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ABSTRACT 

 Bayesian phylogeography is a framework that has enabled researchers to model 

the spatiotemporal diffusion of pathogens. In general, the framework assumes that 

discrete geographic sampling traits follow a continuous-time Markov chain process along 

the branches of an unknown phylogeny that is informed through nucleotide sequence 

data. Recently, this framework has been extended to model the transition rate matrix 

between discrete states as a generalized linear model (GLM) of predictors of interest to 

the pathogen. In this dissertation, I focus on these GLMs and describe their capabilities, 

limitations, and introduce a pipeline that may enable more researchers to utilize this 

framework.  

I first demonstrate how a GLM can be employed and how the support for the 

predictors can be measured using influenza A/H5N1 in Egypt as an example. Secondly, I 

compare the GLM framework to two alternative frameworks of Bayesian 

phylogeography: one that uses an advanced computational technique and one that does 

not. For this assessment, I model the diffusion of influenza A/H3N2 in the United States 

during the 2014-15 flu season with five methods encapsulated by the three frameworks. I 

summarize metrics of the phylogenies created by each and demonstrate their 

reproducibility by performing analyses on several random sequence samples under a 

variety of population growth scenarios. Next, I demonstrate how discretization of the 

location trait for a given sequence set can influence phylogenies and support for 

predictors. That is, I perform several GLM analyses on a set of sequences and change 

how the sequences are pooled, then show how aggregating predictors at four levels of 

spatial resolution will alter posterior support. Finally, I provide a solution for researchers 
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that wish to use the GLM framework but may be deterred by the tedious file-

manipulation requirements that must be completed to do so. My pipeline, which is 

publicly available, should alleviate concerns pertaining to the difficulty and time-

consuming nature of creating the files necessary to perform GLM analyses. This 

dissertation expands the knowledge of Bayesian phylogeographic GLMs and will 

facilitate the use of this framework, which may ultimately reveal the variables that drive 

the spread of pathogens. 

  



iii 

 

DEDICATION 

 I dedicate this work to all my friends and family that, at the very least, pretend to 

be interested when I explain what exactly it is that I’ve been doing since I arrived at 

ASU. This includes my fiancé, Hansa, my immediate family, Bob, Kathy, Bill, Andy, and 

Kate Magee, and my grandparents, Jim and Jean Magee and Diane Kasych.  

  



iv 

 

ACKNOWLEDGMENTS 

 I would like to thank my Graduate Supervisory Committee, Drs. Matthew Scotch, 

Graciela Gonzalez, and Jay Taylor for their guidance in the completion of my 

dissertation. I thank all other individuals that scientifically contributed to this work, 

including Rachel Beard, Dr. Philippe Lemey, and Dr. Marc A. Suchard. This work would 

not have been possible without various assistance provided by Dr. Abdelsatar Arafa, Dr. 

Peter Beerli, Sahithya Dhamodharan, Dr. Tony Goldberg, Dr. Andriyan Grinev, Dr. 

Laura Kramer, Demetri Shargani, Dr. Steve Zink, and the authors, originating and 

submitting laboratories of the sequences obtained from GISAID’s EpiFlu Database. I 

would also like to thank those individuals that provided academic and other support to 

me, including Dr. Rolf Halden, Maria Hanlin, Laura Kaufman, Lauren Madjidi, Dr. Anita 

Murcko, Dr. George Runger, and Marcia Spurlock. I thank the various sources of funding 

that I have received that allowed me to complete my dissertation: the ARCS Foundation, 

especially my generous donors, Ellie and Michael Ziegler, the ASU Department of 

Biomedical Informatics, the National Institutes of Health, and the PLuS Alliance. I thank 

those that have provided various feedback pertaining to my work over the last four years, 

including members of the Biodesign Center for Environmental Security and the 

Department of Biomedical Informatics. Finally, I would like to thank those that allowed 

me to gain research experience which ultimately led to my admittance into the ASU 

Biomedical Informatics Ph.D. program, including Larissa Topeka, Drs. Kay Huebner, 

Josh Saldivar, Matthew During, Lei Cao, and Deborah Lin. 



v 

 

TABLE OF CONTENTS 

Page 

LIST OF TABLES  ..........................................................................................................  vii 

LIST OF FIGURES  .......................................................................................................  viii 

CHAPTER 

1 COMBINING PHYLOGEOGRAPHY AND SPATIAL 

 EPIDEMIOLOGY TO UNCOVER PREDICTORS OF INFLUENZA 

 A/H5N1 VIRUS DIFFUSION IN EGYPT  ...................................................... 1 

Introduction  ................................................................................................ 1 

Results  ........................................................................................................ 4 

Discussion  .................................................................................................. 9 

Materials and Methods  ............................................................................. 14 

2 BAYESIAN PHYLOGEOGRAPHY OF INFLUENZA A/H3N2 FOR 

 THE 2014-15 SEASON IN THE UNITED STATES USING THREE 

 FRAMEWORKS OF ANCESTRAL STATE RECONSTRUCTION  .......... 23 

Introduction  .............................................................................................. 23 

Results  ...................................................................................................... 25 

Discussion  ................................................................................................ 45 

Materials and Methods  ............................................................................. 51 

3 THE EFFECTS OF SAMPLING LOCATION AND PREDICTOR 

 POINT ESTIMATE CERTAINTY ON POSTERIOR SUPPORT IN 

 BAYESIAN PHYLOGEOGRAPHIC GENERALIZED LINEAR  

 MODELS ........................................................................................................ 60 



vi 

 

CHAPTER Page 

Introduction  .............................................................................................. 60 

Results  ...................................................................................................... 63 

Discussion  ................................................................................................ 75 

Materials and Methods  ............................................................................. 81 

4 A PIPELINE FOR PRODUCTION OF BEAST XML FILES WITH 

 GENERALIZED LINEAR MODEL SPECIFICATIONS  ............................ 91 

Introduction  .............................................................................................. 91 

Program Requirements ............................................................................. 92 

Program Execution ................................................................................... 96 

Algorithm  ................................................................................................. 98 

Conclusion  ............................................................................................. 101 

5 DISCUSSION ................................................................................................103 

Summary of Chapters ............................................................................. 103 

Future Research ...................................................................................... 107 

REFERENCES ............................................................................................................... 109 

APPENDIX 

A SEQUENCE METADATA FOR CHAPTER 1 ............................................118 

B SEQUENCE METADATA FOR CHAPTER 2 ............................................124 

C SEQUENCE METADATA FOR CHAPTER 3 ............................................132 

D STATEMENTS FROM CO-AUTHORS IN PUBLISHED WORK .............140 

  



vii 

 

LIST OF TABLES 

Table Page 

1.1. Inclusion Support Statistics for Governorate of Origin ...........................................5 

1.2. Inclusion Support Statistics for Governorate of Destination ...................................5 

1.3. Calculated Cross-Species Transmission Values from Migrate-N ...........................9 

1.4. Descriptive Statistics of Each Predictor for the 20 Governorates ..........................17 

2.1. Frequencies of the Root States Identified in the MCC Tree Under Each 

Reconstruction Method  .........................................................................................35 

2.2. Frequency of GLM Predictor Support  ..................................................................45 

2.3. Descriptive Statistics of Each Predictor for the Ten Discrete States  ....................57 

3.1. Predictor Combinations Where |Pearson’s R| > 0.9 ...............................................64 

3.2. Posterior Statistics of the MCC Phylogenies  ........................................................65 

3.3. R2 Statistics for Linear Models Between the Variance of Predictor Point  

 Estimates and the Variance in Posterior Support Metrics  ....................................75 

4.1. Example Format of a Batch Predictor File ............................................................93 

4.2. Example Format of a Single Predictor File ............................................................94 

4.3. Arguments for the Python Script  ..........................................................................97 

4.4. Example Output Visible to a User that Inputs a Batch Predictor File  ..................98 

  



viii 

 

LIST OF FIGURES 

Figure Page 

1.1. Posterior Support Metrics for the 15 Relevant Predictors that Achieved BF > 3 ....7 

1.2. Map of Egypt and the Included Governorates .......................................................15 

2.1. Model Comparison Statistics and Location-Specific Genetic Diversity ...............26 

2.2. Model Comparisons for the 180 Analyses .............................................................27 

2.3. Association Index Scores Obtained via Bats .........................................................28 

2.4. Mean Posterior Metrics of the MCC Phylogenies .................................................31 

2.5. Individual Root State Posterior Probabilities and Potential Sampling Bias ..........33 

2.6. Individual Kullback-Leibler Divergence Statistics of the Root State Prior and 

Posterior Probabilities for Each Model ..................................................................34 

2.7. Root Heights for the MCC Phylogenies ................................................................35 

2.8. Geographic Trends in Coalescent Events ..............................................................37 

2.9. Mean Posterior Estimates of Supported Predictors ...............................................38 

2.10. Posterior Inclusion Probabilities of All Predictors Per Sample and Prior for the 

GLM(–SS) Runs ....................................................................................................41 

2.11. Posterior Regression Coefficients of All Predictors Per Sample and Prior for the 

GLM(–SS) Runs ....................................................................................................42 

2.12. Posterior Inclusion Probabilities of All Predictors Per Sample and Prior for the 

GLM(+SS) Runs ....................................................................................................43 

2.13. Posterior Regression Coefficients of All Predictors Per Sample and Prior for the 

GLM(+SS) Runs ....................................................................................................44 

3.1. MCC Phylogeny of the CBS Model ......................................................................66 



ix 

 

Figure Page 

3.2. MCC Phylogeny of the State Model ......................................................................66 

3.3. MCC Phylogeny of the County Model ..................................................................67 

3.4. Bayesian Skyline Plots for the National Models ...................................................68 

3.5. Bayesian Skyline Plots for the Regional Models ...................................................69 

3.6. Inclusion Probabilities and Corresponding Regression Coefficients for the 15 

Predictors for The National Models .......................................................................71 

3.7. Inclusion Probabilities and Corresponding Regression Coefficients for the 15 

Predictors for the Regional Models .......................................................................73 

3.8. Linear Correlations Between the Variance of Predictor Point Estimates and the 

Variance in Posterior Support Metrics ...................................................................74 

3.9. Map of the Discrete State Partitions Used in this Study ........................................84 

3.10. Boxplots of the Predictors Used in this Study for Each Model .............................89 

 

 

  



1 

 

CHAPTER 1 

COMBINING PHYLOGEOGRAPHY AND SPATIAL EPIDEMIOLOGY TO 

UNCOVER PREDICTORS OF INFLUENZA A/H5N1 VIRUS DIFFUSION IN EGYPT 

Introduction 

Currently emerging and re-emerging infectious diseases of zoonotic origin such as 

highly pathogenic avian influenza A pose a significant threat to human and animal health 

due to their elevated transmissibility (Chen, Liu, Cai, Du, & Li, 2013; Krauss, 2003). 

Predicting the spread of these viruses is challenging because many of the drivers of 

disease are not easily identifiable. These drivers can be of an environmental, geographic, 

demographic, genetic, or other nature. For example, diffusion could be caused by climate, 

human and avian population density, and other key demographic profiles (Herrick, 

Huettmann, & Lindgren, 2013). Several techniques exist to help identify these drivers 

including bioinformatics, phylogeography, and spatial epidemiology but these methods 

are generally evaluated separately and do not consider the natural complementary 

principles of each other. 

Successful analysis of spatial epidemiological factors have identified air travel 

and global mobility as key drivers of influenza (Viboud, Bjornstad, et al., 2006) but do 

not consider the key elements of molecular sequence analysis such as gene flow, cross-

species transmission (CST), and viral mutations to support and complement their work. 

Similarly, bioinformatics and phylogeographic techniques which thoroughly analyze 

sequence data often ignore climate and demographic factors. Here I will adopt an 

approach which integrates these separate techniques and helps identify the most 

important drivers of disease spread. A more comprehensive model of viral diffusion will 
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be useful for public health and other agencies to develop strategies for curbing spread of 

these devastating diseases. Knowing the factors that are most relevant in predicting the 

diffusion will allow for an accurate and continuous threat assessment and prevention. 

Two previous studies on various influenza subtypes have identified several potential 

environmental and demographic drivers of viral diffusion including precipitation, 

humidity, and temperature (Tamerius et al., 2013), human, duck, and chicken density 

(Van Boeckel et al., 2012) but fail to account for genetic variables. Conversely a study by 

Lam et al. (Lam et al., 2012) showed that H5N1 in Indonesia began by an introduction of 

the virus in East Java in 2002 and was followed by east and westward migration to cover 

the entire country. This work highlights that phylogeographic and bioinformatics 

techniques can pinpoint locations and demonstrate migratory patterns of viral diffusion. 

Unfortunately, this study lacks demographic and epidemiological factors which also 

could have contributed to the diffusion, demonstrating a lack of coordination between the 

methodologies. 

 Ypma et al. (Ypma et al., 2012) presented an integration of these techniques by 

estimating the migratory patterns of influenza A H7N7 transmission between farms in the 

Netherlands using genetic data as well as spatiotemporal elements. The authors were able 

to demonstrate that geography alone is not a reliable indicator of transmission routes but 

that it does improve the accuracy of the routes when combined with both genetic and 

temporal data. A different study by Ypma et al. (Ypma, van Ballegooijen, & Wallinga, 

2013) then utilized within-host dynamics and genetic data to create phylogenetic trees to 

estimate transmission routes and connect estimating variables. Their separate evaluation 

of space-time and genetic contributors was a unique innovation to the performance 
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evaluation of transmission trees. Studies like these have shown how phylogeography, 

bioinformatics, and epidemiology approaches can be integrated to provide more accurate 

modeling of disease outbreaks. 

The diffusion of H5N1 in Egypt is an excellent candidate for testing such an 

approach. Egypt has emerged as an epicenter for H5N1 with 173 confirmed human cases 

as of January 2014, the most of any country outside of Southeast Asia (WHO, 2013). The 

cultural preference of Egyptian citizens is to utilize live bird markets to obtain their 

poultry which results in 70% of all poultry trade occurring in this manner (Abdelwhab & 

Hafez, 2011). The environment of these markets yields a high possibility of infection and 

spread of H5N1, and in 2009 Abdelwhab et al. (Abdelwhab et al., 2010) determined that 

over 12.4% of tested markets contained infected avian species. These markets thus 

become a major source of avian-to-human transmission (Abdelwhab & Hafez, 2011). 

While this can help explain the primary route by which humans are infected by avian 

species, there is uncertainty as to their connection to human and animal infection across 

the entire Egyptian landscape.  

In this paper, I evaluate the spread of H5N1 in Egypt by reconstructing its 

phylogenetic history while simultaneously determining the impact of the certain 

environmental, geographic, demographic, and genetic drivers. This model will help 

pinpoint the variables most responsible for the diffusion as well as eliminate unsupported 

characteristics from model consideration. I focus on a variant H5N1 subclade 2.2.1.1., 

which is one of 10 currently defined subclades within Egypt (WHO, 2012). This 

particular clade is appropriate because it is found almost exclusively within Egypt and 

therefore all features of the landscape, culture, and climate are potentially directly 
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relevant for its diffusion dynamics. I expand on preliminary work by Beard et al. (Beard, 

Magee, Suchard, Lemey, & Scotch, 2014) by including additional predictors of diffusion 

as well as new techniques for analysis of viral sequences.  

 

Results 

In Tables 1.1 and 1.2, I provide the posterior inclusion probabilities and BFs for 

each predictor, stratified by governorate of origin and destination. The two most strongly 

supported predictors are avian counts from governorate of destination (BF>20,000) 

followed by avian counts from governorate of origin (BF=80.28). Although these BFs are 

in the “very strong” and “strong” categories of Kass and Raftery (Kass & Raftery, 1995), 

respectively, these likely arise from sampling differentiation between locations. While 

these predictors are not of direct scientific interest, their inclusion does enable the GLM 

to help control for differential sampling bias in estimates for the remaining predictors. 

The following predictors, in order, constitute the remaining factors which reached the BF 

threshold of 3.0, all coming from the governorate of origin: avian density, pigeon density, 

longitude, goose density, proportion of avian viral genomes without the genetic motif, 

chicken density, human density, elevation, precipitation, duck density, human counts, 

latitude, humidity, temperature, and duck density. There were no supported predictors 

from the governorate of destination, apart from the avian counts.  
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Table 1.1 

Inclusion support statistics for governorate of origin 

Predictor Posterior Inclusion Probability Bayes Factor 

Avian Counts 0.63 80.28 

Avian Density 0.32 22.87 

Pigeon Density 0.31 21.45 

Longitude 0.30 20.35 

Goose Density 0.30 20.24 

No Motif Density 0.26 16.78 

Chicken Density 0.25 15.63 

Human Density 0.24 15.08 

Elevation 0.24 14.99 

Precipitation 0.22 13.64 

Duck Density 0.22 13.20 

Human Counts 0.21 12.69 

Latitude 0.17 9.51 

Humidity 0.16 9.21 

Temperature 0.13 7.13 

Turkey Density 0.10 5.50 

Distance 0.01 0.46 

 

Table 1.2 

Inclusion support statistics for governorate of destination 

Predictor Posterior Inclusion Probability Bayes Factor 

Avian Counts 1.00 28058.39 

Goose Density 0.01 0.73 

No Motif Density 0.01 0.67 

Avian Density 0.01 0.62 

Pigeon Density 0.01 0.59 

Chicken Density 0.01 0.51 

Distance 0.01 0.46 

Duck Density 0.01 0.46 

Human Density 0.01 0.37 

Elevation 0.01 0.29 

Human Counts <0.01 0.16 

Latitude <0.01 0.13 

Temperature <0.01 0.13 

Humidity <0.01 0.13 

Turkey Density <0.01 0.11 

Longitude <0.01 0.08 

Precipitation <0.01 0.08 
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Of the predictors which reached the BF threshold of 3.0, avian density, pigeon 

density, longitude, and goose density each had a BF in excess of 20.0, which is the 

threshold marker of a “strong” predictor (Kass & Raftery, 1995). In Figure 1.1, we show 

the posterior inclusions probability of the 15 supported predictors, BF markers, and the β-

coefficient complete with the 95% Bayesian credible interval to visualize uncertainty. 

The wide range of the 95% credible intervals for each β-coefficient make interpretation 

of their relative contribution difficult; however the size of the BF for each predictor 

provides confidence that these variables are in fact playing a role in the spread of H5N1.  
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Figure 1.1. Posterior support metrics for the 15 relevant predictors that achieved BF > 3. 

Inclusion probabilities are represented by the blue bar, and several BF values are 

annotated as vertical black lines. Also included is the mean posterior regression 

coefficient, represented by the blue dot, and 95% confidence interval of the GLM test 

coefficient. 

Since the GLM shows a lack of support for any predictor dependent upon 

governorate of destination it can be concluded that origin-based predictors are primarily 

responsible for viral spread. Fixed variables such as latitude, longitude, and elevation had 
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similar support scores as naturally occurring factors like precipitation, relative humidity, 

and temperature as well as variable agricultural quantities like the densities of specific 

avian birds and humans. The support of the density of avian birds without the motif 

indicates that the mutation identified by Yoon et al. (Yoon et al., 2013) indeed plays a 

role in the diffusion process and confirms the role of at least one demographic, 

geographic, environmental, and genetic feature for the complex spatiotemporal spread of 

H5N1 influenza in Egypt. 

In Table 1.3, I provide the CST results, which indicate that transmission to 

humans is generally caused by ducks, turkeys, and geese. This is surprising given that the 

overall population density of chickens in Egypt is far larger than any of the other avian 

species analyzed. Humans were also calculated to have a high transmissibility to turkeys, 

geese, and ducks but not toward chickens and had the highest mean of per-capita 

transmission to all species. By these same calculations, turkeys were second most 

transmissible, followed closely by ducks and geese while chickens were least-

transmissible among species measured. The mean per capita CST values from largest to 

smallest is: human, turkey, duck, geese, and chicken. Mean duck and geese CST values 

are very similar as well at 2.37 and 2.31, respectively. 
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Table 1.3 

Calculated cross-species transmission values from Migrate-n 

  Species Transmitted To  

 

S
p
ec

ie
s 

T
ra

n
sm

it
te

d
 

F
ro

m
 

 Human Chicken Duck Goose Turkey Mean 

Human  1.02 3.42 4.61 5.23 3.57 

Chicken 1.40  0.85 2.23 2.10 1.65 

Duck 3.58 0.70  3.01 2.18 2.37 

Goose 3.08 0.70 2.97  2.49 2.31 

Turkey 3.34 0.99 2.53 3.30  2.54 

Mean 2.85 0.85 2.44 3.29 3.00  

 

Discussion 

 In this work, I modeled H5N1 viral spread in Egypt while simultaneously testing 

the role of various environmental, geographic, demographic, and genetic predictors. The 

posterior inclusion probabilities and calculated BF values show support for 15 variables 

of direct scientific interest. While these 15 variables have relatively low probabilities 

(E(δ) < 0.35) this should not be taken to mean that the variables are not relevant to the 

diffusion process. If we have E(δ)=0.30 for a given predictor, this means that 30% of all 

possible linear models, including or excluding that and all other predictors, support its 

inclusion with a high probability. Furthermore, the BF values indicate how much more 

likely it is that the predictor should be included than the defined posterior probability that 

there was a 50% chance of no predictor being included. This conservative prior 

probability allows us to state the strength of support for each predictor with high 

confidence, even if the posterior inclusion probability remains low. 

Among avian species I found that densities of ducks, geese/guinea fowl, turkey, 

pigeons/other birds and chickens are all supported for inclusion within the 

phylogeographic GLM, all with similar BFs while human density has an inclusion 
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probability ranking in between that of the various avian species. The support for 

geese/guinea fowl and pigeons/other birds is likely a result of collinearity with the 

chicken, duck, and turkey predictors based on the way their point estimates were 

obtained. Pearson’s r between the overall avian density predictors and the pigeon/other 

bird and geese/guinea fowl predictors exceeded 0.99, although the overall predictor 

design matrix did achieve full rank. This emphasizes the need for health agencies to 

consider human and animal census data when determining infectious disease risk while 

focusing on known viral carriers and reservoir species. This also supports the notion that 

live bird markets are involved with transmission due to high density and close contact 

with humans. Real-time monitoring of live bird market inventory would provide public 

health agencies with very accurate numbers of poultry and enable them to have detailed 

information in specific locations. This could be done simply by requiring all market 

vendors to report their stocks each day and the market could submit a compiled dataset 

on a weekly basis. Active data collection such as this would be effective in determining 

whether specific species are directly linked with trends in the diffusion of various viruses 

including H5N1. 

Our findings that environmental factors are predictors of influenza diffusion are 

consistent with work by He et al. (Herrick et al., 2013) who analyzed virus spread in 

Canada. Specifically, the authors identified longitude, temperature, and humidity as 

strong predictors, all of which are supported in our GLM by the BF metric. This reiterates 

the previous findings that geographic and climate factors impact the diffusion of 

influenza. In contrast, their model did not identify human population as a significant 

predictor (Herrick et al., 2013). I used population density rather than raw population and 
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our result positively indicates human density should be included within the model (BF = 

15.08) from the governorate of origin. This discrepancy could be explained by the fact 

that Egypt’s population density is approximately 24-fold that of Canada’s (CAPMAS, 

2012a; Statistics Canada, 2013) so human-to-human transmission is far more likely. 

Poultry density and household density were also found to be among ecological 

determinants of H5N1 spread in Bangladesh (Ahmed et al., 2012). Since our model 

analyzed the same virus in a country where live bird markets are also prevalent (Dolberg, 

2009) these conclusions strongly suggest that both avian and human population sizes are 

reliable indicators of H5N1 diffusion.  

