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ABSTRACT

The radar performance of detecting a target and estimating its parameters can dete-

riorate rapidly in the presence of high clutter. This is because radar measurements

due to clutter returns can be falsely detected as if originating from the actual target.

Various data association methods and multiple hypothesis filtering approaches have

been considered to solve this problem. Such methods, however, can be computation-

ally intensive for real time radar processing. This work proposes a new approach that

is based on the unsupervised clustering of target and clutter detections before target

tracking using particle filtering. In particular, Gaussian mixture modeling is first used

to separate detections into two Gaussian distinct mixtures. Using eigenvector analy-

sis, the eccentricity of the covariance matrices of the Gaussian mixtures are computed

and compared to threshold values that are obtained a priori. The thresholding allows

only target detections to be used for target tracking. Simulations demonstrate the

performance of the new algorithm and compare it with using k-means for clustering

instead of Gaussian mixture modeling.
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Chapter 1

INTRODUCTION

1.1 Motivation

Estimation theory is fundamental to many fields ranging from economics to en-

gineering. The theory itself can be divided into two broad categories: classical es-

timation theory and Bayesian estimation theory. In classical estimation theory, the

parameter to be estimated is assumed a fixed value embedded in the noisy observa-

tions. In Bayesian estimation theory, the parameter to be estimated is considered

a random variable. These two distinct categories result in two different approaches

to estimation. Experiments performed under the classical approach essentially draw

samples from the density that represents the uncertainty and combine it with the

parameter. Experiments performed under the Bayesian paradigm will draw the pa-

rameter to be estimated from it’s own distribution and then combine it with the noise

drawn from it’s distribution. The Bayesian approach to estimation will always result

in a minimum mean-squared error estimator, unlike the classical approach [1]. In the

classical approach, a minimum unbiased estimator (MVU) may not necessarily exist

for all values of the parameter. This tends to be a problem in classical estimation

due to the dependence of the estimator on the parameter to be estimated in order to

minimize the mean squared error. The ability of radar processing to separate a target

from clutter is fundamental to target tracking. In a radar track mode, the tracking

engine uses observations from the signal processor in order to maintain a valid track

on a target. The signal processor has to have the ability to separate the target from

unwanted signal returns with a high degree of confidence. In target recognition and

1



classification, the signal processing has to discriminate between various objects in the

scene such as different targets and clutter. Adverse affects such as misclassification

can result if the discrimination yields poor performance. The purpose of this work is

to investigate the use of unsupervised clustering with sequential Montel Carlo meth-

ods, such as particle filtering, to increase the discrimination performance between

targets and clutter. In particular, a clustering algorithm based on Gaussian mixture

modeling is used to separate a target from clutter for the purpose of providing reli-

able track observables to a particle filter. Gaussian mixture modeling has previously

been applied to the problem of target tracking in clutter. In [2], Gaussian mixture

models learned from recorded data are used to classify radar tracks. A Gaussian

mixture probability hypothesis density filter is used in [3] to estimate the number of

targets and their unknown parameters in the presence of noisy measurements and

clutter. In [4], measurement origin and target model uncertainty due to maneuvering

target tracking in clutter by combining a multiple hypothesis tracker and a multiple

model algorithm based on Gaussian mixture reduction. This reduction approach is

used as it helps to reduce the exponentially increasing number of measurement as-

sociation possibilities and target model trajectories. In [5], the problem of a single

target tracking in clutter using a high pulse repetition frequency radar is considered

by approximating each track trajectory probability density function as a Gaussian

mixture.

1.2 Proposed Work

Estimation is central to many engineering problems. In this work, we propose

two types of estimation techniques applied to two different problems in a common

context. Unsupervised clustering will be applied to the problem of association where

data samples have an underlying hidden grouping that needs to be estimated. This
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grouping is due to the association of the data to a common source or sources. The

clustering approach taken in this paper is the Gaussian Mixture Model (GMM-EM)

and will be used to separate a target from clutter for the purpose of providing samples

whose states can be tracked. These samples will be fed into a particle filter that will

track the state of these samples as they evolve over time. As a means of compar-

ison, a K-means (KM) clustering algorithm will be used as a secondary clustering

technique with the results evaluated against the GMM-EM. The proposed algorithm

uses the resulting detections from the RDM as input to GMM-EM for cluster separa-

tion. The purpose of the separation is to cluster detections that belong to the target

from detections that belong to clutter. Both the target and clutter have range and

Doppler extent but are separated by some distance in range and Doppler space. The

clustering algorithms work on these data points to separate the target from clutter.

As a post processing procedure for differentiating between the mixture correspond-

ing to the target and the mixture corresponding to clutter, an eigen-decomposition

of the resulting Gaussian mixture covariances is performed. The eccentricity of the

covariances associated with the two clusters is used to identify which is the target

and which is the clutter. These target associated detections are then used to compute

the centroid of the target in range and range-rate space (which are proportional to

time delay and Doppler, respectively) . This centroid sample, which represents the

target’s position in range and range rate space at this collection time, is then used as

an input to a particle filter tracker. The particle filter is responsible for tracking the

state of the target as the target moves and provides estimates of the target’s position

and range rate at each time step.

3



1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2 and Chapter 3, we

provide background information on the particle filter sequential Monte Carlo approach

and on Gaussian mixture models, respectively. Our proposed method of separating

target detections from clutter using Gaussian mixture modeling before tracking is

described in Chapter 4. In Chapter 5, we provide simulation results to demonstrate

the performance of the new approach and compare it with k-means clustering.
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Chapter 2

PARTICLE FILTER

Particle filters are part of a larger class of filters known as Bayesian filters. Under the

Bayesian philosophy, prior knowledge about a statistical process will tend to yield a

more accurate estimator. This can be understood intuitively by considering the reduc-

tion of the sample space and re- weighting of random variables given prior knowledge.

If it is known that a random variable of a distribution can assume only a subset of

its original range, then the subset range(s) must be re-weighted in order to maintain

a valid density function. This re-weighting will increase the probability of occurrence

to the values that can occur and rule out the possibility of those that cannot, given

this prior knowledge. The estimator, in essence, only generates estimates based on

this reduced sample space, whereas the estimator that does not consider this sample

space reduction will continue to produce estimates over the entire sample space, even

though these values do not actually occur. The Bayesian approach does produce a

biased estimator; however, the bias will improve the estimator performance [1]. The

Bayesian mean square error (BMSE) of an estimator Â can be expressed as

BMSE(Â) =

∫
<

∫
(A− Â)2p(A|z)dA > p(z)dz (2.1)

where A is the parameter to be estimated and z are the measurements. To find the

estimator that minimizes the BMSE, we take its gradient and set the result to zero

and solve for the parameter estimator Â. Noticing that p(z) ≥ 0 and minimizing the

portion of the equation in brackets results in

∂

∂Â

∫
(A− Â)2p(A|z)dA = 0 (2.2)
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Solving for the estimator Â yields

Â = E(A|z) (2.3)

This equation implies that the optimal estimator that minimizes the BMSE in the

Bayesian sense is simply the mean of the posterior PDF. The posterior PDF is the

PDF of A after the data has been taken into consideration [1]. It should be noted that

the Bayesian estimator Â is treated as a random variable and as such is represented by

a probability distribution. This is a completely different approach to estimation from

the classical approach used in such techniques as Maximum Likelihood Estimation.

