
TiCTak: Target-Specific Centrality

Manipulation on Large Networks

by

Ruiyue Peng

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2016 by the
Graduate Supervisory Committee:

Hanghang Tong, Chair
Jingrui He

Hasan Davulcu

ARIZONA STATE UNIVERSITY

December 2016

©2016 Ruiyue Peng

All Rights Reserved

ABSTRACT

Measuring node centrality is a critical common denominator behind many impor-

tant graph mining tasks. While the existing literature offers a wealth of different node

centrality measures, it remains a daunting task on how to intervene the node centrality

in a desired way. In this thesis, I study the problem of minimizing the centrality of

one or more target nodes by edge operation. The heart of the proposed method is

an accurate and efficient algorithm to estimate the impact of edge deletion on the

spectrum of the underlying network, based on the observation that the edge deletion is

essentially a local, sparse perturbation to the original network. Extensive experiments

are conducted on a diverse set of real networks to demonstrate the effectiveness,

efficiency and scalability of our approach. In particular, it is average of 260.95%, in

terms of minimizing eigen-centrality, better than the standard matrix-perturbation

based algorithm, with lower time complexity.

i

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

CHAPTER

1 INTRODUCTION . 1

2 PROBLEM DEFINITIONS . 5

2.1 Eigen-Centrality . 6

2.2 Related Algorithms for Updating Eigenpairs . 6

2.2.1 Standard Matrix-Perturbation Theory . 7

2.2.2 Cheetah . 8

3 ALGORITHM AND ANALYSIS . 10

3.1 A Proposed Algorithm for Updating Eigen-Centrality 10

3.2 Proposed TiCTak and TiCTak+ Algorithm . 14

4 EXPERIMENTAL EVALUATIONS . 17

4.1 Experimental Setup . 17

4.2 Effectiveness of TiCTak and TiCTak+ Algorithms 19

4.3 Efficiency of TiCTak and TiCTak+ Algorithms 25

5 SOFTWARE PACKAGES . 29

5.1 GCO_Melt_Nodes . 29

5.2 GCO_Melt_Edges . 30

5.3 GCO_TiCTak_Edges . 33

6 RELATED WORK . 34

7 CONCLUSION . 36

REFERENCES . 38

ii

APPENDIX Page

A PROOF OF FORMULATIONS . 42

iii

LIST OF TABLES

Table Page

1 Notation Used in Text. 5

2 Updating Eigen-Centrality Algorithms . 13

3 The Summary of Different Algorithms . 17

4 Datasets . 18

5 ’Method’ of GCO_Melt_Nodes . 30

6 ’Method’ of GCO_Melt_Edges . 31

7 ’Method’ of GCO_TiCTak_Edges . 33

iv

LIST OF FIGURES

Figure Page

1 A Graph with Target Nodes . 1

2 Effectiveness of TiCTak and SMPT Algorithms for LinkedIn Dataset 3

3 A Ten-Node Graph with λ1 = λ2 . 7

4 Work-Flow of TiCTak vs Work-Flow of TiCTak+ . 16

5 Effectiveness of TiCTak, TiCTak+ and Other Algorithms for All Experimental

Datasets . 20

5 Effectiveness of TiCTak, TiCTak+ and Other Algorithms for All Experimental

Datasets . 21

5 Effectiveness of TiCTak, TiCTak+ and Other Algorithms for All Experimental

Datasets . 22

5 Effectiveness of TiCTak, TiCTak+ and Other Algorithms for All Experimental

Datasets . 23

5 Effectiveness of TiCTak, TiCTak+ and Other Algorithms for All Experimental

Datasets . 24

6 Effectiveness of TiCTak, TiCTak+ and Other Algorithms for Facebook Dataset 25

7 Efficiency of TiCTak, TiCTak+ and Other Algorithms for Facebook Dataset. 26

8 Scalability of TiCTak and TiCTak+ Algorithms . 27

v

Chapter 1

INTRODUCTION

Node centrality is an indicator of node importance. Measuring node centrality is a

critical common denominator behind many important graph mining tasks, e.g., ranking,

meme (e.g., virus, idea, rumor, etc) dissemination, recommendation, etc. As such, the

research community has developed a wealth of different centrality measures, ranging

from eigenvector centrality (Newman 2008), shortest path based centrality (Freeman

1977), PageRank (Page et al. 1999), HITS (Kleinberg 1999), shield value (Tong et al.

2010), to random walks based centrality (Newman 2005; Kang et al. 2011), etc.

While the existing literature offers powerful measures to observe the importance

of the nodes, it remains a daunting task on how to intervene the node centrality in a

desired way. How to take a shift from observation to intervention for node centrality?

Figure 1 shows a graph with target nodes.

Figure 1: A Graph with Target Nodes

1

As the first step toward this long-term goal, in this thesis, I study the problem of

minimizing the eigen-centrality of a set of target nodes by edge deletion operation.

The applications are numerous, such as to neutralize the propaganda message by

radical elements (e.g., ISIS) on Internet, to combat link farms on social network sites,

etc.

The major hurdle to intervene the node centrality lies in the computation. Suppose

there is a network with n nodes and m links, or called edges. In order to find an

optimal edge to delete so as to minimize the eigen-centrality, it would take O(m2)

time with the exact algorithm, which is not scalable for large networks. An alternative

algorithm is to resort to matrix perturbation theory to approximately estimate the

impact of an edge deletion operation on the centrality of the target nodes. For instance,

with the first-order matrix perturbation, the time complexity can be reduced to O(nt2)

(Chan, Akoglu, and Tong 2014). The latter has much less complexity than the former

because t is far less than m and n.

However, the approximation quality of matrix perturbation theory could quickly

be deteriorated, if not collapsed at all, especially when the input networks have small

eigen-gaps. This is an inherent limitation, which cannot be overcome by the standard

matrix perturbation theory based algorithms (SMPT), even if I resort to its higher

order variants (Chen and Tong 2016). Therefore, the key challenge lies in how to

balance between the approximation quality and the computational time.

In this thesis, accurate and efficient algorithms are proposed to estimate the impact

of edge deletion on the spectrum of the underlying network, based on the observation

that the edge deletion is essentially a local, sparse perturbation to the original network.