Several of the predictors supported in our model have also been linked to H5N1 

risk in various other studies. For example, elevation had previously been identified as a 

risk factor of other HPAIs including H5N1 in Indonesia (Loth et al., 2011), and Vietnam 

(Pfeiffer, Minh, Martin, Epprecht, & Otte, 2007) so this predictor should undoubtedly be 

included in most models and is strongly included in ours. Chicken density has been 

identified as a risk factor in Vietnam (Pfeiffer et al., 2007) and additionally confirmed in 

Cambodia, Laos, and Thailand (Gilbert et al., 2008). Furthermore, Gilbert et al. (Gilbert 

et al., 2008) concluded that duck, geese, and human population were correlated as risk 

factors in southeast Asia, all of which are supported in our model. Precipitation has been 

shown to be an indicator of outbreak risk of H5N1 in Europe (Si, de Boer, & Gong, 2013) 

and given the relative ease of tracking and reporting such a value via active World 

Meteorological Organization stations it should be included in future models. The 

consistent identification of these variables in Egypt as well as various regions indicates 
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that these should be carefully monitored by health agencies during surveillance efforts 

regarding avian influenza.  

Lemey et al. (Lemey et al., 2014) previously demonstrated the capabilities of a 

phylogeographic GLM for determining spread of H3N2 using a similar set of predictors. 

While that study provided a global look, our work focused on one region to identify 

diffusion drivers specific to Egypt. Our approach has allowed us to identify key variables 

which contribute to the H5N1 diffusion and provides a rough model that can be tested in 

other countries and with other viruses. The ability to determine consistent variables 

relating to viral diffusion would undoubtedly be a huge breakthrough to understanding 

spatial spread.  

This study has several limitations including the inability to include CST values 

directly within the GLM. The CST values represent rates of transmission between species 

but are not location-specific, thus could not be incorporated as predictors. I therefore used 

CST data as a complement to our GLM. I was unable to use transmission path distance 

between the locations because road access was not available to the centroid location for 

each governorate. Trends in variable predictors could prove to match up with spikes in 

reported cases that will further supplement their inclusion within our GLM. In addition, I 

was unable to obtain the exact location from which the sequences were collected and 

could therefore only utilize the centroid coordinates for each location. These 

discrepancies in distance and true location could certainly impact the inclusion of the 

latitude, longitude, and geographical distance predictors within the GLM. At the time of 

this writing the most recent World Health Organization update on human case counts 

within Egypt was January 2014 (WHO, 2013) which provides us with potentially 
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outdated data for this predictor. Additionally, the number of avian birds by species 

needed to be estimated for chickens, geese/guinea fowl, and pigeon/other birds because 

these data were not available per governorate for 2011. Although these were 

approximations, the BF support values make a compelling case that the estimations were 

accurate and are consistent with previous findings. Our estimates and the data included 

within the GLM are under the assumption that there has not been a large overhaul of 

agricultural land within each governorate since the most recent publication of these 

population values. 

Although this work focused solely on influenza H5N1 in Egypt, this approach 

remains generalizable to additional locations and viruses and demonstrates the usefulness 

of combining phylogeographic, bioinformatics, and epidemiological approaches to 

simultaneously to evaluate the viral spread. These methods can be combined with an 

established framework of evolutionary and ecological dynamics to explain spatial 

diffusion (Grenfell et al., 2004). Our future work will include other clades of H5N1, an 

expansion of environmental predictors, and more genes of interest such as neuraminidase 

to develop a more comprehensive model. I will also expand our geographic focus to 

determine if our significant predictors are constant across other countries such as China 

or Indonesia where H5N1 is persisting. GLMs such as this will undoubtedly aid public 

health agencies in their ability to predict and prevent outbreaks as well as explore 

improvements in preventative tactics. Our identification of drivers will be useful for 

public health agencies to monitor pandemic risk levels, plan protocols for reducing 

threats, and devise strategies best suited to protect citizens from the consequences of 

outbreaks. 
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Materials and Methods 

Sequence Data 

I utilized the dataset by Scotch et al. (Scotch et al., 2013) which contains 226 

sequences of the hemagglutinin gene of H5N1 influenza variant subclade 2.2.1.1. The 

dataset includes sequences from 20 of the 27 governorates (Figure 1.2) that were isolated 

from 2007-2012 from both human and avian hosts. The host species and number of 

sequences is as follows: chicken (156), duck (43), human (14), goose (6), turkey (4), 

environment (2), and quail (1). I refer the reader to Scotch et al. (Scotch et al., 2013) for 

details on classification of the sequences into subclade 2.2.1.1. and analysis of 

phylogeographic trees. I provide the GenBank accession, governorate of isolation, host, 

and year of isolation of each sequence in Appendix A. 
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Figure 1.2. Map of Egypt and the governorates included. The 226 sequences used in this 

study span 20 of the 27 governorates. 

Generalized Linear Model 

I adopted a Bayesian phylogeographic generalized linear model (GLM) approach 

by Lemey et al. (Lemey et al., 2014) to reconstruct spatiotemporal patterns of viral 

spread while simultaneously assessing the impact of our predictors. In this approach, I 

discretize geographic locations and model diffusion between locations through a 

continuous-time Markov chain (CTMC) process in which I parameterize the 

instantaneous rates via a GLM. Specifically, I used a non-reversible CTMC process 

expressed as a K x K infinitesimal rate matrix of location change (Λ) among K discrete 

locations (Lemey et al., 2014). I parameterize the instantaneous rate Λij by utilizing a 



16 

 

linearized log function to incorporate all potential pairwise predictors p1, …, pn and 

evaluated them on a log-scale, per the following equation: 

𝑙𝑜𝑔Λ𝑖𝑗 = 𝛽1𝛿1 log(𝑝1{𝑖𝑗}) + 𝛽2𝛿2 log(𝑝2{𝑖𝑗}) + ⋯ +  𝛽𝑛𝛿𝑛 log(𝑝𝑛{𝑖𝑗}) 

Here, βi indicates the relative contribution of predictor pi to the whole GLM and δ is a 

binary indicator which determines whether an individual predictor is included in the 

model for evaluation (Kuo & Mallick, 1998). The indicator enables a Bayesian stochastic 

search variable selection (Chipman, George, & McCulloch, 2010; Kuo & Mallick, 1998) 

such that all posterior probabilities of each possible model, including or excluding every 

predictor, are estimated. I used a Bernoulli prior probability distribution to place an equal 

probability for inclusion or exclusion of each predictor (Lemey et al., 2014), and set the 

prior success probability of the Bernoulli distribution such that there was a 50% prior 

probability that the model does not include any predictor. I log-transformed and 

standardized all predictor values, specified a constant size coalescent prior and general 

time reversible (GTR) substitution model and implemented the GLM within Bayesian 

Evolutionary Analysis by Sampling Trees (Drummond, Suchard, Xie, & Rambaut, 2012) 

(BEAST) v1.8.0 with the Broad-platform Evolutionary Analysis General Likelihood 

Evaluator (BEAGLE) 2.1 (Ayres et al., 2012) library implementation. The model was 

evaluated with a chain length of 20 M, logging estimates every 10,000 steps and predictor 

covariates were evaluated for convergence (e.g. effective sample sizes of regression 

coefficients exceeded 200 for each predictor) using Tracer v1.5 after discarding the first 

10% of logged estimates as burnin. The nature of the log-linear function requires each 

value to be positive so any data points that were missing or zero were transformed to 

avoid this error. Specific instances are detailed below. 
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Environmental, Geographic, Demographic, and Genetic Predictors 

I selected the following potential predictors with the aid of experts studying H5N1 

in Egypt. For our nonreversible diffusion process AB, I evaluated each predictor from 

the governorate of origin as well as the governorate of destination. In Table 1.4, I provide 

descriptive statistics for the predictors. 

 

Table 1.4 

Descriptive statistics of each predictor for the 20 governorates 

Predictor Units Mean Median SD IQR 

Distance Kilometers 265 184 206 296 

Latitude Degrees 29.66 30.39 1.94 1.42 

Longitude Degrees 31.31 31.25 0.98 1.03 

Avian Counts Cases / year 17.6 12.9 15.9 25.8 

Human Counts Cases / year 1.1 1.1 0.8 1.3 

Human Density Heads / km2 1056 536 1094 1197 

Avian Density Heads / km2 1290 459 1465 1992 

Chicken Density Heads / km2 998 379 1065 1698 

Turkey Density Heads / km2 14 3 24 20 

Duck Density Heads / km2 120 23 304 35 

Goose Density Heads / km2 55 20 63 84 

Pigeon Density Heads / km2 103 37 118 159 

No-Motif Density Heads / km2 1090 428 1153 1911 

Elevation Meters 88.6 59.0 72.7 60.7 

Precipitation mm / year 41.9 30.0 45.5 53.0 

Temperature Celsius 21.6 21.3 1.4 1.4 

Relative Humidity Percent 56.1 54.5 10.4 15.5 

 

Latitude, Longitude, and Elevation. I obtained geographic coordinates for the 

centroid of each governorate using geonames.org. While these coordinates likely do not 

reflect the exact location of the host, we chose the centroid to create uniformity in the 

model. I used Google Earth to obtain the elevation of each centroid. 
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Distance. I used Google Maps to calculate the raw linear distance between the 

centroid of each governorate. Although road or travel distances would likely be more 

accurate in terms of true transmission paths, the isolated location of some of the centroid 

locations made this impossible to calculate. 

Human and Avian Population Density. Currently, the most recent data for 

human populations per governorate is a 2012 estimate by the Egyptian Central Agency 

for Public Mobilization and Statistics (CAPMAS, 2012b). I used two databases provided 

by the Food and Agricultural Organization of the United Nations (FAO) to obtain the 

avian populations: FAOSTAT (FAO, 2014a) and the Global Livestock Production and 

Health Atlas (GLiPHA) (FAO, 2014b). The specific categories of avian populations 

provided by these resources are chickens, turkeys, ducks, geese/guinea fowl, and 

pigeons/other birds. I was unable to use 2012 data for the avian populations because there 

is no breakdown of populations per species for each governorate available for that year. 

The number of ducks and turkeys were available for each governorate for 2011 and were 

available for chickens for 2005 via GLiPHA. I estimated the chicken populations for 

2011 by prorating the 2005 value per governorate to the total FAOSTAT value for 2011. 

There was no data available per governorate for geese/guinea fowl or pigeons/other birds 

for any year so I estimated these values to be the percentage of total geese/guinea fowl or 

pigeons/other birds from FAOSTAT equal to the percentage of chickens, ducks, and 

turkeys relative to the total amount in Egypt for 2011 per governorate. To meet the 

requirements for the log-linear model, any missing value was imputed via mean 

imputation. Total avian populations reflect the sum of the five avian categories 
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previously described. For avian and human density, I divided total population by the land 

area of each governorate to obtain a density of heads per km2. 

Viral Genomes Lacking a Genetic Motif. According to Yoon et al. (Yoon et al., 

2013) the pathogenicity of H5N1 depends on the number of basic amino acids at the HA 

cleavage site. This includes a mutation PQGERRRK/RKR*GLF to 

PQGEGRRK/RKR*GLF. The presence of this motif results in a reduced pathogenicity of 

the virus and I used Geneious Pro 5.0.3 (Biomatters Ltd., Auckland, New Zealand) to 

locate the presence of this mutation in our HA sequences. I calculated the expected 

number of total avian influenza sequences per governorate which lack the motif by the 

following equation: 

Nj = Tj * (Aj – Mj) / Aj 

In this equation Nj is the expected number of avian influenza sequences that lack the 

genetic mutation, Tj is the total avian population for 2011, Aj is the number of avian 

influenza sequences obtained from the governorate, and Mj is the number of sequences 

which contain the motif. The resulting value was divided by the land area in order to 

obtain a density in heads per km2. 

Precipitation, Temperature, and Relative Humidity. I obtained the data for 

average annual rainfall, temperature, and relative humidity from the National Climatic 

Data Center as part of the National Oceanic and Atmospheric Administration (NOAA, 

2014). I obtained data for each governorate from the climate station nearest to the 

centroid. The values represent 30-year averages for the window of January 1, 1961 

through December 31, 1990. Although this range does not cover the time period from 

which our sequences were obtained, the World Meteorological Organization has defined 
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this period as the current climate normal (WMO, 2013) and likely represents an accurate 

depiction of typical weather over the timespan of our study. 

Case Counts. I obtained the number of confirmed human and estimated avian 

cases from the Dr. Abdelsatar Arafa at the FAO spanning the years 2007-2013. In total, 

2,460 avian cases and 158 human cases covered the 20 governorates in the study and data 

imputed in the GLM reflects the average number of cases per year for each governorate. 

Two governorates, New Valley and Port Said, did not have any recorded human cases 

over the time period so each was fixed with one case to avoid an undefined value for log-

transformation. These imputations should not create a sampling bias due to their minimal 

increase in the sample size. 

Cross Species Transmission 

I used the program Migrate-n v3.6 (Beerli & Felsenstein, 2001) in order to 

analyze the relationship between sequences obtained from different species. To maximize 

the amount of sequences that could be analyzed, I fitted sequences of a unique length 

with up to 3 “wild-card” nucleotides at the c-terminus to be added in with the nearest 

population of sequences. I ran the program under the default settings with all sequences 

fitting these criteria including chicken, duck, turkey, goose, and human hosts. This 

accounted for 219 of the 226 original sequences in our dataset and resulted in the loss of 

our only quail sequence. The calculation and description of CST values were described 

by Streicker et al. (Streicker et al., 2010) and I used the following equation to incorporate 

the Migrate-n output (Faria, Suchard, Rambaut, Streicker, & Lemey, 2013):  

𝑅𝑖𝑗 = 𝛽𝑖𝑗 ∗ 𝜃𝑗 ∗ 𝜏−1 
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Here, Rij represents the per capita CST from species i to species j, βij represents the 

unidirectional migration rate obtained by Migrate-n from species i to species j, θj 

represents the estimate of genetic diversity for species j obtained from Migrate-n, and τ 

represents the generation time of H5N1. τ is defined as the sum of the incubation and 

infectious periods for H5N1 which is approximately 2.48 days (Bouma et al., 2009). The 

CST can be interpreted as the expected number of infections in species i resulting from 

just one infected individual of species j, although these data may not necessarily reflect 

the sampling distribution of the host species of our virus sequences. That is, I cannot be 

certain whether the hosts would maintain a constant CST value per discrete state, and 

cannot perform additional Migrate-n analyses as not every host was sampled in every 

discrete state. 

Evaluation of Predictor Inclusion 

 I obtained posterior inclusion probabilities for each individual predictor via 

BEAST and used Bayes factors (BFs) to determine support of each predictor within the 

model (Suchard, Weiss, & Sinsheimer, 2005). The inclusion probability is the indicator 

expectation, E(δ), which is defined as the probability that the individual predictor is 

included in the model and is a raw support statistic (Lemey et al., 2014). The greater the 

inclusion probability the more likely it is that the predictor is contributing to the diffusion 

process. To compare these probabilities with a baseline, I calculated BFs via posterior 

odds of predictor inclusion divided by prior odds as demonstrated by the following 

equation (Lemey et al., 2014): 

𝐵𝐹 =
𝑝𝑖/(1 − 𝑝𝑖)

𝑞𝑖/(1 − 𝑞𝑖)
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Here pi is the posterior probability of predictor inclusion, or δ=1, while qi is the prior 

probability that δ=1. In this model qi is the binomial prior on the total number of 

successes (δ=1) that prefers a 50% likelihood of no predictor being included in the model 

and is calculated using the binomial distribution probability mass function. The BF 

quantifies the relative support of two competing hypotheses, pi and qi, given the observed 

data (Suchard et al., 2005) and shows which of the two hypotheses is more likely given 

the data. The cutoff BF for support within the model was set at 3.0 as is consistent with 

previous work (Philippe Lemey, Rambaut, Drummond, & Suchard, 2009), for 

establishing a threshold for positive evidence against the null hypothesis, qi (Kass & 

Raftery, 1995). This allowed us to account for the possibility of high correlation between 

predictors. For example, a BF score of 3.0 indicates that the model including that 

covariate is 3-fold more likely than the model not including it.. The GLM also produces a 

β-coefficient for each predictor which is the contribution of the predictor to the model as 

seen in the equation for the log-linear GLM. I used a bit flip operator to evaluate δ similar 

to Drummond et al. (Drummond & Suchard, 2010) in order to complete the calculations.  
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CHAPTER 2 

BAYESIAN PHYLOGEOGRAPHY OF INFLUENZA A/H3N2 FOR THE 

2014-15 SEASON IN THE UNITED STATES USING THREE FRAMEWORKS OF 

ANCESTRAL STATE RECONSTRUCTION 

Introduction 

Bayesian phylogeography has emerged as a powerful approach to analyzing virus 

spread. It utilizes sequence data to perform ancestral reconstruction and estimate the most 

likely lineages of the viruses in rooted, time-measured phylogenies (Lemey et al., 2009) 

using nucleotide substitution models, molecular clocks, and coalescent priors under a 

probabilistic Bayesian framework known as Bayesian stochastic search variable selection 

(BSSVS) (Chipman et al., 2001; Kuo & Mallick, 1998; Lemey et al., 2009). This 

framework has improved ancestral state reconstruction and has recently been used to 

analyze human and animal influenza viruses both globally (Bedford et al., 2015; Nelson 

et al., 2015) and nationally (Pollett et al., 2015; Scotch et al., 2013). By identifying the 

relationship between geospatial origins and genetic lineages, much can be learned about 

the complex process in which these viruses spread. Phylodynamic analyses that aim to 

combine immunological, epidemiological, and evolutionary biology techniques (Grenfell 

et al., 2004) also enhance our understanding of virus transmission dynamics and their 

relationship to a phylogeny. These studies have unveiled novel properties of several 

influenza viruses, including pdm09 (Su et al., 2015), H3N2 (Koelle & Rasmussen, 2015) 

and highly pathogenic avian influenza H5N1 (Arafa et al., 2016). Building upon the 

benefits of a BSSVS framework, recent work by Lemey et al. (Lemey et al., 2014) 

utilized a phylogeographic generalized linear model (GLM) approach to identify 
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environmental, genetic, demographic, and geographic predictors that contributed to the 

global spread of H3N2 influenza viruses. In the GLM, the BSSVS on the discrete 

location variable is also used to estimate the posterior inclusion probability of potential 

predictors in a log-linear combination to model the transition rate matrix. Similarly, 

studies have followed this approach to uncover the predictors associated with the spread 

of H5N1 in Egypt (Magee, Beard, Suchard, Lemey, & Scotch, 2015) and for HIV in 

Brazil (Graf et al., 2015). Such studies have demonstrated the utility of combining 

genetic and geospatial inferences from phylogeography with surveillance data in 

epidemiological studies like Yang et al. (Yang, Lipsitch, & Shaman, 2015). These 

analyses may enable actionable solutions for public health officials once consistent 

identification of contributing predictors is achieved.  

Although the GLM appears to show promise with its simultaneous ability to 

perform ancestral state reconstruction and also assess the contribution of predictor 

variables of interest, there has yet to be an assessment of how a standard BSSVS 

approach and a GLM approach compare in their phylogeographical reconstructions. 

Specifically, no study has yet compared root state probabilities in a phylogeny 

constructed via BSSVS to the same probabilities using the GLM approach. Such 

information may inform researchers of differences in phylogeographic trends that may be 

experienced by choosing one framework over the other. In this work I analyze the 2014-

15 H3N2 flu season within the U.S. by performing ancestral state reconstruction of a 

discrete location variable via the following three frameworks: an asymmetric substitution 

model without BSSVS (–BSSVS), an asymmetric substitution model with BSSVS 

(+BSSVS) (Lemey et al., 2009), and a GLM (Lemey et al., 2014). For the BSSVS 
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framework, I analyze separate versions that place either a Poisson distribution 

(+BSSVS(P)) or a prior uniform distribution (+BSSVS(U)) on the number of positive 

rate parameters to determine the influence of location priors. For the GLM framework, I 

analyze separate versions that include and do not include sample size predictors, which I 

denote as GLM(+SS) and GLM(–SS), respectively, to directly quantify the effect of 

sampling bias on GLM-constructed rate matrices and potential suppression of the signal 

of other predictors. This brings us to a total of five methods that encompass the three 

frameworks. I refer readers to Materials and Methods for full details on the methods. 

These selections allow us to empirically evaluate differences in the phylogenies obtained 

via each method and to determine whether one framework provides more accurate 

posterior estimates given a fixed set of data. I demonstrate these trends using multiple 

random samples from a large collection of flu sequences to show reproducibility as well 

as analyze several coalescent tree priors to show consistency among the reconstruction 

methods across varying parameters. Finally, I show that support for GLM predictors can 

change given the tree priors and sequence sets, but that trends among specific predictors 

will emerge to allow accurate determination of their impact on viral diffusion. 

 

Results 

In Figure 2.1A, I show mean log marginal likelihood estimates among the six 

samples obtained by path sampling (PS) and stepping stone sampling (SSS) for each prior 

and reconstruction method. For PS, the two methods that obtain the highest mean log 

marginal likelihoods are the GLM(+SS) and GLM(-SS), respectively, under each prior. 

The mean +BSSVS(U) finds greater log marginal likelihoods than the mean +BSSVS(P) 
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under each prior as well, although the mean –BSSVS exceeds both under the constant 

and exponential priors. For SSS, the log marginal likelihood increases in a near-linear 

manner for the +BSSVS(P), +BSSVS(U), GLM(–SS), and GLM(+SS) methods. The –

BSSVS method, however, finds the largest posterior support under the constant, 

expansion, exponential, logistic, and Skyline priors.  

 

 

Figure 2.1. Model comparison statistics and location-specific genetic diversity. (A) 

Model comparisons obtained via path sampling (PS) and stepping stone sampling (SSS) 

for the six coalescent priors and five methods. (B) Average genetic distances between all 

pairwise intra-region and inter-region sequences for the six samples, expressed as a 

percent, with 95% confidence intervals shown as error bars. 

In Figure 2.2, I present log marginal likelihood estimates for each individual 

model. From Figure 2.2, I show that each GLM(+SS) and GLM(–SS) unanimously finds 

more posterior support than their corresponding +BSSVS(P) for both PS and SSS. The 
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+BSSVS(P) method demonstrates consistently poor performance, as its posterior 

estimates are the worst of the five methods in 25 of 36 PS analyses and 32 of 36 PS 

analyses (79% overall) across all priors, while no GLM(+SS) or GLM(–SS) yields the 

lowest posterior estimate of model support among the three methods for either PS or SSS 

under any prior, although no pairwise t-test shows a significant difference. 

 

 

Figure 2.2. Model comparisons for the 180 analyses. (A) Log marginal likelihood 

obtained via path sampling (PS). (B) Log marginal likelihood obtained via stepping-stone 

sampling (SSS). Metrics are shown for each sample, prior, and method. 

Each of the 180 models show statistically significant differences between the null 

and observed means for the association index (Figure 2.3). These data suggest stronger 

support for the phylogeny-trait association (Parker, Rambaut, & Pybus, 2008) and, as all 

p < 0.01, suggest the evolution of influenza during this flu season was structured by 

geography. The support of the sampling location-phylogeny associations observed in 
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Figure 2.3 can be explained, in part, by the amount of genetic diversity observed within 

and across each region. In Figure 2.1B I show the average genetic distances between 

intra-region and inter-region sequences. Here, I calculated the genetic distances among 

all 40,470 pairwise sequences and present the mean distance of sequences sampled in the 

same region (e.g. Region 1-Region 1) to those sampled in different regions (e.g. Region 

1-Region 2). From Figure 2.1B, the pairwise intra-region sequences (n=4,496 per sample) 

have a lesser amount of genetic diversity than the pairwise inter-region sequences 

(n=35,974 per sample) in each our six sequence sets. A two-tailed t-test shows p < 0.01 

for each sample, indicating that sequences from within the same region demonstrate 

significantly lower amounts of genetic diversity than those from external regions. The 

average intra- and inter-region distances in the full set of 1,163 sequences are 0.872% 

(95% CI = [0.867, 0.878]), and 0.929% (95% CI = [0.926, 0.932]), respectively (p < 

0.0001). These data demonstrate that our method of downsampling maintained 

representative levels of genetic diversity across the six samples. 
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Figure 2.3. Association index scores obtained via BaTS. For each model, I show the null 

mean (larger value) and observed mean (smaller value) and their respective 95% 

confidence intervals. For each model, I observe p < 0.0001 between the null and observed 

means. 

