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ABSTRACT 
   

Phase problem has been long-standing in x-ray diffractive imaging. It is originated from 

the fact that only the amplitude of the scattered wave can be recorded by the detector, losing the 

phase information. The measurement of amplitude alone is insufficient to solve the structure. 

Therefore, phase retrieval is essential to structure determination with X-ray diffractive imaging. So 

far, many experimental as well as algorithmic approaches have been developed to address the 

phase problem. The experimental phasing methods, such as MAD, SAD etc, exploit the phase 

relation in vector space. They usually demand a lot of efforts to prepare the samples and require 

much more data. On the other hand, iterative phasing algorithms make use of the prior 

knowledge and various constraints in real and reciprocal space. In this thesis, new approaches to 

the problem of direct digital phasing of X-ray diffraction patterns from two-dimensional organic 

crystals were presented. The phase problem for Bragg diffraction from two-dimensional (2D) 

crystalline monolayer in transmission may be solved by imposing a compact support that sets the 

density to zero outside the monolayer. By iterating between the measured stucture factor 

magnitudes along reciprocal space rods (starting with random phases) and a density of the 

correct sign, the complex scattered amplitudes may be found (J. Struct Biol 144, 209 (2003)). 

However this one-dimensional support function fails to link the rod phases correctly unless a low-

resolution real-space map is also available. Minimum prior information required for successful 

three-dimensional (3D) structure retrieval from a 2D crystal XFEL diffraction dataset were 

investigated, when using the HIO algorithm. This method provides an alternative way to phase 2D 

crystal dataset, with less dependence on the high quality model used in the molecular 

replacement method. 
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CHAPTER 1 

INTRODUCTION 

1.1 X-ray crystallography Overview 

X-ray crystallography is a technique to determine the structure of crystals, in which 

periodically arranged  atoms diffract X-ray to  discrete called Bragg beams directions. The birth of 

this technology comes with the understanding of crystal properties as well as X-rays. Mankind 

has been admiring crystal’s elegance for long time. The scientific study on crystallography started 

in 17
th
 century when Johannes Kepler postulated that regular packing of water particles in 

snowflake rendered its hexagonal symmetry (Bencharit, 2012). In 1895, Wilhelm Roentgen 

discovered X-rays, at the time when the studies on crystal symmetry concluded (Assumus, 1995). 

In 1912, Max von Laue, inspired by Paul Ewald’s doctoral thesis on crystal model, came up with 

an idea that the sub-micrometer spacing atoms in crystal might act as diffraction grating for X-

rays [wiki]. Within the same year, Walter Friedrich and Paul Knipping conducted the first 

diffraction experiment on NaCl crystal as suggested by Laue [Figure 1]. Independently, W.L. 

Bragg and W. H. Bragg carried out similar experiments and provided the condition for finding a 

diffraction maxima with a very simple formula  describing the relation among crystal 

lattice constant, incident X-ray wavelength and scattering angle, which is known as Bragg’s Law. 

With the discovery of the mathematical formula, X-ray crystallography debuted modern science 

as an important probe for investigating structure of materials.  
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Figure 1.1 First diffraction pattern from NaCl crystals recorded by Walter Friedrich and Paul 

Knipping. 

 

Since 1970s, the progress of science based on X-ray crystallography has been dramatic, 

largely due to the development of X-ray based technology, phasing theory and computation 

power (Hauptman, 1991). The advent of synchrotron radiation source improved X-ray beam 

brightness by ten thousand fold than previous lab-based sources. Besides, the implementation of 

charge coupled device (CCD) detectors in early 1990s further improved data collection speed and 

accuracy. The development of computer science enabled crystallography scientists to establish 

systematic methods to carry out most of the mathematically challenging work, including structure 

refinement and graphics computer-based model building. Molecular replacement, as an example, 

proposed by Rossmann (M. Rossmann, 1990; M. G. Rossmann & Blow, 1962), was a major 

breakthrough in bypassing the phase problem. As a result, X-ray crystallography has become one 

of the most commonly used techniques ever developed for the study of biomolecules at high 

resolution. More than 85% protein structures deposited in the PDB are solved by X-ray 

crystallography.  
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Despite the tremendous success of protein structure discovery at synchrotron based X-

ray sources, traditional X-ray crystallography is mainly limited by radiation damage and sample 

preparation(Spence, Weierstall, & Chapman, 2012). Due to the presence of radiation damage, 

large crystals, at least micrometer in size, are required to sustain the radiation dose (or work 

around it). It may take years to find correct condition to grow large crystals that are suitable for 

diffraction. 

The recent invention and development of the hard X-ray free-electron laser (XFEL) (R. a 

Kirian et al., 2010; Pellegrini & Stöhr, 2009; Schlichting & Miao, 2012; Spence et al., 2012) has 

opened up new opportunities for structural biology. Before the turn of the century, it was believed 

that true single-molecule imaging (Schlichting & Miao, 2012) using scattered radiation would 

never be possible because the radiation dose needed to achieve sufficient high-angle elastic 

scattering would, as a result of inelastic process, destroy the molecule. XFELs not only render 

diffraction data without radiation damage, but also gives alternative method for phasing(J. Miao, 

Kirz, & Sayre, 2000; J. Miao, Sayre, & Chapman, 1998; Jianwei Miao, Charalambous, Kirz, & 

Sayre, 1999).  

 

1.2 X-ray free electron laser 

Today, X-ray free electron laser, described as 4
th
 generation photon sources, is the most 

advanced X-ray facility with performance exceeding the best of the 3
rd

 generation storage rings 

based synchrotrons. Compared to other traditional sources, the XFEL features short intense 

pulses, fields of high amplitude and frequency and spatially coherence volume, which led to a 

genuine scientific revolution in X-ray crystallography. For example, a diffraction pattern can be 

recorded in about one second at synchrotron by exposing protein crystals to X-ray flux of about 

 photons/second(Hart et al., 2012). Because of the time duration, we only measure 

the average position of the vibrating atoms. XFELs, on the other hand, can produce the same 

amount of photons in femtoseconds, which enables us to take snapshots of molecular motion 

(atomic/lattice vibrations are typically in the 100s of fs to ps timescales) and make a molecular 
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movie. However, there is another concern: can crystals sustain such high beam power? Will 

radiation damage prevail in the XFEL experiment?  

Radiation damage happens mostly in terms of ionization when a sample absorbs high 

doses of energy from incident X-rays. Apart from beam power, the frequency is also an important 

factor for ionization effect. The efficiency of absorption reaches a peak value when the electric 

field of the incident beam oscillates with approximately the same frequency as the orbiting 

valence electron, which is of the order of . For an incident beam with photon energy at 8 

keV, its frequency is of the order of , which is 1000 times higher. Therefore, the high 

frequency has an effect to stabilize the atom against ionization. Simulation by Neutze et al 

showed that radiation damage can be outrun if the X-ray pulse duration is less than 50 fs, which 

is feasible with an XFEL. 

The key physics behind XFEL is the self-organization phenomenon of electrons in a 

relativistic beam, in which an electron beam with random electron positions will change into a 

distribution with electrons regularly spaced at about the X-ray wavelength (Pellegrini & Stöhr, 

2009; Schlichting & Miao, 2012). Typically, an XFEL consists of a linear accelerator followed by a 

long undulator magnet [Fig 2]. Bunch of emitted electrons from the source are first accelerated to 

several tens of GeV by a linear accelerator. When electron bunches moves into the undulator 

with a sinusoidal magnetic wave, they will follow the oscillating trajectory and emit 

electromagnetic radiation. The magnetic field not only changes the electron energy, but also 

modulates the electron beam to equal spacing bunches with the same period of radiation 

wavelength. Therefore, the electromagnetic waves produced by electrons superimpose in phase 

and result in a stronger field. In turn, the collective behavior of electrons become more effective. 

The net result is the exponential growth in the amplitude of electromagnetic wave and a fully 

coherent radiation emanating from the electron bunches. Hence the radiation intensity will be 

proportional to the square of number of electrons . We should also note that, in storage ring 

based synchrotrons, this amplification factor is  as there is no correlation between electron 

positions on the scale of radiation wavelength.  



  5 

 

Fig 1.2 Schematic representation of a Free Electron Laser (Narumi & Sautter, 2011) 

Currently, there are four XFEL facilities available for user experiments around the world. 

The Free electron Laser in Hamburg (FLASH) (M. J. Bogan et al., 2010; Michael J. Bogan et al., 

2008) is the earliest soft XFEL source in operation from 2005, covering wavelength from 4.5 nm 

to about 47 nm with gigawatt peak power and 10~100 fs pulse duration. The first hard X-ray 

XFEL for experiments was the Linac Coherent Light Source (LCLS) at SLAC National Accelerator 

Laboratory, producing X-ray energy up to 9 KeV (wavelength 0.14 nm) with 3 mJ per pulse. The 

SPring-8 Angstrom Compact free electron Laser (SACLA) at the RIKEN Harima Institute in Japan 

(Chapman et al., 2011) and PAL-XFEL at South Korean started to operate in 2011 and 2015 

respectively.  Besides, more hard XFELs are under construction worldwide, including the 

European XFEL, Hamburg and the SwissFEL at the Paul Scherrer Institute, Switzerland 

(Schlichting & Miao, 2012). 

 

1.3 Sample delivery at XFEL 

In conventional X-ray crystallography experiments, many diffraction patterns can be 

collected from a single macroscopic crystal because the power of X-ray beam is relatively low. By 

gradually rotating a goniometer stage that holds the crystal, the orientation of the successive 

diffraction patterns can be recorded during measurement (Spence et al., 2012). At XFEL, X-ray 

pulses are so intensive that crystals will be destroyed once being hit. Instead of constantly shining 

X-rays on a crystal in synchrotron, an XFEL produces very short pulses, with a repetition rate of 
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120 HZ and 10~300 femtosecond pulse duration. As the pulse is so brief, the diffraction pattern 

recorded is actually from the intact structure before radiation damage takes place. As a result, the 

crystal can tolerate a significant higher dose than that at synchrotron. To fully take advantage of 

these features, developments on new sample delivery method as well as data analysis routine 

are demanded. Currently, there are three main forms of sample injectors designed for SFX 

experiments: the aerosol gas phase injector (M. J. Bogan et al., 2010; Michael J. Bogan et al., 

2008; R. A. Kirian et al., 2015), the gas dynamic virtual nozzle (GDVN) liquid injector (U 

Weierstall, Spence, & Doak, 2012) and the lipid cubic phase (LCP) injector (Uwe Weierstall et al., 

2014). Besides, a sample handling method is also developed by scanning fixed target, which has 

a potential for high hit rate (Hunter et al., 2014). 

