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ABSTRACT 

As the demand of sustainable construction materials increases, use of fibers and textiles as 

partial or full reinforcement in concrete members present a tremendous opportunity. Proper 

characterization techniques and design guides for hybrid materials are therefore needed. 

This dissertation presents a comprehensive study on serviceability-based design of strain 

softening and strain hardening materials. Multiple experimental procedures are developed 

to document the nature of single crack localization and multiple cracking mechanisms in 

various fiber and fabric reinforced cement-based composites. In addition, strain rate effects 

on the mechanical properties are examined using a high speed servo-hydraulic tension test 

equipment. 

Significant hardening and degradation parameters such as stiffness, crack spacing, crack 

width, localized zone size are obtained from tensile tests using digital image correlation 

(DIC) technique. A tension stiffening model is used to simulate the tensile response that 

addresses the cracking and localization mechanisms. The model is also modified to 

simulate the sequential cracking in joint-free slabs on grade reinforced by steel fibers, 

where the lateral stiffness of slab and grade interface and stress-crack width response are 

the most important model parameters.   

Parametric tensile and compressive material models are used to formulate generalized 

analytical solutions for flexural behaviors of hybrid reinforced concrete (HRC) that 

contains both rebars and fibers. Design recommendations on moment capacity, minimum 

reinforcement ratio etc. are obtained using analytical equations. The role of fiber in 

reducing the amount of conventional reinforcement is revealed. The approach is extended 
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to T-sections and used to model Ultra High Performance Concrete (UHPC) beams and 

girders. 

The analytical models are extended to structural members subjected to combined axial and 

bending actions. Analytical equations to address the P-M diagrams are derived. Closed-

form equations that generate the interaction diagram of HRC section are presented which 

may be used in the design of multiple types of applications. 

The theoretical models are verified by independent experimental results from literature. 

Reliability analysis using Monte Carlo Simulation (MCS) is conducted for few design 

problems on ultimate state design. The proposed methodologies enable one to simulate the 

experiments to obtain material parameters and design structural members using generalized 

formulations.  
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1. INTRODUCTION 

1.1 Overview 

Portland cement industry is among the primary producers of green-house gases generating 

up to 5% of worldwide man-made CO2 emissions. The point-source nature of release of 

green-house gases from cement plants has led to pervasive discussions on the carbon 

footprint of concrete materials [ 1 , 2 , 3 ]. Finding alternative construction products is 

however a daunting task since according to Hammond and Jones [4], cement and concrete 

contain the lowest embodied energy of all man-made industrial and construction materials. 

In addition, challenges in practical engineering applications include catastrophic failure 

due to brittleness of cement materials, impact loads, drying shrinkage, excessive and 

complicated reinforcement work etc. 

As choices of sustainable, economical, and durable infrastructure materials, different types 

of fiber reinforced concretes (FRC), textile reinforced concrete (TRC), ultra-high 

performance concrete (UHPC) are among the many new materials developed for the 

construction industry [5]. Strain-hardening cement-based composites (SHCC) represent a 

class of fiber reinforced cementitious materials which exhibit improved load bearing 

capacity and ductility under uniaxial tensile loading [6]. SHCC with tensile strain capacity 

in excess of 3% under quasi-static uniaxial tensile loading can be attained with only 2% 

fiber content by volume [7,8]. Several design guides address the contribution of fibers to 

the post-cracking region by means of a residual strength approach. However, the empirical 

methods are limited by their inability to be extended to back-calculation approaches or 

hybrid reinforcement; hence development of an equivalent residual strength method is not 

possible. This is partially because of failure to incorporate the strain parameter hence the 
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constitutive model cannot be used for serviceability criteria, deflection calculation, hybrid 

reinforcement, or shear strength calculations. 

The present study is therefore focused on developing methods to better analyze and model 

concrete structures while pursuing a much more sustainable manner with new materials 

and design approaches. The core ideology is to model the flexural behavior of strain 

hardening composites based on the characterization of tensile behavior, by studying the 

distributed cracking mechanisms. Subsequently, rational and user friendly design 

approaches for both ultimate and serviceability states for tension, flexural, shear, and 

combined axil-bending behaviors are addressed. A research path based on the 

characterization of multiple cracking mechanisms is established and followed throughout 

the study, as illustrated in Figure 1-1.  

 
Figure 1-1 Research Path of the Present Study. 

The first step is to experimentally investigate the strain hardening behaviors by conducting 

fiber/textile pullout tests and tensile tests. After the formation of first crack, the tensile 
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stress keeps increasing at a reduced stiffness. The ability of load carrying in intact concrete 

matrix is defined as the tension stiffening effect, which is attributed to the interfacial load 

transfer from fibrous reinforcements to matrix. Pullout load-slip behaviors obtained from 

experiments are therefore integrated in the modelling approach of tensile behavior. With 

the conventional data analysis technique and digital image correlation (DIC) method, 

significant material parameters derived from tension data include tensile strength, ultimate 

ductility, toughness, stiffness degradation, crack width and crack spacing. These 

parameters are used to construct and calibrate the tension model. 

In the flexural members made of strain hardening cement composites, tension stiffening 

effects are important in post-cracking behavior where distributed cracking and deflection 

hardening are observed. The constitutive laws that addresses the strain hardening behavior 

are then used in the development of flexural models. The contribution of traditional 

reinforcement and FRC are integrated in a cross sectional analysis. The distributed cracking 

mechanisms are characterized by the sequential formation of nonlinear hinges denoting the 

zones subjected to post-cracking damages. Smeared cracking approach is used such that 

the strain field within each hinge is averaged. Analytical flexural model is developed in 

this study by addressing the aforementioned aspects which can thus correlate the tension 

and flexural behaviors. Analytical solutions would keep track of the strain and curvature 

distribution and enable the measurement of effective deflection and ductility requirements, 

and therefore enable the development of a serviceability design approach based on 

deflection, ductility or allowable stress. Design recommendations such as moment capacity, 

minimum reinforcement ratio are proposed and compared to current design guidelines. Size 

effects based on serviceability check is investigated. 
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The proposed analytical model is further improved and extended in the following areas: 1) 

flexural modelling of concrete beam with T-section; 2) incorporate the role of axial action 

and model the structural members subjected to combined axial-bending loads; 3) extend to 

a two dimensional field and determine the shear stress and shear failure in the flexural 

members. In addition, the two dimensional analysis is compared with finite element (FE) 

analysis. As a verification and demonstration of the proposed design models, reliability 

analysis is conducted that takes the randomness in the model parameters into account. 

The comprehensive research study makes substantial contributions to the field, which are 

very useful and may be inspired to the researchers, engineers and designers. The research 

is summarized with the proposed design guideline for strain hardening cement composite 

systems that are subjected to varying loading cases. The rational guidelines provide 

systematic approaches of material characterizations to obtain design parameters and the 

use of design parameters to determine the ultimate and serviceability limits. 

1.2 Background 

1.2.1 Common Issues 

Cement based materials may be subjected to dynamic loading due to potential projectiles, 

explosions, earthquakes, wind gusts, or moving objects. Due to the inherent brittleness and 

low tensile strength of most cement-based elements, dynamic loading may cause severe 

cracking and damage [9,10]. To properly analyze and design structures, it is necessary to 

develop, document, and utilize materials with the mechanical properties that are in 

compliance with the realistic strain and loading rates expected in service.  Characterization 

of dynamic tensile properties in cement composites is challenging as the failure process is 

affected by the mode and method of testing. Techniques to investigate high-strain rate 
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material properties include: split Hopkinson pressure bar (SHPB), falling weight devices, 

flywheel facilities and hydraulic machine [11,12,13,14]. Servo-hydraulic machines are 

used in medium-strain rate tensile testing of steel [15], plastics [16] and composite 

materials [17], and cement-based composites [18]. The effect of specimen geometry and 

size was addressed by the Society of Automotive Engineers (SAE) for the medium strain 

rates [19], the International Iron and Steel Institute (IISI) [20], as well as ISO standards 

[21]. Difficulties include inertial effects, non-uniform loading, and reliable measurement 

of deformations, which are aggravated by the lack of standards and methodology in 

conducting dynamic tests [16]. Correlation of dynamic properties therefore depends on the 

loading rate, testing method, and sample geometry [22,23]. 

The restraint associated with shrinkage is the main causes of cracking. SFRC joint free 

floors without sawn cuts have been built for more than 30 years for bay sizes up to 3000m2 

[24] and suspended slabs on piles have also been used since 1995 [25]. Despite the benefit 

from this practical application, design tools for specifying the design parameters are still 

needed. Although widely used and a number of national floor design standards and 

recommendations are available, these floors have been adopted primarily by heavy duty 

users and contractors using the state of the art techniques including low shrinkage concrete 

and a combination of materials and processes. Thus the overall shrinkage of the slab is 

limited and cracking is predictable at pre-assigned locations [26]. Shrinkage cracks reduce 

load carrying capacity and accelerate deterioration, leading to increased maintenance costs 

and reduced service life [27]. These cracks are the main routes through which aggressive 

agents such as chloride ions penetrate into and affect the long-term durability of structures 

[28]. Two common sources are plastic shrinkage and drying shrinkage. Plastic shrinkage 
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cracking is principally due to a high rate of water evaporation at early age although several 

driving forces such as differential settlement, thermal dilation, and autogenous deformation 

are also influential [29]. While drying shrinkage is defined as the contracting of the 

hardened concrete due to the loss of excessive capillary water [30]. In presence of restraints, 

the tensile stress builds up and results in cracking once reaching tensile strength of concrete 

[31,32]. 

Since standard approaches for treating a combined short fiber-continuous reinforcement 

system are not available, design of hybrid reinforcement gets further complicated when the 

shear failure is also considered as a potential failure mechanism. Various empirical models 

are available for calculating the strength of fiber reinforced concrete beams in shear. Voo 

and Foster [33, 34] carried out an extensive study on shear strength of steel fiber reinforced 

concrete by comparing various models for the strength of fiber reinforced concrete beams 

in shear without stirrups. Model results were compared with data from 220 prestressed and 

non-prestressed beams reported by 27 researchers with the compressive strengths varied 

from 20MPa to 170MPa, the shear span to effective depth ratios were in the range of 0.46 

to 5.2, the total depths of 100 mm to 800 mm, the volume of steel fibers of 0.2 to 3.0% and 

the longitudinal steel ratio from 0.8 to 9.6%. On the other hand, large scatters are observed 

for most of the models, such as Narayanan and Darwish [35], Al-Ta’an and Al-Feel [36] 

resulting in covariance of 46% and 41 % respectively. Several available empirical models 

for shear capacity proposed by Nemegeer and Khuntia et al. [37] fail to predict a safe design 

as the ratios between theoretical and measured values were larger than one for a portion of 

the data pool. These approaches are not conducive to clear correlations since so many data 

points for different studies are combined and an empirical curve-fitting equation is the best 
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outcome of such studies. It is therefore essential to better understand the modes of shear 

stress distribution and a more rational mechanical approach may provide a general vision. 

1.2.2 Fiber and Textile Reinforcements 

For more than forty years FRC has been used in many construction applications such as 

slabs on grade, industrial floors, tunnel linings, precast and presstressed concrete products. 

Use of discrete fibers significantly improves fracture toughness, ductility, fatigue 

resistance, as well as tensile and shear strength. Recent advances in performance of FRC 

have been based on a sufficiently high fiber content (0.5%<Vf <1%) to gain significant 

ductility and strength. A fiber content of 0.75% without stirrups is considered sufficient to 

achieve the equivalent ultimate resistance of a conventional RC flexural member with 

stirrups [38]. The use of fiber also enhances the behavior at service life conditions by 

increasing the stiffness and residual strength in the serviceability loading stage by means 

of restraining the crack opening and limiting excessive deformations [39]. This has led to 

development of structures such as elevated SFRC slabs and precast tunnel lining segments 

that use a hybrid reinforcement approach [ 40 , 41 , 42 ]. Portions of the conventional 

reinforcement are replaced by steel fibers in most parts to address the flexural capacity. In 

the case of elevated slabs only a small amount of reinforcement is needed along the column 

strips to prevent progressive failure, while the amount of rebar in precast segmental 

sections is substantially reduced.  

The use of textiles as reinforcement in cement based systems greatly enhances the strength, 

strain capacity, and work-to-fracture of the composite by means of multiple cracking 

mechanism and leads to strain hardening behavior. The outstanding mechanical 

performance can be utilized for load bearing structural members, structural panels, impact 
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and blast resistance, repair and retrofit applications [43,44]. The mechanical response and 

distributed damage zones have been studied under both static and dynamic loads using 

conventional technique [45,46]. Figure 1-2 shows the use of such Steel-FRC elevated slabs 

with material properties obtained from flexural tests and designed using a limit analysis 

approach. The slabs contain no continuous reinforcement, and a progressive collapse 

mechanism is unlikely due to use of about 1% steel fiber reinforcement, and a set of 

minimum continuity reinforcing bars discussed earlier [47,48,49]. 

  
Figure 1-2 Construction and Applications of SFRC Slabs as the Main Reinforcing 

Material Used in Multistory Buildings. b) Failure Patterns of Distributed Fan Cracking 

Patterns in a Round Panel Test Method. 

1.2.3 Review of Existing Design Approaches 

By integrating the reinforcement within the material design, one can be creative with non-

conventional shapes or connections which may otherwise be quite difficult with rebar lay 

outs. Forming becomes easier and faster and savings in cranes costs and scheduling aspects 

of the limited resources is obvious since the reinforcement can be pumped along with the 

concrete. The key advantages of using fiber composite systems include savings in labor 

and construction time attributed to installation of layers of rebars and stirrups. The FRC 
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concrete is discharged from the truck mixer or pumped, saving time of the order of days 

for large to medium projects, eliminating the need to use heavy equipment, or maintain an 

inventory for rebars. From a design perspective, an elasto-plastic design approach results 

in reductions in material weight and improves ductility. Moreover, as the requirements for 

concrete cover are omitted, global cost saving as much as 10-30% vs. plain traditional 

methods can be achieved by accounting for all cost aspects. Better shrinkage control 

directly results in a reduced number of surface cracks, narrower crack widths, and extended 

service life. Used in a hybrid manner to reduce the congestion of rebars in reinforced 

concrete, fibers in self-consolidated concrete increase the cost-effectiveness, and labor 

efficiency of structures such as water and wastewater structures with improved durability 

and minimized need of maintenance and repair operations during lifetime.  

The enhancement in the load capacity and ductility depend on the fiber parameters such as 

type, shape, aspect ratio, bond strength and volume fraction [229]. Tensile characteristics 

are defined in terms of strain softening and hardening, and within the strain softening 

category, sub-classes of deflection-softening and -hardening may be defined based on the 

behavior in bending. Several building codes provide guidelines on design with FRC 

materials [50,51,52,53]. Combinations of FRC and rebars or welded wire mesh may be 

used to meet the strength criteria, hence HRC is referred to as a section that combines a 

continuous reinforcement with randomly distributed chopped fibers. Many available 

models for FRC [54, 55, 56, 57] require a strain compatibility analysis of the layered beam 

section in order to obtain moment capacity, which may be impractical for general users. 

Development of a unified approach for both continuous and discrete reinforcements is 

therefore needed.   
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Several design guides address the contribution of fibers to the post-cracking region by 

means of a residual strength approach. The flexural data obtained from beam tests include 

three-point bending (3PB) by RILEM, EN 14651, or four-point bending (4PB) test used by 

JCI and ASTM C1609 are used in back-calculation of tensile properties. In the RILEM TC 

162-TDF [57] test, the tensile relation is obtained from the load capacity at certain 

deflections based on closed loop controlled bending tests on notched beams, and calibrated 

using finite element method. Residual tensile strength is also obtained from simplifications 

proposed by RILEM, or fib Model Code 2010 [58,59]. For example, the residual tensile 

strength is taken as fres=0.37ft,eq, where ft,eq is the average equivalent bending strength 

recorded between 0.5 and 2.5mm deflection. Factor 0.37 expresses the ratio between the 

tensile stress in the uncracked section and the equivalent tensile stress in the cracked 

section assuming the validity of plane sections remaining plane, and further assuming a 

depth of the compressive zone in the cracked stage as 10% of the original depth [60]. 

Development of a serviceability design approach based on deflection, ductility or allowable 

stress would require the computation of load capacity of a cracked section based on a given 

curvature or crack width. Such solutions would keep track of the strain and curvature 

distribution and enable the measurement of effective deflection and ductility requirements. 

Soranakom and Mobasher used a parametric material tensile and compression constitutive 

model and derived analytical flexural load-deflection behavior from closed form moment-

curvature expressions [61,62]. Constitutive properties are then obtained by inverse analysis 

of load-deflection response. This approach was used by Van Zijl and Mbewe [63] for an 

analytical flexural model for hybrid SFRC, however they employed a single mode of 

failure which limits the applicability to strain softening, deflection hardening SFRC. Taheri 
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et. al. used a similar approach to develop a design model for hybrid SFRC with steel and 

FRP bars using the constitutive model of Soranakom and Mobasher and investigated post-

cracking strength, and reinforcement ratio [54].  

This study addresses a potential direction for a serviceability based design and promises to 

deliver a much more robust design methodology that integrates serviceability with the 

ultimate strength approach. Analytical solutions for serviceability based nonlinear design 

address a variety of structural HRC systems. For example, sustainability, serviceability, 

and durability perspectives for design of elevated slabs, structural vaults, retaining walls, 

and pump and lift stations for environmental structures are proposed by limiting the 

curvature, and crack width. Strain based serviceability limit states can be specified using 

short and long-term deformations, cracking, shrinkage, and verified to address ultimate 

limit states requirements [64, 65]. Moreover, analytical equations can be used for selection 

of variables using a design automation procedure; hence gradient-based optimization 

algorithms can be conducted much faster. The moment-curvature relationship can also be 

directly implemented in a structural analysis codes, limit analysis, and implemented in 

structural analysis software.  

1.3 Thesis Structure 

Chapter 2 presents the mechanical characterization of tensile behavior for both reinforcing 

materials (fiber/textile) and fibrous reinforced cement composites. The tensile testing is 

performed both at static and high strain rates. Multiple cracking mechanisms and non-

uniform deformation fields are captured analyzed by DIC method. Based on DIC 

observations and modelling assumptions, three different zones localization, shear lag and 

uniform are documented. The strain rate effects in tensile properties are investigated on 
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both reinforcements and cement composites. In addition, the effects of temperature on the 

stiffening behaviors are also evaluated from low to high temperatures.  

Chapter 3 introduces a tension stiffening model that addresses the cracking mechanisms by 

using four basic aspects: cement cracking criterion, fiber/textile stress-strain model, 

interface bond-slip model and mechanical anchorage provided by transverse yarns 

(specifically for TRC). The applications of the tension model in this chapter include the 

simulation of direct tension tests, and the sequential cracking behaviors in slab on grade 

due to drying shrinkage. Even though the driving forces of these two types of applications 

are different, the fundamental cracking and tension stiffening mechanisms are similar, and 

the cause of cracking is essentially the built up of tensile stress. 

Chapter 4 describes the development of the analytical model for the flexural members. 

Multi-linear stress-strain models are used to represent the compressive and tensile 

responses of FRC, as well as the tensile behavior of rebars. Using the parametrized material 

models, analytical solutions for moment-curvature responses are derived through cross 

sectional analysis. Subsequently, load-deflection solutions are also obtained. Design 

recommendations on RC members with addition of steel fiber in a hybrid manner are 

proposed in this chapter. In addition, size effects on the serviceability limits are studied. 

Chapter 5 extends the analytical model to the structural members subjected to combined 

axial-bending loads by considering the axial action. Using the same material models, and 

similar section analysis method, analytical solutions to construct interaction diagram are 

derived. The application of this model may include the design of short column, beam-

column joint, and tunnel lining segments. 
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Chapter 6 addresses the shear behavior in flexural members by performing two 

dimensional stress analysis throughout the entire beam model. The full field distributions 

of normal strain and stress are first obtained based on the moment-curvature distribution 

and material models. Then classical stress analysis approach is employed to calculate the 

shear stress, principal stress and principal directions. The analysis indicates that the 

principal stresses at the tip of flexural cracks are along the diagonal direction which may 

explain the propagation of flexural cracks into diagonal crack. FE analysis on the shear 

behavior of strain hardening composites are also presented in this chapter. 

Chapter 7 presents the reliability analysis as a demonstration and verification of the 

proposed design methods. The procedure is illustrated by a beam example. The random 

parameters are identified and reliability indices are determined using Monte Carlo 

Simulation (MCS). 

Chapter 8 summarizes the content of the dissertation and gives the recommendation for the 

future work into these topics. 
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2. MECHANICAL CHARACTERIZATION OF DISTRIBUTED CRACKING 

2.1 Reinforcing Materials 

High performance fabrics are known for their high strength/modulus to weight ratio, 

fatigue and corrosion resistance, lower manufacturing costs and the ability to tailor 

composites compared to conventional metals [66]. This class of materials have been 

extensively studied and used in the fields of structural and aerospace engineering, such as 

aircraft construction [67], fabrics reinforced concrete structures [68], strengthening and 

retrofit of RC beams and masonry walls [69,70]. High strength fabrics in the engineering 

fields of structural, military, aerospace, and sports disciplines might be subjected to 

dynamic loadings, such as wind loads, earthquake loads, fast moving traffic, explosions, 

etc. The common strain rates observed in static and high speed experiments range from 10-

6 to 103 s-1 which demonstrates orders of magnitude difference. Mechanical properties such 

as strength, modulus, toughness, ductility at high strain rate can significantly differ from 

those obtained under quasi-static loading. The material characterization under high speed 

loading conditions is therefore of great importance. However, the experimental techniques 

to generate tensile stress–strain data at the medium strain rates in the range of 1–100 s-1 are 

not well established.  

Research on tensile strength of fiber bundles and woven fabrics under quasi-static and 

dynamic loadings has been reported by different authors. Wang and Xia [71] found that 

the strength and ultimate strain (strain corresponding to the maximum tensile stress) of E-

glass fiber bundles were increased when the strain rate increased from 90 to 1100 s-1.  Zhou 

et al. [72] reported that the tensile strength and ultimate strain of T700 carbon fiber bundles 

were insensitive to the strain rate ranging from quasi-static (0.001 s-1) to high speed (100, 
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300 and 1300 s-1). Hou et al. [ 73] tested 3-D angle-interlock woven carbon fabrics 

(3DAWF) on a SHPB under high strain rates from 1080 to 2040 s-1 and conducted finite 

element analyses (FEA) using a microstructure geometrical model. The fracture 

morphologies in different layers and stress wave propagation along the weft and warp fiber 

tows were revealed by the FEA, which may explain the strain rate sensitivity of the material. 

Sanborn and Weerasooriya [74] tested single Kevlar KM2 fiber at three strain rates: 0.001, 

1, and 1200 s-1 using a load frame system (Electroforce) and SHPB. The average tensile 

strength increased from 4.3 GPa to 5.1 GPa from quasi-static to high rate. Wang and Xia 

[75] observed that failure stress, ultimate strain, and Young's modulus of Kevlar® 49 were 

directly proportional with the strain rate ranging from 10-4 to 1350 s-1. Nevertheless, other 

researchers have presented different observations. Wagner et al. [76] reported that Kevlar® 

29, Kevlar® 49, and Kevlar® 149 fibers were insensitive to the strain rate in the range of 

3x10-4 to 0.024 s-1. Cheng et al. [77] tested Kevlar® KM2 fibers in the range of 0.00127 - 

2451 s-1. The results were insensitive to the loading rates and fibrillation was the major 

cause of failure at both quasi-static and dynamic loading rates. According to Farsi et al. 

[78], the failure strengths of Kevlar® 129, Kevlar® KM2 and Kevlar® LT yarns showed 

limited dependence on strain rate. Lim et al. [79] investigated the tensile properties of 

single fibers of Kevlar, Kevlar 129 and Twaron using a miniature tension Kolsky bar at 

strain rates from 0.001 to 1500 s-1. It was found that the tensile strengths of these single 

fibers did not exhibit significant strain rate sensitivity.  

Basalt is a low cost material that brings interesting opportunities to the construction 

industry because of high modulus, strength and strain to failure, as well as good thermal 

and chemical resistance. Basalt fiber is made from melting basalt rock which is non-toxic 
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and non-combustible. The manufacturing process is similar to that of glass fiber, but with 

less energy consumed and no additives, which makes it superior to glass or carbon fibers 

in terms of cost [80,81,82,83,84]. With the help of these mechanical properties, basalt fiber 

and its composite can be widely applied in the field of engineering like glass or carbon 

reinforcements [85]. Deak and Czigany [86] compared the mechanical properties of 

continuous basalt fibers with E-glass fibers by means of static tensile tests. The tensile 

strength of several different types of basalt fibers ranged from 1811 to 2016 MPa, while 

the strength of glass fiber was 1472 MPa. In addition, the measured ductility and elastic 

modulus of basalt fibers were competitive with those of E-glass. However, study on the 

tensile behavior of basalt fibers or in fabric form under dynamic loading is very limited. 

Zhu et al. [87,88] conducted quasi-static (0.001 s-1) and high strain rates (up to 3000 s-1) 

tensile tests on basalt filament tows and observed increases in tensile strength, stiffness and 

toughness as the strain rate increased, while the ultimate strain decreased. A single Weibull 

constitutive model was proposed to describe the stress-strain relationship of the fiber 

bundles under different strain rates. Both the scale and shape parameters increased with the 

strain rate. However, the tensile behaviors at intermediate strain rates were not 

characterized in the study. 

In the present work, dynamic tensile tests using high-rate servo-hydraulic system were 

conducted on basalt, carbon, glass and aramid fabrics at strain rates ranging from 25 to 100 

s-1 [89]. Quasi-static tensile tests were also performed as a comparison. The deformation 

and failure behaviors of the specimens were captured using a Phantom v7.3 high speed 

digital camera. Materials parameters including the Young’s modulus, tensile strength, 

ultimate strain, maximum strain, and toughness were investigated and compared at these 
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strain rates. Statistical study by means of ANOVA was conducted to verify the significance 

of strain rate effect on different material properties. In addition, probabilistic distributions 

of fabrics strength at varying strain rates were obtained using Weibull analysis in order to 

account for the random imperfections in fabrics.  

2.1.1 Experimental Methodology 

Glass, carbon and basalt unidirectional fabrics were manufactured with woven densities of 

5.3 glass yarns (12K), 3.75 carbon yarns (12K) and 2.7 basalt yarns (12K) per cm in the 

warp direction, respectively. Aramid (Kevlar® 29) fabric had a plain-woven structure of 

6.5×6.5 yarns (1K) per cm. The fabrics were manufactured by local companies in China 

(Yixing Hengtong Carbon Fibers Co., Ltd. and Nanjing Hitech Composites Co., Ltd). The 

details of the typical properties are shown in Table 2-1. The total cross-sectional area for 

each ply was calculated using the values of the linear density and bulk density of the 

material. The cross-sectional area of the specimen was defined as the cross-sectional area 

per yarn multiplied by the number of the yarns of the specimen. Glass, carbon, basalt and 

aramid fabrics were cut to the width of 22 mm using an electric scissor allowing 8, 8, 8 and 

12 yarns in the section of 25 mm gage length. In order to reduce the stress concentration 

and improve load transfer in grips, thin aluminum sheets, 40 mm long, 22 mm wide and 

0.3 mm thick, were glued on the two ends of each specimen using two-component epoxy 

resin. Prepared specimens are shown in Figure 2-1. 
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Table 2-1 Basic Material Property of Fabrics [89] 

Material 
Yarn Count 

(yarn/cm) 

Bulk Density 

(g/cm3) 

Linear Density 

(g/cm) 

c/s Area per 

Yarn (cm2) 

Glass 5.3 2.54 12.0(10-3) 4.73(10-3) 

Carbon 3.75 1.8 8.11(10-3) 4.51(10-3) 

Basalt 2.7 2.8 7.98(10-3) 2.85(10-3) 

Aramid 6.5 1.44 1.64(10-3) 1.14(10-3) 

 

 

 
Figure 2-1 Prepared Typical Specimens for Dynamic Tests Including Glass, Carbon, 

Basalt and Aramid [89]. 

Quasi-static testing was performed on a MTS load frame (C43.304) at Hunan University. 

A load cell with 1 kN capacity was used for force measurement with a sampling rate of 20 
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Hz, and the cross head velocity was set to be 2.5 mm/min. The nominal strain rate thus 

equals to the velocity divided by the gage length, which is 1/600 s-1. Additionally, an 

extensometer was attached to measure the strain within gage area.  

 
Figure 2-2 High Speed Test Setup [89]. 

The dynamic tensile tests were conducted using a MTS high-rate servo-hydraulic testing 

machine at Arizona State University. The speed of the stroke is controlled by the opening 

and closing of the servo-valve of hydraulic supply. By manually turning the servo-valve, 

the flow rate of hydraulic fluid can be controlled, resulting in different stroke speeds. The 

initial strain rate applied to the test specimen is defined by the stroke speed divided by the 

gage length of specimen. And the stroke speed can be obtained as the slope of the stroke 

displacement versus loading time curve. Figure 2-2 shows the high strain rate testing 

system. In addition to the loading frame, the system includes MTS Flex SE control panels 
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and a high speed data acquisition card with a maximum sampling rate of 5 MHz. More 

discussion of the testing equipment, development of high speed test procedure can be found 

elsewhere [106]. A state-of-the-art Phantom v7.3 high speed digital camera was used to 

record the failure behavior of the specimens at a sampling rate of 20,000 frame per second 

(fps) with resolution of 256 x 256 pixels and exposure time of 48 µs. Two heat-free LED 

lamps were used to offer bright and flicker free light in order to capture high quality images. 

Specimens of 25 mm gage length were tested at three initial strain rates of 25, 50 and 100 

s-1. Six replicates were tested under quasi-static loads for each material. Since larger scatter 

in the data obtained from dynamic tensile tests was expected, eight replicates were tested 

for each fabric at each strain rate. Therefore, the total number of specimen tested in the 

present study is 120. The actual strain rate of individual test might be slightly different 

from the strain rates listed above.  

The signals from the load washer and stroke were recorded at a sampling rate of 500 kHz. 

These signals contained high frequency noises which were eliminated using a low pass 

filter with cut-off frequency of 3 kHz during the data processing. Figure 2-3(a) shows the 

stress-strain response of an aramid specimen obtained from a typical test. Figure 2-3(b) 

schematically illustrates the four distinct regions observed in the tensile stress-strain 

behavior during loading: crimp region, elastic region, nonlinear failure region, and post-

peak region. The initial curvature of the weaving pattern is referred to as the crimp in 

woven fabrics, and in this portion, the load essentially straightens the yarns and removes 

the crimp. Therefore, the stress-strain graph shows a relative large increase in strain at low 

stress level during crimp region. Once the straightened yarns start to take more loads, the 

slope of the curve increases and this zone is referred to as the elastic region. Young’s 
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modulus of the fabric is measured as the slope of the curve in elastic region. The stress-

strain response exhibits nonlinearity (nonlinear failure region) before reaching the tensile 

strength which can be traced back to the initiation and propagation of random fracture in 

the individual filament within yarn bundle prior to its localized failure. The final stage of 

response is characterized by a rapid decrease in the stress beyond the tensile strength that 

correlates with progressive yarn failure (post-peak region). Typical tensile stress-strain 

responses of the other three fabrics investigated in this study are similar except that there 

is no crimp region in the unidirectional fabrics. The stress-strain curves were analyzed to 

measure the Young’s modulus, tensile strength, ultimate strain (strain at peak stress), 

maximum strain and toughness for all the specimens. The toughness is evaluated using the 

area under the stress-strain curve.  
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Figure 2-3 (a) Four Regions in a Typical Stress-Strain Curve of a Test Specimen 

Subjected to Dynamic Tensile Loading, (b) Schematic Diagram of the Tensile Behavior 

of Aramid Fabric [89]. 
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2.1.2 Results and Discussions 

Table 2-2 summarizes the averaged experimental results of different fabrics where the 

values in parenthesis indicate their respective standard deviations. Figure 2-4 shows the 

experimental stress-strain responses of all aramid replicates tested at various initial strain 

rates where the four regions including crimp, elastic, nonlinear failure and post-peak can 

be identified. Increases in tensile strength with increasing strain rate can be evidently 

observed and the shape of the curves is also affected. Slight vibrations are observed in the 

stress-strain curves at 25 s-1, but disappear at higher strain rates, which are attributed to the 

system ringing as previously studied by Zhu et al. [44]. Figure 2-5(a)-(d) compare the 

representative stress-strain curves of the four types of fabrics at three different initial strain 

rates, i.e. 25, 50, and 100 s-1. While uniform stress-strain behaviors at different strain rates 

are observed for each material, different Young’s modulus, tensile strength, ultimate strain, 

maximum strain, and toughness are obtained which reveal the strain rate effects. The 

average tensile strength of basalt fabrics increases from 1095 MPa to 1743 MPa and the 

average toughness increases from 31.2 mJ/mm3 to 45.3 mJ/mm3 when the strain rate 

increases from 25 to 100 s-1. Average ultimate strain and maximum strain as measurements 

of ductility increase from 0.0236 mm/mm to 0.0324 mm/mm, and 0.0475 mm/mm to 

0.0515 mm/mm, respectively, which contributes to the increased capability of energy 

absorption at higher strain rates.  
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Figure 2-4 Experimental Stress-Strain Curves of Aramid Replicates Tested at Initial 

Strain Rate of (a) 25 s-1, (b) 50 s-1 and (c) 100 s-1 [89]. 

