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ABSTRACT 
 

 Composite materials are now beginning to provide uses hitherto reserved for metals in 

structural systems such as airframes and engine containment systems, wraps for repair 

and rehabilitation, and ballistic/blast mitigation systems. These structural systems are 

often subjected to impact loads and there is a pressing need for accurate prediction of 

deformation, damage and failure. There are numerous material models that have been 

developed to analyze the dynamic impact response of polymer matrix composites. 

However, there are key features that are missing in those models that prevent them from 

providing accurate predictive capabilities. In this dissertation, a general purpose 

orthotropic elasto-plastic computational constitutive material model has been developed 

to predict the response of composites subjected to high velocity impacts. The constitutive 

model is divided into three components – deformation model, damage model and failure 

model, with failure to be added at a later date. The deformation model generalizes the 

Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield 

function with a non-associative flow rule. A strain equivalent formulation is utilized in 

the damage model that permits plastic and damage calculations to be uncoupled and 

capture the nonlinear unloading and local softening of the stress-strain response. A 

diagonal damage tensor is defined to account for the directionally dependent variation of 

damage.  However, in composites it has been found that loading in one direction can lead 

to damage in multiple coordinate directions.  To account for this phenomena, the terms in 

the damage matrix are semi-coupled such that the damage in a particular coordinate 

direction is a function of the stresses and plastic strains in all of the coordinate directions. 

The overall framework is driven by experimental tabulated temperature and rate-
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dependent stress-strain data as well as data that characterizes the damage matrix and 

failure. The developed theory has been implemented in a commercial explicit finite 

element analysis code, LS-DYNA®, as MAT213. Several verification and validation 

tests using a commonly available carbon-fiber composite, Toyobo’s T800/F3900, have 

been carried and the results show that the theory and implementation are efficient, robust 

and accurate.  
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NOMENCLATURE 

C = elastic stiffness matrix;  

( )f σ   = yield function with respect to 

the stress state; 

Fk = coefficients in vector portion of 

yield function; 

Fij = coefficients in tensor portion of 

yield function; 

h = plastic potential function; 

i

n

h

1+∂
∂
σ

 = gradient of plastic potential 

function for iteration i of time step 

n+1; 

ijH  = constant coefficients of plastic 

potential function; 

q = vector of yield stresses in various 

coordinate directions; 

1
1

+
+

i
nq   = vector of yield stresses for 

iteration i+1 of time step n+1; 

pW  = plastic work rate; 

ε∆  = strain increment tensor; 

 σ= stress tensor; 

nσ  = stress tensor at time step n; 

1
1

+
+

i
nσ  = stress tensor for iteration i+1 at 

time step n+1; 

eσ  = effective stress; 

ijσ  = stress components; 

c
ijσ = compressive yield stresses; 

t
ijσ = tensile yield stresses; 

45
ijσ ′  = yield stress from 45º off-axis test in 

i-j plane; 

ijν  = elastic Poisson’s ratio in ij direction; 

p
ijν = plastic Poisson’s ratio in ij direction; 

d = deformation rate tensor; 

ijd = deformation rate components; 

M = damage tensor; 

ijM = damage components; 

effσ = undamaged (effective) stress tensor; 

eff
ijσ = undamaged (effective) stress 

components; 
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45
-i jε = yield strain from 45º test in i-j 

plane; 

pε  = plastic strain rate tensor; 

p
eε  = effective plastic strain rate; 

p
edε  = increment of effective plastic 

strain; 

p
ijε  = components of plastic strain rate; 

p
ijdε = components of increments of 

plastic strain; 

λ  = scalar plastic multiplier equal to 

effective plastic strain rate; 

nλ  = effective plastic strain for time 

step n; 

1
1

+
+∆ i

nλ  = increment of effective plastic 

strain for iteration i+1 of time step 

n+1; 

iiE = elastic modulus in the ii direction; 

ijG = elastic shear modulus in the i-j plane; 

djj
iiE = elastic modulus in the ii direction 

due to damage from loading in the jj 

direction; 

djj
iiA = effective area in the i-i plane due to 

damage from loading in the jj direction; 

kl
ijd = damage in the kl direction due to 

loading along ij; 

eff
iiE = effective (undamaged) elastic 

modulus in the ii direction; 

eff
ijG = effective (undamaged) elastic shear 

modulus in the ij direction; 

d̂ = vector of damage parameters; 

1
ˆ

n+d = vector of damage parameters at time 

step n+1; 
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 Introduction 

Composite materials are now beginning to provide uses hitherto reserved for 

metals in structural systems such as airframes and engine containment systems, wraps for 

repair and rehabilitation, and ballistic/blast mitigation systems.  While material models 

exist that can be used to simulate the response of a variety of materials in these 

demanding structural applications under impact conditions, the more mature material 

models have focused on simulating the response of standard materials such as metals ( 

(Moreira and Ferron 2007), (Ganjiani, Naghdabadi and Asghari 2012), (Buyuk 2014)), 

elastomers (Bergstrom 2005) and wood (Tabiei and Wu 2000).  A conceptual diagram 

showing the constituent parts of a general composite material model is shown in Fig. 1. 

 

Fig. 1. Components of a General Fiber-Reinforced Composite Material Model 

The use of composites in aerospace applications requires an emphasis on the capabilities 

of a material model to handle impact analysis in a finite element analysis software, such 

Composite 
Material Model

Deformation

Elastic

Inelastic

Damage

Failure

Fiber

Matrix
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as LS-DYNA®, ABAQUS®, ANSYS®, etc.  This work focuses on implementation of 

composite impact modeling in LS-DYNA. 

LS-DYNA Composite Material Models: Commercial finite element programs support a 

variety of material models for the analysis of composites. For example, LS-DYNA® 

(Hallquist 2013) currently contains several material models. However, the models are 

tailored specifically for a class of applications and have limitations - purely elastic, no 

rate sensitivity, implementation for solid elements only, limited damage and failure 

characterization, etc. Details are shown in Table 1. 

Table 1. Summary of LS-DYNA® Composite Material Models 

Material 
ID 

Composite 
Architecture 

Damage Failure Elemen
t Type 

Rate 
sensitivity 

MAT_22 Orthotropic No damage Brittle failure, 
Chang-Chang 
(Chang and 
Chang 1987b) 

Solids 
and 
Shells 

None 

MAT_54 Arbitrary 
orthotropic 
(unidirectional 
layers) 

Includes 
damage 

Tension: 
Chang-Chang 
(Chang and 
Chang 1987b) 
Compression: 
Matzenmiller 
et al. 
(Matzenmiller, 
Lubliner and 
Taylor 1995) 

Thin 
shells 
only 

None 

MAT_55 Arbitrary 
orthotropic 
(unidirectional 
layers) 

Includes 
damage 

Tension: Tsai-
Wu (Tsai and 
Wu 1971) 
Compression: 
Matzenmiller 
et al. 
(Matzenmiller, 
Lubliner and 
Taylor 1995) 

Thin 
shells 
only 

None 

MAT_58 Orthotropic 
(unidirectional 

Includes 
damage 

Includes failure  Shells 
and 

None 
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layers, 
complete 
laminates, 
woven fabrics) 

(Matzenmiller 
et al. 
(Matzenmiller, 
Lubliner and 
Taylor 1995)) 

thick 
shells 

MAT_59 Orthotropic Includes 
damage 

Includes failure Solids 
and 
shells 

None 

MAT_116 Composite 
layups 

No damage No failure Shells 
only 

None 

MAT_117 Composite 
layups 

No damage No failure Shells 
only 

None 

MAT_118 Composite 
layups 

No damage No failure Shells 
only 

None 

MAT_158 Orthotropic 
(unidirectional 
layers, 
complete 
laminates, 
woven fabrics) 

Includes 
damage 

Includes failure 
(Matzenmiller 
et al. 
(Matzenmiller, 
Lubliner and 
Taylor 1995)) 

Shells 
and 
thick 
shells 
only 

Includes 
rate 
effects 
(viscous 
stress 
tensor) 

MAT_161
/162* 

Orthotropic 
(unidirectional 
and woven 
fabric layers) 

Includes 
damage 

Includes failure 
(Hashin/ 
Matzenmiller 
et al. 
(Matzenmiller, 
Lubliner and 
Taylor 1995)) 

Solids 
and 
shells 

Includes 
rate 
effects 

MAT_219 Orthotropic 
(fiber 
reinforced 
composite 
laminates  
with 
transversely 
isotropic 
layers) 

Includes 
damage 
(CODAM2, 
(Hallquist 
2013)) 

Includes failure  Solids 
and 
shells 

None 

MAT_221 Orthotropic Includes 
damage 
(simplified; 
Maire-
Chaboche, 
(Hallquist 
2013)) 

Includes failure Solids 
only 

None 
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MAT_223 Orthotropic Includes 
damage 
(advanced; 
Maire-
Chaboche) 

Includes failure Solids 
only 

None 

MAT_261 Orthotropic 
(laminated 
fiber-
reinforced) 

Includes 
damage 

Includes failure 
(Pinho et al. 
(Pinho, 
Iannucci and 
Robinson 
2006) , (Pinho, 
Iannucci and 
Robinson 
2006)) 

Solids 
and 
shells 

None 

MAT_262 Orthotropic 
(laminated 
fiber-
reinforced) 

Includes 
damage 

Includes failure 
(Maimi et al. 
(Maimi, 
Camanho, et al. 
2007), (Maimi, 
Camanho, et al. 
2007)) 

Solids 
and 
shells 

None 

MAT_22 employs the Chang-Chang failure model (Chang and Chang 1987b) 

using combinations of different stress to failure strength ratios to predict fiber or matrix 

based failure. It assumes linear elastic response with brittle failure and has limited 

nonlinear shear response capabilities.  MAT_54/55 is built upon MAT_22 by allowing 

for a more comprehensive nonlinear response. There is a reduction in the elastic constants 

of the composite which are selectively modified based on the failure mode. The model 

can simulate a gradual unloading up to ultimate failure.  Unlike MAT_22 and MAT_54, 

MAT_55 uses the Tsai-Wu failure criterion (Tsai and Wu 1971), with the fiber failure 

modes the same as the Chang-Chang criteria, but with different matrix failure modes.  

The continuum damage model developed by Matzenmiller et al. (Matzenmiller, Lubliner 

and Taylor 1995) is utilized in MAT_58, where the material stress-stain curves are 

generated based on specified failure stresses and strains of the material in each of the 
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coordinate directions.  Strain rate is not considered, but an adaptation of the material 

model, MAT_158, includes strain rate dependence in the material response (Hallquist 

2013).  The strain rate effect is modeled using a viscous stress tensor based on an 

isotropic Maxwell model consisting of up to six terms of a shear moduli Prony series 

expansion that is superimposed on the rate independent stress tensor of the composite, 

creating an isotropic strain rate effect.  MAT_161 utilizes continuum damage mechanics 

(Yen 2002) to determine the initiation of fiber or matrix based failure using a stress to 

strength ratio in the different coordinate directions. MAT_162 is a generalization of the 

failure model in MAT_161. It uses the same damage mechanics approach as in MAT_58 

to simulate the nonlinear response following the initiation of damage (Matzenmiller, 

Lubliner and Taylor 1995).  The UBC Composite Damage Model (CODAM) is 

implemented in MAT_219 (Williams, Vaziri and Poursartip 2003). CODAM uses a sub-

laminate-based continuum damage mechanics formulation in which a strain to failure 

strain ratio is used to predict the initiation of damage through different failure modes.  

Damage accumulation and reduction of elastic moduli are tracked separately with 

functions based on the different failure modes and coordinate directions.  In MAT_221, 

the orthotropic elastic response is the same as in MAT_22. However, it includes the 

capabilities for simplified damage and composite failure models with functions based on 

current strains, damage initiation strains and failure strains that are used to reduce the 

elastic moduli in different coordinate directions through a damage mechanics approach 

(Hallquist 2013).  The damage and failure model developed by Pinho et al. (Pinho, 

Iannucci and Robinson 2006) (Pinho, Iannucci and Robinson 2006), is implemented in 

MAT_261, where different functions are used for each failure mode that are then 
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combined into a constitutive model through fracture mechanics concepts.  Finally, a 

different approach to generating damage functions in different coordinate directions is 

employed in MAT_262 through an energy method rather than a strength technique (max. 

strain), but still within the context of a continuum damage mechanics formulation 

(Maimi, Camanho, et al. 2007) (Maimi, Camanho, et al. 2007).    

Deformation Modeling: The deformations in a composite are computed using a 

constitutive relationship that relates the stress and strain components.  In general, this 

response is nonlinear and can be accounted for by forming an elasto-plastic constitutive 

relationship. This nonlinear relationship can also be modeled using damage mechanics.  

Constitutive material models for composites have been developed for specific types of 

composites, such as fiber-reinforced composites (Cho, et al. 2010), unidirectional 

composites (Micallef, et al. 2013) and triaxial braided composites (Roberts, et al. 2009).  

The approach of using plasticity to account for the nonlinear response of a composite has 

been implemented by Sun and Chen (Sun and Chen 1989), in which a general quadratic 

plastic function was used to define the plasticity model for characterizing the nonlinear 

response of unidirectional carbon fiber based polymer matrix composites under plane 

stress conditions.  Similarly, a plasticity-based constitutive model was developed by 

Vaziri et al. (Vaziri, Olson and Anderson 1991) for fiber-reinforced composites (FRC) 

that is able to predict the response of a single FRC layer for unidirectional and 

bidirectional fiber orientations, from elastic and plastic response to brittle and ductile 

failure.  This model too is restricted to two-dimensional applications due to its plane 

stress assumption and does not account for a reduction in the unloading/reloading 

modulus (associated with the damage of the composite) during the plastic response.  
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Holzapfel and Gasser (Holzapfel and Gasser 2001) present a viscoelastic model for FRC 

materials but limit the applications to soft matrix materials.  Lourenco et al. (Lourenco, 

Borst and Rots 1997) discuss an elasto-plastic model for orthotropic materials developed 

to describe the inelastic response associated with the softening behavior of the material 

under plane stress conditions.  Other composite material models have been developed 

that are only applicable for certain limited conditions such as elastic-brittle behavior 

(Wang, et al. 2015) or ceramic matrix composites (Santhosh, et al. 2016).   

Damage Modeling: Damage in composite material models is usually tracked as a 

function of the degree of failure, but in reality is a progression of micro-cracking, and is 

taken as maximum damage when the ultimate failure criteria are met.  The continuum 

damage model developed by Matzenmiller et al (Matzenmiller, Lubliner and Taylor 

1995), uses the initiation and accumulation of damage to model the nonlinear response of 

a composite by implementing damage parameters to reduce the effective stiffness of the 

material. There are other models that incorporate plasticity theory within the context of a 

damage model ( (Barbero 2013), (Ladeveze and Le Dantec 1992), (Fouinneteau and 

Pickett 2007), (Song, et al. 2010)). In these models, the damage mechanics portion of the 

models are dominant and the plasticity theory is just added on to the basic damage model. 

It should be noted that perhaps it would be more efficient to incorporate features such as 

strain rate dependence in a consistent manner by utilizing plasticity theory as the basis of 

the model and adding in damage to account for nonlinear unloading and strain softening.  

With the current state-of-the-art in composite damage modeling, various finite element 

modeling approaches are needed to accurately model damage and failure phenomena.  

For example, in mesolevel modeling where individual layers are modeled separately but 



8 
 

individual fibers are not, different failure modes such as delamination, fiber failure and 

matrix failure can be modeled using the extended finite element method (XFEM) and 

cohesive zone elements (Van der Meer 2012). Similarly, complex composites such as 

triaxially-braided polymer composites require other approaches. For example, since 

damage propagates along fiber directions, one approach would be to build the braid 

architecture within the finite element model. In (Cheng 2006), the braided composite is 

modeled as a series of layered shell elements where each element is a laminated 

composite with the appropriate fiber-layup. A more complex model can be used to 

account for in-plane shifting of fibers in adjacent plies (Littell, et al. 2010).   

Likewise, Xiao’s composite material model (Xiao 2009) utilizes damage 

mechanics where the unloading response associated with damage affecting the energy 

absorption or dissipation in the model is used in extending the capabilities of MAT_58 to 

account for more complex damage conditions.  Wu and Yao (Wu and Yao 2010) use a 

phenomological approach to track the progressive degradation of the structural properties 

based on a fatigue damage model developed by Chen and Hwang (Chen and Hwang 

2009).  Some experimental investigation has been done in regards to composite damage 

sources. For example, a punch shear test is used (Gama, et al. 2004) to define damage and 

delamination that may occur between each ply such as in plain weave composites, and 

the experimental results have been compared with simulations using LS-DYNA 

composite material model, MAT_162.   

Failure Modeling: The failure of composites can be modeled at different scale 

levels. Pinho and co-workers (Pinho, Iannucci and Robinson 2006) use a 

micromechanical model to characterize failure - individual fiber pullout/failure, matrix 
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cracking and inter-ply delamination. At the macro-scale level, strain to failure strain 

ratios or stress to strength ratios in different coordinate directions have been used to 

determine the initiation and type of failure (Yen 2002).  A multi-modal failure method 

has been implemented in the damage and failure model developed by Pinho et al (Pinho, 

Iannucci and Robinson 2006) (Pinho, Iannucci and Robinson 2006), in which separate 

models are used for different failure mechanisms including fiber tension failure, fiber 

kinking failure, matrix tensile failure and matrix compression failure.  Failure has also 

been modeled for composite materials in terms of fracture initiated by imperfections 

assumed to be preexisting in bands between the fibers and matrix (Ozbolt, Lackovic and 

Krolo 2011).  Additionally, others (Johnson, Pickett and Rozycki 2001) account for in-

ply damage sources and delamination. Localized damage in composites, subjected to 

impact loads, has been modeled and analyzed using a meso-scale approach (Allix 2001), 

by determining a characteristic damage length and prescribing the size of the meso-

constituent equivalent to that length.  Recently, a new method has been developed to 

analyze deformation in structures containing discontinuities in the displacements, called 

the peridynamic model of solid mechanics, which has been implemented to analyze 

impact damage in composite laminates (Xu, et al. 2008). 

Dissertation Objectives: While there is a need for a robust, efficient, accurate, 

general purpose constitutive material model that can be used across the large expanse of 

composite material classes , especially for the case of impact analysis, this is a 

challenging task given the wide array of performance conditions needed to capture the 

behavior accurately.  While some models assume that the nonlinear response of a 

composite is due to either plasticity or damage, in reality the actual nonlinear material 
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behavior is due to a combination of both, and an improved model should include both 

contributions. This dissertation focuses on the development and implementation of a 

material model for predicting the deformation, damage and failure of fiber-reinforced 

composites. The developed model is implemented using a smeared (homogenized) 

approach using tabulated experimental data.  The experimental data includes both 

laboratory experiments as well as virtual tests.  For the deformation model, the 

commonly used Tsai-Wu composite failure criteria has been generalized and extended to 

a strain-hardening plasticity model with a quadratic yield function and a non-associative 

flow rule.  For the damage model, a strain equivalent formulation has been developed, 

which allows the plasticity and damage calculations to be uncoupled, and the plasticity 

calculations to take place in the effective stress space. In traditional damage mechanics 

models such as the one developed by (Matzenmiller, Lubliner and Taylor 1995), a load in 

a particular coordinate direction is assumed to result in a stiffness reduction only in the 

direction of the applied load.  However, as will be described in more detail later in this 

dissertation, a semi-coupled formulation is developed in which a load in one direction 

results in a stiffness reduction in all of the coordinate directions. 

The primary objectives of the dissertation are presented below.      

i. Model the elasto-plastic behavior of an orthotropic composite in three dimensions 

by using a Tsai-Wu based yield surface to determine if yielding has occurred. 