The recursive Bayes filter is used extensively in state estimation in a variety of forms

including the Kalman filter and the Particle filter. The Bayes filter is a framework

for recursive state estimation with the Kalman filter and Particle filter as specific

instances. In state estimation, the true state of a system is estimated given a set of

noisy observations and a set of control inputs. By using Bayes theorem it is possible

to determine the current state of the system if we have an estimate for the previous

state and are given a current observation and a control command. An underlying

assumption in the Bayes filter is that the system process is Markovian. A Markov

process is a random process where the current state depends only on the prior state.

In this type of process, the past and future state of the system are independent with

the current state transitioning to the next state based on some rule. The probability

of the true state, using the Markov assumption can be expressed as

p(xt|xt−1, ...,x0) = p(xt|xt−1) (2.4)

with x defined as the true state at some time index t. This assumption shows that the

current state is conditionally dependent only on the previous state and no other. The

Bayes filter also assumes that the current observation depends only on the current
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state and is independent of any prior states. This can be expressed as

p(zt|xt,xt−1...,x0) = p(zt|xt) (2.5)

By denoting our belief in the current state of the system as b(xt), the Bayes filter,

given the assumptions above, can be expressed as

b(xt) = ηp(zt|xt)
∫
p(xt|xt−1,ut)b(xt−1)dxt−1 (2.6)

where η is a normalization factor. This states that if we have an estimate for the

previous state and are given a current observation and a control command ut, then

we can determine the current state of the system. As can be seen above the prior

belief is used in recursive form to compute the current belief. The Bayes filter can be

be written as a two step process [6]. The two steps in this process are the prediction

step and correction step. The prediction step uses the control command and prior

state to predict the current state. This can be expressed as

Algorithm 1 Repeat for each incoming sample

Prediction Step: b(xt) =
∫
p(xt|xt−1,ut)b(xt−1)dxt−1

Correction Step: b(xt) = ηp(zt|xt, b(xt)

This algorithm is used for the Kalman filter and the Particle filter. Both filters

make use of these prediction and correction cycles to refine the state estimate over

time, albeit in different ways. This paper will focus on the Particle filter. The Particle

filter is a Bayesian filter that can be used to represent arbitrary density functions.

Representation of arbitrary densities is performed by using samples to represent the

densities and iteratively refining these samples so that the densities are approximated.

The Particle filter uses a non-parametric approach unlike other estimation techniques

such as Maximum Likelihood Estimation. In the Particle filter algorithm a proposal

distribution is iteratively refined to estimate the target distribution. This is done
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through iterative prediction and correction cycles. The prediction of the state is ac-

complished by sampling from the proposal’s distribution. The differences between the

proposal and target distributions are accounted for by using corresponding weights

that represent how likely a given sample is to come from the target distribution.

When a sample from a proposal distribution has a low enough weight it will be elimi-

nated from the proposal’s sample set. These low likelihood samples are then replaced

with samples that are more likely to come from the target distribution through a

process known as resampling. The purpose of the resampling stage is to replace un-

likely samples by more likely samples resulting in the focusing the particles into the

correct state space region. The observations are used to determine the likelihood as

will be seen. These prediction-correction cycles conform the proposal distribution

to the target distribution. Then the expectation of the posterior density will result

in the Bayesian estimate. Denote the target distribution as p(x) and the proposal

distribution as π(x), then the Particle filter algorithm is as follows:

Algorithm 2 Particle Filter Algorithm

Initialization: Set prior distribution

while ( state estimating ) do

Prediction: Sample x
(j)
t ∼ π(xt), that is draw from proposal distribution

Correction: Compute correction weights w
(j)
t = p(x(j))

π(x(j))

Resample: Draw j=1:J with probability w
(j)
t

for j = 1 to J do

Add x
(i)
t to xt

end for

end while

Particle filters solve the filtering problem through simulation. The simulation

iteratively refines the density estimate by considering the observations as indicated
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in the algorithm steps above. The Particle filter’s discrete density approximation is

expressed as

p(xt|z) =
N∑
i=1

ωitδx(i)
t

(2.7)

where N is the number of particles and ω are the weight assignments to the

corresponding particle. This density approximation, as discussed, is refined over

the course of the observations with the weights continually being updated at each

time step resulting in the estimation of the underlying true state density. When the

Particle filter is first initialized the proposal distribution is typically selected as a

uniform density, since there is no preferential knowledge of where the state is located

in the state space. To emphasize how the Particle filter develops over time consider

the following conceptual example of the time refinement of the proposal density. In

figure 2.1 an initial prior distribution is selected as a uniform distribution over a state

space ranging from -50 meters to 50 meters. This could represent the position of an

object along a line. The bounded nature of the initial prior is whatever our state

space constraints are. If, for example, we had a sensor that could measure range from

0 meters to 10 kilometers, then this prior would be constrained between those limits.

The uniform density is used to indicate that the object could be anywhere in this

state space with equal chance. Considering subsequent proposals, at latter points

in time the proposal densities are extracted and displayed for this conceptual figure.

A one dimensional Gaussian distribution is the representation of the state space at

these times. The value of the true state is fixed at 25 meters and measurement noise

Gaussian. As can be seen in the figure, as the Particle filter refines it’s estimate of

the true state over time, the state distribution is concentrated about the true value

of the state. This conceptual figure illustrates the time evolution of the proposal

density in the Particle filter using a simple one dimensional Gaussian. With each new

measurement, the uncertainty in the state estimate is reduced and the belief in the
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estimated state converging to the true state is increased illustrated by the reduction

in the variance over time. The expectation of each density is the estimate of the state.

Figure 2.1: Evolution of Proposal Densities Given Gaussian Noise Densities.

Because the Particle filter uses a discrete density estimate represented by the

position in the sample space and associated probability weights, it can be used to

represent arbitrary densities and non-linearities in the parameter estimation. This

allows usage of the Particle filter in a wider set of problems than filters that assume

linearity in the model, such as the Kalman filter.
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Chapter 3

GAUSSIAN MIXTURE MODEL

Clustering is an unsupervised learning technique that finds structure in a set of unla-

beled data based on similarities or differences in the data. A set of criteria are used

to provide ways to make these cluster associations. These criterion could be based on

the Euclidean distance each data point in the data set is from a set of centroids placed

in the sample space. An example algorithm that uses this approach is k-means. Other

approaches may produce associations to clusters based on a probabilistic weight. The

probabilistic weight could be based on the likelihood that a given data point is as-

sociated to a specific cluster. In this latter case, a data point could be associated

with multiple clusters with the weight representing a measure of the strength of the

association to the cluster in question. Gaussian mixture models can be used for this

type of clustering.

There are two broad categories of clustering: hard and soft clustering. Hard

clustering is any clustering technique where elements in a cluster belong to only that

cluster. K-means is an example of a hard clustering algorithm. In this algorithm,

data points are assigned to a centroid based on a minimum distance from the centroid

to the data point in question. The centroid’s positions are then updated based on

this association and the process repeated until no new associations are made or until

a threshold is reached. In contrast, soft clustering is any technique where elements

can belong to multiple clusters. Soft clustering allows for data points to have multiple

associations by ranking the strength of the association of the data point to all the

clusters in the cluster set. Gaussian mixture models can be used to perform soft

clustering and will be explored in more detail in this section.
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Clustering can be broken up into a number of classifications. According to [7],

these categories are exclusive, overlapping, hierarchical, and probabilistic clustering.