Without incurring any additional approximation error (Figure 2), our algorithm has

less complexity than SMPT . (Chan, Akoglu, and Tong 2014).

2

Figure 2: Effectiveness of TiCTak and SMPT Algorithms for LinkedIn Dataset

The main contributions of the thesis are:

Problem Definitions. The intervened aspect of node centrality is defined, i.e.,

to manipulate the centrality for target nodes by optimizing its underlying network

structure.

Algorithm and Analysis. Accurate and efficient algorithms are proposed to select

edges to minimize the eigen-centrality, with a linear time complexity.

Experimental Evaluations. Extensive evaluations are conducted on a diverse set

of real networks, which consistently demonstrate the effectiveness, efficiency and

scalability of the proposed algorithm. It is average of 260.95%, in terms of minimizing

eigen-centrality, better than SMPT , with lower runtime.

The rest of thesis is organized as follows. The problem is defined in Chapter 2.

Algorithms are proposed in Chapter 3. Empirical evaluation is conducted in Chapter 4.

3

Chapter 5 reviews the related work while Chapter 6 introduces the software packages.

Chapter 7 concludes the thesis.

4

Chapter 2

PROBLEM DEFINITIONS

This thesis addresses the problem of minimizing eigen-centrality of target nodes

by deleting edges. The problem can be defined as follows:

Problem: Selecting and deleting edges to minimize eigen-centrality of target nodes

Given: An n x n graph A, a budget of k edges and a set I of target nodes

Output: A new n x n graph Ã with a set S of k edges deleted which leads to the

largest decrease of eigen-centrality for the target nodes.

Table 1: Notation used in text.

Symbol Definition and Description
n the number of the nodes in the graph
m the number of the edges in the graph
k the budget (i.e., the specified number of

deleted or added edges)
t the rank of A
ν eigen-centrality of target nodes
A,B,. . . matrix (bold upper case)
A(i, j) the element at the ith row and jth

column of A
A(i,:) the ith row of matrix A
A(:,j) the jth column of matrix A
A′ transpose of matrix A
∆A perturbation of A
a,b... vectors
I,S... sets (calligraphic)
Λ(j, j) the jth eigenvalue of A
U(i, j) the ith element of jth eigenvector of A
∆Λ the eigenvalue matrix of ∆A
∆U the eigenvector matrix of ∆A

5

Table 1 lists the notation that is used throughout this thesis. A graph is described

by its adjacency matrix. Following the standard notation, bold upper-case is used for

matrix (e.g., A). The transpose of matrix A is represented as A′. Also, the elements

are represented in a matrix using a convention similar to Matlab, e.g., A(i, j) is the

element at the ith row and the jth column of matrix A, and A(:,j) is the jth column

of matrix A, etc.

2.1 Eigen-Centrality

Based on Perron−Frobenius Theory, eigen-centrality is determined by computing

an eigenvector of the adjacency matrix (Newman 2008). Let Λ(1,1) be the largest

eigenvalue of adjacency matrix A. The eigen-centrality of the nodes of the graph A is

the elements of eigenvector U(:, 1) corresponding to the largest eigenvalue Λ(1,1).

Given a set I of target nodes, the eigen-centrality vector of I is U(I, 1). The sum

of the elements of U(I, 1) is the eigen-centrality of I, which is

ν =
∑
iεI

U(i, 1) (2.1)

2.2 Related Algorithms for Updating Eigenpairs

To measure each edge’s impact on the eigen-centrality, eigenpairs need to be

updated each time after an edge is removed. This section introduces two algorithms

for updating eigenpairs: standard matrix-perturbation theory (Chan, Akoglu, and

Tong 2014) and Cheetah (Li et al. 2015).

6

2.2.1 Standard Matrix-Perturbation Theory

In (Chan, Akoglu, and Tong 2014), the authors proposed standard matrix-

perturbation theory to approximately update eigenpairs. Let ∆A be an n x n

perturbation matrix to A, where ∆A(p, r) = ∆A(r, p) = -1 and 0 elsewhere. The

eigenvalues of ∆A can be updated by

∆Λ(j, j) = −2U(p, j)U(r, j) (2.2)

The eigenvectors can be updated by

∆U(:, j) =
n∑

i=1,i 6=j

(
U(:, j)′∆AU(:, j)U(:, i)

Λ(j, j)− Λ(i, i)
) (2.3)

The time complexity is O(nt2). Although fast, this is an approximate algorithm and

cannot handle the case of Λ(i, i) = Λ(j, j). It is trivial to show the graph in Figure 3

has Λ(1, 1) = Λ(2, 2) = 1.85. In this case, this algorithm cannot find ∆U(:,1) by (2.3).

Figure 3: A ten-node graph with λ1 = λ2

7

2.2.2 Cheetah

(Li et al. 2015) proposed another update eigenpairs algorithm, which does not have

a constraint and avoids introducing the approximation during the updating process.

The key idea of algorithm is the following.

Firstly, obtaining the eigenpair matrices of the ∆A.

∆A = ∆U∆Λ∆U′ (2.4)

Secondly, performing a partial QR decomposition on the block matrix [U ∆U].

[
U ∆U

]
= QR (2.5)

where

Q =

[
U q1

||q1||
q2

||q2||

]
(2.6)

and

R =


I r1 r2

0 ||q1|| −||q1||r′1r2

0 0 ||q2||

 (2.7)

Thirdly, constructing a new matrix Z from the upper triangle matrix R of the QR

decomposition and the eigenvalues matrix of A and ∆A.

Z = R

 Λ 0

0 ∆Λ

R′ (2.8)

Fourthly, obtaining the eigenpair matrices of the Z.

Z = VΛ̄V′ (2.9)

8

Λ̄ are the new eigenvalue matrix. Z’s eigenvector rotates the orthonormal basis of the

QR decomposition to get the new eigenvector matrix Ū.

Ū = QV (2.10)

The time complexity of this algorithm is O(nt2). Even though Cheetah is an accurate

method, its time complexity prohibits its use for large networks.

