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ABSTRACT

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses vari-

ous control objectives for ground vehicles. There are two main objectives within this

thesis, first is the use of visual information to control a Differential-Drive Thunder

Tumbler (DDTT) mobile robot and second is the solution to a minimum time optimal

control problem for the robot around a racetrack.

One method to do the first objective is by using the Position Based Visual Servoing

(PBVS) approach in which a camera looks at a target and the position of the target

with respect to the camera is estimated; once this is done the robot can drive towards

a desired position (xref , zref ). Another method is called Image Based Visual Servoing

(IBVS), in which the pixel coordinates (u, v) of markers/dots placed on an object are

driven towards the desired pixel coordinates (uref , vref ) of the corresponding markers.

By doing this, the mobile robot gets closer to a desired pose (xref , zref , θref ).

For the second objective, a camera-based and noncamera-based (v, θ) cruise-

control systems are used for the solution of the minimum time problem. To set

up the minimum time problem, optimal control theory is used. Then a direct method

is implemented by discretizing states and controls of the system. Finally, the solu-

tion is obtained by modeling the problem in AMPL and submitting to the nonlinear

optimization solver KNITRO. Simulation and experimental results are presented.

The DDTT-vehicle used within this thesis has different components as summarized

below: (1) magnetic wheel-encoders/IMU for inner-loop speed-control and outer-loop

directional control, (2) Arduino Uno microcontroller-board for encoder-based inner-

loop speed-control and encoder-IMU-based outer-loop cruise-directional-control, (3)
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Arduino motor-shield for inner-loop speed-control, (4) Raspberry Pi II computer-

board for outer-loop vision-based cruise-position-directional-control, (5) Raspberry

Pi 5MP camera for outer-loop cruise-position-directional control.

Hardware demonstrations shown in this thesis are summarized: (1) PBVS without

pan camera, (2) PBVS with pan camera, (3) IBVS with 1 marker/dot, (4) IBVS with

2 markers, (5) IBVS with 3 markers, (6) camera and (7) noncamera-based (v, θ) cruise

control system for the minimum time problem.
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Chapter 1

INTRODUCTION AND OVERVIEW OF WORK

1.1 Introduction and Motivation

Robotic systems need the ability to understand their workspace to behave au-

tonomously. Vision is a useful robotic characteristic since it mimics the human sense

of vision and allows for noncontact measurement of the environment [9], [11]. New

technologies (e.g. Arduino, Raspberry Pi with compatible interfaces, software and ac-

tuators/sensors) now permit people to perform very complicated tasks. Within this

thesis low-cost ground vehicles are used for robotics research.

Two central objectives of the thesis were how to use visual information to develop

an outer loop position controller for the Differential-Drive Thunder Tumbler vehicle

(used in [58]) and how to make the vehicle go around a racetrack in minimum time

with the help of a cruise control system.

The work presented here is a step toward the longer-term goal of achieving a fleet

of Flexible Autonomous Machines operating in an uncertain Environment (FAME).

Such a fleet can involve multiple ground and air vehicles that work collaboratively to

accomplish coordinated tasks. Such a fleet may be called a swarm [60]. Potential ap-

plications can include: remote sensing, mapping, intelligence gathering, intelligence-

surveillance-reconnaissance (ISR), search and rescue, manufacturing, teleoperation

and much more. It is this vast application arena as well as the ongoing technological

revolution that continues to fuel robotic vehicle research.

For the vehicle used within this thesis both kinematic and dynamical models are

examined. Here, differential-drive means that the speed of each of the rear wheels
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are controlled independently by separate dc motors. This vehicle is non-holonomic;

i.e. the two (2) (x, z) or (v, θ) controllable degrees of freedom are less than the three

(3) total (x, z, θ) degrees of freedom. This fundamentally limits the ability of a single

continuous (non-switching) control law to “precisely park the vehicle” (see discussions

below based on work of [1], [2], [4]).

This chapter attempts to provide a fairly comprehensive literature survey - one

that summarizes relevant literature and how it has been used. This is then used as

the basis for outlining the central contributions of the thesis.

1.2 Literature Survey: Robotics - State of the Field

In an effort to shed light on the state of ground robotic vehicle image based control

design, minimum time optimal control problem, modeling and hardware, the following

literature survey is offered.

� Image Based Control of Mobile Ground Vehicles.

Hutchinson et.al. in [11] provide an introduction to vision-based control (visual

servo control) of robotic manipulators. It is also presented basic coordinate

transformations, velocity representations as well as the geometric aspects of the

image formation process. More recently in[6] it is presented the basic concepts

for the development of both image and position-based robot control that are

explored within this thesis, i.e. not only for robotic manipulators but for mobile

ground robots as well. This work provides a foundation for research within

robotic systems and the use of visual information to control them.

Again in [6] the author describes the Position Based Visual Servoing. The pose

of the target with respect to the camera is estimated. The geometry of the

target is known, i.e. the position of a number of points (Xi, Yi, Zi), i ∈ [1, N ]
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on the target with respect to the target’s coordinate frame {T} (in this thesis

a chessboard is used as the target). The camera intrinsic parameters must be

known. An image is captured and the corresponding image plane coordinates

(ui, vi) are determined by using image processing techniques. Estimating the

pose using (ui, vi), (Xi, Yi, Zi) and camera intrinsic parameters is known as the

Perspective-n-Point problem (PnP). Gao and Zhang in [7] provide a formal

definition of the PnP problem. Given a set of non-collinear 3D coordinates of

reference points pi = (Xi, Yi, Zi)
T i = 1, ..., n n ≥ 3 expressed in an object-

space coordinates and the corresponding pixel coordinates ui = (ui, vi, 1)T the

following relationship is obtained: wi ui = C(Rpi + t) (where C is the camera

intrinsic parameter matrix, wi is a scalar projective parameter denoting the

depth of a feature point in the camera coordinate system, R is a rotation matrix

from object to camera coordinate frame and t is the translation vector from the

camera to the object coordinate frame). Thus in the PnP problem R and t must

be found. In this thesis the OpenCV function solvePnp is used which implements

an iterative procedure based on the Levenberg-Marquardt algorithm to find R

and t. Once this estimation is performed, a mobile ground robot can be driven

towards a goal position (xref , zref ).

Ebata, Ito and Shibata presented in [8] and [9] a relationship between camera

velocity vcam = (vx, vy, vz, ωx, ωy, ωz) and a mobile ground robot velocity (v, ω)

is given. This relationship is used within this thesis to obtain the control law for

the Image Based Visual Servoing method. Also in these two works a switching

control strategy was used. First the desired linear velocity of the mobile robot

and the desired pan angle of the camera are computed to regulate pixel coor-

dinates of feature points in the image plane to the desired pixel coordinates.

Then the orientation of the mobile robot platform is driven towards that of the
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camera. In [15] the authors discuss different ways to approximate the interac-

tion or jacobian matrix J that relates the variation of pixel coordinates in the

image plane with the camera linear and angular velocities (vx, vy, vz, ωx, ωy, ωz).

One way to approximate the jacobian matrix, which was used here, is to just

compute it with the desired pixel coordinates of feature points which results in

a constant matrix used throughout the control task. The local minima problem,

among others, is addressed within [16]. The authors describe that local minima

is defined such that the commanded velocity to a robotic system is zero ṙ = 0

and the robotic system is not at the desired position q 6= qref .

� Minimum Time Optimal Control Problem.

A study on the different applications of optimal control such as the energy-

optimal trajectories for unmanned aerial vehicles (UAVs) equipped with solar

cells, the minimal fuel thrust for the terminal phase of a lunar soft-landing

mission, and optimization of the racing line for a hybrid vehicle around a close

race track is given within [35].

Casanova’s PhD thesis [23] adresses the minimum lap time maneuvring with

the use of a direct method to solve the optimal control problem for a Formula

One car. In [24] it is showed how to use a scaling factor α to transform the

time dependent system ẋ = dx
dt

= f(x(t), u(t)) into a distance dependent system

dx
ds

= α f(x(t), u(t)) = f̄(x(s), u(s)). This is helpful since sf is known, i.e.

the distance of the racetrack instead of tf . In [23] and [25] a discretization of

the control signal is performed to convert the optimal control problem into a

Nonlinear Programming Program (NLP).

In [26] a real-time control of autonomous vehicles under minimum travelling

time objective is studied. The control inputs for the vehicle are computed from
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a nonlinear model predictive control (MPC) scheme. A system transformation

from time-dependent to spatial coordinates-dependent is made to make time

an optimization variable. Simulation and experimental results (using miniature

race cars) are presented. Implementation of this method uses a camera placed

on top of the racetrack, i.e. the image processing is not performed on-board.

Limebeer and Perantoni in [27] studied the optimal control of a Formula One

car on a three-dimensional track and presented the solution based on a direct

numerical method. Velenis et.al. in [28] solved a minimum-time cornering

problem along a 90 deg corner for a rear-wheel drive vehicle using two of the

most common rally racing maneuvers, the Trail-Braking and Pendulum-Turn.

They obtained the solution numerically by employing a tool called EZOPT,

which is a direct optimization software. It uses collocation to transcribe an

optimal control problem to a nonlinear programming problem; this in turn

provides an interface to NPSOL, a nonlinear optimization program.

Zhang in [36] presents a tutorial for solving optimal control problems with a

proposed DMOC (Discrete Mechanics and Optimal Control) methodology to

solve optimal control problems.

Within [41] and [42] it is described the AMPL programming language which

is used within this thesis. A description of the NEOS server, which is a free

internet-based service for solving numerical optimization problems is described

in [37], [38], [39] and [40].

Desineni in [31] writes about different optimal control problems, their formula-

tion, classification and solution.
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Jorge Nocedal in [33] provides an extensive analysis of numerical optimization

among other about constrained optimzation (KKT conditions), unconstrained

optimization, line search methods.

In [34] it is described the Nonlinear Programming solver that was used within

this thesis, namely KNITRO.

� Robot Modeling. Siciliano’s book [61] addresses modeling for both robotic

manipulators and mobile robots. Within this thesis, the focus is on differential-

drive.

� Differential-Drive Robot Modeling. Within this thesis, differential-drive

(Thunder Tumbler) ground vehicles are used. Here, differential-drive means

that there are two rear wheels - each with an independent torque generating

armature controlled dc motor on it [55]. As such, these dc motors can be used

to independently control the speed of the rear wheels. Nominally, the assump-

tion that the motors are identical is made. The motor inputs (vehicle controls)

are voltages. The sum of these voltages is used to control the vehicle’s speed v.

The difference is used to control the direction θ of the vehicle.

– Kinematic Model. A kinematic model for differential-drive robot (ignoring

dynamic mass-inertia effects) is presented within [46], [45]. Within this

kinematic model, it is assumed that the translational and angular velocities

(v, ω) of the robot are realized instantaneously.

While the kinematic model is controllable from a nonlinear geometric (Lie

bracket) point of view [3]; i.e. the vehicle can be “parked;” locally, it can

lose linear controllability.(See Section 4.1 on page 61 for more complete

nonlinear and linear controllability argument details).
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It must be noted that this (linear/local) loss of controllability is a direct

consequence of the fact that the vehicle cannot move sideways to park.

– Dynamical Model. A dynamical model can take the torques applied to the

robot wheels as inputs (controls) to the system. This is done within [47],

[50]. The model presented within these works incorporates dynamic (accel-

eration constraining) mass-inertia effects as well as friction, wheel slippage

etc. Within [5], a two-input two-output (TITO) linear time invariant (LTI)

model - including dc motor dynamics as well as vehicle mass-inertia effects

- is presented for a differential-drive ground vehicle. This model was ex-

ploited within [57] for control design. It is very important to note that

the vehicle model becomes nonlinear when one considers the planar (x, z)

coordinates of the vehicle.

– Non-Holonomic Differential Drive. Non-holonomic differential-drive ve-

hicle modeling and control is addressed within [2]. The paper relies on

the fundamental nonlinear controls work within [1] to address non-smooth

stabilization for differential-drive vehicles. Here, non-holonomic implies

that the two controllable degrees of freedom (x, z) or (v, θ) is less than the

three total degrees of freedom (x, z, θ). Astolfi (1994) exploits the work

of Brockett (1983) to show that the classic parking stabilization objective

(xref , zref , θref ) cannot be achieved with a continuous control law; i.e. to

park the vehicle, one must switch between continuous control laws.

An underlying consequence of the above is that the linearized vehicle posi-

tion model for the differential-drive and vehicle is uncontrollable [48] - an

obvious fact since the vehicle (differential-drive) cannot move sideways to

park the vehicle. Despite this, it is well known that this vehicle is control-
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lable from a nonlinear geometric (Lie bracket) point of view [3]; i.e. the

vehicles can be “parked.”

– Nonlinear Controllability. Nonlinear (Lie bracket-based) controllability for

differential-drive vehicles is addressed within the text [3]. Within this text,

it is shown that while the differential-drive vehicle is locally (linearly) un-

controllable (discussed above and in [48]) the vehicle is actually globally

(nonlinearly) controllable. Lie brackets are used to prove the latter.

� Classical Controls. Classical control design fundamentals are addressed within

the text [55]. Internal model principle ideas - critical for command following

and disturbance attenuation - are presented within [51], [55]. General PID

(proportional plus integral plus derivative) control theory, design and tuning

are addressed within the text [53]. Fundamental performance limitations are

discussed with [52],[55].

� Nonlinear Control. Fundamental theory addressing the existence of a con-

tinuous stabilizing control laws for nonlinear systems was introduced within the

ground breaking work [1]. This work was used within [2] and [4] to address the

classic parking problem for differential-drive vehicles (see discussion above). A

nonlinear control law for the parking problem is also presented within [46] - the

stability of the control law based upon Lyapunov ideas.

� Robot Inner-Loop Control. A proportional-plus-integral-plus-derivative (PID)

inner-loop control design is addressed within [66], [54]. A PI controller is used

for inner-loop control within [67], [57]. In Chapter 3, PI inner-loop speed (ωr, ωl)

control law is examined for the differential-drive vehicle.
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� Robot Outer-Loop Control. Within this thesis, various outer-loop control

laws are examined. When relevant, existing work in the literature was exploited.

– Cartesian Stabilization and Parking Problem. Viera et. al. in [4] show

how to use linear controllers to address the classic posture and Cartesian

stabilization problems. The posture (or parking) problem addresses ar-

riving at a desired point (xref , zref ) with a specified posture angle θref .

The Cartesian stabilization problem addresses moving a vehicle from one

planar (x, z) coordinate to another coordinate (xref , zref ). Within [4], the

authors show that a (smooth) linear control law (involving longitudinal

distance to the target (xref , zref ) and the angle between the vehicle and

target) can be used to get arbitrarily ε-close to a desired planar (xref , zref )

and to a desired parking target (posture) (xref , zref , θref ). Again, based on

the work of [1], one must switch control laws in order to reach the desired

(xref , zref , θref ) parking target.

The parking problem is related to the so-called Cartesian stabilization

problem which addresses achieving a desired (x, z) point.

– Cruise Control. Cruise control is a fundamentally important feature for a

ground robotic system. Within this thesis, an encoder-camera based (PD

with roll off) outer-loop (v, θ) control law is developed that permits cruise

control along a camera visible line/path.

The map from the reference commands (vref , ωref ) to the actual veloci-

ties (v, ω)looks like a simple diagonal system (e.g. diag( a
s+a

, b
s+b

)) at low

frequencies - a consequence of a well-designed inner-loop control system.

(See inner-loop work within Chapter 3; outer-loop work in Chapter 5).

The outer-loop θ controller therefore “sees” b
s(s+b)

. From classical root lo-
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cus ideas [55], a proportional controller is therefore justified - provided that

the gain is not too large. If the gain is too large, oscillations (or even limit

cycle behavior) are expected in θ. A PD controller with roll off would help

with this issue. (See work within Chapter 5).

� Vision Algorithms. In this thesis different image processing ideas were used.

As mentioned above, the PnP problem deals with finding the pose of a target

with respect to the camera by using a set of 3D coordinates of reference points

(X, Y, Z) and their corresponding pixel coordinates (u, v) in the image plane.

Relevant theory is presented within [6], [7] and [22].

Threshold of a gray image is implemented to detect black tape on the ground

for the line tracking behavior; also morphology operations such as dilation and

erosion to remove noise. Contours are then used to compute the pixel coordinate

of the center of the black tape in the image plane. This information is within

[17]. Also the thresholding of a color image (hsv image) is exploited from [20]

for the filtering of markers within the Image Based Visual Servoing outer loop

control. The open source computer vision library OpenCV is greatly used in

this thesis. Useful information for using this library is presented within [17].

� Cameras. Within this research, a Raspberry Pi camera (2592 × 1944 pixel

or 5 MP static images; 1080p30 (30 fps), 720p60 and 640×480p60/90 MPEG-4

video) is used. It connects directly to the Raspberry Pi II’s GPU (graphical

processing unit). It is capable of 1080p full HD video. Because the camera is

directly connected to the GPU, there is very little impact on the CPU (central

processing unit). This makes the CPU available for other processing tasks [71].

Within this thesis, cameras are used for outer-loop control law implementation

(e.g. (v, θ), (x, z)).
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� Arduino. Within this thesis, a great use of the Arduino Uno microcontroller

board (16MHZ ATmega328 processor, 32KB Flash Memory, 14 digital I/O pins,

6 analog inputs, $25) is done. More detailed specifications for the Arduino Uno

board are presented within [68]. It is used to implement inner- and outer-loop

control laws for the differential-drive Thunder Tumbler vehicle.

� Raspberry Pi II. Within this thesis, a great use of the Raspberry Pi II com-

puter board (900 MHz quad-core ARM Cortex-A7 CPU, 1GB SDRAM, 40

GPIO pins, camera interface, $35) is done. Introductory and technical details

for the Raspberry Pi II are discussed within [69]. The Raspberry PI II us used

to implement outer-loop (x, z), (v, θ) control laws within this thesis.

� Actuators and Sensors. Actuators and sensors are addressed within the text

[62].

� DC Motors. Simple armature controlled dc motor modeling concepts are ad-

dressed from a controls perspective within [55]. DC motor modeling for wheeled

robot applications is addressed within [63]. In this paper, nonlinear effects are

neglected. Nonlinear modeling and identification for dc motors is addressed

within [64], [65]. Also, see detailed discussion presented above on the TITO

LTI vehicle-motor model presented within[5].

� Encoders. Magnetic encoders consist of magnets and a hall effect sensor. They

are inherently rugged and operate reliably under shock, vibration and high tem-

perature [70]. Rotary optical encoders are the most widely used encoder design.

They consist of an LED light source, light detector, code disc, and signal pro-

cessor [70]. Within this thesis, magnetic encoders are used on the wheels of the

differential-drive Thunder Tumbler ground vehicles.
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1.3 Contributions of Work: Questions to be Addressed

Within this thesis, the following fundamental questions are addressed. The an-

swers to these questions are important to move toward the longer-term FAME goal.

1. How can a differential-drive mobile robot be controlled using visual

information?

Position Based Visual Servoing (PBVS) and Image Based Visual Servoing (IBVS)

are two basic methods to control a robotic system using visual information. In

this thesis both methodologies are explored for the Differential-Drive Thunder

Tumbler mobile robot. In PBVS the position of the vehicle with respect to

a chessboard is estimated (using a known geometric model of a cheessboard-

/target and its visual features). This information is later used to drive the

robot to a desired position (xref , zref ). In IBVS the control task is defined in

the image plane, i.e. the pixel coordinates (u, v) of markers/dots placed on an

object are driven towards the desired pixel coordinates (uref , vref ) of the corre-

sponding markers. By doing this, the mobile robot gets closer to a desired pose

(xref , zref , θref ).

2. How can a differential-drive mobile robot go around a racetrack in

minimum time?

To make a differential-drive mobile ground robot go around a racetrack in min-

imum time, optimal control theory is used in this thesis.

The basic control system used to accomplish this task is a speed-directional

(v, θ) outer loop control.

A camera-based and a noncamera-based implementation of the outer loop are

presented (both with simulation and experimental results). The camera-based
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method uses an encoder-camera based (v, θ) outer loop control; the noncamera-

based method uses an encoder-IMU based (v, θ) outer loop control.

To set up the minimum time problem, optimal control theory is used. Then a

direct solution method is implemented by discretizing states and controls of the

system. This results in a Nonlinear Programming (NLP) problem. This prob-

lem is written in AMPL modeling language which then is interfaced with the

nonlinear optimization solver KNITRO. Finally a solution to the NLP problem

is obtained.

3. What are typical outer-loop objectives? For the vehicle applications con-

sidered within this thesis, three (3) outer-loop objectives are examined:

(1) Position Based Visual Servoing by estimating the position of the robot us-

ing a front-facing camera with respect to a chessboard, thus driving the vehicle

from an initial position (x0, z0) to a desired position (xref , zref ),

(2) Image Based Visual Servoing by controlling the position (in the image plane)

of the pixel coordinates (u, v) of several markers/dots placed on an object which

the robot sees with the front-facing camera and by doing this driving the robot

closer to a desired pose (xref , zref , θref )

(3) speed-direction (v, θ) cruise control by using encoders to measure speed in-

formation and both a camera and an IMU for measuring directional information

for the solution of the minimum time optimal control problem.

4. What is a suitable outer-loop model? If the inner-loop is designed well,

after it is closed it can yield a system (seen by the outer-loop controller) that

is very simple looping (e.g. diag( a
s+a

, a
s+a

), looks like identity at low frequencies).
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5. What is a suitable outer-loop control structure? Suppose that an inner-

loop control system has beed designed and it looks like a
s+a

. If position is

concerned, then a system that looks like
[

a
s(s+a)

]
is obtained. Given this, clas-

sical control (root locus) concepts [55] can be used to motivate an outer-loop

control structure Ko = g(s+z). To attenuate the effect of high frequency sensor

noise, roll-off can be introduced; e.g.Ko = g(s+z)
[

b
s+b

]n
where n = 2 or greater.

6. What is a suitable outer-loop processor/microcontroller? Both Arduino

Uno and Raspberry Pi II are used for different outer-loop controller implemen-

tations.

Arduino Uno is used for both encoder-based speed inner-loop control and encoder-

IMU-based speed-directional outer-loop control. The Raspberry Pi II is used for

Position Based Visual Servoing, Image Based Visual Servoing and the encoder-

camera-based speed-directional outer loop control.

When taken collectively, the contributions of this thesis are of importance especially

to those interested in conducting robotics/FAME research.

1.4 Organization of Thesis

The remainder of the thesis is organized as follows.

� Chapter 2 (page 17) presents an overview for a general FAME architecture de-

scribing candidate technologies (e.g. sensing, communications, computing, ac-

tuation).
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� Chapter 3 (page 21) describes the model for the differential-drive Thunder Tum-

bler as well as the inner loop controller design. The controller design here is

fundamental for the work done in chapters 4 and 5.

� Chapter 4 (page 61) presents two methods to control the differential-drive Thun-

der Tumbler using information extracted from a camera. Simulation as well as

hardware results are presented.

� Chapter 5 (page 109) describes the optimal control minimum time problem

along a race track for the differential-drive Thunder Tumbler. An inner loop

controller as well as an outer loop controller are used within this chapter.

� Chapter 6 (page 157) summarizes the thesis and presents directions for future

robotics/FAME research. While much has been accomplished in this thesis, lots

remains to be done.

� Appendix A (page 165) contains MATLAB m files and simulink models used to

generate the results for this thesis.

� Appendix B (page 184) contains Arduino program files used to generate inner-

and outer-loop results for this thesis.

� Appendix C (page 201) contains Python program files (for Raspberry Pi II

Model B) used to generate inner- and outer-loop results for this thesis.

� Appendix D (page 224) contains AMPL files used to generate the simulation

results of the minimum time optimal control problem for the differential-drive

mobile robot around a racetrack.
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1.5 Summary and Conclusions

In this chapter, an overview of the work presented in this thesis and the major

contributions have been provided. A central contribution of the thesis is the use of

low-cost multi-capability differential-drive Thunder Tumbler robotic ground vehicle

for the design and implementation of inner and outer loop controllers that can be

used for robotics/FAME research.
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Chapter 2

OVERVIEW OF GENERAL FAME ARCHITECTURE AND C4S

REQUIREMENTS

2.1 Introduction and Overview

In this chapter, a general architecture for the general FAME research is described.

The architecture described attempts to shed light on command, control, communi-

cations, computing (C4), and sensing (S) requirements needed to support a fleet of

collaborating vehicles. Collectively, the C4S and S requirements are referred to as

(C4S) requirements.

2.2 FAME Architecture and C4S Requirements

In this section, a candidate system-level architecture that can be used for a fleet

of robotic vehicles1 is described. The architecture can be visualized as shown in

Figure 2.1. The architecture addresses global/central as well as local command,

control, computing, communications (C4), and sensing (C4S) needs. Elements within

the figure are now described.

� Central Command: Global/Central Command, Control, Computing.

A global/central computer (or suite of computers) can be used to perform all

of the very heavy computing requirements. This computer gathers information

from a global/central (possibly distributed) suite of sensors (e.g. GPS, radar,

cameras). The information gathered is used for many purposes. This includes

temporal/spatial mission planning, objective adaptation, optimization, decision

1Here the term robotic vehicle can refer to a ground, air, space, sea or underwater vehicle.
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Figure 2.1: FAME Architecture to Accommodate Fleet of Cooperating Vehicles

making (control), information transmission/broadcasting and the generation of

commands that can be issued to members of the fleet.

� Global/Central Sensing. In order to make global/central decisions, a suite

of sensors should be available (e.g. GPS, radar, cameras). This suite provides

information about the state of the fleet (or individual members) that can be

used by central command.

� Global/Central Communications. In order to communicate with mem-

bers of the fleet, a suite of communication devices must be available to central

command. Such devices can include (wideband) spread spectrum transmitter-

s/receivers, WiFi/Bluetooth adapters, etc.

� Fleet of Vehicles. The fleet of vehicles can consist of ground, air, space, sea

or underwater vehicles. Ground vehicles can consist of semi-autonomous or au-
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tonomous robotic vehicles (e.g. differential-drive, rear-wheel drive, etc.). Here,

autonomous implies that no human intervention is involved (a longer-term ob-

jective). Semi-autonomous implies that some human intervention is involved.

Air vehicles can consist of quadrotors, micro/nano air vehicles, drones, other

air vehicles and space vehicles. Sea vehicles can consist of a variety of surface

and underwater vehicles. Within this thesis the focus is on ground vehicles

(e.g. enhanced Thunder Tumbler differential-drive).

� Local Computing. Every vehicle in the fleet will (generally speaking) have

some computing capability. Some vehicles may have more than others. Lo-

cal computing here is used to address command, control, computing, planning

and optimization needs for a single vehicle. The objective for the single vehicle,

however, may (in general) involve multiple vehicles in the fleet (e.g. maintaining

a specified formation, controlling the inter-vehicle spacing for a platoon of ve-

hicles). Local computing can consist of a computer, microcontroller or suite of

computers/microcontrollers. Within this thesis, Arduino Uno microcontroller

(16MHZ ATmega328 processor, 32KB Flash Memory, 14 digital I/O pins, 6

analog inputs, $25) [68]and Raspberry Pi II (900 MHz quad-core ARM Cortex-

A7 CPU, 1GB SDRAM, 40 GPIO pins, camera interface, $35) [69] computer

boards for local computing on a vehicle are exploited. They are low-cost, well

supported (e.g. some high-level software development tools Arduino IDE and

Raspberry Pi II IDLE), and easy to use.

� Local Sensing. Local sensing, in general, refers to sensors on individual ve-

hicles. As such, this can involve a variety of sensors. These can include en-

coders, IMUs (containing accelerometers, gyroscopes, magnetometers), ultra-
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sonic range sensors, Lidar, GPS, radar, and cameras. Within this thesis, mag-

netic encoders(A3144 Hall effect sensor, VELLEMAN 8 mm × 3 mm magnet,

8 per wheel) [70], IMUs to measure vehicle rotation ( 9DOF, Accelerometer ±

2,4,8,16g. Gyro ± 125− 2000◦/sec. Compass ± 13 and ± 25 Gauss) [72], and

Raspberry Pi cameras(2592 × 1944, 30 fps, 150 MPs, MPEG-4) [71] are used.

Lidar, GPS and radar are not used.

� Local Communications. Here, local communications refers to how fleet ve-

hicles communicate with one another as well as with central command.

2.3 Summary and Conclusions

In this chapter, a general (candidate) FAME architecture for a fleet of cooperating

robotic vehicles was described. Of critical importance to properly assess the utility

of a FAME architecture is understanding the fundamental limitations imposed by its

subsystems (e.g. bandwidth/dynamic, accuracy/static) [58].
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Chapter 3

INNER LOOP SPEED CONTROL DESIGN FOR DIFFERENTIAL-DRIVE

MOBILE GROUND ROBOT

3.1 Introduction and Overview

In this chapter the inner loop speed controller for the differential drive mobile

ground robot is designed. Also, the hardware used in this thesis for the development

of the inner and outer loop controllers is described, for example magnetic wheel en-

coders for estimating translational speeds, an Inertial Measurement Unit for vehicle

posture θ estimation, camera, Arduino board (used to implement inner loop con-

troller) and Raspberry Pi 2 for more intense computations. Kinematic and dynamic

models for the Enhanced Thunder Tumbler are also presented.

3.2 Description of Hardware

One central objective of [58] was to show how to take low-cost remote control

“toy” vehicles and convert them into intelligent multi-capability robotic platforms.

In this thesis the Enhanced Thunder Tumbler robots developed within [58] are used.

In this section each component on the robot is described.

1. Differential-Drive Thunder Tumbler. It is a differential-drive vehicle with

two dc motors - one on left wheel, one on right wheel. Figure 3.1 shows the

vehicle used in this thesis.

More specifically, differential-drive Thunder Tumbler vehicle was augmented

with the following: Arduino Motor Shield, Arduino Uno microcontroller board,
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Figure 3.1: Visualization of Fully-Loaded (Enhanced) Thunder Tumbler

Magnetic wheel encoders, Inertia Measurement Unit (IMU), Raspberry Pi 2,

Raspberry 5MP camera module,

2. DC Motors. Two 6V brushed armature controlled dc motors are on each

differential-drive Thunder Tumbler vehicle. The dc motors receive voltage sig-

nals from an Arduino motor shield and apply the required torques to each of

the Thunder Tumbler’s wheels. DC motor parameter values were taken from

[59].

3. Arduino Motor Shield. An Adafruit Motor/Stepper/Servo Shield for Ar-

duino v2 Kit (v2.3) was used in this thesis (70 × 55 × 10 mm or 2.7” × 2.1”

× 0.4,” see http://www.adafruit.com/products/1438). It uses a TB6612 MOS-

FET driver with 1.2 A per channel and 3 A peak current capability, fully dedi-

cated pulse width modulation (PWM) driver chip onboard, polarity protection

FET on the power pins, and the serial I2C (inter-integrated circuit) 7-bit ad-
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dress computer bus (selectable via jumpers). It can run motors on 4.5V-13.5V

dc. Motors are automatically disabled on power up. Five address-select pins

permits stacking of 32 shields.

The motor shield receives commands from the Arduino Uno microcontroller

board. The shield directly drives the two dc motors - translating Arduino Uno

control commands into voltage signals to each dc motor. PWM is used to

generate the voltage signal to each dc motor. An 8-bit PWM output (up to 1.6

kHz or about 9600 rad/sec) is provided by the motor shield. Figure 3.2 shows

the Adafruit Motor Shield v2.3.

Figure 3.2: Adafruit Motor Shield for Arduino v2.3 - Provides PWM Signal to DC

Motors

4. Arduino Uno Open-Source Microcontroller Board.

Arduino Uno microcontroller Board attributes include:

� 16 MHZ ATmega328 processor, 32 KB Flash Memory, 2 KB SRAM (static

random access memory1, conventionally volatile but exhibits data rema-

1SRAM is faster and more expensive than DRAM (dynamic RAM). SRAM is typically used for

CPU cache. DRAM must be periodically refreshed and is typically used for a computer’s main

memory.
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nence), 1 KB EEPROM (electrically erasable programmable read only

memory), 14 digital I/O pins of which 6 provide PWM output, 6 ana-

log inputs, 8 bit bus, 5V operating voltage, 7-12 V recommended input

voltage, 20 mA per I/O pin, 50 mA for 3.3V pin, 68.6 × 53.4 mm, 25 g,

USB connection, ICSP (in circuit serial programming) header, power jack,

reset button

The Arduino Uno can be seen in Figure 3.3.

Figure 3.3: Arduino Uno Open-Source Microcontroller Development Board

Software Support for Arduino. The Arduino Uno board uses the Arduino

open-source IDE (integrated development environment) to write, compile, up-

load and run code. The Arduino IDE is often called the Arduino Programmer.

It runs on various platforms (Windows, Mac OS X, and Linux).

Some of the key Arduino IDE components are as follows:

(1) Editor. The editor helps create and edit the text of the sketch (i.e. edit the

project code). It actively highlights keywords in order to reduce typing errors.

(2) Verification System. The verification system runs through the entire pro-

gram, verifies that there are no errors, and then compiles the source code into
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machine language instructions that can be uploaded to the Arduino board over

USB cable.

(3) Upload System. The upload system communicates with the Arduino board

over the USB cable. It uploads the program into the Arduino’s memory.

(4) Serial Monitor. The serial monitor allows to send and receive messages

from programs running on the Arduino board. This is helpful for testing and

debugging.

(5) Example Sketches. Example sketches (or project codes) illustrates how to

use many different devices.

(6) Library System. The library system is a resource which contains, and permits

access to, pre-written sketches.

(7) File System. The file system is used to save and retrieve sketches.

(8) Help. Help includes the complete reference document.

Arduino Actuation (D-to-A) and Sampling (A-to-D)). The Arduino ac-

tuation and sampling rate is 10Hz or about 60rad/sec. Given this, the widely

used factor-of-ten rule yields maximum control bandwidth of 6 rad/s. The as-

sociated Arduino D-to-A zero order hold (ZOH) has a classic half-sample time

delay. This, in turn, places a right half plane (non-minimum phase) zero at

2
∆

= 2
0.5T

= 2
0.5(0.1)

= 40. The widely used factor-of-ten rule [55], [52] then yields

the ZOH-based 4 rad/sec bandwidth constraint.

5. Magnetic Wheel Hall Effect Sensor-Based Encoders. A Hall effect sensor

(A3144) and magnets (VELLEMAN 8 mm × 3 mm, 8 per wheel) are used as

wheel encoders. Wheel encoders are used for (dead-reckoning) speed/position

control. The wheel encoders count the times that a magnet rotates past the
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Hall effect sensor. This information is sent to the Arduino Uno which can

then calculate/estimate vehicle velocity and translational displacement, vehicle

angular velocity and angular displacement. Figure 3.4 shows the Hall effect

sensor as well as the magnets.

Figure 3.4: Magnetic Wheel Encoders - Hall Effect Sensors on Left, Magnets on Right

Magnetic Wheel Encoder Bandwidth Constraint. The number of sam-

ples (or counts) per sec can be obtained as follows by noting that the vehicle

speed is related to the wheel angular velocity via v = rwheelω:(
8
samples

rev

) ( rev

2π rad

)
ω
rad

sec
=

(
8
samples

rev

) ( rev

2π rad

) ( v

rwheel

)
rad

sec
(3.1)

=

(
8
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rev

) ( rev

2π rad

) ( v

0.05

) rad

sec
(3.2)

= 25.46v
samples

sec
Hz (3.3)

This is the same as 160v rad
sec

. Using the factor-of-ten rule then givesBWencoderlimit
=

0.1(160v) = 16v rad
sec

where the vehicle speed v is measured in m/sec. Note that

16v will be larger than the limit of 4 rad/sec (due to half sample D-to-A zero

order hold effect with T = 0.1) if v > 0.25 m
sec

.

6. Inertial Measurement Unit (IMU). In this thesis, the IMU mainly collects

the angular velocity information of the robot and sends the information to

Arduino Uno. An (Adafruit BNO055 9dof) inertial measurement unit (IMU) is

used for directional control (see Figure 3.5).

The IMU includes 3 acceleration channels, 3 angular rate channels and 3 mag-

netic field channels. Range features are as follows: ± 2/4/8/16 g acceleration
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Figure 3.5: Adafruit 9DOF Inertial Measurement Unit (IMU)

full scale, ± 13 gauss (x-, y-axis) and 25 gauss (z-axis) magnetic full scale and ±

125 to 2000 degree/sec angular rate. The rate at which the IMU output angular

velocity readings is 100 Hz or approximately 600 rad/sec. The factor-of-ten rule

gives a bandwidth constraint of 60 rad/sec.

7. Servo Motor. In this thesis, a servo motor is exploited to enable the camera

to rotate horizontally (panning) in the implementation of Position Based Visual

Servoing. Figure 3.6 shows the servo motor used.

Figure 3.6: Servo Motor

The servo has an operating speed of about 0.1 seconds/60 deg, an operating

voltage of 5 volts [73].

8. Raspberry Pi II Single Board Computer. The Thunder Tumbler has an

onboard Raspberry Pi II Model B single board computer (see Figure 3.7).
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Figure 3.7: Raspberry Pi 2 Model B Open-Source Single Board Computer

Raspberry Pi II Model B characteristics include:

� Broadcom BCM2836 with a 900 MHz quad-core ARM Cortex-A7 32-bit

CPU and VideoCore IV GPU (see below), 1GB SDRAM (bus synchronous

dynamic RAM) at 450 MHz (shared with GPU),

� 40 GPIO (general purpose input/output) pins,

� full HDMI (high definition multimedia interface, EIA/CEA-861) 1.4 port

offering 14 HDMI resolutions from 640 × 350 (0.22 MP) to 1920 × 1200

(2.3 MP)),

� Ethernet port (for local area networking based on IEEE 802.3 at 100 Gbps,

400 Gbps by 2017; twisted pair or fiber optic; can surf internet),

� 4 USB 2.0

(via onboard 5-port USB hub, 480 Mbps, half duplex2; can connect key-

board and mouse) ports,

� display interface, slot for micro SDHC (secure digital high capacity) card

(15 × 11 × 1 mm, 0.5 grams, minimum sustained read/write speed 17.6

Mbps),

2Half-duplex implies “walkie-talkie” like, one-direction-at-a-time, communications. In contrast,

full-duplex is bi-directional or “phone like.”
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� Broadcom VideoCore IV 3D graphics core GPU (250 MHz) with OpenGL

ES 2.0 (24 GFLOPS),

� 15-pin MIPI camera interface connector (used with Raspberry Pi camera),

� combined 3.5 mm audio jack and composite video (PAL and NTSC, dig-

ital audio via HDMI, integrated interchip sound (I2S, serial bus interface

standard for connecting digital audio devices),

The Raspberry Pi II Model B is a full computer with a GPU and 1080p full HD

video capability.

Software Support for Pi. Software support is important in order to mini-

mize an often significant amount of low-level programming overhead that most

embedded system developers would prefer to avoid.

� Python IDLE. Raspberry Pi uses the open-source Python IDLE (Inte-

grated DeveLopment Environment) to write, upload and run code. IDLE

is coded in Python using the so-called “tkinter” GUI toolkit. It works on

standard platforms such as Windows, Unix, and Mac OS X.

� Interpreted Python. The Python shell window implements an inter-

active interpreter. An interpreter is a computer program that executes

instructions without previously compiling them into native machine lan-

guage for the host CPU. Python, like Perl and MATLAB, translate source

code into some efficient intermediate representation that is immediately

executed. As expected, interpreted programs run more slowly and less

efficiently than compiled programs.