In Figure 2.4, I show four root state metrics obtained from the maximum clade 

credibility (MCC) trees of each of the 180 models. In Figure 2.4A, I show the mean root 

state posterior probability (RSPP). Aside from the constant coalescent prior, the mean 

GLM(–SS) and GLM(+SS) methods consistently show the largest mean RSPP of the five 

methods. The mean GLM(–SS) finds significantly greater RSPPs under each coalescent 

prior than the mean –BSSVS (p < 0.03 for each coalescent prior) and significantly greater 

RSPPs than both the mean +BSSVS(P) and +BSSVS(U) for the expansion and 

exponential coalescent priors. Similarly, the GLM(+SS) shows a mean RSPP 

significantly greater than the –BSSVS and +BSSVS(U) methods for all coalescent priors 

except constant, and significantly greater RSPP than the +BSSVS(P) for the constant, 

expansion, Skygrid, and Skyline coalescent priors. Across all coalescent priors, the mean 
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RSPP for the –BSSVS, +BSSVS(P), +BSSVS(U), GLM(–SS), and GLM(+SS) methods 

are 0.48, 0.56, 0.49, 0.81, and 0.74 respectively. These differences per method could be 

influenced by the sample size per discrete state, so I show the Pearson’s r correlation 

coefficient between the sample size at each discrete state and its corresponding posterior 

probability at the root in Figure 2.4B. Here I observe that the +BSSVS(P) shows a 

correlation coefficient less than 0.4 for the constant, expansion, Skygrid, and Skyline 

coalescent priors but for the exponential and logistic coalescent priors the coefficient is 

nearly doubled. Meanwhile, the +BSSVS(U), –BSSVS, GLM(–SS), and GLM(+SS) 

methods are generally consistent under all priors. The mean +BSSVS(P) shows 

significantly less correlation than each of the other four methods for the constant, 

expansion, and Skyline coalescent priors (p < 0.02 for each) while the +BSSVS(U), –

BSSVS, and GLM methods do not show any significant differences under any coalescent 

prior.  
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Figure 2.4. Mean posterior metrics of the MCC phylogenies. Values represent the mean 

indicated statistic from the six samples under each coalescent prior and method with error 

bars representing the standard error. (A) Root state posterior probability. (B) Pearson’s 

correlation coefficient for the number of sequences per discrete state and the root state 

posterior probability for each discrete state in each model. (C) Kullback-Leibler 

divergence calculated assuming a uniform prior probability per discrete state. (D) 

Kullback-Leibler divergence calculated assuming a prior probability proportional to the 

number of sequences per discrete state. 

Figures 2.4C and 2.4D show the Kullback-Leibler (KL) divergence between the 

prior and posterior probabilities at the root states calculated using two different prior 

assumptions (see Materials and Methods for details). KL values indicate the extent to 

which a model is able to generate posterior probabilities at the root state that differ from 
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the prior probabilities at the root state. That is, high KL values indicate strong divergence 

from the prior probabilities and, thus, strong posterior information gain, while low KL 

values indicate the opposite. From Figures 2.4C and 2.4D, the mean GLM(–SS) and 

GLM(+SS) KL divergences demonstrate a marked increase over the –BSSVS, 

+BSSVS(P), and +BSSVS(U) methods under the expansion, exponential, logistic, 

Skygrid, and Skyline coalescent priors (p < 0.02 for all two-tailed t-tests. Under the 

constant coalescent prior, both the mean GLM(–SS) and GLM(+SS) KL divergences 

exceed the mean KL under both assumptions of the –BSSVS, +BSSVS(P), and 

+BSSVS(U) methods, but none of these values are significant. The +BSSVS(P) method, 

in turn, shows significantly greater KL divergences under both assumptions than the –

BSSVS method under all coalescent priors and significantly greater than the +BSSVS(U) 

method under the constant, exponential, and logistic coalescent priors. I show data for 

each of the four metrics in Figure 2.4 by individual model in Figures 2.5 and 2.6. 
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Figure 2.5. Individual root state posterior probabilities and potential sampling bias 

analyses. (A) Root state posterior probability from the MCC tree of each model. The 

corresponding root state is shown below each bar. See Figure 2.8B for the locations of 

these root states. (B) Pearson’s r correlation coefficient between the number of sequences 

per discrete state and the RSPP for each discrete state in each model. 
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Figure 2.6. Individual Kullback-Leibler divergence statistics of the root state prior and 

posterior probabilities for each model. (A) Values are calculated assuming a uniform 

prior probability per discrete state. (B) Values are calculated assuming a prior probability 

proportional to the number of sequences per discrete state. 

I summarize the identified root states of the four methods in Table 2.1. Here, the –

BSSVS method identified three different regions, with the majority occurring in Region 

4, while Region 5 is identified in over 30% of –BSSVS models. The +BSSVS(P) method 

identified six different regions as the root state, with Regions 6 and 4 representing the 

most frequently-identified. The +BSSVS(U) method identified Region 4 in nearly half of 

the models while Regions 5 and 6 account for the remainder of models. Comparatively, 

35 of the 36 GLM(–SS) runs identified Region 4 as the root state, with the lone exception 

being Sample 2 using the Skygrid coalescent prior, which identified Region 8. For the 

GLM(+SS) analyses, Region 4 is identified as the root state in 33 of 36 models while 

Region 5 accounts for the remaining three. The root heights and corresponding Bayesian 
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credible intervals are similar between the three methods for each sample and each 

coalescent prior (Figure 2.7). 

 

Table 2.1 

Frequencies of the root states identified in the MCC tree under each reconstruction 

method 

 Root State 

Method 1 2 3 4 5 6 7 8 9 10 

–BSSVS – – – 23 11 2 – – – – 

+BSSVS(P) – 2 1 10 6 16 – 1 – – 

+BSSVS(U) – – – 17 10 9 – – – – 

GLM(–SS) – – – 35 – – – 1 – – 

GLM(+SS) – – – 33 3 – – – – – 

 

 

Figure 2.7. Root heights for the MCC phylogenies. Mean heights are represented by the 

colored circles with 95% Bayesian credible intervals shown as error bars. 

As influenza viruses rarely persist for more than one season, except in tropical 

areas (Rambaut et al., 2008; Viboud, Alonso, & Simonsen, 2006), I obtained the 

geographic distribution of the number of internal nodes with a height of at least one year 
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(NH1s) from the MCC tree of each model and show these data in Figure 2.8A. From 

Figure 2.8A, the –BSSVS method indicates that Region 4 contains the greatest number of 

NH1s under each prior, while Region 5 contains the second-largest volume of NH1s. The 

+BSSVS(P) method shows Region 4 containing the most NH1s for the exponential, 

logistic, Skyline, and Skygrid coalescent priors, with Region 6 accounting for the next 

largest volume in the latter three priors. Under the constant coalescent prior, a nearly 

equal amount of NH1s are observed in Regions 4, 6, and 8, while the expansion prior 

shows Region 5 containing the largest number of NH1s. For the +BSSVS(U) method, the 

NH1s are most commonly observed in Region 4 under each coalescent prior, with 

Regions 5 and 6 primarily accounting for the remaining nodes. The frequency of NH1s in 

Region 8 are low under this method, but do occur under the constant, expansion, and 

Skygrid coalescent priors. Finally, the NH1s are largely concentrated in Region 4 for 

both the GLM(–SS) and GLM(+SS) methods under each coalescent prior.   
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Figure 2.8. Geographic trends in coalescent events. (A) The number of internal nodes 

with a height of at least one year in age (NH1s) under each method and for each 

coalescent prior. Bars represent the total number of such nodes across all six samples. (B) 

Map of the contiguous U.S., colored by the ten discrete states used in this study. Each 

region is annotated with its average temperature (T, in ˚C) and precipitation (P, in cm) 
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during the September – May months. Temperature and precipitation data represent the 

point estimates used in our GLMs for those respective predictors. 

The frequent identification of Region 4 as the root state (Table 2.1) and location 

of NH1 events (Figure 2.8A) indicates that there is likely at least one local variable 

playing a role in the tree topologies. Given this, from Figure 2.8B I note that Region 4 

exhibits both the highest expected temperature and precipitation during a typical flu 

season as I compare the posterior support of all predictors for both the GLM(–SS) and 

GLM(+SS) methods in Figure 2.9. 

 

 

Figure 2.9. Mean posterior estimates of supported predictors. I show the inclusion 

probabilities and regression coefficients for all predictors for both the GLM(–SS) and 
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GLM(+SS) analyses. Point estimates represent the mean of each statistic across the six 

models for each prior, with error bars representing the standard error of these estimates. 

Predictor abbreviations are: air travel (AT), glycoprotein content (GP), median age (MA), 

precipitation (PC), population density (PD), sample size (SS), temperature (TP) and 

vaccination rate (VR). 

From Figure 2.9, sample size at the region of origin (SS(O)) is strongly supported 

for the GLM(+SS) runs with Bayes factor (BF) > 69 for each coalescent prior and with 

each corresponding mean regression coefficient greater than 1.33. The predictor with the 

second largest support for inclusion in the GLM(+SS) runs is temperature at the region of 

origin (BF > 5 and regression coefficient > 0.75 for each prior except constant size), 

followed by glycoprotein at the region of origin (3.0 < BF < 4.5 for the expansion, 

exponential, Skyline, and Skygrid coalescent priors) although the respective mean 

regression coefficients for glycoprotein remain near zero. For the GLM(–SS) runs, 

temperature at the region of origin yields the largest mean posterior inclusion probability 

across all coalescent priors (BF > 20 for each prior, BF > 400 for the expansion, 

exponential, logistic, and Skyline priors) followed by precipitation at the region of origin 

(5.0 < BF < 8.5 for all priors). Mean posterior estimates of the corresponding regression 

coefficients and their standard errors indicate strictly positive values for these two 

predictors in the GLM(–SS) runs, although the 95% highest posterior density (HPD) of 

the regression coefficient for precipitation at the region of origin spans zero for each 

model (Figure 2.10). If the entire HPD lies on the positive side of zero, this suggests that 

the predictor is driving the diffusion of the virus. Conversely, if the entire HPD lies on 

the negative side of zero, this suggests that the predictor is preventing the diffusion. Thus, 
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I show the proportion of GLMs in which the absolute value of the HPD is positive in 

Table 2.2. The 95% HPDs of temperature at the region of origin are strictly positive in 26 

of the 36 GLM(–SS) runs and span zero in the remaining ten. The glycoprotein predictor 

at the region of origin finds the highest mean support for the constant prior (BF = 1.1), 

which is a sharp turn from the GLM(+SS) runs. See Materials and Methods for more 

information on metrics of support and interpretations of our predictors. I show the 

posterior regression coefficients and inclusion probabilities of every predictor from each 

of the 36 GLM(–SS) runs in Figures 2.10 and 2.11, respectively, and corresponding data 

for the 36 GLM(+SS) runs in Figures 2.12 and 2.13, respectively. 
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Figure 2.10. Posterior inclusion probabilities of all predictors per sample and prior for the 

GLM(–SS) runs. I consider predictors with inclusion probabilities exceeding the dotted 

horizontal line, which corresponds to BF = 3.0, to be supported in that model. Predictor 

abbreviations are: air travel (AT), glycoprotein content (GP), median age (MA), 

precipitation (PC), population density (PD), sample size (SS), temperature (TP) and 

vaccination rate (VR), each evaluated from both region of origin (O) and region of 

destination (D).  
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Figure 2.11. Posterior regression coefficients of all predictors per sample and prior for 

the GLM(–SS) runs. Predictor abbreviations are: air travel (AT), glycoprotein content 

(GP), median age (MA), precipitation (PC), population density (PD), sample size (SS), 

temperature (TP) and vaccination rate (VR), each evaluated from both region of origin 

(O) and region of destination (D). 
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Figure 2.12. Posterior inclusion probabilities of all predictors per sample and prior for the 

GLM(+SS) runs. I consider predictors with inclusion probabilities exceeding the dotted 

horizontal line, which corresponds to BF = 3.0, to be supported in that model. Predictor 

abbreviations are: air travel (AT), glycoprotein content (GP), median age (MA), 

precipitation (PC), population density (PD), sample size (SS), temperature (TP) and 

vaccination rate (VR), each evaluated from both region of origin (O) and region of 

destination (D).  
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Figure 2.13. Posterior regression coefficients of all predictors per sample and prior for 

the GLM(+SS) runs. Predictor abbreviations are: air travel (AT), glycoprotein content 

(GP), median age (MA), precipitation (PC), population density (PD), sample size (SS), 

temperature (TP) and vaccination rate (VR), each evaluated from both region of origin 

(O) and region of destination (D). 
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Table 2.2 

Frequency of GLM predictor support 

  Predictor at the Region of Origin 

Method Criterion AT GP MA PC PD SS TP VR 

GLM(–SS) BF ≥ 3 – 3% 25% 36% 3% NA 94% 19% 

GLM(+SS) BF ≥ 3 – 17% – 3% – 97% 36% 3% 

GLM(–SS) |95% HPD (β)| > 0 – – – – – NA 72% – 

GLM(+SS) |95% HPD (β)| > 0 – 3% – – – 61% 8% – 

Notes: Values represent the percentage of models that show BF support for a predictor 

and the percentage of 95% HPD intervals of the regression coefficient that do not span 

zero. Predictor abbreviations are: air travel (AT), glycoprotein content (GP), median 

age (MA), precipitation (PC), population density (PD), sample size (SS), temperature 

(TP) and vaccination rate (VR). 

 

Discussion 

In this paper, I compared three ancestral state reconstruction frameworks and five 

total methods using six randomly-drawn sequence samples and six coalescent priors for a 

total of 180 models while fixing the nucleotide substitution process for each. I compared 

each of our analyses with established model selection techniques (Baele et al., 2012; 

Baele, Li, Drummond, Suchard, & Lemey, 2013) and compared features of each model’s 

MCC tree to identify posterior statistical support and discrepancies in the 

phylogeographic reconstructions. Regarding model selection, I found that PS shows the 

most posterior support for either the GLM(–SS) or GLM(+SS) in 34 of 36 runs (with one 

–BSSVS and one +BSSVS(U) accounting for the remaining two), while SSS shows the 

most support for 29 of 36 –BSSVS models, five GLM(+SS), one GLM(–SS), and one 

+BSSVS(U). Each GLM(–SS) and GLM(+SS) outperformed its corresponding 

+BSSVS(P) under both PS and SSS. Both statistics agree that +BSSVS(P) models 

offered the poorest posterior support, as 72% of PS analyses and 89% of SSS analyses 

(81% combined) show the +BSSVS(P) model as the least-supported among the five 
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frameworks (Figures 2.1A and 2.2), although I note that no framework shows 

significantly more support than any other framework for PS or SSS via t-tests. 

Although the –BSSVS method is highly supported under SSS, the method fails to 

find strong support regarding both RSPP and KL divergence (Figures 2.4C, 2.4D, 2.5A, 

and 2.6) compared to the other methods. The RSPPs using the –BSSVS method are 

significantly lower than those obtained via the GLM(–SS) method (p = 0.03 for the 

constant coalescent prior, p < 0.001 for the expansion, exponential, logistic, Skygrid, and 

Skyline coalescent priors), while the GLM(–SS) also show a significant increase for KL 

divergence for both the uniform and sample size assumptions over the –BSSVS models 

under each coalescent prior except for constant size. Similarly, the GLM(+SS) method 

shows significantly greater RSPPs and both KL divergences than the –BSSVS models (p 

< 0.03 for all coalescent priors except constant). Meanwhile, the +BSSVS(P) method 

finds significantly greater RSPPs than the –BSSVS method only under the constant 

coalescent prior (p < 0.001) and significantly greater KL divergences over the –BSSVS 

method under each coalescent prior, each with p < 0.03. The +BSSVS(P) method also 

found significantly greater KL divergences for the constant, exponential, and logistic 

coalescent priors. The +BSSVS(U) method only found significantly greater support over 

the –BSSVS method via KL with the sample size assumption for the expansion 

coalescent prior. While these results show that the –BSSVS method finds poor statistical 

support at the identified root state, I also found that both the GLM(–SS) and GLM(+SS) 

methods in turn significantly outperformed both the +BSSVS(P) and +BSSVS(U) models 

for KL divergence under both prior assumptions under five of the six coalescent priors 

(excluding constant). The GLM(–SS) runs also found significantly greater RSPPs than 
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the +BSSVS(P) and +BSSVS(U) under each coalescent prior except constant, while the 

GLM(+SS) runs found significantly greater RSPPs than the +BSSVS(P) and +BSSVS(U) 

methods for the expansion, Skygrid, and Skyline priors.  

The association index of each model obtained via BaTS (Figure 2.3) demonstrate 

a strong association between sampling location and the phylogeny for each of the 180 

models, which suggests that the diffusion was spatially-structured. Some of the 

phylogeny-location association can be attributed to the smaller amount of genetic 

diversity in sequences from the same region (Figure 2.1B), however the statistical 

significance of the intra- and inter-region genetic distances could not fully account for the 

differences in RSPP and KL divergence, regardless of the coalescent prior. Furthermore, 

Region 4 was the most frequently-identified root state for the –BSSVS, +BSSVS(U), 

GLM(–SS), and GLM(+SS) methods, the second most frequently identified root state for 

+BSSVS(P) method (Table 2.1), and was also the location of the most NH1s (Figure 

2.8A). These NH1s are biologically important for seasonal influenza, as these viruses 

typically experience bottlenecking at this height as part of a sink-source ecological 

dynamic (Bahl et al., 2011; Rambaut et al., 2008; Viboud, Bjornstad, et al., 2006). As 

Region 4 experiences the highest temperature and most precipitation during flu season, at 

6.9˚C warmer and 10.3 cm wetter, respectively, than the remaining nine regions (Figure 

2.8B) I describe it as the most “tropical” in the U.S. during a typical flu season. This 

provides a well-supported explanation for the observed trends in Region 4, especially 

under both GLM methods. As the data for the GLM(–SS) and GLM(+SS) runs indicate 

strong support for temperature at the region of origin (Figure 2.9), our results would 
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suggest that Region 4 is the most likely origin of each of the six samples using those two 

methods.  

This conclusion, however, is hindered by the strong sampling bias exhibited by 

the GLM(–SS), and GLM(+SS) methods. These two methods (as well as the –BSSVS 

and +BSSVS(U)) demonstrate consistently strong, positive Pearson’s r correlation 

coefficients between the root state posterior probability and sample size at each discrete 

state, regardless of coalescent prior (Figures 2.4B and 2.5B). Furthermore, the inclusion 

of the sample size predictors in the GLM(+SS) runs shows that sample size at the region 

of origin is strongly influencing its posterior estimates, with 35 of 36 runs showing BF > 

3 and 22 of 36 showing a positive 95% HPD on the regression coefficient (Table 2.2, 

Figures 2.10 and 2.11). The mean posterior inclusion probability for the sample size 

predictor at the region of origin corresponds to BFs of 1317.9, 70.0, 122.9, 102.7, 92.6, 

and 101.8 for the constant, expansion, exponential, logistic, Skygrid, and Skyline priors, 

respectively. Given the similarities in RSPP, Pearson’s r, and KL data between the 

GLM(–SS) and GLM(+SS) runs (Figures 2.4-2.6), I believe that sample size is 

influencing the GLM(–SS) runs to a similar degree, although its BF support cannot be 

measured. Thus, although both GLM methods presented in this paper are providing 

biologically justifiable and statistically supported evidence regarding the diffusion of this 

influenza virus over our selected time period, the strong sampling biases give us pause. 

Instead, the significant decrease in Pearson’s r for the +BSSVS(P) models from the other 

four methods under the constant, expansion, and Skyline coalescent priors provide more 

confidence in those data, despite its poor performance with respect to log marginal 

likelihoods via PS and SSS (Figures 2.1A and 2.2). 
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I compared the –BSSVS, +BSSVS(P), +BSSVS(U), GLM(–SS), and GLM(+SS) 

methods for modeling a single discrete trait, sampling location, which highlighted 

differences in diffusion of seasonal influenza in the U.S. Our results collectively indicate 

that the GLMs provide the strongest posterior support for MCC metrics of the three 

ancestral state reconstruction frameworks used in this study, however the strong sampling 

bias exhibited by that method reduces confidence in their reconstructions. As mentioned, 

the strong support for sample size is consistent with previous studies that used the 

phylogeographic GLMs (Lemey et al., 2014; Magee et al., 2015). Air travel was 

previously shown to be a driver of the global diffusion of H3N2 using a GLM (Lemey et 

al., 2014), but none of the GLM(–SS) or GLM(+SS) runs showed support for this 

predictor. However, our study was performed within a single country and aggregated all 

air travel data from each individual state into a matrix of region-to-region passenger flux, 

which perhaps limits its contribution to these models. Furthermore, the paper by Lemey 

et al. (Lemey et al., 2014) discretized by “air communities” to better reflect trends in air 

travel, while I partitioned strictly based on pre-defined, arbitrary geographic regions. I 

also assumed a single introduction into the U.S. and did not include incoming travel from 

international flights that could certainly have introduced strains with more genetic 

diversity than those used in this study.  

I recognize several limitations with this study including the omission of 

international air travel. In addition, our assumption of a single introduction into the U.S. 

could also have limited inference regarding the contribution of air travel and may explain 

the lack of BF support for that predictor from both region of origin and destination when 

a previous study has implicated these data as a driver of the diffusion (Lemey et al., 
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2014) . Also, the transportation predictor fails to incorporate inter-region travel via 

ground transportation, which certainly could have implications within a single country. 

Furthermore, I only analyzed hemagglutinin sequences in this study and did not 

investigate neuraminidase or any other segments of the influenza genome. I arbitrarily 

selected 25% of samples from each region for our subsampling to better reflect the 

observed sampling frequencies, but it is possible that larger subsample sizes or an 

alternative sampling approach could have resulted in stronger or weaker support for the 

predictors in the GLM as well as the RSPPs via the three reconstruction approaches. 

However, my use of Pearson’s correlation coefficient between sample size and root state 

posterior probability (Figures 2.4B, 2.5B) and comparison of GLMs that include and do 

not include sample size predictors aim to outline the impact of sampling bias within our 

dataset. I plan to conduct similar research on additional influenza seasons and using 

alternative sampling methods to further study whether this sampling bias is a systematic 

function in the GLMs or is limited to the dataset used in this study. Sampling bias is a 

known issue in phylodynamics (Baele, Suchard, Rambaut, & Lemey, 2016; Frost et al., 

2015) and may not be possible to eliminate, although varying approaches may differ in 

their sensitivity to such biases. Finally, I limited our study to a single influenza season 

which prevents seasonality comparisons and impacts from local persistence. 

Overall, this study aimed to investigate the phylogeography of the H3N2 

influenza viruses that circulated in the U.S. during the 2014-15 flu season and to also 

investigate three established methods of ancestral state reconstruction. While our GLM 

results provide superior posterior support than either +BSSVS method or the –BSSVS 

framework, these results appear to be dominated by a strong sampling bias. Although 
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these results are not necessarily incorrect, the investigation of additional frameworks 

reveals that the +BSSVS(P) is likely the “best” approach for this dataset to minimize 

such concerns, depending on the selection of coalescent prior, if given the choice among 

the five presented in our work for this virus and time frame. Furthermore, I demonstrate 

that our approach of subsampling to compare multiple models may not only reflect subtle 

changes to the phylogeny but also to the contribution of the predictor variables in the 

GLMs. Although I do not believe that the GLM provides an ideal, unbiased 

reconstruction framework for our dataset, this type of assessment could be valuable for 

understanding the true nature of the phylogeny-sampling location association in future 

work. Such studies may also encourage researchers to utilize the GLM framework as a 

means of obtaining more information-driven variables into their phylogeographic studies 

and to unlock the potential for more accurate ancestral state reconstructions to better aid 

epidemiological and public health efforts. 

