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ABSTRACT 

Electromigration (EM) has been a serious reliability concern in microelectronics 

packaging for close to half a century now. Whenever the challenges of EM are overcome  

newer complications arise such as the demand for better performance due to increased 

miniaturization of semiconductor devices or the problems faced due to undesirable 

properties of lead-free solders.  The motivation for the work is that there exists no fully 

computational modeling study on EM damage in lead-free solders (and also in lead-based 

solders). Modeling techniques such as one developed here can give new insights on 

effects of different grain features and offer high flexibility in varying parameters and 

study the corresponding effects. In this work, a new computational approach has been 

developed to study void nucleation and initial void growth in solders due to metal atom 

diffusion. It involves the creation of a 3D stochastic mesoscale model of the 

microstructure of a polycrystalline Tin structure. The next step was to identify regions of 

current crowding or ‘hot-spots’. This was done through solving a finite difference scheme 

on top of the 3D structure.  The nucleation of voids due to atomic diffusion from the 

regions of current crowding was modeled by diffusion from the identified hot-spot 

through a rejection free kinetic Monte-Carlo scheme. This resulted in the net movement 

of atoms from the cathode to the anode. The above steps of identifying the hotspot and 

diffusing the atoms at the hot-spot were repeated and this lead to the initial growth of the 

void. This procedure was studied varying different grain parameters. In the future, the 

goal is to explore the effect of more grain parameters and consider other mechanisms of 

failure such as the formation of intermetallic compounds due to interstitial diffusion and 

dissolution of underbump metallurgy.  …………………………………………..
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CHAPTER 1: INTRODUCTION 

Ever since the time when the first integrated circuits became commercially available, EM 

has been a hot topic of research among investigators in the semiconductor industry and 

the academia.  Even after half a century the problem of EM failures still persists though it 

has been largely been controlled. The adoption of new lead-free alloys whose EM 

performance has not been well researched and the use of smaller semiconductor devices 

resulting in higher current density are the two key challenges that are faced in the 

reliability of microelectronics packaging today. There has been significant work done on 

EM damage characterization through various experimental techniques such as X-ray 

Tomography [1][2]. In this research an attempt is made to model the void nucleation due 

to current crowding in a purely stochastic microstructure through microstructure 

evolution modeling with a goal to gain insight into various grain features that may affect 

the void formation.  

 In microelectronics packaging, EM has been the most persistent reliability concern [3]. It 

has severely reduced the life of Integrated Circuits by causing a loss of connection. EM is 

caused by electron wind force resulting in atomic migration. It can be described as the 

mass transport of atoms due to momentum transfer with electrons. It is imperative to take 

into account several different mechanisms such as the diffusion mechanisms and effect of 

current and heat etc. to study and understand the effect of EM. In alloys, phase 

segregation and other effects can reduce the lifetime of joints [4]. 
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In this research an attempt is made to study the nucleation of the void at the hot spot 

through a coupled kinetic Monte Carlo- finite difference scheme and visualize the ’mass 

transport of atoms’ that results in EM void nucleation and growth. 

 

1.1 Black’s Equation 

Black's Equation is a mathematical model that is used to predict for the median time to 

failure of a semiconductor circuit due to EM.  

1

𝑀𝑇𝐹
= 𝐴𝐽2𝑒𝑥𝑝 − ∅/𝐾𝑇                   [5] 

where 

MTF = median time to failure in hours. 

A      = a constant which contains a factor involving the area 

J       = current density in amperes per square centimeter 

∅      = activation energy in electron volts  

K      = Boltzman’s constant 

T      = film temperature in degrees Kelvin 

 

The Black’s equation articulates that the time to failure is inversely proportional to the 

square of the current density. The square relation is a matter of debate and many 

researchers use a value between 1 and 2. The value of this exponent is based on the 

underlying mechanism that explains the dominant phase of EM lifetime.  If the exponent 

is close to 1 it indicates that the lifetime is dominated by the void growth mechanisms 

and a value close to 2 indicates that void nucleation will dominate [6]. The time to failure 

increases with the activation energy of the active mechanism and the decreases with 

increasing temperature. In this work we take into consideration grain boundary diffusion 
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of metal atoms during the simulation since it is the lower activation energy mechanism. 

The Black’s equation provides a relationship between different parameters and EM 

lifetime but it does not provide any information about the underlying mechanisms. In 

order to have a more thorough understanding of the actual mechanisms, more 

sophisticated models is required that take into consideration the fundamental physics of 

the process. 