Interpreter Advantages. Interpreted languages often offer the following

advantages over compiled implementations: (1) platform independence,
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(2) reflection (ability to modify structure and behavior of code at runtime),

(3) dynamic typing (verifies type safety of program at runtime), (4) smaller

executable program size, and (5) dynamic scoping (used by few modern

languages).

Interpreter Deficiencies. Interpreters have the following deficiencies: (1) no

static type-checking (as done by compilers at compile time) and hence less

reliable code, (2) susceptible to code injection attacks, (3) slower execution

compared to direct native machine code execution on the host CPU, and

(4) source code can be read and copied.

� Key Python Attribute: Facilitates Good Code Writing. Python

is a widely used, general-purpose, high-level programming language that

emphasizes code readability. Its syntax allows programmers to express

concepts in fewer lines of code than would be possible in languages such

as C++ or Java. Python provides constructs to facilitate the writing of

clear small or large programs.

� Communication Between Pi and Arduino During Robot Opera-

tion. Python and USB (Serial) communication were used between the Pi

and Arduino. There are many ways to establish communication between

the Raspberry Pi and the Arduino such as using the GPIO and Serial pins

or using I2C communication (using the SCL-clock and SDL-data pins).

The easiest way to get the two devices talking is to use the micro USB

cable that comes with the Arduino Uno. By using the PySerial library

package, Python installed on the Pi can be used to read from and write to

Arduino’s serial port.
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Summary of Arduino and Raspberry Pi Use. Arduino was used to implement

the (ωr, ωl) inner-loop control law. Section 3.4 on page 48 describes the relevant

theory. The associated Arduino code can be found on page 185. The Raspberry Pi II

used the M−1 matrix to translate (vref , ωref ) commands into (ωrref , ωlref ) commands

for the inner-loop. The associated Python code can be found on page 201. It thus

follows that the Pi was used to implement some inner-loop functionality. Arduino was

used to implement outer-loop functions as well as the low-level inner-loop feedback

control functions discussed above.

(1) The Raspberry Pi was used to implement outer-loop 1: Position Based Visual

Servoing. Section 4.4 on page 69 describes the relevant theory. The associated Python

code can be found on page 201.

(2) The Raspberry Pi was used to implement outer-loop 2: Image Based Visual

Servoing. Section 4.5 on page 76 describes the relevant theory. The associated Python

code can be found on page 201.

(3) The Raspberry Pi and Arduino were used to implement outer-loop 3: camera-

based and noncamera-based (v, θ) cruise control for the minimum time optimal control

problem respectively. Section 5.2.4 on page 129 describes the relevant theory. The

associated Python code can be found on page 219. The associated Arduino code can

be found on page 195.

Which computing unit is used depends on the demo being conducted and hence on

the sensors being used. The Arduino is involved in all demos because it implements

the (ωr, ωl) inner-loop control law (see Section 3.4 on page 48). As discussed above,

the Pi is always involved to generate the required (ωr, ωl) commands to the inner-

loop. Whenever the camera is used within an outer-loop, the Pi was used. When the

camera is not used within an outer-loop, the Pi plays no outer-loop role.
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Raspberry 5MP Camera Module. The Enhanced Thunder Tumbler has an on-

board Raspberry Pi 5MP camera. The camera contains a 5MP Omnivision 5647

sensor in a fixed focus module which enables 2592×1944 pixel static images. It also

supports 1080p30 (30 fps), 720p60 and 640×480p60/90 MPEG-4 video. The cam-

era module plugs directly into the Pi’s 15 pin MIPI (MIPI Alliance) camera serial

interface (CSI) via 15 pin ribbon cable. The CSI bus supports very high data rates

to carry data directly to the Pi’s Broadcom VideoCore4 BCM2835 system on a chip

(SoC) processor (GPU) which uses a 32 bit RISC (reduced instruction set computing)

ARM1176 (700 MHz) core/processor. The camera module collects image information

and sends it to the onboard Raspberry Pi 2. The Raspberry Pi camera can support

the following frame rates: up to 15 fps at a resolution of 2592× 1944 (5 MP), 30 fps

at 1980× 1080 (2.1 MP, this is 1080p30), 42 fps at 1296× 972 (1.3 MP), and 60 fps

at 640× 480 (0.31 MP).

A hardware components list for an enhanced Thunder Tumbler is given in Table

3.1.
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Product Quantity Price ($)

Thunder Tumbler Vehice 1 $10

Raspberry Pi 2 Model B 1 $40

Arduino Uno 1 $12.19

Adafruit Motor Shield 1 $22.50

Raspberry Pi 5MP Camera 1 $25

Camera Holder 1 $5

Power Supply for Raspberry Pi 1 $10

Power Supply for Arduino 4 $6.75

Magnetic Wheel Encoders 2 $4.40

Magnets (Velleman) 16 $9.6

BNO055 9dof IMU 1 $34.95

Servo motor 1 $2.3

Metal ball caster 1 $2.50

Total Price $185.19

Table 3.1: Hardware Components for Enhanced Differential-Drive Thunder Tumbler

Robotic Vehicle
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3.3 Differential-Drive Ground Robotic Vehicle Model

Many mobile robots use a differential-drive drive mechanism. Such a mechanism

involves two rear wheels that are independently controlled via torque-generating dc

motors. The inputs to the dc motors are voltages. Within this thesis, the motors

are assumed to be identical in order to simplify the presentation. In practice, motor

differences must be accounted for. This, in part, is addressed by the motor control

laws being employed. Within this section, the TITO LTI model that was presented

within [5] is examined. This model was used for control law design within the MS

thesis [57]. The ground mobile robot kinematics are first discussed.

The robot dynamics are then examined - first without and then with the dc

motor dynamics. It is useful to define key robot variables and parameters to be used

throughout the section. This is done within Table 3.2.
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Parameters Definition Nominal Values

m Mass (Fully Loaded, Enhanced Vehi-

cle)

0.82 kg

mo Mass (Not Loaded, Original Vehicle) 0.55 kg

Iz Vehicle Moment of Inertia (Estimated

using cuboid, 1
12
m(width2 + lenght2))

0.0047 Kgm2

r Wheel Radius 0.05 m

dw Distance between Two Rear Wheels 0.14 m

La Armature Inductance 261 µ H

Ra Armature Resistance 0.86 Ω

Kb Back EMF Constant 0.0031 V/(rad/sec)

Kt Torque Constant 0.0031 Nm/A

β Speed Damping Constant 8.15e− 7 Nms

I Moment of Inertia of Motor-Shaft Sys-

tem

3.2e− 6 Nms

vmax Maximum Observed Speed (Enhanced

Vehicle)

2.3 m/sec

vmaxo Maximum Observed Speed (Original

Vehicle)

4.5 m/sec

amax Maximum Acceleration (Enhanced) 1.5 m/sec2

ωwheelmax Maximum Angular Wheel Velocity

(Enhanced)

46 rad/sec

eamax Maximum Motor Voltage 6 V

Table 3.2: Thunder Tumbler Nominal Parameter Values and Characteristics
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3.3.1 Differential-Drive Robot Kinematics

Figure 3.8 can be used to understand the kinematics of a differential-drive ground

robot [44].

Figure 3.8: Visualization of Differential-Drive Mobile Robot

The point that the robot rotates about at a given instant in time is called the

instantaneous center of curvature (ICC) [44]. If (x, z) denotes the planar inertial co-

ordinate of the robot and θ denotes the direction of the robot’s longitudinal body axis

with respect to the z-axis, then the following nonlinear kinematic model is obtained:


ẋ

ż

θ̇

 =


sin θ

cos θ

0

 v +


0

0

1

ω (3.4)
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where

v =
√
ẋ2 + ż2 (3.5)

denotes the translational speed of the robot and ω = θ̇ denotes its angular speed.

Within the above very simple (and intuitive) model, v can ω can be thought of as

inputs (or controls). This is not intuitive - especially to a controls person. Why? v

and ω cannot be instantaneously generated because of real-world mass-inertia effects.

In practice, v and ω are generated by applying voltages to the left and right wheel dc

motors.

At this point, it is instructive to relate the (v, ω) to the angular velocities (ωL, ωR)

of the left and right rear wheels. Why? The idea here, is that if one can precisely

control (ωL, ωR) , then one will be able to precisely control (v, ω). The desired rela-

tionships are as follows:

v =

[
r(ωR + ωL)

2

]
ω =

[
r(ωL − ωR)

dw

]
(3.6)

where r denotes the wheel radius and dw denotes the distance between the rear

wheels. Given the latter, it follows that the distance between the vehicle longitudinal

body axis and the wheel longitudinal center lines is simply L = dw
2

(as shown in

Figure 3.8). Both r and dw are assumed to be constant. Within Figure 3.8, the point

vehicle coordinate (x, z) is located on the vehicle’s longitudinal body axis directly in

between the two rear wheels.

To derive the above relationships, one can proceed as follows. Let vl and vr

denote the left and right wheel translational speeds along the ground. If R denotes

the “signed” distance from the (x, z) coordinate of the vehicle to the ICC, then it

follows that

(R + dw/2)ω = vl (R− dw/2)ω = vr (3.7)
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From these equations, it follows (after some algebra) that

R =
dw
2

[
vl + vr
vl − vr

]
ω =

[
vl − vr
dw

]
(3.8)

Next, note that

v = Rω vl = rωL vr = rωR (3.9)

Substituting vl = rωL and vr = rωR into ω = vl−vr
dw

, yields the relation ω = r(ωL−ωR)
dw

.

Substituting R = v
ω

and ω = vl−vr
dw

into R = dw
2
vl+vr
vl−vr

yields the relation v = vr+vl
2

.

Substituting vl = rωL and vr = rωR into this relation then yields the desired result

v = r(ωR+ωL)
2

. This completes the derivation.

It is convenient to rewrite the above relations in vector-matrix form as follows:v
ω

 = M

ωR
ωL

 M =

 r
2

r
2

− r
dw

r
dw

 (3.10)

Again, the importance of the above relation stems from the fact that if one can con-

trol (ωL, ωR) well, one will be able to control (v, ω) well - the latter being the prime

directive of this chapter.

3.3.2 Differential-Drive Robot Dynamics

In order to more accurately represent the system, a dynamical model is considered

- one that captures mass-inertia effects. The following intuitive representation of the

model comes from [49]:


ẋ

ż

θ̇

 =


sin θ 0

cos θ 0

0 1


 v

ω

 (3.11)
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 v̇

ω̇

 =

 1
m

0

0 1
I


 F

τ

 (3.12)

tan θ =
ẋ

ż
(3.13)

where F represents the applied translational force along the vehicles longitudinal

body axis, τ represents the applied torque about the vertical z axis passing through

the point (x, z), m denotes the mass of the vehicle and Iz denotes its moment of

inertia about the vertical z axis passing through the point (x, z). From the above,

it is seen that the dynamical model consists of the following five equations: three

kinematic model equations within the matrix-vector equation (3.11), two Newtonian

dynamical equations within the matrix-vector equation (3.12), and the no slipping

(non-holonomic) constraint within equation (3.13). It should be noted that in prac-

tice, the force F and torque τ are generated by the two dc motors on the rear wheels.

This shall become evident within the subsections that follow below.

As suggested above, the kinematic model neglects dynamic mass-inertia effects.

As such, the kinematic model is just an approximation to the dynamic model. The

kinematic model is a good approximation to the dynamical model when (v, ω) can be

generated quickly. Intuitively, this occurs when m and I are sufficiently small or the

inner (v, ω) loop has a sufficiently large bandwidth.

Finally, it is important to note the relationship between (F, τ) and the left-right

motor torques (τl, τr). The desired relationship is similar in form to the angular

velocity relationships within equation 3.6 and is given by

F =

[
τr + τl
r

]
τ =

[
dw(τl − τr)

2r

]
(3.14)

Here, τl and τr represent the torques acting on the left and right wheels, respectively.

Next, the motor (actuator) dynamics are discussed. Ultimately, the motors are

responsible for producing the wheel torques (τl, τr) and hence the associated pair
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(F, τ). The latter, of course are directly responsible for producing the vehicle speeds

(v, ω).

3.3.3 DC Motor (Actuator) Dynamics

There are two classes of DC motors: (1) armature-current controlled and (2) field-

current controlled [55]. Similar to [58], focus is made on the former in this thesis;

i.e. armature-current controlled dc motors. The dynamics for a DC motor can be

visualized as shown within Figure 3.9. The associated equations are as follows:

Figure 3.9: Visualization of DC Motor Speed-Voltage Dynamics

Armature Equation:

ea = La
dia
dt

+Raia + eb (3.15)

Back EMF Equation:

eb = KbKgωs (3.16)

Torque Equation:

τs = KtKgia (3.17)

Load Equation:

Iω̇s + βωs =
τs

Kg
2 (3.18)

Here, ea represents the applied armature voltage. This is the control input for an ar-

mature controlled DC motor. Other relevant variables are as follows: ia represents the

armature current, eb represents the back emf, τs represents the torque exerted by the
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motor on the motor shaft-load system, ωs represents the motor shaft angular speed.

Relevant motor parameters are as follows: La represents the armature inductance

(often negligibly small in many applications), Ra represents the armature resistance,

Kb represents the back emf motor constant, Kt represents the motor torque constant,

Kg represents the gearbox ratio of motor shaft-load system β represents a load-motor

speed rotational damping constant, and I represents the moment of inertia of the

motor shaft-load system.

From the above, one can obtain the transfer function from the input voltage ea to

the angular speed ωs:

ωs
ea

=

[
Kt

Kg

(Is+ β)(Las+Ra) +KtKb

]
(3.19)

Given the above, some observations are in order. The motor speed transfer function is

generally second order. If the armature inductance La is negligibly small (i.e. ωsLa <<

Ra over the operational bandwidth), then the motor speed transfer function becomes

first order. In such a case, the following speed-voltage transfer function approximation

is obtained:

ωs
ea
≈

[
Kt

Kg

(Is+ β)(Ra) +KtKb

] [
Ra

Las+Ra

]
(3.20)

In such a case, the dominant motor pole becomes s ≈ −
(
Raβ+KtKb

RaI

)
= −β

I
− KtKb

RaI

and the associated inductance pole becomes large and given by s ≈ −Ra

La
. Given

this, the motor response is faster for larger (β, Kt, Kb) and smaller (I, Ra). If the

armature inductance is neglected, then the speed-voltage transfer function becomes

first order. Generally, Kt = Kb.
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3.3.4 Robot TITO LTI Model with Actuator Dynamics

In this section, the ideas presented above are combined in order to get state space

representation TITO LTI model for the differential-drive vehicle. This model, taken

from [5], was used within [57] and [58] for inner-loop control design. The TITO LTI

model from motor voltages (eaR, eaL) to the wheel angular velocities (ωR, ωL) can be

visualized as shown within Figures 3.10-3.11.

Figure 3.10: TITO LTI Differential-Drive Mobile Robot Dynamic Model with Actu-

ators

Figure 3.11: Differential-Drive Mobile Robot Dynamic Model
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The associated fourth order TITO LTI state space representation is given by

ẋ = Ax+Bu y = Cx+Du (3.21)

where x = [ v ω iaR iaL ]T , y = [ ωR ωL ]T , u = [ eaR eaL ]T ,

A =



−2βK2
g

mr2
0 KgKt

mr

KgKt

mr

0 −βKg
2dw

2

2Izr2
KgKtdw

2Izr

−KgKtdw
2Izr

−KgKb

Lar

−KgKbdw
2Lar

−Ra

La
0

−KgKb

Lar

KgKbdw
2Lar

0 −Ra

La


(3.22)

B =



0 0

0 0

1
La

0

0 1
La


(3.23)

C =

1
r

dw
2r

0 0

1
r
−dw
2r

0 0

 (3.24)

D =

0 0

0 0

 (3.25)

Here, (iaL, iaR) represent left and right motor armature currents, v is the vehi-

cle’s translational velocity (directed along the direction θ), ω is the vehicle’s angular

velocity, (ωL, ωR) represent left and right vehicle wheel angular velocities, (eaL, eaR)

represent left and right motor armature voltage inputs. The latter are the robot’s

control inputs. Relevant system parameters are as follows: m is the vehicle mass, dw

43



is the distance between the wheels, r is the vehicle wheel radius, Iz is the vehicle’s

moment of inertia, β represents a load-motor speed rotational damping constant, Kb

represents a back emf constant, Kt represents a torque constant, Kg represents the

gearbox ratio of motor shaft-load system Ra represents armature resistance, and La

represents armature inductance (often negligibly small). It should be noted that dif-

ferences in the motor properties is a practical concern. This has not been captured

in the above model. It shall not be addressed within this thesis. Addressing such

uncertainty will be the subject of future work.

Frequency Response Properties. The singular values for the above system and

the associated low frequency approximation are plotted within Figure 3.12 for the

nominal parameter values given within Table 3.2 (taken from [59]). Note that the

singular values at dc match one another. This is because from each input, the motor-

vehicle (ωR, ωL) system looks the same.

Figure 3.12: Robot Singular Values (Voltages to Wheel Speeds) - Including Low

Frequency Approximation

The plot in Figure 3.12 suggests that the low frequency approximation (red, with

a 20 dB/decade high frequency roll-off) is a good approximation for the system. The

relatively high system gain at low frequencies will help achieve good low frequency
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command following and low frequency disturbance attenuation (in principle, without

too much control action).

To better examine the coupling in the (ωR, ωL) system, its frequency response

is plotted in Figure 3.13. The figure clearly shows that the off-diagonal elements

peak around 4 rad/sec and that the coupling disappears at dc. This low frequency

behavior, as well as the first order low frequency behavior of the diagonal elements,

provides substantive motivation for a decentralized PI control law; i.e. the use of

identical PI controllers for each motor.
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Figure 3.13: Robot Frequency Response (Voltages to Wheel Speeds) - Including Low

Frequency Approximation
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Off-Ground Motor Step Response

In Figure 3.14 the DC motor off-ground step response is plotted when the input

voltage is 1.5V. The ripple is due to the fact that the encoder resolution is approxi-

mately 3.93 rad/sec.

A transfer function corresponding to this hardware result reads as:

Poffground =
ω

e
= 14.2

[
4.5

s+ 4.5

]
(3.26)

Figure 3.14: DC Motor Output ω Response to 1.5V Step Input

Estimated Transfer Function for Differential-Drive Mobile Robot.

An on-ground test was carried out in order to estimate a transfer function for the

vehicle. Figure 3.15 shows the hardware measured response to a 2.42 V input voltage.

According to the experimental result shown in Figure 3.15, the following estimated

transfer function is obtained(from voltage to angular velocity):

Pinner =
ω

e
= 5.4954

[
1.73

s+ 1.73

]
(3.27)

The simulated step response for the plant Pinner is shown in Figure 3.15. The

two DC motors for the vehicle are assumed to be identical. The TITO LTI (ωR, ωL)
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Figure 3.15: DC Motor Output ω Response to 2.42V Step Input

vehicle-motor model is assumed to be diagonal.

This model is different from the one shown in Figures 3.12-3.13, due to unmodeled

dynamics such as stiction, backlash and deadzone. A more complete model shall be

investigated in future work.

For the remainder of this chapter the following approximation for the inner loop

vehicle-motor (ωR, ωL) plant will be used:

P[ωR,ωL] ≈ 5.4954

[
1.73

s+ 1.73

]
× I2×2 (3.28)

Frequency Response Analysis for Diagonal (Decoupled) System. Given the

estimated model above in equation (3.27), the associated decoupled vehicle-motor

frequency response is shown in Figure 3.16.

3.4 Inner-Loop Speed Control Design and Implementation

In this section, the (ωR, ωL) and (v, ω) inner-loop control design for the differen-

tial drive Thunder Tumbler is described. For this basic inner-loop control modality,
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Figure 3.16: Magnitude Response for Vehicle-Motor - Decoupled (ωR, ωL) Model

the angular velocity of each vehicle wheel is estimated/approximated by exploiting

the magnetic pulse counts picked up by the two wheel encoders during a T seconds

sampling window. This results in the following estimate for (ωR, ωL):

ωR ≈
2πnr
8T

= 7.854 nr (rad/sec) ωL ≈
2πnl
8T

= 7.854 nl (rad/sec) (3.29)

where

� T = 0.1 sec (100 msec or 10 Hz) was the chosen sampling (and actuation) time.

� nr is the number of counts measured by the magnetic encoder (Hall effect sen-

sor) on the right wheel (with 8 pulses/counts per rotation3),
3Actually in hardware, Arduino provides 16 pulses per rotation, i.e. it counts the rising and

falling edges caused by the 8 magnets. Hence the resolution is reduced by half (0.5*7.854) = 3.927
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� nl is the number of counts measured by the magnetic encoder (Hall effect sen-

sor) on the left wheel (with 8 counts per rotation).

Note that as the number of magnets used on a wheel is increased, then the constant

7.854 would decrease. The vehicle translational and rotational velocities (v, ω) are

then estimated from the above (ωR, ωL) estimates as follows:v
ω

 = M

ωR
ωL

 M =

 r
2

r
2

− r
dw

r
dw

 M−1 =

1
r
−dw
2r

1
r

dw
2r

 (3.30)

and

v =

(
r(ωR + ωL)

2

)
≈ 0.392

(
nr + nl

2

)
m/sec (3.31)

ω =

(
r(ωL − ωR)

dw

)
≈ 2.805 (nl − nr) rad/sec (3.32)

where r = 0.05 m is the radius of each wheel and dw = 0.14 m is the distance between

the rear wheels. The above suggests that a single missed count could result in a

0.3928 m/sec translation velocity error or a 2.805 rad/sec rotational velocity error.

As the number of magnets used on a wheel is increased, these errors would decrease.

Control Design: PI with One Pole Roll-Off and Command Pre-filter. Based

on the simple (decoupled first order) LTI model obtained in the previous section in

equation (3.27)

Pinner =
ω

e
= 5.4954

[
1.73

s+ 1.73

]
(3.33)

a PI controller with roll-off and pre-filter is designed. The controller has the form (PI

plus roll-off):

Kinner =
g(s+ z)

s

[
100

s+ 100

]
(3.34)

This Kinner will be used to drive each dc motor 4 on the vehicle.

4Actually, the digital implementation of Kinner will be used to drive the Arduino shield. The

shield will then drive the dc motors.
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Here, phase margin (PM) of 60 deg and a unity-gain crossover frequency (ωg) of

2 rad/sec are used as design parameters. The open loop transfer function L is given

by

L = PinnerKinner =
g(s+ z)

s

9.507

s+ 1.73

[
100

s+ 100

]
(3.35)

From the phase margin equation PM = 180◦+∠L(jωg) the value of the zero z is

computed, i.e.

PM = 180◦ − 90◦ + tan−1
(ωg
z

)
− tan−1

( ωg
1.73

)
− tan−1

( ωg
100

)
(3.36)

= 90◦ + tan−1
(ωg
z

)
− tan−1

( ωg
1.73

)
− tan−1

(
1

50

)
(3.37)

tan−1
(ωg
z

)
= PM − 90◦ + tan−1

( ωg
1.73

)
+ tan−1

(
1

50

)
(3.38)

= 60◦ − 90◦ + 49.14◦ + 1.145◦ = 20.285 (3.39)

ωg
z

= tan(20.285) (3.40)

z =
ωg

tan(20.285)
(3.41)

z = 5.411 (3.42)

Now g is obtained by knowing that |L(jωg)| = 1.

g
√
ω2
g + z2

ωg

9.507√
ω2
g + 1.732

[1] = 1

g =
ωg
√
ω2
g + 1.732

9.507
√

2
g + z2

g =
5.288

54.84

g = 0.096

(3.43)

This values of g and z yields

Φactual(s) ≈ s(s+ 1.73) + 9.507g(s+ z) = s2 + 2.6426s+ 4.938. (3.44)
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A reference command pre-filter

W =
z

s+ z
(3.45)

will ensure that the overshoot to a step reference command approximates that dic-

tated by the second order theory. That is, the following single channel (SISO) map

from commanded wheel speed to actual wheel speed is obtained: Trywheel speeds
=

W
[

PinnerKinner

1+PinnerKinner

]
≈ 4.938

s2+2.6426s+4.938
.

Figure 3.17: Visualization of (v, ω) and (ωr, ωl) Inner-Loop Control

The inner-loop control system can be visualized as shown in Figure 3.17. (v, ω)

are commanded but not directly measured. Within Figure 3.17, the matrix M is a

2× 2 vehicle-wheel speed map that relates the vehicle translational-rotational veloci-

ties (v, ω) to the wheel angular velocities (ωR, ωL); i.e. see equation (3.30) (page 50).

Although only the wheel encoder count information is fed back within the physical

inner-loop hardware implementation, the system outputs v and ω were estimated

(computed) using wheel encoder counts in accordance with equations (3.31)-(3.32).

Reference to Output Try (v, ω) Map. From Figure 3.17, it follows that one can

use the relationships in equation (3.30) to get the model-based closed loop map from
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references (vref , ωref ) to outputs (v, ω). Doing so yields the following TITO LTI map:

Try = MWPK(I + PK)−1M−1 ≈
[

4.938

s2 + 2.6426s+ 4.938

]
I2×2 (3.46)

where P ≈ PinnerI2×2 is a TITO LTI system and K = KinnerI2×2 is a diagonal inner-

loop controller.

Inner-Loop Open Loop Singular Values: (ωr, ωl) System. The open loop

singular values for the (ωr, ωl) system are plotted in Figure 3.18. Note that the

different gains have been used. The blue line corresponds to a controller with a unitary

gain crossover frequency ωg of 1 rad
s

, the black line corresponds to an ωg = 2 rad
s

(with

its gains obtained above) and the red line corresponds to an ωg = 4 rad
s

.

Figure 3.18: Lo = PK Singular Values

Low frequency reference commands r will be followed, low frequency output dis-

turbances do will be attenuated and high frequency sensor noise n will be attenuated.

In [58] it was shown that the open loop singular values at the output/errors are the

same as those at the controls/inputs. Also it was shown that the open loop singular

values for for PK and MPKM−1 are identical.
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Sensitivity Singular Values. The sensitivity singular values (at outputs/controls)

for system (ωr, ωl) are plotted in Figure 3.19.

Figure 3.19: So = (I + Lo)
−1 = Si Singular Values

Figure 3.19 shows that the system has good low frequency command following, good

low frequency output disturbance attenuation and nominal stability robustness prop-

erties (i.e. little sensitivity peaking).

Complementary Sensitivity Singular Values. The complementary sensitivity

singular values (at outputs/controls) for system (ωr, ωl) are plotted in Figure 3.20.

Figure 3.20: To = I − So = Ti Singular Values
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Figure 3.20 shows that low frequency reference commands will be followed. The plot

also shows that high frequency sensor noise will be attenuated.

Reference to Control Singular Values. The reference to control singular values

are shown in Figures 3.21-3.22. The latter shows the utility of the command pre-filter

for reducing control effort.

Figure 3.21: Tru Singular Values (No Pre-filter)

Figure 3.22: WTru Singular Values (with Pre-filter)

Figures 3.21-3.22 suggest that reference commands r will be attenuated to pro-

duce the necessary steady state control u.
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In Figure 3.22 the peaks are reduced in comparison to the peaks Figure 3.21 since

a pre-filter W is used.

Input Disturbance to Output Tdiy Singular Values. The input disturbance to

output singular values are shown in Figure 3.23.

Figure 3.23: Tdiy Singular Values

The plot shows that as one increases the gains of the controller (i.e. higher band-

width) the input disturbances will have little effect on the output.

For completeness in Figures 3.24-3.25 it is showed the singular values for Tdiy and

Tru (unfiltered) for the (v, ω) system.
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Figure 3.24: MSP Singular Values

Figure 3.25: KSM−1 Singular Values

From above, input disturbances for the (v, ω) have small impact on the output.

Also, one needs to be careful when issuing commands for the (v, ω) system since the

control action will be larger than the required for the corresponding (ωR, ωL) system.
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Simulation and Experimental Step Response Analysis: Output Responses

(ωR, ωL). The filtered step reference time responses for the (ωR, ωL) inner loop control

system are shown in Figure 3.26. The parameters for the controller are g = 0.096

and z = 5.406.

Figure 3.26: Inner-Loop [ωR, ωL] Filtered Step Response

The experimental result has overshoot due to deadzone and static friction. In the

steady state both responses are close to each other. Note the encoder resolution is

around 1.96 rad/s due to the fact that an average filter was used.

Simulation and Experimental Step Response Analysis: Output Responses

(v, ω). The filtered step reference time responses for the (v, ω) system are shown in

Figure 3.27. Here the encoder resolution for v is around 0.098 m/s; the resolution for

ω is approximately 0.7 rad/s.
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Figure 3.27: Inner-Loop [v, ω] Filtered Step Response

Simulation and Experimental Step Response Analysis: Control Responses

(eaR, eaL). Next the filtered control responses for the inner loop (either for (ωR, ωL)

or (v, ω) systems) are presented in Figure 3.28.

Figure 3.28: Control Step Response
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CODE: ARDUINO INNER-LOOP CONTROL LAW CODE. The Arduino

code used for implementing the (ωr, ωl)-(v, ω) inner-loop control law - a control law

that is used by all of subsequent outer-loop control laws - can be found within Ap-

pendix B on page 185.

3.5 Summary and Conclusion

This chapter has provided a description of the hardware used within this thesis.

The kinematics and dynamics for the differential-drive mobile robot were examined.

Finally an inner loop speed control system was designed. This system is important

since it is used in the subsequent chapters. Both simulation and hardware results

were presented.
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Chapter 4

VISION-BASED ROBOT CONTROL

4.1 Introduction and Overview

The aim in Vision-Based Robot Control or Visual Servoing is to use visual infor-

mation to control the vehicles pose with respect to some landmarks [11]. By taking

the image measurements of feature points/markers of an object, and comparing with

the desired values of the features, the Visual Servoing control can then be designed

[12]. The vision data may be acquired from a camera that is mounted directly on

a robot manipulator or on a mobile robot, eye-in-hand, in which case motion of the

robot induces camera motion, or the camera can be xed, eye-to-hand, in the workspace

so that it can observe the robot motion from a stationary conguration. In this thesis

an eye-in-hand configuration of the camera is used.

In this chapter, first the controllability properties of the differential-drive kine-

matic mobile robot model are examined. Then two (2) outer loop controllers are

designed, namely Image Based Visual Servoing and Position Based Visual Servoing.

Simulation as well as experimental results are presented and discussed.

4.2 Controllability of Nonlinear Kinematic Differential-Drive (x, z, θ) Model

In this section, the controllability properties of the (x, z, θ) differential-drive kine-

matic mobile robot model are examined - discussed within section 3.3.1. First the

nonlinear model and then its linearization are examined. A system is said to be con-

trollable if there exists a control law u(·) which can transfer the state of the system

from any initial state xo to any final state xf within a finite amount of time.
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Controllability of Nonlinear Kinematic Differential-Drive (x, z, θ) Model.

The nonlinear kinematical model discussed within section 3.3.1 can be rewritten as

follows:

ẋ = f(x) + g1u1 + g2u2 (4.1)

where

f(x) = 0 g1 =


sin θ

cos θ

0

 g2 =


0

0

1

 (4.2)

The nonlinear (Lie-bracket based) controllability matrix for this system can be formed

and its rank can be checked as follows [3]:

rank ( g1 g2, [ g1, g2 ] ) = rank


sin θ 0 − cos θ

cos θ 0 sin θ

0 1 0

 = 3 (4.3)

Here, the quantity [ g1, g2 ] is called the Lie-Bracket of g1 and g2. It is defined by the

following relationship:

[ g1, g2 ] =
∂g2

∂θ
g1 −

∂g1

∂θ
g2 (4.4)

Since the (nonlinear) controllability matrix ( g1 g2, [ g1, g2 ] ) has full rank, it

follows that the system (i.e. nonlinear differential-drive kinematic vehicle model) is

controllable. This confirms the common physical experience that a mobile vehicle can

be taken from any point (x1, z1, θ1) to any other point (x2, z2, θ2). More specifically,

it can be “parked” at any point (x, z) in any posture θ.
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Controllability of Linearized Kinematic Differential-Drive (x, y, θ) Model.

Linearizing the above nonlinear kinematic model about the equilibrium (x, z, θ) =

(0, 0, 0) yields the following linear system
ẋ

ż

θ̇

 =


0 0

1 0

0 1


v
ω

 (4.5)

The controllability matrix for this LTI system is just the matrix given above. It

has rank 2 which is less than the number of states or 3. Hence, this LTI system is

uncontrollable. More precisely, since this system can be written as ẋ = Ax+Bu with

A = 03×3 and B =


0 0

1 0

0 1

, it follows that the left eigenvector [ 1 0 0 ] of A lies in

the left null space of B. By the PBH eigenvalue-eigenvector test [56] , the above LTI

system is uncontrollable. Thus, in the process of linearizing the system controllability

has been lost. This, fundamentally, is because the vehicle cannot move sideways!

Brockett’s Theorem. Brocket’s theorem is now presented. Brockett’s theorem

shows that no continuous control law can completely stabilize a system with a non-

holonomic restriction.

Theorem 4.1 (Brockett, 1983)

Suppose that (1) q̇ = g(q)u is a continuously differentiable distribution in a neighbor-

hood of qo, (2) g(qo)uo = 0, (3) g(q) is a distribution of constant rank in a neighbor-

hood of qo. Given the above, it follows that a continuously differentiable control law

which makes (qo, uo) asymptotically stable exists if and only if dim(q) = dim(u).
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In the case of non-holonomic mobile robots, dim(q) = 3 and dim(u) = 2. Thus no

smooth control law exists which can stabilize the robot about a posture. This result

requires that more sophisticated control schemes be used to stabilize non-holonomic

mobile robots. These new schemes include time varying control laws, piece-wise

continuous control or model transformation techniques. In short, to park a car the

switching of control laws is needed. A single control law can get the robot close, but

switching is required to achieve the target.

4.3 Image Formation

Image formation is the process where radiation emitted from objects is collected

to form an image of the objects [18].

From images the size, shape and position of objects in the world can be deduced

as well as other characteristics such as color and texture. In a digital camera a glass

or plastic lens forms an image on the surface of a semiconductor chip with an array

of light sensitive devices to convert light to a digital image.

Image formation, in an eye or in a camera, involves a projection of the 3-dimensional

world onto a 2-dimensional surface. The depth information is lost and one can no

longer tell from the image whether it is a large object in the distance or a smaller

closer object. This transformation from 3 to 2 dimensions is known as perspective

projection [6]. In computer vision it is common to use the central perspective imaging

model shown in Figure 4.1.

The origin of the camera coordinate frame is at the center of projection of the

camera (this is where the camera aperture is located). The z-axis is taken to be

the optical axis of the camera (which points in front of the camera in the positive z

direction).

The rays converge on the origin of the camera frame C and a non-inverted image
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Figure 4.1: Perspective Model

is projected onto the image plane located at a distance z = f . Using similar triangles

a point at the world coordinates P = (X, Y, Z) is projected to the image plane

pi = (x, y) by

x = f
X

Z
y = f

Y

Z
(4.6)

or in compact matrix form

p
′

i =


f 0 0

0 f 0

0 0 1




X

Y

Z

 (4.7)

where p
′
i = (x

′
, y

′
, z

′
) and the image plane coordinates are obtained as follows,

x = x
′
/z

′
and y = y

′
/z

′
.

A perspective projection, from the world to the image plane and has the following

characteristics:

� It performs a mapping from 3-dimensional space to the 2-dimensional image

plane,
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� Straight lines in the world are projected to straight lines on the image plane

� Parallel lines in the world are projected to lines that intersect at a vanishing

point

� Conics in the world are projected to conics on the image plane. For example, a

circle is projected as a circle or an ellipse

� The mapping is not one-to-one and a unique inverse does not exist. That is,

given (x, y) uniquely determining (X, Y, Z) is not possible

� The transformation is not conformal, i.e. it does not preserve shape since in-

ternal angles are not preserved.

In a digital camera the image plane is a W × H grid of light sensitive elements

called photosites that correspond directly to the picture elements (or pixels) of the

image as shown in Figure 4.2.

Figure 4.2: Pixels In A Digital Camera

The pixel coordinates are a 2-vector (u, v) of non-negative integers and by con-

vention the origin is at the top-left hand corner of the image plane. The pixels are
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uniform in size and centered on a regular grid so the pixel coordinate is (x, y) related

to the image plane coordinate (u, v) by the following expression

u =
x

ρw
+ u0 v =

y

ρh
+ v0 (4.8)

where ρw and ρh are the width and height of each pixel respectively, and (u0, v0)

is the principal point, i.e. the coordinate of the point where the optical axis intersects

the image plane [6]. Equivalently one can express the previous equations in matrix

form as follows:

p
′
=


u

′

v
′

w
′

 =


f
ρw

0 u0

0 f
ρh

v0

0 0 1




X

Y

Z

 = CP (4.9)

From this the image plane coordinates expressed in pixels are found like this:

p =

u
v

 =

 u
′

w′

v
′

w′

 (4.10)

The matrix C found in (4.9) is called camera intrinsic parameters matrix, i.e. its

elements are innate characteristics of the camera and sensor.
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4.3.1 Camera Calibration

Camera calibration is the process of determining the cameras intrinsic parameters.

Calibration techniques rely on sets of world points whose relative coordinates are

known and whose corresponding image-plane coordinates are also known.

Twenty pictures of the chessboard from different angles were taken with the Rasp-

berry Pi Camera and used in the OpenCV default calibration function. The size of

each picture is 320x240. Figure 4.3 shows some examples of the pictures taken.

Figure 4.3: Pictures Used for Camera Calibration

The camera intrinsic parameters matrix C were found to be:

C =


327.267 0 152.44

0 326.883 120.221

0 0 1

 (4.11)
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4.4 Position Based Visual Servoing

Position Based Visual Servoing (PBVS) uses observed visual features, a calibrated

camera and a known geometric model of the target to determine (estimate) the po-

sition of the target with respect to the camera. The robot then computes the error

between desired and actual pose to generate the required control input to get to its

destination. Good algorithms exist for pose estimation but it is computationally ex-

pensive and relies critically on the accuracy of the camera calibration and the model

of the objects geometry [6].

4.4.1 Control Law Development

PBVS operates on the task space, i.e. X − Z plane, therefore the goal is to

minimize the errors in position (xref − x) and (zref − z). Hence the outer loop

design presented here is the same as the cartesian stabilization showed in [58]. The

difference is the way the mobile robot position is estimated. In [58] IMU along with

wheel encoders were used to get an estimate position; here only a camera is used.

The block diagram shown in Figure 4.4 shows the outer loop implementation of

PBVS.

Figure 4.4: Position Based Visual Servoing Block Diagram
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The use of a proportional gain controller is justified from the work in [4]. A simple

control law v = kses, ω = kθeθ results in an error dynamics matrix (after linearization)

that is Hurwitz when kθ > ks > 0 [4]. A drawback of this control law (consistent with

the Brockett 1983 result [1]) is that it can only get the system arbitrarily close to

the desired (xref , zref , θref ) [4]. To precisely achieve the objective, one would have to

switch control laws. These ideas are used to motivate a simple proportional control

law for PBVS outer-loop that was implemented for the differential-drive vehicle. It is

now useful to present some of the key ideas about cartesian stabilization within [4].

Let es = ∆λ denote the projection of the vehicle-to-target vector onto the longitudinal

body axis of the vehicle. φ is defined as the angle which binds (xref , zref ) and (x, z).

It is called the pointing angle.

