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ABSTRACT 

A single cell is the very fundamental element in an organism; however, it contains the most 

complicated and stochastic information, such as DNA, RNA, and protein expression. Thus, 

it is a necessity to study stochastic gene expression in order to discover the biosignatures 

at the single-cell level. The heterogeneous gene expression of single cells from an isogenic 

cell population has already been studied for years. Yet to date, single-cell studies have been 

confined in a fashion of analyzing isolated single cells or a dilution of cells from the bulk-

cell populations. These techniques or devices are limited by either the mechanism of cell 

lysis or the difficulties to target specific cells without harming neighboring cells.  

This dissertation presents the development of a laser lysis chip combined with a 

two-photon laser system to perform single-cell lysis of single cells in situ from three-

dimensional (3D) cell spheroids followed by analysis of the cell lysate with two-step 

reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The 3D 

spheroids were trapped in a well in the custom-designed laser lysis chip. Next, each single 

cell of interest in the 3D spheroid was identified and lysed one at a time utilizing a two-

photon excited laser. After each cell lysis, the contents inside the target cell were released 

to the surrounding media and carried out to the lysate collector. Finally, the gene expression 

of each individual cell was measured by two-step RT-qPCR then spatially mapped back to 

its original location in the spheroids to construct a 3D gene expression map.  

This novel technology and approach enables multiple gene expression 

measurements in single cells of multicellular organisms as well as cell-to-cell 

heterogeneous responses to the environment with spatial recognition. Furthermore, this 
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method can be applied to study precancerous tissues for a better understanding of cancer 

progression and for identifying early tumor development. 
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1. INTRODUCTION 

1.1 Motivation 

Cellular heterogeneity in an isogenic population has been revealed for decades (Spudich 

and Koshland 1976), but how to measure and analyze these heterogeneities has become an 

imperative for single-cell analysis. Most single-cell studies focus on dispersed cell 

populations, whereas only a few of them measure cellular characteristics in the context of 

tissue or multicellular systems. For example, fluorescence in situ hybridization (FISH) uses 

imaging techniques to measure cellular genetic variation (Levsky et al. 2002). Another 

example is a fluorophore-based barcoding approach with optical super-resolution 

microscopy (Lubeck and Cai 2012). However, both approaches have their limitation. FISH 

can only examine a small number of gene expressions which becomes a huge problem for 

multiplexing. The barcoding method, on the other hand, has increased the capacity for 

multiplexing detection, but it requires super-resolution microscopy which limits the 

accessibility for users. To overcome the limitations of cellular analysis in complex 

biological environments requires the development of single-cell analysis in situ in 3D cell 

spheroids with spatial recognition. 

 

1.2 Approach 

This dissertation is motivated by the idea of measuring and analyzing cellular RNA 

heterogeneity in situ in whole organisms or multicellular environments, as well as using 

these measurements to differentiate specific cell lines in multicellular environments. This 

dissertation develops a platform that combines a microfluidic device with a two-photon 

laser lysis system to analyze single-cell gene expression in situ in 3D cell clusters. The 
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concept is to lyse single cells on 3D cell clusters consecutively, conduct RT-qPCR to 

analyze the mRNA from each individual cell and trace back to the pre-lysis 3D location of 

the cell in the cell cluster to produce a 3D spatial map of gene expression with single-cell 

resolution. 

The experimental design of this dissertation is described in Figure 1. The laser lysis 

chip is fabricated using soft lithography techniques. The cell clusters are cultured from a 

bulk cell population then loaded into the laser lysis chip. The single-cell laser lysis is 

performed on the cell clusters and the lysate is collected and analyzed by two-step RT-

qPCR analysis at the single-cell level. The results are analyzed and compared with different 

gene expression patterns in order to construct a 3D mRNA map of each cell in the cell 

cluster.  
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(d) 

 

 
(e) 

Figure 1. Schematic Description of Single-cell Analysis In Situ 3D Cell Spheroids. (a) 

Laser lysis chip fabrication. (b) Cell clusters cultivation. (c) Cell clusters trapping and 

lysing. (d) Single cell laser lysis and gene expression analysis. (e) Data analysis for 3D 

mRNA mapping. 
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1.3 Objectives 

A platform was developed to study mRNA expressions at the single-cell level and construct 

a 3D mRNA map with spatial information in situ in 3D cell clusters. The objectives of this 

dissertation are:  

i)  Design and develop a microfluidic chip for capturing 3D cell spheroids 

combined with a two-photon laser system to perform single-cell lysis in their in situ 

environment. This objective includes development of the fabrication process of the laser 

lysis chip and the principle of the laser lysis method to perform single-cell laser lysis 

analysis.  

ii)  Develop and optimize the laser lysis chip system with different approaches. 

This objective not only validates the mRNA recover efficiency and induced cellular stress 

of the laser lysis method, but also characterizes the collection process of the laser lysis 

system.  

iii)  Analyze the single-cell gene expression patterns on CP-D cell clusters by 

utilizing the column-based two-step RT-qPCR analysis. This objective shows the laser 

lysis system can discover gene expression with high sensitivity and specificity at the single-

cell level in 3D cell spheroids.  

iv)  Analyze the single-cell gene expression patterns on mixed CP-D, EPC2 cell 

clusters, then differentiate cell lines by the distinct expression of an endogenous gene. This 

objective validates that the system is capable of distinguishing different cell types in 

multicellular systems.  
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1.4 Scientific contributions 

The major contributions of this dissertation include the following. Firstly, a laser lysis chip 

was designed and developed to perform laser lysis on 3D cell spheroids at the single-cell 

level. This device combined with a two-photon laser system provides an enabling 

technology to lyse individual cells in situ in 3D clusters and perform downstream RT-

qPCR analysis at the single-cell level. The significance of the laser lysis chip is: a) the 

released lysates will be carried by surrounding media to the outlet while the cell clusters 

will be trapped at the cage. This approach allows the laser lysis chip to lyse single cells and 

collect the lysates sequentially; b) the lysing range can penetrate deeper into the cell 

clusters by using a two-photon laser system, which will enable the laser lysis to lyse 3D 

structure cells; c) the system is capable of trapping multiple cell clusters with more than 

one cell line, and performing laser lysis at the single-cell level.  

Secondly, the gene expression patterns in situ in 3D CP-D cell clusters were discovered. 

Many other single-cell studies have focused on scatter and dispersed single cells, but only 

a few of them have studied 3D cell clusters or defined tissues. This study provides a 

solution to study single-cell gene expression in situ in 3D cell clusters while maintaining 

its spatial recognition. At the same time, this study also discovers the stochastic gene 

expressions in dysplasia cultured tissues which will improve single-cell analysis to another 

level. 

Thirdly, this dissertation shows that the laser lysis approach can not only analyze 

cellular heterogeneity but also differentiate specific cell lines in multicellular environments. 

In the mixture CP-D and EPC2 cell clusters experiment, the CP-D cell line was 

discriminated by the endogenous gene expression patterns at the single-cell level. The 
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differences in the endogenous gene expressions can be used to distinguish different cell 

types from the mixture-cell clusters. The results demonstrate that this technology can not 

only work with single-cell line cell clusters, but also apply to multicellular tissues. 

Complex biological systems can then be studied with 3D gene expression mapping. This 

study provides a great tool to analyze cellular variation in situ in whole organisms or 

defined tissues for improving prognosis of premalignant conditions. 

With these results, and multiple contributions, one manuscript is in preparation for 

publication, one conference paper was published, and I am an author in several co-author 

publications.  

1. Kuo-chen Wang, Ganquan Song, Yanqing Tian, Shih-Hui Chao, Hong Wang, 

Deirdre Meldrum. Micropatterning of Cells into Microwells for Metabolic Profiling. 

IEEE EMBS Micro and Nanotechnology in Medicine Conference. 2014. 

(Conference) 

2. Single cell RT-qPCR analysis in situ of 3D cell clusters. In preparation.  

Co-author:  

3. Ganquan Song, Kuo-chen Wang, Benjamin Ueberroth, Fred Lee, Liqiang Zhang, 

Fengyu Su, Haixin Zhu, Qian Mei, Shih-hui Chao, Laimonas Kelbauskas, Yanqing 

Tian, Hong Wang, Deirdre Meldrum. Single cell metabolic profiling using 

multiplexed, photo-patterned fluorescence sensor arrays. 18th International 

Conference on Miniaturized Systems for Chemistry and Life Sciences. Microtas, pp. 

884–886, 2014. (Conference) 

4. Jordan Yaron, Jieying Pan, Tejas Borkar, Kristen Lee, Kuo-Chen Wang, Clifford 

Anderson, Honor Glenn, Deirdre Meldrum. Automated Cell Counting in a High 
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Density, Polymer-Coated, Live Single Cell Sandwich Microarray. Microscopy and 

Microanalysis, vol. 20, no. S3, pp. 1438–1439, 2014. (Conference) 

5. Laimonas Kelbauskas, Rishabh Shetty, Bin Cao, Kuo-chen Wang, Dean Smith, 

Hong Wang, Joseph Chao, Brian Ashcroft, Margaret Kritzer, Honor Glenn, Roger 

Johnson, Deirdre Meldrum. Computed tomography for quantitative imaging of live 

cancer cells with isotropic 3D spatial resolution. Engineering and Physical 

Sciences in Oncology. 2016. (Poster) 

6. Laimonas Kelbauskas, Rishabh Shetty, Bin Cao, Kuo-chen Wang, Dean Smith, 

Hong Wang, Joseph Chao, Brian Ashcroft, Margaret Kritzer, Honor Glenn, Roger 

Johnson, Deirdre Meldrum. Computed tomography of living single cells in 

suspension to achieve isotropic 3D spatial resolution for orientation independent 

measurement. Under review. 

 

1.5 Dissertation overview 

Chapter 2 provides an overview of in situ single-cell analysis, cell lysis introduction, and 

single cell gene expression analysis. Chapter 3 describes the lysis sample, the Barrett’s 

esophagus cell line, with cell cultivation detail and the target genes selection and validation. 

Chapter 4 details the design and fabrication processes of the laser lysis chip. Chapter 5 

covers different experimental designs for characterization and validation of the laser lysis 

system in terms of efficiency and contamination issues. This chapter includes analysis of 

cellular stress and mRNA retrieval efficiency. Chapter 6 shows the single-cell lysis and 

analysis in CP-D cell clusters experiment and reports the result with housekeeping gene 

expression levels. Chapter 7 shows the single-cell lysis and analysis in situ in mixture CP-
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D and EPC2 cell clusters experiment and reports the result with endogenous gene 

expression patterns. This chapter also describes different sample applications of laser lysis 

chip. Chapter 8 concludes this dissertation and suggests an outlook on potential future 

research directions.   
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2. BACKGROUND LITERATURE  

2.1 In situ single-cell analysis 

In situ single-cell analysis means the analysis of individual cells in a large context of tissue 

or a multicellular cluster that maintains the original structural and functional characteristics 

of the native microenvironment. Many single-cell studies have focused on using 

microfluidics to analyze dispersed single cells, such as manipulation of single cells (Anis, 

Holl, and Meldrum 2010), gene expression of microbial cells (Gao, Zhang, and Meldrum 

2011), array cultivation device for single-cell analysis (Carlo, Wu, and Lee 2006), droplet 

barcoding single-cell transcription (Klein et al. 2015), and dispersed single cells analysis 

from cell cluster formation (Chung, Kim, and Yoon 2011; Chen et al. 2016). However, 

hardly any of these studies analyze single cells in situ in a whole tissue that preserves the 

original characteristics. A few studies have tried using different approaches to study in situ 

single cells, including mRNAs labeling with fluorescence in situ hybridization (FISH) 

(Amann and Fuchs 2008; Lubeck and Cai 2012; Lubeck et al. 2014), computational model 

development for single-cell RNA sequencing (Fan et al. 2016), and expansion microscopy 

of cells by labeling with fluorescent proteins and antibodies (Tillberg et al. 2016). Lubeck 

and Cai (2012) propose to use super-resolution microscopy to observe target molecules 

attached with fluorophore-based barcodes. This combination method of labeling and super-

resolution imaging can be applied to many types of molecules in situ and therefore used to 

study genomics at the single-cell level. Fan et al. (2016) develop pathway and gene set 

overdispersion analysis to identify sub-populations of mouse neural progenitor cells by 

reducing technical noises and extra variances in single-cell RNA sequencing. Another new 

approach, protein retention expansion microscopy, is reported by Tillberg et al. (2016). 