Aerosol injector 

The aerosol injector was initially designed to deliver nanoscale particles for serial 

femtosecond X-ray diffraction experiments at FLASH. In this scheme, the sample of nanoparticles 

are generated using a charge-reduced nanoelectrospray aerosol source.  Then a stack of 

aerodynamic lens are employed to focus aerosol particles into a stream of about 20 ~200 um in 

diameter at the point of intersection with the XFEL X-ray beam (Michael J Bogan, Starodub, 

Hampton, & Sierra, 2010). Hit rates from aerosol injector at the LCLS have increased from much 

less than 1% (early work) to about 10% on average, with a maximum 40%. The main advantage 

of an aerosol injector over liquid injector is the absence of background scattering from water jet in 

single particle X-ray diffractive imaging. Many types of aerosol sources can produce particles with 

unique size distributions. However, it may only apply for nanoscale materials such as core-shell 

structured atomic clusters, not for biomolecules (Michael J. Bogan et al., 2008). 
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Fig 1.3 Schematic diagram of aerosol injector 

 

GDVN 

The GDVN liquid injection system, originally developed at ASU, delivers sample in a 

hydrated environment that is beneficial to preserve the native structure and function. This type of 

injector has been widely used for sample delivery in experiments such as protein solutions for 

wide angle scattering (Arnlund et al., 2014), nanocrystal suspensions for pump-probe time 

resolved crystallography (Aquila et al., 2012; Kupitz et al., 2014). The injection system consists a 

gas dynamic virtual nozzle and a long nozzle shroud. A scheme of the gas dynamic virtual nozzle 

is shown in Fig 1.4. The glass capillary at the center of nozzle carries the sample solution. Its tip 

is grained to a cone shape. Helium gas, which flows in between the glass capillary and glass tube, 

focuses the liquid to a straight line. The flow of gas and liquid are both driven by external 

pressure that can be controlled remotely through an HPLC or a gas regulator.  
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Figure 1.4 Gas dynamic virtual nozzle in operation and schematic(U Weierstall et al., 2012) 

 

A straight and proper jet may be formed under proper pressure on the gas line and liquid 

line. Pressure is typically around 200~600 psi on gas line and 700~2000 psi on sample line. After 

the liquid flows out of the glass capillary, shearing gas focuses the jet to about 5 micron in 

diameter and accelerates its speed to about 10 m/s. The jet is operated at room temperature, 

typically at a flow rate 20 ul/min at CXI. Capillaries with 50 um, 75 um and 100 um ID were most 

often used, depending on crystal size and buffer condition. In order to save sample, low flow rates 

are preferred unless the jet disappears or breaks into droplets. Currently, the lowest flow rate 

achieved at the ASU lab is about 5 ul/min. The hit rate of a liquid injector mainly depends on the 

concentration of sample, stability of jet and beam position. Best case, the hit rate purely depends 

on the density of crystals as long as the jet is stable and X-ray beam hits the jet stream precisely. 

Crooked jet and nozzle clogging are the two most common problems during XFEL 

experiments at CXI. Defects in nozzle parts, unbalanced pressure or liquid properties may cause 

the jet stream deflects away from central line. Practically, we only optimize the jet stream 

direction by trying out different pressure on gas line and liquid line when the sample is running 

with X-ray beam on. The defects from nozzles parts, such as asymmetric cone shape in the tip of 

glass capillary or gas aperture, can’t be repaired or replaced within a reasonable amount of time 

even for an experienced nozzle technician. The clogging mostly happens either at the filter after 



  9 

the sample reservoir or the nozzle tip. A quick and steep rise in the HPLC (control panel) 

pressure in combination with no visible jet flow indicates that either the nozzle is clogged or that 

the reservoir has run out of sample. A microscope fixed on the shroud of injector can directly 

observe the clogging at the nozzle tip. In this case, nozzle can be cleaned by running water and 

recycling. If an in-line filter gets clogged, then simply replacing with a new filter will suffice. Lastly, 

testing and characterization of sample injection in advance (before the experiment at LCLS) can 

significantly reduce the amount of problems during sample delivery. 

LCP injector 

The LCP injector was also originally developed at ASU. The design and principle of LCP 

injector are very similar to GDVN injector. The GDVN works well for fluids with low viscosity such 

as water. The main difference with the LCP injector lies in the pressure amplification design since 

a much larger pressure is required to inject a viscous jet. LCP offers advantages in that it can be 

used for both injection, and as a growth medium for membrane protein crystals (eg. G-protein 

coupled receptors (GPCR)) (Conrad et al., 2015; Liu, Wacker, Gati, Han, James, Wang, Nelson, 

Weierstall, Katritch, Barty, Zatsepin, Li, et al., 2013; Liu, Wacker, Gati, Han, James, Wang, 

Nelson, Weierstall, Katritch, Barty, Zatsepin, Li4, et al., 2013; Uwe Weierstall et al., 2014). 

 

Fig 1.5 Middle section through the LCP injector 

 

1.4 Data collection and analysis 

XFEL detector 

Many experiments at the LCLS require a detector that can image scattered X-rays on a 

shot-by-shot basis with high efficiency and excellent spatial resolution over a large solid angle 
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and both good S/N (for single-photon counting) and large dynamic range (required for the new 

coherent X-ray diffractive imaging technique). The Cornell-SLAC Pixel Array Detector (CSPAD) 

has been developed to meet these requirements. SLAC has built, installed, and characterized 

three full camera systems at the CXI hutches at LCLS (Hart et al., 2012).  

Data analysis at XFEL 

The data collected during an XFEL beamtime can result in 10-100 terabytes of data 

(transfer of data offsite may take many days). The first step in the analysis process, therefore, is 

data reduction. Data reduction is accomplished by software that finds frames where there are 

likely particle hits. The hit finding program Cheetah (Barty et al., 2014) is available freely under 

the GNU public license, and also provides useful online monitoring tools, that allow rapid 

feedback on data quality during the beamtime. 

After data reduction (hit finding), particle orientation must be determined. Crystallographic 

indexing solves this problem for the SFX case. The data is then merged, phased (via known 

solutions to the crystallographic phase problem), and transformed to recover the electron density 

of the target molecule. Several software packages are now available for automating SFX data 

analysis (Sauter, Hattne, Grosse-Kunstleve, & Echols, 2013; White et al., 2013, 2012).  

In terms of procedure, the Bragg peak positions and intensity values are firstly recorded. 

The crystal lattice type and lattice constant can be informed by measuring the angle and distance 

of Bragg spots. Then the Miller indices can be assigned to corresponding Bragg spots. 

Experimentally, the structure factor amplitudes are proportional to the square root of measured 

intensities of corresponding Bragg spots.  

 

1.5 X-ray diffraction physics 

X-rays mainly interact with electron cloud of the atom.  So atoms with higher atomic 

number scatter X-ray more strongly. When X-rays reach an electron, several interactions may 

take place and emit secondary electromagnetic radiations (X-rays). According to the wavelength 

and phase relationship between incident wave and scattered wave, these interactions can be 

classified as elastic scattering, absorption, Compton scattering and fluorescence etc. In this 
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thesis, we will focus on elastic scattering, where the incident and outgoing electromagnetic wave 

have the same wavelength and phase over time and space. Another approximation made in the 

following introduction is that the scattering can be considered very weak so that multiple 

scattering events can be neglected. In this case, each diffraction pattern collected is the 

projection of a curved surface cut by the Ewald sphere in reciprocal space, which relates to the 

illuminated object by Fourier transform.  

X-ray scattering by free electron 

Free electron can be considered as the most elementary scattering unit in X-ray 

diffraction. The scattering of an X-ray by an electron can be perceived as follows. When an 

incident plane electromagnetic wave front hits an electron, the electron will oscillate under the 

force of the alternating electromagnetic field. The accelerating electron will act as another point 

source and radiate secondary spherical electromagnetic waves. The outgoing wave is given by 

   (1.1) 

where  is the permittivity of free space,  is the speed of light,   is the distance between 

electron and observation point,  is the radiation direction,  is the retarded time, given by 

 and  is the acceleration of the electron. For a linearly polarized incident wave 

with ,   

     (1.2) 

where  is the mass of electron. Inserting equation (1.2) into (1.1), the magnitude of outgoing 

wave is 

   (1.3) 

where  is the classical electron radius.  is the angle between incident wave 

direction and outgoing wave direction. The time-averaged intensity of outgoing wave at R is  

     (1.4) 
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For a pixel subtending a small solid angle , the collection area is . So the 

photon intensity at that pixel is  

    (1.5) 

where  is the incident photon flux density with unit number of photons/area. 

Atomic Scattering factor 

Atomic form factor describes the spatial intensity distribution of scattered X-ray by an 

isolated atom. An atom is composed of nucleus and electrons, both of which contributes to X-ray 

diffraction. However, the mass of nucleus is at least  times larger than electron. According to 

equation (1.2), the acceleration of nucleus is negligible compared with electrons. Therefore, the 

scattering effect of nucleus is often ignored in X-ray diffraction. When an atom with many 

electrons is exposed to a coherent incident X-ray beam, the outgoing electromagnetic wave is the 

coherent summation of all the outgoing waves from each electron at different positions, as shown 

in figure 1.6. For elastic scattering, the scattered wave preserves the same magnitude and phase 

of incident wave, while the propagation direction is changed. The scattering vector is defined as 

 and . 
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Figure 1.6 Scattering geometry from many electrons.  are incident and outgoing 

wave vector respectively.  is the coordinate of the i-th electron in atom. The phase of electron i 

with reference to origin point O is . 

 

The electron distribution of an atom is given by a probability distribution . Therefore, 

the atomic form factor can be expressed as 

                                                      (1.6) 

A molecule is composed of atoms. Therefore, the scattering of a molecule is given by the sum of 

structure factors of each atom in molecule. The scattering factor of a molecule can be expressed 

as 

                                                             (1.7) 

where  is the structure factor of the i-th atom. 

The diffracted intensity from a molecule can be expressed as 

                              (1.8) 

 

X-ray diffraction from three-dimensional crystal 

Now let’s consider the X-ray diffraction from crystal. Let us assume that the structure 

factor of a unit cell with cell constant  is , where . Here  

are fractional numbers and  are called reciprocal space unit vectors, as shown in figure. 

They are called reciprocal because mathematically . 
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Figure 1.7 Real and reciprocal space 

 

Then the scattering factor of unit cell with lower left corner at position 

 is , where a, b, c is the lattice constant of unit cell. The 

scattering factor of the entire crystal is the sum of contribution from all unit cells. 

                                              

                                                  (1.9) 

 

Now let’s examine the first summation term. 

 

 

 

                                                (1.10) 

Similarly, we obtain  

 

 

The scattering factor of the entire crystal can, thus, be expressed as 

                                                   (1.11) 

As mentioned in the previous section, the intensity distribution of a diffraction pattern 

recorded by a detector  is proportional to the square of the scattering factor modulus. 
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(1.12)                                    

Let’s use  to replace the trigonometric terms 

                   (1.13) 

where  and  are the number of unit cell along each dimension of crystal. 

The term  is typically called shape transform because it depends on the shape and the 

size of crystals. The following figure shows the lattice grating interference function 

 for N =5,10 and 100.  

 

Figure 1.8 Lattice grating interference function. 

 

Mathematically, it is easy to demonstrate that it has the following property 
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                          (1.14) 

In between the two adjacent major maxima, there are (N-1) minima and (N-1) secondary 

maxima that are smaller than the major maxima. The difference between major and secondary 

maxima will grow larger for increasing N. Therefore, in a nano-crystal where the number of 

repeating units in crystal is not very high, fringes can be observed in between Bragg spots 

(Chapman et al., 2011) [as shown in figure 1.9]. 

 

Figure 1.9 Shape transform from nanocrystal (Chapman et al., 2011). 

 

For an infinite perfect crystal with , the magnitude of major maxima will 

become dominant over secondary maxima and the appearance of lattice grating interference term 

approximates to Dirac comb functions (as shown in figure 1.8).  

        (1.15) 

In this scenario, we can only observe sharp peaks at  with integer values. 

