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ABSTRACT 

The environmental impact of the fossil fuels has increased tremendously in the last 

decade. This impact is one of the most contributing factors of global warming. This 

research aims to reduce the amount of fuel consumed by vehicles through optimizing the 

control scheme for the future route information. Taking advantage of more degrees of 

freedom available within PHEV, HEV, and FCHEV “energy management” allows more 

margin to maximize efficiency in the propulsion systems. The application focuses on 

reducing the energy consumption in vehicles by acquiring information about the road 

grade. Road elevations are obtained by use of Geographic Information System (GIS) maps 

to optimize the controller. The optimization is then reflected on the powertrain of the 

vehicle.The approach uses a Model Predictive Control (MPC) algorithm that allows the 

energy management strategy to leverage road grade to prepare the vehicle for minimizing 

energy consumption during an uphill and potential energy harvesting during a downhill. 

The control algorithm will predict future energy/power requirements of the vehicle and 

optimize the performance by instructing the power split between the internal combustion 

engine (ICE) and the electric-drive system. Allowing for more efficient operation and 

higher performance of the PHEV, and HEV. Implementation of different strategies, such 

as MPC and Dynamic Programming (DP), is considered for optimizing energy 

management systems. These strategies are utilized to have a low processing time. This 

approach allows the optimization to be integrated with ADAS applications, using current 

technology for implementable real time applications.  
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The Thesis presents multiple control strategies designed, implemented, and tested 

using real-world road elevation data from three different routes. Initial simulation based 

results show significant energy savings. The savings range between 11.84% and 25.5% for 

both Rule Based (RB) and DP strategies on the real world tested routes. Future work will 

take advantage of vehicle connectivity and ADAS systems to utilize Vehicle to Vehicle 

(V2V), Vehicle to Infrastructure (V2I), traffic information, and sensor fusion to further 

optimize the PHEV and HEV toward more energy efficient operation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

ACKNOWLEDGMENTS 

I would first wish to thank my advisor Dr. Abdel Ra’ouf Mayyas of the Ira A. Fulton 

Schools of Engineering at Arizona State University, for his support and guidance 

throughout the work on this research. He hired me to be a Graduate Research Assistance 

on the ASU EcoCAR3 team. His support was treasured, especially when facing difficulties 

working on the project. I want to thank the committee members for the experience they 

provided me through meetings and classes, which was essential in conducting this research.  

I also would like to thank Argonne National Laboratory, General Motors, and U.S. 

Department of Energy for the opportunity to be involved in EcoCAR3 which is the latest 

Advanced Vehicle Technology Competition. EcoCAR3 gave me experience that will help 

me throughout my professional life. This program funded my studies and made it possible 

to achieve one of my dreams.  

 Finally, I want to thank my parents and express my gratitude for their support and 

help all through my journey so far, it would have been impossible without their support, 

and I appreciate them for this. I also like to thank my brother Abdel Rahman who has 

always been my partner in conducting research and together we were awarded a patent and 

a 4th place award in International Science and Engineering Fair. I would like to thank my 

brothers, sisters, and friends for their support and help during this journey. Thank you.  

Author  

Mohammad Alzorgan  

 



iv 

 

TABLE OF CONTENTS 

                       Page 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

DEFINITIONS/ABBREVIATIONS ................................................................................. ix 

CHAPTER 

1. INTRODUCTION ....................................................................................................... 1 

1.1. Background .......................................................................................................... 1 

1.2. Literature Review of Control and Optimization .................................................. 5 

1.3. HEV Architecture ................................................................................................. 9 

1.4. Motivation for Look-Ahead Optimization ......................................................... 13 

1.5. Objectives of The Research................................................................................ 16 

2. METHODOLOGY .................................................................................................... 19 

2.1. Data Acquisition ................................................................................................. 22 

2.2. Plant Model ........................................................................................................ 28 

2.3. Driver Sub-Model .............................................................................................. 32 

2.4. Engine Sub-Model.............................................................................................. 34 

2.5. Electric Motor Sub-Model ................................................................................. 36 

2.6. Vehicle Dynamics Sub-Model ........................................................................... 37 



v 

 

CHAPTER                Page 

2.7. Rule Based Controller ........................................................................................ 39 

2.8. Hardware-In-The-Loop ...................................................................................... 41 

3. OPTIMIZATION....................................................................................................... 45 

3.1. Cost Function Mathematical Model ................................................................... 45 

3.2. Rule Based Optimization ................................................................................... 47 

3.3. Dynamic Programming Optimization ................................................................ 51 

4. RESULT AND DISCUSSION .................................................................................. 56 

5. CONCLUSION ......................................................................................................... 67 

REFERENCES ................................................................................................................. 69 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

LIST OF TABLES 

Table               Page 

1. Hybrid Categorization ................................................................................................... 10 

2. Vehicle specification ..................................................................................................... 29 

3. Vehicle dynamic parameters ......................................................................................... 38 

4. Nomenclature for DP Model ......................................................................................... 53 

5. Optimization Improvement ........................................................................................... 62 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

LIST OF FIGURES 

Figure               Page 

1. SOC Trajectory With Two Control Strategies (DP and BL ECMS) [4]......................... 3 

2. Cloud Optimization Approach ........................................................................................ 4 

3. Parallel HEV Architecture ............................................................................................ 11 

4. Series HEV Architecture............................................................................................... 12 

5. PTTR HEV Architecture............................................................................................... 13 

6. Terrain Preview for Optimization Strategy................................................................... 14 

7. Positive and Negative Average Power Due to Road Grade .......................................... 15 

8. Positive And Negative Average Power Segmentation Due to Grade ........................... 16 

9. Look-Ahead Blended Control Strategy ........................................................................ 20 

10. The Proposed Controller Top-Level Design ............................................................... 21 

11. Road Terrain Segments Optimization ......................................................................... 22 

12. Selected Route ............................................................................................................ 24 

13. Road Elevation and Grade Correction [15] ................................................................ 25 

14. Elevation Profiles ........................................................................................................ 26 

15. Drive Cycle ................................................................................................................. 27 

16. US06 Drive Cycle ....................................................................................................... 28 

17. Top Level of The HEV Model .................................................................................... 30 

18. Powertrain Components and Controller...................................................................... 32 

19. Driver Model ............................................................................................................... 33 

20. ICE Efficiency Map .................................................................................................... 35 



viii 

 

Figure               Page 

21. ICE Fuel Consumption Map ....................................................................................... 36 

22. EM Efficiency Map..................................................................................................... 37 

23. Vehicle Dynamics Model ........................................................................................... 39 

24. RB Control Scheme .................................................................................................... 40 

25. Simulation Interface Toolkit ....................................................................................... 42 

26. Host VI Front Panel .................................................................................................... 43 

27. Hil Platform Setup ...................................................................................................... 44 

28. Look-Ahead Algorithm Result ................................................................................... 49 

29. Rule Based Optimized Control Strategy ..................................................................... 50 

30. DP Path Optimization ................................................................................................. 52 

31. Dynamic Programming Diagram for a 4 Stage Problem [1] ...................................... 53 

32. Route 1 Results ........................................................................................................... 56 

33. Route 2 Results ........................................................................................................... 57 

34. Route 3 Results ........................................................................................................... 58 

35. Route 1 Dynamic Programming Results..................................................................... 59 

36. Route 2 Dynamic Programming Results..................................................................... 60 

37. Route 3 Dynamic Programming Results..................................................................... 61 

38. Drive Cycle, Input Velocity, And Actual Velocity ..................................................... 63 

39. Hil EM Torque ............................................................................................................ 64 

40. Hil SOC Trajectory ..................................................................................................... 65 

41. Hil Road Grade Output Signal .................................................................................... 66 



ix 

 

DEFINITIONS/ABBREVIATIONS 

ADAS Advanced Driver Assistance Systems 

GIS Geographic Information System 

MPC Model Predictive Control 

DP Dynamic Programming 

FE Fuel Economy 

HEV Hybrid Electric Vehicles 

FCHEV Fuel Cell Hybrid Electric Vehicles 

PMS Power Management Strategies 

ECMS Equivalent Consumption Minimization Strategy 

SOC The State of Charge 

RB Rule Based 

HiL Hardware In-the-loop 

VHiL Vehicle Hardware In-the-loop 

MPG Miles per Gallon 

ICE Internal Combustion Engine 

EM Electric Motor 



1 

 

1. INTRODUCTION      

 

1.1.  BACKGROUND  

The question remains open on how to obtain the requisite information about the future 

driving conditions [1]. However, with the advancement of technology it has become 

possible to acquire future information of the trip through various means including cloud 

and GIS systems [2]. A look-ahead information strategy utilizes future information of the 

driving conditions. This information includes road grade, trip distance, traffic information 

(such as traffic lights and stop signs) to generate an optimization strategy for Hybrid 

Electric Vehicles (HEV). This research is more advantageous for a Plug-in Hybrid Electric 

Vehicle (PHEV) due to the extended electric range that allows recapturing more kinetic 

and potential energy along the route during deceleration and downhill.  

