrices

designed by our framework, facilitate faster and more accurate recovery of integral

image estimates than the universal matrices. The average time taken to obtain inte-

gral image estimates in our framework is about 0.003s, which amounts to a real-time

speed of 300 FPS. Further, we randomly select four images (‘Two Men’, ‘Plane’,

‘Train’ and ‘Room’) from the test set (shown in figure 4.1(a), 4.1(b), 4.1(c), 4.1(d))

and present qualitative and quantitative results for individual images. Image-wise

RSNR v/s measurement rate plots are shown in figure 4.2. It is very clear that for all

the four images, our framework clearly outperforms RG-CoSamP in terms of RSNR,

at all measurement rates.
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(a) (b) (c) (d)

Figure 4.1: Four images (L-R: ‘Two Men’, ‘Plane’, ‘Train’ and ‘Room’) are randomly

chosen for presenting qualitative and quantitative results.

Estimation of box-filtered outputs: It is well known that box-filtered outputs

of any size can efficiently computed using integral images [91]. To show the capability

of our framework in recovering good quality box-filtered output estimates, we conduct

the following experiment. For box filters of sizes 3× 3, 5× 5 and 7× 7, we compute

the estimates of filtered outputs for the four images using their respective recovered

integral image estimates. RSNR v/s measurement rate plots for different filter sizes

are shown in figure 4.3. It is evident that even for a remarkably low measurement rate

of 1% , we obtain high RSNR box-filtered outputs. For a fixed measurement rate,

expectedly the RSNR increases with the size of the filter. This shows the structures

which are more global in nature are captured better. This is particularly true in the

case of ‘Plane’ image. The high RSNR for this image hints at the absence of fine

structures and homogeneous background. Further, for the ‘Two Men’ Image, we also

compare the heat maps of the exact box-filtered outputs with the estimated ones. We

fix the measurement rate to 1%. For filter sizes 3×3 and 7×7, the exact box-filtered

outputs are computed and compared with the box-filtered output estimates obtained

using our framework, and RG-CoSamP as well. The heat map visualizations of the

outputs are shown in figure 4.4. It is clear that greater quality box-filtered output

estimates can be recovered using our framework and the recovered outputs retain the
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Figure 4.2: The figure shows variation of image-wise RSNR for recovered integral

image estimates for the four images. It is very clear that for all the four images, our

framework outperforms ‘RG-CoSamP’ in terms of RSNR, at all measurement rates.
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Figure 4.3: The figure shows the variation of RSNR for the recovered box-filtered

outputs using ReFInE with measurement rate. It is evident that even for 1% mea-

surement rate, we obtain high RSNR box-filtered outputs. For a fixed measurement

rate, the RSNR increases with the size of the filter. This shows the structures global in

nature are captured better. This is particularly true in the case of ‘Plane’ image. The

high RSNR for this image hints at the absence of fine structures and homogeneous

background.
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Figure 4.4: Heat maps for box-filtered outputs for the ‘Two men’ image. Left to right:

Exact output, ReFInE (m/n = 0.01), and RG-CosamP (m/n = 0.01). It is clear

that greater quality box-filtered output estimates can be recovered from ReFInE

measurements and the recovered outputs retain the information regarding medium-

sized structures in the images, while in case of RG-CoSamP, the output is all noisy

and does not give us any information.

information regarding medium-sized structures in the images, while in the case of

RG-CoSamP, the output is all noisy and does not give us any information.

4.4 Tracking Application

In this section, we show the utility of the framework in practical applications.

In particular, we show tracking results on 50 challenging videos used in benchmark

comparison of tracking algorithms [97]. We emphasize that our aim is not to obtain
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state-of-the-art tracking results but to show that integral image estimates can be used

to obtain robust tracking results at low measurement rates. To this end, we conduct

two sets of tracking experiments, one with original resolution videos and one with

high definition videos.

Tracking with original resolution videos: We conduct tracking experiments

on original resolution videos at three different measurement rates, viz 1.28%, 1%,

and 0.49%. In each case, we use the measurement matrix obtained for block size of

32× 32, and obtain ReFInE measurements for each frame using the φ∗ obtained as

above. Once, the measurements are obtained, our framework recovers integral image

estimates from these measurements in real time. The estimates are subsequently fed

into the best performing Haar-feature based tracking algorithm, Struck [35] to obtain

the tracking results. Henceforth, we term this tracking pipeline as ReFInE+Struck.