Recall that . This is exactly the Laue equation 

. The equation (1.15) also indicates that a larger 

crystal gives brighter and sharper Bragg spots.  
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 In X-ray crystallography, the only direct data collected are the magnitude of 

structure factors , which is the Fourier transform of a single molecule. Using a crystal, 

instead of a single molecule, we may achieve a signal amplification of  as 

indicated by (1.15). However, there is compromise.  is a continuous function over the full 

reciprocal space. But we can only measure intensities at the Bragg period from a crystal 

diffraction pattern, which under-samples reciprocal space by a factor of two. Therefore, we can't 

directly retrieve phase information using iterative projection algorithms, which is very successful 

for phasing single particle diffraction data. In sum, there is a trade-off between signal level and 

phase information in X-ray crystallography, when compared with single particle imaging. 

 

X-ray diffraction from two-dimensional crystal 

Membrane proteins can form natural two dimensional crystals (Pedrini et al., 2014). It can 

be considered as a special case of three-dimensional crystal with , which means that there 

is only one layer along the z axis. Replacing  to equation (1.12), the diffraction intensity 

from 2D crystal can be expressed as 

 

For an infinite and perfectly ordered 2D crystal with , the lattice grating 

interference term approximates to Dirac comb functions (as shown in figure).  

        (1.15) 

And its reciprocal space constitutes a set of rods perpendicular to the monolayer [as shown in 

figure].  
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Figure 1.10 2D crystal monolayer. This figure shows the view along b axis direction. 

 

Figure 1.11 Reciprocal space of 2D crystal. 

 

In comparison with a 3D crystal, a 2D crystal can be sampled as fine as we can along the 

 direction in reciprocal space, which may provide additional phase information. But the 

intensities in lateral direction are still under-sampled. In practice, the diffraction data set from 2-D 

crystal alone are typically insufficient enough to determine a unique structure. 

 

1.6 Scope of this thesis 
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This thesis mainly discusses algorithms addressing image reconstruction and ab-initio 

phasing problems. Chapter 2 discusses the application of expectation and maximization algorithm 

in image reconstruction from extremely weak signals. Chapter 3 demonstrates the deconvolution 

of crystal powder diffraction patterns using auto-correlation algorithm. Chapter 4 introduces the 

phase problem and iterative algorithms for the case of two-dimensional crystals. 
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CHAPTER 2 

STRUCTURE RECONSTRUCTION FROM EXTREME WEAK SIGNAL 

2.1 Introduction 

Much efforts have been devoted to study the structure of single particles with X-ray free 

electron laser (XFEL), which could produce very intense femtosecond X-ray pulse (Neutze, 

Wouts, van der Spoel, Weckert, & Hajdu, 2000; U Weierstall et al., 2012). This new method could 

potentially overcome the radiation damage on crystals as well as other limitations on traditional 

techniques (Fung, Shneerson, Saldin, & Ourmazd, 2008). However, each diffraction snapshot 

collected from a single particle contains very few photons, as the interaction between single 

particle and X-ray is too weak (Fung et al., 2008). An intuitive solution is through merging all the 

snapshots to obtain the complete diffraction pattern. The problem stems from the issue that we 

can't tell the orientation of particle just by each snapshot or by direct observation. Moreover, 

particles will be destroyed during each shot. The difficulty is exacerbated as the existence of 

background radiation noise. So a fundamental question in front of us is whether we are able to 

distinguish the orientation of two noisy diffraction patterns with sparse photons in principle.  

One approach to classify the orientation is based on cross-correlation method by Huldt et 

al.(Hajdu, 2003). They successfully classified the diffraction patterns with approximately one 

photon per pixel. However, the photon fluence in our scenario is about 0.001 photons per pixel, 

much lower than Huldt's case. Hence, the cross-correlation method would fail in the ultra-low 

fluence limit (Philipp, Ayyer, Tate, Elser, & Gruner, 2012). Another robust method addressed to 

solving sparse randomly-oriented X-ray data was based on expectation-maximization(EM) 

method. EM method was first introduced to find parameters for a statistical model with incomplete 

data in information theory. Elser is one of the earliest people to have introduced this method in 

structure reconstruction from sparse randomly-oriented data (Elser, 2009; N.-T. D. Loh & Elser, 

2009). 

In this report, we focused on a 2D object with 4 random orientations during imaging, a 

much simpler case where I believe it is more illustrative to show the principle and feasibility of EM 

algorithm in structure reconstruction. So far, nobody has been able to reconstruct structure from 



  21 

single snapshot with only one photon. Here we explore the minimum requirement for photon 

fluence to recover structure with given number of frames. Noise effects are also discussed. A 

detailed evaluation of EM algorithm for image reconstruction is also given the following parts.  

 

2.2 Expectation and maximization algorithm 

 

2.2.1 An intuitive explanation of EM algorithm 

In general, EM method seeks to find some unknown parameters of a statistical model by 

iteration given measurement data, which contains some unobserved variables [8]. Below is an 

outline of EM iteration. 

Let us assume a statistical model consisting of a set of observed data X, with missing 

values Z. We may start a random guess for unknown parameters . Then the likelihood function 

could be expressed as . The maximum likelihood estimate of the 

unknown parameters is, then, determined by the marginal likelihood of the observed data 

 

The iteration procedure is described as the following two steps [8]: 

E-step: Estimate the expectation value of log-likelihood function, given distribution Z with 

parameter  in  iteration. 

 

M-step: Determine the new  which could maximize . 

The parameter  will converge to an optimal value by iteratively applying the above two 

steps. 

One of the earliest paper on EM algorithm was by (Hartley, 1958). In that paper, he 

simplified the procedure for seeking the maximum likelihood computations of estimates from 

incomplete data by iteration. The iteration idea was also generalized to several cases. However, 
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the EM algorithm was first explicitly explained and given its name by a classic paper by Dampster, 

Laird and Rubin (Dempster, Laird, & B., 2007). They formulized the EM algorithm by defining 

expectation and maximization step with each iteration and generated its application to a wider 

class of statistical models. In particular, they also gave rigorous proof for the convergence of EM 

iterations for several models. More details on the convergence of EM algorithm can also be found 

in a book by G. McLachlan, and T. Krishnan (Mclachlan & Krishnan, 1977). 

 

2.2.2 Data collection 

The experiment designed here is almost the same as the one described in (Philipp et al., 

2012). We simulated the imaging process of a 2D L-shape mask with extreme weak signals. The 

rotation of mask is spaced by . The detector in our simulation is a  pixel array. 

The orientation of mask will be reset randomly in one of the four equally possible orientations 

after an image is taken. Data sets with different quality are obtained by changing the photon 

counts per frame recorded during simulation. 10 000 snapshots were generated for each case. 

          

(a)                           (b) 

Fig 1. (a) The L-shape mask with a square aperture. (b) Sum of all frames with 40 

photons per frame data set, showing a uniform distribution with 4 possible orientations.  

 

2.2.3 Image reconstruction with EM algorithm 

The algorithm we have adopted for the image reconstruction is based on the idea of 

expectation maximization. My interpretation here is largely based on several papers (Dempster et 
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al., 2007; Hartley, 1958; N. D. Loh et al., 2000; N.-T. D. Loh & Elser, 2009) and a book 

(Mclachlan & Krishnan, 1977). The derivation and idea are almost the same as Elser's work on 

reconstruction algorithm (N.-T. D. Loh & Elser, 2009; Philipp et al., 2012). Here I have presented 

more details and interpreted in a slightly different perspective, which perhaps easier to 

understand. 

  

The parameter in the present setting is the intensity signal model , a  matrix. 

The data collected are the sets of frames with photon counts  recorded by the detector, where 

the orientation of the mask relative to the detector  is intractable. Our model is updated, , 

based on maximizing a log-likelihood function . While orientation probability distribution of 

each frame  is based on the current model parameters . As we have 10 000 frames and 4 

possible orientations, so  is a  matrix in our algorithm. 

Let's use  to denote the intensity distribution on detector when the image is in rotation 

r. The  snapshot is assigned a probability distribution,  , with respect to its unknown rotation, 

, relative to the current intensity model. The rotations are sampled in increments of , 

where  defines the angular resolution of the reconstruction. N is 4 in our case as we know the 

number of possible orientations in imaging process in advance. Each frame comprises photon 

occupancy, , at pixel , which in our low-fluence experiment are almost zero, the exceptions 

being equal to 1. Because the photon counts are independent Poisson samples of the intensity at 

each pixel, the probability is 

 

where  is rotation  applied to pixel ,  is the set of pixels recording photons in frame .  

Then the probability of  frame in orientation  could be normalized by 
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Note here that the probability is calculated by the current model . 

The log-likelihood function for  frame in orientation  is 

 

 

 

As , so .  

 

Now the expectation of log-likelihood function may be written explicitly: 

 

 

After obtaining the expectation estimate for , the algorithm proceeds to the 

second step.  

 is obtained by solving the equation , as it should maximize the value of 

. Note that  comes from the expectation step, which depends on the current model 

, rather than new model . So the maximizing update rule is given by 
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Note that  is the intensity of pixel i when the mask in orientation r. At the last step, we 

merge the models from different orientations.  

 

where  means a rotation applied on frame f in the opposite direction of . 

 

The updated intensity model  is an average of the photon counts in all frames with the 

appropriate distribution of rotations applied to each one. Each element in  will be very tiny 

number after averaging, as each frame contains very few photons. In practical simulation, we 

need to amplify our final model  by multiplying a proper constant to obtain a bright image, or it 

will be very dark.  

 

2.3 Image reconstruction 

The EM iteration starts from a random model with each element assigned to a random 

number in the range of [0,1], as shown in Fig 2a. At the end of iteration, the model will end up a 

structure with arbitrary orientation. Figure 2a was reconstructed using 10 000 frames of data with 

an average of 40 photons per frame. This data set has a total of 0.5 million photons. For 

comparison, a data set with the same total frame but higher photon fluence was also processed. 

The reconstruction is shown in Fig 2d, where the average occupancy was 150 photons/frame. 
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Fig 2 (a) initial random model with no structural information. (b) A reconstruction using 

random-oriented data having a average 150 photons/frame with S/N=10; (c) A reconstruction 

using random-oriented data having a average 40 photons/frame; (d) A reconstruction using 

random-oriented data having a average 150 photons/frame. 

 

The quality of the two reconstructions differ in classification accuracy, with the 150 

photons/frames data yielding better results. There is also an increase in the iteration count of the 

EM algorithm: the 40 photons/frame data required 32 iterations, compared with only 4 iterations 

for the 150 photon/frame data. The minimum requirement for photon fluence is 40 photons/ frame, 

which is much higher than 2.5 photon/frame in Philipps' paper. This difference mainly comes from 

the fact that they have a much larger data set with 450 000 frames, which is 45 times bigger than 

here. 

Images with noise are also studied here. We assume the background radiation is 

incoherent and uncorrelated between pixels. The net signal is simply the sum of X-ray scattering 

from mask as well as background. The S/N is defined as the average signal matrix element over 

the average noise matrix element. A successful reconstruction for an average 150 photons/frame 

with S/N=10 data set was shown in fig 2b. The presence of noise degrades the image quality and 
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raises the requirement for minimum photon fluence. The longest simulation made here is for 50 

photons per frame data set with . It took for 287 iterations without any sign showing 

convergence. 