Figure 4.5: Visualization of Longitudinal Distance to Target es = ∆λ and Angular

Error eθ = ∆φ

From Figure 4.5, the following expressions are obtained:

φ = tan−1(
zref − z
xref − x

) (4.12)

eθ = φ− θ (4.13)
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es = ∆λ = ∆l cos ∆φ (4.14)

The structure of the control law used within [4] and which will be used here as

well is as follows - a proportional control law:

v = kses ω = kθeθ (4.15)

In [58] the local stability of this closed loop system is proved by analizing the error

dynamics. The Cartesian stabilization error dynamics and hence the PBVS, will be

locally exponentially stable if kθ > ks > 0.

How does the robot estimate its position with respect to some target using only

visual information, i.e. with the camera?

First the target in this thesis is a chessboard as shown in the Figure 4.6.

Figure 4.6: 7× 6 Chessboard

The goal here is to determine the pose of the target coordinate frame, {T} with

respect to the camera. The geometry of the target is known, that is, the position

of the points are known - in this case the corners - (Xi, Yi, Zi), i ∈ [1, N ] on the

target with respect to {T}. The distance between each corner in the chessboard is

2.8cm. The intrinsic parameters of the camera are also known, as it was discussed in
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4.3.1. An image is captured and the corresponding image plane coordinates (ui, vi) are

determined by using an OpenCV function that computes the corners of the squares

in the chessboard.

As mentioned in Chapter 1, estimating the pose using (ui, vi), (Xi, Yi, Zi) and

the intrinsic parameters of the camera is known as the Perspective-n-Point problem

or PnP for short [6]. OpenCV provides a function which is called SolvePnP that

takes as inputs the camera intrinsic parameters, the 2D image points (ui, vi) and

the corresponding 3D coordinates (Xi, Yi, Zi) of the points and it returns the pose

(rotation matrix, translation vector) of the target with respect to the camera.

4.4.2 Simulation Results

In this part simulation results for the Position Based Visual Servoing are presented.

The gains kθ = 0.8 and ks = 0.4 were used. In Figure 4.7 the robot reaches the desired

position (xref , zref ) = (0, 1) for three different initial conditions. The robot fails to

get close to the desired position when |xref | > 0.2m.

Figure 4.7: Motion of Robot Using Position Based Visual Servoing
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This occurs because the chessboard leaves the camera Field of View (FOV), and

once this happens the robot can’t continue with its motion. A pan camera is then

implemented, i.e. one that can be moved from side to side. This way the camera can

keep the chessboard in its FOV. A simple algorithm for the control of the angle of the

pan camera was used; when the middle point of the chessboard started to move to

the left or right from the center of the image plane then the pan camera would turn

either to the to the left or right respectively. Proportional and integral gains were

used (kp = 0.001, ki = 0.003).

In Figure 4.8 the robot reaches the desired position (xref , zref ) = (0, 1) for all

initial positions.

Figure 4.8: Motion of Robot Using Position Based Visual Servoing with Pan Camera

4.4.3 Experimental Results

The experimental results for the PBVS outer loop control system are now pre-

sented. Figure 4.9 shows how the mobile robot moves in the x−z plane from different

initial conditions. In accordance with simulation results presented above, the robot

cannot get to the desired position due to the chessboard leaving the FOV of the cam-
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era. During this test it was observed that sometimes the algorithm failed to detect

the chessboard and consequently failed to estimate position and the motion of the

mobile robot was not smooth. A more robust algorithm and a different target can be

later investigated to improve performance.

Figure 4.9: Motion of Robot Using PBVS - Experimental

Once a pan camera is used the robot gets close to the desired position as it can

be seen in Figure 4.10.
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Figure 4.10: Motion of Robot Using PBVS with Pan Camera - Experimental

The accuracy of the estimation algorithm is around 75% along the x-axis (lateral

accuracy). An accuracy of about 98% was observed on the z-axis (longitudinal accu-

racy). A different estimation algorithm can be investigated in order to improve this

accuracy.

CODE: PYTHON AND ARDUINO CODE. The Python and Arduino code

used for the Position-Based robot control can be found within Appendix C on page 213

and Appendix B on page 187.
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4.5 Image-Based Visual Servoing

Image-based visual servoing (IBVS) uses the image features directly. The control

is performed in image coordinate space, in other words image-based schemes define

the reference signal in the image plane [10]. The desired camera pose is defined

implicitly by the image feature values at the goal pose [6].

In IBVS control, an error signal is measured in the image and mapped directly

to actuator commands [14]. A controller is designed to maneuver the image features

toward a goal configuration. The approach is inherently robust to camera calibration

and target modeling errors. Because of the above reasons IBVS has seen increasing

popularity in recent years [13].

4.5.1 Control Law Development

The aim of the IBVS scheme is to minimize an error e(t), which is defined by

e(t) = p∗ − p (4.16)

where p∗,p∗ ∈ R2k are vectors that contain desired and current visual features.

In this thesis image plane coordinates (u, v) of k points or dots are used as visual

features. The target object is assumed to have these k points.

Before going further, it is appropriate to define important characteristics about

the wheeled mobile robot with the camera. In Figure 4.11 the camera coordinate

frame is shown as well as the image plane and its origin, which is at the top right

corner.

Figure 4.12 the relationships between different coordinate frames. Here θ is the

angle between the world and robot frames Z-axis, φc is the angle formed between the

robot and camera frames Z-axis (measured positive in the clockwise direction).
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Figure 4.11: Camera Coordinate Frame and Image Plane

Figure 4.12: Complete System

Consider a camera moving with a body velocity vcam = (vc, ωc) = (vx, vy, vz, ωx, ωy, ωz)

in the world frame and observing a world point P with camera relative coordinates

P = (X, Y, Z). The velocity of the point relative to the camera frame is given by

Ṗ = −ωc × P − vc (4.17)

which can be written in scalar form as
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Ẋ = Y ωzZ − ωy − vx

Ẏ = Zωx −Xωz − vy

Ż = Xωy − Y ωy − vz

(4.18)

The perspective projection for normalized coordinates is given by

x =
X

Z
y =

Y

Z
(4.19)

and the derivative, using the quotient rule is

ẋ =
ẊZ −XŻ

Z2
y =

Ẏ Z − Y Ż
Z2

(4.20)

Substituting X = xZ, Y = yZ and (4.18), one can rewrite equations (4.20) in

matrix form

ẋ
ẏ

 =

− 1
Z

0 x
Z

xy −(1 + x2) y

0 − 1
Z

y
Z

(1 + y2) −xy −x





vx

vy

vz

ωx

ωy

ωz



(4.21)

which relates the camera velocity to the velocity of the normalized image coordi-

nates. The normalized image plane coordinates are related to the pixel coordinates

by

u =
f

ρw
x+ u0 v =

f

ρh
y + v0 (4.22)

which may be rearranged as
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x =
ρw
f
ū y =

ρh
f
v̄ (4.23)

where ū = u−u0 and v̄ = v−v0 are the pixel coordinates relative to the principal

point. Taking the derivative one obtains the following

ẋ =
ρw
f

˙̄u ẏ =
ρh
f

˙̄v (4.24)

Finally substituting (4.23), (4.24) in (4.21) leads to

 ˙̄u

˙̄v

 =

− f
ρwZ

0 ū
Z

ρwūv̄
f

−f2+ρ2wū
2

ρwf
v̄

0 − f
ρhZ

v̄
Z

f2+ρ2hv̄
2

ρhf
−ρhūv̄

f
−ū





vx

vy

vz

ωx

ωy

ωz



(4.25)

One can write this in concise matrix form as

ṗ = Jimgvcam (4.26)

where Jimg is called the image jacobian matrix for a point feature or a dot. In the

previous equation only one marker was being considered, however if k markers are

used then p = [ū1, v̄1, ..., ūk, v̄k]
T ∈ R2k, and Jimg ∈ R2k×6. The image jacobian matrix

does not depend at all on the world coordinates X or Y , only on the image plane

coordinates (u, v) and the depth Z. In [15] an approximation to the image jacobian

matrix is described; in this thesis Jimg is constant, i.e. the desired pixel coordinates

(uid, vid) of the markers and a constant value for the depth Z (0.4) will be used.
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There is a relationship between the camera velocity vcam and the linear and

angular velocity of the robot, v = [v, ω]T [9], which is given by the next equation

vcam =



− sinφc bXc sinφc + bZc cosφc

0 0

cosφc −bXc cosφc + bZc sinφc

0 0

0 1

0 0



v
ω

 = JRv (4.27)

where bXc is the distance from the robot to the camera along the robot’s X axis,

bZc is the distance from the robot to the camera along the robot’s Z axis.

Having a fixed camera on the wheeled mobile robot means that φc is constant,

specifically in this work it will be equal to zero degress, i.e. the Z axis of the camera

is coincident with the Z axis of the robot. The parameters bXc and bZc are equal to

0 and 10 cm, respectively. Given this equation (4.27) becomes

vcam =



0 bZc

0 0

1 0

0 0

0 1

0 0



v
ω

 (4.28)
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Using (4.28) along with (4.26), the following is obtained

ṗ = JimgJR

v
ω

 = Jvis

v
ω

 (4.29)

where Jvis ∈ R2k×2. Solving for the linear and angular velocities of the robot, the

next equation is obtained

v
ω

 = J+
visṗ (4.30)

The matrix Jvis is the pseudo-inverse of Jvis and is described as

J+
vis =


J−1
vis : k = 1

(JTvisJvis)
−1JTvis : k > 1

(4.31)

The control objective is to drive each feature point pi to the desired one p∗i (i =

1, , k). To do this, a proportional controller is used

ṗ = λ(p∗ − p) (4.32)

Combining equation (4.32) with equation (4.30), the control law is obtained

vref
ωref

 = λJ+
vis(p

∗ − p) (4.33)

The way p∗ is obtained in this thesis is by taking the robot to the desired position

and then taking a picture of the target object in which the markers are located

(learning phase).
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Figure 4.13 shows a block diagram of the outer loop implementation of IBVS.

Figure 4.13: Image Based Visual Servoing Block Diagram

Here N is a nonlinear transformation that takes the position of the robot (x, z, θ)

and of the dots (XI , YI , ZI) in the world/inertial frame and produces the pixel coor-

dinates (u, v) in the image plane of each of those dots. This mapping consists of the

following:


u

′

v
′

w
′

 = C T−1
cb T−1

bI


XI

YI

ZI


u =

u
′

w′ v =
v

′

w′

(4.34)

where the C matrix is the camera intrinsic parameters matrix, Tcb and TbI are

transformation matrices (from camera coordinate frame to robot coordinate frame

and from robot coordinate frame to world/inertial frame) and are defined as follows:
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C =


f
ρw

0 u0 0

0 f
ρh

v0 0

0 0 1 0

 Tcb =



cosφc 0 sinφc bXc

0 1 0 bYc

− sinφc 0 cosφc bZc

0 0 0 1


(4.35)

where bXc , bYc , bZc are the distances from the mobile robot to the camera along

each robot axis bX , bY , bZ .

TbI =



cos θd 0 sin θd xd

0 1 0 yd

− sin θd 0 cos θd zd

0 0 0 1


(4.36)

Image processing. In this thesis some image processing techniques were used for

implementing IBVS. Image processing is a computational process that transforms

one or more input images into an output image. Image processing is frequently used

to enhance an image for human viewing or interpretation, for example to improve

contrast [6].

� Image Segmentation. The term image segmentation refers to the partition of an

image into a set of regions. The goal in many tasks is for the regions to represent

meaningful areas of the image, such as the crops, urban areas, and forests of a

satellite image. A binary image can be obtained from a color image through an

operation that selects a subset of the image pixels as foreground pixels, the pixels

of interest in an image analysis task, leaving the rest as background pixels to be

ignored. The selection operation can be as simple as the thresholding operator

that chooses pixels in a certain subspace of color space or it may be a complex
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classification algorithm. In a number of applications binary images can be used

as the input to algorithms that perform useful tasks. These algorithms can

handle tasks ranging from very simple counting tasks to much more complex

recognition, localization, and inspection tasks [20]. In this work a simple color

thresholding was used to identify/detect the colored markers (which are on the

target object) on the image.

� Morphology. The word morphology refers to form and structure; in computer

vision it can be used to refer to the shape of a region. The most common bi-

nary image operations are called morphological operations, since they change

the shape of the underlying binary objects [22]. The operations of binary mor-

phology input a binary image B and a structuring element S, which is an-

other, usually much smaller, binary image. The structuring element represents

a shape; it can be of any size and have arbitrary structure. However, there are

a number of common structuring elements such as rectangle of specified dimen-

sions, or a circular region of specified diameter. The purpose of the structuring

elements is to act as probes of the binary image. One pixel of the structuring

element is denoted as its origin; this is often the central pixel of a symmet-

ric structuring element. Some of the basic morphology operations, which are

used in this thesis, are dilation and erosion. A dilation operation enlarges a

region, while erosion makes it smaller. These operations arise in a wide variety

of contexts such as removing noise, isolating individual elements, and joining

disparate elements in an image. Dilation is a convolution of some image B, with

some kernel, or structuring element S. As the kernel S is scanned over the im-

age, the maximal pixel value overlapped by S is computed and the value of the

image pixel under the origin is replaced with that maximal value. This causes
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bright regions within an image to grow. Erosion is the converse operation. The

action of the erosion operator is equivalent to computing a local minimum over

the area of the kernel. As the kernel S is scanned over the image, the minimal

pixel value overlapped by S is computed and the value of the image pixel un-

der the origin is replaced with that minimal value [17]. Some examples of the

dilation and erosion operations are shown in Figure 4.14.

Figure 4.14: From Left to Right. Original Image, Dilated Image, Eroded Image

4.5.2 Simulation Results

Simulation results are presented for the Image Based Visual Servoing. Figure 4.15

shows the motion of the robot using one marker on the target.

Figure 4.15: Motion of Robot Using One Marker
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The initial position is varied from x0 = −0.3 to x0 = 0.3 in increments of 0.1

m, z0 = 0 and θ0 = 0. The box with the blue marker represents the target the

robot sees in order to get to the desired position. The robot reaches the desired

position (xref , zref , θref ) = (0, 1, 0) only when (x0, z0, θ0) = (0, 0, 0). This is due to

local minima, i.e. the robot sees the marker from different positions the same way it

sees it from the desired position.

Figures 4.16, 4.17, 4.18, 4.19, 4.20, 4.21, 4.22 show the trajectory followed by the

marker on the image plane for each initial condition.

Figure 4.16: Trajectory of Marker on the Image Plane with (x0, z0, θ0) = (0, 0, 0)

Figure 4.17: Trajectory of Marker on the Image Plane with (x0, z0, θ0) = (0.1, 0, 0)
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Figure 4.18: Trajectory of Marker on the Image Plane with (x0, z0, θ0) = (0.2, 0, 0)

Figure 4.19: Trajectory of Marker on the Image Plane with (x0, z0, θ0) = (0.3, 0, 0)

Figure 4.20: Trajectory of Marker on the Image Plane with (x0, z0, θ0) = (−0.1, 0, 0)
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Figure 4.21: Trajectory of Marker on the Image Plane with (x0, z0, θ0) = (−0.2, 0, 0)

Figure 4.22: Trajectory of Marker on the Image Plane with (x0, z0, θ0) = (−0.3, 0, 0)

The ’o’ symbol represents the initial position of the marker in the image plane.

The ’∗’ symbol represents the position of the marker in the image plane when the

robot is at the desired position (xref , zref , θref ) = (0, 1, 0). Note that in the image

plane the marker gets to the desired pixel coordinate for any of the initial conditions.
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Figure 4.23 shows the motion of the robot using two markers on the target.

Figure 4.23: Motion of Robot Using Two Markers

Here, as with the case of one marker, the robot reaches desired position only when

(x0, z0, θ0) = (0, 0, 0).

Figures 4.24, 4.25, 4.26, 4.27, 4.28, 4.29, 4.30 show the trajectory followed by the

markers on the image plane for each initial condition.

Figure 4.24: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0, 0, 0)
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Figure 4.25: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.1, 0, 0)

Figure 4.26: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.2, 0, 0)

Figure 4.27: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.3, 0, 0)
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Figure 4.28: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.1, 0, 0)

Figure 4.29: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.2, 0, 0)

Figure 4.30: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.3, 0, 0)

In the image plane both of the markers get close to the desired pixel coordinates

for any of the initial conditions.
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When using three markers on the target, the mobile robot still gets to the desired

position only when (x0, z0, θ0) = (0, 0, 0) as can be seen in Figure 4.31.

Figure 4.31: Motion of Robot Using Three Markers

Figures 4.32, 4.33, 4.34, 4.35, 4.36, 4.37, 4.38 show the trajectory followed by the

markers on the image plane for each initial condition.

Figure 4.32: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0, 0, 0)
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Figure 4.33: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.1, 0, 0)

Figure 4.34: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.2, 0, 0)

Figure 4.35: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.3, 0, 0)
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Figure 4.36: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.1, 0, 0)

Figure 4.37: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.2, 0, 0)

Figure 4.38: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.3, 0, 0)

As seen above, there is no difference in using one, two or three markers on the

target. In all three cases, starting the robot from (x0, z0, θ0) 6= (0, 0, 0) causes the
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robot to not finish at the desired position. This happens because there are different

positions in the xz plane from which the robot sees the markers the same way as it

would see them from the desired or reference position (xref , zref , θref ) (local minima).

In other words, the pixel errors are driven to zero even when the mobile robot

does not reach the desired position. To show this idea, Figures 4.39, 4.40, 4.41, 4.42,

4.43, 4.44, 4.45, 4.46, 4.47 present the pixel errors when using one, two and three dots

on the box.

Figure 4.39: Pixel Errors for (x0, z0, θ0) = (0, 0, 0) (One Marker)

Figure 4.40: Pixel Errors for (x0, z0, θ0) = (0.3, 0, 0) (One Marker)
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Figure 4.41: Pixel Errors for (x0, z0, θ0) = (−0.3, 0, 0) (One Marker)

Figure 4.42: Pixel Errors for (x0, z0, θ0) = (0, 0, 0) (Two Markers)

Figure 4.43: Pixel Errors for (x0, z0, θ0) = (0.3, 0, 0) (Two Markers)
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Figure 4.44: Pixel Errors for (x0, z0, θ0) = (−0.3, 0, 0) (Two Markers)

Figure 4.45: Pixel Errors for (x0, z0, θ0) = (0, 0, 0) (Three Markers)

Figure 4.46: Pixel Errors for (x0, z0, θ0) = (0.3, 0, 0) (Three Markers)
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Figure 4.47: Pixel Errors for (x0, z0, θ0) = (−0.3, 0, 0) (Three Markers)

As it can be seen from the figures above, the robot did not reach the desired

position but the pixel errors are still driven to zero or close to zero.
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4.5.3 Experimental Results

In this section hardware or experimental results for the IBVS outer loop control

are presented. Figure 4.48 shows how the mobile robot moves towards the desired

position when the camera see one dot. It is in agreement with the simulation result

presented above.

Figure 4.48: Motion of Robot Using One Marker - Experimental Result

Figures 4.49, 4.50, 4.51, 4.52, 4.53, 4.54, 4.55 show the trajectory followed by the

marker on the image plane for each initial condition.
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Figure 4.49: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0, 0, 0) -

Experimental

Figure 4.50: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.1, 0, 0) -

Experimental

Figure 4.51: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.2, 0, 0) -

Experimental
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Figure 4.52: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.3, 0, 0) -

Experimental

Figure 4.53: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.1, 0, 0)

- Experimental

Figure 4.54: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.2, 0, 0)

- Experimental
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Figure 4.55: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.3, 0, 0)

- Experimental

In Figure 4.56 the mobile robot moves trying to reach the desired position when

2 dots are in the FOV of the camera.

Figure 4.56: Motion of Robot Using Two Markers - Experimental Result

Figures 4.57, 4.58, 4.59, 4.60, 4.61, 4.62, 4.63 show the trajectory followed by the

marker on the image plane for each initial condition.
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Figure 4.57: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0, 0, 0) -

Experimental

Figure 4.58: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.1, 0, 0) -

Experimental

Figure 4.59: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.2, 0, 0) -

Experimental
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Figure 4.60: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.3, 0, 0) -

Experimental

Figure 4.61: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.1, 0, 0)

- Experimental

Figure 4.62: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.2, 0, 0)

- Experimental
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Figure 4.63: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.3, 0, 0)

- Experimental

In Figure 4.64 the mobile robot moves on the x − z plane trying to reach the

desired position.

Figure 4.64: Motion of Robot Using Three Markers - Experimental Result

Figures 4.65, 4.66, 4.67, 4.68, 4.69, 4.70, 4.71 show the trajectory followed by the

marker on the image plane for each initial condition.
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Figure 4.65: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0, 0, 0) -

Experimental

Figure 4.66: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.1, 0, 0) -

Experimental

Figure 4.67: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.2, 0, 0) -

Experimental
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Figure 4.68: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (0.3, 0, 0) -

Experimental

Figure 4.69: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.1, 0, 0)

- Experimental

Figure 4.70: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.2, 0, 0)

- Experimental
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Figure 4.71: Trajectory of Markers on the Image Plane with (x0, z0, θ0) = (−0.3, 0, 0)

- Experimental

CODE: PYTHON AND ARDUINO CODE. The Python and Arduino code

used for the Image-Based robot control can be found within Appendix C on page 202

and Appendix B on page 187.

4.6 Summary and Conclusion

This chapter has explored two methods of controlling a ground mobile robot,

namely Position Based Visual Servoing (PBVS) and Image Based Visual Servoing

(IBVS). The goal in PBVS is to estimate a target’s position with respect to the robot

and then to drive the robot to a desired position (xref , zref ). As long as the chessboard

remains in the FOV of the camera, the robot gets to the desired position. The goal

in IBVS is to drive the pixel coordinates (u, v) of the visual features (dots) to the

desired pixel coordinates (uref , vref ); by doing this the robot tries to get to the desired

position (xref , zref , θref ). Within IBVS the robot did not reach the desired pose due

to the fact that the camera sees the dots the same way from different positions as it

sees them from the desired or reference position.
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Chapter 5

MINIMUM TIME OPTIMAL CONTROL FOR DIFFERENTIAL-DRIVE ROBOT

5.1 Introduction and Overview

Vehicular optimal control problems have been studied extensively since the early

part of the 20th century. Progress in solving these problems has been driven primarily

by applications in space and atmospheric flight [35].

Within this chapter, minimum time vehicle manoeuvring problem is addressed

with a particular application to finding the minimum lap time for a Differential Drive

Thunder Tumbler using two approaches, namely a camera-based and a noncamera-

based. The minimum time vehicle manoeuvring problem is formulated as one of

Optimal Control and is solved using mathematical programming methods [23].

The goal is to understand how one can use optimization concepts to obtain velocity

profiles for the robot such that it travels a known path on the ground in minimum

time. In short, the chapter presents results that will be useful for future optimization

problems. The work of Casanova in [23] is mainly used within this chapter.

5.2 Optimal Control Theory

The main objective of optimal control is to determine control signals that will

cause a process (plant) to satisfy some physical constraints and at the same time

extremize (minimize or maximize) a chosen some performance criterion [31].
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The formulation of optimal Control problems requires:

� Mathematical description (model) of the plant to be controlled

A mathematical model for a generic system representing the rate of change of

its states with respect to time, may be stated as follows:

ẋ(t) = a(x(t),u(t), t) x(t0) = x0 t ∈ [t0, tf ] (5.1)

Here, x is the system states, and u is the control signal applied to the plant.

The time history of state and control variables defined within the interval [t0, tf ]

are referred to as state trajectory and control history respectively.

� Physical constraints

The physical constraints in an optimal control problem are intended to limit

the range of the state and control variables within values which are meaningful

for the plant and for the problem which is being analyzed. A general physical

constraint involving the state trajectory and the control history can be referred

with the following:

c(t) = c(x(t),u(t), t) ≤ 0 t ∈ [t0, tf ] (5.2)

A different kind of constraint is represented by constant control bounds. The

definition reads:

uL ≤ u(t) ≤ uU t ∈ [t0, tf ] (5.3)

A control history which satisfies the control constraints during the entire time

interval is called an admissible control. In the same way, a state trajectory
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which satisfies the state variable constraints during the entire time interval is

referred to as a feasible trajectory.

� Performance criterion

The definition of the problem involves the use of functionals. A functional J is

a rule of correspondance or a map, which assigns to each function x(t) a unique

real number. Intuitively, a functional may be seen as a ”function of functions”.

J(x(t)) =

∫ tf

to

x(t)dt (5.4)

The objective of an optimal control problem is to minimize (or maximize) a

quantitative measure of the performance of the plant. The most general defini-

tion for the performance measure involves a function of the final system states

as well as a functional of the state trajectories and the control histories:

J = S(x(tf ), tf ) +

∫ tf

t0

V (x(t),u(t), t)dt (5.5)

The performance measure characterizes the different types of optimal control

problems, e.g. minimum time problems, minimum control effort problems, path

tracking problems, etc.

Given the definitions above, a general optimal control problem is formally defined

as follows:
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min
u

J = S(x(tf ), tf ) +

∫ tf

t0

V (x(t),u(t), t)dt

subject to ẋ(t) = a(x(t),u(t), t) x(t0) = x0

c ≤ 0

uL ≤ u(t) ≤ uU

for all t ∈ [t0, tf ]

(5.6)

The task is to find an admissible control u∗ which causes the system described by

(5.1) to follow a feasible trajectory x∗ which minimizes the performance measure J .

5.2.1 Necessary Conditions for Optimality

Here the first order, necessary conditions for optimality are presented (as in [23]),

i.e. the conditions that the state trajectory and the control history must satisfy when

the performance measure J is on a relative extremum.

The procedure is similar to the equivalent problem in calculus of finding an ex-

tremum of a function. Consider a continuous and differentiable function of a single

variable f(q). The theory of calculus states that the necessary condition for q∗ to be

an extremum is that the first derivative of f(q) vanishes when q → q∗. If the increment

of f(q) is written for an arbitrary small ∆q, such increment may be approximated

with the differential of f(q):

f(q + ∆q)− f(q) = df(q,∆q) + o(∆q) ≡ df(q,∆q) =
df(q)

dq
·∆q (5.7)

where o(∆q) represents the higher order terms in the series expansion of f(q)

when ∆q tends to 0. Hence, the necessary condition for f(q) to have an extremum

at q = q∗ is also that its differential vanishes:
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df(q∗,∆q) = 0 (5.8)

In the corresponding problem of Calculus of Variations the task is to define the first

order approximation to the increment of a functional. Then the necessary condition

for having an extremum will be that such approximation be equal to zero. For a

differentiable functional J(x) its increment may be written as follows:

J(x + δx)− J(x) = ∆J(x∗, δx) = δJ(x, δx) + o(δx) (5.9)

Here, δJ(x, δx) is called the variation of a functional and is the equivalent of

the differential of a function in the theory of calculus. The function δx is an arbi-

trarily small perturbation distributed along the trajectory x. Figure 5.1 visualizes

qualitatively a generic perturbation δx for the case of a scalar function.

Figure 5.1: Generic Perturbation δx

When δx vanishes, the increment of a functional may be approximated with its

variation. Then, the necessary condition for J to have an extremum in x∗ is that its

variation must vanish on x∗, that is:
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∆J(x∗, δx) ∼= δ J(x∗, δx) = 0 (5.10)

for all admissible δx (which means that if Ω is the domain of J , x∗+ δx must still

be a member of such domain).

Even if one is able to find a curve x∗ which satisfies (5.10), there is no certainty

that such a curve would be an extremum, as (5.10) only states a necessary condition.

Furthermore, even if x∗ were an extremum, nothing could be said on whether it

is a local minimum or local maximum. Finally, it is not even guaranteed that the

functional is differentiable at the extremum x∗.

As well as in the case of theory of calculus, where the second derivative of a

function establishes necessary and sufficient conditions for either local minimum or

maximum to occur, the second order variation of a functional may be defined, and

necessary and sufficient conditions of optimality may be derived. As a sufficient

condition for minimum the second variation δ2J > 0 and for maximum δ2J < 0

[31]. However, this involves a rather complex manipulation of the problem equations

which does not lead to something practical. Conversely, the necessary conditions for

optimality provide a convenient starting point to use for searching a solution [23].

Next the necessary conditions for optimality for optimal control problems with-

out state and control constraints and with fixed end time is reviewed. Then, con-

trol constraints are introduced and the Pontryagin’s Minimum Principle as a general

statement of the necessary conditions for optimality is shown.
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Unconstrained Optimal Control problems with fixed end time. As in [23],

consider a system with p state variables and q control variables described by the

following set of first-order non-linear differential equations:

ẋ(t) = a(x(t),u(t), t) t ∈ [t0, tf ] (5.11)

Final time is fixed and that the initial conditions are given and are fixed as well

is assumed:

x(t0) = x0 (5.12)

The task is to find a control history u∗ which causes the plant to follow a trajectory

x∗ which minimizes the performance measure:

J(u) = S(x(tf ), tf ) +

∫ tf

t0

V (x(t),u(t), t) dt (5.13)

The functional J is assumed to be dependent only on the control u. This is

because any control history u univocally determines a state trajectory x and also

because the initial states x0 as well as the final time tf are fixed.

Adjoining the differential equations to the performance measure by introducing p

Lagrange multipliers λ(t), one has the following:

J̄(u) = S(x(tf ), tf ) +

∫ tf

t0

[
V (x,u, t) + λT · (a(x,u, t)− ẋ)

]
dt (5.14)

The last term in the integrand of Equation (5.14) may be solved by parts (using∫
udv = uv −

∫
vdu) in order to eliminate the state derivatives and the result reads:

∫ tf

t0

−λT · ẋ dt = λ(t0)T · x(t0)− λ(tf )
T · x(tf ) +

∫ tf

t0

λ̇
T · x dt (5.15)
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Substituting Equation (5.15) in Equation (5.14) the following result is obtained:

J̄(u) = S(x(tf ), tf )+λ(t0)T ·x(t0)−λ(tf )
T ·x(tf )+

∫ tf

t0

[
V (x,u, t)+λT ·a(x,u, t)+λ̇

T ·x
]
dt

(5.16)

Now the Hamiltonian function is introduced, which is defined as:

H(x,u,λ, t) = V (x,u, t) + λT · a(x,u, t) (5.17)

By using the Hamiltonian function in Equation (5.16) the following is obtained:

J̄(u) = S(x(tf ), tf ) + λ(t0)T · x(t0)− λ(tf )
T · x(tf ) +

∫ tf

t0

[
H(x,u,λ, t) + λ̇

T · x
]
dt

(5.18)

by differentiating Equation (5.18) with respect to u and x, the variation of the

functional J̄(u) is written:

δJ̄(u, δu) =

[(∂S
∂x
−λ
)T
·δx
]
t=tf

+
(
λT ·δx

)
t=t0

+

∫ tf

t0

[(∂H
∂x

+λ̇
)T
·δx+

(∂H
∂u

)T
·δu
]
dt

(5.19)

Since the initial state values are fixed, the second term in the right hand member

of Equation (5.19) is equal to zero. Then, as the control history univocally determines

the state trajectory, it is assumed that the variation of the state trajectory δx depends

on the variation of the control δu. However, rather than trying to express δx as a

function of δu, the Lagrange multipliers are chosen in such a way that the terms in

Equation (5.19) which multiply δx vanish [23]. In doing so, the following is obtained:

λ̇ = −∂H
∂x

= −∂V (x,u, t)

∂x
− λT · ∂a(x,u, t)

∂x
(5.20)
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λ(tf ) =

(
∂S

∂x

)
t=tf

(5.21)

For an extremum to occur, the variation of the functional must be zero for any

arbitrary δu. Therefore, after deleting all the terms equal to 0 in Equation (5.19),

this condition reads:

δJ̄(u, δu) =

∫ tf

t0

[(∂H
∂u

)T
· δu

]
dt = 0 (5.22)

However, Equation (5.22) is satisfied only if:

∂H
∂u

=
∂V (x,u, t)

∂u
+ λT · ∂a(x,u, t)

∂u
= 0 (5.23)

Note that the plant Equation (5.11) can be written in terms of the Hamiltonian

as:

ẋ(t) =
∂H
∂λ

(5.24)

Equation (5.20), (5.23) and (5.24) are also known as the co-state, control and state

equations, respectively. In summary, to find a control history u(t) which produces a

stationary point of the performance measure J , the following 2p differential equations

must be solved:

ẋ(t) = a(x,u, t) (5.25)

λ̇ = −∂H
∂x

(5.26)

for any t ∈ [t0, tf ], where u(t) is determined by q algebraic equations:

∂H
∂u

= 0 (5.27)
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The boundary conditions for Equations (5.25) and (5.26) are split. That is, some

are specified for t = t0 and some are specified for t = tf .

x(t0) = x0 (5.28)

λ(tf ) =

(
∂S

∂x

)
t=tf

(5.29)

Thus, a solution for a non-linear two-point boundary-value problem (TPBVP) is

needed. In [31], [32] it is shown in more detail how to find the necessary conditions

for optimality for a variety of systems.

Optimal Control problems with control boundaries. In the previous formu-

lation it was assumed that the control u(t) and the states x(t) are unconstrained,

i.e. there are no limitations on the magnitudes of the control and state variables.

In reality the physical systems to be controlled in an optimum manner have some

constraints on their inputs, internal variables and/or outputs.

The above framework is extended, as in [23], for dealing with Optimal Control

problems with control constraints. The generalization of the necessary conditions for

optimality leads to the Pontryagin’s Minimum Principle.

Consider the analogous case in calculus first. Given a function f(q) as in Fig-

ure 5.2, and if there is no restriction for the values that q may take, this function has

a local minimum in q = q∗.

Here, the necessary condition that the derivative of f(q) vanishes at the extremum

applies. If the value of q is restricted within the interval [q1, q2], the function f(q) has

a minimum point in this interval when q = q2 but here the above necessary condition

does not apply. Instead, the necessary conditions for f(q) to have relative minima at

the end points of the interval are as follows. If the linear part of the increment of f(q)

118



Figure 5.2: Constrained and Local Minimum

is considered, i.e. the differential of f(q), such increment must always be positive for

any admissible variation ∆q:

∆f(q1,∆q) ∼=
(
∂f(q1)

∂q

)
·∆q ≥ 0 ∀∆q ≥ 0 (5.30)

∆f(q2,∆q) ∼=
(
∂f(q2)

∂q

)
·∆q ≥ 0 ∀∆q ≤ 0 (5.31)

In other words, when q = q1 it is only allowed to increase q, and the condition

for this point to be a local minimum is that the differential of f(q) must be zero or

positive. Instead, when q = q2, it is only allowed to decrease q, and the condition for

this point to be a local minimum is again that the differential of f(q) must be zero

or positive.

If the same idea is applied to the corresponding problem of Calculus of Variations,

the condition stated in Equation (5.22) changes as follows:

δJ̄(u, δu) =

∫ tf

t0

[(∂H
∂u

)T
· δu

]
dt ≥ 0 (5.32)
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Here, δu must be admissible. That is, the control u+δu must not violate the con-

trol constraints. If the integrand in Equation (5.32) is expanded by writing explicitly

the variation of the Hamiltonian, the following is obtained:

∫ tf

t0

[
H(x,u + δu,λ, t)−H(x,u,λ, t)

]
dt ≥ 0 (5.33)

Equation (5.33) is satisfied only if:

H(x,u + δu,λ, t) ≥ H(x,u,λ, t) ∀ admissible δu (5.34)

The previous relation, which means that the necessary condition for the con-

strained optimal control system is that the optimal control should minimize the Hamil-

tonian, is the main contribution of the Pontryagin Minimum Principle [31]. Thus,

Equation (5.34), together with (5.25),(5.26) and the boundary conditions in (5.28)

and (5.29) constitute the necessary conditions for optimality for the general case of

an Optimal Control problem with control constraints.

5.2.2 Indirect Methods

Indirect methods aim to solve an Optimal Control problem by applying the opti-

mality conditions explicitly. This involves the setting up the adjoint Equations (5.26)

and (5.29), and the optimality condition (5.27), and requires an iterative procedure

to solve the resulting non-linear two-point boundary value problem. The general ap-

proach consists of using an initial guess to obtain a solution to a problem where one

or more of the optimality conditions is not satisfied. The solution is then used to

adjust the initial guess in order to force the next solution to be closer to satisfying

all the necessary conditions, until the iterative procedure eventually converges [23].
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5.2.3 Direct Methods

A class of methods for solving Optimal Control problems, known as direct tran-

scription methods does not use the necessary conditions for optimality and the Pon-

tryagin’s Minimum Principle. Instead, the original Optimal Control problem is con-

verted into a Non-Linear Programming problem and is solved directly using mathe-

matical programming techniques [23].

The basic concept of direct methods is that the continuous control history is

replaced with a discrete approximation. It is assumed that the control input can only

be adjusted at a number of fixed positions along the trajectory, while the intermediate

values are estimated by means of interpolation techniques. Let un be the vector

of discrete control parameters and tn be the vector of the corresponding instances

within the time interval [t0, tf ]. The control parameters univocally determine the

control history which, in turn, determine the system state trajectory. Therefore the

performance measure and the constraints may be expressed directly as functions of

these control parameters. Hence, the original optimal control problem may be stated

as a Non-Linear Programming problem, i.e. to find the set of control parameters

un which minimizes a generic non-linear multi-variable function subjected to general

equality and inequality constraints:

min
un

J(un)

subject to ci(un) = 0 i ∈ E

ci(un) ≥ 0 i ∈ I

(5.35)

Here, E and I represent the set of equality and inequality constraints respectively.

The performance measure J(un) is also called the objective function.

The first order, necessary conditions for the set of independent variables un to be a
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constrained minimizer for the function J(un) are known as the Karush-Kuhn-Tucker

conditions, and a solution for the problem defined by Equation (5.35) is often referred

to as KKT point [23] [33].

Karush-Kuhn-Tucker conditions. Consider the constrained minimization prob-

lem in (5.35). Let us adjoin the constraints to the objective function by using the

Lagrange multipliers λ to form the Lagrangian function:

L(un,λ) = J(un) +
∑
i∈E∪I

λi · ci(un) = J(un) + λT · c(un) (5.36)

The first order necessary conditions for a local minimizer un
∗, λ∗ for the problem

defined by Equation (5.35) are defined as followed [33]:

∇unL(un
∗,λ∗) =

∂L(un
∗,λ∗)

∂un

= 0

ci(un
∗) = 0, ∀ i ∈ E

ci(un
∗) ≥ 0, ∀ i ∈ I

λ∗i ≥ 0, ∀ i ∈ I

λ∗i ci(un
∗) = 0, ∀ i ∈ E ∪ I

(5.37)

The necessary conditions defined above are the Karush-Kuhn-Tucker conditions.

The final condition in (5.37) are complementarity conditions, they imply that either

constraint i is active or λi = 0, or posibly both. In particular, the Lagrange multipliers

corresponding to inactive inequality constraints are zero.

Direct transcription methods. For transcribing the optimal problem into an Non-

Linear Programming Problem several transcription methods exist [25], [23]. Two

main directions are the direct shooting and full collocation. In direct shooting, the

control history u(t) is discretized into a finite number of variables (u1, u2, ..., uN).

The performance index and constraints are calculated by propagating through the
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differential equations. Since only the control inputs are considered as optimization

variables, this approach results in relatively small-scale problems. The disadvantage

however is the chance of numerical difficulties for the applied solver, as a result of the

large difference in sensitivity to early and late controls. This effect is even stronger

for nonlinear and unstable systems. Multiple shooting methods address this problem

by dividing the problem in multiple shooting segments. Each segment is treated as

a direct shooting segment, and the segments are connected by defect constraints. As

such, the problem is partially decoupled, leading to better conditioning of Jacobian.