 

Materials and Methods 

Sequence and Model Setup 

Nucleotide Sequences. I used the EpiFlu database from the Global Initiative for 

Sharing All Influenza Data (GISAID) to collect H3N2 hemagglutinin (HA) sequences 

from the 2014-15 flu season. I obtained our dataset on 2015-10-16 using the following 

search terms: Host = Human, Location = United States, Collection Date = 2014-09-29 to 

2015-05-17, Submitting Laboratory = [United States, Atlanta] Centers for Disease 

Control and Prevention, Required Segments = HA, Min Length = 1,659. This search 

resulted in 1,220 sequences, and I further eliminated sequences from Alaska, Hawaii, and 
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the District of Columbia and those that did not have a specific state listed to obtain a final 

set of 1,163 sequences. In order to reduce the size of the transition rate matrix, I 

discretized the states into the ten U.S. Department of Health and Human Services (HHS) 

regions (HHS, 2014), which I show in Figure 2.8B. 

Ancestral State Reconstruction Methods. Our phylogeographic assessment 

assumes that geographic sampling traits follow a continuous-time Markov chain (CTMC) 

process along the branches of an unknown phylogeny that is informed through sequence 

data. The models I compare differ in how one parameterizes the infinitesimal rates of the 

among-location CTMC process. Here, I first parametrized the discrete location trait with 

a basic asymmetric substitution model (–BSSVS). Next, following Lemey et al. (Lemey 

et al., 2009), I retained the asymmetric substitution model but specified a truncated 

Poisson prior on the number of non-zero rates (+BSSVS(P)). Here, 50% of the prior 

probability lies on the minimal rate configuration (i.e. nine non-zero rates connecting the 

ten HHS regions). Similarly, I also placed a uniform probability on the location prior to 

test the effects of the selected location prior on the BSSVS procedure +BSSVS(U). I 

compare the –BSSVS and +BSSVS(P) methods with recent developments in virus 

phylogeography that have advanced modeling of among-location transition rates as a log-

linear GLM of predictors of interest (Lemey et al., 2014). Here, I followed this 

framework and parameterized GLMs with seven demographic, environmental, and 

genetic factors that I take from both region of origin and region of destination for a total 

of 14 predictors in the GLM(–SS) runs. In the GLM(+SS) runs I also include an 

additional two sample size predictors for a total of 16 predictors. This approach yields a 

quantifiable assessment of the inclusion and contribution of each predictor variable to the 
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overall transition rate matrix between our ten locations by estimating posterior 

probabilities of all 214 or 216 possible linear models via a BSSVS procedure. I specified a 

50% prior probability that no predictor will be included to enable calculation of Bayes 

factors (BFs) as a metric of support for the inclusion or exclusion of any given predictor. 

Here, I consider any predictor with BF > 3.0 to be supported for inclusion. For further 

details on the underlying theory and mathematical definitions of this GLM approach, I 

refer readers to Lemey et al. (Lemey et al., 2014).  

Summary of Rate Parameters. For both the –BSSVS and +BSSVS frameworks, 

there are K(K–1) relative rate parameters where K = 10 discrete states for our dataset [1]. 

For the –BSSVS framework, these rate parameters are each a priori independently 

gamma distributed with scale and shape parameters of 1.0, while for the +BSSVS 

framework these rate parameters are each a priori with a mixture of a point-mass on 1.0 

and on the same gamma distribution as the –BSSVS rate parameters. The number of 

parameters that achieve the point mass on 1.0 for the +BSSVS framework are Poisson 

distributed with a mean of 9.0 (for the +BSSVS(P) method) and uniformly distributed for 

the +BSSVS(U) method (i.e. a uniform distribution on [K, K(K-1)] = [9, 90]). For the 

GLM framework, there are 14 and 16 regression parameters (i.e. predictors) for the 

GLM(–SS) and GLM(+SS) methods, respectively, as outlined below. The regression 

parameters are each a priori in part a mixture of point-mass on 0 and in part normally 

distributed with a mean of 0 and a variance of 4.0 (Lemey et al., 2014). 

Sequence Subsampling. To investigate the effects of sampling biases, I 

performed multiple analyses using random samples from our full set of 1,163 sequences. 

I created six independent sequence samples by selecting 25% of the sequences in each 
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region at random without replacement and assume that each is representative of the entire 

flu season. These samples allow us to reveal whether the three frameworks will agree on 

the root location, root state posterior probability, height, and other trends in the 

phylogenies as well as show the reproducibility of the support for our GLM predictor 

variables. I did not identify any duplicate sequences from the same discrete state in any of 

the six samples. I aligned these six samples, each of which contained 285 sequences, 

using MAFFT v7.017 in Geneious Pro v.6.1.8 (Biomatters Ltd., Auckland, New 

Zealand). I treated each alignment as an independent dataset for our phylogeographic 

reconstructions and report all GISAID accession numbers and discrete state assignments 

(i.e. HHS regions) in Appendix B. The six samples and six coalescent priors result in a 

total of 180 total models, 36 from each of the –BSSVS +BSSVS(P), +BSSVS(U), 

GLM(–SS), and GLM(+SS) methods. 

GLM Predictors 

Human Population and Age. I obtained population estimates and land area per 

state from the U.S. Census Bureau (USCB) MAF/TIGER® database 

(https://www.census.gov/). Population data are released annually and represent the 

population as of 2014-07-01 for the 2014-15 flu season, and I used these values to create 

a density per region. I also obtained the median age per state from the USCB and used 

these values as a separate predictor, aggregated by region. 

Temperature and Precipitation. For our climate predictors, I obtained data from 

the National Climatic Data Center of the National Oceanic and Atmospheric 

Administration (NOAA). I collected temperature and precipitation data for the 30-year 

climate normal from 1981-2010 for the 9,359 stations in the contiguous 48 states, not 
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including the District of Columbia. As I am interested in the typical temperatures and 

precipitations observed during a flu season, I computed the average of all September-

October-November, December-January-February, and March-April-May summary 

datasets from stations in each region. I take these values for temperature (in degrees 

Celsius) and precipitation (in centimeters) to represent the typical flu season climate for 

each region. 

Influenza Vaccination Rates. I obtained state-level data on the vaccination rates 

for the 2014-15 flu season from FluVaxView by the Centers for Disease Control and 

Prevention (CDC) (CDC, 2016a) and aggregated them to a region-wide average. These 

data represent all individuals at least six months of age that received the annual flu 

vaccine at any point in time during the season. 

Air Travel. To account for travel between the ten regions, we obtained data from 

the Official Airline Guide, Ltd. as the number of seats on domestic flights between each 

pair of airports within the contiguous U.S. for the 2012 calendar year. I assumed that the 

number of seats is proportional to the number of passengers on each flight and that the 

2012 travel data is proportional to that of 2014-15. I discretized the data from each 

individual airport into a total number per HHS region to create a matrix of travel flux. 

These data do not include flights originating from international locations and thus strictly 

represent passenger flux among the ten HHS regions used in this study. I held this 

predictor constant through each of the six samples. 

Glycoprotein Content. Influenza vaccines are designed to induce neutralizing 

antibodies of both the hemagglutinin and neuraminidase viral surface glycoproteins 

(Cobbin, Verity, Gilbertson, Rockman, & Brown, 2013) in order to protect against future 
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infections with similar antigenic properties to the vaccinated strain (Couch & Kasel, 

1983). The glycoprotein (GP) content of a sampled virus thus provides an indication of 

the sample’s similarity to the strain vaccinated against during that season. Of the 1,163 

sequences in our dataset, 533 (46%) contained metadata regarding the GP content of the 

sample. The authors annotated these sequences with the binary “LOW GP” or “GP” to 

represent the similarity of the GP to the A/Texas/50/2012 (H3N2)-like virus strain 

vaccinated against during the 2014-15 flu season (CDC, 2016b). For each sample, I 

calculated the proportion of sequences with “LOW GP” to the total sequences with 

known antigenic content per region as a measure of the circulating strain’s disparity from 

the strain vaccinated against. This is the only predictor in which the values are not fixed 

among the six samples. 

Sample Size. Previous phylogeographic studies using GLMs have included and 

found strong posterior support for sample size at the location of origin and/or the location 

of destination (Lemey et al., 2014; Magee et al., 2015) so I included both as predictors in 

the GLM(+SS) runs. The GLM(+SS) runs thus contain 16 predictors while the GLM(–

SS) run contain 14 predictors.  
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Table 2.3 

Descriptive statistics of each predictor for the ten discrete states 

Predictor Mean SD Median IQR 

Population Density (people/mi2) 165.9 141.0 143.9 161.3 

Median Age (years) 38.0 1.6 37.8 2.0 

Vaccination Rate (%) 42.6 3.5 43.2 4.5 

Temperature (˚C) 7.7 4.1 6.5 6.5 

Precipitation (cm) 22.4 7.0 23.7 8.2 

Low GP Content (%, overall) 88.3 3.7 87.8 3.1 

Sample Size a 28.5 11.5 27.5 16 

Air Travel b 6.1 x 106 6.0 x 106 4.1 x 106 6.7 x 106 
a Accession numbers for the samples and location data are provided in Appendix B 
b Air travel represents the indicated statistic among all 90 pairwise region-to-region 

combinations 

 

Influenza Phylogeography 

Molecular Clock Fitting. I performed a preliminary analysis with Path-O-Gen 

v1.4 (http://tree.bio.ed.ac.uk/software/pathogen/) which showed that relaxed molecular 

clocks may have overparameterized our models. I therefore selected a strict molecular 

clock with a rate of 0.001 substitutions per site per year. 

Coalescent Priors and Substitution Model. In addition to the three 

reconstruction methods and six sequence samples, I also investigated six coalescent 

priors in this study: constant size (Kingman, 1982), exponential growth (Griffiths & 

Tavare, 1994), logistic growth (Griffiths & Tavare, 1994), expansion growth (Griffiths & 

Tavare, 1994), Bayesian Skyline (Drummond, Rambaut, Shapiro, & Pybus, 2005), and 

Bayesian Skygrid (Gill et al., 2013). Thus, I completed 180 individual ancestral state 

phylogeographic reconstructions, one for each sample/coalescent prior/reconstruction 

method combination (e.g. Sample 1/constant size/GLM, Sample 1/constant 

size/+BSSVS(P), Sample 1/constant size/–BSSVS, etc.). I specified an HKY+G 
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(Hasegawa, Kishino, & Yano, 1985) substitution model following recent phylogenetic 

studies of H3N2 (Horm et al., 2014; Lemey et al., 2014) and preliminary performance 

analyses using other substitution models. I used the–BSSVS, +BSSVS(P), +BSSVS(U), 

GLM(–SS), and GLM(+SS) methods to perform phylogeographic reconstructions under 

these parameters using the BEAST v1.8.4 software package (Drummond et al., 2012) 

with a chain length of 100 M, logging estimates every 10,000 steps while specifying a 

single seed across all models. These methods aim to minimize all sources of variance but 

the randomly selected sequences, tree priors, and glycoprotein content. 

Analysis of Support for Models. I used path sampling (PS) and stepping-stone 

sampling (SSS) to estimate marginal likelihoods of each model, as this procedure has 

been shown to be an improvement over harmonic mean estimators (Baele et al., 2012; 

Baele et al., 2013). Here, I specify a chain length of 1M with 100 path steps, logging 

every 1,000 steps. For the GLM predictors, I obtained the mean posterior probability of 

inclusion, BF support values, and the contribution of each predictor to the log-linear rate 

matrix. To determine the impact of geography on the phylogeny, I utilized Bayesian Tip-

association Significance Testing (BaTS) (Parker et al., 2008). This application tests the 

null hypothesis that other than by chance, adjoining tips are not more likely to share the 

same discrete traits. Here, I used our ten HHS regions as discrete traits to be tested under 

this null hypothesis. 

Comparison of Phylogenies. I used TreeAnnotator v1.8.4 to construct a 

maximum clade credibility (MCC) tree for each of the 180 runs after discarding the first 

10% of trees as burnin. I viewed and annotated the MCC trees using FigTree v1.4.2 for 

direct comparison of the ancestral state reconstructions. From each MCC tree, I recorded 
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the root state, root height and its 95% Bayesian credible interval, root state posterior 

probability, and the location of all nodes with a height exceeding one year. I also 

calculated the Kullback-Leibler (KL) divergence at the root state of each model. Here, I 

assumed two different prior probabilities at each discrete state: a uniform prior 

probability per discrete state (i.e. 0.1 for each of the ten discrete states), and second, a 

prior probability that is proportional to the number of taxa from that state (e.g. as 26 of 

285 taxa were sampled in Region 1 I set its prior probability to 26/285 = 0.0912). The 

latter approach allows us to account for potential sampling bias in the KL calculations. 

For several GLMs, I found that the posterior probability of at least one root state was 

zero, which yields a KL divergence of infinity. To present a finite KL value, I assigned 

these states a posterior probability of 1.0 x 10-16 and subtracted this artificial probability 

from the most probable root state. As an additional step to investigate possible sampling 

bias, I calculated the Pearson correlation coefficient (r) between the sample size for each 

of the ten discrete states and its corresponding root state posterior probability for each 

individual model. 

Data Availability. I have made the XML file and MCC phylogeny for each of 

our 180 models available for download at https://figshare.com/projects/Magee-Flu-

PLoS/16638. I have also made available the six sequence alignments as well as the full 

set of 1,163 unaligned sequences from which I created our samples.  

https://figshare.com/projects/Magee-Flu-PLoS/16638
https://figshare.com/projects/Magee-Flu-PLoS/16638
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CHAPTER 3 

THE EFFECTS OF SAMPLING LOCATION AND PREDICTOR POINT 

ESTIMATE CERTAINTY ON POSTERIOR SUPPORT IN BAYESIAN 

PHYLOGEOGRAPHIC GENERALIZED LINEAR MODELS 

Introduction 

Ancestral state reconstruction has long been an important topic in phylogenetic 

research (Slatkin & Maddison, 1989). Recent years have seen a turn to a Bayesian 

statistical framework to estimate posterior support of ancestral states (Lemey et al., 

2009), making use of a Bayesian stochastic search variable selection (BSSVS) procedure 

(Chipman et al., 2001; Kuo & Mallick, 1998). Although this popular hypothesis testing 

framework is effective in identifying root locations with high probability, the posterior 

probability of ancestral states is drawn exclusively from genomic features. While this 

interpretation certainly holds value in identifying evolutionary relationships, it can be 

suboptimal when there is interest in characterizing the effects of suspected 

epidemiological factors on evolution and diffusion.  

In addition to the lack of external influence on the phylogenies, studies in a 

discrete Bayesian phylogeographic setting must account for the nontrivial issue of 

identifying geographic sampling locations and, on occasion, pooling multiple locations 

into a single discrete state. A straightforward approach is to combine adjacent 

administrative divisions (e.g. neighboring countries) which are often divided by arbitrary 

boundaries, such as a parallel latitude, mountain range, or river, but these combinations 

may lose the value that each location holds individually. Specifically, population 

demographics, cultural aspects, and medical and agricultural practices may widely differ 
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in adjacent locations. Furthermore, these features may vary in specific areas of each 

individual location, so these differences should be accounted for in some capacity. 

Failure to do so may lead to biased posterior probability estimates along any branch in 

the phylogeny. 

The development and implementation of a generalized linear model (GLM) in 

Bayesian phylogeography has enabled the modeling of transition rate matrices as a 

function of biologically relevant predictors (Gill et al., 2013; Lemey et al., 2014). This 

framework was first used to evaluate the global diffusion of H3N2 influenza (Lemey et 

al., 2014) and was subsequently used to assess H5N1 influenza in Egypt (Magee et al., 

2015) and HIV in Brazil (Graf et al., 2015). These studies can accommodate properties of 

the discrete states themselves, such as demographic, environmental, and geographic 

features. Posterior inclusion probability estimates are available for each predictor, and 

Bayes factors (BFs) can be used to evaluate the support for each predictor’s role in the 

spatiotemporal dynamics of the pathogen. Regression coefficients are also available for 

each predictor such that its contribution to the overall diffusion process can be quantified. 

Although these implementations of the phylogeographic GLM may provide advantages in 

biological interpretation of phylogenies and identify driving forces behind widespread 

diffusion, the issue of predictor aggregation remains. Namely, each of these studies used 

point estimates of their predictors at high levels of spatial order, like continent or 

country-wide averages, often due to a lack of more specific sampling locations or the 

inability to assign predictor data to a more local level. While these estimates are not 

inherently inaccurate, the variance of a temperature predictor, for example, may be rather 

large when considering the local differences in climate across such a large area. This calls 
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into question whether a point estimate of a predictor over a large geographic area will 

enable accurate estimates of posterior predictor support.  

In this study, I investigate the effects of aggregating predictor data for 

phylogeographic GLMs at different spatial scales. Specifically, I examine how changes in 

the accuracy of the predictor point estimates may alter their respective posterior inclusion 

probabilities and regression coefficients. For example, climate is known to contribute to 

the global source-sink dynamic of influenza viruses (Rambaut et al., 2008), but 

temperature and precipitation are certainly not constant throughout the regions used as 

discrete states in many cases. Here, I hypothesize that as point estimates of the predictors 

become more representative of the geographic sampling location, posterior variance of 

the supported predictors will be minimized. This reduction in variance should provide 

more confidence in ensuing biological interpretations of the pathogen-predictor 

relationship. 

I use West Nile virus (WNV) in the U.S. as a case study to address this question 

and gain insight for researchers that wish to utilize the GLM framework. WNV is a 

vector-borne virus that first emerged in the U.S. in 1999 (Mann, McMullen, Swetnam, & 

Barrett, 2013; Pybus et al., 2012) and has resulted in over 41,000 human infections in the 

country (ArboNET, 2015). These infections occur primarily through bites of infected 

mosquitos of the Culex genus (Sardelis, Turell, Dohm, & O'Guinn, 2001), although many 

bird species are natural hosts (WHO, 2011). To our knowledge, there has been no prior 

study on WNV that has utilized a phylogeographic GLM. Here, I discretized 299 

sequences of WNV by U.S. Census Bureau (USCB) regions (CBR), USCB subdivisions 

(CBS), state, and county of isolation and perform a separate aggregation of predictor data 
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at each level. I additionally perform an assessment at the county-level for each of the four 

CBRs. This study will critically evaluate the impact of discretization of predictor data on 

a phylogeographic GLM, providing researchers with empirical evidence of how variables 

contributing to the diffusion of viruses can change given differences in discrete state 

partitioning and the level at which accurate point estimates of predictor values can be 

obtained. 

 

Results 

At the highest level of aggregation, CBR, the GLM’s predictor matrix was not of 

full rank, which is required to run GLM analyses in BEAST. In fact, of the 105 pairwise 

predictor-predictor combinations, six show a very strong linear correlation at the CBR 

level, which is the total number of such instances in the remaining seven models. I list 

highly-correlated predictors (|Pearsons’ r| > 0.9) for all models in Table 3.1. From Table 

3.1, 12 of the 15 predictors showed a high correlation with another predictor in at least 

one model, with only Corvidae average counts at the location of origin, distance, and 

unvaccinated horses at the location of destination failing to do so.  
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Table 3.1 

Predictor combinations where |Pearson’s r| > 0.9 

Model Predictor 1 Direction 1 Predictor 2 Direction 2 Pearson’s r 

CBR CA Destination PC Destination –0.90 

CBR CC Destination PD Destination –0.93 

CBR CC Origin PD Origin –0.95 

CBR PC Destination WL Destination >0.99 

CBR PC Origin WL Origin >0.99 

CBR TP Destination UH Destination >0.99 

CBS PC Origin TP Origin 0.95 

CBS PC Destination WL Destination 0.95 

Midwest TP Destination TP Origin 0.96 

South TP Destination TP Origin 0.99 

South CC Origin PD Origin 0.92 

South CC Destination PD Destination 0.91 

Notes. (CA) Corvidae counts; (CC) case counts; (PC) precipitation; (PD) population 

density; (TP) temperature; (UH) unvaccinated horses; (WL) wetlands. 

 

Although the CBS, Midwest, and South models did exhibit some strong 

correlations between predictors (Table 3.1), each predictor matrix achieved full rank. For 

the CBS, state, and national county aggregations, each MCC phylogeny exhibits similar 

posterior statistics, which I summarize in Table 3.2. Specifically, the time to the most 

recent common ancestor (tMRCA) and its highest posterior density (HPD) places the root 

of the viral tree in the late 1990s while the location is identified in the Northeastern U.S. 

Root states for the national models show “New England”, “Connecticut”, and “Fairfield 

County, Connecticut” for the CBS, state, and national county aggregations, respectively. 

The root state posterior probability (RSPP) is highest for the state aggregation (p = 0.98) 

followed by the CBS and county aggregations (p = 0.94 and 0.86, respectively). The 

Kullback-Leibler (KL) divergence increases from the CBS to state to county aggregation 

in the three national models. For the Midwest, South, and West regional county analyses, 

each molecular clock rate’s HPD range is larger than any of the national analyses. The 
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oldest sampling dates for the Midwest, Northeast, South, and West counties were 2002, 

1999, 2001, and 2003, respectively, and the tMRCAs of the viral samples from these four 

regional models were estimated to be 2000, 1997, 1998, and 2001, respectively.  The 

RSPPs of the South and West models (p = 0.63 and 0.54, respectively) are substantially 

lower than the those from the Midwest and Northeast models (p = 0.99 and 0.95, 

respectively), and the South model achieves the weakest KL divergence (1.52) of all 

models. I note a strong linear correlation between the number of discrete states and KL 

divergence for all seven models (Pearson’s r = 0.99), and also between the percent 

identical sites and number of taxa per model (Pearson’s r = –0.99). I provide the MCC 

phylogeny for the three national models in Figures 3.1-3.3.  

 

Table 3.2 

Posterior statistics of the MCC phylogenies 

 

Modela 

Clock Rate  

(95% HPD) 

tMRCA 

(95% HPD) 

 

Root Location 

 

RSPP 

 

KL 

CBS 
7.4 x 10-4 

(6.1-8.7 x 10-4) 

1997.5 

(1995.9-1998.5) 
New England 0.94 3.48 

State 
7.2 x 10-4 

(5.9-8.6 x 10-4) 

1997.6 

(1996.1-1998.6) 
Connecticut 0.98 48.27 

County 
6.8 x 10-4 

(5.7-7.9 x 10-4) 

1997.5 

(1996.1-1998.6) 

Fairfield Cty., 

Connecticut 
0.86 233.18 

Midwest 
4.3 x 10-4 

(1.7-7.2 x 10-4) 

2000.3 

(1997.3-2001.4) 

Cook Cty., 

Illinois 
0.99 47.70 

Northeast 
6.7 x 10-4 

(5.2-8.3 x 10-4) 

1997.7 

(1996.4-1998.7) 

Fairfield Cty., 

Connecticut 
0.95 85.67 

South 
8.1 x 10-4 

(3.2-12.1 x 10-4) 

1998.8 

(1996.0-2000.7) 

Harris Cty., 

Texas 
0.63 1.52 

West 
5.3 x 10-4 

(2.0-8.6 x 10-4) 

2001.6 

(1999.0-2002.7) 

Park Cty., 

Colorado 
0.54 17.25 

a Results not available for the CBR phylogeny as its predictor design matrix did not 

achieve full rank 
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Figure 3.1. MCC phylogeny of the CBS model. 

 

Figure 3.2. MCC phylogeny of the state model. 
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Figure 3.3. MCC phylogeny of the county model. 

The three national models demonstrate similar trends in population demographics 

via Bayesian Skyline plots as well, which I show in Figure 3.4. From Figure 3.4, the 

genetic diversity shows a sharper decline in the county model than the CBS or state 

models near the year 2003, but the remainder of the Skylines are nearly identical among 

the three models. I also show the Bayesian Skyline plots for the four regional models in 

Figure 3.5. From Figure 3.5, the Skyline plot of the Northeast county-level model appears 

similar to that of the three national models (Figure 3.4) over its time frame, which is 

likely an artifact of the density of samples in the Northeast region compared to the other 

three regions. The Midwest, South, and West models show generally steady levels of 

diversity across their respective time periods.  
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Figure 3.4. Bayesian Skyline plots for the (A) CBS, (B) state, and (C) county models. 

