
Evaluating Tessellation and Screen-Space Ambient Occlusion

in WebGL-Based Real-Time Application

by

Chenyang Li

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved March 2017 by the

Graduate Supervisory Committee:

Ashish Amresh, Co-Chair

Yalin Wang, Co-Chair

Yoshihiro Kobayashi

ARIZONA STATE UNIVERSITY

May 2017

 i

ABSTRACT

Tessellation and Screen-Space Ambient Occlusion are algorithms which have

been widely-used in real-time rendering in the past decade. They aim to enhance the

details of the mesh, cast better shadow effects and improve the quality of the rendered

images in real time. WebGL is a web-based graphics library derived from OpenGL ES

used for rendering in web applications. It is relatively new and has been rapidly evolving,

this has resulted in it supporting a subset of rendering features normally supported by

desktop applications. In this thesis, the research is focusing on evaluating Curved PN-

Triangles tessellation with Screen Space Ambient Occlusion (SSAO), Horizon-Based

Ambient Occlusion (HBAO) and Horizon-Based Ambient Occlusion Plus (HBAO+) in

WebGL-based real-time application and comparing its performance to desktop based

application and to discuss the capabilities, limitations and bottlenecks of WebGL 1.0.

 ii

DEDICATION

To my Parents and my Friends.

 iii

ACKNOWLEDGMENTS

This research would have never been possible without the help of:

My committee, Dr. Ashish Amresh, Dr. Yalin Wang and Dr. Yoshihiro Kobayashi.

My beloved Mother and Father.

My friends who have contributions: Jiadong Xia, Tong Zhou, Xiaoyu Zhang, Rongyu

Lin, Qiwei Wu, Xian Luo, Yicong Chen, Jing Li, Kewei Cheng, Weili Yi

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER

1 INTRODUCTION 1

2 RELATED WORK 3

Ambient Occlusion .. 3

Object-Space Methods ... 4

Screen Space Methods ... 5

 SSAO ... 5

 HBAO .. 7

 HBAO+ ... 7

Surface Smoothing ... 8

 Subdivision .. 8

 Tessellation .. 8

 Curved Point-Normal Triangles Tessellation 9

OpenGL .. 9

WebGL ... 10

3 METHODOLOGY 11

Screen-Space Ambient Occlusion ... 11

Horizon-Based Ambient Occlusion ... 15

Horizon-Based Ambient Occlusion Plus ... 18

 v

CHAPTER Page

PN-Triangles Tessellation .. 19

4 IMPLEMENTATION 25

OpenGL Pipeline .. 25

WebGL Pipeline ... 27

5 EVALUATION 31

Performance Evaluation ... 31

Quality Evaluation ... 31

Parameter Settings .. 32

Results .. 33

Quality Comparison ... 36

Quality Score .. 37

Performance ... 39

6 PROBLEMS AND BOTTLENECKS ... 42

Problems ... 42

 Tessellation .. 42

 Ambient Occlusion ... 43

 Other Problems.. 44

Bottlenecks ... 44

Possible Solutions .. 46

7 CONCLUSIONS AND FUTURE ... 49

Conclusions .. 49

Future .. 50

 vi

CHAPTER Page

REFERENCES....... .. 53

APPENDIX

 A CONTRIBUTIONS....... ... 58

 vii

LIST OF TABLES

Table Page

1. Visual Outputs .. 34

2. Quality Score .. 38

3. GTX 970 Framerates ... 39

4. GTX 970 WebGL Additional Evaluation ... 39

5. GTX 960M Framerates ... 40

6. GTX 960M WebGL Additional Evaluation ... 39

 viii

LIST OF FIGURES

Figure Page

1. SSAO Sampling ... 13

2. SSAO in Different Situations .. 14

3. HBAO ... 15

4. HBAO Ray-Marching ... 17

5. Hardware Tessellation ... 21

6. Bezier Patch .. 22

7. SSAO ‘Bleeding’ .. 36

8. HBAO and HBAO+ ... 36

9. Before centralized VS After ... 47

 1

CHAPTER 1

INTRODUCTION

Tessellation [1] and Ambient Occlusion [2] have been implemented in many real-

time interactive 3D applications. They can provide better-detailed meshes with realistic

soft-shadows which is able to improve the quality of the visual effect.

OpenGL [3] has provided many incredible real-time rendered applications in

many platforms and areas. However, one of the limitation in latest OpenGL is that some

of the new features are not supported on all platforms. WebGL 1.0 [4], based on OpenGL

ES 2.0 [5], is a plugin-free web standard for low level Web-based computer graphics

application which solves the problem for mobile and web. OpenGL ES 2.0 retains the

major features from OpenGL 2.0, but it replaces most of the fixed functions with

programmable ones in order to better fit embedded systems. As a result, some predefined

functions in OpenGL is not compatible in OpenGL ES 2.0 and WebGL which leads to

some issues.

One of the problems is that WebGL 1.0 does not support GPU Tessellation.

Tessellating on GPU enables the usage of Level of Details. Without it on WebGL 1.0,

this limits the quality and performance for rendering some models such as terrain, water,

etc. Also, GPU Tessellation allows real-time tessellation which has a lot of potential for

rendering advanced graphics features.

Meanwhile, Ambient Occlusion algorithms in WebGL are not as popular as that

in OpenGL due to performance and relatively low-level 3D output. Another problem is

that, Horizon-Based Ambient Occlusion Plus, the current state of the art Dynamic

 2

Screen-Space Ambient Occlusion, uses many new features in D3D11 and OpenGL 4.x.

These features are not available to WebGL 1.0 or are only available as extensions.

In this research, the goal is to mainly focus on real time rendering on WebGL,

implement and evaluate Tessellation with Curved Point-Normal Triangles and all the

popular Screen-Space Ambient Occlusion techniques: SSAO, HBAO, HBAO+. The

implementation is completed on both OpenGL and WebGL with the same pipeline, while

OpenGL’s visual output and performance are served as standards for WebGL to compare

with. Implementation on WebGL aims to provide reasonable quality and real-time

rendering performance by following the OpenGL’s core ideas and replacing the

unavailable API features with WebGL available ones. After evaluation, bottlenecks and

possible solutions are discussed and a future steps towards the rendering of Ambient

Occlusion algorithms on WebGL are presented.

 3

CHAPTER 2

RELATED WORK

Ambient Occlusion

Light surrounds the environment in the real world instead of simple countable

light sources cast on surfaces. The light illuminates evenly from all directions is called

ambient light which shades the softest shadows when it covers a large solid angle.

Objects become flat and unrealistic when the importance of the ambient light shadows

also known as ambient occlusion is ignored. Ambient Occlusion is not a direction-

depended type of shadowing effect, so precomputation provides decent results for static

objects. However, for animating or deforming objects, dynamic ambient occlusion

techniques is more useful [6].

As a result, real-time computer graphics community started to develop algorithms

to capture the exposure of objects to the ambient lighting. The algorithms are categorized

as Ambient Occlusion, also known as AO [7]. AO is generally used to portray the diffuse

and non-directional shading effects around closed or crossed objects obscuring each

other. It can solve the unrealistic shadow effects in the scene and improves the unclear

presentation in corners, gaps and detailed objects etc. Over all, AO improves the

perception, dimension and realism of physical space, the contrast and the artistry of the

scene.

AO was originally introduced by Hayden Landis and his colleagues at ILM

(Industrial Light & Magic) in Siggraph 2002 [8]. This method tries to address global

illumination and ray tracing with less expense. AO is not a physically correct method, but

it generally provides visual-satisfying results. The key to ILM’s algorithm is to separate a

 4

special pass which casts a single ray to trace occlusion from the final rendering. This

technique was embedded in many ILM’s productions [9], efficiently used in many

movies and won the Scientific and Technical Academy Award in 2010 [10], however it

was most commonly using on a non-real-time renderer which is not ideal for computer

games or other applications require real-time rendering.

Object-Space Methods

Bunnell proposed an algorithm to compute ambient occlusion by reforming

surfaces into a set of disks by reference to mesh vertices instead of casting costly rays

[11]. Bunnell uses a two-pass method to reduce the double-shadowing due to the

unnecessary computation of overlapped disks. This approximation method runs relative

expensive and yields some good results, but it is efficient and has an overall high-quality

output.

Hoberock modifies Bunnell’s algorithm to improve the quality at the expense of

performance [12]. Ren et al. used spheres instead of disks for the computation [13]. The

method can be simply projected onto a spherical harmonics basis. By using a logarithm

and exponential transformation, it bypasses the expensiveness of multiplying spherical

harmonic functions. Although the results are good, the spherical approximation does not

take creases and smaller details into considerations.