The strategy also works for Fuel Cell Hybrid Electric Vehicles (FCHEV) [3] to increase 

fuel economy. For improved performance, by the PMS, the information about future 

driving conditions may be incorporated into its control strategy. This information may be 

facilitated by using the ‘drive pattern recognition’ method which uses the current driving 

conditions (speed, acceleration, braking) to decide the immediate or near future driving 

conditions.  

Driver pattern recognition may be used to decide if the vehicle is following a highway 

or city drive pattern and allow for modification of the controls accordingly. Another 

method for incorporating future driving conditions is to study the upcoming grade 

conditions of the current route to a particular destination [4]. Furthermore, recent studies 

have shown that optimal PMS depends on knowing the driving conditions about to be 
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encountered. The use of look-ahead preview information to optimize the PMS in FCHEV 

is currently unexplored. 

On the other hand, different approaches were implemented in the literature using 

either full preview or partial preview for road only. The optimization is then integrated 

with PMS using Dynamic Programming (DP), Standard Equivalent Consumption 

Minimization Strategy (ECMS) or Rule Based (RB) strategy [4].  

Different control strategies and optimization algorithms were used to provide 

optimal fuel economy. Global optimization approach was utilized as exact future velocity, 

and road elevations are known. The optimal power split ratio is then calculated to minimize 

the cost function. Different techniques utilized for developing energy management 

strategies implementing the look-ahead information are presented to create energy 

management strategy using DP and ECMS [4].  

ECMS with partial preview was implemented to calculate the actual value of the 

fuel equivalence factor “s” that result in the minimum fuel use and render depending on 

equalizing the initial and final value of SOC. At the beginning of given drive cycle, s is 

initially guessed and then a numerical procedure is used to iterate to find s for the future 

power demand for the drive cycle, then compare the final SOC to the desired SOC and 

repeat the process until the final SOC is equal to the desired SOC.  

The DP is a numerical optimization based method helping in achieving a significant 

increase in the fuel efficiency. For a future preview, two-scale DP can be utilized such that 

a higher level DP used to plan battery’s SOC for the entire trip while a lower level short 

horizon DP segmentally keep track of SOC trajectory found in higher level [5]. However, 
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the DP was not suitable for real-time application because of its dependence on the driving 

cycle and massive computational demand. 

The result shows road with varying road elevation with DP strategy implemented 

as illustrated in Figure 1. The ICE was used less frequently due to depleting the battery to 

its lower bound on uphill and recapturing the energy when facing downhill. The DP more 

predictively acts and charges the battery in short uphill intervals E–F and G–H. This is due 

to higher torque demands, so running the ICE is more efficient [4].  

The experiment was conducted by use of seven elevation profiles. Three of the 

seven were simulated profiles. While the other four were real road profiles obtained from 

California. The road grade and the SOC at different instances are correlated, that reflect 

the optimization pattern. It was observed that an improvement of 0.8-28% was achieved in 

fuel efficiencies by implementing the look-ahead based information in the PMS. 

 

Figure 1. SOC Trajectory with Two Control Strategies (DP and BL ECMS) [4] 
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Global optimization is computationally intensive and requires all the information about 

the route before solving the optimization problem; this issue makes a tremendous challenge 

in integrating such optimization algorithms in vehicles giving the current hardware 

capabilities. Acquiring all the information about the route can also be challenging as well. 

This issue is a major motive in current technology to develop solutions so these systems 

can be utilized in vehicles, these solutions include sensor fusion, V2V, and V2I 

communication.  

The cloud-based approach is a proposed solution to perform global optimization for 

computationally intensive applications [2]. In this method, the information of the 

destination and the current driving conditions are sent to a server as an input for the 

optimization algorithm. The server acquires the necessary information that includes, GPS 

maps, GIS data, and traffic information. The output of the optimization is then transmitted 

back to the vehicle where the supervisory controller uses these information to execute RB 

control scheme. The approach flow chart is shown in Figure 2. 

 

Figure 2. Cloud optimization approach 
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1.2. LITERATURE REVIEW OF CONTROL AND OPTIMIZATION FOR HEV 

AND PHEV 

Unlike conventional ICE based vehicles it is apparent that HEVs perform better since 

they have the electric power that can reduce the amount of fuel used by ICE. Integrating 

electric powertrain components including an EM along with an electrical Energy Storage 

System (ESS) adds extra degrees of freedom to the system which can be leveraged to 

optimize the vehicle for better fuel economy. The electrical components can provide power 

and assist the ICE at high power demand situations [6].  

Adding the electrical powertrain components reduce the load on the ICE and contribute 

to high efficiency operating conditions. Another advantage of an electrical powertrain 

component is recapturing the kinetic and potential energy that occurs during braking and 

going downhill respectively.  

The inclusion of electrical powertrain components requires more complex Power-

Management Strategy (PMS), to handle the extra degrees of freedom and the added 

complexity of the system. PMS will determine the torque split between the ICE and EM in 

the powertrain and find the optimal operating conditions for both components.  

HEV/ PHEV power management strategies can be classified into two major 

categories: reactive and route-based control strategies. Reactive power management 

strategies use current driving information in their controller scheme; therefore they can 

only find the near optimal solution for the problem [7]. Those strategies include charge 

depleting, charge sustaining, and (ECMS). 
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RB control strategies are control systems that rely on the mode of operation. The rules 

are determined based on human intelligence and mathematical models and executed 

without knowledge of a defined drive cycle.  Most of the described RB control strategies 

are based on IF-THEN type of control rules [8]. Some RB controllers perform load 

balancing which aims to operate the ICE at a high-efficiency region. This strategy performs 

better and results in good fuel economy at low torque and speed.  

Deterministic RB control strategies are designed based on human desired 

characteristics. Heuristic rules, efficiency maps, and lookup tables are used to determine 

the power split between the ICE end EM based on the power flow in the powertrain and 

the torque demand. Charge sustaining RB control strategy aim to balance the SOC of the 

battery within specified range, this strategy mostly operate either the ICE or the EM alone 

giving the torque demand can be provided.  

Charge depleting RB control strategy mainly use EM as the main source of torque in 

the powertrain and operate in pure EV mode if the SOC is higher than the lower limit and 

the EM can provide the requested torque. Other RB techniques can be used depending on 

the mode of operation, and the HEV architecture. Different rules can be utilized for parallel, 

series, and power-split HEV. PHEV RB control strategy have more flexibility in 

determining the mode of operation since the battery has greater capacity than HEV, this 

allows the vehicle to operate for longer range in pure EV mode before the need to turn on 

the ICE. Development of PHEV was motivated by increasing the electric power in vehicles 

and further decrease the amount of fuel consumed by ICE. This development contributes 

to reducing the HEV environmental footprint further. 
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Fuzzy Rule-Based (FRB) control strategy is a better possible approach to have higher 

efficiency than the RB control strategy. Unlike deterministic RB control, fuzzy logic can 

still be used to execute in real-time but find a more optimal power split between the ICE 

and EM. Fuzzy logic is chosen over the other methods because of the superiority it has to 

other conventional rule-based methods and is advantageous in robustness, adaptation, and 

flexibility [8]. 

Today’s hybrid vehicles are looking to be improved upon by looking into the 

supervisory controller algorithms. The current algorithms use information that is 

communicated internally in the vehicle's CAN network [9]. These parameters could be the 

battery SOC, current ICE and EM states, and the driver demand.  

Optimization-Based Control Strategies can be used to decrease the cost functions 

of fuel consumption. Optimization algorithms can obtain global optimum solutions by 

optimizing over a fixed driving cycle. This cost function is highly dependent on the system 

variables at a given time. Local optimization algorithms can also provide a solution that is 

not globally optimal, but it can be utilized for real-time implementation. 

