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ABSTRACT

A previously developed small time scale fatigue crack growth model is improved,

modified and extended with an emphasis on creating the simplest models that maintain

the desired level of accuracy for a variety of materials. The model provides a means

of estimating load sequence effects by continuously updating the crack opening stress

every cycle, in a simplified manner. One of the significant phenomena of the crack

opening stress under negative stress ratio is the residual tensile stress induced by

the applied compressive stress. A modified coefficient is introduced to determine the

extent to which residual stress impact the crack closure and is observed to vary for

different materials. Several other literature models for crack closure under constant

loading are also reviewed and compared with the proposed model. The modified

model is then shown to predict several sets of published test results under constant

loading for a variety of materials.

The crack opening stress is formalized as a function of the plastic zone sizes at

the crack tip and the current crack length, which provided a means of approximation,

accounting for both acceleration and retardation effects in a simplified manner. A

sensitivity parameter is introduced to modify the enlarged plastic zone due to overload,

to better fit the delay cycles with the test data and is observed to vary for different

materials. Furthermore, the interaction effect induced by the combination of overload

and underload sequence is modeled by depleting the compressive plastic zone due to

an overload with the tensile plastic zone due to an underload. A qualitative analysis

showed the simulation capacity of the small time scale model under different load

types. A good agreement between prediction and test data for several irregular load

types proved the applicability of the small time scale model under variable amplitude

loading.
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Chapter 1

INTRODUCTION

1.1 Objective

The main emphasis of this thesis work is on creating the simplest models for the

crack growth rate process, of both constant and the random amplitude loading, that

maintain the desired level of accuracy and efficiency. A new fatigue crack growth

model, which combines some of the features of an existing model based on the time

scale, is introduced and shown to predict several sets of published test results for

different materials. The objective of this thesis could be summarized as

• To modify and extend the small time scale model to predict crack growth rate

under tension-tension cyclic loading for a wide range of materials.

• To investigate the influence of the compressive stress cycles within a tension-

compression cyclic loading on crack propagation rate.

• To develop a model for predicting crack opening stress level for different materials.

• To assess the retardation in crack propagation due to an overload and modify a

suitable parameter for predicting the growth rate delay for different materials.

• To develop a model for predicting crack opening stress level that accounts for

load interaction effect within variable amplitude loading.

The proposed modifications on FCGR models have been verified by applying the

developed models to a variety of loading spectrum, thus verifying the integrity of the

models and their applicability to a wide range of metallic alloys. To begin with, a

brief review of the state of art is covered in the next section in this chapter.
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1.2 Background and literature review

1.2.1 Fracture Mechanics

A crack can be developed in a material due to many reasons. It may exist due to a

manufacturing defect, due to application of load higher than the material’s yield point;

which may lead to fracture. As illustrated in Fig 1, a crack can experience three kinds

of load types. The mode I Fig.1A would occur when load is applied perpendicular

to the crack surface. Mode II Fig.1B and Mode III Fig.1C are mostly in plane and

out of plane shear loading. In reality, a crack can be subjected to a combination of

different load modes.

Figure 1. Different modes of fracture

The stress distribution ahead of the crack tip is usually defined by the parameter

K termed as the stress intensity factor. In an infinite plate, the stress intensity factor

K as a function of the applied stress σ, half crack length a is given as

K = Y σ
√
πa (1.1)

Where Y is a geometry dependent parameter known as the geometric correction

factor, which could be evaluated using finite element analysis. The geometric correction
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factor in general is a function of the half crack length a and the half width W of a

finite plate. For an infinite plate specimen, the value of Y is 1.

1.2.2 Fatigue Crack Growth Rate

Fatigue crack growth rate with respect to the applied stress intensity factor range

is typically shown in a logarithmic scale, as illustrated in Figure 2, Crack propagation

rates are different in each regions. In region I, the growth rate is in the order of

10−9 m/cycle or less. A crack would not propagate if the applied stress intensity

factor range is lesser than the threshold value, Kth. Several research has been done in

evaluating the Kth for different loading parameters and material strength. The second

region is a linear logarithmic function of the applied stress intensity factor. Most of

the research is done in this region, which accounts for the steady state propagation

rate. As the crack reaches the third region, the growth rate accelerates and eventually

ends with the specimen being fractured.