Exclusive clustering focuses on grouping data based on assignments to only a single

group and not allowing data points to have multiple group assignments. Overlapped

clustering allows data points to have multiple group assignments with a score based

on the strength of that membership. According to [7] hierarchical clustering is ”based

on the union between the two nearest clusters. The beginning condition is realized

by setting every datum as a cluster. After a few iterations it reaches the final clusters

wanted.” Probabilistic clustering is completely statistical. Gaussian mixture mod-

els fall within the class of probabilistic clustering. The approach used in this paper

is probabilistic clustering, specifically using the Gaussian mixture model to perform

soft clustering. Gaussian mixture models are an application of the Expectation-

Maximization (EM) algorithm. The EM algorithm is considered a meta algorithm

that needs to be adapted to a particular application [8]. The EM algorithm is an

extension of the maximum likelihood estimation procedure for estimating the param-

eters of a distribution [9]. The motivation for the extension is due to the mathematical

tractability of either poorly behaved density functions or the feasibility of direct max-

imization given high dimensional density functions. The way EM deals with this is by

introducing a latent random variable with the intent of simplifying the maximization

of the log likelihood function. A latent variable is one that influences the data but

is not directly observed [8]. In the context of EM, the latent random variable is the

variable that assigns a data point to an underlying component density. This random

variable is distributed according to a multinomial distribution. The EM algorithm is

an iterative algorithm and is performed until convergence is achieved. The steps of

the algorithm are as follows:
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Algorithm 3 EM Algorithm

while ( not converged ) do

E step: Compute expectation of log-likelihood evaluated using the current es-

timate for the parameters, Q(θ|θ(t)) = Ez|x,θ(t) [logL(θ;x, z)]

M step: Compute density parameters that maximize the expected log-likelihood

found using the E step. That is, θ(t+1) = argmaxθ < Q(θ|θ(t)) >

end while

where θ is the parameter under estimation, E is the expectation operation, t is the

iteration step, and L(θ;x) = p(x|θ) =
∑

z p(x, z|θ) is the marginal likelihood of the

data. The estimates computed from the M step are used to compute the next E step,

and so on. Essentially a lower bound for the likelihood function is found and this lower

bound is maximized by finding the partial derivatives with respect to the parameters

and setting these to zero and solving for the parameter of interest. A GMM is a

weighted sum of component Gaussian densities. There can be as many component

Gaussian densities as needed based on the application. The GMM equation is given

by

p(x|θ) =
N∑
i=1

wig(x|µi, Ci) (3.1)

where x is an M dimensional data vector, wi are the mixture weights and g(x|µi, Ci)

are the component densities with a mean vector of µ and covariance C, and θ is the

collection of these parameters in order to simplify the notation. It should be noted

that the GMM is completely defined by the mixture weights, the mean vector, and

the covariance matrix. The multivariate Gaussian density can be expressed as

g(x|µi, Ci) =
1

(2π)N/2det1/2(C)
e−

(x−µ)T C−1(x−µ)
2 (3.2)

What the EM algorithm seeks to achieve using GMM is the association weight

of each data point to each component density in the density set [9]. Essentially
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an association weight is given to each data point based on it’s likelihood that the

associated density generated that data point. The association weights are then used

to adjust the parameters of the underlying component densities. The weights of the

GMM reflect the strength of an underlying association to a particular component

density. Samples in the data can have multiple associations with the weight showing

how strong that association is. The N dimensional data x is partitioned by the GMM

into groups called clusters where a cluster is a distribution. The EM algorithm allows

us to infer the parameters of the GMM. The EM algorithm is needed for GMM

because in order to find the sources of the data points the means and variances of the

underlying Gaussian densities need to be known, but these parameters are unknown

[9]. If the source assignments of the data points were known we could estimate the

means and variances, but these assignments are not known either. The EM algorithm

solves this problem by iteratively refining the assignments of data points to densities

using a soft assignment process. By setting the initial Gaussian set at random centers

and iteratively assigning data points to the given density and adjusting the centers

and uncertainties for each iteration, data points are assigned to clusters based on how

likely they are to belong to that density. The application of EM to GMM results in

the following algorithm

Algorithm 4 GMM-EM Algorithm

Initialization: Randomly place clusters

while ( not converged ) do

E step: For each point compute P (bk|xi), that is the likelihood that xi came

from the kth Gaussian

M step: Adjust means and variances of densities to fit point assignments using

the Maximum Likelihood Estimator for that parameter

end while
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The probability P (bk|xi) is computed from Bayes rule and is expressed as

P (bk|xi) =
P (xi|bk)P (bk)∑N
k=1 P (xi|bk)P (bk)

(3.3)

for N component Gaussians at the ith data point where i represents the data point

index. The probability P (xi|bk) is simply

P (xi|bk) =
1√

2πσ2
bk

e

−(x−µbk
)2

2σ2
bk (3.4)

These probabilites together compute the likelihood that a data point xi came from

the kth component density. Once the soft assignments are made, then the parameters

of the component densities are computed based on the data point assignments and the

densities updated for the next iteration. The mean and variance of the kth component

density is computed using the weight generated from the Bayesian posterior P (bk|xi).

The mean can be computed as

µbk =
w1x1 + w2x2 + ...+ wNxN

w1 + w2 + ...+ wN
(3.5)

where wi = P (bk|xi) is the likelihood probability that the data point xi comes

from the kth component density. Likewise, the variance of the kth component density

is computed as

σ2
bk

=
w1(x1 − µbk)2 + w2(x2 − µbk)2 + ...+ wN(xN − µbk)2

w1 + w2 + ...+ wN
(3.6)

These updated parameters are then applied to their corresponding component

densities for the next E step. The k-means algorithm is almost identical to the

GMM/EM algorithm above but differs in that the assignments are binary in nature.

The k-means algorithm simply assigns a data point to a component density without

replacement. The data point is only allowed one cluster to be a member of and no

other. The assignment of a data point to a cluster is based on the minimum Euclidean
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distance of that data point to the cluster centroid. The centroid cluster that is closest

to the data point gains the membership of that data point. The k-means algorithm

is

Algorithm 5 K-means Algorithm

Initialization: Randomly place clusters

while ( not converged ) do

E step: Set ci = argminj|xi − µj| for a cluster centroid ci

M step: Update the centroid based on E step, µi :=
∑M
i=1 1<ci=j>xi∑M
i=1 1<ci=j>

for M cen-

troids

end while

Both the k-means and GMM algorithms work with unlabeled data, that is, data

that has no cross labels. Unsupervised learning algorithms, of which k-means and

GMM belong, work with data of this form. It should be noted that because k-means

uses a cost function that is not convex, it is susceptible to local minimums. This can

be seen by examining the E step of the k-means algorithm and noticing that it is not

a quadratic function but rather a distance function. What this implies is that since

there is no global minimum for the cost function, the k-means algorithm can yield a

non-optimal solution in the mean squared error sense. Figure 3.1 shows an example

output of the k-means clustering algorithm. The super-imposed X’s in the plot are

the computed centroid centers which are the average of the data points assigned to

that cluster. For this example, k-means successfully matched the data points to the

correct cluster.
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Figure 3.1: Plot of K-means Clustering.

In figure 3.2 the convergence of the algorithm is shown. In these plots the error

between the actual cluster center, as measured as a magnitude from the origin, and

the computed cluster center are shown.
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Figure 3.2: Plot of K-means Convergence to True Centroid Magnitude as Measured

from Origin.

In figure 3.3 an example output of the GMM/EM algorithm is plotted. The

algorithm successfully found the cluster centers.
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Figure 3.3: Plot of GMM/EM.

To get a baseline idea of the relative performance between K-means (KM) and

the Gaussian Mixture Model (GMM-EM), consider figure 3.4.
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Figure 3.4: Error Between Truth and GMM vs.K-means.