1.2 Flip Chip Technology 

Flip-chip (or controlled collapse chip connection) is an interconnection technology that 

has advantages over other packaging methods in terms of performance and cost. In a flip-

chip the length of interconnections between chip and substrate is reduced by using solder 

bumps on the die and it involves the minimum length of electrical connections. The flip 

chip is called so because the active side of the chip is facing downwards. The chip is 

flipped over and aligned with landing sites on the substrate and reflowed in a reflowing 

oven. Flip-chip interconnects form the electrical and mechanical connections between IC 

and the package. One of the main functions of the flip-chip solder joint is to form the 

mechanical connection between the chip and the substrate. The under bump metallurgy 

(UBM) provides the right combination of properties to form a solderable surface on the 

die. The formation of the intermetallic compounds depends on the thickness of the UBM. 

Thicker layer would lead to a delayed formation of intermetallic compounds since the 

UBM acts as the diffusion barrier and delays the formation these compounds that may 

affect the mechanical integrity of the solder.  
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Fig. 1. Pb-Free solders for Flip-Chip………..   Fig. 2. Schematic of a flip-chip solder....... 

interconnects.                     bump [7] 

 

 

1.3 Lead-Based And Lead-Free Solders. 

The use of Lead-containing solders has reduced drastically in the electronic packaging 

industry due to environmental and health concerns and is being replaced by Lead-free 

solders whose primary component is Tin [9]. The use of lead-based solders has offered 

several advantages. Lead provides good ductility in Tin-Lead solders [10].   The wetting 

angle of Lead alloys on Copper is much lesser than that of pure Tin on Copper [11].  

Eutectic Tin-Lead solder has a low reflow temperature since it has a low eutectic point. 

Lead-based solders are popular due to its low cost and its mechanical properties [12]. The 

combination of Lead and Tin offer provide favorable properties for the above-mentioned 

reasons.   

 

 Most Lead-free alloys are Tin based since Tin has many favorable properties such as it 

can wet a wide range of substrates.  The use of Tin also has challenges which include 
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whisker growth and the anisotropic nature of Tin due to its body centered tetragonal 

structure causing problems during thermal cycling.  Whisker growth which is not 

observed in lead-Tin solders can cause electrical shorts in the PCB.  [13] 

 

The main problems that are faced because of replacing Lead-based solders is that there is 

an established knowledge about the manufacturing techniques, metallurgy, and reliability 

of Lead based solders. The use of Tin-based solders is relatively a new area and has poor 

field data.  For a successful substitution of the former using the latter more research is 

required to understand the different mechanisms. This is one of the motivations of this 

work. 
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1.4 Modes of Damage in Lead-Free Tin Based Solders 

In Lead-free Tin solders, EM induced damage may be classified into modes. Mode-I 

damage occurs through the self-diffusion of Tin atoms through the vacancy mechanism. 

This results in a pancake type void formation. Mode I operates at a higher temperature 

because the vacancy diffusion mechanism requires a higher activation energy. The 

presence of intermetallic compounds provides a weak surface and voids may form at the 

interface between the intermetallic compound and the solder. [14] 

 

Mode-II damage has lower activation energy since it occurs through interstitial diffusion 

mechanism that can occur at a lower temperature. It involves interstitial diffusion of the 

metals in the under bump metallurgy that are usually copper or nickel [14]. In other 

words, the governing mechanism is temperature dependent. Pancake void formation 

occurs at higher temperatures and consumption of the UBM (under bump metallurgy) 

occurs at lower temperatures. 

 

The mechanism also strongly depends on the alignment of Tin grains in the solder 

microstructure. 

Tin has a body-centered tetragonal structure [14]. The lattice parameters being a=b= 5.83 

Å and  c= 3.18 Å [15].  There is faster diffusion of Copper and Nickel along ‘c’ axis due 

to this reason. Researchers have reported that the room temperature diffusivity of copper 

in Tin is 500 times faster along the ‘c’ axis than along ‘a’ or ‘b’ axis. [15]. When electron 
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flow in the solder microstructure is not aligned with the Tin ‘c’ axis, the dominant 

mechanism is Tin self-diffusion that has higher activation energy.  [16] 

 

 

     

      

 

Fig. 3. A cross section of a solder 

joint with a pancake void at the 

cathode side    of solder [5]. 

 

 

 

  

Fig.  4. Micrographs of crossections Sn-3.5Ag solder bump before and after current 

stressing [16]. 

 

1.5 Effect of thickness of UBM on failure mechanism 

The UBM serves many purposes. It forms the electrical connection between the die and 

the solder bump. It limits the diffusion by acting as a barrier between the bump and the 
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die. In flip chip solders the major cause of EM failure is current crowding. The 

mechanism depends on the thickness of the under bump metallurgy. A thick UBM will 

lead to the distribution of the current over a large area. Such a configuration will lead to a 

near uniform current density in the solder structure.  In this case current crowding is close 

to insignificant in the solder. When there is a thin UBM the current crowding effect is 

significant in the solder. The void initiates at the point with the maximum current density 

and the thin UBM us fully consumed. This region is very close to the entrance of the 

solder.  