In the full or direct collocation approach, the shooting segment has exactly the

length of one discretization interval. Since the states at each segment are connected,

this means that not only the control inputs, but also the discretized state trajectory

(x1, x2, ..., xN) is included in the set of decision variables. The dynamics of the system

may be replaced with a finite difference approximation by introducing the vector of

defects ξ. Different discretization schemes may be employed for this purpose. The

trapezoidal method is used here:

ξi = +xi−1 − xi +
∆i

2

[
ai + ai−1

]
i = 1, ..., N (5.38)

where ∆i is the constant integration step size and a comes from the systems

dynamics, i.e. ẋ = a(x,u, t).

The full collocation approach leads to maximal decoupling [25]. Problems with

a moderate number of states in the dynamics but a high number of discretization

intervals and very nonlinear dynamics are often transcribed using full collocation.

Typically, shooting methods are used for problems with a high amount of states,

since applying full collocation simply would lead to a too large problem. In this

thesis, full collocation method is used.
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5.2.4 Approximation of Direct to Indirect Methods

Does a solution obtained from any direct method satisfy also the necessary condi-

tions for optimality?. The answer to this question is, in general, yes. It can be shown

that the discrete Lagrange multipliers associated with the solution to an optimal con-

trol problem obtained by using a direct collocation method are, in fact, a discrete

approximation to the solution of the adjoint co-state equations [23], [29], [30].

It is important to point out that direct solution methods only return approximate

solutions as a consequence of the problem discretization.

As in [23], it is now described how the solution obtained from a direct method

satisfies the necessary conditions for optimality.

Consider a general unconstrained optimal control problem.

min
u

J = S(x(tf ), tf )

subject to ẋ(t) = a (x,u, t) x(t0) = x0

for all t ∈ [t0, tf ]

(5.39)

By applying the necessary conditions of optimality the adjoint equations that

the optimal solution must satisfy are derived. These include the co-state differential

equations:

λ̇ = −λT · ∂ a(x,u, t)

∂ x
(5.40)

with end conditions given by:

λ(tf ) =

(
∂ S

∂ x

)
t=tf

(5.41)

and finally the optimality condition:
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λT · ∂ a(x,u, t)

∂ u
= 0 (5.42)

Consider now to solve (5.39) using a direct collocation method. A discretisation

grid with N time segments for both control history u and state trajectory x is used:

∆ = {t0 < t1 < t2 < · · · < tN−1 < tN = tf} (5.43)

The nodes of the grid are evenly spaced, so that the constant length of the time

segments reads:

∆ = ti − ti−1 i = 1, ...N (5.44)

The notation xi and ui refers to the values of the state and control variables at

the ith node respectively, and ai to the evaluation of the state equations at the same

node:

ai = a(xi,ui, ti) (5.45)

Finally, xN and uN represent the set of state and control parameters respectively,

and the vector of all the independent optimization variables is:

y = xN ∪ uN (5.46)

Using the trapezoidal method for discretization, the vector of defects ξi at each

node reads:

ξi = xi−1 − xi +
∆

2

[
ai + ai−1

]
i = 1, ..., N (5.47)

Problem (5.39) may then be converted into the following Non-Linear Programming

problem:
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min
un

J(y)

subject to ξi(y) = 0 i = 1, ..., N

(5.48)

Deriving the necessary optimality condition for problem (5.48), i.e. Karush-Kuhn-

Tucker conditions, the Lagrangian function is formed:

L = J(y) +
N∑
i=1

λTi ξi (5.49)

The necessary condition for y to be a local constrained minimizer is

∇yL = 0 (5.50)

Since the objective J depends exclusively on the final state values, this part of

the necessary condition includes only the defects:

∂L
∂ xk

=
N∑
i=1

λTi
∂ ξi
∂ xk

= 0 k = 1, ..., N − 1 (5.51)

But the state parameters xk affect only the adjacent defects, i.e. ξi and ξi+1 hence

(5.51) reduces to:

λTk
∂ ξk
∂ xk

+ λTk+1

∂ ξk+1

∂ xk
= 0 (5.52)

Using the definition for the defects of (5.47) in (5.52) yields:

λTk

(
− I +

∆

2

∂ ak
∂ xk

)
+ λTk+1

(
I +

∆

2

∂ ak
∂ xk

)
= 0 (5.53)

where I is the identity matrix. Rearranging the terms in (5.53) the following is

finally obtained:

λTk − λTk+1 −
∆

2

(
λTk + λTk+1

) ∂ ak
∂ xk

= 0 (5.54)
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Equation (5.54) is clearly a discrete version of the adjoint Equations (5.40). In

fact, Equation (5.40) may be approximated over a time segment as follows:

∫ tk+1

tk

λ̇ dt = −
∫ tk+1

tk

(
∂ a(x,u, t)

∂ x

)T
λ dt (5.55)

Assuming that the jacobian in the right hand term of Equation (5.55) is constant

over the time interval h, one may write:

λk+1 − λk ∼= −
(
∂ ak
∂ xk

)T ∫ tk+1

tk

λ dt ∼= −
(
∂ ak
∂ xk

)T
∆

2
(λk+1 + λk) (5.56)

Consider now the end point of the time interval. The necessary condition now

reads:

∂L
∂ xN

=
∂ S(xN)

∂ xN
+ λTN

∂ ξN
∂ xN

= 0 (5.57)

Proceeding as above, differentiating the defects with respect to xN provides the

terminal boundary conditions for Equation (5.54):

λTN − λTN
∆

2

∂ aN
∂ xN

=
∂ S(xN)

∂ xN
(5.58)

which corresponds to the condition in (5.41).

Finally consider the partial derivative of the Lagrangian with respect to the control

variables at the interior nodes:

∂L
∂ uk

=
N∑
i=1

λTi
∂ ξi
∂ uk

= 0 k = 1, ..., N − 1 (5.59)

Since the control parameters uk only affect adjacent defects, Equation (5.59) sim-

plifies to:
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λTk
∂ ξk
∂ uk

+ λTk+1

∂ ξk+1

∂ uk
= 0 (5.60)

Differentiating the defects and substituting the result in (5.60) yields:

λTk

(
∆

2

∂ ak
∂ uk

)
+ λTk+1

(
∆

2

∂ ak
∂ uk

)
= 0 (5.61)

Rearranging the terms:

(
λTk + λTk+1

) ∆

2

∂ ak
∂ uk

= 0 (5.62)

Equation (5.62) is a discretized version of the optimality condition (5.42). There-

fore the solution to the discretized problem also satisfies the optimality principle.
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5.3 Minimum Lap Time Problem

In this section the minimum time optimal control problem for the differential

drive mobile robot is defined. The mathematical model of the system, performance

criterion and the constraints are specified.

5.3.1 Vehicle Model

The model used in this thesis to describe the differential drive robot is composed

of the cruise control system along with the kinematics of the vehicle, as it is shown

in Figure 5.3.

Figure 5.3: Cruise Control and Kinematics

The outer-loop controller Ko is a PD controller with the following structure:

Ko = g (s+ z)

[
100

s+ 100

]2

(5.63)

A low frequency approximation of the cruise control system together with the

kinematics of the mobile robot are used in this work in order to solve the optimal

control problem. The state space representation for this low frequency approximation

system is defined as follows:
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cruise control ẋ1 = −2.616x1 − 2.489x2 + 2vref

ẋ2 = 2x1

ẋ3 = −2.616x3 − 2.489x4 + 2 eθ

ẋ4 = 2x3

ẋ5 = x4

v = 1.245x2

θ = 0.6223x4 + 1.494x5

kinematics ẋ6 = ẋ = v sin θ = (1.245x2) sin(0.6223x4 + 1.494x5)

ẋ7 = ż = v cos θ = (1.245x2) cos(0.6223x4 + 1.494x5)

(5.64)

Or in a more compact form

ẋ = f(x(t),u(t)) x(0) = x0 t ∈ [0, T ]
(5.65)

5.3.2 Track

A race track is designed such that the differential-drive mobile robot can traverse

on it and it is described by the parameters (xt, zt, θt). The angle of the track tangent

is described by θt, (xt, zt) are the coordinates of the line. All these parameters are

functions of s. This is useful since it makes it possible to write the entire track as a

function independent of time [24].
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Figure 5.4 shows the track used in this thesis.

Figure 5.4: Oval Race Track

For this specific track the parameters (xt, zt, θt) with respect to the travelled dis-

tance s are plotted in Figure 5.5.

Figure 5.5: Oval Track Parameters

The MATLAB code used to generate the racetrack data can be found Appendix A

on page 178.
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5.3.3 Physical Constraints

As it was mentioned earlier, physical constraints in an optimal control problem

are intended to limit the range of the state and control variables within values which

are meaningful for the plant and for the problem which is being analyzed.

Given the position of the car in the absolute reference axis system fixed in space

(x, z) and the coordinate (xt, zt) and orientation θt of the corresponding point on the

track, the distance d between the car and the track, shown in Figure 5.6 is calculated

as follows:

d = (x− xt) cos θt − (z − zt) sin θt (5.66)

Figure 5.6: Distance Between Mobile Robot and Track
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Note that d is positive when the mobile robot is to the right of the track and

negative when it is to the left of the track.

For implementing a camera-based outer loop control system shown in Figure 5.3

the Raspberry Pi Camera was used. This camera has an horizontal Field of View of

53.5◦. The camera is looking ahead of the mobile robot l = 20cm and the camera is

placed approximately 10 cm ahead of mobile robot center of gravity (see Figure 5.7).

Looking ahead 20 cm implies that the robot’s camera will be able to see approximately

W = 20.161 cm horizontally.

Figure 5.7: Field of View Constraint

Hence a constraint that the race track is within the FOV of the camera is made

as follows:

dcam =
(xts − xcam) cos θts + (zcam − zts) sin θts

cos(θts − θ)
(5.67)

− 20.161

2
<= dcam <=

20.161

2
(5.68)
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where mcam = (xcam, zcam) is the position of the middle point of W , and xts(s) =

xt(s+0.3) , zts(s) = zt(s+0.3), θts(s) = θt(s+0.3) are shifted parameters of the track1.

In the camera-based solution, eθ information is obtained from the camera as it

is shown in Figure 5.8. For the noncamera-based solution eθ is obtained by directly

computing θref − θ.

Figure 5.8: Computation of eθ

The maximum observed speed achieved by the Enhanced Thunder Tumbler is

2.3m/s, and the maximum observed acceleration is about 1m/s2. In this work the

constraints on the commanded and actual velocities and accelerations of the car are

of the form

0 <= vref <= 0.5

0 <= v <= 2.3

− 1 <= v̇ref <= 1

− 1 <= v̇ <= 1

(5.69)

1xt, zt, θt are all distance-dependent variables and s is the independent variable in meters.
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Also imposing constraint on the jerk, i.e v̈ref and v̈ makes the resulting motion of

the robot smooth. This constraint is given as

− 1 <= v̈ref <= 1

− 1 <= v̈ <= 1

(5.70)

Two constraints are placed on the maximum angular velocity of the wheels as

follows:

0 <= ωR <= 46

0 <= ωL <= 46

(5.71)

For the noncamera-based solution, extra constraints are placed on first and second

derivatives of orientation of the vehicle:

− 10 <= θ̇ref <= 10

− 1 <= θ̈ref <= 1

− 1 <= θ̈ <= 1

(5.72)

The initial conditions used in this thesis (for both camera and noncamera-based

methods) are defined as follows:
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x1(0) = 0

x2(0) = 0.008

x3(0) = 0

x4(0) = 0

x5(0) = 0

x6(0) = 0

x7(0) = 0

(5.73)

or in a compact form as

x(0) = x0 s ∈ [0, S] (5.74)

5.3.4 The Performance Measure

The goal in this thesis is to minimize the time it takes for the robot to traverse a

given track, however with a general formulation as given in Equation 5.6, that is not

possible since the lap time, or in other words, the final time tf is unknown [24].

Distance s will be used as independent variable instead of the time t. This distance

is a natural choice because it makes it easier to parameterize the track and the final

distance sf is then a known constant, simply the track length.

For this purpose the time to distance scaling factor α shall be used. The task is to

express the increment ds of the distance travelled along a reference line corresponding

to the increment dt. If the vehicle trajectory coincided exactly with the ideal path

(race track), the scaling factor would simply read:

α =
dt

ds
=

1

v
(5.75)
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where v is the linear velocity of the mobile robot. However the trajectory of the

mobile robot might not coincide with this path, hence a different scale factor, taken

from [23], is used 2

α =
dt

ds
=

1− dkt
v cos(θ − θt)

(5.76)

where θ is the orientation of the vehicle, θt is the angle of the race track tangent,

d is the distance between the car and the race track, k is the curvature of the race

track.

Given this, the mathematical model given in (5.65) now becomes

dx

ds
= α

dx

dt
= αf(x(t),u(t)) = f̄(x(s),u(s)) x(0) = x0 s ∈ [0, S]

(5.77)

where S is the length of the track to be traversed, which is therefore fixed.

The performance measure is the time that the differential drive mobile robot takes

to traverse the given track. The time to distance scaling factor offers a straightforward

way to evaluate the maneuver time. One more state variable xp+1 can be added which

satisfies:

ẋp+1(s) = α(s) xp+1(0) = 0 s ∈ [0, S] (5.78)

According to the definition of the scaling factor given in (5.76) the added state

variable represents the time elapsed from the beginning of the maneuver. Thus, the

performance measure simply reads

J = xp+1(S) (5.79)

2assuming lateral velocity of mobile robot is zero.
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Consider Figure 5.9 to better understand the scaling factor α.

Figure 5.9: Scaling Factor Impact on Optimal Line

Here a clockwise direction is assumed. For the right hairpin turn the curvature

kt is positive. When the vehicle takes an inner line, the distance d, expressed in

Equation 5.66, is positive and the numerator in Equation 5.76 is smaller than one.

If the vehicle takes instead an outer line, d becomes negative and the numerator in

Equation 5.76 is greater that one. Therefore the scaling factor is greater than in the

previous case. When the vehicle is travelling along an outer line the greater scaling

factor indicates that the vehicle takes more time to traverse the same road distance

compared with the case of the vehicle taking the inner line [23].
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5.3.5 Problem Statement

Given the vehicle model, physical constraints and the performance measure above,

the minimum time optimal control problem is now defined.

min
u(s)

J = xp+1(S)

subject to:
dx

ds
= f̄(x(s),u(s)) x(0) = x0

ci ≤ 0 ∀i

uL ≤ u(s) ≤ uU

for all s ∈ [0, S]

(5.80)

As it was stated in above, there are two distinct classes of methods for solving

an optimal control problem, namely direct and indirect methods. Indirect methods

rely on the application of the theory of calculus of variations, i.e. the Pontryagin’s

Minimum Principle. Direct methods, instead, aim to solve the problem by converting

the original continuous problem into a discretised problem and applying mathematical

programming techniques.

One aspect in favour of direct methods is the greater freedom in defining and

including state and control constraints in the optimization problem compared with

indirect methods. The solution of constrained optimization problems by indirect

methods either requires the use of specially designed algorithms or the use of penalty

functions to include the constraints in the objective function. Also with direct meth-

ods the discretization of the control history allows to model any type of control law

straightforwardly [23].

The basic concept of direct methods is that the continuous control history is

replaced with a discrete approximation. It is assumed that the control input can only

be adjusted at a number of fixed positions along the trajectory.
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The disadvantage with direct methods is that because of their discrete nature they

only return approximate solutions.

In this thesis, a direct method is used to solve the minimum time optimal control

problem (direct collocation). Since both the track and the vehicle model are specified

as functions of the variable s, the problem is discretized by dividing the track in m

points. The length of the track is 10.282 meters and the step size used in this thesis

is 0.001; this means that m = 10283.

Discretizing the control history is done first. In general the model that is used

here has the following input u =

vref
θref

 =

u1

u2

 but since the controls are being

discretized in m points, the following is obtained:

um = {u0,u1,u2, ...,um−2,um−1} (5.81)

The above means that

u1 = {u10, u11, ..., u1m−2, u1m−1}

u2 = {u20, u21, ..., u2m−2, u2m−1}
(5.82)

The dimension of the control array is given by u1 ∪ u2, which is 2m.

Next, the state trajectory is divided in m segments as well.

xm = {x0,x1,x2, ...,xm−2,xm−1} (5.83)

If there are p state variables, the vector xm will have p×m elements. Finally, the

control parameters are combined with the state parameters to define the vector y of

all the independent optimization variables, whose dimension will be 2m+ p×m:

y = um ∪ xm (5.84)
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Since the objective and constraints functions can be expressed directly as func-

tions of the independent optimization variables y, the original minimum time optimal

control problem discussed in 5.3.4 may be converted into the following Non-Linear

Programming problem:

min
y

J(y)

subject to: ci(y) = 0 i ∈ E

ci(y) ≤ 0 i ∈ I

yL ≤ y ≤ yU

(5.85)

where E and I represent the set of equality and inequality constraints respec-

tively. The performance measure J(y) is often referred to in the context of numerical

optimization simply as the objective function.

Since the minimum time optimal control problem has been discretized, the finite

dimensional nonlinear programming problem can be solved by a NLP solver, in this

case Knitro solver.

Before presenting simulation results, a description of the tools used to solve the

minimum time optimal control problem, namely Knitro and Advance Mathematical

Programming Language (AMPL) are presented.

KNITRO Solver. KNITRO, short for Nonlinear Interior point Trust Region Op-

timization is a solver for nonlinear optimization problems. Knitro is a package for

solving nonlinear optimization problems. It is designed for large-scale applications,

but it is also effective on small and medium scale problems [34]. The solver im-

plements state-of-the-art interior-point and active-set methods for solving problems

[43].

AMPL. Developed in Bell Laboratories, AMPL is a comprehensive and powerful

algebraic modeling language for linear and nonlinear, continuous or discrete system
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optimization problems [36] [41]. It is user friendly, making the user focus on the mod-

eling of the problem, not the technical details for programming. All the variables,

parameters, cost functions, constraint functions are defined intuitively and straight-

forward. The main difference between AMPL with other programming languages

such as C or Fortran are the expressions of the variables. In AMPL, ”set” and ”in-

dex” are used to invoke the specific variable. On the other hand, the mathematical

expression is generally adapted from an advanced programming language, e.g. ”sum”

or ”>” and so on as arithmetic or logical operators are used .

In this thesis AMPL is used to write (model) the performance measure, vehicle

dynamics and physical constraints as it was discussed in subsection 5.3.4.

The AMPL system supports the entire optimization modeling lifecycle formu-

lation, testing, deployment, and maintenance in an integrated way promotes rapid

development and reliable results. AMPL integrates a modeling language for describ-

ing optimization data, variables, objectives, and constraints; a command language for

debugging models and analyzing results; and a scripting language for manipulating

data and implementing optimization strategies [42].

Once the AMPL model is finished, solution to this problem is obtained by inter-

facing this AMPL model with KNITRO solver.

The solver can be found under the NEOS server which is a free internet-based

service for solving numerical optimization problems [37], [38], [39], [40].
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5.4 Camera Based Solution

In this section simulation and experimental results for a camera based solution to

the minimum time problem are presented.

5.4.1 Simulation Results

For the camera based solution an outer loop controller with roll-off and the follow-

ing gains was used: kp = 1.2, and kd = 0.5. The resulting minimum time was found

to be 25.0161 seconds. In Figure 5.10 it is shown the race track used in this thesis,

along with the resulted path obtained from KNITRO solver in the NEOS server.

Figure 5.10: Camera Based Optimal Line - Simulation

Figure 5.11 shows the optimal vref command. Also the actual or the achieved

velocity of the robot is plotted. The commanded velocity decreases for taking the

turn and increases again once the robot is on the straight segment.
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Figure 5.11: Camera Based Optimal Linear Velocities - Simulation

The commanded and actual orientation of the car are shown in Figure 5.12.

Figure 5.12: Camera Based Orientation - Simulation
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The control effort for both the left and right wheels is shown in Figure 5.13.

Figure 5.13: Camera Based Control Input - Simulation

The Field-of-View (FOV) of a camera is an important parameter to consider in

the solution of the minimum time problem. Figure 5.14 shows the impact that the

FOV of the camera has in the resulting minimum time for the given racetrack.

Figure 5.14: Field Of View Impact on Minimum Time
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As the FOV of the camera increases, the optimal time to traverse the racetrack

decreases. Note also that if a bigger (integration) step size is used, minimum time

increases.

CODE: AMPL. The AMPL code used to obtain the results shown above can be

found within Appendix D on page 225.

5.4.2 Experimental Results

In Figure 5.15 it is shown the resulted path when using the Raspberry Pi cam-

era. Note that the path starts to drift away from the racetrack, this is because of

dead reckoning errors in the computation of the (x, z) position from the velocity and

orientation measurements. The time it takes the robot to complete the racetrack is

around 41 seconds.

Figure 5.15: Camera Based Optimal Line - Experimental

Figure 5.16 shows the commanded and actual linear velocities of the mobile robot.

The encoder resolution here is approximately 0.098 m/s. The commanded velocity
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profile is different from the one obtained in simulation because as one increases the

commanded speed, the robot starts to miss the track.

Figure 5.16: Camera Based Optimal Linear Velocities - Experimental

Figure 5.17 shows the reference and actual orientation for the mobile robot.

Figure 5.17: Camera Based Orientation - Experimental
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The control effort for both the left and right wheels is shown in Figure 5.18.

Figure 5.18: Camera Based Control Input - Experimental

Figure 5.19 shows the effect of increasing the commanded speed in the tracking

of the racetrack by the mobile robot.

Figure 5.19: Resulting Path as Speed Increases

As the speed increases the mobile robot starts to lose the racetrack.
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The difference between simulation and experimental results for the camera based

solution is now explained. The sampling time Ts in the experimental results is around

0.125 sec, and so the time difference between samples is 0.125 sec and the distance

difference between samples ds can be calculated with ds = v Ts, where v is the linear

velocity of the robot. Since v is not constant(from 0.2 to 0.5 m/s), ds varies from

around 0.025 m to 0.0625 m. Within this thesis the ds used in simulation is the same

as the step size (0.001 = 1mm). Further investigation shall be done in the future to

increase the simulated ds while maintaining a small step size (to preserve accuracy in

the solution of the differential equations).

CODE: PYTHON AND ARDUINO. The Python and Arduino code used to

obtain the experimental results presented above can be found within Appendix C on

page 219 and Appendix B on page 191. The Python code shown in Appendix C on

page 222 was used on the Raspberry Pi 2 to receive data from Arduino (e.g. wheel

speeds, control action, among others).

149



5.5 Noncamera Based Solution

Simulation and experimental results are presented next for a non-camera based

solution to the minimum time problem. Here an IMU was used to estimate the

orientation of the car and form the (v, θ) cruise control system.

5.5.1 Simulation Results

For the noncamera based solution an outer loop controller with roll-off and the

following gains was used: kp = 0.869, and kd = 0.396. Since a (v, θ) cruise control

system is used, one can obtain the optimal inputs (vref , θref ) that will make the car

traverse along the racetrack in an optimal way.

The state space representation (low frequency) for the outer loop cruise control

system shown in Figure 5.3 for a noncamera-based method is presented next:

cruise control ẋ1 = −2.616x1 − 2.489x2 + 2vref

ẋ2 = 2x1

ẋ3 = −2.556x3 − 1.703x4 − 1.08x5 + θref

ẋ4 = 4x3

ẋ5 = x4

v = 1.245x2

θ = 0.4924x4 + 1.08x5

kinematics ẋ6 = ẋ = v sin θ = (1.245x2) sin(0.4924x4 + 1.08x5)

ẋ7 = ż = v cos θ = (1.245x2) cos(0.4924x4 + 1.08x5)

(5.86)

Figure 5.20 shows the resulted path obtained from KNITRO solver in the NEOS

server when no camera is used, i.e. the camera constraint explained above is removed
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(a constraint for the robot to lie within +/- 1 cm from the racetrack is imposed

instead). The resulting minimum time was found to be 21.14 seconds.

Figure 5.20: Noncamera Based Optimal Line -Simulation

The optimal linear velocities, commanded and actual, are shown in Figure 5.21.

In contrast to the camera-based solution shown above, the commanded linear velocity

is constant for almost the entire time with a value of 0.5m
s

.
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Figure 5.21: Noncamera Based Optimal Linear Velocities - Simulation

Figure 5.22 shows the commanded orientation θref and the actual orientation of

the mobile robot θ.

Figure 5.22: Noncamera Based Optimal Orientation - Simulation

The control input signals obtained in simulation for both the left and right wheels

are shown in Figure 5.23.
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Figure 5.23: Noncamera Based Control Input - Simulation

CODE: AMPL. The AMPL code used to obtain the results shown above can be

found within Appendix D on page 227.

5.5.2 Experimental Results

In Figure 5.24 it is shown the resulted path when using an IMU (BNO055) to

estimate the robot’s orientation θ. Also there is drift because of dead reckoning

errors in the computation of position (x, z). The time it takes the robot to traverse

the racetrack is around 21.3 seconds.

153



Figure 5.24: Noncamera Based Optimal Line - Experimental

Figure 5.25 shows the commanded and actual linear velocities of the mobile robot.

Here the encoder resolution is around 0.049 m/s.

Figure 5.25: Noncamera Based Optimal Linear Velocities - Experimental

Figure 5.26 shows the commanded orientation θref and the actual orientation θ.

The Gyroscope within the IMU has a resolution of 0.001 rad/s (with a range of +/-
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34.9 rad/s, 16 bits resolution and 32 Hz bandwidth).

Figure 5.26: Noncamera Based Optimal Orientation - Experimental

Control input signals for both the left and right wheels are shown in Figure 5.27.

Figure 5.27: Noncamera Based Control Input - Experimental

Polynomial fitting was used to generate the commanded linear velocity vref and

orientation θref in Arduino. Once the simulated vref and θref were obtained, poly-
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nomial fitting was used in MATLAB to obtain the required coefficients to generate

such signals. Later those coefficients were used in the Arduino program.

For the noncamera-based method, due to dead reckoning errors, the mobile robot

does not follow the racetrack precisely as compared with the simulation results shown

above.

CODE: ARDUINO. The Arduino code used to obtain the experimental results

presented above can be found within Appendix B on page 195.

5.6 Summary and Conclusions

This chapter has discussed the optimal control minimum time problem for the

differential-drive Thunder Tumbler going around a race track. Relevant theory was

first presented to have a basic understanding of the problem at hand. The different

components that make up the optimal control problem were stated and defined for the

ground mobile robot. With the camera-based solution, the mobile robot is slow but

stays on the track. Non-camera based solution makes the robot go faster but it is not

as precise as with the camera-based method due to dead reckoning errors. Field-of-

View of the camera, as shown above, reduces the minimum time for the camera-based

method. Simulation and experimental data were presented.
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Chapter 6

SUMMARY AND FUTURE DIRECTIONS

6.1 Summary of Work

This thesis addressed control issues that are important to achieve the longer-term

FAME objective. The following summarizes key themes within the thesis.

1. Literature Survey. A fairly comprehensive literature survey of relevant work

was presented.

2. FAME Architecture. A general FAME architecture has been described.

3. Modeling. Kinematic and dynamic models for differential-drive mobile ground

robot were presented.

4. Control. Position Based and Image Based robot control methodologies were

presented for the differential-drive ground mobile robot. A camera-based and a

noncamera-based (v, θ) cruise control systems were used for the solution of the

minimum time optimal control problem. to obtain a solution to the minimum

time optimal control problem.

5. Hardware Demonstrations. Hardware demonstrations were conducted -

with simulation data corroborating the experimental results.
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6.2 Directions for Future Research

Future work will involve each of the following:

� Onboard Sensing. Addition of multiple onboard sensors; e.g. additional ul-

trasonics, cameras, lidar, GPS, etc.

� Multi-Vehicle Cooperation. Cooperation between ground, air, and sea ve-

hicles - including quadrotors, micro-air vehicles and nano-air vehicles.

� Parallel Onboard Computing. Use of multiple processors on a robot for

computationally intense work; e.g. onboard optimization and decision making.

� Modeling and Control. More accurate dynamic models and control laws.

This can include the development of multi-rate control laws that can signifi-

cantly lower sampling requirements.

� Control-Centric Vehicle Design. Understanding when simple control laws

are possible and when complex control laws are essential. This includes knowing

how control-relevant specifications impact (or can drive) the design of a vehicle.

� Reconstruction of a racetrack. Mapping of any racetrack online, i.e. ob-

taining the racetrack parameters (xt, zt, θt) as robot travels through it.
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� Use of different NLP solvers Comparison of the optimal results for different

available NLP solvers, such as IPOPT, LOQO, SNOPT.

� Different discretization schemes Investigate the effect on the solution to

the optimal control minimum time problem by using various discretization tech-

niques.

� Step size study Investigate how the optimal solution changes as the step size

is varied along the racetrack.
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APPENDIX A

MATLAB CODE
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1 % INNER LOOP des ign
2 % Plot s f o r L ,T, S , Try , Tru , Tdiy are presented
3

4 c l e a r
5 c l o s e
6 c l c
7

8

9 s = t f ( ' s ' ) ;
10 % SSR f o r P = 5 .495 * (1 . 73 /( s+1.73 ) ) ( Decoupled )
11 Ap = [−1 .73 0
12 0 −1.73 ] ;
13 Bp = [ 9 .507 0
14 0 9 .507 ] ;
15 Cp = [ 1 0
16 0 1 ] ;
17 Dp = 0* ones ( 2 , 2 ) ;
18

19 r = 0 .05 ;
20 dw = 0 .14 ;
21 M = [ r /2 r /2
22 −r /dw r /dw ] ;
23 Minv = inv (M) ;
24

25 P = ss (Ap, Bp , Cp,Dp) ; %(wr , wl ) system
26

27 %%
28 f i g u r e (1 )
29 s tep (P, 5)
30 g r id on
31 %s e t ( f i n d o b j ( gca , ' type ' , ' l i n e ' ) , ' LineWidth ' , 2 ) ;
32 h = f i n d o b j ( gcf , ' type ' , ' l i n e ' ) ;
33 s e t (h , ' LineWidth ' , 3 ) ;
34 a = f i n d o b j ( gcf , ' type ' , ' axes ' ) ;
35 s e t ( a , ' l i n ew id th ' , 4 ) ;
36 s e t ( a , ' FontSize ' , 1 5 ) ;
37 t i t l e ( ' Plant Step Response ' , ' FontSize ' , 20)
38 y l a b e l ( ' Angular v e l o c i t y [ rad/ s ] ' , ' FontSize ' , 13)
39

40 %%
41 f i g u r e (2 )
42 opts = bodeopt ions ;
43 opt s . I nputLabe l s .Fon tS i z e = 10 ;
44 opts .OutputLabe l s .FontS ize = 10 ;
45 %opts.YLim = { [ −400 ,100 ]} ; %{magl imits ; p h a s e l i m i t s }
46 %opts.YLimMode = { 'manual ' } ;
47 %opts.XLim = { [ 1 e−01 ,1 e02 ] } ; %{magl imits ; p h a s e l i m i t s }
48 %opts.XLimMode = { 'manual ' } ;
49 bode (P, opts )
50 t i t l e ( ' Plant Frequency Response ' , ' FontSize ' , 2 0 ) ;
51 g r id on ;
52 %s e t ( f i n d o b j ( gca , ' type ' , ' l i n e ' ) , ' LineWidth ' , 3 ) ;
53 h = f i n d o b j ( gcf , ' type ' , ' l i n e ' ) ;
54 s e t (h , ' LineWidth ' , 3 ) ;
55 a = f i n d o b j ( gcf , ' type ' , ' axes ' ) ;
56 s e t ( a , ' l i n ew id th ' , 4 ) ;
57 s e t ( a , ' FontSize ' , 1 5 ) ;
58 %x l a b e l ( ' f r eq ' , ' FontSize ' , 2 4 ) ;
59 %y l a b e l ( ' ' , ' FontSize ' , 2 4 ) ;
60

61

62

63 %% wg = 1 , PM = 80
64

65 kp = 0 .073 ;
66 k i = 0 .194 ;
67
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68 Kinner 0 = [ kp*( s+k i /kp )*100/( s *( s +100)) 0
69 0 kp*( s+k i /kp )*100/( s *( s +100)) ] ;
70

71 Kinner 0 = s s ( Kinner 0 ) ;
72

73 %open loop
74 Linner 0 = P*Kinner 0 ;
75

76 % s e n s i t i v i t y
77 asen = L inne r 0 . a − Linne r 0 .b * L i n n e r 0 . c ;
78 bsen = Linne r 0 .b ;
79 csen = −L i n n e r 0 . c ;
80 [ row , c o l ] = s i z e ( csen ) ;
81 [ row1 , co l 1 ] = s i z e ( bsen ) ;
82 dsen = eye ( row , co l 1 ) ;
83 S inner 0 = s s ( asen , bsen , csen , dsen ) ;
84

85 % comp s e n s i t i v i t y u n f i l t e r e d
86 a c l = L inne r 0 . a − Linne r 0 .b * L i n n e r 0 . c ;
87 bc l = L inne r 0 .b ;
88 c c l = L i n n e r 0 . c ;
89 dc l = L inne r 0 .d ;
90 T 0 = ss ( ac l , bcl , c c l , dc l ) ;
91

92 z = k i /kp ;
93 W 0 = [ z /( s+z ) 0
94 0 z /( s+z ) ] ;
95 W 0 = ss (W 0 ) ;
96

97 % try = comp s e n s i t i v i t y f i l t e r e d
98 Try 0 = T 0*W 0 ;
99

100 % Tdiy
101 Adiy 0 = [Ap−Bp* Kinner 0 .d *Cp Bp* Kinner 0 . c
102 −Kinner 0 .b *Cp Kinner 0 .a ] ;
103 [ row , c o l ]= s i z e ( Kinner 0 .b ) ;
104 Bdiy 0 = [ Bp
105 0* ones ( row , 2 ) ] ;
106 [ row1 , co l 1 ]= s i z e ( Kinner 0 .a ) ;
107 Cdiy 0 = [Cp 0* ones (2 , co l 1 ) ] ;
108 Ddiy 0 = 0* ones ( 2 , 2 ) ;
109 Tdiy 0 = s s ( Adiy 0 , Bdiy 0 , Cdiy 0 , Ddiy 0 ) ;
110

111

112 Tru 0 = Kinner 0 * S inner 0 ; % Tru u n f i l t e r e d
113 Truf 0 = Kinner 0 * S inner 0 *W 0 ; % Tru f i l t e r e d
114

115 Tru 0 vw = Tru 0*Minv ; % Tru vw u n f i l t e r e d
116 Tdiy 0 vw = M*Tdiy 0 ; % Tdiy vw
117

118

119 %% wg = 2 , PM = 60
120

121 kp = 0 .096 ;
122 k i = 0 .519 ;
123

124 Kinner 1 = [ kp*( s+k i /kp )*100/( s *( s +100)) 0
125 0 kp*( s+k i /kp )*100/( s *( s +100)) ] ;
126

127 Kinner 1 = s s ( Kinner 1 ) ;
128

129 Linner 1 = P*Kinner 1 ; %open loop
130

131

132 asen = L inne r 1 . a − Linne r 1 .b * L i n n e r 1 . c ;% s e n s i t i v i t y
133 bsen = Linne r 1 .b ;
134 csen = −L i n n e r 1 . c ;
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135 [ row , c o l ] = s i z e ( csen ) ;
136 [ row1 , co l 1 ] = s i z e ( bsen ) ;
137 dsen = eye ( row , co l 1 ) ;
138 S inner 1 = s s ( asen , bsen , csen , dsen ) ;
139

140 a c l = L inne r 1 . a − Linne r 1 .b * L i n n e r 1 . c ; %comp sens u n f i l t e r e d
141 bc l = L inne r 1 .b ;
142 c c l = L i n n e r 1 . c ;
143 dc l = L inne r 1 .d ;
144 T 1 = ss ( ac l , bcl , c c l , dc l ) ;
145

146 z = k i /kp ;
147 W 1 = [ z /( s+z ) 0
148 0 z /( s+z ) ] ;
149 W 1 = ss (W 1 ) ;
150

151 Try 1 = T 1*W 1 ; % try = comp s e n s i t i v i t y f i l t e r e d
152

153 % Tdiy
154 Adiy 1 = [Ap−Bp* Kinner 1 .d *Cp Bp* Kinner 1 . c
155 −Kinner 1 .b *Cp Kinner 1 .a ] ;
156 [ row , c o l ]= s i z e ( Kinner 1 .b ) ;
157 Bdiy 1 = [ Bp
158 0* ones ( row , 2 ) ] ;
159 [ row1 , co l 1 ]= s i z e ( Kinner 1 .a ) ;
160 Cdiy 1 = [Cp 0* ones (2 , co l 1 ) ] ;
161 Ddiy 1 = 0* ones ( 2 , 2 ) ;
162 Tdiy 1 = s s ( Adiy 1 , Bdiy 1 , Cdiy 1 , Ddiy 1 ) ;
163

164

165 Tru 1 = Kinner 1 * S inner 1 ; % Tru u n f i l t e r e d
166 Truf 1 = Kinner 1 * S inner 1 *W 1 ; % Tru f i l t e r e d
167

168 Tru 1 vw = Tru 1*Minv ; % Tru vw u n f i l t e r e d
169 Tdiy 1 vw = M*Tdiy 1 ; % Tdiy vw
170

171

172 %% wg = 4 , PM = 60
173

174 kp = 0 .288 ;
175 k i = 1 .426 ;
176

177 Kinner 2 = [ kp*( s+k i /kp )*100/( s *( s +100)) 0
178 0 kp*( s+k i /kp )*100/( s *( s +100)) ] ;
179

180 Kinner 2 = s s ( Kinner 2 ) ;
181

182 Linner 2 = P*Kinner 2 ; %open loop
183

184

185 asen = L inne r 2 . a − Linne r 2 .b * L i n n e r 2 . c ; % s e n s i t i v i t y
186 bsen = Linne r 2 .b ;
187 csen = −L i n n e r 2 . c ;
188 [ row , c o l ] = s i z e ( csen ) ;
189 [ row1 , co l 1 ] = s i z e ( bsen ) ;
190 dsen = eye ( row , co l 1 ) ;
191 S inner 2 = s s ( asen , bsen , csen , dsen ) ;
192

193 a c l = L inne r 2 . a − Linne r 2 .b * L i n n e r 2 . c ;% comp sens u n f i l t e r e d
194 bc l = L inne r 2 .b ;
195 c c l = L i n n e r 2 . c ;
196 dc l = L inne r 2 .d ;
197 T 2 = ss ( ac l , bcl , c c l , dc l ) ;
198

199 z = k i /kp ;
200 W 2 = [ z /( s+z ) 0
201 0 z /( s+z ) ] ;
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202 W 2 = ss (W 2 ) ;
203

204 Try 2 = T 2*W 2 ; % try = comp s e n s i t i v i t y f i l t e r e d
205

206 % Tdiy
207 Adiy 2 = [Ap−Bp* Kinner 2 .d *Cp Bp* Kinner 2 . c
208 −Kinner 2 .b *Cp Kinner 2 .a ] ;
209 [ row , c o l ]= s i z e ( Kinner 2 .b ) ;
210 Bdiy 2 = [ Bp
211 0* ones ( row , 2 ) ] ;
212 [ row1 , co l 1 ]= s i z e ( Kinner 2 .a ) ;
213 Cdiy 2 = [Cp 0* ones (2 , co l 1 ) ] ;
214 Ddiy 2 = 0* ones ( 2 , 2 ) ;
215 Tdiy 2 = s s ( Adiy 2 , Bdiy 2 , Cdiy 2 , Ddiy 2 ) ;
216

217

218 Tru 2 = Kinner 2 * S inner 2 ; % Tru u n f i l t e r e d
219 Truf 2 = Kinner 2 * S inner 2 *W 2 ; % Tru f i l t e r e d
220

221 Tru 2 vw = Tru 2*Minv ; % Tru vw u n f i l t e r e d
222 Tdiy 2 vw = M*Tdiy 2 ; % Tdiy vw
223 %%
224

225

226

227 f i g u r e (3 ) % open loop
228 w = logspace (−2 ,3 ,100) ;
229 sv L0=sigma ( Linner 0 ,w) ; sv L1=sigma ( Linner 1 ,w) ; . . .
230 sv L2=sigma ( Linner 2 ,w) ;
231 sv L0=20* l og10 ( sv L0 ) ; sv L1=20* l og10 ( sv L1 ) ; . . .
232 sv L2=20* l og10 ( sv L2 ) ;
233 semi logx (w, sv L0 ( 1 , : ) , 'b ' , w, sv L1 ( 1 , : ) , 'k ' , . . .
234 w, sv L2 ( 1 , : ) , ' r ' , . . .
235 w, sv L0 ( 2 , : ) , 'b ' , w, sv L1 ( 2 , : ) , 'k ' , . . .
236 w, sv L2 ( 2 , : ) , ' r ' , ' LineWidth ' , 3)
237 t i t l e ( 'Open Loop S ingu la r Values ' , ' FontWeight ' , ' normal ' )
238 g r id on
239 x l a b e l ( ' Frequency ( rad/ sec ) ' )
240 y l a b e l ( ' S ingu la r Values (dB) ' )
241 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' )
242 s e t ( gca , ' f o n t s i z e ' , 19)
243 s e t ( gca , ' l i n ew id th ' , 3 )
244

245 f i g u r e (4 ) %s e n s i t i v i t y
246 w = logspace (−2 ,3 ,100) ;
247 sv S0 = sigma ( Sinner 0 ,w) ; sv S1=sigma ( Sinner 1 ,w) ; . . .
248 sv S2=sigma ( Sinner 2 ,w) ;
249 sv S0 = 20* l og10 ( sv S0 ) ; sv S1 = 20* l og10 ( sv S1 ) ; . . .
250 sv S2 = 20* l og10 ( sv S2 ) ;
251 semi logx (w, sv S0 ( 1 , : ) , 'b ' ,w, sv S1 ( 1 , : ) , 'k ' , w, . . .
252 sv S2 ( 1 , : ) , ' r ' , . . .
253 w, sv S0 ( 2 , : ) , 'b ' ,w, sv S1 ( 2 , : ) , 'k ' , w, . . .
254 sv S2 ( 2 , : ) , ' r ' , ' LineWidth ' , 3)
255 t i t l e ( ' S ' , ' FontWeight ' , ' normal ' )
256 g r id on
257 x l a b e l ( ' Frequency ( rad/ sec ) ' )
258 y l a b e l ( ' S ingu la r Values (dB) ' )
259 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' , . . .
260 ' Locat ion ' , ' southeas t ' )
261 s e t ( gca , ' f o n t s i z e ' , 19)
262 s e t ( gca , ' l i n ew id th ' , 3 )
263

264 f i g u r e (5 ) %comp s e n s i t i v i t y
265 w = logspace (−2 ,3 ,100) ;
266 sv T0 = sigma ( T 0 ,w) ; sv T1 = sigma ( T 1 ,w) ; . . .