9

Chapter 3

ALGORITHM AND ANALYSIS

In this chapter, a new algorithm is proposed, called UdEigen, to efficiently update

eigen-centrality. TiCTak is another algorithm proposed, which used UdEigen as its

core module for deletion in order to minimize the eigen-centrality.

3.1 A Proposed Algorithm for Updating Eigen-Centrality

The proposed algorithm is based on Cheetah (Li et al. 2015), an algorithm which

can accurately updating eigenpairs. I improve it to update eigen-centrality more

efficiently.

The eigen-decomposition of A and ∆A are following:

A = UΛU′ (3.1)

∆A = ∆U∆Λ∆U′ (3.2)

where U, Λ are the eigenpair-matrices of A while ∆U, ∆Λ are the eigenpair-matrices

of ∆A.

Every time, only an edge (i, j) is deleted from the graph A. Therefore, the

perturbation martix ∆A is a 2-rank adjacency matrix with ∆A(i, j) =∆A(j, i)=-1

and 0 elsewhere. The 2-rank eigenvalue matrix ∆Λ and eigenvector matrix ∆U of

∆A can be calculated. The equation is following:

∆Λ =

 1 0

0 −1

 (3.3)

10

∆U is an n x 2 matrix with all “0” elements except:

∆U(i, 1) =
1√
2
,∆U(j, 1) = − 1√

2
(3.4)

∆U(i, 2) = − 1√
2
,∆U(j, 2) = − 1√

2

Perform QR decomposition on matrix [U ∆U],[
U ∆U

]
= QR (3.5)

where Q is an n x (t+ 2) matrix

Q =

[
U q1

||q1||
q2

||q2||

]
(3.6)

and R is a (t+ 2) x (t+ 2) upper triangle matrix

R =


I r1 r2

0 ||q1|| −||q1||r′1r2

0 0 ||q2||

 (3.7)

In (3.7), I is a t x t identity matrix and column vectors r1 and r2 are defined as

r1 = U′∆U(:, 1) =
1√
2

(U(i, :)−U(j, :))′ (3.8)

r2 = U′∆U(:, 2) = − 1√
2

(U(i, :) + U(j, :))′ (3.9)

In (3.6),

q1 = ∆U(:, 1)−Ur1 (3.10)

q2 = ∆U(:, 2)−Ur2 + q1r
′
1r2 (3.11)

In Appendix A, I prove that the norm of q1 and q2 are

||q1|| =
√

1− ||r1||2 (3.12)

11

||q2|| =
√

1− ||r2||2 − (r′1r2)2(1 + ||r1||2) (3.13)

Now a new (t+2) x (t+2) matrix Z is constructed from the upper triangle matrix

R of the QR decomposition and the eigenvalue matrices of A and ∆A.

Z = R

 Λ 0

0 ∆Λ

R′ (3.14)

Perform eigen-decomposition of Z

Z = VΛ̄V′ (3.15)

where Λ̄ are the new eigenvalue matrix.

Z’s eigenvector rotates the orthonormal basis of the QR decomposition to get the

new eigenvectors Ū.

Ū = QV (3.16)

To compute eigen-centrality of target nodes, I only need to calculate Ū(I, 1).

Ū(I, 1) = Q(I, :)V(:, 1) (3.17)

where

Q(I, :) =

[
U(I, :) q1(I)

||q1||
q2(I)
||q2||

]
(3.18)

where

q1(I) = ∆U(I, 1)−U(I, :)r1 (3.19)

q2(I) = ∆U(I, 2)−U(I, :)r2 + q1(I)r′1r2 (3.20)

From (3.17), eigen-centrality is computed

ν̄ =
∑
iεI

Ū(i, 1) (3.21)

12

Algorithm 1 UdEigen

Input: Eigenvalue matrix Λ and eigenvector matrix U of A, the edge (i, j), and the
set of nodes I
Output: Eigen-centrality ν̄
1: Calculate eigenvalue matrix ∆Λ and eigenvector matrix ∆U of ∆A for edge (i, j)

by (3.3,3.4)
2: Partial QR decomposition of [U∆U]

Q =
[
U q1

||q1||
q2

||q2||

]
R =

 I r1 r2
0 ||q1|| −||q1||r′1r2
0 0 ||q2||


3: Set Z = R

[
Λ 0
0 ∆Λ

]
R′

4: Eigen-decomposition of Z =V Λ̄V′

5: Ū(I, 1) = Q(I, :)V(:, 1)
6: Calculate eigen-centrality ν̄ =

∑
iεI Ū(i, 1)

7: Return ν̄

Algorithm 1 is for updating eigen-centrality after an edge is deleted. From the

above description of the algorithm, there is no approximation involved and faster than

Cheetah. Step 4 has the most computation, which has complexity O(t3). Table 2

shows time complexity comparison among algorithms for updating eigen-centrality.

Table 2: Updating eigen-centrality algorithms

Algorithm Time Complexity
UdEigen O(t3)
Cheetah based O(nt2)
Standard Matrix-Perturbation based O(nt2)
Eigen decomposition based O(nt+mt+ nt2)

13

3.2 Proposed TiCTak and TiCTak+ Algorithm

Now, I proposed an algorithm, called TiCTak algorithm, which is able to delete k

edges to minimize the eigen-centrality of target nodes as shown in Algorithm 2.

Firstly, perform eigen-decomposition of A

A = UΛU′ (3.22)

Secondly, calculate eigen-centrality of a set I of target nodes

ν =
∑
iεI

U(i, 1) (3.23)

For each edge (i,j), I use UdEigen to calculate ν̄

ν̄ = UdEigen(U,Λ, i, j, I) (3.24)

Then, I calculate the score of the edge ∆ν, called eigen-centrality reduction

∆ν = ν − ν̄ (3.25)

After scoring all edges, I rank edges according to the scores, choose the biggest k

edges as the set S. I delete the top k edges from A. The corresponding new matrix is

Ã.