Carry out the plasticity calculations using a radial return algorithm with non-

associative flow, represented by a modified Tsai-Wu quadratic function for the 

flow law.  
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ii. Account for the strain rate and temperature dependent material behavior in the 

constitutive model.   

iii. Implement orthotropic damage that captures nonlinear unloading and local 

softening of the stress-strain response in the material model so that plastic and 

damage calculations can be uncoupled.  

iv. Implement the constitutive model as MAT213 in LS-DYNA for solid elements.  

v. Perform verification tests to ensure that the implementation is correct.  

vi. Validate the developed constitutive model using coupon level test results as well 

as results from impact tests on unidirectional composite panels. 
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 Material Model Theory and Development 

In this chapter the theoretical details of the constitutive model are presented. 

Details include those dealing with computation of the elasto-plastic deformation that is 

temperature and strain rate dependent, as well as the strain equivalent semi-coupled 

damage model. 

Orthotropic 3D Elasto-Plastic Composite Material Model 

The material deformation law in the model can be used to compute the elastic and 

permanent deformations of a composite with a full three-dimensional implementation 

suitable for solid and shell elements.  Current development of the model includes a 

complete elasto-plastic deformation model, with strain rate and temperature effects, and 

damage, with failure capabilities to be added later.  A quadratic function is used to define 

the yield surface. The Tsai-Wu failure criterion (Tsai and Wu 1971) has been generalized 

and is used as the orthotropic three-dimensional yield function for the plasticity model as  

 
( )

11 11 1111 12 13

22 22 2212 22 23

33 33 3313 23 33
1 2 3

12 12 44 12

23 23 55 23

31 31 66 31

0 0 0
0 0 0
0 0 0

( ) 0 0 0
0 00 0 0

0 00 0 0
0 00 0 0

T F F F
F F F
F F F

f a F F F
F

F
F

σ σ σ
σ σ σ
σ σ σ

σ
σ σ σ
σ σ σ
σ σ σ

      
      
      
      

= + +      
      
      
     
           









 
 

  (2.1) 

where 1a = − , the 1-2-3 subscripts refer to the principal material directions, and iiσ  

represents the stresses and the iiF  terms are the yield function coefficients based on the 

current yield stress values in the various coordinate directions.  The use of varying yield 

function coefficients allows for evolution of the yield surface and hardening can be 

precisely defined in each of the material directions.  The normal coefficient values can be 
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determined by simplifying the yield function for the case of unidirectional tension and 

compression as 
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where iF  and iiF  are the linear and nonlinear coefficients, respectively.  The two 

expressions in Eqn. (2.2) can then be used to solve for the uniaxial yield coefficients, in 

terms of the compressive and tensile yield stresses as 
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The shear coefficient values can be determined in the same manner, by simplifying the 

yield function for the case of shear loading in each coordinate direction as 
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where iiF  are the yield function coefficients and ijσ  are the shear stresses. The equations 

can be written with the uniaxial coefficients as                 
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  (2.5) 

The stress components of the yield function coefficients correspond to the current yield 

stresses associated with the normal and shear tests (the methods of determining these 
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values are discussed below), where the superscript T indicates the tensile yield stress and 

the superscript C denotes the absolute value of the compressive yield stress.  The off-axis 

coefficients, required to capture the interactive effects in the yield stresses, can be 

determined using the results of 45° off-axis tests in various coordinate directions. For 

example, consider a uniaxial 45° off-axis tensile test of a unidirectional composite, or any 

uniaxial tensile test performed at a 45° angle from the longitudinal (1-direction) material 

axis in the 1-2 plane, for a multi-ply laminated or textile composite.  The stresses in the 

local material axes can be determined using the stress transformation equations (Daniel 

and Ishai 2006) and calculated using the following equations. 
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  (2.6) 

The 45σ  term in Eqn. (2.6) is the uniaxial yield stress in the structural loading direction 

obtained from the 45° off-axis tensile test. Substituting Eqn. (2.6) into Eqn. (2.1) and 

solving results in an expression for the off-axis yield function coefficient, 12F  as 
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Expressions for the other two off-axis yield coefficients, 13F  and 23F , can be determined 

using similar procedures for 45° off-axis tests in the 1-3 and 2-3 planes, with the 

expressions for the yield coefficients defined as 
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A non-associative flow rule is used to define the evolution of the plastic strain 

components, with the plastic potential for the flow rule calculated as 

 2 2 2 2 2 2
11 11 22 22 33 33 12 11 22 23 22 33 31 33 11 44 12 55 23 66 312 2 2h H H H H H H H H Hσ σ σ σ σ σ σ σ σ σ σ σ= + + + + + + + +  (2.10) 

where the ijH  terms are the independent flow rule coefficients assumed to be constant, 

and jjσ  are the current stress values.  The procedure for determining the flow rule 

coefficient values is discussed later.  In order to ensure convexity of the flow surface, the 

flow rule coefficients must satisfy specific conditions (Yang and Feng 1984).  A general 

quadratic failure/yield function, similar to the Tsai-Wu criterion used for the yield surface 

in this model, can be written as 

 ( ) T Tf a= + +σ b σ σ Pσ   (2.11) 

where ( )11 22 33 12 23 31, , , , ,T σ σ σ σ σ σ=σ , a   is a scalar, b is a vector and P  is a matrix.  In 

general, b is comprised of six independent coefficients, whereas P  contains 36 

coefficients, 21 of which are independent due to symmetry.  The flow rule can be written 

in the form of the quadratic function as  
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  (2.12) 

with H  being the matrix of flow law coefficients and representing P  from the general 

form of the quadratic yield function.  To ensure convexity of the quadratic function, the 

coefficients b  and P  must have constraints.  Assuming two distinct stress states σ  and 

'σ , the convex combination of the two vectors is 
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 ( )1 ' 0 1α α α= + − ≤ ≤σ σ σ   (2.13) 

and to ensure convexity of f , must satisfy the inequality 

 ( ) ( ) ( ) ( )1 'f f fα α≤ + −σ σ σ   (2.14) 

where the yield function value determined at the convex combination of the two stress 

states, must be within the convex combination of the yield function values evaluated at 

each stress state (remain within the convex hull).  Thus, substituting Eqn.  (2.13) into 

Eqn. (2.11), the inequality, Eqn. (2.14) is reduced to the following equations 

( )1 ' ' 'T T T T T Ta a aα α   + + ≤ + + + − + +   b σ σ Pσ b σ σ Pσ b σ σ Pσ  

or 

( )

( ) ( ) ( )

1 '

1 ' ' '1 ' 1 '

T T T

T T T

a a

a

α α α

αα α α α

+ + −   + +   ≤
 + − + ++ + − + −        

b σ σ b σ σ Pσ

b σ σ Pσσ σ P σ σ  

or 

[ ]
' '

' ' ' ' ' ' ' ' ' '

T T T T T

T T T T T T T

a a
a a

α α α α α
α α α α α α α

+ + − + +
≤

 + + − + − + + + − − − 

b σ b σ b σ b σ σ Pσ
σ σ σ Pσ Pσ Pσ b σ σ Pσ b σ σ Pσ

 

or 

( )( ) ( )

2 2 2' ' ' ' ' ' ' ' 0

' ' ' ' ' ' ' ' 0

' ' ' ' ' ' ' ' 0

1 ' ' 0

T T T T T T

T T T T T T

T T T T T T

T

α α α α α α

α α α α

α α α

α

− + − − − ≤

 − − + − + + + ≤ 
− + − + + + ≥

− − − ≥

σ Pσ σ Pσ σ Pσ σ Pσ σ Pσ σ Pσ

σ Pσ σ Pσ σ Pσ σ Pσ σ Pσ σ Pσ

σ Pσ σ Pσ σ Pσ σ Pσ σ Pσ σ Pσ

σ σ P σ σ

 

or 

 ( ) ( )' ' 0T− − ≥σ σ P σ σ   (2.15) 



17 
 

for all σ  and 'σ . This implies that P  must be positive semidefinite implying that the 

diagonal components of P  must be nonnegative 

 0 1,2,...,6ii i≥ =P   (2.16) 

and the off-diagonal components of P  must satisfy the following condition.     

 2 0 1,2,...,6, 1,...,6ii jj ij i j i− ≥ = = +P P P   (2.17) 

The two constraints in Eqns. (2.16) and (2.17) can then be written in terms of the flow 

law coefficients as 
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  (2.18) 

with the coefficients determined using a procedure described later.   

The plastic potential function in Eqn. (2.10) is used in the flow law with the usual 

normality hypothesis of classical plasticity assumed to apply, where the plasticity 

variable, λ , is a scalar plastic multiplier (Khan and Huang 1995).  Thus, the plastic 

strains are defined in terms of the plastic multiplier, flow potential and stresses as 
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where p
jjε  are the individual plastic strain components, with the shear components 

representing tensorial, not engineering, strain.  Using the expressions for the plastic 

strains, in Eqn. (2.19), and defining the “plastic Poisson’s ratios” in terms of these plastic 

strains, the coefficients of the flow potential function, ijH , can be defined as (uniaxial 

testing in the 1 direction) 
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From uniaxial testing in the 2 direction, we have 
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From uniaxial testing in the 3 direction, we have 
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which are useful in creating a procedure for characterizing the coefficient values.  A 

general shape of the yield and flow surfaces, for a plane stress case, are shown in Fig. 2 

and Fig. 3, respectively (values are set for example only). Note that 

 1 2 11 22 12 440.75, 3.0, 0.5, 2.0, 0.5, 5F F F F F F= − = = = = − =  

and 

 11 22 12 441.0, 0.101, 3.0H H H H= = = − =  . 

 
(a) 

 
(b) 
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(c) 

Fig. 2. Example Yield Surface for Plane Stress Case (a) 2D: 1 2σ σ−  Plane (b) 2D: 

1 12σ σ−  Plane (c) 3D Plot 

 

 
(a) 

 
(b) 
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(c) 

Fig. 3. Example Flow Surface for Plane Stress Case (a) 2D: 1 2σ σ−  Plane (b) 2D: 1 12σ σ−  

Plane (c) 3D Plot 

At this point, it is important to note that the flow law contains only the quadratic 

terms, whereas the yield function also includes the linear terms and hence is able to 

differentiate between tension and compression that the flow law cannot.  Including the 

linear terms in flow law would make plastic Poisson’s ratio dependent on stress, and in 

turn the flow law coefficients.  For example, the uniaxial plastic strains would be defined 

as 
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where iH  would be the linear flow law coefficients.  Thus, considering a uniaxial test in 

the 1-direction, the plastic Poisson’s ratios would be defined as 
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This stress dependency, needed to solve for the additional parameters, on the flow law 

coefficients would most likely result in erratic behavior of the model.  The flow law 

coefficients could be assumed to vary based on the current stress and strain state, similar 

to the yield function coefficients, but would require the development of conditions to 

define the evolution of the flow law, which may be difficult to construct using 

experimental data.  This might include normalizing the flow rule coefficients with respect 

to a common variable, similar to the effective plastic strain used for the yield surface.  In 

doing so, the plastic Poisson’s ratios used to calculate the flow rule coefficients is Eqn. 

(2.24), would need to be defined as a function of the effective plastic strain, and the flow 

rule coefficients would be calculated based on the varying values of the plastic Poisson’s 

ratios (the following theory and implementation assumes constant plastic Poisson’s ratios 

and therefore constant flow rule coefficients). 

Expressions for the effective stress and effective plastic strain can now be written 

using the flow law and the principle of the equivalence of plastic work (Khan and Huang 

1995).  Taking a vector product of the stress and plastic strain tensors, results in the 

plastic potential function h   being multiplied by the plastic multiplierλ .  The principle of 

the equivalence of plastic work defines the vector product of the stress and the plastic 

strain to be equal to the product of the effective stress and effective plastic strain.  

Therefore, the effective stress can be defined by the plastic potential function h  and the 
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effective plastic strain can be defined by the plastic multiplierλ .  This process can be 

shown as 

 : : :p p
p e e

hW hλ λ σ ε∂
= = = =

∂
σ ε σ

σ
 

 , (2.25) 

where pW  is the plastic work, eσ  is the effective stress and p
eε  is the effective plastic 

strain. 

It is common, in plasticity constitutive equations, to use analytical functions to 

define the evolution of stresses as a function of the (effective) plastic strain components 

in order to compute the current value of the yield stresses required to evaluate the yield 

function.  Alternatively, tabulated stress-strain curves can be used to track the changes of 

the yield stresses in each coordinate direction. In this dissertation, experimental stress 

versus plastic strain curves generated for each yield stress value (uniaxial tension and 

compression curves in each of the normal directions (1-2-3), shear curves in each of the 

shear directions, 1-2, 2-3, 3-1, and 45° off-axis tension curves in the 1-2, 2-3 and 3-1 

planes) are used as tabulated stress-strain curves.  The off-axis tests are required to 

calculate the interaction terms ( )12 13 23, ,F F F  defined in Eqns. (2.7), (2.8) and (2.9).  This 

approach eliminates the use of curve fitting approximations since tabulated stress-strain 

curves are used to track the evolution of the deformation response.  

The tabulated stress-strain data can be generated from actual laboratory testing or 

supplemented using appropriate numerical experiments simulated in stand-alone codes 

(virtual testing).  Though there are twelve required stress-strain curves for the model, the 

actual number of tests may be smaller based on the composite architecture.  A 

unidirectional composite has transverse isotropy and hence requires only four tension and 
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compression tests (1 and 2/3 directions), only two shear tests (1-2/3, 2-3) and only two 

45° off-axis tests (1-2/3, 2-3).  However, the 45° off-axis test in the 2-3 plane is not 

necessary, as the response is approximately equal to that of the uniaxial tension test in the 

2/3 direction (as deduced from transverse isotropy).  Thus, the number of required tests 

for a uniaxial composite can be reduced from twelve to seven, and a similar 

simplification approach can be used for other composites with some degree of symmetric 

architecture.  A summary of reducing experimental tests for few special cases is shown in 

Table 2. 

Table 2. Reduction of Experimental Testing Based on Composite Architecture 

Label Experimental Test 

Material Type 

Isotropic 

Plane 
Stress 
(2-D, 
thin 

shell)) 

Transversely 
Isotropic in 2-3 
(Unidirectional 

Fiber 
Composite) 

Transversely 
Isotropic in 
1-2 (Plain 

Weave 
Composite) 

T1 Tension (1-direction) Needed Needed Needed Needed 

T2 Tension (2-direction) Same as 
T1 Needed Needed Same as T1 

T3 Tension (3-direction) Same as 
T1 

Not 
Needed Same as T2 Needed 

C1 Compression (1-
direction) Needed Needed Needed Needed 

C2 Compression (2-
direction) 

Same as 
C1 Needed Needed Same as C1 

C3 Compression (3-
direction) 

Same as 
C2 

Not 
Needed Same as C2 Needed 

S12 Shear (1-2 direction) Not 
Needed Needed Needed Needed 

S23 Shear (2-3 direction) Not 
Needed 

Not 
Needed Needed Needed 

S13 Shear (1-3 direction) Not 
Needed 

Not 
Needed Same as S12 Same as S23 

O12 Off-axis Tension 
(45°, 1-2 plane) 

Not 
Needed Needed Needed Needed 



25 
 

O23 
Off-axis 

Tension/Compression 
(45°, 2-3 plane) 

Not 
Needed 

Not 
Needed Same as T2 Needed 

O13 
Off-axis 

Tension/Compression 
(45°, 1-3 plane) 

Not 
Needed 

Not 
Needed Same as O12 Same as O23 

      

 Total Number of 
Tests to Perform 2 6 7 8 

 

The effective plastic strain is used as the tracking parameter for the evolution of 

the deformation response by determining the yield stresses from each of the tabulated 

input curves as a function of the effective plastic strain at each time step.  Therefore, the 

tabulated stress-strain curves must be normalized and converted to stress versus effective 

plastic strain.  This is achieved by using the principle of the equivalence of plastic work 

to relate the plastic strain increment to the effective plastic strain increment.  The 

effective plastic strain can then be written in terms of the plastic strain and flow potential 

function as (for a unidirectional loading in the 1-direction)  
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where 11σ  is the unidirectional stress, 11
pdε  is the plastic strain increment in the loading 

direction and p
edε  is the effective plastic strain increment.  The expression for the 

effective plastic strain in Eqn. (2.26) can be rewritten as 11 11
p

p
e

d
h

σ εε = ∫ , in which it is 
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clear that the effective plastic strain can be computed as the incremental area of the stress 

versus plastic strain curve divided by the current effective stress value.  An example of 

this transformation is shown in Fig. 4.    

 

Fig. 4. Conversion of Stress Versus Plastic Strain Curves to Stress Versus Effective 

Plastic Strain Curves 

The computation of the effective plastic strain is achieved using a numerical 

algorithm based on the radial return method.  From the updated value of the effective 

plastic strain, the yield stress values and the overall stress state can be determined (details 

of the numerical implementation are explained later in this dissertation).  The revised 

stresses are computed using a typical elastic constitutive equation in which the flow law 

is used to describe the plastic strains as 

 ( ): : hλ ∂ = − = − ∂ 
pσ C ε ε C ε

σ


      (2.27) 

where C  is the standard elastic stiffness matrix, σ  is the total strain.  The effective 

plastic strain rate, λ  is calculated using a combination of the consistency condition (the 

11σ

11
11 11

11

p

E
σε ε= −

11σ

User provided load curves are
true stress versus true plastic strain
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versus effective plastic strain

∫= h
dp

e
1111 εσε
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stress state must remain on the subsequent yield surface, during the plastic deformation) 

and elastic constitutive equation as 
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  (2.28) 

 

where f  is the yield function defined in Eqn. (2.1) and q  is the vector of yield stresses, 

determined from the input stress-strain data written as  

 11 22 33 11 22 33 12 23 31 45 12 45 23 45 31
T T T T C C C C C Cσ σ σ σ σ σ σ σ σ σ σ σ− − − =  q  (2.29) 

The derivative of the q  vector with respect to the effective plastic strain, λ , can be 

determined using a chain rule expansion based on the plastic strain as 

 
p

p

d d d
d d dλ λ

=
q q ε

ε
  (2.30) 

where the derivative of the yield stress vector with respect to the plastic strain is the 

instantaneous slope of the stress versus plastic strain curve and the derivative of the 

plastic strain with respect to the effective plastic strain is determined from the flow law, 

both corresponding to each of the twelve input stress-strain curves.  However, special 

consideration must be taken in the off-axis case for which the flow law must first be 

converted to the material axis coordinate system and then the plastic strains must be 

converted to the structural axis system.  To do so, the off-axis test is first converted to 

stress vs. plastic strain in the structural axis system, then converted to stress vs. effective 
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plastic strain, as demonstrated in Fig. 4.  However, the flow law h is defined in terms of 

the material axis system of the off-axis test (1-2 case, for example) as 

( ) 2 2 2
11 11 22 22 12 11 22 44 1245 12

2h H H H Hσ σ σ σ σ
−

= + + +  

but the material axis stresses can be written in terms of the structural axis stress, 

11

22

12

0.5
0.5

0.5

σ σ
σ σ
σ σ

=
=
= −

 

resulting in a simplified function of the off-axis case for the flow law as defined in Eqn. 

(2.31). 

 ( ) 45 12 11 22 12 4445 12
0.5 2h H H H Hσ −−

= + + +   (2.31) 

This is done, in order to compute the correct derivative of the plastic strain with respect 

to the effective plastic strain, as the input for the off-axis tests is assumed to be in the 

structural coordinate system.  Furthermore, the secant method is used with the radial 

return method to compute the necessary value of the effective plastic strain increment. 

 

Characterization of Flow Law Coefficients 

The flow law coefficients, introduced in the previous section, need to be 

characterized based on the data obtained from experimental stress-strain curves or virtual 

testing, with the procedures detailed in this section defined for quasi-static, room 

temperature tests.  For example, if the mechanical properties of composite constituents 

are known, stress-strain curves can be generated through virtual tests conducted using 

either high fidelity finite element analysis, e.g. Virtual Testing System Software (VTSS) 



29 
 

(Harrington and Rajan 2014) developed at ASU, or analytical tools such as the 

micromechanics code MAC-GMC (Bednarcyk and Arnold 2002) developed at NASA 

Glenn. 

