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ABSTRACT 

Passwords are ubiquitous and are poised to stay that way due to their relative usability, 

security and deployability when compared with alternative authentication schemes. Unfortunately, 

humans struggle with some of the assumptions or requirements that are necessary for truly 

strong passwords. As administrators try to push users towards password complexity and 

diversity, users still end up using predictable mangling patterns on old passwords and reusing the 

same passwords across services; users even inadvertently converge on the same patterns to a 

surprising degree, making an attacker’s job easier. This work explores using machine learning 

techniques to pick out strong passwords from weak ones, from a dataset of 10 million passwords, 

based on how structurally similar they were to the rest of the set. 
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CHAPTER 1 

INTRODUCTION 

A 16-character password with uppercase characters, lowercase characters, numbers, 

and punctuation marks should be "secure" in that it would take about 1 trillion years to crack 

using current computing technology and paradigms [1]. Unfortunately for this model, humans can 

remember roughly 7 pieces of information at once [2]. This means that there is a fundamental 

disconnect between the required entropy for truly secure passwords and the entropy the human 

brain can keep track of. Naive password strength checkers, meaning those looking only for 

diversity in character sets and length, may not be able to discern the usable but low-entropy 

password of "PassWord1234567!" and the unusable but truly computationally secure "amal-

Xd8m*na7rYb" [3]. 

This is all the more troubling because when forced into using long computer generated 

passwords with real randomness, the average user is likely to write it down and leave it lying 

around for an attacker with physical access to use, which would obviously undermine the security 

of this type of password. An alternate coping strategy is to come up with one password perceived 

to be very strong and reuse it for every new account; this makes their high-value password even 

more valuable to an attacker and only needs to be compromised once to be compromised 

everywhere [4]. The passwords humans come up with and remember when given these length 

and character set diversity requirements end up conforming to a shockingly small set of patterns 

[5], which means that attackers have to simply add these patterns to their existing dictionaries to 

continue to easily crack a majority of users' passwords [6] [7] [8] [9]. A naive password strength 

meter, working from a checklist of requirements, may encourage users to create passwords that 

are harder for them to remember yet only a multiplicative increase in time for attackers to crack, 

instead of the exponential increase in attacker difficulty that would be desired in exchange for this 

additional cognitive load on the user. A password strength meter that could recognize and learn 

these patterns that emerge could be a valuable tool to combat this problem. 
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Background and Motivation 

Passwords have some clear positives in their favor that imply that they will continue to 

annoy users indefinitely. For example, passwords are the best way humans currently have 

implemented for shared secrets, which is a concept that underpins both cryptography and 

authentication. In fact, of authentication schemes either proposed or implemented in at least 

small-scale, passwords are something of an unbeatable triple threat: they are simultaneously 

secure, usable and deployable. No other proposed mechanism can meet, let alone beat, them in 

all three categories simultaneously. The often overlooked aspect when proposing alternative 

authentication schemes is deployability: passwords are essentially free to implement and support, 

while biometrics, hardware tokens or graphical patterns require that each user have specialized 

equipment in order to authenticate to the service. Few services can get away with this kind of 

expensive change [10]. Passwords have an edge in that they should be user memorable 

because, in general, they are user-created. It is intuitive that the easiest string for someone to 

remember is a string that was composed by that person. 

Unfortunately, passwords also have their challenges, many of them owing to the limits of 

human cognition. As alluded to above, there is a constant struggle between usability and security. 

Sometimes a proposed so-called improvement can even reduce one or both instead [11]. 

One 16-character random password already unnaturally strains the human brain, but 

there is evidence that humans can be trained to recall such strings. An experiment used spaced 

repetition to successfully teach strings made up of either six words or twelve characters to a set 

of users. The twelve characters had meaning for the researchers but likely appeared to be 

random to the subjects, so this technique might be able to be extended to sixteen random 

characters [12]. If everyone only needed a single password, this might be tenable; however, the 

actual demands on users far, far exceeds that. One 2007 study found that participants accessed 

an average of 25 accounts in a six-month window, and logged into eight of those per day [13]. 

Another study found that their average user had 27 accounts, accessing 11 per week; these 

participants reported having “between 2 and 15 unique passwords, with a median of 5 

passwords” [4]. By necessity, assuming these two studies hold up when being generalized to the 



 

 3 

rest of the population, this also means that the average user must be reusing passwords across 

services [14]. Your author took a few minutes to get a rough count of the demands on her 

memory and cognition by services requiring log-ins, and stopped counting after identifying over 

50 unique services that require a password, with access frequencies of those services varying 

between multiple times each day to less than once per year. Humans might be able to be taught 

a rarely created but often used 16-character password, but only the most exceptional would be 

able to both recall and differentiate dozens of such passwords. 

An interesting problem with passwords is that of poor internationalization. The Internet is 

implemented in languages and protocols that grew overwhelmingly out of the English language. 

This legacy carries on such that many password fields, even on non-English sites, are not set up 

to accept non-Latin characters, such as those that may be used by Mandarin or Cantonese 

speakers or speakers of languages using the Cyrillic or the Hebrew alphabets. Even alphabets 

that include accented Latin characters may not be fully supported, hampering many other native 

speakers of such languages [3] [15]. In these cases, it appears that patterns using numbers, such 

as dates and, in Chinese, rough transliterations become overwhelmingly popular. Very simple 

English phrases also become overrepresented in these sets, above even their overuse in English  

[16]. 

Users converge in not only the coping strategies discussed above, but in common 

password use and even password creation patterns and mangling rules [6] [17] [18] [19]. In some 

password dumps, the most common password in the set is used by nearly 5% of the accounts  

[16]. Over a quarter of users in one study in a condition where they needed to include a symbol 

simply added an exclamation point to the end of the password they had just attempted to submit  

[20]. 

Without explicit discussion on the point, users end up with the same mangling patterns in 

password creation and even semantically similar starting word sets, passphrase grammar, and 

even character choices. Generally, lowercase characters are most common, followed by digits; 

users rarely use uppercase or symbol characters unless required [20]. Users, as a population, 

have surprisingly stable character case placement preferences: an uppercase character is much 
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likelier to be the first character than any other character, while numbers and symbols are 

overrepresented as the last one or two characters [17]. Combinations of these preferences give 

rise to convergence on patterns [19]. Within character sets, there is convergence in individual 

character choices: for example, a digit is most likely to be a ‘1’ and some symbols are overused, 

like ‘.’, ‘_’ and ‘!’ [17]. Semantically, root words found in passwords conform to a small set of 

themes, such as love, animals, names, places, sexual terms and profanity [7] [20]. Naturally, this 

also means that the same root words end up being used in multiple passwords, which is a source 

of password collision. Passphrases, being longer than passwords, may seem stronger, but 

evidence shows that word frequencies in both passphrases and long passwords are different than 

they would be in English but are consistent across these populations [7] [21].  

Coping strategies involving direct or modified reuse make this convergence problem 

worse and also effectively weaken a user’s password for every new service it is used on. Reuse 

can threaten even the strongest of passwords, particularly when considering attacks other than 

online or offline guessing attacks, such as keylogging and phishing. In this case, no matter how 

well-protected a great password is on many services, compromise once on any service could 

compromise every service [14]. On a related note, accounts utilizing weak passwords can only be 

protected by service administrators so much; even when they’re properly salted and hashed, they 

may be cracked offline from the hash or simply guessed in an online guessing attack [19]. An 

administrator’s best defense against this at least partly involves keeping those obvious but 

popular passwords from being used by any account on their system. 

This convergence makes an attacker’s job easier. An intelligent attacker will start with the 

most common passwords used on any site that doesn’t blacklist them, which can be found in lists 

all over the Internet [22]. When investigating new breaches, the same passwords are found over 

and over again, used by many users at the same service. In addition to those identical 

passwords, predictable patterns that the users have converged upon can be seen in the data. 

These patterns will definitely be leveraged by savvy attackers trying to better tailor their attacks 

for passwords that they have high confidence will appear in any given password database; they 
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should be similarly leveraged by researchers and administrators to help users away from these 

passwords through blacklisting and intelligent strength meters [6] [19]. 

There are two tragedies of the commons at work in the password ecosystem as it stands 

today. This idea refers to a situation in which there is a shared resource and incentives of those 

using it such that they gain from overuse, until the resource is depleted for all users. The 

traditional tragedy of the commons involves a common cattle grazing ground, with the restriction 

that, while farmers can have their cows graze for free, they can each only have one. From each 

farmer’s perspective, if he can sneak an extra cow in, his profits will double, while only negatively 

affecting every other farmer by what seems like a surely negligible amount – what’s one more 

cow in a herd? Unfortunately for the savvy farmer trying to get ahead, every other farmer has the 

same set of incentives, so many others add a second cow, and maybe even a third, until the 

common land becomes overgrazed and is not able to support any cows, leaving both the farmers 

who were following the community rules and the rule-breakers with no cows and no profits. The 

shared resources in the password ecosystem that are being tapped too aggressively are user 

memory and user time.  

User memory is simultaneously treated as limited yet inexhaustible. Few account registration or 

password reset pages require passwords containing dozens of characters, because that seems 

obviously absurd to require users to remember. Of course, even sites that do not really need 

users to strongly authenticate their identities may derive some small benefit from it, like better 

user tracking, and what is just one more password for the average user to remember when it can 

do so much better for the targeted advertising on the service? Bonneau and Preibusch segment 

services into high security services and low security services. High security services have reason 

to have users strongly authenticate and have strong security, in general, as a central requirement 

to their business. Examples of high security services could be online banking services, email and 

e-commerce sites with significant repeat business and therefore reason to not only process but 

also to store sensitive personally identifiable information of users such as legal names, addresses 

and credit card numbers. Low security sites, on the other hand, could be gimmicky single-use 

apps, news sites, and blogs that have the public sign in to comment or otherwise interact with the 
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content. There is little reason as far as the user is concerned for low security sites to require 

passwords of any kind, and they may not protect user data, including passwords, as stringently 

as a high security site would. And, as the low security site may think, what is the harm in just one 

more password for each user? Meanwhile, from even security-conscious users’ perspectives, 

fatigue from trying to create and remember unique passwords for every service they interact with, 

even incidentally, eventually pushes them into only slight mangling or even simply direct reuse 

across services. From the attacker’s perspective, low security sites may be poorly defended 

compared to high security services, but may contain passwords that are the keys to high security 

accounts. In this scenario, every actor is acting completely rationally, but users lose. The authors 

recommend a somewhat counterintuitive but very interesting partial solution to this equilibrium: 

low security services should require weak passwords. They will still have most of the benefits of 

having users authenticate for tracking purposes with perhaps a slight loss in accuracy due to 

compromised accounts, but users will not be able to reuse passwords across sites with different 

security postures and requirements, so there should be a net harm reduction in the ecosystem as 

a whole [23] [24]. 