169



267 sv T2 = sigma ( T 2 ,w) ;
268 sv T0 = 20* l og10 ( sv T0 ) ; sv T1 = 20* l og10 ( sv T1 ) ; . . .
269 sv T2 = 20* l og10 ( sv T2 ) ;
270 semi logx (w, sv T0 ( 1 , : ) , 'b ' , w, sv T1 ( 1 , : ) , 'k ' , . . .
271 w, sv T2 ( 1 , : ) , ' r ' , . . .
272 w, sv T0 ( 2 , : ) , 'b ' , w, sv T1 ( 2 , : ) , 'k ' , . . .
273 w, sv T2 ( 2 , : ) , ' r ' , ' LineWidth ' , 3)
274 t i t l e ( ' T ' , ' FontWeight ' , ' normal ' )
275 g r id on
276 x l a b e l ( ' Frequency ( rad/ sec ) ' )
277 y l a b e l ( ' S ingu la r Values (dB) ' )
278 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' )
279 s e t ( gca , ' f o n t s i z e ' , 19)
280 s e t ( gca , ' l i n ew id th ' , 3 )
281

282 f i g u r e (6 ) %td iy
283 w = logspace (−2 ,4 ,100) ;
284 sv Tdiy0 = sigma ( Tdiy 0 ,w) ; sv Tdiy1 = sigma ( Tdiy 1 ,w) ; . . .
285 sv Tdiy2 = sigma ( Tdiy 2 ,w) ;
286 sv Tdiy0 = 20* l og10 ( sv Tdiy0 ) ; sv Tdiy1 = 20* l og10 ( sv Tdiy1 ) ; . . .
287 sv Tdiy2 = 20* l og10 ( sv Tdiy2 ) ;
288 semi logx (w, sv Tdiy0 ( 1 , : ) , 'b ' ,w, sv Tdiy1 ( 1 , : ) , . . .
289 'k ' ,w, sv Tdiy2 ( 1 , : ) , ' r ' , . . .
290 w, sv Tdiy0 ( 2 , : ) , 'b ' ,w, sv Tdiy1 ( 2 , : ) , . . .
291 'k ' ,w, sv Tdiy2 ( 2 , : ) , ' r ' , ' LineWidth ' , 3)
292 t i t l e ( ' T {diy } ' , ' FontWeight ' , ' normal ' )
293 g r id on
294 x l a b e l ( ' Frequency ( rad/ sec ) ' )
295 y l a b e l ( ' S ingu la r Values (dB) ' )
296 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' )
297 s e t ( gca , ' f o n t s i z e ' , 19)
298 s e t ( gca , ' l i n ew id th ' , 3 )
299

300 f i g u r e (7 ) %tru
301 w = logspace (−2 ,4 ,100) ;
302 sv Tru0 = sigma ( Tru 0 ,w) ; sv Tru1 = sigma ( Tru 1 ,w) ; . . .
303 sv Tru2 = sigma ( Tru 2 ,w) ;
304 sv Tru0 = 20* l og10 ( sv Tru0 ) ; sv Tru1 = . . .
305 20* l og10 ( sv Tru1 ) ; sv Tru2 = 20* l og10 ( sv Tru2 ) ;
306 semi logx (w, sv Tru0 ( 1 , : ) , 'b ' ,w, sv Tru1 ( 1 , : ) , . . .
307 'k ' ,w, sv Tru2 ( 1 , : ) , ' r ' , . . .
308 w, sv Tru0 ( 2 , : ) , 'b ' ,w, sv Tru1 ( 2 , : ) , . . .
309 'k ' ,w, sv Tru2 ( 2 , : ) , ' r ' , ' LineWidth ' , 3)
310 t i t l e ( ' T { ru} U n f i l t e r e d ' , ' FontWeight ' , ' normal ' )
311 g r id on
312 x l a b e l ( ' Frequency ( rad/ sec ) ' )
313 y l a b e l ( ' S ingu la r Values (dB) ' )
314 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' )
315 s e t ( gca , ' f o n t s i z e ' , 19)
316 s e t ( gca , ' l i n ew id th ' , 3 )
317

318 f i g u r e (8 ) %t r u f i l t e r e d
319 w = logspace (−2 ,4 ,100) ;
320 sv Truf0 = sigma ( Truf 0 ,w) ; sv Truf1 = . . .
321 sigma ( Truf 1 ,w) ; sv Truf2 = sigma ( Truf 2 ,w) ;
322 sv Truf0 = 20* l og10 ( sv Truf0 ) ; sv Truf1 = . . .
323 20* l og10 ( sv Truf1 ) ; sv Truf2 = 20* l og10 ( sv Truf2 ) ;
324 semi logx (w, sv Truf0 ( 1 , : ) , 'b ' ,w, sv Truf1 ( 1 , : ) , . . .
325 'k ' ,w, sv Truf2 ( 1 , : ) , ' r ' , . . .
326 w, sv Truf0 ( 2 , : ) , 'b ' ,w, sv Truf1 ( 2 , : ) , . . .
327 'k ' ,w, sv Truf2 ( 2 , : ) , ' r ' , ' LineWidth ' , 3)
328 t i t l e ( ' T { ru} F i l t e r e d ' , ' FontWeight ' , ' normal ' )
329 g r id on
330 x l a b e l ( ' Frequency ( rad/ sec ) ' )
331 y l a b e l ( ' S ingu la r Values (dB) ' )
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332 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' )
333 s e t ( gca , ' f o n t s i z e ' , 19)
334 s e t ( gca , ' l i n ew id th ' , 3 )
335

336

337 % t = 0:0 .02 : 5 ;
338 % [ y , t , x ] = l s im (10* Try 0 , [ ones ( s i z e ( t ) ) ' z e ro s ( s i z e ( t ) ) ' ] , t ) ;
339 % plo t ( t , y ( : , : , 1 ) )
340 %%
341 opt = stepDataOptions ( ' StepAmplitude ' , 1 0 ) ;
342 %%
343 f i g u r e (9 ) % Try W
344 s tep ( Try 0 , 'b ' , Try 1 , 'k ' , Try 2 , ' r ' , opt ) ;
345 h = f i n d o b j ( gcf , ' type ' , ' l i n e ' ) ;
346 s e t (h , ' LineWidth ' , 3 ) ;
347 a = f i n d o b j ( gcf , ' type ' , ' axes ' ) ;
348 s e t ( a , ' l i n ew id th ' , 4 ) ;
349 s e t ( a , ' FontSize ' , 1 5 ) ;
350 t i t l e ( ' Step response ( f i l t e r e d ) ' , ' FontSize ' , 20)
351 y l a b e l ( ' Angular v e l o c i t y [ rad/ s ] ' , ' FontSize ' , 13)
352 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' )
353 g r id on
354

355 f i g u r e (10) % Try
356 s tep ( T 0 , 'b ' , T 1 , 'k ' , T 2 , ' r ' , opt )
357 h = f i n d o b j ( gcf , ' type ' , ' l i n e ' ) ;
358 s e t (h , ' LineWidth ' , 3 ) ;
359 a = f i n d o b j ( gcf , ' type ' , ' axes ' ) ;
360 s e t ( a , ' l i n ew id th ' , 4 ) ;
361 s e t ( a , ' FontSize ' , 1 5 ) ;
362 t i t l e ( ' Step response ( u n f i l t e r e d ) ' , ' FontSize ' , 20)
363 y l a b e l ( ' Angular v e l o c i t y [ rad/ s ] ' , ' FontSize ' , 13)
364 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' )
365 g r id on
366

367

368

369 f i g u r e (11) % Tru
370 s tep ( Tru 0 , 'b ' , Tru 1 , 'k ' , Tru 2 , ' r ' , opt )
371 h = f i n d o b j ( gcf , ' type ' , ' l i n e ' ) ;
372 s e t (h , ' LineWidth ' , 3 ) ;
373 a = f i n d o b j ( gcf , ' type ' , ' axes ' ) ;
374 s e t ( a , ' l i n ew id th ' , 4 ) ;
375 s e t ( a , ' FontSize ' , 1 5 ) ;
376 t i t l e ( ' U n f i l t e r e d c o n t r o l r e sponse ' , ' FontSize ' , 20)
377 y l a b e l ( ' Voltage [V] ' , ' FontSize ' , 13)
378 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' )
379 g r id on
380

381 f i g u r e (12) % Tru W
382 s tep ( Truf 0 , 'b ' , Truf 1 , 'k ' , Truf 2 , ' r ' , opt )
383 h = f i n d o b j ( gcf , ' type ' , ' l i n e ' ) ;
384 s e t (h , ' LineWidth ' , 3 ) ;
385 a = f i n d o b j ( gcf , ' type ' , ' axes ' ) ;
386 s e t ( a , ' l i n ew id th ' , 4 ) ;
387 s e t ( a , ' FontSize ' , 1 5 ) ;
388 t i t l e ( ' F i l t e r e d c o n t r o l r e sponse ' , ' FontSize ' , 20)
389 y l a b e l ( ' Voltage [V] ' , ' FontSize ' , 13)
390 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' )
391 g r id on
392 %%
393

394 f i g u r e (13) %MSP
395 w = logspace (−2 ,4 ,100) ;
396 sv MSP0 = sigma ( Tdiy 0 vw ,w) ; sv MSP1 = . . .
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397 sigma ( Tdiy 1 vw ,w) ; sv MSP2 = sigma ( Tdiy 2 vw ,w) ;
398 sv MSP0 = 20* l og10 ( sv MSP0 ) ; sv MSP1 = . . .
399 20* l og10 ( sv MSP1 ) ; sv MSP2 = 20* l og10 ( sv MSP2 ) ;
400 semi logx (w, sv MSP0 ( 1 , : ) , 'b ' ,w, . . .
401 sv MSP1 ( 1 , : ) , 'k ' ,w, sv MSP2 ( 1 , : ) , ' r ' , . . .
402 w, sv MSP0 ( 2 , : ) , 'b ' ,w, . . .
403 sv MSP1 ( 2 , : ) , 'k ' ,w, sv MSP2 ( 2 , : ) , ' r ' , ' LineWidth ' , 3)
404 t i t l e ( ' MSP ' , ' FontWeight ' , ' normal ' )
405 g r id on
406 x l a b e l ( ' Frequency ( rad/ sec ) ' )
407 y l a b e l ( ' S ingu la r Values (dB) ' )
408 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' )
409 s e t ( gca , ' f o n t s i z e ' , 19)
410 s e t ( gca , ' l i n ew id th ' , 3 )
411

412

413 f i g u r e (14) %KSMˆ{−1}
414 w = logspace (−2 ,4 ,100) ;
415 sv KSM0 = sigma ( Tru 0 vw ,w) ; sv KSM1 = . . .
416 sigma ( Tru 1 vw ,w) ; sv KSM2 = sigma ( Tru 2 vw ,w) ;
417 sv KSM0 = 20* l og10 ( sv KSM0 ) ; sv KSM1 = . . .
418 20* l og10 ( sv KSM1 ) ; sv KSM2 = 20* l og10 ( sv KSM2 ) ;
419 semi logx (w, sv KSM0 ( 1 , : ) , 'b ' ,w, . . .
420 sv KSM1 ( 1 , : ) , 'k ' ,w, sv KSM2 ( 1 , : ) , ' r ' , . . .
421 w, sv KSM0 ( 2 , : ) , 'b ' ,w, . . .
422 sv KSM1 ( 2 , : ) , 'k ' ,w, sv KSM2 ( 2 , : ) , ' r ' , ' LineWidth ' , 3)
423 t i t l e ( ' KSMˆ{−1} ' , ' FontWeight ' , ' normal ' )
424 g r id on
425 x l a b e l ( ' Frequency ( rad/ sec ) ' )
426 y l a b e l ( ' S ingu la r Values (dB) ' )
427 l egend ( ' g=0.073 , z=2.657 ' , ' g=0.096 , z=5.406 ' , ' g=0.288 , z=4.951 ' )
428 s e t ( gca , ' f o n t s i z e ' , 19)
429 s e t ( gca , ' l i n ew id th ' , 3 )

1 % INNER LOOP s imu la t i on and exper imenta l
2 % r e s u l t s
3

4 c l e a r
5 c l o s e
6 c l c
7

8 %%
9 %Experimental data

10 % wL wR PWML PWMR
11 out2 2 = [ 0 .00 0 .00 10 10
12 0 .00 0 .00 35 35
13 0 .00 0 .00 61 61
14 0 .00 0 .00 87 87
15 1 .96 1 .96 103 103
16 3 .93 3 .93 111 111
17 5 .89 3 .93 116 126
18 7 .85 5 .89 115 132
19 7 .85 9 .82 119 120
20 9 .82 9 .82 115 117
21 11 .78 11 .78 103 110
22 11 .78 13 .74 98 92
23 13 .74 13 .74 84 82
24 15 .71 13 .74 62 73
25 13 .74 13 .74 56 63
26 11 .78 15 .71 59 44
27 11 .78 13 .74 55 36
28 11 .78 11 .78 50 41
29 11 .78 11 .78 46 36
30 9 .82 11 .78 51 31
31 9 .82 9 .82 54 37
32 9 .82 7 .85 53 49
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33 7 .85 7 .85 64 56
34 7 .85 7 .85 72 61
35 9 .82 9 .82 66 57
36 9 .82 9 .82 65 55
37 7 .85 7 .85 76 67
38 9 .82 9 .82 74 64
39 9 .82 9 .82 71 61
40 7 .85 7 .85 83 73
41 7 .85 7 .85 90 80
42 9 .82 9 .82 85 75
43 11 .78 11 .78 73 63
44 9 .82 9 .82 78 68
45 9 .82 9 .82 81 71
46 11 .78 9 .82 70 70
47 9 .82 9 .82 74 71
48 9 .82 11 .78 78 61
49 11 .78 11 .78 66 55
50 11 .78 9 .82 60 61
51 9 .82 9 .82 66 63
52 9 .82 11 .78 69 53
53 9 .82 9 .82 68 56
54 9 .82 9 .82 69 60
55 11 .78 9 .82 59 58
56 9 .82 9 .82 63 61
57 7 .85 9 .82 77 60
58 9 .82 7 .85 72 71
59 9 .82 9 .82 70 69
60 9 .82 9 .82 73 65
61 9 .82 9 .82 72 68
62 9 .82 9 .82 73 67
63 11 .78 9 .82 63 69
64 9 .82 11 .78 66 59
65 9 .82 9 .82 71 62
66 9 .82 7 .85 69 76
67 9 .82 9 .82 71 72
68 9 .82 11 .78 70 60
69 9 .82 9 .82 71 64
70 11 .78 9 .82 61 68
71 11 .78 11 .78 55 56
72 11 .78 9 .82 52 60
73 9 .82 9 .82 56 64
74 9 .82 11 .78 59 53
75 11 .78 11 .78 48 47
76 9 .82 11 .78 52 43
77 9 .82 9 .82 56 48
78 11 .78 9 .82 44 51
79 9 .82 11 .78 49 40
80 9 .82 9 .82 52 4 4 ] ;
81

82 wL2 2 = out2 2 ( : , 1 ) ;
83 wR2 2 = out2 2 ( : , 2 ) ;
84 PWML2 2 = out2 2 ( : , 3 ) ;
85 PWMR2 2 = out2 2 ( : , 4 ) ;
86 [ m22,˜ ]= s i z e ( wL2 2 ) ;
87 o f f d = ze ro s (m22 , 1 ) ;
88 time22 =0:0 . 1 : m22*0 .1−0. 1 ;
89 %%
90 s = t f ( ' s ' ) ;
91 % SSR f o r P = 5 .495 * (1 . 73 /( s+1.73 ) ) ( Decoupled )
92 Ap = [−1 .73 0
93 0 −1.73 ] ;
94 Bp = [ 9 .507 0
95 0 9 .507 ] ;
96 Cp = [ 1 0
97 0 1 ] ;
98 Dp = 0* ones ( 2 , 2 ) ;
99

100 r = 0 .05 ;
101 dw = 0 .14 ;
102 M = [ r /2 r /2
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103 −r /dw r /dw ] ;
104 Minv = inv (M) ;
105

106 P = ss (Ap, Bp , Cp,Dp) ;
107

108 %% wg = 2 , PM = 60
109

110 kp = 0 .096 ;
111 k i = 0 .519 ;
112

113 Kinner 1 = [ kp*( s+k i /kp )*100/( s *( s +100)) 0
114 0 kp*( s+k i /kp )*100/( s *( s +100)) ] ;
115

116 Kinner 1 = s s ( Kinner 1 ) ;
117

118 %open loop
119 Linner 1 = P*Kinner 1 ;
120

121 % s e n s i t i v i t y
122 asen = L inne r 1 . a − Linne r 1 .b * L i n n e r 1 . c ;
123 bsen = Linne r 1 .b ;
124 csen = −L i n n e r 1 . c ;
125 [ row , c o l ] = s i z e ( csen ) ;
126 [ row1 , co l 1 ] = s i z e ( bsen ) ;
127 dsen = eye ( row , co l 1 ) ;
128 S inner 1 = s s ( asen , bsen , csen , dsen ) ;
129

130 % comp s e n s i t i v i t y u n f i l t e r e d
131 a c l = L inne r 1 . a − Linne r 1 .b * L i n n e r 1 . c ;
132 bc l = L inne r 1 .b ;
133 c c l = L i n n e r 1 . c ;
134 dc l = L inne r 1 .d ;
135 T 1 = ss ( ac l , bcl , c c l , dc l ) ;
136

137 z = k i /kp ;
138 W 1 = [ z /( s+z ) 0
139 0 z /( s+z ) ] ;
140 W 1 = ss (W 1 ) ;
141

142 % try = comp s e n s i t i v i t y f i l t e r e d
143 Try 1 = T 1*W 1 ;
144

145 % Tdiy
146 Adiy 1 = [Ap−Bp* Kinner 1 .d *Cp Bp* Kinner 1 . c
147 −Kinner 1 .b *Cp Kinner 1 .a ] ;
148 [ row , c o l ]= s i z e ( Kinner 1 .b ) ;
149 Bdiy 1 = [ Bp
150 0* ones ( row , 2 ) ] ;
151 [ row1 , co l 1 ]= s i z e ( Kinner 1 .a ) ;
152 Cdiy 1 = [Cp 0* ones (2 , co l 1 ) ] ;
153 Ddiy 1 = 0* ones ( 2 , 2 ) ;
154 Tdiy 1 = s s ( Adiy 1 , Bdiy 1 , Cdiy 1 , Ddiy 1 ) ;
155

156

157 Tru 1 = Kinner 1 * S inner 1 ; % Tru u n f i l t e r e d
158 Truf 1 = Kinner 1 * S inner 1 *W 1 ; % Tru f i l t e r e d
159

160 Tru 1 vw = Tru 1*Minv ; % Tru vw u n f i l t e r e d
161 Tdiy 1 vw = M*Tdiy 1 ; % Tdiy vw
162

163

164 %%
165 opt = stepDataOptions ( ' StepAmplitude ' , 1 0 ) ;
166 s e t (0 , ' de fau l tAxesFontS ize ' , 2 0 ) ;
167

168 %%
169 % Try W
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170 [ y f i l t , time1 ] = step ( Try 1 , 'k ' , opt , 6 . 9 ) ;
171

172 f i g u r e (9 )
173 subplot ( 2 , 2 , 1 )
174 p lo t ( time1 , y f i l t ( : , 1 , 1 ) , 'b ' , time22 , . . .
175 wR2 2 , ' r ' , ' LineWidth ' , 3)
176 g r id on
177 y l a b e l ( ' Angular Ve loc i ty [ rad/ s ] ' )
178 x l a b e l ( 'Time [ s ] ' )
179 l egend ( ' Simulat ion ' , ' Experimental ' )
180 s e t ( gca , ' f o n t s i z e ' , 13)
181 s e t ( gca , ' l i n ew id th ' , 3 )
182

183 subp lot ( 2 , 2 , 2 )
184 p lo t ( time1 , y f i l t ( : , 1 , 2 ) , 'b ' , time22 , . . .
185 o f f d , ' r ' , ' LineWidth ' , 3)
186 g r id on
187 y l a b e l ( ' Angular Ve loc i ty [ rad/ s ] ' )
188 x l a b e l ( 'Time [ s ] ' )
189 l egend ( ' Simulat ion ' , ' Experimental ' )
190 s e t ( gca , ' f o n t s i z e ' , 13)
191 s e t ( gca , ' l i n ew id th ' , 3 )
192

193 subp lot ( 2 , 2 , 3 )
194 p lo t ( time1 , y f i l t ( : , 2 , 1 ) , 'b ' , time22 , . . .
195 o f f d , ' r ' , ' LineWidth ' , 3)
196 g r id on
197 y l a b e l ( ' Angular Ve loc i ty [ rad/ s ] ' )
198 x l a b e l ( 'Time [ s ] ' )
199 l egend ( ' Simulat ion ' , ' Experimental ' )
200 s e t ( gca , ' f o n t s i z e ' , 13)
201 s e t ( gca , ' l i n ew id th ' , 3 )
202

203 subp lot ( 2 , 2 , 4 )
204 p lo t ( time1 , y f i l t ( : , 2 , 2 ) , 'b ' , time22 , . . .
205 wL2 2 , ' r ' , ' LineWidth ' , 3)
206 g r id on
207 y l a b e l ( ' Angular Ve loc i ty [ rad/ s ] ' )
208 x l a b e l ( 'Time [ s ] ' )
209 l egend ( ' Simulat ion ' , ' Experimental ' )
210 s e t ( gca , ' f o n t s i z e ' , 13)
211 s e t ( gca , ' l i n ew id th ' , 3 )
212

213 mtit ( ' Step Response ( F i l t e r e d ) ' , ' f o n t s i z e ' , 2 0 ) ;
214

215 %% Tru W
216

217

218 [ u f i l t , time2 ] = step ( Truf 1 , 'k ' , opt , 6 . 9 ) ;
219 f i g u r e (12)
220 subp lot ( 2 , 2 , 1 )
221 p lo t ( time2 , u f i l t ( : , 1 , 1 ) , 'b ' , time22 , . . .
222 PWMR2 2*5 .15 /255 , ' r ' , ' LineWidth ' , 3)
223 y l a b e l ( ' Voltage [V] ' )
224 g r id on
225 x l a b e l ( 'Times [ s ] ' )
226 l egend ( ' Simulat ion ' , ' Experimental ' )
227 s e t ( gca , ' f o n t s i z e ' , 15)
228 s e t ( gca , ' l i n ew id th ' , 3 )
229

230 subp lot ( 2 , 2 , 2 )
231 p lo t ( time2 , u f i l t ( : , 1 , 2 ) , 'b ' , . . .
232 time22 , o f f d , ' r ' , ' LineWidth ' , 3)
233 y l a b e l ( ' Voltage [V] ' )
234 g r id on
235 x l a b e l ( 'Times [ s ] ' )
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236 l egend ( ' Simulat ion ' , ' Experimental ' )
237 s e t ( gca , ' f o n t s i z e ' , 15)
238 s e t ( gca , ' l i n ew id th ' , 3 )
239

240

241 subp lot ( 2 , 2 , 3 )
242 p lo t ( time2 , u f i l t ( : , 2 , 1 ) , 'b ' , . . .
243 time22 , o f f d , ' r ' , ' LineWidth ' , 3)
244 y l a b e l ( ' Voltage [V] ' )
245 g r id on
246 x l a b e l ( 'Times [ s ] ' )
247 l egend ( ' Simulat ion ' , ' Experimental ' )
248 s e t ( gca , ' f o n t s i z e ' , 15)
249 s e t ( gca , ' l i n ew id th ' , 3 )
250

251 subp lot ( 2 , 2 , 4 )
252 p lo t ( time2 , u f i l t ( : , 2 , 2 ) , 'b ' , . . .
253 time22 , PWML2 2*5 .15 /255 , ' r ' , ' LineWidth ' , 3)
254 y l a b e l ( ' Voltage [V] ' )
255 g r id on
256 x l a b e l ( 'Times [ s ] ' )
257 l egend ( ' Simulat ion ' , ' Experimental ' )
258 s e t ( gca , ' f o n t s i z e ' , 15)
259 s e t ( gca , ' l i n ew id th ' , 3 )
260 mtit ( ' Control Response ( F i l t e r e d ) ' , ' f o n t s i z e ' , 2 0 ) ;
261

262 %%
263 wL2 2 = out2 2 ( : , 1 ) ;
264 wR2 2 = out2 2 ( : , 2 ) ;
265

266 l inearVexp = ( r /2)* ( wR2 2 + wL2 2 ) ;
267 angularVexp = (−r /dw)*wR2 2 + ( r /dw)*wL2 2 ;
268

269 l inearVs im = ( r /2)* ( y f i l t ( : , 1 , 1 ) + y f i l t ( : , 2 , 2 ) ) ;
270 angularVsim = (−r /dw)* y f i l t ( : , 1 , 1 ) + ( r /dw)* y f i l t ( : , 2 , 2 ) ;
271

272 f i g u r e (40)
273 subplot ( 1 , 2 , 1 )
274 p lo t ( time1 , l inearVsim , 'b ' , time22 , . . .
275 l inearVexp , ' r ' , ' LineWidth ' , 3 )
276 y l a b e l ( ' Linear Ve loc i ty [m/ s ] ' )
277 g r id on
278 x l a b e l ( 'Times [ s ] ' )
279 l egend ( ' Simulat ion ' , ' Experimental ' )
280 s e t ( gca , ' f o n t s i z e ' , 19)
281 s e t ( gca , ' l i n ew id th ' , 3 )
282

283 subplot ( 1 , 2 , 2 )
284 p lo t ( time1 , angularVsim , 'b ' , time22 , . . .
285 angularVexp , ' r ' , ' LineWidth ' , 3 )
286 y l a b e l ( ' Angular Ve loc i ty [ rad/ s ] ' )
287 g r id on
288 x l a b e l ( 'Times [ s ] ' )
289 ylim ([−2 2 ] )
290 l egend ( ' Simulat ion ' , ' Experimental ' )
291 s e t ( gca , ' f o n t s i z e ' , 19)
292 s e t ( gca , ' l i n ew id th ' , 3 )
293 mtit ( ' (v , \omega ) Inner Loop Response ( F i l t e r e d ) ' , . . .
294 ' f o n t s i z e ' , 2 0 ) ;
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Figure A.1: Simulink Model IBVS - One Marker

Figure A.2: Simulink Model IBVS - Two Markers

Figure A.3: Simulink Model IBVS - Three Markers
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Figure A.4: Simulink Model PBVS

Figure A.5: Simulink Model PBVS with Pan Camera

1 % M− f i l e to generate ova l r a c e t r a ck data
2 % There are 2 U turns on the t rack with a curvature
3 % rad iu s o f 1 m each .
4

5 c l e a r
6 c l o s e a l l
7 c l c
8

9 % rad iu s
10 r1 = 1 . 0 ;
11 r2 = 1 . 0 ;
12

13
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14 %step s i z e 1 mm
15 s = 0 :0 .001 :10 .282 ;
16

17 s=s ' ;
18

19 t h e t a t =[ 0* ones (2001 ,1 ) %2m, t=2m 1 u n t i l 2001
20 ( s (2002:5142 ,1)−2) . / r1 %3.141m , t=5.141m 2002 u n t i l 5142
21 pi * ones (2000 ,1 ) %2m, t=7.141m 5143 u n t i l 7142
22 pi+(s (7143:10283 ,1)−7 .141 ) . / r2 ] ; %3.141m , t=10.282m 7143 u n t i l 10283
23

24 x t = [ 0* ones (2001 ,1 )
25 r1−r 1 . * cos ( t h e t a t (2002 : 5142 , 1 ) )
26 2* ones (2000 ,1 )
27 2−r2+r 2 . * cos ( ( s (7143:10283 ,1)−7 .141 ) . / r2 ) ] ;
28

29

30 z t = [ s ( 1 : 2 00 1 , 1 )
31 2+r 1 . * s i n ( t h e t a t ( 2002 : 5142 , 1 ) )
32 2−( s (5143:7142 ,1)−( r1 * pi +2))
33 −r 2 . * s i n ( ( s (7143:10283 ,1)−7 .141 ) . / r2 ) ] ;
34

35

36 k t (1 : 2 00 1 , 1 ) = 0 ; %curvature
37 k t (2002 :5142 ,1 ) = 1/ r1 ;
38 k t (5143 :7142 ,1 ) = 0 ;
39 k t (7143 :10283 ,1 ) = 1/ r2 ;
40

41 %s h i f t 30 cm
42 x sh = x t ( 3 0 1 : 1 0 2 8 3 , 1 ) ;
43 x sh = [ x sh
44 0* ones (300 ,1 ) ] ;
45

46 z sh = z t ( 3 0 1 : 1 0 2 8 3 , 1 ) ;
47 z sh = [ z sh
48 s ( 1 : 3 0 0 , 1 ) ] ;
49

50 the ta sh = t h e t a t ( 3 0 1 : 1 0 2 8 3 , 1 ) ;
51 the ta sh = [ the ta sh
52 2* pi * ones (300 ,1 ) ] ;
53

54 [ n ,˜ ]= s i z e ( s ) ;
55 i =0:1 :n−1;
56 i = i ' ;
57

58 % f o r a camera based method , matrix X i s used
59 X = [ i x t z t t h e t a t k t x sh z sh the ta sh ] ;
60

61 % f o r a noncamera based method matrix X1 i s used
62 X1 = [ i x t z t t h e t a t k t ] ;
63

64 % t h i s X, X1 data needs to be copied in to a .da t f i l e
65 % Then the NEOS s e r v e r s o l v e r (KNITRO) can take
66 % t h i s data f i l e a long with the model f i l e and
67 % provide a s o l u t i o n
68

69 %%
70 % To p lo t a ' r ea l ' track , i . e . one that has width
71 % an outer l i n e and an inner l i n e can be used
72

73 %outer l i n e
74 d i s t a n c e o = 0 .06 ;
75 x o = x t − d i s t a n c e o . * cos ( t h e t a t ) ;
76 z o = d i s t a n c e o . * s i n ( t h e t a t ) + z t ;
77 the ta o = t h e t a t ;
78

79 %inner l i n e
80 d i s t a n c e i = −0.06 ;
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81 x i = x t − d i s t a n c e i . * cos ( t h e t a t ) ;
82 z i = d i s t a n c e i . * s i n ( t h e t a t ) + z t ;
83 t h e t a i = t h e t a t ;
84

85

86 %%
87 % Output data from KNITRO s o l v e r ( or any non l in ea r
88 % opt imiza t i on s o l v e r ) goes here
89

90 out1 1 = [ ] ;
91

92 %%
93 % ********************************************

94 % For a camera based method t h i s i s the order *

95 % of the output *

96 % ********************************************

97 v r e f 1 = out j 1 1 ( : , 2 ) ;
98 e r r o r 1 = out j 1 1 ( : , 3 ) ;
99 v ach i eved 1 = out j 1 1 ( : , 4 ) ;

100 th e ta ach i ev ed 1 = out j 1 1 ( : , 5 ) ;
101 x opt 1 = out j 1 1 ( : , 6 ) ;
102 z op t 1 = out j 1 1 ( : , 7 ) ;
103 a c c e l r e f 1 = out j 1 1 ( : , 8 ) ;
104 a c c e l 1 = out j 1 1 ( : , 9 ) ;
105 j e r k 1 = out j 1 1 ( : , 1 0 ) ;
106 j e r k r 1 = out j 1 1 ( : , 1 1 ) ;
107 t ime s im 1 = out j 1 1 ( : , 1 2 ) ;
108 w 1 = out j 1 1 ( : , 1 3 ) ;
109 xcam 1 = out j 1 1 ( : , 1 4 ) ;
110 zcam 1 = out j 1 1 ( : , 1 5 ) ;
111

112 % ***********************************************

113 % For a noncamera based method t h i s i s the order *

114 % of the output *

115 % ***********************************************

116 % v r e f 1 = out j 1 1 ( : , 2 ) ; % 0
117 % t r e f 1 = out j 1 1 ( : , 3 ) ;
118 % v ach i eved 1 = out j 1 1 ( : , 4 ) ;
119 % the ta ach i ev ed 1 = out j 1 1 ( : , 5 ) ;
120 % x opt 1 = out j 1 1 ( : , 6 ) ;
121 % z opt 1 = out j 1 1 ( : , 7 ) ;
122 % a c c e l r e f 1 = out j 1 1 ( : , 8 ) ;
123 % a c c e l 1 = out j 1 1 ( : , 9 ) ;
124 % j e r k 1 = out j 1 1 ( : , 1 0 ) ;
125 % j e r k r 1 = out j 1 1 ( : , 1 1 ) ;
126 % time s im 1 = out j 1 1 ( : , 1 2 ) ;
127 % w 1 = out j 1 1 ( : , 1 3 ) ;
128 % *********************************************

129

130 %t r e f 1 = e r r o r 1 + the ta ach i ev ed 1 ;
131

132 [m, ˜ ] = s i z e ( v ach i eved 1 ) ;
133 e l a p s e d d i s t a n c e (1 ) = 0 ;
134 f o r k =1:1 :m−1
135 e l a p s e d d i s t a n c e ( k+1 ,1) = e l a p s e d d i s t a n c e (k , 1 ) + . . .
136 ( t ime s im 1 ( k+1,1)− t ime s im 1 (k , 1 ) ) * v ach i eved 1 (k , 1 ) ;
137 end
138

139 f i g u r e (1 )
140 p lo t ( s , x t , ' LineWidth ' , 1 . 5 )
141 t i t l e ( ' X( s ) ' )
142 x l a b e l ( ' Track length [m] ' )
143 y l a b e l ( ' [m] ' )
144 g r id on
145
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146 f i g u r e (2 )
147 p lo t ( s , z t , ' LineWidth ' , 1 . 5 )
148 t i t l e ( 'Z( s ) ' )
149 x l a b e l ( ' Track length [m] ' )
150 y l a b e l ( ' [m] ' )
151 g r id on
152

153 f i g u r e (3 )
154 p lo t ( s , the ta t , 'k ' , s , t r e f 1 , ' r−− ' , ' LineWidth ' , 2)
155 t i t l e ( ' \ theta ( s ) ' )
156 x l a b e l ( ' Track length [m] ' )
157 y l a b e l ( ' [m] ' )
158 g r id on
159 l egend ( ' \ the ta { r e f } with camera ' , ' \ the ta { r e f } ' )
160 s e t ( gca , ' f o n t s i z e ' , 19)
161 s e t ( gca , ' l i n ew id th ' , 3 )
162

163 f i g u r e (30)
164 p lo t ( s , x t , 'k ' , s , z t , 'b ' , s , the ta t , ' r ' , ' LineWidth ' , 3)
165 t i t l e ( ' Track parameters ' )
166 x l a b e l ( ' Track length [m] ' )
167 y l a b e l ( ' [m] , [ rad ] ' )
168 g r id on
169 l egend ( 'x ( s ) ' , ' z ( s ) ' , ' \ theta ( s ) ' )
170 s e t ( gca , ' f o n t s i z e ' , 19)
171 s e t ( gca , ' l i n ew id th ' , 3 )
172

173 f i g u r e (4 )
174 p lo t ( s , v r e f 1 , 'k ' , ' LineWidth ' , 3)
175 t i t l e ( ' Optimal Commanded Linear Ve loc i ty ' )
176 x l a b e l ( ' Track length [m] ' )
177 y l a b e l ( ' v [m/ s ] ' )
178 g r id on
179 s e t ( gca , ' f o n t s i z e ' , 19)
180 s e t ( gca , ' l i n ew id th ' , 3 )
181 hold on
182 x1s = [ 2 , 2 ] ;
183 x1e = [ 5 .141 , 5 .141 ] ;
184 x2s = [ 7 .141 , 7 .141 ] ;
185 x2e = [10 .282 ,10 .282 ] ;
186

187 y = [ 0 , 0 . 7 ] ;
188 p lo t ( x1s , y , ' :m ' , x1e , y , ' : c ' , x2s , y , ' :m ' , x2e , y , ' : c ' , ' LineWidth ' , 2)
189

