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ABSTRACT 

 This thesis discusses the equilibrium conditions and static stability of a rotorcraft 

kite with a single main tether flying in steady wind conditions. A dynamic model with five 

degrees of freedom is derived using Lagrangian formulation, which explicitly avoids any 

constraint force in the equations of motion. The longitudinal static stability of the steady 

flight under constant wind conditions is analyzed analytically from the equilibrium 

conditions. The rotorcraft kite orientation and tether angle are correlated through the 

equation Γ = 𝛿 − 𝜗, a necessary condition for equilibrium. A rotorcraft kite design with 

3kg mass and 1.25m rotor radius is found to be longitudinally statically stable at 25,000ft 

with Γ > 650 for wind speeds above 19m/s.  
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NOMENCLATURE 

Roman Letters 

𝐶𝑇 =  Equilibrium thrust coefficient 

𝐶𝑊 =  Weight coefficient 

d =  Shortest distance between two adjacent rotors 

G =  Center of gravity position of the rotorcraft 

𝐼𝐺  =  Moment of inertia matrix of the rotorcraft 

l =  Distance from point Q to point G 

𝑙 ̅ =  Nondimensionalized l using d 

L =  Tether length 

M =  Rotorcraft mass 

O =  Origin in inertial frame 

p =  Roll rate of the rotorcraft 

q =  Pitch rate of the rotorcraft 

Q =  Bridle point position 

𝑄𝑖 =  Generalized forces 

r =  Yaw rate of the rotorcraft 

𝑇𝛼, 𝑇𝑝, 𝑇𝑞 =  Thrust stability derivatives 
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U =  Gravitational potential 

𝑉𝐺 =  Velocity of the rotorcraft Center of mass 

𝑊0 =  Wind velocity 

Greek Letters 

𝛼 =  Angle of attack 

𝛿 =  Angle between rotorcraft plane and bridle point 

𝜑 =  Tether angle in the X-Y inertial plane 

Φ =  Roll angle of the rotorcraft 

Γ =  Tether angle from the X-Y inertial plane 

ℒ =  Lagrangian function 

𝜗 =  Pitch angle of the rotorcraft 

𝜓 =  Yaw angle of the rotorcraft 

Subscripts/Superscripts 

( )𝐸 =  Earth fixed (inertial) coordinate frame 

( )𝐵 =  Body fixed coordinate frame 

( )∗ =  Equilibrium condition 
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1. INTRODUCTION 

Motivation 

Most current methods of generating energy from wind involve wind turbines. 

According to National Wind Watch, typical wind turbines rise just a few hundred feet in 

the air. In general, wind speeds increase and remain more constant as altitude increases, up 

to approximately 40,000ft (Conover and Wentsien). Current methods can thus be improved 

by accessing the wind at higher altitudes. It is impractical to place a wind turbine at high 

altitude for structural and other reasons, so many researchers are now considering tethered 

kite or balloon variants. High altitude tethered kites are the inspiration for this research. 

The concept is reimagined with a rotorcraft at the end of the tether instead of a standard 

wing kite.  

An advantage of the rotorcraft kite is its ability to hover in the event of little to no 

wind. As a kite, the high altitude tethered rotorcraft could act as a generator through the 

rotation of its rotors in the wind. Under normal wind conditions, it would remain in the air 

through autorotation, but it could use some of the generated and stored electrical energy to 

power its rotors for flight when wind speed becomes too low for autorotation. This will 

allow the rotorcraft to remain in the air for as long as desired.  

A tethered rotorcraft system has more possible applications than wind energy alone. 

The ability to stay in the air for long periods of time is beneficial for surveillance and 

cellular or internet broadcasting as well. Working this problem in its entirety requires 

analysis of stability and control, power generation, environmental effects, and possible 

interference with aircraft, at the least. This research will only determine the feasibility of a 
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tethered rotorcraft from a static stability standpoint and determine possible stable 

configurations.  

Kite Terminology 

Referring to Fig. 1 above, the tether is defined as the line that runs from the ground 

to the kite bridle point, Q. The tether angle Γ is the angle between the kite tether and the 

ground, a larger tether angle corresponds to a higher kite altitude for equivalent tether 

length. A kite bridle is the combination of lines that attach the kite to the tether at the bridle 

point. The bridle length is split into the front bridle length and the rear bridle length for 

most of the models used in this thesis. Varying the front and rear bridle lengths changes 

the bridle angle 𝛿, which is the angle between the plane of the kite, starting at the kite 

center of gravity, and the bridle point. 

 

Figure 1. Kite Geometry. 
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Previous Research 

It is important to understand kite and rotor dynamics before analyzing a tethered 

rotorcraft model. Previous research has been done in both areas and is used to aid in this 

analysis. Alexander and Stevenson determine the bridle length required for equilibrium of 

a tethered kite using Newton’s Second Law of a static system for the equilibrium condition. 

They set out to explain how to predict where single or two-line kites will settle during 

flight. The analysis is performed for a two-dimensional system in the longitudinal plane. 

The system is defined as a grounded tether connected to front and rear bridle lines, which 

attach to the front and rear of a flat kite, respectively. Equilibrium points were determined 

using two constraints, the sum of the external forces on the kite are equal to zero and the 

sum of the moments about the bridle point are equal to zero. The method laid out in this 

paper allows for the calculation of the front and rear bridle lengths, and thus angle of the 

kite relative to the bridle point, required for equilibrium given a certain tether angle, kite 

weight, and wind velocity. Some of these equilibrium points are unstable which requires 

further research beyond what Alexander and Stevenson have done to discern from the 

stable equilibrium points. This research serves as an introduction to the topic of kite 

mechanics. It uses a simple two-dimensional system and equilibrium analysis that is 

expanded upon by others in further research. 

Sanchez determines the dynamics of a two-dimensional, single line kite using 

Lagrange’s equations. He performs a dynamic analysis on a system equivalent to that used 

by Alexander and Stevenson in “Kite Equilibrium and Bridle Length”. The equations of 

motion are determined using Lagrange’s equations, then the static equilibrium states are 

found by eliminating time-derivative terms from the equations of motion. The stability of 



4 

these equilibrium states is calculated using linear theory and has two eigenmodes; pitch 

mode and pendulum mode. Next, the dynamic stability of the kite is calculated numerically 

and stable periodic orbits are found to exist only in a small parametric domain. Finally, he 

suggests an open loop control system that allows the kite to fly at optimal lift/drag ratios 

and expresses the limitations of the results. Sanchez’s research was an important reference 

throughout this analysis because Lagrange’s equations are used to determine the dynamics 

of the tethered rotorcraft model. 

 Losantos and Sanchez-Arriaga discuss the flight dynamics and stability of a kite 

with a single main line flying in steady and unsteady wind conditions. The equations of 

motion are determined using Lagrange’s equations, then the stability of the steady flight 

under constant wind conditions is analyzed numerically and analytically. Useful analytical 

formulas are found for stable-designed kites. Under non-steady wind conditions, the kite 

stability is explored with the aid of a numerical method based on Floquet theory. The model 

used in this research is very similar to the model used in this thesis, the difference being 

the replacement of a kite at the end of the tether with a rotorcraft. The Lagrangian 

formulation is exactly the same, up to a point, and thus their work is used for comparison 

and verification purposes during the derivation of the equations of motion of the rotorcraft 

kite. Also, when further research is conducted on the tethered rotorcraft kite, the dynamic 

stability results from the steady and unsteady wind conditions will be compared to those 

presented by Losantos and Sanchez-Arriaga. This will be done in order to compare the 

dynamics of a kite and a tethered rotorcraft. 
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Terink, Breukels, Schmehl, and Ockels analyze the flight dynamics and stability of 

tethered, inflatable airplanes. The system is similar to a tethered kite; one tether attached 

to the ground, a two-line bridle, and, in this case, an inflatable kiteplane at the end of the 

bridle lines. Lagrange’s equations are used to analyze the dynamics of this system, thus 

this research provides one more reference for comparison of the Lagrangian analysis done 

on the tethered rotorcraft kite. Case studies determine that dynamic stability of the 

inflatable kiteplane requires a small vertical tail plane and a large dihedral angle. The 

analysis extends to any aircraft-shaped kite, but the kiteplane is used for example 

calculations and to demonstrate stability trends. This research shows that a lot of thought 

is being put into new ways of generating sustainable energy. Tethered kites and inflatable 

objects are being researched thoroughly, and now, rotorcraft kites may be researched more 

as well. 