For carbon fabrics, when the initial strain rate increases from 25 to 100 s-1, the average 

tensile strength increases by as much as 30% from 1516 MPa to 1974 MPa, while the 

average maximum strain increases from 0.0392 mm/mm to 0.0511 mm/mm. As a result of 

increasing strength and ductility, the average toughness is raised from 35.0 mJ/mm3 to 51.3 

mJ/mm3. The same trends are also observed in the average tensile properties of glass fabrics 

as the strain rates increases from 25 to 100 s-1: tensile strength increases from 1072 MPa 

to 1462 MPa, toughness increases from 29.3 mJ/mm3 to 42.1 mJ/mm3, the ultimate strain 

and maximum strain consistently increases from 0.0328 mm/mm to 0.0430 mm/mm, and 

0.0446 mm/mm to 0.0626 mm/mm, respectively. The average tensile strength of aramid 

increases from 1530 MPa to 1920 MPa from 25 to 50 s-1, but remains nearly the same (1897 

MPa) at 100 s-1. Toughness, ultimate and maximum strains all increase with the strain rate. 
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However, the values of Young’s modulus for different fabrics are not monotonically 

increasing or decreasing with changing strain rate. 

Table 2-2 Summary of Testing Results [89] 

Material 

Strain 

Rate 

(s-1) 

Tensile 

Strength 

(MPa) 

Toughness 

(mJ/mm3) 

Ultimate Strain 

(mm/mm) 

Maximum Strain 

(mm/mm) 

Basalt 

1/600 1427 (85) 37.2 (5.7) 0.0338 (0.0044) 0.0420 (0.0039) 

25 1095 (65) 31.2 (5.2) 0.0236 (0.0025) 0.0475 (0.0040) 

50 1545 (187) 43.5 (11.1) 0.0295 (0.0111) 0.0447 (0.0095) 

100 1743 (131) 45.3 (9.6) 0.0324 (0.0043) 0.0515 (0.0098) 

 

Carbon 

1/600 2302 (171) 46.2 (4.2) 0.0168 (0.0035) 0.0278 (0.0053) 

25 1516 (169) 35.0 (8.1) 0.0237 (0.0037) 0.0392 (0.0041) 

50 1623 (228) 38.8 (11.9) 0.0229 (0.0075) 0.0419 (0.0079) 

100 1974 (199) 51.3 (14.5) 0.0333 (0.0101) 0.0511 (0.0091) 

 

Glass 

1/600 1048 (66) 20.6 (2.5) 0.0207 (0.0016) 0.0304 (0.0036) 

25 1072 (66) 29.3 (3.4) 0.0328 (0.0043) 0.0446 (0.0036) 

50 1220 (80) 38.5 (5.7) 0.0346 (0.0091) 0.0528 (0.0061) 

100 1462 (117) 42.1 (10.3) 0.0430 (0.0096) 0.0626 (0.0139) 

 

Aramid 

1/600 2273 (124) 92.4 (12.9) 0.0596 (0.0085) 0.0655 (0.0051) 

25 1530 (97) 41.4 (4.8) 0.0248 (0.0067) 0.0418 (0.0042) 

50 1920 (174) 40.0 (7.4) 0.0252 (0.0065) 0.0398 (0.0070) 

100 1897 (109) 46.4 (7.2) 0.0301 (0.0058) 0.0511 (0.0084) 
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Figure 2-5 Representative Engineering Stress-Strain Responses of (a) Basalt, (b) Carbon, 

(c) Glass and (d) Aramid Fabrics Tested at Varying Initial Strain Rates [89]. 
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Figure 2-6 compares the material properties for various fabrics at different strain rates, 

which are characterized by the average and standard deviations. As shown in Figure 2-6(a), 

the tensile strength of carbon and aramid fabrics from quasi-static tests are higher than that 

of high speed tests, which may be explained by the different failure patterns. The fracture 

of warp yarns tends to occur simultaneously under quasi-static loading, while the failure 

initiates from one yarn or some yarns at high strain rates as captured by the high speed 

camera, which leads to load (and stress) redistribution within unbroken yarns and results 

in a lower actual strength compared to an average strength value. The phenomenon may be 

attributed to the different test configurations as well as the interactions between random 

flaws/imperfections in the fiber structure and dynamic loads which need further study. 

When the number of yarn bundles is reduced to one, there are less amount of flaws in 

samples with less yarns, which results in a more uniform distribution of strength. For 

example, preliminary results of the single yarn tensile tests performed by authors show that 

as the strain rate increases from quasi-static (1/600 s-1) to high strain rates (40, 80, 120 and 

160 s-1), tensile strength of aramid (Kevlar® 29) single yarn increases monotonically from 

2026 to 2247, 2439, 2465 and 2691 MPa, respectively. Similar trends are also observed in 

carbon, basalt and glass single yarns. In addition, when the epoxy resin is used as matrix 

binder in glass reinforced polymer (GFRP), the tensile strengths of GFRP with one yarn in 

the width under the same dynamic loadings (high strain rates) are also found to be higher 

than the quasi-static result, as shown in the work done by Ou and Zhu [90]. Use of matrix 

binder enables the redistribution of the tensile stress through interfacial load transfer 

mechanism between fibers and matrix, as discussed by Yao et al. [115]. When it comes to 

ductility, aramid and basalt fabrics exhibit larger ultimate and maximum strains at quasi-
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static loading compared to high speed loads while the other two materials show increasing 

trends from low to high strain rate. As a result of high tensile strength and ductility, aramid 

fabric demonstrates highest toughness under quasi-static loading condition compared to 

other strain rates. Except the carbon fabric, higher Young’s moduli are obtained under 

dynamic tensile loads for the other three materials as compared to quasi-static results. 

From a perspective of materials comparison, tensile strengths and Young’s modulus of 

carbon and aramid specimens are generally higher than those of basalt and glass under all 

strain rates investigated. The glass fabrics exhibit larger ultimate and maximum strains 

under dynamic tensile loads while carbon and aramid are less ductile. Intermediate level of 

material properties is observed in basalt fabrics demonstrating that its strength, stiffness 

and ductility are competitive with other materials tested. 
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Figure 2-6 Mechanical Properties of the Tested Fabrics at Different Strain Rates: (a) 

Tensile Strength, (b) Toughness, (c) Maximum Strain, (d) Ultimate Strain [89]. 
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Figure 2-7 Failure Process of Various Fabrics (a) Basalt, (b) Carbon, (c) Glass, (d) 

Aramid Tested at 25 s-1 [89]. 

Figure 2-7 shows the images of the different fabrics tested at the strain rate of 25 s-1, 

representing the stages of deformation during loading. The first sub-images show the 

sample before tests start and the second sets demonstrate the uniform stretching as the load 
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increases. However, partial failure is observed in the third sub-images of carbon and basalt 

fabrics as previously discussed while the phenomenon is less pronounced in glass fabrics. 

Unlike other three materials, the failure of aramid specimen occurs around 3 ms but the 

pull-out process of warp yarns from the woven structure extends to about 20 ms or even 

longer. Partial failure is also exhibited by aramid fabrics but not as distinguishable in the 

time lapsed images as unidirectional fabrics since the warp and weft yarns are interlaced 

with each other. The damage morphologies of various samples tested at 25 s-1 are compared 

in Figure 2-8. The fracture of carbon and aramid specimens tends to localize and all the 

yarn bundles fail at approximately the same location. The distributions of longitudinal 

yarns and stitches/weft yarns at far fields are not evidently altered by the fiber failure. 

Nevertheless, the damage morphologies of basalt and glass fabrics are quite different where 

the energy spreads throughout the entire gage length leading to the damage of the whole 

structure. According to the experimental results summarized in Table 2-2, glass and basalt 

specimens exhibit higher ultimate and maximum strains than carbon and aramid. Therefore, 

the two types of failure may be attributed to the differences in the ductility of various 

materials. Glass and basalt fibers are more ductile compared to other two materials such 

that pronounced plastic deformations are found in the longitudinal yarns before failure. The 

failure modes of all fabrics turn out to be independent of the strain rate while the images 

of the specimens tested at other strain rates are not presented here.  
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Figure 2-8 Damage Morphologies of Various Fabrics Tested at the Strain Rate of 25 s-1 

[89]. 

2.1.3 One-Way Analysis of Variance (ANOVA) 

Tabulated data in Table 2-2 is not sufficiently accurate to determine the significance of 

strain rate effect as a result of the variation of raw data to the mean values. In order to 

investigate the statistically significant relationship between the material parameters and 

strain rate under high speed loads, One-way Analysis of Variance (ANOVA) was 

performed which has been widely adopted for decades [91,92,93]. The statistical results 
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are more valuable especially in the industry field for manufactures to decide the suitable 

material in their production and design [94]. ANOVA uses F-distribution to test the 

equality of three or more population means. 

Table 2-3 summarizes the ANOVA results of tensile strength, toughness, maximum strain, 

ultimate strain and Young’s modulus of basalt fabrics as an example. The term “sum of 

squares” is the sum of the squared deviation of certain parameter as a measure of variability 

in the data; “degrees of freedom” represents the number of factor levels and observations; 

“mean square” is the sum of square divided by degree of freedom; “F0” is the ratio of two 

means square, which is used to test if the null hypothesis can be rejected. In the present 

study, a significance level of 5% (α=0.05) is adopted and the critical value of F is F0.05,2,21 

= 3.24 according to the F-distribution table. Thus the null hypothesis H0 (μ1 = μ2 = μ3 i.e., 

strain rate has no effect) can be rejected if F0>3.24 or P-value is smaller than 0.05. The 

results of the ANOVA reported in Table 2-3 shows that for tensile strength, toughness and 

Young’s modulus, there is a significant difference among the three strain rates since the P-

Values are smaller than 0.05. In the case of maximum strain, the P-value is recorded 

0.3134 > 0.05, indicating that there is no evidence against the null hypothesis that mean 

values of maximum strain under all strain rates are equal. Thus the effect of strain rate on 

the maximum strain of basalt fabrics is insignificant. 

ANOVA was applied to the rest of the fabrics tested at varying strain rates, and the results 

are summarized in Table 2-4. It is found that strain rate has significant effects on tensile 

strength, toughness, maximum strain and Young’s modulus for most of the tested materials. 

A smaller P-value indicates stronger evidence against H0. It can be seen that the strain rate 

effects are significant on all of the mechanical properties of carbon fabrics, while the 
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parameters of aramid fabrics including toughness, ultimate strain and Young’s modulus 

turn out to be more stable with varying strain rates. The strain rate effect on the ultimate 

strain is found to be generally insignificant. 

Table 2-3 ANOVA of Basalt Tensile Strength [89] 

Properties 
Source of 

Variation 

Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Square 
F0 P-Value 

Tensile 

Strength 

Model 1766089 2 883045 41.144 <0.0001* 

Error 450710 21 21462   

Total 2216799 23    

 

Toughness 

Model 935.9 2 468.0 5.057 0.0381* 

Error 1943.5 21 92.5   

Total 2879.4 23    

 

Max. Strain 

Model (1.88)10-4 2 (0.94)10-4 1.227 0.3134 

Error (16.11)10-4 21 (0.77)10-4   

Total (18.00)10-4 23    

       

Ultimate 

Strain 

Model (3.20)10-4 2 (1.60)10-4 2.812 0.0828 

Error (11.94)10-4 21 (0.57)10-4   

Total (15.14)10-4 23    

 

Young’s 

modulus 

Model 4472.1 2 2236.1 11.356 0.0005* 

Error 4135.1 21 196.9   

Total 8607.2 23    

*P-value indicates that the effect of strain rate is statistically significant based on a 5% 

significance level, i.e. α=0.05. 
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Table 2-4 Summary of ANOVA for Various Fabrics [89] 

Material Property F0 P-Value 

Basalt 

Tensile Strength 41.144 <0.0001* 

Toughness 5.057 0.0161* 

Max. Strain 1.227 0.3134 

Ultimate Strain 2.812 0.0828 

    

Carbon 

Tensile Strength 10.013 0.0009* 

Toughness 3.694 0.0422* 

Max. Strain 4.731 0.0201* 

Ultimate Strain 4.174 0.0298* 

    

Glass 

Tensile Strength 33.107 <0.0001* 

Toughness 6.028 0.0085* 

Max. Strain 6.969 0.0048* 

Ultimate Strain 3.253 0.0588 

    

Aramid 

Tensile Strength 19.580 <0.0001* 

Toughness 1.842 0.1832 

Max. Strain 5.565 0.0115* 

Ultimate Strain 1.482 0.2500 

*P-value indicates that the effect of strain rate is statistically significant based on a 5% 

significance level, i.e. α=0.05. 

2.1.4 Weibull Analysis 

To address the variability in the tensile strength of different fabrics as a result of randomly 

distributed imperfections and possible eccentric load, Weibull analysis was conducted 

using a two-parameter model: 

0

( ) 1 exp[ ( ) ]mP





                                         Equation 2-1 

where σ is the tensile strength and σ0 is the reference or scaling value related to the mean 

and m is the Weibull modulus or shape parameter. The cumulative probability density, P 

is estimated as 
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1

i
P

N



                                           Equation 2-2 

where N is the total number of tests and i is the current test number. 

Fitted cumulative distribution functions (CDF) of the different fabrics at varying strain 

rates are compared in Figure 2-9. The Weibull parameters identified from dynamic testing 

are presented in Table 2-5. For the dynamic experimental data, as the strain rate increases, 

σ0 of all the materials increases and the cumulative probability plot shifts towards higher 

stress values, which clearly indicates the positive effect of strain rate on the tensile strength. 

The other parameter m is a measure of the amount of scatter in the responses as the smaller 

m value corresponds to larger variability. Weibull analysis shows that the strain rate effect 

on the variability of glass fabrics is not pronounced indicating its uniform behavior at all 

strain rates selected. However, the m values changed with varying strain rates for the other 

three materials and the smallest values were obtained at 50 s-1. On the other hand, the 

largest data scatters were found in carbon fabric specimens at all strain rates.  

Tensile responses of fabrics are affected by the intrinsic material properties of single fiber, 

stress distribution in different bundles and its propagation. The probability of the existence 

of flaws differs from one yarn to another which leads to various tensile strengths along the 

cross section of the specimen. On the other hand, the initial waviness and slack along the 

length of the filaments leads to unequal stress distribution [95]. As a result, a simultaneous 

state of fracture in different bundles is difficult to be achieved and this irregularity in 

fracture process is responsible for the variability in the experimental response.  
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Table 2-5 Weibull Parameters for the Tensile Strength of Dynamic Data [89] 

Strain Rate (s-1) Material Basalt Carbon Glass Kevlar 

25 
σ0 (MPa) 1126 1590 1105 1574 

m 18.7 11.7 15.5 19.4 

 

50 
σ0 (MPa) 1624 1726 1258 1998 

m 10.3 7.1 16.3 13.3 

 

100 
σ0 (MPa) 1804 2065 1513 1948 

m 14.8 10.8 15.6 19.5 
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Figure 2-9 CDF of Weibull Analysis on the Tensile Strength at Different Initial Strain 

Rate of Various Fabrics: (a) Basalt, (b) Carbon, (c) Glass and (d) Aramid [89]. 

Four types of high performance fabrics of carbon, glass, basalt and aramid were tested at 

strain rates ranging from 1/600 to 100 s-1. The material properties including Young’s 

modulus, tensile strength, ultimate strain, maximum strain, and toughness were 

investigated. ANOVA was conducted to test the statistical significance of strain rate effects 

on the material properties. The following conclusions can be drawn: 
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Larger tensile strength, Young’s modulus and toughness were observed in carbon and 

aramid fabrics while higher ductility was exhibited by glass fabrics. Material properties of 

basalt fabrics were at intermediate level and competitive with other materials at the strain 

rates investigated. 

When the initial strain rate increased from 25 to 100 s-1, average tensile strength, maximum 

strain and toughness of different fabrics were found to increase. While the trend of Young’s 

modulus obtained at different strain rates was not clear. Tensile strengths of carbon and 

aramid fabrics obtained from quasi-static tests were higher than those under dynamic loads, 

which may be due to the non-simultaneous failure of individual yarns observed at high 

strain rates.  

ANOVA with a 5% significance level was applied to the test results to examine the 

statistical significance of the strain rate effects on various material properties. It was found 

that strain rate had significant effects on tensile strength, toughness, maximum strain and 

Young’s modulus for most of the tested materials except on the maximum strain of basalt 

(P-Value of 0.3134), as well as toughness (P-Value of 0.1832) and Young’s modulus (P-

Value of 0.0662) of aramid.  

Weibull analysis was performed on the tensile strength of various fabrics and the model 

parameter σ0 was found to increase with increasing strain rate, which confirmed the 

positive effect of strain rate from a probabilistic point of view. Additionally, uniform 

behavior at all strain rates was obtained in glass fabrics while largest data scatters were 

found in carbon fabrics. 



43 

 

2.2 Characterization of Localized Damage 

SHCC with tensile strain capacity in excess of 3% under quasi-static uniaxial tensile 

loading can be attained with only 2% fiber content by volume [7,8]. The increase in load-

bearing capacity and hardening behavior are attributed to the formation of multiple fine 

cracks, which gives rise to high energy absorption both under quasi-static and dynamic 

loading conditions [96,97]. The superior mechanical properties of SHCC enable many 

possible applications in structures subjected to static and dynamic loads, as primary 

materials for structural elements, reinforcing layers, or strengthening/repair materials 

[7,98,99]. 

The improved ductility, tensile strength and energy absorption of SHCC, results in 

extensive damage characterized by severe cracking andmake it a suitable material in such 

applications. The tensile behavior of a typical SHCC, i.e., made with polyvinyl alcohol 

(PVA) fibers, under low and high strain rates up to 50 s-1 was investigated by Mechtcherine 

et al. [18, 100]. For the tests performed at strain rates of 10−1 s−1 and below, SHCC showed 

a moderate increase in tensile strength and a simultaneous decrease in strain capacity with 

increasing strain rate. The decrease in strain capacity could be traced primarily to a less 

pronounced multiple cracking in comparison to testing under quasi-static conditions. 

However, when tested in the high-speed regime at strain rates from 10 to 50 s−1, a 

considerable increase in tensile strength and strain capacity was measured [18], even 

though no pronounced multiple cracking was visually observed. Similar phenomena were 

observed in a highly dynamic spall experiments on SHCC under strain rates between 140 

and 180 s−1 using the Hopkinson bar [97]. Curosu et al. [101] studied the behavior of high-

strength and normal-strength SHCCs reinforced by high-density polyethylene (HDPE) 
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fibers under quasi-static and impact tensile loading, using the Hopkinson bar at strain rates 

of 150 s−1. Considerable increase in tensile strength and fracture energy and a clear 

decrease in strain capacity, as manifested in the number of cracks were observed at the high 

strain rate.  

Soe et al. [102] performed projectile impact tests on a hybrid-fiber cementitious composite 

panels reinforced with PVA and steel fibers under impact velocities ranging from 300 m/s 

to 657 m/s. The results demonstrated that the samples with combination of PVA and steel 

fibers have increased impact resistance and energy absorption capability than the plain 

concrete. Li et al. [103] investigated the static and impact behavior of extruded sheets 

reinforced with short PVA and glass fibers. Results indicated that PVA fibers increased the 

tensile strain capacity and absorbed energy Despite several studies addressing the dynamic 

behaviors on SHCC, there is still limited information available with respect to the impact 

resistance of SHCC samples subjected to flexure and tensile properties at the medium strain 

rate of 1–100 s−1. 

The objective of the current section is to study mechanical behavior of SHCC under high-

speed tensile loads and address the nature of failure. The strain rates of 25 s-1, 50 s-1, and 

100 s-1 were employed by tensile testing. In addition, DIC was used to obtain the full-field 

deformation, quantitative measurement of strain as well as the crack width response of 

SHCC specimens. 

2.2.1 Experimental Program 

The mix design of the SHCC composition used is shown in Table 2-6. A combination of 

Portland cement 42.5 R and fly ash was used as binder. The aggregate was uniformly 

graded quartz sand with particle sizes ranging from 0.06 mm to 0.20 mm. PVA fibers with 
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a volume fraction of 2.2%, measuring 12 mm in length and 0.04 mm in diameter (Kuraray 

Co., Ltd., Kuralon K-II REC15) were used as reinforcement. A super plasticizer on a 

polycarboxilate-ether basis (SP) and a viscosity agent (VA) were added to the mix in order 

to adjust its rheological properties. Furthermore, some superabsorbent polymer (SAP) was 

added to the mixture as a multi-purpose concrete admixture. The effects of SAP on 

properties of cement-based materials are described, e.g., in [104]. 

The matrix was blended using a bench-mounted mixer of 20 liters’ capacity. The fines and 

sand were homogenized by dry mixing for 30 s. Water mixed with one half of the super 

plasticizer was added into the dry mix during 30 s and mixed for an additional 60 s. PVA 

fibers were added over a period of 30 s and mixed for an additional 180 s. The second half 

of the super plasticizer was added at this stage for 30 s and mixed for another 180 s. The 

mix was cast horizontally in steel molds. The molds were stored for 2 days in a room with 

controlled temperature (T = 25 °C) and humidity (RH = 65%). After demolding the 

specimens were sealed in plastic foil and stored at room temperature until testing. 

2.2.2 Discussion and Analysis 

Figure 2-10(a) shows representative stress-strain curves for SHCC specimens obtained at 

various strain rates (25 s-1, 50 s-1, and 100 s-1). Figs. 2-10(b)-(d) compare the average values 

and standard deviations of the tensile strength, strain capacity and toughness measured at 

different strain rates. The material parameters derived from the measured data are given in 

Table 2-7. Specifically, Figure 2-10(b) compares the direct tensile strength and nominal 

flexural strength at varying strain rates ranging from 2.5 s-1 to 100 s-1. As the strain rate 

increases, nominal flexural strength increases from 12.4 MPa to 13.5 MPa while tensile 

strength increases from 8.1 MPa to 9.9 MPa. Note that the flexural strengths calculated 
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using eqn. (3) are higher than the direct tensile strengths for the same material, even though 

the strain rate is much lower. This is attributed to differences in the stress distribution 

profiles of the two test methods. In the tension test, the entire volume of the specimen is a 

potential zone for crack initiation. Comparatively, in the flexural test, only a small fraction 

of the tension region is subjected to an equivalent ultimate tensile stress. On the other hand, 

strain capacity (strain at peak) and failure strain (5% of maximum load in post-peak) 

increase from 0.86% to 1.82% and 1.67% to 5.21%, respectively. As a result, absorbed 

energy also shows an improvement with the increasing strain rate, from 0.5 J to 1.4 J up to 

peak and 1.1 J to 4.1 J up to failure. The observed trends agree with the studies conducted 

by Mechtcherine et al. [97] on the tensile behavior of dumbbell-shaped SHCC specimens 

at strain rates ranging from 10 to 50 s-1.  

Static tensile tests of SHCC specimens under quasi-static strain rates were previously 

performed by the authors [97], which are presented for comparison with the failure 

behaviors with dynamic results. Figure 2-11 shows the stress-strain curves of the SHCC 

specimens tested at strain rate ranging from 10-5 to 10-2 s-1. While the tensile behavior under 

the very low rate of 10-5 s-1 was characterized by a relatively pronounced strain-hardening 

stage accompanied by multiple cracking, measurably less ductile behavior and less 

multiple cracking were revealed at higher rates (up to 10-2 s-1). The development of multiple 

cracking under tensile loads are affected by multiple factors such as rheological properties, 

fiber distribution, interface bonding strength, fiber strength and effects of strain rate 

[100,47]. Within this range of strain rates the increase in strength, decrease in strain 

capacity and reduced number of cracks are due to an increase in the bond strength between 

fiber and matrix according to the reported pullout experiments performed at different strain 
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rates [105]. As a result of the higher bond strength and relatively lower fiber tensile strength, 

fiber failure becomes more frequent, with a decrease in the frequency of fiber pullout, 

leading to a more brittle failure of the composites. For strain rates in the dynamic range, 

multiple cracking of SHCC specimens are not visible and the composite failure tends to 

localize at the region of macro crack. According to the microscopic observation, fiber 

pullout with an average length of approximately 2.5mm turns out to be the dominating 

failure mechanism and pronounced plastic deformation are observed in PVA fibers 

compared to static loading [97]. Therefore, the high strain capacity and work to fracture 

under dynamic tensile loads are provided by the increased pullout length and fiber plastic 

deformations. 
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(c) 

 
(d) 

Figure 2-10 (a) Tensile Stress-Strain Responses of SHCC at Different Strain Rates; 

Effects of Strain Rate on (b) The Average Tensile Strength, (c) Strain at Peak Load 

(Strain Capacity) and Strain at Failure (5% of Maximum Load in Post Peak), (d) Work-

To-Fracture up to Peak and up to Failure. 
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Figure 2-11 Tensile Stress-Strain Responses of SHCC Tested at Quasi-Static Strain Rates 

Ranging From 10-5 to 10-2 s-1. 

2.2.3 Image Analysis Using Digital Image Correlation (DIC) 

Due to the intrinsic vibrations in dynamic testing, conventional data analysis procedures 

may not sufficiently address the material behavior, hence further study of distributed 

cracking and damage by means of imaging is warranted. When the tension tests are 

conducted at high speed, a high sampling rate in the range of 10-1000 kHz [106] is required 

to acquire sufficient data points within a few milliseconds. Additionally, slipping in the 

grips and the inertial effect of mass of grips and transducers to the samples during dynamic 
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testing may affect the test results and limit experimental accuracy. Therefore, the strain 

measured at an isolated spot or within a gauge length by conventional devices such as 

LVDT, extensometer and strain gage is insufficient to study the inhomogeneous results. 

Digital Image Correlation (DIC), is a non-contacting optical full field deformation 

measurement approach that can better address the complex behavior of this class of 

materials. DIC technique was developed by Sutton et al. [107] and Bruck et al. [108] and 

has been widely applied for composites, and reinforced concrete sections [109,110,111] 

while its application in cement-based composites tested under dynamic loads is limited [46, 

112, 113]. 

In order to perform DIC, an area of interest (AOI) is manually specified and further divided 

into an evenly spaced virtual grid as shown in Figure 2-12(a). The displacements are 

computed at each point of the virtual grids to obtain full-field deformation. The imposed 

red square is the subset (a set of pixels) for tracking the movement of its center point P(x, 

y) from the reference image (before deformation) to deformed images P’(x’, y’), see Figure 

2-12(b). The tracking of subset is conducted using selected correlation functions such as 

cross-correlation (CC) or normalized cross-correlation (NCC) [114]. Subsequently, the 

strain fields can be derived by smoothing and differentiating the displacement fields. A 

commercial software Vic-2D 2009 developed by Correlated Solutions, Inc. was used to 

conduct image analysis.  
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Figure 2-12 (a) Area of Interest (AOI) and Subset in a Reference Image; (b) Schematic 

Presentation of a Reference Subset Before Deformation and the Corresponding Target 

Subset After Deformation. 

The longitudinal strain (εyy) fields of a SHCC specimen tested at 25 s-1 are shown in Figure 

2-13 using a color code with purple representing the lowest strain values and red at 6.0% 

strain. The time associated with incremental steps of strain distribution is indicated below 

each sub-image. The correspondence of each strain map to the experimental stress-strain 

behavior is represented by the numbers 2-4. Damage evolution shows a relatively uniform 

strain distribution at the beginning of the test, a uniform distribution is observed that 

corresponds to the elastic-linear range for both matrix and fiber. As the load increases (t = 

0.1 ms), tensile strain localize above the center of the area of interest (AOI) shown as the 

blue region, indicating the formation of the first crack. After the matrix cracks, the load 

carrying capacity does not vanish as the cracks are bridged by the PVA fibers, leading to 

ductile behavior and stiffening effects.  
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t = 0 ms t = 0.1 ms t = 0.2 ms t = 0.3 ms t = 0.4 ms 

(a) 

 
(b) 

Figure 2-13 (a) Strain Map of SHCC Specimen Tested at 25 s-1; (b) Corresponding 

Stress-Strain Response. 
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t = 0 t = 0.1 ms t = 0.3 ms t = 0.4 ms t = 0.5 ms 

(a)  

     
t = 0 t = 0.1 ms t = 0.2 ms t = 0.3 ms t = 0.4 ms 

(b) 

Figure 2-14 Strain Maps of SHCC Specimens Tested at (a) 50 s-1 and (b) 100 s-1. 

The localized zones grow with increasing load and the color changes from blue to red. 

Macro- and micro-cracks form and grow within the localization zone until the macro-crack 

eventually propagate along the transverse direction of the specimen. The sub-image at t = 

0.4 ms depicts the strain distribution at the end of the test showing the crack widening stage 

ultimately leading to failure. Similar pattern of strain map was also observed in the 

specimens tested at other strain rates (Figure 2-14). 
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yy
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As shown in Figure 2-15, three zones can be identified as: (A) the localization zone in red 

which contains the transverse crack with the majority of the load carried by the fiber phase; 

(B) the shear lag zone in green/blue where the slip between fiber and matrix cannot be 

ignored and the bond stress follows a shear lag pattern; (C) the uniform zone where no 

crack is formed, the composite is behaving linearly and slip is negligible. Identification of 

the three zones have also been observed in textile reinforced concrete (TRC) specimens 

[46]. To quantitatively investigate the strain responses within different zones, regions on 

the surface of a specimen tested at 25 s-1 are selected as shown in Figure 2-16(a). The 

average strains of these regions are plotted as a function of time in Figure 2-16(b). 

Significant variations in the strain values are observed among different zones. The strain 

in zone A is higher than twice of that in B after 0.1 ms, while the uniform strain (<200 µε) 

is much lower compared to other zones. However, the displacement rapidly increased along 

the loading direction and the strain field becames discontinuous across the cracks due to 

crack opening and fiber pullout; thus the excessively large strain values towards failure 

may not be reliable any longer. Sample failure occurred around 0.4 ms when the peak strain 

values are reached. 
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Figure 2-15 Identification of Three Zones: Localization, Shear Lag, and Uniform Strain 

as Well as Corresponding Mechanical Behaviors. 
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Figure 2-16 (a) Stress-Strain Responses Based on DIC Method and (b) Comparison 

Between Regular Analysis and DIC. 

Figure 2-17(a) shows the three-dimensional contour of axial displacement of the same 

SHCC sample at failure with the macro-crack identified as discontinuous displacement. 

The location and width (w) of a certain crack is represented by the y-coordinate and the 

vertical amplitude of the discontinuity. The deformation in between two parallel cracks is 

insignificant compared to w. The distributions of the average displacement field 

represented as two-dimensional curves are shown in Figure 2-17(b) for various stress levels. 

It is clear that the w increases with increasing stress. Figure 2-17(c) shows the stress versus 

time history as well as the evolution of w versus time up to failure. Correlation of crack 

width obtained by DIC with the stress response and expressed as a stress-crack width 

response, is shown in Figure 2-17(d). The linear elastic stage is represented by an almost 

vertical line and extends to the bend over point as the first cracking strength. A pronounced 

strain hardening effect is observed after cracking as the tensile stresses increase with a 

reduced stiffness. The post-peak response is dominated by crack widening, fiber pull out, 

and fracture. 
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Figure 2-17 (a) Longitudinal Displacement Contour of a SHCC Specimen Tested at 25 s-

1, (b) Distribution of Displacement at Four Stress Levels, (c) Crack Width and Tensile 

Stress Versus Time Histories, (d) Stress-Crack Width Response. 
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2.3 Characterization of Distributed Damage 

2.3.1 Multiple Cracking Mechanism  

Tension test is a fundamental and important approach to characterize the nonlinear 

behavior of fiber reinforced concrete. The critical material parameters that can be extracted 

from tensile data include elastic modulus, cracking stress, post-peak stiffness, ultimate 

tensile strength, residual strength, crack width and spacing etc. These parameters are 

required for the analytical and numerical modeling of the flexural behavior of concrete 

beams and slabs. With the help of novel technique applied in the field such as digital image 

correlation, indirect measurement of softening zone size is also available [115]. 