1.2.3 Constant Amplitude Loading(CAL)

Several models have been proposed for estimating the crack growth rate in the

second region, under constant amplitude loading. The rate of crack growth is modelled

as a function of the stress intensity factor K. Under CAL, the stress intensity factor

range is a function of the applied stress range and the crack length and is given as

∆K = Y∆σ
√
πa (1.2)

Under positive ratio, σmax and σmin are the maximum and minimum applied stress

3



Figure 2. Crack propagation rate versus stress intensity factor range

in the load cycle. However under negative stress ratio, standards suggests that only

the positive portion of the load cycle contributes to the crack propagation. In other

words, the minimum stress σmin is equal to zero and σmax would contribute to the

crack propagation. Some of the fatigue crack propagation models from the literature

are discussed below.

In 1963, Paris andn Erdogan (Paris and Erdogan 1997) proposed the model which

is known as the Paris model given by the equation

da

dN
= C∆Km (1.3)

where C and m are curve fitting parameters known as Paris constants that can be

established with experimental data. The Paris model typically describes the second

region of the fatigue growth rate curve as shown in Fig. The constant C represents

the intercept of the line and m represents the slope of the line. Hence, the limitation
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being that the model can predict only in the second region. Also, the model does not

account for different stress ratios in the load cycle.

Unlike Paris law, the Forman model (Walker 1970) considers the influence of stress

ratio and also has the capability to predict in both region II and region III of the

fatigue growth rate curve. It is given by the following equation

da

dN
=

A
′
(∆K)n

′

(1−R)(Kc −Kmax)
(1.4)

A
′ and n′ are empirical material constants and Kc represents the fracture toughness

of the material. The above equation is a modification of the Paris model that

incorporates the fracture toughness Kc, which accounts for region III growth rate.

In 1970, Eiber (Elber 1997) showed that a fatigue crack remains closed during

part of the load cycle and termed the mechanism as fatigue crack closure. He argued

that as a result of tensile plastic deformation left in the wake of a fatigue crack tip,

the crack faces remain partially closed until a minimum stress is reached. Since his

argument, several research on his statement has been performed and documented.

Several models have been later proposed to explain the crack closure concept. However,

many details in the mechanism are only partly understood.

The crack opening stress is typically larger than the minimum stress, as illustrated

in the Figure 3. At σop the crack tip fully opens and below σmin the crack remains

closed and does not propagate. He proposed that the effective stress intensity factor

range ∆Keff is the driving force parameter instead of the nominal stress intensity

factor range ∆K. One parameter that is used to define the crack closure estimation

is the closure ratio

U =
∆Keff

∆K
, (1.5)

where ∆Keff = Kmax −Kop

5



Figure 3. Schematic representation of load history with crack opening level

The significance of crack opening stress is usually related to the crack growth,

retardation/acceleration, or arrest of fatigue cracks under load histories. The effect of

crack opening level on several in-service load histories are presented in the coming

chapters.

1.2.4 Variable Amplitude Loading(VAL)

In this subsection, fatigue crack growth behaviour observed under variable ampli-

tude loading is briefly reviewed. A variable amplitude loading sequence can either

accelerate or retard the fatigue crack growth rate which depends on a numerous factor.

In general, the applied load, material strength, geometry of the specimen and other

environmental conditions account for the extent to which the crack growth accelerates

or retards from the steady state characteristics. Some of the physical arguments that

have been implied to explain the load-interaction effect of fatigue crack growth rate

are as follows

• Crack tip blunting

6



• Residual stress

• Crack tip plasticity

• Plasticity induced crack closure

A crack tip gets blunted by an overload, which makes it behave like a notch. This

idea known as Crack tip blunting was first proposed by Christensen (Christensen

1959). The retardation is the number of cycles required for a crack to propagate from

the notch and continue steady state characteristics. Some research study showed that

both the retardation after a single overload and acceleration after underload were

due to crack tip blunting. This however cannot explain the reason behind the initial

acceleration immediately after an overload.

The residual stress theory (Schijve and Broek 1962) assumes that compressive

residual stresses can be generated in the small region around the crack tip after an

overload. The compressive residual stresses superimposed with the actual applied

stresses gives the resultant effective stresses which becomes the driving parameter

(Schijve and Broek 1962) for fatigue crack growth.