It has been argued that user time is similarly not accounted for properly either. In an 

analysis delightfully titled “So Long and No Thanks for the Externalities,” the writer shows that 

users are acting completely rationally when they choose weak passwords or reuse passwords 

across sites. The common wisdom is sometimes that user education is required to make users 

understand why strong passwords are needed, and why the definition of “strong password” is so 

hard to pin down; alternately, researchers simply give up and say that users act irrationally and 

against their best interests. In the work referenced, Cormac shows that because the monetary 

cost of breaches is still fairly low and as a rule, financial institutions with deep pockets have been 

set up to absorb almost all of this cost, the economy as a whole is harmed more by administrator-

enforced password difficulty or complexity increases requiring small additional amounts of user 

time when logging in than the poor passwords and resulting breaches [25]. 

Some grand problem statements can be derived from this broad, systems-view literature 

review. For example, how can the problems of the password ecosystem be ameliorated? If that is 
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too expansive a scope, it can be narrowed towards fixing the problems inherent in a single 

service or system’s passwords. There is evidence that strength meters can affect this positively: 

in the presence of a good strength meter, users choose to create longer and more complex 

passwords, even though they are not being required to [11] [26]. Narrowing the scope even 

further, how can a password strength meter algorithm be designed to learn and thus discourage 

common patterns, based on what it has seen in blacklisting and in practice? This question 

strongly implies an online machine learning algorithm, provided with good training data to start 

but also the ability to incorporate data as it is gathered. Two such algorithms are Random Forest 

and K-Means Clustering, but there is still a gap between this identification of a possible solution 

and its successful implementation. Random Forest requires labeled training data and K-Means 

Clustering requires the number of clusters to be defined ahead of time. What would these labels 

be, and how are they derived? How many clusters might there be, and what does identifying the 

cluster a candidate password belongs to say about the strength or weakness of that string as a 

password? 

Problem Statement 

This thesis investigates the application of Kernel Density Estimation (KDE) to explore the 

clustering of passwords in the space whose dimensions are defined by structural features 

extracted from each password, which are transformed and down-selected using Principal 

Component Analysis (PCA). The questions at the outset were those of precision, and also how 

this data pipeline would scale up if it were to be used as a part of a deployed strength meter. 

Evaluating accuracy, as opposed to precision, would require some ground truth understanding or 

definition of what makes a strong password; this remains something of an open question to fully 

define concretely, which is why precision is the chosen metric for some notion of correctness for 

this work. 

Related Work 

This project is in line with but set apart from current research on passwords. Other 

researchers are using Markov models to enhance password cracking tools and estimate the 
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number of guesses before a proposed password would be cracked [27] [28] [29] [30]. This project 

investigates using a broader set of features with the goal of creating a model that can see if a 

machine learning model can pick out inputs that "look like" previous passwords it has seen as 

well as recognize outliers, which should be stronger passwords that would not be easily broken 

from an attacker with knowledge of how passwords tend to be composed. Work has been done 

fairly exhaustively investigating algorithms behind strength meters and revealed that they need 

more deliberate design decisions and standardization across them [3]. This work is intended to be 

a move in the proposed direction. A peer pressure meter, showing users how strong their 

password was in comparison to previous users, was shown to influence users to create better 

passwords similarly to a traditional, absolute-strength meter, but without the potential risk 

communication problems that an absolute meter may cause [26]. This project is effectively a step 

towards a more comprehensive peer pressure meter, and could ultimately adopt similar 

messaging. A strength meter using a Support Vector Machine (SVM) has been developed and 

implemented into a framework [31] [32]. An SVM is a supervised learning technique that requires 

labelled data; it is not completely clear where they derived their labels from, and so it seems as 

though they are using the SVM to approximate another strength meter. This work investigates a 

different, unsupervised learning algorithm.  
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CHAPTER 2 

APPROACH 

This thesis investigates leveraging machine learning to, in the future, create a flexible 

password strength meter algorithm that can more accurately reflect the strength of a proposed 

password by taking not only length and diversity of character sets but also patterns it has seen 

into account. A similar password structure implies a similar pattern used in creation. Structure 

refers to the coarse case composition of the password. A pattern is the human strategy in 

creating the password. Similar passwords should be nearer to each other in the password space 

defined by the features used in this work. To illustrate these terms, take the passwords 

“Password1;” and “Dictionary5!”. They conform to the structure of an uppercase character, 

followed by a string of lowercase characters, then appended with a number and a symbol. They 

were both clearly created by taking the same pattern, which is taking a common word, capitalizing 

the first character, adding a single digit and a symbol to the end. An approach that matched 

password case compositions too finely could miss the identical strategy used in their generation 

because they aren’t the same length. 

Statically blacklisting common words and patterns is one of the most effective measures 

an administrator can take to push users into making more secure passwords [33]. This is 

encouraging, but there is the potential of a blacklisting-and-reconverging arms race between 

administrators and users; the inadvertent convergence on the relatively small number of patterns 

humans choose without coordination when creating passwords under similar conditions suggests 

that such convergence may occur again if barred from the current handful of common patterns 

[18]. Additionally, a static blacklist is most effective against the developers who created it; their 

blind spots may let other weak, common passwords or substrings through. 

This thesis aims to start to create a set of tools that can dynamically nudge users away 

from the common patterns to encourage a broader diversity of patterns, which would then also 

make it less and less feasible for attackers to crack passwords by predicting common patterns. If 

this reconvergence occurs again, a constantly-training, or online, machine learning model could 

continually encourage users to move onto new patterns. Encouraging users to fill 
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underrepresented sectors of the potential password-space would make it less tractable for 

attackers to discover and incorporate every pattern into their dictionaries. Regarding the usability 

aspect of this strategy, as users would be creating their own passwords still, instead of relying on 

purely random computer-generated passwords, so the hope would be that any given user would 

be able to come up with something that has up to 7 pieces of entropy for them yet looks to others 

as if it has greater entropy. 

Collecting significant human interaction with the machine learning model is beyond the 

scope of this proposed thesis, and has been set aside as future research. Instead, the actual 

password data used will be a disclosure of 10 million passwords released by security researcher 

Mark Burnett in February 2015 [34] [35]. This is to balance data validity and the ethical concerns 

of the author. Obviously, passwords look more like passwords than any other possible category 

of strings, so research on convergence on the patterns underlying password creation can only 

really be performed on actual passwords. Generally, this type of research makes use of password 

dumps from various data breaches, such as Rockyou or Myspace [3] [8] [9] [17] [28] [30] [36]. 

This is common practice, with the ethical justification being that no additional harm is coming to 

the victims through white-hat research on the now-public list; attackers are leveraging these 

resources, so it is seen as leveling the playing field to do ethical password research using these 

same resources [30]. The author generally agrees with this justification for analyzing real 

password leaks, but the author’s personal preference was to never have the identity of the 

service, the usernames or emails and passwords combined, and such single-service leaks 

necessarily contain all of this information; in contrast, Burnett’s 10 million passwords include only 

usernames, scrubbed of any email associations, and the corresponding passwords, with no direct 

links to the service they were obtained from. Most password research on real passwords 

necessarily involves leveraging stolen data. This research can be a net positive, making future 

passwords and therefore systems safer, but this was not an aspect of this research this author 

wanted to take lightly and without the approval and supervision of a separate ethics body. 

Burnett’s passwords are not individually linked to how he obtained them, and he reports that 

some of them were willingly shared. There may not be any meaningful distinction between 
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knowingly using a database of all stolen passwords from a single source as opposed to using a 

database of passwords, many of which were likely stolen from various sources, but this distinction 

helped the author sleep a bit easier at night. Unfortunately, the intended positive effect of using 

this corpus that is more anonymized and separated from the source than is standard practice 

comes with some downsides. Any analysis of this database could not be generalized to all 

passwords in general, because nothing is known about the password creation requirements or 

conditions; in fact, because the methodology for gathering and choosing these passwords is not 

particularly rigorously documented, the broadest generalizations that could be made would be 

about passwords obtained and released by Mark Burnett. (For character counts and some other 

simple metrics about this dataset, see Appendix A.) For the purposes of this work, this limitation 

is not a significant problem, but it does strongly imply that a near-term future work step would be 

to ethically obtain real passwords under known and controlled password creation contexts.  

The data is processed by extracting features, particularly focusing on the structure, from 

each password, scaling those features using a Min-Max Scaler, using principal component 

analysis (PCA) to reduce dimensionality, and using kernel density estimation (KDE) to see how 

close a tested password is in feature-space to others, with the expectation that a password 

nearer to other passwords should be structurally similar to them, and therefore predictable to an 

attacker concerned with mining patterns known to be used to create passwords. This project uses 

Scikit-Learn as its library of machine learning algorithms [37]. 

This thesis sidesteps the quagmire of active research that is defining metrics for absolute 

password strength. This is a very difficult problem, because passwords are generally only strong 

against a given attacker with a defined approach to cracking passwords [11] [17] [20] [30] [38] 

[30] [18]. What may be a strong password against one adversary with one guess generation 

approach might be relatively weak against an adversary with a different guess generation 

strategy. For a simple example of this, an adversary trying to break short passwords might be 

utterly thwarted by a longer passphrase, but an adversary expecting passphrases and optimizing 

for them may find that same passphrase to be a trivial challenge. Except in the case where a 

password would only ever be generated by brute-force guessing, or cases where a password can 
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be found in an easily enumerable closed set, there is no agreed-upon absolute strength metric for 

passwords. 

The features extracted from each password include the number of characters of each 

character class and some composed features looking at composition, the class of each character 

at each position, the ASCII number of each character at each position, the number of cases in 

each bigram and trigram, the number of case changes in each bigram and trigram, the distance 

between each character in each bigram and trigram, and the characteristics of the last character, 

bigram and trigram specifically. The five character classes are lowercase letters, uppercase 

letters, digits, symbols and whitespace characters; when four classes are referred to as the 

complete set of classes, whitespace is either included in the symbol class or is excluded from 

allowable characters. ASCII is a very common character encoding scheme. A bigram is two 

adjacent characters, and a trigram is three adjacent characters. 