The y-axis (Neτ) is the effective population size multiplied by the generation length and 

the x-axis represents the year. The median measure is indicated by the thick black line, 

with the 95% HPD limits shown as the shaded blue area. The dotted vertical line 

represents the lower 95% HPD of the root height. 
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Figure 3.5. Bayesian Skyline plots for the (A) Midwest, (B) Northeast, (C) South, and 

(D) West regional models, aggregated at the county level. The y-axis (Neτ) is the 

effective population size multiplied by the generation length and the x-axis represents the 

year. The median measure is indicated by the thick black line, with the 95% HPD limits 

shown as the shaded blue area. The dotted vertical line represents the lower 95% HPD of 

the root height. 

While the phylogenies for the CBS, state, and national county models show 

generally consistent results, this is not true of the predictors included in these three 

models. I show the posterior inclusion probabilities and corresponding regression 

coefficients for the CBS, state, and county aggregations in Figure 3.6. From Figure 3.6, 

the Corvidae counts and wetlands predictors fail to achieve a BF > 3 from either location 

of origin or location of destination in any of the three aggregations. For case counts and 

precipitation, the CBS and county models yield BF < 3 from both location of origin and 
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location of destination, while the state model achieves BF support for case counts at the 

location of destination and precipitation at both the location of origin and destination (BF 

= 13.1, 14.8, and 6.5, respectively). The distance predictor shows the most scale-

dependent behavior, as support increases from the CBS to the state to the county levels 

(BF = 8.1, 102.4, and 30,185.0, respectively). Furthermore, the 95% HPD of the 

regression coefficient of the distance predictor decreases at each level of aggregation 

(95% HPD range = 7.21, 4.15, and 0.42 for the CBS, state, and county aggregations, 

respectively, in log-space). The entire HPD is negative for the county aggregation, which 

suggests that distance is preventing the diffusion of WNV in that model. The trend of 

decreasing posterior variance of the regression coefficient also holds true for population 

density at the location of origin (95% HPD range = 7.62, 6.53, and 2.89 for the CBS, 

state, and county aggregations, respectively, in log-space). Here, the entire HPD is 

positive for this predictor at the state and county aggregations, which suggests that 

population density at the location of origin is driving the diffusion of WNV in these two 

models. The CBS aggregation yields BF = 0.03 for this predictor, while the state 

aggregation yields BF = 227.6. For the county aggregation, this predictor was included in 

every sample after the 10% burn-in period, which corresponds to an inclusion probability 

of 1.0 and a Bayes factor that tends to infinity. This is also true for the county 

aggregation of the unvaccinated horses data at the location of origin, and the entire 95% 

HPD of the regression coefficient is positive, indicating that this predictor is also driving 

the diffusion of WNV for the county model. The CBS aggregation shows support for this 

predictor while the state aggregation does not (BF = 18.4 and 1.9, respectively). The state 

aggregation does show support for unvaccinated horses at the location of destination (BF 
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= 10.8) while the CBS and county aggregations do not (BF = 0.02 and 1.20, 

respectively). Finally, the CBS and county aggregations show similar support for 

temperature at the location of origin (BF = 21.5 and 25.1, respectively), while the state 

aggregation does not (BF = 0.4). 

 

 

Figure 3.6. Inclusion probabilities and corresponding regression coefficients for the 15 

predictors for the CBS, state, and county aggregations. The dotted line corresponds to BF 

= 3. Error bars represent the standard error for each predictor’s inclusion probability and 

the 95% HPD for each predictor’s regression coefficient. Predictor abbreviations are: 

Corvidae counts (CA), case counts (CC), distance (DS), precipitation (PC), population 



72 

 

density (PD), temperature (TP), unvaccinated horses (UH), and wetlands (WL), evaluated 

both from location of origin (O) and location of destination (D).   

I also show the posterior predictor data for the four regional models at the county 

level in Figure 3.7. Here, I again see that the Corvidae counts and wetlands area 

predictors fail to achieve BF support from either location of origin or location of 

destination in any of the four regional models. Of the 15 predictors included, only case 

counts, precipitation, population density, temperature, and unvaccinated horses, each 

from the location of origin, showed BF > 3 in these models. Only case counts and 

population density were supported in more than one of the regional models. For the 

Northeast model, unvaccinated horses at the location of origin yields a positive 95% 

HPD, which suggests that this predictor was also driving viral propagation in this region. 

This is consistent with the national county aggregation (Figure 3.6). The BF for this 

predictor tends to infinity in the Northeast model, and this model also shows support for 

population density at the location of origin (BF = 39.1). In the Midwest model, case 

counts and population density are supported (BF = 4.4 and 108.3, respectively). In the 

South model, case counts and population density at the location of origin are supported 

(BF = 17.8 and 3.8, respectively). The West model only shows support for temperature 

and precipitation at the location of origin (BF = 12.4 and 9.0, respectively).  
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Figure 3.7. Inclusion probabilities and corresponding regression coefficients for the 15 

predictors for the regional county-level aggregations. The dotted line corresponds to BF = 

3. Error bars represent the standard error for each predictor’s inclusion probability and 

the 95% HPD for each predictor’s regression coefficient. Predictor abbreviations are: 

Corvidae counts (CA), case counts (CC), distance (DS), precipitation (PC), population 

density (PD), temperature (TP), unvaccinated horses (UH), and wetlands (WL), evaluated 

both from location of origin (O) and location of destination (D).   

While Figure 3.6 outlines the variance in predictor support given the level of 

spatial aggregation and Figure 3.7 shows that local predictor trends are not necessarily 

consistent with those observed on a national basis, it is also pertinent to analyze possible 

sources of variance in the posterior estimates. In Figure 3.8, I plot the variance of the 
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inclusion probabilities and corresponding regression coefficients against the variance of 

the predictor point estimates for each individual model. That is, I show the posterior 

estimates as a function of the known variance in predictor point estimates. From Figure 

3.8, the 95% confidence intervals fail to encapsulate many of the data points for any of 

the three statistics. The low R2 values indicate that the variance in posterior estimates are 

not linearly correlated with the variance in predictor point estimates.  

 

 

Figure 3.8. Linear correlations between the variance of predictor point estimates and the 

variance in posterior support metrics. The blue lines represent the lines of best fit and the 

shaded areas represent the 95% confidence intervals, and include data for all national and 

regional models. 

I list the R2 value for linear models between the predictor point estimate accuracy 

(independent variable) and posterior statistic variance (dependent variable) for each 
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individual analysis in Table 3. From Table 3, 20% of the posterior variance of the 

regression coefficient is explained by the predictor point estimate variance in the CBS-

level aggregation, although just 8% of the posterior variances of the inclusion probability 

and HPD range of the regression coefficient are explained by the predictor point estimate 

variance. The state and national county aggregations do not yield R2 > 9% in for any of 

the three statistics. For the regional county-level models, a modest amount of the variance 

in posterior estimates are explained by the predictor point estimate variances in the 

Midwest, Northeast, and South models. The Midwest analysis yields R2 > 17% for each 

linear model, and 24% of the variance in the posterior regression coefficient is explained. 

Meanwhile, the West analysis shows R2 ≤ 1% for all three linear models. 

 

Table 3.3 

R2 statistics for linear models between the variance of predictor point estimates and 

the variance in posterior support metrics 

 Dependent Variable 

Model SD P(δa=1) SD (βb) HPD Range (βb) 

CBS 0.08 0.20 0.08 

State 0.09 <0.01 0.09 

County 0.07 0.07 0.07 

Midwest 0.17 0.24 0.17 

Northeast 0.14 0.01 0.14 

South 0.10 0.18 0.10 

West 0.01 <0.01 0.01 

Overall 0.04 0.01 <0.01 
a Inclusion probability 
b Regression coefficient 

 

Discussion 

I found that the MCC topology and the age of its root were similar in the three 

national models that were successfully executed (CBS, state, and county-level 
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aggregations). The tMRCA for these viruses in each model is consistent with those 

presented in previous phylogeographic studies of WNV in the U.S. (Anez et al., 2013; 

Pybus et al., 2012). The observed molecular clock rates for each are slightly slower than 

the reported 5.06 x 10-4 in the open reading frame of human-origin isolates between 

1999-2011 in the U.S. (Anez et al., 2013), but I note that our study includes one 

additional year and accounts for all sampled mosquito and avian species as well. In 

addition, the Bayesian Skyline plots are similar among the three national models (Figure 

3.4). Given the fact that the best supported predictors vary across these three models, I 

conclude that the topology of the viral phylogenies is mainly determined by the sequence 

data rather than by the predictor data or discrete state partitioning. 

I find the distance predictor to be of interest, especially pertaining to the three 

national models. Here, there is an increase in predictor support as the knowledge of the 

sampling location goes from most uncertain (CBS, BF = 8.1) to moderately uncertain 

(state, BF = 102.4) to least uncertain (county, BF = 30,185.0). Furthermore, the range of 

the HPD decreases as the sampling location certainty increases. The county-level 

aggregation suggests that distance is limiting the spread of WNV in the U.S., as its entire 

HPD is negative. The geographic diffusion of WNV in the U.S. is known to have 

occurred rapidly (Di Giallonardo et al., 2015). Thus, as the distribution of pairwise 

distances among discrete locations is largest at the county-level (Figure 3.10), it is 

plausible that the distance predictor would be protective. I note that the distance predictor 

is not supported in any of the four regional county-level models, which could indicate 

that geographic distance is less important at the local level but more important for 

widespread diffusion dynamics. Alternatively, this could simply be a result of the fewer 
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sequences and less genetic diversity available in the local analyses compared with the 

national analyses. The three national models share an alignment, with 79.2% identical 

sites, while the Midwest, Northeast, South, and West models contain 96.5%, 87.9%, 

91.5%, and 95.8% identical sites, respectively. The strong negative correlation (Pearson’s 

r = -0.99) between the number of viral sequences and the percent of identical sites per 

model demonstrates that an increase in the number of sequences results in a decrease in 

the number of fixed sites, and thus an increase in genetic diversity for the national 

models. 

In addition to the distance predictor, human population density at the location of 

origin is not supported at the CBS level (BF < 0.1), well-supported at the state level (BF 

= 227.6), and was found to be included in every sample for the national county model 

(BF tends to infinity). This predictor is also supported in the Midwest, Northeast, and 

South regional county models (BF = 108.3, 39.1, and 3.8, respectively), but not for the 

West model (BF = 2.3). The point estimates of this predictor are the least uncertain at the 

county-level, so its unanimous support in the national model and frequent support in the 

regional county-level models provide evidence that population density is involved in 

WNV diffusion. As this predictor’s contribution is strictly positive (regression coefficient 

= 3.9 and 95% HPD = [2.5, 5.4] in log-space), I can conclude that it is driving the 

diffusion of WNV from county-to-county, at least at the national level. 

As the remaining predictors have variable support among the CBS, state, and 

county-level analyses, I reiterate several points about the point accurate estimations of 

two predictors which were outlined in Materials and Methods: human case counts and 

expected unvaccinated horses. For the human case counts, I collected the data at the state-
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level (ArboNET, 2015) and not the specific county. Thus, our CBS and state aggregations 

have an accurate point estimate for this predictor, but for the county aggregation I 

assumed that the case counts per county were proportional to the county’s population 

within the state. This assumption is not necessarily correct for the county-level 

aggregations. Case counts at the location of destination is supported in only the state 

model (BF = 13.1) so, the assumption for the county aggregations does not appear to 

have resulted in a potentially misleading supported predictor, although it is unknown how 

an alternative estimation assumption would change the posterior results. The expected 

unvaccinated horses predictor, however, does result in potentially suspect support 

metrics. The population of horses is known at the state-level (American Horse Council, 

2005), and thus the population per CBS is simply the sum of the states in the region. For 

the county-level aggregation, I assumed that the number of horses was uniformly 

distributed across the state and thus that the number of horses per county was 

proportional to its land area. This predictor also required the vaccination rate per state, 

and several states in our dataset (Arizona, Connecticut, Ohio, Nebraska, South Dakota, 

and Texas) were absent from the survey from which we obtained this predictor (APHIS, 

2006). I note that at least one state is absent from the Midwest, Northeast, South, and 

West regions of the USCB, which directly impacts the regional county-level analyses as 

well. I assumed that the absent states had the same vaccination rate as the most proximal 

geographic region from that survey, and that the CBS estimates were the average of the 

states in the region. I also assumed that the vaccination rate in each county was the same 

as the vaccination rate per state, which creates additional uncertainty. Overall, each of the 

seven completed models required a certain degree of assumption and potential error 
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introduction for this predictor, but the county-level aggregations required one additional 

assumption, thus increasing its uncertainty. I found that the expected unvaccinated horses 

at the region of origin is facilitating the diffusion of WNV in both the national and 

Northeast county-level aggregations (Figures 3.6 and 3.7) (BF tends to infinity and 95% 

HPD of the regression coefficient is strictly positive for each) and is supported at the 

CBS-level (BF = 18.4) as well (Figure 3.6), although its directionality is uncertain. 

Because the state-level point estimate is likely the most accurate for the expected 

unvaccinated horses predictor, and as I found that this predictor is supported from the 

location of destination in that model (BF = 10.8) I question the findings of the CBS and 

county-level aggregations. It is likely that multicollinearity is influencing the support of 

this predictor at the county level. For the CBS, state, and national county-level 

aggregations, the correlation between our point estimate for expected unvaccinated 

horses and the size of the discrete state is 0.23, 0.66, and 0.86, respectively. For the 

Midwest, Northeast, South, and West regional county-level models, the correlations are 

0.62, 0.73, 0.67, 0.89, respectively. These data indicate that any support for the 

unvaccinated horses predictor in any of the county-level aggregations is rather indicative 

of the size of the discrete states, not the horse population, and should further caution 

researchers when aggregating predictors where assumptions must be made. In addition, 

horses infected with WNV are not known to be capable of passing the virus back to 

uninfected mosquitos, nor can they infect other horses or humans (Komar, 2000; 

Practitioners; Williams & Crans, 2004), so the suggestion that unvaccinated horses 

contributing to the spread of WNV seems suspect. 
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Although the correlations between the posterior predictor variance and variance in 

predictor point estimates (Figure 3.8, Table 3.3) fail to show linear trends, I do not 

consider this finding problematic. As the phylogenies are informed via both predictor 

data and sequence data (Lemey et al., 2014), identifying strong correlations would 

perhaps demonstrate a systematic bias within the GLM framework. Instead, these data 

may show the inherent stochasticity of this framework. Our inability to execute the CBR 

model due to its strong correlations between predictors (Table 3.1) indicates that 

discretizing locations and aggregating predictor data at highly uncertain levels for 

phylogeographic GLMs may require the elimination of predictors from the model and/or 

selection of alternate predictors such that the correlations are reduced. Either could result 

in a loss of pertinent information or misleading results regarding the dynamics of the 

virus in question. 

Researchers that employ a GLM in Bayesian phylogeography may be tempted to 

create inferences based on posterior support of predictors and subsequently provide 

biological justification of these findings, but I believe that the results tell a cautionary 

story of the need to consider alternative discrete state construction. Here, I have shown 

how assigning identical nucleotide sequences into different discrete state sets with 

different degrees of spatial resolution can influence posterior support for predictors. As I 

am unable to pinpoint the source of the posterior variance as it pertains to the variance in 

point estimates across the discrete locations, I refrain from making any firm statements 

regarding which predictors are involved in the diffusion of WNV. Furthermore, as 

posterior predictor estimates obtained from regional county-level models are often 

inconsistent with those from the national level, it may also be important to perform 
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additional analyses at the local level prior to stating conclusions regarding more 

widespread epidemics (and vice versa). Finally, it is often the case that sampling 

locations are only known or annotated to low-level, uninformative, and ambiguous 

locations (Scotch et al., 2011; Tahsin et al., 2016). As I have shown here for the distance, 

population density, and expected unvaccinated horses predictors, aggregations that are 

averaged over a wider geographic area may not fully encapsulate or represent the true 

data at the precise sampling location, even though these same predictors at the county-

level received strong support. Simply put, knowing the precise sampling location may 

enable local dynamics in viral diffusion to be revealed via GLM analyses, whereas this 

information may be lost when sequences are aggregated into coarser geographical units. 

Thus, I urge researchers that annotate and submit nucleotide sequences to public 

repositories to use the most precise sampling location possible so that these data can be 

used to accurately determine the factors that drive the diffusion of deadly viruses. 

 

Materials and Methods 

Model Parameters 

Nucleotide Sequences. I obtained whole genome WNV sequences from the Virus 

Pathogen Database and Analysis Resource (Pickett et al., 2012) using the following 

search criteria: Family = Flaviviridae, Genus = Flavivirus, Species = West Nile Virus, 

Collection Year = 1999-2012, Geography = USA, Host = All. This resulted in 781 

sequences, 299 of which were annotated with a state of origin and county of origin. I 

aligned these 299 sequences using MAFFT v7.017 in Geneious Pro v.6.1.8 (Biomatters 

Ltd., Auckland, New Zealand). After exploratory Bayesian phylogeographic GLMs with 
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our sequence set failed to replicate molecular clock rates observed for WNV in the U.S. 

over a similar time period, I elected to focus on the envelope (E) protein of the WNV 

genome. I extracted the E protein for each record and aligned the sequences with the 

same parameters described above. I also performed four additional alignments, one for 

the sequences collected from each of the four CBRs: Midwest, Northeast, South, and 

West. I classified the hosts of these viruses using four categories: mosquito (n = 138), 

Corvidae (108), human (44), and other avian (9). The mosquito group contains members 

of the Aedes (11), Culex (101), Culiseta (15), Ochlertotatus (9), and Psorophora (2) 

genera. Corvidae is a family of birds, of which the American crow (Corvus 

brachyrhynchos, 81), blue jay (Cyanocitta cristata, 26), and black-billed magpie (Pica 

hudsonia, 1) were identified as hosts in these data. The remaining avian hosts include 

Falco sparverius (1), Poecile atricapillus (1), Quiscalus quiscula (1), Accipiter cooperii 

(1), Buteo jamaicensis (1), Zenaida macroura (1), Mimus polyglottos (2), and Loriidae 

(1). I provide the GenBank accession, discrete state assignment for each level of 

aggregation, and year of isolation of each sequence in Appendix C. 

Bayesian Phylogeographic GLM. The phylogeographic model assumes that the 

location of each ancestral lineage is governed by a continuous-time Markov chain 

(CTMC) process that runs along the branches of an unknown phylogeny that is informed 

through sequence data. The infinitesimal rate matrix of the among-location CTMC 

process is parameterized as a log-linear GLM of predictors of interest (Lemey et al., 

2014) to determine the probability of inclusion and the contribution of these predictor 

variables. Here, I selected predictors of interest to parameterize this rate matrix and 

estimate posterior probabilities of all 2P linear models via a Bayesian stochastic search 
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variable selection (BSSVS) procedure (Lemey et al., 2014), where P is the number of 

predictors. I specified a 50% prior probability that no predictor is included in the model 

and evaluated the support of each predictor via Bayes factors (BFs), where I consider any 

predictor with BF > 3.0 to be supported for inclusion in the model (Kass & Raftery, 

1995) following similar studies (Graf et al., 2015; Lemey et al., 2014; Magee et al., 2015; 

Magee, Suchard, & Scotch, 2017). 

Levels of Predictor Aggregation. As I wish to investigate the differences in 

support for the GLM predictors when the sampling locations are specified with more or 

less resolution, I used four levels of aggregation for each predictor: USCB regions (CBR, 

K = 4), USCB subdivisions (CBS, K = 8), state (K = 16), and county (K = 80). At each 

level, I assume that the sampling location of each virus is known to one of the K discrete 

states. I define the aggregation levels as ranging from “most uncertain” (CBR) to “least 

uncertain” (county) as knowledge of the sampling location increases. I obtained internal 

latitude and longitude coordinates for each state in the contiguous U.S., including the 

District of Columbia, as well as every known sampled county from the USCB. For the 

CBR and CBS aggregations, the geospatial reference is the mean latitude and longitude 

of the states in the respective boundaries. To investigate whether regional dynamics of 

WNV match those at the national level for the four aforementioned aggregations, I also 

include a county-level aggregation for the sequences collected in each of the four CBR 

discrete states. That is, I selected the sequences from the four USCB regions, Midwest (n 

= 29), Northeast (n = 170), South (n = 64), and West (n = 36), and completed a regional 

analysis for each at the county-level aggregation. In Figure 3.9, I provide a map of the 
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discrete states in each level of aggregation and I detail the metadata for each sequence  in 

Appendix C. 

 

 

Figure 3.9. Map of the discrete state partitions used in this study. The four colors 

represent the discrete locations for the CBR model, which are further discretized into nine 

CBS locations, 16 states, and 80 counties. No samples were available for the East South 

Central subdivision at the CBS level. Each state is annotated with its number of unique 

sampled counties (C) and number of sequences (S). The Midwest, Northeast, South, and 

West regional models are county-level aggregations encapsulated by the K counties in 

their respective CBR. 
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GLM Predictors 

I identified predictor data for each discrete state to represent the WNV epidemic 

in the U.S. from 1999-2012. Although the exact dates of the estimates for each predictor 

vary, each was accurate as of one specific point in time during the years of our study.  

Distance (DS). I obtained a centroid latitude and longitude of each state and 

county from the USCB MAF/TIGER database. I calculated the pairwise distance from 

each location to the next using these coordinates for the state and county aggregations, 

respectively. For the CBR and CBS aggregations, I calculated the mean internal latitude 

and longitude for each of the states in the defined area. I used these means as the centroid 

coordinates for each area and calculated pairwise distances between them. 

Population Density (PD). I obtained human census data from the USCB for the 

most recent full census in 2010. I obtained population data at both the state and county 

levels. For the CBR and CBS, I summed the total population in the respective states and 

divided by their total land area to obtain a density. For the state and county aggregations, 

I divided the population per sampled location by its land area to obtain a density.  

Case Counts (CC). I obtained data on the number of cases per state from the 

Centers for Disease Control and Prevention’s (CDC) ArboNET surveillance program 

(ArboNET, 2015). These data reflect the cumulative number of human cases per year 

from 1999-2012 at the state level. The predictor for the CBR and CBS aggregations 

reflect the total number of human cases in the defined states during this period. For the 

county aggregation, the point estimate assumes that the county observedseveral cases 

proportional to its population within the state. These data round to zero for Concho 
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County (Texas) and Wilkinson County (Georgia), so they were changed to a value of one 

to ensure positivity for the log transformation. 

Unvaccinated Horses (UH). The American Horse Council Foundation completed 

the most comprehensive horse census in the U.S. during the time period of our study. 

This survey counted the number of horses per state, and includes horses found on farms, 

private homes, and those in the racing, showing, and recreation industries as of 2005 

(Council, 2005). As data was only available for the state level, I assumed that these 

animals were uniformly distributed across the entire state. Thus, the state aggregation 

encapsulates all horses estimated to be in the state, and the county level reflects the 

expected number of horses given the county’s land area. I used the sum of horses in each 

state for the CBR and CBS aggregations. Furthermore, the Animal and Plant Health 

Inspection Service (APHIS) of the U.S. Department of Agriculture (USDA) provided 

estimates of equid vaccination practices during the 2005 calendar year (APHIS, 2006). 

This study surveyed equid owners in 28 states, 12 of which were included in this study. 