Hegeman et al. count the blockers between the occluded point and the boundary

of a volume consisting of small simple objects along the surface’s normal direction [14].

It is a very fast algorithm which suits perfectly for grouping elements like trees, grass etc.

It is also limited to this certain type of object which lacks universal usability.

 5

Based on a scalar function of spatial position known as the distance field, Evans

provided a different and interesting ambient occlusion method [15]. This method is suited

for small scene and is nonphysical, but it produces satisfying results.

Screen Space Methods

The major problem of object-space is that scene complexity is always required

and becomes the major expense of the computation. Using only the easily extractable

information like depth buffer, screen-space methods are independent from the scene

complexity and require simpler data structure than storing spatial information. It is

generally faster and better for use real-time applications at present.

SSAO

In Computer games, interactive websites and other real-time applications, Screen

Space Ambient Occlusion methods are a set of algorithms used to calculate the

approximation of the real self-shadowing effects. The first algorithm used in video games

named SSAO (Screen Space Ambient Occlusion) was developed by Vladimir Kajalin at

Crytek and was applied in Crysis in 2007 [16]. It first extracts the scene depth buffer

from a stored texture and calculates the information in a fragment shader allowing

execution on GPU. For a given pixel on the screen, the occlusion is computed by getting

the depth variance between the given one and the samples around it. SSAO uses a

randomly rotated kernel as a smarter solution than a costly brute force method. The

kernel changes directions periodically to generate only high-frequency noise which will

be removed by a certain blurring pass before rendering the final image. With

 6

approximately 16 samples per pixel comparing to the large sampling numbers required in

a brute force one, such method provides a decent result as well as real-time rendering

performance. Based on the image information, the performance of SSAO is uncorrelated

with the scene complexity and good in dynamic scenes with only GPU usage required.

However, the method might cause over-occluding and bleeding effect due to the locality

limitation and the post-process blurring [17].

Luft et al. perform an unsharp mask filter on the Z-buffer in screen-space which is

simpler and at a much lower cost [18]. By subtracting a blurred version from the original

image, the result appears similar to the ambient occlusion effect with some variables

tweaking.

Shanmugam and Arikan combine two techniques to produce the ambient

occlusion [19]. The first method uses both depth and visible surface normal information

in a full screen. Samples are generated from Z-buffer and represented as spheres, and

occlusion is computed with normal vectors. A dark image is presented as a result since

double-shadowing is not handled by any means. The second method is a coarse occlusion

which shares the idea of the object-space method by Ren et al. which uses spheres to

approximate the geometry and adds up in screen space. Double shadowing is not taken

care of in this one as well which leads to darker scene.

Sloan et al. combine spherical harmonic exponentiation of Ren et al. with

Shanmugam and Arikan’s screen space technique [20]. In this technique, double

shadowing is taken care of while higher-frequency visibility functions which can be used

for mapping and lighting are produced along with ambient occlusion factors. However,

this is a coarse occlusion since it does not use actual geometric information.

 7

HBAO

Louis Bavoil and Miguel Sainz from Nvidia describe an Image-Space Horizon-

Based Ambient Occlusion [21], a physically-based technique with the input of Z-buffer

and surface normal vectors. Z-buffer is used to compute the heightfield on which samples

are marching to calculate the horizon angle, with the given pixel and its normal vector the

tangent angle is calculated. By subtracting the sine values and averaging them over two-

dimensional directions, the ambient occlusion effect completes and is passed into a blur

filter to get the final result. The performance is mainly dependent on the screen and AO

texture resolution. As a result, downscaling is often used to preserve reasonable real-time

rendering framerates but might cause flickering defects under some circumstances. This

defect was mentioned in GDC 2012 [22], however the presented method at the time can

only partly fix.

HBAO+

Louis Bavoil redevelops HBAO with a cache-aware interleaved texturing

technique to process images utilizing the new features of Direct3D11 which allows

rendering in full-resolution and faster in performance. To increase visual realism, Louis

uses a simpler AO approximation inspired by the idea in Scalable Ambient Obscurance

by McGuire et al [23]. HBAO+ is currently the best and widely-used image-space

ambient occlusion algorithms in games with fully support by Nvidia’s graphic cards [24].

 8

Surface Smoothing

Subdivision

Subdivision surface is a commonly-used technique in computer graphics to

smooth surface by calculating the approximation recursively from a polygon mesh. It was

first introduced by Catmull-Clark and Doo-Sabin in 1978 [25]. With a given mesh, a

refinement scheme which can be roughly divided into interpolating and approximating is

applied to subdivide, generates new vertices of which the positions are calculated with

respect to nearby old vertices and forms new faces. The refining process is applied

repeatedly to produce a smoother mesh.

Tessellation

Tessellation is a technique to manipulate polygons and divide them into

renderable structures which is in most case presented as triangles in real-time

rendering. Tessellation allows dynamic detail controlling in a mesh and silhouette edge

managing which is fundamentally limited in former methods.

In OpenGL 4.0 and Direct3D 11, the primitive is the patch instead of element or

array with the introduce of the tessellation shader [26]. A tessellator divide the patch into

triangles whose degree is controlled by tessellation factors. With the advantage of

running on GPU, subdivision surfaces can be rendered in real-time with tessellation.

Instead of a delivering tessellated surface of many triangles from the CPU to the

GPU, sending the surface to the GPU to control the tessellation within is faster. This

hardware tessellation is more efficient and provides inexpensive geometric data

expansion [27]. A tessellator based on a fractional tessellation technique which tessellates

a triangle into smaller triangles is added to the standard rendering pipeline. Independent

 9

tessellation factor is available which makes a continuous level of detail possible and

avoid defects. After that, vertices are passed into programmable shaders allowing the

computation of the precise positions to create a smooth curved surface [28].

Curved Point-Normal Triangles Tessellation

PN-Triangles [29] is an advanced smoothing technique originally introduced by

Vlachos et al. and then implemented with GPU Tessellation by John McDonald in his

presentation in GDC2011 [30]. The idea is to smooth a low polygon mesh by replacing

the original triangles with a Bezier surface and make use of the tessellation shader.

OpenGL

OpenGL [31], Open Graphics Library, is a cross-language, cross-platform

application programming interface(API) for rendering graphics. It was developed by

Silicon Graphics Inc. and then released in 1992, it is currently managed by The Khronos

Group.

OpenGL is a pipeline-based, hardware-independent and client-server structured

API. By specifying the primitives, performing calculations in different shaders,

rasterizing and executing the fragment shaders, an image is rendered by OpenGL

application through this pipeline while implementing on various hardware or software is

available.

OpenGL 4.5 [32] is currently the newest version which contains features such as

Tessellation Shader, new Buffer Texture formats, Uniform Buffer Object and explicit

shader Uniform locations etc. Utilizing these features makes improvement possible in

real-time tessellation and ambient occlusion.

 10

WebGL

WebGL is a standard 3D graphics API for the Web, on which programmers are

able to make full use of the rendering hardware with JavaScript on browser without

depending on downloadable plugins or installations. Although WebGL is not officially

included in HTML5, many companies have made it as a component or package within

their product in order to provide hardware-accelerated 3D experience.

WebGL is a free-to-use API based on OpenGL ES 2.0 which is aimed to create

dynamic web applications on multi-platforms [33]. This nature makes it easy to

implement and is consistent on different browsers and machines that support WebGL, but

also requires developers work harder. However, several open source libraries [34] are

available to simplify WebGL development which makes the low-level API more

accessible.

Since WebGL is derived from OpenGL ES, the pipeline is the same. WebGL 1.0

is currently most widely used version which is sufficient for development most of the

time. Nonetheless based only on OpenGL ES 2.0 [35], WebGL 1.0 does not fully provide

all the features from OpenGL. Hardware tessellation, immutable storage or texture array

etc. are not available or only served as an extension. As such, some of the OpenGL based

applications cannot be ported directly. WebGL 2.0 [36] based on OpenGL ES 3.0 is a

newer but less stable version which is experimental and has not yet been fully supported

by major browsers.

 11

CHAPTER 3

METHODOLOGY

Algorithms

Screen Space Ambient Occlusion

Generally speaking, a decent real-time AO effect often requires a well-performed

ray-tracer, a good texture storage and other components which are able to efficiently

handle complex scenes with diverse objects like buildings, characters and trees in a game

level or targeting environment. Achieving the effect is time-consuming, resource-costly

and requires great programming efforts.

Before Screen Space Ambient Occlusion was introduced, some problems of the

former AO methods are addressed. Heavily depending on preprocessing and scene

complexity, inconsistent processing between static and dynamic scenes and

implementation complexity are some of the main obstacles that time-critical applications

with dynamic 3D complex environments need to overcome. To counter these problems,

SSAO is a GPU-based approach with a faster approximation of AO shadowing in real-

time.