To evaluate our tracking results, we use the standard criterion of precision curve as

suggested by [97]. To obtain the precision curve, we plot the precision scores against

a range of thresholds. A frame contributes to the precision score for a particular

threshold, α if the distance between the ground truth location of the target and

estimated location by the tracker is less than the threshold, α. Precision score for

given threshold is calculated as the percentage of frames which contribute to the

precision score. When precision scores are required to be compared with other trackers

at one particular threshold, generally threshold is chosen to be equal to 20 pixels [97].

Precision curve: The precision curves for our framework at the three different

measurement rates are plotted against a wide range of location error thresholds, and

are compared with the same for other trackers, Oracle Struck [35], and various other

trackers, TLD [46], MIL [4], CSK [37], and FCT [101] in figure 4.5. It is to be noted

all the trackers used for comparison utilize full-blown images for tracking and hence

operate at 100% measurement rate. As can be seen clearly, ‘ReFInE+Struck’ at
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1.28% performs better than other trackers, MIL, CSK, TLD, and FCT and only a

few percentage points worse than Oracle Struck for all thresholds. In particular, the

mean precision over all 50 sequences in the dataset [97] for the threshold of 20 pixels is

obtained for ‘ReFInE+Struck’ at three different measurement rates and is compared

with other trackers in table 4.2. We obtain a precision of 59.26% at a measurement

of 1.28%, which is only a few percentage points less than precision of 65.5% using

Oracle Struck and 60.8% using TLD. Even at an extremely low measurement rate of

0.49%, we obtain mean precision of 45.78% which is competitive when compared to

other trackers, MIL, and FCT which operate at 100% measurement rate. This clearly

suggests that the small number of well-tailored measurements obtained using our

framework retain enough information regarding integral images and hence also the

Haar-like features which play a critical role in achieving tracking with high precision.

Frame rate: Even though, our framework uses Struck tracker, the frame rates

at which ‘ReFInE+Struck’ operates are potentially less than the frame rate that can

be obtained with Oracle Struck, and can even be different at different measurement

rates. This is due to the fact that once the measurements are obtained for a particular

frame, we first have to obtain an intermediate reconstructed frame before applying

the integral operation. However, in the case of Oracle Struck, the integral operation is

applied directly on the measured frame. The frame rate for ‘Our+Struck’ at different

measurement rates are compared with the frame rates for other trackers in table

4.2. However, as can be seen, the preprocessing operation to obtain the intermediate

reconstructed frame barely affects the speed of tracking since the preprocessing step,

being multiplication of small-sized matrices can be efficiently at nearly 1000 frames

per second.

Experiments with sequence attributes: Each video sequence in the bench-

mark dataset is annotated with a set of attributes, indicating the various challenges
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Figure 4.5: ‘ReFInE+Struck’ at a measurement rate of 1.28% performs better than other

trackers, MIL, CSK, TLD, and FCT and only a few percentage points worse than Oracle

Struck for all thresholds. Even at a measurement rate of 1%, ‘ReFInE+Struck’ performs

nearly as well as TLD and CSK trackers which operate at 100% measurement rate.

the video sequence offers in tracking. We plot precision percentages against the loca-

tion error threshold for each of these 10 different kinds of attributes. Figure 4.6 shows

the corresponding plots for attributes, ‘Illumination Variation’, ‘Background Clutter’,

‘Occlusion’, and ‘Scale Variation’. In the case of ‘Illumination Variation’ and ‘Occlu-

sion’ ‘Our+Struck’ at measurement rate of 1.28% performs better than TLD, CSK,

MIL and FCT, whereas in the case of the ‘Background Clutter’ and ‘Scale Variation’

attributes, TLD performs slightly better than ‘Our+Struck’ at measurement rate of

1.28%.

Figure 4.7 shows the corresponding plots for attributes, ‘Deformation’, ‘Fast Mo-

tion’, ‘Motion Blur’, and ‘Low Resolution’. In the cases of ‘Deformation’, ‘Fast Mo-

tion’ and ‘Motion Blur’, ‘ReFInE+Struck’ at measurement rate of 1.28% performs
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Tracker Mean Precision Mean FPS

ReFInE at MR = 1.28% + Struck 59.26 19.61

ReFInE at MR = 1% + Struck 52.47 19.61

ReFInE at MR = 0.49% + Struck 45.78 19.62

Oracle Struck [35] 65.5 20

TLD [46] 60.8 28

CSK [37] 54.11 362

MIL [4] 47.5 38

FCT [101] 42.37 34.92

Table 4.2: Mean precision percentage for 20 pixels error and mean frames per second

for various state-of-the-art trackers are compared with our framework at different

measurement rates. The precision percentages for our framework are stable even at

extremely low measurement rates, and compare favorably with other trackers which

operate at 100% measurement rate, i.e utilize all the pixels in the frames.

better than TLD, CSK, MIL and FCT, whereas in the case of ‘Low Resolution’, TLD

performs better than ‘ReFInE+Struck’.