The void nucleated grows along the solder intermetallic surface as the intermetallic is 

brittle. This eventually results in the formation of a pancake void. To summarize the 

effect of the cooper under bump metallurgy it can be said that in case of a thick UBM the 

current crowding takes places in the UBM which starts dissolving into the solder and in 

thin solder joints the void nucleation starts at  the region of the peak  current density.  

 

Fig.  5. The different stages of void formation and propagation due to current stressing in 

a flip-chip solder joint. [11] 
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CHAPTER 2: MOTIVATION AND OBJECTIVES 

2.1 Motivation of the Study 

Due to environmental and health concerns there is a drive towards eliminating the use of 

lead in microelectronic packaging industry. It is crucial to understand material properties 

of lead-free solder for a successful substitution of lead-based solders. Another challenge 

in the reliability of interconnects is the increased miniaturization of semiconductor 

devices [8] causes the higher temperature in the metal interconnects, typically resulting in 

EM failures.A technique is developed and applied to study EM-induced void nucleation 

through a coupled Kinetic Monte-Carlo and finite difference scheme.  There is an effort 

made to study EM void nucleation in a mesoscale model of the metallic polycrystalline 

solder. We take into consideration the different physical mechanisms that lead to the 

formation of the void to create the model. Rejection-free Kinetic Monte Carlo 

simulations have been used to model the diffusion of the atoms. A finite difference 

method is used to identify the regions of high current (hotspots). 

2.2 Objectives of the Research 

The first objective was to create a 3D mesoscale model representative of a polycrystalline 

grain structure. Secondly, the structure created was converted to a dual phase structure of 

grain and grain boundary phase. This implies that all the grains have similar properties 

and cannot be distinguished. Thirdly, the application of a finite difference scheme to 

identify the hot-spots. Fourthly, the Kinetic Monte-Carlo diffusion that leads to the 

nucleation of the voids. Finally, the goal is to understand the effect of different grain 
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parameters on the diffusion path taken by individual atoms and void characteristics of the 

solder interconnect. 
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CHAPTER 3: CREATION OF THE STRUCTURE 

The solder structure created in all the cases in this work involves a 100x100x100 system 

which is a cube of 10
6
 voxels. The edge length of the cube is considered 50 μm. The 

initial structure was created by choosing 'N' random nucleation sites (picked by the C++ 

random number generator) and letting the grains grow from these nuclei until they 

impinge and fill the cubical space. In the figure 6 and 7, N is equal to 100 grains.  For all 

the initial simulation work ‘N’ was chosen to be 100 grains. In later part of the research 

different values of “N” were tried to study the effect of grain size on void formation and 

diffusion of atoms. The structure obtained was polycrystalline. All the grains were of 

random shapes and sizes.  

For the diffusion of Tin atoms, there is no role played by the anisotropic structure of Tin 

(Tin has a body-centered tetragonal structure with c axis shorter than the 'a' and 'b' axis 

which effects Copper/ Nickel diffusion rates). The diffusion of Tin occurs by vacancy 

mechanism as opposed to interstitial diffusion for Copper and Nickel atoms. 

 Having made this assumption the mesoscale structure was converted to a binary structure 

with grain and grain boundary being the two phases. This implies that all the grains have 

a similar effect on Tin diffusion. Figure 6 shows the 100 random nuclei generated by the 

C++ random number generator and on the right the 100 grains that were grown from the 

nuclei. Figure 7 shows the same structure converted to a two phase structure of grain and 

grain boundary 
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Fig.  6. Nucleation points in space and 100 grain mesoscale model of the initial structure. 

 

. 

   
                

                                    (a)         (b) 

Fig. 7. The polycrystalline structure converted to a binary structure with grain and grain 

boundary being the two phases (a) 3D structure –black=grain, gold= grain boundary. (b) 

2D slice- red= grain, blue= grain boundary. 
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3.1 Assumptions of the Model 

One important assumption that is made is that grain structure is static. There is no effect 

of Joule-heating on the mesoscale structure.  Some researchers [8] have shown that the 

current-crowding effect leads to an increase in temperature those results in coarsening of 

grain structure.   No chemical reactions and mechanical stresses were also considered. 

The focus of the study is to model the net flow of atoms due to EM, the creation of voids 

near the vicinity of current crowded regions at the cathode end and the accumulation of 

atoms at the anode end. The work focuses on Mode I damage and thus also doesn’t 

consider the formation of intermetallic compounds. 
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CHAPTER 4 MODELLING DIFFUSION  

4.2 Grain Boundary Diffusion 

The mechanism of diffusion is considered is grain boundary diffusion.  Grain boundaries 

provide for a faster medium of diffusion as they are regions of defects and also, in general, 

the activation energy for grain boundary diffusion is always less than the activation 

energy for lattice diffusion.   Defining the grain boundary is a very critical component.  