 

In addressing noise problem, Elser gave the criteria for different classification methods 

(Elser, 2009). In that paper, he proposed that the arbitrarily high level of noise could be tolerated 

as long as unlimited measurements are available. 

The EM algorithm demonstrated above could be generated to 3D reconstruction (N. D. 

Loh et al., 2000; N.-T. D. Loh & Elser, 2009). In that scenario, the 3D intensity model will be 

expanded into tomographic representation at first, as the information recorded by our detector is 

2D information. This work was already done by Loh et al. and their code for a 3D particle 

reconstruction is available online (N. D. Loh, 2013). 

The last comment we wish to make is about the limitation of the algorithm. The 

theoretical model matrix is pretty much binary as all the elements could just be 1 or 0, white or 

black in our image. Our approximation in  estimation is greatly based on this assumption. If the 

elements in a model could be any real number between 0 and 1, can we still recover the model? 

The above algorithm failed to reconstruct it even with thousands photons per frames. A possible 

solution is that we just give up the approximation for Poisson distribution 

. But it will be computationally very expensive. In this regard, cross-

correlation method seems to play a complementary role in addressing this problems. 

 

2.4 Conclusion 

The motif of this study was to demonstrate the principle of EM algorithm in sparse signal 

image reconstruction and classification. The minimum requirement for successful structure 

recovery depends on the photon fluence per frame, size of data set as well as S/N ratio. 

Comparing the simulation presented here with Philip's work, it seems that the minimum 

requirement for photon fluence can be relieved by producing a larger data set.  
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CHAPTER 3 

DECONVOLUTION OF CRYSTAL POWDER DIFFRACTION PATTERN 

 

3.1 Introduction 

 Rietveld refinement is a powerful approach to determine structure of crystals from 

powder diffraction data. Many programs available online have been developed based on this 

approach (Scardi, Mccusker, Dreele, Cox, & Loue, 1999). However, the success of this approach 

requires a good model first. In order to collect powder diffraction data, sample of small crystals 

have to be exposed to X-rays for long period of time, which may introduce significant radiation 

damage. Kam first pointed out that the three-dimensional structure of one particle may be 

determined using the X-ray scattering from many randomly oriented copies, without modeling of a 

priori information (Kam, 1977, 1980). Meanwhile, it was shown that the signal to noise ratio is the 

same for single particle and multiple particles per shot (R. a Kirian, Schmidt, Wang, Doak, & 

Spence, 2011). However, this method has remained undeveloped for about 20 years after Kam's 

paper due to the lack of brief and intense X-ray sources. With the availability of the free electron 

laser, this idea was re-discovered and the next stage of theoretical work is under development. 

Saldin et al performed many proof on principle simulations in single particle structure 

determination as well as experiments (Chapman et al., 2006; Saldin, Poon, Bogan, et al., 2011; 

Saldin & Shneerson, n.d.; Shapiro et al., 2008). 

Here, we focus on the application of this method to crystal structure determination. 

Because the ensemble of crystals are static throughout the snapshot exposure, spinel crystals 

scattering patterns contain angular intensity fluctuations and thus differ from conventional powder 

diffraction pattern. These intensity fluctuations may provide us additional information on structure 

determination. It will be shown that the diffraction pattern for a single crystal can be recovered by 

fluctuation pair and triple correlation functions alone, without other apriori information.  
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3.2 Angular correlation function 

3.2.1 Spinel powder diffraction simulation 

For a coherent monochromatic plane wave, the incident and outgoing wavevector can be 

denoted as  and . The structure factor for a unit cell is given by 

 

where ,  is the atomic coordinates in unit cell,  is the corresponding 

atomic scattering factor. 

The structure factor for lattice is given by 

 

where  is the displacement of the nth unit cell with respect to origin. It will converge to a 

delta function as crystal becomes infinite. 

Then, the scattering intensity from one crystal is 

 

Here we assume that different crystals scatter X-ray incoherently. Thus, the intensity 

observed on detector is simply the sum of the intensities from individual crystals. 

 

where  is the orientation of i-th crystal during k-th snapshot.  is the number of 

crystals illuminated during k-th diffraction pattern. Because the number of crystals in correlated X-

ray scattering is much less than in conventional powder diffraction, we may observe the spotty 

rings which reflect intensity fluctuations. 

 

3.2.2 Angular correlation function 
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For the diffraction pattern of a single crystal, the pair correlation function for two different 

rings is defined as 

 

where  and  represents radius of the i-th and j-th ring on diffraction pattern..  is 

the number of azimuthal angels at  which the intensity are measured. In a similar way, the 

triple correlation function is defined as 

 

For many crystals case, the fluctuation pair correlation, which could be directly calculated 

from experimental data, is defined as  

 

Then the pair correlation function for single crystal can be extracted by 

 

In a similar fashion, the fluctuation triple correlation function is defined as 

 

Then the triple correlation function for single crystal can be extracted by 

 

 

3.2.3 Reconstruction of single particle diffraction pattern 

The intensity of a diffraction pattern can be expanded in circular harmonics as 
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In general,  are complex numbers. Taking the Fourier transform of  

and , we have 

 

 

 

and it can be shown that 

 

So the magnitude of  is determined by . The unknown 

phases needs to be determined to reconstruct the single crystal diffraction pattern.   

 

3.3 Application to spinel powder diffraction pattern 

3.3.1 spinel powder diffraction pattern simulation 

Each spinel crystal has 10 unit cells in x and y direction, with a lattice constant of 

. The wavelength of the incoming X-ray is . A flat Ewald sphere is assumed 

in the present simulation. The simulated diffraction pattern from single crystal is shown as follow 
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Figure 3.1  Diffraction pattern for single crystal 

 

Next we simulate powder diffractions where 10 crystals are illuminated simultaneously 

per shot. Each crystal lies in a random orientation along z axis and scatters X-rays incoherently. 

In this way, we may obtain spotty powder diffraction rings, as shown in Fig 3.2. 
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Figure 3.2 Diffraction pattern for 10 crystals with random orientation 

 

In this report, we mainly investigate whether we can recover the diffraction pattern for a 

single crystal (Fig 1) from powder diffraction data (Fig 2). First, we need to obtain convergent 

values for angular correlation functions by averaging them over a large number of multiple-crystal 

diffraction patterns. In this case, 100 diffraction patterns were simulated. The averaged angular 

autocorrelation function shows the convergence to single crystal (Fig 3). 
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Figure 3.3  Auto correlation function retrieval for first and second ring 

 

The magnitude of  can be uniquely determined by taking the square root of 

. Its phase could be solved by the charge-flipping method described in [8]. In present 

report, we take all  to be real and maximum value of m is 38. Note that 

 as a result of Friedel's rule. So only even values are non-zero. Here we take 

all coefficients as real. Only the parity (+/-) signs need to be determined. After searching  

combinations of signs to optimize the function. 

 

The result of reconstructing the single diffraction pattern is shown in Fig 4. 
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Fig 4  Single crystal diffraction pattern reconstructed from the magnitude of  

determined from the mean pair correlation , and signs from the mean triple correlations  

from 100 multi-particle diffraction pattern like that of figure 2. 

 

3.3.2 3D structure determination 

So far, we have reconstructed the 2D low-resolution diffraction pattern. More efforts are 

still required to develop this method to 3D reconstruction before real application to a powder 

diffraction experiment. Firstly, we cannot obtain a powder diffraction pattern just by rotating the 

crystal along one axis in a real experiment. All orientations need to be adequately sampled. 

Secondly, we should note that the diffraction pattern reconstructed is low-resolution data. For 

high-resolution data, the diffraction pattern will be the projection from curved Ewald sphere. 

As yet, no simulation or experiment work on real 3D structure reconstruction has been 

successfully performed by this method. The low-resolution diffraction patterns probably originate 
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from the assumption of flat Ewald sphere. Elser generalized this method to a semi 3D case 

(Shapiro et al., 2008), where particles can be aligned in random orientations on a 2D substrate 

which can tilt freely with respect to the X-ray beam. As the tilt angle between substrates and X-

ray beam can be measured and the correlation function has the same property as eqn (8) and 

(10), the reconstruction proceeds pretty much similar to the case for 2D case (Elser, 2011).  

For the full rotation freedom case, the reconstruction idea is still the same. Firstly, we 

need to obtain convergent pair and triple correlation functions from simulated powder diffraction 

patterns. Then we expand the 3D reciprocal-space map by spherical harmonics (R. a Kirian, 

2012). 

 

It can be shown that  

 

where  is the ring cross correlation,  are the Legendre 

polynomials, and 

 

Then we need to find all the complex coefficients involved from the above equation. It is a 

formidable task either using triple correlation method or phase iterative method (Saldin, Poon, 

Schwander, Uddin, & Schmidt, 2011).  

 

3.4 Conclusion  

Here we mainly demonstrate that the 2D diffraction pattern from single crystal can be 

reconstructed from powder diffraction data, in principle. There are still several limits on the 

present 2D simulation. First, we may observe that the intensity of  spot is not equivalent to 

 from the single particle diffraction pattern. But the reconstructed diffraction pattern couldn't 
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distinguish this pair. From the pair correlation function, we could observe the intensity variation. It 

seems that this inefficiency doesn't originate from the expansion order , but the accuracy of 

phase where all coefficients are assumed real. Secondly, a proper reference ring is crucial for 

successful reconstruction both in triple correlation method or phase iterative method. In this report, 

we chose the first ring as our reference ring and then calculated the pair correlation function with 

respect to the first ring, which indicates the relative position information of Bragg spots on 

different rings. The phases of high-resolution rings are not well recovered. It may be improved by 

choosing several outer rings as reference ring (Saldin et al., 2010). 

Although the diffraction pattern reconstruction demonstration in this report is two 

dimensional, this idea provides us many insights on the application of real 3D powder diffraction. 

As to the 3D diffraction volume reconstruction, substantial research efforts are required to 

develop a functional theory.  
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CHAPTER 4 

PHASING TWO-DIMENSIONAL CRYSTAL DATA WITH ITERATIVE PROJECTION 

ALGORITHM 

4.1 Phase problem 

In typical X-ray crystallography experiments, the major data are 2-D diffraction patterns 

produced from the X-rays scattered by a crystal. The routine data analysis can be performed 

using two steps, indexing and phasing respectively. In the indexing step, the amplitudes of 

complex structure factors  can be calculated after mapping the Bragg spot intensities  

back into 3-D reciprocal space. However, the associated phases  cannot be measured 

directly from X-ray diffraction pattern alone. Therefore, the experimental information is intrinsically 

deficient for solving the 3-D structure, which constitutes the famous phase problem. Phase 

retrieval is a general problem based on assumptions. For example, we suppose that the object is 

finite, positive density etc. 

Besides X-ray crystallography, the phase problem exists in many other fields as well, 

such as general X-ray diffraction, electron diffraction, neutron diffraction, astronomy etc, where 

only magnitudes of the Fourier transform of object density can be measured (J. Miao, Ishikawa, 

Robinson, & Murnane, 2015; Shechtman et al., 2015). Its importance can never be overstated. 

Currently, various phasing methods have been developed to address the phase problem for both 

periodic as well as non-periodic objects. For example, molecular replacement is the most widely 

used phasing method for protein crystallography. About 70% of the deposited structures in PDB 

are solved by molecular replacement. In the case of non-periodic objects, the Hybrid Input-Output 

algorithm is a very successful algorithm to solve the structure by iterating between real and 

Fourier space (Chapman et al., 2006; Jianwei Miao et al., 1999; Seibert et al., 2011). 