The basis of Screen Space Ambient Occlusion is to compute the AO factor from

the depth buffer which samples the surfaces in a discrete manner which allows dynamic

computation. The depth values are stored in a texture and can be accessed by shaders on a

GPU. For each pixel on the screen, ray-tracing is performed from selected pixel into

surrounding and intersection is checked to decide the occlusion factor. This method is

generally very expensive and inefficient, but the problem can be solved or avoided by

SSAO. SSAO first retrieves scene depth value from a pre-stored texture. Then a full-

 12

screen quad is rendered with the computation result from shaders. In the end, a post-blur

is executed to produce the final output with the AO factors.

Human eyes cannot capture the long-distance high-frequency and short-distance

low-frequency details and most of time occlusion near the screen border which

potentially will theoretically cause problems often looks reasonable. As such, the most

important occlusion effects are inside the area of the screen-space allowing computation

to ignore the objects outside of the camera frustum but still deliver a satisfying AO

shadow.

The information from depth buffer is relatively limited and not fully three

dimensional which means the geometry blocked by the visible objects are not taken into

account. This lack of information might cause minor visual problems which are fixable

by more complex solutions. However, the trade-off between the minor improvement and

major performance reduction is not a good decision for hardware. The artifacts are

ignorable in general and since the goal is to render in real-time, SSAO only computes the

occlusion with the visible information within the screen-space.

According to the basic idea of Ambient Occlusion, in order to achieve a better

visual effect, a larger amount of rays, sometimes more than hundreds, have to be cast per-

pixel on the screen which is beyond the performance of the current hardware generation.

So approximating the occlusion from ray-tracing is the method proposed in SSAO by

calculating the ratio between the samples hit the objects and the empty space around a

chosen point. As shown in the Figure 1, samples are distributed in a sphere kernel around

the point P and the distribution inside or outside objects are the information to be tracked

by comparing the sample depth and the stored depth of P. If sample depth is greater, the

 13

sample is considered inside the object, otherwise is outside. The different visual effect is

generally categorized into three scenarios: flat, corner or edge (Figure 2) which produces

different level of occlusion. The higher the ratio, the darker the effect is. Note that edge

usually appears highlighted because the ratio is low, it is physically wrong but is still left

in SSAO to improve the spatial perception.

Figure 1. SSAO Sampling

 14

Figure 2. SSAO in Different Situations

Lighting distance attenuation is accounted when sampling the kernel. The sample

points in the kernel are distributed in a non-uniform manner where the samples are more

densely placed near the center of sphere than the borders. Taking this different weights

into consideration, the occlusion effect is denser and more accurate near the chosen point

without needing any more computation to achieve the attenuation effect. However,

occlusion effect is not always good with respect to distance especially in the case where

scene information is not complete due to the disadvantage of depth buffer. Under such

circumstance, SSAO does a depth range check and occlusions from samples with large

difference are smoothed.

 15

In order to render in real-time, large sample size is not ideal while small size will

sacrifice the image quality. In SSAO, each pixel uses a limited number of fetches (16 in

most cases) to improve performance and a randomly rotated kernel of small size samples

is used to simulate higher size [37]. The kernel rotates and repeats every 4*4 screen

pixels and then a 4*4 blur step is used to remove the high-frequency noise produced by

the kernel rotation. As such, SSAO is able to produce 256 samples for every 4*4 pattern

and remove noise to achieve good results.

Horizon-Based Ambient Occlusion

Image-Space Horizon-Based Ambient Occlusion, commonly known as HBAO, is

an Ambient Occlusion developed by Louis Bavoil and Miguel Sainz at Nvidia in 2008. It

is a quality-improved ambient occlusion method that also takes scene normal vectors into

account and has a better physical basis.

Figure 3. HBAO

 16

The physical basis of HBAO is to use marching rays [38] from a surface point P

in a hemisphere oriented around the its normal vector. Rays are casted and marched along

a direction to check the intersection with a height field inside a normal-oriented

hemisphere (Figure 3). The sample point S1 which is the first one below the current

height field of the ray is selected approximately as the intersection point. The height is

decided by comparing the depth of the samples and the related depth on the ray. Then the

ray marches with a uniform step size to approximate the next intersection point S2. The

marching ends when reaching the end point S3 which is at distance R from the starting

point. All the samples will be projected into screen space to produce the depth texture.

Noted that the algorithm ignores samples with further distance than R to avoid the

artifacts of the depth discontinuities. At least three rays per direction is needed to deliver

decent results in practice to compute the Monte Carlo Integration (Equation 1) where V is

the visibility function returns 1 or 0 and W is an attenuation function to smoothen the

ambient occlusion.

� = 1 − 1
2� � 	(���
)�(���
)�����

Equation 1

 17

Figure 4. HBAO Ray-Marching

Based on the ray-marching idea, HBAO distributes and steps along 2D directions

in image space around the current pixel instead of view space TBN basis. To decide

whether a sample contributes to occlusion or not, the elevation angle of it is compared

with one of the former sample. If it is greater, the sample is taken into account (Figure 5).

For each accounted sample, sine of its Horizon Angle and sine of its associated Tangent

Angle is computed and subtracted to calculate the horizon-based integral. As such, the

equation (Equation 1) is reformulated into equation (Equation 2) where N is the number

of sample, W is the attenuation function, t is the tangent angle, ψ is the horizon angle and

θ is the 2D direction. Attenuation function is a quadratic one to attenuate softly than

common linear method.

� = 1 − 1
2� � � �(������
)�(sin ∅� − sin ��) − (sin ∅��� − sin ����)���

�

�!�

"

�!"

Equation 2

 18

As such, HBAO needs to reconstruct the view-space position of a pixel by using

its screen-space coordinate and a stored linear depth buffer while using its surface normal

vector to calculate per-sample tangent [39]. A random jitter is stored as a texture for the

randomly rotation of the 2D direction in image space and the sample locations are

decided by this direction with a computed step size from the projecting of the radius.

With samples picked, tangent and angle computed, ambient occlusion is computed

accordingly and passed to the noise filter to get the final results.

Horizon-Based Ambient Occlusion Plus

After HBAO was introduced to the game industry by Nvidia, some quality and

performance problems were found. The major issue performance-wise was that when

HBAO renders at full-resolution, the frame rate will be unacceptable for game scenes

with complex details. As such, games using HBAO at the time generally rendered at half-

resolution which led to the quality-wise problems. Flickering, which often appears in

motion on thin objects, is the main quality problem which is difficult to get rid of in every

case. Louis Bavoil revamped HBAO to create HBAO+ to tackle the problems mentioned

above [40].

With the launch of DirectX 11 in 2009, a fast interleaved sampling method is able

to improve HBAO methods with a cache-efficient manner. Before interleaved sampling is

used, AO methods often sample with random pattern or jittered pattern. These sampling

approaches either lack of spatial locality or lack of efficiency on increased kernel size.

The idea of interleaved rendering is to “render each sampling pattern separately using

down-sampled input textures” [41].

 19

For an input texture, a depth buffer in ambient occlusion, the first step in

interleaved rendering is to de-interleave it by separate it into texture arrays at reduced

resolution. For each one of texture array, a jitter-free sampling is applied on it with a

constant jitter value per draw. After the sampling process, the texture array fetch is

performed on each pixel. Constant value grants better locality and reduced resolution is

memory-efficient.

In ambient occlusion, 4 * 4 interleaving is the standard. It de-interleaved input

into a quarter-resolution texture array with 16 elements and execute 2 draw calls with 8

multiple rendering targets. Then sampling the texture array and applying the AO

calculations in 16 draw calls. Finally, the output is interleaved in one draw call and feed

into noise filter. With the interleaved rendering method, HBAO+ can render at decent

frame rates which is 2 - 3 times faster than HBAO at full-resolution and overcome

flickering at the same time.

PN-Triangles Tessellation

Tessellation on GPU is a new feature first introduced in OpenGL 4.0 and used for

dynamic surface smoothing on GPU [42]. 3D models are relatively static, so achieving

dynamic level of details is often hard and not cost-efficient. In real-time rendering, same

model will be rendered with more details when closer to the camera in order to achieve

better resource allocation for more efficient computation. However, before hardware

tessellation became available, the typical method for distant-based level of detail is to

have different polygon counts on the same model and apply them in different situation.

This method works in some cases but requires unnecessary modelling process. With

 20

tessellation pipeline, the same level of detail can be achieved by using a low-poly model

and subdivide the model accordingly in real-time.