14

Algorithm 2 TiCTak

Input: Matrix A, the budget of edges k , the rank t and a set I of nodes
Output: New matrix Ã and the set S of k edges
1: t rank eigen decomposition of A = UΛU′

2: Set n is the size of matrix A
3: Calculate eigen-centrality: ν =

∑
iεI U(i, 1)

4: for each edge (i, j) of A do
5: ν̄=UdEigen(U,Λ,i,j,I)
6: Score:∆ν = ν − ν̄
7: end for
8: Find out the set S of k edges with top k score ∆ν
9: Delete the set S of k edges from A and get Ã

10: Return Ã and the set S of k edges

The time complexity of Step 1 is O(nt + mt + nt2), O(1) for Step 2, O(1) for

Step 3, O(t3) for Step 5, O(mt3) for Steps 4 to 9. Therefore, the total time complexity

of Algorithm 2 is O(mt3). Compared with Cheetah based algorithm where the time

complexity O(mnt2), Algorithm 2 is much faster.

The space complexity of storing a graph is O(m), O(t) for eigenvaluse, O(nt) for

eigenvector, O(m) for scores of all edges, and O(k) for budget nodes. The total space

complexity of Algorithm 2 is O(m + nt + k) which is the same to Cheetah based

algorithm.

15

Figure 4: Work-flow of TiCTak vs Work-flow of TiCTak+

TiCTak+ algorithm is further improvement of TiCTak algorithm. TiCTak+

algorithm is TiCTak algorithm with restart. Scoring every edge as before. Only one

edge with the maximum score is deleted each time. A with its eigenpair-matrices U

and Λ are renewed. Scoring, sorting, selecting and deleting an edge with the maximum

score totally k times. Finally, return the new graph Ã and the set S of k edges. The

time complexity of TiCTak+ is O(kmt3) and the space complexity is O(m+ nt+ k).

Figure 4 shows the comparison between TiCTak and TiCTak+ algorithms.

16

Chapter 4

EXPERIMENTAL EVALUATIONS

In this chapter, the experimental results are presented for the proposed TiCTak

and TiCTak+ algorithms. Extensive evaluations are conducted on a diverse set of real

networks, which consistently demonstrate the effectiveness, efficiency and scalability of

the proposed method. The proposed TiCTak and TiCTak+ algorithms are compared

with four baseline algorithms. Two of them are standard matrix perturbation theory

based algorithms SMPT and SMPT+ (Chan, Akoglu, and Tong 2014). The other

two are the state-of-the-art melting edge method NetMelt (Tong et al. 2012) and

NetMelt+ algorithms.

Table 3: The Summary of Different Algorithms

Algorithm Target- Updating Restart Time
specific eigen-centrality complexity

TiCTak Yes UdEigen No O(mt3)
TiCTak+ Yes UdEigen Yes O(kmt3)
SMPT Yes Standard matrix-pertubation No O(nmt2)
SMPT+ Yes Standard matrix-pertubation Yes O(knmt2)
NetMelt No - No O(km+ n)
NetMelt+ No - Yes O(k2m+ kn))

4.1 Experimental Setup

Nine popular sets of real networks are used for our experiments. Table 4 lists the

number of nodes n and edges m of nine real networks to be used for the experiment.

17

Table 4: Datasets

Dataset n m
Router 633 2172
Venue 899 4716
LiveJournal 1000 47641
Facebook 1000 17880
Email 1000 34806
Power 1000 2424
Collaboration 1001 2336
LinkedIn 2000 4468
Airport 2833 5666

All of them are undirected and unweighted graphs. Router network of Oregon

Autonomous System is a AS-level connectivity network inferred from Oregon route-

views 1. Facebook network and LinkedIn network are two famous friendship social

networks 2. LiveJournal is a social networking and blogging site with several million

members and a large collection of explicit user-defined communities 2. Enron email

communication network covers all the email communication within a dataset of around

a half million email accounts 2. Collaboration network is from the DBLP computer

science bibliography 3. In Collaboration network, two authors are connected if they

publish at least one paper together 3. Power networks represent the topology of the

Western States Power Grid of the United States 2.

To achieve fair comparison results, all the experiments were conducted on the same

machine running Windows 7 with Intel Core i7-4790 CPU and 32GB memory. All the

algorithms are implemented and executed in MatLab simulation environments.

1http://topology.eecs.umich.edu/data.html

2https://snap.stanford.edu/data/

3http://dblp.uni-trier.de/

18

4.2 Effectiveness of TiCTak and TiCTak+ Algorithms

In this section, the effectiveness of the proposed TiCTak and TiCTak+ algorithms

along with SMPT , SMPT+, NetMelt and NetMelt+ algorithms are evaluated. The

objective of all these algorithms is to minimize eigen-centrality of target nodes. The

effectiveness of the algorithms can be measured by the decrease of eigen-centrality ∆ν

of the graph.

Figure 5(1) to 5(9) shows the effectiveness of TiCTak, TiCTak+ and other

algorithms for all the experimental datasets, where the x-axis represents the budget

k and the y-axis represents the reduction of the eigen-centrality. The larger the

eigen-centrality decreases, the more effective the algorithm is. All six algorithms are

simulated for all nine datasets. It can be observed that the proposed TiCTak and

TiCTak+ are consistently outperform the rest of algorithms. Both algorithms are

261% on average more effective in terms of eigen-centrality than the best baseline.

Based in Figure 5(1), the experiment results of Facebook dataset, it can be observed

that there is no extra gain for most of algorithms after budget k reaches 100 because

the curves become flat, which means the eigen-centrality has already been minimized.

When the eigen-centrality is minimized, it can be observed that the TiCTak and

TiCTak+ algorithms result in 338% more reduction of eigen-centrality comparing to

other algorithms. The experiment results of Venue dataset, shown in Figure 5(2), are

similar to those of results of Facebook dataset.

Based in Figure 5(3), (4), (5) and (6), the experiment results of Linkedin, Col-

laboration, Airport and Power datasets, I observe that for TiCTak and TiCTak+

algorithms, the curves become flat after budget k reaches 20, which means the eigen-

centrality is minimized. However, for other algorithms, the curves cannot become flat

19

after budget k reaches 20. For example, in Figure 5(5), the curve for SMPT become

flat after budget k reaches 160.