Figure 2-18 illustrates the schematic tensile stress-strain behavior of TRC represented by 

initiation cracking that leads to multiple cracking mechanism. Four distinct stages of the 

stress-strain curve are identified. Stage 1 corresponds to the linear-elastic range where both 

matrix and the fiber behave linearly and the rule of mixture is applicable. The linear elastic 

stage is terminated by the initiation of first crack at point A, when the matrix cracking 

strength σm,cr, which is generally referred to as the bend over point (BOP) is reached. Stage 

2 represents the stage between the initiation of the first crack and its propagation across the 

width of the sample which may cover a sufficiently notable stress range for large fiber 

contents. The stiffness gradually degrades in stage 3 by the formation of distributed cracks 

at regular intervals. The load carrying capacity of uncracked matrix segments does not 

vanish, as referred to tension stiffening. After the completion of cracking phase and 

initiation of debonding, progressive damage takes place in Stage 4 by means of crack 

widening due to fiber pull out and fracture.  
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Figure 2-18 Schematic Presentation of the Tensile Behavior of TRC Including (a) Tensile 

Stress-Strain Evolution, (b) Multiple Cracking Mechanism [115]. 

The parameters measured from static and high speed tensile tests with the strain rate 

ranging from 10-5 up to 100 s-1 have been addressed for a variety of TRC materials with 

glass, polypropylene, polyethylene, carbon, and natural fibers in the following studies 

[44,116]. Results indicate that the strain rate, when used as a variable, is affected by the 

textile type, bonding mechanism, monofilament vs. roving bundle, number of layers, 

volume fraction, sample length and stiffness [117,118]. For example, the average tensile 

strength of TRC reinforced by glass textile varied from 15.4 MPa [119] to 20.1 MPa [120] 

as the number of layers increased from 6 to 8. Silva et. al [45] reported that both tensile 

strength and work-to-fracture of glass TRC exhibited pronounced improvements as the 

strain rate increased from 10-4 to 50 s-1. 
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(a) 
 

(b) 

Figure 2-19 (a) Sechematic Drawing and (b) Setup of the Testing System With High 

Speed Camera [115]. 

2.3.2 Strain Rate Effects 

A finely grained matrix was used in making the mortar and TRC samples with the mix 

design summarized in Table 2-6. The average slump flow value measured with a small 

cone (bottom diameter 100mm, top diameter 60mm, height 70mm) was 200mm. Polymer-

coated biaxial fabric made of AR-glass was used in 3 layers as reinforcement. The degree 

of reinforcement was calculated for one layer of fabric in volume as 66.33 mm2/m in both 

longitudinal and transverse directions. The fineness and the mean spacing of the weft and 

warp threads were 2*640 tex and 7.2 mm, respectively. Dispersed ARG with an average 

diameter of 14μm and length of 6 mm were used in a total volume fraction of 0.5%. The 

ARG has a density of 2.68 g/cm3, tensile strength of 1700 MPa and Young’s modulus of 

72 GPa and disperse in water and distributed in the mixture as single mono-filaments. 

Slender rectangular plates, with 50 mm gauge length, 25 mm wide and 10 mm thick, were 

produced using a lamination technique to ensure the identical spacing between fabric layers 
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and symmetry by calculating and weighing the exact matrix content per layer in advance. 

The plates were demolded at the age of two days and stored in water until the age of 7 days 

and then transferred to a climate-controlled room at 20 °C and 65% RH until the age of 28 

days.  

Table 2-6 Matrix Composition (kg/m³) [115]. 

Water-to-binder ratio 0.37 

CEM III B 32.5 NW-HS-NA 632 

Fly ash 265 

Micro silica suspension* 101 

Fine sand  0/1 947 

Water 234 

Superplasticizer 11 

* solid:water = 50:50 

The dynamic tensile tests were conducted using a MTS high-speed servo-hydraulic testing 

machine with a load capacity of 25 kN operating under open-loop at a maximum speed of 

14 m/s. The tensile test apparatus with set up of a Phantom v7 high speed camera are 

presented in Figure 2-19 [121]. The load was measured by a Kistler 9041A piezoelectric 

force link (load washer) with a capacity of 90 kN, rigidity of 7.5 kN/μm and frequency 

response of 33 kHz. A high speed digitizer (up to 10 MHz) collected the force and the 

stroke LVDT (0.025 mm resolution) signals. The speed of the actuator was controlled by 

the servo-valve and the nominal strain-rate was measured from the stroke rate and sample 

gauge length. The full size length pictures recording cracking and failure of different 

samples were captured at a sampling rate of 10,000 fps.   

Four different types of specimens including plain mortar, mortar with addition of ARG, 

TRC, and TRC with addition of ARG defined as Mortar, TRC, Mortar-ARG and TRC-

ARG specimens to designate that short fibers are used respectively. Samples were tested 

at nominal strain rates of 25 s-1, 50 s-1, and 100 s-1 and parameters addressing stress-strain 
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curves, tensile strength (peak stress), strain capacity (strain at peak stress), maximum strain, 

and work-to-fracture were collected. The work-to-fracture was evaluated using the total 

area under load vs. displacement curve as a measure of energy absorption capability.  

Representative stress-strain curves of all the systems studied are shown in Figure 2-20 with 

the accompanying results tabulated in Table 2-7. Since the actuator displacement records 

both the sample deformation and the slippage in grips, thus the term “apparent strain” is 

used. Brittle failure was observed for Mortar and Mortar-ARG specimens, and their tensile 

strengths can be related to the first cracking strengths of TRC specimens. Oscillations in 

the response of specimens tested at 25 s-1 and 50 s-1 are traced back to the effects of system 

ringing which can result in a stress amplitude ranging from 2 to 7 MPa [44]. The test 

duration of 100 s-1 was only about 0.8 ms with the stress reaching peak value at about 0.5 

ms while for the other two strain rates the durations ranged from about 3-6 ms. Modal 

analysis [122] conducted previously on the testing system has shown that ringing effects 

are present in the responses at 25 and 50 s-1 with a more pronounced stress amplitude at 50 

s-1, however these effects diminish at 100 s-1. Therefore, the stress oscillation in Figure 2-

20(a) and (b) is the coupled result of specimen failure and system ringing. The crack 

spacing calculated based on the recorded images was correlated with the applied strains 

and plotted in Figure 2-20(c) and (d). The measurements and macrocrack patterns do not 

seem to be affected by the strain rate under the dynamic loading regime: the saturated mean 

crack spacing is approximately 10 mm and not a function of strain rate. However, the 

addition of ARG reduced the final mean crack spacing as discussed in the next session. 

The average tensile strength and work-to-fracture of all samples are compared in Figure 2-

21(a) and (b). Compared to the Mortar and Mortar-ARG specimens, significant 
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improvements in tensile strength and work-to-fracture can be observed in TRC and TRC-

ARG samples. The enhanced energy absorption capability is attributed to multiple 

mechanisms that include elastic energy of longitudinal yarns, interfacial debonding and 

pull out, as well as energy due to failure at the mechanical anchorage. Yarn anchorage is a 

main benefit of textile over conventional fibers and is offered by the crimped geometry of 

the longitudinal yarns and the restraint from transverse yarns at the junctions [123]. The 

estimated elastic energy of longitudinal yarns using equation ALEεult
2/2 (A = composite 

cross sectional area, L = gauge length, E = Young’s Modulus of fiber, εult = ultimate tensile 

strain) is about 4% out of the total energy absorbed with E = 70 GPa and εult = 1%. 

Therefore, the major component of the work-to-fracture is attributed to the nonlinear 

dissipative mechanisms. As summarized in Table 2-7, the tensile strength of TRC increased 

from 26.5 to 31.2 MPa as strain rate increased from 25 to 50 s-1, but slightly decreased to 

30.0 MPa at 100 s-1. On the other hand, the work-to-fracture dropped from 18.2 to 17.4 and 

15.0 as strain rate increased. Since the variation of strain rates (25 to 100 s-1) in the present 

study is not sufficiently large, its effect may not be very pronounced. Direct tensile tests of 

Mortar and Mortar-ARG specimens may be affected by high stress concentrations at the 

grip and unstable fracture due to the low matrix strain capacity which results in a high 

scatter in the data. No clear trend of the strain rate effect can be observed from Mortar and 

Mortar-ARG samples at the dosage rates studied. 
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Figure 2-20 Stress-Strain Responses of (a) TRC and Plain Mortar, (B) TRC-ARG and 

Mortar-ARG Specimens, Mean Crack Spacing-Strain Responses of (c) TRC and (d) 

TRC-ARG at Varying Strain Rates [115]. 
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When ARG was added to TRC composites, the average tensile strength slightly decreased 

both at strain rates of 25 s-1 (from 26.5 MPa to 25.3 MPa) and 100 s-1 (30.0 MPa to 24.4 

MPa), while it increased from 31.2 MPa to 35.9 MPa at 50 s-1. The strain capacity, 

maximum strain, and work-to-fracture decreased as well. Similar trends were also found 

in Mortar specimens. Earlier studies have shown that addition of discrete short glass fibers 

usually increases the work-to-fracture but decreases the strain capacity and maximum 

strain under static tensile tests while the improvement in the tensile strength is moderate 

[124,125]. There are two opposing mechanisms: short fibers’ positive contribution to 

strength and energy absorption versus the negative effect of increased porosity due to fiber 

addition to a relatively small specimen size. Decreases in strain capacity and maximum 

strain were attributed to the mitigation of cracking by short fibers that enables the finer 

crack pattern and smaller crack width as confirmed in the next section by DIC. Additionally, 

the enhancement in bond strength leads to a reduction in pull out displacement at maximum 

load. Therefore, the total deformation measured by the stroke is reduced and subsequently 

decreases in strain capacity and maximum strain are observed. On the contrary to static 

tensile test results [124, 125], the decrease in work-to-fracture may be attributed to the 

interaction among the porosity, strength, and strain rate. Similar behavior was also 

observed in larger plates containing textiles and short fibers [45]. Further work is needed 

to address the multi-scale phenomenon and interaction of different mechanisms.    
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Figure 2-21 Average Tensile Strength (b) Average Work-to-Fracture of All the Materials 

Tested at Varying Strain Rates [115]. 
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Table 2-7 Experimental Results of All the Specimens Tested at Various Strain Rates 

[115]. 

Specimen 

Nominal 

Strain 

Rate 

Tensile 

Strength 

Strain 

Capacity 
Max. Strain 

Work-to-

fracture 

(s-1) (MPa) (%) (%) (J) 

Mortar 

25 5.8 1.06 1.67 0.69 

 (1.1) (0.13) (0.16) (0.05) 

50 5.3 1.60 3.19 1.41 

 (0.7) (0.42) (0.45) (0.2) 

100 2.4 1.36 4.79 0.86 

 (0.3) (0.18) (0.58) (0.25) 

Mortar-ARG 

25 5.1 0.52 1.23 0.46 

 (0.7) (0.09) (0.12) (0.05) 

50 1.8 1.27 3.09 0.41 

 (0.5) (0.6) (0.81) (0.15) 

100 3.0 1.58 4.17 0.86 

 (1.2) (0.56) (0.61) (0.17) 

TRC 

25 26.5 6.06 7.62 18.20 

 (1.7) (0.96) (0.65) (1.16) 

50 31.2 3.64 6.59 17.42 

 (2.7) (0.78) (1.24) (2.76) 

100 30.0 5.21 7.31 14.97 

 (7) (1.28) (1.06) (4.65) 

TRC-ARG 

25 25.3 5.98 7.13 15.94 

 (1.4) (0.6) (0.97) (2.9) 

50 35.9 5.16 7.78 20.50 

 (1.1) (1.65) (0.75) (2.5) 

100 24.43 5.07 6.89 13.8 

  (2.06) (0.77) (0.69) (0.8) 
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When ARG was added to TRC composites, the average tensile strength slightly decreased 

both at strain rates of 25 s-1 (from 26.5 MPa to 25.3 MPa) and 100 s-1 (30.0 MPa to 24.4 

MPa), while it increased from 31.2 MPa to 35.9 MPa at 50 s-1. The strain capacity, 

maximum strain, and work-to-fracture decreased as well. Similar trends were also found 

in Mortar specimens. Earlier studies have shown that addition of discrete short glass fibers 

usually increases the work-to-fracture but decreases the strain capacity and maximum 

strain under static tensile tests while the improvement in the tensile strength is moderate 

[124, 125]. There are two opposing mechanisms: short fibers’ positive contribution to 

strength and energy absorption versus the negative effect of increased porosity due to fiber 

addition to a relatively small specimen size. Decreases in strain capacity and maximum 

strain were attributed to the mitigation of cracking by short fibers that enables the finer 

crack pattern and smaller crack width as confirmed in the next section by DIC. Additionally, 

the enhancement in bond strength leads to a reduction in pull out displacement at maximum 

load. Therefore, the total deformation measured by the stroke is reduced and subsequently 

decreases in strain capacity and maximum strain are observed. On the contrary to static 

tensile test results [124,125], the decrease in work-to-fracture may be attributed to the 

interaction among the porosity, strength, and strain rate. Similar behavior was also 

observed in larger plates containing textiles and short fibers [45]. Further work is needed 

to address the multi-scale phenomenon and interaction of different mechanisms.    

2.3.3 Temperature Effects 

Recent work has addressed the effect of temperature on the fiber and matrix interfacial 

properties and thus the mechanical performance of composite. Bhat et. al [126] studied the 

effect of temperature on PVA reinforced strain hardening cement composites (SHCC) and 
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documented the degradation in fiber/matrix interfacial properties at temperatures below or 

equal to 200 °C. Silva et al. [127] used TRC reinforced with carbon fibers heating up to 

temperatures of 150 °C and showed that in polymer coated carbon fiber TRC, an 

interlocking mechanism between filaments and matrix is observed which results in 

significant increases in the maximum pull-out load. Krüger and Reinhardt [68] conducted 

fire tests on four different I-shaped mortar beams reinforced with AR-glass and carbon 

textiles. Due to the softening of the styrene-butadiene rubber (SBR) coating (at about 90 °C) 

the fiber–matrix interface was impaired, resulting in fiber pull-out and subsequent failure. 

This session presents the results of high-speed tensile testing in the formation of parallel 

cracking and strain distribution of TRC with various textiles. Full field displacement 

mapping techniques to address the strain distribution were applied to multiple TRC 

samples. Mechanical properties of textiles and TRC samples were obtained at temperatures 

of -30, 25 and 80 °C. Finally, a tension stiffening model was used to compute the load 

deformation response as well as the crack spacing evolution.  

Figure 2-22 shows the three types of textiles used in the present study: 1) laminated alkali-

resistant (AR) glass that is coated with sizing and referred to as SG; 2) warp-knitted AR-

glass without sizing and referred to as GL; 3) warp-knitted polypropylene-glass hybrid 

referred to as PP. Table 2-8 includes the properties and dimensions for the various textiles 

where weft is in the transverse direction and warp is in the longitudinal direction. The 

knitted textiles with glass or polypropylene yarns were produced using a commingling 

setup at Institut für Textiltechnik der RWTH Aachen [128]. 
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(a) 

 

(b) 

 

(c) 

Figure 2-22 Close-up Pictures of (a) Laminated AR-Glass Textile (SG), (b) Warp-Knitted 

AR-Glass Textile (GL), and (c) Warp-Knitted Polypropylene Textile (PP). Weft: 

Horizontal and Warp: Vertical [46]. 

Table 2-8 Geometrical and Mechanical Characteristics of Textiles [46] 

Material 
Warp 

(90°) 

Weft  

(0°) 

Knitting 

Yarn 

Yarn 

Count 

(Weft or 

Warp) 

[tex] 

Density 

[g/cm3] 

Fiber 

modulus 

(Gpa) 

Fiber 

ultimate 

tensile 

strength 

(MPa) 

Laminated 

AR-Glass (SG) 
SG SG - 1200 - 78 1360 

AR-Glass (GL) AR AR 
PES  

(167 tex) 
1200 2.68 78 1360 

Polypropylene 

(PP) 
PP AR 

PES  

(167 tex) 
400 0.9 6.9 500 
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TRC samples were prepared with 4 layers of textiles using the pultrusion process developed 

by Peled, et al. [129]. The mixture proportions are as follows: 800g cement, 160g fly ash, 

290 ml water (water/binder ratio 0.3), 0.5% superplasticizer by mass of cement. The 

samples were prepared on a plate as layered sheets of 250 × 300 mm in dimension and 

subjected to a constant pressure of 0.5 MPa. Panels were cured in water at 20+1 C for 28 

days.  Specimens of 25 mm x 11 mm in cross section and 150 mm in length were cut from 

the plates. Aluminum plates were glued onto the gripping edges of the specimen to 

minimize localized damage. In addition, single-layer plain textile samples with dimensions 

of 25 mm x150 mm were also tested under same conditions. The gauge length of was 50 

mm for both textile and TRC specimens. High speed tensile tests were performed on both 

plain textile and TRC specimens under three different temperatures: -30 ○C, +25 ○C, and 

+80 ○C. A stroke rate of 5.08 m/s was chosen to obtain a nominal strain rate of 100 s-1. 

Figure 2-23 presents the dynamic tensile stress versus time history of a SG-TRC specimen. 

From a macroscopic perspective, the bend over point (BOP) corresponds to the formation 

of matrix cracking. Five distinct stages are identified using roman numerals with two stages 

prior to and three stages after BOP. Stage I corresponds to the elastic-linear range where 

both matrix and the fiber behave linearly. Due to relative low fiber content, the stiffness of 

the composite is dominated by matrix properties. Stage II is associated with formation and 

propagation of the first crack in the matrix, until it traverses the entire width up to the BOP 

point.   
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Figure 2-23 Stress Versus Time History of a SG-TRC Specimen Under High Speed 

Tensile Load [46]. 

After the formation of the first crack, additional cracks also initiate at approximately 

regular intervals and begin to propagate across the specimen width. The post-BOP stage 

III is characterized by distributed cracking and textile bridging mechanisms. The load 

carrying capacity of intact matrix segments between parallel cracks does not vanish and is 

referred to as tension stiffening effect. As applied load increases, more cracks form until 

the characteristic damage state (CDS) where no more cracks can develop due to the 

inability of the fibers in transferring sufficient load back into the matrix. After completion 
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of cracking phase and initiation of debonding in Stage IV, progressive damage that includes 

crack widening, textile delamination and pull-out leads to the ultimate failure during stage 

V. 

Table 2-9 summarizes the average values and standard deviations of test results. The slack 

in the yarns due to unequal length, twist, and curvature variations requires a modification 

to the direct use of the nominal cross sectional area of textiles. Thus the total forces applied 

onto the test specimens were reported in comparing the textiles and TRCs while the 

determination of tensile stress was only applicable to TRC specimens. Figure 2-24 

represents the force versus strain responses of GL-textile and TRC as well as the typical 

failure pattern of GL-textile specimen.  

The range of maximum load and work-to-fracture for GL-textiles were 2561-3367 N and 

2.6-4.2 J, respectively. The imperfections in alignment or initial slack of warp yarns may 

cause the material to fail before a uniform stress in all the fibers is reached. As shown in 

Figure 2-24(d), the failure initiated from one yarn bundle leads to sample rotation under 

eccentric load and results in a lower actual strength compared to an average strength value. 

The effects of imperfections and initial slack were less pronounced in TRCs due to the 

redistribution of the load by the matrix through interfacial load transfer, as well as the 

anchorage offered by the fill yarns. As a result, the maximum force almost tripled in GL-

TRCs (up to 7615 N) due to the composite action that eliminated such testing effects and 

improved the tensile properties.  
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Figure 2-24 Force-Strain Responses for GL-TRC and Textile Replicates at (a) 25 °C (b) -

30 °C and (c) 80 °C and (d) Typical Failure Pattern of Textile Specimen [46]. 

Figure 2-25 compares the force versus strain responses of various TRCs at different 

temperatures and shows the typical failed samples. Multiple cracking and pronounced 
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textile pull-out were observed both for GL-TRC and SG-TRC. The work-to-fracture for 

GL-TRC specimens was in the range of 35.7-46.8 J which was approximately 6 times 

higher than textiles. The enhanced energy absorption capability is attributed to multiple 

dissipation mechanisms including formation of crack surfaces, interfacial debonding, pull-

out, and failure at the mechanical anchorage points. The maximum load of SG-TRC tested 

under room temperature was 4329±170 N while the values were 5995±115 N and 

4620±156 N under low and high temperatures, respectively. The maximum work-to-

fracture was in the range of 12.9-16.1 J which was more than twice of plain textiles. Unlike 

the GL- and SG-TRCs, failure mode of the PP-TRC was dominated by the fiber fracture 

due to relatively lower tensile strength of polypropylene. The maximum loads for PP-TRCs 

were 2151±177 N, 2856±371 N and 2198±271 N under room, low and high temperatures, 

respectively. The average maximum work-to-fracture was in the range of 10.5-16.8 J. It is 

noted that the while the work-to-fracture of PP textiles were higher than the two glass 

textiles, an opposite trend was found in TRC specimens. With a higher ductility of 

polypropylene compared to glass fibers, the higher energy absorbed by PP textiles was 

clear, however the energy dissipation mechanisms such as textile pull-out resulted in a 

substantial increase in the work-to-fracture observed in GL-TRC specimens.  
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Figure 2-25 Representative Force-Strain Responses at Varying Temperatures for (a) GL-

TRC, (b) SG-TRC, (c) PP-TRC and (d) Tested Specimens [46]. 

(d) 
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Figure 2-26 compares the tensile strength, work-to-fracture and postcrack tensile stiffness 

of various TRCs at different temperatures. A decreasing trend of tensile strength with 

increasing temperature was observed for the GL-TRC, from 38.1 MPa at -30 ○C to 23.4 

MPa at 80 ○C. Similarly, the highest tensile strength of 30 MPa and 14.3 MPa for SG- and 

PP-TRC specimens were obtained at -30 ○C, while the effect of elevated temperature was 

less pronounced. Additionally, decreases in postcrack stiffness with increasing temperature 

were also found in all TRCs. The postcrack stiffness of GL-TRC was the highest (459.7 

MPa) followed by SG (354.5 MPa) and PP (199.2 MPa) at room temperature. Postcrack 

stiffness of GL- and SG- TRCs compared to PP-TRC at all temperatures was higher due to 

the relatively higher stiffness of glass textiles. Additionally, the tension stiffening effect 

and load carrying capacity of the intact matrix between two parallel cracks can also be 

enhanced by the interfacial bond stiffness. Therefore, the higher postcrack stiffness of GL-

TRC compared to SG-TRC at room temperature indicates better bonding characteristics of 

the warp-kitted glass textile due to the effect of coating. This aspect of study will be further 

discussed in next section.  
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Figure 2-26 (a) Tensile Strength, (b) Postcrack Stiffness, and (c) Work-to-Fracture of 

Various TRCs at Different Temperatures [46]. 
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Table 2-9 Experimental Parameters for High Strain Rate Test for Various TRCs [46] 

Material 

  

Temp.  
Strain        

(at Peak) 

Max. 

Force 

Tensile 

Strength 

Max. 

Strain 

Work-to-

fracture 

Postcrack 

Stiffness 

°C mm/mm N MPa mm/mm J MPa 

GL 

-30 
0.055 7615 38.1 0.14 46.8 624.5 

(0.012) (80) (0.4) (0.045) (0.01) (62.0) 

25 
0.084 5761 28.8 0.177 35.7 459.7 

(0.014) (141) (0.7) (0.027) (2.53) (40.0) 

80 
0.074 4679 23.4 0.159 43.0 368.3 

(0.009) (52) (0.3) (0.002) (3.5) (25.7) 

SG 

-30 
0.075 5995 30 0.103 14.1 627.7 

(0.007) (115) (0.6) (0.006) (3.9) (46.9) 

25 
0.112 4329 21.6 0.121 16.1 354.5 

(0.017) (170) (0.8) (0.098) (1.2) (24.7) 

80 
0.08 4620 23.1 0.097 12.9 389.4 

(0.01) (156) (0.8) (0.012) (1.6) (56.9) 

PP 

-30 
0.06 2856 14.3 0.191 16.8 468.2 

(0.024) (371) (1.9) (0.005) (1.2) (1.9) 

25 
0.05 2151 10.8 0.164 13.5 199.2 

(0.008) (177) (0.9) (0.075) (0.42) (35.9) 

80 
0.073 2198 11 0.155 10.5 164.2 

(0.007) (271) (1.4) (0.015) (1.0) (5.6) 
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 Table 2-10 Experimental Parameters for High Strain Rate Test for Various Textiles [46] 

Material 
Temp. 

Strain 

(at Peak) 
Max. Force* Max. Strain 

Work-to-

fracture 

°C mm/mm N mm/mm J 

GL 

-30 0.031 (0.006) 3044 (828) 0.052 (0.007) 4.2 (1.3) 

25 0.027 (0.007) 3367 (704) 0.049 (0.015) 4.2 (0.4) 

80 0.024 (0.005) 2561 (425) 0.038 (0.008) 2.6 (0.8) 

SG 

-30 0.062 (0.014) 2767 (213) 0.097 (0.008) 7.5 (1.5) 

25 0.043 (0.007) 1541 (215) 0.125 (0.013) 5.2 (1.1) 

80 0.064 (0.016) 2425 (198) 0.11 (0.033) 7.4 (2.7) 

PP 

-30 0.047 (0.007) 2360 (203) 0.127 (0.023) 9.3 (1.1) 

25 0.055 (0.016) 2578 (220) 0.117 (0.028) 9.3 (1.7) 

80 0.044 (0.006) 2350 (380) 0.11 (0.014) 7.7 (1.8) 

* Force for 4 layers of textiles 

2.3.4 Image Analysis Using Digital Image Correlation (DIC) 

Figure 2-27(a) shows the contour of longitudinal displacement of a TRC sample tested at 

25 s-1 with all the cracks formed. The sequential formation of five individual cracks is 

indicated in the figure. The distribution of the displacement field is shown in Figure 2-27(b) 

for various stress levels with the cracks identified as the discontinuities in the displacement. 

The location and width (ω) of a certain crack is represented by the x-coordinate and the 

vertical amplitude of the discontinuity. The deformation in uncracked segment between 

two parallel cracks is insignificant compared to ω. Figure 2-27(c) shows the evolution of 

five cracks and the mean response versus time up to failure. The stress versus time history 

is also plotted indicating the loading level. The cracks behaved differently as much larger 

openings were observed for cracks 1 and 3 near the grips compared to those of cracks 4 

and 5. And according to high speed images, failure occurred at crack 3. 
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Figure 2-27 (a) Longitudinal Displacement Contour of a TRC Specimen Tested at 25s-1, 

(b) Distribution of Displacement at Seven Loading Stages, (c) Crack Width and Tensile 
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Stress Versus Time Histories, (D) Stress-Crack Width Responses of Representative 

Specimens [115]. 

The mean crack widths obtained by DIC were then correlated with the stress responses of 

representative samples, as shown in. Figure 2-27(d). The linear elastic stage (no crack 

formed) is represented by an almost vertical line and extends to the bend over point as the 

first cracking strength, approximately from 2.9 to 4.2 MPa. Pronounced strain hardening 

effect was observed after cracking as the tensile stresses increased with a reduced stiffness. 

The experimentally obtained stress-crack width responses are characterized by three 

parameters: first-cracking strength, post-cracking stiffness and residual strength. The TRC-

ARG samples exhibit smaller crack widths and higher post-cracking stiffness at equivalent 

stress levels. 

The longitudinal strain (εyy) fields of four types of specimens tested at 25 s-1 are shown in 

Figure 2-28 using a color code with purple representing the lowest strain values and red at 

5.0% strain. Due to the inherent brittleness of matrix, only one macro crack formed in the 

Mortar sample and the addition of short fibers at a low volume fraction (0.5%) did not 

change the failure mode for Mortar-ARG sample, see Figure 2-28(a) and (b). Tensile strain 

concentrated in the vicinity of the crack while the far-field was uniformly deformed. 

Previous studies on the tensile behavior of strain-hardening cement-based composites 

(SHCC) containing 2% of short polyvinyl-alcohol fiber however showed that in such a 

ductile material only very few cracks formed under high strain-rate loading [18,97]. Figure 

2-28(c) and (d) show the strain map of TRC and TRC-ARG samples, respectively. Figure 

2-28(d) illustrates the damage evolution such that at the beginning of the test (σ = 3.1 MPa), 

a relatively uniform strain distribution in accordance with linear-elastic stage (Stage 1) was 

obtained. As σ increased to 6.1 MPa, two bands in blue were formed indicating matrix 
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cracking and onset of nonlinear behavior. Increasing tensile stress (σ = 16.7 MPa) resulted 

in additional transverse cracks into multiple fracture bands. Saturation of transverses cracks 

was coincident with maximum tensile stress (σ = 19.5 MPa) with three identified zones as: 

(A) the localization zone in red which contains the transverse crack with the majority of 

the load carried by the textile phase; (B) the shear lag zone in green/blue where the slip 

between fiber and matrix cannot be ignored and the bond stress follows a shear lag pattern; 

(C) the uniform zone where no crack is formed, composite is behaving linearly and slip is 

negligible. The fiber stress variation along the length reaches a maximum level in the 

bridge zone (A) and minimum value at the “perfectly bonded” zone (C). Similar pattern of 

strain map was also observed in the specimens tested at other strain rates.  

 

     
    σ = 0.8 MPa  σ = 2.9 MPa          σ = 4.1 MPa           σ = 4.3 MPa         σ = 2.6 MPa 

(a) 
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    σ = 0.8 MPa  σ = 2.0 MPa          σ = 4.0 MPa           σ = 3.4 MPa         σ = 3.0 MPa 

(b) 

 

     
    σ = 3.7 MPa  σ = 7.4 MPa          σ = 16.1 MPa           σ = 18.7 MPa         σ = 25.8 MPa 

(c) 
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    σ = 3.1 MPa  σ = 6.1 MPa          σ = 16.7 MPa           σ = 19.5 MPa         σ = 21.6 MPa 

(d) 

Figure 2-28 Strain Fields (εyy) Obtained by DIC for Various Specimens Tested at the 

Strain Rate of 25 s-1: (a) Plain Mortar, (b) Mortar-ARG, (c) TRC and (d) TRC-ARG 

[115]. 

The three distinct zones identified by DIC observations are shown in Figure 2-29. The 

strain map is selected from Figure 2-28(d) at σ = 19.5 MPa and the corresponding 

distribution of longitudinal strain along the length of specimen is shown in the lower sub-

figure of Figure 2-29. The distance is normalized with respect to the length of AOI (in this 

case LAOI = 44 mm) and different zones are separated by the dashed lines. The behaviors at 

zones A, B and C, can be modeled as an σ-ω relationship, nonlinear bond stress-slip 

relationship, and with a linear stress-strain relationship, respectively. These three models 

are integrated in a finite difference model introduced in next session. Additionally, crack 

spacing (s) and the width of localization zone (hL) were measured from the DIC data. 
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Figure 2-29 Identification of Three Zones: Localization, Shear Lag, Uniform Strain and 

Corresponding Modelling Approaches [115].  
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Figure 2-30 (a) Zone Labels, (b) Strain Versus Time Responses in Selected Zones, (c) 

Comparison of Stress-Strain Responses Between DIC and Experimental Measurements, 

(d) Time History Responses of DIC and Stroke Displacement [115].  
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The strain variation as a function of time in different zones and the average response of a 

TRC-ARG specimen are presented in Figure 2-30. Selection of representative regions in 

localization (A1 and A2), shear lag (B1 and B2), and uniform (C1 and C2) is shown in 

Figure 2-30(a). Additionally, a horizontal line (L1) was selected to represent the average 

displacement along the bottom edge of the specimen. Significant variances in the strain 

values was observed among different zones of Figure 2-30(b). The maximum strain of 8.9% 

in zone A is about three times of that in B (2.9%), while the uniform strain (<0.3%) is much 

lower compared to other zones. As a result of crack opening and fiber pullout, the 

displacement rapidly increased along the loading direction and the strain field became 

discontinuous while crossing the cracks; thus the excessively large strain values are no 

longer reliable. Sample failure occurred around 4.4 ms when peak strain values were 

reached.  