 11   
 

This method preserves target proteins in a swollen gel so it can be detected during the 

expansion process. However, it is still limited in multiplexing measurements. 

In short, considering the aforementioned studies and developments of single-cell 

analysis in situ in whole organisms, it would be of great scientific value to further study 

cellular genetic heterogeneity and define particular cell lines in situ in a multicellular 

cluster or defined tissue. 

 

2.2 Cell lysis introduction 

How to lyse the isolated single cells is a crucial task considering the dimension of single 

cells and the difficulty in lysate collection. Different lysis methods have been developed 

for particular purposes of single-cell analysis. Here, two commonly used lysis methods, 

chemical lysis and laser lysis, are illustrated in detail as follows.  

 

2.2.1 Chemical lysis 

Chemical lysis, also known as detergent lysis, is a solution-based lysis method using the 

lysis buffer solution to create pores within cell membranes and thus break up cell structures 

to lyse cells. Different surfactants like sodium dodecyl sulphate and Triton X-100, are 

added into lysis buffer in order to speed up cell lysis and increase protein extraction 

efficiency. The chemical lysis has been widely used not only in bulk-cell populations, but 

also in the microwell arrays of isolated single cells. Additionally, the solution-based 

chemical lysis works perfectly on both adherent and suspended cells. Several applications 

have been developed for single cells, e.g. Shoemaker et al. (2005) used the micropipette to 

transport single cells into a micro-reactor vessel to perform single-cell analysis (Shoemaker 



 12   
 

et al. 2005). Ocvirk et al. (2004) used a Y-shaped microfluidic device to performed on-

chip mixing and lysis of single cells by introducing single cells and lysis buffer at the same 

time (Ocvirk et al. 2004). Moreover, Huang et al. (2007) elevated chemical lysis 

application to another level. They designed a microfluidic device with several valves that 

could trap single cells in chambers and lyse, label, separate, and quantify the protein 

contents at the single-cell level. Recent studies and current technology (Fluidigm C1™) 

also utilize the chemical lysis method with the hydrodynamic trapping approach to study 

single cells (Chen et al. 2016). 

 

2.2.2 Laser lysis 

Laser lysis is an application that uses laser pulses to either shoot directly on the target cell 

or generate a shock wave which creates a cavitation bubble that disrupts the cells. Several 

applications have been developed, including Rau et al. (2004) showed using laser-induced 

bubbles to lyse cells during a bubble expanding process (Rau et al. 2004; Rau et al. 2006). 

Hellman et al. (2008) categorized three different lysis outcomes: (a) immediate cell lysis; 

(b) necrotic cell with blebbing membrane; (c) cell poration, by adjusting the distance 

between the laser focal point and the target cell (Hellman et al. 2008). Furthermore, Quinto-

Su et al. (2008) recorded and analyzed laser lysis progression in a Poly (dimethylsiloxane) 

(PDMS) microfluidic channel using time-resolved imaging (Quinto-Su et al. 2008). The 

result showed laser lysis is advantageous for lab on a chip applications since it does not 

require complicated instruments and the laser can approach any optically-accessible 

locations.  
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Another laser lysis technique is using a two-photon excited laser to perform single-

cell lysis. Two-photon excited laser (2PEL) has been widely used on imaging microscopy 

for it overcomes the limitation of light-scattering issue in large depth biological tissues 

(Helmchen and Denk 2005). 2PEL has two major advantages: firstly, it utilizes two longer 

wavelength photons to reach an excitation energy state, instead of using only one-photon 

excitation which requires a shorter wavelength and higher energy photon (Figure 2a). The 

two-photon absorption then occurs at the near-infrared region, and is therefore less 

phototoxic to tissues (Svoboda and Block 1994). Secondly, the excitation intensity of two-

photon only appears at a focal point and decreases rapidly out of focal planes. The localized 

excitation in 2PEL is quite different from single-photon excitation which remains constant 

throughout the spatial confinement. These results from the 2PEL require two photons to 

arrive simultaneously which means fluorescence intensity depends on the square of the 

excitation intensity (Figure 2b) (Soeller and Cannell 1999). Moreover, the absence of out-

of-focus planes excitation reduces photobleaching and prolongs tissue viability (Squirrell 

et al. 1999; Helmchen and Denk 2005).  

The cell lysis occurs when the light intensity is increased to 1012 W/cm2. This 

amount of intensity is sufficient enough to induce ionization and generate free-electrons, 

resulting in plasma formation. However, there are some destructive effects that need to be 

resolved under this circumstance. By decreasing the duration of laser pulses from 

nanosecond to femtosecond greatly reduces the destructive mechanism (Vogel et al. 1999).  

To acquire 2PEL, a titanium sapphire laser with 800 nm wavelength (Mira 900, Coherent, 

Santa Clara, CA) is used to produce 150-200 femtosecond pulses at a repetition rate of 250 

KHz (RegA, Coherent) with 0.4 µJ pulse energy, and ~1 s total exposure time. A 
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programmed shutter (SH05 Optical Beam Shutter, Thorlabs, Newton, NJ) is placed on the 

path of laser to control the numbers of laser pulses sent to the cell.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                    (a)  

 
                                                               (b)  

Figure 2. Two-photon Excited Laser Working Theory. (a) Jablonski diagram of 

single-photon and two-photon excitation comparison. Single-photon requires larger 

energy to reach excited state while two-photon only needs two photons with less energy. 

(b) Fluorescence emission difference between single-photon and two-photon excitation. 

The fluorescence signal is proportional to spatial confinement and photon intensity. Due 

to the intensity difference between single and two-photon. The emission in two-photon 

excitation only has peak in focal point and degrades out-of-focus planes, while single-

photon stays constant. Images adapted from (Soeller and Cannell 1999). 
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2.3 Single-cell gene expression analysis 

Gene expression analysis at the single-cell level requires higher specificity and sensitivity 

since it is a known fact that there is stochastic gene expression at the single-cell level in an 

isogenic cell population. There are a lot of factors causing the cell-to-cell heterogeneity, 

including biological noises, genetic properties, and regulatory fluctuation (Banerjee et al. 

2004; Colman-Lerner et al. 2005; Pedraza and Oudenaarden 2005; Rosenfeld et al. 2005; 

Newman et al. 2006; Strovas et al. 2007). Therefore, the genetic properties including RNA, 

DNA, and proteins may contain different copy numbers at the single-cell level. How to 

analyze the gene expression at the single-cell level becomes a critical part to study single 

cells. 

Single-cell studies have been under development for a long time and numerous 

methods have been proposed to analyze single-cell gene expression (Le et al. 2006; Cai, 

Friedman, and Xie 2006; Yu et al. 2006; Strovas et al. 2007; Stewart and Franklin 2008; 

Guet et al. 2008). The most notable method is utilizing green fluorescent protein (GFP) as 

a marker to study gene expression (Chalfie et al. 1994). Other protocols use different 

mechanisms, such as luciferase (Wet et al. 1987; Gould and Subramani 1988; Hoshino, 

Nakajima, and Ohmiya 2007), amino acid trapping approach with protein (Zhao et al. 2013; 

Zhao et al. 2014; Lindsay, Zhang, and Zhao 2015), fluorescence in situ hybridization (FISH) 

(Moter and Göbel 2000; Levsky and Singer 2003; Pernthaler and Amann 2004; Amann 

and Fuchs 2008), and reverse transcription polymerase chain reaction (RT-PCR) (Bustin 

2000; Bustin et al. 2005). Among all approaches, RT-PCR is the most sensitive technique 

that can detect and quantitate mRNA even at the single-cell level (Kubista et al. 2006; 

Nolan, Hands, and Bustin 2006). Multiple reports demonstrate how to utilize RT-qPCR for 
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mRNA quantification and analysis of the genetic expression in single cells (Lindqvist, 

Vidal-Sanz, and Hallböök 2002; Marcus, Anderson, and Quake 2006; Hartshorn et al. 2007; 

Wacker, Tehel, and Gallagher 2008; Li et al. 2010; Gao, Zhang, and Meldrum 2011).  

A two-step SYBR Green-based single-cell RT-qPCR method was developed to 

measure gene expression directly in Escherichia coli populations (Gao, Zhang, and 

Meldrum 2011). This method can measure multiple gene expressions simultaneously at the 

single-cell level. The first step is RNA isolation from a single cell and cDNA synthesis. 

The second step is qPCR process which determines expression levels of multiple genes 

simultaneously in one single cell. The result showed that this method not only can measure 

cellular variations with high sensitivity at the single-cell level but also can reproducibly 

measure multiple gene expressions from one single cell. In short, this method is 

advantageous for single-cell analysis owing to it can measure multiple gene expression 

patterns at the single-cell level with high accuracy and cost-efficiency.  
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3. BARRETT’S ESOPHAGUS CELL LINE 

3.1 Barrett’s esophagus 

Barrett’s esophagus (BE) is a condition of the normal tissue in the esophagus being 

replaced by tissue similar to the intestine lining. The cause of BE is from the backing up 

of stomach contents (acid reflux) that may irritate the esophagus and, over time, cause BE. 

People with BE are estimated to have a 30- to 60- fold higher risk to develop into a deadly 

esophagus cancer, esophageal adenocarcinoma (Cameron, Ott, and Payne 1985; Drewitz, 

Sampliner, and Garewal 1997; Kim et al. 1997). A critical review showed that the annual 

development rate from BE to esophageal adenocarcinoma is 0.5% (Sharma et al. 2004). 

This relatively rare cancer, only representing 1% of all new cancer cases in the United 

States, is among the deadliest cancer of all kinds with an estimated death rate greater than 

90% in 2016 (Siegel, Miller, and Jemal 2016). The prognosis and treatment option is 

insufficient, with almost the lowest relative 5-year survival rate of 18.4% in the United 

States (Howlader et al. 2016). And it is the fifth leading death cancer for males in the age 

range of 40 to 59 (Howlader et al. 2016). 

Two esophageal derived cell lines are chosen for the experiments in this dissertation. 