Williams, Lansdorp, and Ockels study the dynamics and control of a flexible kite. 

A simple two-plate model with one bridle line on each side and a hinge in the center is used 

for the analysis. The plates are constrained to have the same yawing angle, but are 

unconstrained in pitch and roll. Once again, Lagrange’s equations are used to obtain the 

equations of motion. The open-loop system is found to be unstable, causing it to diverge 

from the equilibrium point with any disturbance unless some kind of active control is used. 

The controls portion of the research is beyond what is needed for the tethered rotorcraft 

kite static stability analysis, and is thus not mentioned here. The results show that with 

controls, a two-plate model can be made stable. It is taken even further with a four-plate 

model that more accurately describes a flexible kite. The four-plate model is made stable 

using control as well. The analysis of a ‘flexible’ kite makes this research unique. It shows 
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that adding flexibility, which is more realistic for kites, can make the system unstable. This 

problem was solved, however, using control of the moveable tether points on either side of 

the kite. Flexibility should not pose problems in future analyses of tethered rotorcraft kites, 

though, because quadcopters and the like are rigid. 

Werle analyzes control volume actuator disk equations for exit velocities equal to 

or less than zero. He acknowledges that the control-volume actuator-disk model for wind 

turbines runs into trouble when the downstream velocity at the outlet approaches zero. The 

work done by Werle provides a new exact solution for induction factors from 0.5 to 1 based 

on a limit-analysis solution of the control-volume actuator-disk equations. The limit as the 

domain cross-sectional area approaches infinity is used to obtain the governing equations 

that provide thrust and power curves as functions of disk loading and velocity induction 

factor. The relevant result is that for no power, no downstream velocity at the exit of the 

control-volume, and full blockage, the thrust coefficient of an actuator-disk is two. This is 

relevant to a tethered rotorcraft kite that will need to autorotate under no power. It is 

important to determine the thrust produced by a rotor in autorotation and Werle’s research 

aids in that effort. 

Georgiou and Theodoropoulos provide an explanation for the deviation between 

the predictions of the Betz model and the actual results of highly loaded wind turbines. The 

Betz model approximates the amount of power that can be extracted from free-flowing 

currents. The research suggests that the one-dimensional flow model used by Betz is too 

simple. An assumed uniform flow velocity outside of the exit wake profile is replaced with 

a non-uniform velocity distribution. The distribution deviates further from uniform in 
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highly loaded cases (when the flow velocity behind the rotor approaches zero). This new 

control volume is analyzed and new equations are found for the maximum amount of power 

that can be extracted from free-flowing currents. The results match experimental data well 

and deviate from the Betz model predictions at higher loading cases. Georgiou and 

Theodoropoulos conclude that the Betz model is sufficient at low loading, but that it is 

more accurate to use their method for highly loaded cases. This is applicable to the tethered 

rotorcraft model due to the expected high loading on the rotors. The analytical and 

experimental results from their research agree with Werle’s research in that the thrust 

coefficient, for an induction factor of one, is two. This is important for determining the 

thrust of the rotorcraft during autorotation. 

Process 

This thesis analyzes the longitudinal static stability of a tethered rotorcraft kite. The 

rotorcraft has four rotors (quadcopter) with four bridle lines (one attached below each rotor) 

leading to one tether that attaches at the ground. An empirical extension to an actuator-disk 

model is used to find an appropriate expression for the thrust of each rotor. The equations 

of motion are determined using Lagrange’s equations. The equilibrium point is calculated 

from the equations of motion, which leads to two equations that describe the longitudinal 

static stability of the rotorcraft. A feasible design is determined from the equilibrium 

equations and the specific conditions under which the design is stable are outlined. The 

process of determining the equations of motion using Lagrange’s equations lays the ground 

work necessary to analyze the system from a dynamic stability standpoint.  
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2. DEVELOPMENT 

An Earth-fixed inertial coordinate system has origin at the ground tether point, O. 

The vertical 𝑍𝐸 axis has positive direction downward, and the horizontal wind velocity 𝑾0 

is assumed to be in the −𝑋𝐸 direction, with 𝑌𝐸 completing the right-hand rule. For 

convenience, a shorthand will be used for the trigonometric functions sine and cosine. For 

example, sin 𝛼 and cos 𝛼 are represented by 𝑠𝛼 and 𝑐𝛼.  

 

Figure 2. Reference frames and coordinates of the rotorcraft kite model. 
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The angle Γ represents the inclination of the tether line OQ, and 𝜑 is the azimuthal angle 

of the tether. The position of the bridle point Q, where the tether of length L meets the 

bridle, is given as 

𝑶𝑸 = −𝐿(𝑐𝛤𝑐𝜑𝒊𝐸 + 𝑐𝛤𝑠𝜑𝒋𝐸 + 𝑠𝛤𝒌𝐸)                                  (1)                                    

 

 

Figure 3. Rotorcraft side view and associated geometry. 

 

Figure 4. Rotorcraft top view. 
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The body-fixed coordinate system has origin at the center of mass G of the 

rotorcraft and axes equal to the principle axes of inertia relative to G, as shown in Fig. 2-

4. The inertia matrix in body coordinates is as follows. 

𝑰𝐺 = (

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

)                                                   (2) 

The orientation of the body frame with respect to the inertial frame is determined 

by Euler angles 𝜗, 𝜓, and 𝜙, which correspond to pitch, yaw, and roll angles of the 

rotorcraft, respectively. The dynamic state vector of the model is then given by 

𝒙 = [𝛤  𝜗  𝜑  𝜓  𝜙]𝑇                                                   (3) 

The angular velocity of the rotorcraft in the body frame is given by 

𝝎 = (𝑝𝒊𝐵 + 𝑞𝒋𝐵 + 𝑟𝒌𝐵)                                                (4) 

or 

𝝎 = (

−𝑠𝜗𝜓̇ + 𝜙̇

𝑐𝜙𝜗̇ + 𝑐𝜗𝑠𝜙𝜓̇

−𝑠𝜙𝜗̇ + 𝑐𝜗𝑐𝜙𝜓̇

)                                               (5) 

The rotation matrix R is used to convert between inertial and body coordinate 

frames. 