Crack tip plasticity models are based on the enlarged plastic zone size ahead of the

crack tip. According to Wheeler (Wheeler 1972), the fatigue crack growth rate under

the application of a single overload can be determined by introducing retardation

parameter Cp to the Paris equation, which is as

da

dNi

= (Cp)i[C(∆Ki)
m] (1.6)

The retardation parameter Cp depends on the current plastic zone size, rp,i, and

the overload plastic zone size, rOL. The subscript ’i’ indicates the particular cycle in

the load history.
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(Cp)i =

(
rp,i

rOL −∆ai

)p

(1.7)

The limitation to the wheeler’s model is the shaping exponent p, which has to

be experimentally determined for each load history. Moreover, the crack growth

acceleration due to underloads cannot be simulated using this model.

While eliminating the additional parameter such as Cp in the wheeler’s model,

Willenborg model (Willenborg, Engle, and Wood 1971) accounts for retardation after

an overload by substituting the effective stress ratio, Reff and the effective stress

range, ∆σeff , into the Forman Eq. (1.2). The actual stress intensity factor acting on

the crack tip is assumed to be calculated based on the λ parameter as shown below

Kb = σy(ROLπ(ao + rOL − a))0.5 (1.8)

where σy is the yield stress, ROL is the overload ratio, ao is the crack length when

overload was applied, rOL is the overload plastic zone size. Based on this, the residual

stress intensity factor, Kres and effective stress intensity factor Keff are calculated as

Kres = Kmax −Kb (1.9)

Keff = Kappl −Kres (1.10)

In recent study (Lee and Chen 2002), the Willenborg model has shown complete

crack arrest when sufficiently high overload ratio is applied. Moreover, the model

cannot predict delayed retardation, but only the immediate retardation right after

an overload. The model cannot simulate underloads as the compressive loads are

neglected by default in the FCG equation.

The concept of plasticity induced crack closure is to account for load-interaction

effects by incorporation the effective stress intensity range, ∆Keff . Several crack
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opening models for constant loading were later modified to model under variable

loading (Padmadinata 1990). The model proposed by Newmann is known to be a

popular approach. According to this model, the crack opening stress differs for each

level of applied stress and is calculated cycle by cycle basis. For simplicity, it is

assumed (J. Newman 1982) that the crack opening stress σop for a given block of

variable amplitude loading is constant. The crack opening stress can be estimated

from the constant amplitude fatigue test data with the equivalent stress intensity

range defined as ∆K = Kmax,V A − Kmin,V A, where Kmax,V A and Kmin,V A are the

maximum and minimum stress intensity factor in one block of variable amplitude

loading (Suresh 1998).

da

dNi

= A(∆Keff,i)
m (1.11)

Where ∆K = Kmax,i −Kop. The constant A is correlated using the Paris constant

C using the following equation (Bannantine 1990)

A =
C

(Ui)
m (1.12)

where Ui =
∆Keff,i

∆Kappl,i

A numerical integration method is used to solve for N in Eq. (1.11) in order

to obtain cycle by cycle crack growth increments from initial crack size to fracture.

Several computer programs such as NASGRO, FASTRAN-2, MODGRO and FLAGRO

have been developed based on this approach to estimate fatigue life under variable

amplitude loading.
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1.2.5 Small Time Scale Formulation

The small time scale model (Lu and Liu 2010) is based on the incremental crack

growth at any instantaneous of time during a loading cycle. Compared to the

conventional cycle-based approach, this model can be used for fatigue analysis at

various time and length scales. This model is also very convenient for predicting

FCG behavior under random variable amplitude loading. The model was developed

by establishing a geometric relationship between the incremental crack growth da

and the change in CTOD dδ. Based on fracture Based on fracture mechanics, the

theoretical relationship between CTOD and the SIF was used to correlate to the

incremental crack growth. The crack extension ∆a during a small time scale ∆t was

then calculated by direct integration. Based on this model, the crack growth in one

load cycle is given as

a = AKmax

√
δ (1.13)

Where A is a fitting parameter. The CTOD remains unchanged below crack

closure and is a function of effective SIF. The analytical approximation of the CTOD

(Liu, Lu, and Xu 2012) at that instantaneous of time is given as

δ =
∆Keff

2

2Eσy
(1.14)

E and σy are the Young’s modulus and material yield strength.