The features that are extracted are intended to capture only a limited definition of the 

structure of the passwords, which does not take into account semantics or string matching or 

repetition. This was to explore this approach’s feasibility, with the idea that should it prove useful, 

it could be incorporated within a more robust feature set or pipeline that could cover these blind 

spots. 
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Figure 1: A Simple Two-Dimensional Toy Example to Illustrate KDE 

 

KDE smooths the density distribution of the training set so that there are continuous 

densities at all points in space, even if there isn’t training data that directly overlaps the space 

being tested. Training data fills the space and thus defines the density of the space, like the blue 

dots are doing in Figure 1. The orange Xes show the possible density measurements, 

qualitatively, that test data could get at that spot. KDE outputs a unitless number, which was used 

to compare the relative densities of different passwords in the testing set so that the testing set 

could be ordered.  

Tests are performed against folds of the database that the model had not yet 

encountered. The different folds or cuts of the database are non-overlapping, so any repetition is 

true repetition of that password within the list as opposed to selecting the same instance of a 

password twice. The results of these tests are an ordered list of the testing set; this is further 
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simplified in this work by taking the top 10% of each test set as the best passwords of that set 

and the bottom 10% as the worst passwords.  

It may seem strange to be using training and testing sets with an unsupervised learning 

method, but this was done very deliberately. This work is assuming there is no available ground 

truth on which passwords within a given group are strong or weak on their own, but that there are 

groups of pre-existing passwords and proposed new passwords. In this model, there is a sort of 

ground truth in the density of the feature-space of the existing list of passwords against which the 

proposed passwords are tested, without necessarily then being added. Given the imagined 

application, borrowing the existence of training and testing sets from more overtly supervised 

methods was deemed to be a useful abuse of the differences between data preparation for 

supervised and unsupervised learning. 
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CHAPTER 3 

IMPLEMENTATION 

This work began on a laptop with 16GB RAM and a 2.8GHz Intel Core i7 CPU. The 

machine learning pipeline used required significant amounts of memory, so to speed up the 

evaluation process, the work was moved to a server with 168GB RAM and 32 2.1GHz Intel Core 

i7 CPUs. Comparisons of performance are only ever done within tests performed on the same 

machine. 

The following features are extracted from each password in the subset that is being 

worked on: ASCII number of each character, the bigram and trigram ‘distance,’ the number of 

character set changes in each bigram and trigram, the above bigram and trigram characteristics 

specifically for the last characters of the password, the length of the password, the total number 

of each character set in the password (including whitespace), the percentage of the password 

composed of each character set, and some logic to capture the combination of character sets 

used within each password. 

ASCII table is a semi-arbitrary ordering, but so would any other ordered list that might be 

created for this. The ASCII table has symbols split apart, with some appearing before digits, 

others between digits and uppercase, more between uppercase and lowercase, and a few after 

the lowercase set. This could be improved upon. Using the ASCII table also gives the artifact that 

certain character sets are “closer” to each other than others, which is odd but would recur in any 

other ordering that could be created. The ASCII table does not contain all printable characters, so 

a move towards at least one encoding with broader character sets, such as UTF-8, would be a 

more complete version of this. 

There is no string matching in this model. It is not explicitly set up to catch common 

words or repetitions of substrings. These are standard practice in password strength assessment, 

and could certainly be added as an augmentation of this approach. 

Additionally, leet, l33t or 1337 transformations are not specifically accounted for. As they 

are used, they should become common in the training set, so should be in some sense learned 

automatically. Unfortunately, this would mean that there is a corpus of passwords in the training 
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set that were known a priori to be less complex than they might appear, so this approach to leet 

transformations would not be ideal in deployment of this algorithm. This is actually true of all 

known-predictable or known-weak passwords: they need to be included in the training set to be 

learned by the algorithm, or else their distinctive features, such as character equivalence 

mapping, would need to be explicitly included in the model. Including leet transformations may be 

a nontrivial matter, particularly given that some leet transforms are from one character to multiple 

characters, and so transforming back to the alphabetic representation from a given leet-enhanced 

password could be complex. Another work created a leet dictionary by transforming non-leet 

passwords in their other dictionaries; this is the more straightforward direction than checking an 

alphanumeric password for meaningful leet transformations, which would also require string 

matching to a blacklist or use of semantic tests [3]. 

Catching keyboard patterns would require including an explicit mapping of the keyboard 

in feature extraction. This would mean being able to record character distances as a function of 

their distance on a keyboard, which would be a useful measure for recognizing simple keyboard 

patterns [9] [36]. There may be a need to include multiple keyboard layouts, such as QWERTY, 

DVORAK, and international keyboard variations; common mobile keyboard layouts would also be 

interesting and possibly fruitful to capture in the feature set. 
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Figure 2: Percentage of Variance Captured by Each Feature After Principal Component Analysis 
(PCA) 

 

Principal Component Analysis (PCA) is applied to the original feature set to get a new 

feature set, ordered by the percentage of variance that each new independent feature can explain 

of the dataset. Figure 2 shows the results of PCA being applied to different batch sizes of 

passwords, where each colored bar corresponds to the amount of variance explained by a given 

constructed feature. In the 10 password batch, it makes a certain amount of sense that only 3 

variables can differentiate the handful of passwords, explaining almost 90% of the variance 

among them. This trend continues as the batch sizes increase, with only five factors accounting 

for 50% of the variance in the 1 million password batch. 
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Figure 3: Examples of Some Passwords Found in Best Sets 

 

 

Figure 4: Examples of Some Passwords Found in Worst Sets 

 

Some of the initial results are shown in Figures 3 and 4. The Worst sets are populated 

almost exclusively by digit-only strings. Given the way that the original features were extracted 

and the relative prevalence of this type of password, this was not unexpected. Of all the character 

sets, digit-only has the smallest password space, with only 10 characters, and the intercharacter 
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distance between them will be similarly small. Other research has shown that these types of 

passwords frequently correlate to dates in MMDDYY, MMDDYYYY, DDMMYY or DDMMYYYY 

format, with certain ranges overrepresented, the implication being that they are birthdates and 

other popular milestone events in users’ lives, like anniversaries and holidays. The range of years 

is constrained from the mid-1900s to the current date, which narrows an attacker’s search space 

even more. Many of these date strings should cluster from having many of bigrams in common, 

being composed of concatenations of “01” - “12”, “01” - “31”, “19” or “20”, and “00” - “99” (with a 

concentration from “69” to “12”, and now likely up to “16”) [7]. Other common numerical 

passwords are just patterns, like “142536”, “456456”, “124356”, and “112311” in the example 

group. 

The order between the Best and Worst sets was explored as a check on the expected 

functionality of the data pipeline, but was not further interacted with. Above digit-only strings were 

lowercase-only strings, which are more common than digit-only but less densely clumped 

together because of varying distance between adjacent characters, less rigid structure and fewer 

repeated characters: ‘1’ is present in nearly every password in Figure 4, and “19” and “20” are 

present with a high frequency; there is a nearly identical frequency of ‘e’ and ‘a’ to ‘1’ at around 

6% of the total characters each, with every other character appearing less than 4.5% of the time 

but no other bigrams can compare. Uppercase characters anywhere in the password ranked it 

higher, and the presence of symbols, even the most common symbols, guaranteed a place in 

about the top quartile of the passwords given that symbols of any kind make up only about 1.9% 

of the total characters.  

The passwords in the Best sets, examples of which are shown in Figure 3, are clearly set 

apart by their uncommon lengths, but there is evidence that this is not the only feature involved in 

ranking these passwords as being the most idiosyncratic. These passwords are nearly all mixed-

case, as would be expected, but the mixing of cases is a little more varied than the kind of 

patterns that have been discussed in the Background section. The most interesting and initially 

perplexing results are the single case passwords, which include 29 ‘q’s, 28 ‘h’s, 6 and 8 ‘*’s, and 

6’?’s. Note that the group shown in Figure 3 may not be, and likely is not, representative of the 
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passwords in a single Best set, nor the population of all of the Best sets; these seeming outliers in 

particular were selected for the purpose of further analysis and discussion. Although this work 

does not use a defined universal metric for “strong” or “weak” passwords, it is probably safe to 

assume that these five highlighted passwords are not great passwords against many smart 

adversaries. They are very predictable, and because passwords should approximate 

“randomness” as much as possible so as to be only able to be brute forced by even the savviest 

attacker, these passwords fail that heuristic for what a password should look like, much more 

than some of the others included in this figure. Inspecting the structure of these passwords, it 

becomes clearer why they are placed in less dense areas of the feature-space. The lowercase-

only strings are long, like the other passwords in the group; the symbol-only strings are short, but 

contain not just one or two symbols like some of the other Best passwords, at a maximum. These 

traits of length and more symbols than expected (and symbol-only) are fairly rare in the corpus 

being examined, as is the single character being repeated for the length of the password, making 

all intercharacter distances zero: this is another uncommon trait. These five may not be good 

passwords in practice, but they are structurally dissimilar to the rest of the passwords, so it makes 

sense that they are less dense areas of the feature-space; this simply shows that the feature-set 

chosen is differentiating but not sufficient to feed into a strength meter algorithm. 
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Figure 5: Breakdown of the Composition of the 10 Million Password List by Length 

 

Because length appeared to be something of a dominating factor in the Best group 

shown in Figure 3, the decision was made to move to a single-length group for further testing to 

better explore the other factors in the feature set. To control for length while keeping, ideally, the 

most variety in the training and testing sets, the largest single-length group was identified and 

used. As shown in Figure 5, the largest group of single-length passwords was the eight-character 

group at 2.98 million passwords. 
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Figure 6: Examples of Some Passwords Found in the Eight-Character-Only Best Sets 

 

 

Figure 7: Examples of Some Passwords Found in Eight-Character-Only Worst Sets 

 

Some examples from the Best and Worst sets in the eight character-only tests are shown 

in Figures 6 and 7, respectively. There is little change in the Worst sets, as the passwords 

included appear again to be overwhelmingly dates and patterns. An effect of limiting the length 

was that some of the Worst sets started including lowercase-only strings that were particularly 

overrepresented in the training and testing sets, such as “superman”, “password”, “baseball”, 