(1) Squamous cell culture: EPC2 cell. (2) BE cell line: CP-D cell. The EPC2 cell line is a 

normal esophageal epithelial cell line transformed with hTERT (Harada et al. 2003). While 

the CP-D cell line is derived from a high-graded dysplasia BE patient and display CDKN2A 

and TP53 abnormalities (Palanca-Wessels et al. 1998). The CP-D and EPC2 spheroids 

were mixed together to simulate premalignant condition. Furthermore, these two cell lines 

have different mRNA expression profiles which can be used to identify the cell types. A 

specific endogenous gene is needed to discriminate different cell lines. This endogenous 
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gene is only highly expressed in one particular cell line and can be used to differentiate cell 

lines by analyzing the gene expression patterns. This part will be discussed in Section 3.3.  

 

3.2 Cell culture 

Two cell lines were used in the laser lysis experiments, EPC2 and CP-D. The EPC2, a non-

cancerous cell line, was cultured using Gibco keratinocyte serum-free cell growth medium 

(Invitrogen, Carlsbad, CA, USA), supplemented with human EGF at 2.5 µg/500 mL, BPE 

(bovine pituitary extract) at 25 mg/500 mL and penicillin–streptomycin solution 

(Invitrogen) at 100 units/100 µg/mL (Gibco). Dysplastic BE CP-D cells were cultured with 

the same protocol and buffer as EPC2 cell line. All the cells were cultured at 37°C in a 

humidified incubator containing 5% CO2 and passaged upon reaching 70-80% confluency. 

The passaged cells were used for cluster cell formation. Cells were cultured using Gibco 

keratinocyte serum-free cell growth medium supplemented with human EGF at 2.5 µg/500 

mL, BPE (bovine pituitary extract) at 25 mg/500 mL and penicillin-streptomycin solution 

(Invitrogen) at 100 units/100 µg/mL. The cell density was determined using a Countess® 

II FL Automated Cell Counter (Life Technologies). The cells were seeded at a density of 

150,000 per well of a Costar 24 well plate with ultra-low attachment surface (Corning, 

Midland, MI) containing 500 µL of differentiation medium (1 part of the media was 

conditioned by primary human fibroblasts and 50 parts by RPMI with 10% fetal bovine 

serum). Cells were allowed to cluster for 48 hours at 37°C in a humidified incubator 

containing 5% CO2.  

On the day of experiment, cell clusters were centrifuged at 900 rpm for 3 minutes 

and re-suspended in 1 mL of XF Base medium (Seahorse medium). A few microliters of 
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cell culture suspension was dispensed into a Terasaki plate with a goal of obtaining 

approximately 2 or 3 clusters in each well, and these cells were ready to load. 

 

3.3 Gene validation 

Four genes: rbcL, HSP70, RPLP1, and MUC1 were chosen for single-cell laser lysis RT-

qPCR in this research. RPLP1 was selected as the housekeeping gene for its excellent 

stabilities and high expression level that has been well documented before (Steg et al. 2006; 

He et al. 2008; Minner and Poumay 2009; Wang et al. 2012). Also, RPLP1 could be used 

as the reference gene to calibrate other genes when multiple gene expression analysis was 

performed. rbcL was spiked in each collection sample before RNA purification as an 

exogenous gene to minimize systematic error. HSP70 has already been used to enhance 

cell resistance in terms of its responses to environmental stresses for years (Li and Werb 

1982; Jäättelä et al. 1992; Jäättelä et al. 1998). In this study, HSP70 was used to validate 

the different gene expression patterns in cellular stress response between laser lysis and 

chemical lysis. 

The endogenous gene is the key factor to differentiate CP-D and EPC2 cell types. The 

ideal endogenous gene should have the ability to differentiate specific cell lines from the 

qPCR result in terms of Ct value. Several genes were validated using a serial dilution 

approach with CP-D and EPC2 cell lines. A one-step RT-qPCR method was developed to 

validate these genes, which is described as follows. 

The first step was chemically lysing the bulk cells. The RNA lysis buffer was added to 

bulk cells and the RNA purification was performed using ZR quick RNA MicroPrep Kit 

(Zymo Research, Irvine, CA) following the instructions provided by the manufacturer. A 
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total of 50 μL RNA was eluted from a column matrix and quantitated on a Nanodrop 1000 

spectrophotometer (Thermo Scientific, Hudson, NH) to determine the total amount of RNA 

in bulk cells. The RNA was diluted accordingly to achieve a single cell level (20 pg RNA) 

and prepared for the reverse transcription and quantitative PCR analysis by StepOne PCR 

system. The total reaction volume was 10 µL, containing 5 µL 2X qPCR buffer (Invitrogen 

# 11784200), 1 µL of each primer at 4 µM, 0.2 µL EXPRESS One-Step Superscript® qRT-

PCR Kit universal (Invitrogen #11781200), 0.1 µL ROX reference dye, 0.7 µL DNA 

suspension buffer, and 2µL RNA. The RT-qPCR result of different tested genes is shown 

in Table 1. A total of 5 genes was tested with two technical replicates, the 10 and 100 

denoted quantity of cells in terms of 200 and 2000 pg RNA amount. PCR primers for four 

target genes (rbcL, HSP70, RPLP1, and MUC1) used in single cell RT-qPCR were as 

shown in Table 2. 

 

 

 

 

 

 

 

 

 

Table 1. Endogenous Gene Expression between CPD and EPC bulk cells. This Table 

shows different gene expressions with CP-D and EPC2 cell lines. 100, and 10 indicate 

100 and 10 single cells determined by 2000 and 200 pg RNA. From the result of MUC1, 

there was about a 4-cycle difference between CP-D and EPC2 cells either in the 100 or 

10 cells group, specifically around 16-fold change between CP-D and EPC2 cells. 
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3.4 Results and discussion 

The results in Table 1 present the five endogenous genes expression patterns with CP-D 

and EPC2 cell lines. The CP-D and EPC2 10, 100 denote 10 and 100 single cells. Each 

qPCR analysis was performed with one biological replicate and two technical replicates. 

The differences of Ct value between the CP-D and EPC2 cell lines were clearly shown in 

Table 1. All the other four genes (DCN-4, ITGB6-2, MUC16-2, and WNT7A-5) had Ct 

differences ranging only from 1 to 3, while MUC1 had the highest Ct difference (greater 

than 4) which makes it an excellent candidate to distinguish CP-D from EPC2. Additionally, 

the Ct differences from CP-D 10 to CP-D 100, and from EPC2 10 to EPC2 100 were 3.3, 

which perfectly corresponds to a 10-fold change in bulk-cell populations. This also 

validated the accuracy of the serial dilution in terms of RT-qPCR result. Therefore, MUC1 

was selected due to the high expression level in one particular cell line.  

 

 

Table 2. Genes and Corresponding Primers. 

Gene 

GeneBank Accession 

No. and product size 

(bp) Primer sequence 

RPLP1 

NM_213725.1 

121 bp 

F: 5’-TCACTTCATCCGGCGACTAG-3’ 

R: 5’-ACTGTCACCTCATCGTCGTG-3’ 

MUC1 

NM_001204296.1 

195 bp 

F: 5’-CTGGTCTGTGTTCTGGTTGC-3’ 

R: 5’-CTCATAGGGGCTACGATCGG-3’ 

HSP70 

NM_005345.5 

213 bp 

F: 5'-CGACCTGAACAAGAGCATCA-3' 

R: 5'-AAGATCTGCGTCTGCTTGGT-3' 

rbcL 

CP000435.1 

180 bp 

F: 5'-CGCTGAATCTTCAACTGGTACCTGGTC-3' 

R: 5'-GGTCAGAACGTTAGTGATTGAACCCTC-3' 
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3.5 Conclusion 

In summary, the gene selection played a very critical role in the whole laser lysis research 

after the target cell lines were selected. Considering the limited amount of one single cell 

lysate and low copy numbers of genetic properties, an ideal gene is a necessity to analyze 

cellular gene expression at the single-cell level. Here, RPLP1 was selected as the 

housekeeping gene due to the high expression level in both CP-D and EPC2 cell lines. 

Additionally, the RPLP1 can be used to calibrate with other genes when multiple genes are 

measured at the same time within one single cell. HSP70 was chosen to validate the cellular 

stress between the control and heat-shock treated cells. For differentiating mixture-cell 

clusters, the MUC1 was selected owing to the distinct Ct value difference between CP-D 

and EPC2 cell lines. By analyzing the gene expression patterns, the heterogeneity and 

biological significance can be quantified at the single-cell level. 

 

 

 

 

 

 

 

 

 

 

 



 23   
 

4. LASER LYSIS CHIP 

4.1 Introduction 

Microfluidic devices have been developed for a long time with numerous applications 

(Whitesides 2006), such as chemical screening (Hansen et al. 2002), separation with mass 

sorting (Ramsey and Ramsey 1997), drug development (Dittrich and Manz 2006), 

bioanalysis (Sia and Whitesides 2003), and cell-manipulation (Wheeler et al. 2003; 

Werdich et al. 2004). Different techniques have been developed in order to trap or 

manipulate cells, including mechanical trapping geometry or micromanipulation (Carlo, 

Wu, and Lee 2006; Anis, Holl, and Meldrum 2010), hydrodynamic trapping structure 

(Chen et al. 2015; Chen et al. 2016), dielectrophoretic force (Arnold and Zimmermann 

1988; Voldman et al. 2003; Murata et al. 2009), acoustic wave (Meng et al. 2011), and 

optical force (Huang et al. 2013; Huang et al. 2014; Burghammer et al. 2015). Among all 

techniques, a mechanical trapping structure is advantageous for laser lysis chip fabrication. 

Firstly, it does not require any specialized on-chip fabrication such as electrodes for 

dielectrophoretic force. Secondly, it has a simple trapping design that reduces greatly the 

labor and cost of chip fabrication and operation. The design and fabrication of the laser 

lysis chip are discussed as follows. 

 

4.2 Laser lysis chip design 

There are three major goals in laser lysis chip design: (1) Capable of capturing cell cluster 

of size 40-100 µm diameter, practical for analyzing clinical biopsies. (2) Capable of 

retaining the cluster during the cell loading, perfusion and lysis. (3) Minimize 

contamination during the experimental process. Based on these requirements, the cell 
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cluster trapping design “cage” was composed of several posts used to trap flow-through 

cell clusters while the media flowed through the gap spaces between posts (Figure 3c). The 

post width was 42 µm and the gap distance in between was 18 µm (Figure 3b), which 

allowed small single cell to bypass cage yet most large cell clusters (size between 40-100 

µm) stay. Namely, the gap was small enough to retain clusters during the lysis process yet 

large enough for media to bypass. For the microchannel design, the dimension of 

microchannel was 500 µm in width and 100 µm in depth which could fit the sizes of most 

cell clusters and clinical tissues (Figure 3c). In order to prevent contamination, an oil 

channel was introduced on the side. Details of cross-contamination are discussed later. The 

cage design was made by AutoCAD program (Autodesk Inc, San Rapheal, CA) then 

transported to a bright-field photomask for a photolithography process on a silicon wafer 

as the master mold. At last, the laser lysis chip was fabricated by using soft lithography 

techniques with PDMS material. Details are covered in the next section.  
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4.3 Fabrication 

Fabrication of the laser lysis chip utilized soft lithography technology. The concept of soft 

lithography has been developed since Bell Labs designed the first micromolding device in 

1974 (Aumiller et al. 1974). Soft lithography techniques can be used to fabricate 

microfluidic devices through molding, stamping, and embossing (Aumiller et al. 1974; 

David J. Beebe, Glennys A. Mensing, and Walker 2002). Several semiconductor 

technologies and equipment are applied in the laser lysis chip fabrication process. The 

               
                         (a)                                                                   (b) 

 
                                                                           (c) 

Figure 3. Laser Lysis Chip Design.  (a) Laser lysis chip layout. Scale bar: 2 mm. (b) Cage 

design. Scale bar: 100 μm. (c) Enlarged schematic of cage. Scale bar: 100 μm.  
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fabrication processes include the master wafer fabrication, wafer dicing, PDMS chip 

molding process, and chip bolding. Several critical factors need to be considered during 

laser lysis chip fabrication: firstly, the depth of the microchannel. The dimension of 

microchannel was critical since the high-aspect-ratio structure increases fabrication 

difficulties. Secondly, the cage design was also affected by the high-aspect-ratio patterning 

for its three-dimension structure. The etching effect was server for post fabrication, since 

the gap between each post determined different sizes cell trapping. Thirdly, the alignment 

process for via-channel aligned to the microchannel inlet and outlet end. 