The analytical approximation for crack tip opening displacement under variable

amplitude loading was derived in the same paper. The CTOD was observed to

vary based on the memory variable Kmax,mem, which specifies the maximum SIF

corresponding to the largest monotonic plastic zone size in the variable load history.
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The model predictions had good agreement with experimental observations for Al

2024-T3 and Al 7075-T6. The predictions were compared with those of FASTRAN

and AFGROW codes, and an overall better accuracy is observed when investigated

for both uniform tension-tension and random amplitude loading. However, the model

is incapable of simulation crack growth propagation under negative stress ratio and

lacked applicability for other metallic materials.

1.3 Summary and Conclusion

Some of the common fatigue crack propagation models have been reviewed in this

chapter. Crack propagation under constant amplitude loading would typically be a

power function of the stress intensity factor range ∆K. Loading interaction effect

should be considered when predicting the fatigue life under variable amplitude loading.

Several crack propagation models are proposed to predict the growth rate under CAL.

The model coefficients are usually evaluated using experimental results.

Under variable amplitude loading, loading interaction has a significant effect on

the crack growth rate. On application of a tensile overload, the FCGR retards while

on a compressive underload, the FCGR would be faster. Few models were reviewed

that account for the load-interaction effect. It is noticeable that most of the models

are based on the size of the plastic zone developed ahead of the crack tip.

The small time scale model formulation has been reviewed which is the fundamental

basis for this research study. The model is later modified and extended to predict

crack growth rate under negative stress ratio and variable amplitude loading for a

wide range of materials.
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Chapter 2

FATIGUE CRACK GROWTH UNDER CONSTANT AMPLITUDE LOADING

2.1 Overview

Under tension-compression loading, the calculation of ∆K is usually based on

the stresses in the tensile part of the fatigue loading and the contribution from the

compressive load is ignored. This is based on the assumption that under applied

compressive stress, the crack tip is closed and no stress intensity factor is associated

with the crack. Although the crack will be closed within the compressive load region,

FCG is strongly affected by the local plastic deformation at the crack tip region

(Chen et al. 2015). Several literature results based on tests performed under tension-

compression fatigue loading indicates that the effect of compressive load on FCG

was strongly material dependent (J.-z. Zhang et al. 2010). In the literature, different

empirical models for crack closure have been proposed for both positive and negative

ratios. Several empirical models and models based on finite element analysis have

been proposed for estimating crack closure stress for negative stress ratio. Newman

(J. J. Newman 1984), Lang (Lang 2000), Schijve (Schijve 1981), de Koning proposed

empirical expressions for crack opening stress level which also included negative stress

ratios. However, less effort has been made in the understanding of fatigue crack closure

under tension-compression loading. In this chapter, the FCG behavior of different

materials subjected to various stress ratios is investigated. The integrity of the existing

model based on the small time scale concept (Lu and Liu 2010) with the current

crack closure model is studied, and their results are discussed. The predictions agreed
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well with experimental observations for Al 2024-T3 and Al 7075-T6 Aluminum alloy

under tension-tension fatigue loading. The small time scale model was modified to

predict FCGR for 4340 Steel and Magnesium alloy. From the perspective of plasticity

induced crack closure (PICC), the objective here is to study the effect of compressive

stress and the applicability of PICC to explain the impact of material yield strength

on crack closure at negative stress ratios. Finally, a crack closure model, developed

based on virtual crack annealing technique and the collected experimental data, is

presented. The model is capable of accounting for a wide range of stress ratios and

different loading scenarios, effectively for various materials in the time scale.

2.2 Modified Small Time Scale Model

The small time scale model predictions agreed well with experimental data for Al

2024 and 7075 Aluminum alloys. The model is amended to predict FCG behavior for

positive stress ratios for 4340 Steel, Ti-6Al-4V and AM60B as well. In order to achieve

this, a power fit parameter B is introduced to the small time scale FCG equation. The

modified relation is given as

a = AKB
max

√
δ (2.1)

The parameters A and B are calculated to match the intercept and the slope

with that of the experimental data. Experimental data at R = 0 is considered as the

baseline and the Paris’s constants for each material are calculated and presented in

Table 1.