“poohbear”, “jennifer” and “corvette”. The Best sets look as expected, separating out the 

passwords that contain two or more character sets, with distinctive compositions. Some of the 

passwords shown have some semantic meaning that makes their structure more predictable, like 

“#1marine” and “Jordan_1”, but that is not unexpected, because none of the features were 

chosen to segment, detect or bias against meaningful strings. The addition of such features or 

separate subroutines to the data pipeline would aid in the goal towards a future comprehensive 

strength meter. Note that any examples shown in Figures 3 and 4 that are eight characters 
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should still appear in the Best and Worst sets when testing and training is limited to eight 

character passwords only, even if they are not explicitly shown again in the mostly illustrative 

example group shown here. From non-systematic manual inspection, the segmentation of the 

testing sets appears to be working as envisioned, even after controlling for length. 
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CHAPTER 4 

RESULTS 

Analysis 

Although this work sidesteps the definition of absolute strength of a non-random 

password, a comparison against a well-respected strength meter algorithm, zxcvbn by Dropbox, 

was performed against all Best and Worst sets [39]. The approach taken by zxcvbn is to segment 

passwords into different atoms and determine the time it would take an optimal attacker to break 

each one. This gives a sort of average worst-case bound, in that the hypothetical attacker already 

knows the best approach and dictionary size to break a given password but has to check about 

half of that optimal dictionary. Some weaknesses of zxcvbn are that it falls prey to the limitations 

of any other hardcoded dictionary or blacklist, and will miss words or mangling that are not 

explicitly included in it, and that it cannot handle non-ASCII characters, such as accented 

alphabetic characters or many symbols. It is intended to be able to be deployed client-side, and 

so is intentionally light-weight and, by necessity, not fully comprehensive. The average crack 

time, as given by zxcvbn, for all Best set passwords is 3.1 million seconds, or about a year; the 

average crack time for all Worst set passwords is around 150 seconds, or 2.5 minutes. The 

optimal attacker strategy is shown in zxcvbn results, and many of the Best passwords have no 

better cracking strategy than brute force, while many of the Worst passwords would be cracked 

essentially instantly with the use of pre-enumerated dictionaries such as dates or common 

English words. No significant deviations were found from these numbers based on the number of 

dimensions used in generating the sets. 

Because the output from the pipeline is two sets, there needed to be some way to 

quantitatively compare them across different conditions, particularly because this thesis does not 

tackle absolute strength metrics of passwords. Small changes to the training and testing 

conditions were found to change the order of passwords in the Best and Worst sets, but this was 

deemed too fine and fiddly a metric, particularly given the imagined application of this data 

pipeline, a strength meter. That strength meter would not report that a password is the #3 
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strongest or weakest password it has ever encountered, but would instead report a strength 

category that password falls into. The overlap of the Best or Worst sets, given some changed 

variable, is more applicable to measure than some investigation of small, local rank reversals. 

The Jaccard index or coefficient, which is the cardinality of the intersection of two sets divided by 

the cardinality of the union of those sets, is the metric that is used in this section. A Jaccard 

coefficient of 0 would mean that there are no shared members in the sets, because their 

intersection is empty; a Jaccard coefficient of 1 would mean that all members in the sets are 

shared, because their intersection is equal to their union. The Jaccard coefficient underreports 

the amount of overlap, because the input is in the form of lists, which may have repeated 

members; although the training and testing sets are thus misnamed, the Best and Worst sets are 

truly treated as sets for the purpose of this evaluation. This overlap arises extremely rarely in Best 

sets, but is very common in the Worst sets: “12345678” could be in one training “set” six times, 

but would only be reported once in the Worst set. 

The 2.98 million eight character passwords were divided into 10 non-overlapping cuts, 

and these cuts were each used as a training set against each other cut as the testing set, with the 

number of features, or dimensions, varying from 8 to 64, in increments of 8. This range of 

dimensions was chosen because for the eight-character group, 95% of the variance was captured 

by the first 16 features, 98% was captured by the first 24 features, and 99% variance was 

captured by the first 30 features. The goal was to include at least one test below this range and a 

few beyond this range. The Best set and Worst set were the top 10% and bottom 10% of the 

testing set; because of repetition in the testing “set” list, the Worst set always had fewer members 

than its corresponding list form would have had. In the 10 million passwords, there are fewer than 

5.2 million unique passwords; in the 2.98 million eight character passwords, there are a slightly 

lower proportion of unique passwords, with fewer than 1.54 million unique passwords in that 

subgrouping. 

Three variables were tested to better understand this data pipeline, with only one ever 

changing at one time. The three variables investigated were training data, testing data, and the 

number of features, which are also interchangeably referred to as dimensions because they 
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define the space under investigation. Set agreement within a given test is measured by Jaccard 

coefficient and is reported as the minimum, average and maximum values encountered in 5760 

comparisons for testing and training data and 5040 comparisons for the number of dimensions. 

To examine the importance of specific testing data, the training set and number of 

dimensions was held constant while the testing data was varied. If two unrelated test sets had 

overlap in their Best sets, this would imply that this technique is not working, which would be 

unexpected. It would mean that the same password happens to be repeated in the unrelated and 

non-overlapping testing sets, but that the training data showed it to be fairly idiosyncratic 

compared to the rest of the corpus. If this happened with any significant frequency, that would 

either mean there is a problem with this approach or else that the amount of training data was 

insufficient to adequately cover the password corpus in feature-space. On the other hand, overlap 

in the Worst sets would imply that the diversity of passwords in the dataset, or at least in the 

eight-character subgroup of the dataset, is awful. Frankly, this is expected to the point that if there 

were no overlap, it would again raise the concern that this approach is not working. Passwords 

were repeated in input lists with enough regularity that Worst sets were always shorter than 10% 

of the input testing list -- the number of times a password appeared in the list was recorded and 

showed that some passwords, like “password” showed up thousands of times in each and every 

cut of the data. As such, they should always have some strings that match, and these shockingly 

frequent strings should always fall to the bottom of the ordered list, into or very near the Worst 

set. Quite a bit of overlap in Worst sets is expected, if the data pipeline is ordering the testing set 

as intended. 
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Figure 8: Set Agreements When Testing Data is Changed 

  

 

The results from varying testing data is shown in Figure 8. There is a very small amount 

of overlap in the Best sets of unrelated testing cuts with an average Jaccard coefficient of 0.01, 

which is potentially troubling. Again, this means that there are passwords that are being repeated 

in both test sets but are being placed in a low-density area, which should mean that they are 

structurally idiosyncratic or rare. This is an obvious problem, the extent of which should be 

investigated further through careful manual inspection, which may lead to the creation of 

additional features that more fully characterize the convergence that is leading to these 

passwords being created repeatedly yet being reported by this technique as having rare 

structures. Mixed case, semantically meaningful passwords, like those leveraging leet 

transformations, or mixed case keyboard patterns may be some of the culprits. As expected, 

there is quite a bit of overlap in the Worst sets, which again, is actually the lower bound on the 
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amount of overlap between the corresponding lists of testing data. Overall, these results seem to 

show that the pipeline is mostly working but that the feature set is incomplete, which was already 

known or that the amount of training data is insufficient, which will be explored a bit more in the 

next test. 

To examine the importance of specific training data, the testing data and the number of 

dimensions is held constant while the specific training data is varied. More overlap in the test 

set’s Best and Worst sets implies less sensitivity to the exact training data. No generalization can 

be made about the quality of the training data, because training data is effectively being randomly 

selected from the same dataset, which means that each training set should be roughly equal 

quality by any metric. Poor overlap may mean that a larger training set is needed to better fill out 

the feature-space, that truly higher quality (by some metric) training data is needed, or that there 

is a fundamental problem with the approach that is being taken. The effect of the size of the 

testing dataset was never explicitly evaluated. 
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Figure 9: Set Agreements When Training Data is Changed 

 

The results from varying the training data is shown in Figure 9. Changing the training 

data can change the Best set by around 22% on average. The Worst set is actually quite resilient 

to the change. This is especially interesting to see given that, with the strength meter application, 

one would conceivably be more concerned with weeding out weak passwords as opposed to 

positively and accurately identifying the strongest passwords. An additional test varying the size 

of the training set would be interesting, but was not performed in this analysis. 

To examine the importance of the number of features used, the training data and the 

testing data is held constant while the number of features is varied. Achieving more overlap with 

fewer dimensions means that there is little or no need to spend the time and space required to 

use more dimensions. It would also mean that the structural differences between passwords can 

be captured in very few discriminating features, at least as chosen for this work. The hope is for 

some dimension reduction from the 195 features that are extracted from each eight-character 
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password, if only for time and speed savings, but also to have convergence happen at a relatively 

high number of features, because that would show that the features selected actually matter in 

looking for uncommon password structures and patterns. 

 

 

Figure 10: Set Agreements When Number of Dimensions is Changed 

 

The results from varying the number of dimensions is shown in Figure 10. This is a 

coarse look at the effects, which can be broken down to look at the changes that happen with 

each feature set size. Both the Best and Worst sets are pretty sensitive, and similarly sensitive, to 

the number of features. 
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Figure 11: Precision, by Number of Dimensions 

 

A closer look at the effects of changing the number of dimensions can be seen in Figure 

11. Some metric of accuracy would require that the “right” answer for the Best and Worst set 

compositions are known; the best that can be managed in the absence of this “right” answer is 

instead precision. For this comparison, the sets obtained with 64 features is the goal, and the 

other sets are compared against them. Of course, as more features are used, higher precision is 

achieved on both the best and the worst passwords, with identical results achieved with 56 

features as 64 features. The additional eight features take more time and space to include but do 

not make any difference in the final result; based on the lack of apparent perturbations these last 

eight features seem to make, it may even be extrapolated that any changes in the Best and Worst 

set after 64 features would be small in general while adding quite a bit of time and space 

requirements. 
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Figure 12: Return on Investment of Different Numbers of Features 

 

After some point, there should be diminishing marginal returns on adding more of these 

features to the pipeline. (Other, additional features not explored here might certainly make more 

of a difference if they were added, but this analysis is only on this feature set.) This is explored in 

Figure 12, which shows the return on investment for each feature set. The return on investment is 

comparing the total time it took to achieve some level of precision with respect to the Best and 

Worst sets that would be obtained with 64 features. The inflection point, which is where the 

marginal ROI starts to decrease, is around 16 features for both the Best and Worst sets. This 

seems early, because only about 80% of the sets’ members are the same as would be obtained 

with 64 features. An assumption going into the ROI analysis was that the inflection point would be 

closer to 40 features, which had previously intuitively appeared to be a good balance of precision 

and time during testing. Clearly though, the increase in time does not offset the additional 

precision beyond 16 features as compared to the ROI achieved by moving from 8 features to 16 
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features. The actual inflection point could be more precisely found by varying the feature set size 

from 9 to 23 with increments of one, because this analysis with increments of 8 may be too 

coarse to achieve the best marginal ROI for this dataset and these features. 