The procedure for the determination of the flow law coefficients for a general 

composite is presented here beginning with a unidirectional composite.  In the case of a 

unidirectional carbon fiber composite, it is reasonable to assume that the plastic strain in 

the fiber direction (1 direction) is equal to zero for all values of stress due to the linear 

elastic behavior of the carbon fiber (Sun and Chen 1989).  From the second expression in 

Eqn. (2.19), it is clear that the plastic strain can only be zero if the flow law coefficients 

11 12,H H , and 13H are all equal to zero.  In the same regard, the response in the transverse 

(2-direction) composite direction can show some degree of nonlinearity, and for a 

unidirectional load in the 2 direction, it is reasonable to assume the value of the effective 

stress, h , to be equal to the applied stress, 22σ .  Then, the plastic potential function, Eqn. 

(2.10) , can be simplified for the case of a uniaxial applied load in the 2-direction as 

 2
22 22 22 22h H Hσ σ= =   (2.32) 

and from the assumption that the effective stress, h , is equal to the applied stress, 22σ ,  

the flow law coefficient, 22H , must be equal to one.  Due to the transverse isotropy in the 

unidirectional composite, the flow law coefficient, 33H , can be assumed to be one as 

well, and using these known values of the flow law coefficients, the remaining value, 

23H , can be determined using Eqn. (2.21) as 

 23 22 23 23
p pH H ν ν= − = −   (2.33) 
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The flow law coefficients are assumed to be constant, which requires a constant 

value of the plastic Poisson’s ratio, and can be determined as an average value from 

unidirectional transverse tension test data.  The flow law coefficient for in-plane shear, 

44H , can be calculated using a similar procedure (Sun and Chen 1989), in which the 

plastic potential function in Eqn. (2.10), and plastic strain definition, in Eqn. (2.19), are 

simplified for a pure shear loading case in the 1-2 plane as   

 

12 44
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σ

ε

εε

= =

= =

=

=

  (2.34) 

Therefore, the shear coefficient, 44H , can be determined by fitting the effective stress 

versus effective plastic strain curve, for the in-plane shear, to the overall effective stress 

versus effective plastic strain curve, based on the transverse tension test for a 

unidirectional carbon fiber composite using Eqn. (2.34).  The coefficient, 55H , can be 

determined using a similar fitting approach using shear loading in the 2-3 plane, or using 

transverse isotropy of the composite, the effective stress for an off-axis test in the 2-3 

plane can be calculated and used to determine the coefficient, 55H , from 23H , as 

 ( ) ( )55 23 232 1 2 1pH Hν= + = −   (2.35)  

Finally, the last flow law coefficient, 66H  , can be set equal to 44H , using transverse 

isotropy.   
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In the general case, such as a triaxially braided composite, similar procedures can 

be used to determine the flow law coefficients taking the tension test in the 1-direction as 

the baseline case.  The flow law coefficient, 11H , can be determined by simplifying Eqn. 

(2.10) for unidirectional applied stress in the 1-direction as 

 2
11 11 11 11h H Hσ σ= =   (2.36) 

From Eqn. (2.36), it is clear that the coefficient, 11H , is equal to one.  Thus, the 

relationships of the other flow law coefficients, from Eqns. (2.20), (2.21) and (2.22), can 

be rewritten in terms of the known coefficient, 11H .  First, modifying Eqns. (2.20), 

(2.21) and (2.22) by assuming a value for 11H  and eliminating 11H  yields 
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          

 . (2.37) 

These equations are linearly independent and one can solve for the five unknown 

coefficients.  Pivoting the rows results in  
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1221
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     
          =   
     −     
        

.  (2.38) 

Now that the diagonals are all non-zero, a Gauss-Jordan elimination can be performed to 

obtain an analytical expression for the five remaining flow rule coefficients, which yields 
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Therefore, the coefficients can be rewritten in terms of the plastic Poisson's ratios and 

11H  (equal to one) as 
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21 21
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23 11
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13 13
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= − = −

= − = −

= =

− −
= =
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  (2.40) 

where the shown coefficients are based solely on the plastic Poisson’s ratios.  The final 

three flow law coefficients 44 55,H H  and 66H , are determined using the same fit technique 

as in the simplified case, but each shear curve must be fit with the 1-direction test acting 

as the baseline.  These are calculated by fitting the effective stress versus effective plastic 

strain curves of the shear tests with the baseline uniaxial test.  In order to fit the shear 

curves with the uniaxial curve and find the optimal flow rule coefficient value, *
llH , the 

difference between the two curves is minimized as 
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 ( ) ( )
2

1

ˆ ˆ(H )
n

ll ii ijk k
k

f σ σ
=

 = −  ∑   (2.41) 

such that 

min * max
ll ll llH H H≤ ≤  

where n is the number of data points in the master curve, ( )ˆii k
σ  is the kth effective stress 

value from the baseline curve and ( )ˆij k
σ  is the effective stress value for the shear curve. 

 

Convexity of the Yield Surface 

The current yield stresses are determined using a curve search of a set of input 

stress-strain curves. Each of the 12 input curves is stored as stress versus total effective 

plastic strain, thus allowing the model to describe different hardening properties in each 

direction. By tracking the effective plastic strain in the deformation model, the evolution 

of the yield stresses in the various coordinate directions can then be correlated to the 

current value of the effective plastic strain.  The Tsai-Wu based yield function, used as 

the yield surface to track plasticity, is quite general and can result in both convex and 

concave yield surfaces. The yield surface used in the elasto-plastic deformation model 

must be convex, as the radial return procedure employed for the numerical 

implementation of the model utilizes the value of the yield function to determine if the 

stress state has returned to the yield surface. It should be noted that plasticity theory in 

general requires a convex yield surface (R. Goldberg, K. Carney and P. DuBois, et al. 

2016). If the original input parameters do not produce an appropriate convex yield 

surface, a convex correction procedure must be implemented. An example of a non-
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convex yield surface that is modified to render it convex is shown in Fig. 5. The off-axis 

stress values were corrected, as explained later, to make the surface convex.  

 

(a) 

 

(b) 

Fig. 5. (a) Non-Convex and Modified Convex Yield Surfaces (b) Modification of 

Original Stress-Strain Curve to Yield a Fully Convex Stress-Strain Curve 
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In order for the yield surface to remain convex, the following conditions must be met 

(adapted from Eqn. (2.18), derived for convexity of the plastic potential function): 

 11 22 33 44 55 66
2 2 2

11 22 12 33 22 23 11 33 31

0, 0, 0, 0, 0, 0
0, 0, 0

F F F F F F
F F F F F F F F F

≥ ≥ ≥ ≥ ≥ ≥

− ≥ − ≥ − ≥
  (2.42) 

Note that the diagonal terms are always positive and the final three conditions must be 

satisfied.  One way of ensuring convexity is by modifying the off-axis terms 

12 23 31( , , )F F F  while retaining the original values of the diagonal terms 11 22 33( , , )F F F .  

The convexity satisfying conditions of the shear terms can be represented as 

 ij ii jjF F F≤   (2.43) 

However, by making the condition more restrictive, the modified off-axis values can be 

found such that the convexity condition is satisfied more readily, and in a form that is 

more commonly used in the original Tsai-Wu failure criterion, as  

 1
2ij ii jjF F F′ = −   (2.44) 

Allowing for the off-axis yield stress values to be modified for convexity, the right-hand 

sides of Eqns. (2.7), (2.8) and (2.9) can be set equal to the value obtained from Eqn. 

(2.44)  thus allowing for the determination of a modified yield stress in a particular 

direction. For example, for the case of the off-axis tension test in the 1-2 plane, the 

modified value of the yield stress required to ensure the yield stress is convex can be 

determined as follows:  
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( )
( )
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 ( )245 45
12 12 2 0a bσ σ′ ′+ − =   (2.45) 

where 

 ( )12 11 22 44

1 2

1
2

a F F F F

b F F

′= + + +

= +

  

and 45
12σ ′  is the corrected off-axis yield stress value.  If the tension and compression 

responses are the same (yield stress values the same for a given direction), the linear 

coefficients 1 2 3( , , )F F F  are equal to zero and Eqn. (2.45) can be simplified as 

 45
12

2
a

σ ′ =   (2.46) 

This convexity must be ensured through all time steps and iterations. In practice, at any 

point where the yield function is determined, convexity must first be checked and if non-

convex, the required off-axis yield coefficients and stresses for convexity are calculated 

based on Eqns. (2.44) and (2.46). 

 

 

Temperature and Strain Rate Dependencies  

Strain rate and temperature dependent material response is incorporated into the 

elasto-plastic material model using tabulated experimental input data derived from the 
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same 12 tests detailed earlier.  These effects are important for impact simulation due to 

the high load rate and associated increased localized temperatures at the point of impact.  

If strain rate and/or temperature effects need to be modeled, multiple curves, for each of 

the 12 experimental tests, performed at different strain rates are used as input data for the 

model.  All of the strain rate and temperature dependent curves are modified the same 

way as described earlier and converted to stress versus effective plastic strain, explained 

in Chapter 3.  The interpolation is necessary between the different strain rate curves, 

based on the strain rate at a given time step, when updating the yield stresses during the 

plasticity algorithm, in Eqn. (2.30).  Additionally, the elastic moduli are interpolated 

based on the strain rate and temperature dependent input data. 

For the case of the off-axis curves, the strain rate associated with the principal 

material directions (PMD) are not readily available.  Thus, the strain rates associated with 

the off-axis tests must be calculated using a transformation of the material axis system 

strain rate values.  The material model subroutine (MAT213) receives the deformation 

rate tensor in the global X-Y-Z coordinate system from the finite element analysis (LS-

DYNA). Within the MAT213 subroutine, the tensor components are transformed to the 

PMDs (1-2-3 system) as 

 [ ]11 22 33 12 23 13d d d d d d=d   (2.47) 
 
The deformation rate tensor can be written in terms of the small incremental strain tensor 

if the magnitudes of the displacement gradients are small, / 1i ju x∂ ∂  .  Thus the 

deformation rate tensor can be written as 

 [ ] [ ]11 22 33 12 23 13 11 22 33 12 23 130.5 0.5 0.5d d d d d dε ε ε ε ε ε= =ε         (2.48) 
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The transformation of the principal strain rates can be performed to obtain the associated 

45° off-axis terms as  

 3 3 3 3 3 3 3 3
T

× × × ×′ =ε a ε a    (2.49) 
 
where the transformation tensor a can be defined for each off-axis case as  

 45
1 2

0.707 0.707 0
0.707 0.707 0

0 0 1
−

 
 = − 
  

a   (2.50) 

 45
2 3

1 0 0
0 0.707 0.707
0 0.707 0.707

−

 
 =  
 − 

a   (2.51) 

 45
1 3

0.707 0 0.707
0 1 0

0.707 0 0.707
−

− 
 =  
  

a   (2.52) 

 
The corresponding diagonal component of the resulting transformed strain rate tensors, 

′ε , are needed to define the corresponding resultant off-axis strain rates and are 

calculated using Eqns. (2.50), (2.51) and (2.52) in Eqn. (2.49).  Therefore, the resultant 

strain rates for the off-axis tests, given strain rates in the principal axis can be written as 

 45
1-2 11 11 12 22= 0.5 + 0.5ε ε ε ε ε′ = +       (2.53) 

 45
2-3 22 22 23 33= 0.5 + 0.5ε ε ε ε ε′ = +       (2.54) 

 45
1-3 33 11 13 33=  0.5 + 0.5ε ε ε ε ε′ = +       (2.55) 

 
The input curves for the principal directions account for compression and tension for use 

in defining the yield surface. Hence care must be taken when using the strain rates 

corresponding to the three principal directions (Eqn. (2.48)), since they can be either 

positive (tension) or negative (compression).  Thus, if the PMD strain rate is positive, 
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then the tension strain rate value is taken as that, whereas the compression strain rate 

value would be zero (quasi-static) and vice-versa. This procedure is outlined below. 

 11 11
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Incorporation of Damage in the Elasto-Plastic Material Model 

2.5.1  Introduction of Damage Formulation 

The material model is modified to include orthotropic damage.  This is achieved 

by using a tensorial damage framework that permits the anisotropic damage necessary for 

many composites (Matzenmiller, Lubliner and Taylor 1995). A simplified compliance 

tensor, from a full 3D case, for a plane stress case can be defined as (from classic 

continuum damage mechanics formulation) 
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H ω   (2.56) 

where H is the damaged compliance tensor, ω  is the vector of non-negative damage 

parameters consisting of ijω , ||E  is the elastic modulus in the longitudinal direction, E⊥  is 

the elastic modulus in the transverse direction, and ijν are the elastic Poisson’s ratios.  

The damage is coupled in terms of the principal material directions in order to allow for 
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modeling of composites that show such behavior.  However, the damage is decoupled 

from plasticity, assuming the damage does not affect the plastic strain tensor, and is 

achieved by using the principle of strain equivalence as opposed to energy equivalence.  

The damage is then plastic damage and is a function of the plastic deformation, or 

effective plastic strain.  For example, considering uncoupled scalar damage, the effective 

stress, defined as the undamaged stress state, can be written as  

 
1

n
n
eff nd
=

−
σσ   (2.57) 

where effσ  is the effective stress state, σ  is the calculated (assuming no damage) stress 

state, d  is the damage parameter and the superscript n  denotes the current time step.  

However, using deformation mechanics to model the nonlinear composite material 

response, the effective stress can be written in terms of plasticity, from Eqn. (2.27), as 

 ( )eff p= −σ C ε ε     (2.58) 

where each term has been previously described.  Thus, the damage evolution can be 

defined as a function of the plastic strain and effective stress due to plasticity as 

( )1 1 1,n n n
p effd f ε+ + += σ , from which the evolution of the stress state can be defined as  

 ( )1 1 11n n n
eff d+ + += −σ σ   (2.59) 

An example for a perfectly plastic response with damage is shown for a uniaxial case in 

Fig. 6. 
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Fig. 6. Elastic-Perfectly Plastic Response With Damage 

The strain equivalence of the damage parameter can be shown by substituting Eqn. (2.58) 

into Eqn. (2.59), with the strains unchanged between the damaged and undamaged state 

with a damaged and undamaged constitutive matrix, resulting in  
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 ( )1d d= −C C   (2.60) 

where dC  is the damaged 3D constitutive matrix for scalar damage.  The incremental 

stress is written in terms of the incremental damage effective stress as 
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 ( )
1d p

d
d

= − −
−

σ C ε ε σ


     (2.61) 

In this framework, it is important to note that the damaged constitutive matrix represents 

the damaged modulus (secant modulus) and not tangent modulus, indicative of the plastic 

deformation. 

 

2.5.2  Implemented Damage Model Overview 

The deformation portion of the material model provides the majority of the 

capability of the model to simulate the nonlinear stress-strain response of the composite.  

However, in order to capture the nonlinear unloading and local softening of the stress-

strain response often observed in composites (Barbero 2013), a complementary damage 

law is required.  In the damage law formulation, strain equivalence is assumed (described 

above), in which for every time step the total, elastic and plastic strains in the actual and 

effective stress spaces are the same (Lemaitre and Desmorat 2005).   The utilization of 

strain equivalence permits the plasticity and damage calculations to be uncoupled, as all 

of the plasticity computations can take place in the effective stress space. 

In the damage model implemented here, the actual stresses are related to the 

effective (undamaged) stresses by use of a damage tensor M. 

 eff=σ Mσ   (2.62) 

The effective stress rate tensor can be related to the total and plastic strain rate tensors by 

use of the standard elasto-plastic constitutive equation 

 ( )eff p= −σ C ε ε     (2.63) 
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where C is the standard elastic stiffness matrix and the actual total and plastic strain rate 

tensors are used due to the strain equivalence assumption. 

 

2.5.3  Validation of Strain Equivalence Assumption 

As discussed in the previous section, employing the strain equivalence 

assumption implies that the effective stresses result in the same deformations in the 

effective, undamaged material as would be caused by applying the actual stresses on the 

damaged material.  In this way, the yield function, constitutive equation and flow rule 

specified in Eqns. (2.1), (2.19) and (2.63), respectively, can be written in terms of the 

effective stresses and applied in effective stress space. 

For the strain equivalence formulation to be valid, the derivative of the plastic 

potential function (written in terms of the effective stresses) with respect to the effective 

stresses must equal the derivative of a damaged plastic potential (written in terms of the 

actual stresses) with respect to the actual stresses.  This concept is expressed 

mathematically below. 

 
( ) ( ) ( )1

1
eff d

eff

hh h−

−

∂∂ ∂
= =

∂ ∂ ∂

M σσ σ
σ M σ σ

  (2.64) 

Therefore, for the strain equivalence assumption to be valid, appropriate damaged 

versions of the elastic stiffness matrix, yield function and plastic potential function need 

to be developed such that the same strain state results whether the material is loaded in 

the actual or effective stress space. 

To develop the damaged elastic stiffness matrix, first Eqn. (2.62) is differentiated 

and Eqn. (2.63) is substituted in leading to the following expression 
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( ) 1

eff eff

p
−

= +

= − +

σ Mσ Mσ

σ MC ε ε MM σ



 



  

  (2.65) 

For the case of elastic only loading the plastic strain rate and the time derivative of the 

damage tensor are both set equal to zero, leading to the following results which define a 

damaged elastic stiffness matrix Cd 

 eff

d

=
=

=

σ MCε
σ Cε
C MC

 

    (2.66) 

This damaged elastic stiffness matrix will generate the same strains under loading in 

actual stress space as the undamaged stiffness matrix would in effective stress space. 

In a similar fashion, as shown below, the yield function from Eqn. (2.1) can be written in 

a quadratic form in terms of the effective stresses and converted to be in terms of the 

actual stresses (using Eqn. (2.62)).  A damaged yield function df  can be defined as  

 

1 1

1

1 0

1 0

1 0

T T
eff eff eff

T T T

T T
d d d

T
d

T
d

f

f

f

− − −

−

− −

= + − ≤

= + − ≤

= + − ≤

=

=

f σ σ Fσ

f M σ σ M FM σ

f σ σ F σ
f M f
F M FM

  (2.67) 

To determine the damaged form of the plastic potential function, first the definition of the 

plastic potential function given in Eqn. (2.10) is written in terms of effective stresses, 

converted into a matrix form, and differentiated with respect to the effective stresses, 

resulting in the following expression 

 ( )
( )

0.5 1
0.51

1 12 2
2 2

effT
eff eff eff T T

eff

h
h

h
−

− −

∂
 = ⇒ = =  ∂

σ Hσ Hσ H M σ
σ σ M HM σ

  (2.68) 
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where the effective stresses have been converted back into the actual stresses and the H 

matrix is the collection of coefficients for the plastic potential function, written as  

 

11 12 31

12 22 23

31 32 33

44

55

66

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

H H H
H H H
H H H

H
H

H

 
 
 
 

=  
 
 
 
  

H   (2.69) 

By applying the results of Eqn. (2.68) in Eqn. (2.19), the plastic strain rate tensor in 

actual stress space can be defined and a damaged version of the H matrix defined in Eqn. 

(2.69) can be derived as 

 ( )

( )

1
0.51

1
0.51

2 2 2
2 2

1

2

p eff dT T

d T T

h
λ λ λ−

− −

−

− −

 = = = 

 =  

ε Hσ H M σ H σ
σ M HM σ

H H M
σ M HM σ

 





  (2.70) 

For the strain equivalence assumption to be valid for the given plastic potential function 

based on the expression shown in Eqn. (2.64), a damaged version of the plastic potential 

function hd needs to be defined such that the following expression is true.  