Some strategies look to improve the basic design of RB to optimize the vehicle 

further by utilizing techniques like ECMS, Fuzzy Logic, Sequential Quadratic 

Programming (SQP) and Baseline Strategy (BS). All these algorithms usually aim at 

increasing the vehicle's efficiency in one type of drive cycle. However, this approach is 

realistic to what current vehicles undergo. The stochastic nature of real world driving 

makes the optimization process more challenging to predict the best drive cycle to optimize 

the controller.  
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The next approach is to use algorithms that can handle various real-time 

information as well as geographic information and provide the optimal power-split in real-

time. Some parameters would be road grade, distance, traffic conditions, and internal 

vehicle parameters such as battery SOC, current ICE and EM states, and driver demand. 

However, these types of algorithms are computationally intensive and may not be possible 

to execute within the vehicle.  

The solution to this problem is to off-board the calculations to a server that can 

receive the information from multiple sources and then provide the optimal torque split to 

the vehicle. The information would be sent out by using information collected by the 

vehicle supervisor controller from the internal CAN communication. Then be transmitted 

through Gateway General Packet Radio Service (GPRS) network nodes [9].  This approach 

the server can continuously learn the drive cycle that the vehicle is experiencing and 

optimize the vehicle for those conditions.   

This method will increase the overall efficiency of the vehicle throughout a known 

travel route. It will also allow for the integration of V2V and V2I communication. Both 

communication systems can provide additional information that could be critical in 

improving the efficiency of the vehicle.   

Dynamic Programming (DP) is used to find optimal control policies for multi-stage 

decision processes [8]. DP perform global optimization by dividing the problem into stages 

throughout the route. This approach is used to solve the optimization problem and find the 

best control output that will achieve an optimal fuel economy. DP can use with both linear 

and non-linear optimization problems and search for an optimum solution.  
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Linear Programming (LP) is the widely applied form of constrained optimization. LP 

optimization problems require high computational power to solve since the size of the 

problem, and the constraints can be enormous in such a complex system, but developing 

more advanced solvers and more powerful computer help solving complex problems faster 

than before [10].   

Global Optimization techniques require the knowledge of the entire driving schedule. 

For example for DP, both initial and final value of the state variables have to be defined 

for the algorithm to stay within the feasible domain. To perform global optimization on 

HEV, different parameters would be required to solve the problem; those might include 

SOC, drive cycle, route information. 

1.3. HEV ARCHITECTURE  

HEV have different architectures and can also be classified based on the degree of 

hybridization. The degree of hybridization represent the power percentage, and the size of 

the electric powertrain components compare to the power and size of the ICE. In this 

category, HEVs are classified into Micro hybrid, Mild hybrid, Full hybrid, and PHEV. 

PHEV have the same general architecture as HEV. However, PHEV batteries have a 

higher capacity which makes them capable of operation in pure EV mode for extended 

range. Also, PHEV batteries can be recharged through an external power source. Table 1 

shows a comparison between different types of HEV. 
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Table 1. Hybrid Categorization 

Type Functionality 

Regenerative 

Braking 

Pure EV 

Mode 

External 

Recharge 

Micro Hybrid 
 Shut off the ICE at 

idling. 

NO NO NO 

Mild Hybrid  

 Shut off Engine during 

deceleration.  

 Electric assist. 

Mild NO NO 

Full Hybrid  

 Smaller Engine and 

larger EM than before. 

 Electric assist and 

electric only lunch. 

YES  Limited  NO 

Pure EV 
 NO ICE in the 

powertrain. 

YES YES YES 

Plug-in 

Hybrid 

 Can operate as Pure 

EV or as Hybrid with a 

higher electric assist. 

YES YES YES 
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HEV and PHEV are categorized based on the degree of hybridization and the 

architecture of the powertrain. The degree of hybridization and the architecture determine 

many factors of the operation including but not limited to fuel economy, emissions, and 

pure EV range.  

Parallel HEV is the most common architecture available in the market. In this 

architecture, the ICE and EM are connected on the same line, and both of them provide 

torque to the wheels. Parallel HEV architecture is shown in Figure 3. 

 

 

Figure 3. Parallel HEV architecture 

In parallel HEV both ICE and EM may be connected to the same shaft and can provide 

torque either separately or together. If one of the components is providing torque, then the 

other component is either free spinning or disconnected by a clutch placed between ICE 

and EM. Parallel HEV can be further categorized by determining the dominant component 

to be either the ICE or EM; this can change the position of the clutch and transmission in 

the powertrain.  
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Series HEV consists of an additional electric generator, in this architecture, the ICE 

does not provide torque to the wheel. Instead, it spins the generator to provide electrical 

power. The electric power generated can either charge the battery or provide direct power 

to the EM which is the only source of torque for the vehicle.  

Series HEV has high efficiency since the engine always operates at a high-efficiency 

region, since it is only spinning the generator with constant torque, also the EM have higher 

efficiency than ICE. Series HEV architecture is shown in  

 

Figure 4. Series HEV architecture 

Parallel through the Road Hybrid Electric Vehicle (PTTR-HEV) can provide four 

wheel drive option. The unique architecture consists of a conventional powertrain 

connected to the front wheels and an electric powertrain connected to the rear wheels. This 

architecture has less complexity since the two powertrains are not mechanically connected, 

it also requires simple and less complex PMS and control scheme. PTTR HEV architecture 

is shown in Figure 5. 
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Figure 5. PTTR HEV architecture 

1.4. MOTIVATION FOR LOOK-AHEAD OPTIMIZATION 

Look-ahead optimization employs the use of 3D maps to extract road elevations. 

Knowing the future driving conditions can be utilized to optimize the supervisory 

controller of the vehicle. The power delivered from the vehicle to overcome an uphill can 

significantly increase the amount of fuel used by ICE which tremendously increases the 

overall expenditure for the vehicle. The fuel used to overcome an uphill will also 

substantially increase the greenhouse gas emission and negatively affect the environment.  

Furthermore, the potential energy from driving downhill is significant and can be 

utilized to reduce the amount of fuel used by recapturing this energy through regenerative 

braking using the EM and the vehicle battery. The wasted potential energy on a downhill 

can be used to drive the vehicle on an uphill or a flat road. This process will reduce the 

amount of power delivered by the ICE. Also, this will improve the overall efficiency of the 

vehicle since the EM has a much higher efficiency than ICE.  
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This optimization of the control scheme aims to improve the fuel economy of HEVs. 

The approach utilizes look-ahead information to maximize the amount of energy 

recaptured on varying terrain route as shown in Figure 6. As the future information of the 

route is known, the optimization and the controller will prepare the vehicle for charging 

and discharging the battery during downhill and uphill, by following this approach the EM 

and the battery will be the main source of delivering power to drive the vehicle and reduce 

the load on the ICE.  

 

Figure 6. Terrain Preview for optimization strategy 

The road grade has a significant measurable effect on the dynamic of the vehicle 

and the overall performance. The effect of the grade is reflected on the overall requested 

power from the powertrain. The amount of power required to overcome an uphill can very 

high for the vehicle to provide, vehicle gradeability test is performed to quantify the power 

required due to grade at certain speed, in most cases the vehicle can only overcome a high 

grade uphill on low speed.  

The following figure shows a grade profile that was taken from a real route in San 

Francisco. Figure 7 highlights the power due to grade for positive power and grade (uphill) 

and the negative power and grade that can be utilized for regenerative braking (downhill).  
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The road grade is calculated based on the elevations acquired from the 3D GIS 

maps. Once the grade is computed, the vehicle dynamics are calculated, simulations are 

used to calculate the power requirement and the power delivered by the powertrain to 

overcome the grade and also to quantify and amount of energy that can be recaptured 

during downhill. 

 

Figure 7. Positive and Negative average power due to road grade 

The controller uses the future information to perform local optimization using RB 

control scheme that prioritize the power-split and prepare the vehicle for upcoming uphill 

and downhill to maximize the amount of energy harvested through regenerative braking. 

This optimization is performed considering two segments in the future so the information 

of the entire route is not required at this stage.  
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Global optimization is accomplished in the control scheme using DP based on the 

power requirement for entire route due to the terrain of the road to minimize the fuel 

consumption. Since DP optimized control scheme perform global optimization, the entire 

route information is required at the beginning of execution in pursuance of finding the 

optimum torque split between the ICE and EM. This controller will determine the operating 

mode and to either provide power or to operate in the regenerative braking mode as 

illustrated in Figure 8.  