𝑹 = (

𝑐𝜓𝑐𝜗 𝑠𝜓𝑐𝜗 −𝑠𝜗
𝑐𝜓𝑠𝜗𝑠𝜙 − 𝑠𝜓𝑐𝜙 𝑠𝜓𝑠𝜗𝑠𝜙 + 𝑐𝜓𝑐𝜙 𝑐𝜗𝑠𝜙
𝑐𝜓𝑠𝜗𝑐𝜙 + 𝑠𝜓𝑠𝜙 𝑠𝜓𝑠𝜗𝑐𝜙 − 𝑐𝜓𝑠𝜙 𝑐𝜗𝑐𝜙

)                          (6) 
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The center of mass position vector is 𝒓𝐺 = 𝑶𝑸 + 𝑸𝑮. 𝑸𝑮 = −𝑙(𝑐𝛿𝒊𝐵 + 𝑠𝛿𝒌𝐵) 

where 𝑙 is the distance from center of mass to bridle point and 𝛿 is the angle from the 

rotorcraft plane to bridle point, as shown in Fig Figure. The rotation matrix is used to 

convert 𝑸𝑮 from body frame to inertial frame 

(𝑸𝑮)𝑬 = 𝑹−𝟏 ∗ (𝑸𝑮)𝑩                                                (7) 

which allows for the calculation of 𝒓𝐺 

𝒓𝐺 = −[𝐿𝑐Γ𝑐𝜑 + 𝑙(𝑐𝜓𝑓1 + 𝑠𝛿𝑠𝜓𝑠𝜙)]𝒊𝐸 

−[𝐿𝑐𝛤𝑠𝜑 + 𝑙(𝑠𝜓𝑓1 − 𝑠𝛿𝑐𝜓𝑠𝜙)]𝒋𝐸                                  (8) 

                                                  −[𝐿𝑠Γ − 𝑙𝑓2]𝒌𝐸   

where 𝑓1 = 𝑐𝛿𝑐𝜗 + 𝑠𝛿𝑠𝜗𝑐𝜙 and 𝑓2 = 𝑐𝛿𝑠𝜗 − 𝑠𝛿𝑐𝜗𝑐𝜙. The velocity vector of the center 

of mass can be found by taking the time derivative of the position vector. 

𝑽𝐺 = 𝑑𝒓𝐺 𝑑𝑡⁄                                                        (9) 

The gravitational forces acting on the rotorcraft are considered in the gravitational 

potential term U where M is the mass of the rotorcraft kite and g is gravity. 

𝑈(𝒙) = 𝑀𝑔[𝐿𝑠𝛤 + 𝑙(𝑠𝛿𝑐𝜗𝑐𝜙 − 𝑐𝛿𝑠𝜗)]                                   (10) 

The equations of motion for the rotorcraft were determined using Lagrange’s 

equations.  

𝑑

𝑑𝑡
(

𝑑ℒ

𝑑𝑥̇𝑖
) −

𝑑ℒ

𝑑𝑥𝑖
= 𝑄𝑖,         𝑖 = 1, … ,5                                       (11) 
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The Lagrangian function, ℒ, is the difference between the kinetic energy and 

potential energy of the system and 𝑄𝑖 denotes generalized forces that are external to the 

system or not derivable from a scalar potential function. 

ℒ =
1

2
𝑀𝑉𝐺

2 +
1

2
𝝎 ∙ 𝑰𝐺 ∙ 𝝎 − 𝑈                                          (12) 

The equation for generalized force on a rigid body is used. The tether force is not 

included in the generalized force term because the tether is assumed rigid and the force 

does no work on the rotorcraft. The remaining force, the thrust of each of the rotors, is 

summed to provide one resultant force acting at the center of gravity of the rotorcraft and 

a resulting moment about the same point. 

𝑄𝑖 = (∑ 𝑭𝑗
𝑎𝑒𝑟𝑜4

𝑗=1 ) ∙
𝜕𝑽𝐺

𝜕𝑥̇𝑖
+ 𝑴𝐺 ∙

𝜕𝝎

𝜕𝑥̇𝑖
,        𝑖 = 1, … ,5                            (13) 

There is a different aerodynamic force equation for each of the four rotorcraft rotors 

based on the rotation of the vehicle. The force vector for each rotor is given below. 

𝑭1
𝑎𝑒𝑟𝑜 = −(𝑇𝛼𝛼 + 𝑇𝑝𝑝 − 𝑇𝑞𝑞)𝒌𝐵 

𝑭2
𝑎𝑒𝑟𝑜 = −(𝑇𝛼𝛼 + 𝑇𝑝𝑝 + 𝑇𝑞𝑞)𝒌𝐵                                      (14) 

𝑭3
𝑎𝑒𝑟𝑜 = −(𝑇𝛼𝛼 − 𝑇𝑝𝑝 + 𝑇𝑞𝑞)𝒌𝐵 

𝑭4
𝑎𝑒𝑟𝑜 = −(𝑇𝛼𝛼 − 𝑇𝑝𝑝 − 𝑇𝑞𝑞)𝒌𝐵 

 The moment term in Eq. 13 considers the moment about the rotorcraft center of 

gravity due to the aerodynamic forces. The resultant moment vector is given below. 

𝑴𝐺 = [2𝑇𝑝𝑑(𝑠𝜗𝜓̇ − 𝜙̇)]𝒊𝐵 − [2𝑇𝑞𝑑(𝑐𝜙𝜗̇ + 𝑠𝜙𝑐𝜗𝜓̇)]𝒋𝐵                   (15) 
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𝑇𝛼, 𝑇𝑝, and 𝑇𝑞 are force coefficients, p and q are defined in Eq. 4 and 5, and 𝛼 is 

defined in the following equation.  

𝛼 = 𝑡𝑎𝑛−1 (
𝑽𝐴∙𝒌𝐵

𝑽𝐴∙𝒊𝐵
)                                                    (16) 

More aerodynamic force terms were considered, such as the thrust associated with 

yawing of the vehicle, 𝑇𝑟𝑟, and the thrust associated with the time rate of change of angle 

of attack, 𝑇𝛼̇𝛼̇, but were assumed to be small relative to the effects of angle of attack, roll 

rate, and pitch rate. The intermediate calculations done to obtain ℒ and 𝑄𝑖 are not shown 

due to their length and complexity. The final equations of motion, however, are given in 

Appendix A.  

The equilibrium condition is determined by neglecting all time rate of change terms. 

Doing so results in the equilibrium state 𝒙∗. 

𝒙∗ = [𝛤∗  𝜗∗  0  0  0],           𝒙̇∗ = 0                                         (17) 

The equations that govern the static equilibrium of the rotorcraft are 

𝐶𝑊 𝑐(𝛿 − 𝜗∗) − 4𝐶𝑇  𝑐𝛿 = 0                                             (18) 

𝛤∗ = 𝑡𝑎𝑛−1 (
4𝐶𝑇 𝑐𝜗∗−𝐶𝑊

4𝐶𝑇 𝑠𝜗∗ )                                                (19) 

where the thrust and weight coefficients of the rotorcraft are defined as 

𝐶𝑇 =
𝑇𝛼𝜗

1

2
𝜌𝑉𝐴

2𝐴
=

𝑇
1

2
𝜌𝑉𝐴

2𝐴
                                                   (20) 

and 
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𝐶𝑊 =
𝑀𝑔

1

2
𝜌𝑉𝐴

2𝐴
                                                       (21) 

Due to the assumption of the wind velocity direction, 𝑇𝛼𝛼 = 𝑇𝛼𝜗 in equilibrium. 

This is the total thrust produced by each of the rotors. There are no thrust contributions 

from the pitch or roll rate because the vehicle is assumed to be stationary for static 

equilibrium. 

A simple model for the thrust produced by the rotors was created using an extension 

of disk-actuator theory. The results from Werle agree with Georgiou and Theodoropoulos 

in that Glauert’s empirical data shows that 𝐶𝑇 = 2 for the zero-power condition. For this 

analysis, the rotorcraft is in a state of autorotation and no power will be supplied to or 

extracted from the rotors. As the vehicle angle of attack changes, the wind velocity 

perpendicular to the rotor plane will also change. The value of 𝐶𝑇 determined by Glauert 

corresponds to that of a rotor with wind velocity entirely perpendicular to the rotor plane. 