Figure 4.8 shows the corresponding plots for attributes, ‘In the Plane rotation’,

‘Out of View’, and ‘Out of Plane rotation’.

Tracking with high resolution videos: Tracking using high-resolution videos

can potentially lead to improvement in performance due to availability of fine-grained

information regarding the scene. However, in many applications, the deployment of

high-resolution sensors is severely limited by the lack of storage capacity. In such

scenarios, it will be interesting to see if the small number of ReFInE measurements of

high-resolution videos can yield better tracking performance than the full-blown low-

resolution videos. To conduct tracking experiments on high resolution videos, we first

employ a deep convolutional network based image super resolution (SR) algorithm,

SRCNN, [21] to obtain high resolution frames of the 50 videos considered earlier in

the section. The aspect ratio for all frames is maintained, and the upscaling factor for

80



Location error threshold
0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

 p
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

70
Illumination Variation (25 sequences)

Ours at MR = 1.28% + Struck
Ours at MR = 1% + Struck
Ours at MR = 0.49% + Struck
Oracle Struck
TLD
CSK
MIL
FCT

(a)

Location error threshold
0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

 p
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

70

80
Background Clutter (21 sequences)

Ours at MR = 1.28% + Struck
Ours at MR = 1% + Struck
Ours at MR = 0.49% + Struck
Oracle Struck
TLD
CSK
MIL
FCT

(b)

Location error threshold
0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

 p
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

70

80
Occlusion (29 sequences)

Ours at MR = 1.28% + Struck
Ours at MR = 1% + Struck
Ours at MR = 0.49% + Struck
Oracle Struck
TLD
CSK
MIL
FCT

(c)

Location error threshold
0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

 p
e

rc
e

n
ta

g
e

0

10

20

30

40

50

60

70

80
Scale Variation (28 sequences)

Ours at MR = 1.28% + Struck
Ours at MR = 1% + Struck
Ours at MR = 0.49% + Struck
Oracle Struck
TLD
CSK
MIL
FCT

(d)

Figure 4.6: Precision plots for four different attributes. In the case of ‘Illumination Varia-

tion’ and ‘Occlusion’ ‘ReFInE+Struck’ at measurement rate of 1.28% performs better than

TLD, CSK, MIL and FCT, whereas in the case of the ‘Background Clutter’ and ‘Scale

Variation’ attributes, TLD performs slightly better than ‘ReFInE+Struck’ at measurement

rate of 1.28%.
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Figure 4.7: Precision plots for four different attributes. In the cases of ‘Deformation’, ‘Fast

Motion’ and ‘Motion Blur’, ‘ReFInE+Struck’ at measurement rate of 1.28% performs better

than TLD, CSK, MIL and FCT, whereas in the case of ‘Low Resolution’, TLD performs

better than ‘ReFInE+Struck’.
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Figure 4.8: Precision plots for three different attributes. In the cases of ‘In the plane

rotation’, and ‘Out of plane rotation’, ‘ReFInE+Struck’ at measurement rate of 1.28%

performs better than TLD, CSK, MIL and FCT, whereas in the case of ‘Out of View’,

TLD performs better than ‘ReFInE+Struck’.
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Tracker Mean Precision Mean FPS

SR + ReFInE at EMR = 8.16% + FCT 54.83 19.61

SR + ReFInE at EMR = 4% + FCT 53.03 19.61

SR + ReFInE at EMR = 2.37% + FCT 50.9 19.62

SR + ReFInE at EMR = 1.63% + FCT 45.79 19.62

Oracle FCT [101] 42.37 34.92

Table 4.3: Mean precision percentage for 20 pixels error and mean frames per second for

‘SR + ReFIne + FCT’ at various measurement rates are compared with ‘Oracle FCT’. Even

at extremely low measurement rates, the precision percentages for ‘SR + ReFIne + FCT’

are better that for ‘Oracle FCT’ which operates on full-blown original resolution images.

image super resolution is calculated such that the resolution of the longer dimension

in the higher resolution frame is at least 1000 pixels. We found that upscale factors

varies between 2 and 8 for various videos in the dataset. Once the high resolution

videos are obtained, we proceed to obtain ReFInE measurements as before. We

conduct tracking experiments at four different measurement rate (1%, 0.49%, 0.29%,

0.2%). Note that these different measurement rates are with respect to (wrt) the

high-resolution frames, and the measurement rate wrt original resolution, which we

call effective measurement rate (EMR), is given by the ratio of the number of ReFInE

measurements per frame to the number of pixels in a frame of original resolution video.