 

4.1.1 Phasing method in crystallography 

Crystals are often treated as infinite in crystallographic data analysis. The boundary of 

the molecule can hardly be estimated from Patterson function, unless the unit cell is almost empty. 

Therefore, real space information can hardly be inferred from external assumption, which is the 
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case for non-periodic objects. Today, molecular replacement (MR), first proposed by Micheal G 

Rossmann in 1962 (M. Rossmann, 1990), is the most popular method for crystallographers to get 

initial phases. In MR, the initial electron density map is estimated by performing inverse Fourier 

transform of complex structure factors, which combines experimental structure factor amplitudes 

with phases from model, which should be similar to our target structure. Actually, MR was firstly 

used as a phasing method for identical proteins crystallized in different space groups, mutant 

screenings or multiple ligand-target complexes. Because a large number of protein structures are 

readily available in the PDB (~100, 000), the probability of finding a reasonably good starting 

model for MR is quite high. Even partial search models can be successfully used for phasing with 

MR, making it a very powerful technique to obtain phases for crystallographic data. 

Quite a few experimental phasing methods were developed before MR, such as multiple 

heavy atom isomorphous replacement (MIR) and single heavy atom isomorphous replacement, 

where the Bragg intensity differences between the heavy atom labeled crystals and the native 

crystal (Hendrickson, 2013) were compared. However its practical implementation is often difficult 

or time- and labor consuming. For small molecules, typically less than 1000 atoms per unit cell, 

this problem is usually addressed by applying direct methods, which solely use information from 

structure factor amplitudes and exploit chemical constraints to derive the phases of different 

Fourier components. 

 

4.1.2 Phasing methods for non-periodic object 

Hybrid input-output(HIO) algorithm is one of the most successful algorithms developed to 

address phase problem for a non-periodic object. The iterative algorithm imposes constraints 

between real space (support) and reciprocal space (structure factor amplitude) respectively. The 

support specifies the boundary of object. The density values outside of the support are declared 

to be zero. The first object density estimate is the inverse Fourier transform from known structure 

factor amplitudes and random phases. Then the density values outside of support are changed to 

zero. Then new phases are estimated by performing Fourier transform of modified object density. 

The next object density is calculated by doing inverse Fourier transform of phases from the 
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previous step and known structure factor amplitudes. The solution will be optimized after certain 

number of iterations. 

The only prior information required for HIO algorithm is the support. There is a natural 

advantage for single particle diffraction. The autocorrelation function of object density can be 

obtained by doing inverse Fourier transform of intensities of diffraction pattern, which are 

proportional to the square of structure factor amplitudes. The autocorrelation is the twice of the 

object density in each dimension. For single particle diffraction, one implicit prior assumption is 

that the particle size is finite, so that it safe to claim that electron densities are zeros outside of 

certain boundary. If we know the size estimate, then the support can be a rectangular shape or 

box. Even if no size information available, the boundary can be estimated from the 

autocorrelation function which has a boundary with given finite object density. 

 

4.1.3 Uniqueness of phasing problem 

Before we apply any phasing methods to a diffraction dataset, it's very useful to examine 

the phase problem from a basic mathematical point view. Here we limit our discussion to the 

kinematic X-ray diffraction experiment, in which case the object density is the inverse Fourier 

transform of reciprocal space as shown in equation (4-1 & 4-2). 

   (4.1) 

    (4.2) 

Solving the phase problem is equivalent to solving structure in real space. If we completely know 

the object density distribution  in real space, then we can calculate its complex structure 

factors  by equation (3.2). On the other hand, if we can measure both the amplitudes and 

phases of  through experiment, then we may solve the correct structure by equation (4.1). 

However, the only information we can extract from X-ray diffraction dataset is structure factor 

amplitudes. Therefore, prior knowledge is required to solve the correct density map. The prior 

knowledge can be any constraints in real space such as real and positive density, object size or 
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envelope, finite boundary, etc. Knowledge on low-resolution phases also serves as effective 

constraints to reduce the freedom of possible solutions. 

It is often convenient, both for data processing and for the purpose of mathematical 

analysis, to represent a 2-D image or 3-D object by a discrete array of its sampled values. 

Intuitively, it is clear that if these sampled values are taken sufficiently close to each other, the 

sampled data are an accurate representation of the original function. Ideally, we need infinite 

number of infinitesimal pixels to accurately represent a continuous density distribution, which 

means an infinitely high resolution. In practice, we take sample values as long as it can 

accurately represent our object. First of all, any real experimental measurement has an upper 

resolution limited either by instrumentation, or sample quality etc. Our eyes have a limited 

resolution too. Most people can barely distinguish two points separated by 0.3 m that are 1 km 

away. Therefore, as long as the sampling interval in real space is fine enough for our purpose, 

there is no benefit in increasing the sampling resolution and collecting additional information. 

Secondly, more sample points also means bigger input 3-D array, which will take more memory 

and cause our program run for a much longer time.  

The uniqueness of phase problem can be better illustrated by digitizing real as well as 

reciprocal space into a discrete numerical 3-D array. Then equation (4.1) can be reformulated into 

a set of linear equations. Assuming that we take sample values at equal spacing on object 

density  as well as structure factors , then  and  can be represented as discrete 

3-D arrays  and  with size  by  by . Here  are integers and 

; ;  . The total number of elements in 

each array is . The equation (3.1) can be represented as discrete Fourier 

transform 

   (4.3) 

where . The complex structure factor  has  unknown 

phases  while  are available from the X-ray diffraction experiment. Let's take 

 and , and . 
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Then we may also represent  3-D array  and  with size 1  1-D array 

 and . Eqn (3.1) hence turns into linear equations 

          (4.4) 

We should note that complex coefficient matrix  is a known constant, which only depends on the 

number of sample values we took in real and reciprocal space, namely .  is given by 

     (4.5) 

So the discrete Fourier transform can be reformulated into a set of linear equations. 

       (4.6) 

As  and  are typically not completely known, so we may write (3.6) as 

 

In matrix form 

 

where  is an  matrix. If we have constraints that can be expressed as a set of 

linear equations in  and , then the coefficient matrix can be expressed as 

 

In this case, the uniqueness problem can be quantitatively analyzed by comparing the 

rank of the coefficient matrix and the augmented matrix. The system has a unique solution when 

the rank of coefficient matrix is equal to the number of augmented matrix. In particular, if the 

number of variables equals to the rank of coefficient, then the solution is unique. Otherwise, there 

are infinite solutions. If the rank of coefficient matrix is smaller than the rank of augmented matrix, 

then inconsistent equations are present, resulting in no solution. 

Given a complete set of measured structure factor amplitudes , if no further 

information is available about the object density in real space or phases in reciprocal space, then 
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 needs to be treated as a complex number, with  unknown numbers in real part and 

imaginary part. Accordingly, we may write two equations for real part and imaginary part for each 

equation in (3.4), which gives us maximum  constraints if the rank of  is . So the freedom of 

solution will be at least . In this case, the solution is not unique. 

If we have prior information that the object should be real, then we have  equations to 

constrain the imaginary part of    to be zero. We may write these constraints as 

    (4.7) 

In addition, the real density also gives additional  constraints on phases of structure factors 

by Friedel's law. 

    (4.7) 

It appears that we have  equations, which exceeds unknown variables . 

However, equations (4.6) and (4.7) are actually not independent to each other. Equation (3.6) is 

completely determined given equations (4.6). So knowing the object is "real" gives us actually 

 independent constraints. Therefore, the freedom of solution is . The 

solution is still not uniquely determined. Nevertheless, the prior information reduced  freedom, 

compared with no prior information. But still, the measured structure factor amplitude plus real 

object density doesn’t give enough information about the real space. This can be shown in figure 

4.1. 

The following simulation shows that random phase that satisfies Friedel's law doesn't 

necessarily give correct model. Therefore, more constraints are needed to narrow down our 

searching possibility. So more knowledge is required to guarantee a unique solution. 
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Figure 4.1 Random phase doesn't give correct structure. (a) is the model. (b) is the inverse 

Fourier transform of Fourier amplitudes with random phases which satisfy equation (4.7). 

 

Additional constraints are required in real space or reciprocal phases to solve the 

structure. What if we further know there is a finite boundary of the real object, which is the case of 

non-periodic diffractive imaging experiments. If we know half of the real space information, then 

the solution is possibly unique. Then some delicate algorithm can find it. In crystallography, initial 

phases are typically obtained from model or inferred from experiment where protein is labeled 

with heavy atoms. In the rest of this chapter, we will demonstrate phasing a crystal diffraction 

dataset with various real space constraints using iterative projection algorithm. 

 

4.2 Iterative projection algorithm 

4.2.1 Hybrid Input-Output algorithm 

HIO algorithm is developed from error reduction algorithm. In error reduction algorithm, 

the first object density is calculated by performing inverse Fourier transform on measured Fourier 

spectrum amplitudes and random phases. Then a real space constraint, called a support, is 

imposed on the density values which modifies values outside of support to zeros, while keep 

density values inside the support unchanged. Then new phases are estimated by performing 
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Fourier transform on the new object. To estimate the next object density, the measured 

amplitudes combined with phases estimated from the latest iteration are used in inverse Fourier 

transform. The flowchart is shown in Fig 4.2. The algorithm will converge to minima after certain 

number of iterations. One drawback of error reduction algorithm is that it is easy to be trapped in 

local minima. To solve this problem, the HIO algorithm is developed.  

 

 

Fig 4.2 Hybrid Input-Output algorithm flowchart. 

The implementation of the HIO algortihm is outlined in (Chapman et al., 2006; Spence, 

Weierstall, Fricke, Glaeser, & Downing, 2003). Here we briefly describe the procedure. HIO 

algorithm and error reduction is used to search the optimal solution. 10 error reduction steps are 

performed followed by 30 HIO-iterations, hoping to refine the structure. We assume that HIO 

algorithm can find global minima while error reduction can do further refinement. The number of 

iterations required for convergence depends on the molecular shape and envelope size. 

To evaluate the iteration process, object space error metric in the kth iteration is 

introduced as (Spence 2003)  
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where  is support,  is the electron density distribution at kth iteration. 

 

As  depends on type of proteins, we also introduce a relative error metric 

 

 

where    is the image space error in first iteration. 

The correlation coefficient between the true density and estimated density is equal to the 

normalized cross-correlation function at the origin (Spence 2003), given as 

 

where   and are the true structure factor amplitude and phase, respectively.  is the 

refined phase from iteration. We also introduced following error metric in our simulation. 

Weighted phase error 

 

Average phase error 

 

Fourier Shell Correlation 

 

R factor 
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When a support in real space is given and finer sampling in reciprocal space is available, 

the number of equations will exceed the number of unknown variables. Each equation of the 

discrete Fourier transform can be considered as an elliptical surface in a higher dimension. The 

intersection of all these surfaces gives our possible solutions. The HIO algorithm starts from a 

random guess of phases. Then it approaches the solution by doing projections to the support in 

real space and amplitude constraints in reciprocal space iteratively (Marchesini 2007). 