The survey provided average vaccination rates of resident equids, discretized into four 

regions: South, Northeast, West, and Central. For the CBR and CBS aggregations, I 

matched each region to its most appropriate of the four USDA regions. At the state level, 

I used the average rates per region in the USDA study for the 12 states in this study and 

assumed the remaining four states to be part of the most proximal geographic region. At 

the county level, I use the same vaccination rate as its corresponding state. Given the 

horse census and the vaccination rates, I use the expected number of unvaccinated horses 

in each discrete state as the predictor at each level of aggregation. 
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Corvidae Counts (CA). Of the 299 sequences used in this study, I identified 118 

that were isolated from avian hosts, including 11 unique species, however 104 of these 

sequences (92%) were from birds of the Corvidae family. The Cornell Lab of 

Ornithology (Sullivan et al., 2009) provides a collection of census data obtained by 

birders throughout the world and can be selected by species, geographic region, and time. 

I obtained the total number of observations of the three Corvidae hosts (Corvus 

brachyrhynchos, Cyanocitta cristata, and Pica hudsonia) during 1999-2012 for each 

respective discrete state at the CBR, CBS, state, and county levels, as well as the total 

number of reports. To account for potential biases in the reporting of birders in various 

locations, I divided the cumulative counts of the three species by the cumulative number 

of reports to obtain an expected number of Corvidae sightings per observation in each 

discrete state and used this as the predictor at each level. 

Wetlands Area (WL). I obtained GIS shapefiles of each of the states in this 

analysis from the U.S. Fish and Wildlife Service (USFWS, 2016). These files contain the 

wetlands polygon data for each state, and I extracted the total area of wetlands for the 

state level using ArcMap v10 (ESRI, Inc., Redlands, CA, USA). For the CBR and CBS 

aggregations, I used the sum of each state’s wetlands to obtain the total wetlands per 

defined area. For the county level, I obtained the map of counties in each state from the 

USCB MAF/TIGER database and extracted all instances of wetlands contained in the 

respective counties. I divided each wetlands area by the total land area of each discrete 

state to obtain percentage wetlands cover, and used this as the predictor point estimate at 

each level of aggregation. 
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Temperature (TP) and Precipitation (PC). I obtained temperature and 

precipitation data from the 30-year normal datasets (1981-2010) provided by the National 

Climatic Data Center of the National Oceanic and Atmospheric Administration (NOAA) 

(Arguez et al., 2012). At the CBR, CBS, state, and county levels, I extracted the average 

annual temperature and precipitation data from each NOAA station in the respective 

areas. The temperature and precipitation predictors thus reflect the average 30-year 

normal observed by all stations in each discrete state. At the county level, there were 

several instances where either no NOAA station existed within the county boundaries or 

the station(s) in the county did not contain normal temperature or precipitation data. In 

these instances, I used the most proximal station within that state to the county’s centroid 

coordinates that contained both temperature and precipitation normal.  

I log-transformed and standardized all predictor data and created a separate 

predictor from both discrete state of origin and discrete state of destination, with the 

exception of the distance predictor, for a total of 15 predictors. I summarize the 

distributions of the predictors at level of aggregation in Figure 3.10. 
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Figure 3.10. Boxplots of the predictors used in this study for each model. Predictor 

abbreviations are: Corvidae counts (CA), case counts (CC), distance (DS), precipitation 

(PC), population density (PD), temperature (TP), expected unvaccinated horses (UH), 

and wetlands area (WL). 

BEAST Analyses 

I specified a generalized time reversible substitution model following previous 

WNV studies (Anez et al., 2013; Di Giallonardo et al., 2015; Duggal et al., 2014; Lopez, 

Soto, & Gallego-Gomez, 2015; Mann et al., 2013; Pybus et al., 2012), also including 

invariant sites and a gamma heterogeneity (GTR+I+G) on our sequences. I set an 

uncorrelated lognormal relaxed molecular clock (Drummond, Ho, Phillips, & Rambaut, 

2006) following previous studies (Ciccozzi et al., 2013; Mann et al., 2013; Pybus et al., 

2012) with 0.001 substitutions per site per year and specified a Bayesian Skyline prior 

(Drummond et al., 2005). For each discrete space partitioning, I specified a 

phylogeographic GLM (Lemey et al., 2014) using the respective predictor data at each 

level of aggregation. I evaluated each using the BEAST v1.8.4 software package 
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(Drummond et al., 2012) with a chain length of 250 M and sampling every 25,000 steps 

for the CBR, CBS, state, and national county-level models. For the four regional models, 

we specified a chain length of 150 M with sampling every 15,000 steps. I used 

TreeAnnotator v1.8.4 to construct a maximum clade credibility (MCC) tree for each 

model after discarding the first 10% of trees as burnin and annotated the trees using 

FigTree v1.4.2. I obtained the mean posterior probability of inclusion, BF support, and 

the contribution of each GLM predictor for each model using Tracer v1.6.  

Predictor Variance Correlations. From each model and for each predictor, I 

extracted the standard deviation of the inclusion probability, the standard deviation of the 

regression coefficient, and the upper and lower bounds of the regression coefficient’s 

HPD. I used the “geom_smooth” function in the “ggplot” package in R v3.3.1 (R Core 

Development Team, 2008) to visualize correlations between the variance of predictor 

point estimates and variance in posterior support. I used the “lm” function to obtain these 

R2 values for each individual model (Table 3.3) and with all models pooled together 

(Figure 3.8). 

Data Availability. I have made all FASTA alignments, XML files, and MCC 

phylogenies freely available at 

https://figshare.com/projects/WNV_GLM_Aggregation_Study/19201.  

https://figshare.com/projects/WNV_GLM_Aggregation_Study/19201
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CHAPTER 4 

A PIPELINE FOR PRODUCTION OF BEAST XML FILES WITH 

GENERALIZED LINEAR MODEL SPECIFICATIONS 

Introduction 

Although Bayesian phylogeographic generalized linear models (GLMs) offer the 

benefit of simultaneously reconstructing the spatiotemporal history of the virus and 

assessing the contribution of each predictor to the process, few studies have utilized such 

an approach. As I addressed in Chapter 2, one possible hindrance to its widespread 

adoption could be a lack of research into the computational performance of GLMs 

compared to the traditional Bayesian stochastic search variable selection (BSSVS) 

framework (Lemey et al., 2009). Similarly, as I addressed in Chapter 3, researchers may 

struggle with discretizing locations and/or locating accurate predictor data for their 

selected geographic region. A different explanation could simply be that the GLM 

framework is not directly implementable via BEAUti, like other phylogeographic 

methods. Currently, the implementation of the GLM framework involves manual 

manipulation of XML files, as described by a tutorial (P. Lemey, Rambaut, & Suchard, 

2014). In order to facilitate the process of performing a phylogeographic GLM, I 

introduce a Python script that was created to outfit BEAST-ready XML files (Drummond 

et al., 2012) with the GLM specification (P. Lemey et al., 2014) using a small number of 

command line options and preparation of applicable predictor data. 
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Program Requirements 

The most recent version of this program can be found at 

https://github.com/djmagee5/BEAST_GLM. Here, one can access and download the 

code, a detailed README, and example files. 

Python 

The program is written in Python v3.4.3 (Python Software Foundation, 2015) and 

requires the built-in “xml”, “os”, and “math” packages. It also requires the external 

“numpy” package (van der Walt, Colbert, & Varoquaux, 2011), for which documentation 

and installation instructions are listed in the README. 

BEAST XML File 

As the purpose of the program is to outfit a BEAST-ready XML file with the 

GLM specification, a BEAST-ready XML file is needed. This file must specify a discrete 

trait (e.g. location or host) that will be modeled via a log-linear GLM of predictors of 

interest. It does not matter whether or not this discrete trait uses the BSSVS specification 

(Lemey et al., 2009). 

Predictor Data File(s) 

Point estimates for at least one predictor must be obtained for each state of the 

discrete trait that is to be modeled via the GLM. The predictor data must be in comma-

delimited (.csv) or tab-delimited (.txt) format and can be presented either batch or single 

form, specifications of which are outlined below.  

Batch Predictor File 

 A batch file of predictor data lists point estimates of multiple predictors for each 

discrete state. Users will be able to indicate whether a predictor should be taken from the 

https://github.com/djmagee5/BEAST_GLM
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discrete trait of origin, discrete trait of destination, or both. An example of a batch 

predictor file is shown in Table 4.1. Batch predictor files must meet the following 

requirements: 

1. The first value in the first line should be the name of the discrete trait that the user 

wishes to model as a GLM. 

2. The remaining values in the first line must be the names of the predictors. 

3. The first value in all remaining lines must be the names of the discrete states in 

the XML file. The order of the states does not matter as the program will sort 

them according to the order specified in the XML file. They should exactly match 

the names of the discrete states in the XML file to avoid any errors, although the 

program will strip whitespace and is case insensitive in order to avoid such issues. 

4. The remaining values in each line must be the values of the predictor in the 

column for the line's discrete state. 

5. A predictor will be created for each predictor name in the first row. 

 

Table 4.1 

Example format of a batch predictor file 

Location Population_Density Temperature Precipitation 

Arizona 56.27 62.11 13.46 

California 239.14 59.52 24.12 

Colorado 48.07 46.00 16.63 

Connecticut 738.08 49.50 50.38 

 

Single Predictor File 

A single file of predictor data lists the point estimates of one predictor in matrix form. 

Point estimates are directional, from the discrete state in row i to the discrete state in 
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column j for all i ≠ j (Lemey et al., 2014). Multiple input files can be placed in a single 

directory, <singlePredictorDir>, and a predictor will be created for each file in the 

specified directory. An example of a single predictor file is shown in Table 4.2. Single 

predictor files must meet the following requirements: 

1. The name of the predictor should be the first value in the file (i.e. first row, first 

column). 

2. The remaining values in the first line must be the names of the trait’s discrete 

states. They should exactly match the names of the discrete states in the XML file 

to avoid any errors, although the program will strip whitespace and is case 

insensitive in order to avoid such issues. 

3. The first value in each of the remaining lines must be the name of one of the 

discrete states. The same rules apply from Step 2 regarding discrete state names. 

4. The remaining values in each line must represent the value in the matrix 

corresponding to the transition from the <discrete state in the row> to the 

<discrete state in the column>. 

5. Values in the diagonal entries should be 0.  

6. A predictor will be created for each single predictor file in <singlePredictorDir>. 

 

Table 4.2 

Example format of a single predictor file 

Temperature_Origin Arizona California Colorado Connecticut 

Arizona 0 62.11 62.11 62.11 

California 59.52 0 59.52 59.52 

Colorado 46.00 46.00 0 46.00 

Connecticut 49.50 49.50 49.50 0 
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Predictor Data Point Estimates 

For both the batch and single predictor files, all point estimates must be positive 

as these data will be log-transformed by the program, with two exceptions: diagonal 

entries in the single predictor files and coordinates in batch predictor files. For the 

former, diagonal entries in single predictor file matrices are ignored by the program, so 

the ‘0’ entries (specified Single Predictor File – Step 5) are simply placeholders to ensure 

that the matrix is square. For the latter, if a batch predictor file has two columns labeled 

like coordinates (e.g. “Latitude” and “Longitude” or “LAT” and “LONG”, case 

insensitive), the program will prompt the user to determine if a “distance” predictor is 

desired for the discrete trait (i.e. location), as it has been used as a predictor in multiple 

phylogeographic GLM studies (Lemey et al., 2014; Magee et al., 2015). If the user elects 

to use distance, the program will calculate the great circle distance between the 

coordinates for each pair of discrete states. The user will have the option to retain the raw 

coordinates as individual predictors if they so desire. Aside from these two exceptions, 

any predictor that contains non-positive point estimates will be flagged by the program 

and the user will be informed that said predictor(s) cannot be used in their log-linear 

GLM. This applies to coordinate predictors in their raw form. That is, if a user elects to 

include distance and also wishes to include raw latitude as a predictor, if some locations 

have a negative latitude (i.e. are located in the southern hemisphere) the program will 

indicate that raw latitude may not be used as a predictor. A user could, however, provide 

a workaround for this by including a separate “relative latitude” predictor that indicates a 

location’s position relative to a certain point, which may ensure that all data are positive 

and thus can be used as a predictor. Finally, it is important to note that all predictor data 
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will be standardized by BEAST (Drummond et al., 2012). This essentially nullifies all 

units of predictor data point estimates, which enables flexibility of users that have 

inherently non-positive predictor data. For example, if one discrete state’s point estimate 

for a “temperature” predictor is –0.5˚C, the program will not allow this predictor to be 

included. The user could, however, simply transform all point estimates from Celsius to 

Fahrenheit, which would yield 31.1˚F for this discrete state. The mean and variance of 

this predictor will not have changed after the transformation, but the program will now 

allow for its inclusion and the standardized predictor data will be identical, so it will not 

affect posterior estimates in any way. 

 

Program Execution 

The program is built for command line execution with a minimum of four and 

maximum of six arguments, which are outlined in Table 4.3. A general use case for the 

program is as follows: 

$ python create_glm_xml.py <xmlFile> <discreteTrait> single    

  <singlePredictorDir> batch <batchFile> 
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Table 4.3 

Arguments for the Python script 

Argument Notes 

<xmlFile> BEAST-ready XML file that specifies some discrete trait. 

<discreteTrait> 
Name of the discrete trait to be modeled as a log-linear GLM. 

Case insensitive. 

single 
Indicates that single predictor file(s) will be used. Case 

insensitive. 

<singlePredictorDir> 
Directory containing all single predictor files to be written to 

the new XML. 

batch 
Indicates that a batch predictor file will be used. Case 

insensitive. 

<batchFile> Path to the batch predictor file to be written to the new XML. 

 

For all use cases, the first two arguments must be <xmlFile> and <discreteTrait>, 

respectively, to indicate the XML file to process and the discrete trait to transform into a 

log-linear GLM with the desired predictor data. At least one of “single” or “batch” must 

also be specified, followed by the directory containing all single predictor files or the 

batch predictor file, respectively. The user may elect to use both single and batch files. In 

this case, the order for the arguments “single <singlePredictorDir>” and “batch 

<batchFile>” does not matter. An insufficient or excess number of arguments will prompt 

an error message and a new XML file will not be created.  

Additional User Prompts 

If a user only specifies single predictor file(s), the program will not require any 

additional user input. If a user specifies a batch predictor file that includes coordinate-like 

predictors, the user will be asked if a “Distance” predictor should be included as 

previously detailed. After the user indicates whether distance should be included and, 

subsequently, whether the raw latitude and longitude coordinates should be retained as 
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additional predictors, a list of predictors from the batch file will be echoed to the screen. 

The latter steps will be skipped and the list of predictors from the batch file will be 

immediately echoed to the screen if no coordinate-like predictors are contained in the 

batch predictor file. Table 4.4 shows how the example batch predictor file from Table 4.1 

will be displayed by the program. 

 

Table 4.4 

Example output visible to a user that inputs a batch predictor file 

Num Predictor Direction 

(0) Population_Density Both 

(1) Temperature Both 

(2) Precipitation Both 

 

From Table 4.4, the “Direction” column may hold one of four values: “both” 

(default), “origin”, “destination”, or “** REMOVE **”. This column represents the 

direction(s) from which the predictors are to be represented (i.e. from discrete state of 

origin, discrete state of destination, or both). A prompt will ask a user if the list is correct. 

If the list is not correct, the user may remove any predictor or modify its directionality. A 

modified list will be echoed to the screen with each change made by the user, and this 

process will continue in a loop until the user indicates that they are satisfied with the final 

list. Once the list is finalized, no more input is required from the user. 

 

Algorithm 

Once the user calls the program, the following steps occur: 

1. Ensure that a correct number of command line arguments are entered. 
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2. Check the specified XML file and ensure that it contains the specified discrete 

trait. 

3. Extract all discrete states for that discrete trait. 

4. Read in predictor data from batch and/or single predictor file(s). 

5. Extract the list of discrete states from each predictor file and ensure that the list 

matches the discrete states from the XML file.  

6. Read in all predictor data and check for non-positive values. Exceptions are 

detailed in Program Requirements – Predictor Data Point Estimates. Log-

transform all data. 

a. Echo to the screen any data points that are non-positive, including the row 

and column numbers in the specified file(s). 

7. If a batch predictor file is uploaded, complete the Additional User Prompts until 

the user is satisfied with the final predictor list. 

8. Process the original XML file line-by-line and write its fields to a new XML file. 

The name of the new XML file will indicate that a GLM is specified (e.g. 

“originalXMLFileName.xml” to “originalXMLFileName_GLMedits.xml”).  

a. Comment out all sections of the XML file that must be removed in order 

to model the discrete trait with the log-linear GLM specification and 

replace them with the required GLM sections as outlined by the BEAST 

tutorial (P. Lemey et al., 2014). 

b. Write the log-transformed predictor data in the correct order for the 

predictor design matrix and calculate its rank. Output a file containing the 
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predictors in the order that they were written to the new XML file, for the 

user’s reference, titled “originalXMLFileName_predictorNames.txt”. 

c. Change the names of all logfiles to indicate that the data stem from a GLM 

(e.g. “originalLogFileName.log” to 

“originalLogFileName_GLMedits_discreteTrait.log”. 

9. Echo to the screen the number of predictors and the rank of the design matrix. 

As the new XML file will not execute in BEAST if the design matrix is not of 

full rank, echo to the screen a statement regarding whether or not the new 

XML file is likely to run based on the design matrix’s rank. 

10. Echo to the screen a message that the program has terminated, the name of the 

new XML file with the GLM specification, and the name of the discrete trait 

for which the GLM will be modeled.  

 

The program’s physical output is a new, renamed XML file and a plain text (.txt) file 

that lists the predictors in the order that they were written to the XML file. The former is 

renamed, as are all logfiles contained in the original XML file, such that both files can be 

executed in BEAST without fear of inadvertent overwriting of some or all crucial data. 

The latter is done in order to provide the user with a reference to the predictor logfile that 

will be outputted by BEAST. This logfile will contain column titles like as 

“coefIndicator1” and “glmCoefficient1” to represent the indicator variable and regression 

coefficient for the first predictor written in the XML file. The list of predictors, titled 

“originalXMLFileName_predictorNames.txt”, informs the user which predictors 

correspond to which variables. 
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Error Messages 

The program anticipates several possible errors that will either render the program 

unable to create a new XML file or will result in a new XML file that will cause a known 

BEAST error. Identification of these errors will result in a termination of the program and 

a new XML file will not be created, but will result in an informative error message that 

will be echoed to the screen in the event that one is encountered by a user. Some of the 

possible errors include: 

1. Incorrect number of command line arguments. 

2. Failure to specify “single” or “batch” as the third and/or fifth command line 

arguments.  

3. The XML file does not contain the specified discrete trait. 

4. Different number of discrete states in the XML file and predictor data file. 

5. Discrete state name(s) listed in a predictor data file cannot be matched to a 

discrete state name listed in the XML file. 

6. Invalid values (e.g. non-floating point or negative) provided in a predictor data 

file. 

7. Single predictor file is not a square matrix. 

 

Conclusion 

I developed this program to facilitate the currently-tedious nature of creating of 

GLM-outfitted BEAST XML files. This function is not currently supported in BEAUti 

(Drummond et al., 2012). It will ideally enable researchers to seamlessly produce these 

files for investigating the contribution of predictors to the overall diffusion process of the 
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virus of interest. Although the program is built to handle several anticipated errors, it is 

possible that more will be discovered by users. In this event, users are encouraged to 

report any perceived bugs or issues. To my knowledge, this program will create GLM-

outfitted XML files that will properly execute in BEAST v1.8.3 and v1.8.4. I will work to 

promptly update the code to incorporate any changes that future versions of BEAST may 

require, including the rapidly-developing BEAST2 framework. I have posted a brief 

description of this code, as well as the GitHub address, to the “beast-users” Google 

Group in order to promote this time-saving program to its target audience.  
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CHAPTER 5 

DISCUSSION 

Summary of Chapters 

The purpose of my dissertation was to study the use of generalized linear models 

(GLMs) in Bayesian phylogeography. In Chapter 1 (Magee et al., 2015), I provided a 

case study that showed how such a method could be used to explain the diffusion of an 

RNA virus. In this example, I studied influenza A/H5N1 in Egypt, which is an on-going 

public health concern. The results indicate that, in addition to strong support for sample 

size predictors, the overall density of bird species, as well as the density of specific avian 

hosts, may have been involved in the diffusion process of this virus in Egypt. As H5N1 is 

an avian virus and Egyptian citizens often obtain their poultry via live bird markets 

(Abdelwhab & Hafez, 2011), these results are biologically justifiable. Also supported for 

inclusion in the model were longitude of the location, the lack of a genetic motif 

corresponding to increased transmissibility of the virus, human population density, 

climate factors, and elevation. Each of these variables were suspected to have been 

involved with the circulation of an avian influenza virus. Although none of the predictors, 

aside from sample size, were found to suggest a driving force or protective effect of the 

diffusion of H5N1, the results do show how the GLM framework can be implemented to 

provide a direct biological interpretation of the spread of a virus. At the time, this was 

just the third publication that utilized a GLM in Bayesian phylogeography (Faria et al., 

2013; Lemey et al., 2014), so I focused the remainder of my dissertation on properties of 

the GLM framework that had yet to be analyzed. My goal was to provide researchers 
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with an established foundation of this framework, including its limitations and other 

factors that researchers should consider when using it.  

In Chapter 2 (Magee et al., 2017), I assessed the GLM framework’s performance 

against the popular Bayesian stochastic search variable selection (BSSVS) framework 

and a primitive model that does not use BSSVS for the influenza A/H3N2 virus during 

the 2014-15 flu season in the United States. Across six scenarios for population growth, 

six random sequence samples, and five total methods entailed by the three frameworks of 

ancestral state reconstruction, the GLMs provided the most statistically favorable 

phylogeographic reconstructions. Furthermore, the GLMs showed strong support for 

temperature and precipitation at the location of origin as drivers of the virus, which 

provided a biological interpretation that was consistent with global source-sink dynamics 

of influenza viruses. These results appeared to show the GLM, arguably, as a better 

method for this particular virus and time period, but the GLM was also found to be the 

most influenced by sampling bias among the three frameworks. Meanwhile, the BSSVS 

framework showed significantly lower correlations between the posterior probability of 

each region at the root of the maximum clade credibility (MCC) phylogeny and the 

number of samples from that region than the GLMs under three of the six population 

growth scenarios. Chapter 2 showed that caution should be taken when using a GLM and 

interpreting its results, as they could be strongly impacted by sampling bias compared to 

alternative methods.  

Still unknown, however, was how the partitioning of the geographic area into 

discrete states influences the identification of predictors when using a GLM. Namely, as 

the sampling location of virus sequences are typically annotated at a high level of spatial 
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order (e.g. a country or a state in the U.S.) it was unclear if aggregating predictor data at 

these levels would result in a loss of posterior information gain. Conversely, it was 

unknown if aggregating predictor data at a low level of spatial order (e.g. county) would 

reveal the predictors that are involved in the diffusion process to a better extent. 

Therefore, In Chapter 3, I addressed whether the way in which discrete states are 

selected, and, thus, how sequences are pooled, makes a difference in posterior support 

metrics for predictors. For this analysis, I selected West Nile virus in the U.S., as 299 

sequences were annotated with the county of isolation. I pooled the sequences into four 

discrete U.S. Census Bureau regions, eight U.S. Census Bureau subdivisions, 16 states, 

and 80 counties. I then collected and aggregated predictor data at each of these four 

levels, then performed a GLM analysis for each. The results indicate that the level of 

aggregation clearly makes an impact in the support metrics for predictors. In fact, when 

the sequences were discretized by the four regions of the U.S. Census Bureau, the 

predictor point estimates became so correlated that the predictor design matrix could not 

achieve full rank and thus could not be executed in BEAST. For the U.S. Census Bureau 

subdivision, state, and county-level aggregations, the predictors that achieved BF > 3.0 

varied between the analyses, although the MCC trees showed consistent times to the most 

recent common ancestor, molecular clock rates, root state posterior probabilities, and 

their Bayesian Skyline plots showed similar population sizes over time. Four additional 

analyses performed with a county-level aggregation that encapsulated the counties from 

each individual U.S. Census Bureau region showed that the support for predictors region-

by-region did not necessarily reflect the national trends. These results demonstrate that 

caution should be taken by researchers when selecting a spatial partition, and that the 
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most specific discrete states possible should be used in order to truly identify the local 

variables that may impact the diffusion of a virus. Furthermore, a predictor that 

represented the expected number of unvaccinated horses at the county level showed 

strong support, although it is likely that this was a product of collinearity with the size of 

the county. Predictor data was not directly measurable at the county level and its point 

estimate was obtained by assuming that the horse population was proportional to the size 

of the county. This shows that researchers should also use caution with their assumptions 

and ensure that predictor support is not an artifact ofcollinearity with another, perhaps 

unrelated, measurement.  