Here, the tracking algorithm, Struck which we used for original resolution videos does

not scale well in terms of computational complexity. For higher resolution videos,

where the search space is much larger, we found that Struck is too slow for real-time

application. Instead, we use a faster Haar feature based tracking algorithm, FCT

[101] algorithm. Henceforth, we dub this tracking pipeline as SR+ReFInE+FCT.

Once tracking results are obtained for the high resolution videos are obtained, we

normalize the coordinates so as to obtain the tracking outputs with respect to original
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resolution videos. The precision score is calculated as before. The mean precision

percentage for 20 pixels error and mean frames per second for ‘SR + ReFIne + FCT’

at various measurement rates are given in table 4.3 and are compared for the same

for ‘Oracle FCT’ which operates for full-blown original resolution videos. It is clear

that we obtain a significant boost in tracking accuracy for high resolution videos. At

measurement rate of 1% (EMR of 8.16%), we obtain a mean precision percentage of

54.83, which is 12.46 percentage points more than that for ‘Oracle FCT’. Even at a

measurement rate of 0.2% ((EMR of 1.63%)), the precision percentage of 45.79, which

is about 3.42 percentage points more than that for ‘Oracle FCT’. However, the more

accurate precision comes at the cost of frame rate. Since the search space is much

larger for high resolution videos, the speed of tracking for high resolution videos, is

only about 20 FPS, while ‘Oracle FCT’ operates at 34.92 FPS. But 20 FPS suffices

for near real-time implementations.
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Chapter 5

DISCUSSIONS AND FUTURE WORK

In this dissertation, we proposed principled ways to extract information from

spatial-multiplexing measurements for computer vision applications at low measure-

ment rates.

First, we proposed a correlation based framework to recognize actions from com-

pressive cameras without reconstructing the sequences. It is worth emphasizing that

the goal of the work is not to outperform a state-of-the-art action recognition system

but is to build a action recognition system which can perform with an acceptable level

of accuracy in heavily resource-constrained environments, both in terms of storage

and computation. The fact that we are able to achieve a recognition rate of 54.55% at

a compression ratio of 100 on a difficult and large dataset like UCF50 and also local-

ize the actions reasonably well clearly buttresses the applicability and the scalability

of reconstruction-free recognition in resource constrained environments. Further, we

reiterate that at compression ratios of 100 and above, when reconstruction is gener-

ally of low quality, action recognition results using our approach, while working in

compressed domain, were shown to be far better than reconstructing the images, and

then applying a state-of-the-art method. In our future research, we wish to extend

this approach to more generalizable filter-based approaches. One possible extension

is to use motion sensitive filters like Gabor or Gaussian derivative filters which have

proven to be successful in capturing motion. Furthermore, by theoretically proving

that a single filter is sufficient to encode an action over the space of all affine trans-

formed views of the action, we showed that more robust filters can be designed by

transforming all training examples to a canonical viewpoint.
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Next, we have presented a CNN-based non-iterative solution to the problem of CS

image reconstruction. We showed that our algorithm provides high quality reconstruc-

tions on both simulated and real data for a wide range of measurement rates. Through

a proof of concept real-time tracking application at the very low measurement rate

of 0.01, we demonstrated the possibility of CS imaging becoming a resource-efficient

solution in applications where the final goal is high-level image understanding rather

than exact reconstruction. However, the existing CS imagers are not capable of de-

livering real-time video. We hope that this work will give the much needed impetus

to building of more practical and faster video CS imagers.

Next, we qualitatively and quantitatively showed that it is possible obtain high

quality estimates of integral images and box-filtered outputs directly from a small

number of specially designed spatially multiplexed measurements called ReFInE

measurements. To show the practical applicability of the integral image estimates,

we presented impressive reconstruction-free tracking results on challenging videos at

an extremely low measurement rate of 1%. We also showed that with only a small

number of ReFInE measurements on high-resolution videos, which is only a frac-

tion (2-8%) of the size of the original resolution, one can obtain significantly better

object tracking results than using full blown original resolution videos. From a philo-

sophical point of view, this points to the possibility of attaining greater performance

on other computer vision inference tasks from a small number of carefully tailored

spatially multiplexed measurements of high-resolution imagery rather than full-blown

low resolution imagery.
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