 

Figure 8. Positive and negative average power segmentation due to grade 

1.5.  OBJECTIVES OF THE RESEARCH 

The objective of this research is to develop, design and integrate an optimized 

control scheme that utilize the future information of the route and prepare the vehicle for 

charge and discharge the battery in order to maximize the amount of energy recaptured 

through regenerative braking and reduce the amount of fuel consumed by the ICE.  

Reducing the environmental impact of the fossil fuels will have an enormous impact on 
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global warming, this can be achieved through reducing the amount of fuel consumed by 

vehicles through optimizing the control scheme for the future route information.  

The scope of this research involves integrating look-ahead information based 

optimization Strategy with other ADAS applications and intelligent sensors based 

applications [11].These systems include GIS 3D maps, traffic information, machine vision, 

and V2X communication. Integrating ADAS applications make this system more efficient 

by integrating it into the infrastructure which includes taking into account traffic 

information. With the possibility of implementing vehicle to vehicle communication and 

vehicle to the cloud and infrastructure communication [12]. Including the traffic congestion 

and other parameters into the optimization, that will make vehicles more efficient, safer 

and more convenient. 

Several studies have shown the potential for optimizing hybrid powertrains to leverage 

grade information. This research presents a practical approach for real world elevation data 

that is used to validate the optimized control strategies. The implementation of these 

strategies is implemented in high fidelity model and tested in Hardware-In-The-Loop (HiL) 

simulation, this research focus on maximizing the improvement while minimizing the 

complexity and processing time.  

The practical approach of RB optimization will accommodate for real-time data 

acquisition and processing. This approach will implement local optimization for the control 

scheme, so only certain amount of information for the next future segments is required at 

a certain time, while global optimization needs all the information of the entire route.  
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Global optimization makes a considerable challenge regarding in-vehicle 

implementation and real-time execution. RB optimized approach has the advantage of 

requiring less information and real-time execution so that can be integrated with other 

ADAS applications and the supervisory controller of the vehicle. By following this method, 

the system will be validated later using Vehicle Hardware-in-the-Loop (VHiL) and 

ultimately implemented in the vehicle. 
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2. METHODOLOGY  

 

Control strategies for HEV are mainly divided into two main categories, charge 

depleting with use the electric powertrain as the main source to provide the power 

requested by the driver. Thus this strategy depletes the battery to its lower limit [13]. This 

strategy aims to operate the vehicle in pure EV mode as long as the EM can provide the 

requested torque and the battery can provide the requested power. If the requested power 

in charge depleting more is higher than what the EM can provide the controller, operate 

the ICE but keep using the EM as the main source of power and keep depleting the battery 

until it reaches its lower limit.  

The second one is charge sustaining which uses the ICE as the main power source to 

provide the requested power. Charge sustaining uses the EM to assist in providing the rest 

of the power that the ICE cannot provide [14]. This strategy aims to maintain the SOC of 

the battery within a small window to minimize the amount of the ICE operation and, the 

fuel consumption.  

The optimized control strategy in this research uses a blended mode of charge depleting 

and charge sustaining in order to optimize the control strategy and minimize the fuel 

consumption. The blended mode depends on future information of the route to optimize 

the control scheme and maximize the energy harvested through regenerative braking. The 

SOC trajectory reflects the energy delivered and recaptured.  
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The SOC is the state variable for the optimization and the control scheme; it is used to 

determine the performance of the vehicle regarding optimization. The blended operation 

aims to extend the electric range of the vehicle. The blended strategy is shown in Figure 9. 

 

Figure 9. Look-ahead blended control strategy 

The proposed controller top-level design is constructed such that it generates the 

optimization strategy and feeds the data to the supervisory controller in the vehicle. This 

design layout follows the industrial design on integrating Electronic Control Unit (ECU) 

to perform a specific task while communicating with the supervisory controller. The output 

of the look-ahead controller is translated as control torque command that the supervisory 

controller to implement in the powertrain.  
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The controller design layout is shown in Figure 10. Where x is the SOC of the battery 

which is the state variable of the optimization in the controller. u is the control command 

that ultimately represents the torque split ratio between the EM and ICE, and the goal of 

the controller is to find the most optimal control command. v is the modeled system input 

that represents the driver command.  

The vehicle should be able to meet the driver demand by providing the requested torque 

and match the input velocity request which in the model is the drive cycle. The controller 

and the behavior of the model are determined by the ability of the vehicle to follow the 

trace of the input drive cycle with minimal error. y is the model output that is calculated in 

the vehicle based on the control command. 

 

Figure 10. The proposed controller top-level design 
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2.1.  DATA ACQUISITION    

The algorithm acquires the road elevation, divide the path into segments and 

analyze these segments. The analysis considers two segments at a time to feed to the 

controller as shown in Figure 11. The algorithm analyzes the distribution of the elevation 

and the grade values to determine if in the next two segment the vehicle is either 

approaching an uphill or downhill. 

RB optimized perform local optimization which determines the process of data 

acquisition since only two segments of future information is required to solve the 

optimization at a certain time. This approach does not require knowing the information of 

the entire route like DP, also account for the data acquisition and processing time. When 

integrated with other ADAS systems and the vehicle, this implementation strategy will 

reduce implementation issues and computational processing time. 

 

 

  Figure 11. Road Terrain Segments Optimization 
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The road elevation profile acquisition is achieved using Google Earth to view and 

select the route. The routes have been chosen based on different variations of road 

elevations. The first route selected has a smooth transition between uphill and downhill 

over an extended period of time. This smooth transition limit the high dynamic disturbance 

in the model which result if vehicle meeting speed trace of input drive cycle with no 

fluctuation due to grade.  

The second route has steeper uphill and downhill and with more positive grade than 

negative grade, the nature of this route induce more disturbance in the model and limit the 

amount of regenerative braking since the negative grade is much less than positive grade 

throughout the route. The third route has very high variations in elevation and grade 

compare to the first and second route, where the vehicle is constantly switching between 

an uphill and downhill. This route was selected to test further the behavior of optimized 

control scheme and the vehicle undergoing the frequent grade changes. 

The problem faced is that Google Earth does not provide data extraction for the 

elevation data. As a solution for the data acquisition, Geocontext-Profiler and Google Maps 

JS API was utilized to acquire the elevation profile for a defined route. Google Maps 

Elevation API return the elevation for a single point, and the accuracy level might vary 

along the route. The routes that were selected are shown in Figure 12 from San Francisco, 

the routes selected are approximately 9.066 kilometers long. The grade for the model is 

then calculated using Equation 6, shown below, for each step.   
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Figure 12. Selected Route  

𝐺𝑟𝑎𝑑𝑒 =
𝑅𝑖𝑠𝑒 (𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

𝑅𝑢𝑛 (𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
 

      (11) 

The grade profile can have some inconsistent variations as a result of inaccurate 

elevation readings from to Google Elevation API. A smoothing API is used to correct the 

data [15], this is a critical component of the process since this noise can cause a high 

dynamic disturbance in the controller and vehicle model. Some GIS system has a low 

resolution that can reach 1 data sample per 10 meters, a sample of noise road elevation data 

along with the grade is shown in Figure 13. 
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Figure 13. Road elevation and grade correction [15] 

This noise is corrected using smoothing functions. The correction was performed 

to eliminate outlying incorrect data from affecting the behavior of the vehicle model. 

Performing the data correction using smoothing API result in a more accurate 

representation of the actual road elevation, it also reduces the high dynamic variation of 

grade values that is essentially a disturbance for the plant model and the controller. The 

resulted elevation profiles for the three routes are shown in Figure 14. 
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Figure 14. Elevation Profiles 

Th vehicle model input is the drive cycle which represents the demand of the driver 

and the desired speed value that the vehicle should follow. Standard test drive cycles are 

used to test and validate vehicle model but since those drive cycles designed for zero grade 

roads they were only used to test the fidelity of the model.  

To setup the test model undergoing the road elevations extracted from GIS maps, a 

drive cycle was created based on the speed limits provided by Google Maps Roads API. 

Based on the speed limits, the drive cycle was designed to start from zero, accelerate over 

an extended period of time and cruise at a maximum speed of 26 mph and the end of the 

route, the vehicle decelerates to zero, as shown in Figure 15. 
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Figure 15. Drive Cycle 

To test the fidelity and the performance of the model, Environmental Protection 

Agency (EPA) introduced standard testing drive cycles. Drive cycles consists of data points 

that represent speed value taken as an input for the model, so the vehicle follows the trace 

of the drive cycle, the speed calculated in the model is compared to the input speed to assess 

the behavior of the plant model undergoing the control scheme.  