Correlation of the DIC strain with the stress response and conventional stress-strain curve 

is shown in Figure 2-30(c). The displacement function measured by DIC along line L1 is 

plotted against the LVDT signal in Figure 2-30(d). The actuator response includes spurious 

displacement such as grip slippage, sample rotation, and large inhomogeneous crack 

opening displacements. The apparent strain and experimental displacement were therefore 

larger than DIC measured properties in the multiple cracking stage although in the linear 

elastic stage, results were quite comparable.  

The width of localization zone (hL) is equivalent to a development length needed for the 

force transfer from fiber to matrix in order to reach the critical stress necessary for matrix 

cracking, see Figure 2-31(a). The characteristic damage state (CDS) is a strain level where 

no more cracks in the matrix can develop due to the inability of the fibers in transferring 
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sufficient load back into the matrix and correlates with the final crack spacing. The role of 

bond parameters in formation of additional cracks and slip related multiple cracks are 

expressed in terms of hL and s representing the crack spacing. Parameters hL and s for 15 

individual TRC and TRC-ARG specimens were measured using DIC and their probability 

distribution functions are expressed as a two parameter Weibull distribution [130]:   

 ( ) 1 exp[ ( ) ]kx
P 




                                         Equation 2-3 

Where x is the measured parameters (hL or s), λ is the reference or scaling value related to 

the mean and k is the Weibull modulus or shape parameter. The cumulative distribution 

function (CDF) of hL and s as shown in Figure 2-31(b) and (c) indicate that the mean value 

of hL decreased from 7.4 to 6.5 mm with addition of short fibers, (Figure 2-31(b)) as well 

as spacing s reduced from 10.3 to 8.4 mm (Figure 2-31(c)). This measurement confirms 

the role of short fibers in mitigating and bridging the micro cracks in bond enhancement. 

At the microstructural level, short fibers improve the bond by means of active load transfer 

and crosslinking with hydration products thus a greater number of micro-cracks serve as 

nuclei for macro-crack formation [131]. Addition of short fibers supports stress transfer 

across cracks as well as crack deflection mechanisms, both of which play a role in 

toughening. Therefore, stress relaxation of the matrix in the vicinity of cracks is less 

pronounced and a smaller development length is needed, hence cracks form more closely. 

As a result of narrower localization zones, finer crack pattern and smaller crack widths 

were obtained.  
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Figure 2-31 (a) Correlation of Localization Zone Width (hL) With Development Length 

to Achieve Cracking Strength, and Curve Fitting of Weibull CDF for (b) Localization 

Zone Width (hL) and (c) Crack Spacing (s) [115]. 
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Strain fields (εyy) of various TRCs are shown in Figure 2-32 using color legends with purple 

representing the lowest strain values and red at 3.0% - 5.0% strain. Figure 2-32(a) shows 

the time-lapse images of SG-TRC illustrating the longitudinal strain distribution with 

increasing stress level. At the beginning of test, the strain is uniformly distributed 

throughout the specimen in accordance with the elastic-linear stage (Stage I) until the 

tensile stress σt reaches 4.1 MPa. Tensile strain localizes in the regions of blue and green 

implying crack initiation and strain concentration in Stages II and III. After the matrix 

cracks, its load carrying capacity does not diminish in the uniform zones in purple since 

the load is still transferred through intact interfaces. Increasing tensile stress results in 

additional transverse cracks and multiple localized zones accompanied by a rapid increase 

in tensile strain. The consecutive crack formation is followed by crack widening, extensive 

debonding, textile pull-out and ultimate failure, as shown in the final sub-image. It is also 

observed that the far field strains drop back to relatively lower levels which can be traced 

back to the elastic recovery of textiles and crack closure. Similar strain map and cracking 

behavior can be observed in the other two systems as shown in Figure 2-32(b) and (c).   

The area and length parameters where textile debonding and pull-out occur are crucial 

parameters that relate interfacial characteristics to the failure pattern and energy dissipation. 

These parameters are measured at different loading stages using a proposed three-step 

process which includes: image region cropping, color threshold, determination of outline 

and measurement, as shown in Figure 2-32(d) [ 132 ]. Results show that GL-TRCs 

demonstrate larger area and length of slip zones prior to failure than PP-TRCs which may 

be attributed to the spacing between the fill yarns as well as the strength and stiffness of 

the junction bonds between the warp and fill yarns. The failure modes compared in Figure 
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2-25(d) show that the textile debonding and pull-out are more pronounced in GL-TRCs 

compared to PP-TRCs which experienced more fiber fracture. The high ductility observed 

in these samples demonstrated by distributed cracks as compared to the single crack occurs 

in plain matrix is associated with the energy dissipation due to debonding and pull-out of 

textile. The strain relaxation of the matrix in the vicinity of the crack within a region 

parallel to the crack faces is an indicator of internal debonding since the force is being 

transferred and carried by the textile in that region. The length slip zone along the 

longitudinal loading axis is therefore implying the extent of debonding and textile sliding 

which contribute to frictional energy dissipation. Larger slip zones may be associated with 

higher energy dissipated during the test which is supported by the experimental results 

showing higher work-to-fracture values of GL-TRC specimens compared to PP-TRC. 

Intermediate level of work-to-fracture, slip zone size and mode of failure are observed in 

the SG-TRC specimen. Different failure modes can be explained by the interaction of fiber 

tensile strength and interfacial bond strength. Once the shear stress between fiber and 

matrix reaches the bond strength, fiber debonding takes place and the slip zone is formed. 

Load transfer between glass fibers and matrix may still be active at higher composite stress 

levels (e.g. 27.2 MPa as shown in Figure 2-32(b)) while PP-TRC fails at lower stresses (11 

MPa in Figure 2-32(c)) and the mechanism terminates. The average lengths of slip zone at 

the main cracks where failure occurs for SG-, GL- and PP-TRCs are about 7 mm, 9 mm, 

and 10 mm respectively, as labeled in Figure 2-32(d). It is noteworthy that the distances 

between weft yarns (cf. Figure 2-22) as 5 mm for SG textile, 10 mm for GL and PP textiles, 

respectively, correlates with the measured lengths of slip zones. This observation supports 
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the role of mechanical anchorage provided by the weft yarns in preventing the slip of warp 

yarns such that the slip zones are limited between two adjacent weft yarns.   

 During the transverse cracking stage, the load transfer between the matrix and the bridging 

fibers is an indication of the continuity of total force across the crack, however the stress 

continuity can only be modeled by means of the shear lag theory. The bond parameters 

play an important role in the mechanism, ultimately leading to additional cracks associated 

with parallel cracking. The fiber stress varies along the length of fiber from maximum level 

in the bridge zone and diminishes in the perfectly bonded zone. Using a simplified 

assumption, three zones were defined as: (A) localization zone around the transverse crack 

where the majority of the loads is carried by the fiber phase; (B) shear lag zone associated 

with an excessively higher strain in the fiber such that the slip between the fiber and matrix 

cannot be ignored; (C) the uniform zone where the slip is negligible and rule of mixtures 

is applicable. 

The strain variation as a function of time history and position in six selected rectangular 

regions for a SG-TRC specimen (Figure 2-32(a)) are presented in Figure 2-33. The 

selection of different regions is shown in Figure 2-33(a) where A1 and A2 represent 

localization zone, B1 and B2 are in the shear lag zone, C1 and C2 correspond to the uniform 

zone. Significant variations in the strain values from localization to uniform zones are 

observed as shown in Figure 2-33(b). The maximum strain of 7.8% prior to sample failure 

in zone A is more than twice of that in B (3.2%), while the uniform strain (<0.2%) is 

negligible compared to other zones. As a result of crack opening and textile pull-out, the 

displacement rapidly increases along the loading direction and the strain field loses its 

continuity across the cracks. The excessively large strain values up to 13.9% in zone A2 
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are no longer reliable. Sample failure takes place around 2.2 ms when peak strains in 

multiple regions are reached. In the post peak range, strains in both zones A and B are 

found to drop for about 50% of peak values which can be explained by the elastic recovery 

of textile and closure of cracks. 

A comparison of the stress-strain curves measured from DIC method with conventional 

analysis is shown in Figure 2-33(c). The initial stiffness measured by means of actuator 

deformation is fairly low due to possible slippage and spurious displacements in the grips, 

resulting in a lower dynamic friction coefficient. DIC measurements however exclude rigid 

body motion and a more accurate strain response within the linear elastic stage is obtained. 

The stress-strain responses of three selected specimens are shown in Figure 2-33(d) where 

the five distinct stages of damage evolution can be easily distinguished.  

 

 

 



104 

 

 

     
σt = 0.0 MPa, 

Aslip = 0% 

σt = 4.1 MPa, 

Aslip = 2.7% 

σt = 8.1 MPa, 

Aslip = 21.8% 

σt = 13.4 MPa, 

Aslip = 50.4% 

σt = 0.2 MPa, 

Aslip = N/A 

(a) 

 

     
σt = 0.0 MPa, 

Aslip = 0% 

σt = 6.8 MPa, 

Aslip = 5.7% 

σt = 17.1 MPa, 

Aslip = 9.6% 

σt = 27.2 MPa, 

Aslip = 50.1% 

σt = 8.1 MPa, 

Aslip = N/A 
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σt = 0.0 MPa, 

Aslip = 0% 

σt = 3.7 MPa, 

Aslip = 2.7% 

σt = 7.0 MPa, 

Aslip = 3.3% 

σt = 11.0 MPa, 

Aslip = 3.0% 

σt = 4.5 MPa, 

Aslip = 43.1% 

(c) 

 
(d) 

Figure 2-32 Time Lapsed Images Showing the Development of Strain Field for (a) SG, 

(b) GL, (c) PP TRCs, and (d) Measurement of Slip Zone Area [46]. 
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Figure 2-33 (a) Region Selection, (b) Strain Versus Responses of Selected Regions, (c) 

Comparison Between Image Analysis and Conventional Analysis (d) Representative 

Stress-Strain Responses of Various Composites Based on DIC Approach [46]. 
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3. TENSION STIFFENING MODEL 

3.1 Model Basis 

A finite difference method developed by Soranakom and Mobasher [133, 134] was used to 

simulate the tension hardening behavior in TRC and TRC-ARG specimens. The material 

model consists of three homogenized phases: matrix, textile, and interface. Since a mean 

distribution of textile yarns in multiple layers is assumed, the locations of longitudinal 

yarns were not specified. A tension specimen is idealized as a series of 1-D segments 

consisting of fiber, matrix, and interface elements with constitutive laws of each phase 

specified in Figure 3-1(a) including: matrix, longitudinal yarn stress-strain, and interface 

bond–slip models. The effect of transverse yarns through the mechanical anchorage is 

represented by a nonlinear spring model. The matrix stress-strain model is linear elastic 

and specified by its elastic modulus Em and cracking strength σm,cr. Similarly, tension model 

of textile is characterized by modulus Ef and ultimate tensile strength σult. The bond-slip 

relationship is based on the fiber/textile pull out tests [135, 136] and associated follow up 

models [137, 138]. The dashed lines indicate the secant modulus k at the slip value s, which 

is used to compute the force applied at the node. A parameter representing the efficiency 

of the yarn stiffness ( < 1) is defined to represent the limitations in bonding which lead to 

telescopic or sleeve effect [139]. This parameter has been quantified by experiments on 

sleeve filaments which are partially bonded to matrix and contribute to axial stiffness while 

the core filaments provide marginal stiffness due to unbonded yarns [140]. Using a uniform 

strength distribution along the length of specimen and a deterministic sequential crack 

evolution, the first crack occurs at the center, then at the end grips, followed by 1/4, 1/8 

and 1/16 points until crack saturation case is obtained, see Figure 3-1(b).  
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Figure 3-1 (a) Mechanical Behavior of a Cracked Composite Specimen: Matrix Cracking 

Criterion, Interface Bond–Slip Model, Longitudinal Yarn Tensile Stress–Strain 

Relationship, Mechanical Anchorage Provided by Cross Yarn Junctions as Nonlinear 

Spring Model and (b) Deterministic Matrix Strength Distribution and Crack Location 

[115].  

Figure 3-2(a) presents the discretized finite difference model of the cracked specimen with 

the total embedded length L discretized into N nodes of equal spacing, h. Transverse yarns 

are simulated by means of springs attached to the nodes at cross yarn junction providing 

resistance to pullout force. Once cracking takes place, the specimen is divided into smaller 

segments Ls
(1), Ls

(2),… Ls
(q) with each segment containing n(q) number of local nodes, where 
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q is the segment index. An additional node is inserted at the crack location such that each 

cracked segment has its own end nodes and the problem can be solved independently. Free 

body diagrams of representative nodes are shown in Figure 3-2(b), where si = nodal slip, 

Fi = nodal fiber force, Bi = nodal bond force, Gi = nodal spring force. The equilibrium 

equations can be derived in terms of the primary unknown variable slip s, defined as the 

difference between the deformations of the longitudinal yarn with respect to the matrix: 

1

( )
i

i

x

y m

x

s dx 


                                     Equation 3-1 

Where εy and εm are yarn and matrix strains distributed along the differential length, dx. 

For typical low fiber volume fraction, the axial stiffness of the yarn AfEf is considerably 

lower than the matrix term AmEm and the contribution of matrix elongation to slip is ignored. 

Thus, the slip s and yarn strain εy are simplified to:  
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

                                 Equation 3-2 

Nodal equilibrium equations are constructed and each nodal force is expressed as the 

product of slip by stiffness. A global system of equations including stiffness matrix [C], 

nodal slip vector {S}, and force vector {T} was subsequently obtained as follows:  

,[ ] { } { }n n n nC S T                                           Equation 3-3 

 



111 

 

 
Figure 3-2 Finite Difference Model: (a) Discretized Fabric Pullout Model, (b) Free Body 

Diagram of Six Representative Nodes Labeled as “A”-“F”, (c) Distributions of Slip, 

Matrix Stress, Fiber Stress and Bond Stress [115]. 

Once the solution of nodal slip values is obtained, the corresponding stress, strain and crack 

spacing can be subsequently computed. Set up, assembly, as well as the solution algorithm 

of equilibrium equations based on several parametric studies were discussed [133,134,141]. 

Figure 3-2(c) schematically presents the distributions of slip, matrix stress (σm), fiber stress 

(σf) and bond stress (τ) in cracked segments. The tension force in both longitudinal yarns 

and matrix are positive values, while the distribution of the stress in matrix and fiber change 

in accordance with the placement of cracks. However, the load carrying capacity of matrix 

in the uncracked segments does not diminish as a sign of tension stiffening effect. The load 

carried by the fiber is transferred back to matrix and σm is maximized at the center line of 

each cracked segment. As the load increases and σm reaches matrix cracking strength σm,cr, 
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new cracks form. Following a shear lag pattern, the bond stress varies from its maximum 

at the crack to a value of zero at bonded region. 

3.2 Application in Tensile Behaviors 

3.2.1 Effects of Different Textiles 

The model parameters used to simulate the experimental stress-strain and crack spacing 

responses include: Young’s modulus and first cracking strength of matrix Em = 30 GPa, 

σm,cr = 4 MPa, Young’s modulus and tensile strength for glass fiber Ef,GL = 78 GPa, σfu,GL 

= 1360 MPa and for polypropylene fiber Ef,PP = 6.9 GPa, σfu,PP = 500 MPa, efficiency 

factor η = 0.45. The bond-slip relationship is based on the fiber/textile pull-out tests 

[135,136] and associated follow up models [138]. A base level bond-slip model shown in 

Figure 3-3(a) with an initial stiffness of 5.33 MPa/mm and the bond strength of 2.8 MPa 

was used for parametric study. Figure 3-3(b) shows the varying simulated composite tensile 

stress-strain and crack spacing-strain responses where increases in the postcrack stiffness 

and decreases in final crack spacing were observed as the bond strength increased from 1 

to 3 times of the base level. Higher bond strength increases the load carrying capacity of 

intact matrix segments but decreases the interfacial slip. This reduces the composite tensile 

strain at equivalent loading level and represented as a higher postcrack stiffness. On the 

other hand, steeper slope and higher bond strength of the bond–slip relationship 

proportionally increases the force transfer rate (Force/Length) to the matrix. As a result, 

the development length to achieve the cracking strength is reduced and a finer crack pattern 

with smaller final crack spacing can be obtained. 
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Figure 3-3 (a) Interfacial Bond Model Used in Tension Stiffening, (b) Effect of Bond 

Strength on Postcrack Tensile Responses and Average Crack Spacing, (c) Experimental 

and Numerical Tensile Stress-Strain Response of GL and SG-TRCs at Room 

Temperature, (d) Experimental and Numerical Tensile Stress-Strain Response of GL-

TRCs Under Different Temperatures [46]. 
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Figure 3-3(c) shows that as the bond strength increased from 50% to the full base level, 

simulated stress-strain responses covered the range of experimental data for GL- (high 

stiffness) and SG-TRCs (low stiffness) at room temperature. As previously discussed, the 

slope of initial experimental response was fairly low due to the spurious displacement so 

that only postcrack responses were compared to the simulated responses. This is indicated 

by a cut-off line, and as predicted by finite difference model, the lower postcrack stiffness 

of SG-TRC may be caused by the lower bonding strength due coating. This effect was less 

pronounced at high and low temperatures. It was also observed that the postcrack stiffness 

reduced as the temperature increased from -30○C to 80○C. Such a temperature dependence 

of postcrack stiffness was captured by finite difference model as shown in Figure 3-3(d) 

where bond strength increased from 0.5 to 3 times of base level. Correlation of experiment 

and simulation indicated higher interfacial bond strength of TRC at low temperature. 

Simulations of the experimental responses for all three TRC systems tested at room 

temperature and the used bond-slip models are presented in Figure 3-4. The finite 

difference model was able to accurately predict the stress-strain responses of various TRC 

specimens up to failure as shown in Figure 3-4(b). A lower value of postcrack stiffness of 

PP-TRC can be traced back to the low tensile stiffness of polypropylene yarns. The crack 

spacing was measured from the high speed images taken at room temperature. The smallest 

average crack spacing was observed for PP-TRC, while SG-TRC exhibited the largest 

crack spacing, see Figure 3-4(c). The crack spacing responses agree with the crack patterns 

of different TRC samples shown in Figure 2-25(d) and DIC observations. The failure 

pattern of SG- and GL-TRC specimens was characterized by significant fiber pull-out 

while PP-TRC was subjected to fiber fracture due to the low tensile strength of 



116 

 

polypropylene. Even though the tensile strength and stiffness of PP-TRC were lower than 

the other two systems investigated, the strain capacity of polypropylene yarns 

demonstrated an efficient bond with cement matrix as indicated by the finer crack pattern 

using the bond-slip models shown in Figure 3-4(a).  

High-strain rate tensile tests (100 s-1) were performed for three types of textiles and TRC 

systems under three different temperatures of -30, 25, and 80 ○C. Distributed cracking and 

tension stiffening effect were observed for all three TRC systems indicating efficient stress 

transfer mechanism. The following conclusions can be drawn from the present work: 

The highest tensile strength of 38.1 MPa and work-to-fracture of 46.6 J were observed in 

the GL-TRC specimens at -30 ○C. Composites with strength ranging from 10.8 to 14.3 

MPa under varying temperatures were obtained from PP-TRCs. Tensile strength decreased 

with increasing temperature for the GL-TRC, from 38.1 MPa at -30 ○C to 23.4 MPa at 80 

○C. Similarly, the highest tensile strength of 30 MPa and 14.3 MPa for SG- and PP-TRC 

specimens were obtained at -30 ○C, while the effect of elevated temperature was less 

pronounced. A descending trend in postcrack stiffness for various TRCs with increasing 

temperature was observed. The postcrack stiffness of GL-TRC was found to be the highest 

(459.7 MPa) followed by SG (354.5 MPa) and PP (199.2 MPa) at room temperature.   

The digital image correlation (DIC) method is a powerful tool to address the complex and 

nonhomogeneous deformations in TRC systems. Non-uniform distribution of longitudinal 

strain was observed in contrast with the assumption of conventional data analysis, and three 

zones of localization, shear lag, and uniform strain were documented based on the shear 

lag theory. The variations in longitudinal strain values among different zones were captured 

by quantifying the strain behaviors. Maximum strain in localization zone was more than 
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twice of that in shear lag zone, while the uniform strain term was insignificant compared 

to other zones. Measurements of the size and length of the slip zones based on image 

analysis approach was proposed as an indication of the textile pull-out and sliding region 

which contributes to frictional energy dissipation. Larger slip zones measured from GL- 

and SG-TRC specimens were correlated with longer pull-out regions. The DIC method 

enabled an indirect measurement of the internal load transfer between the textile and matrix. 

The tension stiffening model accurately simulated the crack spacing and stress-strain 

behaviors of the TRC under high speed loading conditions. Higher postcrack stiffness of 

GL-TRC specimens compared to SG-TRC at room temperature was predicted by 

increasing the bond strength of the bond-slip model. The effect of temperature on the 

interface properties was simulated by the temperature dependence of the model parameters 

of bond properties. Additionally, the bond-slip models used to simulate various TRC 

specimens indicated more efficient bond characteristics of polypropylene yarns to matrix 

which greed with the observations of finer crack patterns in PP-TRC. 
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Figure 3-4 (a) Interfacial Bond-Slip Models, Simulations of (b) Tensile Stress-Strain and 

(c) Average Crack Spacing-Strain Responses for Three TRC Systems [46]. 

3.2.2 Effects of Short Fibers 

The model was used to simulate the experimental stress-strain and crack spacing responses 

with the following material parameters: Em = 30 GPa, σm,cr = 3 MPa, Ef = 70 GPa, σult = 

2000 MPa, η = 0.7. Nonlinear bond and spring models are shown in Figure 3-5. The 

required maximum bond strength τmax used for simulation of the TRC-ARG specimens is 

twice as that of TRC. As shown in Figure 3-6(a) and (b), the finite difference model 

accurately predicted the experimental stress-strain and crack spacing-strain responses of 

the specimens tested at 100 s-1. The higher simulated post-cracking stiffness and lower final 

crack spacing are attributed to higher bond strengths. Figure 3-6(c) compares the mean and 

standard deviations of experimentally measured final crack spacing values of all the 

samples at different strain rates by means of the error bar, where the effect of short fibers 
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on the reduction of the final crack spacing at all strain rates is clearly evident. Strain rate 

effects on crack spacing is evident for the TRC samples, while only a marginal sensitivity 

is observed for TRC-ARG. This could lead to a simplifying assumption to uncouple and 

specify a strain rate independent final crack spacing. Parametric studies showed that as τmax 

increases from 2 to 8 MPa (with all other model parameters held constants), the simulated 

final crack spacing decreased from 12.5 mm to 6.25 mm, as indicated by horizontal lines. 

In the finite difference model, higher bond stiffness or a steeper slope of the bond–slip 

model proportionally increases the force transfer rate to the matrix, thus the development 

length is reduced and a finer crack pattern is obtained. This agrees well with the previous 

discussions in this paper on the role of short fibers.   

  
Figure 3-5 Material Models for the Simulation of Experimental Results: (A) Bond-Slip 

Model, (B) Nonlinear Spring Model (Identical for Both TRC and TRC-ARG Specimens) 

[115].  
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Figure 3-6 Comparison of Experimental and Numerical (A) Tensile Stress-Strain 

Responses and (b) Crack Spacing for TRC and TRC-ARG Specimens Tested at 100 s-1, 

(C) Parametric Study on the Influence of Bond Strength on Final Crack Spacing With a 

Summary of All the Experimental Measurements [115]. 

High speed tests of four types of TRC specimens at three nominal strain rates of 25 s-1, 50 

s-1, and 100 s-1 were conducted using a high rate servo-hydraulic testing machine and the 

crack distribution parameters based on digital image correlation (DIC) method were 

measured. Results indicate an increase in tensile strength and decrease in work-to-fracture 

with rising strain rate for the TRC specimens. Finer crack patterns were observed with 
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addition of short fibers at all strain rates which is attributed to the role of short fibers in 

bridging the micro-cracks and enhancing load transfer. Crack width evolution measured by 

DIC method was correlated with experimental stress response and a pronounced strain 

hardening effect was observed. The addition of short fibers reduced the crack width and 

improved post-cracking stiffness.  

The DIC measurements of the complex strain fields represented a non-uniform distribution 

of longitudinal strain consisting of three main zones: localization, shear lag and uniform 

strain. The strain behavior in each zone was addressed by means of three competing models: 

stress-crack width, bond stress-slip, and composite stress-strain relationships. These 

models were eventually used as the damage criteria for the finite difference model. 

Localization zone width (hL) and saturated crack spacing (s) as important parameters for 

modelling of FRC materials were directly measured using DIC method. Both these 

measures decreased with the addition of short fibers, indicating the improvement in bond 

characteristics. The finite difference model accurately predicted the crack spacing and 

stress-strain behaviors by addressing distributed damage in TRC systems. The parametric 

study showed that the final crack spacing was reduced by increasing the interfacial bonding 

stresses confirming the role of short fibers which agreed well with experimental and DIC 

investigations. 

3.3 Application in Sequential Cracking Caused by Drying Shrinkage 

Steel fibers have been used as the primary reinforcement in concrete slabs on grade for 

more than four decades. Since the early stage applications, a better control of the opening 

of the sawn joints with addition of steel fibers have been observed. The horizontal and 

vertical movements at the shrinkage relieving joints can result in serviceability issues due 
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to failure at the joint including joint edge chipping, uplift, and corner flexural cracks. 

Omitting the shrinkage joints to obtain a joint free floor, is then very advantageous and 

durable. While it is understood that cracking will not be eliminated, crack width can be 

sufficiently reduced by the fibers such that a non-critical pattern of controlled and 

distributed cracks is obtained. The parameters influencing these responses are discussed 

and a predictive model for crack opening calculation is presented [142].  

3.3.1 Parameters Affecting the Drying Shrinkage Cracking  

The slab geometry, boundary conditions, steps in sequential cracking and uplift due to 

restrained drying shrinkage are illustrated in Figure 3-7. Evaporation from the surface 

imposes a non-uniform shrinkage strain which in the presence of restraint, causes tensile 

stresses and cracking [143]. A deterministic pattern of sequential cracking in Figure 3-7(a) 

initiates with the first crack in the center of slab, followed by cracks that reduce the slab 

length into halves, as shown in Figure 3-7(b). The uplift of the slab at the corner joint, also 

referred to as the curling is modelled as the tip deflection of a cantilever beam, see Figure 

3-7(c). The main parameters affecting drying shrinkage are placed into three categories: 1) 

concrete matrix properties such as the internal porosity, moisture content, potential free 

shrinkage strain, tensile cracking strength; 2) internal cracking restraint due to the addition 

of fibers, modelled as a stress-crack width relationship; 3) slab geometry and external 

boundary conditions in terms of evaporation rate, degree of restraint due to the base friction. 

Interaction of these aspects are discussed in the following sections. 

In addition, ground settlement or swelling also changes the boundary conditions of a slab 

and contribute to cracking but are not considered here. Construction related issues such as 

transportation, installation, and finishing of the slab can also adversely affect the drying 
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shrinkage rate. Excessive concrete temperatures, long duration hauls in transit mixer, 

addition of water on site, failure to protect the slab from wind may affect the initial stages 

are also problematic but not addressed directly. A successful joint free floor needs the 

minimum contraction and restraint along the edges, around columns, or re-entrant corners. 

The effect of these parameters are discussed under the assumption that sufficient care has 

been exercised to alleviate the known potential stress concentration areas and the slab is 

analyzed and built following a simplified 1-D state of stress using the state of the art 

procedures.  
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Figure 3-7 Schematic Presentation of Sequential Cracking in the Slab on Grade Due to 

Drying Shrinkage: (a) Three Main Aspects Affecting Cracking Behavior; (b) Sequential 

Formation of Cracks and Horizontally Crack Opening; (c) Slab Curling at Joint/Crack 

[142]. 
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Primary parameters that adversely affect drying shrinkage include: water content, high 

mortar content, cement with high shrinkage characteristics, and admixtures [ 144 ]. 

Aggregate related issues associated with dirty, or poor shrinkage quality are not addressed.  

Excessive water content increases the porosity and the rate of moisture loss as the main 

contributor to shrinkage potential [145]. Addition of high range water reducing admixtures 

(HRWRA) or superplasticizer may increase the shrinkage especially when the water 

content is not reduced correspondingly. Low aggregate content, a low coarse/fine ratio, 

dirty aggregates, may increase the water demand and increase shrinkage. Aggregates with 

low stiffness also increase the shrinkage. While the effect of aggregates quality and content 

on the shrinkage is well accepted, in the present study in order to minimize the number of 

variables, free shrinkage strain is directly used as an input to the model which inherently 

takes into account the contribution of the aggregate type and content. 

It is assumed that the effect of cement type is secondary as the rate of hydration and the 

particle size affect the pore structure development with time. Hence plastic shrinkage is 

likely to be more influenced than ultimate shrinkage. The cement content is also not 

discussed as a primary parameter since it generally ranges between 300 and 350 kg/m3 of 

CEM-type I depending on the floor type and installation. The concrete strength is in the 

range of C25-30 or C30-37 correspondingly. Effect of air content for the interior 

applications is assumed to be a secondary factor as well.  

Mixtures with low W/C ratios are not practical for installation, compaction, and finishing 

for a typical slab in an enclosed building where paving machines are not accessible. The 

use of HRWRA is necessary to meet the requirement of minimum fluidity and reduce the 

water content to limit the overall shrinkage. In the empirical model, the combined effect of 
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water content and HRWRA is introduced as a single factor. The effect of HRWRA when 

the water content is not reduced is introduced using coefficient λ that ranges from 1.05-

1.35 as a function of 0.45 < W/C < 0.65 and represented as a linear response: 

0.2125
W

1.75
C

                                                Equation 3-4 

It is well known that fibers reduce the free shrinkage contraction and delay the associated 

cracking [146]. Randomly distributed-closely spaced fibers significantly extend the micro-

cracking stage before a visible surface crack is observed by means of bridging the 

microcracks and resisting their growth into macrocracks [147,148,149]. Important fiber 

parameters include the aspect ratio, shape, and the volume fraction [150], which influence 

the fiber-matrix bond and the stress-crack width relationship. Measurements of maximum 

crack width show an inverse correlation with the product of fiber concentration and aspect 

ratio [151]. Bakhshi and Mobasher [152] developed a test method to characterize the 

evaporation parameters and simulating the sequential cracking in cement paste. Role of 

fibers in reducing both crack width and area was confirmed by the image analysis technique 

and analytical model [153]. 

In order to account for the fiber shape and anchoring, Mangat and Azari [146] defined a 

parameter for different fiber geometries as µm, which is assigned as 0.04 for straight, 0.08 

for hooked, and 0.12 for undulated steel fibers. The µm influence is integrated in the 

formulation but the amplitude of variation does not mean that undulated fibers perform as 

much as three times better than hooked fibers to control the cracking.  

The degree of base frictional restraint varies significantly with different slab weight and 

friction coefficient which represents the interlock mechanism to a significant extent. The 
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frictions restrict the slab from floating freely so that the slab and its base are considered as 

two bonded layers resisting the stresses depending on stiffness. The higher is the stiffness 

of the grade against frictional sliding, the more restraint is provided. It is observed from 

field trials that the crack opening of a joint free floor tends to be less when the support has 

a higher stiffness or interlock value.  

Table 3-1 Interface Coefficient of Friction Values μs [142] (Data Compiled From Chia et. 

al [154], Lee [155] and Maitra et. al [156])  

Base course Number Category μs 

Stott [157]  

Fine aggregates 

 

   Smooth mortar 1 0.3 

   Crushed limestone 2 0.4 

Friberg [158]   

   Sand-loam with paper 3 1.5 

Chia et. al [154]   

   Sand-mix asphalt with single layer of     

polyethylene sheet 
4 0.9 

   Sand-mix asphalt with double layer of 

polyethylene sheet 
5 0.5 

Lee [155]  

Coarse aggregates 

 

   Sand and gravel 6 1.1 

   Graded broken stone 7 1.3 

Sparkes [159]  

Cement/concrete 

 

   DLC with polythene sheet 8 1.2 

   Clinker with waterproof paper 9 1.9 

Suh et al. [160]   

   Clinker 10 3.2 

Venkatasubramanian [161]  

WBM 

 

   WBM with tar paper 11 2.4 

   Saturated WBM 12 7.8 

Note: 

WBM = water bound macadam. 

DLC = dry lean concrete. 
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While the estimation and/or measurement of frictional forces are difficult to attain, the 

friction coefficient is empirically related to the modulus of subgrade reaction k in this paper. 