Starting with this value and accounting for the component of velocity perpendicular to the 

disk results in a simple thrust model given as  

𝐶𝑇 = 2 𝑠𝑖𝑛 𝛼∗ = 2 𝑠𝑖𝑛 𝜗∗                                               (22) 

Note that when 𝜗∗ is 90 degrees the wind vector is perpendicular to the rotor plane 

and the thrust coefficient is two, as measured by Glauert, and when 𝜗∗ is 0 degrees the 

wind is parallel with the rotor plane resulting in zero thrust. 
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The first equilibrium equation, Eq. 18, is nonlinear and requires a numerical 

determination of the equilibrium pitch angle, ϑ∗. When ϑ∗ is calculated, Eq. 19 can be used 

to analytically determine the equilibrium tether angle, Γ∗. 
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3. RESULTS 

Analysis 

 Rotorcraft with 𝜹 = 𝟐𝟓𝟎 

The rotorcraft model is setup such that it has five degrees of freedom, as expressed 

by the five state variables. The five equations of motion, shown in Appendix A, are the 

main results of this thesis. Setting the time dependencies to zero results in the equilibrium 

equations, Eq. 18 and 19. Examination of these equations shows that the only variables that 

dictate the equilibrium of the model are the thrust and weight coefficients, the tether angle 

and rotorcraft pitch angle, and the rotorcraft geometry. The following analysis determines 

relationships among these values that lead to stable equilibrium points. The conditions for 

stability are more stringent than those for equilibrium, but analyzing equilibrium will help 

to narrow the options of rotorcraft geometry, weight, and altitude/wind speed that should 

be tested for stability.   

 

Figure 5. Equilibrium angle vs. weight coefficient. 
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Fig. 5 shows the tether angle, Γ, and rotorcraft pitch angle, 𝜗, required for the 

system to be in equilibrium at any weight coefficient for a bridle angle 𝛿 = 25𝑜. It is useful 

to understand the limits of the weight coefficients that provide real equilibrium angles in 

order to further narrow the combinations of mass, wind velocity, and rotor size that lead to 

designs capable of equilibrium. At low weight coefficients, the tether angle is large while 

the pitch angle is small. As the weight coefficient increases, the tether angle decreases until 

zero while the pitch angle increases. This trend agrees with expectations because as the 

weight coefficient increases either the wind speed is decreasing, the rotorcraft has a larger 

mass, or the rotors are smaller. Any of these scenarios would necessitate a higher pitch 

angle to get a larger component of the wind through the rotors and the tether angle would 

have to compensate. Fig. 7-9 give a visual representation of this occurring. The minimum 

weight coefficient corresponds to a tether angle approximately equal to the bridle angle, 𝛿, 

of the rotorcraft. A horizontal line was added at zero degrees to denote the limit that Γ and 

𝜗 cannot cross. Γ is referenced to the inertial X-Y plane whose origin is located at the 

ground attachment point of the tether. Thus, if Γ is less than zero degrees, the tether is 

dipping below Earth’s surface. This physically does not make sense and eliminates the 

possibility of placing the rotorcraft at high altitude. 𝜗 cannot be less than zero degrees 

because the wind needs to flow upwards through the rotors for autorotation to occur. If 

theta is less than zero, the rotorcraft would have a forward tilt similar to a powered 

rotorcraft in forward flight. However, this rotorcraft is not powered and thus must 

autorotate with the wind flowing upward through its blades. The three vertical lines 



18 

correspond to three sample points which are used to check for static stability and visualize 

the system with the given bridle angle. 

 A small, medium, and large weight coefficient were chosen for the sample points 

for two reasons. Firstly, for a system such as this, having three statically stable equilibrium 

points at the low, medium, and high end of the weight coefficient range implies that all the 

points between them are statically stable. Secondly, it allows for a visual representation 

that depicts close to the entire possible flight range of the rotorcraft. 

Fig. 6 is a moment coefficient vs. pitch angle plot that shows the rotorcraft 

geometry with 𝛿 = 250 is longitudinally statically stable. The negative slope of all three 

 

Figure 6. Pitching moment vs. pitch angle. 

 

Table 1. Weight coefficients and corresponding equilibrium angles for the rotorcraft 

geometry with a bridle angle of 25 degrees. 

 Sample Point 1 Sample Point 2 Sample Point 3 

Weight Coefficient 0.10 1.45 2.30 

Gamma, deg 24.28 13.80 6.60 

Theta, deg 0.72 11.20 18.40 
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lines indicates that they are statically stable, meaning if the rotorcraft is in an equilibrium 

position and is perturbed, the forces will provide a restoring moment. By looking at any of 

the curves it can be seen that if the pitch is increased from an equilibrium angle (zero 

moment), the moment becomes negative which corresponds to a pitch-down moment. The 

increased pitch is thus countered by the forces providing a pitch-down moment. The same 

idea applies to a decrease in pitch from an equilibrium angle. If the pitch is decreased, the 

moment goes positive, producing a pitch-up moment. The decreased pitch creates forces 

that provide a restoring moment back to the angle that provided zero moment. It is assumed 

that due to the longitudinal static stability of these three sample points, any weight 

coefficient in between them has a tether and pitch equilibrium angle that is longitudinally 

statically stable as well. 

The following three figures give a visual representation of the rotorcraft geometry 

with 𝛿 = 250 at the three sample points. 

 

 

Figure 7. Visualization of rotorcraft equilibrium sample point 1. 𝛿 = 250, 𝛤 = 240,
𝜗 = 0.70. 
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Figure 8. Visualization of rotorcraft equilibrium sample point 2. 𝛿 = 250, 𝛤 =
13.80, 𝜗 = 11.20. 

 

 

Figure 9. Visualization of rotorcraft equilibrium sample point 3. 𝛿 = 250, 𝛤 =
6.60, 𝜗 = 18.40. 
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Equilibrium Condition 

Fig. 7-9 show that the line that connects the center of mass and the bridle point has 

the same angle relative to the ground as the tether line for all three samples taken. This 

relationship is defined by the following equation. 

𝛤 = 𝛿 − 𝜗                                                         (23) 

Eq. 23 can be derived from the two equilibrium equations, Eq. 18 and 19, and is a 

requirement for equilibrium. Fig. 10 shows the free body diagram of the tethered rotorcraft 

kite. The thrust provided by each rotor is equal in equilibrium, and thus the thrust acts at 

the center of gravity, directly in the center of each of the four rotors. The weight force also 

acts at the center of gravity; thus, the tether force must also act through the center of gravity 

for the moments to sum to zero. This requires the line connecting the center of mass and 

the bridle point to have the same direction as the tether. 

 

Figure 10. Free body diagram of rotorcraft kite.  Subfigure shows relationship 

between 𝛤 and 𝛿 − 𝜗. 
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 Rotorcraft with 𝜹 = 𝟒𝟓𝟎 

The same analysis was done for a rotorcraft with different geometry, namely a 

bridle angle of 45 degrees. 

The trend of the equilibrium angles in Fig. 11 matches that of the 𝛿 = 250 rotorcraft 

geometry. At low weight coefficients, the equilibrium tether angle is large while the 

equilibrium pitch angle is small. As the weight coefficient increases, the pitch angle 

increases and the tether angle decreases until it reaches zero degrees, at which point the 

equilibrium angles no longer represent a physically possible state. Another commonality 

between the equilibrium results of the two different rotorcraft geometries is that the 

maximum equilibrium tether angle is approximately equal to the bridle angle of the 

rotorcraft. One major difference between the equilibrium characteristics of the two 

different rotorcraft designs is that they have different ranges of weight coefficients that 

 

Figure 11. Equilibrium angle vs. weight coefficient. 
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correspond to equilibrium points. The smaller bridle angle geometry has a smaller range of 

weight coefficients than the larger bridle angle geometry. A larger range of weight 

coefficients is preferred because it allows for a broader set of system parameters, such as 

rotorcraft weight and wind velocity, that would lead to an equilibrium condition. Three 

sample points were taken for this geometry, as well, to test for static stability. 