The nature of the drive cycle determines the power flow in the powertrain since it 

represents the power command of the driver that the vehicle powertrain components should 

be able to provide. Drive cycles are also used to quantify the fuel consumption of the 

vehicle and test the effect of different control strategies. Another use of drive cycles is to 

measure the gas emissions of the vehicle. Different drive cycles are designed to test certain 

properties of the vehicle performance. US06 drive cycle was used to test the performance 

the fidelity of the model. US06 combine both highway and city driving as shown in Figure 

16. 
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Figure 16. US06 Drive Cycle 

2.2.  PLANT MODEL  

HEVs are more complex than conventional vehicles as they incorporate an electrical 

powertrain and require more complex control scheme and have the potential for 

optimization since HEVs have more degrees of freedom, thus a high fidelity model was 

built using MATLAB/Simulink. The model was developed to reflect an actual vehicle with 

all the sub-systems of the powertrain to simulate the operation PHEV and analyze the 

power flow throughout the ICE, EM, battery, transmission, and other components. The 

specifications for the modeled vehicle are shown in Table 1.  
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Table 2. Vehicle specification  

Engine  3.4L V6 Gasoline 

Motor Maximum Power 60 kW 

Motor Maximum Torque 180 Nm 

Battery Capacity  23.4 kWhr 

Transmission  6 speed Automatic Transmission 

Vehicle weight  2000 Kg 

 

In the simulation, the vehicle is tested undergoing a drive cycle to evaluate the 

behavior and the response of each subsystem. The top level of the full vehicle model 

consists of the driver model which take the drive cycle as an input and calculate the driver 

command that is represented by accelerator pedal and brake pedal. The controller of the 

vehicle take the driver command the calculate the torque request by mapping the 

accelerator pedal to the maximum torque that the vehicle can provide through both ICE 

and EM.  

The controller then calculates the torque split ratio and determine the torque 

command for the ICE and EM. The powertrain components respond to the driver command 

and provide the requested torque to the wheels. The tractive force acting of the vehicle is 

calculated by multiplying the torque delivered to the wheels by the tire radius. The tractive 

force is then taken into the vehicle dynamics model. 
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The vehicle dynamics model take the tractive force delivered by the powertrain to 

the wheels and calculate the net force acting on the vehicle by subtracting the force losses 

that include rolling resistance, aerodynamic drag, and grade force. The acceleration is then 

calculated by dividing the net force by the mass of the vehicle. The acceleration is then 

integrated to calculate the vehicle speed.  

The vehicle speed is sent back to the driver model to construct a closed loop 

feedback controller and adjust the accelerator and brake pedal based on the error between 

the desired and actual speed. The top-level of the model is shown in Figure 17.  

 

Figure 17. Top level of the HEV model  

  The MATLAB/Simulink model represent a PHEV model. The model reflects a 

PTTR-HEV architecture. In this model, the ICE based conventional powertrain that consist 

of ICE with fuel tank, the ICE is connected to the transmission through a clutch, the 

resultant torque provided is equal to the torque of the ICE multiplied by the gear ratio of 

the transmission. The ICE based powertrain components are connected to the front axle. 

The electrical powertrain that consists of the EM and the battery are connected to the rear 
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axle. The torque at the rear axle is equal to the torque of the EM multiplied by the constant 

gear ratio of the EM transmission.  

This architecture requires less complicated control scheme to determine the power 

split and power flow since there is no mechanical connection between the ICE and EM. 

The supervisory controller along with the powertrain components are shown in Figure 18. 

Unlike parallel HEV, PTTR-HEV power flow is handled differently since there is 

no direct mechanical connection between the ICE and EM. Because of this difference, the 

speed of which the ICE operate on is different from the speed of the EM. In parallel HEV 

both the ICE and EM will have to spin at the same speed, this constraint make the 

powertrain power flow harder to manage, and it limits the optimization of the powertrain. 

In PTTR-HEV, both the ICE and EM are connected to different axel with their 

transmission. In this configuration the EM spin by the same speed of the vehicle divided 

by the rear axle gear ratio. This constraint is caused by the absence of a clutch and a torque 

converter of the rear axle, it also limits and the optimization of the EM since it is constraints 

by the speed.  

On the other hand, the ICE can operate at a different speed than the EM, which 

makes the optimization of the ICE operating in a more efficient region easier. This 

optimization is reflected on the fuel consumption and the MPG of the vehicle.  
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Figure 18. Powertrain components and controller 

2.3.  DRIVER SUB-MODEL  

In order to test a model and analyze the response of the vehicle model, different drive 

cycles are applied to the model as a drive input. These drive cycles are desired speed values. 

The driver is simulated as a PID controller with an output of acceleration and braking 

pedals [16]. Vehicle model layout highlighting the driver model is shown in Figure 19. 
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Figure 19. Driver Model 

Driver Model consists of a PID controller. The input of the controller is the error 

signal which is the difference between the desired speed and the actual speed calculated in 

the model. The output control signal of the controller is calculated according to the 

following equation: 

𝑢(𝑡) =  𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

+ 𝐾𝑑

𝑑𝑒

𝑑𝑡
 

        (6) 

𝑒(𝑡) = 𝑉𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑉𝑎𝑐𝑡𝑢𝑎𝑙         (7) 

𝑢(𝑡) = {
𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 𝑃𝑒𝑑𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛   𝑖𝑓 𝑢(𝑡) > 0

𝐵𝑟𝑎𝑘𝑒 𝑃𝑒𝑑𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛               𝑖𝑓  𝑢(𝑡) < 0
 

        (8) 

Manual tuning of the PID was performed with the purpose of achieving the best 

speed matching between the desired speed and the actual speed. Taking into account, that 

the grade induced high dynamics.  
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The grade is essentially considered as output disturbance for the system. The result 

of the manual tuning is 0.65 for 𝐾𝑝, 0.03 for 𝐾𝑖 and zero for 𝐾𝑑. 

The output of the PID is a result of the difference between the desired speed (drive 

cycle) and the actual speed of the vehicle calculated in the model. Manual tuning of the 

PID is performed in order to have a perfect match between the drive cycle and the actual 

speed in the model. 

2.4.  ENGINE SUB-MODEL  

ICE is modeled using the Kinematic approach. The backward kinematic approach uses 

the engine data provided by the manufacturer [17], this data include torque and speed map, 

fuel consumption map indexed by torque and speed and efficiency map. The outputs of the 

ICE model are torque, speed, and fuel flow rate for each time step of the executing the 

model.  

The efficiency map of the engine is utilized to analyze the performance of the ICE 

and help optimize for more efficient operation. Figure 20 shows the ICE efficiency map 

indexed by the torque and speed, the highest efficiency of the engine is approximately 35%. 
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Figure 20. ICE efficiency map 

The engine model takes the torque command input from the controller and 

calculates the mass flow rate of the fuel. Also, the efficiency of the engine is considered in 

deciding the operating condition. An efficient operation includes operating the ICE at a 

high-efficiency region in the efficiency map. Figure 21 shows the ICE fuel consumption 

map indexed by torque and speed. The contour lines show the fuel flow rate in g/s.  
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Figure 21. ICE fuel consumption map 

2.5.  ELECTRIC MOTOR SUB-MODEL  

The EM is this model constructed using the data provided by the manufacturer. This 

approach uses the torque-speed map and the efficiency map [18]. The output of EM along 

with its gearbox is the torque, speed, and efficiency of the model. The response and 

efficiency of the EM are studied and considered in determining the best operating range of 

the EM. The EM model accepts the torque command from the controller and output the 

actual torque and calculates the efficiency, while the speed of the EM is calculated in its 

gearbox model.  

  Figure 22 shows the EM efficiency map indexed by its torque and speed. 

The red lines are the maximum and minimum torque that the EM can provide, and the blue 

dashed line is the torque limit that depends on the energy stored in the battery at each time 

step of execution. To optimize the EM operation, the efficiency of the EM is analyzed to 
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check the operating conditions, the analysis indicates the operating points of the efficiency 

map and helps further optimize the EM. The controller will make the decision for the torque 

split aiming to operate at the highest efficiency region.  