Based in Figure 5(7) and (8), the experiment results of Email and LiveJournal

datasets, I observe that for all algorithms, the curves cannot become flat after budget

k reaches 200. However, when the budget k reaches 200, it can be observed that the

TiCTak and TiCTak+ algorithms result in 38% more reduction of eigen-centrality

comparing to best baseline algorithm.

TiCTak and TiCTak+ have equally good performance except in the Router

dataset, shown in Figure 5(9), where TiCTak+ leads to the biggest decrease of the

eigen-centrality.

(1) Facebook

Figure 5: Effectiveness of TiCTak, TiCTak+ and Other Algorithms for All Experi-
mental Datasets

20

(2) Venue

(3) LinkedIn

Figure 5: Effectiveness of TiCTak, TiCTak+ and Other Algorithms for All Experi-
mental Datasets

21

(4) Collaboration

(5) Airport

Note: In Figure 4(4), SMPT , SMPT+, NetMelt overlapping with
the TiCTak and TiCTak+.

Figure 5: Effectiveness of TiCTak, TiCTak+ and Other Algorithms for All Experi-
mental Datasets

22

(6) Power

(7) Email

Figure 5: Effectiveness of TiCTak, TiCTak+ and Other Algorithms for All Experi-
mental Datasets

23

(8) LiveJournal

(9) Router

Figure 5: Effectiveness of TiCTak, TiCTak+ and Other Algorithms for All Experi-
mental Datasets

Note: In Figure 4(9), SMPT+ overlaps with the TiCTak+.

24

Figure 6: Effectiveness of TiCTak, TiCTak+ and Other Algorithms for Facebook
Dataset

Figure 6 zooms into part of experiment results of Facebook dataset in Figure 4(1)

using a bar chart. It provides a clearer visual comparison when budget is less than or

equal to 50 edges. It is observed that TiCTak and TiCTak+ curves are steeper than

other methods and result in more and more performance gain as budget k increases.

The incremental rate of TiCTak and TiCTak+ is around 0.002 per edge where the

other methods are less than 0.0001 per edge.

4.3 Efficiency of TiCTak and TiCTak+ Algorithms

In this section, the efficiency of the proposed TiCTak and TiCTak+ algorithms

along with SMPT , SMPT+, NetMelt and NetMelt+ algorithms are evaluated. To

measure the efficiency, the computation time and the decrease of eigen-centrality

simultaneously for a given budget are evaluated.

25

Figure 7: Efficiency of TiCTak, TiCTak+ and Other Algorithms for Facebook Dataset

The efficiency for the six algorithms are evaluated. Figure 7 shows the algorithm

efficiency where the x-axis represents the decrease of the eigen-centrality and the

y-axis represents the computation time when budget is 100. SMPT , NetMelt and

NetMelt+ have low computation time but less eigen-centrality reduction. SMPT+

has high computation time and less eigen-centrality reduction. The points TiCTak

and TiCTak+ are in the lower right corner of the chart. The TiCTak and TiCTak+

use the least time and lead to the biggest decrease of the eigen-centrality. Therefore,

using the proposed algorithm, there is no need to trade off between solution quality

and computation time because the proposed algorithm achieve the best decrease of

eigen-centrality and computation time at the same time.

26

(1) TiCTak

(2) TiCTak+

Figure 8: Scalability of TiCTak and TiCTak+ Algorithms

The subsets of the largest data set LiveJournal (m = 2307, 8621, 19854, 32443,

27

47641) is used to evaluate the scalability of the proposed algorithms. The results are

presented in Figure 8. It can be seen that the proposed TiCTak and TiCTak+ scale

almost near linearly with respect to m, which means that they are suitable for large

graphs.

28

Chapter 5

SOFTWARE PACKAGES

In this thesis, the software packages GCO_Melt_Nodes, GCO_Melt_Edges

and GCO_TiCTak_Edges are used for the simulation of different algorithms while

the second and third packages are developed as part of the work of this research.

5.1 GCO_Melt_Nodes

As shown in Table 5, GCOMeltNodes package supports ten methods to select and

delete k-vital nodes on large graphs.

The input includes an adjacency matrix A, a budget k and a method name (shown

in Table 5). The outputs are a new adjacency matrix A and a set S including k nodes.

Here is the formulation:

[A,S] = GCO_Melt_Nodes(A, k,′Method′)

’NetShield’ is picking the nodes with the highest ’NetShield’ scores (Tong et al.

2010). ’Degrees’ is picking the nodes with the highest degrees. ’ShortestPath’ is

picking the nodes with the highest betweenness centrality scores based on the shortest

path (Freeman 1977). ’NewmanRandomWalk’ is picking the nodes with the highest

betweenness centrality scores based on random walks (Newman 2005). ’PageRank’ is

picking the nodes with the highest PageRank (Page et al. 1999). ’LeadingEigenvalue’

is picking the nodes with the highest eigen scores (Chakrabarti et al. 2008). ’2ndEigen-

29

Table 5: ’Method’ of GCO_Melt_Nodes

’Method’ Method
NETSHIEL NetShield
NETSHIRE NetShieldRestart
SUMMATIO Degrees
SHORTPAT ShortestPath
NEWMANRW NewmanRandomWalk
NEWMRWRE NewmanRandomWalkRestart
PAGERANK PageRank
FRISTEIG LeadingEigenvalue
SECONDVE 2ndEigenvector
ABNORMAL Abnormality

vector’ is picking the nodes with the second highest eigenvector scores. ’Abnormality’

is picking the nodes with the highest abnormality scores (Sun et al. 2005).

5.2 GCO_Melt_Edges

As shown in Table 6, GCO_Melt_Edges package supports 26 methods to select

and delete k-vital edges on large graphs.

The inputs include an adjacency matrix A, a budget k and a method name (show

in Table 6). The outputs are a new adjacency matrix A and a set S including k edges.