 

 

Figure 12. Pitching moment vs. pitch angle. 

 

Table 2. Weight coefficients and corresponding equilibrium angles for the rotorcraft 

geometry with a bridle angle of 45 degrees. 

 Sample Point 1 Sample Point 2 Sample Point 3 

Weight Coefficient 0.10 1.85 2.95 

Gamma, deg 44.27 28.29 14.68 

Theta, deg 0.73 16.71 30.32 
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Fig. 12 shows that the three sample weight coefficients are statically stable in the 

longitudinal direction. All three samples have negative slopes and thus will have an 

induced restoring moment if any perturbations from the rotorcraft’s equilibrium point are 

to occur. Once again, it is assumed that all the weight coefficients between these sample 

points are also longitudinally statically stable. The following three figures give a visual 

representation of the 𝛿 = 450 rotorcraft geometry at the three sample points. 

 

 

 

Figure 13. Visualization of rotorcraft equilibrium sample point 1. 𝛿 = 450, 𝛤 =
44.30, 𝜗 = 0.730. 
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Figure 14. Visualization of rotorcraft equilibrium sample point 2. 𝛿 = 450, 𝛤 =
28.30, 𝜗 = 16.70. 

 

 

 

 

Figure 15. Visualization of rotorcraft equilibrium sample point 3. 𝛿 = 450, 𝛤 =
14.70, 𝜗 = 30.30. 
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Rotorcraft with 𝜹 = 𝟖𝟎𝟎 

One final analysis was done for a rotorcraft with a large bridle angle, continuing 

the trend of testing small, medium, and large bridle angle geometries. 

Fig. 16 shows the same overall equilibrium angle trend as a function of weight 

coefficient, however, the smaller bridle angle geometries had equilibrium angle curves that 

were close to linear. For this large bridle angle, the equilibrium angle curves are far from 

linear. This nonlinear curvature is beneficial for high altitude rotorcraft, though, because 

there is a larger weight coefficient range that corresponds to large tether angles. Large 

tether angles make it easier for the rotorcraft to be at a high altitude because it reduces the 

length of tether needed. Also, the trend from Fig. 5 and Fig. 11 of an increased weight 

coefficient range with increased bridle angle is not held true for this large bridle angle. The 

range of weight coefficients that provide positive equilibrium angles for the large bridle 

 

Figure 16. Equilibrium angle vs. weight coefficient. 
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angle geometry is much smaller. This means that initially, increasing bridle angle increases 

the weight coefficient range, then at some bridle angle the trend reverses and increasing 

bridle angles reduce the weight coefficient range. The bridle angle at which this trend flips 

is 45 degrees and corresponds to a maximum weight coefficient range of zero to four. The 

maximum tether angle is still approximately equal to the bridle angle. Once again, three 

samples were taken for static stability analysis, as shown in Fig. 17. 

 

Figure 17. Pitching moment vs. pitch angle. 

 

Table 3. Weight coefficients and corresponding equilibrium angles for the rotorcraft 

geometry with a bridle angle of 80 degrees. 

 Sample Point 1 Sample Point 2 Sample Point 3 

Weight Coefficient 0.10 0.85 1.33 

Gamma, deg 79.23 64.85 8.59 

Theta, deg 0.77 15.15 71.41 
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The figure shows that the three sample points are statically stable in the longitudinal 

direction. Once again, it is assumed that all weight coefficients between the three samples 

also have longitudinally statically stable equilibrium angles. An additional assumption 

based on these results is that all rotorcraft geometries with bridle angles between 25 and 

80 degrees have longitudinally statically stable equilibrium points. It is likely that any 

bridle angle between zero and 90 degrees will provide statically stable equilibrium points, 

but that assumption requires extrapolation of the three bridle angles tested, rather than 

interpolation, and is not as reliable. The following three figures give a visual representation 

of the 𝛿 = 800 rotorcraft geometry at the three sample points. 

 

 

 

Figure 18. Visualization of rotorcraft equilibrium sample point 1. 𝛿 = 800, 𝛤 =
79.20, 𝜗 = 0.770. 

 

 

 



29 

 

 

Throughout the equilibrium analysis, the distance from the rotorcraft center of 

gravity to the bridle point, 𝑙, is never varied because it does not appear in the equilibrium 

equations. Thus, when designing a rotorcraft for this system, the front and rear bridle 

 

Figure 19. Visualization of rotorcraft equilibrium sample point 2. 𝛿 = 800, 𝛤 =
64.90, 𝜗 = 15.20. 

 

 

 

 

Figure 20. Visualization of rotorcraft equilibrium sample point 3. 𝛿 = 800, 𝛤 =
8.590, 𝜗 = 71.40. 
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lengths can be as long or short as desired, it is only the bridle angle that is important for 

equilibrium. 

The three bridle angles used in Fig. 5, 11, and 16 represent shallow, medium, and 

large angle geometries, respectively. For the shallow and medium bridle angle cases, 

equilibrium angles are found for weight coefficients up to three and four, respectively. 

However, when the bridle angle becomes large, the weight coefficients are more restricted. 

A larger range of possible weight coefficients is desired due to the flexibility it allows for 

potential rotorcraft design parameters. At first glance, this implies that large bridle angles 

should not be used. However, this design is intended for high altitude applications, and real 

world effects need to be considered. If Γ is a small angle then the tether would need to be 

extraordinarily long to place the rotorcraft at a high altitude, such as the Jetstream. Also, 

the horizontal distance needs to be considered because the airspace around this design will 

most likely be restricted to avoid flying into the rotorcraft or cutting the tether with another 

aircraft. If the tether is extremely long and travels a large horizontal distance, a very large 

cylindrical shaped airspace will be restricted. For that reason, a design such as the one used 

for Fig. 5 should not be considered further due to the low Γ. It should be noted, however, 

that the model can attain equilibrium in these conditions and might be useful for another 

design purpose.  

At high Γ, the airspace to be restricted would be more like a tall cylinder or tall 

cylinder slice. The largest Γ equilibrium angle for the medium bridle angle case is 

approximately 45 degrees, which is still small for the intended applications. The large 
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bridle angle case, though, can attain Γ equilibrium angles up to 80 degrees, which would 

be the desired case to place a rotorcraft in the Jetstream.  

 Rotorcraft with 𝜹 = 𝟔𝟓𝟎 

The maximum equilibrium tether angle is approximately equal to the bridle angle 

of a given rotorcraft design. This trend greatly narrows the pool of possible rotorcraft 

designs to those with large bridle angles. Large bridle angles are desired, but that also 

restricts the weight coefficients that can be used. A 65-degree tether angle is the minimum 

angle desired to place a rotorcraft at high altitude. Angles less than this have too large of a 

horizontal component for practical use. 65 degrees is not a definitive go, no-go, angle, but 

an approximate minimum desired tether angle chosen for the purpose of presenting the 

results. A 65-degree minimum tether angle implies that the minimum bridle angle desired 

is also 65 degrees. Fig. 21 depicts the equilibrium conditions for this minimum bridle angle. 

 

Figure 21. Equilibrium angle vs. weight coefficient. 
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65 degrees is the minimum desired equilibrium tether angle and the rotorcraft 

geometry shown above achieves this, but only at a very small weight coefficient. In reality, 

a larger bridle is required to allow for a range of weight coefficients that provide tether 

angles larger than 65 degrees. This restricts the possible rotorcraft geometry even further. 

For example, Fig. 16 shows that a weight coefficient of 0.85 corresponds approximately to 

a 65-degree tether angle.  Any weight coefficient above this will provide an equilibrium 

tether angle of less than 65 degrees, which would not be ideal. Thus, the 80-degree bridle 

angle geometry can achieve desired tether angles for any weight coefficient below 0.85. 