 
( )

( )
1

0.51

1 2
2

d

T T

h −

− −

∂
 =  ∂

σ
H M σ

σ σ M HM σ
  (2.71) 

By taking the derivative of the proposed function with respect to the actual stresses, the 

required expression (shown in Eqn. (2.71)) is obtained thus demonstrating that the strain 

equivalence assumption can be employed. 

 ( )0.51T T T
dh − −= M σ M HM σ   

 

 
( )

1
0.51

1 2
2

T Td

T T

h − −

− −

∂  =  ∂
M M H M σ

σ σ M HM σ
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( )

1
0.51

1 2
2

d

T T

h −

− −

∂  =  ∂
H M σ

σ σ M HM σ
  (2.72) 

Since an appropriate damage stiffness matrix, yield function and plastic potential function 

can be defined in the actual (damaged) stress space, the strain equivalence assumption is 

thus determined to be valid for the deformation and damage model developed in this 

effort. 

 

2.5.4  Definition and Characterization of Damage Tensor 

As specified in Eqn. (2.62), the effective and actual stresses are related through a 

damage tensor.  Given the usual assumption that the actual stress tensor and the effective 

stress tensor are symmetric, Eqn. (2.62) can be rewritten in the following form, where the 

damage tensor M is assumed to have a maximum of 36 independent components. 

 [ ]

11 11

22 22

33 33

12 12

23 23

31 31

eff

eff

eff

eff

eff

eff

σ σ
σ σ
σ σ
σ σ
σ σ
σ σ

  
  
  
  

=   
  
  
        

M   (2.73) 

The damage tensor is assumed to be diagonal, leading to the following form 

 [ ]

11

22

33

44

55

66

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

M
M

M
M

M
M

 
 
 
 

=  
 
 
 
  

M   (2.74) 
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A diagonal damage tensor is commonly used in composite damage mechanics theories ( 

(Matzenmiller, Lubliner and Taylor 1995), (Barbero 2013)), and is desirable since a 

uniaxial load in the actual stress space would result in a uniaxial load in the effective 

stress space.  However, using a diagonal damage tensor generally implies that loading the 

composite in a particular coordinate direction only leads to a stiffness reduction in the 

direction of the load.  However, several recent experimental studies ( (Ogasawara, et al. 

2005), (Salavatian and Smith 2014), Salem and Wilmoth, unpublished data, 2015) have 

shown that in actual composites, particularly those with complex fiber architectures, a 

load in one coordinate direction can lead to stiffness reductions in multiple coordinate 

directions.  To account for this damage interaction while maintaining a diagonal damage 

tensor, each term in the diagonal damage matrix should be a function of the plastic strains 

in each of the normal and shear coordinate directions, as follows for the example of the 

M11 term for the plane stress case 

 ( )11 11 11 22 12, ,p p pM M ε ε ε=   (2.75) 

To explain this concept further, assume a plastic strain is applied in the 1-

direction to an undamaged specimen, with an original area 11A  perpendicular to the 1 axis 

and an original area 22A  perpendicular to the 2-axis.  The undamaged modulus in the 1-

direction is 11E  and the undamaged modulus in the 2-direction is equal to 22E .  The 

specimen is damaged due to the plastic strain.  The original specimen is unloaded and 

reloaded elastically in the 1-direction.  Due to the damage, the reloaded specimen has a 

reduced area in the x-direction of 11
11
dA  and a reduced modulus in the 1-direction of 11

11
dE  .  
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The reduced area and modulus are a function of the damage induced by the plastic strain 

in the 1-direction as follows 

 
( )( )
( )( )

11 11
11 11 11 11

11 11
11 11 11 11

1

1

d p

d p

E d E

A d A

ε

ε

= −

= −
  (2.76) 

where 11
11d  is the damage in the 1-direction due to a load in the 1-direction, which can be 

generalized as kl
ijd , where the damage is in kl due to loading along ij.  Alternatively, if the 

damaged specimen is reloaded elastically in the 2-direction, due to the assumed damage 

coupling the reloaded specimen would have a reduced area in the 2-direction of 11
22
dA  and 

a reduced modulus in the 2-direction of 11
22
dE  due to the load in the 1-direction.  The 

reduced area and modulus are again a function of the damage induced by the plastic 

strain in the 1-direction as follows 

 
( )( )
( )( )

11 22
22 11 11 22

11 22
22 11 11 22

1

1

d p

d p

E d E

A d A

ε

ε

= −

= −
  (2.77) 

where 22
11d  is the damage in the 2-direction due to a load in the 1-direction.  Similar 

arguments can be made and equations developed for the situation where the original 

specimen is loaded plastically in the 2-direction. 

For the case of multiaxial loading, the semi-coupled formulation needs to account for the 

fact that as the load is applied in a particular coordinate direction, the loads are acting on 

damaged areas due to the loads in the other coordinate directions, and the load in 

particular direction is just adding to the damaged area.  For example, if one loaded the 

material in the 2-direction first, the reduced area in the 1-direction would be equal to 

22
11
dA  and the reduced modulus in the 1-direction would be equal to 22

11
dE .  If one would 
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then subsequently load the material in the 1-direction, the baseline area in the 1-direction 

would not equal the original area 11A , but the reduced area 22
11
dA .  Likewise, the baseline 

modulus in the 1-direction would not be equal to the original modulus 11E , but instead the 

reduced modulus 22
11
dE .  Therefore, the loading in the 1-direction would result in the 

following further reduction in the area and modulus in the 1-direction 

 
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

11 11 22 11 11
11 11 11 11 11 11 22 22 11

11 11 22 11 11
11 11 11 11 11 11 22 22 11

1 1 1

1 1 1

d p d p p

d p d p p

E d E d d E

A d A d d A

ε ε ε

ε ε ε

= − = − −

= − = − −
  (2.78) 

These results suggest that the relation between the actual stress and the effective 

stress should be based on a multiplicative combination of the damage terms as opposed to 

an additive combination of the damage terms.  For example, in the case of plane stress, 

the relation between the actual and effective stresses could be expressed as follows 

 

( )( )( )
( )( )( )
( )( )( )

11 11 11
11 11 22 12 11

22 22 22
22 11 22 12 22

12 12 12
12 11 22 12 12

1 1 1

1 1 1

1 1 1

eff

eff

eff

d d d

d d d

d d d

σ σ

σ σ

σ σ

= − − −

= − − −

= − − −

  (2.79) 

Note that for the full three-dimensional case, the stress in a particular coordinate direction 

is a function of the damage due to loading in all of the coordinate directions (1, 2, 3, 12, 

31 and 23).  By using a polynomial to describe the damage, the coupled terms represent 

the reduction to the degree of damage resulting from the fact that in a multiaxial loading 

case the area reductions are combined. 

There are two primary items needed for model characterization and input for the 

damage portion of the material model.  First of all, the values of the various damage 

parameter terms kl
ijd  need to be defined in a tabulated manner as a function of the 

effective plastic strain.  In addition, the various input stress-strain curves need to be 
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converted into plots of effective (undamaged) stress versus effective plastic strain.  As an 

example of how this process could be carried out, assume that a material is loaded 

unidirectionally in the 1-direction.  At multiple points once the actual stress-strain curve 

has become nonlinear, the total strain 11ε , actual stress σ11 and average local, damaged 

modulus 11
11
dE  can be measured.  Assuming that the original, undamaged modulus 11E  is 

known, since the damage in the 1-direction is assumed to be only due to load in the 1-

direction (due to the uniaxial load), the damage parameters and effective stress in the 1-

direction can be computed at a particular point along the stress-strain curve as follows 

 

11
11 11
11

11
11

11 11

11
11

11

1

1

d

eff

Ed
E

M d

M
σσ

− =

= −

=

  

 11
11 11

11

eff
p

E
σε ε= −   (2.80) 

These values need to be determined at multiple points in order to fully characterize the 

evolution of damage as the plastic strain increases.   

With this information, an effective stress versus plastic strain ( )11
pε  plot can be 

generated.  From this plot, the effective plastic strain corresponding to the plastic strain in 

the 1-direction at any particular point can be determined by using the equations shown 

below, which are based on applying the principal of the equivalence of plastic work in 

combination with Eqn. (2.10), simplifying the expressions for the case of unidirectional 

loading in the 1-direction (R. Goldberg, K. Carney and P. DuBois, et al. 2014). 
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( )2

11 11

11 11

eff

eff p
p

e

h H

d
h

σ

σ εε

=

= ∫
  (2.81) 

From this data, plots of the effective stress in the 1-direction versus the effective plastic 

strain as well as plots of the damage parameter 11
11d  as a function of the effective plastic 

strain can be generated.  By measuring the damaged modulus in the other coordinate 

directions at each of the measured values of plastic strain in the 1-direction, the value of 

the damage parameters 22 12 33
11 11 11, ,d d d , etc. can be determined as a function of the plastic 

strain in the 1-direction, and thus as a function of the effective plastic strain.  Similar 

procedures can be carried out for the case of plastic loading in the other coordinate 

directions to determine the other needed damage terms.   

To convert the 45º off-axis stress-strain curves into plots of the effective 

(undamaged) stress versus effective plastic strain, the total and plastic strain (permanent 

strain after unload) in the structural axis x-direction needs to be measured at multiple 

points along the stress-strain curve.  Given the undamaged modulus Exx, and utilizing the 

strain equivalence hypothesis, the effective stress in the structural axis system x-direction 

can be computed as follows: 

 ( )eff p
xx xx xx xxEσ ε ε= −   (2.82) 

Given the effective stress in the structural axis system, the effective stresses in the 

material axis system can be generated by use of stress transformation equations. Using 

the material axis system stresses, the plastic potential function and effective plastic strain 

corresponding to each value of plastic strain can be determined using the principal of the 
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equivalence of plastic work in combination with Eqn. (2.10) as shown below (R. 

Goldberg, K. Carney and P. DuBois, et al. 2014). 
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 Numerical Implementation 

In this chapter details of the numerical implementation of the theory discussed in 

Chapter 2, are shown and discussed. The focus is on the deformation including rate and 

temperature effects, and damage models. 

 The following sets of data are needed as input to the model: 

1. Twelve true stress versus true strain curves at a prescribed strain rate and a 

prescribed temperature from (a) uniaxial tension tests in 1, 2 and 3-directions, (b) 

uniaxial compression tests in 1, 2 and 3-directions, (c) shear in 1-2, 2-3 and 3-1 

planes, and (d) off-axis (e.g., 45 degrees) uniaxial tension or compression in 1-2, 

2-3 and 3-1 planes are required in a tabulated x-y data form. The number of such 

data sets is a function of the material’s behavior as a function of strain rate and 

temperature dependence. 

2. The modulus of elasticity, Poisson’s ratio and average plastic Poisson’s ratio 

(averaged over the entire nonlinear portion of the stress-strain curve) obtained 

from the tension and compression tests are also required.  The basic elastic 

properties are required for the elastic portion of the deformation analysis, and the 

plastic Poisson’s ratios are needed to compute the coefficients in the plastic 

potential function. 

3. Damage parameters, as a function of the total effective plastic strain, are required 

for the damage model, relating the damage in material direction with respect to a 

prescribed loading direction.  The complete list of damage parameters is shown 

below. However, if there is no damage in a particular direction or damage 

coupling between two directions, the corresponding damage parameter can be 
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assumed to be zero. This reduces the total number of required damage parameters. 

The damage parameters required to fully define the damage tensor are listed in the 

Table 3 where tests in green are uncoupled and tests in yellow are coupled (stored 

and updated in d̂   vector). 

Table 3. Damage Parameters 
 

Input Source Input Source 

( )11
11

p
ed ε  T1/C1 unload/reload in 1-

direction ( )33
33

p
ed ε  

T3/C3 unload/reload in 3-
direction 

( )11
22

p
ed ε  T2/C2 unload/reload in 1-

direction ( )33
23

p
ed ε  S23 unload/reload in 3-

direction 

( )11
33

p
ed ε  T3/C3 unload/reload in 1-

direction ( )33
13

p
ed ε  S13 unload/reload in 3-

direction 

( )11
12

p
ed ε  S12 unload/reload in 1-

direction ( )12
11

p
ed ε  T1/C1 unload/reload in 12-

direction 

( )11
13

p
ed ε  S13 unload/reload in 1-

direction ( )12
22

p
ed ε  T2/C2 unload/reload in 12-

direction 

( )22
11

p
ed ε  T1/C1 unload/reload in 2-

direction ( )12
12

p
ed ε  S12 unload/reload in 12-

direction 

( )22
22

p
ed ε  T2/C2 unload/reload in 2-

direction ( )23
22

p
ed ε  T2/C2 unload/reload in 23-

direction 

( )22
33

p
ed ε  T3/C3 unload/reload in 2-

direction ( )23
33

p
ed ε  T3/C3 unload/reload in 23-

direction 

( )22
12

p
ed ε  S12 unload/reload in 2-

direction ( )23
23

p
ed ε  S23 unload/reload in 23-

direction 

( )22
23

p
ed ε  S23 unload/reload in 2-

direction ( )13
11

p
ed ε  T1/C1 unload/reload in 13-

direction 

( )33
11

p
ed ε  T1/C1 unload/reload in 3-

direction ( )13
33

p
ed ε  T3/C3 unload/reload in 13-

direction 

( )33
22

p
ed ε  T2/C2 unload/reload in 3-

direction ( )13
13

p
ed ε  S13 unload/reload in 13-

direction 
 

The first six flow rule coefficients are computed directly from the assumed flow 

rule coefficient value and the plastic Poisson’s ratios - see Eqn. (2.40). The last three flow 

rule coefficients ( )44 55 66, ,H H H  are calculated by using the fitting technique described 

in Eqn. (2.41).   
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Each set of the twelve input curves are normalized with respect to the effective 

plastic strain, where the effective plastic strain can be expressed in terms of the 

experimental stress versus total strain data. For the compressive response in the 1-

direction, for example, this is written as  

 

( )
( )

11
11 11 11

11 11

11 11 /

c
c p

c p
e

p p
e

E

d h

σσ ε ε
σ ε

ε σ ε

 
= −  ⇒ 

= ∫
  (3.1) 

where 11
cσ  is the experimental compressive true stress in the 1-direction, 11ε  is the total 

true strain in the 1-direction, 11E  is the elastic modulus in the 1-direction, 11
pε  is the true 

plastic strain in the 1-direction, p
eε  is the effective plastic strain and h  is the value of the 

effective stress, as shown in Eqn. (2.10).   

Once the input curves are fully normalized, the plasticity algorithm is initiated. In 

the following, the subscript “n” refers to the value from the previous time step, the 

subscript “n+1” refers to the value from the current time step, the superscript “i” refers to 

the value from the previous iteration within a time step, the superscript “i+1” refers to the 

value from the current iteration, and the superscript “i-1” refers to the value from the 2nd 

iteration prior to the current iteration.  To numerically implement the material model, a 

typical elastic stress update is applied as follows  

 ( )1 : p
n n t+ = + ∆ −σ σ C ε ε    (3.2) 

where C  is the orthotropic elastic stiffness matrix, t∆  is the time step, ε  is the total 

strain rate and pε  is the plastic strain rate as defined in Eqn. (2.19).  The elastic stiffness 

matrix is written in terms of the compliance matrix as 
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C S
  (3.3) 

where iiE  are the elastic moduli in the principal material directions, ijG  are the elastic 

shear moduli and ijv  are the elastic Poisson’s ratios. The elastic moduli values shown 

above are interpolated based on the temperature and strain rate data.  The current values 

of the yield stresses used to determine the yield function coefficients are summarized into 

a single vector, Eqn. (2.29), corresponding to data obtained from each of the 12 input 

experimental test curves with the rate of change represented as  

 d
d

λ
λ

=
qq 

   (3.4) 

The vector of yield stress values is updated during the strain hardening process, 

adjusted yield stresses are checked for convexity, and if necessary the off-axis terms are 

based on convexity conditions using Eqns. (2.44) and (2.46).  The yield stresses in the 

various coordinate directions are assumed to evolve as a function of the effective plastic 

strain. Lastly, as defined in Eqn. (2.28) and expanded here, the plasticity consistency 

condition is written in terms of the gradient of the yield function as  

 0f ff ∂ ∂
= + =
∂ ∂

σ q
σ q



   (3.5) 
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which establishes the requirement for the stress state to remain on the yield surface; 

hence the inclusion of the yield stress vector.  Eqns. (2.19) and (3.2) can be applied 

within Eqn. (3.5) to obtain the following expression 

: : 0f h f df
d

λ λ
λ

∂ ∂ ∂ = − + = ∂ ∂ ∂ 
qC ε C

σ σ q
  



 (3.5)a 

where σ  is written in terms of the stiffness matrix and total and plastic strain rates, and 

the rate of change in the yield stresses has been expanded using Eqn. (3.4). As discussed 

earlier, due to the strain hardening formulation applied in the plasticity law, the plastic 

multiplier λ  can be shown to be equal to the effective plastic strain.  Solving for the 

effective plastic strain rate produces the following consistency equation, which is utilized 

within the numerical algorithm to compute an estimate used for the evolution of the 

effective plastic strain 

 
:

:

f

f h f d
d

λ

λ

∂
∂=

∂ ∂ ∂
+

∂ ∂ ∂

C ε
σ

qC
σ σ q



   (3.6) 

To start the calculations for a particular time step, the current values of the yield 

stresses, set equal to the original yield stresses until initial yield occurs, and set equal to 

the yield stresses corresponding to the current value of the effective plastic strain after 

initial yield occurs, are set in the vector q  shown in Eqn. (3.4).  These current yield 

stresses are also used in Eqns. (2.5), (2.7), (2.8) and (2.9) to compute the initial estimate 

of the coefficients of the yield function for the time step.  To compute the increment in 

effective plastic strain (and the resulting stress state) for a particular time step, a variation 

of the radial return algorithm, commonly used in plasticity analysis (Khan and Huang 
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1995), is employed.  To initiate the algorithm, a perfectly elastic response is assumed. 

Therefore, an elastic predictor is used to compute an initial estimate for the stresses at the 

end of the time step as follows  

 ( ) ( ) ( ):e n t= + ∆σ σ C ε   (3.7) 

 With the elastic trial stresses computed, a trial yield function value can be calculated 

from Eqn. (2.1) using the current values of the yield stresses to determine if the load step 

is elastic or plastic by applying the following expression:  

 ( )
1

, 0 ?,
0

n e
e nf if yes elastic

λ

+ =
≤ ⇒ 

∆ =

σ σ
σ q   (3.8) 

If the value of the yield function is less than zero, the time step is assumed to be an elastic 

time step, the values of the stresses at the end of the time step are set equal to the elastic 

trial stresses, and the algorithm continues to the next time step.  If the value of the yield 

function is greater than zero, the time step is assumed to be a plastic time step, and the 

radial return algorithm must be employed to bring the stress state back to the yield 

surface by computing a converged value for the increment in effective plastic strain, λ∆ .  

If the trial yield function is greater than zero, then 0λ∆ >  must be true.  The value of 

iλ∆  (i is the iteration number) is determined using a secant iteration, with 1 0iλ∆ =  for 

the first iteration (assuming a purely elastic response). An estimate for a second iterative 

value for the effective plastic strain is determined from the consistency equation, Eqn. 

(3.6), as 
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  (3.9) 
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where the derivatives of q  are taken as zero, meaning that the response is assumed to be 

perfectly plastic.  If a negative estimate for the increment in effective plastic strain is 

computed, the effective plastic strain increment value is either set equal to the value of 

total effective plastic strain, if not zero (after initial yield is reached), or the absolute 

value of the strain increment (until initial yield is reached). The partial derivatives of the 

yield function and the plastic potential function with respect to the stresses can be 

evaluated from Eqns. (2.1) and (2.10), respectively, as 
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By assuming a condition of perfect plasticity in the second iteration, the stress 

state is ensured to return to the interior of the yield surface, thus resulting in a negative 

value of the yield function.  If a negative value of the yield function is not obtained, the 

estimate for the effective plastic strain increment is doubled and the process is repeated 

until a negative yield function value is reached.  By utilizing this procedure for the first 

two iterations the solution is bounded, which helps to ensure a reasonable convergence 
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towards the actual increment in effective plastic strain for the time step. Once the 

increment in effective plastic strain λ∆ , is computed for the second iteration, the 

corresponding stresses (including a plastic correction from the elastic trial stresses), can 

be computed using  a modified version of Eqn. (3.2), where the stiffness matrix 

multiplied by the total strain is set equal to the elastic trial stress, and the plastic strain is 

written in terms of the effective plastic strain increment and the gradient of the plastic 

potential function evaluated using the elastic trial stresses. 