Comparing to the traditional OpenGL pipeline, tessellation has two additional

programmable stages: Tessellation Control and Tessellation Evaluation. Between them is

a fixed function stage called tessellator or primitive generator which handles the

primitives. When tessellation is active, the primitive type can only be GL_PATCHES and

the subdivide process is done through Tessellation Control shader(TCS) and Tessellation

Evaluation shader(TES) [43].

TCS works on a patch often known as control points. By moving control points

with the shader, surfaces are defined and shaped. With an input patch and both inner and

outer tessellation level (Figure 5), TCS transforms the control points and outputs a patch.

In TCS, tessellation levels can be fixed or changing on the fly by applying various

algorithms.

(Left to Right: inner 1, outer 2; inner 1 outer 3; inner 2 outer 1)

 21

(Left to Right: inner 3, outer 1; inner 2 outer 2; inner 3 outer 3)

Figure 5. Hardware Tessellation

After TCS, the subdivision is done by the fixed function stage, Tessellator.

Tessellator uses the levels to subdivide a domain defined by barycentric coordinates. As

such, the output patch from TCS is not actually tessellated in Tessellator which has no

access to the patch. Tessellator instead generates points inside the domain and marks

them with their unique barycentric coordinates.

Since Tessellator has no access to the patch, TES is needed to read the barycentric

coordinates along with the output patch from TCS to generate vertices. In TES, patches

can be used to control a surface by using different smoothing algorithms. After TES,

comes with the traditional pipeline to rasterize.

With the introduction of hardware tessellation, real-time tessellation with dynamic

manipulation becomes possible. In GDC2011, John McDonald presented Tessellation On

Any Budget using Point-Normal Triangles technique in tessellation shader. This

technique was described by Alex Valchos et al. in 2001 and it is a surface smoothing

algorithm based on Bezier Surface which basically smooths surface by moving control

points with a polynomial function. PN-Triangles method, fits well with the input patch in

 22

shaders, is based on Bezier Triangle where new vertex positions and normal vectors will

be calculated.

New vertex positions are computed in the form [44]:

#($, &, ') = � #�()
3!

,! -! .! $�&(')
�/(/)!0

= #011'0 2 #101$0 2 #110&0 2 #3�13'3$ 2 #�313�$3 2 #31�3'3&
2 #13�3$3& 2 #�133'$3 2 #1�33$&3 2 #���6'&$

‘uvw’ are barycentric coordinates while 5�() are control points (Figure 6).

Figure 6. Bezier Patch

 23

Define a triangle with 3 vertices whose position is P and normalized normal

vector is N. Then 5�() can be calculated by:

#011 = 6� #101 = 63 #110 = 60

'�(= 76(− 6� 8 ∙ :�

#3�1 = 1
3 (26� 2 63 − '�3 :�)

#�31 = 1
3 (263 2 6� − '3� :3)

#13� = 1
3 (263 2 60 − '30 :3)

#1�3 = 1
3 (260 2 63 − '03 :0)

#�13 = 1
3 (260 2 6� − '0� :0)

#31� = 1
3 (26� 2 60 − '�0 :�)

#��� = ; 2 1
2 (; −)

; = 1
6 (#3�1 2 #�31 2 #13� 2 #1�3 2 #�13 2 #31�)

	 = 1
3 (6� 2 63 2 60)

The normal vectors are defined as:

<($, &) = � <�()
�/(/)!3

$�&(')

= <311'3 2 <131$3 2 <113&3 2 <��1'$ 2 <1��$& 2 <�1�'&

 24

And <�() can be defined as:

<311 = :� <131 = :3 <113 = :0

&�(= 2 76(− 6�8 ∙ 7:� 2 :(8
(6(− 6�) ∙ (6(− 6�)

<��1 = (:� 2 :3) − &�3(63 − 6�)
=|(:� 2 :3) − &�3(63 − 6�)|=

<1�� = (:3 2 :0) − &30(60 − 63)
=|(:3 2 :0) − &30(60 − 63)|=

<�1� = (:0 2 :�) − &0�(6� − 60)
||(:0 2 :�) − &0�(6� − 60)||

With the new P and N computed, the mesh is smoothed.

 25

CHAPTER 4

IMPLEMENTATION

OpenGL Pipeline

The goal of implementation in OpenGL is to provide both visual and performance

results as references for the comparison with WebGL. The pipeline includes hardware

tessellation is typical and straightforward. First the program reads the input from a ‘.OBJ’

file and save the data into buffers. Then the data is passed to tessellation shaders and the

surface is tessellated on GPU with PN-Triangles algorithm. After that, vertex shader and

fragment shader calculates the ambient occlusion effect on the scene with tessellated

meshes. Then, the visual output as well as the framerate is ready to be analyzed.

After processing the information from ‘.OBJ’ file, per-vertex normal needs to be

reconstructed since some of the shared vertices have different normal values when in

different faces. These values are often the original data in the input file and without

averaging them, the smoothing result will be wrong for normal vectors play an important

role in PN-Triangles method. For each vertex, the normal reconstruction will be executed

by averaging the sum of adjacent faces’ normal vectors and normalizing the result. The

reason of this step is that ‘.OBJ’ file sometimes stores duplicate vertices which have the

same position but different normal vectors. For instance, two triangles share one vertex.

In reality, the vertex should have one position and one normal value. However,

sometimes ‘.OBJ’ stores two face normal values independently which leads to the same

vertex has two normal vectors when referring to different triangles. Face normal is

always perpendicular to the triangle, so in PN-Triangles tessellation the patch of vertices

will be subdivided in 2D space which leads to failure of smoothing. Thus, each vertex

 26

should have a weighted normal value from adjacent faces to preserve 3D spaciousness.

This process happens when reading files in the CPU.

With data preprocess completed, tessellation shaders start to take over the

tessellation process. Tessellation Evaluation Shader is where the core algorithm of PN-

Triangles takes place with the tessellation level gathered from the Tessellation Control

Shader. After that, the output is a smoothed mesh with better details.

The tessellation process completes and outputs a scene with our detailed new

mesh, then ambient occlusion post-processing will be applied. Despite the difference of

the three image-based algorithms mentioned before, scene depth is needed as an input

texture. SSAO and HBAO have basically the same pipeline where the AO computation is

happening mainly in the fragment shader. HBAO needs a normal texture as well,

however in this implementation, normal vectors are reconstructed in the fragment shader

using the depth buffer and camera attributes. HBAO+ is slightly different in the pipeline

with the addition of the de-interleave stage and re-interleave stage. The de-interleave

stage uses fragment shader to get 8 texels around the current pixel from depth texture

with fixed texture coordinate offsets. Each group of texels forms a new texture and stores

separately in a texture array with 16 elements. Then AO computation is done on each

texture element and store in another texture array with the same size. After that, an extra

fragment shader handles the re-interleave process by selecting result texel one by one

with respect to offset coordinates in de-interleave stage. When AO is done, a blur will be

applied on all three algorithms to get the final results.

 27

WebGL Pipeline

Based on the completed implementation in OpenGL, the pipeline is relatively

similar in WebGL. Read in “.OBJ” files first, then reconstruct the normals and process

the model with tessellation and different ambient occlusion algorithms. However,

WebGL and JavaScript have their own characteristics, thus extended libraries and

modifications are very important to achieve the similar output.

The JavaScript libraries used in WebGL implementation is pregl.js and

preglext.js. The “pregl.js” is a lightweight graphics math and WebGL library by Dean

McNamee [45] and “preglext.js” is an extension based on pregl to do 3D rendering,

texturing etc by Marcin Ignac [46]. In order to load models from files, “webgl-obj-

loader.js” [47] is needed to process vertices, normals and indices.

With all the extensions, modifications are required for the data processing. The

first problem is the obj-loader library does not consider repeated indices and it also

reorders the indices from the files when pass the data to the drawing stage. This is

reasonable and easy to do when the goal is to only load and draw the model. However,

tessellation requires a more precise and accurate indices array without reordering,

otherwise the topology will change and break when tessellated. This will not affect

rendering mesh, but will cause tessellated mesh to be in a mess occasionally. The way to

handle the vertices in webgl-obj-loader is to read the lines contain face information and

create new indices every read. For instance, if the first face in the file contains vertex

6/12/50, it will be processed as 1/2/3. If another face contains 6/24/50, it will create 4/5/6

and ignore the sharing vertices. Instead of creating new, the modification passes the

original ID for better reference in the tessellation stage.

 28

The data is saved into four arrays: vertices, normals, indices and texture

coordinates, but only the first three are used in this implementation. Reconstructing

normals is necessary for the same reason as in OpenGL and the idea is the same. The new

challenge is how to tessellate the model in WebGL without making too many changes

than in OpenGL. As mentioned before, OpenGL provides a hardware tessellation, in

other words, shaders can help to tessellate with popular smoothing algorithms in real-

time. However, this is a relatively new feature and not currently available in WebGL.