 

4.2.2 Patterson function 

Patterson function is often used to solve the phase problem in crystallography. It is the 

inverse Fourier transform of intensities rather than structure factors 

     (4.8) 

Mathematically, Patterson function is equivalent to the autocorrelation of the object density, which 

is defined as 

     (4.9) 

Here is a short proof. Inserting equation (4.1) to  (4.9) 

 

 

 

 

 

 

Patterson function is calculated from the Fourier spectrum while autocorrelation is 

calculated from real space object density. For single particle diffraction, the Patterson function is 

exactly the autocorrelation function, which is continuous to infinity. For X-ray crystallography, the 



  48 

Patterson function is actually the autocorrelation of crystal, instead of individual unit cells [Ref to 

Rick Millane 2015]. The Patterson function is periodic with size L/2 in each dimension, which 

gives maximum half information in real space. Meanwhile, it contains more vectors in the L/2 

region as it measures correlation between the different unit cells, as shown in figure 4.3. 

 

Figure 4.3 Autocorrelation function of isolated non-periodic object and its crystal form. (a) 

Autocorrelation of non-periodic object shown in Fig1. (b) Autocorrelation within L/2. (c) Patterson 

function of periodic object arranged in x and y diffraction. 

 

4.2.3 Resolution and oversampling ratio 

Resolution is one of the most concerned figures of merits in image processing. Its 

definition varies slightly across different imaging techniques, which is mainly due to the difference 

in experimental setup and data analysis. For example, in lens based optical systems, resolution is 

defined as the minimum separation of two points when the maximum intensity is 26% higher than 

the minimum between the two points. In X-ray diffractive imaging, the maximum resolution of a 

(a) (b) 

(c) 
 

 



  49 

diffraction pattern is given by the Bragg spots measured at maximum distance from center, which 

depends on X-ray wavelength and sample quality. The oversampling factor characterizes the 

minimum distance to obtain two discrete values in the reciprocal space, which has similar 

meaning as resolution in the real space. Quantitatively speaking, it often refers to the ratio 

between the inverse of object size and the minimum sampling space in reciprocal space. A larger 

oversampling factor means finer sampling in reciprocal space. For those diffraction patterns 

collected from scattered X-rays by non-periodic particle, the scattered intensity is continuous, 

where the oversampling factor is solely limited by the pixel size of detector. 

Resolution in real space gives the maximum spatial frequency component in Fourier 

spectrum, while the oversampling ratio in reciprocal gives the maximum size of autocorrelation in 

real space. The oversampling ratio is often the key factor in phase retrieval for non-periodic 

objects because it gives information about the autocorrelation of the charge density function. 

Resolution gives the volume of the reciprocal space. In contrast, oversampling ratio gives the 

volume in real space. For the first statement, it is easy to understand that high resolution data 

means the presence of Bragg spots at high angle. We have a wider area of reciprocal space. A 

similar concept also applies to the oversampling ratio. If we sample finer, then we get bigger 

volume information of real space. This can be better illustrated in a numerical way. 

Here we adopt a very straightforward definition of resolution. The minimum distance we 

can distinguish is our resolution limit. If we represent an object in a 2-D image, the minimum 

resolution is given by the pixel distance. 

Given a protein molecule, its 3-D charge density map  is represented as a 3-D array 

, where . The size of the matrix is given by 

 

 

where   are the number of matrix elements in  dimension 

respectively;  are the length of object in  dimension respectively;  is the 

resolution of object. The value ‘one’ (unit constant) is added to make the Fourier space have 

central symmetry in equation (4.10). The Fourier transform of this matrix produces another 3-D 
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array with same size in Fourier space, which represents the complex structure factor amplitudes 

. Here structure factor is used as a generalized term for both periodic and non-periodic 

objects, referring to the function of spatial frequencies in Fourier space. 

If we know enough real space information, we don’t need to measure reciprocal space 

completely. So it would be fine if we miss some structure factors at high angle. We can treat them 

as free parameters. Under sampling means we assume that values in between are zeros. When 

we digitize continuous space, there should be infinite points. But when under-sampled, only a 

portion of these infinite points are considered, the rest aren’t (and are treated as zeros). 

 

4.2.4 Supports 

Support is the indispensible part for an iterative phasing algorithm in coherent diffractive 

imaging. It provides the boundary constraints of objects in real space. Support values inside of 

the boundary are ones, while all the values outside are zeros. A correct support contains the 

entire object inside the boundary. A support is called tight support if it specifies the exact 

boundary of the object. Typically, the support is larger than the size of the object. More zero 

values in the support, more powerful the support is. In the extreme case when all values in the 

support are ones, no constraints are implemented by this support. 

In a single particle diffraction experiment, there are mainly three ways to obtain a support: 

1) its size information; 2) auto correlation function; 3) locate set. For an isolated particle, its size 

information is adequate to build a rectangular box support which contains the object. When the 

size information is not available, its autocorrelation function, which is the inverse Fourier 

transform of the square of structure factor amplitudes, also gives the boundary information of the 

object. To make an iterative phasing algorithm more efficient, it is often desirable to obtain a 

tighter support than the autocorrelation function support. More importantly, it is more likely to get 

a right solution with tighter support. In 1982 (J. R. Fienup, Crimmins, & Holsztynski, 1982), Fienup 

proposed a locate set theory to improve the autocorrelation support. The main procedure is as 

follows: 1) Find the extreme points (typically furthest) in a certain direction from the object support; 

2) Move the support from autocorrelation to those extreme points, then we will get several 
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autocorrelation supports A1,A2,...; 3) Intersect A1,A2,A3 etc. The overlap region will be the 

compact support (as shown in figure 4.4). 

 

Figure 4.4 Locater set (James R Fienup, 2004) 

 

In X-ray crystallography, much tighter support is required, compared with support in 

single particle imaging. First of all, the size information of unit cell doesn't provide additional 

constraints in real space since charge density outside the unit cell can't be set to zeros which is 

the case in single particle imaging. Secondly, the Patterson function calculated from crystal 

diffraction patterns is the autocorrelation function of the entire crystal, instead of an isolated 

molecule. It is periodic over the entire real space. In single particle diffraction, the Patterson 

function calculated from diffraction pattern is the autocorrelation of the object and its value is 

nonzero at a finite space. Moreover, inter vectors in crystal Patterson function reduces the room 

for imposing constraints in the autocorrelation support. It's also hard to apply locate set theory as 

an extreme set is difficult to obtain without any prior information. The extreme set consists several 

points on the object support boundary. But the shape of theprotein molecules is irregular. Actually, 
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the concept of "oversampling/under-sampling" doesn't fit to the realm of crystallography. An 

implicit assumption in oversampling is that the object should be non-periodic and finite in size. 

However, perfect crystals are considered to be periodic and infinite. 

 

 
 
 
Fig 4.5 It shows support estimated from (a), Patterson function of isolated object, (b)half 
autocorrelation function in (c) Repeating unit of Patterson function of periodic object. 
 
 

(a) (b) 

(c) 
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Figure 4.6  Reconstruction is not successful with support like (b) or (c) in figure 4.5 
 

 

To facilitate iterative phasing algorithm in crystallography data, the shape information of 

the object is required i.e., the amount of vacuum inside of the unit cell need to be identified before 

applying algorithm.  

In the following of this section, I will demonstrate several approaches to obtain a support 

and the image reconstruction with that support. 

4.2.4.1 Support from known object size 

In many X-ray single particle diffraction experiments, size information of the sample is 

often available. Even rough estimate of the object size is good enough to make a tight support for 

structure reconstruction. In the following example, the object is an image with cat and duck, which 

can be contained in 128*128 pixel box. Its diffraction pattern is oversampled by a factor of 2. The 

support can be created by designing a 2-D array with a square box with size 128*128 pixels in the 

center. All the values inside of the box are set to 1, and all the values outside the box are zeros. 

Its structure can be successfully reconstructed using HIO algorithm with support in Figure 4.9(b). 
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Figure 4.7 (a) object padded with zeros to 2X. (b) support from size information. 

 

 

Figure 4.8 Correlation coefficient CC and rms value over iteration 
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Figure 4.9 HIO reconstruction. (a) model (b) reconstruction with a inversion + translational shift. It 

happens in proteins as well. When size constraint is imposed, the reconstructions always seem 

inverted. 

 

4.2.4.2 Supports from autocorrelation function 

Object size information is not required for phasing single particle diffraction data. As long 

as the sample is finite, it is possible to derive a support and achieve structure reconstruction 

using autocorrelation functions. Autocorrelation shows all the vectors of intra-atom pairs within an 

object. So it spans maximum twice bigger than the original object in each dimension. The object 

should be contained by the outer boundary of autocorrelation function. Since all the translation 

and inversion of an object will give the same autocorrelation function, the support from 

autocorrelation function fits all such translations and inversions of the object. In other words, the 

right solution is not unique, but equivalent. 

In the following simulation, the same object is used as in the previous example. The 

autocorrelation function  (shown in figure) is the same as  which is calculated by taking 

Fourier transform of the square of the structure factor amplitudes . Support is estimated 

from the autocorrelation function in the following way. 
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Here cutoff value c is constant. The value of c is zero in our simulation since no noise is 

introduced. The diffraction pattern is also oversampled by a factor of 2. The reconstruction with 

this support is shown in figure. 

 

 

 

 

Fig 4.10 Support from Autocorrelation function 
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Figure 4.11 Model (a) and reconstruction (b) with a origin shift. 

 

 

Figure 4.12 Rms over iteration. CC is low because of the origin shift. 

 

 

 

(a) (b) 
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4.2.4.2 Support for periodic object 

Finite size constraints doesn't apply for periodic object, such as crystals. The charge 

density outside of unit cell can't be assumed to be zero as its adjacent are unit cells with same 

charge density distribution. The support from crystal density autocorrelation imposed very few 

constraints because the existence of inter vector between unit cells. Therefore, a much strong 

support are needed for phase retrieval. In the following simulation, the unit cell contains a cat and 

duck (Fig 4.13a). The rest black region are all zeros. Suppose we have a rough estimate of the 

boundary of cat and duck, then this support (Fig 4.13b) can be used to retrieve phases and 

reconstruct its origin image (Fig 4.14) with structure factors, using HIO algorithm described in Fig 

4.2. 

 

Figure 4.13 unit cell and internal support. 
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Figure 4.14 Reconstruction from tight support. 

 

4.3 Application to two-dimensional streptavidin crystal diffraction data 

4.3.1 Streptavidin 

To illustrate the phasing algorithm for a realistic example, we choose two-dimensional 

streptavidin crystal as our model system. The first X-ray diffraction dataset from two dimensional 

streptavidin crystals was collected by Matthias et al using femtosecond X-ray pulses from an X-

ray free electron laser (XFEL) (Frank et al., 2014). It was not possible to acquire transmission X-

ray diffraction pattern from individual 2-D protein crystals at synchrotron due to radiation damage. 

Streptavidin is a 52.8 kDa protein purified from the bacterium Streptomyces Avidinii. 

Streptavidin homotetramers have an extrodinary high affinity for biotin. With a dissociation 

constant on the order of 10^-14 mol/L, the binding of biotin to streptavidin is one of the strongest 

non-covalent interactions known in nature. Streptavidin is used extensively in molecular biology 

and bionanotechnology due to the streptavidin-biotin complex’s extremes of temperature and pH 

(wiki). 
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The protein streptavidin is one of the most widely used proteins in molecular biology, 

biotechnology, and more recently, nanotechnology. The interaction between streptavidin and its 

natural ligand, biotin, is one of the strongest non-covalent interaction in biology (Kd ~10^-14) 

(Magalhães et al., 2011). As a result, this protein ligand couple has been the subject of numerous 

investigations to understand the nature of high affinity protein interaction as well as the target of 

multiple engineering efforts to alter its specificity and/or binding properties. 