Once the grain structure was created the grain boundary was defined by borrowing one 

voxel from either side of the grains along the common separating interface between the 

grains. This definition was maintained throughout the structure to obtain a uniform two 

layer grain boundary diffusion path. Certain region where the thickness of the grain 

boundary was higher was at triple points.  

4.3 Kinetic Monte-Carlo Diffusion 

The kinetic Monte Carlo method has been employed extensively in materials modeling.  

It  is a very popular technique for studying transport (diffusion on surface and in 

materials)[17], reaction kinetics, and other diffusion-related problems. For creating 

models that involve fundamental stochastic processes, Kinetic Monte Carlo Simulations 

provide a very simple yet effective tool [20]. Though the Fick's laws provide a 

deterministic equation for diffusion the movement of individual atoms in a lattice is 

random [20]. Therefore the Kinetic Monte Carlo simulations are used to model the 

diffusion of Tin atoms in this work. The diffusion of individual Tin atoms are stochastic 

in nature since the influence of electron flow is considered, it favors the net movement of 

atoms from the cathode to the anode.  
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4.3.1 The Rejection Free Kinetic Monte Carlo Diffusion 

The Rejection free Kinetic Monte Carlo technique is similar to rejection sampling 

technique in statistics and is used here to simulate the diffusion-time evolution of the 

system. It is explained using the illustration provided.  This does not fully represent the 

actual system (explained in the next section) where a few aspects are slightly different, 

such as the direction of the current. 

 Individual atoms are allowed to jump one pixel for each attempt, meaning the atoms can 

jump to one of the 7 first-order nearest grain boundary pixels (in 2 dimensions). The 

jumping event is a pixel exchange that takes place between the initial state and the final 

state. The atom may jump to a grain boundary pixel based on a random number generated. 

This is to ensure that all the neighboring grain-boundary pixels have an equal chance of 

getting picked. This does not imply that there is an equal probability of exchange with all 

of the neighboring pixels, as the individual probability of a successful transition will vary 

based on the location of the neighboring pixel with respect to the diffusing pixel and the 

defined current vector. 

 In the figure 8 the atom ‘X’ under consideration may exchange pixels with its  nearest 

neighbor pixels that are grain boundaries which are numbered 1-4. In this case we assume 

that the direction of electron flow is from the cathode to the anode and perpendicular toh 

the grain surfaces. The maximum probability of transitioning is to pixel 2 (as it is in line 

with the direction of the current) and minimum for pixel 4. 
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Fig. 8 A figure to illustrate a system that is undergoing rejection free Kinetic-Monte Carlo 

evolution in 2D.  The atom under consideration is marked ‘X’ and the numbered black 

pixels are the states that can exchange with ‘X’. 

 

 

The transfer probability is proportional to the dot product of current vector and the jump 

vector (the vector between the initial and final states.) The probability that the system 

jumps into state ‘i’ is proportional to ‘Γi’ where ‘Γi’ is the calculated dot product. The 

transition probability is calculated for all the possible transitions between the diffusing 

atom and the possible final states.  

The probability of jumping is scaled by a normalizing factor ‘Γtotal’ where ‘Γtotal’ is the 

sum of all the individual probabilities of atom transitions to each of its grain boundary 

voxels. This is done so as to obtain a number between ‘0’ and ‘1’. This number is 

compared to a random number generated between 0 and 1. If the probability is greater 

than the random number generated then we accept the move else we reject it. Some 
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moves will be accepted and the others rejected and this process continues for a certain 

fixed number of Monte-Carlo time-steps. 

 

 

 
Fig. 9  The atom under consideration at each ‘Monte-Carlo time-step’ can exchange 

pixels with one of several states, The exchnage probabilty rates for atom ‘X’ from figure 

8 and different final states are shown on the scale. The probability of  jumping into state i 

is proportional to  length of Γi. 

        

                          

4.3.2 Diffusion Process 

 

 The diffusion process is similar to the explanation provided for the 2D case with some 

additional factors that are considered. From the chosen hot-spot atoms diffuses 

simultaneously.  This takes place step by step for a total of 1000 Monte Carlo attempts. 

This number was chosen as a significant amount of diffusion could be visualized in the 

different cases (covered in the next chapter). The atoms are allowed to jump to one of 26 
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nearest grain boundary voxels (in three dimensions).  