This shows the performance difference between the two algorithms given two circu-

lar symmetric two-dimensional Gaussian distributions with unit variance one centered

at (0,0) and the other adjusted based on a Euclidean distance of 3 sigma to 9 sigma

in steps of .1 sigma from the Gaussian centered at (0,0). The error is the distance

from each cluster and its corresponding truth centroid. Each generated cluster has 80

samples. The monte carlo was iterated 50 times at each distance point and the result

averaged to get the sample mean of the performance. The error metric for this exam-

ple is the norm 1 distance between each of the centroids and truth. As can be seen

from figure 3.4, K-means on average outperforms GMM-EM considering performance

as a function of centroid distance. Figure 3.5 shows that the GMM-EM algorithm is

almost twice as noisy as the K-means algorithm as shown in the numbers in the leg-

end. As discussed, K-means is a hard clustering algorithm whose cluster membership

is not shared among other clusters. This has the benefit of forcing the computation of
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the centroid to only include data that is closest to it thereby not allowing far off data

points from affecting the estimated centroid position. GMM-EM allows all the data

to be used in the computation, albeit based on a weighting inversely proportional to

the distance from the centroid. This type of membership allows far off data points to

have a weight on the centroid estimate and, as seen in the figures, to bias the centroid

off the true value.

Figure 3.5: Variation of GMM-EM and KM about Mean.

Given the baseline case above it is predicted that K-means would perform better

in separating the clusters.
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Chapter 4

CLUTTER SUPPRESSION AND TARGET DISCRIMINATION TRACKING

ALGORITHM

4.1 Introduction

In order to have a reliable target track, it is necessary to separate target detec-

tions from background noise and clutter. As clutter differs from thermal noise, it

must be processed differently in order to reduce the rate of false target detections.

Clutter can consist of backscatter of the transmit radar signal from land, sea or other

surfaces, or it can be due to changes in the atmosphere, such as precipitation [10].

The signal-to-clutter ratio depends on many factors, including the amount of clutter

illuminated, the clutter reflectivity, and the clutter that falls in the same range-angle

resolution cell as the target [11]. Different approaches exist to discriminate target

against surface clutter, including the moving target indication (MTI) operation mode

and pulse-Doppler processing. However, if the signal-to-clutter ratio is very low, addi-

tional processing methods can be used to further increase target tracking performance.

This work considers a new algorithm for separating target detections from clutter by

integrating unsupervised clustering using Gaussian mixture modeling and sequential

Monte Carlo methods. The block diagram in Figure 4.1 summarizes the main steps of

the proposed algorithm, as described in this chapter. The range-Doppler map (RDM)

measurements are processed for detection, expecting high false detections in the pres-

ence of high clutter. The clustering algorithm is then used to separate the detections

into two Gaussian distinct mixtures. Post-processing of the covariance matrices of
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the Gaussian mixtures is then applied using eigenanalysis to discriminate clutter and

provide the particle filter tracker with clutter-suppressed detections.

Figure 4.1: Block diagram of Proposed Algorithm for Target Discrimination and

Tracking.

4.2 Pulse-Doppler Processing

We consider a pulse-Doppler radar that transmits Np pulses over a coherent pro-

cessing interval (CPI) . The baseband received signal corresponding to the mth trans-

mitted pulse, m1, ..., Np, is given by

zm(t) =
√
Pr s(t− τ0 −mTPRI) e

−j2πν0mTPRI + xc,m(t) + wm(t), t ∈ (0, TPRI)

where s(t) is the transmit waveform, TPRI is the pulse repetition interval (PRI), Pr is

the radar return power, τ0 and ν0 are the time-delay and Doppler shift, respectively,

that are assumed to be constant over the CPI, xc,m(t) is due to the presence of clutter,

and wm(t) is additive white Gaussian noise (AWGN). Assuming a sampling period
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Ts, the discrete-time received signal zm[n] = zm(nTs) is given by

zm[n] =
√
Pr s(nTs − τ0 −mTPRI) e

−j2πν0mTPRI + xc,m[n] + wm[n], n = 1, . . . , Ns(4.1)

where Ns = TPRI/Ts is the largest number of samples less than TPRI/Ts. In vector

form, the received signal

zr,m = [zr,m[1]...zr,m[Ns]]
T (4.2)

is given by

zr,m =
√
Prsr(τ0;m)e−j2πν0TPRI + xc,m + wm, m = 1, ..., Np (4.3)

where T denotes vector transpose and zr,m∈CNs×1. The vectors sr(τ0;m)∈CNs×1,

xc,m∈CNs×1, and wm∈CNs×1 are defined, respectively, as

sr(τ0;m) = [sr(Ts − τ0 − TPRI), sr(2Ts − τ0 − TPRI)...sr(NsTs − τ0 − TPRI ]T (4.4)

xc,m = [xc,m[1], xc,m[2], ...xc,m[Ns]]
T (4.5)

wm = [wm[1], wm[2], ...wm[Ns]]
T (4.6)

Considering Np pulses over the CPI, the overall radar received signal is

zCPI [n] =

Np∑
m=1

zr,m[n] (4.7)

where zr,m[n] is given in (4.1).

In matrix form, the Np received signals form

Zr = [zr,1, zr,2, ...zr,Np ] (4.8)

for Zr∈CNs×Np , where zr,m is defined in (4.3).
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This matrix can also be given by

Zr =
√
PrSr(τ0)D

H(ν0) + Xc + W (4.9)

where H denotes vector Hermitian transpose, and Sr(τ0) ∈ CNs×Np , Xc ∈ CNs×Np ,

W∈CNs×Np are defined as

Sr(τ0) = [sr(τ0; 1), sr(τ0; 2), ...sr(τ0;Np] (4.10)

Xc = [xc,1,xc,2, ...xc,Np ] (4.11)

W = [w1,wc, ...wNp ] (4.12)

The Doppler term D(ν0) ∈ CNp×Np is a diagonal matrix, D(ν0) = diag(d(ν0)),

with zero-valued off-diagonal entries and diagonal entries given by d(ν0)∈C1×Np ,

d(ν0) =
[
ej2πν0TPRI , ej2πν02TPRI , ...ej2πNpν0TPRI

]
(4.13)

Note that, if the columns, zCPI = [zCPI[1], zCPI[2], ...zCPI[Ns]]
T , zCPI ∈CNs×1, of the

radar received matrix Zr in (4.9) are stacked into a single column vector, then the

vector represents the time-domain received signal over the CPI. Also, the columns of

matrix Xc in (4.9) correspond to the communications interference symbols over each

PRI. Using the above pulse-Doppler approach, range and Doppler data are collected

in a receiver using the approach outlined in the next section.