 1 :e
n

e

hλ+

∂
= − ∆

∂
σ σ C

σ
  (3.12) 

These modified stresses can then be used to compute a new estimate of the value 

of the yield function for the second iteration of the secant iteration process.  Given the 

estimates of the effective plastic strain and value of the yield function for the first two 

iterations, a secant process can be used to compute a revised estimate, to be used in a 

third iteration, of the effective plastic strain 

 
2 1

3 1 1
2 1f

f f
λ λλ λ ∆ −∆

∆ = ∆ −
−

  (3.13) 

In the above equation the superscript represents the iteration number corresponding to the 

given term.  A revised estimate of the stresses for the third iteration within the time step 

is calculated using a revised version of Eqn. (3.12), where the gradient of the plastic 

potential function is computed using the stresses computed during the second iteration 

and the effective plastic strain value computed for the third iteration is employed. 
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Based on these revised stresses, the value of the yield function for the third 

iteration is computed. At this point, convergence of the secant iteration can be checked by 

applying the following conditions  
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If the value of the yield function is not less than some predefined tolerance, the secant 

iteration process is continued.   To continue the secant iterations, the increment of the 

effective plastic strain used in the next iteration (now generalized to iteration “i+1”), is 

computed using an expression similar to Eqn. (3.13)  
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1 2 1
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n f

f f
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−
  (3.16) 

where the values to be used in the expression are determined based on Eqn. (3.15).  The 

new estimate for the effective plastic strain is then used to determine a new set of updated 

stresses as follows.  
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In this expression, the gradient of the plastic potential function is determined 

based on the stresses computed in the previous increment.  The rationale for computing 

the gradient of the plastic potential function using stresses other than the trial elastic 

stresses is based on the fact that due to the anisotropic hardening of the material the yield 
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surface rotates (besides just expanding) as additional plastic strain is applied. The 

anisotropic strain hardening results from the fact that the changes in yield stresses in the 

various coordinate directions are not necessarily proportional.  This concept, which is 

displayed schematically in Fig. 7 is discussed in more detail in (R. Goldberg, K. Carney 

and P. DuBois, et al. 2016). 

 

Fig. 7. Anisotropic Yield Surface Evolution in 1-2 Stress Space 

After the revised stresses for the new iteration are computed, the yield function 

value is evaluated with these updated stresses, and updated yield stresses are computed 

based on the new estimate for the effective plastic strain and the input curves.  Based on 

the revised computed value for the yield function, 1
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effective plastic strain are determined based on the following revised version of Eqn. 

(3.15). 

 

1 1
1

11 1 1
1 1
1 2 2

1

11 1 1
1 1

11 2 1 2
1

0 ;

,
0 ;

,

,
0

,

i i
n

ii
i n

in i
n

ii
i n

in i
n

f

f f
f

f f

f f
f

f f

λ λ

λ λ

λ λ

λ λ

λ λ

+ +
+

++
+ +
+

+

−−
+ +

++ +
+

≈ ⇒ ∆ = ∆

∆ = ∆ => ⇒ 
∆ = ∆ =

∆ = ∆ =< ⇒ 
∆ = ∆ =

  (3.18) 

If convergence is not reached, the process described in Eqn. (3.16) and Eqn. (3.17) is 

repeated for a new iteration.  Once convergence is satisfied, the appropriate increment of 

effective plastic strain is known based on the iteration results and the stresses can be 

updated as  

 1 :e
n

hλ+

∂
= − ∆

∂
σ σ C

σ
  (3.19) 

where the stress values computed in the iteration prior to convergence being reached are 

used to compute the gradient of the plastic potential function.  Finally, the yield stresses 

are updated as well, using the new value of the overall effective plastic strain,λ , in each 

input curve to determine the corresponding yield stress level, with respect to the 

temperature and strain rate, as  

 ( )1 , ,n nq q Tλ λ ε+ = + ∆    (3.20) 

 

Modification of Input Stress-Strain Curves for the Damage Model 

The input stress-strain curves are converted to stress-effective plastic strain for the 

deformation plastic algorithm outlined earlier. However, in order to incorporate the same 



64 
 

plasticity algorithm with damage, the yield stresses must be determined in an undamaged 

state.  Thus, the stress-strain curves must be converted from true stress (damaged state) to 

effective stress (undamaged state) before normalizing them with respect to the effective 

plastic strain. The conversion from true stress to effective stress requires the 

measurement of either the damaged modulus or plastic strain (by unloading the material 

to a state of zero stress) at several total strain values as shown in Table 4 for the normal 

stress-strain relationship. 

Table 4. Damaged Modulus and Plastic Strain (Normal Stress-Strain Relationship) 
 

Damaged Modulus Plastic Strain 
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Using either approach, both the effective stress and damage parameter can be calculated 

at sampled values of the total strain.  It is important to note here that the number of 

effective stress versus total strain points will be equal to the amount of unloading steps 

taken during experimentation.  Therefore, the true stress versus total strain curve will 

have more points than the effective stress versus total strain curve. Hence the desired 

resolution of the modified data must be considered when determining the number of 

unloading steps; although interpolation of the damage parameter can be used between the 

experimentally obtained values.  The procedure for the experimental tests to obtain the 
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uncoupled damage terms is described below, where the damaged modulus and plastic 

strain are calculated at each of the unload/reload steps. 

Load Steps (Fig. 8): 

a) Load to a damaged point, i.e. point 1. 
b) Unload to a stress-free state, i.e. point 2. 
c) Reload to a strain level past the point of the previously loaded state, i.e. load to 

point 3. 
d) Repeat steps b and c for the desired amount of damage points. 
e) Stop loading when specimen has failed. 
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Fig. 8. Loading-Unloading Steps for Characterization of Uncoupled Damage Parameters 

Next, the curves are normalized with respect to the effective plastic strain similar to the 

deformation model. However, the total stress is replaced by the effective stress as shown 

in Eqn. (2.81) for a uniaxial 1-direction loading. The effective stress and damage 

parameters are then normalized with respect to the effective plastic strain.  First, the 

effective stress versus effective plastic strain must be calculated utilizing the damage 

(considering only damage in test direction,) with respect to the total strain.  Then, the 
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same process as shown in Eqn. (3.1) with a unidirectional 1-direction test as an example, 

can be expanded by using the effective stress in place of the true stress resulting in  
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  (3.21) 

where the effective stress is calculated based on the effective stress as well, 

( )2

11 11
effh H σ= .  Once the stress-strain curves are converted to effective stress versus 

effective plastic strain, the damage parameters must also be normalized to the effective 

plastic strain by correlating the effective plastic stain from the normalized effective stress 

curves with the total strain values used to calculate the effective stress from the damage 

parameters.  An illustration of the normalization of the effective stress and damage 

parameters is shown in Fig. 9, resulting in curves (tables) of effective stress and damage 

parameters as a function of effective plastic strain.  The details of these steps are as 

follows: 

1. Convert input stress versus strain curve into effective stress versus strain, using 

the input damage versus strain curve (in the corresponding material direction) and 

Eqn. (3.21)a. 

2. Convert the effective stress versus strain curve to effective stress versus plastic 

strain using Eqn. (3.21)b. 

3. Convert the effective stress versus plastic strain curve to effective stress versus 

effective plastic strain using Eqn. (3.21)c. 
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4. Normalize the input damage versus strain curves to damage versus effective 

plastic strain using the transformed strain to effective plastic strain relationship of 

the 12 input stress-strain curves.  The damage parameter is normalized using the 

corresponding loading direction, i.e. for parameter kl
ijd  the loading direction ij 

would determine which of the 12 input curves to correlate to.  
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Fig. 9. Normalizing Input Stress vs. Strain and Damage vs. Strain Data to Effective 

Plastic Strain 

The same process for the unidirectional normal loading case can be applied to the 

shear loading condition. As shown in Table 5, where the tensorial shear strains are used, 

1 2/3 

4 
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the procedure for the experimental tests to obtain the uncoupled shear damage terms is 

shown in Fig. 8.   

Table 5. Damaged Modulus and Plastic Strain (Shear Stress-Strain Relationship) 
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The effective stress is then normalized with respect to the effective plastic strain for the 

shear case, similar to the unidirectional case, shown below.  
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  (3.22) 

The coupled damage parameters (from damaged moduli) can be determined by 

elastically loading the damaged sample in the other directions after each unload step, 

producing a normalized relationship between the coupled damage parameters with 

respect to the effective plastic strain.  The coupled damage terms are obtained by testing a 

specimen in one direction to a damaged point (in the plastic/non-linear region), then 

reloading in another direction elastically just enough to obtain a modulus value without 

inducing any additional damage.  The steps to obtain the coupled damage are described 

below, which follow the same general procedure from the uncoupled tests, with an 

additional reloading in the desired damage parameter direction.   
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Load Steps (Fig. 10): 

a) Load to a damaged point in ij direction, i.e. point 1. 
b) Unload to a stress-free state in the ij direction, i.e. point 2.  
c) Change the loading direction to kl. Reload elastically in the kl direction, without 

inducing any additional damage. 
d) Unload to a stress-free state in the kl direction. 
e) Change the loading direction to ij. Reload to a strain level past the point of the 

previous unloading in the ij direction. 
f) Repeat steps b-e for the desired amount of damage points. 
g) Stop when specimen has failed in the ij direction. 
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(a) Loading-unloading in the ij direction 
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(b) Elastic reloading-unloading in 
the kl direction 

Fig. 10. Loading-Unloading Steps for Characterization of Coupled  

Damage Parameter kl
ijd  

Finally, there are no damage parameters obtained from the off-axis tests as the 

damage parameters are used in the damage tensor to transform the damaged stress state to 

an undamaged state.  However, for use in the plasticity algorithm, the input stress-strain 

curves from the off-axis test must be converted to effective (undamaged) stress versus 

effective plastic strain, matching the normal and shear input curves.  The effective stress 

for the 45° off-axis tests is calculated in the structural loading direction as defined in Eqn. 

(2.82) which is then normalized to the effective plastic strain, with the material direction 
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stresses calculated in terms of the structural axis stresses for the determination of the 

plastic potential (see Eqn. (2.83)). 

Damage Model for Stress Transformation 

The developed damage theory has been tailored to be implemented around the 

current deformation model (plasticity algorithm), where the damage tensor M  relates the 

true stresses to the effective stresses as shown in Eqn. (2.73). Note that M  has a 

maximum of 36 individual components to account for full damage coupling.  However, 

with this approach, a multi-directional loading in the true stress can result from a 

unidirectional loading in the effective stress which is undesirable. Therefore, a diagonal 

damage tensor is used with the coupling accounted for in the individual diagonal terms, 

shown below. 
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  (3.23) 

The six diagonal terms of the damage tensor are comprised of uncoupled and coupled 

damage terms defined as kl
ijd , where the damage is in kl due to loading along ij.  

Furthermore, we assume: 

(i) Normal damage is due to all normal and shear terms, e.g. 

 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )11 11 11 11 11 11 11
11 22 33 12 23 13

11

1 1 1 1 1 1
dam

p p p p p p
e e e e e e

Ed d d d d d
E

ε ε ε ε ε ε− − − − − − =  (3.24) 

(ii) Shear damage is due to all normal and shear terms, e.g. 
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Using the given notation and assumptions, the expanded damage transformation with the 

six generalized damage terms are shown below. 
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There are a total of 36 damage parameters not accounting for differences between tension 

and compression damage and loading terms. If tension and compression terms are 

identified separately for normal damage, i.e. 11 11

11 11

T Cdam damE E
E E
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, then Eqn. (3.24) needs 

to be rewritten as 
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It should be noted that ( )11
11

T

T

p
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p
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function of compressive plastic strains, ( )11
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etc. and are used as such depending on the current values in the strain tensor. 

Similarly, Eqn. (3.25) needs to be rewritten as 
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It should be noted that ( )12
11T

p
ed ε is a function of tensile plastic strains, ( )12

11C

p
ed ε is 

a function of compressive plastic strains, etc. and are used as such depending on the 

current values in the strain tensor. Hence there are 54 damage parameters for the normal 

equations and 27 damage parameters for the shear equations. In addition, we also have 

three uncoupled damage terms for the off-axis tests since these damage terms, ( )12
12

o p
o ed ε , 

( )23
23

o p
o ed ε  and ( )13

13
o p
o ed ε are used for only transforming the input stress-strain curves to 

effective stress-effective plastic strain curves. In conclusion, there are 84 damage 

parameters. 

The damage tensor is utilized in the plasticity algorithm in which the true 

(damaged) stress state is transformed to the effective (undamaged) state at the beginning 

each time step. The current plasticity algorithm is then implemented in the same way. 

The yield stress update utilizes the effective stress versus effective plastic strain rather 

than the stress versus effective plastic strain.  Once the plasticity algorithm has 

converged, the stresses are then transformed back to the true stress state prior to the stress 

update, and the damage parameters are updated for the next time step.  The stress 

transformation process is illustrated below. 

 1eff eff
plasticity

−= → =σ M σ σ Mσ   (3.27) 

The damage parameters are then updated similar to the yield stress values. However, the 

normal tension and compression parameters only accumulate for corresponding tension 

or compression loading, respectively.  The damage vector is updated as 

 ( )1
ˆ ˆ

n nd d λ λ+ = + ∆   (3.28) 
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A detailed algorithm that has been implemented as a computer code is presented below. 

 

The following parameters are referenced in the algorithm. 

tolδ    Tolerance value. Default is 10-3. 

secmaxn  Maximum number of iterations allowed in the secant method. Default is 

100. 

doublen  Maximum times the value of λ∆ is double in order to find a negative 

value of yield function thus bounding the solution. Default is 100. 

Step 1: Preprocessing (this is executed once immediately after reading the material data) 

Read and store as many sets of 12 stress-strain curves obtained at constant strain 

rate and temperature as needed; read and store damage-strain curves for damage 

model, independent of strain rate and temperature. Convert these curves to 

effective stress versus effective plastic strain using Eqns. (3.1) and (3.21); 

normalize damage parameters to effective plastic strain.  Store initial yield 

stresses in q , based off the initial strain rate and temperature, and correct for 

convexity if necessary using Eqns. (2.44) and (2.46); initialize damage parameters 

in d̂  to zero. Compute optimal values of the flow rule coefficients so as to match 

the input curves as closely as possible. 

The following steps are executed when the material model subroutine is called for each 

Gauss point in all the elements at every time step. 

Step 2: Initialization 

The following parameters are passed to the subroutine: nσ , ( , )n nt∆ε . 
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Step 3: Elastic predictor 

(a) Compute the yield function coefficients using Eqns. (2.5), (2.7), (2.8) and 

(2.9) for effective yield stresses (based on the current temperature and strain 

rate.), calculate off-axis coefficients based on convexity conditions using Eqns. 

(2.44) and (2.46), if necessary. 

(b) Construct the elastic stiffness matrix using Eqns. (3.3), (3.24) and (3.25), 

interpolating the undamaged elastic moduli based on the current temperature and 

strain rate. 

(c) Compute elastic trial stresses, 1
e
n+σ , using Eqn. (3.2), and transform to 

effective stress space with Eqns. (3.23) and (3.27). 

(d) Compute the trial yield function, 1
trial

nf + , using the elastic trial stresses in Eqn. 

(2.1). If 1
trial

n tolf δ+ ≤ , the current state is elastic. Set 0nλ∆ =  and go to stress 

update (Step 5). Else go to plastic corrector (Step 4). 

Step 4: Plastic corrector 

(a) Set 1 0λ∆ = .  

(b) Calculate 2λ∆  from Eqn. (3.9). 

(c) Compute the new estimate of the stress for each effective plastic strain 

increment ( )1 2,λ λ∆ ∆ using Eqn. (3.12). 

(d) Calculate the effective plastic strains at the next time step as 

1 1 2 2,n nλ λ λ λ λ λ= + ∆ = + ∆ . 

(e) Update the yield stresses using Eqn. (3.20). 
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(f) Determine the corresponding yield function coefficients for each increment 

based on the updated yield stresses using Eqns. (2.5), (2.7), (2.8) and (2.9), 

calculate off-axis coefficients based on convexity conditions using Eqns. (2.44) 

and (2.46), if necessary. 

(g) Calculate the yield function values using Eqn. (2.1). For a negative 2λ∆ : if 

0λ >  set 2λ λ∆ = , else if 0λ = , 2 2( )absλ λ∆ = ∆ . 

(h) Calculate the yield function for 2λ∆ : if 2 0f <  then use the current value of 

2λ∆ , else double 2λ∆  until 2 0f < . This doubling is done doublen  times, to ensure 

the solution is bounded.   

(i) Compute new plastic multiplier increment, 3λ∆  from Eqn. (3.13).  

(j) Calculate the updated stresses using Eqn. (3.14) and the new estimate for the 

yield function, 3f . If 3
tolf δ≤ , set 3λ λ∆ = ∆ , exit the loop and go to stress 

update (Step 5). Else update secant iteration parameters using Eqn. (3.15) and 

proceed with secant iterations. 

(k) Loop through secant iteration for maxsecn  iterations: 

(i) Calculate new estimate of the increment of effective plastic strain,

1iλ +∆ , using Eqn. (3.16). 

(ii) Compute the updated stresses for the new estimate of the increment 

using Eqn. (3.12). 

(iii) Update total effective plastic strain 1 1
1 1

i i
n n nλ λ λ+ +
+ += + ∆ . 

(iv)  Update yield stresses using Eqn. (3.20).  
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(v) Calculate the yield function value, 1if +  using Eqn. (2.1), calculate off-

axis coefficients based on convexity conditions using Eqns. (2.44) and 

(2.46), if necessary. 

(vi) Update the derivative of the plastic potential, 
1

1

i

n

h
σ

+

+

∂
∂

. 

(vii) If 1if yieldtol+ ≤ , set 1iλ λ +∆ = ∆ , exit the loop and go to stress 

update. Else update secant iteration parameters using Eqn. (3.18) and go to 

next step of secant iteration. 

 (viii) If secant method hits secmaxn , stop the run with an appropriate error 

message. 

Step 5: Stress Update 

Calculate 1n+σ  using Eqn. (3.12) and transform back to the true stress space with 

Eqns. (3.23) and (3.27). 

Step 6: History Variable Update 

Update history variables for plastic work and work hardening parameters  

(q , d̂  andλ ). 

(a) Set 1n n nλ λ λ+ = + ∆ . 

(b) Determine new yield stresses, 1n+q , using Eqns. (3.20). 

(c) Calculate and store updated damage parameters, d̂ , with Eqn. (3.28). 

It should be noted that 1n+σ  is updated and passed back from the subroutine for use in the 

rest of LS-DYNA functionalities.  
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 Numerical Results 

The composite material model is tested and verified using experimental data 

obtained from T800S/3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber/resin 

unidirectional composite (Raju and Acosta 2010). Toray describes T800S as an 

intermediate modulus, high tensile strength graphite fiber. The epoxy resin system is 

labeled F3900 where a toughened epoxy is combined with small elastomeric particles to 

form a compliant interface or interleaf between fiber plies to resist impact damage and 

delamination (Smith and Dow September 1991).  Magnified views of the composite are 

shown in Fig. 11 and Fig. 12. 