Here is the formulation:

[A,S] = GCO_Melt_Edges(A, k,′Method′)

In Table 6, SMP algorithm is standard matrix-perturbation based algorithm to

update eigenpairs. As mentioned before, UdEigen is a algorithm to update eigen-

centrality. UdEigen can also be used to update eigenvalues because Step 4 of UdEigen

can update the eigenvalues. Eigen-centrality is a evaluation of the importance of

node(Newman 2008). Leading eigenvalue (Wang et al. 2003; Prakash et al. 2012),

30

Table 6: ’Method’ of GCO_Melt_Edges

’Method’ Update Update Evaluation Restart
Eigen-centrality Eigenvalues

CTOFIRST - UdEigen Leading Eigenvalue No
CTRFIRST - UdEigen Leading Eigenvalue Yes
CTOROBUS - UdEigen Robustness No
CTRROBUS - UdEigen Robustness Yes
CTOTRIAN - UdEigen Triangles No
CTRTRIAN - UdEigen Triangles Yes
CTOVECTO UdEigen - Leading Eigen-centrality No
CTRVECTO UdEigen - Leading Eigen-centrality Yes
CTOVEC10 UdEigen - Top 10th Eigen-centrality No
CTRVEC10 UdEigen - Top 10th Eigen-centrality Yes
CTOVE10S UdEigen - Top 10 Eigen-centrality No
CTRVE10S UdEigen - Top 10 Eigen-centrality Yes
MBOFIRST - SMP Leading Eigenvalue No
MBRFIRST - SMP Leading Eigenvalue Yes
MBOROBUS - SMP Robustness No
MBRROBUS - SMP Robustness Yes
MBOTRIAN - SMP Triangles No
MBRTRIAN - SMP Triangles Yes
MBOVECTO SMP - Leading Eigen-centrality No
MBRVECTO SMP - Leading Eigen-centrality Yes
MBOVEC10 SMP - Top 10th Eigen-centrality No
MBRVEC10 SMP - Top 10th Eigen-centrality Yes
MBOVE10S SMP - Top 10 Eigen-centrality No
MBRVE10S SMP - Top 10 Eigen-centrality Yes
NETMELTO - - NetMelt No
NETMELTR - - NetMelt Yes

robustness(Jun et al. 2010) and triangles(Tsourakakis 2008, 2011) are evaluations of

connective of edges.

’NETMELTO’ is picking the edges with the highest ’NetMelt’ scores (Tong et al.

2012). ’NETMELTR’ is ’NETMELTO’ with restart. ’CTOFIRST’ uses UdEigen

to update eigenvalues and picks the edges leading to the biggest decrease of leading

eigenvalue. ’CTRFIRST’ is ’CTOFIRST’ with restart. ’CTOROBUS’ uses UdEigen

31

to update eigenvalues and picks the edges leading to the biggest decrease of robust-

ness. ’CTRROBUS’ is ’CTOROBUS’ with restart. ’CTOTRIAN’ uses UdEigen to

update eigenvalues and picks the edges leading to the biggest decrease of triangles.

’CTRTRIAN’ is ’CTOTRIAN’ with restart. ’CTOVECTO’ uses UdEigen to update

eigen-centrality and picks the edges leading to the biggest decrease of leading eigen-

centrality. ’CTRVECTO’ is ’CTOVECTO’ with restart. ’CTOVEC10’ uses UdEigen

to update eigen-centrality and picks the edges leading to the biggest decrease of top

10th eigen-centrality. ’CTRVEC10’ is ’CTOVEC10’ with restart. ’CTOVEC10S’ uses

UdEigen to update eigen-centrality and picks the edges leading to the biggest decrease

of top 10 eigen-centrality. ’CTRVEC10’ is ’CTOVEC10S’ with restart. ’MBOFIRST’

uses SMP to update eigenvalues and picks the edges leading to the biggest decrease

of leading eigenvalue. ’MBRFIRST’ is ’MBOFIRST’ with restart. ’MBOROBUS’

uses SMP to update eigenvalues and picks the edges leading to the biggest decrease

of robustness. ’MBRROBUS’ is ’MBOROBUS’ with restart. ’MBOTRIAN’ uses

SMP to update eigenvalues and picks the edges leading to the biggest decrease of

triangles. ’MBRTRIAN’ is ’MBOTRIAN’ with restart. ’MBOVECTO’ uses SMP to

update eigen-centrality and picks the edges leading to the biggest decrease of leading

eigen-centrality. ’MBRVECTO’ is ’MBOVECTO’ with restart. ’MBOVEC10’ uses

SMP to update eigen-centrality and picks the edges leading to the biggest decrease of

top 10th eigen-centrality. ’MBRVEC10’ is ’MBOVEC10’ with restart. ’MBOVEC10S’

uses SMP to update eigen-centrality and picks the edges leading to the biggest

decrease of top 10 eigen-centrality. ’MBRVEC10’ is ’MBOVEC10S’ with restart.

32

5.3 GCO_TiCTak_Edges

As shown in Table 7, GCO_TiCTak_Edges package supports four methods to

select and delete k edges leading to the biggest decrease of eigen-centrality of target

nodes.

The inputs are an adjacency matrix A, a budget k, the target nodes set I and a

method name (shown in Table 7). The outputs are a new adjacency matrix A and a

set S including k edges. Here is the formulation:

[A,S] = GCO_TiCTak_Edges(A, k, I,′Method′)

Table 7: ’Method’ of GCO_TiCTak_Edges

’Method’ Method
TICTAK TiCTak
TICTRE TiCTak+
SMPTOR SMPT
SMPTRE SMPT+

’TiCTak’ is UdEigen based method to pick the edges leading to the biggest decrease

of eigen-centrality of target nodes. ’TiCTak’ is ’TiCTak’ with restart. ’SMPT’ is SMP

based method to pick the edges leading to the biggest decrease of eigen-centrality of

target nodes. ’SMPT+’ is ’SMPT’ with restart.

33

Chapter 6

RELATED WORK

This chapter reviews the related work, which can be categorized in three parts, (a)

centrality measures, (b) connectivity optimization, and (c) graph mining.

There are a number of centrality measures, such as, eigen-centrality (Newman

2008), shortest path based centrality (Freeman 1977), PageRank (Page et al. 1999),

HITS (Kleinberg 1999), shield value (Tong et al. 2010), and random walks based

centrality (Newman 2005; Kang et al. 2011), etc. In this thesis, I use eigen-centrality.

Connectivity optimization is a hot topic in recent years. In (Tong et al. 2010),

Tong et. al. proposed an effective node immunization algorithm for the SIS model by

approximately minimizing the leading eigenvalue. In (Valler et al. 2011; Prakash et al.