This geometry is close to the ideal geometry. If the bridle angle is increased to 85 degrees, 

the range of weight coefficients that produce positive tether angles, let alone tether angles 

above 65 degrees, is greatly reduced. On the other hand, if the bridle angle is decreased to 

70 degrees, the range of weight coefficients that produce tether angles above 65 degrees is 

also reduced. 

Design 

The minimum and maximum weight coefficients that produce equilibrium tether 

angles above 65 degrees for the rotorcraft with an 80-degree bridle angle are 0.1 and 0.85, 

respectively. The minimum weight coefficient value is chosen to be close to, but not equal 

to, zero. A weight coefficient of zero means nothing and a weight coefficient of 0.1 

provides a general lower bound. Fixing the weight coefficient, wind velocity, and altitude 

allows for the examination of the relationship between the rotorcraft mass and rotor area 

using Eq. 21.  
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Fig. 22 shows the rotor radius required to achieve a desired weight coefficient for 

any given mass. The assumed altitude is 30,000ft, 5,000ft above the minimum Jetstream 

altitude, and the assumed wind velocity is 49m/s, which is the average wind speed of the 

Jetstream. Two curves are shown, corresponding to the minimum and maximum desired 

weight coefficient for the rotorcraft with an 80-degree bridle angle. If all the weight 

coefficients between the minimum and maximum were plotted, the curves would fill the 

space between the two curves in Fig. 22. Thus, any mass and rotor radius combination that 

fall between the two curves will produce a weight coefficient within the desired range for 

equilibrium with Γ > 650. Unsurprisingly, Fig. 22 implies that a light rotorcraft with large 

rotors is desired. This is due to the relatively small weight coefficients that give the desired 

equilibrium conditions. From this point, a mass and rotor radius combination is selected to 

 

Figure 22. Rotor radius required to achieve desired weight coefficient for a given 

mass. 
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determine the velocity restrictions on such a design. Fig. 23 shows this relationship for a 

rotorcraft that weighs 3 kg and has a rotor radius of 1.25m. 

The three curves correspond to the minimum Jetstream altitude, the maximum 

Jetstream altitude, and an intermediate altitude. If this particular rotorcraft was placed at 

50,000ft the Jetstream would not have fast enough wind for the rotorcraft to attain a low 

enough weight coefficient for the desired equilibrium conditions. There are regions on the 

25,000ft and 40,000ft curves that do fall under the maximum wind speed of the Jetstream, 

though. This figure shows that the lower Jetstream altitudes are ideal. There is no reason 

to assume that any region of the Jetstream will consistently have the maximum wind 

velocity of 112m/s. A low altitude allows for more flexible wind speeds that maintain the 

desired weight coefficient range. Placing this rotorcraft at 25,000ft would ensure that it 

maintained a reasonable weight coefficient unless the wind speed dropped below 19m/s. 

 

Figure 23. Wind velocity vs. weight coefficient for a rotorcraft design with mass of 

3kg and rotor radius of 1.25m. 
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The purpose of a rotorcraft design instead of a kite, though, is its ability to power its rotors 

during times of low wind. Thus, if the wind fell below 19m/s the rotorcraft would remain 

in the air. 

 The chosen rotorcraft design that weighs 3kg and has a rotor radius of 1.25m can 

be placed at approximately 25,000ft and will remain longitudinally statically stable with 

Γ > 650 for wind speeds greater than 19m/s. This is one feasible design based on the 

equilibrium equations that can later be analyzed for lateral-directional static stability and 

dynamic stability. 
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4. CONCLUSION 

 The equations of motion for a tethered rotorcraft system have been derived. The 

five degrees of freedom, including two angles, Γ and 𝜑, that describe the state of the tether, 

and three Euler angles, 𝜗, 𝜓, and 𝜙, capture the most important features of the dynamics. 

Insufficient time has resulted in the lack of a dynamic analysis and will be left for future 

works. Other considerations for future works are to consider a flexible tether, an effect here 

ignored, a more in depth analysis of the thrust produced by the rotors, and unsteady wind 

conditions. 

  Two equilibrium equations were found that analyzed the system in the 𝑋𝐸-𝑍𝐸 plane. 

These equations were used to determine a feasible rotorcraft design. Under steady wind 

conditions, the equilibrium state of the rotorcraft can be longitudinally statically stable for 

certain weight coefficients, as shown in Fig. 6, 12, and 17. Relationships were found 

between the bridle angle of the rotorcraft and the maximum equilibrium tether angle. This 

relationship helps reduce the range of bridle angles to explore when designing a tethered 

rotorcraft. It was determined that a high-altitude system should have a large tether angle to 

reduce the amount of restricted airspace needed. A rotorcraft with an 80-degree bridle angle 

was chosen for further analysis. The relationship between the rotorcraft mass and rotor 

area, from Eq. 21, was used to select a possible mass and rotor radius combination. Using 

this combination, the wind speeds and altitude required for statically stable flight were 

determined.  

Under the current assumptions there are rotorcraft configurations that are 

longitudinally statically stable at altitudes and wind speeds seen in the Jetstream, although 
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the system could be stable at lower altitudes and wind speeds as well. One such design with 

a 3kg mass and 1.25m rotor radius is longitudinally statically stable at 25,000ft with Γ >

650 for wind speeds above 19m/s. This design is still longitudinally statically stable below 

19m/s, but would require an equilibrium tether angle less than 65 degrees which was set as 

the minimum for this design’s intended purpose. 
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APPENDIX A 

EQUATIONS OF MOTION 
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The following five equations of motion were determined from Lagrange’s 

equations where 𝑓1 = 𝑐𝛿𝑐𝜗 + 𝑠𝛿𝑠𝜗𝑐𝜙, 𝑓2 = 𝑐𝛿𝑠𝜗 − 𝑠𝛿𝑐𝜗𝑐𝜙, 𝑓3 = 𝑠𝛿𝑠𝜗 + 𝑐𝛿𝑐𝜗𝑐𝜙, and 

the angle 𝜈 = 𝜑 − 𝜓. 

 

i = 1  (Γ) 

𝐿2𝑀Γ̈ − 𝐿𝑀𝑙(𝑐Γ𝑓1 − 𝑠Γ𝑓2𝑐𝜈)𝜗̈ − 𝐿𝑀𝑙𝑠Γ(𝑠𝜙𝑠𝛿𝑐𝜈 + 𝑠𝜈𝑓1)𝜓̈ + 𝐿𝑀𝑙𝑠𝛿[𝑐𝜙𝑠Γ𝑠𝜈 +

𝑠𝜙(𝑠Γ𝑠𝜗𝑐𝜈 − 𝑐Γ𝑐𝜗)]𝜙̈ + 𝐿𝑀𝑙(𝑐Γ𝑓2 + 𝑠Γ𝑐𝜈𝑓1)𝜗̇2 + 0.5𝐿2𝑀𝑙𝑠(2Γ)𝜑̇2 + 𝐿𝑀𝑙𝑠Γ(𝑐𝜈𝑓1 −

𝑠𝜙𝑠𝛿𝑠𝜈)𝜓̇2 + 𝐿𝑀𝑙𝑠𝛿[𝑠Γ(𝑐𝜙𝑠𝜗𝑐𝜈 − 𝑠𝜙𝑠𝜈) − 𝑐𝜙𝑐Γ𝑐𝜗]𝜙̇2 + 2𝐿𝑀𝑙𝑠Γ𝑠𝜈𝑓2𝜗̇𝜓̇ +

2𝐿𝑀𝑙𝑠𝜙𝑠𝛿(𝑐Γ𝑠𝜗 + 𝑠Γ𝑐𝜗𝑐𝜈)𝜗̇𝜙̇ + 2𝐿𝑀𝑙𝑠𝛿𝑠Γ(𝑠𝜙𝑠𝜗𝑠𝜈 − 𝑐𝜙𝑐𝜈)𝜓̇𝜙̇ + 𝐿𝑀𝑔𝑐Γ +

4𝑇𝛼 tan−1{[−𝑊(𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜗) + 𝑙𝑐𝜙𝑐𝛿𝜗̇ + 𝐿(𝑠Γ(𝑐𝜙𝑠𝜗𝑐𝜈 − 𝑠𝜙𝑠𝜈) − 𝑐𝜙𝑐Γ𝑐𝜗)Γ̇ +