 

Fig. 11. Side view (Optical Microscopy) 

 

Fig. 12. Longitudinal View (SEM) 

The source of the input data for the model (both experimental and virtual) is listed 

in Table 6. In the Data column, Experimental refers to experimental data generated at 

Wichita State (Raju and Acosta 2010). MAC-GMC (Bednarcyk and Arnold 2002) and 

VTSS (Harrington and Rajan 2014) refer to the use of numerical simulation techniques to 

generate the stress-strain curve at quasi-static (QS) and room temperature (RT) when 

experimental data are not available.  The numerical experiments from MAC-GMC and 

VTSS were performed to fill in the gaps of available experimental tests, which can often 

be the case, due to difficulties in tests involving the through-thickness properties. 

1 

3 

2 

3 
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Table 6. Generation of QS-RT Input Data for T800-F3900 Composite 

Curve Data 
Tension Test (1-Direction) Experimental 
Tension Test (2-Direction) MAC-GMC and VTSS 
Tension Test (3-Direction) Transverse isotropy 
Compression Test (1-Direction) Experimental 
Compression Test (2-Direction) MAC-GMC and VTSS 
Compression Test (3-Direction) Transverse isotropy 
Pure Shear Test (1-2 Plane) Experimental 
Pure Shear Test (2-3 Plane) MAC-GMC and VTSS 
Pure Shear Test (1-3 Plane) Transverse isotropy 
Off-Axis Test (45°, 1-2 Plane) MAC-GMC and VTSS 
Off-Axis Test (45°, 2-3 Plane) MAC-GMC and VTSS 
Off-Axis Test (45°, 1-3 Plane) Transverse isotropy 

The fiber (transversely isotropic, linear elastic) and the matrix (isotropic, elasto-plastic) 

properties are listed in Table 7. The properties for the latter are not publicly available. 

The procedure to calculate the values is shown in Section 4.3, with the fiver properties 

provided by the manufacturer.  

 Table 7. T800-F3900 Fiber and Matrix Properties (Volume Fraction = 0.54) 

Property Fiber Matrix 
E1, psi 4(107) 5(105) 
E2, psi 2.25(107)  
E3, psi 2.25(107)  
ν12 0.2 0.35 
ν23 0.25  
ν13 0.25  
G, psi 1.5(107) 1.85(105) 
σy, psi  2(104) 
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Experimental Tests for Required Input 

The twelve material curves required as input for MAT213 are obtained through 

coupon testing and are used as a part of the verification and validation tests described 

later.  

 
Determination of Additional Input Parameters 

The flow rule coefficients are calculated using (a) the flow law from Eqn. (2.19), 

and (b) the Poisson’s ratio of the plastic strains to derive a set of functions relating the 

flow rule coefficients to the plastic Poisson’s ratios. A general form of these equations 

was rewritten in terms of the plastic Poisson's ratios and 11H  in Eqn. (2.40). However, 

this requires a known value of 11H .  Since the T800/F3900 composite is unidirectional 

and transversely isotropic in the 2 and 3-directions, a simplified procedure described in 

Chapter 2 can be applied. The parameters 11 12,H H  and 13H  are assumed to be zero, from 

( )11 11 11 12 22 13 33 11 12 132 2 2 0 0
2

p H H H H H H
h
λε σ σ σ= + + = ⇒ = = =


  

and Eqn. (2.32) holds true so 22H  must be equal to 1.  The flow law coefficient, 33H  , can 

be assumed to be one as well, due to the assumption of transverse isotopy. The remaining 

value, 23H , can be determined using Eqn. (2.33), and is computed as -0.3792.  It should 

be noted that the flow law coefficients are assumed to be constant, which implies a 

constant value of the plastic Poisson’s ratio, 23
pν   and is determined as an average value 

from unidirectional transverse (2-direction) tension test data. 
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The final three flow law coefficients 44 55,H H  and 66H , are determined using the 

same fit technique as in the simplified case, discussed in Chapter 2. However, each shear 

curve must be fit with the 2-direction test acting as the baseline.  Using the same method 

as described with Eqn. (2.41), the objective function for the problem can be rewritten in 

terms of the 2-direction baseline as 

 ( ) ( )
2

22
1

ˆ ˆ(H )
n

ll ijk k
k

f σ σ
=

 = −  ∑   (4.1) 

Results from this exercise in terms of computing the optimal flow-rule coefficients 

(solution to Eqn. (4.1)) are shown in Fig. 13 and Fig. 14.  These plots show the results for 

the minimized difference between the shear and base curve in the effective stress vs. 

effective plastic strain space, Eqn. (4.1). However, the two curves do not exactly match, 

as the effect of the flow rule coefficient values do not fundamentally change the shape of 

the shear curves. 

 

Fig. 13. Comparison of Master Curve with Optimized H44 (and H66) Value  
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Fig. 14. Comparison of Master Curve with Optimized H55 Value 

 

A summary of the all the flow law coefficient values is shown in Table 8 below. 

Table 8. Flow Law Coefficients for T800-F3900 Composite 

Coefficient Value 
11H  0.0 

22H  1.0 

33H  1.0 

12H  0.0 

23H  -0.3792 

13H  0.0 

44H  7.7 

55H  6.1 

66H  7.7 
 

Constitutive Model Verification 

The experimental and computed supplemental data described earlier is used for 

verification tests. Since the experiments were performed under quasi-static, room 
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temperature (QS-RT) conditions only, fabricated temperature and strain rate dependent 

data were created based on extrapolations from the QS-RT data. The fabricated data (at 

increased temperature, 122, and strain rate, 0.1) were created for two strain rates (0.001 

(QS) and 0.1 1/s) and two temperatures (21°C/70°F (RT) and 50°C/122°F) by scaling the 

original stresses by 1.1 for the increased strain rate and 0.8 for the increased temperature.  

Additionally, the verification simulation results in this sections are shown for a 64-

element model, with a representative convergence analysis shown for the 1-2 plane off-

axis case shown in Fig. 15. 

 

Fig. 15. Representative Convergence Study for Verification Tests 

Schematics for the tension and compression tests are shown in Fig. 16 and Fig. 17, 

respectively. 

 



84 
 

2”

8”

t=0.25”A

B

C

D

E

1

2

(a) 

2”

8”

t=0.25”A

B

C

D

E

2, 3

1

(b) 

Fig. 16. Schematics for Tension Test Cases (a) 1-Direction (b) 2 and 3-Directions 
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(b) 

Fig. 17.  Schematics for Compression Test Cases (a) 1-Direction (b) 2 and 3-Directions 

The simulations for the tension and compression tests in all directions were executed 

using different mesh sizes ranging from 1 element to 64 elements.  64-element meshes 

for the tension and compression test cases are shown in Fig. 18 and Fig. 19, respectively. 

 

Fig. 18. 64-Element Mesh for Tension Test 

Cases 

 

Fig. 19. 64-Element Mesh for 

Compression Test Cases 
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For both tension and compression tests, nodes on face ABC were constrained in 

the x-direction and the center node was also constrained in the y-direction. A 0.5 in/s 

displacement in the x-direction was applied to all the nodes on the right face, E-D. For 

the compression tests, care was taken to ensure that the model yielded but did not buckle. 

The simulated and experimental stress-strain curves for the tension and compression tests 

are shown in Fig. 20 and Fig. 21, with the simulation matching the input QS-RT data and 

correct interpolation for the temperature and strain rate dependent input. 
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(a) 

 

(b) 

Fig. 20. Simulated and Experimental Stress-Strain Curves for 1-Direction (a) Tension and 

(b) Compression 
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(a) 

 

(b) 

Fig. 21. Simulated and Experimental Stress-Strain Curves for 2/3-Eirections (a) Tension 

and (b) Compression 
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A schematic for the pure shear test is shown in Fig. 22. Nodes on the bottom 

surface are restrained in the x and y-directions while nodes on the top surface are 

restrained in the y-direction. A displacement controlled loading of 0.5 in/s in the x-

direction is applied to all the nodes on the top surface. 

1 (x)

2”

2”
0.25”

2 (y)

3 (z)  

Fig. 22. Schematic for Pure Shear Test in 1-

2/3-1 Plane 

 

Fig. 23. 64-Element Mesh for Pure Shear Test 

Cases 

The 64-element mesh is shown in Fig. 23. The simulated and experimental stress-strain 

curves in the 1-2/3-1 plane is shown in Fig. 24 and in the 2-3 plane in Fig. 25.  All four 

simulations show good correlation with the input data. 
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Fig. 24. Simulated and Experimental Stress-Strain Curves for Pure Shear in the 1-2/3-1 

Plane 

 

Fig. 25. Simulated and Experimental Stress-Strain Curves for Pure Shear in the 2-3 

Plane 
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The (tension) off-axis test model is shown in Fig. 26. Nodes on face ABC were 

constrained in the x-direction and the center node was also constrained in the y-direction. 

The simulated and experimental stress-strain curves are compared for the 1-2/3-1 and 2-3 

cases in Fig. 27 and Fig. 28, showing very little differences in the results.  

2”
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t=0.25”A
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D

E

1

2

x

y

 

Fig. 26. Schematic for 45° Off-Axis Test in 1-2/3-1 Plane 

 

Fig. 27. Simulated and Experimental Stress-Strain Curves for 45° Off-Axis Test in 1-

2/3-1 Plane 
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Fig. 28. Simulated and Experimental Stress-Strain Curves for 45° Off-Axis Test in 2-3 

Plane 

A simple loading-unloading-reloading test case was simulated using the 2-

direction verification model, without damage, to verify the elastic unload/reload 

capabilities of the model, results shown in Fig. 29.  The model shows the proper elastic 

unloading and reloading, matching the initial elastic modulus and plastic deformation. 
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Fig. 29. Simulated and Experimental Stress-Strain Curves for Unloading/Reloading in the 

2-Direction (No Damage) 

Verification of the damage model was performed on the unidirectional 2-direction 

tension test, using a fabricated psuedo damage-strain curve, 22
22d  , that would typically be 

obtained through damage characterization tests described in Chapter 3, shown in Fig. 30.   

 

Fig. 30. Damage Versus Strain Curve with Three Unloading/Reloading Steps, Used in 

Damage Verification Test 
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To test the damage model for this case, the same 2-direction tension verification 

simulation was used, but with the damage defined above (equivalent to a 1-D damage test 

case).  Three unloading/reloading steps were created in the simulation corresponding to 

the total strain points of the damage curve in Fig. 30.  The sumulation stress-strain curve 

was compared to the expected input stress-strain curve, shown in Fig. 31, with damaged 

unloading/reloading moduli corresponding to the degree of damage defined as input (Fig. 

30).  The simulation matches the expected stress-strain response, with the deformation 

response the same as the input 2-direction stress-strain curve, and is able to correctly 

model the reduced/damaged modulus effect. 

 

Fig. 31. Damage Verification Stress Versus Strain Plot with Three Unloading/Reloading 

Cycles 
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Constitutive Model Validation 

 The input data utilized for the verification and validation studies is a combination 

of actual experimental data obtained by (Raju and Acosta 2010) and numerical 

simulations.  The numerical simulations were conducted to obtain required stress-strain 

curves which were not available from the provided experimental data.  The specific 

experimental data that were available included tensile and compressive stress-strain 

curves in the longitudinal 1-direction and in-plane shear stress-strain curves in the 1-2 

plane. To obtain the stress-strain curves required for input to the model that were not 

available from actual experimental data, an inverse analysis process was used. The 

unidirectional two-phase composite architecture was assumed based on publicly available 

data. A fiber volume fraction of 0.54 was assumed based on data presented in (Bogert, 

Satyanarayana and Chunchu 2006). The fiber was assumed to be transversely isotropic 

and linear elastic (Table 9), with properties determined using procedures described in (R. 

Goldberg, K. Carney and P. DuBois, et al. 2016). The matrix was assumed to be isotropic 

and elasto-plastic with a small strain-hardening component (Fig. 32). For convenience, 

the small amount of strain hardening was applied to the matrix for numerical stability 

purposes.  The elastic properties of the matrix were determined using procedures 

described in (R. Goldberg, K. Carney and P. DuBois, et al. 2016).  To determine the 

matrix yield stress, a micromechanics analyses of the pure shear test (1-2 plane) was 

conducted using the NASA Glenn developed MAC/GMC code based on the Generalized 

Method of Cells (Bednarcyk and Arnold 2002). The elasto-plastic properties of the 

matrix were adjusted so that the MAC/GMC results were reasonably close to the 

experimental results (Fig. 33). The correlation analyses were conducted for the cases of 
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(a) pure shear of a unidirectional composite, and (b) tensile loading of [+/-30]s and [+/-

45]s laminates. The matrix yield stress was chosen such that the best possible match was 

obtained between the analytical results and the experimental curves for each of these 

cases. It should be noted that such an inverse analysis is not trivial. For example, in this 

case, if the material values were adjusted to match the shear curves, then the off-axis test 

curves could not be matched closely, and vice-versa. We suspect that this problem results 

from using a J2 plasticity model for the polymer that exhibits a different plasticity 

behavior due to hydrostatic stress effects. 

Table 9. Fiber and Matrix Properties for 

T800S/3900 Composite 

Engineering 
Constant 

Fiber 
 

Matrix 
 

E1 (psi) 4(107) 5(105) 
E2, E3 (psi) 2.25(107) 5(105) 
ν12, ν13 0.2 0.35 
ν23 0.25 0.35 
G1 (psi) 1.5(107) 1.85(105) 
G2, G3 (psi) 1.5(107) 1.85(105) 

 

 

Fig. 32. Assumed Elasto-Plastic Behavior 

of the Matrix 
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Fig. 33. Shear Stress-Strain Curves (1-2 Plane) Showing Three Experimental Curves 

(Raju and Acosta 2010) and the Curve Generated by Using MAC/GMC Program 

Once the fiber and the matrix properties were obtained in this manner, additional 

micromechanics analyses were conducted using MAC/GMC code and implicit finite 

element analyses (Virtual Testing Software System or VTSS) which will be described in 

detail in a future paper, to obtain the remainder of the required input curves for the 

MAT213 simulations. Examples of these curves are shown in Fig. 34 and Fig. 35. 
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Fig. 34. 1-Direction Tension Stress-Strain Curves Showing Three Experimental Curves 

(Raju and Acosta 2010) and the Curves Generated by Using MAC/GMC Program and 

VTSS Program 

 

Fig. 35. 1-2 Plane 450 Off-Axis Tension Stress-Strain Curves Showing the Curves 

Generated by Using MAC/GMC Program and VTSS Programs (Experimental Curve is 

Not Available) 
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Based on the actual and correlated input stress-strain curves, a series of 

verification studies were conducted to demonstrate that the input data (12 input curves) 

could be replicated using the material model, outlined above.  These verification studies 

are also described in detail in (Hoffarth, et al. 2014). Table 10 lists the computed elastic 

properties of the composite. 

Table 10. Properties of T800S/3900 Composite 

Engineering 

Constant 

Value 

 

E1 (psi) 2.183(107) 

E2, E3 (psi) 1.145(106) 

ν12, ν21, ν13, ν31 0.264 

ν23, ν32 0.3792 

G12, G21 (psi) 5.796(105) 

G23, G32 (psi) 3.243(105) 

G31, G13 (psi) 5.796(105) 

 

Validation Test Model: Laminated Coupon Tests 

A set of validation tests were performed using data obtained for (+/- 15°)2S, (+/- 

30°)2S and (+/- 45°)2S laminates of the T800/F3900 composite described above.  A series 

of finite element models with 1, 4, 16 and 64 elements per ply with full integration solid 

elements were created.  The layups were created based on the experimental tests 

performed in (Raju and Acosta 2010). The thickness of each ply was set to 0.1905 
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millimeters with a total lay-up thickness of 1.524 millimeters, with the specimen 

dimensions set to match those of the experimental tests (50.8 mm x 12.7 mm). The 

validation tests were executed using both the developed finite element constitutive model 

and MAC/GMC and the results are compared against experimentally obtained data.  

Comparing the finite element results to results obtained using the analytical MAC/GMC 

micromechanics method assisted in determining whether the finite element based 

material model could produce results to an appropriate level of precision based on a given 

set of input data.  The comparisons of the computed results to experimentally obtained 

values allowed for a determination of the accuracy of both the material property 

correlation procedure and the material model. A schematic of the ply geometry for the 

(+/- 15°)2S, (+/- 30°)2S and (+/- 45°)2S validation analyses is shown in Fig. 36. The 

boundary conditions were chosen to mimic the experimental setup as closely as possible. 

The value of α depends on the individual ply of the given layup, i.e. +/-15°, +/-30° or +/-

45°. 

12.7 mm

50.8 mm

t=0.1905 mmA
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Fig. 36. Schematic of Individual Ply for Validation Analyses 

Nodes on the edge ABC were fixed in the x-direction, with additional fixity in the 

y/z-directions also enforced at the (center) node at B.  Displacement-controlled 

simulation was carried out - nodes on edge ED were moved in the positive x-direction at 

a rate of 12.7 mm/s, and these nodes were restrained in the y and z-directions.  The finite 
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element model is shown in Fig. 37 and is used with the implementation of the material 

model in LS-DYNA. 

 

(a) 

 

(b) 

Fig. 37. Validation Model for the 64-Element Per Ply Test Case (a) Plan View and (b) 

Side View 

While the 1, 4, 16 and 64 finite element models were used to study the 

convergence properties of the problem, only the results from the 64-element models are 

discussed next, as this mesh density was found to produce sufficiently converged results. 

The results for the (+/- 15°)2S, (+/- 30°)2S and (+/- 45°)2S validation analyses are shown in 

Fig. 38, Fig. 39 and Fig. 40.  The finite element simulation results using MAT213 

(labeled “Simulation”) and the MAC/GMC results (labeled “MAC/GMC”) are compared 

against experimental data (labeled “WSU”). 
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Fig. 38. Comparison of Experimental (Raju and Acosta 2010) and Numerical Solutions 

for (+/- 15°)2S Validation Test 

 

Fig. 39. Comparison of Experimental (Raju and Acosta 2010) and Numerical Solutions 

for (+/- 30°)2S Validation Test 
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Fig. 40. Comparison of Experimental (Raju and Acosta 2010) and Numerical Solutions 

for (+/- 45°)2S Validation Test 

The results show several important facts. Since the implementation of the 

constitutive theory into a finite element program was able to exactly reproduce the 

MAC/GMC stress-strain curves (from which the input curves were generated), the results 

show that given a certain set of input data the developed material model can appropriately 

simulate the deformation response of composites given laminate layups more 

complicated than those used in the input curves.  The accuracy of the simulations is based 

on the accuracy of the input curves.  The differences between the experimental results 

and the simulation are probably due to several reasons. First, in Fig. 38, Fig. 39 and Fig. 

40, only one experimental curve is shown, and thus any potential scatter in the 

experimental data is not captured. The computed results might be close to or within the 

statistical scatter in the experimental data.  Second, in the off-axis tests there are stress 
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interactions between various modes (such as between normal and shear stresses) that 

might not be properly accounted for in the simulations.  There might also be (coupled and 

uncoupled) damage mechanisms occurring in the actual composites which are not 

currently accounted for in the present deformation model.  Finally, since the full suite of 

experimental data (12 stress-strain curves) was not available to generate the input stress-

strain curves, the missing curves were approximated using an inverse analysis procedure 

with assumed data and simplifying assumptions. A simplified model was used in 

modeling the matrix in the micromechanics simulations – a nearly elastic-plastic model in 

which the tensile and compressive responses were assumed to be identical. It is likely that 

this simplifying assumption accounts for some of the errors in the +/-30° model and the 

lack of strain hardening at the end of the +/-45° model. 