4.3 Range-Doppler Map Measurements

Using the above pulse-Doppler approach, we can construct radar Doppler map

(RDM) data that can be used as input to the clustering algorithm. The construction

of the RDM consists of collecting range and Doppler data in a column-wise and
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row-wise series known as fast time and slow time, respectively. Fast time samples

are collected along the range dimension and are collected at a rate proportional to

the pulse compression factor. Slow time samples are collected by taking the Fourier

Transform (FT) along the range aligned rows of the range columns. This approach

allows for a two dimensional representation of the scene data that can be processed

by a detection algorithm. The processing at the receiver involves the correlation

of the received signal at the mth PRI in (4.1) with a time-delayed version of the

transmitted signal to estimate the corresponding target range. Note that slow-time

processing involves the PRI time step m, whereas fast-time processing involves the

time sample n. Thus, at the mth slow-time PRI time step, we compute the correlation

a`,m =
Ns∑
n=1

zm[n]s∗(nTs − τ` −mTPRI) = zHr,msr(τ`;m) (4.14)

where τ`, ` = 1, ...Nτ , denotes the `th time-delay or range bin, zr,m[n] is given in (4.1),

and zr,m and sr(τ`;m) are given in (4.3) and (4.4), respectively. The domain [Tr, TPRI]

of τ` represents the domain of unambiguous target returns, where Tr is the duration

of the transmit radar signal sr(t). This correlation, known as range correlation, is

the process of taking pulse returns and applying the fast time samples to a matched

filter. The reason why this dimension is referred to as fast time is because the chip

rate of the signal is much larger than the pulse repetition frequency. The chip rate is

the modulation rate of the bi-phase technique used in this simulation. The chip rate

is selected to give a desired range resolution. Range resolution can be computed as

∆R =
cτ

2
(4.15)

where the value of c is the speed of light in meters per second and τ is the chip

period. As can be seen when the chip period, which is the reciprocal of the chip

rate, is decreased the range resolution is improved. This implies that if two or more
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reflectors are separated by at least the range resolution then they will be separated

at the output of the matched filter. The top plot in figure 4.1 is an example plot

showing what two targets separated by the range resolution at the output of the

matched filter look like. The bottom plot is another example plot that shows what

two targets separated by twice the range resolution look like at the output of the

matched filter. As can be seen two distinct peaks can be resolved in the bottom plot,

whereas in the top plot two consecutive samples are at the same value. The output

of the matched filter will have a single maximum at the time where the input to

the matched filter and the matched filter’s impulse response are time aligned. This

information can be used to detect two distinct peaks in the top plot.

Figure 4.2: Plot of Output of Matched Filter.

In pulsed Doppler radar, a series of fast time pulses are collected at a slower rate

known as the pulse repetition frequency with each pulse collection processed through

a matched filter. The number of fast time samples collected is dependent on the
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coherent processing interval and the number of samples that will be processed in the

frequency domain by the fast Fourier transform (FFT). A coherent processing interval

is a time interval over which pulses are assumed coherent and can be integrated as

such using the FFT. The time interval between each pulse is the pulse repetition

interval and is selected based on avoiding Doppler ambiguity. Doppler ambiguity is

avoided by time spacing pulses in such a way that when the pulses are processed that

the Doppler content in the underlying signals don’t alias in the frequency domain.

Consider the vector

x = [Ae
j2πfd0

PRF Ae
j2πfd1

PRF ...Ae
j2πfd(N−1)

PRF ] (4.16)

where A is the signal amplitude, fd is the Doppler frequency, and N is the number

of pulses in a coherent processing interval. This vector represents the slow time

sampling of the fast time matched filter outputs at the matched filter peaks, that is

the samples at the output of the matched filter at a given range. As can be seen, the

Doppler frequency is ambiguous when fd is greater than half of the pulse repetition

frequency (PRF). The Doppler frequency is computed as

fd =
2vcos(θ)

λ
(4.17)

where v is the maximum radial velocity of the target and θ is the angle between

the target’s velocity vector and the observer’s velocity vector. For an approaching

target the Doppler frequency is positive and for a receding target the value is negative.

Figure 4.2 is a pictorial representation of the collection of fast time samples processed

through a matched filter. In this plot four matched filter fast time samples were

collected and placed in a matrix where the rows represent the matched filter samples

(fast time or range) and the columns represent the coherent processing interval (slow

time or Doppler). The radar signal processing will perform an FFT on each row in

the matrix. The result of this will be a range doppler map (RDM).
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Figure 4.3: Plot of Fast and Slow Time Data Collections.

An example RDM is shown in Figure 4.3. The bright red spot is the target and

the lighter blue spots are range sidelobes. The RDM is the data representation of the

radar sensor output. This data representation is what the radar signal processing uses

to extract range and range rate information. This range and range rate information

is obtained by applying a detection algorithm to the RDM using a constant false

alarm criteria. This essentially applies a threshold to each pixel in the RDM. The

threshold is obtained from computing the noise power in a pixel and applying a

detector structure to obtain a test statistic from the pixel data and applying this

threshold. The detection strategy will be discussed in more detail in the following

paragraphs.
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Figure 4.4: Notional Plot of RDM.

4.4 Detection Processing

A detector is used to extract range and range rate information from the RDM. The

development of the detector assumes that the complex noise in the system is zero-

mean circular symmetric white Gaussian noise at the input to the matched filter.

Since the matched filter is a weighted linear sum of Guassian random variables then

the noise at the output of the matched filter is also Gaussian, albeit with a reduction

in the variance. The signal to noise ratio improvement at the output of the matched

filter can be shown to be equal to the number of chips in the pulse sequence and in

decibel space can be computed as

SNRMF = 10log10(
NA2

σ2
) (4.18)

where N is the number of chips in the pulse sequence, using a bi-phase modulation

scheme, A is the amplitude of the signal and σ2 is the variance of the noise. The
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output of the matched filter is complex and, as discussed, collected over the slow

time coherent processing interval. The fixed range samples in this interval are the

inputs to the FFT. The form of the samples into the FFT are of the column vector

form

x = [Ae
j2πfd0

PRF + ω0, Ae
j2πfd1

PRF + ω1, ..., Ae
j2πfd(N−1)

PRF + ωN−1]
T (4.19)

where fd is the Doppler frequency, A is the amplitude, N is the number of pulses

along the slow time, and ωn is the complex circular symmetric Gaussian noise sample.

The FFT is computed as

X(k) =
N−1∑
n=0

x(n)w(n)e
−j2πkn

N (4.20)

where x(n) are the complex time samples at a given range, w(n) is a window

function, N the FFT size, and k the number of bins in the FFT with a range from 0

to N-1. The magnitude of the complex vector X(k) is computed prior to detection and

results in two hypothesis to the detector. Since the input to the magnitude function

is complex Gaussian with zero-mean for the noise and non-zero mean for the signal,

the resulting probability density functions are Rayleigh and Rician, respectively. The

variance of the Gaussian noise samples prior to the magnitude function are computed

from the noise only RDM pixels and the Rayleigh and Rician variances are computed

from this. The relationship of the Rayleigh variance to the Gaussian variance is given

by

var(
√
X2 + Y 2) =

4− π
2

σ2 (4.21)

where X is the real component of the FFT output at a given bin and Y is the

imaginary component of the FFT output at the same bin, both which are zero-mean

Gaussian random variables. The parameter σ2 is the variance of the Gaussian random

variable. The relationship of the Rician variance to the Gaussian variance is given by
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var(
√
X2 + Y 2) = 2σ2 + ν2 − πσ2

2
L2
1/2(
−ν2

2σ2
) (4.22)

where X is redefined here to be the real component of the FFT output at a given

bin and Y is redefined here to be the the imaginary component of the FFT output at

the same bin, both which are non-mean Gaussian random variables. The parameter

σ2 is the variance of the Gaussian random variable. The parameter ν is the center

point of the distribution. The function L1/2 is the Laguerre polynomial and is defined

as

L1/2(α) = eα/2[(1− α)I0(−α/2)− αI1(−α/2)] (4.23)

where I0 is a modified Bessel function of the first kind, order zero, and I1 is a mod-

ified Bessel function of the first kind, order one. Computing Bessel functions can be

avoided by noticing that the natural logarithm of the Bessel function is monotonically

increasing and the same detection results can be achieved by comparing the argument

of the Bessel function of the Rician probability density to a modified threshold. The