Charge density for two-dimensional crystal is periodic along lateral direction while 

continuous in its normal direction. The charges above and below the monolayer can be 

considered to be zeros. Hence, the reciprocal space is composed by a set of rods. In contrast to 

3D crystals, the intensity is continuous in the normal direction. 

 

4.3.2 Phasing with compact support alone 

 

We first applied this algorithm on streptavidin (pdbid: 3RDX). The unit cell is orthorhombic, 

C 2 2 21, with cell constants . We generate all atoms to fill 

the unit cell by symmetry operation as defined in the pdb file. Then the new pdb file was used in 

sFALL to calculate the structure factors of the unit cell to 3Å resolution in P1 symmetry. 

Subsequently, the structure factors are expanded to full reciprocal space by the following relation 

 

 

The electron density map of one unit cell is generated by inverse Fourier transform of the 

full reciprocal space, which is a  matrix in Matlab. Then we pad zeros above and 

below the unit cell along c axis to get a triple cell, with dimension . The complex 

structure factors can be extracted by Fourier transform of the triple cell in Matlab.  

The 3D support matrix is set to unity within the monolayer protein and zeros elsewhere. 

The structure factor amplitudes are used as a constraint in reciprocal space. The starting phases 

in HIO algorithm are random. The iteration in our algorithm consists of a 20 HIO sequence 

followed by a 20 error-reduction sequence. 
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Without any prior phase information, CC value converges very fast during the first 10 

iteration steps. After around 20 iterations, the rms value decreases very slowly while CC value 

converges to , as shown in Fig 4.15. However, the promising rms and CC value doesn't give 

good estimate of 3D structure, as shown in fig 4.16. The side view along a and b axis resembles 

model slightly, but the density is far off along c axis projection.  

 

Fig 4.15 Correlation coefficient CC and rms value over iteration, starting with known structure 

amplitudes and random phases 
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Fig 4.16 Comparison between model and structure from HIO estimate. (a-c) shows the model 

density along a, b, c axes; (d-f) shows the HIO estimated density view along c, b, a axis. 

A careful examination of the projection along a and b axis direction shows that there 

seems to be a shift along certain directions. In order to verify whether the structure was recovered 

along c axis, we calculated the electron density projection from a-b plane on c axis, as shown in 

Fig 4.17. There is a high correlation between the model and the structure from HIO estimate. It 

seems that the density in real space is successfully reconstructed in c direction, which is 

equivalent to 1D phasing. 

As we only oversample reciprocal space in c direction, the phases along each rod in 

reciprocal space were determined independently. But the relative phase between each rods in 

reciprocal space were not balanced during HIO algorithm. As a result, the inverse Fourier 

transform of each rod from reciprocal space gives the right rods along c direction in real space. 

But they are seated randomly in real space a-b plane. Phasing a 2-D crystal diffraction dataset is 

equivalent to 1D problem. 
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Figure 4.17 A comparison of density projection on c axis between model and structure from HIO 

estimate, without any prior phase information. 

4.3.3 Phasing with point support 

Protein crystals typically contain a large portion of disordered solvent. Although charge 

densities of the solvent are comparable with protein molecules, their contribution to the diffraction 

is much weaker than the signal from ordered protein molecules at Bragg spots. As we discussed 

in chapter 1, the signal at Bragg spots will be amplified by  if  molecules are arranged in order 

along a specific dimension. Ideally, after background subtraction, the noise from instrumentation 

as well as solvent will be eliminated. Therefore, we may approximate the solvent region in unit 

cell as vacuum while simulating diffraction patterns. This approximation provides further 

constraints for HIO algorithm and opens up the possibility to phase the diffraction dataset with a 

known solvent-protein boundary.  

Although solvent fraction is provided in PDB file, the boundary between solvent and 

protein is not specifically described. The charge density map generated from PDB file purely 
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shows contribution from protein molecules, not the real charge density of unit cell which contains 

solvent. However, it is safe to assume that the regions with low charge density value calculated 

from PDB are occupied by solvent molecules. Actually, protein molecule features are typically 

shown at a contour level between 1 to 3 sigma above average charge density, which accounts 

5~20% volume of unit cell. If the display contour level is too low, it is very likely we only see a 

blob without any detailed features.  

To study how much known solvent is required for successful reconstruction, we need to 

modify the density map  directly generated from PDB so that there is an explicit boundary 

between solvent and protein molecule. The most straightforward way would be set all charge 

density in original model  below a certain cut off   to zero, which is considered as solvent 

region. 

                                      (4.11) 

Here  is the charge density of new model,  is the cut off density with units of sigma 

level. It may be set at certain value as long we may see satisfactory feature, such as an alpha 

helix, beta sheet or even benzene rings. 

Accordingly, we may set a solvent support for our object with the similar idea. 

                                                (4.12) 

 If electron density is lower than the cut off, then we set the support at this voxel as zero. 

Otherwise, the voxel value will be one. Those voxels with zeros values are prior information about 

solvent. More the number of zero-values, more the constraint imposed by this support. However, 

 needs to be smaller than  to avoid conflict between support and model. Otherwise, the 

support will enforce some non-zero voxel values in protein region as defined in (3.11) to zero. 

The support is called tight support if  and loose support if . Here we call it point 

support in general, because the support gives precise solvent voxel points instead of a 

continuous and connected volume (as shown in figure ). 
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Figure 4.18 Volume fraction over cut off density value. 
 
 

In the following simulation, we take , , while . In this case, 

only 26.9% percent of unit cell volume is occupied by the object. Non-zero values in the support 

make 73.1% of a unit cell. Apart from this, we also apply a compact support above and below the 

unit cell. A decent structure reconstruction was obtained from the intensities, without the appeal 

for lateral oversampling in reciprocal space, shown in Fig 10,11,12. 

We don't need a very tight support for this case. Our support identifies 17.9% voxel 

values of unit cell, which are known zeros. Such a support could potentially be obtained from a 

low-resolution image or Patterson function. 
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Figure 4.19 We apply solvent flatting both on model and support. Here ratio of non-zero to zero 
volume in support is about  3. 
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Figure 4.20 A comparison between model and HIO estimate shown at different sigma levels. 
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Figure 4.21 Correlation coefficient CC and rms value over iteration. It takes approximately 60 
iterations to converge. 
 

4.3.4 Phasing with molecular envelope 

The point support is a very strong support since it identifies even small vacuum voxels or 

solvent location inside the protein pocket. Given the same volume of identified solvent, point 

support renders maximum independent constraints over other type of supports discussed in the 

following section. The simulation above provides the theoretical upper limit of solvent content 

required for unique phase retrieval. However, obtaining such a point support is highly dependent 

on atomic model, which is not practical for real data analysis. Here I demonstrate that phase 

retrieval is achievable given a roughly accurate molecular envelope. This envelope is connected 

and continuous volume in real space which contains protein molecules. 

In the following simulation, a Gaussian filter is applied first first before defining the 

contour. Second, the Gaussian filter is applied to the point support. It will only enlarge the support 

area.  
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Figure 4.22 model and its rough molecular envelope 

 

Figure 4.23 Correlation coefficient CC and rms value over iteration. 
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Figure 4.24 A comparison between original model (a) and reconstruction (b). 

 

4.3.5 Omit map implementation with IPA 

Omit map is widely used for reducing model bias. In the conventional procedure, a small 

region of model are systematically excluded for refinement. If there is no model bias, the density 

map calculated from experimental structure factor amplitudes with refined phases should reveal 

the missing region of model which is used for obtaining phases. Using HIO algorithm, a new 

approach is developed to validate the model.  

In previous section, a point support can be estimated from atomic model. To validate the 

structure a small region of the molecule, a new support can be designed so that all constraints in 

those region are removed. If the model is correct, then the omit region should be fully recovered 

with experimental structure factors and the support estimated from structure with omitted region. 

In the following simulation, we create a support from a model with omit region which is a 

rectangular block as shown in figure 4.25(b). Using HIO algorithm, the structure of omitted region 

can be exactly recovered with this support and structure factor amplitudes( as shown figure 4.26) 
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Figure 4.25 (a) model and (b) support estimated from model with omit region 

 

 

Figure 4.26  Correlation coefficient CC and rms value over iteration 
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Figure 4.27 Comparison between model and HIO reconstruction 

 

4.3.6 Molecular replacement implementation with IPA 

In conventional molecular replacement, the phases are directly estimated from a model. 

The first electron density map is created using experimental structure factors and the phases 

calculated from model. Since phases carry more structure information, this method will introduce 

significant bias in our initial phase estimate. Therefore, this method is only used on the 

assumption that target structure is very similar to the model for phasing.   

IPA facilitates an alternative way to do molecular replacement, which is more direct to the 

similar structure assumption. The similarity in molecular shape does not necessarily result in very 

similar phases. Phase error  can be very high at high resolutions. In this new approach, only the 

shape information of model is used for create a support. If the support correct contains the target 

molecule, then it is possible to reconstruct structure free from error given perfect structure factor 

amplitudes. 

In the following simulation, we choose streptavidin complexed with PEG (pdb:3rdu) as 

our target molecule. And 100% complete x-ray diffraction structure factor amplitude to 3A are 

simulated. A model of streptavidin free from ligand is also available (pdb:3rdx). To solved the 
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structure, a support is firstly estimated from model 3rdx (4.29b). Using IPA algorithm, the 

structure is solved in figure 4.31b, which more like our target model, instead of model for phasing. 

 

 

Figure 4.28 Comparison between two models. blue-3rdx,red-3rdu (streptavidin complexed with 

PEG). Only one monomer. We will phase 3rdu with 3rdx model. 

 

Figure 4.29 Charge density distribution of (a) Streptavidin with PEG and (c) Streptavidin free from 

ligand. (b) Envelope estimated from streptavidin free from ligand. 
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Figure 4.30  Correlation coefficient CC and rms value over iteration 

 

 



  75 

Figure 4.31 Comparison between (a) original model and (b) reconstruction. (c) Model used for 

generating support.  

 

In figure 4.30, the CC values does not converge to 1 even with perfect structure factor 

amplitudes which are free from error. This is caused by the rough estimate using a model 

different from itself with many inconsistencies. Therefore there exists certain false constraints. 

This can be improved with known geometry shape from prior biology knowledge/Molecular 

replacement. This method actually imposes a much weaker constraint instead of directly taking 

phases from a model. An envelope is intrinsically a binary mask. The internal structure is 

reconstructed by HIO algorithm. 

 

4.3.7 Parameter optimization 

In this approach, the phases of a small number (up to 10) of low-order of reflections (and 

their symmetry-related mates) were treated as free parameters in the HIO optimization, and a 

search conducted over all possible values of these phases. Here we used rms, R factor as metric. 

We also used cc value, which is unavailable without a known model. We found that the lowest 

rms values are very close. 

We started with treating phases associated with Bragg spots within 80 Å resolution as 

free parameters. There are 6 Bragg spots in total, namely . 