 

Validation Test Model: Low-Velocity Impact Structural Test 

The second part of the validation tests involves a 12” x 12” x 0.122” T800/F3900 

composite flat panel subjected to a low velocity impact.  The physical test was performed 

by our project research colleagues at NASA Glen Research Center, with the schematics 

of the test shown in Fig. 41. The panel was fabricated with 16 plies with the fibers in the 

panel being aligned along the Y-direction (Fig. 42). 
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(a) 

 

 

(d) 

 

(b) 

 

(e) 

 
(c) 

 

 
(f) 

Fig. 41. Impact Structural Test (a) Small Impact Gun (b) 12” x 12” Panel with a 10” 

Circular Clamping Pattern (c) Inside View of Test Chamber (d) 50 gm Hollow Al-2024 

Projectile With Radiused Front Face (e) Another View of the Projectile (f) Engineering 

Drawing of the Projectile (Units: Inches) 
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A 50.8 gm projectile (Fig. 41(d)-(f)) was fired at the panel at a velocity of 27.4 

ft/s (projectile moves left to right in Fig. 41(c)) and impacted approximately 0.70 inches 

below the center of the panel.  The projectile did not impact the center due to its low 

velocity and gravitational forces.  Examination of the panel (LVG906) after impact 

showed no visible damage or cracks. Experimental data was obtained using digital image 

correlation (DIC) on the back side of the plate so as produce full-field displacements and 

strains across the unsupported region. A finite element model of the test was created (Fig. 

42) to replicate the test conditions. 

  

(a) (b) 

 

(c) 

Fig. 42. LS-DYNA Finite Element Model (a) Back View, (b) Side View (c) Front View 
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The boundary conditions were applied to the plate in a way that mimicked the 

manner the plate was supported in the test frame. The bolted assembly shown in Fig. 

41(c) was modeled by fixing the X,Y,Z translational displacements of the nodes in the 

gripping region of the panel. The composite plate was modeled with 288,000 8-noded 

hexahedral elements. A typical element is 0.05 x 0.05 x 0.0244 inches with 5 elements 

through the thickness of the panel. The aluminum impactor was modeled with 27,200 8-

noded hexahedral elements. Two material models in LS-DYNA were used to model the 

composite plate in two separate finite element models so as to compare their performance 

- MAT22 (Table 11) and MAT213, current and new models, respectively. The aluminum 

impactor was modeled using MAT24 (Piecewise_Linear_Plasticity) with the material 

properties given in Table 12. Contact between the plate and the impactor was controlled 

using the LS-DYNA keyword *Contact_Eroding_Surface_To_Surface. 
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Table 11. MAT22 Material Parameters 

Model Parameter Value 

Mass density (lb-s2/in) 1.4507(10-4) 

Ea (psi) 21.83(106) 

Eb (psi) 1.145(106) 

Ec (psi) 1.145(106) 

baν
 

0.01385 

baν
 

0.01385 

baν
 

0.3792 

Gab (psi) 0.5796(106) 

Gbc (psi) 0.3243(106) 

Gca (psi) 0.5796(106) 

Shear Strength, SC (psi) 0.01376(106) 

Longitudinal Tensile Strength, XT 

(psi) 
0.412(106) 

Transverse Tensile Strength, YT 

(psi) 
0.00872(106) 

Transverse Compressive Strength, 

YC (psi) 
0.0243(106) 

Alpha 0.0 

Normal Tensile Strength, SN (psi) 0.00872(106) 

Transverse Shear Strength, SYZ 

(psi) 
0.015(106) 

Transverse Shear Strength, SZX 

(psi) 
0.01376(106) 

 

Table 12. MAT24 Material Properties 

Model Parameter Value 

Mass density (lb-s2/in) 
2.539(10-

4)          

E 10.30(106) 

ν  0.334 

Yield Stress, SIGY 42500 

Tangent Modulus, 

ETAN 
42000 
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Two comparison metrics were used - the maximum out-of-plane (Z-direction) 

displacement and the contour of the out-of-plane displacements, both on the back face of 

the plate. The contour plots are shown in Fig. 15 at the same time (0.0007s).  The 

MAT213 results (Fig. 43(d)) are very similar to that of impact test (Fig. 43(b)), with a 

rounded shape that is slightly elongated in the fiber direction.  The results from using 

MAT22 (Fig. 43(c)), shows a more elongated distribution of displacements in the fiber 

direction.  

  

(a) (b) 

  

(c) (d) 

Fig. 43. (a) Plot of Experimental Data Showing Center of Panel, Point of Impact and 

Location of the Max. Z-Displacement; Out-of-Plane Displacement Contours at t=0.0007s 

for (b) Experiment (c) MAT22 Simulation and (d) MAT213 Simulation 
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A quantitative validation was performed by comparing the maximum out-of-plane 

(Z) displacement as a function of time.  The out-of-plane displacement vs time results for 

the test and the simulations are plotted in Fig. 44.  Two values from the test are used – 

one is the Z-displacement from the center of the plate and the other is the max. Z-

displacement. As Fig. 43(a)-(b) show, in the experiment, the point of impact (POI) is 

approximately 0.7 inches below the center of the panel and the point of maximum Z-

displacement is approximately 0.7 inches above the center of the panel. However, in the 

finite element models, the POI is taken as the center of the model.  

 

Fig. 44. Maximum Out-of-Plane (Z) Displacement Versus Time Plot for the Impact Test, 

and MAT22 and MAT213 Simulations. In Addition, the Z-Displacement at the Center of 

the Plate for the Impact Test is Also Shown. 

In the finite element models, the maximum Z-displacement occurs at the center of 

the plate. The MAT213 results show a good agreement with the test results. The first 

(positive) peak displacement value is very close to the test value at the same time. The 
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first negative peak value is also close to the test value (marginally larger than test value) 

though it occurs at an earlier time. Similarly, the second positive peak value (that is about 

40% of the first peak value) is larger than the test result and occurs at an earlier time. The 

MAT22 results show different trends. The first (positive) peak displacement value is 

higher by about 30% and occurs at about the same time as the test. The first negative 

peak value is substantially smaller than the test value and like MAT213, occurs at an 

earlier time. Similarly, the second positive peak value in the MAT22 curve is 

substantially larger than the test result and occurs at an earlier time. It should be noted 

that the MAT22 model is designed for use with composites exhibiting brittle failure ( 

(Chang and Chang 1987a) (Chang and Chang 1987b)) and may require extensive tuning 

with its strength parameters for the T800/F3900 composite behavior. 

There are a few differences between the impact test and finite element models that 

should be noted. First, the POI locations are not the same. Second, in the impact test, the 

projectile impact was not a direct hit, i.e. the roll, pitch and yaw angles were not all zero. 

However, zero roll, pitch and yaw angles were assumed in the finite element models. 

Third, while cracks were not visible on the tested panel, it is likely that the panel suffered 

permanent damage, albeit of small magnitudes near the center of the panel. The current 

implementation of MAT213 does not include a damage model, or rate sensitivity. Lastly, 

it is likely that the period differences in the test and FE models is partly due to no 

damping parameters being used in the FE models.  
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 Concluding Remarks 

Composite materials are now beginning to provide uses hitherto reserved for 

metals, particularly in applications where impact resistance is critical. Such applications 

include structures such as airframes and engine containment systems, wraps for repair 

and rehabilitation, and ballistic/blast mitigation systems. While material models exist that 

can be used to simulate the response of a variety of materials in these demanding 

structural applications under impact conditions, the mature material models have focused 

on simulating the response of standard materials such as metals, elastomers and wood.  

Material models to simulate the nonlinear and/or impact response of composites have 

been developed, but the maturity and capabilities of these models are at a much lower 

level than those that have been developed for standard materials.  General constitutive 

models designed for simulating the impact response of composite materials generally 

require three components – an elastic and inelastic deformation capability that relates 

deformations to strains and stresses, a damage capability that captures the stiffness 

degradation of the material, and a failure capability. Incorporating these three 

components - deformation, damage and failure (DDF), into a single unified model that is 

applicable for use for a wide variety of composite material systems and architectures is a 

significant challenge that this dissertation has addressed. 

 In this dissertation, a new orthotropic elasto-plastic computational constitutive 

material model has been developed to predict the response of composite materials during 

high velocity impact simulations. The model is driven by experimental stress-strain curve 

data stored as tabular input allowing for a very general material description. These stress-

strain curves, in general, can be temperature and/or rate-dependent. The yield function is 
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based on the Tsai-Wu composite failure model, and a suitable nonassociated flow rule is 

defined. The current version has been implemented in a special version of LS-DYNA as 

MAT213 and supports the use of all solid finite elements. In addition to temperature and 

rate dependencies, the current model has the ability to handle user-specified damage 

parameters. For the damage model, a strain equivalent formulation is utilized to allow for 

the uncoupling of the deformation and damage analyses.  In the damage model, a 

diagonal damage tensor is defined to account for the directionally dependent variation of 

damage.  However, in composites it has been found that loading in one direction can lead 

to damage in multiple coordinate directions.  To account for this phenomena, the terms in 

the damage matrix are semi-coupled such that the damage in a particular coordinate 

direction is a function of the stresses and plastic strains in all of the coordinate directions. 

Several methods have been developed as a part of the implementation plan. First, 

tabulated stress-strain data is used to track the evolution of the yield stresses as a function 

of the effective plastic strain. This makes it possible to faithfully reproduce the 

experimental results without resorting to approximations. Second, procedures have been 

developed to adjust selected coefficients in the yield function in order to ensure a convex 

yield surface.  Third, a numerical algorithm based on the radial return method has been 

developed to compute the evolution of the effective plastic strain, leading to the required 

computation of the stresses and the evolution of the yield stresses in each of the 

coordinate directions.  The radial return methodology has been modified to account for 

the yield surface rotation that takes place due to the anisotropic plasticity law.   

A rigorous verification and validation procedure has been followed to ensure that 

the computer implementation is correct as well as the theory can be validated against 
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experimental data. The validation tests have been used to verify both the deformation as 

well as the damage models using both real as well as synthetic data. The results from the 

validation tests are encouraging. The implemented constitutive model is able to reproduce 

the set of experimental stress-strain curves – the off-axis tension tests. The results at the 

tail end of the curves are likely to improve as the damage model is refined. In addition, a 

low-velocity impact modeling problem yields acceptable deformation and stress 

distributions. 

Future work include the following – support for shell elements, addition of failure 

model to the implemented framework, validation of the entire DDF model using high-

velocity impact data etc. 
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APPENDIX A 

THEORY OF ORTHOTROPIC CONSTITUTIVE MATERIAL MODELING 
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The material model developed in this dissertation is built upon an orthotropic, or 

orthogonally anisotropic) constitutive material model. The model is general enough to 

model a large majority of composite (specifically PMC or FRC) materials with three 

mutually perpendicular (90 degrees apart) material planes.  The orthotropic material 

model is a simplification of the most general anisotropic formulation relating the stresses 

and strains as  
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  (A.1) 

 
where the stiffness matrix, C, is symmetric due to energy considerations, requiring 21 

independent elastic constants (Solecki and Conant 2003).  Therefore, assuming two or 

three mutually perpendicular planes of elastic symmetry, the anisotropic constitutive 

relationship defined in Eqn. (A.1), can be reduced the orthotropic relationship, with 9 

independent elastic constants, defined as 
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The 9 stiffness matrix coefficients are defined in Eqn. (3.3), with respect to the 6 elastic 

moduli and 3 elastic Poisson’s ratios.  The dependencies of these parameters are 

described below. 
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APPENDIX B 

NONASSOCIATED PLASTICITY 
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The classical plasticity theory using associated plasticity assumes that the 

increment of plastic strain be normal to the yield surface, where the plastic potential 

function is defined as 

 p fλ ∂
=

∂
ε

σ


   (B.1) 

which is based on Drucker’s stability postulate which works well for metals (Khan and 

Huang 1995).  However, associated plasticity is not ideal for most composites with 

various degrees of plastic anisotropy.  For example, the T800/F3900 unidirectional 

composite described in Chapter 4, exhibits linear elastic behavior, when a unidirectional 

load is applied in the fiber direction.  This would indicate that there is no plastic flow, or 

strain accumulation with respect to the fiber direction, but the associated plastic potential 

function in Eqn. (B.1) cannot accommodate this.  Thus, nonassociated plasticity is 

required in creating a generalized composite material model (defined in Eqns. (2.10) and 

(2.19)), as the flow law coefficents for the nonassociated plastic potential function can be 

determined through experimentation, described in Chapter 2, to accurately model the 

anisotropic plastic flow.   

Additional proof† that non-associated plasticity must be used for a generalized 

composite model (with a Tsai-Wu yield surface) is shown here: Consider isotropic Tsai-

Wu flow rule: 

2 2
1 2vmf A p A pσ= − −  

1 2
1 2

3 21 12 2 3
2 3 3 3 3

p xx
xx vm xx

xx vm

s A pAf A pA sε σ
σ σ
∂    ≈ = − − − − = + +   ∂    



 

                                                 

† Provided by Dr. Paul DuBois, private communications, March 2016. 
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1 22p
vol

xx yy zz

f f f A pAε
σ σ σ
∂ ∂ ∂

≈ + + = +
∂ ∂ ∂



 

In uniaxial tension 

( ) 21 2 2
3

p p
vol p xx xx xx xxand s p pε ν ε σ σ= − = + = = − 

 

( ) [ ]1 2 1 2

1 2
2 9 2

3
p

xxA pA s A pA
ν−

+ = + +
 

( ) [ ]1 2 1 2

1 2
2 18 2

3
pA pA p A pA

ν−
+ = − + +

 

( ) [ ] 2
1 2 2

2

1 2 9 20 2 18 2
3 18 2

p
p

AIFF A A A
A

ν
ν

− +
= ⇒ = − + ⇒ =

−  

The final equation above shows that the plastic Poisson’s ratio can assume any value 

which is non-physical. 
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APPENDIX C 

CONSTITUTIVE PARAMETER DEPENDENCIES 
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The orthotropic stiffness or compliance matrix, shown in Eqn. (3.3), is symmetric 

with 9 independent coefficients.  However, the symmetric indices of the normal 

components of the matrix are functions of the inverse elastic Poisson’s ratios, with the 

expanded orthotropic compliance matrix defined as  

 

3121

11 22 33

3212

11 22 33

13 23

11 22 33

23

31

12

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0

1 0

1

vv
E E E

vv
E E E
v v
E E E

G

Sym
G

G

 − − 
 
 
− − 
 
 
− − 
 =
 
 
 
 
 
 
 
 
  

S   (C.1) 

 Therefore, there are a total of 12 elastic parameters, with 6 elastic moduli and 6 elastic 

Poisson’s ratios, but the symmetry of the compliance matrix then produces the following 

relationships 

 

21 12 22
12 21 21 12

22 11 11

31 13 33
13 31 31 13

33 11 11

32 23 33
23 32 32 23

33 22 22

v v ES S v v
E E E

v v ES S v v
E E E

v v ES S v v
E E E

= = − = − ⇒ =

= = − = − ⇒ =

= = − = − ⇒ =

  (C.2) 

which shows that only 3 of the elastic Poisson’s ratios are independent, resulting in the 9 

independent elastic parameters for the orthotropic material model. 
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APPENDIX D 

EXAMPLE OF TEMPERATURE AND STRAIN RATE INTERPOLATIONS 
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This section of the Appendix details the implementation of temperature and strain 

rate dependencies in the MAT213 deformation model, including input data structure and 

pertinent added functionalities. Below is a representative table showing the new structure 

used for the temperature and strain rate dependent input curves (stress-strain), as well as 

the LS-DYNA keyword definition of the 2D and 3D tables. 

 
 

Table 13. Example Data Layout 
 

Test 
(T1) 

DEFINE_TABLE_3D 
(Strain Rate) 

DEFINE_TABLE_2D 
(Temperature) 

Table 1 

SR1 Table 2 
Curve 1: T1 
Curve 2: T2 
Curve 3: T3 

SR2 Table 3 
Curve 4: T1 
Curve 5: T2 
Curve 6: T3 

SR3 Table 4 
Curve 7: T1 
Curve 8: T2 
Curve 9: T3 

 
 

Table 14. LS-DYNA Table/Curve Definition Card 
 

DEFINE_TABLE_2D/3D 
Card/Var 1 2 3 4 5 6 7 8 

1 TBID SFA OFFA      

2 VALUE CURVEID/ 
TABLEID       

 
 
 
 
 
 
 
 

Variable  Description 
TBID  Table ID. Tables and Load curves may not share 

common ID's. 
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LS-DYNA allows load curve ID's and table ID's to 
be used interchangeably. 
 

SFA  Scale factor for VALUE. 
 

OFFA  Offset for VALUE, see explanation below. 
 

VALUE  Load curve will be defined corresponding to this 
value. The value could be, for example, a strain rate. 
 

CURVEID/TABLEID  Load curve ID (2D);  Table ID (3D). 
 

 

D.1  Interpolation of Stress-Strain Data from Input Curves 

Interpolation of stress-strain data that are dependent of strain rate and temperature 

will be carried out using the *DEFINE_TABLE_3D keyword in LS-DYNA. The concept 

map is shown in Table 15 where Table_3D is used to store rate dependent data and 

Table_2D is used to store the corresponding temperature dependent data.  

 
Table 15. Conceptual Map of Strain Rate and Temperature Dependent Data 

   

Test 
(T1) 

DEFINE_TABLE_3D 
(Strain Rate) 

DEFINE_TABLE_2D 
(Temperature) 

Table 1 

Table 2: SR1 Table 2 
Curve 1: T1 
Curve 2: T2 
Curve 3: T3 

Table 3: SR2 Table 3 
Curve 4: T1 
Curve 5: T2 
Curve 6: T3 

Table 4: SR3 Table 4 
Curve 7: T1 
Curve 8: T2 
Curve 9: T3 

 

Functions to interpolate the ordinate (y-value) of the curve are available as current 

subroutines in LS-DYNA, e.g. crvval and tabval.  The crvval function interpolates the 
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ordinate value using a given abscissa value of a curve, whereas the tabval function 

interpolates in a similar fashion but with using values from Table_2D. For example, 

given a value of effective plastic strain ( )iλ  and temperature ( )iT , an interpolated yield 

stress value ( )
iyσ  is returned from tabval.  However, currently there is no function with 

capabilities to interpolate an ordinate value from Table_3D, i.e. given effective plastic 

strain ( )iλ , temperature ( )iT  and strain rate ( )iε , an interpolated yield stress value ( )
iyσ  

cannot be interpolated. 

 
This functionality has been built in a subroutine that is called from MAT213.  The 

algorithm is described in detail below (refer to Table 15 for sample notation). 

1. Input: Effective plastic strain ( )iλ , temperature ( )iT  and strain rate ( )iε  values. 
2. Check if iε  is between the strain rate values from the input as follows (note input 

to tabval are ( )iλ  and ( )iT temperature): 
a. If  1i SRε ≤ , then use SR1 data.  
b. Else if 1 2iSR SRε< ≤ , then use tabval with data from Table 2 and Table 3. 
c. Else if 2 3iSR SRε≤ ≤ , then use tabval with data from Table 3 and Table 4. 
d. Else if 3i SRε ≥ , then use SR3 data. 
e. The reduced temperature interpolated data is shown in Table 16. 

 
 

Table 16. Interpolated Values after Temperature Interpolation 
 

Test 
(T1) 

DEFINE_TABLE_3D 
(Strain Rate) 

DEFINE_TABLE_2D 
(Temperature) 

Table 1 

SR1 1

i

SR
yσ  

SR2 2

i

SR
yσ  

SR3 3

i

SR
yσ  

 
3. With the yield stress ( )

iyσ  values interpolated for the lower and upper bounds of 
the strain rate (Table 16), the yield stress can then be interpolated between the two 
strain rates (linearly) as 
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( )i i

i i

SR SR
y ySR

y y i SR
SR SR
σ σ

σ σ ε
+ −

− −
+ −

−
= + −

−
  

where SR− and SR+  are the lower and upper bounds on the strain rate iε  with 

corresponding yield stresses as 
i

SR
yσ

−

 and 
i

SR
yσ

+

. 

 
Numerical Example: 
 

A plot of the 9 curves representing the example data structure from Table 15 is 

shown below in Fig. 45, with curves of like temperature having the same color and like 

strain rate having the same line type. 