The recorded settlement is back-calculated according to both theories of Westergaard 

elastic base and Boussinesq’s E modulus. Using the test method E, testing disk radius R, 

and the Poisson coefficient υ of the grade, k is calculated as [162]: 

22(1 )

G

G

ER
k





 


                             Equation 3-5 

The correlation of the slab restraint parameter, μs as a function of modulus k is proposed as: 

 s  + Ln k                                                    Equation 3-6 

The constant α needs to be calibrated to accommodate varying base conditions. Chia et. al 

[154] carried out push-off tests to evaluate the friction coefficient between concrete 

pavement slab and base under multiple conditions. Lee [155] proposed a model to 

determine the friction of concrete slab on different base materials. Maitra et. al [156] 

provided a summary of the coefficient values reported by different researchers. 

Experimentally measured and simulated friction coefficients covering varying slab and 

base materials as well as interface conditions are summarized in Table 3-1. Equation 3-6 

is plotted with varying α of 1.0, 3.0 and 6.0 against these values, as shown in Figure 3-8. It 

is observed that the computed μs values cover most of the experimental results which vary 

widely from 0.3 to 7.8 for different base courses. After calibrating the empirical model 

with the finite difference model and field measurements, α = 1.35 is selected in this specific 

study.    
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Figure 3-8 Comparison of Coefficient of Friction Values Between the Proposed Equation 

and Measured Results (Saturated WBM Is Not Shown in This Figure) [142]. 

3.3.2 Empirical Crack Opening Model 

Based on the discussion of different parameters, the following empirical expression is 

proposed for the prediction of the crack opening ω in mm of a SFRC joint free slab: 
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                                                Equation 3-7 

Where L is the length of the original slab in mm. However as a single crack forms in the 

slab, in order to simulate the formation of additional cracks, the length between the existing 

crack and slab end can be considered as a new overall length and the model applied all over 

again. The parameter R, representing the tensile strain, changes from 2x10-4 to 5x10-4 as 

the W/C ranges from 0.50 to 0.65. High W/C indicates an increased amount of free water 

and capillary porosity as the source of the drying shrinkage. The strain can be expressed in 

terms of W/C as follows: 

4(20 8) 10R

W

C
                                          Equation 3-8 

The coefficient µm varies from 0.04 for straight to 0.08 for hooked and to 0.12 for undulated 

fibers as discussed earlier. The relationship of fiber volume content Vf and weight fraction 

is expressed such that a fiber dosage rate Wf of 25-50 kg/m³ corresponds to Vf of 0.32-

0.60%: 

0.012786f fV W                                           Equation 3-9 

The parametric study, comparison with finite difference model and simulation of field 

measurements are performed in the following sections. 

3.3.3 Finite Difference Based Tension Stiffening Model 

In order to further calibrate and verify the applicability of empirical equation, a numerical 

model addressing the tension stiffening using finite difference method (F-D model) 

developed by Soranakom and Mobasher [133] was used. The approach simulated the 
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sequential formation of multiple cracks and opening responses due to shrinkage. Figure 3-

9 presents a schematic drawing of a model slab with the parameters that define three 

distinct mechanisms governing the cracking behavior: (1) matrix cracking criterion, (2) 

frictional force at the base, (3) the combination of fiber stiffness and interface bond–slip 

characteristics, in accordance with the three primary aspects affecting drying shrinkage 

discussed previously. 

The tensile stress-strain model of matrix is governed by the elastic modulus of matrix Em, 

and its cracking strength at σm,cr, as shown in Figure 3-9(a). The base friction is defined in 

terms of equivalent distributed nonlinear springs providing the resistance force as a 

function of slip [138], which can be related to the coefficient of friction μs. The modelled 

fiber and matrix interactions include a linear bond-slip response in crack free stage or 

segment and a stress-crack width relationship at crack. The stress-crack width relationship 

essentially correlates with the post peak responses of bond-slip model as the crack width 

is proportional to the interfacial slip and the bridging stress can be converted to bond stress 

by means of equilibrium condition [163, 164, 165]. A complete bond-slip model including 

linear and nonlinear branches is therefore employed to address both situations (Figure 3-

9(c)).   

A cracked slab under tension is idealized as a series of segments and the slab length L is 

discretized into N nodes with nonlinear springs attached, see Figure 3-9(e). When the 

tensile stress in the matrix reaches σm,cr, a cracking process starts taking place. The 

specimen is divided into smaller segments Ls
(1), Ls

(2),… Ls
(q) and each contains n(q) number 

of local nodes, where q is the segment index. An additional node is inserted at the crack 
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location such that each cracked segment has its own end nodes and the problem can be 

solved independently.  

 

Figure 3-9 Mechanical Behavior and Finite Difference Model of Cracked Fiber 

Reinforced Cement Composite: (a) Matrix Strength for Cracking Criterion, (b) Nonlinear 

Spring Model Simulating the Frictional Force, (c) Stress-Crack Width Model, and (d) 

Cracked Cement Composite, (e) Arrangement of Nodes and Springs, (f) Distribution of 

the Slip on Cracked Specimens [142]. 
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Figure 3-9(f) shows slip distribution in cracked segments with a positive slip for sliding to 

the right and negative to the left. The directions of bond stress and spring force follow the 

sign convention of slip. Further details of construction and assembling of equilibrium 

equations and solution strategy can be found in the original work [141]. Once the slip 

distributions are solved, corresponding stress, strain, crack width and crack spacing 

responses can be subsequently obtained. 

Figure 3-10 presents the imposed free shrinkage strain to the model. As the hardened 

concrete loses its capillary water to the environment, free shrinkage takes place and the 

humidity profile h(z) through the thickness of concrete slab is simplified to follow the 

Fick’s law of diffusion: 

 ( ) ( ) ( )s s ih z h h h erf z                                         Equation 3-10 

where z is the distance measured from the outside surface inward the specimen, hs and hi 

represent the humidity (fraction) at the outside and inside surface, and erf(z) represents the 

error function [166]. A cubic function is used to relate the free shrinkage strain to the 

humidity profile [152]: 

3( ) ( )(1 ( ) )sh shz t h z                                         Equation 3-11 

where εsh(t) is the free shrinkage strain as a function of time. To simplify the problem to a 

1-D case, the distribution of free shrinkage strain is idealized as uniformly distributed, and 

in the case of slab curling to a linear distribution across the thickness. The shrinkage strain 

ranges from about 400 to 900με in various materials and conditions were reported [167, 

148, 30,168, 145]. The average strain in the range of 200-500 με was used for F-D model.  

1
( ) ( )R shz z dz

h
                                              Equation 3-12 
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Figure 3-10(b) shows the development of shrinkage imposed stress due to deformation 

compatibility as follows: Step 1, original slab with both ends fixed; Step 2, free shrinkage 

leads to a change in length of εsh(t)L and a fictitious tensile load P stretching the slab is 

applied to meet the compatibility condition; Step 3, tensile stress is being built up and once 

it reaches σm,cr, the matrix will crack and the slab is then updated as two uncraked sections 

and a crack-opening zone. Three mechanisms and the distribution of concrete stress are 

also schematically presented in accordance with Figure 3-9(a)-(c). Once the stresses in the 

uncracked segments attain σm,cr again, new cracks will form. Corresponding to the slip 

distribution shown in Figure 3-9(f), the opening of certain crack is the summation of the 

slip magnitudes measured at the right and left of crack face: 

i s s                                                         Equation 3-13 

Subsequently the average crack opening is defined as the total opening divided by number 

of cracks. And the total crack opening is also equal to the total deformation minus the 

deformation in concrete matrix and fiber:  

/ave i cracks

i TOTAL concrete fiber

N

dx dx

 

   



  



  
                       Equation 3-14 

where the term δTOTAL equals to zero in this case as enforced by the boundary conditions. 

An average stress σm,ave can also be obtained as:  

m,ave m

0

1
L

dx
L

                                        Equation 3-15 
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Figure 3-10 (a) Humidity Profile Throughout the Thickness of Concrete Slab Simulated 

by Fick’s Law of Diffusion and Idealized Average Free Shrinkage Strain Applied to the 

Tension Stiffening Model, (b) Deformation Terms in the Slab, and (c) Conceptual Stress 

Distribution in Concrete [142]. 

A numerical model of a 40 m x 40 m slab was simulated to illustrate the process of 

sequential cracking by F-D model. The 40 m length was discretized into 2431 nodes of 
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equal spacing. The fiber volume fraction Vf = 0.45% and Young’s modulus of the matrix 

Em = 30 GPa. Three material models are μs = 0.4 for base friction, τmax = 1 MPa for bond, 

and σm,cr = 3 MPa for matrix.  

The simulated evolution of shrinkage induced stress with increasing strain and 

corresponding state of cracks are presented Figure 3-11(a). Composite stress increased 

linearly up to σm,cr where the slab cracks. A strain softening response expected due to fiber 

bridging mechanism is indicated by the dashed line. However, the base friction provided 

additional resistance and roughly maintained the postcrack stress at σm,cr. The matrix stress, 

slip, and spring force (base friction) distributions in the left half of the model are shown in 

four different stages of cracking in Figure 3-11(b)–(d). The first subplot at the lower section 

shows the end point of elastic response while the subsequent subplots present the sequential 

formation of new cracks.  
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Figure 3-11 (a) Stress-Strain Evolution, and Three Normalized Material Responses of a 

Numerical Base Model: (b) Matrix Stress Distribution, (c) Slip Distribution, (d) Bond 

Stress Distribution [142]. 
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The first subplot of Figure 3-11(b) shows uniform matrix stress distribution prior to the 

first crack. The strain of matrix and fiber are all equal due to strain compatibility. The next 

stage represents the stress redistribution immediately after the first crack formation at 

x=0.5Lc. The magnitude of stress is limited to σm,cr. As the strain increased and the stress 

redistributed to the matrix strength, new cracks were added to the numerical model. The 

average stress carried by uncracked concrete segments was found to decrease from 1.0 to 

0.96 (normalized with respect to σm,cr), which indicates effective load transfer from slab to 

base and the load carrying capability after cracking. Figure 3-11(c) and (d) illustrate the 

distributions of slip and spring force developed at the interface of the slab and base. Lower 

two subplots of Figure 3-11(c) and (d) correspond to the perfect bond state with slip and 

spring force as zero. The next subplot shows the first crack dividing the specimen into two 

pieces; the maximum positive slip and spring force, which prevents the movement of slab, 

appear at the right (0.5 X/Lc) and decrease rapidly toward the left. Subsequent subplots 

show the slip and spring force distributions at intermediate cracking stages.  

In order to compare and calibrate the empirical and finite difference model parameters, 

parametric study on both methods was conducted to investigate the effects of fiber volume 

fraction, base friction, bond strength and imposed shrinkage strain. Three numerical 

models were introduced based on the field case studies: Case Study #1 was a 7000 m2 slab 

in Poznan, Poland, constructed for a superstore using jointless bay sizes of 36 m x 36 m in 

dimension with a 200 mm thickness and a C25-30 mix design. The specified steel fibers 

were 25 kg/m3 of 35 mm length by 0.75 mm diameter hooked end. The slab was installed 

onto a well compacted sand base. Case study #2 addressed another slab where the tenant 

is Canal Logistics Brussels (CLB). The slab was 26000 m2 of 40 m x 40 m joint free bay 
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size, and 150 mm in thickness using a C25-30 mix design with 35 kg/m3 of 60 mm length 

by 1.0 mm diameter hooked end steel fibers, installed onto a well compacted sand bottom. 

The third slab, case study #3 was investigated in Bornem, Belgium. The slab is of 46000 

m2 of 50 m x 50 m joint free bay size, 180 mm thickness using a C30-37 mix design with 

40 kg/m3 of 54 mm long by 1.00 mm diameter steel fiber with conical heads end.  

Table 3-2 Parameters and Computed Average Crack Opening (mm) Using Finite 

Difference Method (Em = 20 GPa, Ef  = 200 GPa) [142] 

Parameters Case Study 1 Case Study 2 Case Study 3 

Geometries    

L (m) 36 40 50 

t (mm) 200 150 180 

Lf  (mm) 35 60 54 

D (mm) 0.75 1.0 1.0 

Fiber volume, Vf (%)    

0.32 0.670 0.914 1.508 

0.45 0.484 0.676 1.055 

0.51 0.433 0.621 0.763 

0.6 0.375 0.532 0.644 

Coefficient of friction, μs    

0.4 0.670 0.676 0.763 

2.0 0.509 0.493 0.437 

4.0 0.446 0.432 0.383 

Bond Strength (MPa)    

1.0 1.160 1.123 1.281 

2.0 0.842 0.850 1.067 

3.0 0.738 0.725 0.879 

4.0 0.648 0.658 0.788 

εR (με)    

2 0.670 0.563 0.763 

3 0.770 0.676 0.928 

4 0.830 0.731 1.019 

5 0.867 0.768 1.070 
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To perform the parametric study, the parameters for a base empirical model are: kbase = 

0.45 N/mm3, μm,base = 0.08; and for F-D model: μs,base = 0.4, τmax,base = 1.0 MPa, Em = 20 

Gpa, σm,cr,base = 3MPa. Fiber volume fraction and imposed shrinkage strain are identical for 

both methods: Vf,base = 0.51%, εR,base = 200 με. The two approaches are related to each other 

with respect to multiple mechanisms. For example, geometries, Vf and εR have the same 

physical definitions and input values in both methods. Other aspects are indirectly linked 

by describing the same mechanical characteristics. The effect of fiber type and anchorage 

μm in empirical equation is related to the bond-slip model, in F-D method. The base friction 

μs computed from the modulus of subgrade reaction k is then in accordance with the spring 

elements applied at each node.    

Figure 3-12 shows the simulated average crack width with varying fiber volume fraction, 

frictional force, and bond strength. The isolated data points in the figure were computed 

using the F-D model and listed in Table 3-2 while the fitted curves were obtained from 

empirical equation as its variables changed continuously. Particularly in Figure 3-12(b) and 

c, the variables of F-D model are corresponding to the bottom axis, while those of empirical 

method are indicated by the top axis. As shown in Figure 3-12(a), the predicted average 

crack widths reduced about 50% while the fiber volume fraction increased from 0.32% to 

0.6%. This can be explained by the role of fiber in bridging the crack and transferring the 

load. The shrinkage induced forces are transferred from the intact concrete segment to the 

fibers, and then to adjacent uncracked segment.  
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Figure 3-12 Effect of (a) Steel Fiber Content, (b) Coefficient of Friction μs, (C) Bond 

Strength and (d) R on Computed Crack Width, and (e) Crack Spacing Versus Strain 

Responses [142]. 

Figure 3-12(b) illustrates the effect of base friction on the crack width. Increasing μs by an 

order of magnitude from 0.4 to 4.0, decreased crack width by 0.2 mm, whereas for the same 

change predicted by empirical equation, k should change from 0.35 to 0.80. The role of the 

frictional force in crack width control by restricting the deformation of slab before and after 

cracking is therefore shown.  

The effect of stress-crack width model as a constant level of bond strength is used as shown 

in Figure 3-12(c). The values of crack opening significantly dropped as τmax increased from 

1 to 4 MPa. While the parameter μm widely ranged from 0.01 to 0.2 to fit the trend. Note 

that straight, hooked end, and undulated steel fibers, which are corresponding to μm values 

of 0.04, 0.08 and 0.12, correlate with a range of bond strength from 2 to 3 MPa, as specified 

by F-D model.  
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The crack opening increased from 0.2 to 0.3 mm for different slabs as εR increased from 

200 to 500 με, as shown in Figure 3-12(d). This is attributed to higher tensile stress due to 

larger shrinkage strain in the presence of restraints. The observed trend also agreed with 

the empirical model. Figure 3-12(e) represents the average crack spacing evolution as a 

function of composite strain for the three slabs. Constant values of Vf  = 0.6%, μs = 0.4 and 

τmax = 1.0 MPa for the three cases are used. It is shown that crack spacing decreased rapidly 

early on and saturated at the values ranging from 1.6 to 2.2 m at the strain around 400 με.  

3.3.4 Comparison of Proposed Methods with Field Measurements 

To verify the accuracy of the proposed models, the max crack opening throughout the area 

of these three slabs were also measured and compared to the numerical results. Selection 

of model parameters are based on the field information, experimental results, literature and 

assumption. The compressive strength of concrete used is in the range of 40-45 MPa from 

cube test, which corresponds to the modulus of elasticity from about 29.7 to 31.5 GPa 

estimated using ACI equation. Thus a constant modulus Em = 30 GPa was used in the F-D 

model. Several papers have been published on the procedures to obtain the back calculated 

tensile strength and residual tensile capacity of various types of FRC based on flexural tests 

[61, 169]. For the typical mixture presented in this paper, σm,cr = 4.0 MPa is selected for the 

three slabs and the residual tensile capacity ranges from 0.3 to 0.7 MPa. Naaman et. al [137, 

170] conducted analytical study and experimental verification on the pullout response of 

steel fibers in concrete matrix. The maximum bond strengths from multiple sets of 

experiment vary widely from 1.4 MPa to 9.6 MPa. The selected bond strengths for case 

studies are summarized in Table 3-3 as well as other model parameters.  
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Table 3-3 Field Measurements and Computed Crack Widths Obtained by Two Models (vf 

and εR Are Identical for Both Models) [142] 

Case 

Field 

Data 

Empirical 

Model 

Finite Difference 

Model 

ω 

(mm) 

Vf 

(%) 

εR 

(με) 


k 

(N/mm3) 
μm 

ω 

(mm) 

τmax 

(MPa) 
μs 

ω 

(mm) 

1 0.5-0.7 0.32 200 1.05 0.5 0.08 0.636 3.0 0.4 0.650 

2 0.65 0.45 200 1.35 0.45 0.04 0.658 2.5 0.4 0.676 

3 0.8 0.51 200 1.35 0.45 0.04 0.806 1.6 0.4 0.795 

 

The measured and computed crack openings are listed in Table 3-3. The shrinkage crack 

width of slab 1 was between 0.50 mm and 0.70 mm as measured after the it was in service 

for 2 years while the following simulations are obtained: ω = 0.636 mm by empirical 

equation and 0.650 mm by F-D model. For case study 2, the models presented here results 

in values of 0.658 mm and 0.676 mm, respectively, which conform to the observed 0.65 

mm crack opening recorded during the inspection. When it comes to case 3, the measured 

crack opening was up to 0.80 mm which compares quite well, with the model outputs of 

0.806 mm and 0.795 mm. The calculated maximum crack openings are less than 1 mm 

each and in good agreement with the measured values for all of the three examples, 

indicating the accuracy of both models in certain cases. However, more studies of various 

field conditions would help with better calibration of the numerical and empirical models.   

3.3.5 Slab Curling 

Curling is defined as the upward lift at the slab corner or edge at the joint. Guo et. al [171] 

reported the curling deflections up to 5 mm and values above 0.5 mm can become critical 

for top down corner cracking under traffic loading [172]. As schematically shown in Figure 

3-13, the curling is caused by the gradient of the strains through the thickness as a result of 

the varying moisture content or temperature [173,174,175,176]. The strain distribution 
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results in a net curvature and thus the uplift. In the present study, drying shrinkage induced 

strain is assumed to be the main effect. The total strain of the slab can be obtained by 

subtracting the crack opening ω from the free shrinkage strain εsh: 

( ) /TOTAL sh sz L                                         Equation 3-16 

 
Figure 3-13 Discretization of (a) Strain Distribution and (b) Deformation Through the 

Slab Thickness as Different Layers [142]. 

Since the solution addresses the case of ultimate shrinkage, an extended period of time is 

assumed for the shrinkage to fully take place. But this model can be augmented with an 

appropriate shrinkage vs. time function to accommodate the temporal effects. As the loss 

of contact between the slab and the base affects the boundary conditions, flexural stresses 

and strains generated result in the uplift of the cantilever action. Therefore, the curling 

behavior of the cracked segment can be modelled as a cantilever beam undergoing flexure 

and the quantity of upward movement is equivalent to the tip deflection (Figure 3-7(c)). 
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Using Euler–Bernoulli beam theory, the imposed curvature κ can be obtained from the 

distribution of total strain throughout the thickness and the deflection δ can be subsequently 

determined: 

1
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1 2
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( / 2) ( / 2)
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   





                      Equation 3-17 

The constants C1 and C2 are evaluated by applying boundary conditions at the support 

( (0) 0 (0) 0and     ) which yields C1 = C2 = 0. Thus: 

2 21 1
( ) ( )

2 2
tip s sx x and L L                             Equation 3-18 

In order to the use the finite difference model, the slab is discretized into N layers each 

with a thickness of t/N and a constant free shrinkage ( )sh iz  is imposed for the ith layer, as 

shown in Figure 3-13(a) and (b). The numerical simulation is then performed for N times 

with varying imposed free shrinkage strain and a series of crack openings are calculated. 

The simplified distribution of total strain is subsequently derived for the calculation of 

curvature and deflection.  

The curling estimation procedure is applicable in cases where the slab at the joint is free 

from any load transfer mechanism similar to a full depth sawn cut. It is expected that fibers, 

dowels or longitudinal reinforcement intersecting a shrinkage crack and aggregate 

interlock mechanism provide both normal and shear resistance [177,178]. But shear stress 

transferring across the plane is not taken into account in this 1-D model and thus the 
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computed curling is an upper bound estimate. Even though drying shrinkage is considered 

as the primary effect, the model is capable of addressing several other factors including 

temperature change, creep effect and mechanical strains induced by self-weight and service 

load, by adding the strain terms into Eqn. (13). Note that with a degree of uplift measured, 

flexural stresses resulted from loading at the edge or corners are additive to the shrinkage 

induced tensile stresses and may cause flexural cracks. The magnitude of the point load 

required for corner fracture can be calculated based on the length of separation and amount 

of slab curl.  

A parametric study was conducted for the effect of slab thickness t, slab length L, and 

gradient of free shrinkage strain. The slab was discretized into 10 layers while the 

interaction between the layers was not considered. Figure 3-14(a) shows that as the 

thickness increased from 0.2m to 0.4m, both the curvature and curling deflection decreased 

for about 50%. This was expected since the increase in thickness reduces the curvature as 

it is inversely proportional according to Eqn. (14). The trend agrees with the experiences 

in the industry which generally consider thinner slabs to be more critical to curling. It is 

also found that when the slab length L was doubled (18 to 36m), the curling deflection 

increased from 0.82 mm to 3.53 mm as shown in Figure 3-14(b), which is almost quadratic 

with respect to L. Field observations point to the curling of slabs as directly proportional 

to the length, it is expected that in the case of joint free slabs the curling is reduced by the 

shear stiffness of the fibers at the cracked sections. The effect of imposed free shrinkage 

strain gradient is illustrated in Figure 3-14(c). As the range (value from bottom layer to top 

layer) of imposed strain expanded from 300-550 με to 150-550 με, i.e., the gradient became 

steeper, the deflection increased from 0.44 to 3.23 mm since the curvature is proportional 
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to the difference between strains at top and bottom layers. Additionally, the procedure was 

conducted with varying number of layers (10 to 50) but the results turned out to be 

insensitive.  

Proper modeling and design guides are needed for the development of SFRC joint free 

slabs in order to address and minimize the potential cracking due to drying shrinkage. 

Primary parameters affecting the drying shrinkage properties are discussed including water 

cement ratio, HRWRA, shrinkage induced strain, friction of grade, fiber volume and fiber 

type. An empirical equation and a numerical model using the finite difference method were 

proposed to predict the sequential cracking and opening of a restrained slab on grade. 

Parameters affecting the drying shrinkage cracking were discussed and addressed by both 

methods. Parametric study showed that the predicted crack opening was reduced with 

higher level of restraint by increasing fiber volume fraction, base friction, and bond 

strength. This indicates the role of fiber and base course in controlling the crack opening 

by restricting the movement of cracked slab segments.      

Since the two models address the same mechanical characteristics, they are related to a 

great extent even though they were developed based on different methodologies. The 

empirical equation was calibrated and the results demonstrated a good agreement with the 

F-D model. Case studies were conducted on three slabs in service at different occasions. 

Crack openings of the selected slabs were measured and compared to the computed values. 

Both of the models were able to predict the crack openings accurately. A simple method to 

estimate the curl of slab has been proposed and the effects of slab thickness, length and 

imposed shrinkage strain have been investigated. The curling deflection was found to be 

increasing as the slab thickness decreased, slab length increased, and gradient of imposed 
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strain increased. However, the approach needs to be calibrated against measured data from 

fields as future study.  
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Figure 3-14 The Effects of (a) Slab Thickness, (b) Slab Length, and (c) Imposed Free 

Shrinkage Strain Gradient on the Curling [142]. 
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4. ANALYTICAL MODEL AND DESIGN FOR FLEXURAL BEHAVIORS 

4.1 Introduction 

Post-cracking tensile behavior of FRC materials have been simulated by either a stress–

strain (σ-ε) relationship in a smeared crack continuum model, or a stress–crack width (σ-

w) discrete model using nonlinear fracture mechanics. The original discrete crack approach 

by Hillerborg [179] has been modified by many researchers [180,181,182]. It does not 

address crack formation and propagation, but instead uses a stress-crack width (σ-ω) 

response as an input parameter in the post peak tensile zone [183,184]. A representative 

volume element of a cracked section of a flexural beam with length Lp and depth h is shown 

in Figure 4-1. The section is characterized by compression and tensile sections. The tensile 

zone is represented by two regions; an elastic tensile strain as well as a bridged crack in 

opening mode. The stresses carried by fibers across the crack in tension are represented as 

a function of crack opening and the method is widely used in simulation and design of 

quasi-brittle materials [53, 185, 186]. One of the main parameters of these models is a 

characteristic length parameter defined as Lp, which prevents mesh dependency of the 

results in finite element models as it relates the crack width to strain [187, 188]. In smeared 

crack models, characteristic length parameter determines the width of localization and 

prevents snap-back and other numerical instabilities [189]. In the present paper the length 

of localization zone has been used as a constant length parameter that affects the postpeak 

descending response of the load deformation curve where cracks are localized. The σ-ε 

approach is more suitable for HRC elements since distributed cracking and tension 

stiffening are expected [ 190 ]. For example, application of superposition to add the 

contribution of reinforcement and fibers by updating the stress crack width relationship in 
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the tensile zone of multiple cracks in under-reinforced flexural sections is challenging. 

Furthermore, reinforcement ratio affects rebar stress and affects crack opening which will 

in turn affect fiber phase’s contribution. 

 
Figure 4-1 Schematic Presentation of Localized Zone for a Beam Section as a Nonlinear 

Hinge, Normal Stress Distribution and Strain Distribution in Steel Rebar. 

In the present work analytical solutions for moment-curvature, load-deflection 

relationships, and minimum flexural reinforcement ratio are derived to address the synergy 

between continuous and fiber reinforcements. Derivations are presented as analytical 
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flexural behavior of beam and slab systems and support equivalent design charts based on 

a given deformation of composite systems for conventional, fiber reinforced, and hybrid 

reinforced concrete.  

4.2 Derivation of Analytical Moment-Curvature Response  

Figure 4-1 shows the schematic 2-D representation of the representative element of a 

cracked beam section as a nonlinear hinge during an incremental state of cracking. The 

element is represented by characteristics of length Lp, depth h, crack length a, angle of 

rotation φ, nominal curvature κ, normal stress distribution, and steel strain distribution. As 

the flexural crack extends, the steel rebar debonds and carries more stress at the flexural 

crack. However, in order to convert the 2-D representation into a 1-D cross sectional model, 

it is assumed that the average strain in the steel rebar can be represented by the nominal 

strain distribution at the rebar level of the section using the assumption of plane section 

remaining plane. The cross section may be of a variable shape and by integrating stresses 

over the area forces, bending moments, and neutral axis kh can be computed. The next step 

is to use the moment-curvature formulation in the analysis of a specific structures by means 

of analytical solutions or finite element approach. Templates for predicting load-deflection 

of elements with different boundary conditions are then developed. 

Figure 6-2 presents three distinct material models used in the derivation of parametric 

response of HRC beams. Material parameters are described as two intrinsic parameters: 

tensile modulus E and the first cracking tensile strain εcr while other variables are 

normalized with respect to these intrinsic parameters. Figure 4-2(a) shows an idealized 

tension model with an elastic range of stress increases linearly with E up to the first 

cracking tensile strength of coordinates (εcr, cr). In the post-crack region, the stress is 
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constant at p = μcr = μεcrE and terminates at the ultimate tensile strain εtu = tuεcr. Figure 

4-2(b) shows the elastic-perfectly plastic compression response with a modulus Ec = γE. 

The plastic range initiates at strain εcy = ωεcr corresponding to yield stress cy = ωγεcrE and 

terminated at cu = cuεcr. Figure 4-2(c) is the elastic-perfectly plastic steel model using 

yield strain and stress of sy = κcr and fsy = κncrE as defined by normalized parameters: κ 

and n. No termination level is specified for steel strain. Geometrical parameters are also 

normalized with the beam dimensions of width b and full depth h as shown in Figure 4-

2(d) with steel parameters defined as area As = ρgbh = ρgbd/ at the reinforced depth d = 

h. The depth of compression steel d = (1-)h, and parameter ζ is introduced such that the 

area is As’ = ζAs = ζρgbh. The reinforcement ratio ρg is defined per gross sectional area bh, 

and differs slightly from the conventional definition based on term bd used in reinforced 

concrete nomenclature. The material models for tension and compression of FRC and the 

model for steel rebar are presented as: 
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  Equation 4-3 

where normalized strains are defined as  = t/cr,  = c/cr and  = s/cr. Variable  as top 

compressive fiber ctop is used in the derivation of moment-curvature diagram and other 
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variables such as tensile strain in concrete and steel strain are obtained using the 

expressions derived based on the present formulation.  

 

Figure 4-2 Material Model for Single Reinforced Concrete Design (a) Tension Model; (b) 

Compression Model; (c) Steel Model; (d) Beam Cross Section. 

3.2. Moment-Curvature Diagram 

In derivation of moment-curvature for a beam with rectangular cross section, the 

assumption of plane section remaining plane is assumed. By applying linear strain 

distribution across the depth, ignoring shear deformation, and using material models of 

Equations 4-1 to 4-3 and Figure 4-2(a)-(c), the stress distributions as shown in Figure 4-3 

are obtained. The normalized compressive strain at the top concrete fiber λ is used as an 

independent variable to incrementally impose flexural deformation for three distinct stages. 
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The first stage (0 <  < R1) corresponds to elastic range until tensile strain at the bottom 

fiber reaches εcr. Stage 2 (λR1 < λ < ω) corresponds to an elastic compressive strain and the 

tensile strain in post-crack region. Finally, stage 3 (ω < λ < λcu) corresponds to the plastic 

compressive strain while the tensile strain is in post-crack range. For stages 2 and 3 two 

possible scenarios exist: the steel is either elastic, or yielding, therefore stages 2 &3 are 

each divided into two sub-stages, 2.1, 2.2, or 3.1, and 3.2 where term 1 represents elastic 

and term 2 represents plastic response. 

Three stages of stress distribution in Figure 4-3, show the height of compression and 

tension zones normalized with respect to the beam depth h, while stresses are normalized 

with respect to the first cracking strength Eεcr and presented in Tables 4-1 and 4-2, 

respectively. Forces and their lines of action are normalized with respect to cracking tensile 

force bhEcr and beam depth h as shown in Tables 4-3 and 4-4.  
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Figure 4-3 Strain and Stress Diagrams at Three Stage of Applied Compressive Strain at 

Top Fiber (); (a) Stage 1 (0 <  < R1) Elastic Compression-Elastic Tension; (b) Stage 2: 

R1 <  <  Elastic Compression-Post Crack Tension; (c) Stage 3:  <  < cu Plastic 

Compression-Post Crack Tension. 
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Figure 4-4 Normalized Moment-Curvature Diagram and Approximate Bilinear Model for 

Deflection Hardening (μ > μcrit) [169]. 

The net section force is obtained as the difference between the tension and compression 

forces, and solved for internal equilibrium to obtain the normalized location of neutral axis, 

k. When steel is elastic in stages 1, 2.1 and 3.1, the expressions for net force are in the 

quadratic forms and result in two possible solutions for k. With a large scale of numerical 

tests covering the practical range of material parameters, only one solution yields the valid 

value in the range 0<k<1.  During stage 1, the singularity of k1 for γ = 1, requires an 

asymptotic expression. When steel is in yield condition in stages 2.2 or 3.2, there is a unique 

solution for k as presented in Table 4-5. Internal moment is obtained by integrating the 

force components using the distance to the neutral axis as the moment arm, and the 

curvature is represented as the ratio of compressive fiber strain (ctop = λcr) to the depth of 

neutral axis kh. Effective flexural stiffness is defined as the ratio of the moment to the 
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curvature at any given imposed λ. By normalizing the moment Mi, curvature i and stiffness 

Ki for each stage i, using the cracking values Mcr, cr and Kcr are expressed as analytical 

expressions Mi’, i’ and Ki’ as presented in Table 4-5. 