Turning to the scaling of this pipeline, it was quite time- and memory-intensive. The 

development and testing began on a machine with 16GB of RAM, but had to move to one with 

168GB of RAM because some of the tests simply required more memory than the original 

machine had. Use of virtual memory on the laptop had slowed the performance considerably 

above training and testing dataset sizes above 10,000 passwords. Time scaling was investigated 

in more depth, and these results are below. 

 

 

 

Figure 13: Total Time to Extract Features 
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Feature extraction, as implemented, involves opening a file to read a section of the 10 

million passwords and then writing the features of the passwords of that section to another file, in 

CSV format. These I/O operations are the dominating time sink involved in feature extraction until 

about 10,000 password batches, where it becomes clearer that it takes about 300 microseconds 

(mcs) to extract features from each password. This is shown in Figure 13. 

 

 

 

Figure 14: Total Time to Train 

 

Using Principal Component Analysis and training the KDE algorithm on the training 

dataset also scaled linearly with the number of passwords being trained, taking around 600 mcs 

per password. This can be seen in Figure 14. 
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Figure 15: Time to Test Per Password in the Training Set 
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Figure 16: Total Time to Test 

 

So far, total time had scaled linearly with the number of passwords, which was fairly 

ideal. In a divergence from this pattern, time to test per password increased linearly with the 

training batch size, as shown in Figure 15. This means, as shown in Figure 16, that the total time 

to test increases with the square of the number of passwords in the training set. These tests had 

been done originally with equally-sized training and testing sets, but further testing not shown 

here revealed that the variable driving this increase was indeed the number of passwords in the 

training set, not the number of passwords in the testing set.  
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Figure 17: Total Time to Train and Test Large Batches, by Number of Dimensions 

 

Previous scaling comparisons involved runs with the batch sizes of the datasets changing 

but the number of features held constant. Total time with constant batch sizes but varying 

dimensions was recorded separately, and this increases linearly with the number of dimensions, 
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added about 2300 seconds per eight additional features. This data is messier because of variable 

load on the shared machine, but the trend is clear. 
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known, because it is not an online algorithm, but this is further confirmation that KDE would be a 

step in the development process towards the strength meter algorithm as opposed to a prototype 

of the algorithm itself. 

Discussion 

Part of the reason this data pipeline was time-consuming was that it was implemented on 

traditional computing architecture using CPUs instead of leveraging the speed with which 

graphical processing units (GPUs) can process machine learning algorithms. A next step would 

be to move this investigation to one or more GPUs to speed up the entire process. This step 

would not improve the poor scaling of this particular pipeline, and KDE in particular, because that 

is an algorithmic constraint, but it would improve the multi-day run times of some of the tests that 

were run. 

Other near-term future work on this data pipeline is to add additional features or 

algorithms to cover the gaps already noted, such as string matching for both blacklisting and 

catching repetition, keyboard patterns, leet transformations, and other such password creation or 

mangling patterns.  

The development of labels or identified clusters is another clear next step, so the use of 

Random Forest or K-Means Clustering could be transitioned to. This is partly a usability issue, a 

risk communication issue and a technical question. There could be the concern that giving users 

feedback that a given password is “strong” or “excellent” might give them too much confidence in 

it, and ignores broader problems about reuse essentially weakening passwords [3]. Of course, 

the strength meter in one system cannot necessarily capture the problems of reuse across 

multiple systems or even exhaustively test for every conceivable attack pattern to properly deem 

a given password as excellent; therefore, an approach that is aimed at culling clearly weak 

passwords but not necessarily confirming that a tested password is strong may be sufficient and 

be closer to the truth. Studies have suggested that users focus more on not being weak rather 

than pushing to get a strong password [11]. If a system had the fidelity to report strength in very 

small increments, such as 0 to 100 (which still presents its own risk communication problems), it 
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would be interesting to see where users stop and decide a password is good enough to proceed; 

this kind of experiment could feed back into the design choices for the strength meter. 

An interesting route to explore could be a strength algorithm that approximates guess 

numbers as used in studies such as “Guess again (and again and again)” [30]. Computing guess 

numbers requires high performance computing, terabytes of storage and days of time. 

Regression learning might be able to give a good enough approximation of given adversaries’ 

guess numbers that it could become a lightweight replacement or estimator. This could be very 

useful both in reporting scores to users in the password creation process as well as in evaluation 

of passwords obtained from experiments or in evaluation of other password strength algorithms. 

This dataset, which, again, may not be representative of passwords in general, seems to 

support the idea that the best users can do is about seven discrete chunks of information 

together. This was shown in the best passwords chosen from the 10 million password dataset 

when not controlling for length: some of the passwords in the least dense part of the password 

space as measured by the features chosen were those that were long but with that length padded 

by variations of “password,” dates, and other particularly common chunks. This presents an 

interesting approach to cracking longer passwords that might appear to be stronger in some way 

than shorter passwords, but might actually be comparable: if an attacker assumes 7 unknowns, 

where those unknowns could be words, letters, dates, leet substitutions, and other such “chunks” 

that have been discussed, and combines them together, these passwords that are long but still 

lack in complexity could be assessed to be much weaker than they initially seem. The scaling and 

efficacy of this password cracking approach is, of course, beyond the scope of this work but 

remains identified future work. 

The placement of the pieces of the future strength meter is also something of a struggle 

from a security perspective. It was not directly designed, implemented or tested in the course of 

this thesis, but some evaluation of the idea itself was attempted. There are, unfortunately, readily 

conceivable security concerns with the envisioned strength meter. There would be many potential 

avenues for information leakage to attackers, both in transit and at rest. The strength meter could 

leak information to malicious users in the course of normal use, which may give insights to 
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attackers about the corpus of passwords it has seen; stealing the algorithm’s training data could 

result in a plaintext password dump. These issues have been raised and are in consideration, but 

no solutions are in a state to be reported here. A study facing some similar challenges did show 

that one could thoughtfully add dummy information without diluting the usefulness of the 

algorithm, which could be a partial solution to the security issues raised above [28]. 

In addition to the security challenges this meter would present, there are performance 

and networking issues to work out as well. Running the meter’s computation as a server side 

meter obscures the details of the algorithm and the data it is using from observers. Per 

Kerckhoff’s Principle, this is far from sufficient for security, but it remains an appropriate and 

acceptable defensive implementation decision. This placement would also increase usability, 

given that resource-intensive computation can take place on an architecture specifically designed 

for it as opposed to on whatever device the user is accessing the service from; particularly given 

the growth of the Internet of Things and ubiquity of mobile devices, the fewer assumptions about 

the capabilities of any given user’s available resources made, the better. 

On the other hand, purely server side computation may require quite a bit of superfluous 

communication between client and server. A hybrid approach can reduce the load on the 

service’s server as well as constrain the amount of traffic required in the password creation and 

checking process. A simple set of requirements can be easily checked on the client’s side, such 

as length of the proposed password, number of character sets, and whether or not the password 

matches a short blacklist of extremely common passwords or password patterns, as is done by 

many other strength meters as the sum total of their tests. Any password that does not pass 

these baseline compliance checks does not need to be sent to the server for evaluation, because 

the answer of its inappropriateness will already be known. Only after a candidate password 

succeeds against these minimum requirements would it be transmitted to the server and 

assessed, reducing overall network traffic and load on the server as compared to the purely 

server side computation approach. 

Going beyond this particular approach and corresponding envisioned strength meter, 

another question arose during this work. The following question was posed to the author: given 
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this feature set, what would different password generators’ results look like with this data 

pipeline? Would they be clumped together because of a similarly unpredictable structure, or 

would they be uniformly spread out because none of them look alike? Would the results of 

multiple generators reveal strategies, patterns and preferences embedded in those 

pseudorandom generators? Of particular personal interest to the author, when a population of 

users is presented with a set of possible passwords from a generator, which can be regenerated 

indefinitely, with the instruction to pick one of the passwords that has been generated to use as 

their high-value password, are there any shared biases or preferences in selection that weaken 

the population of chosen passwords as compared to the population of passwords as generated? 

In an extension of this machine-generated and user-chosen approach, what if users are provided 

with a randomly generated password but are able to make a limited number of edits to it? This 

could possibly enhance usability in that it would be able to be made more memorable for that 

user, but if users make only a small set of conforming edits, it could weaken the corpus of such 

passwords as a whole. Investigations of these questions are planned alongside further 

development and evolution of this data pipeline for password evaluation; symbiotic co-validation 

of both sets of hypotheses and approaches could be worked towards.  

There was previous mention of ethically gaining a corpus of real passwords under 

controlled conditions, requirements and password creation and use contexts. This will be done by 

leveraging Mechanical Turk, as is the current state of the art for such studies; the ecological 

validity of these password corpuses are not identical to those of real services’ password 

corpuses, but it is acceptably close and ethical. A much broader and more diverse base of users 

can be reached than the pool that would be involved in lab studies, with more valid passwords 

than are obtained in lab studies, and paying thousands of MTurk workers on the order of a dollar 

each for password creation, password recall and user sentiment studies is a frankly stunning 

return on investment for a human subject study [11] [18] [20] [30] [33] [38]. 