Based on the idea of patch, pnTess.js is implemented to simulate the hardware

tessellation with CPU in WebGL.

The first thing to do in pnTess is to tessellate triangles. The goal is to subdivide

triangles into smaller triangles with the same methods introduced in tessellation shader.

After computing and evaluating with different inner and outer levels, a different but

easier dividing method is used do. For each level, the midpoint of each edge is picked and

connected to form a total of four new sub-triangles. This method is the fastest and also

highly suitable for barycentric coordinate system for later computation. With the

advantage of barycentric coordinate, the edges can be easily tracked, the vertices and

normal vectors are arranged into patches and the function of Tessellation Control Shader

is completed.

The next step is to implement PN-Triangles. Since the previous step has already

provided new triangles and patches, this one is very similar to what happens in

Tessellation Evaluation Shader. After completion, the model is now with new positions

and normals while smoothed before the rendering stage.

 29

After rendering the tessellated model on screen, Image-Space Ambient Occlusion

is processed. SSAO and HBAO both use three pairs of vertex and fragment shaders to

compute depth, compute ambient occlusion and post-blur. The core of these shaders are

quite similar to OpenGL implementation with slight modifications to be compatible with

WebGL. These modifications are mainly on variables types and loop constraints which

do not affect algorithms themselves.

The major modifications happen in HBAO+ algorithms. The goal is to make the

algorithm works through modification without sacrificing and providing performance and

visual output as close to OpenGL as possible. The biggest difference between HBAO and

HBAO+ as mentioned previously is the de-interleaved texturing. Based on the OpenGL

implementation, a 4*4 texture array is needed first. OpenGL 4.0 supports array texture

which does not exist in current version of WebGL, so it is necessary to store 16 textures

instead of one texture array. With these textures, de-interleaving requires binding them to

different color attachment instead of one and draw them on a single framebuffer. This can

be easily done in OpenGL with calling glBindFramebuffer and glDrawBuffers. However,

draw buffers and multiple color attachments are only available as an experimental

extension now on WebGL and needed to be enabled. It is also a D3D11 level API which

means it may not be supported in some browsers or machines. Although limited, these

extensions are good enough in this implementation. After calling the extensions, multiple

color attachments and draw buffers is used in the same way.

Attaching texture to framebuffer in WebGL is of no difference, so all the

framebuffers and de-interleaved textures are well-prepared for shaders to process. In the

 30

de-interleaving fragment shader, OpenGL executes pixels with texelFetchOffset function

to distribute them into texture arrays which again is not in WebGL. Texel is different

with texture coordinates for it ranges from 0 to max width/height. This means when

calling a texel returns the exact screen position and it is very accurate for offsets.

However, WebGL can only use the traditional coordinates ranges from 0 to 1. This might

potentially cause inaccuracy in offsets.

At this point, depth textures are de-interleaved and ambient occlusion shaders

calculate the AO factors. glFramebufferTextureLayer is an OpenGL function to bind

array textures to framebuffer. In WebGL, with looping and indexing, same functionality

can be achieved. After that, there will be 16 textures containing AO results waiting to be

re-interleaved into one. First, a slice ID is computed via screen positions to decide which

texture should be read and draw on. WebGL has to take 16 textures while OpenGL takes

1 texture array. Other than using texture coordinates over texels in WebGL, dynamic

indexing has to be changed into constants. Under threse constraints, a very long if-else

has to be written to decide IDs instead of a quick loop. All these modifications make the

code redundant and relatively inaccurate in fetching texels.

After re-interleaving, blurring stage is the same and WebGL can provide a

reasonable output and real-time runnable performance.

 31

CHAPTER 5

EVALUATION

The ultimate goal of real-time rendering is to render at least 60 frame per second.

This is also the goal of this implementation. A desktop with Nvidia GTX 970 graphics

card and a laptop with Nvidia GTX 960M are used for evaluation. Newest version of

Chrome and Firefox are used for testing on WebGL.

Performance Evaluation

In OpenGL, the processing time of each frame is recorded for evaluation. Frame

per second equals the reciprocal of the recorded time. Noted that the vsync options need

to be disabled in Nvidia graphics cards to unlock the 60FPS cap.

Both Chrome and Firefox locks the maximum FPS at 60 and cannot be disabled,

thus, evaluating recorded time will not be as effective. For high performance machines,

all algorithms will be rendering at 60FPS which cannot find a difference. Based on the

idea from WebGL Performance Benchmark, the number of total renderable objects are

recorded at a fixed range of frame rate in a fixed space. For instance, if setting a fixed 3D

space in front of a camera and the frame rate range sets between 45 to 50, the higher the

number of objects, the better the performance. In this way, the FPS lock is bypassed and

the performance is represented by the number.

Quality Evaluation

The quality evaluation contains two parts. First part is to compare the output

image with the certificated output from Nvidia. This part is aiming to decide whether the

 32

algorithms are working properly. Also the details from the corner and crack will be

compared.

Second part is a survey for people to give scores on the outputs they saw. The

score is between 1 - 5 for the worst and best quality.

Evaluation Targets

Suzanne monkeys [48] and Sibenik Cathedral [49] are the meshes used for

evaluation. Suzanne monkey is a relatively low-poly mesh which is decent for

tessellation, it also has some details suit for ambient occlusion. Monkey mesh contains

511 vertices and 968 faces.

On the other hand, Sibenik Cathedral is used for testing ambient occlusion only

since it has more details and is more resemble to a scene in an interactive application.

Basically, Suzanne focuses on performance testing and Sibenik Church on quality.

Sibenik Church mesh contains 40979 vertices and 75283 faces.

Parameter Settings

Tessellation Level

OpenGL’s tessellation level starts at 0 and can be increased by user input.

However, after certain level the visual quality will not increase but the performance will

decrease, thus the cap of the level is set to 200.

Due to the performance limitation, the WebGL’s tessellation level range is

between 0 - 3.

 33

Ambient Occlusion

In order to have a better comparison, all the parameters are set the same on

OpenGL and WebGL. Some parameters are customizable and some are fixed.

The screen resolution is fixed to 1920 * 1080. The perspective camera’s field of

view is 45.0 degree, aspect ratio is the same as the screen, the near plane is at 1.0 and the

far plane is at 2000.0.

SSAO

The customizable parameters are sample size, radius and noise texture scale.

HBAO

The customizable parameters are number of sample steps, number of sample

directions, noise texture scale, radius, angle bias.

HBAO+

In interleaving process, texture array size is fixed at 16, draw buffer size is 8. The

customizable parameters are number of sample steps, number of sample directions, noise

texture scale, radius, angle bias etc.

Results

Following table provides the visual outputs of the implementation:

 34

S
S

A
O

H
B

A
O

H
B

A
O

+

O
p

e
n
G

L

C
h

u
rc

h

M
o

n
k
e

y
 +

 t
e

s
s
e

lla
ti
o
n

M
o

n
k
e

y
 n

o
 t
e

s
s
e

lla
ti
o
n

 35

S
S

A
O

H
B

A
O

H
B

A
O

+

W
e

b
G

L

C
h

u
rc

h

M
o

n
k
e

y
 +

 t
e

s
s
e

lla
ti
o
n

M
o

n
k
e

y
 n

o
 t
e

s
s
e

lla
ti
o
n

s

Table 1 Visual Outputs

 36

Quality Comparison

Before and After Tessellation

As is shown in Table 1, PN-Triangles Tessellation improves the details of the

meshes in both OpenGL and WebGL implementations. It is pretty clear that the edges

around Monkey’s ears, eyes and corners are better smoothed after Tessellation. Since the

mesh’s details are enhanced, the effect of three Ambient Occlusion gets better.

SSAO, HBAO and HBAO+

The overall quality of the three algorithms does not have too many distinctions.

The edges and corners are satisfying in most cases. However, SSAO does provide an

unpleasant ‘bleeding’ effect as shown in Figure 6.

Figure 7 SSAO ‘Bleeding’

As can be seen in the image, the pillars’ bottoms have shadows which looks weird

and unrealistic. This kind of effect appears to be softer in HBAO and HBAO+ (Figure 7).

Figure 8 HBAO and HBAO+

 37

OpenGL and WebGL

The results of WebGL is reasonable and acceptable. SSAO on WebGL is not as

good as on OpenGL because the samples are centralized in this implementation. This is

solved in later Chapter. HBAO on both are very similar but HBAO+ is much worse due

to the limitations and constraints on WebGL.

Quality Score

The score is ranged from 1 – 10. Participates are from different majors to have a

diversity. And this survey is a User-Experience focused than technical.