The crack growth rate from the Paris’s law is compared with the small time scale
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Table 1. Summary of Paris model constants for each material

Material C m E σy
AM60B Mg alloy 1.57E-10 3.87 40000 150
2024-T3 Al alloy 5.10E-12 3.67 71700 315
D16 Al alloy 3.39E-10 2.51 72000 345
Al 7075-T6 Al alloy 5.62E-11 3.29 69600 520
Ti-6Al-4V alloy 1.02E-11 3.303 117000 1185
4340 Steel 2.00E-11 2.51 200000 1410

model and the fitting parameter A and B are calculated as∣∣∣∣A =
2C
√

2Eσy
U

,

∣∣∣∣B = m− 2 (2.2)

Based on this, the FCG Eq (2.1) is modified and the fitting parameter for each

material is presented in Table 2.

Table 2. Summary of model fitting parameter for each material

Material A B
AM60B Mg alloy 1.99E-06 2.87
2024-T3 Al alloy 1.25E-07 2.67
D16 Al alloy 7.99E-06 1.51
Al 7075-T6 Al alloy 1.75E-06 2.29
Ti-6Al-4V alloy 5.68E-07 2.303
4340 Steel 1.73E-06 1.51

The applicability of the small time scale model with the present model for crack

closure for the above materials is tested for a broad range of stress ratios.
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2.3 Virtual Crack Annealing Model for Crack Closure

2.3.1 Existing model for Positive stress ratio

A previously developed mechanical model for crack opening stress is considered for

the study. This model is based on the approximation that the crack surface behind

the crack tip is fully closed during the cyclic loading. This model was developed for

constant amplitude loading. The model assumes that the CTRPZ and the CTOD

change until the crack closure happens. The crack opening stress (Zhang and Liu

2012) for a fixed maximum load σmax is given as

σop/σmax = 0.4 + 0.6R (2.3)

Where stress ratio σmin/σmax and σop is the crack opening stress in one load cycle.

Based on this model, the portion of load cycle during which the crack is fully open is

given as

U =
∆Keff

∆K
= 0.6 (2.4)

The virtual crack annealing method for crack closure calculation has been discussed in

the next section. One limitation of this model is that it is applicable only for positive

R-values, i.e., the applied minimum stress σmin is with in the tension part of the cyclic

loading.

2.3.2 Proposed Model for Negative Stress Ratio

For ease of discussion, a crack under uniform tension-compression fatigue loading

(Fig. 4) is discussed first. If the crack is unloaded from its maximum current loading,

the crack remains open initially. The reverse plastic zone and the CTOD change until
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crack closure. However, on further unloading to a maximum applied compressive stress,

the size of reverse plastic zone increases with the rise in reversed plastic deformation

(Antunes et al. 2015) until both the crack faces come in contact with each other.

Beyond the contact stress level, the RPZ cannot be calculated using classical fracture

mechanics. However, the effect of the CTRPZ on fatigue crack closure after crack

surface contact occurs is assumed to be negligible. A simple analytical approximation

is proposed in this paper which assumes that there exists two closure levels during a

tension-compression cyclic loading. One is the partial crack closure due to unloading

and the other one is termed as global contact closure due to application of remote

comrpessive load.

Figure 4. Tension-compression fatigue loading

2.3.2.1 Model Illustration

In order to illustrate the basic idea of this model, a schematic representation is

shown in Fig. 5. A real crack after unloading from a maximum tensile stress is shown

in Fig. 5 (a). The length of the crack is a and the closure length is d. The crack tip
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reversed plastic zone dr (CTRPZ) is filled with compressive residual stress, with the

stresses transferring through the crack surface in the crack closure zone d. Using the

assumption of virtual crack annealing, a virtual crack of length (a-d) and a reversed

plastic zone size of (d+ dr) can be assumed. When the compressive residual stress

with in the distance d ahead of the crack tip becomes zero, the crack is fully open.

The real crack and the virtual crack are equivalent in the sense that both have the

same diameter of residual stress zone. For the real crack, the RPZ considering crack

closure can be expressed as,

dr =
π

8
(
Kmax −Kcl

2σy
)
2

(2.5)

If the virtual crack with a crack length (a-d) of is under the same loading conditions,

classical fracture mechanics can still be applied to calculate the reversed plastic zone

until the global crack surface contact occurs. To depict this, a global contact stress

σgc is assumed to control the size of the reversed plastic zone for the virtual crack

which can be expressed as

dr,virtual =
π

8
(
Kmax −Kgc

2σy
)
2

(2.6)

Where Kcl ,σcl and Kgc ,σgc are the SIF and stress level at the crack closure and global

crack contact.