 

4.3.1 Material 

PDMS was used to fabricate laser lysis chip. PDMS has been used as a material for 

microfluidics since it has several advantages such as being easy to fabricate and low-cost. 

PDMS is especially suitable for biological studies due to the biocompatibility and 

transparency, also it easily bonds with other substrates such as glass (Sia and Whitesides 

2003). The highly transparent glass is a perfect substrate for optical imaging. In order to 

observe and perform lysis on single cells at high magnification, the glass thickness was 

crucial for high magnification imaging. A 25 mm × 25 mm micro cover glass with thickness 

of 200 µm (VWR Scientific Inc., West Chester, PA) was used as a substrate. Silicon wafer 

was used as master substrate for high-aspect-ratio patterning with photolithography 

techniques. 
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4.3.2 Fabrication process 

4.3.2.1 Master wafer 

The laser lysis chip fabrication consisted of two steps: first step was master wafer 

fabrication, second step was chip molding. The fabrication process of laser lysis chip is 

illustrated in Figure 4. The master fabrication started with a 4-inch silicon wafer of 500 

µm. The silicon wafer was placed in ultrasonic isopropyl alcohol for 10 min, rinsed 

thoroughly with DI water (Figure 4a). The wafer was placed on a 160°C hot plate for 5 

min. The wafer was spin-coated with SU-8 3025 negative photoresist (MicroChem Corp., 

Newton, MA) at 3800 rpm and softbaked at 65°C for 1 min then 95°C for 5 min, with the 

ramping temperature controlled at a rate of 1°C/min (Figure 4b). The coated wafer was 

then exposed at 150mJ/cm2 with PL360-LP filter (Omega Optical Inc., BRATTLEBORO, 

VT) (Figure 4c), followed by performing the post-exposure-bake with the same 

temperature setting as softbake then developing by SU8 developer (MicroChem Corp., 

Newton, MA), and rinsing with isopropyl alcohol to inspect the pattern. Finally, the wafer 

was hardbaked with a ramp up rate of 1°C/min at 150°C for 40 min. The wafer was dry 

etched by Advance Silicon Etch (Surface Technology Systems, Newport, UK), an 

inductively coupled plasma reactive ion etching system to perform vertical high-aspect-

ratio etching (Figure 4d). After DRIE process was done, the wafer was diced into six dies 

with a Disco dicing saw (Disco Hi-Tec Inc., Santa Clara, CA).  
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(a)  

(b)  

(c)  

(d)  

Figure 4. Master Wafer Fabrication Process. (a) Silicon wafer. (b) SU8 3025 spin-

coat. (c) Microchannel patterning. (d) DRIE process. 
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4.3.2.2 Laser lysis chip one-step molding 

The second step was laser lysis chip molding. A novel approach for PDMS chip molding 

was developed at this stage. Compared with traditional PDMS microfluidic device 

fabrication which requires punching microchannels after PDMS is cured, a one-step 

molding was established that combines PDMS curing process and developing inlet and 

outlet channels at the same time. The one-step molding contains three parts: the molding 

base, supporting layer, and the lid. The laser lysis chip was adhered on the molding base 

then placed on the supporting layer for PDMS molding (Figure 5a). PDMS was made from 

a mixture of 1:10 curing agent to base polymer (Silicone Elastomer 184, Dow Corning 

Corp., Midland, MI), then poured into the chip mold. The final step was covered the mold 

with lid. The lid was designed with three fine alignment pin holes that perfectly match the 

microchannels on the chip. After covering up the lid, three 1/64" pins were inserted to 

develop the inlet and outlet channels while the PDMS was cured (Figure 5b). The chip 

mold was left at 65°C for 1 day then dissembled the one-step molding to peel off the cured 

PDMS laser lysis chip. A 25 mm × 25 mm micro cover glass was bonded with the PDMS 

chip with 10W RF-power plasma treatment (Harrick Plasma, Ithaca, NY) (Figure 5c).  
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(a) 

 
(b) 

 
(c) 

Figure 5. Laser Lysis Chip Molding by Using One-step Molding Process. (a) Chip 

assembling to PDMS mold. (b) Alignment lid for inlet and outlet channels. (c) Chip 

bonding with cover glass. (Not to scale) 
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4.3.2.3 One-step fluid interface 

Conventional microfluidic devices use nanoports or peek tubes with adapters for fluidic 

connection. However, it is usually labor-intensive and low efficiency to do so. Thus, 

another approach being made is a one-step fluid interface. One-step fluid interface is an 

integration development for fluidic connection which reduces the labor for tubing 

connection. The design of one-step fluid interface was followed by the location of pin holes 

on one-step molding lid. The connection process was straightforward, aligned three notches 

on laser lysis chip to three posts on the interface. Then the inlet, outlet of the laser lysis 

chip would be connected to the fluidic interface (Figure 6). The laser lysis chip was then 

secured by a sandwich structure as shown in Figure 11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. One-step Fluid Interface. Three posts (dashed arrows) on one-step fluid 

interface align perfectly with three notches (yellow arrows) on laser lysis chip. Next, all 

the inlet, outlet are aligned to the fluid interface. 
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4.4 Results and discussion 

The laser lysis chip design has been revised through a couple of different versions to reach 

the final version as shown in Figure 3. Figure 7 shows the previous version of the cage 

design. Compared with these two designs, the oil channel was moved away from the center 

cage region in order to prevent the oil from back flushing to the cage area which caused 

cross-contamination. The oil channel input in the previous design was too close to the cage 

area to contaminate the lysates of single cells. This issue has been solved after moving the 

oil channel downstream.  

 

 

 

 

 

 

There were other problems that showed up in fabrication process of the laser lysis chip: 

the first was the high-aspect-ratio of the microchannel and the cage structure due to the 

critical dimension. The other was the alignment of inlet and out channels, which was solved 

by using the one-step molding process. The one-step molding simplified the inlet, outlet 

channels development and reduced molding steps which may minimize contamination. 

Another approach is one-step fluid interface which increases efficiency and requires less 

labor.  

The critical structure of the microchannel depth and cage was fabricated using the 

DRIE equipment. However, the cage structure was under-etched due to the critical 

 

Figure 7. Previous Laser Lysis Chip Design. 
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dimension of the cage design. Figure 8 shows the cross-section view at the cage in the 

PDMS laser lysis chip. The result clearly shows that there was a height difference between 

the posts and the microchannel. This is due to the aspect ratio dependent etching (ARDE) 

effect in deep silicon etching processes (Lai, Johnson, and Westerman 2006). The ARDE 

effect is a very common phenomenon especially in many high-aspect-ratio 3D structures. 

The etch rate is limited by the trench width and the aspect ratio. Figure 9 presents the cage 

schematic and a comparison between the ideal etching and ARDE effect. Figure 10 shows 

how the ARDE effect appears on the laser lysis wafer at the cage area. This issue, however, 

did not interfere with the laser lysis process nor the cell loading or trapping processes. 

Furthermore, it brought advantages to this research, which will be described in a later 

chapter. 
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Figure 8. Cross-section View at the Cage on the PDMS Chip. 

 

     
                             (a)                                           (b)                                          (c)    

Figure 9. Schematic of the Cage Structure. (a) Laser lysis wafer after DRIE etching. (b) 

The cross-section view of the cage. (c) The cross-section view with ARDE effect. 

 

Figure 10. The ARDE Effect on the Laser Lysis Wafer.  
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4.5 Conclusion 

Several important factors are discussed in the design and fabrication part: firstly, the size 

of cell clusters are critical when designing the cage dimension. Secondly, one-step molding 

process not only solves inlet, outlet channels development issue but also minimizes 

possibility of contamination. Thirdly, one-step fluid interface provides an efficient and 

robust method for fluidic connection. At last, the high-aspect-ratio design of the cage is 

causing the aspect ratio dependent etching effect. The etch rate is delayed by narrowing the 

trench width and increasing the aspect ratio. However, this effect did not bring any 

disadvantages to this research, which will be discussed at the cell-lysis chapter.  
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5. LASER LYSIS SYSTEM CHARACTERIZATION 

5.1 Introduction 

The laser lysis system includes the syringe pump, connection tubing, chip loading platform, 

and laser lysis chip. The laser lysis chip development is discussed in Chapter 4. The chip 

loading platform was composed by the tubing system which introduced Seahorse medium 

and oil into chip, then delivered lysates to outlet (Figure 11). Since our goals are lysing 

cells, collecting and analyzing the released contents from cells. The system needs to be 

sterilized and optimized to a level in order to mitigate any contamination or RNA lost. In 

this chapter, the optimization of how to increase RNA retrieval rate will be discussed. We 

will also compare the laser lysis to the traditional chemical lysis in terms of the mRNA 

retrieval efficiency. Additionally, the validation of induced cellular stress caused by the 

laser lysis will be discovered. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Chip Loading Platform. 
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5.2 Collection optimization 

5.2.1 Sterilization  

The laser lysis system has multiple parts, including the tubing, chip loading platform, and 

laser lysis chip. The downstream RT-qPCR analysis also requires using 

different biotechnology equipment; therefore, it is very important to sterilize the whole 

system and equipment. In order to prevent contamination during RNA collection, all 

Eppendorf tubes and pipette tips were autoclaved before experiment. The 

polytetrafluoroethylene (PTFE) tubing with 1 mm OD x 0.5 mm ID (DuPont, Wilmington, 

DE) was selected for the system connection tubing due to its non-fouling surface and inert 

properties with most chemicals. The system (including loading platform and lysis chip) 

was pre-cleaned with 1 mL of RNaseZap (Ambion®) to decontaminate all the surface RNA 

and rinsed with 5 mL of DNase/RNase-free water (Invitrogen™).  

 

5.2.2 PEG treatment 

The non-fouling characteristic of the PTFE tubing can minimize the RNA adhesion. 

However, the PDMS microchannel is known to absorb biomolecules including RNA. To 

mitigate the absorption of RNA, polyethylene glycol (PEG) coating was applied on the 

surface. PEG has widely used to heighten biocompatibility and could be covalently bonded 

to surfaces to reduce RNA/protein binding (Wolf et al. 2004; Charles et al. 2009; Convert 

et al. 2012). The system was washed with 0.1% w/v PEG 5000 (Laysan Bio, Arab, AL) in 

98% ethanol, 3 mL of DI water, and finally sterilized with RNaseZap and RNase-free water.  