The scoring standard is not specifically given to the participates, so the score is

highly related to personal preferences. Additionally, participates have different level of

knowledge on real-time rendering, shadows, smoothing and so on. Based on the fact,

participates are not given too much information about the tessellation or ambient

occlusion algorithms. This ensures the participates to give scores according to their pure

feelings and avoids subliminal influence from additional information.

The surveys were sent to participates separately and were completed

independently to make sure their decisions are not affected by others’. The result is in

Table 2 which is the average of the total score from their feedbacks. In addition to score,

some participates also provided their thoughts of the images and reasons of scoring.

 38

SSAO HBAO HBAO+

OpenGL Church 7.0 8.1 7.7

Monkey + tessellation 7.0 8.3 7.9

Monkey no tessellation 6.6 7.9 7.7

WebGL Church 7.6 6.6 5.1

Monkey + tessellation 6.1 8.0 4.4

Monkey no tessellation 6.0 7.7 4.4

Table 2 Quality Score

The score shows that HBAO and HBAO+ are better than SSAO while

Tessellation can improve the quality in general.

HBAO+ on WebGL has the lowest score because the output is blur and it has

‘dirty’ broken pixels on the screen according to the feedbacks from the participates. Also,

participates tended to prefer SSAO of Sibenik Cathedral than HBAO on WebGL.

Another interesting feedback from participates of Art majors is that they would

prefer the low-poly meshes than the tessellated ones because of the current trend in

design.

 39

Performance

SSAO HBAO HBAO+

OpenGL Church 250FPS 125FPS 270FPS

Monkey + tessellation 200FPS 121FPS 212FPS

Monkey no tessellation 256FPS 142FPS 278FPS

WebGL Church 60FPS 60FPS 60FPS

Monkey + tessellation 60FPS 60FPS 60FPS

Monkey no tessellation 60FPS 60FPS 60FPS

Table 3 GTX 970 Framerates

FPS SSAO HBAO HBAO+

Original 54-60 1374 159 243

45-50 1669 206 305

30-34 2376 338 456

Tessellated 54-60 320 93 225

45-50 392 125 291

30-34 592 231 438

Table 4 GTX 970 WebGL Additional Evaluation

 40

SSAO HBAO HBAO+

OpenGL Church 102FPS 80FPS 103FPS

Monkey + tessellation 83FPS 50FPS 83FPS

Monkey no tessellation 105FPS 57FPS 106FPS

WebGL Church 43FPS 47FPS 60FPS

Monkey + tessellation 58FPS 56FPS 59FPS

Monkey no tessellation 59FPS 58FPS 60FPS

Table 5 GTX 960M Framerates

FPS SSAO HBAO HBAO+

Original 54-60 163 61 218

45-50 792 123 330

30-34 1325 203 525

Tessellated 54-60 116 26 80

45-50 153 78 170

30-34 242 137 291

Table 6 GTX 960M WebGL Additional Evaluation

 41

Performance Analysis

SSAO has a better performance than HBAO in general. HBAO+ is better than

HBAO as well. HBAO+ and SSAO has quite similar performance but SSAO is slightly

better.

This performance is reasonable theoretically. And most of the time, the framerate

is above 60 or at least above 30 in this parameter setting. This proves that the algorithms

are real-time renderable on WebGL.

 42

CHAPTER 6

PROBLEMS AND BOTTLENECKS

Since the implementation on OpenGL is served as a standard for WebGL to

compare with, this part mainly focuses on the problems and bottlenecks of WebGL

implementation.

Problems

Tessellation

OpenGL uses hardware tessellation which is not currently available on WebGL.

The output quality is very similar, however, since WebGL cannot tessellate with GPU,

the performance is much worse.

The first problem is that the tessellation level cannot exceed certain level on

WebGL. As the result shows, OpenGL tessellation level can reach as high as 200 and can

be controlled by user input at real time. But WebGL level is nonetheless at most set to 7

or 8 on testing machine, and changing level will sometimes cause a large amount of

framerate drop or crash the program when the level is already high. This is not allowed

since the goal is to render at real-time.

Unable to render at real-time is the second problem. One of the goal of real-time

tessellation on hardware is to smooth the model according to the level of detail. GPU

tessellation implements on shaders which allows multiple advanced accesses, such as the

distance between camera and the mesh. If camera changes position or rotation which

happens a lot in interactive applications, shaders can decide to tessellate the closer

meshes with higher level and lower level for further ones at the same time. This kind of

 43

tessellation saves resources. In contrast, CPU tessellation only allows pre-computation

which is not efficient.

Ambient Occlusion

The first obvious problem is that HBAO+ implementation on WebGL gives a

performance improvement but does not provide a very good visual quality. As mentioned

before, some APIs like array texture, draw buffers, multi-color attachment and texels are

not available on browsers without D3D11 extensions. WebGL implementation maintains

the core ideas of HBAO+, however, with the limitations of the current APIs, the reduced

quality is reasonable.

The second problem is the extensions have to be enabled on browsers to run

HBAO+. It has already been inconvenient to require user to run application only working

on Chrome or Firefox, enabling extensions makes matters worse. The current browsers

cannot automatically enable extensions, thus, it will cause much trouble for general users

to enable extensions themselves.

The third problem is that both HBAO and HBAO+ will introduce noise effect

occasionally. This is not a consistent problem, it sometimes happens when access the web

for the first time, but the noise will often disappear after refreshing the page. Other than

that, when camera zooms out, the scene in the far side will also give minor noises. In

HBAO+, the noise is more apparent when objects are far from camera. This effect only

happens in WebGL and SSAO is not affected. This problem might be in the depth

extraction since it is highly related to the distance between objects and camera. It also can

 44

be related to the radius conversion since in HBAO and HBAO+ screen-space radius will

be convert into world-space radius where decimal precision might affect.

Other Problems

SSAO Quality on WebGL is quite discrete at the beginning due to the sampling

randomness. After doing some research on SSAO quality improvement, a sample

centralization algorithm is implemented [50]. It increases the quality and surprisingly

increases the performance at the same time.

An interesting and strange exploration is that SSAO with 64 samples runs faster

than 16 samples on OpenGL.

Bottlenecks

Tessellation and smoothing improves visual quality most of the time, however, it

is not always good or necessary to do this. A scene generally contains lots of different

type of meshes, yet global tessellation cannot distinguish what to and what not to. It

might be good to smooth an animal’s mesh, but same process will change a cube into a

sphere which is not intended. A method to let hardware decide which mesh to tessellate

should be good, but this might be hard for current generation to do in real-time.

Real-time tessellation is a huge step for real-time rendering, however there are

still some features or functions missing currently. Although with shaders programmers

are able to apply different level of details when tessellating the scene, the LOD is limited

to the distance at current state of art. If tessellation can work on more detailed and

specific level based on the importance of the area or characteristic features, it will benefit

 45

a lot on interactive applications and games. For instance, when rendering a human face,

higher-level tessellation will be applied on important or animation-focused parts like

mouth, eyes etc. Other parts will be at a lower level since they will have high possibility

to be ignored during the gameplay or interaction.

HBAO+ is currently the best and most widely used AO algorithms for games or

other real-time rendering applications. However, since it is based in image-space,

HBAO+ still has the common problems happens in other image-space algorithms.

Image-space algorithms generally will miss some information for occlusions.

Missing information will often cause over-occlusions or under-occlusions. Over-

occlusions often happen on overlaid objects: front object will cast unnecessary occlusions

on behind objects. Under-occlusion usually happens on objects of great length in Z-

direction, for instance if a car faces the camera, some of the soft shadows on the ground

will be missed under the car. These problems are usually minimized by changing the

radius. However, higher radius will counter under-occlusions but give over-occlusions at

the same time, lower radius is the opposite. So finding a ‘golden’ radius setting is

necessary but difficult.

Generally speaking, the biggest bottleneck on WebGL is the limitation of APIs.

WebGL does not include tessellation shaders, so hardware tessellation for real-time

performance and dynamic level of details is not available or cannot be implemented as

easy as on OpenGL 4.0. Other features mentioned previously are not available as well,

thus HBAO+ can only be done in a similar way with reduced visual output quality.

The nature of web application is also a concern for real-time application. Web

application [51] aims to be fast, easy-accessible and generally no installation required etc.

 46

This is definitely beneficial and cost-effective while it also means web application has to

be adaptive to different machines, different browsers and even different users. A web-

based multiplayer first person shooting game is possibly being played by a professional

developer with a Nvidia GTX 1080 desktop on Chrome and at the same time another user

is trying to access it on a tablet’s preinstalled browser. How to maintain the benefits of a

web application without increasing the minimum requirement or reducing the quality is a

bottleneck for web-based games or interactive applications.