190

191 s l = t f ( ' s ' ) ;
192 g = 0 .096 ; z = 5 .40625 ; %inner loop PI
193 kp = 1 . 2 ; kd = 0 . 5 ; %outer loop PD
194 P = 9 .507 /( s l +1.73 ) ;
195 K = g *( s l+z )*100/( s l *( s l +100)) ;
196 L = P*K;
197 S = 1/(1+L ) ;
198 Tv = 1 − S ;
199 W = z /( s l+z ) ;
200 Tv = Tv*W;
201 Kouter = kd*( s l+kp/kd )*100*100/( s l +100)ˆ2;
202 Louter = (1/ s l )*Tv*Kouter ;
203 So = 1/(1+ Louter ) ;
204 Tthe = 1 − So ;
205

206

207 % Simulat ion part
208 t 1 = l i n s p a c e (0 , t ime s im 1(end) , 10283) ;
209 v r e f i 1 = in t e rp1 ( t ime s im 1 , v r e f 1 , t 1 ) ;
210 t r e f i 1 = in t e rp1 ( t ime s im 1 , t r e f 1 , t 1 ) ;
211 f i g u r e (6 )
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212 p lo t ( t ime s im 1 , v r e f 1 , ' o ' , t 1 , v r e f i 1 , ' : . ' )
213 l egend ( ' v r e f ' , ' v r e f i n t e r p o l a t e d ' )
214 f i g u r e (7 )
215 p lo t ( t ime s im 1 , t r e f 1 , ' o ' , t 1 , t r e f i 1 , ' : . ' )
216 l egend ( ' t r e f ' , ' t r e f i n t e r p o l a t e d ' )
217

218 v a c t u a l 1 = ls im (Tv , v r e f i 1 , t 1 ) ;
219 t h e t a a c t u a l 1 = ls im ( Tthe , t r e f i 1 , t 1 ) ;
220

221

222

223 x dot 1 = v a c t u a l 1 . * s i n ( t h e t a a c t u a l 1 ) ;
224 z do t 1 = v a c t u a l 1 . * cos ( t h e t a a c t u a l 1 ) ;
225 xp = 0 ;
226 zp = 0 ;
227 x r e a l 1 (1 ) = xp ;
228 z r e a l 1 (1 ) = zp ;
229 [m,˜ ]= s i z e ( x dot 1 ) ;
230 delT = time s im 1(end)/10283;
231 f o r i =1:m−1
232 x r e a l 1 ( i +1) = delT* x dot 1 ( i ) + x r e a l 1 ( i ) ;
233 z r e a l 1 ( i +1) = delT* z do t 1 ( i ) + z r e a l 1 ( i ) ;
234 end
235

236

237 f i g u r e (80)
238 p lo t ( x t , z t , 'k ' , ' LineWidth ' , 3 )
239 t i t l e ( ' Race Track ' )
240 x l a b e l ( ' x [m] ' )
241 y l a b e l ( ' z [m] ' )
242 g r id on
243 a x i s equal
244 s e t ( gca , ' f o n t s i z e ' , 19)
245 s e t ( gca , ' l i n ew id th ' , 3 )
246

247 f i g u r e (8 )
248 p lo t ( x t , z t , 'k ' , x opt 1 , z opt 1 , . . .
249 ' r−− ' , x r e a l 1 , z r e a l 1 , 'b : ' , ' LineWidth ' , 3)
250 l egend ( ' Racetrack l i n e ' , . . .
251 ' Optimal Line ( opt imiza t i on ) ' , . . .
252 ' Optimal Line ( s imu la t i on ) ' )
253 t i t l e ( ' Race Track ' )
254 x l a b e l ( ' x [m] ' )
255 y l a b e l ( ' z [m] ' )
256 g r id on
257 a x i s equal
258 s e t ( gca , ' f o n t s i z e ' , 19)
259 s e t ( gca , ' l i n ew id th ' , 3 )
260

261 f i g u r e (9 )
262 p lo t ( t ime s im 1 , v r e f 1 , 'k ' , t ime s im 1 , . . .
263 v ach ieved 1 , ' r−− ' , t 1 , v ac tua l 1 , 'b : ' , ' LineWidth ' , 3)
264 t i t l e ( ' Optimal Linear V e l o c i t i e s ' )
265 x l a b e l ( ' Time [ s ec ] ' )
266 y l a b e l ( ' Ve loc i ty [m/ s ] ' )
267 g r id on
268 l egend ( ' v { r e f } ' , . . .
269 ' v { ac tua l } ( opt imiza t i on ) ' , . . .
270 ' v { ac tua l } ( s imu la t i on ) ' )
271 s e t ( gca , ' f o n t s i z e ' , 19)
272 s e t ( gca , ' l i n ew id th ' , 3 )
273

274

275 f i g u r e (110)
276 p lo t ( t ime s im 1 , e r r o r 1 , 'k ' , ' LineWidth ' , 3)
277 t i t l e ( ' e {\ theta } ' )
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278 x l a b e l ( ' Time [ s ] ' )
279 y l a b e l ( ' Angle [ rad ] ' )
280 g r id on
281 s e t ( gca , ' f o n t s i z e ' , 19)
282 s e t ( gca , ' l i n ew id th ' , 3 )

183



APPENDIX B

ARDUINO UNO CODE
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1 // INNER LOOP (wr , wl ) SPEED CONTROL
2 // PI c o n t r o l l e r with r o l l−o f f and p r e f i l t e r
3 // wg = 2 rad/ s
4

5 #inc lude <Wire . h>
6 #inc lude <Adafru i t MotorSh ie ld . h>
7 #inc lude ” u t i l i t y /Adafruit PWMServoDriver . h”
8 #inc lude <math . h>
9

10 // Create the motor s h i e l d ob j e c t with the d e f a u l t I2C address
11 Adafru i t MotorSh ie ld AFMS = Adafru i t MotorSh ie ld ( ) ;
12 //Or , c r e a t e i t with a d i f f e r e n t I2C address ( say f o r s ta ck ing )
13 // Adafru i t MotorSh ie ld AFMS = Adafru i t MotorSh ie ld (0 x61 ) ;
14

15 Adafruit DCMotor * r ightMotor = AFMS. getMotor ( 2 ) ;
16 Adafruit DCMotor * l e f tMotor = AFMS. getMotor ( 4 ) ;
17

18 #inc lude <Encoder . h>
19

20 Encoder l e ( 2 , 2 ) ;
21 Encoder re ( 3 , 3 ) ;
22

23 // Var i ab l e s f o r s t o r i n g the c a l c u l a t e d v e l o c i t y
24 double wR;
25 double wL;
26 double wRp=0.0;
27 double wLp=0.0;
28 double wLn ;
29 double wRn;
30 double LdVal = 0 ;
31 double RdVal = 0 ;
32 double Radius =0.05;
33 double Length =0.14;
34

35 double wd = 0 ;
36 double vd = 0 . 5 ;
37 double wdr ;
38 double wdl ;
39 double wdr p=0;
40 double wdl p =0;
41 double wrf ;
42 double wl f ;
43 double wrf p =0;
44 double w l f p =0;
45

46 double CR;
47 double CR p=0;
48 double CR pp=0;
49 double CL;
50 double CL p=0;
51 double CL pp=0;
52

53 double Lerror ;
54 double Ler ro r p = 0 ;
55 double Lerror pp = 0 ;
56 double Rerror ;
57 double Rerror p = 0 ;
58 double Rerror pp = 0 ;
59

60 i n t PWMR;
61 i n t PWML;
62

63 double kp = 0 . 0 9 6 ;
64 double k i = 0 . 5 1 9 ;
65

66 double alpha = 100 ;
67 double h = k i /kp ;
68

69 long L ;
70 long R;
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71 long L l a s t =0;
72 long R la s t =0;
73 unsigned long Time=0;
74 unsigned long sample t ime =100;
75 double td =0.100;
76

77 void setup ( )
78 {
79

80 AFMS. begin ( ) ;
81

82 S e r i a l . begin ( 9 6 0 0 ) ;
83

84 l e f tMotor−>setSpeed ( 0 ) ;
85 rightMotor−>setSpeed ( 0 ) ;
86 l e f tMotor−>run (FORWARD) ;
87 rightMotor−>run (FORWARD) ;
88

89 l e f tMotor−>run (RELEASE) ;
90 rightMotor−>run (RELEASE) ;
91

92 delay ( 1 0 0 0 ) ;
93 }
94

95 void loop ( )
96 {
97 i f ( m i l l i s ()<8000)
98 {
99 i f ( m i l l i s ()−Time>sample t ime )

100 {
101 Time = m i l l i s ( ) ;
102 GetSpeeds ( ) ;
103 }
104 }
105

106

107 e l s e
108 {
109 rightMotor−>setSpeed ( 0 ) ;
110 l e f tMotor−>setSpeed ( 0 ) ;
111 }
112

113 }
114

115

116 void GetSpeeds ( )
117 {
118 wdr= (2*vd − Length*wd)/(2* Radius ) ;
119 wdl= (2*vd + Length*wd)/(2* Radius ) ;
120

121 wrf = ( ( td*h)*wdr + ( td*h)* wdr p − ( td*h − 2)* wrf p )
122 /(2 + td*h ) ;
123 wl f = ( ( td*h)*wdl + ( td*h)* wdl p − ( td*h − 2)* wl f p )
124 /(2 + td*h ) ;
125

126 wrf p = wrf ;
127 wl f p = wl f ;
128 wdr p = wdr ;
129 wdl p = wdl ;
130

131

132 L = l e . read ( ) ;
133 R = re . read ( ) ;
134

135 LdVal = ( double ) ( L− L l a s t )/ ( td ) ;
136 RdVal = ( double ) ( R −R las t )/ ( td ) ;
137
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138 wL = LdVal *2*3.14159 /32 ;
139 wR = RdVal*2*3.14159 /32 ;
140

141 wLn = (wL + wLp ) / 2 . 0 ;
142 wRn = (wR + wRp) / 2 . 0 ;
143

144 wLp = wL;
145 wRp = wR;
146

147 Rerror = wrf − wRn;
148 Lerror = wl f − wLn ;
149

150 CL = ( ( alpha * td* td* k i+2*alpha * td*kp )* Lerror +
151 (2* alpha * td* td* k i )* Lerro r p +
152 ( alpha * td* td*ki−2*alpha * td*kp )* Lerror pp +
153 8*CL p −
154 (4−2*alpha * td )*CL pp )/(2* alpha * td + 4 ) ;
155

156 CR = ( ( alpha * td* td* k i+2*alpha * td*kp )* Rerror +
157 (2* alpha * td* td* k i )* Rerror p +
158 ( alpha * td* td*ki−2*alpha * td*kp )* Rerror pp +
159 8*CR p −
160 (4−2*alpha * td )*CR pp)/(2* alpha * td + 4 ) ;
161

162 CR pp = CR p ;
163 CR p = CR;
164 CL pp = CL p ;
165 CL p = CL;
166 Lerror pp = Lerror p ;
167 Lerro r p = Lerror ;
168 Rerror pp = Rerror p ;
169 Rerror p = Rerror ;
170

171 PWMR = i n t (255 .0*CR/ 5 . 1 5 ) ;
172 PWML = i n t (255 .0*CL/ 5 . 1 5 ) ;
173

174 i f (PWMR>=255) {PWMR=255;}
175 e l s e i f (PWMR<=0) {PWMR=0;}
176

177 i f (PWML>=255) {PWML=255;}
178 e l s e i f (PWML<=0) {PWML=0;}
179

180 l e f tMotor−>setSpeed (PWML) ;
181 l e f tMotor−>run (FORWARD) ;
182 rightMotor−>setSpeed (PWMR) ;
183 rightMotor−>run (FORWARD) ;
184

185 L l a s t = L ;
186 R las t = R;
187

188 S e r i a l . p r i n t ( ” ” ) ;
189 S e r i a l . p r i n t ( wLn ) ;
190 S e r i a l . p r i n t ( ” ” ) ;
191 S e r i a l . p r i n t ( wRn) ;
192 S e r i a l . p r i n t ( ” ” ) ;
193 S e r i a l . p r i n t ( PWML ) ;
194 S e r i a l . p r i n t ( ” ” ) ;
195 S e r i a l . p r i n t l n ( PWMR) ;
196

197

198 }

1 // Arduino code f o r implementing POSITION
2 // and IMAGE−BASED ROBOT CONTROL
3 // Raspberry Pi sends d e s i r e d wheels ' angular
4 // v e l o c i t i e s ( and the ang le o f the pan
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5 // camera when approp iate )
6

7 #inc lude <Wire . h>
8 #inc lude <Adafru i t MotorSh ie ld . h>
9 #inc lude <Servo . h>

10 #inc lude ” u t i l i t y /Adafruit PWMServoDriver . h”
11 #inc lude <math . h>
12 #inc lude <Encoder . h>
13

14 Servo myservo ;
15

16 Encoder l e ( 2 , 2 ) ;
17 Encoder re ( 3 , 3 ) ;
18

19 Adafru i t MotorSh ie ld AFMS = Adafru i t MotorSh ie ld ( ) ;
20 Adafruit DCMotor * r ightMotor = AFMS. getMotor ( 1 ) ;
21 Adafruit DCMotor * l e f tMotor = AFMS. getMotor ( 4 ) ;
22

23 double wR;
24 double wL;
25 double wLp = 0 . 0 ;
26 double wRp = 0 . 0 ;
27 double wRn;
28 double wLn ;
29 double LdVal = 0 ;
30 double RdVal = 0 ;
31 double Radius =0.05;
32 double Length =0.14;
33

34 double wdr ;
35 double wdl ;
36 double wdr p=0;
37 double wdl p =0;
38 double wrf ;
39 double wl f ;
40 double wrf p =0;
41 double w l f p =0;
42

43 i n t PWMR;
44 i n t PWML;
45

46 double CR;
47 double CR p=0;
48 double CR pp=0;
49 double CL;
50 double CL p=0;
51 double CL pp=0;
52

53 double Lerror ;
54 double Ler ro r p = 0 ;
55 double Lerror pp = 0 ;
56 double Rerror ;
57 double Rerror p = 0 ;
58 double Rerror pp = 0 ;
59

60 double kp = 0 . 0 9 6 ;
61 double k i = 0 . 5 1 9 ;
62

63 double alpha = 100 ;
64 double h = k i /kp ;
65

66 long L ;
67 long R;
68 long L l a s t =0;
69 long R la s t =0;
70 unsigned long Time=0;
71 unsigned long sample t ime =100;
72 double td =0.100;
73

74 const i n t NUMBER OF FIELDS = 3 ;
75 i n t f i e l d I n d e x = 0 ;
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76 double va lue s [NUMBER OF FIELDS ] ;
77 i n t s i gn = 1 ;
78 double WR = 0 ;
79 double WL = 0 ;
80 i n t ang le = 0 ;
81

82 void setup ( )
83 {
84 myservo . attach ( 9 ) ;
85

86 S e r i a l . begin (115200 ) ;
87 AFMS. begin ( ) ;
88 rightMotor−>setSpeed ( 0 ) ;
89 l e f tMotor−>setSpeed ( 0 ) ;
90 rightMotor−>run (FORWARD) ;
91 l e f tMotor−>run (FORWARD) ;
92

93 rightMotor−>run (RELEASE) ;
94 l e f tMotor−>run (RELEASE) ;
95 delay ( 1 0 0 0 ) ;
96 }
97

98 void loop ( )
99 {

100

101 i f ( S e r i a l . a v a i l a b l e ( ) )
102 {
103 char ch = S e r i a l . read ( ) ;
104 i f ( ch >= ' 0 ' && ch <= ' 9 ' )
105 {
106

107 i f ( f i e l d I n d e x < NUMBER OF FIELDS)
108 {
109 va lue s [ f i e l d I n d e x ] =
110 ( va lue s [ f i e l d I n d e x ] * 10) + ( ch − ' 0 ' ) ;
111 }
112 }
113 e l s e i f ( ch == ' , ' )
114 {
115 va lue s [ f i e l d I n d e x ] =
116 va lue s [ f i e l d I n d e x ] * s i gn ;
117 f i e l d I n d e x ++;
118 s i gn = 1 ;
119 }
120 e l s e i f ( ch== '− ' )
121 {
122 s i gn = −1;
123 }
124 e l s e
125 {
126 va lue s [ f i e l d I n d e x ] = va lue s [ f i e l d I n d e x ]* s i gn ;
127

128 WR = values [ 0 ] / 1 0 0 ;
129 WL = values [ 1 ] / 1 0 0 ;
130 ang le = va lues [ 2 ] ;
131

132 f o r ( i n t i =0;
133 i<min (NUMBER OF FIELDS, f i e l d I n d e x +1); i++)
134 {
135 va lue s [ i ] = 0 ;
136 }
137 f i e l d I n d e x = 0 ;
138 s i gn = 1 ;
139 }
140 }
141
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142

143 i f ( m i l l i s ()−Time>sample t ime )
144 {
145 Time = m i l l i s ( ) ;
146 GetSpeed (WR,WL, ang le ) ;
147

148 }
149 }
150

151 void GetSpeed ( double a , double b , i n t c )
152

153 {
154 S e r i a l . p r i n t ( wdl ) ;
155 S e r i a l . p r i n t ( ” ” ) ;
156 S e r i a l . p r i n t (wdr ) ;
157 S e r i a l . p r i n t ( ” ” ) ;
158 S e r i a l . p r i n t (wLn ) ;
159 S e r i a l . p r i n t ( ” ” ) ;
160 S e r i a l . p r i n t (wRn) ;
161 S e r i a l . p r i n t ( ” ” ) ;
162 S e r i a l . p r i n t (PWML) ;
163 S e r i a l . p r i n t ( ” ” ) ;
164 S e r i a l . p r i n t (PWMR) ;
165 S e r i a l . p r i n t l n ( ” ” ) ;
166

167

168 ang le = c ;
169 myservo . wr i t e (90 − ang le ) ;
170

171 L = l e . read ( ) ;
172 R = re . read ( ) ;
173

174 LdVal = ( double ) ( L− L l a s t )/ ( td ) ;
175 RdVal = ( double ) ( R −R las t )/ ( td ) ;
176

177 wL = LdVal *2*3.14159 /32 ;
178 wR = RdVal*2*3.14159 / 32 ;
179

180 wLn = (wL + wLp ) / 2 . 0 ;
181 wRn = (wR + wRp) / 2 . 0 ;
182

183 wLp = wL;
184 wRp = wR;
185

186 wdr=a ;
187 wdl=b ;
188

189 i f (wdr > 46) wdr=46;
190 e l s e i f (wdr < −46) wdr = −46;
191

192 i f ( wdl > 46) wdl=46;
193 e l s e i f ( wdl < −46) wdl = −46;
194

195 // P r e f i l t e r
196 wrf = ( ( td*h)*wdr + ( td*h)* wdr p − ( td*h −
197 2)* wrf p )/(2 + td*h ) ;
198 wl f = ( ( td*h)*wdl + ( td*h)* wdl p − ( td*h −
199 2)* wl f p )/(2 + td*h ) ;
200

201 wrf p = wrf ;
202 wl f p = wl f ;
203 wdr p = wdr ;
204 wdl p = wdl ;
205

206 Rerror = wrf − wRn;
207 Lerror = wl f − wLn ;
208
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209

210 CL = ( ( alpha * td* td* k i+2*alpha * td*kp )* Lerror +
211 (2* alpha * td* td* k i )* Lerro r p +
212 ( alpha * td* td*ki−2*alpha * td*kp )* Lerror pp +
213 8*CL p − (4−2*alpha * td )*
214 CL pp )/(2* alpha * td + 4 ) ;
215 CR = ( ( alpha * td* td* k i+2*alpha * td*kp )* Rerror +
216 (2* alpha * td* td* k i )* Rerror p +
217 ( alpha * td* td*ki−2*alpha * td*kp )* Rerror pp+
218 8*CR p − (4−2*alpha * td )*
219 CR pp)/(2* alpha * td + 4 ) ;
220

221 CR pp = CR p ;
222 CR p = CR;
223 CL pp = CL p ;
224 CL p = CL;
225 Lerror pp = Lerror p ;
226 Lerro r p = Lerror ;
227 Rerror pp = Rerror p ;
228 Rerror p = Rerror ;
229

230 PWMR = i n t (255 .0*CR/ 5 . 1 5 ) ;
231 PWML = i n t (255 .0*CL/ 5 . 1 5 ) ;
232

233 i f (PWMR>=255) {PWMR=255;}
234 e l s e i f (PWMR<0) {PWMR=0;}
235

236 i f (PWML>=255) {PWML=255;}
237 e l s e i f (PWML<0) {PWML=0;}
238

239 l e f tMotor−>setSpeed (PWML) ;
240 l e f tMotor−>run (FORWARD) ;
241 rightMotor−>setSpeed (PWMR) ;
242 rightMotor−>run (FORWARD) ;
243

244 L l a s t=L ;
245 R las t=R;
246

247 }

1 // Code f o r implementing
2 // CAMERA−BASED MINIMUM TIME
3 // Raspberry Pi sends d e s i r e d wheels ' angular
4 // v e l o c i t i e s
5

6 #inc lude <Wire . h>
7 #inc lude <Adafru i t MotorSh ie ld . h>
8 #inc lude ” u t i l i t y /Adafruit PWMServoDriver . h”
9 #inc lude <math . h>

10 #inc lude <Encoder . h>
11 #inc lude <Adaf ru i t Senso r . h>
12 #inc lude <Adafruit BNO055 . h>
13 #inc lude <u t i l i t y /imumaths . h>
14

15 Adafruit BNO055 bno = Adafruit BNO055 ( ) ;
16

17 Encoder l e ( 2 , 2 ) ;
18 Encoder re ( 3 , 3 ) ;
19

20 Adafru i t MotorSh ie ld AFMS = Adafru i t MotorSh ie ld ( ) ;
21 Adafruit DCMotor * r ightMotor = AFMS. getMotor ( 2 ) ;
22 Adafruit DCMotor * l e f tMotor = AFMS. getMotor ( 4 ) ;
23

24 double wR;
25 double wL;
26 double wRn;
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27 double wLn ;
28 double wRp = 0 ;
29 double wLp = 0 ;
30 double LdVal = 0 ;
31 double RdVal = 0 ;
32 double Radius =0.05;
33 double Length =0.14;
34

35 double theta ;
36 double thetap = 0 . 0 ;
37 double angularV ;
38

39 double wdr ;
40 double wdl ;
41 double wdr p=0;
42 double wdl p =0;
43 double wrf ;
44 double wl f ;
45 double wrf p =0;
46 double w l f p =0;
47

48 i n t PWMR;
49 i n t PWML;
50

51 double CR;
52 double CR p=0;
53 double CR pp=0;
54 double CL;
55 double CL p=0;
56 double CL pp=0;
57

58 double Lerror ;
59 double Ler ro r p = 0 ;
60 double Lerror pp = 0 ;
61 double Rerror ;
62 double Rerror p = 0 ;
63 double Rerror pp = 0 ;
64

65 double kp = 0 . 0 9 6 ;
66 double k i = 0 . 5 1 9 ;
67

68 double alpha = 100 ;
69 double h = k i /kp ;
70

71 long L ;
72 long R;
73 long L l a s t = 0 ;
74 long R la s t = 0 ;
75 unsigned long Time=0;
76 unsigned long sample t ime =50;
77 double td =0.050;
78

79 const i n t NUMBER OF FIELDS = 3 ;
80 i n t f i e l d I n d e x = 0 ;
81 double va lue s [NUMBER OF FIELDS ] ;
82 i n t s i gn = 1 ;
83 double WR = 0 ;
84 double WL = 0 ;
85 double e theta = 0 ;
86

87 void setup ( )
88 {
89 bno . begin ( ) ;
90

91 S e r i a l . begin (115200 ) ;
92 AFMS. begin ( ) ;
93 rightMotor−>setSpeed ( 0 ) ;
94 l e f tMotor−>setSpeed ( 0 ) ;
95 rightMotor−>run (FORWARD) ;
96 l e f tMotor−>run (FORWARD) ;
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97

98 rightMotor−>run (RELEASE) ;
99 l e f tMotor−>run (RELEASE) ;

100

101 delay ( 1 0 0 0 ) ;
102 }
103

104 void loop ( )
105 {
106

107 i f ( S e r i a l . a v a i l a b l e ( ) )
108 {
109 char ch = S e r i a l . read ( ) ;
110 i f ( ch >= ' 0 ' && ch <= ' 9 ' )
111 {
112

113 i f ( f i e l d I n d e x < NUMBER OF FIELDS)
114 {
115 va lue s [ f i e l d I n d e x ]=( va lue s [ f i e l d I n d e x ]*10)+
116 ( ch − ' 0 ' ) ;
117 }
118 }
119 e l s e i f ( ch == ' , ' )
120 {
121 va lue s [ f i e l d I n d e x ] = va lue s [ f i e l d I n d e x ] * s i gn ;
122 f i e l d I n d e x ++;
123 s i gn = 1 ;
124 }
125 e l s e i f ( ch== '− ' )
126 {
127 s i gn = −1;
128 }
129 e l s e
130 {
131

132 va lue s [ f i e l d I n d e x ] = va lue s [ f i e l d I n d e x ] * s i gn ;
133

134 WR = values [ 0 ] / 1 0 0 ;
135 WL = values [ 1 ] / 1 0 0 ;
136 e theta = va lues [ 2 ] / 1 0 0 ;
137

138

139 f o r ( i n t i =0; i < min(NUMBER OF FIELDS,
140 f i e l d I n d e x +1); i++)
141 {
142

143 va lue s [ i ] = 0 ;
144 }
145 f i e l d I n d e x = 0 ;
146 s i gn = 1 ;
147

148 }
149 }
150

151

152 i f ( m i l l i s ()−Time>sample t ime )
153 {
154 Time = m i l l i s ( ) ;
155 GetSpeed (WR,WL) ;
156

157 }
158 }
159

160 void GetSpeed ( double a , double b)
161 {
162 S e r i a l . p r i n t ( thetap ) ;
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163 S e r i a l . p r i n t ( ” ” ) ;
164 S e r i a l . p r i n t ( e theta ) ;
165 S e r i a l . p r i n t ( ” ” ) ;
166 S e r i a l . p r i n t ( wdl ) ;
167 S e r i a l . p r i n t ( ” ” ) ;
168 S e r i a l . p r i n t (wdr ) ;
169 S e r i a l . p r i n t ( ” ” ) ;
170 S e r i a l . p r i n t (wLn ) ;
171 S e r i a l . p r i n t ( ” ” ) ;
172 S e r i a l . p r i n t (wRn) ;
173 S e r i a l . p r i n t ( ” ” ) ;
174 S e r i a l . p r i n t (PWML) ;
175 S e r i a l . p r i n t ( ” ” ) ;
176 S e r i a l . p r i n t (PWMR) ;
177 S e r i a l . p r i n t l n ( ” ” ) ;
178

179

180 L = l e . read ( ) ;
181 R = re . read ( ) ;
182

183 LdVal = ( double ) ( L− L l a s t )/ ( td ) ;
184 RdVal = ( double ) ( R −R las t )/ ( td ) ;
185

186 wL = LdVal *2*3.14159 /32 ;
187 wR = RdVal*2*3.14159 / 32 ;
188

189 wLn = (wL + wLp ) / 2 . 0 ;
190 wRn = (wR + wRp) / 2 . 0 ;
191

192 wLp = wL;
193 wRp = wR;
194

195 wdr=a ;
196 wdl=b ;
197

198 i f (wdr > 46) wdr=46;
199 e l s e i f (wdr < −46) wdr = −46;
200

201 i f ( wdl > 46) wdl=46;
202 e l s e i f ( wdl < −46) wdl = −46;
203

204 // P r e f i l t e r
205 wrf = ( ( td*h)*wdr + ( td*h)* wdr p − ( td*h −
206 2)* wrf p )/(2 + td*h ) ;
207 wl f = ( ( td*h)*wdl + ( td*h)* wdl p − ( td*h −
208 2)* wl f p )/(2 + td*h ) ;
209

210 wrf p = wrf ;
211 wl f p = wl f ;
212 wdr p = wdr ;
213 wdl p = wdl ;
214

215 Rerror = wrf − wRn;
216 Lerror = wl f − wLn ;
217

218 CL = ( ( alpha * td* td* k i+2*alpha * td*kp )* Lerror +
219 (2* alpha * td* td* k i )* Lerro r p +
220 ( alpha * td* td*ki−2*alpha * td*kp )* Lerror pp +
221 8*CL p − (4−2*alpha * td )*
222 CL pp )/(2* alpha * td + 4 ) ;
223 CR = ( ( alpha * td* td* k i+2*alpha * td*kp )* Rerror +
224 (2* alpha * td* td* k i )* Rerror p +
225 ( alpha * td* td*ki−2*alpha * td*kp )* Rerror pp +
226 8*CR p − (4−2*alpha * td )*
227 CR pp)/(2* alpha * td + 4 ) ;
228

229 CR pp = CR p ;
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230 CR p = CR;
231 CL pp = CL p ;
232 CL p = CL;
233 Lerror pp = Lerror p ;
234 Lerro r p = Lerror ;
235 Rerror pp = Rerror p ;
236 Rerror p = Rerror ;
237

238 PWMR = i n t (255 .0*CR/ 5 . 1 5 ) ;
239 PWML = i n t (255 .0*CL/ 5 . 1 5 ) ;
240

241 i f (PWMR>=255) {PWMR=255;}
242 e l s e i f (PWMR<0) {PWMR=0;}
243

244 i f (PWML>=255) {PWML=255;}
245 e l s e i f (PWML<0) {PWML=0;}
246

247 l e f tMotor−>setSpeed (PWML) ;
248 l e f tMotor−>run (FORWARD) ;
249 rightMotor−>setSpeed (PWMR) ;
250 rightMotor−>run (FORWARD) ;
251

252 L l a s t=L ;
253 R las t=R;
254

255 imu : : Vector<3> gyro =
256 bno . getVector ( Adafruit BNO055 : :VECTOR GYROSCOPE) ;
257 angularV = double ( s i n (0 . 2516 )* gyro . y ( ) +
258 cos (0 . 2516 )* gyro . z ( ) ) ;
259 theta = angularV* td + thetap ;
260 thetap = theta ;
261

262 }

1 // Code f o r implementing
2 // NONCAMERA−BASED MINIMUM TIME
3 // Outer and inner loop f u n c t i o n a l i t i e s
4 // implemented in arduino
5 // Sampling ra t e f o r the outer loop i s h a l f
6 // o f the inner loop sampling ra t e
7

8 #inc lude <SPI . h>
9 #inc lude <Wire . h>

10 #inc lude <Adafru i t MotorSh ie ld . h>
11 #inc lude ” u t i l i t y /Adafruit PWMServoDriver . h”
12 #inc lude <math . h>
13 #inc lude <Adaf ru i t Senso r . h>
14 #inc lude <Adafruit BNO055 . h>
15 #inc lude <u t i l i t y /imumaths . h>
16 #inc lude <Encoder . h>
17

18

19 Adafruit BNO055 bno = Adafruit BNO055 ( ) ;
20

21 // Create the motor s h i e l d ob j e c t with the d e f a u l t I2C address
22 Adafru i t MotorSh ie ld AFMS = Adafru i t MotorSh ie ld ( ) ;
23 //Or , c r e a t e i t with a d i f f e r e n t I2C address ( say f o r s ta ck ing )
24 // Adafru i t MotorSh ie ld AFMS = Adafru i t MotorSh ie ld (0 x61 ) ;
25

26 Adafruit DCMotor * r ightMotor = AFMS. getMotor ( 2 ) ;
27 Adafruit DCMotor * l e f tMotor = AFMS. getMotor ( 4 ) ;
28

29 Encoder l e (2 , 2 ) ;
30 Encoder re (3 , 3 ) ;
31

32 i n t i = 0 ;
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33

34 double wR;
35 double wL;
36 double wRn;
37 double wLn ;
38 double wRp = 0 . 0 ;
39 double wLp = 0 . 0 ;
40 double LdVal = 0 ;
41 double RdVal = 0 ;
42 double Radius = 0 . 0 5 ;
43 double Length = 0 . 1 4 ;
44

45 double vd ;
46 double thetad ;
47

48 // c o e f f i c i e n t s f o r thetad
49 double c11 = −1.078494640028155 , c12 = 0.589828409894448 ,
50 c13 = −0.028744221309861 , c14 = −0.000678949378683;
51 double c21 = 2.033372269393586 , c22 = −8.346480116404441 ,
52 c23 = 12.046173786017038 , c24 = −7.191684895278207 ,
53 c25 = 1.494624926389315 ;
54 double c31 = 0.012500371135158 , c32 = −0.159687067816037 ,
55 c33 = 0.715195483299841 , c34 = −0.262371325614063 ,
56 c35 = −0.787878835452174;
57 double c41 = 5.381935271613 , c42 = −102.140449409786 ,
58 c43 = 724.621486554530 , c44 = −2276.984449879569 ,
59 c45 = 2676 .560312474572 ;
60 double c51 = −1.2560789229968 , c52 = 21.4218449225788 ,
61 c53 = −121.2496356598690 , c54 = 231.0526945780721 ;
62 double c61 = −1.0404967372400 , c62 = 19.0017252985985 ,
63 c63 = −115.6505979459060 , c64 = 237.7442418699383 ;
64 double c71 = 0.001924563252541 , c72 = −0.056484304203718 ,
65 c73 = 0.574924248356445 , c74 = −1.228299116582199 ,
66 c75 = −1.345608340824477;
67

68 //vd polynomial
69 double q11 = 4002938.341422841 , q12 = −786360.729838765 ,
70 q13 = 57850.723212587 , q14 = −1986.346301998 ,
71 q15 = 33.002467506 , q16 = 0 .248241748 ;
72

73

74 double l inearV ;
75 double angularV ;
76 double angularV p = 0 ;
77 double theta ;
78 double thetap = 0 ;
79 double d i s t ance ;
80 double d i s t anc e p = 0 ;
81

82 double wdr ;
83 double wdl ;
84 double wdr p = 0 ;
85 double wdl p = 0 ;
86 double wrf ;
87 double wl f ;
88 double wrf p = 0 ;
89 double w l f p = 0 ;
90

91 double CR;
92 double CR p = 0 ;
93 double CR pp = 0 ;
94 double CL;
95 double CL p = 0 ;
96 double CL pp = 0 ;
97

98 double Lerror ;
99 double Ler ro r p = 0 ;

100 double Lerror pp = 0 ;
101 double Rerror ;
102 double Rerror p = 0 ;
103 double Rerror pp = 0 ;

196



104

105 i n t PWMR;
106 i n t PWML;
107

108 double okp = 0 . 8 6 9 ;
109 double okd = 0 . 3 9 6 ;
110 double wd ;
111 double wdp = 0 ;
112 double wdpp = 0 ;
113 double wdppp = 0 ;
114 double thetae ;
115 double thetaep = 0 ;
116 double thetaepp = 0 ;
117 double thetaeppp = 0 ;
118 double alphao = 100 ;
119

120

121 double ikp = 0 . 0 9 6 ;
122 double i k i = 0 . 5 1 9 ;
123

124 double h = i k i / ikp ;
125

126 long L ;
127 long R;
128 long L l a s t = 0 ;
129 long R la s t = 0 ;
130 unsigned long Time = 0 ;
131 unsigned long sample t ime = 100 ;
132 double td = 0 . 1 0 0 ;
133 double to = td *2 ;
134 double XX;
135

136 void setup ( )
137 {
138 bno . begin ( ) ;
139

140 AFMS. begin ( ) ;
141

142

143 l e f tMotor−>setSpeed ( 0 ) ;
144 rightMotor−>setSpeed ( 0 ) ;
145 l e f tMotor−>run (FORWARD) ;
146 rightMotor−>run (FORWARD) ;
147

148 l e f tMotor−>run (RELEASE) ;
149 rightMotor−>run (RELEASE) ;
150

151 delay ( 1 0 0 0 ) ;
152

153

154 S e r i a l . begin (115200 ) ;
155 }
156

157 void loop ( )
158 {
159

160 i f ( d i s t a nc e p > 10 .2202)
161 {
162 l e f tMotor−>setSpeed ( 0 ) ;
163 l e f tMotor−>run (FORWARD) ;
164 rightMotor−>setSpeed ( 0 ) ;
165 rightMotor−>run (FORWARD) ;
166

167 }
168

169

170 e l s e
171 {
172 Outer loop ( ) ;
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173

174 f o r ( i = 0 ; i < 2 ; i++)
175 {
176 i f ( m i l l i s ( ) − Time > sample t ime )
177 {
178 Time = m i l l i s ( ) ;
179 Inne r l oop ( ) ;
180 }
181

182 e l s e
183 {
184 i = i − 1 ;
185 }
186 }
187

188 Update ( ) ;
189 }
190 }
191

192

193 void Outer loop ( )
194 {
195 XX = di s t anc e p ;
196 thetad = c11 * XX * XX * XX + c12 * XX * XX + c13 * XX + c14 ;
197

198 i f (XX > 0 .4190 && XX <= 1.7891)
199 thetad = c21 * XX * XX * XX * XX + c22 * XX * XX * XX +
200 c23 * XX * XX + c24 * XX + c25 ;
201 e l s e i f (XX > 1 .7891 && XX <= 4.3813)
202 thetad = c31 * XX * XX * XX * XX + c32 * XX * XX * XX +
203 c33 * XX * XX + c34 * XX + c35 ;
204 e l s e i f (XX > 4 .3813 && XX <= 4.9922)
205 thetad = c41 * XX * XX * XX * XX + c42 * XX * XX * XX +
206 c43 * XX * XX + c44 * XX + c45 ;
207 e l s e i f (XX > 4 .9922 && XX <= 5.6083)
208 thetad = c51 * XX * XX * XX + c52 * XX * XX +
209 c53 * XX + c54 ;
210 e l s e i f (XX > 5 .6083 && XX <= 6.6083)
211 thetad = c61 * XX * XX * XX + c62 * XX * XX +
212 c63 * XX + c64 ;
213 e l s e i f (XX > 6 .6083 )
214 thetad = c71 * XX * XX * XX * XX + c72 * XX * XX * XX +
215 c73 * XX * XX + c74 * XX + c75 ;
216

217 thetae = thetad − thetap ;
218

219 wd = ( (2 * okd * alphao * alphao * to * to +
220 okp * alphao * alphao * to * to * to ) * thetae +
221 (2 * okd * alphao * alphao * to * to +
222 3 * okp * alphao * alphao * to * to * to ) * thetaep +
223 (3 * okp * alphao * alphao * to * to * to −
224 2 * okd * alphao * alphao * to * to ) * thetaepp +
225 ( okp * alphao * alphao * to * to * to −
226 2 * okd * alphao * alphao * to * to ) * thetaeppp −
227 ( to * (3 * alphao * alphao * to * to +
228 4 * alphao * to − 4) ) * wdp −
229 ( to * (3 * alphao * alphao * to * to −
230 2 * alphao * to − 4) ) * wdpp −
231 ( to * ( alphao * alphao * to * to −
232 2 * alphao * to + 4) ) * wdppp ) / ( to * (4 +
233 4 * alphao * to + alphao * alphao * to * to ) ) ;
234

235 }
236

237 void Inne r l oop ( )
238 {
239 XX = di s t anc e p ;
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240 //
241 vd = q11 * XX * XX * XX * XX * XX + q12 * XX * XX * XX * XX +
242 q13 * XX * XX * XX + q14 * XX * XX + q15 * XX + q16 ;
243