Rician probability density is defined as

p(x|ν, σ) =
x

σ2
e−

x2+ν2

2σ2 I0(xν/σ
2) (4.24)

The Rayleigh probability density is defined as

p(x|σ) =
x

σ2
e−

x2

2σ2 (4.25)

where the random variable x is greater than or equal to zero. The false alarm

probability can be computed by integrating the Rayleigh probability density from

the threshold T to positive infinity as

PFA =

∫ ∞
T

x

σ2
e−

x2

2σ2 dx = e
−T
2σ2 (4.26)
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Solving for the T , the threshold, as a function of the probability of false alarm

results in a threshold of

T =
√
−2σ2lnPFA (4.27)

By knowing the detector’s sampling rate a false alarm rate can be set. The proba-

bility of detection is obtained by computing a similar integral to the PFA calculation

but using the Rician probability density instead. The integral can be expressed as

PD =

∫ ∞
T

x

σ2
e−

x2+ν2

2σ2 I0(xν/σ
2)dx (4.28)

According to Fundamentals of Radar Signal Processing by Mark Richards [11] this

probability of detection PD can be expressed as

PD = QM(
√

2SNR,
√
−2lnPFA) (4.29)

where QM is the Marcum’s Q function.

4.5 Clustering and Post-processing for Target Discrimination

After detection is performed on the RDM, the proposed algorithm is applied to

those detections. The algorithm consists of several processing steps before the final

target centroid is given to the particle filter for tracking. The clustering algorithm

is discussed in this section. After detection is performed on the RDM, the resulting

data is sent to the GMM-EM algorithm (and as a comparison, the K-means). This

algorithm, as discussed, is used to separate detections into target and clutter. The

determination of which cluster is the target is determined by an eigen-decomposition

of the resulting covariance matrices. For this simulation, the covariance of the cluster

with the minimum eccentricity is the determining factor in choosing the target. The

eccentricity here is defined as the ratio of the maximum eigenvalue to the minimum

eigenvalue for the covariance matrix in question.The cluster that is most correlated
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to the expected eccentricity is the target of interest. The expected eccentricity can

be an a priori information vector provided to the algorithm from a separate source.

It is assumed in this algorithm that clutter is more elliptical than the target. A block

diagram of the algorithm is provided below

Figure 4.5: Block Diagram of Proposed Algorithm.

As discussed in chapter 3, the GMM-EM is a weighted sum of component densities.

Each component density is jointly Gaussian and can model differing multi-modal

34



distributions, depending on the number of component densities in the sum. Since the

component densities are Gaussian, each component can be fully described by its mean

and covariance. In the clustering problem, detections are assigned to a component

density based on a weighting assignment. This weighting assignment can be thought

of as a membership strength, that is, how likely that detection is associated with the

cluster in question. In this algorithm, the covariance is used to find the eccentricity

of the component Gaussian. This information is used to determine which cluster is

most like what is expected. Without loss of generality, consider the two dimensional

covariance matrix

Rx =

1 ρ

ρ 1


where ρ is a value between -1 and 1.The value of ρ determines how eccentric the

covariance matrix is. Performing the eigen-analysis on the normalized covariance ma-

trix and using the quadratic formula to find the eigenvalues results in the eigenvalues

of

λ1 = 1 + ρ (4.30)

λ2 = 1− ρ (4.31)

The eccentricity of the covariance matrix is found by taking the ratio of the largest

to smallest eigenvalue for each resulting cluster. The target selection rule is

i = min(
λmax
λmin

|i = 1,
λmax
λmin

|i = 2) (4.32)

where i is the cluster number. Equation 4.18 states that the lowest eccentricity

is identified as the target. The centroid of that cluster, which is the sample mean of

the cluster, is passed to the particle filter for tracking.
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4.6 Particle Filter

As described above, the centroid with the minimum eccentricity is designated

as the target cluster. The centroid of that cluster is sent to the particle filter for

tracking. The particle filter is responsible for fusing measurements obtained from the

clustering algorithm with the state predictions. As discussed in the second chapter,

the optimal estimator that minimizes the BMSE is the mean of the posterior PDF.

This can be expressed by (2.3) and is interpreted as the expectation of the state

estimate given the data. The particle filter is a recursive estimator that, given a prior

set of particles (realizations of a state distribution), will process this prior to generate

a new set of transitioned particles. The selected target cluster’s centroid measurement

is passed to the particle filter which uses the measurement to correct the predicted

state estimate. Weights are generated for each of the transitioned particles based

upon the probability of the given measurements for each particle in the particle set.

Given this new distribution, a random sampling is performed to generate a new set

of estimated particles.
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Chapter 5

SIMULATION RESULTS

The simulation was ran under five scenarios and the results collected. The five

scenarios consisted of a fixed range model, a linear transition model, and a non-linear

transition model with the Monte Carlo varying the distance between the clutter and

the target for the non-linear transition model at varying eccentricities. This section

will explain these scenarios in the order listed above and provide the corresponding

results. The first three simulations were to produce a baseline expectation of the more

strenuous scenarios of 4 and 5. Scenario 4 will explore how the algorithm performs in

discrimination given separation in range and range rate between the target and clutter

but with clutter eccentricity as a Monte Carlo parameter. Scenario 5 will explore how

the algorithm performs in discrimination given that the target and clutter centroids

are close in range and range rate with clutter eccentricity as a Monte Carlo parameter.

5.1 Scenario 1: Fixed Range and Stationary Target

Figure 5.1 shows the error between the true range and range rate and the centroids

computed by the KM and GMM-EM algorithms after the eccentricity is used to

associate the cluster under test to the target. This data represents a single run of the

simulation. As this single data point indicates, the KM algorithm has a better average

performance than the GMM-EM algorithm for this run. The spikes in the data for

the GMM-EM are due to the incorrect association of the cluster under test to the

target due to the eccentricity calculation. K-means also uses an eigen-decomposition

of the covariance of the cluster to compute eccentricity. The GMM-EM algorithm,

as discussed, uses a soft clustering technique where all data points in all clusters
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contribute to the computation of the centroid. The weight of each data point in the

cluster is inversely proportional to the distance of that data point from the centroid.

Since the number of data points is limited, there will be some finite weight associated

even with data points far from the cluster centroid. This can cause an increase in the

eccentricity of both clusters depending on how the cluster samples are distributed in

range and range rate space. This simulation ran centroids at 15 meters apart.

Figure 5.1: Plot of Root Mean Squared Error for KM and GMM-EM for Estimated

Target Centroid.

Figure 5.2 shows the filtered centroids around the truth point. This is the target

cluster and as seen in the figure the GMM-EM algorithm has cluster centroid samples

that are farther from the truth point than the KM algorithm which are the result of

including cluster samples from the clutter.
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Figure 5.2: Plot of Filtered Target Centroid Estimates.

Figure 5.3 shows the error between truth and the filtered GMM-EM and KM

centroids associated with the target. The Particle filter has reduced the variance

of the centroid estimates and has lessened the effect of incorrect cluster association.

The average error for both clustering algorithms has been reduced after the particle

filter was applied. The peak range error associated with the GMM-EM algorithm was

reduced from 15 meters to less than 5 meters and the peak range rate error associated

with the GMM-EM algorithm was reduced from 15 meters per second to less than 4

meters per second.
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Figure 5.3: Plot of RMS Error at Output of Particle Filter for Fixed Range Scenario.