21

6
i i cr cr crM M ' M ;       M bh E                           Equation 4-4 

2
' ;             cr

i i cr cr
h


                                        Equation 4-5 

31
' ;       

12
i i cr crK K K K bh                              Equation 4-6 

The compressive strain corresponding to end of elastic region 1 (λR1) is determined from 

the strain gradient diagram shown in Figure 4-3(a). 

 
1

1

R cr cr

kh k h

  



                                                    Equation 4-7 

By substituting k1 from Table 4-5 for k in Equation 4-7 and solving for λR1, one obtains: 

2

2

1

1 ( ) ( )[2 ( ) ]
1

2 ( ) ( )[2 ( ) ]

( )
1

( 1)

g g g g g

g g g g g
R

g

g

n n n n n
when

n n n n n

n
when

n

          


          


   


  

          
 
          

 
    
  
   

Equation 4-8 

The yield condition for tensile steel is checked by first assuming that it yields and then 

using k22 or k32 in Table 4-5 for k in Equation 4-9 to calculate the steel strain s:  

 s cr

k

k


 


                                                        Equation 4-9 
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If s is greater than sy, the assumption is correct, otherwise steel has not yielded and one 

has to use k21 or k31. Using the values in Table 4-5 and Equations 4-4 to 4-6 analytical 

expressions for moment-curvature response and flexural stiffness are calculated. 

By considering an under-reinforced section, one can solve for the balanced reinforcement 

ratio g,bal, representing compression failure and steel reaching its yield limit defined as (c 

= cu & s = sy). The strain gradient in stage 3.2 of Figure 4-3(c), represents a plastic 

compressive strain and tensile strain in the post-crack region as: 

 
cu cr cr

kh k h

  





                                       Equation 4-10 

By substituting cu in the expression for k32 in Table 4-5 and following with k in Equation 

4-10, one can solve for the balance reinforcement ratio as: 

, 2 2

[ ]

2 [ ]

cu cu
g bal

cu cun

         


         

         


         
        Equation 4-11 

For single reinforced section with tensile rebar only, i.e., 0  , eqn. (xx) is simplified to: 

    

 ,

2 1 2

2

cu cu
g bal

cun

        


  

     



              Equation 4-12 

3.3. Simplified Analytical Solutions for Load-Deflection Response 

Load-deflection response of various geometries is obtained from the analytical moment 

and curvature distribution expressions for a few loading cases. The first step is to simplify 

and represent the normalized moment-curvature as a bilinear response as shown by the 

dashed line in Figure 4-4 for the case of a deflection hardening beam [61]. By applying the 

moment-area method to the bilinear moment-curvature diagrams, mid-span deflection can 

be derived explicitly. For 3PB, additional parameter for plastic length Lp at the vicinity of 
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the load is needed to simulate the zone undergoing localization in postpeak response while 

the non-localized zone is elastically unloading. For the 4PB, the distance between the two 

load points was used as the plastic length Lp. The load-deflection response is affected by 

the residual tensile strength. The transition from deflection softening to deflection 

hardening is obtained at a threshold postpeak tensile capacity crit = /(3-1) ≈ 0.35, and 

equations for mid-span deflection  of 3PB at first bilinear cracking bcr, and at ultimate u 

are presented in Eqs. 14 and 15, (a-c), [61]. 

   

   
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    

 
  
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       
 

     

   Equation 4-13 

Similarly, a set of equations for 4PB can be written as: 
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    Equation 4-14 
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Table 4-1 Normalized Height of Compression (C) and Tension Zones (T) for Each Stage 

of Normalized Compressive Strain at Top Fiber () 

Zone 
Normalized 

height 

Stage 1 

0 < λ < λR1 

Stage 2 

λR1 < λ <  

Stage 3 

 < λ < λcu

2.1

s < sy 

2.2

s > sy 

3.1

s < sy 

3.2

s > sy 

C 

2ch

h
 - - 

 k  




 

1ch

h
 k  k  

k


 

T 

1th

h
 1 k  

k


 

k


 

2th

h
 - 

 1 k 



 
 

 1 k 



 
 

 

Table 4-2 Normalized Stress at Vertices in the Stress Diagram for Each Stage of 

Normalized Compressive Strain at Top Fiber () 

Zone 
Normalized 

stress 

Stage 1 

0 < λ < λR1 

Stage 2 

λR1 < λ <  

Stage 3 

 < λ < λcu 

2.1

s < sy 

2.2

s > sy 

3.1 

s < sy 

2.1

s < sy 

C 

2c

cr

f

E
 

- -   

1c

cr

f

E
 

    
  

T 

1t

cr

f

E
 

 1 k

k



 
1 1 

2t

cr

f

E
 

- 
 


 

s

cr

f

E
 

 n a k

k

 

 

 n a k

k

 

 
n  

 n a k

k

 

 
n  
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Table 4-3 Normalized Force Component for Each Stage of Normalized Compressive 

Strain at Top Fiber () 

Zone 

Normalized 

force 

component 

Stage 1 

0 < λ < λR1 

 

Stage 2 

λR1 < λ <  

Stage 3 

 < λ < λcu 

2.1 

s < sy 

2.2 

s > sy 

3.1 

s < sy 

3.2 

s > sy 
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2c

cr
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bhE
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2
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2
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Table 4-4 Normalized Moment Arm of Force Component for Each Stage of Normalized 

Compressive Strain at Top Fiber () 

Zone 

Normalized 

moment 

arm 

Stage 1 

0 < λ < λR1 

 

Stage 2 

λR1 < λ <  

Stage 3 

 < λ < λcu 

2.1 

s < sy 

2.2 

s > sy 

3.1 

s < sy 

3.2 

s > sy 

C 

2cy

h  
- - 

 
2

k  
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Table 4-5 Normalized Neutral Axis, Moment, Curvature and Stiffness for Each Stage of 

Normalized Compressive Strain at Top Fiber (λ 

Stage k M’ ’ K’ 

1 
2

1 1 2
1

( )( )B B B
k





   
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 ' 2 4
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where, the coefficients are: 
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

    
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

    
              

     
       

 

4.3 Parametric Studies  

Parametric studies of post-crack tensile strength and reinforcement ratio as two main 

reinforcing factors were conducted. Changes in the location of neutral axis, moment-

curvature response, and stiffness degradation of a beam are normalized with respect to first 

cracking parameters of plain FRC. In addition to the two baseline parameters: E =24 GPa 
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and cr =125 str, typical material models for SFRC and steel rebar were used that include: 

tu = 160, γ = 1, ω = 8.5, cu = 28, n = 8.33, κ = 16 and  = 0.8. The variables of the study 

were: residual tensile strength parameter 0.0 ≤ μ ≤ 1.0 and reinforcement ratio 0.0 ≤ ρg ≤ 

0.03.  

Figure 4-5 illustrates the effects of parameters μ and ρg on the normalized moment-

curvature diagram. Figure 4-5(a) shows the effect of increasing the residual tensile strength 

from brittle (μ = 0) to ductile (μ = 1) in plain FRC.  Noted that at a level μ = 0.33 which is 

sufficiently close to μcrit = 0.35, the flexural response is almost perfectly-plastic, beyond 

which the deflection softening shifts to hardening. The elastic-plastic tensile response of 

FRC (μ = 1) yields an upper bound normalized moment capacity of 2.7. With a main 

flexural reinforcement of ρg = 0.01 (Figure 4-5(b)), the normalized moment capacity of 5.8 

is achieved. Note that as ρg increases, the response eventually changes from a ductile under-

reinforced to over-reinforced. Figure 4-5(c) reveals the effect of residual tensile strength 

(μ = 0.0–1.0) for a fixed reinforcement ratio of 0.01 while Figure 4-5(d) shows the marginal 

benefit of FRC with μ = 0.33 compared to the reinforced concrete system.  The moment 

capacity slightly increases in comparison with the reinforced concrete without any fibers 

(Figure 4-5(b)). The present analysis ignores the contribution of the fiber phase to the 

compression response in the context of internal confinement, however than can be easily 

incorporated in the input parameters. 

The neutral axis depth ratio k and the normalized secant stiffness K’ are also affected by 

changes in μ and ρg. The neutral axis starts at a slightly higher value than 0.5 for a 

conventional reinforced concrete system (μ = 0, ρg > 0), since a larger compressive zone is 

needed to balance the summation of tensile forces of concrete and steel. The neutral axis 
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location, k decreases as the compressive strain at top fiber λ increases as functions of μ and 

ρg. This shift diminishes as ρg or μ increase, indicating the role of fiber and reinforcement 

in maintaining the tensile force after cracking. For plain FRC with low fiber contents, the 

normalized secant stiffness K’ equals to 1.0 in elastic range (' < 1.0) while K’ is larger 

than 1.0 in conventional reinforced concrete systems as shown in Figure 4-6. Figure 4-6(a) 

shows that for the same reinforcement ratio, the rate of stiffness degradation decreased with 

addition of fibers (μ increased) as the curvature increases since the crack is bridged by 

distributed fibers through its depth. Figure 4-6(b) shows that for a given fiber residual 

tensile strength, μ = 0.33 higher ρg levels in conventional reinforced concrete efficiently 

reduces the rate of stiffness reduction and retains the post-crack stiffness. More details on 

the effect of parameters have been discussed elsewhere [191]. 
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Figure 4-5 Parametric Studies of Normalized-Moment Curvature Diagram for Different 

Levels of Post Crack Tensile Strength Parameter  and Reinforcement Ratio g [169]. 
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Figure 4-6 Parametric Studies of Normalized Secant Stiffness for Different Levels of 

Reinforcement Ratio g and Residual Tensile Strength Parameter  [169]. 
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4.4 Design 

The ultimate moment capacity as a function of residual tensile strength and reinforcement 

ratio can be used as a convenient design tool for combinations of reinforcements. A limiting 

case of ductile moment-curvature response of under-reinforced section (Figure 4-5) is 

obtained at (λ) by applying L'Hopital’s rule in the limit case of compressive strain 

failure (λ = λcu =). Thus, the ultimate moment Mu is reasonably approximated by the 

moment at infinite compressive strain M for under-reinforced section (ρg < ρg,bal). The 

yielding condition of steel is obtained by comparing it to the reinforcement ratio at balance 

failure as defined by Equation 4-12. Normalized moment at infinite M’, is found by 

substituting the expression for k32 into the M’32 in Table 4-5, followed by taking the limit 

of λ to ∞, which results in: 

2

32

3 [ 2 ] 3
' lim '

cu

n n
M M

            

 
 

          
 

     

Equation 4-15 

And the corresponding ultimate moment capacity Mu: 

23 [ 2 ] 3
'u cr cr

n n
M M M M

            

 


          
 

 Equation 4-16 

For single reinforced section: 

   
2

32

6 3 3
' lim '

g g

cu

n n
M M

       

 
 

   
 


             Equation 4-17 

And the corresponding ultimate moment capacity Mu: 
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       

 


   
 

                         Equation 4-18 
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For a plain FRC beam without any flexural reinforcement (g = 0) and modulus of FRC are 

equal in compression and tension ( = Ec/E = 1), Equation 4-16 reduces to M’ = 3μ/(+μ) 

reported previously [61]. The applicability of Equation 4-16 is limited to the sections that 

fail in a ductile manner only when flexural steel reinforcement ratio is below the balance 

failure ρg,bal defined in Equation 4-12. 

 
Figure 4-7 Design Chart of Normalized Ultimate Moment Capacity (Determined at λ= 

λcu) for Different Levels of Post Crack Tensile Strength  and Reinforcement Ratio g 

[169]. 

Figure 4-7 shows a design chart for the numerical model used in the parametric studies 

with various grades of steel as defined by ASTM A615 [192]. The moment capacity is 

strongly dependent on the amount of reinforcement ratio whereas the residual tensile 
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strength provides extra capacity. Under-reinforced sections are shown by the curves below 

the balance failure points (ρg < ρg,bal,  shown as hollow circles), as the moment capacity 

increases proportional to the reinforcement ratio. When ρg > ρg,bal, the strength of all curves 

marginally increases as the steel fails to reach yield strength. Effect of fiber contribution 

becomes negligible as the failure is governed by compression failure of concrete.  Figure 

4-7 also shows that as the steel grade increases from 40 to 80 (280 MPa to 550 MPa), the 

balanced failure is obtained at much lower reinforcement ratio, from about 0.035 to 0.015. 

To design flexural HRC members with this chart, the ultimate moment Mu due to factored 

load is determined and then normalized with cross sectional geometry while the cracking 

moment of the plain matrix Mcr is employed to obtain demand ultimate moment capacity 

Mu’. The chart is then used to select any combination of normalized residual tensile strength 

, grade of steel, and reinforcement ratio g that meets the demand for Mu’. 

As a comparison with the customary design approach, one can develop a parameter 

representing coefficient of resistance R as a design chart [193], and proceed to determine a 

beam size for a given required moment. The normalized moment design chart in Figure 4-

8 is equivalent to the well-established R-chart for single under-reinforced concrete design 

nominal moment capacity Mn as:  

2 2

'
1 0.59

sy
n sy

c

f
M Rbd f bd

f
 

 
    

 

                            Equation 4-19 

where d is the effective depth, ρ=As/bd is the reinforcement ratio. For the proposed model, 

the moment equations are represented as ratio of ultimate moment to cracking moment and 

reinforcing depth to full depth  = d/h as: 
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                    Equation 4-20 

Therefore, R is the normalized moment M’(λcu) by a factor of εcrE/(62). In order to use 

equivalent set of input parameters, the compressive constitutive relationship is calibrated 

using parabolic stress-strain curve of Hognestad [194] up to the ultimate strain cu = 0.003 

to obtain equivalent areas under both curves: 
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              Equation 4-21 

By substituting cu = 1.5c0 and cy = 0.85fc’ in Equation 4-22, the compressive yield strain 

cy and compressive modulus Ec can be estimated as. 
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 
                                   Equation 4-22 

Three concrete strength fc’ = 30, 43 and 55 MPa and two grades of steel 280 and 420 MPa 

with Young’s modulus Es of 200 GPa were used to compare the coefficient of resistance 

defined by the ACI approach (Equation 4-19) and the proposed method (Equation 4-20]. 

Other assumed parameters were the first cracking strain cr = 0.0001, compressive strain at 

peak stress c0 = 0.002, normalized depth of steel reinforcement  = 0.8, and assumption 

of no softening range for plain concrete (=0). For the proposed method, a set of material 

parameters of concrete and steel are used to calculate g,bal by Equation 4-12 and compared 

it to the reinforcement ratio g used in a beam section. For g < g,bal, the expression k31 

and M31’ in Table 4-5 are used to determine moment at ultimate compressive strain M(cu)’.  

For g > g,bal, the expression k32 and M32’ in Table 4-5 are used instead. Finally, by 
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substituting the calculated M(cu)’ in Equation 4-20 one obtains the R value for the 

proposed method. 

 
 

 
Figure 4-8 Comparison of Coefficient of Resistance Using ACI Stress Block Method and 

the Equation 4-20; (a) Steel Grade 40 (280 MPa); (b) Steel Grade 60 (420 MPa) [169]. 
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Figure 4-8 compares the two methods showing excellent agreement for the reinforcement 

ratio up to the ACI balance failure (Equation 4-20). These points are generally lower than 

the balance failure points g,bal defined by Equation 4-12 as marked by a circle symbol. 

The discrepancy between these two balanced failures is due to the fact that ACI approach 

uses a conservative empirical parameter β1 in the calculation of the reinforcement ratio at 

balance failure while the g,bal is analytically determined by Equation 4-12.  Note that the 

applicable range of the R by ACI approach is terminated at the balance failure whereas the 

current method predicts a wider range in both under- and over-reinforced beam sections. 

5.2. Minimum Reinforcement Ratio 

A reinforced concrete beam can fail abruptly if its residual strength is less than the cracking 

moment of unreinforced concrete section computed from its modulus of rupture. In order 

to prevent such failures, the minimum reinforced ratio is defined as level of reinforcement 

to ensure that residual capacity is equal to the cracking moment, and is determined in 

accordance with ACI 318-11 Section 10.5 [195] and Eurocode 2 [196]. The minimum 

required reinforcement is empirically stipulated to be a function of concrete strength, yield 

limit of steel, as well as the beam size [197, 198, 199]. An analytical expression for 

minimum reinforcement ratio ρg,min is derived explicitly by setting the moment from 

Equation 4-16 at infinity to unity, M’∞ = 1. A quadratic equation is obtained such that the 

root satisfying ρmin < ρbal is valid and expressed as: 

2
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                                           Equation 4-23 

where 1 (1 )( ) ( )L            , 
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For single reinforced: 

2
1 2 1

min

3 9

3

G G G

n


 

 
                                      Equation 4-24 

where  1 1G      ,  2 3 3 1 3G       and parameter  in the denominator 

is introduced to express and correlate the present formulation that is based on the gross 

section bh to the effective cross section bd. The equation is further simplified as an 

analytical minimum reinforcement ratio for conventional reinforced concrete system by 

substituting parameters: =0,  = 3/4 and  = 6 into Equation 4-24.  
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

                                           Equation 4-25 

Figure 4-9 shows minimum reinforcement ratio as a function μ and α, and compared to 

specifications of ACI 318-11 and Eurocode 2 (EC2) with varying grades of steel. For an 

assumed value of =0.5-0.9, the trend shows that as the residual tensile strength μ increases, 

the required minimum reinforcement ρmin,rc decreases indicating the role of steel fibers in 

substitution of reinforcement. Additionally, the effect of  is diminishing gradually and all 

the curves converge when μ→ μcrit =0.35 in accordance with the onset of deflection 

hardening, where no longitudinal reinforcement is required to meet the minimum strength 

requirement.   
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Figure 4-9 Comparison of Minimum Reinforcement Ratio ρmin Between Proposed 

Method and Design Codes: ACI 318-11 and Eurocode 2 (EC 2) [169]. 

4.5 Application to Flanged Beams 

Besides the rectangular beams, flanged sections are widely used in engineering 

applications as well, such as the beam-slab system, bridge girder, and recently developed 

UHPC pi-girder [200]. The use of flanged beams made of high performance concrete 

materials as an economical and effective solution reduces the materials consumption, self-

weight, as well as improves the mechanical strength, ductility and durability due to the 

superior material properties. 



182 

 

Figure 4-10 presents three distinct material models used in the derivation of parametric 

response of HRC beams. Material parameters are described as two intrinsic parameters: 

tensile modulus E and the first cracking tensile strain εcr while other variables are 

normalized with respect to these intrinsic parameters. Figure 4-10(a) shows an idealized 

tension model with an elastic range of stress increases linearly with E up to the first 

cracking tensile strength of coordinates (εcr, cr). In the post-crack region, the stress is 

constant at p = μcr = μεcrE and terminates at the ultimate tensile strain εtu = tuεcr. Figure 

4-10(b) shows the elastic-perfectly plastic compression response with a modulus Ec = γE. 

The plastic range initiates at strain εcy = ωεcr corresponding to yield stress cy = ωγεcrE 

and terminated at cu = cuεcr. Figure 4-10(c) is the elastic-perfectly plastic steel model 

using yield strain and stress of sy = κcr and fsy = κncrE as defined by normalized 

parameters: κ and n. No termination level is specified for steel strain. The debonding of 

steel is characterized by a reduced modulus after reaching a certain stress level fsdb where 

the interface starts to debond. As a result of relative displacement between steel rebar and 

concrete matrix, the level of strain in rebar is lower than the nominal strain in cross section 

at the same level. Geometrical parameters are also normalized with the beam dimensions 

of width b and full depth h as shown in Figure 4-10(d) with steel parameters defined as 

area As = ρgbh = ρgbd/ at the reinforced depth d = h. The reinforcement ratio ρg is 

defined per gross sectional area bh, and differs slightly from the conventional definition 

based on term bd used in reinforced concrete nomenclature. The material models for 

tension and compression of FRC and the model for steel rebar are presented as: 



183 

 

 
Figure 4-10 Material Model for Single Reinforced Concrete Design (a) Tension Model; 

(b) Compression Model; (c) Steel Model; (d) Beam Cross Section. 

In derivation of moment-curvature for a beam with T-section, the assumption of plane 

section remaining plane is assumed. By applying linear strain distribution across the depth, 

ignoring shear deformation, and using material models of Eqs. (1)-(3) and Figure 4-10, the 

stress distributions as shown in Figure 4-11 are obtained. The normalized compressive 

strain at the top concrete fiber λ is used as an independent variable to incrementally impose 

flexural deformation for three distinct stages. The first stage (0 <  < R1) corresponds to 

elastic range until tensile strain at the bottom fiber reaches εcr. Stage 2 (λR1 < λ < ω) 

corresponds to an elastic compressive strain and the tensile strain in post-crack region. 

Finally, stage 3 (ω < λ < λcu) corresponds to the plastic compressive strain while the tensile 
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strain is in post-crack range. For stages 2 and 3 two possible scenarios exist: the steel is 

either elastic, or yielding, therefore stages 2 &3 are each divided into two sub-stages, 2.1, 

2.2, or 3.1, and 3.2 where term 1 represents elastic and term 2 represents plastic response. 

For the sake of simplification, the compression force contributed by the web section is not 

considered as the area is much smaller compared to the flange section (shown as the shaded 

region in Figure 4-11(a)).  

Three stages of stress distribution in Figure 4-11, show the height of compression and 

tension zones normalized with respect to the beam depth h, while stresses are normalized 

with respect to the first cracking strength Eεcr and presented in Tables 4-6 and 7, 

respectively. Forces and their lines of action are normalized with respect to cracking tensile 

force bhEcr and beam depth h as shown in Tables 4-8 and 9.  

 



185 

 

 
Figure 4-11 Strain and Stress Diagram at Three Stage of Applied Compressive Strain at 

Top Fiber (); (a) Stage 1 (0 <  < R1) Elastic Compression-Elastic Tension; (b) Stage 

2:R1 < <, Elastic Compression–Post Crack Tension; (c) Stage 3:  <  < cu Plastic 

Compression–Post Crack Tension. 

The net section force is obtained as the difference between the tension and compression 

forces, and solved for internal equilibrium to obtain the normalized location of neutral axis, 

k. When steel is elastic in stages 1, 2.1 and 3.1, the expressions for net force are in the 
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quadratic forms and result in two possible solutions for k. With a large scale of numerical 

tests covering the practical range of material parameters, only one solution yields the valid 

value in the range 0<k<1.  During stage 1, the singularity of k1 for γ = 1, requires an 

asymptotic expression. When steel is in yield condition in stages 2.2 or 3.2, there is a unique 

solution for k as presented in Table 4-10. Internal moment is obtained by integrating the 

force components using the distance to the neutral axis as the moment arm, and the 

curvature is represented as the ratio of compressive fiber strain (ctop = λcr) to the depth of 

neutral axis kh. Effective flexural stiffness is defined as the ratio of the moment to the 

curvature at any given imposed λ. By normalizing the moment Mi, curvature i and stiffness 

Ki for each stage i, using the cracking values Mcr, cr and Kcr are expressed as analytical 

expressions Mi’, i’ and Ki’ as presented in Table 4-11. Unlike the rectangular beam where 

the cracking moment can be simply calculated as Mcr=bh2Ecr/6, the expression for T-

section is complicated. However, parametric studies (see Figure 4-12) show that the 

cracking moment of T-section is not sensitive to the changing of flange thickness ζ, but 

almost linearly related to the web thickness ο. Therefore, it is assumed that the cracking 

moment is a linear function of ο in a practical range from 0.05 to 0.30, and the least square 

fit yields the equation Mcr=(ο/5+1/200) bh2Ecr. 
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Figure 4-12 Normalized Cracking Moment Versus (a) Ratio of Flange Thickness and (b) 

Ratio of Web Width; (c) Linear Correlation Between Mcr and Ratio of Web Width. 

The compressive strain corresponding to end of elastic region 1 (λR1) is determined from 

the strain gradient diagram shown in Figure 4-11(a). 
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                                                 Equation 4-27 

The yield condition for tensile steel is checked by first assuming that it yields and then 

using k22 or k32 in Table 4-10 for k in Equation 4-28 to calculate the steel strain s:  

s cr

k

k


 


                                                  Equation 4-28 

If s is greater than sy, the assumption is correct, otherwise steel has not yielded and one 

has to use k21 or k31. Using the values in Table 4-10 and Eqs. (4) - (6) analytical expressions 

for moment-curvature response and flexural stiffness are calculated. 
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By considering an under-reinforced section, one can solve for the balanced reinforcement 

ratio g,bal, representing compression failure and steel reaching its yield limit defined as (c 

= cu & s = sy). The strain gradient in stage 3.2 of Figure 4-11(c), represents a plastic 

compressive strain and tensile strain in the post-crack region as: 

 
cu cr cr

kh k h

  





                                            Equation 4-29 

By substituting cu in the expression for k32 in Table 4-10 and following with k in Equation 

4-29, one can solve for the balance reinforcement ratio as: 
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                  Equation 4-30 

The coefficients of Bi, Ci of these equations are provided in Table 4-11. Load-deflection 

response of various geometries is obtained from the analytical moment and curvature 

distribution expressions using the step shown in the previous chapter. 

Table 4-6 Normalized Height of Compression (C) and Tension (T) Zones for Each Stage 

of Normalized Compressive Strain at Top Fiber (). 

Zone 
Normalized 

height 
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Table 4-7 Normalized Stress at Vertices in the Stress Diagram for Each Stage of 

Normalized Compressive Strain at Top Fiber (). 

Zone f’ 
Stage 1 

0 < λ < λR1 

Stage 2 

λR1 < λ <  

Stage 3 
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Table 4-8 Normalized Force Component for Each Stage of Normalized Compressive 

Strain at Top Fiber (). 

Zone F’ 

Stage 1 

0 < λ < λR1 

 

Stage 2 

λR1 < λ <  
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Table 4-9 Normalized Moment Arm (y’) of Force Component for Each Stage of 

Normalized Compressive Strain at Top Fiber (). 

Zone y’ 

Stage 1 

0 < λ < λR1 
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Table 4-10 Normalized Height of Neutral Axis for Each Stage. 
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, 9 (1 )B   
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Table 4-11 Normalized Moment of Neutral Axis for Each Stage. 

Location 

of neutral 

axis 

Stage M’ 

Web 

1 
' 11
1 1 1[ ] [2 ]

C
M k C k C

k
                  

2.1 ' 1
21 2 1 8 1 5[ ]

C
M C k C C k C C

k

 
   

 
   

       

2.2 '

22 2 1 8 1 5[ ] 6 +M C k C C k C C
k

 
 


 

       

3.1 ' 1
31 2 1 9 1 6

6
[ ]

C
M C k C C k C C

k

 
  


       

3.2 
'

32 2 1 9 1 6[ ] 6M C k C C k C C       

Flange 

1 
' 2 12
1 1 1[ ( 1)] [2 + ( 1)]

C
M k C k C

k


                

2.1 ' 1
21 3 1 10 1 7[ ]

C
M C k C C k C C

k

 
   

 
   

       

2.2 '

22 3 1 10 1 7[ ] 6M C k C C k C C
k

 
 


 

        

3.1 ' 1
31 4 1 10 1 7[ ]

C
M C k C C k C C

k

 
   

 
   

       

3.2 '

32 4 1 10 1 7[ ] 6M C k C C k C C
k

 
 


 

        

Where 1 ( )C n     
, 2C

  







    
 , 3

( ) ( 1)
C

     



 



      
 ,

4

+
C

     



  



      
 , 5C     

, 6 3C    
,

7C     
, 8C    

, 9C    
, 10C   

,

11 1C C        
, 12 1 ( 1)C C        
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Parametric studies of post-crack tensile strength and reinforcement ratio as two main 

reinforcing factors were conducted. Changes in the location of neutral axis, moment-

curvature response, and stiffness degradation of a beam are normalized with respect to first 

cracking parameters of plain FRC. In addition to the two baseline parameters: E =25 GPa 

and cr =90 str, typical material models for SFRC and steel rebar were used that include: 

tu = 160, γ = 1, ω = 8.5, cu = 28, n = 8.33, κ = 16 and  = 0.8. The variables of the study 

were: residual tensile strength parameter 0.0 ≤ μ ≤ 1.0 and reinforcement ratio 0.0 ≤ ρg ≤ 

0.03.  

Figure 4-13 illustrates the effects of parameters μ and ρg on the normalized moment-

curvature diagram. Figure 4-13(a) shows the effect of increasing the residual tensile 

strength from brittle (μ = 0) to ductile (μ = 1) in plain FRC.  Noted that at a level μ = 0.33 

which is sufficiently close to μcrit = 0.35, the flexural response is almost perfectly-plastic, 

beyond which the deflection softening shifts to hardening. The elastic-plastic tensile 

response of FRC (μ = 1) yields an upper bound normalized moment capacity of 2.7. With 

a main flexural reinforcement of ρg = 0.01 (Figure 4-13(b)), the normalized moment 

capacity of 5.8 is achieved. Note that as ρg increases, the response eventually changes from 

a ductile under-reinforced to over-reinforced. Figure 4-13(c) reveals the effect of residual 

tensile strength (μ = 0.0–1.0) for a fixed reinforcement ratio of 0.01 while Figure 4-13(d) 

shows the marginal benefit of FRC with μ = 0.33 compared to the reinforced concrete 

system.  The moment capacity slightly increases in comparison with the reinforced 

concrete without any fibers (Figure 4-13(b)). The present analysis ignores the contribution 

of the fiber phase to the compression response in the context of internal confinement, 

however than can be easily incorporated in the input parameters. 
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Figure 4-13 Parametric Studies of Normalized Moment Curvature Diagram for Different 

Levels of Post Crack Tensile Strength Parameter μ and Reinforcement Ratio ρg. 
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Figure 4-14 Parametric Studies of Normalized Moment-Curvature Diagram for Different 

Ratios of Flange Thickness (ζ) and Web Width (ο). 
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On another set of comparison, the changing parameters were selected as the sectional 

geometries ο and ζ, as shown in Figure 4-14. Since the two parameters are related to the 

geometries, i.e., cracking moment Mcr, moment curvature with dimensions are compared 

using a cross section of b=500mm, d=600mm, span of 3000mm, µ=0.33, ρg=0.3% (other 

material parameters are same). The two ratios ο and ζ are both changing from 0.1 to 0.25 

to cover a practical range. The moment capacities in both increase for about 80% while the 

mechanisms are different. The role of ζ is primarily shown as the improvement of post-

crack stiffness by providing additional compression forces, while the effect on cracking 

moment is not apparent. On the other hand, as ο increases from 0.1 to 0.25, the cracking 

moment increases as much as twice, which agrees with the trend shown in Figure 4-14. 

Nevertheless, the improvement in post-cracking stiffness is marginal since the tensile 

forces are primarily contributed by the rebars. 

4.6 Experimental Verification of Flexural Model 

4.6.1 Rectangular Beams 

Full scale beam tests from the Brite/Euram project BRPR-CT98-0813 “Test and design 

methods for steel fibre reinforced concrete” by Dupont were used for model verification 

[201]. The experimental program studied the effects of four variables: concrete strength, 

fiber dosage, span length and longitudinal reinforcement ratio. Table 4-12 provides the 

details of the 12 beam series, each with 2 replicates, of two grades of normal (NSC), and 

high strength concrete (HSC). Normal strength concrete used fiber type RC 65/60 BN at 

25 and 50 kg/m3 while HSC used fiber type RC 80/60 BP at 60 kg/m3. All beams had a 

cross section of 0.20 x 0.20 m, with two different span lengths of 1.0 and 2.0 m and tested 
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under four-point bending set up with a constant spacing between the two point loads at 0.2 

m. The first half of the series (B1 – B6) contains no rebar and the other half (B7 – B12) 

contained two rebars of size 8, 12 and 16 mm. Steel parameters were Young modulus of 

200 GPa, yield strength of 560 MPa, and a concrete cover of 15 mm.  

The load-deflection responses of the 12 beam series were simulated by the algorithm 

proposed and compared with Updated RILEM method [201] as reference. The material 

model parameters used were obtained by fitting the tension and compression models shown 

in Figs. 6-1 to the models shown in Figs. 6-10 and summarized in Table 4-13. The residual 

tensile strength  corresponds to average response of the RILEM method. Ultimate tensile 

strain of 0.025 was used for both models [57]. 

Figure 4-16 shows the simulations of the 6 plain SFRC beams without flexural 

reinforcement representing the effect of concrete strength, fiber content, and span length. 