2010), Prakash et. al. proposed effective algorithms to perform node immunization on

time-varying graphs. In (Tong et al. 2012), Tong et. al. proposed effective algorithms

to optimize the leading eigenvalue that controls the information dissemination process.

Other algorithms for controlling the information dissemination include the influence

maximization (Kempe, Kleinberg, and Tardos 2003; Datta, Majumder, and Shrivastava

2010; Chen, Wang, and Wang 2010), and finding effectors in social networks (Lappas

et al. 2010), etc. These algorithms are not target-specific while proposed TiCTak and

TiCTak+ are target-specific, which can contain the dissemination of entities from a

set of target nodes.

Representative graph mining works include frequent substructure discovery (Xin

et al. 2005; Jin et al. 2005), community mining and graph partition (Karypis and

Kumar 2000; Backstrom et al. 2006), proximity (Tong, Faloutsos, and Pan 2006;

34

Geerts, Mannila, and Terzi 2004; Tong et al. 2006), the bridge centrality (Hwang

et al. 2008), bridgeness based detection of fuzzy communities (Nepusz et al. 2008), the

network value of a customer (Domingos and Richardson 2001), graph blocker (Habiba

and Berger-Wolf 2008), the connectivity of the small world (Shi et al. 2008) and social

capital (Licamele and Getoor 2006), etc.

35

Chapter 7

CONCLUSION

In this thesis, I study the problem of target-specific centrality manipulation on

large networks.

After introduce the background of the research, the intervened aspect of node

centrality is defined, i.e., to minimize the eigen-centrality of target nodes by deleting

edges.

I reviewed two algorithms to update eigenpairs. The first algorithm is standard

matrix-perturbation theory, which can approximately update eigenpairs. The second

algorithm, called Cheetah, can accurately update eigenpairs. However, the time

complexity of Cheetah is O(nt2), which prohibits its use for large networks.

Therefore, I improved Cheetah and proposed an algorithm, called UdEigen, to

efficiently update eigen-centrality. The time complexity of UdEigen is O(t3), better

than Cheetah.

In addition, accurate and efficient algorithms TiCTak and TiCTak+ are proposed

to select and delete edges to minimize the eigen-centrality, with a linear time complexity.

The time complexity of TiCTak is O(mt3) and that of TiCTak is O(kmt3).

Extensive evaluations are conducted on a diverse set of real networks, which

consistently demonstrate the effectiveness (shown in Figure 5,6), efficiency (shown

in Figure 7) and scalability (shown in Figure 8) of the proposed algorithm. For

effectiveness, TiCTak and TiCTak+ are consistently outperform the rest of algorithms.

Both algorithms are 261% on average more effective in terms of eigen-centrality than

the best baseline. For efficiency, TiCTak and TiCTak+ use the least time and lead

36

to the biggest decrease of the eigen-centrality. There is no need to trade off between

solution quality and computation time because the proposed algorithm achieve the best

decrease of eigen-centrality and computation time at the same time. For scalability,

TiCTak and TiCTak+ scale almost near linearly with respect to m, which means

that they are suitable for large graphs.

TiCTak and TiCTak+ have equally good performance except in the Router

dataset, shown in Figure 5(9), where TiCTak+ leads to the biggest decrease of the

eigen-centrality. Why does the experimental results of TiCTak+ are better than

that of TiCTak in this kind of dataset? In the future, I will do more experiments in

different datasets and analyze datasets’ structure to find out the solution.

37

REFERENCES

Backstrom, Lars, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006. “Group
formation in large social networks: membership, growth, and evolution.” In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, 44–54. ACM.

Chakrabarti, Deepayan, Yang Wang, Chenxi Wang, Jurij Leskovec, and Christos
Faloutsos. 2008. “Epidemic thresholds in real networks.” ACM Transactions on
Information and System Security (TISSEC) 10 (4): 1.

Chan, Hau, Leman Akoglu, and Hanghang Tong. 2014. “Make It or Break It: Manipu-
lating Robustness in Large Networks.” In SDM, 325–333. SIAM.

Chen, Chen, and Hanghang Tong. 2016. “On the eigen-functions of dynamic graphs:
Fast tracking and attribution algorithms.” Statistical Analysis and Data Mining:
The ASA Data Science Journal.

Chen, Wei, Chi Wang, and Yajun Wang. 2010. “Scalable influence maximization for
prevalent viral marketing in large-scale social networks.” In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data
mining, 1029–1038. ACM.

Datta, Samik, Anirban Majumder, and Nisheeth Shrivastava. 2010. “Viral marketing
for multiple products.” In 2010 IEEE International Conference on Data Mining,
118–127. IEEE.

Domingos, Pedro, and Matt Richardson. 2001. “Mining the network value of cus-
tomers.” In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, 57–66. ACM.

Freeman, Linton C. 1977. “A set of measures of centrality based on betweenness.”
Sociometry: 35–41.

Geerts, Floris, Heikki Mannila, and Evimaria Terzi. 2004. “Relational link-based
ranking.” In Proceedings of the Thirtieth international conference on Very large
data bases-Volume 30, 552–563. VLDB Endowment.

Habiba, H., and T. Y. Berger-Wolf. 2008. “Graph Theoretic Measures for Identifying
Effective Blockers of Spreading Processes in Dynamic Networks.”

Hwang, Woochang, Taehyong Kim, Murali Ramanathan, and Aidong Zhang. 2008.
“Bridging centrality: graph mining from element level to group level.” In Proceed-

38

ings of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, 336–344. ACM.

Jin, Ruoming, Chao Wang, Dmitrii Polshakov, Srinivasan Parthasarathy, and Gagan
Agrawal. 2005. “Discovering frequent topological structures from graph datasets.”
In Proceedings of the eleventh ACM SIGKDD international conference on Knowl-
edge discovery in data mining, 606–611. ACM.

Jun, Wu, Mauricio Barahona, Tan Yue-Jin, and Deng Hong-Zhong. 2010. “Natural
connectivity of complex networks.” Chinese physics letters 27 (7): 078902.