 

 
Fig. 45. Stress Strain Curves at Variable Temperature and Strain Rates 
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Using the data structure from Table 15 and assuming an effective plastic strain value of 

0.04iλ = , temperature of 40o
iT C=  and strain rate of 4 /i sε = , the values of each curve 

at this value of effective plastic strain are shown in Table 17 below. 

 
Table 17. Example Map of Strain Rate and Temperature Dependent Data 

 

Test 
(T1) 

DEFINE_TABLE_3D 
(Strain Rate) 

DEFINE_TABLE_2D 
(Temperature) 

Table 1 

Table 2: 10-3/s  Table 2 
Curve 1 (10C) : 33,536 
Curve 2 (21C): 30,487 
Curve 3 (50C): 24,390 

Table 3: 1/s Table 3 
Curve 4 (10C): 36,890 
Curve 5 (21C): 33,536 
Curve 6 (50C): 26,829 

Table 4: 10/s Table 4 
Curve 7 (10C): 43,597 
Curve 8 (21C): 39,633 
Curve 9 (50C): 31,707 

 
The function tabval in LS-DYNA utilizes the effective plastic strain and 

temperature values to interpolate the corresponding yield stresses from the lower and 

upper bounds of the strain rate (Table 17  and Table 18), which are shown in Table 18 

below. 

 
Table 18. Example Interpolated Values after Temperature Interpolation 

 

Test 
(T1) 

DEFINE_TABLE_3D 
(Strain Rate) 

DEFINE_TABLE_2D 
(Temperature) 

Table 1 
1/s 29,142 
10/s 34,440 

 
Finally, the yield stress values obtained from tabval (interpolation for temperature 

and effective plastic strain of curves) can be used to interpolate between the lower and 
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upper bound strain rates for 4 /i sε = , which results in a final yield stress value of 

( )0.04,40 C,4 / s
i

o
yσ = 30,908 psi . 

 
 
 
 
D.2  Interpolation of Modulus from Stress-Strain Data from Input Curves 

 
The addition of temperature and strain rate dependency in MAT213 required the 

addition of 3D interpolation to determine the yield stress from the input stress strain 

curves.  This also requires the interpolation of the elastic modulus for the 12 directions 

given a temperature and strain rate.  The first step to determining the elastic modulus for 

a specific curve of one of the directions is to define the initial yield strain which can then 

be used to determine the corresponding initial yield stress value from the input stress 

strain curve.  The modulus is then calculated as this initial yield stress divided by the 

defined initial yield strain value.  Due to the multiple stress-strain curves associated with 

each direction, the number of inputs for the individual initial plastic strain values is equal 

to the number of curves, which can increase quickly with additional temperatures and 

strain rates.  Thus, it is not possible to have all the initial yield strain values as direct 

input in the material card, so the values will be defined using a curve (*Define_Curve) 

with the abscissa and ordinate values being the stress-strain curve ID and the 

corresponding initial yield strain, respectively.  This curve can then be used to convert the 

curves from true strain to effective plastic strain, as well as determining the elastic 

modulus.  An example structure for this table, following the same data from above is 

shown below in Table 19. 
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Table 19. Input Curve Containing Initial Strain Rate Values 
 

Load Curve Initial Plastic Strain 
LC1 

0

1LC
yε  

LC2 
0

2LC
yε  

LC3 
0

3LC
yε  

LC4 
0

4LC
yε  

LC5 
0

5LC
yε  

LC6 
0

6LC
yε  

LC7 
0

7LC
yε  

LC8 
0

8LC
yε  

LC9 
0

8LC
yε  

 
 

In order to interpolate the elastic modulus for a given temperature and strain rate, the 3D 

table containing the stress-strain data with respect to temperature, Table 15, and strain 

rate is utilized along with the initial plastic strain curve, Table 19.   

The elastic modulus interpolation is implemented in a subroutine that will be called 

from MAT213.  The proposed algorithm is described in detail below (refer to Tables A 

and E for sample notation). 

1. Input:  Plastic strain curve ID, temperature ( )iT  and strain rate ( )iε  values. 
2. Check if iε  and iT  is between the strain rate and temperature values from the 

input as follows: 
a. If  1i SRε ≤ , then use SR1 data.  

i. If  1iT T≤ , then use T1 data to calculate the modulus.  
ii. Else if 1 2iT T T< ≤ , then interpolate modulus with data from Curve 

1 and Curve 2. 
iii. Else if 2 3iT T T≤ ≤ , then interpolate modulus with data from Curve 

2 and Table 3. 
iv. Else if 3iT T≥ , then use T3 data to calculate the modulus. 

b. Else if 1 2iSR SRε< ≤ , then interpolate with data from Table 2 and Table 3 
using the same temperature checks as steps a.i-a.iv above.  
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c. Else if 2 3iSR SRε≤ ≤ , then interpolate with data from Table 3 and Table 4 
using the same temperature checks as steps a.i-a.iv above. 

d. Else if 3i SRε ≥ , then use SR3 data using the same temperature checks as 
steps a.i-a.iv above. 

e. The reduced temperature interpolated data is shown in Table 20. 
 
 

Table 20. Interpolated Modulus Values after Temperature Interpolation 
 

Test 
(T1) 

DEFINE_TABLE_3D 
(Strain Rate) 

DEFINE_TABLE_2D 
(Temperature) 

Table 1 

SR1 1SRE  

SR2 2SRE  

SR3 3SRE  
 

3. With the elastic modulus ( )E  values interpolated for the lower and upper bounds 
of the strain rate (Table 20), the elastic modulus can then be interpolated between 
the two strain rates (linearly) as 

  

( )
SR SR

SR
i

E EE E SR
SR SR

ε
+ −

− −
+ −

−
= + −

−
  

where SR− and SR+  are the lower and upper bounds on the strain rate iε  with 

corresponding elastic modulus as SRE
−

 and SRE
+

. 

 
Numerical Example: 

The same data from the yield stress interpolation is used here, with a plot of the 9 

curves representing the example data structure from Table 15 is shown below in Fig. 1, 

with curves of like temperature having the same color and like strain rate having the same 

line type.  Using the data structure from Table 15 and assuming the initial plastic strain 

values are 0.02, a temperature of 40o
iT C=  and strain rate of 4 /i sε = , the elastic 

modulus values of each curve are shown in Table 21 below. 
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Table 21. Example Map of Strain Rate and Temperature Dependent Data (Modulus) 
 

Test 
(T1) 

DEFINE_TABLE_3D 
(Strain Rate) 

DEFINE_TABLE_2D 
(Temperature) 

Table 1 

Table 2: 10-3/s  Table 2 
Curve 1 (10C): 1,250,663 
Curve 2 (21C): 1,136,966 
Curve 3 (50C): 909,573 

Table 3: 1/s Table 3 
Curve 4 (10C): 1,375729 
Curve 5 (21C): 1,250,663 
Curve 6 (50C): 1,000,530 

Table 4: 10/s Table 4 
Curve 7 (10C): 1,625,861 
Curve 8 (21C): 1,478,056 
Curve 9 (50C): 1,182,445 

 
 

Utilizing the interpolation algorithm outlined above, the elastic modulus values after 

temperature interpolation are shown below in Table 22. 

 
Table 22.  Example Interpolated Values after Temperature Interpolation 

 

Test 
(T1) 

DEFINE_TABLE_3D 
(Strain Rate) 

DEFINE_TABLE_2D 
(Temperature) 

Table 1 
1/s 1,086,783 
10/s 1,284,280 

 
Finally, the elastic modulus values obtained (interpolation for temperature and 

effective plastic strain of curves) can be used to interpolate between the lower and upper 

bound strain rates for 4 /i sε = , which results in a final elastic modulus value of 

( )22 40 C,4 / soE = 1,152,648 psi . 
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D.3  Verification Tests for Temperature and Strain Rate Dependencies in MAT213 

Verification of the temperature and strain rate dependent functionality in 

MAT213 was initially performed using the tension 2-direction verification test used in 

the deformation model, with the original input curves as well as scaled curves to 

represent temperature and strain rate dependent data.  The updated user input for the 

model is shown in Table 23 below, with the original input variables equal to those used in 

the deformation model. 

Table 23.  Example Interpolated Values after Temperature Interpolation 
 
Card/Var 1 2 3 4 5 6 7 8 

1 MID RO EA EB EC PRBA PRCA PRCB 
2 GAB GCB GCA KFAIL AOPT MACF   
3 XP YP ZP A1 A2 A3   
4 V1 V2 V3 D1 D2 D3 BETA  
5         
6 PR12 PR23 PR13 H11 H22 H33 G12 G23 
7 G13 G44 G55 G66 LT1 LT2 LT3 LT4 
8 LT5 LT6 LT7 LT8 LT9 LT10 LT11 LT12 
9 YSC TEMP       
10         
11         

 
*MAT_AWG_COMPOSITE_DAMAGE 
$#     mid        ro        Ea        Eb        Ec      PRba      PRca      PRcb 
       213 1.4570E-4   21.83E6   1.145E6   1.145E6  0.013847  0.013847    0.3792 
$#     Gab       Gbc       Gca     Kfail      AOPT      MACF 
  0.5796E6  0.3243E6  0.5796E6  0.000000     2.000     0.000 
$#      xp        yp        zp        a1        a2        a3 
     0.000     0.000     0.000  1.000000 -0.577350     0.000 
$#      v1        v2        v3        d1        d2        d3      beta 
     0.000     0.000     0.000  1.000000  1.732050     0.000     0.000 
$#      sc        xt        yt        yc      alph        sn       syz       szx 
  1.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
$#    pr12      pr23      pr13       G11       G22       G33       G12       G23 
  0.264000  0.379200  0.264000   0.00000   1.00000   1.00000  0.000000  -0.66840 
$#     G13       G44       G55       G66       LT1       LT2       LT3       LT4 
  0.000000   7.70000   6.10000   7.70000      1001      1002      1003      1004 
$#     LT5       LT6       LT7       LT8       LT9      LT10      LT11      LT12  
      1005      1006      1007      1008      1009      1010      1011      1012   
$#     YSC      TEMP  
       100      36.0 
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Verification Test 1: Temperature and Strain Rate Independent (Same as Before) 
 

In order to mimic the original verification test with the new temperature and rate 

dependent input, the same quasi-static, room temperature data is used.  However, LS-

DYNA requires a minimum of two curves in the 2D table definition, but only one table in 

the 3D table definition.  Thus, a minimum of two curves must be defined for each of the 

12 input test cases; which, in the case of temperature and strain rate independent data, 

will just be two identical copies.  A sample input data defined for this case is shown 

below, note the actual curve data is not shown. 

 
 
*DEFINE_CURVE 
$$ Curve of initial yield strain values 
$$ a-Curve ID’s    o-Initial Yield Strain Values 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
       100         0     0.000     0.000     0.000     0.000         0 
$#                a1                  o1 
$Strain Rate:0.001; Temp:21 
                   1               1.000 
                   2               0.020 
                   3               0.020 
                   4               1.000 
                   5               0.020 
                   6               0.020 
                   7               0.006 
                   8             0.01210 
                   9               0.006 
                  10             0.00898 
                  11               0.020 
                  12             0.00898 
$ Strain Rate:0.001; Temp:50 
                  13               1.000 
                  14               0.020 
                  15               0.020 
                  16               1.000 
                  17               0.020 
                  18               0.020 
                  19               0.006 
                  20             0.01210 
                  21               0.006 
                  22             0.00898 
                  23               0.020 
                  24             0.00898 
$     
*DEFINE_TABLE_3D 
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$$ T2 
$$ Strain Rate Values 
$#    tbid       sfa      offa 
      1002         0     0.000 
$#             value            tableid 
               0.001               1014 
*DEFINE_TABLE 
$$ Temperature Values at 0.001 
$#    tbid       sfa      offa 
      1014         0     0.000 
$#             value            
                  21 
                  50   
*DEFINE_CURVE 
$$ Stress Strain Curve for 0.001,21 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
         2         0     0.000     0.000     0.000     0.000         0$#                     
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
*DEFINE_CURVE 
$$ Stress Strain Curve for 0.001,50 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
        14         0     0.000     0.000     0.000     0.000         0$#                 
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
 
 

The results for 2-direction tension test with temperature and strain rate 

independent data are shown in Fig. 46.  The simulation was run with the same parameters 

as the original 2-direction tension verification test, resulting in a strain rate of 0.0625 1/s 

and an arbitrary constant temperature of 36° C.  These results match the quasi-static, 

room temperature input curve, which was copied as input for 21° C and 50° C degrees.  
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Fig. 46. Temperature and Strain Rate Independent Verification Test    
 

 
Verification Test 2: Temperature Independent with 2 Strain Rates  

The second varication test performed, included strain dependent data defined at 

two strain rates with no effect from temperature.  The same quasi-static, room 

temperature 2-direction tension stress-strain curve was scaled to demonstrate strain rate 

dependent data.  To represent strain dependent only data, two strain rate values of 0.001 

and 0.1 1/s were used with a scale factor of 1.1 applied to the base curve, used for the 

latter.  Like the first verification test, a minimum of two curves must be defined for each 

of the 12 input test cases, but with an additional strain rate, a total of 4 curves are defined 

for each test case.  Thus the 2 curves associated with the strain rate of 0.1 are copies of 

the base curve scaled by a factor of 1.1, whereas the 2 curves representing a strain rate of 

0.001 are unmodified copies of the base curve.   A sample input data defined for this case 

is shown below, note the actual curve data is not shown. 
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*DEFINE_CURVE 
$$ Curve of initial yield strain values 
$$ a-Curve ID’s    o-Initial Yield Strain Values 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
       100         0     0.000     0.000     0.000     0.000         0 
$#                a1                  o1 
$Strain Rate:0.001; Temp:21 
                   1               1.000 
                   2               0.020 
                   3               0.020 
                   4               1.000 
                   5               0.020 
                   6               0.020 
                   7               0.006 
                   8             0.01210 
                   9               0.006 
                  10             0.00898 
                  11               0.020 
                  12             0.00898 
$ Strain Rate:0.001; Temp:50 
                  13               1.000 
                  14               0.020 
                  15               0.020 
                  16               1.000 
                  17               0.020 
                  18               0.020 
                  19               0.006 
                  20             0.01210 
                  21               0.006 
                  22             0.00898 
                  23               0.020 
                  24             0.00898 
$ T2/T4 Strain Rate:0.1; Temp:21/50  
                  25                0.02 
                  26                0.02 
                  27                0.02 
                  28                0.02 
$     
*DEFINE_TABLE_3D 
$$ T2 
$$ Strain Rate Values 
$#    tbid       sfa      offa 
      1002         0     0.000 
$#             value            tableid 
               0.001               1014 
                 0.1               1025 
*DEFINE_TABLE 
$$ Temperature Values at 0.001 
$#    tbid       sfa      offa 
      1014         0     0.000 
$#             value            
                  21 
                  50   
*DEFINE_CURVE 
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$$ Stress Strain Curve for 0.001,21 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
         2         0     0.000     0.000     0.000     0.000         0$#                     
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
*DEFINE_CURVE 
$$ Stress Strain Curve for 0.001,50 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
        14         0     0.000     0.000     0.000     0.000         0$#                 
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
*DEFINE_TABLE 
$$ Temperature Values at 0.001 
$#    tbid       sfa      offa 
      1025         0     0.000 
$#             value           
                  21 
                  50   
*DEFINE_CURVE 
$$ Stress Strain Curve for 0.1,21 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
        25         0     0.000     1.100     0.000     0.000         0$#                     
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
*DEFINE_CURVE 
$$ Stress Strain Curve for 0.1,50 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
        26         0     0.000     1.100     0.000     0.000         0$#                 
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
 

The results for 2-direction tension test with strain rate only dependent data are 

shown in Fig. 47.  The simulation was run with the same parameters as the original 2-

direction tension verification test, resulting in a strain rate of 0.0625 1/s and an arbitrary 

constant temperature of 36° C.  The simulated curve is correctly interpolated between the 

quasi-static and increased 1.1 1/s strain rate curves. 
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Fig. 47. Verification Test with Two Strain Rates and Independent of Temperature 
 

 
Verification Test 3: Strain Rate Independent with 2 Temperatures 

The third verification test performed included temperature dependent data defined 

at two temperatures with no effect from strain rate.  The same input curves as in the first 

verification test (2 input curves per test case) were used, but the curve defined for 50° C 

was scaled by 0.8 for the base 2-direction tension curve. A sample input data defined for 

this case is shown below, note the actual curve data is not shown. 

 
 
*DEFINE_TABLE_3D 
$$ T2 
$$ Strain Rate Values 
$#    tbid       sfa      offa 
      1002         0     0.000 
$#             value            tableid 
               0.001               1014 
*DEFINE_TABLE 
$$ Temperature Values at 0.001 
$#    tbid       sfa      offa 
      1014         0     0.000 
$#             value            
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                  21 
                  50   
*DEFINE_CURVE 
$$ Stress Strain Curve for 0.001,21 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
         2         0     0.000     0.000     0.000     0.000         0$#                     
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
*DEFINE_CURVE 
$$ Stress Strain Curve for 0.001,50 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
        14         0     0.000     0.800     0.000     0.000         0$#                 
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
 

The results for 2-direction tension test with temperature only dependent data are 

shown in Fig. 48.  The simulation was run with the same parameters as the original 2-

direction tension verification test, with a constant temperature of 36° C defined.  The 

simulated curve is correctly interpolated between the 21° C (RT) and increased 50° C 

temperature curves. 

 
 

 
 

Fig. 48. Verification Test with Two Temperatures and Independent of Strain Rate 
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Verification Test 4: 2 Strain Rate with 2 Temperatures 

The final verification test performed included both temperature and strain 

dependent data defined at two temperatures and two strain rates.  The same input curves 

as in the second verification test (4 input curves per test case) were used, but the curves 

defined for 50° C were scaled by 0.8 and the curves defined for a strain rate of 0.1 were 

scaled by 1.1, from the base 2-direction tension curve. A sample input data defined for 

this case is shown below, note the actual curve data is not shown. 

 
 
*DEFINE_TABLE_3D 
$$ T2 
$$ Strain Rate Values 
$#    tbid       sfa      offa 
      1002         0     0.000 
$#             value            tableid 
               0.001               1014 
                 0.1               1025 
*DEFINE_TABLE 
$$ Temperature Values at 0.001 
$#    tbid       sfa      offa 
      1014         0     0.000 
$#             value        
                  21 
                  50   
*DEFINE_CURVE 
$$ Stress Strain Curve for 0.001,21 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
         2         0     0.000     0.000     0.000     0.000         0$#                     
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
*DEFINE_CURVE 
$$ Stress Strain Curve for 0.001,50 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
        14         0     0.000     0.800     0.000     0.000         0$#                 
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
*DEFINE_TABLE 
$$ Temperature Values at 0.001 
$#    tbid       sfa      offa 
      1025         0     0.000 
$#             value  
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                  21 
                  50   
*DEFINE_CURVE 
$$ Stress Strain Curve for 0.1,21 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
        25         0     0.000     1.100     0.000     0.000         0$#                     
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
*DEFINE_CURVE 
$$ Stress Strain Curve for 0.1,50 
$#    lcid      sidr       sfa       sfo      offa      offo    dattyp 
        26         0     0.000     0.880     0.000     0.000         0$#                 
                  a1                  o1 
                 0.0                 0.0 
                 1.0                 0.0 
 

The results for 2-direction tension test with both temperature and strain rate 

dependent data are shown in Fig. 49.  The simulation was run with the same parameters 

as the original 2-direction tension verification test, resulting in a strain rate of 0.0625 1/s 

with a constant temperature of 36° C defined.  The simulated curve is correctly 

interpolated between the coupled temperature (21° C (RT) and 50° C) and strain rate 

dependent (0.001 and 0.1 1/s) input curves. 
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Fig. 49. Verification Test with Two Temperatures and Two Strain Rates 
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