Returning to the complex set of problems within the password ecosystem, initial partial 

solutions were conceived of, partly as future work and partly to better understand where this work 

might fit into such a solution. An open source toolset for password management and 
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administration for low and high security services has been envisioned, with appropriate 

protections and practices for each built in, to make consistency and good security easy for 

service operators of both kinds of services while keeping passwords from being able to be reused 

across the categories of sites. The future strength meter that was imagined as the proximate 

application for this data pipeline or future versions of this pipeline could provide user feedback 

when creating a password for a high security site or when creating a master password for a 

password manager. It may also be able to validate pseudorandom password generators and 

check the choice of and alterations made to passwords pulled from those generators.  
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CHAPTER 5 

CONCLUSION 

 Broadly, this work was born of interest in how users might be encouraged towards 

idiosyncratic password creation patterns. Exploring this led to investigating one set of machine 

learning techniques as possible components to a future password strength meter. The features 

selected, which focus on the structure of each password, appear to be promising attributes for 

clustering structurally similar passwords and letting structurally unusual passwords stand out, but 

is not a covering or sufficient set of features for distinguishing good passwords from bad, which in 

itself is an unsolved question. Kernel density estimation also showed interesting results and will 

continue to be used in the aim of developing features or understanding meaningful clusters for a 

future comprehensive and intelligent strength meter algorithm, but lacks multiple traits required of 

that algorithm, such as scaling appropriate to the application and the ability to continually learn 

from new data. 
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APPENDIX A 

CHARACTER COUNTS IN DATASET BY PASSWORD CASE COMPOSITION 
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The following section is a character count of every password from the 10 million 

password dataset. Passwords are additionally broken down by case composition, where spaces 

are separated out from the rest of the symbol set. Any non-ASCII characters are put into the 

password set; this includes accented and superscript alphabetic characters. Additional metrics 

are the number of passwords falling into each composition set as well as the number of 

characters in those passwords and their average length. A grayed-out cell shows a character that 

does not fit into the class composition of that column; a 0 shows a character that fits into the class 

composition of that column, but was not seen in the dataset. Across the columns, the relative 

sizes of the number of passwords, the number of characters in those passwords, and the average 

length of those passwords is denoted by a blue bar partially filling the cells, relative to the 

maximum of each of those metrics: the number of passwords and characters in “All” and the 

average length of “Digit, Space + Symbol”. The green bars down each column show the relative 

proportion of each character in that column, again with the maximum count represented as a full 

bar and every other bar as being the relative proportion. The legend, corresponding metrics for 

“All”, and the column names and aggregated metrics are printed on every page for ease of 

reference. The spreadsheet is converted to pages such that the pages for each column (case 

composition classes) are together, but the pages for each row (characters) may be separated. 

For example, the character counts for “Lower” can be found on pages 50 to 53; the character 

counts for the letter ‘a’ can be found on pages 50, 54, 58, 62, 66 and 70.  

 



50

All Lower Upper Digit Space Symbol
# passwords 9,997,985 3,824,547 109,258 2,035,160 0 607
# characters 75,916,675 27,228,063 768,877 14,221,036 0 3,414
Avg length 7.59 7.12 7.04 6.99 N/A 5.62

'a' 4,765,881 2,781,120
'b' 1,394,757 794,688
'c' 1,629,304 950,821
'd' 1,705,096 972,885
'e' 4,117,197 2,545,795
'f' 1,019,573 553,422
'g' 1,246,221 717,978
'h' 1,445,050 843,951
'i' 2,901,135 1,781,152
'j' 677,976 327,909
'k' 1,341,596 712,147
'l' 2,288,102 1,394,123

'm' 1,732,512 972,506
'n' 2,825,016 1,697,131
'o' 3,032,936 1,874,353
'p' 1,150,607 666,764
'q' 320,816 103,334
'r' 3,093,749 1,872,128
's' 2,757,228 1,666,565
't' 2,330,857 1,417,111
'u' 1,394,794 796,310
'v' 769,297 375,330
'w' 720,790 365,917
'x' 445,369 184,415
'y' 1,178,415 632,684
'z' 529,710 227,524
'A' 223,322 66,764
'B' 134,408 24,482
'C' 133,753 28,731
'D' 133,401 28,540
'E' 174,236 61,219
'F' 109,205 17,548
'G' 113,031 22,383
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All Lower Upper Digit Space Symbol
# passwords 9,997,985 3,824,547 109,258 2,035,160 0 607
# characters 75,916,675 27,228,063 768,877 14,221,036 0 3,414
Avg length 7.59 7.12 7.04 6.99 N/A 5.62

'H' 110,162 24,362
'I' 115,795 45,373
'J' 93,063 14,189
'K' 107,284 21,048
'L' 135,003 38,414
'M' 142,667 29,030
'N' 134,861 42,998
'O' 113,121 48,311
'P' 120,634 21,714
'Q' 66,359 9,136
'R' 151,967 47,622
'S' 168,694 42,401
'T' 137,600 37,107
'U' 102,116 23,693
'V' 87,765 14,781
'W' 86,311 14,657
'X' 74,301 11,872
'Y' 97,692 20,497
'Z' 77,862 12,005
'0' 3,310,606 2,003,501
'1' 4,751,205 2,551,049
'2' 3,111,201 1,595,168
'3' 2,168,754 1,087,241
'4' 1,845,614 974,031
'5' 1,980,406 1,084,531
'6' 1,890,052 1,043,140
'7' 1,931,518 1,053,708
'8' 2,036,416 1,174,103
'9' 2,790,004 1,654,564

<Space> 61 0
'_' 38,379 86
'-' 20,394 37
';' 625 5
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All Lower Upper Digit Space Symbol
# passwords 9,997,985 3,824,547 109,258 2,035,160 0 607
# characters 75,916,675 27,228,063 768,877 14,221,036 0 3,414
Avg length 7.59 7.12 7.04 6.99 N/A 5.62

':' 9 0
'!' 10,353 131
'?' 4,527 1,124
'.' 37,959 58
''' 744 0
'»' 19 0
'(' 93 2
')' 11 0
'[' 167 0
']' 133 6
'{' 14 1
'}' 20 1

'@' 7,719 119
'*' 9,939 1,606
'/' 67 5
'\' 382 0
'&' 1,011 24
'#' 2,781 45
'%' 1,042 67
'`' 65 1
'^' 379 18
'+' 271 1
'<' 2 0
'=' 810 3
'>' 3 0
'¬' 3 0
'|' 75 0
'¦' 3 0
'~' 228 39
'$' 3,950 35
'¼' 5 0
'é' 2 0
'ª' 20 0
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All Lower Upper Digit Space Symbol
# passwords 9,997,985 3,824,547 109,258 2,035,160 0 607
# characters 75,916,675 27,228,063 768,877 14,221,036 0 3,414
Avg length 7.59 7.12 7.04 6.99 N/A 5.62

^B 2 0
^C 31 0
^G 1 0
^O 2 0
^W 1 0
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

'a' 4,765,881
'b' 1,394,757
'c' 1,629,304
'd' 1,705,096
'e' 4,117,197
'f' 1,019,573
'g' 1,246,221
'h' 1,445,050
'i' 2,901,135
'j' 677,976
'k' 1,341,596
'l' 2,288,102

'm' 1,732,512
'n' 2,825,016
'o' 3,032,936
'p' 1,150,607
'q' 320,816
'r' 3,093,749
's' 2,757,228
't' 2,330,857
'u' 1,394,794
'v' 769,297
'w' 720,790
'x' 445,369
'y' 1,178,415
'z' 529,710
'A' 223,322
'B' 134,408
'C' 133,753
'D' 133,401
'E' 174,236
'F' 109,205
'G' 113,031

Lower + 
Upper

Lower + 
Digit

Lower + 
Space

Lower + 
Symbol

Upper + 
Digit

251,578 2,985,686 24 40,103 110,227
1,991,431 24,686,517 260 447,902 877,075

7.92 8.27 10.83 11.17 7.96
132,204 1,567,790 38 44,737
34,915 479,009 3 9,892
44,409 528,340 10 13,042
46,512 575,194 9 13,124
131,847 1,191,796 19 35,136
30,087 358,364 3 8,913
37,537 402,022 5 9,514
44,852 454,831 6 12,996
94,173 845,031 9 26,209
19,800 276,425 5 4,794
37,061 490,730 1 13,211
64,141 698,983 11 20,747
40,850 614,037 9 15,266
87,214 862,105 15 25,494
91,742 882,493 26 25,186
28,546 383,644 7 8,539
14,019 164,615 1 753
92,850 937,256 12 26,906
67,519 863,423 14 24,721
68,108 704,053 7 18,982
50,854 440,740 8 11,705
25,035 299,047 2 7,979
23,452 267,410 2 4,191
19,396 185,741 1 2,761
43,992 403,792 4 10,827
19,761 224,606 3 4,499
36,258 43,152
31,571 15,464
29,003 15,765
26,799 18,009
29,171 26,666
25,025 11,761
24,187 12,988
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

'H' 110,162
'I' 115,795
'J' 93,063
'K' 107,284
'L' 135,003
'M' 142,667
'N' 134,861
'O' 113,121
'P' 120,634
'Q' 66,359
'R' 151,967
'S' 168,694
'T' 137,600
'U' 102,116
'V' 87,765
'W' 86,311
'X' 74,301
'Y' 97,692
'Z' 77,862
'0' 3,310,606
'1' 4,751,205
'2' 3,111,201
'3' 2,168,754
'4' 1,845,614
'5' 1,980,406
'6' 1,890,052
'7' 1,931,518
'8' 2,036,416
'9' 2,790,004

<Space> 61
'_' 38,379
'-' 20,394
';' 625

Lower + 
Upper

Lower + 
Digit

Lower + 
Space

Lower + 
Symbol

Upper + 
Digit

251,578 2,985,686 24 40,103 110,227
1,991,431 24,686,517 260 447,902 877,075

7.92 8.27 10.83 11.17 7.96
22,335 12,888
20,345 18,798
19,938 9,575
20,313 14,685
22,512 20,136
29,096 18,020
19,938 21,418
17,774 19,670
25,298 13,013
13,132 6,257
23,799 24,059
32,777 22,678
25,451 19,030
21,483 11,484
17,297 11,219
17,381 9,118
14,200 8,209
20,547 11,173
14,925 8,642

1,117,836 51,097
1,857,447 67,133
1,271,970 56,028
896,238 41,978
708,914 36,324
716,389 39,946
677,206 37,372
707,671 38,446
691,184 37,607
940,185 47,267

30
15,564
7,646
366
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

':' 9
'!' 10,353
'?' 4,527
'.' 37,959
''' 744
'»' 19
'(' 93
')' 11
'[' 167
']' 133
'{' 14
'}' 20

'@' 7,719
'*' 9,939
'/' 67
'\' 382
'&' 1,011
'#' 2,781
'%' 1,042
'`' 65
'^' 379
'+' 271
'<' 2
'=' 810
'>' 3
'¬' 3
'|' 75
'¦' 3
'~' 228
'$' 3,950
'¼' 5
'é' 2
'ª' 20