The probability of success depends on many factors. Firstly, the initial state, the set of 

final states and the current vector.  Secondly, the number of grain boundary voxels 

surrounding a given grain voxel. More grain boundaries means a given grain can jump in 

one of the many possible voxels hence the probability of success increases.  Since we 

define the diffusion to be grain boundary based.  The success rate for the transition out of 

1000 attempts depends on the grain structure. At the most fundamental level it depends 

on the neighbors surrounding the diffusing atom.  In general a system having high grain 

boundary to grain voxel ratio will have high transition probability.  

We keep track of the movement of atoms in a separate array. This is done so as to 

visualize the diffusion path of individual atoms. The spread of the final location of the 

diffusing atoms depend on the number of grains in the structure.  There is more spread 

when there are more grains as this result in more grain boundaries in the system. When 

there are fewer grain boundaries there is a more direct path to diffuse to the anode end of 

the system.  When there is a higher ratio of grain boundary to grain there is a greater 

probability for the transfer to successfully occur. This is the reason why there is a greater 

chance of success when there is more number of grains. 

 

4.4 Modeling Atomic Diffusion 

Two approaches were attempted to model the diffusion of atoms due to EM. The first one 

was to model the diffusion of vacancies, since the Tin atoms diffused through vacancy 

diffusion. The second approach was to model the actual diffusion of Tin atoms. The 
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reason a second approach was needed was to overcome the shortcomings of the first 

approach. The second approach involves a better implementation of the different 

mechanisms involved in EM.   

4.4 First Approach: Vacancy Diffusion Method                                               

 

The initial formulation to model EM induced damage was based on the the diffusion of 

vacancies. This was considering that diffusion of vacancies and atoms are equal and 

opposite events.  

 In this model an initial concentration of vacancies was provided in the system that was 

distributed randomly within the grain boundaries. Vacancies were allowed to diffuse 

under the rejection free Kinetic Monte Carlo process. Before the simulation an 

approximately equal concentration of vacancies at the cathode and anode end (and 

throughout the system) was observed. After the simulation there was a high concentration 

of vacancies at the cathode and low at the anode end. The preferential clustering was 

observed at the cathode end in the 3D model can be explained by current-bias that causes 

the vacancies to diffuse toward the cathode end, forming clusters.                                                 

 

Fig. 10. Void formation at the cathode end. Red indicates Grain. White/transparent 

indicates grain boundary. The large transparent area on top is the void formation at 

cathode end (Top end).  
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4.4.1 Failure of the Model 

This formulation does not produce the desired features that would be typically seen on 

the SEM images of solder microstructure after an EM failure.  This is because in this 

model the effect of current crowding was not considered. The EM effect was maximum 

at the hotspots were the current crowding took place, in this model it was not possible to 

consider the hotspots and initiate the diffusion at this point since the  vacancies are spread 

throughout the system. 

4.5 Second Approach: Diffusion of Tin Atoms 

This formulation involved diffusion of Tin atoms instead of vacancies. In this model the 

hot-spots or regions of highest current crowding or temperature were identified. This was 

done by solving for the voltage distribution in the system after applying a fixed voltage at 

the edge of the system in cathode end where the current enters the system. After 

identifying the hotspots the diffusion of Tin atoms was initiated from these spots. The 

atoms diffuse from the hotspots and migrate toward the anode end due to current biased 

diffusion. It was also possible to track the movement of individual atoms as they diffuse 

towards the anode. The formation of the voids was also captured. 

4.5.1 Identifying the Hotspots 

Hotspots are regions where current crowding takes place. This results in a higher 

temperature in these regions as compared to the rest of the solder structure.  This part of 

the code was written in MATLAB 8.1 2013a.  Central difference method was 

implemented to find the solution the laplacian for the voltage distribution. This was done 
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with a mesh size of (100x100x100). The objective of the program is to solve for the 

steady state voltage distribution in a region 1<=x<=100, 1<=y<=100, 1<=z<=100.  

  

Fig. 11. Simulated heat map of current distribution showing current crowding in flip-chip 

solder joints. The maximum value of the current density is at the point where the current 

enters the solder [8]. 

 

 

Uniform voltage is applied at an edge at the cathode side from where the current enters 

and all other sides are maintained at ‘0’ volts. At any iteration, the value of voltage is 

updated as the average of voltages of 8 nearest neighbors, until between consecutive 

iterations the tolerance in error between iterations reaches 0.01 V.  

 When the simulation was over the atoms containing the maximum values of the voltage 

was identified. Theses atoms were allowed to diffuse through 1000 time steps through the 

Kinetic Monte-Carlo Algorithm. The default current vector that was considered was from 

the cathode edge (where the current enters) to the diagonally opposite edge at the anode 

end.  
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4.6 Effect of Grain Size on EM 

Since grain boundary diffusion is the primary mechanism, the number of grains in the 

system is an important parameter that affects EM void formation characteristics. A 

system having a large number of grains would provide an easy path for the grains to 

diffuse. This is clearly observed when comparing the diffusion results for the 20-grain 

and 1000-grain system (in the results section).  