Possible Solutions

This part mainly focuses on how to possibly counter problems or improve the

outputs. The ultimate goal of all the possible solutions is to suggest ways to better

implement algorithms mentioned before in a real-time web application.

Tessellation

The straightforward way is obviously to wait for API updates. Alternatively, tags

or layers can be added on all the meshes for categorization. Objects are tagged with

different priorities will be given different tessellation level, or even different smoothing

algorithms. Alternatively, meshes are layered as background, environment, character etc

and each layer uses a unique tessellation.

Ambient Occlusion

The result suggests that the quality-performance tradeoff of WebGL HBAO+ does

not make it better than other two algorithms in this implementation due to the limitations.

Thus, it might not be a good idea currently to choose HBAO+ over other methods for

web application.

 47

Due to the constraints and other API-level differences, improving visual quality of

HBAO+ might need more effort. Meanwhile, the implementation to some extent diminish

some advantages of web since it uses extensions and advanced settings which are not

easily accessible for common users. It also requires a D3D11 supported browser and

decent hardware, so the most reasonable solution is to improve SSAO or HBAO on

WebGL.

Tweaking parameters is a good practice in general, different settings might suit

for different situations. However, a global or intelligent solution is always better but hard

to achieve at the time. Based on the results, the first thing to look at is how to generate

better samples for these algorithms. Applying a sample centralization in SSAO

dramatically improves the visual quality (Figure. 8).

Figure. 9 Before centralized VS After

Additionally, HBAO+ basically improves the sample accuracy and effectiveness

via de-interleave texturing which results a better performance than HBAO. Thus, it is a

good idea to further research on sampling and sample selection methods [52]. An idea of

dynamic samples which is similar to LOD in hardware tessellation might work as well. In

lieu of maintaining one sample kernel, maintaining multiple kernels with different sample

size and utilize them according to the depth.

 48

Another way is to use multi-view or multi-layer [53] together with multiple

parameter settings. As the result shows, the frame rate exceeds 60 even on WebGL which

means there are spare executing space to potentially spend. It is also an interesting idea to

combine AO algorithms on WebGL, choose HBAO for better quality while SSAO for

better performance and balance the power.

To improve the overall performance, JavaScript optimization is also a crucial and

practical part in the implementation which is not emphasized in this research.

 49

CHAPTER 7

CONCLUSION AND FUTURE

Conclusion

In this research, meshes are loaded, tessellated, smoothed and real-time rendered

with three Image-Space Ambient Occlusion algorithms on both OpenGL and WebGL.

OpenGL is implemented as a standard for WebGL to refer to. The main task is to revamp

all the algorithms on WebGL and compare both performance and quality with OpenGL.

The goal is to figure out the power and potential of real-time rendering in WebGL by

repeating the pipeline as much as we could and also discuss the bottlenecks and possible

solutions at current state of art.

WebGL is a relatively new platform deriving from OpenGL ES. It is very useful,

lightweight and fast for rendering graphics on web. In this research, WebGL is able to

render ambient occlusion on large high-poly meshes and tessellated low-poly meshes at

real time. It provides good quality and performance on real-time SSAO and HBAO, it

also gives good results in tessellation and smoothing. Although a better hardware is

required for better performance, the application runs smoothly on current-gen machines

and maintains at least 30 frame per second. Both performance and quality results show

that current WebGL version has the potential to render more complex scene for

interactive applications or games.

However, WebGL 1.0 limits the hardware tessellation for real-time adaptive

smoothing. Without tessellation shader, WebGL’s tessellation and smoothing is a pre-

processed and static when rendering, thus WebGL tessellation is not real-time and the

 50

level cap is much lower than OpenGL. In other words, tessellation on WebGL is

generally convert low-poly meshes with smoothing algorithms into relative high-poly

ones. The quality will not be affected much but the performance and diversity is no way

near hardware tessellation.

Meanwhile WebGL APIs do not fully support porting HBAO+ from OpenGL to

WebGL especially in the de-interleaved texturing stage. During the research, in order to

revamp as much as possible, many APIs on OpenGL are replaced by available ones on

WebGL, even though this causes some inconsistency and imprecision which results in

worse visual quality. On the other hand, HBAO+ has a better performance than HBAO

which proves the implementation is successful to some extent and the potential of

WebGL is promising.

In conclusion, although some constraints limit WebGL capability and

functionality to render real-time applications comparing to OpenGL or other advanced

graphics platforms, it is still well-performed and more suitable for relatively small

applications like simulators, demonstrations or mini-games. In this research, tessellation

and Ambient Occlusion algorithms which are proved to work well on OpenGL, provide

decent performance and quality on WebGL as well.

Future

Tessellation

The future of Tessellation is to fully utilize the advantage of GPU. Besides the

idea of level of detail, some more advanced and complex feature selection ideas are

worth digging into. H. Schafer et.al. described a dynamic feature-adaptive subdivision

 51

method in 2015[54] which is suitable for hardware tessellation and theoretically can

improve the performance and efficiency.

AO

Ambient Occlusion is one of Nvidia’ s ShadowWorks main topics. They improve

HBAO+ by adding multiple layers with dual resolutions and creates HBAO+ Ultra for

better quality [55]. It was introduced in GDC 2016 and has already been in some AAA

games. Moreover, they start to look into world-space than image-space as the power of

GPU increases. They introduced VXAO in GDC 2016, a world-space ambient occlusion

method [56] produces much better quality with a slower performance. This world-space

method has the spatial awareness as well as the locality which are lack in image-space

methods. It is integrated into advanced game engine Unreal 4 and used in Rise of Tomb

Raider. It has a lot of potential for future AO development.

WebGL and Web Applications

WebGL 2.0 has been released recently in an unstable state and available in some

versions of browsers. It is based on OpenGL ES 3.0 and granted some new features [57].

Multiple render targets, texels etc are in 2.0 version while array texture is still missing.

These new features will benefit the improvement in HBAO+ implementation, however,

WebGL 2.0 is at an experimental stage which is not fully supported.

Tessellation shader is not yet in OpenGL ES, so it might longer time to fully

utilize it in WebGL. The better practice is to study alternative ways to do faster

tessellation for web applications.

 52

Virtual reality is very popular nowadays. A website with VR support should be

very exciting. There are some available APIs aiming to provide VR support on website

[58]. Since VR is a 3D technology, the algorithms used in this research will be useful in

many ways. How to integrate these methods respecting VR applications’ characteristics is

a topic of great value in the future.

 53

REFERENCES

1. "Tessellation." Tessellation - OpenGL Wiki. N.p., n.d. Web. 12 Mar. 2017

2. "Ambient occlusion." Wikipedia. Wikimedia Foundation, 15 Dec. 2016. Web. 12

Mar. 2017.

3. Group, Khronos. "The Industry's Foundation for High Performance

Graphics." OpenGL.org. N.p., n.d. Web. 12 Mar. 2017.

4. "WebGL." Mozilla Developer Network. N.p., n.d. Web. 12 Mar. 2017

5. "OpenGL ES 2_X - The Standard for Embedded Accelerated 3D Graphics." The

Khronos Group. N.p., n.d. Web. 12 Mar. 2017.

6. Miller, Gavin (1994). Efficient algorithms for local and global accessibility

shading. Proceedings of the 21st annual conference on Computer graphics and

interactive techniques. pp. 319–326.

7. Pharr, M., Green, S. Ambient Occlusion. GPU Gems, Chapter 17.

8. Hayden Landis. Production-ready global illumination. In SIGGRAPH 2002

Course Note #16: RenderMan in Production, pages 87–102, 2002.

9. Seymour, M(2011). Ben Snow: the evolution of ILM's lighting tools. (2014,

October 07). Retrieved February 12, 2017, from

https://www.fxguide.com/featured/ben-snow-the-evolution-of-ilm-lighting-tools/

10. Ambient Occlusion Awards. (n.d.). Retrieved February 12, 2017, from

http://www.ilm.com/awards/ambient-occlusion-awards

11. HOBEROCK J., JIA Y.: High-Quality Ambient Occlusion. Addison-Wesley

Professional, 2007, ch. 12

12. Bunnell, M. Dynamic Ambient Occlusion and Indirect Lighting. GPU Gems 2,

Chapter 14. Retrieved February 12, 2017, from

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html

13. Akenine-Möller, T., Haines, E., & Hoffman, N. (2010). Dynamic Computation of

Ambient Occlusion. In Real-time rendering(pp. 381). Wellesley, MA: Peters.

14. Akenine-Möller, T., Haines, E., & Hoffman, N. (2010). Dynamic Computation of

Ambient Occlusion. In Real-time rendering(pp. 382). Wellesley, MA: Peters.