But only three are independent by symmetry constraints and Friedel’s law. We sample phases 

 from  to , with  interval. Hence, there are 36
3
 combination of 

initial phases. In the following simulations, these phases are additional constraints in reciprocal 

space, apart from the known intensities. The computational run time is about 50 hours. We found 

that rms value ranges from 0.0151 to 0.0169, and R factor ranges from 0.0292 to 0.0325. The 

minimum is reached at . When we use this optimal angle as initial constraints, 

we found the rms and R factor changes at the same number of iteration. Moreover, the structure 

is not reconstructed properly, as shown in following figure. 
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Figure 4.32 Charge density of model (a) and reconstruction (b) over several unit cells 

 

This didn’t work for several reasons. Firstly, different iterations may vary even given the 

same initial conditions, which makes it difficult to identify the optimal phase set. Secondly, there 

doesn’t exist a good metric to pick out the best parameters without a model. We tried R factor and 

rms. We found, it may be higher for more known parameters. Thirdly, the HIO still couldn’t 

improve much, even though a certain fraction of phases were known. The more phase we provide, 

the better structure we got at the convergence of HIO algorithm. 

Provided with a sufficient number of known phases, a rough structure could be obtained 

at the convergence. We find the minimum  required for successful structure reconstruction is 

(10 independent phases considering symmetry and Friedel’s law), with , as 

shown in Fig 6. However the computational cost of this approach rapidly becomes prohibitive. 

Also, we need a better metric to pick out the optimal phase combinations. It is impossible to 

obtain structure by optimizing phasing both theoretically or computationally. 
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4.3.8 Prior phases 

When phases associated with low resolution structure factor amplitudes are available 

from cryoEM or molecular replacement , it could also help HIO algorithm converge to a higher CC 

value. Here, we supply all the phases within radius   in reciprocal space as prior 

information. Figure 4.33 shows that CC converges to a higher value when more phases are 

supplied.  

 

Figure 4.33 Correlation coefficient CC and rms value from HIO algorithm at convergence plotted 

against the radius of  vector in reciprocal space, within which known phases have been 

supplied to the algorithm. 

 

Our simulation indicates that CC is the key value to evaluate whether the estimate 

structure is good or not. We find the minimum  required for successful structure reconstruction 
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is , with , as shown in Fig 5 It means that phase could be retrieved for 3   

diffraction data provided 40   resolution images at various orientations are available 

 

4.4 Artificial 2D crystal 

The main difficulty in achieving real ab-initio phasing is that we don't have lateral support. 

If we can make artificial 2D crystals with bigger space, then we may sample finer and have a 

lateral support which enable ab-inito phasing possible. Creating more space in between unit cells 

is the most straightforward to way to achieve ab-initio phasing (for example: creating a sample 

holder with some inorganic material to embed molecules). It’s hard to create more space naturally 

as interaction will be too weak to make molecule organized by itself. In this way, the signal is still 

amplified, proportional to N
2
. 

 

 

Figure 4.34 Artificial 2D crystal 
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To demonstrate the theoretical feasibility of phasing this system, here I take a single unit 

cell as a particle, with no periodicity in each dimension. Then the intensity distribution in 

reciprocal space is continuous in every direction. Hence a compact support can be applied in 

each side of the unit cell in real space.  

In the following simulation, zeros are padded around the unit cell to generate a super cell, 

with a lattice constant three times bigger in each side, shown in fig 4.35. Then structure factor 

were calculated to 3 Å resolution by taking the Fourier Transform of the electron density of the 

super cell. Only the structure amplitude and compact support in real space are constraint applied, 

without any further phase prior information. 

  

 

Figure 4.35 Super cell with its support. The triple cell is shown at  level in (a).  Red pixels in (b) 

have value 1, while the empty space are zeros. 
 

In this scenario, the structure recovered from HIO shares a high resemblance to the 

model, as shown in Fig 4.36. The CC and rms values are shown in Fig 4.37. It seems like there is 

an inversion relation between HIO estimate and our original model.  



  80 

Figure 4.36 Comparison between model and HIO estimate in 3D view. Both are shown at  level. 

 
Figure 4.37 Correlation coefficient CC and rms value as a function of iterations, starting with 
known structure amplitudes and random phases 
 

The size of a unit cell is typically in between 10~300 Å. If they are separated to 

sufficiently wide space on a substrate, then oversampling is possible. This technique may have 

advantages over single particle imaging in terms of signal strength and orientation control. The 
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sample holder is a mixture with (a) silicon and (b) a secondary material which binds the 

membrane proteins. Using a silicon holder should not cause any problems since the lattice 

constants for silicon are small in real space that the diffraction from the holder is very bright, 

sparse and can be predicted. 

It is possible to make a slice of graphene and drill holes every 10nm. ASML EUV soft 

lithography device has 18nm resolution. Or we could put a "locker" to fix the protein at every 10 

nm. In this way, we may grow 2D crystals very quick given such a substrate. This type of 

experiment can only be achieved at XFEL, since radiation damage would become a significant 

deterrent to study such samples. We benefit a lot from the new design. First, the signal is much 

stronger than single particle case. Ideally, the signal can be amplified by N^2. So, this experiment 

may be even conducted in a hydrated environment which may preserve it’s functionality. Second, 

the orientation between crystal and X-ray beam can be recorded using a goniometer. It will 

relieve a lot of effort on data analysis. Third, this method is easy for mass production. The 

substrate and locker is the most crucial aspect of the experiment. If the secondary medium is 

identified, that can glue many proteins, a substantial amount of efforts and time in growing 

crystals would be reduced. 

 

4.5 Conclusion and prospectus 

"There ain't no such thing as a free lunch." The phase information is lost since detector 

can only record the magnitudes of complex structure factor. Phases can't be retrieved from 

nothing and it is not naturally inscribed in diffraction pattern from any system (single particle or 

crystal) without any prior knowledge. When "oversampling" is referred, an assumption has 

immediately been made that the object size is known. Otherwise, it would not be possible to 

estimate whether the diffraction pattern is oversampled or under-sampled. Even for single particle 

imaging, there is a key implicit information used for obtaining support - "single particle". It is 

known that charge density beyond a certain boundary will be zeros and this information is the key 

to obtaining support from autocorrelation function. This is also the reason why it is very unlikely to 

succeed in phasing diffraction data from crystals. 
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In this chapter, we demonstrated the application of iterative phasing algorithm in phasing 

two-dimensional crystal diffraction data. Structure can be retrieved only if a sufficiently tight 

support/molecular envelope is available. The size of the envelope is limited by the fraction of 

disordered volume per unit cell, which typically refers to solvent fraction. However, with certain 

ordered regions of the solvent and certain other regions being flexible, they need not be exactly 

the same. This is also the advantage of crystallography over EM imaging since the signal from 

the ordered region is greatly amplified, making it possible to distinguish the solvent molecule and 

protein by charge density. 

The fact that the phase problem is hard to solve is largely due to two factors: 1) available 

data doesn't guarantee unique solution; 2) the unique solution exists, but there is no powerful 

algorithm to find it. Currently, several iterative projection algorithm variants are proposed to 

address this question. This thesis mainly addressed the first case with the standard Hybrid Input-

Output algorithm, which is widely accepted and a successful algorithm in image processing. We 

found that as long as enough prior information is available, it can lead the algorithm towards the 

the right solution. This algorithm is also very convenient to integrate various experimental results 

in iteration. Therefore, it's worthwhile to develop HIO algorithm that can implement additional 

constraints with protein information from various experimental results, such as NMR, histogram 

matching etc.  

Artificial two-dimensional crystal preserves the feasibility of ab-initio phasing and has a 

moderate signal level which is much stronger than from a single particle, but weaker than from a 

3D crystal. The X-ray diffraction experiment can only be achieved at an XFEL since it's structure 

is unstable. If the substrate is easy to make, crystallization would be greatly simplified. The data 

analysis would be straightforward with iterative projection algorithms and It will open up a new 

field in X-ray crystallography. 
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APPENDIX A 

NOTATIONS IN ANGULAR CORRELATION FUNCTION ALGORITHM 
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         the intensity contribution from the l_th crystal during k_th snapshot, with its 

orientation , scattering vector  (Bold letter means a vector, letters without bold mean 

magnitude).  

             the observed intensity from k_th snapshot 

Note: In the following of this report,  without subscript k always means the diffraction intensity 

from one crystal.  always represents the observed diffraction intensity which results from x-ray 

scattered by many crystals. 

             fluctuation intensity from k_th snapshot 

      angular pair correlation function for single crystal 

      angular triple correlation function for single crystal 

     fluctuation angular pair correlation function for multiple crystals, which is 

averaged over all experimental or simulated powder diffraction patterns. 

     fluctuation angular triple correlation function for multiple crystals, which is 

averaged over all experimental or simulated powder diffraction patterns. 

          Fourier transform of  

       Fourier transform of  
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APPENDIX B 

PROOF OF ANGULAR CORRELATION FUNCTION RETRIEVAL 
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For the diffraction pattern from a single crystal, the pair correlation function for two different rings 

is defined as 

 

where  and  represents radius of the i-th and j-th ring on diffraction pattern..  is the number 

of azimuthal angels at  which the intensity are measured. In a similar way, the triple correlation 

function is defined as 

 

Now let's consider many-crystal case. Here we assume each crystal scatters x-ray incoherently, 

thus the intensity observed on detector is simply the sum of the intensity from each individual 

crystal. 

 

where  is the orientation of l_th crystal during k_th snapshot. 

The fluctuation intensity is defined as 

 

where the second term means average over all diffraction patterns 

 

where  is the total number of diffraction patterns. 

The fluctuation pair correlation for simulated diffraction patterns is defined as 

 

 

Let's change the integral by sum, 
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Note that in the first term, , is the pair correlation function 

 that would arise from single crystal. The second uncorrelated term can be 

expressed as 

 

When we take average over all diffraction pattern and integrate over each ring, the relative 

orientation between crystals  will be washed out. And both terms above will not depend on 

angle or any specific crystal. Here I simply denoted them as  and . As the sum 

has  terms. Hence, the second term has the following simple expression 

 

And 
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Note that  is the average intensity from single crystal,  is the average intensity 

from  crystals during a x-ray shot. And ,   are uniform on each ring. So 

. Then 

 

Hence, 

 

In the above equation,  and  can be easily calculated from diffraction 

patterns by definition. Hence, pair correlation for single crystal  is solved. 
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APPENDIX C 

DERIVATION FOR TRIPLE ANGULAR CORRELATION 
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The fluctuation triple correlation for simulated diffraction patterns is defined as 

 
This term can be directly calculated from all the diffraction patterns. In a similar fashion, 

 can be expanded as 

 

 

 

 

 
So 

 
All terms on the right side of equation can be calculated from diffraction patterns, hence triple 

correlation for single crystal is solved. 
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APPENDIX D 

FOURIER TRANSFORM OF PAIR ANGULAR CORRELATION 
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By definition, the Fourier transform of pair angular correlation is given by 

 

where  

 
Expand  in circular harmonics, then 

 

 
Put eqn (2) to (1) 

 

 
Note that 

 
Hence 

 
Also note that 

 
So 

 
As , so 
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APPENDIX E 

FOURIER TRANSFOMR OF TRIPLE ANGULAR CORRELATION 
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By definition, the Fourier transform of triple angular correlation is given by 

 
or 

 
where 

 
Expand  in circular harmonics, then 

 

 
Put eqn (2) to (1) 

 

 
Note that 

 
Hence 

 
Also note that 

 
So 

 
Let  

 
 

 