𝑙𝑠𝜙𝑐𝛿𝑐𝜗𝜓̇ + 𝐿𝑐Γ(𝑠𝜙𝑐𝜈 + 𝑐𝜙𝑠𝜗𝑠𝜈)𝜑̇]/[𝑊𝑐𝜓𝑐𝜗 + 𝑙𝑐𝜙𝑠𝛿𝜗̇ − 𝐿(𝑐Γ𝑠𝜗 + 𝑐𝜗𝑠Γ𝑐𝜈)Γ̇ +

𝑙𝑠𝜙𝑠𝛿𝑐𝜗𝜓̇ − 𝐿𝑐Γ𝑐𝜗𝑠𝜈𝜑̇]} [𝐿𝑐𝜙𝑐Γ𝑐𝜗 − 𝐿𝑐𝜑𝑠Γ(𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑐𝜓𝑠𝜗) + 𝐿𝑠Γ𝑠𝜑(𝑠𝜙𝑐𝜓 −

𝑐𝜙𝑠𝜓𝑠𝜗)]=0 

 

i = 2  (𝜗) 

𝐿𝑀𝑙(𝑠Γ𝑐𝜈𝑓2 − 𝑐Γ𝑓1)Γ̈ + [𝑐2𝜙𝐼𝑦 + 𝑠2𝜙𝐼𝑧 + 𝑀𝑙2(𝑐2𝜙 + 𝑐2𝛿 − 𝑐2𝜙𝑐2𝛿)]𝜗̈ +

𝐿𝑀𝑙𝑐Γ𝑠𝜈𝑓2𝜑̈ + 𝑠𝜙[𝑐𝜙𝑐𝜗(𝐼𝑦 − 𝐼𝑧) − 𝑀𝑙2𝑠𝛿𝑓2]𝜓̈ + 𝑀𝑙2𝑠𝜙𝑐𝛿𝑠𝛿𝜙̈ + 𝐿𝑀𝑙(𝑠Γ𝑓1 +

𝑐Γ𝑐𝜈𝑓2)Γ̇2 + 𝐿𝑀𝑙𝑐Γ𝑐𝜈𝑓2𝜑̇2 + [−0.5𝑠(2𝜗)𝐼𝑥 + (0.5𝑠(2𝜗) − 𝑐𝜗𝑠𝜗𝑐2𝜙)𝐼𝑦 +

𝑀𝑙2𝑐𝛿(𝑐𝛿𝑐𝜗𝑠𝜗(1 + 𝑐2𝜙) − 𝑐𝜙𝑠𝛿𝑐(2𝜗))]𝜓̇2 + 𝑀𝑙2𝑐𝜙𝑐𝛿𝑠𝛿𝜙̇2 − 2𝐿𝑀𝑙𝑠Γ𝑠𝜈𝑓2Γ̇𝜑̇ +

[𝑀𝑙2(2𝑐𝜙𝑠𝜙𝑐2𝛿 − 𝑠(2𝜙)) − 𝑠(2𝜙)(𝐼𝑧 − 𝐼𝑦)]𝜗̇𝜙̇ + [𝑐𝜗𝐼𝑥 + 𝑐𝜗𝑐(2𝜙)(𝐼𝑦 − 𝐼𝑧) −

2𝑀𝑙2𝑐𝜙𝑠𝛿𝑓2]𝜓̇𝜙̇ + 2𝑇𝑞𝑑𝑐2𝜙𝜗̇ + 2𝑇𝑞𝑑𝑐𝜙𝑠𝜙𝑐𝜗𝜓̇ − 𝑀𝑔𝑙𝑓1 −

4𝑇𝛼𝑙𝑐𝜙𝑐𝛿 tan−1{[−𝑊(𝑐𝜙𝑐𝜓𝑠𝜗 + 𝑠𝜙𝑠𝜓) + 𝐿(𝑐𝜙𝑐Γ𝑐𝜗 − 𝑠𝜙𝑠Γ𝑠𝜈 + 𝑐𝜙𝑠Γ𝑠𝜗𝑐𝜈)Γ̇ +

𝑙𝑐𝜙𝑐𝛿𝜗̇ + 𝐿𝑐Γ(𝑠𝜙𝑐𝜈 − 𝑐𝜙𝑠𝜗𝑠𝜈)𝜑̇ + 𝑙𝑠𝜙𝑐𝛿𝑐𝜗𝜓̇]/[𝑊𝑐𝜓𝑐𝜗 − 𝐿(𝑐Γ𝑠𝜗 + 𝑠Γ𝑐𝜗𝑐𝜈)Γ̇ +

𝑙𝑐𝜙𝑠𝛿𝜗̇ − 𝐿𝑐Γ𝑐𝜗𝑠𝜈𝜑̇ + 𝑙𝑠𝜙𝑠𝛿𝑐𝜗𝜓̇]}=0 

 

i = 3  (𝜑) 

𝑀𝑙𝑠𝜈𝑓2𝜗̈ + 𝐿𝑀𝑐Γ𝜑̈ + 𝑀𝑙(𝑐𝜈𝑓1 − 𝑠𝜙𝑠𝛿𝑠𝜈)𝜓̈ + 𝑀𝑙𝑠𝛿(𝑠𝜙𝑠𝜗𝑠𝜈 − 𝑐𝜙𝑐𝜈)𝜙̈ + 𝑀𝑙𝑠𝜈𝑓1𝜗̇2 +

𝑀𝑙(𝑠𝜙𝑠𝛿𝑐𝜈 + 𝑠𝜈𝑓1)𝜓̇2 + 𝑀𝑙𝑠𝛿(𝑠𝜙𝑐𝜈 + 𝑐𝜙𝑠𝜗𝑠𝜈)𝜙̇2 − 2𝐿𝑀𝑠ΓΓ̇𝜑̇ − 2𝑀𝑙𝑐𝜈𝑓2𝜗̇𝜓̇ +

2𝑀𝑙𝑠𝜙𝑠𝛿𝑐𝜗𝑠𝜈𝜗̇𝜙̇ − 2𝑀𝑙𝑠𝛿(𝑐𝜙𝑠𝜈 + 𝑠𝜙𝑠𝜗𝑐𝜈)𝜓̇𝜙̇ − 4𝑇𝛼(𝑠𝜙𝑐𝜈 +

𝑐𝜙𝑠𝜗𝑠𝜈) tan−1{[−𝑊(𝑐𝜙𝑐𝜓𝑠𝜗 + 𝑠𝜙𝑠𝜓) + 𝐿(−𝑐𝜙𝑐Γ𝑐𝜗 − 𝑠𝜙𝑠Γ𝑠𝜈 + 𝑐𝜙𝑠Γ𝑠𝜗𝑐𝜈)Γ̇ +

𝑙𝑐𝜙𝑐𝛿𝜗̇ + 𝐿𝑐Γ(𝑠𝜙𝑐𝜈 + 𝑐𝜙𝑠𝜗𝑠𝜈)𝜑̇ + 𝑙𝑠𝜙𝑐𝛿𝑐𝜗𝜓̇]/[𝑊𝑐𝜓𝑐𝜗 − 𝐿(𝑐Γ𝑠𝜗 + 𝑐𝜗𝑠Γ𝑐𝜈)Γ̇ +

𝑙𝑐𝜙𝑠𝛿𝜗̇ − 𝐿𝑐Γ𝑐𝜗𝑠𝜈𝜑̇ + 𝑙𝑠𝜙𝑠𝛿𝑐𝜗𝜓̇]}=0 

 