 

  Figure 22. EM efficiency map 

2.6.  VEHICLE DYNAMICS SUB-MODEL  

The vehicle dynamics are modeled to consider the load on the vehicle and calculate the 

power delivered to the wheels [19], the vehicle dynamics model accept the tractive force 

from the drivetrain, the resistive forces include the aerodynamic drag force, grade, force, 

rolling resistance. The model was properly adjusted to, count for the force balance then 

include the impact of grade on the vehicle using the following equations. 
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𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 =  𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 + 𝐹drag + 𝐹𝑔𝑟𝑎𝑑𝑒 + 𝑀𝑒𝑓𝑓

𝑑𝑣

𝑑𝑡
 

        (9) 

𝐹𝑡𝑟𝑎𝑐𝑡 =  (𝐶𝑟𝑚𝑔 cos (𝜃)) +
1

2
𝜌𝐶𝑑𝐴𝑓𝑉2 + 𝑚𝑔 sin (𝜃) + 𝑚𝑀

𝑑𝑣

𝑑𝑡
 

      (10) 

Where ρ is density of air, 𝐴𝑓 is frontal area, 𝐶𝑑  is Drag Coefficient, 𝐶𝑟 is Coefficient 

of rolling resistance, 𝑀𝑒𝑓𝑓  is the effective mass of the vehicle which is the mass factor (m) 

multiplied but vehicle mass (M). The resistive forces are subtracted from the tractive force 

delivered to the wheels which result in the net force acting on the vehicle. The vehicle 

dynamic parameters are in Table 3.  

Table 3. Vehicle dynamic parameters 

Vehicle mass 2000 Kg 

Gravitational acceleration  9.81 m/s2 

Coefficient of rolling resistance CRF 0.012 

Tire radius 0.3305 m 

Frontal area 2.82 m2 

Coefficient of aerodynamic drag 0.416 

 

The vehicle acceleration is calculated based on the net force acting on the vehicle 

taking into consideration the effective mass of the vehicle. The actual speed of the vehicle 

is calculated by integrating the acceleration value. The actual vehicle speed is taking as a 
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feedback signal to the driver model. Distance traveled is calculated by integrating the 

vehicle speed. Vehicle dynamic model is shown in Figure 23. 

 

Figure 23. Vehicle dynamics model 

2.7. RULE BASED CONTROLLER  

RB controller is constructed using heuristic logic rules that are based on the desired 

mode of operation. Logic based controllers are often not the most optimal option, but they 

provide a robust fast solution for real-time applications. In the vehicle model, the RB 

controller is used to determine the torque split between the ICE and EM based mainly on 

the torque demand. The heuristic logic rules are determined based on the mode of 

operation, the speed of the vehicle, and the SOC of the battery which corresponds to how 

power can be delivered by the EM. The RB control scheme is shown in Figure 24. 
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Figure 24. RB Control Scheme 

First, the controller checks if the torque request is negative which mean that the vehicle 

is either braking or going downhill, in this case, the negative torque goes to the EM as 

regenerative braking. If the requested torque is positive, then the controller check the speed 

and SOC of the battery to determine the operating mode. The speed of the vehicle 

correspond to how much power need to be delivered by the powertrain, and since the ICE 

can deliver higher torque than the EM, then the ICE operate at higher torque demand.  

The SOC of the battery reflects how much torque or power the EM can provide so if 

the SOC is high and the torque demand is less than the maximum torque of EM then the 

vehicle operate in charge depleting mode. If the SOC is below the set value for the charge 
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depleting mode, then the ICE provide the requested torque, and the vehicle operates in 

charge sustaining mode.  

2.8. HARDWARE-IN-THE-LOOP 

The model is developed in MATLAB/Simulink, and it was tested to inspect the fidelity 

of the model and the performance of all the sub-systems. HiL is used to execute and test 

the model in real-time using target hardware that interface signals between the model in a 

virtual environment and real components. HiL executes and interfaces the model on an 

embedded target computer to test the plant under control, in this setup, the plant under 

control is the vehicle model along with the control scheme.  

Simulation Interface Toolkit (SIT) that is developed by National Instrument is used to 

compile the model in MATLAB/ Simulink into C code and generate Dynamic-Link Library 

(DLL), the DLL is then imported in LabVIEW and SIT recognize the mapped signals from 

the Simulink model. Host VI is built in LabVIEW to interface and visualize the signals to 

monitor the execution of the model and send the receive signals through the input-output 

(I/O) module. Figure 25 shows the process of compiling and interfacing model for SIT.  
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Figure 25. Simulation Interface Toolkit 

The SIT server use TCP/IP to transmit signals and send new parameters between the 

model and the Host VI, also the SIT server manage signal transmission between the Host 

VI and I/O module, where the new parameters are transmitted back to execute model 

blocks. 

The Host VI is built to interface the signal from the model. Graphs, indicators, and 

gauges are incorporated in the front panel of the Host VI in LabVIEW to visualize the 

signals and monitor execution. The front panel of the Host VI is shown in Figure 26. 
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Figure 26. Host VI Front Panel 

The target computer for the HiL test is NI PXIe-1071 chassis, which is a high-

bandwidth controller that support high-performance test applications. NI PXIe-1071 

interface with NI PXIe-6341 Multifunction Data Acquisition (DAQ) device that supports 

high-speed data acquisition through PCI Express bus, it provides 16 analog inputs, 2 analog 

outputs, 24 digital I/O lines, and 4 32-bit counter/timers for PWM. Host VI has the 

configuration for SIT signals mapping with DAQ I/O module. The HiL setup is shown in 

Figure 27. 
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Figure 27. HiL Platform Setup 
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3. OPTIMIZATION  

 

3.1. COST FUNCTION MATHEMATICAL MODEL   

In order to minimize the cost function which is the fuel consumption, the 

supervisory controller determines the optimal torque split based on the future terrain on the 

route. The control scheme takes into consideration several subsystems to operate the 

vehicle. This derivation includes both the electrical components of the powertrain as well 

as ICE and the other mechanical elements of the vehicle. The main objective to achieve is 

the driver command, the driver demand is a constraint for the optimization algorithm and 

is considered as the input command for the controller.  

The dynamics of the battery state of charge (SOC) is the key source of reference 

for the optimization. The system is modeled by the open circuit voltage (OCV) in series 

with a constant internal resistance [20]. 

𝑑

𝑑𝑡
𝑆𝑂𝐶 =  

−𝐼 

𝐶
= −

𝑉oc − √𝑉oc
2 − 4𝑃batt R

2𝑅𝐶
 

        (1) 

Where Voc is the OCV of the battery, Pbatt is the electrical power at the output side. 

R is the internal resistance of the battery, and the connecting wires and C is the battery 

capacitance. The ICE fuel rate is modeled by lookup tables mapped by the engine torque 

and the engine speed.  

𝑚̇f = 𝑓(𝑇eng, 𝜔eng)         (2) 
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In the same manner, the battery power is modeled by lookup tables to relate the 

mechanical power to the motor speed. 

𝑃batt = 𝑔(𝑃m, 𝜔m)         (3) 

Positive Pbatt-dmd means the battery is charging and negative Pbatt-dmd means the 

battery is discharging, so the total power demand. 

𝑃dmd =  𝑃drv-dmd +  𝑃batt-dmd         (4) 

Where Pdrv-dmd is the power demanded by the driver, the demanded torque Tdmd is 

then calculated based on an optimized map for different operating regions and then 

calculate the optimal torque and speed split for the hybrid powertrain. Different optimal 

control strategies use minimized the cost of function 𝐽f which is for hybrid vehicles is a 

function of the fuel flow rate and the state of charge of the battery [4]. 

𝐽f = ∫ 𝑚̇f (𝑡, 𝑢)𝑑𝑡 + 𝜙(𝑆𝑂𝐶i, 𝑆𝑂𝐶f)
𝑡𝑓

𝑡0

 
        (5) 

The powertrain constraints are SOC, torque, and speed. The equations may be 

simplified to minimize the instantaneous fuel flow rate. This optimization is achieved 

simply by determining the optimal torque split between the ICE and the electric motor, 

EM. This approach maximizes the kinetic energy captured through regenerative braking. 

This system will produce more energy efficient vehicles through advanced control 

algorithms, but it requires enormous computational power, this implicates that the method 
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of the control strategy has to be real-time implementable which presents an immense 

challenge.  

3.2. RULE BASED OPTIMIZATION  

HEV uses an EM and generator along with the ICE, which adds more degrees of 

freedom to the system and makes control systems for these vehicles more complex by 

providing more margin for optimization regarding utilization of the resources onboard. 