An average performance expectation was generated by running ten simulations

and averaging the results with a uniform weighting. This gives a better idea of how

the algorithm will perform on average. A total of ten runs were averaged together

to find a sample average of the performance. Figure 5.4 shows the averaged error at

the output of the GMM-EM and KM algorithms after centroid to target association

is performed using the eccentricity as the discriminating feature.
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Figure 5.4: Plot of RMS Error Between Truth and the Output of the Clustering

Algorithms. An Average of Ten Runs was Performed. Estimates are Target Centroids

Over Tracking Time Span.

Figure 5.5 shows the averaged error at the output of the particle filter for both

the GMM-EM and KM cases.
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Figure 5.5: Plot of RMS Error Between Truth and Output of the Particle Filter for

the Clustering Algorithms. An Average of Ten Runs was Performed. Estimates are

Target Centroids Over Tracking Time Span.

Below is a table that shows the average across the Monte Carlos for both clustering

algorithms for cases before and after the application of the particle filter and repre-

sents the error between where the target actually is and where the algorithm believes

it is. These point estimates are computed across the time dimension of the averaged

Monte Carlo. Each Monte Carlo run consisted of 60 time samples with 10 Monte

Carlo iterations. Each Monte Carlo run was averaged along the time dimension and

the resulting 60 samples averaged. The averaging took place with the deviation from

the truth mean and so these results represent the root mean square errors relative to

truth.
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Table 5.1: Fixed Range

Range Error Range Rate Error

GMM-EM No PF .96 m .91 m/s

KM No PF .86 m .82 m/s

GMM-EM with PF .73 m .38 m/s

KM with PF .57 m .31 m/s

As the table indicates the KM clustering algorithm performs better on average

than the GMM-EM clustering algorithm, but not by much. The pre-particle filter

GMM-EM and KM range errors were just shy of 1 meter with 1/10 meter difference

between them. The pre-particle filter GMM-EM and KM range rate errors were

just shy of 1 meter also with about the same 1/10 meter difference between them

as in the range error case. The biggest difference was at the output of the particle

filter where the range error difference between the clustering algorithms totaled .16

meters in favor of the KM algorithm. The range rate error difference was less than

1/10 meters. The larger difference in the post particle filtered range error can be

attributed to the increased variance of the GMM-EM samples.

5.2 Scenario 2: Constant Velocity Kinematic Model

Figure 5.6 shows the error between the true range and range rate and the centroids

computed by the KM and GMM-EM algorithms after the eccentricity is used to

associate the cluster under test to the target for the constant velocity kinematic

model. The simulation Monte Carlo and resulting averages were computed the same

way as in scenario 1 with the exception that the transition model is linear.

43



Figure 5.6: Plot of RMS Error for KM and GMM-EM for Constant Velocity Kinematic

Model. Estimates are Target Centroids over Tracking Time Span.

Figure 5.7 shows the root mean squared error for the clustering algorithms at

the output of the particle filter. As discussed, the Monte Carlo simulations were

identically performed as in scenario one with the exception that the transition model

is linear.
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Figure 5.7: Plot of RMS Error for Filtered KM and GMM-EM for Constant Velocity

Kinematic model. Estimates are Target Centroids over Tracking Time Span.

The table below is computed the same as table 5.1.

Table 5.2: Constant Velocity Kinematic Model

Range Error Range Rate Error

GMM-EM No PF .96 m .97 m/s

KM No PF .96 m .96 m/s

GMM-EM with PF .73 m .40 m/s

KM with PF .52 m .30 m/s

As the table indicates the KM clustering algorithm and the GMM-EM clustering

algorithm before the application of the particle filter performed identically on average.

The biggest difference is after the particle filter is applied. The GMM-EM range error

dropped by about 2/10 of a meter while the KM range error dropped almost by half.
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The GMM-EM range rate error dropped by over half and the KM range rate error

dropped almost over 1/3. As a comparison to table 5.1 of scenario 1, the GMM-

EM algorithm performed almost the same for the fixed range stationary target as in

the linear transition model case. The KM algorithm performed better in the fixed

range stationary target scenario by about 1/10 meter in error improvement before

the particle filter and about the same after the application of the particle filter.

5.3 Scenario 3: Constant Acceleration Kinematic Model

Figure 5.8 shows the error between the true range and range rate and the centroids

computed by the KM and GMM-EM algorithms after the eccentricity is used to

associate the cluster under test to the target for the non-linear state transition model.

The simulation Monte Carlo and resulting averages were computed the same way as

in scenario 1 with the exception that the transition model is non-linear.

Figure 5.8: Plot of RMS Error for KM and GMM-EM for Constant Acceleration

Kinematic Model. Estimates are Target Centroids over Tracking Time Span.
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Figure 5.9 shows the root mean squared error for the clustering algorithms at

the output of the particle filter. As discussed, the Monte Carlo simulations were

identically performed as in scenario one with the exception that the transition model

is non-linear.

Figure 5.9: Plot of RMS Error for Filtered KM and GMM-EM for Constant Acceler-

ation Kinematic Model. Estimates are Target Centroids over Tracking Time Span.

The table below is computed the same as table 5.1.

Table 5.3: Constant Acceleration Kinematic Model

Range Error Range Rate Error

GMM-EM No PF .99 m 1.06 m/s

KM No PF .73 m .42 m/s

GMM-EM with PF .53 m .33 m/s

KM with PF .52 m .30 m/s
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As the table indicates the KM clustering algorithm prior to applying the particle

filter performs better on average than th GMM-EM. However, after the application

of the particle filter the clustering algorithms performed identically on average.

5.4 Scenario 4: Constant Acceleration Kinematic Model, Function of Eccentricity

The error between the true range and range rate and the centroids computed

by the KM and GMM-EM algorithms after the eccentricity calculation is used to

associate the cluster under test to the target for the non-linear state transition model

with varying eccentricities. The simulation Monte Carlo and resulting averages were

computed the same way as in scenario 1 with the exception that the transition model

is non-linear. This scenario set is intended to capture the average performance of the

algorithm as a function of eccentricity at three centroid distances. There were three

trials ran as a function of centroid distance and eccentricity with the centroid distance

initialized at a range of 30 meters, 20 meters, and 10 meters with a corresponding

range rate of 30 meters per second, 20 meters per second, and 10 meters per second.

The trials are set at two different clutter eccentricities ρ = .99 and ρ = .25. The

results are captured in this subsection. Results where ρ = .99 Table 5.4 and 5.5

below are collected at the output of the GMM-EM algorithm and the KM algorithm,

respectively.

Table 5.4: Constant Acceleration Kinematic Model Range only with ρ = .99.

GMM-EM Range Error KM Range Error

30 m 1.17 m .87 m

20 m .73 m .74 m

10 m .83 m .86 m
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The table indicates that at the 30 meter range the algorithm at the output of the

clustering blocks (after the target has been selected using the eigenvalues as discussed

earlier) has a poorer performance than at the 20 meter range. This is because when

an incorrect cluster is selected, that centroid is farther away from the centroid that

should have been selected.

Table 5.5: Constant Acceleration Kinematic Model Range Rate only with ρ = .99.

GMM-EM Range Rate Error KM Range Rate Error

30 m 1.22 m/s .91 m/s

20 m .85 m/s .85 m/s

10 m .69 m/s .73 m/s

Table 5.6 and 5.7 below are collected at the output of the Particle Filter algorithm

for both clustering algorithms.

Table 5.6: Constant Acceleration Kinematic Model Range only with ρ= .99 at Output

of PF.