41 

i = 4  (𝜓) 

−𝐿𝑀𝑙𝑠Γ(𝑠𝜈𝑓1 + 𝑠𝜙𝑠𝛿𝑐𝜈)Γ̈ + 𝑠𝜙[𝑀𝑙2(𝑐𝜙𝑐𝜗 − 𝑐𝛿𝑓3) + 𝑐𝜙𝑐𝜗(𝐼𝑦 − 𝐼𝑧)]𝜗̈ +

𝐿𝑀𝑙𝑐Γ(𝑐𝜈𝑓1 − 𝑠𝜙𝑠𝛿𝑠𝜈)𝜑̈ + [𝑠2𝜗𝐼𝑥 + 𝑠2𝜙𝑐2𝜗𝐼𝑦 + 𝑐2𝜙𝑐2𝜗𝐼𝑧 + 𝑀𝑙2(𝑠2𝛿 −

𝑐2𝜗𝑐2𝜙𝑠2𝛿 + 𝑐𝜙𝑐𝛿𝑠𝛿𝑠(2𝜗))]𝜓̈ − (𝑠𝜗𝐼𝑥 − 𝑀𝑙2𝑠2𝛿𝑓3)𝜙̈ − 𝐿𝑀𝑙𝑐Γ(𝑠𝜈𝑓1 + 𝑠𝜙𝑠𝛿𝑐𝜈)Γ̇2 +

𝑠𝜙[𝑐𝜙𝑠𝜗(𝐼𝑧 − 𝐼𝑦) − 𝑀𝑙2𝑠𝛿𝑓1]𝜗̇2 − 𝐿𝑚𝑙𝑐Γ(𝑠𝜈𝑓1 + 𝑠𝜙𝑠𝛿𝑐𝜈)𝜑̇2 + 𝑀𝑙2𝑠𝜙𝑐𝛿𝑠𝛿𝑐𝜗𝜙̇2 +

2𝐿𝑀𝑙𝑠Γ(𝑠𝜙𝑠𝛿𝑠𝜈 − 𝑐𝜈𝑓1)Γ̇𝜙̇ + [𝑠(2𝜗)(𝐼𝑥 − 𝑠2𝜙𝐼𝑦 − 𝑐2𝜙𝐼𝑧) + 𝑀𝑙2(𝑠(2𝜗)(𝑐2𝜙𝑠2𝛿 −

𝑐2𝛿) + 𝑠(2𝛿)𝑐(2𝜗))]𝜗̇𝜓̇ + 𝑐𝜗[−𝐼𝑥 + 𝑐(2𝜙)(𝐼𝑦 − 𝐼𝑧) − 2𝑀𝑙2𝑠2𝜙𝑠2𝛿]𝜗̇𝜙̇ +

2𝑠𝜙𝑐𝜗[𝑐𝜙𝑐𝜗(𝐼𝑦 − 𝐼𝑧) + 𝑀𝑙2(𝑐𝜙𝑐𝜗 − 𝑐𝛿𝑓3)]𝜓̇𝜙̇ + 2𝑇𝑞𝑑𝑐𝜙𝑠𝜙𝑐𝜗𝜗̇ + 2𝑑(𝑇𝑞𝑠2𝜙𝑐2𝜙 +

𝑇𝑝𝑠2𝜗)𝜓̇ − 2𝑇𝑝𝑑𝑠𝜗𝜙̇ − 4𝑠𝜙𝑐𝛿𝑐𝜗𝑇𝛼𝑙 tan−1{[−𝑊(𝑐𝜙𝑐𝜓𝑠𝜗 + 𝑠𝜙𝑠𝜓) + 𝐿(−𝑐𝜙𝑐Γ𝑐𝜗 −

𝑠𝜙𝑐Γ𝑠𝜈 + 𝑐𝜙𝑠Γ𝑠𝜗𝑐𝜈)Γ̇ + 𝑙𝑐𝜙𝑐𝛿𝜗̇ + 𝐿𝑐Γ(𝑠𝜙𝑐𝜈 + 𝑐𝜙𝑠𝜗𝑠𝜈)𝜑̇ + 𝑙𝑠𝜙𝑐𝛿𝑐𝜗𝜓̇]/[𝑊𝑐𝜓𝑐𝜗 −

𝐿(𝑐Γ𝑠𝜗 + 𝑐𝜗𝑠Γ𝑐𝜈)Γ̇ + 𝑙𝑐𝜙𝑠𝛿𝜗̇ − 𝐿𝑐Γ𝑐𝜗𝑠𝜈𝜑̇ + 𝑙𝑠𝜙𝑠𝛿𝑐𝜗𝜓̇]}=0 

 

i = 5  (𝜙) 

𝐿𝑀𝑙𝑠δ(𝑐𝜙𝑠Γ𝑠𝜈 − 𝑠𝜙𝑐Γ𝑐𝜗 + 𝑠𝜙𝑠Γ𝑠𝜗𝑐𝜈)Γ̈ + 𝑀𝑙2𝑠𝜙𝑐𝛿𝑠𝛿𝜗̈ + 𝐿𝑀𝑙𝑐Γ𝑠𝛿(𝑠𝜙𝑠𝜗𝑠𝜈 −

𝑐𝜙𝑐𝜈)𝜑̈ − [𝑠𝜗𝐼𝑥 + 𝑀𝑙2𝑠𝛿(𝑠𝛿 + 𝑐𝜙𝑐𝜗𝑐𝛿)]𝜓̈ + (𝐼𝑥 + 𝑀𝑙2𝑠2𝛿)𝜙̈ + 𝐿𝑀𝑙𝑠𝛿(𝑠𝜙𝑐𝜗𝑠Γ +

𝑐Γ𝑐𝜙𝑠𝜈 + 𝑠𝜙𝑐Γ𝑠𝜗𝑐𝜈)Γ̇2 + 0.5𝑠(2𝜙)(𝑀𝑙2𝑠2𝛿 + 𝐼𝑦 − 𝐼𝑧)𝜗̇2 + 𝐿𝑀𝑙𝑐Γ𝑠𝛿(𝑐𝜙𝑠𝜈 +

𝑠𝜙𝑠𝜗𝑐𝜈)𝜑̇2 + [0.5𝑠(2𝜙)𝑐2𝜗(𝐼𝑧 − 𝐼𝑦) + 𝑀𝑙2𝑠𝜙𝑐𝜗𝑠𝛿𝑓2]𝜓̇2 + 2𝐿𝑀𝑙𝑠𝛿𝑠Γ(𝑐𝜙𝑐𝜈 −

𝑠𝜙𝑠𝜗𝑠𝜈)Γ̇𝜑̇ + [−𝑐𝜗𝐼𝑥 + 𝑐𝜗𝑐(2𝜙)(𝐼𝑧 − 𝐼𝑦) + 2𝑀𝑙2𝑐𝜙𝑠𝛿𝑓2]𝜗̇𝜓̇ − 2𝑇𝑝𝑑𝑠𝜗𝜓̇ + 2𝑇𝑝𝑑𝜙̇ −

𝑀𝑔𝑙𝑠𝜙𝑠𝛿𝑐𝜗=0 