 In the 1000-grain system a large volume fraction of the structure is occupied by the grain 

boundary voxels. This is illustrated in figure 12. This means that the diffusing metal 

atoms have a greater access to the grain boundary and are able to diffuse to the anode 

faster. This was observed as expected in the simulations and is reported in the results 

section.  In order to observe the effect of grain size, different systems were created where 

the number of grains was varied between 20 grains to 1000 grains, the hotspots were 

identified and the kinetic Monte-Carlo diffusion was allowed to take place.  All grains are 

created by random numbers provided by C++. The diffusion path in each case tracked 

and visualized.   

   

Fig 12. Grain Boundaries in a 20 grain and a 1000 grain structure. 
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CHAPTER 5: RESULTS 

5.1 Statistics of Grain Distribution for Structure having 10-1000 Grains 

To understand the size distribution of the stochastically created microstructures basic 

statistics is done on the structures created.  The grain size is measured by assuming that 

the grain shape is spherical and by counting the number of enclosed voxels by each grain. 

 For different grain systems the mean, median, standard deviation and range of grain size 

is reported. The  median grain size decreases when the number of grains increased since 

the total volume is the same for all the cases.  The variance of grain volume increases 

with decreasing grain size. This implies that when the number of grains is small there are 

very large and small grains and vice versa. Table 1 helps us understand the size 

distribution of the grains that were generated. 

Parameter 20 Grains 50 Grains 

100 

Grains 500 Grains 1000 Grains 

Range of Grain 

Size (μm) 10.28-28.74 11.55-24.04 6.41-16.96 3.57-10.84 2.85-8.90 

Mean Grain Size 

(μm) 22.85 16.82 13.36 7.81 6.20 

Median Grain 

Size (μm) 18.14 13.93 13.05 6.08 4.70 

Standard 

Deviation  23.09 15.27 10.11 7.67 6.07 

Table 1.Statistics of the grains generated. 
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5.2 20-Grain System 

                             

                  
     

                  

Fig. 13. Simulation results for a 20 grain system.  From top clockwise. (1) initial grain 

structure (2)  3D binary structure (3) Front view at the end of diffusion process. (4) Side 

view at the end of diffusion process. (3) and (4) show void formation near the cathode 

end in green,  blue lines are the diffusion path of induvidual Tin atoms migrating from 

the hot-spot, induividual green dots are final position of the atoms. 
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5.3 50-Grain System 

                  

                   

Fig.14. Simulation results for a 50 grain system.  From top clockwise. (1)Initial grain 

structure (2)  3D binary structure (3) Front view at the end of diffusion process. (4) Side 

view at the end of diffusion process. (3) and (4) show void formation near the cathode 

end in green,  blue lines are the diffusion path of induvidual Tin atoms migrating from 

the hot-spot , induividual green dots are final position of the atoms. 
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5.4 100-Grain System 

        

        

Fig 15. Simulation results for a 100 grain system.  From top clockwise. (1)Initial grain 

structure (2)  3D binary structure (3) Front view at the end of diffusion process. (4) Side 

view at the end of diffusion process. (3) and (4) show void formation near the cathode 

end in green,  blue lines are the diffusion path of induvidual Tin atoms migrating from 

the hot-spot , induividual green dots are final position of the atoms. 
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5.5 500-Grain System 

                 

            

Fig 16. Simulation results for a 500 grain system.  From top clockwise. (1)Initial grain 

structure (2)  3D binary structure (3) Front view at the end of diffusion process. (4) Side 

view at the end of diffusion process. (3) and (4) show void formation near the cathode 

end in green,  blue lines are the diffusion path of induvidual Tin atoms migrating from 

the hot-spot , induividual green dots are final position of the atoms. 
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5.6 1000-Grain system 

     

    

Fig 17. Simulation results for a 1000 grain system.  From top clockwise. (1)Initial grain 

structure (2)  3D binary structure (3) Front view at the end of diffusion process. (4) Side 

view at the end of diffusion process. (3) and (4) show void formation near the cathode 

end in green,  blue lines are the diffusion path of induvidual Tin atoms migrating from 

the hot-spot, induividual green dots are final position of the atoms.               
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5.8 Comparison of Diffusion Behavior of Tin Atoms in a 20 Grain, 100 Grain, 500 Grain, 

1000 Grain System 

 

   

    

Fig. 18. Comparing diffusion behavior in( clockwise from top left) in 20 grains, 50 grains, 

100 and 1000 grains in a [100x100x100] space after 1000 time steps. 