 54

15. Akenine-Möller, T., Haines, E., & Hoffman, N. (2010). Dynamic Computation of

Ambient Occlusion. In Real-time rendering(pp. 382). Wellesley, MA: Peters.

16. Dachsbacher, C. (2009). Global Illumination Effects. In ShaderX 7: advanced

rendering techniques(pp. 411-412). Boston, MA: Course Technology.

17. Sainz, Miguel.(2008). "Real-Time Depth Buffer Based Ambient Occlusion"

Presentation.

18. Luft, T., Colditz, C., & Deussen, O. (2006). Image enhancement by unsharp

masking the depth buffer. ACM SIGGRAPH 2006 Papers on - SIGGRAPH '06.

doi:10.1145/1179352.1142016

19. Shanmugam, P., & Arikan, O. (2007). Hardware accelerated ambient occlusion

techniques on GPUs. Proceedings of the 2007 symposium on Interactive 3D

graphics and games - I3D '07. doi:10.1145/1230100.1230113

20. Akenine-Möller, T., Haines, E., & Hoffman, N. (2010). Dynamic Computation of

Ambient Occlusion. In Real-time rendering(pp. 385). Wellesley, MA: Peters.

21. Bavoil, L., Sainz, M., & Dimitrov, R. (2008). Image-space horizon-based ambient

occlusion. ACM SIGGRAPH 2008 talks on - SIGGRAPH '08.

doi:10.1145/1401032.1401061

22. Bavoil, L & Andersson, J. (2012). "Stable SSAO In Battlefield 3 With Selective

Temporal Filtering".Presentation.

23. McGuire, M., Mara, M., Luebke, D. (2012) Scalable Ambient Obscurance. High

Performance Graphics (2012)

24. NVIDIA. (n.d.). HBAO+: Horizon-Based Ambient Occlusion and Ambient

Occlusion (AO). Retrieved February 13, 2017, from

http://www.geforce.com/hardware/technology/hbao-plus

25. Catmull, E., & Clark, J. (1978). Recursively generated B-spline surfaces on

arbitrary topological meshes. Computer-Aided Design,10(6), 350-355.

doi:10.1016/0010-4485(78)90110-0

26. Segal, M., Akeley, K., Frazier, C., Leech, J., & Brown, P. (2010). The OpenGL R

Graphics System: A Specification (Version 4.0 (Core Profile)).

27. Microsoft. Tessellation Stages. Retrieved February 13, 2017, from

https://msdn.microsoft.com/en-us/library/ff476340(v=VS.85).aspx

28. Tariq, S. (2009). “D3D11 Tessellation”. Presentation

 55

29. Vlachos, A., Peters, J., Boyd, C., & Mitchell, J. L. (2001). Curved PN triangles.

Proceedings of the 2001 symposium on Interactive 3D graphics - SI3D '01.

doi:10.1145/364338.364387

30. McDonald, J. (2011). “Tessellation on Any Budget”. Presentation

31. Kessenich, J. M., Sellers, G., & Shreiner, D. (2017). OpenGL® programming

guide: the official guide to learning OpenGL®, version 4.5 with SPIR-V. Boston

(Mass.): Addison-Wesley.

32. The Khronos Group. The Industry's Foundation for High Performance Graphics.

Retrieved February 13, 2017, from

https://www.opengl.org/documentation/current_version

33. Parisi, T. (2014). Programming 3D applications with HTML5 and WebGL.

Beijing: O'Reilly.

34. Three.js - Javascript 3D library. Retrieved February 13, 2017, from

https://threejs.org/

35. The Khronos Group. WebGL - OpenGL ES 2.0 for the Web. Retrieved February

13, 2017, from https://www.khronos.org/webgl/

36. WebGL 2.0 Samples. (n.d.). Retrieved February 13, 2017, from

http://webglsamples.org/WebGL2Samples/

37. Kajalin, V. (2009). Screen-Space Ambient Occlusion. In ShaderX 7: advanced

rendering techniques(pp. 413-424). Boston, MA: Course Technology.

38. Perlin, K., & Hoffert, E. M. (1989). Hypertexture. ACM SIGGRAPH Computer

Graphics,23(3), 253-262. doi:10.1145/74334.74359

39. Bavoil, L., & Sainz, M. (2009). Image-Space Horizon-Based Ambient Occlusion.

In ShaderX 7: advanced rendering techniques(pp. 425-444). Boston, MA: Course

Technology.

40. NVIDIA . (n.d.). HBAO Technology . Retrieved February 13, 2017, from

http://www.geforce.com/hardware/technology/hbao-plus/technology

41. Bavoil, Louis & Jansen, J. (2013). “Particle Shadows & Cache-Efficient Post-

Processing”. Presentation

42. The Khronos Group . (n.d.). Tessellation. Retrieved February 13, 2017, from

https://www.khronos.org/opengl/wiki/Tessellation

 56

43. OGLdev. (n.d.). Basic Tessellation. Retrieved February 13, 2017, from

http://ogldev.atspace.co.uk/www/tutorial30/tutorial30.html

44. Vlachos, A., Peters, J., Boyd, C., & Mitchell, J. L. (2001). Curved PN triangles.

Proceedings of the 2001 symposium on Interactive 3D graphics - SI3D '01.

doi:10.1145/364338.364387

45. deanm. (2011, March 26). deanm/pregl. Retrieved February 13, 2017, from

https://github.com/deanm/pregl

46. Ignac, M. (n.d.). Marcin Ignac : SSAO. Retrieved February 13, 2017, from

http://marcinignac.com/experiments/ssao/

47. frenchtoast747. (2014, October 26). frenchtoast747/webgl-obj-loader. Retrieved

February 13, 2017, from https://github.com/frenchtoast747/webgl-obj-loader

48. kivy. (n.d.). Monkey mesh. Retrieved February 13, 2017, from

https://github.com/kivy/kivy/blob/master/examples/3Drendering/monkey.obj

49. McGuire, Computer Graphics Archive, accessed 2016 Jun 28.

http://graphics.cs.williams.edu/data

50. Chapman, J. (n.d.). SSAO Tutorial. Retrieved February 13, 2017, from

http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html

51. Magic Web Solutions. (n.d.). The benefits of web-based applications. Retrieved

February 13, 2017, from http://www.magicwebsolutions.co.uk/blog/the-benefits-

of-web-based-applications.htm

52. Holden, D., Saito, J., & Komura, T. (2016). Neural network ambient occlusion.

SIGGRAPH ASIA 2016 Technical Briefs on - SA '16.

doi:10.1145/3005358.3005387

53. Bavoil, L., & Sainz, M. (2009). Multi-layer dual-resolution screen-space ambient

occlusion. SIGGRAPH 2009: Talks on - SIGGRAPH '09.

doi:10.1145/1597990.1598035

54. Schäfer, H., Raab, J., Keinert, B., Meyer, M., Stamminger, M., & Nießner, M.

(2015). Dynamic feature-adaptive subdivision. Proceedings of the 19th

Symposium on Interactive 3D Graphics and Games - i3D '15.

doi:10.1145/2699276.2699282

55. Tatarinov, A & Panteleev, A. (2016). “Advanced Ambient occlusion Methods for

Modern Games”. Presentation

 57

56. Penmatsa, R., Nichols, G., & Wyman, C. (2010). Voxel-space ambient occlusion.

Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics

and Games - I3D 10. doi:10.1145/1730804.1730989

57. The Khronos Group. (n.d.). WebGL 2 Specification. Retrieved February 13, 2017,

from https://www.khronos.org/registry/webgl/specs/latest/2.0/

58. WebVR. (n.d.). Retrieved February 13, 2017, from https://webvr.info/

57

 58

APPENDIX A

CONTRIBUTIONS

 59

The completed research contains DEMO executables, websites and videos which

can be found at:

OpenGL implementations: https://github.com/RadiumP/Tessellation

WebGL implementations: https://github.com/RadiumP/WebAO

SSAO+HBAO WebGL website: https://radiump.github.io/WebGL/hbao.html

Videos:

WebGL Tessellation + Ambient Occlusions: https://youtu.be/pF2im_08fKo

WebGL AO: https://youtu.be/Rf_AQfarBMo

OpenGL Tessellation + Ambient Occlusions: https://youtu.be/BsRYSHFbE_E

OpenGL AO: https://youtu.be/pdYwSzCpDIU

OpenGL vs. WebGL AO: https://youtu.be/SwW-Qp9HCr4

OpenGL vs. WebGL Tessellation + AO: https://youtu.be/kD9Hl17YiSg

Note that HBAO+ has limited support on browsers now, so it is not included in

the website.