Different optimization strategies are utilized with varying complexity for various control 

strategies. The most common control schemes for HEVs are RB control strategies. RB 

mainly consider the mode of operation based on certain rules derived using human 

intelligence, heuristics, and mathematical models [8]. Deterministic RB control strategy is 

implemented in this model.  

This strategy is based on heuristic analysis of energy flow and determines the torque 

split between the ICE and the EM. The optimization approach is essentially prioritizing the 

resources on board to minimize the fuel flow rate and maximize the amount of kinetic 

energy that is utilized through regenerative braking. Road grade changes the load balance 

for the model since the model is essentially built for flat roads with zero grade.  

In order to include look ahead optimization in the model, an algorithm was 

constructed to calculate a statistical function to add in the controller. The function returns 

a negative value when approaching uphill and a positive value when facing downhill. The 

function also implements a curve fitting algorithm, this allows the function to cope and 

eliminate highly dynamic variations that might destabilize the controller. In turn potentially 

destabilizing the dynamics of the vehicle. These calculations are applied to two segments 
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of the road at each step in the model to count for short range and long range look-ahead 

information in the future. In this case, the controller can optimize for the current state of 

the road with longer range taken into consideration. The calculation is then performed 

using the following equations. 

𝑛

(𝑛 − 1)(𝑛 − 2)
 ∑(

𝑥𝑖 − 𝑥̅

𝑠
)3 

      (12) 

In Equation 12, n represents the number of elements in the array, 𝑥 ̅is the mean of 

the array and s is the standard deviation. Smooth spline curve fitting is used to eliminate 

highly dynamic variations. Controlling quick changes that may destabilize the controller 

and the dynamics of the vehicle. This is controlled by Equation 13. 

𝑝 ∑ 𝑤𝑖(𝑦𝑖 − 𝑠(𝑥𝑖))2

𝑖

+ (1 − 𝑝) ∫(
𝑑2𝑠

𝑑𝑥2
)2  𝑑𝑥 

      (13) 

Where S is the smoothing spline, p is the smoothing parameter and w is the specified 

weight for x input and y output. The result of this algorithm for the routes defined above is 

shown in Figure 28. 
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Figure 28. Look-ahead algorithm result 

Deterministic RB control strategy is implemented in a full hybrid vehicle model 

including the algorithm for look-ahead optimization. This process is shown in the flow 

chart in Figure 29. The control scheme starts with acquiring the road grade for two 

segments ahead and check the grade distribution based on the mean and standard deviation 

to check if the vehicle is approaching downhill or uphill to prepare the vehicle for charging 

and discharging respectively.  

Deciding the mode of operation is either case will always be restricted by the SOC 

of the battery and also by the torque demand. So when approaching uphill, the vehicle 

operate in charge depleting mode as long as the SOC is higher than the lower limit. 

Otherwise, the vehicle will operate in charge sustaining where the ICE is the main source 

of power. On the other hand, when approaching downhill, the vehicle take the negative 

torque through regenerative braking harvesting the maximum about of potential energy. 
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Figure 29. Rule Based Optimized Control Strategy 

For RB approach, HiL was utilized to validate the control strategy in real time. 

VHiL will also be used to integrate and validate the inclusion of look-ahead control into an 

existing conventional ICE-based powertrain using VHiL methodology tested on the rolling 

test bench (Chassis Dynamometer) [21]. 

The integration of hybrid electric module to an existing platform can be validated 

the control strategy during the development stage using this concept. Mayyas et al. were 

the first to use VHiL approach to test and validate the control strategies for an HEV [22]. 
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3.3. DYNAMIC PROGRAMMING OPTIMIZATION  

DP algorithms were developed to find the optimal control strategy for multivariable 

multi-stage systems [8].  DP involves an optimization problem utilizing a backtracking 

approach. It divides the bigger problem into smaller sub-divisions and finds the optimal 

solution for the smaller subsystems. Once all the subsystems are solved, they are sorted to 

find the optimal solution. Integration of the sub-solutions together then provides insight to 

the larger problem. 

Bellman’s principle of optimality approach is used, such that, the entire journey is 

divided into an equal number of subdivisions [23]. At each subdivision, the fuel 

consumption by the ICE has to be minimized.  

The backtracking starts from the destination endpoint. The minimal fuel path to the 

previous point (time step) is obtained from all the possible paths and is reserved or stored 

as the minimal fuel path. This approach is continued backward until the initial starting point 

is reached. All the minimal fuel paths are integrated starting from the endpoint to the initial 

point giving the overall route for optimal fuel consumption. 

DP implementation using Bellman’s principle of optimality approach aims to minimize 

the cost through global optimization. Minimizing the cost is implemented through finding 

the most efficient path by minimizing the cost function of each stage from the initial until 

the final point as illustrated in the following figure.  



52 

 

 

Figure 30. DP path optimization 

The objective function of an optimization problem demonstrates the end goal to be 

achieved, in this case, it is the cost function. If the goal is to get from point A to point E, 

then the cost function is the summation each segment’s cost. If we assume that the most 

optimal path is from A through B to E, then the cost of this path is: Cost = JAB + JBE 

DP approaches the larger problem by subdivision of possible routes between two 

points. By dividing the bigger problem into N stages on the horizontal axis. On the vertical 

axis, there is the control function. In this case, power from the ICE is a control function. 

The values of the control function on the vertical axis will be equally spaced from zero to 

the maximum power capacity of the ICE. All the possible connections between the nodes 

of two consecutive stages are given.  

To achieve the optimization of the control scheme, it is important that the power 

from the ICE or the EM can be changed from zero to any other possible value or vice versa 

within the time equal to the difference between the two stages. The DP approach stage 

diagram with four stages is shown in Figure 31. The proposed algorithm uses a similar 
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approach utilizing more stages [24]. In between each stage, the energy consumption from 

the ICE is calculated by taking an average of the ICE power at the two stages and 

multiplying it with the time interval of the stage. Hence, the cost for each subdivision that 

is to be minimized. 

 

Figure 31. Dynamic programming diagram for a 4 stage problem [1] 

Table 4. Nomenclature for DP Model 

PICE(k)   Power of the ICE (KW) 

PEM(k) Power of the EM  (KW) 

Preq(k) Total power required (KW) 

PICE max Maximum power that can be delivered by the ICE (KW) 

PEM max Maximum power that can be delivered by the EM (KW) 

Xk State of charge 

Xmin Minimum state of charge 

Xmax  Maximum state of charge 

N Total number is time steps 

k Time step index  

I(k) Current of the battery 

Qn Battery capacity 
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Total power required is supplied, by the collective power of ICE and EM. In reality, 

the efficiencies of ICE and EM also act upon engine and motor respectively. Unlike the 

energy consumed by the ICE the power of electrical motor can also be negative when the 

regenerative brake is applied when the power is supplied from the EM, the resultant power 

driving the vehicle will be lesser due to the practical losses by a factor of efficiency. In the 

case of regenerative braking, the kinetic energy of the vehicle is not entirely converted into 

electrical energy. The power recaptured is reduced by the factor of efficiency. So the 

negative power of EM indicates that it is being charged and the amount of inward charge 

is less than the change in kinetic energy of the vehicle.  

SOC is the state of charge of the electrical storage system, which is the state variable 

for the optimization problem. The optimization constraint of the scheme includes the power 

of ICE. The power can only vary between the minimum (zero) and its maximum output 

power. The power of the EM can vary between its minimum value and maximum value for 

negative and positive power, state of charge can also vary only between the given minimum 

and the maximum value. 

Objective Function: Minimize  

Such that: 

𝑋(𝑘 + 1) =
−𝐼(𝑘)

𝑄𝑛
+ 𝑋(𝑘) 

      (15) 

𝑋(0) = 0.55       (16) 

𝑓 = ∑  𝑚̇

𝑁−1

𝑘=0

𝑓            (14) 
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0 ≤ 𝑃𝐼𝐶𝐸(𝑘) ≤ 𝑃𝐼𝐶𝐸 𝑚𝑎𝑥        (17) 

𝑃𝐸𝑀 𝑚𝑖𝑛 ≤ 𝑃𝑟𝑒𝑞(𝑘) − 𝑃𝐼𝐶𝐸(𝑘) ≤ 𝑃𝐸𝑀 𝑚𝑎𝑥        (18) 

𝑋𝑚𝑖𝑛 ≤ 𝑋(𝑘) ≤ 𝑋𝑚𝑎𝑥        (19) 

The main goal of DP is to reduce the fuel consumption, thusly the cost function is 

directly associated with the total fuel consumption. The cost function is calculated for the 

entire route and is minimized [25]. The cost function accounts for the amount of fuel being 

consumed each time step. The fuel flow rate then is related to the power produced by the 

ICE. The torque split between the ICE and the EM is then determined to minimize the cost 

function. 
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4. RESULT AND DISCUSSION 

 

Road grade has a significant impact on fuel economy. The impact may have a positive 

or negative effect due to the grade of the road. Unlike conventional vehicles, HEVs utilize 

road grade to recapture the kinetic energy while also dissipating energy through friction 

braking. While the road grade effects are well understood, the majority of conventional 

vehicle drive cycles do not integrate road elevation or grade information [26]. Due to 

change in road grade, the power required to accommodate for that change varies based on 

the grade of the route.  