Lower + 
Upper

Lower + 
Digit

Lower + 
Space

Lower + 
Symbol

Upper + 
Digit

251,578 2,985,686 24 40,103 110,227
1,991,431 24,686,517 260 447,902 877,075

7.92 8.27 10.83 11.17 7.96
4

2,857
547

13,416
649
19
25
1
84
75
8
8

1,637
2,582

3
254
333
434
205
27
69
80
2

121
3
0
24
0
72
640
3
0
18
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

^B 2
^C 31
^G 1
^O 2
^W 1

Lower + 
Upper

Lower + 
Digit

Lower + 
Space

Lower + 
Symbol

Upper + 
Digit

251,578 2,985,686 24 40,103 110,227
1,991,431 24,686,517 260 447,902 877,075

7.92 8.27 10.83 11.17 7.96
1
0
0
1
0
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

'a' 4,765,881
'b' 1,394,757
'c' 1,629,304
'd' 1,705,096
'e' 4,117,197
'f' 1,019,573
'g' 1,246,221
'h' 1,445,050
'i' 2,901,135
'j' 677,976
'k' 1,341,596
'l' 2,288,102

'm' 1,732,512
'n' 2,825,016
'o' 3,032,936
'p' 1,150,607
'q' 320,816
'r' 3,093,749
's' 2,757,228
't' 2,330,857
'u' 1,394,794
'v' 769,297
'w' 720,790
'x' 445,369
'y' 1,178,415
'z' 529,710
'A' 223,322
'B' 134,408
'C' 133,753
'D' 133,401
'E' 174,236
'F' 109,205
'G' 113,031

Upper + 
Space

Upper + 
Symbol

Digit + 
Space

Digit + 
Symbol

Space + 
Symbol

2 834 0 8,430 0
20 7,384 0 74,433 0

10.00 8.85 N/A 8.83 N/A

3 569
0 154
1 204
1 240
1 486
2 183
1 132
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

'H' 110,162
'I' 115,795
'J' 93,063
'K' 107,284
'L' 135,003
'M' 142,667
'N' 134,861
'O' 113,121
'P' 120,634
'Q' 66,359
'R' 151,967
'S' 168,694
'T' 137,600
'U' 102,116
'V' 87,765
'W' 86,311
'X' 74,301
'Y' 97,692
'Z' 77,862
'0' 3,310,606
'1' 4,751,205
'2' 3,111,201
'3' 2,168,754
'4' 1,845,614
'5' 1,980,406
'6' 1,890,052
'7' 1,931,518
'8' 2,036,416
'9' 2,790,004

<Space> 61
'_' 38,379
'-' 20,394
';' 625

Upper + 
Space

Upper + 
Symbol

Digit + 
Space

Digit + 
Symbol

Space + 
Symbol

2 834 0 8,430 0
20 7,384 0 74,433 0

10.00 8.85 N/A 8.83 N/A
1 146
1 362
0 76
0 209
0 248
0 226
0 427
2 340
1 148
0 32
0 393
1 311
1 248
1 196
0 112
0 90
0 58
1 160
0 57

0 10,605
0 9,526
0 6,686
0 4,867
0 4,195
0 4,415
0 3,941
0 4,047
0 4,378
0 6,640

2 0 0
312 1,696 0
83 2,658 0
7 24 0
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

':' 9
'!' 10,353
'?' 4,527
'.' 37,959
''' 744
'»' 19
'(' 93
')' 11
'[' 167
']' 133
'{' 14
'}' 20

'@' 7,719
'*' 9,939
'/' 67
'\' 382
'&' 1,011
'#' 2,781
'%' 1,042
'`' 65
'^' 379
'+' 271
'<' 2
'=' 810
'>' 3
'¬' 3
'|' 75
'¦' 3
'~' 228
'$' 3,950
'¼' 5
'é' 2
'ª' 20

Upper + 
Space

Upper + 
Symbol

Digit + 
Space

Digit + 
Symbol

Space + 
Symbol

2 834 0 8,430 0
20 7,384 0 74,433 0

10.00 8.85 N/A 8.83 N/A
0 0 0

151 676 0
295 1,117 0
294 5,347 0
21 3 0
0 0 0
2 1 0
0 0 0
3 3 0
2 1 0
1 0 0
0 0 0

130 896 0
86 2,053 0
1 27 0
0 11 0
29 40 0
49 117 0
20 36 0
0 3 0
21 16 0
5 27 0
0 0 0
3 210 0
0 0 0
0 0 0
0 0 0
0 0 0
3 7 0
55 164 0
2 0 0
2 0 0
0 0 0
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

^B 2
^C 31
^G 1
^O 2
^W 1

Upper + 
Space

Upper + 
Symbol

Digit + 
Space

Digit + 
Symbol

Space + 
Symbol

2 834 0 8,430 0
20 7,384 0 74,433 0

10.00 8.85 N/A 8.83 N/A
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



62

All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

'a' 4,765,881
'b' 1,394,757
'c' 1,629,304
'd' 1,705,096
'e' 4,117,197
'f' 1,019,573
'g' 1,246,221
'h' 1,445,050
'i' 2,901,135
'j' 677,976
'k' 1,341,596
'l' 2,288,102

'm' 1,732,512
'n' 2,825,016
'o' 3,032,936
'p' 1,150,607
'q' 320,816
'r' 3,093,749
's' 2,757,228
't' 2,330,857
'u' 1,394,794
'v' 769,297
'w' 720,790
'x' 445,369
'y' 1,178,415
'z' 529,710
'A' 223,322
'B' 134,408
'C' 133,753
'D' 133,401
'E' 174,236
'F' 109,205
'G' 113,031

Lower, 
Upper + 
Digit

Lower, 
Upper + 
Space

Lower, 
Upper + 
Symbol

Lower, 
Digit + 
Space

Lower, 
Digit + 
Symbol

570,968 2 7,137 2 36,722
4,922,333 24 83,160 19 422,933

8.62 12.00 11.65 9.50 11.52
197,888 2 4,395 0 30,298
65,827 0 1,266 2 7,253
80,086 1 1,729 0 8,497
84,175 0 1,629 0 8,951
181,632 1 4,140 2 20,469
60,081 0 1,075 0 6,197
69,544 0 1,446 0 6,200
76,674 1 1,590 2 7,936
131,736 2 2,829 1 16,065
43,035 0 968 0 3,811
75,462 0 1,585 0 9,390
91,927 0 2,146 0 12,876
75,670 1 1,614 0 10,205
130,119 1 2,767 1 15,892
136,768 2 3,014 1 15,264
54,384 0 1,242 0 5,668
35,317 0 685 0 1,091
139,154 2 3,173 0 17,432
113,291 0 2,632 2 15,354
105,120 2 2,289 1 11,784
82,861 1 1,803 0 7,405
54,177 0 1,132 0 5,248
54,184 1 995 0 3,152
48,548 0 803 0 2,310
75,932 0 1,626 0 6,961
47,489 0 851 0 3,768
71,037 1 1,749
59,890 1 1,042
57,542 1 861
56,930 0 1,061
53,206 0 1,169
52,485 0 815
51,147 0 895
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

'H' 110,162
'I' 115,795
'J' 93,063
'K' 107,284
'L' 135,003
'M' 142,667
'N' 134,861
'O' 113,121
'P' 120,634
'Q' 66,359
'R' 151,967
'S' 168,694
'T' 137,600
'U' 102,116
'V' 87,765
'W' 86,311
'X' 74,301
'Y' 97,692
'Z' 77,862
'0' 3,310,606
'1' 4,751,205
'2' 3,111,201
'3' 2,168,754
'4' 1,845,614
'5' 1,980,406
'6' 1,890,052
'7' 1,931,518
'8' 2,036,416
'9' 2,790,004

<Space> 61
'_' 38,379
'-' 20,394
';' 625

Lower, 
Upper + 
Digit

Lower, 
Upper + 
Space

Lower, 
Upper + 
Symbol

Lower, 
Digit + 
Space

Lower, 
Digit + 
Symbol

570,968 2 7,137 2 36,722
4,922,333 24 83,160 19 422,933

8.62 12.00 11.65 9.50 11.52
48,363 0 849
28,853 0 946
47,154 0 815
48,943 0 815
51,067 0 1,091
63,128 1 1,284
47,410 0 862
25,203 0 755
57,933 0 967
35,977 0 762
53,455 1 966
67,219 0 1,208
53,322 0 927
42,620 0 998
42,409 0 801
43,313 0 730
38,307 0 653
42,745 0 1,045
40,386 0 721
105,363 0 16,518
234,083 0 23,774
159,877 1 15,438
123,778 1 10,264
111,027 1 7,600
123,704 1 7,984
117,701 1 7,363
115,488 0 8,492
116,799 0 8,740
123,388 0 13,571

2 2
1,913 14,737
685 6,599
8 169



64

All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

':' 9
'!' 10,353
'?' 4,527
'.' 37,959
''' 744
'»' 19
'(' 93
')' 11
'[' 167
']' 133
'{' 14
'}' 20

'@' 7,719
'*' 9,939
'/' 67
'\' 382
'&' 1,011
'#' 2,781
'%' 1,042
'`' 65
'^' 379
'+' 271
'<' 2
'=' 810
'>' 3
'¬' 3
'|' 75
'¦' 3
'~' 228
'$' 3,950
'¼' 5
'é' 2
'ª' 20

Lower, 
Upper + 
Digit

Lower, 
Upper + 
Space

Lower, 
Upper + 
Symbol

Lower, 
Digit + 
Space

Lower, 
Digit + 
Symbol

570,968 2 7,137 2 36,722
4,922,333 24 83,160 19 422,933

8.62 12.00 11.65 9.50 11.52
1 3

620 2,458
276 385

3,621 11,678
22 32
0 0
9 41
2 8
19 39
16 29
1 1
1 7

415 2,838
359 1,945
1 30
6 99
73 259
232 637
92 164
9 18
37 97
14 96
0 0
66 299
0 0
0 1
12 30
0 1
16 53
421 931
0 0
0 0
0 0
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

^B 2
^C 31
^G 1
^O 2
^W 1

Lower, 
Upper + 
Digit

Lower, 
Upper + 
Space

Lower, 
Upper + 
Symbol

Lower, 
Digit + 
Space

Lower, 
Digit + 
Symbol

570,968 2 7,137 2 36,722
4,922,333 24 83,160 19 422,933

8.62 12.00 11.65 9.50 11.52
1 0
0 27
1 0
0 0
0 1
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