An experiment was designed to test the ability of PEG surface treatment to 

minimize the RNA adhesion in the laser lysis system. Two laser lysis chips were prepared 
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for the experiment: one with PEG coating and the other without treatment as a control. At 

the beginning of the experiment, the pure media was injected into the chip as a control, 

followed by the rbcL media and collected the flow-through in Eppendorf tubes for two-

step RT-qPCR analysis as discussed before. The rbcL mRNA levels were measured to 

compare the PEG coated microchannel with the non-treatment device.  

 

5.2.3 Diffusion contamination 

PEG coating can prevent RNA absorption and reduce RNA contamination on the tubing 

interface. However, another concern is the diffusion contamination between the lysates. 

The lysates contain cell released contents, which are not uniformly distributed (Figure 12a). 

Therefore, the diffusion contamination can be an issue while collecting a sequence of 

lysates from the target cells. One way to solve this issue is to wash the tube in between 

collection; however, it is time consuming and not effective. An alternative approach is to 

encapsulate the cell lysate with mineral oil right after lysis (Figure 12b), which can create 

a physical barrier in between the lysates of different cells (Figure 12c).  

We performed an experiment to test the oil separation method by analyzing the 

mRNA levels. Two syringes, one with the mineral oil and the other with the pure 

media/rbcL-spiked media, were injected into the laser lysis chip simultaneously then 

collected in the Eppendorf tubes. First, the oil and pure media were introduced into the 

device at a stable rate (5:50 µL/min). Next, switched the pure media to rbcL-spiked media 

for mRNA collection. In the end, replaced the rbcL-spiked media by pure media. Figure 

12c shows the media progression flow being separated by the oil. These tubes were 

centrifuged down to separate oil and media, and then the oil was discarded by a pipette. 
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The media was then analyzed by the two-step RT-qPCR analysis to measure the rbcL 

mRNA levels.  

 

 

 

 

 

 

 

 

 

 

 

 

5.2.4 Tubing characterization 

The amount of collection volume, which is strongly affected by the volume of laser lysis 

chip, inlet and outlet tubing, is another critical factor in the laser lysis collection. If the 

collection volume is insufficient, the mRNA within one single cell will be separately 

collected. On the other hand, over collecting will result in cross-contamination of the 

mRNA from the next single cell. In particular, this factor will greatly affect the RNA 

                 
                              (a)                                                                      (b) 

 
                                                                    (c) 

Figure 12. Schematic of Diffusion Contamination. (a) Diffusion contamination in the 

lysates. (b) Separation lysate by introducing oil. (c) Oil separating the lysate. 
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analysis result in the mixture-cell clusters experiment. This result was due to the laser 

lysing the single cells with different cell lines consecutively. Therefore, a tubing 

characterization experiment was designed to determine the correct amount for each 

collection. 

We used the same experiment setup in the diffusion contamination. The amount of 

each collection was 100 µL, with 50 µL oil and 50 µL media. After centrifuging, the oil 

was discarded and the media went through the two-step RT-qPCR process for analysis.  

 

5.3 Effciency comparison – laser lysis and chemical lysis 

The chemical lysis (lysis buffer) method has been used on cell lysis and developed for 

years (Irimia, Tompkins, and Toner 2004; Brown and Audet 2008). Several studies have 

developed different devices like microarrays or microwells to perform single-cell chemical 

lysis (Sasuga et al. 2008; Zare and Kim 2010; White et al. 2011; Jen, Hsiao, and Maslov 

2012). However, no comparison has been made between these two methods in terms of the 

mRNA retrieval efficiency. In this section, an experiment was designed to compare the 

efficiency and specialty between the laser lysis and the tradition chemical lysis at the 

single-cell level. Chemical lysis can be performed by utilizing the serial dilution method 

to isolate single cells into a 72 multi-well Terasaki plate (Sigma-Aldrich, St. Louis, MO). 

For laser lysis, a microwells device called PDMS Terasaki chip (PT chip) was designed 

and fabricated for single-cell lysis. 

The PT chip was designed and developed for performing single cells laser lysis. Figure 

13 shows the PT chip fabrication process. We used the Benchman MX CNC machine 

(Light Machines, Manchester, NH) to fabricate the master mold for PDMS molding. Next, 
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the cured PDMS chip was bonded with a 200 µm thick cover glass. The CP-D single cells 

were dispensed into each well by the serial dilution method. We used two-photon laser to 

lyse the single cell in each well. The media was collected for the two-step RT-qPCR 

analysis. 

 For chemical lysis, the CP-D single cells were dispensed into the terasaki plate with 

the concentration of one single cell per well. The lysis buffer was added to each well for 

10 min then collected for the two-step RT-qPCR analysis.  

 

 

 

 

 

 

 

 

 

 

 

5.4 Cellular stress validation 

A major concern of the single cell laser lysis on 3D cell clusters is the cellular stress 

induced by the laser. Since the single cell mRNA levels can change due to cellular stress 

or RNA degradation, we believed that the laser lysis processing time was too short to 

 

Figure 13. PDMS Terasaki Chip Fabrication. 
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induce any stress on the single cells. It is necessary to conduct an experiment to validate 

the cellular stress caused by laser lysis.  

We conducted an experiment by lysing single cells from two groups of cell clusters: 

one was CP-D clusters as a control and the other was heat shock treated CP-D clusters. The 

control group was directly loaded into the laser lysis chip after the cell culturing study as 

described before. Meanwhile, the heat shock treated cell clusters were placed on a 42°C 

heat block for 10 min then loaded into the laser lysis chip to perform lysis. Both groups 

were lysed by two-photon laser and the lysates were analyzed by the two-step RT-qPCR 

method.  
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5.5 Results and disscusion 

5.5.1 PEG treatment 

The comparison result in Figure 14 shows that the relative rbcL mRNA levels collected 

from the PEG treated and non-treated devices. The pure media was perfused into the chip 

as a control in the first tube, followed by injecting the rbcL-spiked media. In the end, the 

input was changed back to the pure media for comparison. The result clearly shows that 

the PEG treatment device resulted in significantly higher levels of rbcL mRNA during the 

whole collection when the rbcL media passed through the microchannel. It could be 

concluded that the PEG coated PDMS microchannel can minimize the RNA absorption.  

 

 

 

 

 

 

 

 

 

5.5.2 Diffusion contamination 

Figure 15 shows the relative rbcL level with oil separation method. Again, we used the 

same experiment setup with perfusing the pure media at the first tube as a control as well 

as at the end of collection. This time, we inspected the transition between the pure and 

rbcL-spiked media. The result shows that the transition was very distinct between the pure 

 

Figure 14. Comparison of Relative rbcL Level with PEG Treatment.  
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and rbcL media. The drastic increase and decrease of the rbcL level in the beginning and 

tube 13 strongly demonstrated that the mineral oil introduction helps to reduce the diffusion 

contamination. 

 

 

 

 

 

 

 

 

 

 

 

5.5.3 Tubing characterization 

The RNA collection efficiency has increased after the characterization of PEG treatment 

and oil introduction; however, the collection amount of media for each tube or for each 

lysed single cell is still crucial considering lysing single cells with different cell lines. In 

this experiment, the total volume of the laser lysis system was measured as 242 µL, the 

input and output tubing was 242 µL, and the microfluidic channel was less than 1 µL. The 

collection amount in this experiment was 100 µL for each tube contained 50 µL oil and 50 

µL media. Figure 16 shows the result of tubing characterization. The collection sequence 

followed the same experiment setup as before: collected pure media in the first tube, and 

then started to collect rbcL-spiked media at tube 2, finally switched back to pure media at 

 

Figure 15. Relative rbcL Level with Oil Separation.  
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tube 11. The rbcL mRNA level started to increase at tube 6 with the result that the collection 

amount from tube 1 to 5 surpassed the total volume of laser lysis system. Considering the 

media volume in each tube was only 50 µL, the rbcL-spiked media would flow through the 

outlet Eppendorf tube at tube 6. The result perfectly shows that how the system volume 

affects the collection volume. For the ending collection, the system was flushed with pure 

media after tube 10 which resulted in the mRNA level decreased at tube 11.  

 

 

 

 

 

 

 

 

 

 

 

 

5.5.4 Efficiency comparison - laser lysis and chemical lysis 

Two different lysis methods were applied on CP-D single-cell lysis. In order to compare 

the gene expressions across different conditions and analytical methods, the expression 

measurement needs to be normalized against a reference gene (Heid et al. 1996). In this 

study, the lysate collection was analyzed with RPLP1 and rbcL mRNA, which represents 

as the housekeeping and exogenous gene respectively. The RPLP1 mRNA acted as the 

 

Figure 16. Relative rbcL Level for Tubing Characterization.  
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lysis indicator due to the high expression level in CP-D cell line, and the rbcL mRNA acted 

as a reference gene with the result that it had constant copy number in all cells. The result 

was analyzed by ddCt method (Livak and Schmittgen 2001; Pfaffl 2001), which was 

calculated by the Ct value of the target gene against to the reference gene and then 

normalized to the calibrator. We selected RPLP1 as the target gene, rbcL as the reference 

gene, and positive control (Four CP-D cells) as the calibrator. By using the ddCt method, 

the raw data of the chemical lysis and laser lysis could transform into Ct differences for 

analysis. The ddCt results and mRNA fold change, which was calculated by 2-ddCt (Livak 

and Schmittgen 2001; Pfaffl 2001), are plotted in box chart and shown in Figure 17. Note 

that the boxes represent the interquartile range (IQR) between first and third quartiles. The 

line and dot inside represent the median and mean, respectively. Whiskers denote the 

lowest and highest values within 1.5 × IQR from the first and third quartiles, respectively. 

The result shows that the laser lysis had better RPLP1 retrieval rate for it had smaller ddCt 

value than chemical lysis. For the reason that the smaller the ddCt value, the higher mRNA 

gene expression. This indicates that the laser lysis is at least 2-fold better than the chemical 

lysis in terms of lysis efficiency. Additionally, the wide whiskers range of the chemical 

lysis also revealed that the reproducibility and specificity is relatively low compared to 

laser lysis. 
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5.5.5 Cellular stress validation 

In this study we performed the single-cell laser lysis on two groups of CP-D clusters: one 

with heat shock treated and the other without treatment as a control. The objective of this 

experiment is to inspect whether the laser lysis method induces cellular stress on non-

treated CPD clusters during lysis process and to quantify the cellular stress level with the 

heat shock treated CPD clusters.  

In order to measure the stress expression levels, the HSP70 gene was analyzed. The 

relative gene expression levels were acquired by the ddCt method (Livak and Schmittgen 

2001; Pfaffl 2001). In particular, HSP70 was chosen as the target gene and RPLP1 as the 

reference gene. Figure 18 shows the comparison of HSP70 mRNA expression levels 

between the heat shock treated group and non-treated in box plot. The difference of HSP70 

ddCt expression levels from the result is very distinct. The HSP70 mRNA was highly 

 

Figure 17. Comparison of RPLP1 mRNA ddCt Expression between Chemical 

Lysis and Laser Lysis.  
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expressed in the heat treated group than the normal group. In other words, the cellular stress 

induced by the laser was way smaller than the heat treatment. Additionally, Figure 19 

shows that there was no significant difference between the laser and chemical lysis. This 

result indicates that there was no such correlation between the laser and the cellular stress, 

which was more likely being induced by the cell preparation process or other factors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Comparison of HSP70 mRNA ddCt Expression between Heat Shock 

Treated and Non-treated Group. 