 The blue region is the diffusion path of atoms migrating from the hot-spot. It is observed 

from Figure 18 that a system that has a higher number of grains will have more 

successful Tin atom diffusion jumps towards the anode as indicated by the greater range 

of the blue region. This can be explained by the fact that having more grains will result in 

more channels for the atoms to diffuse towards the anode. It is also observed that in a 20-
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grain system the atoms are trapped in a grain boundary that is near parallel to the solder 

surface and is hence not able to migrate towards the anode. 

 

5.9 Effect of Grain Boundary Angle 

Many studies [18][19] have shown that the grain boundary angle plays a significant role 

in EM performance. One study [18] mentions that the lifetime of an interconnect can be 

increased by having high angle twin boundaries in tin- based solders. 

In order to study the effect of grain boundary angle different structures were created by 

tweaking an existing structure to result in a high angle grain boundary having the same 

grain configuration as the original. The amount of tin-atom diffusion was observed to be 

different in the case of high and low angle grain boundaries.  More atomic-diffusion was 

seen in the case of low-angle grain system than a high-angle grain system for the same 

configuration of grains.    

   
                                                                                                                      

Fig. 19.  Low angle grain boundary system(left) and high  angle grain boundary 

system(right) in a configuration having 30 grains.More atomic diffusion observed on the 

low angle grain boundary system. 
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Fig 20.Front view(images on top) and side view(images in the bottom) of the same grian 

configuration having 60 grains. Low angle grain boundary system( images on the left) 

and high  angle grain boundary system(images on the right) in a sysrtem . More atomic 

diffusion observed on the low angle grain boundary system. Void formation was 

observed in the cathode end (bottom) in all four cases. 
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5.7 Quantifying Movement of Atoms 

Number of   Grains 

 

Average Displacement of 

atoms towards Anode (in μm) 

Average Distance Travelled by 

atoms(in μm) 

20 grains 8.81 9.23 

50 grains 13.81 14.42 

100 grains 15 16.63 

500 grains 16.04 17.47 

1000 grains 17.91 19.05 

 

Table 2. Net diffusion distance of atoms for 20-1000 grains after 1000 Monte Carlo steps. 

 

 

Number of 

Grains 

Type of 

Grain 

Boundary 

Average Displacement 

of atoms towards 

Anode(in μm) 

Average distance Travelled by 

atoms(in μm) 

30 grains Low angle 24.11 26.71 

High angle 16.95 18.35 

60 grains Low angle 25.62 27.54 

High angle 17.47 18.44 

 

Table 3. Net diffusion distance of atoms for in a 30 and 60 grain system, to compare low-

angle and high-angle boundary diffusion after 3000 Monte Carlo steps. 
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5.10 Tracking Diffusion from more than one Hotspot 

In all the previous cases we looked at diffusion from a single hot-spot. In practice the 

diffusion takes place simultaneously from multiple regions.  With the objective of 

visualizing the diffusion process from two current-crowded regions, figure 20 was 

generated for a 100 grain system (left) and a 1000-grain (system).  

It is noticed that as the atoms attempt to migrate from the cathode to the anode there is 

some convergence in the paths of the atoms.   From the results of this simulation, it is 

expected that as we take into consideration a higher number of hotspots there is a strong 

likelihood of the diffusion paths of atoms converging. This interference in the path of the 

movement of individual atoms may result in the interaction between diffusing atoms and 

affect the net migration of the atoms.                    

     
                    (a)                                                                            (b) 

Fig 21.Tracking diffusion from two hotspots.(a)1000 grains (b) 100 grains.The images 

show two voids formed by simultaneous diffusion of Tin atoms.                               
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               5.11 Effect of Direction of Current on Diffusion Path of Atoms  

 

In the present implementation of the model it is possible to vary the direction of the 

current vector and see the corresponding effect on the diffusion path of the atoms. The 

convention used for the axes are defined first. The perpendicular line form the anode to 

the cathode (as shown in the figure 22) is defined as ‘x’ axis (used as the baseline) and 

the direction perpendicular to the ‘x’ axis in the plane of the paper is the ‘y’ axis.  𝑖  ⃗  and  

𝑗    are  unit vectors along ‘x’ and ‘y’ axis. 

 

The simulation is performed varying the direction of the current starting with  𝑖  ⃗  direction 

and moving towards  𝑗   direction.  Four different directions were attempted for the current 

vector, they were- 𝑖,  𝑖 + 𝑗 ,  𝑖 + 2𝑗   and  𝑖 + 3𝑗 . 

 

The results obtained from the simulation are as expected and are visualized in the figure 

22. The net diffusion distance of the atoms from cathode to anode decreases with 

increasing angle. As the direction of the current was varied from 0̊ (𝑖  ⃗) to 72.5̊ (𝑖 + 3𝑗 ), 

the diffusion of atoms was favored in that respective direction.  