244 i f (XX > 0 .0690)
245 vd = 0 . 5 ;
246

247 S e r i a l . p r i n t ( d i s t anc e p ) ;
248 S e r i a l . p r i n t ( ” ” ) ;
249 S e r i a l . p r i n t ( thetad ) ;
250 S e r i a l . p r i n t ( ” ” ) ;
251 S e r i a l . p r i n t ( vd ) ;
252 S e r i a l . p r i n t ( ” ” ) ;
253 S e r i a l . p r i n t ( thetap ) ;
254 S e r i a l . p r i n t ( ” ” ) ;
255 S e r i a l . p r i n t ( l inearV ) ;
256 S e r i a l . p r i n t ( ” ” ) ;
257 S e r i a l . p r i n t (PWML) ;
258 S e r i a l . p r i n t ( ” ” ) ;
259 S e r i a l . p r i n t l n (PWMR) ;
260

261 wdr = (2 * vd − Length * wd) / (2 * Radius ) ;
262 wdl = (2 * vd + Length * wd) / (2 * Radius ) ;
263

264 i f (wdr > 46) wdr = 46 ;
265 e l s e i f (wdr < −46) wdr = −46;
266

267

268 i f ( wdl > 46) wdl = 46 ;
269 e l s e i f ( wdl < −46) wdl = −46;
270

271 // P r e f i l t e r z /( s+z )
272 wrf = ( ( td * h) * wdr + ( td * h) * wdr p − ( td * h −
273 2) * wrf p ) / (2 + td * h ) ;
274 wl f = ( ( td * h) * wdl + ( td * h) * wdl p − ( td * h −
275 2) * wl f p ) / (2 + td * h ) ;
276

277 wrf p = wrf ;
278 wl f p = wl f ;
279 wdr p = wdr ;
280 wdl p = wdl ;
281

282

283

284 L = l e . read ( ) ;
285 R = re . read ( ) ;
286

287 LdVal = ( double ) ( L − L l a s t ) / ( td ) ;
288 RdVal = ( double ) ( R − R las t ) / ( td ) ;
289

290 wL = LdVal * 2 * 3 .1416 / 32 ; //32
291 wR = RdVal * 2 * 3 .1416 / 32 ;
292

293 wLn = (wL + wLp) / 2 . 0 ;
294 wRn = (wR + wRp) / 2 . 0 ;
295

296 wLp = wL;
297 wRp = wR;
298

299 l i nearV = (wRn * Radius + wLn * Radius ) / 2 ;
300

301 Rerror = wrf − wRn;
302 Lerror = wl f − wLn ;
303

304 CL = ((100 * td * td * i k i + 200 * td * ikp )* Lerror+
305 (200* td* td* i k i )* Lerro r p +(100* td* td* i k i−
306 200 * td * ikp ) * Lerror pp + 8 * CL p −
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307 (4 − 200 * td ) * CL pp) / (200 * td + 4 ) ;
308 CR = ((100 * td * td * i k i + 200 * td * ikp )* Rerror+
309 (200* td* td* i k i )* Rerror p +(100* td* td* i k i−
310 200 * td * ikp ) * Rerror pp + 8 * CR p −
311 (4 − 200 * td ) * CR pp) / (200 * td + 4 ) ;
312

313 CR pp = CR p ;
314 CR p = CR;
315 CL pp = CL p ;
316 CL p = CL;
317 Lerror pp = Lerror p ;
318 Lerro r p = Lerror ;
319 Rerror pp = Rerror p ;
320 Rerror p = Rerror ;
321

322 PWMR = i n t (255 . 0 * CR / 5 . 1 5 ) ;
323 PWML = i n t (255 . 0 * CL / 5 . 1 5 ) ;
324

325 i f (PWMR>= 255) {
326 PWMR = 255 ;
327 }
328 e l s e i f (PWMR<= 0) {
329 PWMR = 0 ;
330 }
331

332 i f (PWML >= 255) {
333 PWML = 255 ;
334 }
335 e l s e i f (PWML <= 0) {
336 PWML = 0 ;
337 }
338

339 l e f tMotor−>setSpeed (PWML) ;
340 l e f tMotor−>run (FORWARD) ;
341 rightMotor−>setSpeed (PWMR) ;
342 rightMotor−>run (FORWARD) ;
343

344 L l a s t = L ;
345 R las t = R;
346

347 d i s t ance = td * l i nearV + d i s t anc e p ;
348 d i s t anc e p = d i s t ance ;
349

350 }
351

352

353 void Update ( )
354 {
355

356 wdppp = wdpp ;
357 wdpp = wdp ;
358 wdp = wd;
359 thetaeppp = thetaepp ;
360 thetaepp = thetaep ;
361 thetaep = thetae ;
362

363 imu : : Vector<3> gyro = bno . getVector
364 ( Adafruit BNO055 : :VECTOR GYROSCOPE) ;
365 angularV = double ( s i n ( 0 . 2516 ) * gyro . y ( ) +
366 cos ( 0 . 2516 ) * gyro . z ( ) ) ;
367 theta = angularV * to + thetap ;
368 thetap = theta ;
369

370 }
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APPENDIX C

RASPBERRY PI PYTHON CODE
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1 # IMAGE BASED robot c o n t r o l us ing 1 blue dot on
2 # the t a r g e t
3

4 import cv2
5 from numpy import l i n a l g as LA
6 import numpy as np
7 import i o
8 import picamera
9 import s e r i a l

10 import matp lo t l i b . pyplot as p l t
11 import pylab as plab
12 import time
13

14

15 s e r = s e r i a l . S e r i a l ( ' /dev/ttyACM0 ' , 115200)
16 s e r . wr i t e ( ' 0 ,0 \n ' )
17

18 de f getImage ( ) :
19

20 cap . capture ( stream , format = ' jpeg ' , \
21 u s e v i d e o p o r t = True )
22 frame = np . f r omst r ing ( stream . ge tva lue ( ) , \
23 dtype = np . u int8 )
24 stream . seek (0 )
25 frame = cv2 . imdecode ( frame , 1 )
26 r e turn frame
27

28 datau1 = [ ]
29 datav1 = [ ]
30

31 u 1 e r r o r = [ ]
32 v 1 e r r o r = [ ]
33

34 j = 0
35

36 end = ' \n '

37 comma = ' , '

38

39 f s u = 327.2677
40 f s v = 326.8835
41 z = 0.40
42 o x = 152
43 o y = 120
44 b Z c = 0.10
45 R = 0.05
46 L = 0.14
47

48 gain = 0.75
49

50 cap = picamera . PiCamera ( )
51 cap . v f l i p = True
52 cap . h f l i p = True
53 cap . r e s o l u t i o n = (320 ,240)
54 cap . con t ra s t = 0
55 cap . s a t u r a t i o n = 0
56

57

58 stream = i o . BytesIO ( )
59

60 frame = cv2 . imread ( ”/home/ pi / v i s u a l s e r v o i n g /1 dot . jpg ” )
61

62 s r c h s v = cv2 . cvtColor ( frame , cv2 .COLOR BGR2HSV)
63

64

65 #blue ( day )
66 #lower ye l l ow = np . array ( [ 9 1 , 8 2 , 4 6 ] )
67 #upper ye l low = np . array ( [ 1 1 1 , 2 5 5 , 2 5 5 ] )
68

69 #blue ( n ight )
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70 l owe r ye l l ow = np . array ( [ 4 5 , 9 0 , 2 7 ] )
71 upper ye l low = np . array ( [ 9 9 , 2 5 5 , 7 1 ] )
72

73 output1 = cv2 . inRange ( s rc hsv , l ower ye l l ow ,\
74 upper ye l low )
75

76 erode = cv2 . getStructur ingElement ( cv2 .MORPH ELLIPSE,\
77 ( 3 , 3 ) )
78 d i l a t e = cv2 . getStructur ingElement ( cv2 .MORPH ELLIPSE,\
79 ( 8 , 8 ) )
80 output1 = cv2 . erode ( output1 , erode , i t e r a t i o n s = 1)
81 output1 = cv2 . d i l a t e ( output1 , d i l a t e , i t e r a t i o n s = 1)
82

83 , contours , = cv2 . f indContours ( output1 , cv2 .RETR TREE,\
84 cv2 .CHAIN APPROX SIMPLE)
85

86 i f l en ( contours ) == 1 :
87

88 cv2 . drawContours ( frame , contours , −1, \
89 ( 0 , 255 , 0 ) , 2)
90

91 m1 = cv2 . moments ( contours [ 0 ] )
92 u1d = i n t (m1[ 'm10 ' ] /m1[ 'm00 ' ] )
93 v1d = i n t (m1[ 'm01 ' ] /m1[ 'm00 ' ] )
94

95 cv2 . putText ( frame , ” (1 ) ”+s t r ( u1d)+” , ”+s t r ( v1d ) , \
96 ( u1d , v1d+30) , 1 , 1 , ( 0 , 255 , 0 ) , 2 , 8)
97

98 u1d = u1d − o x
99 v1d = v1d − o y

100

101 cv2 . imshow ( ' d e s i r e d frame ' , frame )
102

103 In t matr ix = np . matrix ( [ [− f s u /z , 0 , u1d/z , u1d*v1d/ f s u , \
104 −( f s u + u1d*u1d/ f s u ) , v1d ] ,\
105 [ 0 , − f s v /z , v1d/z , \
106 f s v + v1d*v1d/ f s v , \
107 −u1d*v1d/ f s v , −u1d ] ] )
108 Robot jacobian = np . matrix ( [ [ 0 , b Z c ] , [ 0 , 0 ] , [ 1 , 0 ] , \
109 [ 0 , 0 ] , [ 0 , 1 ] , [ 0 , 0 ] ] )
110 Wheels matrix = np . matrix ( [ [R/2 , R/ 2 ] , [−R/L , R/L ] ] )
111 Composite matrix = Int matr ix *Robot jacobian *Wheels matrix
112 Comp inverse = LA. pinv ( Composite matrix )
113

114 whi le ( 1 ) :
115 frame = getImage ( )
116

117 s r c h s v = cv2 . cvtColor ( frame , cv2 .COLOR BGR2HSV)
118

119 output2 = cv2 . inRange ( s rc hsv , l ower ye l l ow ,\
120 upper ye l low )
121

122 output2 = cv2 . erode ( output2 , erode , i t e r a t i o n s = 1)
123 output2 = cv2 . d i l a t e ( output2 , d i l a t e , i t e r a t i o n s = 1)
124

125 cv2 . imshow ( ' eroded ' , output2 )
126

127 , contours , = cv2 . f indContours ( output2 ,\
128 cv2 .RETR TREE,\
129 cv2 .CHAIN APPROX SIMPLE)
130

131 i f l en ( contours ) == 1 :
132

133 cv2 . drawContours ( frame , contours , −1, \
134 ( 0 , 255 , 0 ) , 2)
135
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136 m1 = cv2 . moments ( contours [ 0 ] )
137 u1 = i n t (m1[ 'm10 ' ] /m1[ 'm00 ' ] )
138 v1 = i n t (m1[ 'm01 ' ] /m1[ 'm00 ' ] )
139

140 datau1 . i n s e r t ( j , u1 )
141 datav1 . i n s e r t ( j , v1 )
142

143 cv2 . putText ( frame , ” (1 ) ”+s t r ( u1)+” , ”+s t r ( v1 ) ,\
144 ( u1 , v1+30) , 1 , 1 , ( 0 , 255 , 0 ) , 2 , 8)
145

146 u1 = u1 − o x
147 v1 = v1 − o y
148

149 ue1 = u1d − u1
150 ve1 = v1d − v1
151

152 u 1 e r r o r . i n s e r t ( j , ue1 )
153 v 1 e r r o r . i n s e r t ( j , ve1 )
154

155 e r r o r v e c t o r = np . matrix ( [ [ ue1 ] , [ ve1 ] ] )
156

157 w h e e l s a n g u l a r v e l o c i t y = gain *Comp inverse *\
158 e r r o r v e c t o r
159 wr = i n t (100* round ( w h e e l s a n g u l a r v e l o c i t y .\
160 item ( 0 ) , 2 ) )
161 wl = i n t (100* round ( w h e e l s a n g u l a r v e l o c i t y .\
162 item ( 1 ) , 2 ) )
163

164 i f wr <= 150 and wl <= 150 :
165 wr = 0
166 wl = 0
167

168 pr in t ue1 , ve1
169

170 i f wr > 4600 :
171 wr = 4600
172 e l i f wr < −4600:
173 wr = −4600
174

175 i f wl > 4600 :
176 wl = 4600
177 e l i f wl < −4600:
178 wl = −4600
179

180

181 swr = s t r (wr )
182 swl = s t r ( wl )
183 s t r i n g = swr + comma + swl + end
184 s e r . wr i t e ( s t r i n g )
185

186 j=j+1
187

188 e l s e :
189 s e r . wr i t e ( ' 0 ,0 \n ' )
190

191

192 cv2 . imshow ( ' frame ' , frame )
193

194 k = cv2 . waitKey (1) & 0xFF
195 i f k == 27 :
196 break
197

198 cv2 . destroyAllWindows ( )
199

200 s e r . wr i t e ( ' 0 ,0 \n ' )
201 s e r . c l o s e ( )
202 cap . c l o s e ( )
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1 # IMAGE BASED robot c o n t r o l us ing 2 blue dots on
2 # the t a r g e t
3

4 import cv2
5 from numpy import l i n a l g as LA
6 import numpy as np
7 import i o
8 import picamera
9 import s e r i a l

10 import matp lo t l i b . pyplot as p l t
11 import pylab as plab
12 import time
13

14

15 s e r = s e r i a l . S e r i a l ( ' /dev/ttyACM0 ' , 115200)
16 s e r . wr i t e ( ' 0 ,0 \n ' )
17

18 de f getImage ( ) :
19

20 cap . capture ( stream , format = ' jpeg ' , \
21 u s e v i d e o p o r t = True )
22 frame = np . f r omst r ing ( stream . ge tva lue ( ) , \
23 dtype = np . u int8 )
24 stream . seek (0 )
25 frame = cv2 . imdecode ( frame , 1 )
26 r e turn frame
27

28 datau1 = [ ]
29 datav1 = [ ]
30 datau2 = [ ]
31 datav2 = [ ]
32 datawl = [ ]
33 datawr = [ ]
34

35 u 1 e r r o r = [ ]
36 v 1 e r r o r = [ ]
37 u 2 e r r o r = [ ]
38 v 2 e r r o r = [ ]
39

40 j = 0
41

42 end = ' \n '

43 comma = ' , '

44

45 f s u = 327.267
46 f s v = 326.883
47 z = 40 .0
48 o x = 152
49 o y = 120
50 b Z c = 10 .0
51 R = 5.0
52 L = 14 .0
53

54 gain = 0.75
55

56 cap = picamera . PiCamera ( )
57 cap . v f l i p = True
58 cap . h f l i p = True
59 cap . r e s o l u t i o n = (320 ,240)
60 cap . con t ra s t = 0
61 cap . s a t u r a t i o n = 0
62

63 stream = i o . BytesIO ( )
64

65 frame=cv2 . imread ( ”/home/ pi / v i s u a l s e r v o i n g /2 dot . jpg ” )
66

67 s r c h s v = cv2 . cvtColor ( frame , cv2 .COLOR BGR2HSV)
68

69 #blue day
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70 #lower ye l l ow = np . array ( [ 9 3 , 1 2 2 , 5 8 ] )
71 #upper ye l low = np . array ( [ 1 1 1 , 2 5 5 , 2 5 5 ] )
72

73 #blue n ight
74 l owe r ye l l ow = np . array ( [ 4 5 , 9 0 , 2 7 ] )
75 upper ye l low = np . array ( [ 9 9 , 2 5 5 , 7 1 ] )
76

77 output1 = cv2 . inRange ( s rc hsv , l ower ye l l ow , \
78 upper ye l low )
79

80 erode = cv2 . getStructur ingElement ( cv2 .\
81 MORPH ELLIPSE, ( 3 , 3 ) )
82 d i l a t e = cv2 . getStructur ingElement ( cv2 .\
83 MORPH ELLIPSE, ( 8 , 8 ) )
84 output1 = cv2 . erode ( output1 , erode , i t e r a t i o n s = 1)
85 output1 = cv2 . d i l a t e ( output1 , d i l a t e , i t e r a t i o n s = 1)
86

87 , contours , =cv2 . f indContours ( output1 ,\ cv2 .RETR TREE,\
88 cv2 .CHAIN APPROX SIMPLE)
89

90 i f l en ( contours ) == 2 :
91

92 cv2 . drawContours ( frame , contours , −1, \
93 ( 0 , 255 , 0 ) , 2)
94

95 m1 = cv2 . moments ( contours [ 0 ] )
96 u1d = i n t (m1[ 'm10 ' ] /m1[ 'm00 ' ] )
97 v1d = i n t (m1[ 'm01 ' ] /m1[ 'm00 ' ] )
98

99 m2 = cv2 . moments ( contours [ 1 ] )
100 u2d = i n t (m2[ 'm10 ' ] /m2[ 'm00 ' ] )
101 v2d = i n t (m2[ 'm01 ' ] /m2[ 'm00 ' ] )
102

103 #Reorder po in t s
104 f o r i in range ( 2 ) :
105 i f u1d > u2d :
106 temp = u1d
107 u1d = u2d
108 u2d = temp
109 temp = v1d
110 v1d = v2d
111 v2d = temp
112

113 cv2 . putText ( frame , ” (1 ) ”+s t r ( u1d)+” , ”+\
114 s t r ( v1d ) , ( u1d , v1d+30) , 1 ,\
115 1 , ( 0 , 255 , 0 ) , 2 , 8)
116 cv2 . putText ( frame , ” (2 ) ”+s t r ( u2d)+” , ”+\
117 s t r ( v2d ) , ( u2d , v2d+30) , 1 ,\
118 1 , ( 0 , 255 , 0 ) , 2 , 8)
119

120 u1d = u1d − o x
121 u2d = u2d − o x
122

123 v1d = v1d − o y
124 v2d = v2d − o y
125

126 cv2 . imshow ( ' d e s i r e d frame ' , frame )
127

128 In t matr ix = np . matrix ( [ [− f s u /z , 0 , u1d/z , \
129 u1d*v1d/ f s u , \
130 −( f s u + u1d*u1d/ f s u ) \
131 , v1d ] , [ 0 , − f s v /z , \
132 v1d/z , f s v +\
133 v1d*v1d/ f s v , \
134 −u1d*v1d/ f s v ,\
135 −u1d ] , \
136 [− f s u /z , 0 , u2d/z , \
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137 u2d*v2d/ f s u , −( f s u +\
138 u2d*u2d/ f s u ) , v2d ] ,\
139 [ 0 , − f s v /z , v2d/z , \
140 f s v + v2d*v2d/ f s v ,\
141 −u2d*v2d/ f s v , −u2d ] ] )
142 Robot jacobian = np . matrix ( [ [ 0 , b Z c ] , [ 0 , 0 ] , [ 1 , 0 ] , \
143 [ 0 , 0 ] , [ 0 , 1 ] , [ 0 , 0 ] ] )
144 Wheels matrix = np . matrix ( [ [R/2 , R/ 2 ] , [−R/L , R/L ] ] )
145 Composite matrix = Int matr ix *Robot jacobian *Wheels matrix
146 Comp inverse = LA. pinv ( Composite matrix )
147

148 whi le ( 1 ) :
149

150 frame = getImage ( )
151

152 s r c h s v = cv2 . cvtColor ( frame , cv2 .COLOR BGR2HSV)
153

154 output2 = cv2 . inRange ( s rc hsv , l ower ye l l ow ,\
155 upper ye l low )
156

157 output2 = cv2 . erode ( output2 , erode , i t e r a t i o n s = 1)
158 output2 = cv2 . d i l a t e ( output2 , d i l a t e , i t e r a t i o n s = 1)
159

160 cv2 . imshow ( ' eroded ' , output2 )
161 , contours , = cv2 . f indContours ( output2 , cv2 .\
162 RETR TREE, cv2 .\
163 CHAIN APPROX SIMPLE)
164

165 i f l en ( contours ) == 2 :
166

167 cv2 . drawContours ( frame , contours , −1,\
168 ( 0 , 255 , 0 ) , 2)
169

170 m1 = cv2 . moments ( contours [ 0 ] )
171 u1 = i n t (m1[ 'm10 ' ] /m1[ 'm00 ' ] )
172 v1 = i n t (m1[ 'm01 ' ] /m1[ 'm00 ' ] )
173

174 m2 = cv2 . moments ( contours [ 1 ] )
175 u2 = i n t (m2[ 'm10 ' ] /m2[ 'm00 ' ] )
176 v2 = i n t (m2[ 'm01 ' ] /m2[ 'm00 ' ] )
177

178 #Reorder po in t s
179 f o r i in range ( 2 ) :
180 i f u1 > u2 :
181 temp = u1
182 u1 = u2
183 u2 = temp
184 temp = v1
185 v1 = v2
186 v2 = temp
187

188 datau1 . i n s e r t ( j , u1 )
189 datav1 . i n s e r t ( j , v1 )
190 datau2 . i n s e r t ( j , u2 )
191 datav2 . i n s e r t ( j , v2 )
192

193 cv2 . putText ( frame , ” (1 ) ”+s t r ( u1)+” , ”+s t r ( v1 ) ,\
194 ( u1 , v1+30) , 1 , 1 , ( 0 , 255 , 0 ) , 2 , 8)
195 cv2 . putText ( frame , ” (2 ) ”+s t r ( u2)+” , ”+s t r ( v2 ) ,\
196 ( u2 , v2+30) , 1 , 1 , ( 0 , 255 , 0 ) , 2 , 8)
197

198 u1 = u1 − o x
199 u2 = u2 − o x
200

201 v1 = v1 − o y
202 v2 = v2 − o y
203
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204 ue1 = u1d − u1
205 ve1 = v1d − v1
206 ue2 = u2d − u2
207 ve2 = v2d − v2
208

209 u 1 e r r o r . i n s e r t ( j , ue1 )
210 v 1 e r r o r . i n s e r t ( j , ve1 )
211 u 2 e r r o r . i n s e r t ( j , ue2 )
212 v 2 e r r o r . i n s e r t ( j , ve2 )
213

214 e r r o r v e c t o r = np . matrix ( [ [ ue1 ] , [ ve1 ] , \
215 [ ue2 ] , [ ve2 ] ] )
216

217 w h e e l s a n g u l a r v e l o c i t y = gain *\
218 Comp inverse* e r r o r v e c t o r
219 wr = i n t (100* round ( w h e e l s a n g u l a r v e l o c i t y .\
220 item ( 0 ) , 2 ) )
221 wl = i n t (100* round ( w h e e l s a n g u l a r v e l o c i t y .\
222 item ( 1 ) , 2 ) )
223

224 i f wr <= 150 and wl <= 150 :
225 wr = 0
226 wl = 0
227

228 pr in t ue1 , ve1 , ue2 , ve2
229

230 i f wr > 4600 :
231 wr = 4600
232 e l i f wr < −4600:
233 wr = −4600
234

235 i f wl > 4600 :
236 wl = 4600
237 e l i f wl < −4600:
238 wl = −4600
239

240 swr = s t r (wr )
241 swl = s t r ( wl )
242 s t r i n g = swr + comma + swl + end
243 s e r . wr i t e ( s t r i n g )
244

245 j=j+1
246

247 e l s e :
248 s e r . wr i t e ( ' 0 ,0 \n ' )
249

250

251 cv2 . imshow ( ' frame ' , frame )
252

253

254 k = cv2 . waitKey (1) & 0xFF
255 i f k == 27 :
256 break
257

258 cv2 . destroyAllWindows ( )
259

260 s e r . wr i t e ( ' 0 ,0 \n ' )
261 s e r . c l o s e ( )
262 cap . c l o s e ( )

1 # IMAGE BASED robot c o n t r o l us ing 3 blue dots on
2 # the t a r g e t
3

4 import cv2
5 from numpy import l i n a l g as LA
6 import numpy as np
7 import i o
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8 import picamera
9 import s e r i a l

10 import matp lo t l i b . pyplot as p l t
11 import pylab as plab
12 import time
13

14

15 s e r = s e r i a l . S e r i a l ( ' /dev/ttyACM0 ' , 115200)
16 s e r . wr i t e ( ' 0 ,0 \n ' )
17

18 de f getImage ( ) :
19

20 cap . capture ( stream , format = ' jpeg ' , \
21 u s e v i d e o p o r t = True )
22 frame = np . f r omst r ing ( stream . ge tva lue ( ) , \
23 dtype = np . u int8 )
24 stream . seek (0 )
25 frame = cv2 . imdecode ( frame , 1 )
26 r e turn frame
27

28 datau1 = [ ]
29 datav1 = [ ]
30 datau2 = [ ]
31 datav2 = [ ]
32 datau3 = [ ]
33 datav3 = [ ]
34

35 u 1 e r r o r = [ ]
36 v 1 e r r o r = [ ]
37 u 2 e r r o r = [ ]
38 v 2 e r r o r = [ ]
39 u 3 e r r o r = [ ]
40 v 3 e r r o r = [ ]
41 j = 0
42

43 end = ' \n '

44 comma = ' , '

45

46 f s u = 327.267
47 f s v = 326.883
48 z = 40 .0
49 o x = 152
50 o y = 120
51 b Z c = 10 .0
52 R = 5.0
53 L = 14 .0
54

55 gain = 0.75
56

57 cap = picamera . PiCamera ( )
58 cap . v f l i p = True
59 cap . h f l i p = True
60 cap . r e s o l u t i o n = (320 ,240)
61 cap . con t ra s t = 0
62 cap . s a t u r a t i o n = 0
63

64 stream = i o . BytesIO ( )
65

66 frame = cv2 . imread ( ”/home/ pi / v i s u a l s e r v o i n g /3 dot . jpg ” )
67

68 s r c h s v = cv2 . cvtColor ( frame , cv2 .COLOR BGR2HSV)
69

70 #blue day
71 #lower ye l l ow = np . array ( [ 9 1 , 8 2 , 4 6 ] )
72 #upper ye l low = np . array ( [ 1 1 1 , 2 5 5 , 2 5 5 ] )
73

74 #blue n ight
75 l owe r ye l l ow = np . array ( [ 4 5 , 9 0 , 2 7 ] )
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76 upper ye l low = np . array ( [ 9 9 , 2 5 5 , 7 1 ] )
77

78 output1 = cv2 . inRange ( s rc hsv , l ower ye l l ow , \
79 upper ye l low )
80

81 erode = cv2 . getStructur ingElement ( cv2 .\
82 MORPH ELLIPSE, ( 3 , 3 ) )
83 d i l a t e = cv2 . getStructur ingElement ( cv2 .\
84 MORPH ELLIPSE, ( 8 , 8 ) )
85 output1 = cv2 . erode ( output1 , erode , i t e r a t i o n s = 1)
86 output1 = cv2 . d i l a t e ( output1 , d i l a t e , i t e r a t i o n s = 1)
87

88 , contours , = cv2 . f indContours ( output1 , cv2 .\
89 RETR TREE, cv2 .\
90 CHAIN APPROX SIMPLE)
91

92 i f l en ( contours ) == 3 :
93

94 cv2 . drawContours ( frame , contours , −1, \
95 ( 0 , 255 , 0 ) , 2)
96

97 m1 = cv2 . moments ( contours [ 0 ] )
98 u1d = i n t (m1[ 'm10 ' ] /m1[ 'm00 ' ] )
99 v1d = i n t (m1[ 'm01 ' ] /m1[ 'm00 ' ] )

100

101 m2 = cv2 . moments ( contours [ 1 ] )
102 u2d = i n t (m2[ 'm10 ' ] /m2[ 'm00 ' ] )
103 v2d = i n t (m2[ 'm01 ' ] /m2[ 'm00 ' ] )
104

105 m3 = cv2 . moments ( contours [ 2 ] )
106 u3d = i n t (m3[ 'm10 ' ] /m3[ 'm00 ' ] )
107 v3d = i n t (m3[ 'm01 ' ] /m3[ 'm00 ' ] )
108

109 #Reorder po in t s
110 f o r i in range ( 3 ) :
111 i f u1d > u2d :
112 temp = u1d
113 u1d = u2d
114 u2d = temp
115 temp = v1d
116 v1d = v2d
117 v2d = temp
118 i f u2d > u3d :
119 temp = u2d
120 u2d = u3d
121 u3d = temp
122 temp = v2d
123 v2d = v3d
124 v3d = temp
125

126 cv2 . putText ( frame , ” (1 ) ”+s t r ( u1d)+” , ”+\
127 s t r ( v1d ) , ( u1d , v1d+30) , 1 , \
128 1 , ( 0 , 255 , 0 ) , 2 , 8)
129 cv2 . putText ( frame , ” (2 ) ”+s t r ( u2d)+” , ”+\
130 s t r ( v2d ) , ( u2d , v2d+30) , 1 ,\
131 1 , ( 0 , 255 , 0 ) , 2 , 8)
132 cv2 . putText ( frame , ” (3 ) ”+s t r ( u3d)+” , ”+\
133 s t r ( v3d ) , ( u3d−30,v3d+60) , \
134 1 , 1 , ( 0 , 255 , 0 ) , 2 , 8)
135

136 u1d = u1d − o x
137 u2d = u2d − o x
138 u3d = u3d − o x
139 v1d = v1d − o y
140 v2d = v2d − o y
141 v3d = v3d − o y
142

143 cv2 . imshow ( ' d e s i r e d frame ' , frame )
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144

145 In t matr ix = np . matrix ( [ [− f s u /z , 0 , u1d/z , \
146 u1d*v1d/ f s u , −( f s u \
147 + u1d*u1d/ f s u ) , v1d ] ,\
148 [ 0 , − f s v /z , v1d/z , \
149 f s v + v1d*v1d/ f s v ,\
150 −u1d*v1d/ f s v , −u1d ] , \
151 [− f s u /z , 0 , u2d/z , \
152 u2d*v2d/ f s u , −( f s u +\
153 u2d*u2d/ f s u ) , v2d ] , [ 0 , \
154 − f s v /z , v2d/z , f s v + \
155 v2d*v2d/ f s v , −u2d*v2d/ f s v ,\
156 −u2d ] , [− f s u /z , 0 , u3d/z , \
157 u3d*v3d/ f s u , −( f s u + \
158 u3d*u3d/ f s u ) , v3d ] , [ 0 , \
159 − f s v /z , v3d/z , f s v + \
160 v3d*v3d/ f s v , \
161 −u3d*v3d/ f s v , −u3d ] ] )
162 Robot jacobian = np . matrix ( [ [ 0 , b Z c ] , [ 0 , 0 ] , [ 1 , 0 ] , \
163 [ 0 , 0 ] , [ 0 , 1 ] , [ 0 , 0 ] ] )
164 Wheels matrix = np . matrix ( [ [R/2 , R/ 2 ] , [−R/L , R/L ] ] )
165 Composite matrix = Int matr ix *Robot jacobian *\
166 Wheels matrix
167 Comp inverse = LA. pinv ( Composite matrix )
168

169 whi le ( 1 ) :
170

171 frame = getImage ( )
172

173 s r c h s v = cv2 . cvtColor ( frame , cv2 .COLOR BGR2HSV)
174

175 output2 = cv2 . inRange ( s rc hsv , l ower ye l l ow ,\
176 upper ye l low )
177

178 output2 = cv2 . erode ( output2 , erode , i t e r a t i o n s = 1)
179 output2 = cv2 . d i l a t e ( output2 , d i l a t e , i t e r a t i o n s = 1)
180

181 cv2 . imshow ( ' eroded ' , output2 )
182 , contours , = cv2 . f indContours ( output2 , cv2 .\
183 RETR TREE, cv2 .\
184 CHAIN APPROX SIMPLE)
185

186 i f l en ( contours ) == 3 :
187

188 cv2 . drawContours ( frame , contours , −1, \
189 ( 0 , 255 , 0 ) , 2)
190

191 m1 = cv2 . moments ( contours [ 0 ] )
192 u1 = i n t (m1[ 'm10 ' ] /m1[ 'm00 ' ] )
193 v1 = i n t (m1[ 'm01 ' ] /m1[ 'm00 ' ] )
194

195 m2 = cv2 . moments ( contours [ 1 ] )
196 u2 = i n t (m2[ 'm10 ' ] /m2[ 'm00 ' ] )
197 v2 = i n t (m2[ 'm01 ' ] /m2[ 'm00 ' ] )
198

199 m3 = cv2 . moments ( contours [ 2 ] )
200 u3 = i n t (m3[ 'm10 ' ] /m3[ 'm00 ' ] )
201 v3 = i n t (m3[ 'm01 ' ] /m3[ 'm00 ' ] )
202

203 #Reorder po in t s
204 f o r i in range ( 2 ) :
205 i f u1 > u2 :
206 temp = u1
207 u1 = u2
208 u2 = temp
209 temp = v1
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210 v1 = v2
211 v2 = temp
212 i f u2 > u3 :
213 temp = u2
214 u2 = u3
215 u3 = temp
216 temp = v2
217 v2 = v3
218 v3 = temp
219

220 datau1 . i n s e r t ( j , u1 )
221 datav1 . i n s e r t ( j , v1 )
222 datau2 . i n s e r t ( j , u2 )
223 datav2 . i n s e r t ( j , v2 )
224 datau3 . i n s e r t ( j , u3 )
225 datav3 . i n s e r t ( j , v3 )
226

227 cv2 . putText ( frame , ” (1 ) ”+s t r ( u1)+” , ”+s t r ( v1 ) ,\
228 ( u1 , v1+30) , 1 , 1 , ( 0 , 255 , 0 ) , 2 , 8)
229 cv2 . putText ( frame , ” (2 ) ”+s t r ( u2)+” , ”+s t r ( v2 ) ,\
230 ( u2 , v2+30) , 1 , 1 , ( 0 , 255 , 0 ) , 2 , 8)
231 cv2 . putText ( frame , ” (3 ) ”+s t r ( u3)+” , ”+s t r ( v3 ) ,\
232 ( u3 , v3+30) , 1 , 1 , ( 0 , 255 , 0 ) , 2 , 8)
233

234 u1 = u1 − o x
235 u2 = u2 − o x
236 u3 = u3 − o x
237 v1 = v1 − o y
238 v2 = v2 − o y
239 v3 = v3 − o y
240

241 ue1 = u1d − u1
242 ve1 = v1d − v1
243 ue2 = u2d − u2
244 ve2 = v2d − v2
245 ue3 = u3d − u3
246 ve3 = v3d − v3
247

248 u 1 e r r o r . i n s e r t ( j , ue1 )
249 v 1 e r r o r . i n s e r t ( j , ve1 )
250 u 2 e r r o r . i n s e r t ( j , ue2 )
251 v 2 e r r o r . i n s e r t ( j , ve2 )
252 u 3 e r r o r . i n s e r t ( j , ue3 )
253 v 3 e r r o r . i n s e r t ( j , ve3 )
254

255 e r r o r v e c t o r = np . matrix ( [ [ ue1 ] , [ ve1 ] , [ ue2 ] ,\
256 [ ve2 ] , [ ue3 ] , [ ve3 ] ] )
257

258 w h e e l s a n g u l a r v e l o c i t y = gain *Comp inverse *\
259 e r r o r v e c t o r
260 wr = i n t (100* round ( w h e e l s a n g u l a r v e l o c i t y .\
261 item ( 0 ) , 2 ) )
262 wl = i n t (100* round ( w h e e l s a n g u l a r v e l o c i t y .\
263 item ( 1 ) , 2 ) )
264

265 i f wr <= 150 and wl <= 150 :
266 wr = 0
267 wl = 0
268

269 pr in t ue1 , ve1 , ue2 , ve2 , ue3 , ve3
270

271 i f wr > 4600 :
272 wr = 4600
273 e l i f wr < −4600:
274 wr = −4600
275

276 i f wl > 4600 :
277 wl = 4600
278 e l i f wl < −4600:
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279 wl = −4600
280

281 swr = s t r (wr )
282 swl = s t r ( wl )
283 s t r i n g = swr + comma + swl + end
284 s e r . wr i t e ( s t r i n g )
285

286 j=j+1
287

288 e l s e :
289 s e r . wr i t e ( ' 0 ,0 \n ' )
290

291

292 cv2 . imshow ( ' frame ' , frame )
293

294

295 k = cv2 . waitKey (1 ) & 0xFF
296 i f k == 27 :
297 break
298

299 cv2 . destroyAllWindows ( )
300

301 s e r . wr i t e ( ' 0 ,0 \n ' )
302 s e r . c l o s e ( )
303 cap . c l o s e ( )

1 # POSITION BASED robot c o n t r o l
2 # Sends d e s i r e d angular v e l o c i t i e s
3 # f o r both l e f t and r i g h t wheel to
4 # Arduino
5

6 import cv2
7 from numpy import l i n a l g as LA
8 import numpy as np
9 import math

10 import i o
11 import picamera
12 import s e r i a l
13 import time
14

15 s e r = s e r i a l . S e r i a l ( ' /dev/ttyACM0 ' , 115200)
16 s e r . wr i t e ( ' 0 ,0 \n ' )
17

18 de f getImage ( ) :
19

20 cap . capture ( stream , format = ' jpeg ' , \
21 u s e v i d e o p o r t = True )
22 frame = np . f r omst r ing ( stream . ge tva lue ( ) ,\
23 dtype = np . u int8 )
24 stream . seek (0 )
25 frame = cv2 . imdecode ( frame , 1 )
26 r e turn frame
27

28 datax = [ ]
29 dataz = [ ]
30

31 j = 0
32

33 end = ' \n '

34 comma = ' , '

35

36 mtx = np . matrix ( [ [ 327 .26773097 , 0 . 0 , \
37 152 .4401473 ] , [ 0 . 0 , \
38 326.88353638 ,\
39 120 .22141464 ] , [ 0 . 0 , \
40 0 . 0 , 1 . 0 ] ] )
41 d i s t = np . matrix ( [ [−0.0233138421 , \
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42 1 .14789142 , −0.000356860444 ,\
43 −0.00891682674 , −5.75034097] ] )
44

45 c o l = 8
46 row = 6
47

48 c r i t e r i a = ( cv2 .TERM CRITERIA EPS + cv2 .\
49 TERM CRITERIA MAX ITER, 30 , 0 . 001 )
50 objp = np . z e r o s ( ( row* co l , 3 ) , np . f l o a t 3 2 )
51 objp [ : , : 2 ] = np . mgrid [ 0 : co l , 0 : row ] . T. reshape (−1 ,2)
52

53 s q u a r e s i z e = 2 .8
54 objp *= s q u a r e s i z e
55

56 a x i s = np . f l o a t 3 2 ( [ [ 2 . 8 , 0 , 0 ] , [ 0 , 2 . 8 , 0 ] , \
57 [ 0 , 0 , −2 .8 ] ] ) . reshape (−1 ,3)
58

59 b Z c = 10 .0
60 R = 5.0
61 L = 14 .0
62

63 kv = 0 .4
64 kw = 0.8
65

66 cap = picamera . PiCamera ( )
67 cap . v f l i p = True
68 cap . h f l i p = True
69 cap . r e s o l u t i o n = (320 ,240)
70 cap . con t ra s t = 0
71 cap . s a t u r a t i o n = 0
72

73 stream = i o . BytesIO ( )
74

75 Wheels matrix = np . matrix ( [ [R/2 , R/ 2 ] , \
76 [−R/L , R/L ] ] )
77

78 xd = −9.8
79 zd = 50 .0
80

81 whi le ( 1 ) :
82

83 frame = getImage ( )
84

85 gray = cv2 . cvtColor ( frame , cv2 .COLOR BGR2GRAY)
86

87 ret , c o rne r s = cv2 . f indChessboardCorners ( gray ,\
88 ( co l , row ) , None )
89

90 i f r e t == True :
91

92 r e tva l , rvecs , tve c s = cv2 . solvePnP ( objp ,\
93 corners , mtx , d i s t )
94

95 imgpts , j a c = cv2 . p r o j e c t P o i n t s ( ax i s , \
96 rvecs , tvecs , mtx , d i s t )
97