 

 

Figure 19. Comparison of HSP70 mRNA ddCt Expression between Laser and 

Chemical Lysis.  
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5.6 Conclusion 

In summary, the laser lysis system was optimized by different methods to increase the RNA 

collection efficiency as well as validate the lysis efficiency and cellular stress. The PEG 

coating and oil introduction method increased the collection efficiency by reducing RNA 

absorption and contamination in the laser lysis system. Furthermore, the tubing 

characterization prevented cross-contamination by collecting the accurate lysate amount, 

particularly when lysing single cells from mixture-cell clusters. The efficiency 

characterization between the laser and chemical lysis showed that both methods were 

capable of lysing the single cells whereas the laser lysis generated highly reproducible and 

specific results. Although there was concern about the laser-induced cellular stress, based 

on our results, it could be neglected for the insignificant HSP70 mRNA expression level. 

 

 

 

 

 

 

 

 

 

 

 

  



 50   
 

6. SINGLE CELL RT-qPCR ANALYSIS ON CP-D CELL CLUSTERS 

6.1 Introduction 

The stochastic gene expression at the single-cell level in an isogenic population is already 

a well-known phenomenon (Kelly and Rahn 1932; Maloney and Rotman 1973; Siegele 

and Hu 1997; Lidstrom and Meldrum 2003; Becskei, Kaufmann, and van Oudenaarden 

2005; Kuang, Biran, and Walt 2004; Colman-Lerner et al. 2005; Pedraza and Oudenaarden 

2005; Rosenfeld et al. 2005; Strovas et al. 2007; Strovas and Lidstrom 2009). The variation 

of cell-to-cell gene expression comes from the noise of transcriptional regulation, genetic 

factors, and intrinsic fluctuation (Banerjee et al. 2004; Colman-Lerner et al. 2005; Pedraza 

and Oudenaarden 2005; Rosenfeld et al. 2005; Newman et al. 2006; Strovas et al. 2007). 

These variances make single-cell studies much more complicated to analyze. It is more 

difficult when the study is about cell clusters owning to the complexity of cell-to-cell 

interaction inside the cell clusters. A number of devices and methods have been developed 

to study single-cell characteristics (Carlo, Wu, and Lee 2006; Chung, Kim, and Yoon 2011; 

Jen, Hsiao, and Maslov 2012; Stumpf et al. 2015; Chen et al. 2016b; Ungai-Salánki et al. 

2016). These studies were generally focused on single cells separated from bulk-cell 

populations, thus they were detecting the heterogeneity between each individual cell, not 

cell-to-cell difference on a tissue-like cell cluster. In this study, we performed single-cell 

analysis on 3D CP-D cell clusters by using two-photon laser to lyse individual single cell 

consecutively. Moreover, the lysates were collected and analyzed by the two-step RT-

qPCR method which can detect gene expression patterns at the single-cell level. The RNA 

expressions from the single cells could be traced back to their original locations on the 

clusters which may use to construct a 3D spatial mapping of gene expressions.   
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6.2 Experiment 

6.2.1 Experiement preparation 

Before cell loading, the laser lysis system was sterilized and treated with PEG coating 

(Chaper 5). The CP-D cell clusters were loaded into the laser lysis chip after cell culturing 

process (Chapter 3). In order to control the numbers of cell clusters that being loaded into 

the laser lysis chip; one or two cell clusters were picked from Terasaki plate by a pipette. 

The selected cell clusters were loaded into the chip via a microchannel inlet by the pipette 

tip (Figure 20), then the laser lysis chip was assembled with the chip holder. The chip 

holder consists of a tubing system which introduces Seahorse medium and oil into the chip, 

and then delivers the lysates to the outlet (Figure 21). The media and oil was introduced by 

a syringe pump (Harvard Apparatus, Holliston, MA) at a stable flow rate (30:1.6 µL/min) 

to wash away background signal during lysis process. Figure 21 illustrates the laser lysis 

chip working platform. Figure 22 shows the trapping results of CP-D and EPC2 cell 

clusters with different sizes and cluster formations. The results demonstrate that the CP-D 

cell clusters were easily trapped in a space between the posts and the cover glass (Figure 

22b), which was caused by the aspect ratio dependent etching effect (Chapter 4). This effect 

actually brought advantages both in trapping and lysing processes. In other words, the cells 

that are trapped in the space are easier to identify and lyse.  
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Figure 20. Schematic of Cell Loading. 

 

 
Figure 21. Laser Lysis Working Platform. 

 

   
                               (a)                                                                        (b) 

Figure 22. 3D Cell Clusters Trapping. Scale bar: 100 μm. (a) EPC2 cell clusters 

trapping in cage. (b) CP-D cell clusters trapping in cage. 
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6.2.2 Laser lysis 

First, CP-D cell clusters were loaded into the lysis chip and stabilized with media flow. 

Later, the laser lysed on one CP-D single cell with a slow flow rate (media:oil=10:1.6 

µL/min) to ensure all the contents released from the cell would be collected in the 

Eppendorf tube. After the single cell was fully lysed, the cell clusters were washed with a 

stable media rate of 30 µL/min to clean the background signal thoroughly. In the meantime, 

three 200 µL Eppendorf tubes were collected from the outlet for each lysed CP-D single 

cell. The first tube contained all the released contents from the target cell, the second and 

third tubes had only Seahorse medium. Next, the same procedure was followed to lyse 

another CP-D single cell for three tubes collection. At last, the collection was analyzed by 

the two-step RT-qPCR method with rbcL and RPLP1 mRNA. Figure 23 presents the CP-

D cell clusters lysis progression. The results show the target CP-D cell was fully lysed 

during the process and the adjoining cell remained intact after lysis (Figure 23b). 

 

 

 

 

 

 

 

 

 

 

      
                                   (a)                                                                      (b) 

Figure 23. CP-D Cell Cluster Lysis Process. Scale bar: 20 µm. (a) Target cell before 

lysis. (b) After lysis. 
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6.2.3 Two-step RT-qPCR method 

Before RNA isolation, each sample was spiked with 1 µL ribulose-bisphosphate 

carboxylase (rbcL) mRNA to validate qPCR process efficiency. A ZR quick RNA 

MicroPrep Kit (Zymo Research, Irvine, CA) was used to extract the RNA from lysate, and 

the total RNA was eluted into a final volume of 5.25 µL in Eppendorf microtubes. A 

SuperScript® VILO™ cDNA Synthesis Kit (Invitrogen # 11754050, Carlsbad, CA) was 

used to synthesize cDNA. To increase the relative concentration of single-cell mRNA for 

cDNA synthesis preparation, the total reaction volume was decreased to 7.5 µL, which 

contained 0.75 µL 10X SuperScript® III Enzyme Blend, 1.5 µL 5X VILO™ Reaction Mix, 

and 5.25 µL of eluted RNA. After cDNA synthesis, then the template was ready for the 

qPCR step. The primers for RT-qPCR were designed using Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome). To 

differentiate the PCR products from primer dimers, the primers were selected to generate 

amplicons with sizes around 170 to 220 bp. The qPCR was performed using Express SYBR 

GreenER qPCR SuperMix kits (Invitrogen, Carlsbad, CA) on an ABI StepOnePlus real-

time PCR system (Applied Biosystems, Foster, CA). The temperature for qPCR is 5 min 

at 95°C for an initial hot start, followed by 40 cycles of 15 s at 95°C for denaturing, 55 s 

at 60°C for annealing and extension, and 10 s at 82°C for signal detection. Finally, there 

was a melting curve analysis step, which was set to be the default condition based on the 

real-time PCR system. For the PCR master mix, 0.5 µL of each primer at 4 µM, 2.5 µL of 

EXPRESS SYBR® GreenER™ qPCR SuperMix Universal (2X) (Invitrogen # 11784200, 

Carlsbad, CA), 0.05 µL ROX reference dye, 0.95 µL DEPC-treated water, and 0.5 µL 

cDNA were combined. Technical duplicates of PCR analysis were performed for each gene. 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome
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The reaction mixtures without cDNA templates served as negative controls. The expression 

levels of target genes were normalized against the rbcL gene. 

 

6.3 Results and discussion 

The single-cell laser lysis analysis was performed with the CP-D cell clusters. Before laser 

lysis, five tubes of pre-lysis media were collected once the cell clusters were trapped in the 

laser lysis chip. These five tubes of pre-lysis collection presented as the background signal. 

For every lysed single CP-D cell, the lysates were collected in three 200 µL Eppendorf 

tubes. The RPLP1 housekeeping gene was used to validate the lysis result. The validation 

of single-cell lysis was established upon mRNA analysis on RPLP1 from each collection. 

All of the collections were followed through the two-step RT-qPCR procedure as discussed 

before. In order to validate the accuracy of the qPCR process, an exogenous gene, rbcL 

mRNA, was added into each sample before RNA extraction. The rbcL mRNA expression 

from RT-qPCR can verify if there was any RNA lost or contamination in the extraction or 

reverse transcription step due to either human errors or other factors. Furthermore, the 

gene-expression heterogeneity for RPLP1 could be validated by normalizing with rbcL to 

eliminate systematic errors.  

The result in Figure 24 presents the consecutive single CP-D cell lysis collection. The 

pre-lysis collection from tubes 1 to 5 showed that there were some background issues at 

the first three tubes; however, the noise went away before the lysis started at tube 6. Most 

importantly, the background noise was too trivial to affect the cell lysis. During the lysis 

collection, 13 out of the 14 cells showed positive expression of RPLP1 mRNA, which 

indicated the RNA being released from single cells by laser lysis. Additionally, the result 
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also presents that the efficiency of single cell laser lysis was greater than 90%. Within all 

14 cells, 11 cells highly expressed RPLP1 signals in the first tube and left the second and 

third in a clear background. This result suggests that the released RNA was collected into 

the first tube and no cross-contamination was found. Moreover, the heterogeneity of single-

cell gene expression was revealed by different expression levels of RPLP1 among the 13 

lysed cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Relative RPLP1 Level of Single CP-D Cell. Relative RPLP1 level 

expression from 14 CP-D cells lysis. Tube 1 to 5 were pre-lysis collection. Lysate from 

each cell was collected into three tubes accordingly with marked numbers. The red bars 

indicate RPLP1 relatively levels across all samples for all cells. 
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6.4 Conclusion 

In the experiment presented, the single cells on the CP-D clusters were lysed individually 

by using two-photon laser and then the lysates were collected into three Eppendorf tubes 

for each target cell. The collection was analyzed by the two-step RT-qPCR analysis with 

the housekeeping gene, RPLP1, to validate the lysis result. The single-cell lysis result 

demonstrates that our development was capable of not only performing single-cell lysis 

but also analyzing the lysates target with multiple mRNAs at the single-cell level. Most 

importantly, the system could perform high selective single-cell lysis without 

compromising the integrity of adjacent cells. The qPCR result also proves that the 

collection process was highly accurate and specific to distinguish the gene expression for 

each lysed cell. With this result, our development can elevate single-cell studies to another 

level, studying the single cells on 3D cell clusters or 3D tissue samples.  
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7. SINGLE CELL RT-qPCR ANALYSIS ON MIXTURE-CELL CLUSTERS 

7.1 Introduction 

The cell-to-cell communication signaling and heterogeneity gene expression are critical to 

study the tumor progression. The tumor progression and metastasis are so complicated that 

it is necessary to study the variability of gene expression patterns at the single-cell level. 