Average test results of two replicate samples of each series is also shown and compared to 

the simulation curves. The simulations compare favorably to the experimental results while 

underestimating the RILEM method. This is attributed to the differences between the 

tensile responses used by the two models. The RILEM model specified two points (σ2, ε2) 

and (σ3, ε3) to express the descending branch (Figure 4-15(a)) as opposed to a constant 

residual strength σp with a lower bound estimation of the residual strength in the proposed 

model with a single step drop from σcr to σp < σ2 (Figure 4-2(a)). This is also shown in 

Table 4-13 and results in lower predicted load at fiber contents of 25 and 50 kg/m3 (Figure 

4-15(a) and (b)). For the high fiber content, residual strengths used in two models are 

identical and thus similar load-deflection responses obtained (Figure 4-15(c)). It is also 

noteworthy that both models underestimate the post-crack response of beam B1 but 
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overestimate the response of beam B2. Since the same model parameters are used for 

beams of different lengths, the simulations demonstrate the nature of size effect of 

properties obtained from smaller specimens. Larger specimens indicate the apparent size 

effect observed in experiments with the descending parts that behave differently from 

smaller beams.  

Figure 4-17 presents load-deflection responses for the 6 HRC beams with flexural 

reinforcement of ρ=0.13% - 0.20%. Both models simulate the experimental results with 

the discrepancy in the flexural stiffness after cracking for the HSC beams in Figure 4-17(c). 

The present model assumes cracks to be uniformly distributed throughout the mid-zone 

between the two loading points used as the localized zone. However additional cracks form 

outside the mid-zone in HSC beams in the shear span region due to tension stiffening 

effects which results in a larger localized zone. Since the deflection correlates with the 

double integration of curvature, additional cracking over a larger section will inherently 

result in a larger localization zone, and higher deflections at the same loading level. The 

limit-state load capacity is insensitive to the length of localization zone as shown by 

Bakhshi et. al [202], and the size effect due to span in HRC beams is not as pronounced as 

the FRC samples. Finally, the difference between the predictability of the two methods 

diminishes since they both use the same elastic-perfectly plastic steel model.  
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Figure 4-15 Material Stress-Strain Model for RILEM Method [201]; (a) Tension and (b) 

Compression Model for SFRC; (c) Steel Model. 

 

Table 4-12 Beam Test Series [169] 

Beam Mix 
Fiber content Span 

Rebar 
kg/m3 m 

B1 NSC 25 1.0 - 

B2 NSC 25 2.0 - 

B3 NSC 50 1.0 - 

B4 NSC 50 2.0 - 

B5 HSC 60 1.0 - 

B6 HSC 60 2.0 - 

B7 NSC 25 1.0 2-8 

B8 NSC 25 2.0 2-8 

B9 NSC 50 1.0 2- 

B10 NSC 50 2.0 2- 

B11 HSC 60 1.0 2- 

B12 HSC 60 2.0 2- 
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Table 4-13 Steel Fiber Reinforced Concrete Parameters for RILEM and Proposed Models 

[169] 

Beam Type SFRC HRC 

Fiber content kg/m3 25 50 60 25 50 60 

RILEM 

E GPa 31.8 30.6 38.4 30.5 30.3 39 

fc’ MPa 30 26 53 26.4 26.1 55.4 

1 MPa 3.5 4.2 6.2 3.2 3.8 6.3 

 MPa 1.1 2 3.1 1.3 1.8 3.8 

 MPa 0.8 1.2 3.1 0.9 1.1 3.2 

  0.011 0.014 0.016 0.011 0.013 0.016 

  0.21 0.24 0.26 0.21 0.23 0.26 

  0.25 0.25 0.25 0.25 0.25 0.25 

                  

Proposed 

Ec GPa 22.6 20 39.7 20 20 41 

cy MPa 30.2 26.6 52.9 26.4 26.1 55.4 

cr MPa 3.5 4.2 6.2 3.2 3.8 6.3 

p MPa 1 1.6 3.1 1.1 1.5 3.5 

cr % 0.011 0.014 0.016 0.011 0.013 0.016 

tu  0.25 0.25 0.25 0.25 0.25 0.25 

   0.273 0.382 0.501 0.345 0.383 0.557 

*strain at peak stress, c0 = 0.2%, at compressive yield stress, cy = 0.133%, and ultimate 

compressive strain, cu = 0.35% for all mixes. 
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Figure 4-16 Load Deflection Responses of SFRC Beams at Three Levels of Fiber 

Contents (25 kg/m3, 50 kg/m3 and 60 kg/m3). RILEM Refers to the Updated RILEM 

Stress-Strain Model [169,201]. 
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Figure 4-17 Load Deflection Responses of HRC Beams at Three Levels of Fiber 

Contents (25 kg/m3, 50 kg/m3 and 60 kg/m3). RILEM Refers to the Updated RILEM 

Stress-Strain Model [169,201]. 
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4.6.2 Flanged Beams 

Demir et al. [ 203 ] conducted four-point bending test on T-section beams using an 

alternative diagonal shear reinforcement. The geometries and reinforcement diagram are 

shown in Figure 4-18(a). The material parameters are as follows: fc’=26.4 MPa, fcr=2.9 

MPa, εcr=78 µε, Ec=24 GPa, fy=414 MPa, Es=205 GPa. The ratio of web and flange 

thickness are ο=0.33 and ζ=0.21, respectively. Figure 4-18(b) compares the experimental 

data and model simulation using the given parameters. It can be seen that the predicted 

curve is quite favorable up to the yield of tensile rebar. 

 

 
Figure 4-18 (a) Details of the Specimens [203], (b) Comparison Between Experimental 

Data and Model Simulation. 
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Abdul-Ahad and Aziz et al. [204] studied the T-beams reinforced by both rebars and steel 

fibers up to a volume fraction of 1.5%. The geometries and reinforcement diagram are 

shown in Figure 4-19(a). The material parameters are as follows: fc’=21 MPa, fcr=1.8 MPa, 

εcr=90 µε, Ec=20 GPa, fy=450 MPa, Es=210 GPa. The ratio of web and flange thickness are 

ο=0.4 and ζ=0.29, respectively. The model simulation agrees well with the experimental 

load-deflection response as shown in Figure 4-19(b). 

 

 
Figure 4-19 (a) Details of the Specimens [204], (b) Comparison Between Experimental 

Data and Model Simulation. 
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Figure 4-20 Bending Test Setup and Cross Sectional Properties of UHPC Pi-Girders 

[200,205]. 
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Graybeal from FHWA [205] proposed a UHPC Pi-girder as decked girder members and 

the deployment of the concept was completed in a project in Buchanan County, IA. Chen 

and Graybeal [200] performed full scale four-point bending tests and finite element 

analysis of the UHPC Pi-girders with a span of 24ft. The sectional properties and test setup 

are shown in Figure 4-20. 

In order to simulate the flexural response of Pi-girder, the cross section is converted into 

an equivalent T-section based as shown in Figure 4-21. The conversion is rational due 

symmetry in the Pi-girder and the two sections have same moment of inertia about the 

neutral axis. The T-section has same height, width and flange thickness with the original 

section, while the thickness of web is taken as the summation of the bulb width. 

Comparison of simulated and experimental load-deflection responses is shown in Figure 

4-22. The material parameters are as follows: fc’=97 MPa, εcr=73 µε, Ec=53 GPa, fy=1820 

MPa, Es=210 GPa. The ratio of web and flange thickness are ο=0.24 and ζ=0.16, 

respectively. The model is able to accurately predict the flexural behavior of Pi-girder using 

the conversion procedure. 
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Figure 4-21 Conversion From Pi-Girder to an Equivalent T-Section. 

 
Figure 4-22 Comparison Between Experimental Data and Model Simulation. 
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4.6.3 Size Effects on Serviceability Limits 

Since the present analytical model keeps track of the curvature distribution and allows the 

determination of load capacity at given deformation, it can be used to compare the results 

of beams of various sizes for a serviceability based criterion such as maximum allowable 

curvature, deflection, ductility or stress. Various parameters have been proposed and used 

to characterize the flexural toughness and residual strength of FRC from experimental data. 

For example, EN14651 uses equivalent flexural tensile strength feq,3 determined at a 

specific deflection level of δ = 2.5 mm; ASTM C1609 uses an equivalent flexural strength 

ratio Re,3 at a similar value of deflection δ = L/150. However, extraction of experimental 

results from small beams at a given deflection may be inappropriate for the design of full 

scale structures due to the size effect [206]. A study of size effect on the curvatures which 

correlates with maximum load at specified levels of deflection was thus conducted. In 

addition to Dupont’s beam tests results discussed for spans of 1 and 2 m, additional 

simulations were conducted on the experiments by Kim et. al [207] and Mobasher et. al 

[208] on SFRC beams with spans of 0.45 m as well as Barros and Figuerias [209] on slab 

strips with 1.5 m span. Model parameters can be found elsewhere [210]. Once the load-

deflection results were simulated based on the model, the magnitudes of maximum 

curvatures corresponding to the deflection δ = L/150 were plotted as a function of span 

length and summarized in Figure 4-23. The size effect can be observed that the curvature 

limit required to fit the experimental data is independent of the amount of fibers used. The 

maximum curvature decreased by almost 80% as the span increased from 0.45 m to 2 m 

which is the range of many experimental data conducted in the literature. The simulated 

curvatures of large beams using the same material parameters are much lower than those 
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of smaller beams at equivalent levels of deflection. This points out that the trend of 

specifying parameters such as Re,3 which occur at quite a large deflection and curvature for 

small specimens in order to design and construct large beams is too conservative as the 

curvatures obtained by the small samples may not be obtained under real size geometries.   

 
Figure 4-23 Simulated Curvatures Corresponding to Deflection of δ = L/150 for Various 

Materials and Beam Sizes [169]. 

Material characteristics of HRC are idealized using elastic-residual-tensile strength for 

tension and elastic-perfectly plastic for compression and an elastic-perfectly plastic 

reinforcing steel. Analytical solutions for neutral axis depth, moment-curvature, and 

effective stiffness at each stage of flexural deformation are obtained. Analytical 

expressions for load-deflection response are explicitly derived based on simplified bilinear 

1

2

3

4

3
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moment-curvature curves. Parametric studies demonstrate that the use of discrete fibers to 

increase residual tensile strength is not as effective as continuous reinforcement in 

improving the moment capacity, however the ability of fibers to distribute cracking leads 

to higher stiffness and strength than plain reinforced concrete.   

The derivations are used in terms of design charts representing the normalized ultimate 

moment capacity as a function of residual tensile strength and reinforcement ratio and are 

applicable to conventional-, fiber-, and hybrid-reinforced concrete.  Results are further 

converted to coefficient of resistance R by stress block approach, nominal strength, and 

minimum reinforcement ratio. Numerical tests covering materials and geometrical ranges 

as a well as comparison with available experimental data confirmed the proposed equations 

against the original equations. 
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Notation 

As = area of steel rebar 

b = beam width 

d  = effective depth at location of steel rebar 

E = elastic tensile modulus of concrete 

Ec = elastic compressive modulus of concrete 

Es = elastic modulus of steel

f’c = cylindrical ultimate compressive strength of concrete 

f = stress 

F = force components in stress diagram 

h = full height of a beam section or height of each compression and tension zone in 

stress diagram 

K = effective flexural stiffness of a beam section 

k = neutral axis depth ratio 

M = moment 

Mn = nominal moment capacity 

Mu    = ultimate moment 

n = modulus ratio (Es/E) 

R = coefficient of resistance 

y = moment arm from force component to neutral axis 

 = normalized depth of steel reinforcement (d/h) 

 = normalized tensile strain (t/cr) 

 = coefficient for the depth of ACI rectangular stress block 

 = strain 

c = concrete compressive strain 

c0 = concrete compressive strain at peak stress

ctop = concrete compressive strain at top fiber

t = concrete tensile strain 

tbot = concrete tensile strain at bottom fiber
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 = curvature 

 = normalized concrete compressive modulus (Ec/E)

 = normalized steel yield strain (sy/cr) 

 = normalized compressive strain (c/cr) 

R = normalized compressive strain at the end of elastic region 1 

 = normalized residual tensile strength (p/cr) 

μcrit = the critical normalized residual tensile strength that change deflection-softening 

to   deflection-hardening 

 = steel reinforcement ratio per effective area 

bal = steel reinforcement ratio per effective area at balance failure 

g = steel reinforcement ratio per gross area 

g,bal = steel reinforcement ratio per gross area at balance failure  

g,min  = minimum flexural reinforcement per gross section 

g,min,rc  = minimum flexural reinforcement per gross section for conventional reinforced 

concrete 

min = minimum flexural reinforcement ratio per effective section 

min,rc = minimum flexural reinforcement ratio per effective section for conventional 

reinforced concrete 

  = concrete stress 

c = concrete compressive stress 

p = residual tensile strength 

t = concrete tensile stress 

 = normalized concrete compressive yield strain (cy/cr) 

 = normalized steel strain (s/cr) 

 

Subscripts 

1 = at stage 1, elastic compression – elastic tension 

21 = at stage 2.1, elastic compression – residual tension, steel is elastic 

22 = at stage 2.2, elastic compression – residual tension, steel is yield 
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31 = at stage 3.1, plastic compression – residual tension, steel is elastic 

32 = at stage 3.2, plastic compression – residual tension, steel is yield 

c1 = elastic compression zone 1 in stress diagram 

c2 = plastic compression zone 2 in stress diagram 

cr = at first cracking 

cu = at ultimate concrete compressive strain 

cy = at concrete compressive yielding 

i = at stage i of normalized concrete compressive strain and tensile steel condition 

s = refer to steel 

sy = at steel yielding 

t1 = elastic tension zone 1 in stress diagram 

t2 = residual tension zone 2 in stress diagram 

tu = at concrete ultimate tensile stain 

cu = at concrete ultimate compressive strain 

 = at concrete compressive strain approach infinity 

Supper scripts 

’ = normalizing symbol  

 

  



217 

 

5. ANALYTICAL MODEL FOR COMBINED AXIAL-BENDING LOADS 

5.1 Introduction 

Structural members such as columns, beam-column joints, footings and tunnel lining 

segments are subjected to combined loads of axial compression and bending moment. The 

combined effects may be induced by different factors, such as unbalanced moments at 

connecting beams, vertical misalignment, lateral forces resulting from wind or seismic 

activity, or curved shape of the member itself [211]. P-M interaction diagrams were 

presented originally by Whitney and Cohen [212] in 1956 and continue to be widely used 

today in the design of these structural members, which represents the interaction of axial 

load and moment on ultimate strength [213]. These diagrams provide solutions for the 

reinforcement required to resist a specified combination of axial load and moment. 

The development of interaction diagrams of reinforced concrete (RC) rectangular sections 

have been investigated extensively by numerous researchers [214,215,216,217,218,219]. 

However, most of the work was carried out using the Whitney’s rectangular stress block 

for the concrete in compression and assumed no contribution by tensile zone of concrete. 

Second-degree parabolic stress-strain models to describe the compression behavior were 

employed by Marin [ 220], as well as Rodriguez and Aristizabal-Ochoa [ 221], who 

presented closed-form expressions for ultimate loads and bending moments. But 

programming involving nonlinear numerical solver is needed which may not be applicable 

as design equations. Mobasher et al. [169] derived analytical flexural load-deflection 

solutions of HRC beams subjected to pure bending using a parametric material tensile and 

compression constitutive model, as well as steel model. The contribution of fiber was 

addressed by the parameter of residual tensile strength, which may be obtained by standard 
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flexural tests [57] and back-calculation procedure [61,62]. The expressions of minimum 

reinforcement ratio and ultimate moment capacity including the effect of residual strength 

were explicitly derived which can be used in a simplified design procedure for cement 

composites. Moreover, analytical equations can be used for selection of variables using a 

design automation procedure; hence gradient-based optimization algorithms can be 

conducted much faster. 

This chapter presents analytical solutions to construct a full range P–M interaction diagram 

of HRC sections that consider the contributions of fibers in the post-cracking strength. The 

proposed methodology covers all the control modes in the structural members subjected to 

the axial compression and bending loads. The model simulates are verified with 

experimental results and analysis from literature for columns and tunnel lining segments. 

The proposed P–M diagram could be used by engineers as a design tool in different types 

of applications. 

5.2 Material Models 

The objective of this study is to develop the analytical solutions of the P-M interaction 

diagram of the HRC section. Figure 5-1 presents three distinct material models used in the 

derivation of parametric response of HRC beams. Material parameters are described as two 

intrinsic parameters: tensile modulus E and the first cracking tensile strain εcr while other 

variables are normalized with respect to these intrinsic parameters. Figure 5-1(a) shows an 

idealized tension model with an elastic range of stress increases linearly with E up to the 

first cracking tensile strength of coordinates (εcr, cr). In the post-crack region, the stress is 

constant at p = μcr = μεcrE and terminates at the ultimate tensile strain εtu = tuεcr. Figure 

5-1(b) shows the elastic-perfectly plastic compression response with a modulus Ec = γE. 
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The plastic range initiates at strain εcy = ωεcr corresponding to yield stress cy = ωγεcrE and 

terminated at cu = cuεcr. The effect of lateral ties on the compressive behavior is 

characterized by an improved compressive strength cy’ = (ω+ω’)γεcrE. Figure 5-1(c) is 

the elastic-perfectly plastic steel model using yield strain and stress of sy = κcr and fsy = 

κncrE as defined by normalized parameters: κ and n. No termination level is specified for 

steel strain. Geometrical parameters are also normalized with the cross sectional 

dimensions of width b and full depth h as shown in Figure 5-1(d) with steel parameters 

defined as area As = ρgbh at the reinforced depth h for both compression and tension 

rebars. The compression reinforcement ratio ρg’ is assumed equal to the tension 

reinforcement ratio ρg throughout the study. 
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Figure 5-1 Material Models Including (a) Tensile Model, (b) Compressive Model, (c) 

Steel Model, (d) Cross Section. 

The material models for tension and compression of FRC and the model for steel rebar are 

presented as: 
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                Equation 5-3 

where normalized strains are defined as  = t/cr,  = c/cr and  = s/cr. 

5.3 Confinement Effects 

Mansur et al. [222] performed compression tests on plan concrete and FRC to investigate 

the effects of tie confinements. Empirical equations to predict the compressive stress-strain 

behaviors were proposed based on the experimental results. Specifically, the effects of 

confinement on the compressive strength can be described by the equations below: 

for plain concrete 

1.23

0

0 0

'
1 0.60

s yff

f f

 
   

 
                              Equation 5-4 

for FRC 

1.23

0

0 0

'
1 11.63

s yff

f f

 
   

 
                              Equation 5-5 

where f0 is original compressive strength, f0’ is the confined strength, ρs is the reinforcement 

ratio of the ties, fy is the yield strength of steel. Parametric studies covering some typical 
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materials including Grade 60 (60 ksi) and 80 steel (80 ksi), as well as normal strength (5000 

psi) and high strength (7000 psi) concrete are conducted. Figure 5-2 shows the effect of 

confinement for these combinations as reinforcement ratio increases from 0 to 0.3%. The 

results indicate that the ratio of confined strength over original strength, i.e. f0’/ f0 or (ω+ 

ω’)/ ω, can be as high as 1.37 within the range of study. While the actual confinement ratio 

used in the model will depend on the details of case study. 

 
Figure 5-2 Effects of Confinement on the Compressive Strength for FRC and Plain 

Concrete. 
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5.4 Derivations 

5.4.1 Strain and Stress Diagrams 

In derivation of axial force (P) and bending moment (M) for a rectangular cross section, 

the assumption of plane section remaining plane is assumed. By applying linear strain 

distribution across the depth, ignoring shear deformation, and using material models of Eqs. 

(1)-(3) and Figure 5-1(a)-(c), the stress distributions as shown in Figure 5-3 are obtained. 

The normalized strain at the bottom concrete fiber is used as an independent variable to 

incrementally impose axial and flexural deformations for three modes of failure. 

Specifically, letter λ represents the bottom strain in compression while β refers to tensile 

strain. In the present study, the compressive strain is defined as positive, and the terms of 

stress, force follow the same sign convention. The Mode 1 corresponds to range where the 

entire cross section is under compression, where two sub-modes exist: 1.1 bottom concrete 

fiber yield in compression (λ ≥ ω), 1.2 bottom concrete fiber does not yield (0 < λ < ω); 

Mode 2 corresponds to compression controlled failure where the steel in tensile region is 

not yielded (-κ ≤ χ ≤ 0), which also includes two sub-modes: 2.1 no tension crack (-1 ≤ β 

≤ 0) and 2.2 tension crack (β < -1). Finally, Mode 3 corresponds to the tension controlled 

failure (-0.005/cr < χ ≤ - κ) with two scenarios existing in each sub-stage: 3.1 the 

compression steel is elastic or 3.2 yielding. In modes 2 and 3, where the bottom fiber is in 

tension (β < 0), a parameter k is introduced to represent the normalized height of natural 

axis: 
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                         Equation 5-6 
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Theoretically, these two scenarios could exist in other modes as well, but quick 

examinations for practical considerations showed that the compression still is yielded in 

most of the cases in compression controlled zones. Therefore, it is assumed that the steel 

in compression is yielded all time in Modes 1 and 2 in this study as a rational simplification.  

 
Figure 5-3 Strain and Stress Diagrams at Three Modes: (a) All Compression, (b) 

Compression Controlled Failure, (c) Tension Controlled Failure. 
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5.4.2 Calculations of Force and Moment 

Three modes of stress distribution in Figure 5-3, show the height of compression and 

tension zones normalized with respect to the beam depth h, while stresses are normalized 

with respect to the first cracking strength Eεcr and presented in Tables 5-1 and 2, 

respectively.  

Forces are normalized with respect to cracking tensile force bhEcr as shown in Table 3. 

The net section force is obtained as the difference between the tension and compression 

forces. Internal moment is obtained by integrating the force components using the distance 

to the center line as the moment arm. By normalizing the moment Mi using the cracking 

value Mcr are expressed as analytical expressions Mi’ as presented in Table 5-4. 

2

' ;       
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' ;       

6

i i cr cr cr

i i cr cr cr

P P P P bhE

M M M M bh E





 

 
                          Equation 5-7 

     

Table 5-1 Normalized Height of Compression (C) and Tension (T) Zones for Each Mode. 

Zone 
Normalized 

height 

Mode 1 

(χ > 0) 

Mode 2 

(-κ < χ < 0) 

Mode 3 

(0.005/cr < χ <- κ) 
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Table 5-2 Normalized Stress at Vertices in the Stress Diagram for Each Mode. 

Zone 
Normalized 

Stress 

Mode 1 

(χ > 0) 

Mode 2 

(-κ < χ < 0) 

Mode 3 

(0.005/cr < χ <- κ) 
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Table 5-3 Normalized Force Component for Each Mode. 

Zone 
Normalized 

Force 

Mode 1 

(χ > 0) 

Mode 2 

(-κ < χ < 0) 
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Table 5-4 Normalized Force and Moment for Each Mode. 

 Mode P’ 
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5.4.3 Ultimate and Balanced Point 

The ultimate axial load can be obtained at concentric loading case: 

' 2u gP n                                             Equation 5-8 

The axial load and bending moment at balanced point can be determined by substituting 

cu
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k
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
 into equations at mode 3.1, i.e. P31’ and M31’: 
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Where 
2
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   
. 

5.5 Parametric Study 

Using the equations summarized in Table 5-4, generating of numeric P-M interaction 

diagram is feasible. A matlab code is developed to implement the analytical expressions 

using concrete strain at bottom fiber β as the changing variable. A base numerical model is 

used as illustration with the parameters: E =25 GPa and cr =110 str, μ =0.33, cu = 0.003, 

tu = 160, γ = 1.0, ω = 12, cu = 27, n = 8, κ = 18, and  = 0.85. The normalized interaction 

diagram obtained is shown in Figure 5-4, where all the different stages are identified. 

Strength reduction factor φ is also calculated using the following Equation 5-10 and a 

comparison between Pu-Mu and φPu-φMu is shown in Figure 5-5. 
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             Equation 5-10 

 
Figure 5-4 Normalized P-M Diagram Showing Different Modes. 
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Figure 5-5 Comparison Between Pu-Mu and φPu-φMu for a Cross Section With 

b=200mm, h=350mm.  

Parametric studies of post-crack tensile strength, confinement effect, reinforcement ratio 

and yield strength of rebar were conducted. The variables of the study were: residual tensile 

strength parameter 0.0 ≤ μ ≤ 1.0, improved compressive strength 0.0 ≤ ω’/ω ≤ 0.3, 

(normalized compressive strength increases from ω to 1.3ω), reinforcement ratio 0.25% ≤ 

ρ ≤ 1.0%, and yield strength fsy increases from 400 MPa (Grade 60) to 485 MPa (Grade 70) 

and 550 MPa (Grade 80).  
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5-6 Parametric Study on the Effects of (a) Residual Tensile Strength μ, (b) 

Improved Compressive Strength ω’ Due to Confinement, (c) Reinforcement Ratio ρg, and 

(d) Yield Strength fsy. 
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Figure 5-6(a) shows the effect of residual tensile strength μ on the normalized interaction 

diagram. As a parameter governing the tensile properties, the ultimate axial load Pu’ is 

therefore not affected. However, the moment capacity after cracking in tension starts to 

increase due to the improvement of the tensile force provided by fiber bridging mechanism. 

Specifically, the balance moment Mb’ increases from 10.3 to 10.6, 10.8 and 11.1, when μ 

increases from 0 to 0.33, 0.67, and 1, respectively. The effect of confinement is evaluated 

by increasing the compressive strength for 10%, 20% and 30%, i.e. ω’ changes from 0 to 

0.1ω, 0.2ω, and 0.3ω. A clear improvement in Pu’, Pb’ and Mb’ can be observed in Figure 

5-6(b) while the moment capacity at pure bending is not affected (intersection with x-axis). 

The effects of longitudinal reinforcement properties in terms of reinforcement ratio and 

rebar yield strength are illustrated in Figures 5-6(c) and (d), respectively. Increases in ρg 

and fsy can improve the overall cross sectional properties in ultimate load, balance load and 

moment and moment capacity under pure bending, especially by increasing reinforcement 

ratio. 

5.6 Model Verification 

Chaallal and Shahawy [223] evaluated the performance of RC columns under combined 

axial-flexrual loading and obtained experimental interaction diagrams. The column had 

cross section of b = 203mm and d = 356 mm. Two #6 rebars were placed on each side with 

a cover of 50 mm, which results in a reinforcement ratio of ρg = 0.8% and reinforcement 

depth parameter  = 0.86. The rebar was Grade 60 steel with a yield strength of fsy = 414 

MPa and the concrete compressive strength was σcy = 25.0 MPa. In additional to the 

geometrical and mechanical properties, other model parameters used including: E =30 GPa, 

cr =110 str, μ =0.5, cu = 0.003, tu = 181, γ = 0.9, ω = 7.6, cu = 27, γ = 0.9, n = 7, and 
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κ = 18. A comparison of experimental and simulated results is shown in Figure 5-7 where 

a good agreement can be observed. Note that the nominal capacity Pn and Mn are used 

without considering the reduction factor ϕ. 

 
Figure 5-7 Comparison of Simulated and Experimentally Determined P-M Diagram of a 

RC Column.  

de la Fuene et al. [224] presented the successful experiences regarding the use of fibers as 

the main reinforcement in precast segmental linings in the metropolitan area of Barcelona. 

It is known that the addition of structural fibers improves the mechanical behavior of the 

structure during its construction, especially in cases such as the thrust of the jacks, and on 

the other hand it leads to a reduction of the global costs by reducing the conventional 

passive reinforcement. The case discussed in present study consists in two parallel rail 
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tunnels built in the urban area of Terrassa as the extension of the Ferrocarriles de la 

Generalitat de Catalunya (FGC). Both tunnels have been excavated successively with a 

total length of 4510 m each. The tunnels consist of segmental rings with an internal 

diameter of 6.0 m, formed by 6 + 1 RC-SFRC precast concrete C30/37 segments with a 

width of 1.5 m and a thickness of 0.30 m as shown in Figure 5-8.   

 

Figure 5-8 Cross Section of RC-SFRC Precast Segment.  

Figure 5-9 shows the interaction diagrams for the section with the RC-SFRC precast 

segment obtained by proposed model and original analysis. The parameters for proposed 

model are as follows: E =30 GPa, cr =200 str, cu = 0.003, tu = 250, γ = 0.9, ω = 5.0, cu 

= 17.5, γ = 0.9, ρ = 0.28%, n = 7, and κ = 11.9. The yielding strength and modulus of rebar 

are 500 MPa and 210 GPa. The residual strength parameter μ was selected as 0, 0.15, and 

0.3 for the fiber contents of 0, 15 and 30 kg/m3, respectively. The contribution and effects 

of steel fibers on the interaction diagram of the precast segments are therefore revealed. 

The interaction diagram is divided into compression and the tension controlled zones as 

illustrated in Figure 5-4. It is evident from the Figure 5-9(a) that the changing in fiber 

content does not affect in most of compression controlled region while the ultimate moment 

starts to increase after cracking and becomes more pronounced in the tension controlled 

region. The phenomenon can be traced back to the role of fibers in the concrete matrix 

which primarily enhances the post-cracking and residual strengths in tension by bridging 
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the cracks. This mechanism is predicted by the proposed model by increasing the 

normalized residual strength factor μ. 

 
(a) 

 
(b) 

Figure 5-9 (a) P-M Diagram for the Tunnel Lining Segment With a Cross Section of 

11φ12 and Varying Amount of Fibers; (b) Closer Look at the Range Indicated.  
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On the basis of the results presented in Figure 5-9(b), it is observed that with a fiber content 

of 15 kg/m3, the design moment Md of 542 kN-m in service stage is already exceeded [224]. 

Likewise, it should be noted that the maximum increase of Mu does not exceed 5% (30 

kg/m3) with regard to the RC precast segment (0 kg/m3) if Nd = 4209 kN. In other words, 

in this case the rebars perform the main resistance function in failure, whereas the fibres 

play a more important role in the crack width control. 

Tiberti [225] performed numerical analysis on different case studies of the tunneling 

segments with internal diameters ranging from 7.25 m to 14.9 m. The effect of steel fiber 

was considered in the study by using a similar concept of residual tensile strength “χ” that 

ranges from 0 to 0.75. The studies of each case were performed in two configurations: plain 

SFRC and HRC sections with a reinforcement ratio of ρ=0.2% (note that ρg defined as 

reinforcement ratio per gross area in present study is different from ρ, which depends on 

the cross sectional geometries and steel configuration). The design compressive strength 

of the concrete fcd = 22.7 MPa, tensile strength fcld = 1.6 MPa, concrete modulus E = 35 

GPa, design yielding strength of steel fyd = 391 MPa, steel modulus Es = 200 GPa. Two 

case studies, “Malpensa-Saronno lining” with smaller diameter of 7.25 and “Highway 

tunnel lining” with larger diameter of 14.9 m are presented in this work by comparing the 

original analysis with the proposed model. 
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(a) 

 
(b) 

Figure 5-10 P-M Diagram for the Malpensa-Saronno Lining Configuration (a) Plain 

SFRC Section, and (b) HRC Section [225].  
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Figures 5-10 and 5-11 compare the interaction diagrams for the sections made of plain 

SFRC and HRC for the two case studies, respectively. The cross sectional geometries and 

model parameters are indicated in the figures. In order to address the residual strength used 

in the original study, same values are assigned to the parameter μ, which are 0.25, 0.50 and 

0.75, respectively. Similarly, increments in the ultimate moment capacity are observed with 

increasing μ value. The shaded area represents the region of axial force under investigation 

which is referred to as the “normal ring force” defined in the original study (range of tunnel 

overburden considered from 1 to 4 times of the external diameter). It clearly turns out that 

for linings having small diameter (Malpensa-Saronno lining in Figure 5-10), the range of 

normal ring force investigated is located in a favorable region of the domains, where the 

fiber resistant is considerable. On the other hand, for the tunnel linings having large 

diameter (Highway tunnel lining in Figure 5-11), the shaded region moves to high normal 

ring force exhibiting a less pronounced contribution due to fibers. For instance, referring 

to the Highway tunnel, the normal force investigated exceeds the maximum resistant 

bending moment of the domain. It is therefore known that, in this case the sectional lining 

behavior is governed by the concrete compressive strength [225].  
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(a) 

 
(b) 

Figure 5-11 P-M Diagram for the Highway Tunnel Lining Configuration (a) Plain SFRC 

Section, and (b) HRC Section [225]. 
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Besides the precast segment, cast-in-situ application is also investigated. Chiaia et al. [226] 

proposed a numerical block model that evaluates the cracking information in RC and HRC 

members, which was applied to the design of Faver-S.S. 612 tunnel lining in Italy. The 

segment has a cross section of 1000 mm by 500 mm with reinforcement area As = 800 mm2. 