 

 

 

 

 

 



 

35 

                                                                                                                          

       

Fig 22. The simulated  diffusion path for  current vector of direction  𝑖  ⃗ (left) and  𝑖 + 𝑗  

(right). 

 

 

 Fig 23. The simulated  diffusion path for  current vector of direction  𝑖 + 2𝑗  (left) and  

𝑖 + 3𝑗  (right).  

https://www.dropbox.com/pri/get/new%20june%2019th/1000.png?_subject_uid=210790267&w=AAALe1gW_3wGI7Vs7si3UFPQe0hqglo8V3eBthXB70R0BA
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CHAPTER 6: CONCLUSION 

The purpose of this work was to (1) create a mesoscale model of EM void formation and 

visualize the diffusion of Tin atoms during the process of EM   (2) vary general 

parameters in the system and observe the corresponding effect on diffusion and (3) 

compare the EM life performance with some previously conducted experimental studies.  

 

A computational framework has been developed to model EM void nucleation through a 

coupled kinetic Monte-Carlo diffusion and finite difference scheme and this is modeled 

by considering grain-boundary diffusion.  This model can be used to compare Mode I EM 

damage and diffusion behavior for different configurations of grains.  In this study, two 

different grain parameters were varied and their effects were qualitatively and 

qualitatively studied. The two-grain parameters are grain size and grain boundary angle. 

From the simulation results obtained it was concluded that larger grain size and high 

grain boundary angles improved EM life. This is in congruence with experimental studies 

conducted.  Other parameters such as the direction of the current vector were varied and 

the simulation results were visualized. The model created is flexible; any new mechanism 

that is unaccounted for in the current model can be implemented on top of the existing 

scheme. Visualizing the diffusion path of the atoms is a very powerful tool.  A movie of 

diffusion of Tin atoms from the hot-spot and the void nucleation process was created for 

different scenarios (different grain parameters).   This helps in visualizing the diffusion of 

Tin atoms that takes place during current stressing in different cases. More insights can 

be gained by considering more mechanisms and studying the simulation results. 
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CHAPTER 7: FUTURE WORK 

7.1 Improving the Model 

 As mentioned earlier the model has a few assumptions. Eliminating these assumptions 

involves complications but will lead to more practical results. Coarsening of grains takes 

place due to increased temperature because of Joule Heating.  A 3D simulation through 

finite elements analysis can be carried out to model the steady state temperature 

distribution. This can be coupled with Potts model which is commonly used to model 

recrystallization and grain growth. Combining these two methods it would be possible to 

model the coarsening of grains that takes place. 

It would be more challenging to accurately model Mode II damage that involves 

diffusion of copper and Nickel from the under bump metallurgy through interstitial 

diffusion. This involves chemical reactions and formation of intermetallic compounds 

such as Cu6Sn5 and Cu3Sn and also a weak surface on which void grows. The mechanical 

integrity of the solder and the composition changes plays a key role in this mode of 

failure. 

7.2 Exploring More Scenarios: Modeling the Effect of Anisotropic Grain Structures on 

Diffusion 

The current model has been tested on several structures that were isotropic in nature. 

Going one step further, the current implementation can be used to model grain structures 

that have a certain orientation such as elliptical close-packed grains. Modeling this 

scenario can provide insights into the effect of specific orientations in EM damage. In the 

current implementation, it is possible to create different kinds of structures just by 
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feeding the coordinates of the nuclei into the system the prewritten algorithm will be able 

to produce the corresponding structures. This assumes that growing uniformly in all the 

directions will result in the intended structure. 

Another interesting case that can be explored is having fine-grained and coarse-grained 

region in a single system.  The fine grained region would contain more grain boundaries 

than a coarse-grained region. Theoretically such a structure would lead to accumulation 

of atoms at the transition region when the diffusion is from a fine-grained region into a 

coarser grained region. On the other hand, when atoms diffuse from a coarser to a fine 

grain size there should be voiding. 

7.3 Machine Learning to Understand EM 

The use of machine learning algorithms has been very limited in the field of material 

science considering the impact that it has had on other major fields such as medicine, 

physics, and biology.  The use of supervised learning techniques can give us new hidden 

insights that are not so easily observed through traditional methods.  

The use of these techniques can be used to understand ’trends’ that favor void formation. 

The basic framework for the implementation would be as follows:  Using historical data 

(data obtained through past simulations) a model can be trained  under supervised 

learning technique such as neural network or random forest, with the void size as the 

outcome variable and the different predictors being grain size, grain distribution, the 

number of grains, grain orientation and possibly more. 
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Using this formulation it would be possible to identify the contribution or the statistical 

significance of different parameters to void formation. This can give an idea of the 

relative importance of different parameters to void growth.  
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