This approach will help researchers and scientists to study cancer progression and 

prognosis for premalignant conditions. This experiment is about using the laser lysis 

system to lyse mixture-cell clusters and differentiate different cell types by analyzing the 

endogenous gene. With the result that demonstrates single-cell lysis on CP-D cell clusters, 

we step forward to lyse and perform two-step RT-qPCR method to analyze different cell 

lines from mixture cell-lines cell clusters. The CP-D and EPC2 cell clusters were loaded 

into the laser lysis chip and then lysis was performed sequentially by a two-photon laser 

system. The lysates were collected for analysis with the two-step RT-qPCR method with 

MUC1, an endogenous gene highly expressed in CP-D cell line.  

 

7.2 Experiment 

7.2.1 Experiment preparation 

Different from the CP-D experiment, this time two cell clusters, CP-D and EPC2, were 

loaded separately into the laser lysis chip. As a result, their cluster formation characteristics 

had to be taken into account. Different cell lines had their physical properties of cluster 

formation. One example is that the EPC2 clusters were sturdier than CP-D, whose 

structures were more loose (Figure 22). Therefore, the difference of structure integrity 

determined the cell loading sequence. The EPC2 cluster cells were loaded into the chip 
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first followed by CP-D clusters enabling a loading sequence that would trap both clusters 

securely. This was compared with loading the CP-D clusters first, which resulted in the 

CP-D clusters most likely being pushed through the cage by the upcoming impact from 

EPC2 clusters due to their structure integrity difference.  

In addition to the loading process, the cluster formation difference also introduces 

a problem in the lysing step. It is obvious to notice that the structural difference between 

CP-D and EPC2 clusters (Figure 25). The structure of EPC2 clusters was too tight to 

identify individual cells. In contrast to the CP-D clusters, the morphology of EPC2 clusters 

appeared to be more compact and more difficult to target an individual cell. Therefore, the 

EPC2 clusters were stained with Hoechst® 33342 dye in order to distinguish single cells 

from the cell clusters. By using Hoechst dye, it is much easier to identify one single cell. 

Figure 25 shows the trapping result of CP-D and EPC2 cell clusters while EPC2 was 

stained with Hoechst.  
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                                 (a)                                                                      (b) 

 
                                (c) 

Figure 25. Trapping CP-D and EPC2 Cell Clusters in Cage. Scale bar: 100 μm. The 

blue imaging indicates Hoechst stain with EPC2 clusters. (a) Bright field view. (b) 

Fluorescence imaging. (c) Overlay imaging. 
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7.2.2 Laser lysis 

The laser lysis began after both CP-D and EPC2 clusters were loaded into the laser lysis 

chip. The lysis progression result is shown in Figure 26. The target cell was marked with 

an arrow in the figure. The post-lysis result shows that the EPC2 cluster had a crater hole 

at the target area (Figure 26d), whereas another result shows that the nuclei stain had 

vanished (Figure 26e). Both results indicate that the target cell was fully lysed. With this 

result, the single-cell lysis could be performed with one cell line (the CP-D clusters) first, 

and then collecting the lysate; following by lysing another cell line (the EPC2 clusters) and 

collecting the lysate accordingly. Figure 27 and 28 show the CP-D and EPC2 cell clusters 

lysis progression, respectively.  
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                                 (a)                                                                      (d) 

   
                                 (b)                                                                      (e) 

   
                                 (c)                                                                      (f) 

Figure 26. EPC2 Cluster Cell Lysis Process. Scale bar: 20 µm. The blue imaging 

indicates Hoechst stain with EPC2 clusters. (a)-(c) Before lysis. (d)-(f) After lysis. (a), 

(d) Target cell under bright field view. (b), (e) Fluorescence imaging. (c), (f) Overlay 

imaging. 
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(a)                                                                 (b) 

Figure 27. CP-D Cell Lysis Progression. Scale bar: 20 µm.  

(a) Before lysis. (b) After lysis. 

 

 
                              (a)                                                                            (b) 

Figure 28. EPC2 Cell Lysis Progression. Scale bar: 20 µm.  

The blue imaging indicates Hoechst stain with EPC2 clusters. 

(a) Before lysis. (b) After lysis. 
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7.2.3 Laser lysis on different tissue samples 

In this experiment, different samples other than the cultured tissue were lysed by the laser 

lysis system. Two samples were used in the laser lysis chip: the mice intestine formalin-

fixed paraffin-embedded (FFPE) samples and the patient derived BE tissues.  

The FFPE samples were de-paraffinized first then fixed in between two cover slips 

for lysis; therefore, there was no outlet path for lysate collection. Figure 29 shows the lysis 

progression of FFPE samples in the dehydrated condition. The dehydration step was 

performed by soaking the whole sample in ethanol for staining purpose. Next, Figure 30 

shows the lysis progression of FFPE samples without dehydration process. The samples 

were immersed in 1X PBS buffer for 2 min instead of performing a dehydration step.  

The patient derived BE tissues were loaded into the laser lysis chip using the same 

method as discussed before. Figure 31 shows the lysis process of the patient derived BE 

tissues. 
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(a) 

 
(b) 

Figure 29. Laser Lysis on the Dehydrated FFPE Samples.  

(a) and (b) indicate different locations on the FFPE sample. 
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(a) 

 
(b) 

Figure 30. Laser Lysis on FFPE Samples with Hydration Treatment.  

(a) and (b) indicate different locations on the FFPE sample. 

 

  

Figure 31. Laser Lysis on Barrett’s esophagus Tissue Samples.  
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7.3 Results and discussion 

7.3.1 Mixture-cell clusters 

The mixture-cell clusters single-cell lysis followed the same experimental method as 

single-cell lysis on CP-D (Chapter 6) with the only difference being the loading process as 

discussed before. We started to lyse one cell on each cell line at a time and collected the 

released contents accordingly into the Eppendorf tubes. By collecting 200 µL of lysate, all 

the cell contents were collected. Next, the collected lysate was immediately stored at 

− 80°C in case of RNA degradation. At last, the collection was followed by RNA 

purification on the same day of laser lysis to minimize the possibility of degradation, 

followed by the reverse transcription reaction to cDNA template for quantitative PCR 

analysis.  

The single-cell laser lysis spatial recognition with their qPCR results are shown in 

Figure 32 and 33.  To begin with, the target CP-D cell was lysed (Figure 32a) and the lysate 

was collected concurrently. Next, the collection was analyzed by the two-step RT-qPCR 

method with the MUC1 mRNA. The MUC1 mRNA expression levels were quantified by 

the cycle threshold (Ct) value, which is defined as the number of cycles required for the 

fluorescent signal to cross the threshold (Figure32b, 33b). Furthermore, the mRNA 

authenticity could be validated by the melt curves (Figure 32c, 33c). The target EPC2 cell 

lysis progression and mRNA results are shown in Figure 33.  It is very clear from the 

amplification plot that the CP-D lysate had a stronger expression level than EPC2 in terms 

of the MUC1 mRNA. The melt curves results show even more distinct difference that there 

was no signal on EPC2 whereas CP-D had spiked signal expression. All data were analyzed 

and plotted as the box plot in Figure 34.  
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(a) 

 
                                          (b)                                                                   (c) 

Figure 32. CP-D Cell Lysis Spatial Mapping with mRNA Expression.  (a) The CP-D 

cell lysis progression with spatial location. (b) The CP-D cell mRNA expression signals 

in amplification plot. (c) The CP-D cell mRNA signals in melt curve. 
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(a) 

 
                                         (b)                                                                  (c) 

Figure 33. EPC2 Cell Lysis Spatial Mapping with mRNA Expression.  (a) The 

EPC2 cell lysis progression with spatial location. (b) The EPC2 cell mRNA expression 

signals in amplification plot. (c) The EPC2 cell mRNA signals in melt curve. 
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The mixture-cell clusters single-cell lysis result is shown in Figure 34. Three groups: 

CP-D, EPC2, and pre-lysis collection are shown in Figure 34. The pre-lysis collection was 

collected before laser lysis which could indicate as the background signal. The result was 

analyzed by ddCt method (Livak and Schmittgen 2001; Pfaffl 2001), which uses the Ct 

value of the target gene against the reference gene then normalizes to the calibrator. In 

detail, the MUC1 mRNA was selected as the target gene, RPLP1 as the reference 

(housekeeping) gene, and four CP-D cells as the calibrator (positive control). By analyzing 

with the ddCt method, the raw data of CP-D and EPC2 could standardize MUC1 with 

RPLP1 in terms of Ct difference, then normalize with positive control to compare MUC1 

expression between CP-D and EPC2. This method could calibrate MUC1 from two 

different cell lines; first to minimize systematic errors due to differences between each cell 

line, and then to normalize with positive control for comparison in between.  

The result in Figure 34 is presented in a box plot. Note that the boxes represent the 

interquartile range (IQR) between first and third quartiles. The line and dot inside represent 

the median and mean, respectively. Whiskers denote the lowest and highest values within 

1.5 × IQR from the first and third quartiles, respectively. The result clearly demonstrates 

that the significant difference between CP-D and EPC2 is in terms of the ddCt value, 

indicating that MUC1 expression was higher in CP-D compared to the EPC2 cell line which 

corresponds to bulk-cell expression. For the ddCt value of pre-lysis collection, the 

influence was too trivial to affect CP-D and EPC2. Furthermore, the result also reveals 

cell-to-cell gene expression stochasticity from the widely distributed whiskers range 

among CP-D and EPC2 cell lines. Most importantly, the result shows the difference in 

median value of CP-D and EPC2 was about 4 which is consistent with the result from bulk-
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cell analysis (Table 1), indicating that our system can not only perform laser lysis at a 

single-cell level with different cell lines, but also maintain high accuracy and specificity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 34. MUC1 ddCt Expression. Boxes on the graph represent corresponding ddCt 

and their error range. ddCt was calculated relative to respective controls (RPLP1 gene 

and CP-D bulk cells).Graph showing MUC1 ddCt expression between CP-D, EPC2 

samples, and pre-lysis collection (background). This graph shows the CP-D cell line has 

higher expression of MUC1 in terms of lower ddCt value while EPC2 has lower MUC1 

expression leads to larger ddCt. 
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7.3.1.1 Power analysis 

Power analysis is needed to determine if the size of the collected samples is enough to 

ensure the results reach a certain level of power. Additionally, the significance of the results 

can be revealed by power analysis.  Firstly, the bulk cell data (Table 1) was used to 

determine the estimate sample size required to detect a certain degree of confidence. 

Secondly, the power was analyzed with our data from mixture-cell clusters. G*Power (Faul 

et al. 2007), a flexible statistical power analysis program was used to analyze our data.  

First, with the data from Table 1, the MUC1 endogenous gene expression patterns 

were separated into two groups, CP-D and EPC2. By calculating their means and standard 

deviations, the effect size was determined. The alpha (Type I error) was set as 0.05 and 

power as 0.95 indicating very powerful experiment. After calculation, the estimate sample 

size was 5 to reach this significance (Figure 35).  

Second, analysis was performed on the data from mixture-cell clusters. The input 

parameters were data sample sizes, and CP-D, EPC2 data means and standard deviations. 