Kang, U, Spiros Papadimitriou, Jimeng Sun, and Hanghang Tong. 2011. “Centralities
in Large Networks: Algorithms and Observations.” In SDM, 2011:119–130. SIAM.

Karypis, George, and Vipin Kumar. 2000. “Multilevel k-way hypergraph partitioning.”
VLSI design 11 (3): 285–300.

Kempe, David, Jon Kleinberg, and Éva Tardos. 2003. “Maximizing the spread of
influence through a social network.” In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, 137–146. ACM.

Kleinberg, Jon M. 1999. “Authoritative sources in a hyperlinked environment.” Journal
of the ACM (JACM) 46 (5): 604–632.

Lappas, Theodoros, Evimaria Terzi, Dimitrios Gunopulos, and Heikki Mannila. 2010.
“Finding effectors in social networks.” In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, 1059–1068.
ACM.

Li, Liangyue, Hanghang Tong, Yanghua Xiao, and Wei Fan. 2015. “Cheetah: fast
graph kernel tracking on dynamic graphs.” In SDM. SIAM.

Licamele, Louis, and Lise Getoor. 2006. “Social capital in friendship-event networks.”
In Sixth International Conference on Data Mining (ICDM’06), 959–964. IEEE.

Nepusz, Tamás, Andrea Petróczi, László Négyessy, and Fülöp Bazsó. 2008. “Fuzzy
communities and the concept of bridgeness in complex networks.” Physical Review
E 77 (1): 016107.

Newman, Mark EJ. 2005. “A measure of betweenness centrality based on random
walks.” Social networks 27 (1): 39–54.

. 2008. “The mathematics of networks.” The new palgrave encyclopedia of
economics 2 (2008): 1–12.

39

Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. “The
PageRank citation ranking: bringing order to the web.”

Prakash, B Aditya, Deepayan Chakrabarti, Nicholas C Valler, Michalis Faloutsos, and
Christos Faloutsos. 2012. “Threshold conditions for arbitrary cascade models on
arbitrary networks.” Knowledge and information systems 33 (3): 549–575.

Prakash, B Aditya, Hanghang Tong, Nicholas Valler, Michalis Faloutsos, and Chris-
tos Faloutsos. 2010. “Virus propagation on time-varying networks: Theory and
immunization algorithms.” In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, 99–114. Springer.

Shi, Xiaolin, Matthew Bonner, Lada A Adamic, and Anna C Gilbert. 2008. “The
very small world of the well-connected.” In Proceedings of the nineteenth ACM
conference on Hypertext and hypermedia, 61–70. ACM.

Sun, Jimeng, Huiming Qu, Deepayan Chakrabarti, and Christos Faloutsos. 2005.
“Neighborhood formation and anomaly detection in bipartite graphs.” In Fifth
IEEE International Conference on Data Mining (ICDM’05), 8–pp. IEEE.

Tong, Hanghang, Christos Faloutsos, and Jia-Yu Pan. 2006. “Fast random walk with
restart and its applications.”

Tong, Hanghang, Jingrui He, Mingjing Li, Wei-Ying Ma, Hong-Jiang Zhang, and
Changshui Zhang. 2006. “Manifold-ranking-based keyword propagation for image
retrieval.” EURASIP Journal on Advances in Signal Processing 2006 (1): 1–10.

Tong, Hanghang, B Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, and Christos
Faloutsos. 2012. “Gelling, and melting, large graphs by edge manipulation.”
In Proceedings of the 21st ACM international conference on Information and
knowledge management, 245–254. ACM.

Tong, Hanghang, B Aditya Prakash, Charalampos Tsourakakis, Tina Eliassi-Rad,
Christos Faloutsos, and Duen Horng Chau. 2010. “On the vulnerability of large
graphs.” In 2010 IEEE International Conference on Data Mining, 1091–1096.
IEEE.

Tsourakakis, Charalampos E. 2008. “Fast counting of triangles in large real networks
without counting: Algorithms and laws.” In 2008 Eighth IEEE International
Conference on Data Mining, 608–617. IEEE.

. 2011. “Counting triangles in real-world networks using projections.” Knowledge
and Information Systems 26 (3): 501–520.

40

Valler, Nicholas C, B Aditya Prakash, Hanghang Tong, Michalis Faloutsos, and Christos
Faloutsos. 2011. “Epidemic spread in mobile ad hoc networks: Determining the
tipping point.” In International Conference on Research in Networking, 266–280.
Springer.

Wang, Yang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. 2003.
“Epidemic spreading in real networks: An eigenvalue viewpoint.” In Reliable
Distributed Systems, 2003. Proceedings. 22nd International Symposium on, 25–34.
IEEE.

Xin, Dong, Jiawei Han, Xifeng Yan, and Hong Cheng. 2005. “Mining compressed
frequent-pattern sets.” In Proceedings of the 31st international conference on Very
large data bases, 709–720. VLDB Endowment.

41

APPENDIX A

PROOF OF FORMULATIONS

42

Proof of (3.10)

||q1|| =
√

(∆U(:, 1)−Ur1)′(∆U(:, 1)−Ur1)

=
√

(∆U(:, 1)′ − r′1U
′)(∆U(:, 1)−Ur1)

=
√

1−∆U(:, 1)′Ur1 − r′1U
′∆U(:, 1) + r′1U

′Ur1

=
√

1− r′1r1 − r′1r1 + r′1r1

=
√

1− r′1r1

=
√

1− ||r1||2

Proof of (3.11)

||q2|| =
√

(x′ + αq′
1)(x + αq1)

=
√
x′x + αx′q1 + αq′

1x + α2q′
1q1

=
√

1− r′2r2 − αr′2r1 − αr′1r2 + α2(1− r′1r1)

=
√

1− r′2r2 − (r′1r2)2(1 + r′1r1)

=
√

1− ||r2||2 − (r′1r2)2(1 + ||r1||2)

where x = ∆U(:, 2)−Ur2 and α = r′1r2.

43

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Problem Definitions
	3 Algorithm and Analysis
	4 Experimental Evaluations
	5 software packages
	6 Related Work
	7 Conclusion
	References
	A Proof of Formulations