The simulation was performed using MathWorks MATLAB and Simulink. For the 

rule-based model for look ahead optimization, the response of the model shows the SOC 

with the road grade, the power split between the ICE and EM, the cumulative MPG for the 

RB, and the RB optimized strategy, the result for route one is shown in Figure 32. 

 

Figure 32. Route 1 results 
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The first plot in Figure 32 show the SOC and the grade, this shows the charging 

and discharging of the battery as the vehicle face an uphill or downhill. The second plot 

shows the torque split between the ICE and the EM as a result of the optimized controller. 

With look ahead optimization the model was able to capture more kinetic energy from 

regenerative braking. 17.64% improvement in cumulative MPG compare to baseline RB 

strategy without look-ahead optimization; this reflects in the third plot in the figure. The 

result for route 2 and 3 are shown in the following figures.  

 

Figure 33. Route 2 results 
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Figure 34. Route 3 results 

Implementing look ahead optimization reflected on MPG and resulted in 

improvement of 12.45% and 11.84% for route 2 and route 3 respectively. 

Bellman's principle of optimality was implemented to solve the DP control scheme. 

The performance of the algorithm was very fast in solving the problem despite the 

enormous size of the grid. The response of the model shows the state of charge with the 

road grade, the power split between the ICE and EM and the fuel consumption for the RB, 

the look-ahead optimized strategy, and the DP as shown in Figure 35.  
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Figure 35. Route 1 dynamic programming results 

Figure 35 shows the result of the first route using DP to optimize the control scheme 

and determine the power split for the ICE and EM. From the first part of the plot if can be 

noticed that the SOC trajectory is consistently correlated with the road grade, the SOC 

decrease as the vehicle go uphill.  

When approaching an uphill, the EM is the main source of providing torque to the 

vehicle resulting in depleting the battery. As the vehicle goes on a downhill, the EM take 

the negative torque through regenerative braking and recharge the battery which results in 

increasing the SOC of the battery. 
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Figure 36. Route 2 dynamic programming results 

Figure 36 shows the result for the second route using DP to optimize the control 

scheme. This route has steeper uphill than the first route. Also, the route has more positive 

average grade than negative grade compares to the first route which results in less 

regenerative braking. The difference in the nature of the route compared to the first route 

result in less improvement. It can be noticed that the MPG improvement for DP is still 

higher then optimized RB and higher than baseline RB without look-ahead optimization.  

Figure 37 shows the result for the third route. This route has very high variations in 

elevation and grade compare to the first and second route, where the vehicle is constantly 

switching between an uphill and downhill. Due to the high grade variation, the optimal 

SOC trajectory was limited to smaller range compare to the other routes. 
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Figure 37. Route 3 dynamic programming results 

To quantify the MPG improvement and compare the result between optimized RB 

and DP, the initial and final conditions of the state variable which in this case is the SOC, 

are set to be the same throughout both models for all the tested routes. Setting the initial 

and final conditions of both models to be the same result in more reliable compression of 

MPG improvement. The DP approach resulted in significant improvement in MPG 

throughout the experiment, the increase in is measured compared to the baseline RB 

strategy for routes 1, 2 and 3 respectively. 

Table 5 shows the improvement percentage for both Optimized RB and DP. These 

improvements are measured compared to baseline RB strategy without look-ahead 

optimization, all baseline RB, optimized RB, and DP were tested and evaluated under the 

same conditions. 
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Table 5. Optimization Improvement 

 Optimized  RB 

improvement  

DP improvement 

Route 1 17.63% 25.5% 

Route 2 12.41% 20.3% 

Route 3 11.83% 19.95% 
 

The HiL testing was performed to ensure real-time execution and high fidelity model 

performance. The model was constructed in a way that reflects the hybridization symptoms 

in order to perform VHiL and test on a conventional vehicle. The test is planned as a 

validation for hybridizing design. Since the vehicle will be tested on a dynamometer, the 

road grade will be reflected on the vehicle using the rollers, also in this setup, the EM assist 

is also combined with the grade and reflected on the vehicles through the rollers.  

The Host VI consist of signals mapping where the grade was an analog output, and the 

speed is an analog input that the model executes and follow the trace of the input command. 

Graphs and gages are used to visualize and show the signals during execution. The drive 

cycle is what the input signal should match, and the actual velocity is calculated in the 

model. The 3 signals of velocity are shown in Figure 38. 
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Figure 38. Drive Cycle, Input Velocity, and Actual Velocity 

 In the figure, the simulated speed input to HiL PXIe platform matches the drive 

cycle. The speed calculated in the model follow the trace of the input speed as shown in 

the third part of the figure. The trace was achieved with a minimal error that is 

approximately one percent. 

The EM torque is a critical component of HiL testing since it reflects the amount 

of energy recaptured through regenerative braking, it also reflects the electric assist that 

will be supplied by the powertrain. The EM torque for the HiL test is shown in Figure 39. 
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Figure 39. HiL EM Torque 

SOC is the state variable of the control scheme and the optimization since it reflects 

the energy delivered by the battery and the energy recaptured through regenerative braking. 

SOC is also used by the controller to determine the mode of operation of the vehicle to be 

either charge depleting or charge sustaining. SOC was recorded in the HiL test as shown 

in Figure 40. 
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Figure 40. HiL SOC trajectory 

The SOC signal shown above reflect the pattern of the road elevation and grade, the 

rise of SOC represent the regenerative braking from going downhill. The decrease of SOC 

represent the depleted power by the battery; this power is supplied by the EM to the 

powertrain.  

The grade signal that is transmitted as an analog output through the DAQ is recorded. 

The grade signal is composed of two components, the road grade of the actual route 

acquired through GIS maps and the grade equivalent of the EM torque assist generated in 

the model. The road grade output signal is shown in Figure 41. 
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Figure 41. HiL road grade output signal 

The HiL experiment was executed, and the model was able to control the vehicle 

and optimize the RB control scheme in real-time along with the plant model. The recorded 

data was evaluated and compared with the behavior of the model and actual vehicle 

dynamics to quantify the performance of the controller. 
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5. CONCLUSION 

 

This thesis presents different control strategies for HEVs that take into consideration 

the impact of road grade on the vehicle and the possibility to utilize look ahead control 

strategies. In order to, minimize the fuel consumption and maximize MPG over multiple 

routes. The research focus was on maximizing the improvement while reducing the 

complexity and processing time. HiL tested was performed to ensure real-time execution 

of optimized RB control strategy.  

This practical approach will accommodate for real-time data acquisition and processing 

that can be integrated with other ADAS application and the supervisory controller of the 

vehicle. The simulation was accomplished using data from real world routes from San 

Francisco, California. The acquisition of the elevation data and the speed profiles were 

achieved using Google API’s.  

In this research, two look-ahead control strategies were examined and compared to the 

baseline RB strategy. Optimized RB was able to run in real time and introduced MPG 

improvement that ranges from 11.84% to 17.64% over the tested routes.  

Optimized RB is a real-time implementable strategy and computationally inexpensive 

compared to other strategies. DP was also implemented to find the optimal solution, in 

order to minimize the fuel consumption, thus achieving a significant increase in MPG that 

ranges from 19.95 to 25.5 percent. The developed algorithm for DP was able to solve the 

problem in a very reasonable timeframe despite the enormous grid size of the model. 
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Nevertheless, it is still a computationally heavy method. Requiring the information of the 

full route to solve it. 

Future work will include utilizing VHiL in order to quantify the FE improvement where 

a complete vehicle system will be tested on the roller bench test (vehicle test bed) and look-

ahead preview energy management algorithm will dictate the operation of ICE & EM to 

minimize the fuel consumption to validate the result. 
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