Again, we kept alpha (Type I error) at 0.05 then calculated the significance of current 

parameters. The results show (Figure 36) that the measured sample sizes were large enough 

to determine the difference between CP-D and EPC2 cell clusters. In fact, 10 successive 

data samples are enough to ensure an acceptable experimental result (Figure 37).  
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Figure 35. Power Analysis from Table 1.  

 

 
Figure 36. Power Analysis from the Results of Mixture-cell Clusters. 
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Figure 37. Power as a Function of Sample Size. 
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7.3.2 Laser lysis on FFPE and BE samples  

The FFPE lysis result shows that the cell-to-cell boundaries were easy to identify; however, 

the laser could not fully lyse dehydrated FFPE samples (Figure 29). It is difficult to perform 

laser lysis on the rocklike structure due to the dehydration condition. Figure 30 shows the 

lysis result of the FFPE sample without the dehydration process. One target was fully lysed 

(Figure 30a), while the other was just separated apart (Figure 30b). In brief, two problems 

need to be solved in the FFPE sample lysis. Firstly, the lysates could not be collected 

considering there was no outlet collection path in this experiment design. The FFPE 

samples could not be loaded into the laser lysis chip due to the structural difference. 

Secondly, most of the RNA degraded in the FFPE samples due to the modification during 

fixation and de-paraffin processes (van Beers et al. 2005; Ahlfen et al. 2007; Li et al. 2007; 

Abramovitz et al. 2008). In general, it will be more difficult to perform laser lysis on the 

FFPE sample and analyze the lysates at the single-cell level.  

The lysis progression of the patient derived BE samples is shown in Figure 31. The 

major difference between lysing the cultured cell line and the patient derived tissue is the 

gluey substance called mucus in the cell tissue. The mucus is a sticky, gelatinous substance 

lines in the lungs, throat, mouth, and esophagus. Mucus is secreted by the mucous 

membranes and its thick consistency impedes the lysis process. As the result shows, the 

remaining part of the lysed cell and substances released from the cell were trapped in the 

thick mucus after cell lysis (Figure 31). Different modifications have been used to eliminate 

this issue; however, none of them are effective. In order to perform laser lysis on human 

tissue samples or other biology tissues, it is necessary to overcome this issue. 
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7.4 Conclusion 

We lysed multiple cell lines (CP-D, EPC2) cell clusters simultaneously in the laser lysis 

chip and analyzed them with a specific endogenous gene, MUC1, which was highly 

expressed only in CP-D cell type. The EPC2 clusters were stained with Hoechst in order 

to distinguish cell lines during the lysis process. The collection was analyzed by using the 

two-step RT-qPCR method with MUC1 mRNA, which only highly expressed in the CP-D 

cell line. For this reason, it could differentiate these two cell lines. The qPCR results show 

that there was a huge difference of MUC1 expression between the CP-D and EPC2 

indicating that our development is capable of lysing different cell types and discriminating 

them with endogenous gene expression at the single-cell level. Additionally, the gene 

expression of the single cells could be traced back to their original 3D spatial locations thus 

could conduct a 3D gene expression mapping on the cell cluster. 

Two different samples: the FFPE and BE samples were lysed in other experiments. The 

laser lysis was not effective on the FFPE samples due to the fixation and de-paraffinization 

process resulting in a rocklike surface. And the laser lysis chip was not compatible with 

the FFPE sample. As a result, the lysates of the FFPE samples could not be collected for 

analysis. Furthermore, the fixation and paraffin embedded process could damage the total 

RNA integrity of the samples. The lysis result of the BE samples shows the mucus had 

stopped the cells and trapped the released contents. 

In summary, results from this study will lead to a greater understanding of cell clusters’ 

gene expression at the single-cell level, and demonstrate laser lysis for a variety of 

applications.  
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8. CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions and contributions 

Based on the results of my research, the major findings and contributions are: 

1. A laser lysis chip was designed and developed for performing laser lysis on 3D cell 

clusters at the single-cell level. The laser lysis chip was built by using soft 

lithography processes and fabricated with PDMS material, which is commonly 

used in laboratories. In particular, the laser can access through the 200 µm thick 

cover glass to perform laser lysis. This chip consists of a) a cage structure for 

trapping cell clusters; b) microfluidic channels for media and oil perfusion. The 

media flow carries the released contents from an individual cell while the 

introduced oil encapsulates the lysate into segments to prevent contamination. 

More importantly, with this chip, we can perform laser lysis not only on single cell 

cluster but multiple cell clusters with different cell lines simultaneously. 

2. Single-cell gene expression patterns in situ in 3D cell clusters have been revealed. 

We have demonstrated that the laser lysis system can trap cell clusters and lyse 

individual cells sequentially. The collected lysates are conducted by the two-step 

RT-qPCR method for multiple gene expression analysis with single-cell resolution. 

This approach allows single-cell analysis to analyze cellular gene expression and 

trace back to its original 3D spatial location. These different gene expression 

patterns are related to cellular interaction, morphology, and microenvironment. 

Moreover, the different gene expression levels indicate obvious cell-to-cell 

heterogeneity and thus again emphasize the importance of single-cell analysis.  
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3. Single-cell gene expression patterns were used to differentiate different cell lines 

in mixture-cell clusters. Mixture-cell clusters were trapped and serially lysed at the 

single-cell level from one cell type to another followed by RT-qPCR analysis with 

the endogenous gene, which is only highly expressed in one cell line. Significant 

patterns were found in endogenous gene expression between two cell lines, which 

indicates that the laser lysis system is capable of lysing multiple cell lines at the 

single-cell level and maintaining its high accuracy and efficiency. Using this 

approach, the cell-to-cell heterogeneity can be studied not only in one single cell 

line, but with multicellular systems. This approach can therefore apply to biological 

tissue samples to study cell-to-cell communications between cancer cells and 

normal samples.  

4. Several characterizations of laser lysis have been made. The laser lysis system was 

validated by comparing the efficiency with conventional chemical lysis; moreover, 

the laser-induced cellular stress was analyzed and quantified. The result showed 

laser lysis had higher mRNA expression and less variances, which indicates it has 

better signals retrieval rate and higher accuracy than chemical lysis. Next, the 

cellular stress result was conducted by comparing heat-treated samples to control 

samples. The result indicated that cellular stress induced by laser lysis was 

negligible compared to heat-treated samples. Other than that, the laser lysis chip 

preparation and collection processes had also been optimized for a) preventing 

cross-contamination; b) higher RNA retrieval rate.  

5. A variety of applications for laser lysis were demonstrated: BE tissue samples from 

Mayo clinic, and the mice intestine FFPE samples were lysed. 
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With these results, and multiple projects that I have made contributions to, one 

manuscript is in preparation for publication, one conference paper was published, and I am 

an author in several co-author publications. All of them are listed below.  

1. Kuo-chen Wang, Ganquan Song, Yanqing Tian, Shih-Hui Chao, Hong Wang, 

Deirdre Meldrum. Micropatterning of Cells into Microwells for Metabolic Profiling. 

IEEE EMBS Micro and Nanotechnology in Medicine Conference. 2014. 

(Conference) 

2. Single cell RT-qPCR analysis in situ of 3D cell clusters. In preparation.  

Co-author:  

1. Ganquan Song, Kuo-chen Wang, Benjamin Ueberroth, Fred Lee, Liqiang Zhang, 

Fengyu Su, Haixin Zhu, Qian Mei, Shih-hui Chao, Laimonas Kelbauskas, Yanqing 

Tian, Hong Wang, Deirdre Meldrum. Single cell metabolic profiling using 

multiplexed, photo-patterned fluorescence sensor arrays. 18th International 

Conference on Miniaturized Systems for Chemistry and Life Sciences. Microtas, pp. 

884–886, 2014. (Conference) 

2. Jordan Yaron, Jieying Pan, Tejas Borkar, Kristen Lee, Kuo-Chen Wang, Clifford 

Anderson, Honor Glenn, Deirdre Meldrum. Automated Cell Counting in a High 

Density, Polymer-Coated, Live Single Cell Sandwich Microarray. Microscopy and 

Microanalysis, vol. 20, no. S3, pp. 1438–1439, 2014. (Conference) 

3. Laimonas Kelbauskas, Rishabh Shetty, Bin Cao, Kuo-chen Wang, Dean Smith, 

Hong Wang, Joseph Chao, Brian Ashcroft, Margaret Kritzer, Honor Glenn, Roger 

Johnson, Deirdre Meldrum. Computed tomography for quantitative imaging of live 
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cancer cells with isotropic 3D spatial resolution. Engineering and Physical 

Sciences in Oncology. 2016. (Poster) 

4. Laimonas Kelbauskas, Rishabh Shetty, Bin Cao, Kuo-chen Wang, Dean Smith, 

Hong Wang, Joseph Chao, Brian Ashcroft, Margaret Kritzer, Honor Glenn, Roger 

Johnson, Deirdre Meldrum. Computed tomography of living single cells in 

suspension to achieve isotropic 3D spatial resolution for orientation independent 

measurement. Under review. 

 

8.2 Future work 

Although I have built a solid foundation on the development of the laser lysis system and 

all the goals have been accomplished, there is still room for improvement. To give one 

example, a more efficient loading method is needed. Currently, the loading method is direct 

loading from a pipette tip manually. However, it may induce stress to cells and cause 

background issue. Its efficiency and accuracy is acceptable but it still has potential issues. 

A potential solution may be to use a glass capillary tip or a pressure driven flow to enhance 

the efficiency while reducing human errors and stresses to cells.  

The other challenge is background signals. There are many causes to introduce 

background signals. For example, an increment of flow rate in order to shorten operation 

time will lead to cells being pushed severely against the cage and squeezed through the 

cage into the downstream flow. In addition, those cells might be trapped in dead volume 

inside the tubing system. For instance, the lengthy tubing will create dead volumes and 

micro vortex regions which trap escaped cells and then release at some point in terms of a 

continuing background noise. Reducing flow rate and optimizing the tubing system as well 
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as the collection platform can be useful to keep cells from passing through the cage and 

minimize dead volumes at the same time. Additionally, experiment time can be reduced by 

improving the tubing system. 

Finally, our system could be integrated with Fluidigm. Although the single-cell RT-

qPCR method can detect several genes expression at a time, multiplexing measurement is 

still needed on the long run. By conducting the PCR step with Fluidigm, our throughput of 

analyzed genes can be significantly increased.  

A future proposed development is to design a Micro Total Analysis System (MicroTAS) 

for single cells laser lysis on 3D cell clusters. The ultimate goal will be to integrate the 

current laser lysis chip into one on-chip micro-PCR system.  However, this will require 

integration and optimization of the current development. A microchannel for RT-mix 

reagent can be introduced downstream. The lysates will be mixed with reagents then 

encapsulated by oil into segments. Next, the outlet connection will be re-designed to 

integrate with 96-well plates. By using automation technologies, the loading process can 

automatically dispense into each well. Each well will have the precise amount of 

encapsulated droplets correlated to one cell. Additionally, the chip layout will be re-

designed to shorten the downstream length enabling a faster collection process, decreasing 

reaction volumes, and minimizing the possibilities of bubble generation. Figure 38 depicts 

a proposed future approach for Micro-PCR on-chip development.  
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Figure 38. MicroTAS Development. Introduce RT-mix microchannel for performing 

RT step on-chip. The oil will encapsulate released RNA with RT-mix then dispense into 

96-well plate for PCR process. 
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