 The GLM framework may be used to address complex epidemiological questions, 

and my studies in Chapters 1-3 demonstrated strengths and weaknesses of using this 

approach. Despite its potential, it has yet to gain the popularity that might be expected for 

such an innovative method. One possible reason for its lack of popularity could be the 

difficulty of implementing the framework in the BEAST software package (Drummond 

et al., 2012), as the software used to create BEAST XML files, BEAUti, currently does 

not support the GLM. Thus, BEAST XML files must be manually manipulated in order 

to use the GLM specification. Although there is a tutorial (P. Lemey et al., 2014), this 

process is, in my experience, extremely tedious and may be hindering the widespread 

adoption of GLMs by phylogeographic researchers. Therefore, in Chapter 4, I introduced 

a pipeline that may facilitate expanded use of the GLM framework by the general public. 

The pipeline that I created and have made public 

(https://github.com/djmagee5/BEAST_GLM), allows individuals to simply pass a 

BEAST XML file, the name of a discrete trait, and formatted predictor data to a Python 

https://github.com/djmagee5/BEAST_GLM
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script which will then produce a new XML file outfitted with all necessary components to 

use the GLM specification in BEAST. I will update the program to patch any bugs 

discovered by users, and will also provide support for future versions of BEAST. 

 

Future Research 

There are several opportunities to capitalize on the research contained in this 

dissertation. First and foremost, although Chapter 2 provides a side-by-side comparison 

of how ancestral state reconstructions, including the GLM, compare to one another for a 

given sequence set, time frame, and region, it does not empirically test whether one is 

“better” at obtaining a correct phylogeny. A future study could provide BEAST with 

sequence data simulated using a known phylogeny and allow the three ancestral state 

reconstruction frameworks to attempt replicate this target phylogeny so that the accuracy 

of each method could be directly assessed. Predictors for the GLMs could be simulated 

based on factors that vary across space, such as transmission rates, in order to directly 

assess the phylogeny-trait-predictor relationship. A different study could also analyze the 

effects of using a GLM on multiple discrete partitions (e.g. host and location). There has 

yet to be a study that utilizes such an approach, so it would be scientifically interesting to 

observe whether predictors for one discrete trait dominate the resulting phylogeny, 

predictors from each discrete trait are involved, or the sequence data dominates the 

phylogeny. A simple approach would be to select a sequence set, time frame, and 

location where the discrete states of multiple traits are known. Under this example, a 

researcher could perform a phylogeographic assessment with: (i) no GLM, (ii) a GLM on 

the host trait, (iii) a GLM on the location trait, and (iv) a GLM on both the host and 
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location traits in a single analysis. Two such studies may build upon the work presented 

in my dissertation and further reveal the true capabilities and limitations of the GLM 

framework. 
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Accessiona Governorateb Host Year 

CY041290 Al Gharbiyah Chicken 2008 

CY044032 Al Gharbiyah Chicken 2008 

CY061552 Al Qalyubiyah Chicken 2008 

CY062464 Bani Suwayf Human 2010 

CY062466 Ad Daqahliyah Human 2010 

CY062468 Al Qalyubiyah Human 2010 

CY062470 Cairo Human 2010 

CY062472 Al Minufiyah Human 2010 

CY062474 Ad Daqahliyah Human 2010 

CY062476 Kafr ash Shaykh Human 2010 

CY062478 Al Qalyubiyah Human 2010 

CY062480 Al Qalyubiyah Human 2010 

CY062482 Kafr ash Shaykh Human 2010 

CY062484 Cairo Human 2010 

CY062486 Al Fayyum Human 2010 

CY125961 Al Fayyum Duck 2010 

CY125969 Al Qalyubiyah Duck 2010 

CY126034 Al Minufiyah Chicken 2010 

CY126049 Al Minufiyah Chicken 2010 

CY126096 Al Fayyum Duck 2010 

CY126144 Al Minufiyah Chicken 2010 

CY126240 Al Minufiyah Chicken 2010 

CY126248 Al Minufiyah Chicken 2010 

CY126264 Al Minufiyah Chicken 2010 

EU496388 Al Qalyubiyah Chicken 2007 

EU496389 Qina Chicken 2007 

EU496390 Ash Sharqiyah Turkey 2007 

EU496395 Ash Sharqiyah Chicken 2007 

EU496397 Al Buhayrah Chicken 2007 

EU496398 Ad Daqahliyah Chicken 2008 

EU496399 Ad Daqahliyah Chicken 2008 

EU623467 Ash Sharqiyah Chicken 2007 

EU623468 Ash Sharqiyah Chicken 2007 

FJ686831 Al Jizah Chicken 2008 

FJ686832 Cairo Chicken 2008 

FJ686833 Ash Sharqiyah Chicken 2008 

FJ686834 Ad Daqahliyah Chicken 2008 

FJ686835 Al Qalyubiyah Chicken 2008 

FJ686836 Ad Daqahliyah Chicken 2008 

FJ686837 Al Qalyubiyah Chicken 2008 

FJ686838 Al Qalyubiyah Chicken 2008 

FJ686839 Ad Daqahliyah Chicken 2008 

FJ686840 Al Qalyubiyah Chicken 2008 

FJ686841 Ad Daqahliyah Chicken 2008 

FJ686843 Ad Daqahliyah Chicken 2008 
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FJ686844 Ash Sharqiyah Chicken 2008 

FJ686845 Al Qalyubiyah Chicken 2008 

FJ686846 Ash Sharqiyah Chicken 2008 

FJ686848 Cairo Chicken 2008 

FJ686849 Ash Sharqiyah Chicken 2008 

FR687256 Al Qalyubiyah Chicken 2010 

FR687257 Al Qalyubiyah Chicken 2010 

FR687258 Al Qalyubiyah Chicken 2010 

GQ184221 Al Qalyubiyah Chicken 2008 

GQ184223 Al Qalyubiyah Chicken 2008 

GQ184227 Al Qalyubiyah Chicken 2008 

GQ184230 Al Gharbiyah Chicken 2008 

GQ184231 Al Qalyubiyah Chicken 2008 

GQ184232 Al Jizah Chicken 2008 

GQ184233 Ash Sharqiyah Chicken 2008 

GQ184236 Al Qalyubiyah Chicken 2008 

GQ184238 Al Jizah Chicken 2008 

GQ184239 Al Qalyubiyah Chicken 2008 

GQ184247 Al Qalyubiyah Chicken 2008 

GQ184248 Al Minufiyah Chicken 2008 

GU002678 Ash Sharqiyah Duck 2009 

GU002683 Kafr ash Shaykh Chicken 2009 

GU002684 Al Qalyubiyah Chicken 2009 

GU002689 Ash Sharqiyah Chicken 2009 

GU002692 Ash Sharqiyah Chicken 2009 

GU002693 Al Qalyubiyah Chicken 2009 

GU002698 Al Qalyubiyah Chicken 2009 

GU002702 Ash Sharqiyah Turkey 2009 

GU002703 Al Uqsur Chicken 2009 

GU002705 Al Qalyubiyah Chicken 2009 

GU064350 Ash Sharqiyah Chicken 2008 

GU064351 Ash Sharqiyah Chicken 2008 

GU064352 Al Qalyubiyah Chicken 2008 

GU064354 Cairo Chicken 2008 

GU064355 Al Qalyubiyah Chicken 2008 

GU811722 Al Gharbiyah Chicken 2009 

GU811726 Al Uqsur Chicken 2009 

GU811745 Qina Goose 2009 

HQ198251 Al Qalyubiyah Chicken 2009 

HQ198252 Al Qalyubiyah Chicken 2009 

HQ198255 Ash Sharqiyah Chicken 2010 

HQ198256 Al Fayyum Duck 2010 

HQ198257 Al Fayyum Environment 2010 

HQ198258 Bani Suwayf Environment 2010 

HQ198261 Al Minufiyah Chicken 2010 

HQ198262 Al Gharbiyah Chicken 2010 
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HQ198263 Al Minufiyah Chicken 2010 

HQ198265 Al Qalyubiyah Chicken 2010 

HQ198266 Cairo Chicken 2010 

HQ198268 Al Ismailiyah Chicken 2010 

HQ198269 Al Qalyubiyah Chicken 2010 

HQ198270 Al Buhayrah Chicken 2010 

HQ198271 Al Iskandariyah Duck 2010 

HQ198272 Al Qalyubiyah Duck 2010 

HQ198273 Al Qalyubiyah Chicken 2010 

HQ198274 Cairo Chicken 2010 

HQ198275 Al Fayyum Chicken 2010 

HQ198276 Al Jizah Turkey 2010 

HQ198277 Al Wadi al Jadid Chicken 2010 

HQ198278 Ad Daqahliyah Chicken 2010 

HQ198279 Kafr ash Shaykh Duck 2010 

HQ198280 Al Iskandariyah Chicken 2010 

HQ198281 Al Qalyubiyah Chicken 2010 

HQ198282 Dameitta Duck 2010 

HQ198283 Al Minufiyah Goose 2010 

HQ198284 Ad Daqahliyah Chicken 2010 

HQ198285 Al Gharbiyah Duck 2010 

HQ198287 Al Buhayrah Duck 2010 

HQ198288 Ash Sharqiyah Chicken 2010 

HQ198290 Al Iskandariyah Chicken 2010 

HQ198292 Al Uqsur Chicken 2010 

HQ198293 Al Gharbiyah Duck 2010 

HQ198295 Al Qalyubiyah Chicken 2010 

HQ198296 Al Minya Chicken 2010 

JN807772 Ad Daqahliyah Chicken 2010 

JN807774 Al Minya Duck 2010 

JN807775 Al Iskandariyah Chicken 2010 

JN807776 Al Jizah Chicken 2010 

JN807777 Bani Suwayf Chicken 2010 

JN807778 Al Jizah Chicken 2010 

JN807779 Al Fayyum Goose 2010 

JN807780 Ash Sharqiyah Duck 2010 

JN807782 Ad Daqahliyah Chicken 2010 

JN807783 Bani Suwayf Duck 2010 

JN807784 Al Qalyubiyah Chicken 2010 

JN807785 Al Qalyubiyah Chicken 2010 

JN807786 Ad Daqahliyah Duck 2010 

JN807788 Bani Suwayf Chicken 2010 

JN807789 Ad Daqahliyah Chicken 2010 

JN807790 Al Uqsur Chicken 2010 

JN807791 Kafr ash Shaykh Turkey 2010 

JN807792 Bani Suwayf Chicken 2010 
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JN807793 Al Minufiyah Chicken 2010 

JN807794 Al Minufiyah Duck 2010 

JN807795 Al Fayyum Duck 2010 

JN807796 Al Fayyum Duck 2010 

JN807797 Al Minufiyah Chicken 2010 

JN807798 Al Fayyum Duck 2010 

JN807799 Bani Suwayf Duck 2010 

JN807800 Al Minufiyah Duck 2010 

JN807801 Al Jizah Chicken 2010 

JN807802 Al Fayyum Chicken 2010 

JN807803 Ad Daqahliyah Chicken 2010 

JN807804 Al Minya Chicken 2010 

JN807806 Al Qalyubiyah Chicken 2011 

JN807807 Ad Daqahliyah Chicken 2011 

JN807808 Al Qalyubiyah Chicken 2011 

JN807809 Al Jizah Chicken 2011 

JN807810 Al Minufiyah Duck 2011 

JN807811 Ad Daqahliyah Duck 2011 

JN807812 Al Minufiyah Chicken 2011 

JN807813 Al Qalyubiyah Chicken 2011 

JN807814 Al Gharbiyah Duck 2011 

JN807815 Al Fayyum Goose 2011 

JN807816 Al Minya Duck 2011 

JN807817 Al Qalyubiyah Chicken 2011 

JN807818 Al Minufiyah Chicken 2011 

JN807819 As Suways Chicken 2011 

JN807820 Ad Daqahliyah Chicken 2011 

JN807821 Al Fayyum Chicken 2011 

JN807822 Al Fayyum Chicken 2011 

JN807824 Al Fayyum Chicken 2011 

JN807825 Al Fayyum Chicken 2011 

JN807826 Al Qalyubiyah Chicken 2011 

JN807827 Al Fayyum Chicken 2011 

JN807829 Al Fayyum Duck 2011 

JN807830 Al Fayyum Chicken 2011 

JN807832 Bani Suwayf Chicken 2011 

JN807833 Al Fayyum Duck 2011 

JN807834 Al Fayyum Chicken 2011 

JN807835 Al Fayyum Chicken 2011 

JN807836 Ad Daqahliyah Chicken 2011 

JN807837 Al Fayyum Chicken 2011 

JN807838 Al Gharbiyah Goose 2011 

JN807839 Ash Sharqiyah Chicken 2011 

JN807840 Al Buhayrah Chicken 2011 

JN807841 Al Minufiyah Chicken 2011 

JN807842 Al Fayyum Duck 2011 
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JN807843 Al Buhayrah Chicken 2011 

JN807844 Al Buhayrah Chicken 2011 

JN807845 Ash Sharqiyah Chicken 2011 

JN807846 Al Gharbiyah Chicken 2011 

JN807847 Al Fayyum Chicken 2011 

JN807848 Al Jizah Duck 2011 

JN807849 Al Qalyubiyah Duck 2011 

JN807850 Al Fayyum Duck 2011 

JN807851 Ash Sharqiyah Duck 2011 

JN807852 Al Minufiyah Chicken 2011 

JN807854 Al Fayyum Duck 2011 

JN807855 Bani Suwayf Chicken 2011 

JN807856 Cairo Chicken 2011 

JN807857 Ash Sharqiyah Duck 2011 

JN807858 Al Fayyum Chicken 2011 

JN807859 Al Minya Duck 2011 

JN807860 Al Fayyum Duck 2011 

JN807861 Al Fayyum Duck 2011 

JN807862 Al Jizah Goose 2011 

JN807863 Al Fayyum Chicken 2011 

JN807865 Al Uqsur Chicken 2011 

JN807866 Bour Said Quail 2011 

JN807867 Al Uqsur Chicken 2011 

JQ858469 Al Minya Chicken 2011 

JQ858470 Al Fayyum Duck 2011 

JQ858471 Al Jizah Chicken 2011 

JQ858472 Al Qalyubiyah Chicken 2011 

JQ858473 Al Minufiyah Chicken 2011 

JQ858475 Al Minufiyah Chicken 2011 

JQ858476 Al Qalyubiyah Duck 2011 

JQ858477 Al Fayyum Chicken 2011 

JQ858478 Al Jizah Duck 2011 

JQ858479 Al Jizah Chicken 2011 

JQ858480 Al Minya Duck 2011 

JQ858481 Al Jizah Chicken 2011 

JQ858482 Al Minufiyah Chicken 2011 

JQ858483 Al Minya Chicken 2012 

JQ858484 Al Minufiyah Chicken 2012 

JQ858485 Al Minufiyah Chicken 2012 

JQ858486 Al Minufiyah Chicken 2012 

JX456101 Al Buhayrah Human 2012 

JX456104 Al Jizah Human 2012 

JX576786 Ad Daqahliyah Duck 2011 
a GenBank 
b Governorate of Egypt 
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Regiona Sample 1b Sample 2b Sample 3b Sample 4b Sample 5b Sample 6b 

1 168130 168702 167940 167411 168127 167933 

1 168703 168703 168130 168702 168715 168702 

1 169334 168715 168715 168703 169908 168716 

1 169484 169902 169285 169487 170037 169285 

1 169490 169926 169490 169906 170111 169902 

1 169906 170111 170037 169926 170150 172493 

1 169908 170685 170107 170111 170693 172505 

1 170685 170693 172565 170692 172508 172508 

1 170693 172493 174122 170696 172730 172730 

1 172495 172495 174187 172500 174159 174159 

1 172565 172502 175183 172565 174175 174187 

1 172730 172505 175185 174122 174187 174188 

1 174122 172508 176510 174169 176537 175183 

1 174132 174122 176535 174188 176540 175198 

1 174149 174159 176625 175183 176628 175207 

1 174159 175185 176651 175185 176651 176535 

1 174169 176532 176659 176535 177537 176537 

1 174187 176540 178990 176700 178979 176642 

1 174188 178980 178992 178981 178990 177537 

1 176733 178991 178993 178993 178993 178996 

1 178980 178997 178996 178996 191047 181072 

1 178996 191048 178997 191044 191048 188889 

1 188889 191065 191044 191046 193343 191047 

1 191048 191691 191434 191058 193349 191058 

1 191065 193343 192159 194128 194128 191069 

1 193343 193349 195891 194168 194134 193349 

2 169296 169476 169307 169506 169296 169501 

2 169307 169501 169309 172543 170035 169505 

2 169476 169507 169476 172579 173852 170035 

2 169501 172543 170035 172831 174128 172543 

2 169507 172579 172831 174152 174146 172578 

2 169508 174128 174152 174153 174152 174185 

2 174152 174158 174161 174161 174162 175229 

2 174158 175206 174185 174185 174192 176640 

2 174192 175219 175167 175219 175167 176736 

2 176746 176641 175220 176743 175219 178988 

2 181071 176743 176736 176750 175220 178999 

2 191043 191427 176746 178987 181071 181071 

2 194179 191669 193319 194179 191669 191669 

3 168129 167952 169942 169331 167952 169119 

3 169331 169119 170039 169338 169311 169338 

3 169942 169504 170049 169498 169331 169504 

3 170136 170014 170136 170015 169337 169934 

3 170712 170125 170697 170039 169504 170730 

3 171385 170730 170702 170125 169912 171389 
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3 172564 171389 170715 170697 170039 171840 

3 172574 171841 171843 170702 170125 172501 

3 172575 172513 172564 170736 170702 172513 

3 172590 172564 172575 172501 170737 172544 

3 172610 172575 172594 172512 171843 172564 

3 172751 172610 172610 172513 172501 172574 

3 172754 172782 172751 172544 172588 172590 

3 172782 175227 172754 172571 172590 172738 

3 172783 175228 172783 175216 172782 174140 

3 174140 176546 175196 176494 175227 175181 

3 175181 176562 175227 176544 175228 175228 

3 176494 176624 176503 176545 176503 176550 

3 176511 177526 176546 176546 176509 176556 

3 176543 177527 176559 176632 176511 176645 

3 176545 177545 176562 176643 176550 176646 

3 176632 178983 176644 176645 176663 176666 

3 176644 188879 176666 188879 176666 176740 

3 176666 188892 176740 188892 176745 177524 

3 177526 191063 177535 192161 177535 177526 

3 177535 192165 178982 192165 178985 177535 

3 177545 192191 182625 192191 188893 178982 

3 192174 193357 192186 193332 192174 191063 

3 194132 195543 194180 194132 192191 192161 

4 167396 167405 167404 167417 167406 167405 

4 167405 167406 167405 167927 167413 167406 

4 167407 167407 167407 167946 167414 167407 

4 167414 167414 167413 168117 167926 167415 

4 167418 167925 167416 168699 168116 167417 

4 168108 167926 168116 169093 168699 167924 

4 168699 168116 168124 169094 169095 167926 

4 168705 169092 168698 169096 169126 168124 

4 169095 169096 168699 169286 169317 169115 

4 169304 169458 169093 169343 169340 169126 

4 169315 169470 169094 169456 169470 169321 

4 169470 169477 169115 169470 169935 169323 

4 169477 170106 169126 169477 169947 169343 

4 169929 170133 169315 169929 170023 169456 

4 169935 170711 169323 170043 170718 170021 

4 169947 170720 169343 170132 170720 170023 

4 170016 170726 169456 170721 170726 170043 

4 170133 172550 170021 171361 171354 170132 

4 170714 172585 170028 171366 171362 170716 

4 170723 172595 170133 172538 171367 170718 

4 171354 172740 170134 172550 172538 171361 

4 171362 172741 170704 172551 172585 171366 

4 172559 172760 170723 172560 172596 171367 
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4 172745 172793 171387 172580 172801 171379 

4 173217 172801 172536 172595 172806 172536 

4 173225 172807 172596 172602 172809 172551 

4 173246 173217 172740 172742 173220 172559 

4 173247 173222 172743 172743 173225 172585 

4 173256 173223 172748 172748 173246 172743 

4 174157 173225 172793 172794 173247 172748 

4 174173 174129 173220 172806 174151 172805 

4 174177 174157 173225 173246 174157 172809 

4 175162 174171 174189 175157 174191 173238 

4 175171 175162 175176 175158 175162 173256 

4 175176 175184 175251 175184 175176 174129 

4 176488 176571 176489 175251 176572 175157 

4 176490 176706 176571 176490 176715 175169 

4 176571 177525 176751 176576 177531 175171 

4 176751 177534 177531 176706 177538 176490 

4 178972 177538 181075 176715 178971 176717 

4 179003 178969 188868 176722 179002 178969 

4 179010 179009 188890 178967 179003 179003 

4 181077 179010 191050 179004 179004 181077 

4 188883 188867 191052 179010 188880 188880 

4 191052 191031 191055 181074 188883 188883 

4 191067 191050 191067 188887 191052 188887 

4 191703 191062 191678 191031 191067 191050 

4 193351 191678 193310 191052 191678 191067 

4 193353 191703 193359 191067 193328 193309 

4 193354 193354 197491 193351 197486 197491 

5 169453 169104 169085 169087 168706 168706 

5 169909 169479 169120 169106 169086 169101 

5 169910 169480 169130 169130 169289 169120 

5 169933 169483 169344 169453 169344 169344 

5 170042 169915 169479 169488 169488 169482 

5 170122 169916 169482 169911 169491 169909 

5 170684 170691 169483 169948 169494 169910 

5 172496 172504 169494 170118 169924 169915 

5 172504 172516 169917 170123 169930 169933 

5 172506 172541 169930 170126 169933 170040 

5 172547 172557 170029 170724 169948 170122 

5 172553 172744 170047 172515 170029 170724 

5 172758 173229 170123 172542 170047 172504 

5 173236 173236 170724 172563 170684 172506 

5 173240 173242 170729 172758 172496 172515 

5 173242 173244 172548 172804 172516 172533 

5 173258 173245 172563 173218 172533 172542 

5 174172 173255 172758 173221 172553 172553 

5 175159 174165 173219 173239 172557 172804 
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5 175163 174172 173224 173240 173234 173219 

5 175192 175192 173255 173255 173239 173258 

5 176555 176491 175156 173258 173255 174165 

5 176567 176566 175160 173860 173258 175156 

5 176575 176656 175163 174165 174181 175159 

5 176652 176657 175170 175156 175163 175160 

5 176656 176658 175192 175170 175170 176575 

5 176657 176721 176538 176491 176491 176656 

5 176701 178994 176569 176538 176539 176657 

5 176721 179000 176701 176555 176560 176708 

5 176732 179001 176723 176656 176647 176709 

5 178994 188865 178977 176708 176656 176732 

5 179008 188877 178989 178977 176710 178976 

5 188865 191425 178994 188873 176721 178994 

5 188873 191429 181078 188877 176742 179007 

5 188874 191709 188874 191424 178976 188866 

5 191701 191713 188882 191689 188877 191429 

5 191713 191715 191701 191710 191670 193307 

5 192183 192183 191710 191715 191701 193311 

5 193311 193352 193331 192183 194130 193331 

5 194175 194130 194183 194131 194131 194131 

6 168709 168098 167950 168709 168709 166984 

6 168711 169102 168098 168725 169102 168708 

6 168712 169293 168118 169293 169292 169089 

6 169102 169294 168707 169329 169467 169099 

6 169108 169903 168708 169467 169481 169290 

6 169291 169938 168725 169485 169485 169291 

6 169329 169949 168726 169493 169903 169329 

6 169335 170041 168727 169913 169907 169335 

6 169486 170674 169102 169932 169932 169485 

6 169944 170708 169329 170022 169940 169486 

6 170022 170731 169481 170038 169944 169502 

6 170038 170738 169502 170128 170676 169907 

6 170041 171839 169932 170146 170701 169940 

6 170675 172761 170022 170674 170708 169949 

6 170679 172832 170674 170677 170709 170022 

6 170701 172833 170679 170695 172832 170680 

6 170709 172834 170680 172761 172834 170701 

6 170742 173231 170687 172834 173231 170740 

6 172739 173232 170695 173849 173232 172231 

6 172834 173250 170701 174135 173250 172582 

6 173216 173252 170742 174156 173845 173231 

6 174135 173845 172608 175189 173857 173232 

6 175175 173849 172833 176501 175175 173250 

6 175224 174156 174136 176561 175188 173857 

6 176501 174170 174144 176565 175189 174138 
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6 176506 176497 175175 176650 176495 175175 