98 corner = tup l e ( co rne r s [ 0 ] . r a v e l ( ) )
99 cv2 . l i n e ( frame , corner , \

100 tup l e ( imgpts [ 0 ] . r a v e l ( ) ) , ( 255 , 0 , 0 ) , 5)
101 cv2 . l i n e ( frame , corner , \
102 tup l e ( imgpts [ 1 ] . r a v e l ( ) ) , ( 0 , 255 , 0 ) , 5)
103 cv2 . l i n e ( frame , corner , \
104 tup l e ( imgpts [ 2 ] . r a v e l ( ) ) , ( 0 , 0 , 255 ) , 5)
105

106 x temp = tvec s . item (0)
107 y temp = tvec s . item (1)
108 z temp = tvec s . item (2)
109
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110 theta = −rvec s . item (1)
111

112 pos = np . matrix ( [ [ x temp ] , [ z temp ] ] )
113 rot mat = np . matrix ( [ [ math . cos ( theta ) ,\
114 math . s i n ( theta ) ] , \
115 [−math . s i n ( theta ) ,\
116 math . cos ( theta ) ] ] )
117 r e a l p o s = rot mat *pos
118

119 xcam = r e a l p o s . item (0)
120 zcam = r e a l p o s . item (1)
121

122 xcar = xcam + math . s i n ( theta )*10 . 0
123 zcar = zcam + math . cos ( theta )*10 . 0
124

125 pr in t xcar , zcar
126

127 xe = xcar − xd
128 ze = zcar − zd
129 d i s t anc e = math . s q r t ( xe*xe + ze * ze )
130

131 beta = math . atan2 ( xe , ze )
132

133 e theta = beta − theta
134

135 es = d i s t ance *math . cos ( e theta )
136

137 v r e f = kv* es
138

139 i f v r e f > 2 0 . 0 :
140 v r e f = 20 .0
141

142 wref = kw* e theta
143

144 i f e theta > 3 .14159/2 :
145 wref = 0
146 e l i f e theta < −3.14159/2:
147 wref = 0
148

149 ve l = np . matrix ( [ [ v r e f ] , [ wref ] ] )
150

151 w h e e l s a n g u l a r v e l o c i t y = LA. inv ( Wheels matrix )*\
152 ve l
153 wr = i n t (100* round ( w h e e l s a n g u l a r v e l o c i t y .\
154 item ( 0 ) , 2 ) )
155 wl = i n t (100* round ( w h e e l s a n g u l a r v e l o c i t y .\
156 item ( 1 ) , 2 ) )
157

158 i f d i s t anc e < 10 :
159 wr = 0
160 wl = 0
161

162 i f wr > 4600 :
163 wr = 4600
164 e l i f wr < −4600:
165 wr = −4600
166

167 i f wl > 4600 :
168 wl = 4600
169 e l i f wl < −4600:
170 wl = −4600
171

172 datax . i n s e r t ( j , round ( xcar , 2 ) )
173 dataz . i n s e r t ( j , round ( zcar , 2 ) )
174

175 swr = s t r (wr )
176 swl = s t r ( wl )
177 s t r i n g = swr + comma + swl + end
178 s e r . wr i t e ( s t r i n g )
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179

180 j=j+1
181

182 e l s e :
183 s e r . wr i t e ( ' 0 ,0 \n ' )
184

185 cv2 . imshow ( ' frame ' , frame )
186

187 k = cv2 . waitKey (1 ) & 0xFF
188 i f k == 27 :
189 break
190

191 cv2 . destroyAllWindows ( )
192

193 s e r . wr i t e ( ' 0 ,0 \n ' )
194 s e r . c l o s e ( )
195 cap . c l o s e ( )

1 # POSITION BASED robot c o n t r o l
2 # with pan camera
3 # Sends d e s i r e d angular v e l o c i t i e s
4 # f o r both l e f t and r i g h t wheel and
5 # d e s i r e d ang le f o r the pan camera
6 # to Arduino
7

8 import cv2
9 from numpy import l i n a l g as LA

10 import numpy as np
11 import math
12 import i o
13 import picamera
14 import s e r i a l
15 import time
16

17

18 s e r = s e r i a l . S e r i a l ( ' /dev/ttyACM0 ' , 115200)
19 s e r . wr i t e ( ' 0 ,0 ,0 \n ' )
20

21 de f getImage ( ) :
22

23 cap . capture ( stream , format = ' jpeg ' ,\
24 u s e v i d e o p o r t = True )
25 frame = np . f r omst r ing ( stream . ge tva lue ( ) ,\
26 dtype = np . u int8 )
27 stream . seek (0 )
28 frame = cv2 . imdecode ( frame , 1 )
29 r e turn frame
30

31 datax = [ ]
32 dataz = [ ]
33 datapan = [ ]
34

35 j = 0
36

37 end = ' \n '

38 comma = ' , '

39

40 mtx = np . matrix ( [ [ 327 .26773097 , 0 . 0 ,\
41 152 .4401473 ] , [ 0 . 0 , 326 .88353638 ,\
42 120 .22141464 ] , [ 0 . 0 , 0 . 0 , 1 . 0 ] ] )
43 d i s t = np . matrix ( [ [−0.0233138421 , 1 .14789142 ,\
44 −0.000356860444 , −0.00891682674 ,\
45 −5.75034097] ] )
46

47 c o l = 8
48 row = 6
49
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50 c r i t e r i a = ( cv2 .TERM CRITERIA EPS + cv2 .\
51 TERM CRITERIA MAX ITER, 30 , 0 . 001 )
52 objp = np . z e r o s ( ( row* co l , 3 ) , np . f l o a t 3 2 )
53 objp [ : , : 2 ] = np . mgrid [ 0 : co l , 0 : row ] . T.\
54 reshape (−1 ,2)
55

56 s q u a r e s i z e = 2 .8
57 objp *= s q u a r e s i z e
58

59 a x i s = np . f l o a t 3 2 ( [ [ 2 . 8 , 0 , 0 ] , [ 0 , 2 . 8 , 0 ] , \
60 [ 0 , 0 , −2 .8 ] ] ) . reshape (−1 ,3)
61

62 b Z c = 10 .0
63 R = 5.0
64 L = 14 .0
65

66 kv = 0 .4
67 kw = 0.8
68

69 gain = 0.001
70 g a i n i = 0.003
71 alpha = 100 .0
72

73 td = 0.25
74 anglep = 0
75 anglepp = 0
76 e r ro rp = 0
77 er rorpp = 0
78

79 cap = picamera . PiCamera ( )
80 cap . v f l i p = True
81 cap . h f l i p = True
82 cap . r e s o l u t i o n = (320 ,240)
83 cap . con t ra s t = 0
84 cap . s a t u r a t i o n = 0
85

86 stream = i o . BytesIO ( )
87

88 Wheels matrix = np . matrix ( [ [R/2 , R/ 2 ] , \
89 [−R/L , R/L ] ] )
90

91 xd = −9.8
92 zd = 50 .0
93

94 whi le ( 1 ) :
95

96 frame = getImage ( )
97

98 gray = cv2 . cvtColor ( frame , cv2 .COLOR BGR2GRAY)
99

100 ret , c o rne r s = cv2 . f indChessboardCorners ( gray ,\
101 ( co l , row ) , None )
102

103 i f r e t == True :
104

105 r e tva l , rvecs , tve c s = cv2 . solvePnP ( objp ,\
106 corners , mtx , d i s t )
107

108 imgpts , j a c = cv2 . p r o j e c t P o i n t s ( ax i s ,\
109 rvecs , tvecs , mtx , d i s t )
110

111 corner = tup l e ( co rne r s [ 0 ] . r a v e l ( ) )
112 cv2 . l i n e ( frame , corner , \
113 tup l e ( imgpts [ 0 ] . r a v e l ( ) ) , ( 255 , 0 , 0 ) , 5)
114 cv2 . l i n e ( frame , corner , \
115 tup l e ( imgpts [ 1 ] . r a v e l ( ) ) , ( 0 , 255 , 0 ) , 5)
116 cv2 . l i n e ( frame , corner , \
117 tup l e ( imgpts [ 2 ] . r a v e l ( ) ) , ( 0 , 0 , 255 ) , 5)
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118

119

120 co rne r pos = corne r s [ 3 ] . item (0)
121 e r r o r = corne r pos − 152 .0
122

123 ang le = ( ( alpha * td* td* g a i n i+\
124 2* alpha * td* gain )* e r r o r + \
125 (2* alpha * td* td* g a i n i )* e r ro rp +\
126 ( alpha * td* td* ga in i−\
127 2* alpha * td* gain )* er rorpp + \
128 8* anglep − (4−\
129 2* alpha * td )* anglepp )/(2* alpha * td+\
130 4)
131

132 i f ang le > 40*3 .14159/180 :
133 ang le = 40*3.14159/180
134 e l i f ang le < −40*3.14159/180:
135 ang le = −40*3.14159/180
136

137 er rorpp = er ro rp
138 e r ro rp = e r r o r
139 anglepp = anglep
140 anglep = angle
141

142 angled = i n t ( ang le *180/3 .14159)
143

144 x temp = tvec s . item (0)
145 y temp = tvec s . item (1)
146 z temp = tvec s . item (2)
147

148 theta = −rvec s . item (1)
149

150 pos = np . matrix ( [ [ x temp ] , [ z temp ] ] )
151

152 rot mat = np . matrix ( [ [ math . cos ( theta ) ,\
153 math . s i n ( theta ) ] , \
154 [−math . s i n ( theta ) , \
155 math . cos ( theta ) ] ] )
156 r e a l p o s = rot mat *pos
157

158 xcam = r e a l p o s . item (0)
159 zcam = r e a l p o s . item (1)
160

161 o r i e n t a t i o n c a r = theta − ang le
162

163 xcar = xcam + math . s i n ( o r i e n t a t i o n c a r )*10 . 0
164 zcar = zcam + math . cos ( o r i e n t a t i o n c a r )*10 . 0
165

166 pr in t round ( xcar , 2 ) , round ( zcar , 2 )
167

168 xe = xcar − xd
169 ze = zcar − zd
170 d i s t ance = math . s q r t ( xe*xe + ze * ze )
171

172 beta = math . atan2 ( xe , ze )
173

174 e theta = beta − o r i e n t a t i o n c a r
175

176 es = d i s t ance *math . cos ( e theta )
177

178 v r e f = kv* es
179 i f v r e f > 2 0 . 0 :
180 v r e f = 20 .0
181

182 wref = kw* e theta
183

184 i f e theta > 3 .14159/2 :
185 wref = 0
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186 e l i f e theta < −3.14159/2:
187 wref = 0
188

189 ve l = np . matrix ( [ [ v r e f ] , [ wref ] ] )
190

191 w h e e l s a n g u l a r v e l o c i t y = \
192 LA. inv ( Wheels matrix )* ve l
193 wr = i n t (100* round ( w h e e l s a n g u l a r v e l o c i t y .\
194 item ( 0 ) , 2 ) )
195 wl = i n t (100* round ( w h e e l s a n g u l a r v e l o c i t y .\
196 item ( 1 ) , 2 ) )
197

198 i f d i s t anc e < 10 :
199 wr = 0
200 wl = 0
201

202 i f wr > 4600 :
203 wr = 4600
204 e l i f wr < −4600:
205 wr = −4600
206

207 i f wl > 4600 :
208 wl = 4600
209 e l i f wl < −4600:
210 wl = −4600
211

212 datax . i n s e r t ( j , round ( xcar , 2 ) )
213 dataz . i n s e r t ( j , round ( zcar , 2 ) )
214 datapan . i n s e r t ( j , round ( angled , 2 ) )
215

216 swr = s t r (wr )
217 swl = s t r ( wl )
218 sang led = s t r ( angled )
219 s t r i n g = swr + comma + swl + comma + \
220 sang led + end
221 s e r . wr i t e ( s t r i n g )
222

223 j = j+1
224

225 e l s e :
226 sang l ep d = s t r ( i n t ( anglep *180/3 .14159))
227 s t r i n g = ' 0 ' + comma + ' 0 ' + comma + \
228 sang l ep d + end
229

230 s e r . wr i t e ( s t r i n g )
231

232 cv2 . imshow ( ' frame ' , frame )
233

234 k = cv2 . waitKey (1 ) & 0xFF
235 i f k == 27 :
236 break
237

238 cv2 . destroyAllWindows ( )
239

240 s e r . wr i t e ( ' 0 ,0 ,0 \n ' )
241 s e r . c l o s e ( )
242 cap . c l o s e ( )

1 # CAMERA BASED MINIMUM TIME
2 # python code
3 # Sends d e s i r e d angular v e l o c i t i e s
4 # f o r both l e f t and r i g h t wheel
5 # to Arduino
6

7 import cv2
8 from numpy import l i n a l g as LA
9 import numpy as np
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10 import i o
11 import picamera
12 import s e r i a l
13 import matp lo t l i b . pyplot as p l t
14 import pylab as plab
15 import time
16 import math
17

18 s e r = s e r i a l . S e r i a l ( ' /dev/ttyACM0 ' , 115200)
19 s e r . wr i t e ( ' 0 ,0 ,0 \n ' )
20

21 de f getImage ( ) :
22

23 cap . capture ( stream , format = ' jpeg ' , \
24 u s e v i d e o p o r t = True )
25 frame = np . f r omst r ing ( stream . ge tva lue ( ) ,\
26 dtype = np . u int8 )
27 stream . seek (0 )
28 frame = cv2 . imdecode ( frame , 1 )
29 r e turn frame
30

31 stream = i o . BytesIO ( )
32

33 end = ' \n '

34 comma = ' , '

35

36 j = 0
37 i = 0
38

39 R = 0.05
40 L = 0.14
41

42 kp = 1 .2
43 kd = 0 .5
44 td = 0.125
45 alpha = 100 .0
46

47 thetae ppp = 0 .0
48 thetae pp = 0 .0
49 the tae p = 0 .0
50 wd ppp = 0 .0
51 wd pp = 0 .0
52 wd p = 0.0
53

54 cap = picamera . PiCamera ( )
55 cap . v f l i p = True
56 cap . h f l i p = True
57 cap . r e s o l u t i o n = (320 ,240)
58 cap . con t ra s t = 0
59 cap . s a t u r a t i o n = 0
60

61 erode = cv2 . getStructur ingElement ( cv2 .MORPH RECT,\
62 ( 5 , 5 ) )
63 d i l a t e = cv2 . getStructur ingElement ( cv2 .MORPH RECT,\
64 ( 6 , 6 ) )
65

66 #day
67 lower = np . matrix ( [ [ 10 ,141 ,141 ] , [ 161 ,119 ,154 ] ] )
68 upper = np . matrix ( [ [ 30 ,255 ,255 ] , [ 179 ,255 ,255 ] ] )
69

70 #night
71 #lower = np . matrix ( [ [ 10 ,196 ,120 ] , [ 0 , 160 ,130 ] ] )
72 #upper = np . matrix ( [ [ 30 ,255 ,255 ] , [ 1 4 , 2 5 5 , 2 5 5 ] ] )
73

74 whi le ( 1 ) :
75

76 frame = getImage ( )
77

78 frame2 = frame
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79

80 r o i = frame [ 6 0 : 8 0 , 0 : 3 2 0 ] . copy ( )
81

82 r o i 2 = frame2 [ 6 0 : 8 0 , 0 : 3 2 0 ] . copy ( )
83

84 gray = cv2 . cvtColor ( ro i , cv2 .COLOR BGR2GRAY)
85

86 ret , output = cv2 . th r e sho ld ( gray , 70 , 255 , \
87 cv2 .THRESH BINARY INV)
88

89 output = cv2 . erode ( output , erode , \
90 i t e r a t i o n s = 1)
91 output = cv2 . d i l a t e ( output , d i l a t e , \
92 i t e r a t i o n s = 1)
93

94 , contours , = cv2 . f indContours ( output ,\
95 cv2 .RETR TREE, cv2 .CHAIN APPROX SIMPLE)
96

97 areas = [ cv2 . contourArea ( c ) f o r c \
98 in contours ]
99

100 i f not not areas :
101

102 max index = np . argmax ( areas )
103 cnt = contours [ max index ]
104

105 cv2 . drawContours ( ro i , [ cnt ] , 0 , \
106 ( 0 , 0 , 255 ) , 2)
107

108 m1 = cv2 . moments ( contours [ max index ] )
109 u1 = i n t (m1[ 'm10 ' ] /m1[ 'm00 ' ] )
110 v1 = i n t (m1[ 'm01 ' ] /m1[ 'm00 ' ] )
111

112 e r r o r = u1 − 160 .0
113 l a t = e r r o r *20 .1616/320 .0
114

115 thetae = math . atan2 ( la t , 3 0 )
116

117 wd = ((2* kd* alpha * alpha * td* td+\
118 kp* alpha * alpha * td* td* td )*\
119 thetae + (2*kd* alpha * alpha * td* td+\
120 3*kp* alpha * alpha * td* td* td )* the tae p + \
121 (3*kp* alpha * alpha * td* td*td−\
122 2*kd* alpha * alpha * td* td )* thetae pp +\
123 ( kp* alpha * alpha * td* td*td−\
124 2*kd* alpha * alpha * td* td )* thetae ppp − \
125 ( td *(2* alpha * alpha * td*td−8)+\
126 td*(4+4* alpha * td+alpha * alpha * td* td ) )* wd p\
127 −(td *( alpha * alpha * td*td−4*alpha * td+4)+\
128 td *(2* alpha * alpha * td*td−8))*wd pp − \
129 ( td *( alpha * alpha * td*td−4*alpha * td +4))\
130 *wd ppp )/( td*(4+4* alpha * td+\
131 alpha * alpha * td* td ) )
132

133 thetae ppp = thetae pp
134 thetae pp = thetae p
135 the tae p = thetae
136 wd ppp = wd pp
137 wd pp = wd p
138 wd p = wd
139

140 vd = vd array . item ( j )
141

142 WL = (2*vd+L*wd)/(2*R)
143 WR = (2*vd−L*wd)/(2*R)
144 WL = i n t (100* round (WL, 2 ) )
145 WR = i n t (100* round (WR, 2 ) )
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146

147 pr in t j , vd , thetae , wd
148

149 i f WR > 4600 :
150 WR = 4600
151 e l i f WR < −4600:
152 WR = −4600
153

154 i f WL > 4600 :
155 WL = 4600
156 e l i f WL < −4600:
157 WL = −4600
158

159

160 spwmr = s t r (WR)
161 spwml = s t r (WL)
162 s the ta = s t r ( i n t (100* thetae ) )
163 s t r i n g = spwmr + comma + spwml + comma + \
164 s the ta + end
165 s e r . wr i t e ( s t r i n g )
166

167

168 hsv = cv2 . cvtColor ( ro i2 , cv2 .COLOR BGR2HSV)
169

170 out2 = cv2 . inRange ( hsv , lower [ i , : ] , \
171 upper [ i , : ] )
172

173 out2 = cv2 . erode ( out2 , erode ,\
174 i t e r a t i o n s = 1)
175 out2 = cv2 . d i l a t e ( out2 , d i l a t e ,\
176 i t e r a t i o n s = 1)
177

178 , c dot , = cv2 . f indContours ( out2 ,\
179 cv2 .RETR TREE, cv2 .CHAIN APPROX SIMPLE)
180

181 i f l en ( c dot ) >= 1 :
182

183 cv2 . drawContours ( ro i2 , c dot , \
184 −1, ( 0 , 255 , 0 ) , 2)
185

186 j = j + 1
187 i = i + 1
188

189 i f j > 3 :
190 j = 0
191 i = 0
192

193 i f i > 1 :
194 i = 0
195

196 e l s e :
197 s e r . wr i t e ( ' 0 ,0 ,0 \n ' )
198

199

200 cv2 . imshow ( ' frame ' , frame )
201 cv2 . imshow ( ' r o i ' , r o i )
202 cv2 . imshow ( ' r o i 2 ' , r o i 2 )
203

204 k = cv2 . waitKey (1 ) & 0xFF
205 i f k == 27 :
206 break
207

208 cv2 . destroyAllWindows ( )
209

210 s e r . wr i t e ( ' 0 ,0 ,0 \n ' )
211 s e r . c l o s e ( )
212 cap . c l o s e ( )
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1 # This python code i s used to r e c e i v e on the
2 # Raspberry Pi 2 data sent from Arduino board
3

4 import cv2
5 from numpy import l i n a l g as LA
6 import numpy as np
7 import i o
8 import picamera
9 import s e r i a l

10 import matp lo t l i b . pyplot as p l t
11 import pylab as plab
12 import time
13 import math
14

15 s e r = s e r i a l . S e r i a l ( ' /dev/ttyACM0 ' , 115200 , t imeout=1)
16

17

18 data = ' data '

19

20 t ex t = open ( data , 'w ' )
21

22 whi le ( 1 ) :
23

24 a = s e r . r e a d l i n e ( )
25 a = a . r s t r i p ( )
26

27 i f l en ( a ) :
28 t ex t . wr i t e ( a+ ' \n ' )
29

30 k = cv2 . waitKey (1) & 0xFF
31 i f k == 27 :
32 break
33

34 cv2 . destroyAllWindows ( )
35

36 t ex t . c l o s e ( )
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AMPL CODE
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1

2 # CAMERA BASED MINIMUM TIME
3 # AMPL code
4

5 param N; # number o f i n t e g r a t i o n s t ep s
6 param ds := 0 .001 ; # step s i z e
7 s e t kse t ordered := 0 . .N ; # d e f i n i n g a s e t from 0 to N
8

9 # d e c l a r a t i o n o f r a c e t r a ck parameters
10

11 param x t { kse t } ;
12 param z t { kse t } ;
13 param t h e t a t { kse t } ;
14 param k t { kse t } ;
15 param x sh { kse t } ;
16 param z sh { kse t } ;
17 param the ta sh { kse t } ;
18

19 # d e c l a r a t i o n o f robot parameters
20

21 param L ;
22 param r ;
23

24 # d e c l a r a t i o n o f v a r i a b l e s
25

26 var v r e f { kse t } ;
27

28 var s c a l e f { kse t } ;
29 var d i s t ance { kse t } ;
30 var temp dist cam { kse t } ;
31 var distance cam { kse t } ;
32

33 var a c c e l r { kse t } ;
34 var a c c e l { kse t } ;
35 var w{ kse t } ;
36 var ang acc e l { kse t } ;
37 var j e r k r { kse t } ;
38 var j e r k { kse t } ;
39

40 var xpos{ kse t } ;
41 var zpos { kse t } ;
42 var x1{ kse t } ;
43 var x2{ kse t } ;
44 var x3{ kse t } ;
45 var x4{ kse t } ;
46 var x5{ kse t } ;
47 var v{ kse t } ;
48 var theta { kse t } ;
49 var time{ kse t } ;
50

51 var xcam{ kse t } ;
52 var zcam{ kse t } ;
53 var e r r o r ang { kse t } ;
54

55 minimize obj : time [N ] ;
56

57 s ub j e c t to
58 ## Cruise c o n t r o l s t a t e space with k inemat ic s and s c a l e f a c t o r
59 c1{k in 1 . .N } : ( xpos [ k ] − xpos [ k−1])/ ds =
60 s c a l e f [ k−1]*(v [ k−1]* s i n ( theta [ k−1 ] ) ) ;
61 c2{k in 1 . .N } : ( zpos [ k ] − zpos [ k−1])/ ds =
62 s c a l e f [ k−1]*(v [ k−1]* cos ( theta [ k−1 ] ) ) ;
63 c3{k in 1 . .N } : ( x1 [ k ] − x1 [ k−1])/ ds = s c a l e f [ k−1]*(−2 .616 *x1 [ k−1]−
64 2 .489 *x2 [ k−1]+2* v r e f [ k−1 ] ) ;
65 c4{k in 1 . .N } : ( x2 [ k ] − x2 [ k−1])/ ds = s c a l e f [ k−1]*(2*x1 [ k−1 ] ) ;
66 c5{k in 0 . .N } : v [ k ] = 1 .245 *x2 [ k ] ;
67
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68 c6{k in 1 . .N } : ( x3 [ k ] − x3 [ k−1])/ ds = s c a l e f [ k−1]*(−2 .616 *x3 [ k−1]−
69 2 .489 *x4 [ k−1]+2* e r r o r ang [ k−1 ] ) ;
70 c7{k in 1 . .N } : ( x4 [ k ] − x4 [ k−1])/ ds = s c a l e f [ k−1]*(2*x3 [ k−1 ] ) ;
71 c8{k in 1 . .N } : ( x5 [ k ] − x5 [ k−1])/ ds = s c a l e f [ k−1]*( x4 [ k−1 ] ) ;
72 c9{k in 0 . .N } : theta [ k ] = 0 .6223 *x4 [ k]+1 .494 *x5 [ k ] ;
73

74 c14{k in 1 . .N } : ( time [ k ] − time [ k−1])/ ds = s c a l e f [ k−1] ;
75

76

77 c80{k in 0 . .N } : s c a l e f [ k ] = (1 − ( d i s t ance [ k ]* k t [ k ] ) )/
78 ( v [ k ]* cos ( theta [ k]− t h e t a t [ k ] ) ) ;
79

80

81 ##Acce l e r a t i on d e f i n i t i o n
82 c15{k in 1 . .N } : ( v r e f [ k]− v r e f [ k−1])/ ds = ( s c a l e f [ k−1])* a c c e l r [ k−1] ;
83 c16{k in 1 . .N } : ( v [ k]−v [ k−1])/ ds = ( s c a l e f [ k−1])* a c c e l [ k−1] ;
84

85 c60{k in 1 . .N } : ( theta [ k]− theta [ k−1])/ ds = ( s c a l e f [ k−1])*w[ k−1] ;
86

87 c17{k in 0 . .N } : v [ k ] <= 2 . 3 ;
88 c18{k in 0 . .N } : v [ k ] >= 0 .00001 ;
89 c21{k in 0 . .N } : v r e f [ k ] <= 0 . 5 ;
90 c22{k in 0 . .N } : v r e f [ k ] >= 0 .00001 ;
91

92

93 # Camera based c o n s t r a i n t d e f i n i t i o n
94 c1000{k in 0 . .N } : xcam [ k ] = xpos [ k ] + 0 .30 * s i n ( theta [ k ] ) ;
95 c1001{k in 0 . .N } : zcam [ k ] = zpos [ k ] + 0 .30 * cos ( theta [ k ] ) ;
96

97 c1002{k in kse t } : temp dist cam [ k ] =
98 ( x sh [ k ] − xcam [ k ] ) * cos ( the ta sh [ k ] ) +
99 ( zcam [ k ] − z sh [ k ] ) * s i n ( the ta sh [ k ] ) ;

100 c1003{k in kse t } : d i s tance cam [ k ] = temp dist cam [ k ] /
101 cos ( the ta sh [ k]− theta [ k ] ) ;
102 c1004{k in kse t } : d i s tance cam [ k ] >= − 0 .10080 ;
103 c1005{k in kse t } : d i s tance cam [ k ] <= 0 .10080 ;
104 c1006{k in kse t } : e r r o r ang [ k ] = atan ( distance cam [ k ]/0 .30 ) ;
105

106

107 # To avoid s i n g u l a r i t y
108 c1007{k in kse t } : t h e ta sh [ k]− theta [ k]<= 1 . 5 ;
109 c1008{k in kse t } : t h e ta sh [ k]− theta [ k]>= −1 . 5 ;
110

111 ## Path c o n s t r a i n t
112

113 # To avoid s i n g u l a r i t y
114 c25{k in kse t } : theta [ k]− t h e t a t [ k]<=1 . 5 ;
115 c26{k in kse t } : theta [ k]− t h e t a t [ k]>=−1 . 5 ;
116

117 c90{k in kse t } : d i s t anc e [ k ] =(xpos [ k ] − x t [ k ] ) * cos ( t h e t a t [ k ] ) −
118 ( zpos [ k ] − z t [ k ] ) * s i n ( t h e t a t [ k ] ) ;
119

120 #I n i t i a l c o n d i t i o n s
121 c29 : time [ 0 ] = 0 ;
122 c30 : xpos [ 0 ] = 0 ;
123 c31 : zpos [ 0 ] = 0 ;
124 c32 : theta [ 0 ] = 0 ;
125 c34 : x1 [ 0 ] = 0 ;
126 c35 : x2 [0 ]=0 .0080 ;
127 c36 : x3 [ 0 ] = 0 ;
128 c37 : x4 [ 0 ] = 0 ;
129 c38 : x5 [ 0 ] = 0 ;
130

131 # Max wheel speeds
132 c47{k in 1 . .N } : v [ k ] / r + L*(w[ k ] ) / ( 2* r ) <= 46 ;
133 c48{k in 1 . .N } : v [ k ] / r + L*(w[ k ] ) / ( 2* r ) >= 0 ;
134 c49{k in 1 . .N } : v [ k ] / r − L*(w[ k ] ) / ( 2* r ) <= 46 ;
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135 c50{k in 1 . .N } : v [ k ] / r − L*(w[ k ] ) / ( 2* r ) >= 0 ;
136

137 #Accel
138 c51{k in 0 . .N } : a c c e l r [ k ] <= 1 ;
139 c52{k in 0 . .N } : a c c e l r [ k ] >= −1;
140 c53{k in 0 . .N } : a c c e l [ k ] <= 1 ;
141 c54{k in 0 . .N } : a c c e l [ k ] >= −1;
142

143 #Jerk
144 c55{k in 1 . .N } : ( a c c e l r [ k]− a c c e l r [ k−1])/ ds =
145 ( s c a l e f [ k−1])* j e r k r [ k−1] ;
146 c57{k in 1 . .N } : ( a c c e l [ k]− a c c e l [ k−1])/ ds =
147 ( s c a l e f [ k−1])* j e r k [ k−1] ;
148

149 c67{k in 0 . .N } : j e r k r [ k ] <= 1 ;
150 c68{k in 0 . .N } : j e r k r [ k ] >= −1;
151 c69{k in 0 . .N } : j e r k [ k ] <= 1 ;
152 c70{k in 0 . .N } : j e r k [ k ] >= −1;
153

154 ###########################
155 data ;
156

157 param L:=0 .14 ;
158 param r :=0 .05 ;
159

160 param N := 10282;
161

162 param : x t z t t h e t a t k t x sh z sh the ta sh :=
163 # Data from matlab f i l e ' gene ra t e ra c e t ra ck da ta .m '

164 # goes here
165

166 ###########################
167 s o l v e ;
168 d i s p l ay vre f , e r ror ang , v , theta , xpos , zpos ,
169 acc e l r , acce l , j e rk , j e rk r , time ,
170 w, xcam , zcam ;

1

2 # NON CAMERA BASED MINIMUM TIME
3 # AMPL code ( s imu la t i on )
4

5 param N; # number o f i n t e g r a t i o n s t ep s
6 param ds := 0 .001 ; # step s i z e
7 s e t kse t ordered := 0 . .N ; # d e f i n i n g a s e t from 0 to N
8

9 # d e c l a r a t i o n o f r a c e t r a ck parameters
10

11 param x t { kse t } ;
12 param z t { kse t } ;
13 param t h e t a t { kse t } ;
14 param k t { kse t } ;
15

16 # d e c l a r a t i o n o f robot parameters
17

18 param L ;
19 param r ;
20

21 # d e c l a r a t i o n o f v a r i a b l e s
22

23 var v r e f { kse t } ;
24 var t r e f { kse t } ;
25

26 var s c a l e f { kse t } ;
27 var d i s t ance { kse t } ;
28

29 var a c c e l r { kse t } ;
30 var a c c e l { kse t } ;
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31 var w{ kse t } ;
32 var wref { kse t } ;
33 var a n g a c c e l r { kse t } ;
34 var ang acc e l { kse t } ;
35 var j e r k r { kse t } ;
36 var j e r k { kse t } ;
37

38 var xpos{ kse t } ;
39 var zpos { kse t } ;
40 var x1{ kse t } ;
41 var x2{ kse t } ;
42 var x3{ kse t } ;
43 var x4{ kse t } ;
44 var x5{ kse t } ;
45 var v{ kse t } ;
46 var theta { kse t } ;
47 var time{ kse t } ;
48

49 minimize obj : time [N ] ;
50

51 s ub j e c t to
52 ## Cruise c o n t r o l s t a t e space with k inemat ic s and s c a l e f a c t o r
53 c1{k in 1 . .N } : ( xpos [ k ] − xpos [ k−1])/ ds =
54 s c a l e f [ k−1]*(v [ k−1]* s i n ( theta [ k−1 ] ) ) ;
55 c2{k in 1 . .N } : ( zpos [ k ] − zpos [ k−1])/ ds =
56 s c a l e f [ k−1]*(v [ k−1]* cos ( theta [ k−1 ] ) ) ;
57 c3{k in 1 . .N } : ( x1 [ k ] − x1 [ k−1])/ ds =
58 s c a l e f [ k−1]*(−2 .616 *x1 [ k−1]−2 .489 *x2 [ k−1]+2* v r e f [ k−1 ] ) ;
59 c4{k in 1 . .N } : ( x2 [ k ] − x2 [ k−1])/ ds = s c a l e f [ k−1]*(2*x1 [ k−1 ] ) ;
60 c5{k in 0 . .N } : v [ k ] = 1 .244 *x2 [ k ] ;
61

62 c6{k in 1 . .N } : ( x3 [ k ] − x3 [ k−1])/ ds = s c a l e f [ k−1]*(−2 .556 *x3 [ k−1]−
63 1 .703 *x4 [ k−1]−1 .08 *x5 [ k−1]+ t r e f [ k−1 ] ) ;
64 c7{k in 1 . .N } : ( x4 [ k ] − x4 [ k−1])/ ds = s c a l e f [ k−1]*(4*x3 [ k−1 ] ) ;
65 c8{k in 1 . .N } : ( x5 [ k ] − x5 [ k−1])/ ds = s c a l e f [ k−1]*( x4 [ k−1 ] ) ;
66 c9{k in 0 . .N } : theta [ k ] = 0 .4924 *x4 [ k]+1 .08 *x5 [ k ] ;
67

68 c14{k in 1 . .N } : ( time [ k ] − time [ k−1])/ ds = s c a l e f [ k−1] ;
69

70 c80{k in 0 . .N } : s c a l e f [ k ] = (1 − ( d i s t ance [ k ]* k t [ k ] ) )/
71 ( v [ k ]* cos ( theta [ k]− t h e t a t [ k ] ) ) ;
72

73 # Acce l e r a t i on d e f i n i t i o n
74 c15{k in 1 . .N } : ( v r e f [ k]− v r e f [ k−1])/ ds = ( s c a l e f [ k−1])* a c c e l r [ k−1] ;
75 c16{k in 1 . .N } : ( v [ k]−v [ k−1])/ ds = ( s c a l e f [ k−1])* a c c e l [ k−1] ;
76

77 c59{k in 1 . .N } : ( t r e f [ k]− t r e f [ k−1])/ ds = ( s c a l e f [ k−1])* wref [ k−1] ;
78 c60{k in 1 . .N } : ( theta [ k]− theta [ k−1])/ ds = ( s c a l e f [ k−1])*w[ k−1] ;
79 c61{k in 1 . .N } : ( wref [ k]−wref [ k−1])/ ds =
80 ( s c a l e f [ k−1])* a n g a c c e l r [ k−1] ;
81 c62{k in 1 . .N } : (w[ k]−w[ k−1])/ ds = ( s c a l e f [ k−1])* ang acc e l [ k−1] ;
82

83 c17{k in 0 . .N } : v [ k ] <= 2 . 3 ;
84 c18{k in 0 . .N } : v [ k ] >= 0 .00001 ;
85 c21{k in 0 . .N } : v r e f [ k ] <= 0 . 5 ;
86 c22{k in 0 . .N } : v r e f [ k ] >= 0 .00001 ;
87 c23{k in 0 . .N } : wref [ k ] <= 10 ;
88 c24{k in 0 . .N } : wref [ k ] >= −10;
89

90 ## Path c o n s t r a i n t
91

92 # To avoid s i n g u l a r i t y
93 c25{k in kse t } : theta [ k]− t h e t a t [ k]<=1 . 5 ;
94 c26{k in kse t } : theta [ k]− t h e t a t [ k]>=−1 . 5 ;
95

96 # Distance to ra c e t r a ck
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97 c90{k in kse t } : d i s t anc e [ k ] =(xpos [ k ] − x t [ k ] ) * cos ( t h e t a t [ k])−
98 ( zpos [ k ] − z t [ k ] ) * s i n ( t h e t a t [ k ] ) ;
99 c27{k in kse t } : d i s t anc e [ k ] <= 0 .01 ;

100 c28{k in kse t } : d i s t anc e [ k ] >= −0.01 ;
101

102 ## I n i t i a l c o n d i t i o n s
103 c29 : time [ 0 ] = 0 ;
104 c30 : xpos [ 0 ] = 0 ;
105 c31 : zpos [ 0 ] = 0 ;
106 c32 : theta [ 0 ] = 0 ;
107 c34 : x1 [ 0 ] = 0 ;
108 c35 : x2 [0 ]=0 .0080 ;
109 c36 : x3 [ 0 ] = 0 ;
110 c37 : x4 [ 0 ] = 0 ;
111 c38 : x5 [ 0 ] = 0 ;
112

113 # Max wheel speeds
114 c47{k in 1 . .N } : v [ k ] / r + L*(w[ k ] ) / ( 2* r ) <= 46 ;
115 c48{k in 1 . .N } : v [ k ] / r + L*(w[ k ] ) / ( 2* r ) >= 0 ;
116 c49{k in 1 . .N } : v [ k ] / r − L*(w[ k ] ) / ( 2* r ) <= 46 ;
117 c50{k in 1 . .N } : v [ k ] / r − L*(w[ k ] ) / ( 2* r ) >= 0 ;
118

119 #Accel
120 c51{k in 0 . .N } : a c c e l r [ k ] <= 1 ;
121 c52{k in 0 . .N } : a c c e l r [ k ] >= −1;
122 c53{k in 0 . .N } : a c c e l [ k ] <= 1 ;
123 c54{k in 0 . .N } : a c c e l [ k ] >= −1;
124

125 c63{k in 0 . .N } : a n g a c c e l r [ k ] <= 1 ;
126 c64{k in 0 . .N } : a n g a c c e l r [ k ] >= −1;
127 c65{k in 0 . .N } : ang ac c e l [ k ] <= 1 ;
128 c66{k in 0 . .N } : ang ac c e l [ k ] >= −1;
129

130 #Jerk
131 c55{k in 1 . .N } : ( a c c e l r [ k]− a c c e l r [ k−1])/ ds =
132 ( s c a l e f [ k−1])* j e r k r [ k−1] ;
133 c57{k in 1 . .N } : ( a c c e l [ k]− a c c e l [ k−1])/ ds =
134 ( s c a l e f [ k−1])* j e r k [ k−1] ;
135

136 c67{k in 0 . .N } : j e r k r [ k ] <= 1 ;
137 c68{k in 0 . .N } : j e r k r [ k ] >= −1;
138 c69{k in 0 . .N } : j e r k [ k ] <= 1 ;
139 c70{k in 0 . .N } : j e r k [ k ] >= −1;
140

141 ###########################
142 data ;
143 param L:=0 .14 ;
144 param r :=0 .05 ;
145

146 param N := 10282;
147

148 param : x t z t t h e t a t k t :=
149 # Data from matlab f i l e ' gene ra t e ra c e t ra ck da ta .m '

150 # goes here
151 ###########################
152

153 s o l v e ;
154 d i s p l ay vre f , t r e f , v , theta , xpos , zpos , a c c e l r ,
155 acce l , j e rk , j e rk r , time , w;
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