GMM-EM Range Error KM Range Error

30 m .71 m .54 m

20 m .61 m .55 m

10 m .54 m .53 m

Table 5.6 and 5.7 is the result of filtering the data that generated the errors of

Table 5.4 and 5.5 with the Particle Filter.
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Table 5.7: Constant Acceleration Kinematic Model Range Rate only with ρ = .99 at

Output of PF.

GMM-EM Range Rate Error KM Range Rate Error

30 m .43 m/s .34 m/s

20 m .33 m/s .31 m/s

10 m .35 m/s .34 m/s

Results where ρ = .25 Table 5.8 and 5.9 below are collected at the output of the

GMM-EM algorithm and the KM algorithm, respectively.

Table 5.8: Constant Acceleration Kinematic Model Range only with ρ = .25.

GMM-EM Range Error KM Range Error

30 m 1.04 m 1.04 m

20 m .77 m .77 m

10 m .85 m .80 m

The table indicates that at the 30 meter range the algorithm at the output of the

clustering blocks has a poorer performance than at the 20 meter range. Again, this

is the result of selecting the wrong centroid.

Table 5.9: Constant Acceleration Kinematic Model Range Rate only with ρ = .25.

GMM-EM Range Rate Error KM Range Rate Error

30 m 1.01 m/s .99 m/s

20 m .90 m/s .93 m/s

10 m .99 m/s .93 m/s
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Table 5.10 and 5.11 below are collected at the output of the Particle Filter algo-

rithm for both clustering algorithms.

Table 5.10: Constant Acceleration Kinematic Model Range only with ρ = .25 at

Output of PF.

GMM-EM Range Error KM Range Error

30 m 2.43 m 1.88 m

20 m 3.00 m 3.18 m

10 m 2.40 m 2.40 m

Table 5.10 indicates that the filtering samples at the output of the Particle Filter

have an additional error.

Table 5.11: Constant Acceleration Kinematic Model Range Rate only with ρ = .25

at Output of PF.

GMM-EM Range Rate Error KM Range Rate Error

30 m .80 m/s .74 m/s

20 m .87 m/s .88 m/s

10 m .83 m/s .82 m/s

Summary Scenario Performance Table 5.12 is a summary of the scenario averaged

across the ranges and range rates above and averaged across ρ = .99, ρ = .5, ρ = .25,

and ρ = .125.
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Table 5.12: Constant Acceleration Kinematic Model Across Performance Envelope.

Range Error Range Rate Error

GMM-EM No PF .91 m .94 m/s

KM No PF .83 m .86 m/s

GMM-EM with PF 2.67 m .70 m/s

KM with PF 2.50 m .66 m/s

As the table indicates, the range error increased at the output of the Particle

Filter.

5.5 Scenario 5: Non-Linear State Transition Model, Function of Eccentricity

This scenario is exactly the same as scenario 4 with the exception that the cen-

troids of the clusters are much closer. For this scenario, the centroid separation is at a

range of 3 meters, 2 meters, and 1 meters with a corresponding range rate of 3 meters

per second, 2 meters per second, and 1 meters per second. The goal of this scenario is

to see how the algorithm performs with close clusters with differing eccentricities. For

this scenario only the performance envelope summary is given below in Table 5.13.

Table 5.13: Constant Acceleration Kinematic Model Across Performance Envelope.

Range Error Range Rate Error

GMM-EM No PF .77 m .80 m/s

KM No PF .77 m .78 m/s

GMM-EM with PF .73 m .38 m/s

KM with PF .81 m .39 m/s
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As the table indicates, the range and range rate error is less than 1 meter for all

cases.
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Chapter 6

CONCLUSION

Estimation theory is fundamental to many branches of science and technology. This

paper used estimation theory to propose an algorithm for target discrimination and

tracking in the presence of clutter. The GMM-EM and K-means algorithms are

estimation techniques used to associate data with groups. The GMM-EM algorithm

and the K-means algorithm were both used to provide the mechanism to separate a

target from clutter, a process known as clustering. Once the clusters were formed, the

eigenvalues of the resulting covariance matrices of the respective clusters were used

to discriminate the target from the clutter. This information was an a priori piece

of information provided to the algorithm and would represent some target feature, in

the case of this paper, an extent in range and range rate space. This feature needs to

be accentuated by the clusters so the algorithm will not confuse the clutter with the

target. This can occur when the eccentricities, defined in this paper as the ratio of

the maximum eigenvalue to the minimum eigenvalue, of the clusters are close enough

where errors in the covariance exceed what this ratio would be. The result of this is

that the incorrect cluster and it’s centroid is selected for tracking. In this algorithm

the Particle Filter was used to track the target state. The Particle Filter is another

estimation algorithm used in a variety of applications. In state estimation, as used in

this algorithm, the Particle Filter tracks the time evolution of a target’s state. Future

work will consist of augmentations of the algorithm to include using the angle of the

target cluster as an additional discriminating feature. This can be useful when the

eccentricities are close with the result of selecting the wrong cluster to track.
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[5] Y. F. Shi, T. L. Song, and D. Mušicki, “Target tracking in clutter using a high
pulse repetition frequency radar,” IET Radar, Sonar & Navigation, vol. 9, pp.
299–307, 2015.

[6] P. Abbeel, “Bayes filters.” [Online]. Available: http://people.eecs.berkeley.edu/
∼pabbeel/cs287-fa13/slides/bayes-filters.pdf

[7] M. Matteucci, “A tutorial on clustering algorithms.” [Online]. Available:
http://home.deib.polimi.it/matteucc/Clustering/tutorial html/index.html

[8] E. Weinstein, “Expectation maximization algorithm and applications.” [Online].
Available: http://cs.nyu.edu/∼eugenew/publications/em-talk.pdf

[9] A. Ng, “Mixtures of Gaussians and the EM algorithm.” [Online]. Available:
http://cs229.stanford.edu/notes/cs229-notes7b.pdf

[10] D. K. Barton, Radar Equations for Modern Radar. Artech House Publishers,
2012.

[11] M. Richards, Fundamentals of Radar Signal Processing. McGraw-Hill Profes-
sional Engineering, 2014.

55

http://people.eecs.berkeley.edu/~pabbeel/cs287-fa13/slides/bayes-filters.pdf
http://people.eecs.berkeley.edu/~pabbeel/cs287-fa13/slides/bayes-filters.pdf
http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/index.html
http://cs.nyu.edu/~eugenew/publications/em-talk.pdf
http://cs229.stanford.edu/notes/cs229-notes7b.pdf

	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Motivation
	1.2 Proposed Work
	1.3 Thesis Organization

	2 PARTICLE FILTER
	3 GAUSSIAN MIXTURE MODEL
	4 CLUTTER SUPPRESSION AND TARGET DISCRIMINATION TRACKING ALGORITHM
	4.1 Introduction
	4.2 Pulse-Doppler Processing
	4.3 Range-Doppler Map Measurements
	4.4 Detection Processing
	4.5 Clustering and Post-processing for Target Discrimination
	4.6 Particle Filter

	5 SIMULATION RESULTS
	5.1 Scenario 1: Fixed Range and Stationary Target
	5.2 Scenario 2: Constant Velocity Kinematic Model
	5.3 Scenario 3: Constant Acceleration Kinematic Model
	5.4 Scenario 4: Constant Acceleration Kinematic Model, Function of Eccentricity
	5.5 Scenario 5: Non-Linear State Transition Model, Function of Eccentricity

	6 Conclusion

	REFERENCES