6 176507 176633 175189 176675 176506 175189 

6 176553 176635 176501 176677 176508 176495 

6 176622 176675 176636 176681 176565 176497 

6 176634 176676 176637 176685 176650 176637 

6 176678 176679 176638 176693 176676 176685 

6 176680 176687 176639 176731 176680 176739 

6 176693 176739 176693 178964 176739 178959 

6 176739 178962 176739 178975 178962 178964 

6 178959 178975 178964 181079 188895 178975 

6 182624 178986 182624 188870 191037 188870 

6 191702 188894 188895 191688 191688 191688 

6 193308 191037 191688 194154 194154 193308 

7 169103 169103 169107 169107 169103 169318 

7 169336 169118 169283 169118 170108 169346 

7 169914 169283 169925 169336 172498 169925 

7 170713 169925 169937 170017 174134 169937 

7 172499 170113 170108 170113 174168 172499 

7 172507 172498 171384 172507 174179 172539 

7 172539 172499 174145 172545 175193 172545 

7 174134 172545 174186 176504 175214 172598 

7 174168 175161 175172 176738 176524 174168 

7 176524 175172 176522 177529 176564 176504 

7 176629 175193 176534 191035 176688 176697 

7 177529 176536 176536 191038 176697 176738 

7 191035 176629 176564 194171 176738 181073 

7 193356 176697 176660 194176 177529 191038 

7 194176 191035 176688 194182 193350 194182 

7 194177 193356 194139 195872 194177 195872 

7 195882 195882 194176 195895 194182 195882 

8 167402 168099 168103 168101 167402 168113 

8 168102 168700 168109 169098 167408 168115 

8 168701 169110 168700 169928 168101 169098 

8 169110 169112 169098 170024 168102 169125 

8 169113 169113 169112 170703 168109 169300 

8 169306 169300 169128 170719 169111 170024 

8 169904 169904 169306 170722 169112 170705 

8 170020 170127 169322 172520 169113 170707 

8 170690 170706 169452 172561 169308 170725 

8 172593 170707 170020 172562 169475 172558 

8 172736 170717 170027 172573 169928 172562 

8 173850 170725 170036 172736 169939 172746 

8 173859 170734 170698 173235 170024 174123 

8 174154 172561 172554 173853 170706 174154 

8 175154 172562 172749 173859 170734 174155 

8 175180 172593 173850 174143 172747 174178 
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8 176705 172749 173859 174155 172749 174190 

8 176711 172753 174143 175154 173850 175165 

8 176713 174143 174154 175179 173853 175180 

8 178968 174155 175164 176714 174190 176705 

8 178974 175154 175180 176718 176671 176711 

8 191423 175164 176671 176719 176711 178973 

8 191671 175165 176719 178968 176719 191423 

8 191676 175180 191676 191671 191423 191671 

8 191682 178974 191683 191673 191677 191673 

8 191712 179005 191711 191674 191714 191681 

8 193333 191675 191714 191675 191716 191712 

8 194140 191682 193360 191676 194146 192170 

8 194147 191683 194150 191714 194150 193333 

8 194150 191711 194158 194140 194158 193344 

9 169123 169124 170044 170045 169314 169123 

9 169124 169314 170137 170688 170110 169314 

9 170045 169923 170688 170710 170137 170137 

9 170110 170045 170699 172497 172497 171351 

9 172497 170137 170739 174176 174131 172494 

9 174147 170681 172607 175190 174133 172607 

9 175191 170682 172611 176531 174174 172609 

9 176523 170699 176528 176689 175187 174130 

9 176673 170710 176689 176696 176493 174131 

9 176741 172497 176734 191039 176516 174176 

9 176748 172607 176749 191696 176529 175187 

9 188864 175187 178957 192182 176531 176493 

9 191039 175190 191032 193312 176689 176523 

9 191696 176689 191033 193346 176749 176741 

9 194133 176735 191698 193347 191033 191039 

9 194137 176741 192182 194133 193346 191695 

9 194144 178957 193347 194149 194148 191698 

9 194161 194144 194148 194161 194153 194144 

9 195890 194149 195890 195890 195890 194161 

10 168721 167953 167953 168718 169298 167953 

10 169129 168720 168720 168720 170033 168718 

10 169298 169129 169945 169918 170689 168719 

10 169495 169298 170129 169945 170728 168721 

10 169918 169918 171837 170120 172583 170025 

10 169945 170025 172830 170728 173237 170033 

10 170025 170728 173227 172510 173251 170129 

10 170120 176502 173241 172576 176502 170689 

10 170129 176526 174141 172756 176521 171838 

10 170728 176551 176502 172830 176526 172763 

10 173227 176648 176654 175213 176648 173241 

10 173251 176653 176726 176684 176672 173251 

10 175213 176683 176737 176724 176684 173254 
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10 176725 176724 178963 176737 176726 176683 

10 176726 178958 178978 177539 178965 176684 

10 178978 178995 188878 178958 178995 176692 

10 178995 188878 188888 191029 188878 178995 

10 188878 188881 191059 191040 191431 188876 

10 191040 191040 191432 191431 191432 191029 

10 191041 191685 191692 191432 192176 191034 

10 191059 192177 192187 192176 192177 192177 

10 192177 192178 192188 192187 194138 193345 

10 192178 193361 195893 195893 195893 193355 
a Region of the U.S. Department of Health and Human Services 
b GISAID accessions for whole genomes; hemagglutinin genes were used in the study 
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Accessiona CBRb CBS State County Year 

DQ164186 NE Middle Atlantic South Dakota San Bernardino 2002 

DQ164187 NE Middle Atlantic New York Broome 2002 

DQ164188 NE Middle Atlantic New York Westchester 2003 

DQ164189 NE Middle Atlantic New York Albany 2003 

DQ164190 NE Middle Atlantic New York Suffolk 2003 

DQ164191 NE Middle Atlantic New York Chautauqua 2003 

DQ164192 NE Middle Atlantic New York Rockland 2003 

DQ164193 NE Middle Atlantic New York Clinton 2002 

DQ164194 NE Middle Atlantic New York Suffolk 2001 

DQ164195 NE Middle Atlantic New York Nassau 2002 

DQ164196 South South Atlantic Georgia Wilkinson 2002 

DQ164197 South South Atlantic Georgia Wilkinson 2002 

DQ164198 South West South Central Texas Concho 2002 

DQ164199 South West South Central Texas Concho 2003 

DQ164200 MW East North Central Indiana Hendricks 2002 

DQ164201 West Mountain Arizona Yavapai 2004 

DQ164202 MW East North Central Ohio Licking 2002 

DQ164203 West Mountain Colorado Park 2003 

DQ164204 West Mountain Colorado Park 2003 

DQ164205 South West South Central Texas Concho 2002 

DQ164206 South West South Central Texas Harris 2004 

DQ431693 South West South Central Texas Randall 2003 

DQ431695 MW East North Central Illinois Cook 2003 

DQ431696 MW East North Central Wisconsin Milwaukee 2003 

DQ431697 South South Atlantic Florida Hillsborough 2003 

DQ431698 South South Atlantic Florida Hillsborough 2003 

DQ431699 South South Atlantic Florida Hillsborough 2003 

DQ431700 West Pacific California San Francisco 2004 

DQ431701 West Mountain Colorado Mesa 2004 

DQ431702 West Mountain Colorado Mesa 2004 

DQ431703 West Mountain Colorado Mesa 2004 

DQ431704 West Mountain Colorado Mesa 2004 

DQ431705 MW West North Central South Dakota Pennington 2004 

DQ431706 West Mountain New Mexico Sandoval 2004 

DQ431707 West Mountain New Mexico Sandoval 2004 

DQ431708 West Pacific California San Diego 2004 

DQ431709 West Pacific California San Bernardino 2004 

DQ431710 West Pacific California Orange 2004 

DQ431711 West Mountain Arizona Maricopa 2004 

DQ431712 West Mountain Arizona Maricopa 2004 

EF530047 NE Middle Atlantic New York Richmond 2000 

EF657887 NE Middle Atlantic New York Richmond 2000 

FJ151394 NE Middle Atlantic New York New York 1999 

FJ527738 South West South Central Louisiana Jefferson 2001 

GQ507468 South West South Central Texas El Paso 2005 
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GQ507469 West Mountain New Mexico Dona Ana 2005 

GQ507470 South West South Central Texas El Paso 2006 

GQ507471 South West South Central Texas El Paso 2007 

GQ507472 West Pacific California Orange 2003 

GQ507473 West Pacific California Los Angeles 2004 

GQ507474 West Pacific California San Bernardino 2004 

GQ507475 West Pacific California San Bernardino 2005 

GQ507476 West Pacific California San Bernardino 2005 

GQ507477 West Pacific California Los Angeles 2005 

GQ507478 West Pacific California Los Angeles 2005 

GQ507479 West Mountain Arizona Pima 2005 

GQ507480 West Pacific California Los Angeles 2005 

GQ507481 MW West North Central Nebraska Douglas 2006 

GQ507482 West Mountain Arizona Pima 2006 

GQ507483 West Pacific California Los Angeles 2007 

GQ507484 West Pacific California Los Angeles 2007 

GU827998 South West South Central Texas Harris 2002 

GU827999 South West South Central Texas Montgomery 2003 

GU828000 South West South Central Texas Harris 2003 

GU828001 South West South Central Texas Harris 2003 

GU828002 South West South Central Texas Harris 2003 

GU828003 South West South Central Texas Jefferson 2003 

GU828004 South West South Central Texas Montgomery 2003 

HM488114 NE New England Connecticut Fairfield 2002 

HM488115 NE New England Connecticut Fairfield 2005 

HM488116 NE New England Connecticut Fairfield 2005 

HM488117 NE New England Connecticut Fairfield 2005 

HM488118 NE New England Connecticut Fairfield 2005 

HM488119 NE New England Connecticut Fairfield 2005 

HM488120 NE New England Connecticut Fairfield 2005 

HM488121 NE New England Connecticut Fairfield 2005 

HM488125 NE New England Connecticut Fairfield 1999 

HM488126 NE New England Connecticut Fairfield 1999 

HM488127 NE New England Connecticut Fairfield 1999 

HM488128 NE New England Connecticut Fairfield 1999 

HM488129 NE New England Connecticut New Haven 2000 

HM488130 NE New England Connecticut New Haven 2000 

HM488131 NE New England Connecticut New Haven 2000 

HM488132 NE New England Connecticut Fairfield 2000 

HM488133 NE New England Connecticut Fairfield 2001 

HM488134 NE New England Connecticut Fairfield 2001 

HM488135 NE New England Connecticut Fairfield 2001 

HM488136 NE New England Connecticut Fairfield 2001 

HM488137 NE New England Connecticut Fairfield 2002 

HM488138 NE New England Connecticut Fairfield 2003 

HM488139 NE New England Connecticut Fairfield 2003 
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HM488140 NE New England Connecticut Fairfield 2003 

HM488141 NE New England Connecticut Fairfield 2003 

HM488142 NE New England Connecticut Fairfield 2004 

HM488143 NE New England Connecticut Fairfield 2004 

HM488144 NE New England Connecticut Fairfield 2004 

HM488145 NE New England Connecticut Fairfield 2004 

HM488146 NE New England Connecticut Fairfield 2004 

HM488147 NE New England Connecticut Fairfield 2004 

HM488148 NE New England Connecticut Fairfield 2004 

HM488149 NE New England Connecticut Fairfield 2005 

HM488150 NE New England Connecticut Fairfield 2005 

HM488151 NE New England Connecticut Fairfield 2005 

HM488152 NE New England Connecticut Fairfield 2005 

HM488153 NE New England Connecticut Fairfield 2005 

HM488154 NE New England Connecticut Fairfield 2005 

HM488155 NE New England Connecticut Fairfield 2006 

HM488156 NE New England Connecticut Fairfield 2006 

HM488157 NE New England Connecticut Fairfield 2006 

HM488158 NE New England Connecticut Fairfield 2006 

HM488159 NE New England Connecticut Fairfield 2006 

HM488160 NE New England Connecticut Fairfield 2006 

HM488161 NE New England Connecticut Fairfield 2007 

HM488162 NE New England Connecticut Fairfield 2007 

HM488163 NE New England Connecticut Fairfield 2007 

HM488164 NE New England Connecticut Fairfield 2007 

HM488165 NE New England Connecticut Fairfield 2007 

HM488166 NE New England Connecticut Fairfield 2008 

HM488167 NE New England Connecticut Fairfield 2008 

HM488168 NE New England Connecticut Fairfield 2008 

HM488169 NE New England Connecticut Fairfield 2008 

HM488170 NE New England Connecticut Fairfield 2008 

HM488171 NE New England Connecticut Fairfield 2003 

HM488172 NE New England Connecticut Fairfield 2003 

HM488173 NE New England Connecticut New Haven 2003 

HM488174 NE New England Connecticut New Haven 2003 

HM488175 NE New England Connecticut Hartford 2003 

HM488176 NE New England Connecticut New Haven 2003 

HM488177 MW East North Central Illinois Cook 2002 

HM488178 MW East North Central Illinois Cook 2002 

HM488180 MW East North Central Illinois Cook 2002 

HM488181 MW East North Central Illinois Iroquois 2002 

HM488182 MW East North Central Illinois Clinton 2002 

HM488183 MW East North Central Illinois Douglas 2002 

HM488184 MW East North Central Illinois Moultrie 2002 

HM488185 MW East North Central Illinois Cook 2003 

HM488186 MW East North Central Illinois Champaign 2003 
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HM488188 MW East North Central Illinois Vermilion 2004 

HM488189 MW East North Central Illinois Will 2004 

HM488190 MW East North Central Illinois Cook 2004 

HM488191 MW East North Central Illinois Cook 2004 

HM488192 MW East North Central Illinois Rock Island 2005 

HM488193 MW East North Central Illinois St. Clair 2005 

HM488194 MW East North Central Illinois Lake 2005 

HM488195 MW East North Central Illinois Kendall 2005 

HM488196 MW East North Central Illinois Cook 2005 

HM488197 MW East North Central Illinois McHenry 2005 

HM488203 NE Middle Atlantic New York Putnam 2008 

HM488204 NE Middle Atlantic New York Suffolk 2008 

HM488205 NE Middle Atlantic New York Albany 2008 

HM488206 NE Middle Atlantic New York Erie 2008 

HM488207 NE Middle Atlantic New York Nassau 2008 

HM488208 NE New England Connecticut Fairfield 2002 

HM488209 NE New England Connecticut Fairfield 2003 

HM488210 NE New England Connecticut New Haven 2003 

HM488212 NE New England Connecticut New Haven 2003 

HM488213 NE New England Connecticut Fairfield 2003 

HM488214 NE New England Connecticut Fairfield 2003 

HM488215 NE New England Connecticut Fairfield 2003 

HM488216 NE New England Connecticut New London 2003 

HM488217 NE New England Connecticut New Haven 2003 

HM488218 NE New England Connecticut Fairfield 2003 

HM488219 NE New England Connecticut Hartford 2003 

HM488220 NE New England Connecticut New Haven 2003 

HM488221 NE New England Connecticut New London 2003 

HM488222 NE New England Connecticut New London 2003 

HM488223 NE New England Connecticut Fairfield 2003 

HM488224 NE New England Connecticut Fairfield 2003 

HM488225 NE New England Connecticut New Haven 2003 

HM488226 NE New England Connecticut New Haven 2003 

HM488227 NE New England Connecticut New Haven 2003 

HM488228 NE New England Connecticut New Haven 2003 

HM488229 NE New England Connecticut New Haven 2003 

HM488230 NE New England Connecticut Windham 2003 

HM488231 NE New England Connecticut Middlesex 2003 

HM488232 NE New England Connecticut Middlesex 2003 

HM488233 NE New England Connecticut New Haven 2003 

HM488234 NE New England Connecticut New Haven 2003 

HM488235 NE New England Connecticut Fairfield 2003 

HM488236 NE New England Connecticut Middlesex 2003 

HM488237 NE Middle Atlantic New York Onondaga 2008 

HM488238 NE Middle Atlantic New York Onondaga 2008 

HM488239 NE Middle Atlantic New York Putnam 2008 
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HM488240 NE Middle Atlantic New York Suffolk 2008 

HM488241 NE Middle Atlantic New York Niagara 2008 

HM488242 NE Middle Atlantic New York Dutchess 2008 

HM488243 NE Middle Atlantic New York Suffolk 2008 

HM488244 NE Middle Atlantic New York Erie 2008 

HM488245 NE Middle Atlantic New York Putnam 2008 

HM488246 NE Middle Atlantic New York Kings 2001 

HM488247 NE Middle Atlantic New York New York 2001 

HM488248 NE Middle Atlantic New York Herkimer 2001 

HM488249 NE Middle Atlantic New York Onondaga 2001 

HM488250 NE Middle Atlantic New York Broome 2003 

HM488251 NE Middle Atlantic New York Cortland 2003 

HM488252 NE Middle Atlantic New York Onondaga 2005 

HM756648 NE New England Connecticut Fairfield 2002 

HM756649 NE New England Connecticut Fairfield 2006 

HM756650 NE New England Connecticut New Haven 2003 

HM756651 NE New England Connecticut Fairfield 2003 

HM756652 NE New England Connecticut Middlesex 2003 

HM756653 NE New England Connecticut Middlesex 2003 

HM756654 NE New England Connecticut Fairfield 2003 

HM756656 NE New England Connecticut New London 2003 

HM756657 NE New England Connecticut Fairfield 2003 

HM756658 NE New England Connecticut New London 2003 

HM756659 NE New England Connecticut Middlesex 2003 

HM756660 NE Middle Atlantic New York Livingston 2008 

HM756661 NE Middle Atlantic New York Bronx 2001 

HM756662 NE Middle Atlantic New York Albany 2001 

HM756663 NE Middle Atlantic New York Albany 2001 

HM756664 NE Middle Atlantic New York Albany 2002 

HM756665 NE Middle Atlantic New York Dutchess 2002 

HM756666 NE Middle Atlantic New York Saratoga 2003 

HM756667 NE Middle Atlantic New York Onondaga 2003 

HM756668 NE Middle Atlantic New York Columbia 2003 

HM756669 NE Middle Atlantic New York Saratoga 2003 

HM756670 NE Middle Atlantic New York Queens 2003 

HM756671 NE Middle Atlantic New York Cortland 2004 

HM756672 NE Middle Atlantic New York Nassau 2004 

HM756673 NE Middle Atlantic New York Oswego 2004 

HM756675 NE Middle Atlantic New York Monroe 2005 

HM756676 MW East North Central Illinois Perry 2003 

HM756677 West Mountain New Mexico Bernalillo 2005 

HM756678 NE Middle Atlantic New York Jefferson 2007 

HQ671721 NE Middle Atlantic New York Tompkins 2008 

HQ671722 NE Middle Atlantic New York Jefferson 2002 

HQ671723 NE Middle Atlantic New York Putnam 2003 

HQ671724 NE Middle Atlantic New York Broome 2005 
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HQ671725 NE Middle Atlantic New York Lewis 2005 

HQ671726 NE Middle Atlantic New York Putnam 2005 

HQ671727 NE Middle Atlantic New York Orleans 2006 

HQ671728 NE Middle Atlantic New York Richmond 2006 

HQ671729 NE Middle Atlantic New York Suffolk 2006 

HQ671730 NE Middle Atlantic New York Onondaga 2007 

HQ671742 MW East North Central Illinois Perry 2002 

HQ705660 NE Middle Atlantic New York Orange 2003 

HQ705669 MW East North Central Illinois Clinton 2002 

JF415914 South West South Central Texas Harris 2005 

JF415915 South West South Central Texas Harris 2006 

JF415916 South West South Central Texas Harris 2006 

JF415917 South West South Central Texas Harris 2007 

JF415918 South West South Central Texas Harris 2007 

JF415919 South West South Central Texas Harris 2007 

JF415920 South West South Central Texas Harris 2007 

JF415921 South West South Central Texas Harris 2008 

JF415922 South West South Central Texas Harris 2009 

JF415923 South West South Central Texas Harris 2009 

JF415924 South West South Central Texas Harris 2009 

JF415925 South West South Central Texas Harris 2009 

JF415926 South West South Central Texas Harris 2009 

JF415927 South West South Central Texas Harris 2009 

JF415928 South West South Central Texas Harris 2009 

JF415929 South West South Central Texas Harris 2005 

JF415930 South West South Central Texas Harris 2006 

JF488094 NE Middle Atlantic New York Dutchess 2004 

JF488095 NE Middle Atlantic New York Albany 2009 

JF488096 NE Middle Atlantic New York Suffolk 2009 

JF488097 NE Middle Atlantic New York Suffolk 2007 

JF703161 West Pacific California Imperial 2004 

JF703162 West Pacific California Riverside 2003 

JF703163 West Pacific California Imperial 2005 

JF703164 West Pacific California Riverside 2003 

JF730042 NE Middle Atlantic New York Niagara 2007 

JF899528 NE Middle Atlantic New York Suffolk 2004 

JN183885 NE Middle Atlantic New York Orleans 2008 

JN183886 NE Middle Atlantic New York Niagara 2008 

JN183887 NE Middle Atlantic New York Oswego 2002 

JN183891 MW East North Central Illinois Perry 2002 

JN367277 NE Middle Atlantic New York Niagara 2004 

JX015515 South West South Central Texas El Paso 2005 

JX015516 South West South Central Texas El Paso 2007 

JX015517 South West South Central Texas El Paso 2008 

JX015519 South West South Central Texas El Paso 2009 

JX015521 South West South Central Texas El Paso 2009 
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JX015522 South West South Central Texas El Paso 2010 

JX015523 South West South Central Texas El Paso 2010 

KC736486 South West South Central Texas Montgomery 2012 

KC736487 South West South Central Texas Montgomery 2012 

KC736488 South West South Central Texas Montgomery 2012 

KC736489 South West South Central Texas Montgomery 2012 

KC736490 South West South Central Texas Montgomery 2012 

KC736491 South West South Central Texas Dallas 2012 

KC736492 South West South Central Texas Dallas 2012 

KC736493 South West South Central Texas Dallas 2012 

KC736494 South West South Central Texas Montgomery 2012 

KC736495 South West South Central Texas Dallas 2012 

KC736496 South West South Central Texas Montgomery 2012 

KC736497 South West South Central Texas Montgomery 2012 

KC736498 South West South Central Texas Montgomery 2012 

KC736499 South West South Central Texas Montgomery 2012 

KC736500 South West South Central Texas Dallas 2012 

KC736501 South West South Central Texas Dallas 2012 

KC736502 South West South Central Texas Dallas 2012 

KF704147 West Mountain Arizona Maricopa 2010 

KF704153 West Mountain Arizona Maricopa 2010 

KF704158 West Mountain Arizona Maricopa 2010 

KJ786935 South West South Central Texas Harris 2012 

KJ786936 South West South Central Texas Harris 2012 
a GenBank  
b Midwest (MW); Northeast (NE)  
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