'a' 4,765,881
'b' 1,394,757
'c' 1,629,304
'd' 1,705,096
'e' 4,117,197
'f' 1,019,573
'g' 1,246,221
'h' 1,445,050
'i' 2,901,135
'j' 677,976
'k' 1,341,596
'l' 2,288,102

'm' 1,732,512
'n' 2,825,016
'o' 3,032,936
'p' 1,150,607
'q' 320,816
'r' 3,093,749
's' 2,757,228
't' 2,330,857
'u' 1,394,794
'v' 769,297
'w' 720,790
'x' 445,369
'y' 1,178,415
'z' 529,710
'A' 223,322
'B' 134,408
'C' 133,753
'D' 133,401
'E' 174,236
'F' 109,205
'G' 113,031

Lower, 
Space + 
Symbol

Upper, 
Digit + 
Space

Upper, 
Digit + 
Symbol

Upper, 
Space + 
Symbol

Digit, 
Space + 
Symbol

0 1 1,568 0 24
0 10 15,441 0 553

N/A 10.00 9.85 N/A 23.04
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0 670 0
0 232 0
0 225 0
0 271 0
0 402 0
0 171 0
0 175 0
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

'H' 110,162
'I' 115,795
'J' 93,063
'K' 107,284
'L' 135,003
'M' 142,667
'N' 134,861
'O' 113,121
'P' 120,634
'Q' 66,359
'R' 151,967
'S' 168,694
'T' 137,600
'U' 102,116
'V' 87,765
'W' 86,311
'X' 74,301
'Y' 97,692
'Z' 77,862
'0' 3,310,606
'1' 4,751,205
'2' 3,111,201
'3' 2,168,754
'4' 1,845,614
'5' 1,980,406
'6' 1,890,052
'7' 1,931,518
'8' 2,036,416
'9' 2,790,004

<Space> 61
'_' 38,379
'-' 20,394
';' 625

Lower, 
Space + 
Symbol

Upper, 
Digit + 
Space

Upper, 
Digit + 
Symbol

Upper, 
Space + 
Symbol

Digit, 
Space + 
Symbol

0 1 1,568 0 24
0 10 15,441 0 553

N/A 10.00 9.85 N/A 23.04
1 159 0
0 278 0
0 109 0
0 221 0
0 217 0
0 299 0
0 505 0
0 259 0
2 202 0
0 50 0
0 320 0
2 365 0
0 231 0
0 129 0
0 150 0
0 99 0
0 103 0
1 125 0
0 84 0
0 951 121
1 1,170 55
0 884 59
0 536 27
0 484 27
0 476 28
0 462 18
1 568 34
1 532 31
0 726 22

0 1 0 24
0 502 0 0
0 272 0 48
0 6 0 0



68

All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

':' 9
'!' 10,353
'?' 4,527
'.' 37,959
''' 744
'»' 19
'(' 93
')' 11
'[' 167
']' 133
'{' 14
'}' 20

'@' 7,719
'*' 9,939
'/' 67
'\' 382
'&' 1,011
'#' 2,781
'%' 1,042
'`' 65
'^' 379
'+' 271
'<' 2
'=' 810
'>' 3
'¬' 3
'|' 75
'¦' 3
'~' 228
'$' 3,950
'¼' 5
'é' 2
'ª' 20

Lower, 
Space + 
Symbol

Upper, 
Digit + 
Space

Upper, 
Digit + 
Symbol

Upper, 
Space + 
Symbol

Digit, 
Space + 
Symbol

0 1 1,568 0 24
0 10 15,441 0 553

N/A 10.00 9.85 N/A 23.04
0 0 0 0
0 127 0 0
0 603 0 0
0 483 0 59
0 5 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0
0 139 0 0
0 135 0 0
0 0 0 0
0 1 0 0
0 26 0 0
0 46 0 0
0 92 0 0
0 3 0 0
0 8 0 0
0 19 0 0
0 33 0 0
0 0 0 0
0 0 0 0
0 2 0 0
0 2 0 0
0 2 0 0
0 5 0 0
0 84 0 0
0 0 0 0
0 0 0 0
0 2 0 0
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

^B 2
^C 31
^G 1
^O 2
^W 1

Lower, 
Space + 
Symbol

Upper, 
Digit + 
Space

Upper, 
Digit + 
Symbol

Upper, 
Space + 
Symbol

Digit, 
Space + 
Symbol

0 1 1,568 0 24
0 10 15,441 0 553

N/A 10.00 9.85 N/A 23.04
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0



70

All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

'a' 4,765,881
'b' 1,394,757
'c' 1,629,304
'd' 1,705,096
'e' 4,117,197
'f' 1,019,573
'g' 1,246,221
'h' 1,445,050
'i' 2,901,135
'j' 677,976
'k' 1,341,596
'l' 2,288,102

'm' 1,732,512
'n' 2,825,016
'o' 3,032,936
'p' 1,150,607
'q' 320,816
'r' 3,093,749
's' 2,757,228
't' 2,330,857
'u' 1,394,794
'v' 769,297
'w' 720,790
'x' 445,369
'y' 1,178,415
'z' 529,710
'A' 223,322
'B' 134,408
'C' 133,753
'D' 133,401
'E' 174,236
'F' 109,205
'G' 113,031

Lower,  
Upper, 
Digit + 
Space

Lower, 
Upper, 
Digit + 
Symbol

Lower, 
Digit, 
Space + 
Symbol

Upper, 
Digit, 
Space + 
Symbol

Lower, 
Upper, 
Digit, 
Space + 
Symbol

0 15,105 0 0 0
0 165,790 0 0 0

N/A 10.98 N/A N/A N/A
0 7,409 0 0
0 1,902 0 0
0 2,369 0 0
0 2,617 0 0
0 6,360 0 0
0 1,431 0 0
0 1,975 0 0
0 2,211 0 0
0 3,928 0 0
0 1,229 0 0
0 2,009 0 0
0 3,148 0 0
0 2,354 0 0
0 4,277 0 0
0 4,087 0 0
0 1,813 0 0
0 1,001 0 0
0 4,836 0 0
0 3,707 0 0
0 3,400 0 0
0 3,107 0 0
0 1,347 0 0
0 1,486 0 0
0 1,394 0 0
0 2,597 0 0
0 1,209 0 0
0 3,119 0 0
0 1,572 0 0
0 1,420 0 0
0 1,550 0 0
0 1,916 0 0
0 1,215 0 0
0 1,123 0 0
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

'H' 110,162
'I' 115,795
'J' 93,063
'K' 107,284
'L' 135,003
'M' 142,667
'N' 134,861
'O' 113,121
'P' 120,634
'Q' 66,359
'R' 151,967
'S' 168,694
'T' 137,600
'U' 102,116
'V' 87,765
'W' 86,311
'X' 74,301
'Y' 97,692
'Z' 77,862
'0' 3,310,606
'1' 4,751,205
'2' 3,111,201
'3' 2,168,754
'4' 1,845,614
'5' 1,980,406
'6' 1,890,052
'7' 1,931,518
'8' 2,036,416
'9' 2,790,004

<Space> 61
'_' 38,379
'-' 20,394
';' 625

Lower,  
Upper, 
Digit + 
Space

Lower, 
Upper, 
Digit + 
Symbol

Lower, 
Digit, 
Space + 
Symbol

Upper, 
Digit, 
Space + 
Symbol

Lower, 
Upper, 
Digit, 
Space + 
Symbol

0 15,105 0 0 0
0 165,790 0 0 0

N/A 10.98 N/A N/A N/A
0 1,058 0 0
0 839 0 0
0 1,207 0 0
0 1,050 0 0
0 1,318 0 0
0 1,583 0 0
0 1,303 0 0
0 807 0 0
0 1,356 0 0
0 1,013 0 0
0 1,352 0 0
0 1,732 0 0
0 1,283 0 0
0 1,512 0 0
0 996 0 0
0 923 0 0
0 899 0 0
0 1,398 0 0
0 1,042 0 0
0 4,614 0 0 0
0 6,967 0 0 0
0 5,090 0 0 0
0 3,824 0 0 0
0 3,011 0 0 0
0 2,932 0 0 0
0 2,848 0 0 0
0 3,063 0 0 0
0 3,041 0 0 0
0 3,641 0 0 0
0 0 0 0

3,569 0 0 0
2,366 0 0 0
40 0 0 0
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

':' 9
'!' 10,353
'?' 4,527
'.' 37,959
''' 744
'»' 19
'(' 93
')' 11
'[' 167
']' 133
'{' 14
'}' 20

'@' 7,719
'*' 9,939
'/' 67
'\' 382
'&' 1,011
'#' 2,781
'%' 1,042
'`' 65
'^' 379
'+' 271
'<' 2
'=' 810
'>' 3
'¬' 3
'|' 75
'¦' 3
'~' 228
'$' 3,950
'¼' 5
'é' 2
'ª' 20

Lower,  
Upper, 
Digit + 
Space

Lower, 
Upper, 
Digit + 
Symbol

Lower, 
Digit, 
Space + 
Symbol

Upper, 
Digit, 
Space + 
Symbol

Lower, 
Upper, 
Digit, 
Space + 
Symbol

0 15,105 0 0 0
0 165,790 0 0 0

N/A 10.98 N/A N/A N/A
1 0 0 0

3,333 0 0 0
180 0 0 0

3,003 0 0 0
12 0 0 0
0 0 0 0
12 0 0 0
0 0 0 0
13 0 0 0
8 0 0 0
2 0 0 0
3 0 0 0

1,545 0 0 0
1,173 0 0 0

5 0 0 0
6 0 0 0

227 0 0 0
1,221 0 0 0
366 0 0 0
4 0 0 0

113 0 0 0
29 0 0 0
0 0 0 0
75 0 0 0
0 0 0 0
0 0 0 0
7 0 0 0
0 0 0 0
33 0 0 0

1,620 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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All
# passwords 9,997,985
# characters 75,916,675
Avg length 7.59

^B 2
^C 31
^G 1
^O 2
^W 1

Lower,  
Upper, 
Digit + 
Space

Lower, 
Upper, 
Digit + 
Symbol

Lower, 
Digit, 
Space + 
Symbol

Upper, 
Digit, 
Space + 
Symbol

Lower, 
Upper, 
Digit, 
Space + 
Symbol

0 15,105 0 0 0
0 165,790 0 0 0

N/A 10.98 N/A N/A N/A
0 0 0 0
3 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0