Concrete compressive strength and steel yield strength are 25 MPa and 430 MPa, 

respectively. Steel fibers at dosage of 35 kg/m3 were added to the mix. The applied loads 

(Msd-Nsd) and bending moments were obtained from multi-stage 2D finite element model. 

The ultimate limit states of the cross-section were defined by two interaction diagrams for 

plain SFRC (ρg=0.0%) section using the material model specified by RILEM TC 162-TDF 

[57] and HRC (ρg=0.16%) section derived by Chiaia et al. [227]. 

The applied actions Msd-Nsd and are compared to the computed interaction diagrams as 

shown in Figure 5-12. For the considered cross-sections, the ultimate limit states are 

reached in the tensile zones, since the couples Msd-Nsd generally fall in the tension-

controlled zones of the interaction curves. In addition, most of the applied actions fall 

within the range of plain SFRC section indicating the sufficient resistance provided by the 

designed section for most cases. However, some of the points Msd-Nsd fall outside the 

computed design diagrams of SFRC section where the axial action is dominated by tension. 

In these zones, the rebars are needed to provide necessary tensile resistance where a ρg 

value of 0.16% (ρ=0.2%) as a minimum reinforcement ratio is sufficient [227]. 
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Figure 5-12 Comparison Between Applied Actions and the Design Interaction Diagrams 

Obtained by Different Methods. 
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Notation 

As= area of steel rebar 

b= beam width 

C1-11= coefficients for normalized moment in Table 5-4 

d = effective depth at location of steel rebar 

E= elastic tensile modulus of concrete 

Ec= elastic compressive modulus of concrete 

Es= elastic modulus of steel

f’c= cylindrical ultimate compressive strength of concrete 

f= stress 

F= force components in stress diagram 

d= full height of a beam section or height of each compression and tension zone in stress 

diagram 

k= neutral axis depth ratio 

M= moment 

Mn= nominal moment capacity 

n= modulus ratio (Es/E) 

y= moment arm from force component to neutral axis 

= normalized depth of steel reinforcement 

= normalized tensile strain (t/cr) 

= strain 

c= concrete compressive strain 

t= concrete tensile strain 

= normalized concrete compressive modulus (Ec/E)

= normalized steel yield strain (sy/cr) 

= normalized compressive strain (c/cr) 

= normalized residual tensile strength (p/cr) 

= steel reinforcement ratio per effective area 

 = concrete stress 
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p= residual  tensile strength 

= normalized concrete compressive yield strain (cy/cr) 

= normalized steel strain (s/cr) 

φ= strength reduction factor 

 

Subscripts 

c1= elastic compression zone 1 in stress diagram 

c2= plastic compression zone 2 in stress diagram 

cr= at first cracking 

cu= at ultimate concrete compressive strain 

cy= at concrete compressive yielding 

i= at stage i of normalized concrete compressive strain and tensile steel condition 

s= refer to steel 

sy= at steel yielding 

t1= elastic tension zone 1 in stress diagram 

t2= residual tension zone 2 in stress diagram 

tu= at concrete ultimate tensile stain 

cu= at concrete ultimate compressive strain 

 

Supper scripts 

’= normalizing symbol  
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6. SHEAR FAILURE IN BEAMS 

6.1 Introduction 

Since the shear strength of concrete is dominated by its ability to resist diagonal tension 

[228, 229], use of steel fibers may provide sufficient shear resistance and partly or even 

fully replace web reinforcements. It is well known that the use of even modest amounts of 

diffused steel fiber reinforcement significantly increases the post-cracking toughness and 

ductility of concrete [230,231,232,233,234], increases tensile strength to varying degrees 

[235], and reduces the width and spacing of cracks [149,236,237,238]. According to Dinh 

et al. [239], fiber reinforcement enhances shear resistance by transferring tensile stresses 

across diagonal cracks and improves aggregate interlock by reducing the spacing and width 

of diagonal cracks. Based on a comprehensive review of test data related to the use of steel 

fibers as shear reinforcement [229], Parra-Montesinos [240] has reported an average shear 

stress of 0.3√fc′ MPa (3.5√fc′ psi) to represent a lower bound to the shear strength of beams 

reinforced with deformed steel fibers when volume fractions Vf greater than or equal to 

0.75%. Subsequently, a new provision was first introduced in ACI 318-08 and reaffirmed 

in the 2011 ACI Building Code allowing the use of deformed steel fibers in volume 

fractions greater than or equal to 0.75% as minimum shear reinforcement in normal-

strength concrete beams. In addition to the specified minimum fiber content, the ACI 

Building Code also prescribes a flexural performance criteria based on the ASTM C1609 

four-point bend test for the acceptance of steel fibers as minimum shear reinforcement. 

Shear failure is not considered in the proposed flexural model which sometimes may lead 

to inaccurate predictions. For example, Figure 6-2(b) shows that the model simulation 

overestimates the experimental results reported by Ding et al. [241] to a great extent, which 
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can only be explained by the different modes of failure. As shown in Figure 6-2(c), the 

beams are subjected to shear failure companied by dominating diagonal cracks, which 

occurs prior to the flexural failures such as rebar yielding or compression failure. Therefore, 

the goal of this section is to determine the shear stress using a rational method based on 2D 

stress analysis approach, and construct the shear failure criteria in HRC beams without 

stirrups. 
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(a)  

 

 
(b) 

 
(c) 

Figure 6-1 (a) Details of the Beam Subjected to Four-Point Bending, (b) Comparison 

Between Flexural Model Simulation and Experimental Data, (c) Shear Failure in the 

Tested Beams. 
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6.2 Stress Analysis Based Calculation 

The nature of the analytical based cross sectional analysis enables the track of full field 

distribution of normal strain and stress across the entire beam. The first step is to determine 

the distribution of bending moment along the beam based on equilibrium; then the 

curvature and normalized strain at extreme fiber can be extracted from moment-curvature 

and moment-strain curves; once the strain at extreme fiber is obtained, the strain and stress 

distribution can be reconstructed based on Figure 6-3. 

Figure 6-3(a) shows the stress and strain distribution along a certain cross section in 

cracked stage. Once the full field distribution is obtained, a thin element can then be 

investigated as shown in Figure 6-3(b). The shear stress at location of (x,y) can be 

calculated by solving equilibrium equations, as shown in Figure 6-3(c). Note that in the 

example figure, tensile stress below the location of rebar is a constant µεcr on both sides of 

the free body. Thus the shear stress below location of tensile rebar is zero. 
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Figure 6-2 (a) Normal Stress Distribution of A HRC Cross Section in Cracked Stage, (b) 

Free Body Diagram of a Thin Element, (c) Distribution of Shear Stress. 
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6.3 Structural Analysis Using Distributed Hinges 

Figure 6-4 schematically presents the development of flexural-shear cracks in a RC beam 

subjected to shear failure. At early stage of the test, the first crack initiates and grows at 

the mid-span where the maximum bending moment is at. As load keeps increasing, 

multiple cracking starts to form and spread from the mid-span towards the far field. As a 

result of combined tensile and shear stresses, the principle stress σ1 turns into an inclined 

direction near the crack tip, which subsequently leads to the growth of vertical cracks along 

the diagonal directions. The diagonal cracks initiated from the flexural cracks eventually 

merged and form a dominated shear crack that results in the failure. 

Based on the experimental study of multiple cracking mechanisms discussed in Chapter 2, 

the distributed cracking as a result of tension stiffening locate at approximately regular 

intervals. It is therefore reasonable to model the multiple cracks are equally distributed 

along the beam. The significant parameter crack spacing can be either obtained from 

experimental observation or tension stiffening model. In order to address the distributed 

cracking using a smeared cracking material model, the distributed hinges (Figure 4-1) are 

assumed to be formed sequentially along the beam as the tensile strain attains cracking 

strain. The length of the hinge Lp is assumed to be equal to the crack spacing. 
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Figure 6-3 Development of Flexural and Shear Cracks in a RC Beam Dominated by 

Shear Failure. 

Figure 6-5 shows the distributed hinges in a beam subjected to four-point bending (only 

half of the beam is shown due to symmetry). The location of flexural crack is assumed to 

be at the center of each hinge such that when the tensile strain at the mid-section of the pre-

assigned hinge area reaches the cracking strain, a new hinge is formed. It is shown in the 
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DIC observation (Chapter 2) that the tensile strain is localized across the cracks while the 

far field strain is uniformly distributed at low values. In order to implement the smeared 

cracking model, the tensile strain is assumed to be a constant within each hinge by equating 

the displacement, i.e., converting crack opening into nominal strain through characteristic 

length, which in this case refers to crack spacing lcs or the hinge length Lp [53]. 

Subsequently, the curvature is also averaged over each hinge and the mid-span deflection 

can be obtained by numerical integrate of the curvature over the length. 

 
Figure 6-4 Averaged Tensile Strain and Curvature of Each Nonlinear Hinge. 



253 

 

With the discrete damage methodology introduced above, a numerical beam model of the 

example shown in Figure 6-2 is used to illustrate the stress and strain distributions. The 

beam subjected to four-point bending has dimensions of b=100mm, d=150mm, 

L=1140mm. Material parameters used in the model are as follows: The material parameters 

are as follows: fc’=41 MPa, fcr=3 MPa, εcr=111 µε, Ec=27 GPa, fy=430 MPa, Es=210 GPa, 

ρg=2.7%. Figure 6-6 demonstrates the 2D distributions of normal strain, stress, shear stress 

and principle directions (θP1) at load level of 40 kN where shear failure occurs. The 

principle stress and direction are calculated based on normal and shear stresses using 

following equations: 

2

2
1 2
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2 2
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x y x y
, xy

x y
Pcos

R

   
 

 


  
   

 




                     Equation 6-1 

As shown in Figure 6-6(a) and (b), the compression and tension zones can be clearly 

identified at the upper and lower half of the beam, respectively. Shear stress map shown in 

Figure 6-6(c) reveals a non-uniform distribution pattern along the length of the beam, 

which is against the conventional calculation of average shear stress using shear force. As 

previously mentioned, the shear stresses below tensile rebar is zero due to constant residual 

strength. Also the region near left support shows very low shear stress since the nonlinear 

hinge is not formed and the normal stresses are relatively low as well. The maximum shear 

stress is found to be 2.2 MPa, which is higher than the average shear stress 

1 6uv Vu / bd . MPa  . 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6-5 2D Distributions of (a) Normal Strain, (b) Normal Stress, (c) Shear Stress, (d) 

θP1. 

max=2.21MPa

~48 
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6.4 Experimental Calibration 

Minelli et al. [242] carried out an experimental campaign on HRC beams under shear 

loading: nine full scale beams, having a height varying from 500 to 1500 mm, were tested 

for investigating the effect of steel fibers on key parameters influencing the shear response 

of concrete members. All tested members contained no conventional shear reinforcement 

and different amounts of steel fibers: 0, 0.64 and 1 % by volume. The beam details and 

rebar configuration are shown in Figure 6-7. 

 
Figure 6-6 Beam and Cross Section Details [242]. 
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Figure 6-8 presents the model simulation and experimental data for the beam with a height 

of 500 mm, where the ultimate shear force Vu is 443 kN and corresponding maximum shear 

stress is 2.94 MPa. A plasticity stage is used at a constant load to show the shear failure 

path against the flexural failure path. Distributions of shear and principle stresses are shown 

in Figure 6-9. In addition to the stress distribution, the discrete hinges are also presented in 

terms of the nominal crack in Figure 6-10. The vertical bars represent the locations of 

hinges mid-section while the height equals to the height of cracked zone ht2, as shown in 

Figure 4-3. 

Table 6-1 summarizes the model parameters, calculated shear stress as well as the average 

shear stress of all the samples. Empirical equations are used in present design guidelines 

as a function of compressive strength fc’, for example, ACI-ASCE Committee 426 report 

suggested the following equation to specify the shear strength for the beam without web 

reinforcement: 

' 1/359( )c c

d
v f

a
                                         Equation 6-2 

However, the use of steel fiber can greatly improve the shear strength of the concrete beams 

and the empirical methods is based on an average stress calculation and may not be 

appropriate for HRC beams. Figure 6-11 compares the maximum shear stress determined 

by the proposed method and the average stress based on the results of 26 beams with 

reinforcement ratio ranging from 1 to 2.7%. The beam height varies from 430 mm to 1500 

mm while the span is from 1310 mm to 8640 mm. A clearly improvement of shear strength 

is observed as the longitudinal reinforcement ratio increases. The maximum shear stresses 
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calculated by the proposed method are larger than the average shear stresses, as well as the 

strength indicated by empirical equations. 

 
Figure 6-7 Identification of Shear Failure by Comparing Model Simulation and 

Experimental Data. 
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(a) 

 
(b) 

Figure 6-8 Distributions of (a) Shear Stress and (b) First Principal Stress. 
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Figure 6-9 Comparison of Experimentally Observed Cracking Pattern With Distribution 

of Nominal Cracks Predicted by Analytical Model. 

 

Table 6-1 Model Parameters and Shear Stress 

Beam 

ID 

d Vf ρ fc’ µ Lp Vu τmax 
τmax 

/(fc’)0.5 
θp1 vu 

vu 

/(fc’)0.5 

mm % % MPa  mm kN MPa  ° MPa  

H500  440 0.64 1.12 32.1 0.7 140 443 2.94 0.52 48.1 2.18 0.38 

H500  440 1 1.12 33.1 0.8 140 457 2.96 0.51 47.5 2.13 0.37 

H1000 940 0.64 1.07 32.1 0.7 140 500 1.76 0.31 48.6 1.16 0.20 

H1000  940 1 1.07 33.1 0.8 140 673.6 2.17 0.38 49.7 1.49 0.26 

H1500  1440 0.64 1.01 32.1 0.7 140 879 1.91 0.34 50.2 1.34 0.24 

H1500  1440 1 1.01 33.1 0.8 140 1025 2.17 0.38 48.7 1.54 0.27 
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Figure 6-10 Normalized Shear Stress Versus Longitudinal Reinforcement Ratio. 

6.5 Verification With Finite Element Method (FEM) 

Even though the stress analysis based approach is proposed to determine the shear strength 

of HRC beams, the analytical model is limited by the 1D cross sectional analysis while the 

growth of inclined damage cannot be addressed. In order to verify the methodology and 

extend the study, FE analysis is performed to further reveal the failure mechanisms. The 

FE analysis is conducted using LS-Dyna V971 [243]. Modeling of concrete structures 

involves potential displacement localization in the post-peak and softening load-

deformation response. Both methods of implicit or explicit analysis differ by convenience 

or computational efficiency but yield comparable results if the models are appropriately 
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calibrated. In some cases, however, only one option is open because the other choice does 

not produce the results because of uniqueness of solution or loss of positive definiteness of 

the global structural stiffness matrix. When stress state at integration points of an element 

moves beyond its maximum level and enters the softening region, the effective material 

stiffness becomes negative, subsequently leading to a negative global stiffness. Standard 

matrix inversion tools that are used for solution of systems of equation fail, and a negative 

eigenvalue warning is issued. This implies that the global stiffness matrix is not positive 

definite, leading to non-uniqueness of solution, and convergence problems especially when 

the algorithm encounters highly nonlinear stage. Concrete with cracking model presents 

such a highly nonlinear problem, making implicit approaches an incessant nuance. 

Explicit analysis is preferred for modeling problems with both ascending and softening 

responses because it does not form a global stiffness matrix but solves dynamic equilibrium 

one equation at a time. The total time step required to complete the analysis is divided to 

several smaller time steps. The solution at each step is solved explicitly on the basis of the 

previous stress state such that the iterative procedure is not necessary. 

 
Figure 6-11 FEM Mesh of the RC Beam 

Figure 6-12 shows the mesh of the HRC beam and rebar model under three-point bending. 

Fixed boundary conditions are applied at the bottom surfaces of the two supports. Solid 

element is used for the concrete, support and load pad, while beam element is used for the 

rebars. A total displacement of 20mm is applied on the top surface of the load pad in the 
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middle of the beam. Concrete material model MAT159 [244,245] is used in the present 

study to model the concrete beam. The concrete model is commonly referred to as a smooth 

or continuous surface cap model. Hence, model 159 is implemented in keyword format as 

MAT_CSCM for Continuous Surface Cap Model. A smooth and continuous intersection 

is formulated between the failure surface and hardening cap as shown in Figure 6-13. The 

main features of the model are: (a) Isotropic constitutive equations; (b) three stress 

invariant yield surface with translation for prepeak hardening; (c) a hardening cap that 

expands and contracts; (d) damage-based softening with erosion and modulus reduction; 

(e) rate effects for increasing strength in high-strain rate applications. 

 
Figure 6-12 General Shape of Concrete Model Yield Surface in Two Dimensions [243]. 

The steel reinforcement is modelled using MAT 024, MAT_PIECEWISE_ 

LINEAR_PLASTICITY. This is an elasto-plastic material that an arbitrary stress versus 

strain curve and arbitrary strain rate dependency can be defined. Also, failure based on a 

plastic strain or a minimum time step size can be defined [243]. It is available for beam, 

shell, and solid elements. The interface between concrete and rebar is assumed to be 

perfectly bonded using CONSTRAINED_LAGRANGE_IN_SOLID. 
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(a) 

 
(b) 

Figure 6-13 Distribution of (a) Normal Stress and (b) Shear Stress Obtained by FE 

Analysis. 

Figure 6-14 illustrates the FE results in terms of normal and shear stress distributions, 

which generally agrees with the trends shown by the analytical model. Figure 6-15(a) 

illustrates the development of damages which is defined as the concrete exhibiting 

softening in the tensile and low to moderate compressive regimes. It can be seen that at the 

beginning of the process, few vertical damaged zones form near the mid-span of the beam. 

As the load increases, the damage zones grow upwards companied by the formation of new 

damages. In addition, the damage zones which are farther from the mid-span starts to 

propagate along inclined direction as a result of shear effects. The final stage of 

demonstrates distributed damages along diagonal directions, which are similar to the final 

crack pattern of the beam as shown in Figure 6-15(b). The comparison shown in Figure 6-



264 

 

16 of the load-deflection responses between experiment and FE analysis further validates 

the accuracy of model predictions. 

 
 

 
 

 
(a) 
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(b) 

Figure 6-14 (a) Distributed of Damages and (b) Experimental Cracking Pattern. 

 

 
Figure 6-15 Comparison of Analytical Model and FE Simulations With Experimental 

Data. 
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7. RELIABILITY ANALYSIS  

7.1 Introduction 

The philosophy of limit states design is based on the assumption of equilibrium between 

applied loads and structural response (resistance of the structure). The safety margin is the 

difference between the two sides of the equilibrium equation formulated as a limit state 

function. Limit state functions can be formulated for each possible failure mode for design 

and during service life of the considered structure. The load and resistance parameters may 

involve a considerable degree of uncertainty and should be treated as random variables. 

Therefore, reliability is a rational measure of structural performance. The design process, 

known as Limit States Design, requires a set of load and resistance factors for each 

appropriate limit state. The objective of the code calibration is to select these factors so that 

the reliability of designed structures is consistent with the predetermined target level. 

Load and resistance parameters are random variables; therefore, it is convenient to measure 

the structural performance in terms of the reliability index β. Various procedures for 

calculation of b are presented by Nowak and Collins [246]. The general format of the limit 

state function g is 

() 0g R Q                                         Equation 7-1 

where g = safety margin; R = resistance; and Q = load effect. In this study, Q is a 

combination of load components. 

The reliability index β can be considered as a function of the probability of failure PF  

1( )FP                                         Equation 7-2 

where Φ–1 = inverse standard normal distribution function. 
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The reliability analysis procedure includes the following steps: (1) perform deterministic 

design using load and resistance factors: γD, γL, γS, γW, γE, and ϕ, and the calculations are 

carried out for several possible values of ϕ; (2) calculate load parameters: the mean total 

load, the corresponding coefficient of variation, and the standard deviation; (3) Determine 

the statistical parameters of R using Monte Carlo Simulation (MCS) or First Order 

Reliability Methods (FORM); (4) calculate the reliability index β 

2 2

R Q

R R

m m


 





                                            Equation 7-3 

where mR = mean value of resistance; mQ = mean value of the total load effect; σR = 

standard deviation of resistance; and σQ = standard deviation of the total load effect. 

7.2 Deterministic Design of Concrete Beams in Bending  

A study of a simple beam subjected to uniformly distributed load is used to illustrate the 

design procedure using proposed model and reliability analysis. The loads applied on the 

structure may include the live load and dead load which is contributed from the self-weight 

of beams, columns, slabs, roof, walls and partitions. Consider the location of this building 

is in Tempe, Arizona, as well as its total height, the earthquake load, wind load, flood load, 

rain load and snow load are not considered in the analysis and design. The nominal 

resistance is calculated using the load combination specified by ASCE 7-10 [247]: 

1.2 1.6D L R                                                       Equation 7-4 
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Figure 7-1 Simple Beam Subjected to Uniformly Distributed Load. 

The loads taken by the beams include the self-weight of slab and beam, weight of 

walls/partitions and live loads. According to ASCE 7-10 [247], the live load of an office 

building is taken as 50 psf and the live load on the roof is 16 psf. In order to satisfy the 

deflection limit, the minimum thickness of the slab should yield h = l/20, where l is the 

span [248]. In this study, the thickness t is selected is selected as 12 in. The self-weight per 

unit area is: 

3150 / *1 *120 . 125 / .SlabW lb ft ft in lbs in     

50 *120 . 41.7 / .LL psf in lbs in    

In the present study, one-way slab is employed and the tributary area is shown in Figure 7-

2. Besides the load from slab, the self-weight of the beam and weight of walls and partitions 

are computed as: 

3150 / *12 .*18 . 18.75 / .

12 *12 . 12 /

8 *12 . 8 /

Beam

Wall

Partitions

W lb ft in in lbs in

W psf in lbs in

W psf in lbs in

   

  

  
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Figure 7-2 Tributary Area. 

Therefore, the total load distributed load per unit length that is transferred to the beam can 

be calculated as: 

1.2( ) 1.6 458.3 / .Slab Beam Wallq W W W LL lbs in      

The maximum moment is: 

2 2

max

360.08*240
3299.7 .

8 8

ql
M kip in      

 

Closed form equations for moment capacity Mu: 

Singly reinforced 

   
2

6 3 3
'

g g

u cr cr

n n
M M M M

       

 


   
 


   Equation 7-5 

Doubly reinforced 
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           
 


 

Equation 7-6 

By checking the moment resistance using the design equations, a singly reinforced section 

with 4 #7 rebars shown in Figure 7-3 is sufficient. However, double reinforcement with 2 

#7 compression rebars is also considered for the demonstration purposes. Note that the 

beam height of 20 in. obtained at the strength reduction factor ϕ=0.85. In this study 

reduction factor of 0.90 and 0.95 are also investigated which correspond to beam height of 

19 and 18 in., respectively. The residual strength parameter µ is taken as 0.5.   

 
Figure 7-3 Cross Section Selected From Deterministic Design. 

7.3 Random Variables 

Nowak and Szerszen [ 249 ] compiled the test data for ordinary, high-strength, and 

lightweight concretes which were obtained from ready-mix companies and precasting 

plants. The statistical parameters of concrete strength fc’ were calculated from the 

cumulative distribution functions (CDFs). The CDF curves include all the available 
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samples obtained from different sources (concrete industry) and were plotted separately 

for each file from the database. Then, the distributions were plotted for all files representing 

the same nominal concrete strength. 

Uncertainties in member geometry are functions of care and quality control exercised 

during construction [250]. Based on an extensive study on the variations in dimensions of 

reinforced concrete members from field data, Mirza and McGregor [251] recommend 

normal distributions as probability models for all geometric imperfections. Since mean 

deviations from nominal dimensions are small, they are neglected in this study, and the 

designed values are taken as the mean values. The c.o.v’s for the various geometric 

variables have been adapted from [251] and are listed in Table 7-1. 

Table 7-1 Description of Random Variables (Data From [249,250,251]) 

Xi Description Distribution Mean C.O.V 

Geometries 

t, in. Slab thickness 

Lognormal 

Design 

value 
0.07 

h, in. Beam height 
Design 

value 
0.01 

d, in. 
Effective 

beam depth 

Design 

value 
0.02 

b, in. Beam width 
Design 

value 
0.01 

Material 

properties 

fy, psi 
Yield strength 

of steel 
69850.2 0.05 

fc’, psi 

Compressive 

strength of 

concrete 

4936.6  0.145 

ρ 
Reinforcemen

t ratio 

Design 

value 
0.04 

μ 
Residual 

strength 
0.5 0.2 

Load 

DD Dead load 
Design 

value 
0.10 

LL Live load 
Design 

value 
0.65 
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7.4 Monte Carlo Simulation 

Monte Carlo simulation is performed to obtain the statistical parameters of the applied load 

and resistance for the following limit state equation: 

2

() 0
8

u

ql
g M                                                      Equation 7-7 

The reliability index β is calculated for different reduction factor using the procedure 

introduced above. The reliability indices for the singly reinforced section at three level of 

reduction factor are 3.402, 4.056, 5.378, respectively. The values of doubly reinforced 

section are larger due to higher moment resistance, which are 4.411, 4.904 and 5.378, 

respectively. Target reliability indices are shown in Table 7-2 as a reference, which 

indicates the expected performance level of proposed design section. Figure 7-4 shows the 

probability density functions of applied moment and resistance for different reduction 

factors. Higher nominal values are observed in the case of double reinforcement which 

agrees with the higher indices. But the variabilities are also larger which may be caused by 

the compression rebar related randomness. 
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Table 7-2 Target Reliability Indices (US Army Corps of Engineers 1997) [252] 

β pf Expected performance level 

5 3e-7 High 

4 3e-5 Good 

3 0.001 Above average 

2.5 0.006 Below average 

2.0 0.023 Poor 

1.5 0.07 Unsatisfactory 

1.0 0.16 Hazardous 

In actual structures, the portion of dead/live load varies with real world scenarios. The 

practical range of dead load ratio D/(D+L) is between 0.3 to 0.9 [253]. Therefore, reliability 

analysis is performed for a full range from 0 to 1, as shown in Figures 7-5 and 7-6. It is 

shown that β increases with increasing dead load ratio and reaches maximum at when 

D/(D+L) is about 0.76. This trend can be explained by the fact that live load has higher 

variability (cov=0.18) compared to dead load (cov=0.10). While the dead load ratio is about 

0.76 for the case illustrated in deterministic design, which may indicate the most reliable 

scenario.  



274 

 

 
(a) 

 
(b) 
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(c) 

Figure 7-4 Probability Density Functions of Applied Moment and Resistance for 

Different Strength Reduction Factors: (a) φ=0.95, (a) φ=0.90, (a) φ=0.85. 

 
Figure 7-5 Reliability Index (β) Versus Dead Load Ratio for Singly Reinforced Section. 
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Figure 7-6 Reliability Index (β) Versus Dead Load Ratio for Doubly Reinforced Section. 
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8. SUMMARY AND FUTURE WORK 

8.1 Summary 

In this study, distributed cracking mechanisms were experimentally investigated following 

a sequence of reinforcing materials, cement composites with localized damage and finally 

the composites exhibiting distributed damages. Tensile properties were evaluated under 

varying strain rates from quasi-static to high speed (up to 100 s-1) and varying temperature 

from -25 to 100 °C. Strain rates effects were observed in terms of tensile strength, ductility 

and toughness, while the saturated crack spacing was found to be independent of strain rate. 

On the other hand, a decreasing trend was observed in the post-crack stiffness with 

increasing temperature, which indicates the dependence of stiffening mechanisms on the 

testing temperature.  

The DIC measurements of the complex strain fields represented a non-uniform distribution 

of longitudinal strain consisting of three main zones: localization, shear lag and uniform 

strain. The strain behavior in each zone was addressed by means of three competing models: 

stress-crack width, bond stress-slip, and composite stress-strain relationships. These 

models were eventually used as the damage criteria for the finite difference model. 

Important parameters localization zone width (hL) and saturated crack spacing (s) for 

modelling of distributed cracking behaviors were directly measured using DIC method. 

Both these measures decreased with the addition of short fibers, indicating the 

improvement in bond characteristics.  

A tension stiffening model based on finite difference method were used to simulate the 

tensile behaviors including stress-strain, crack spacing-strain and matrix degradation. The 

model addresses the multiple aspects of distributed mechanisms including a matrix strength 
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model, fiber tension model, interface bond-slip model and nonlinear spring model for 

transvers restriction. The finite difference model is further extended to simulate the 

sequential cracking procedure in SFRC joint free slabs on grade. The primary parameters 

affecting drying shrinkage including free shrinkage strain, friction of grade and fiber 

volume are addressed by the model. An empirical equation was proposed to predict the 

crack opening of a restrained slab on grade and compared with the numerical model. 

Parametric study showed that the predicted crack opening was reduced with higher level 

of restraint by increasing fiber volume fraction, base friction, and bond strength. This 

indicates the role of fiber and base course in controlling the crack opening by restricting 

the movement of cracked slab segments.      

Based on the experimental characterization, an elastic-residual-tensile strength model for 

tension and elastic-perfectly plastic model for compression behaviors are proposed to 

model the flexural behavior of HRC beams that exhibit hardening and multiple cracking. 

Analytical solutions for neutral axis depth, moment-curvature, and effective stiffness at 

each stage of flexural deformation are obtained. Analytical expressions for load-deflection 

response are explicitly derived based on simplified bilinear moment-curvature curves. The 

derivations are used in terms of design charts representing the normalized ultimate moment 

capacity as a function of residual tensile strength and reinforcement ratio and are applicable 

to conventional-, fiber-, and hybrid-reinforced concrete. In addition, a stress analysis based 

method was proposed to determine multiple components including shear stress, principle 

stress and principle directions. A structural analysis approach based on assumption of 

equally distributed nonlinear hinges was used together with the stress analysis. The method 

was applied to experimental data from literature to determine the ultimate shear stress in 
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the HRC beams without conventional shear reinforcement. Results are further converted 

to coefficient of resistance R by stress block approach, nominal strength, and minimum 

reinforcement ratio. Numerical tests covering materials and geometrical ranges as a well 

as comparison with available experimental data confirmed the proposed equations against 

the original equations.  

The theoretical framework was extended to model the bending behavior of T-beam and 

structural members subjected to combined axial-bending loads. Analytical solutions for the 

moment-curvature and load-deflection responses for T-beam were derived. On the other 

hand, the equations constructing interaction diagram (P-M) were also analytically 

expressed, that addresses all the models of failure with the effects of fibers. These analytical 

models greatly extend the proposed methodologies to wide engineering applications such 

as the beam-slab floor system, deck-girder, new generation UHPC Pi-girder, short columns 

and tunnel lining segments. 

As a demonstration and verification of the design procedure using the proposed 

methodologies, reliability analysis was performed using Monte Carlo simulation. 

Reliability indices were calculated for different strength reduction factors and dead load 

ratios in order to cover more practical problems. The reliability index remains confined in 

a relatively narrow band and varies slowly over a wide realistic range of dead load ratio. 

This indicates the proposed design equations may approach a uniform reliability for the 

design cases presented here, while extensive studies to cover more design parameters and 

structures are desired for further verification. 
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8.2 Recommendations for Future Work 

In the current study of analytical model approach, the analysis is limited to the axial and 

flexural behaviors of an independent structural member, it is therefore highly desired to 

extend the approach to a structural analysis framework. Similarly, the reliability analysis 

shall be applied to more design cases and a structural performance evaluation will be of 

interest. On the other hand, Finite element analysis (FEA) will be employed to further 

investigate the flexural and shear behavior in strain hardening cement composites. Another 

study of interest is to extend the modelling technique to dynamic and impact loads. Impact 

flexural tests of FRC and sandwich systems have been conducted while modeling and 

simulation of the experimental data are demanded. 

Short-term properties have been studied through this dissertation, while long-term 

performance of this class of materials is also significant in the serviceability design of 

structures, which mostly are subjected to sustained load. However, long-term behavior of 

FRC has not been considered in codes yet. Studies on creep of FRC in compression indicate 

that fibers restrain creep strains when compared to plain mortar and concrete. As FRC 

contribution to structural load-bearing capacity is based on its flexural response, and 

mainly in the cracked state, the capacity of the material to keep the crack opening values 

low enough to guarantee the reinforcement effectiveness should be assessed. Creep testing 

equipment have been developed and preliminary data are being collected. Future work will 

focus on the analysis and modelling techniques on creep flexural behaviors.   
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