From Fig. 5(a) and Fig. 5(b), the overlapped length d can be estimated as

d = dr,virtual − dr =
π

8
(
σmax − σgc

2σy
)
2

π(a− d)− π

8
(
σmax − σcl

2σy
)
2

π(a) (2.7)

Now consider the virtual crack under reloading from applied remote compressive stress

to maximum tensile stress. Upon reloading, the overlapped length will gradually

reduce to zero until a certain stress level σop. Also, the stress at the overlapped length
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Figure 5. Schematic representation of (a) Real crack after unloading from σmax, (b)
Virtual crack, (c) Crack during reloading from σmin

will change from −σy at the global crack contact stress σgc to zero at the full open

stage σop. Based on this concept, the forward plastic zone of the virtual crack at the
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opening stress will be equal to the overlapped length and can be expressed as

d =
π

8
(
σop − σgc

σy
)
2

π(a− d) (2.8)

As a first order approximation, the crack opening stress and the closure stress in one

load cycle are assumed to be identical. Also, the material is assumed to be perfect

elastic plastic and a factor of 1 for no significant hardening is assumed as a good

estimate. Under this hypothesis, the analytical approximation of crack opening can

be obtained by combining Eq (2.7) and Eq (2.8).

π

8
(
σmax − σgc

2σy
)
2

π(a− d)− π

8
(
σmax − σop

2σy
)
2

π(a) =
π

8
(
σop − σgc

σy
)
2

π(a− d) (2.9)

Assuming that the closure overlapped length is smaller than the actual crack length

and its effect on SIF is negligible, Eq (2.9). can be further simplified as

5σ2
op − (8σgc + 2σmax)σop + (3σ2

gc + 2σmaxσgc) = 0 (2.10)

(σop − σgc)(5σop − 2σmax − 3σgc) = 0 (2.11)

The above equation gives two possible solutions to crack opening stress level. One

solution is that σop = σgc, which indicates that the crack opening stress is compressive

and that the tensile peak load has no effect on crack closure. The other solution gives

a unique crack closure level under constant tension-compression loading that can be

expressed as

σop = 0.4σmax + 0.6σgc (2.12)

The objective here to estimate the global contact stress, which can be utilized to

correlate the extent to which reversed plastic deformation occurs in the compressive

part of the fatigue loading.
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2.3.2.2 Effect of Compressive Stress Level

During unloading, the compressive stress produces reversed plastic deformation,

which is known to reduce the crack opening stress level. With the decrease in minimum

stress, while fixing the maximum stress, the reversed plastic deformation at the crack

tip increased, this was observed by F.V. Antunes(Antunes et al. 2015). A linear

variation of the size of the RPZ at the crack tip can also be expected with the increase

of compressive load, which was observed in the paper (Zhang, He, and Du 2007). In

the previous section, the size of the reversed plastic zone is assumed to depend on

the global contact stress, under the hypothesis that the reversed plastic zone cannot

increase beyond crack surface contact. To depict this, a non-dimensional parameter

β was introduced to scale the effect of different peak compressive load σmin on the

global crack face contact stress under small-scale yielding.

σgc = βσmin (2.13)

Substituting Eq (2.13) in Eq.(2.12), the crack opening stress as a fraction of applied

maximum stress can be given as

σop/σmax = 0.4 + 0.6βR (2.14)

To explain the effect of compressive stress on the global contact stress, the obtained

relation for crack opening stress is applied to the small time scale model for crack

growth rate and is analyzed using literature results of fatigue crack growth rate at

negative stress ratios. The scaling parameter β is calculated by calibrating the model

with experimental data.

From the literature results, the value of ∆K at da/dN = 10−6 mm/cycles has

been derived here (see Table 3) for three different materials. Since the opening stress
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was observed to have a linear trend with the increase in σmin, only one set of data at

negative stress ratio is considered to capture the trend for each material.

Table 3. Scaling parameter β for different materials

Material R ∆K U β
2024-T3 Al alloy -1 11.628 0.35639 0.187
Al 7075-T6 Al alloy -1 8.594 0.34642 0.154
4340 Steel -1 21.684 0.32942 0.098

The crack growth rate function for small time scale is obtained by differentiating

Eq.(2.1) with respect to time and is given as

da =
AKmax

Bdδ

2
√
δ

(2.15)

Assuming the CTOD variation is constant under constant amplitude loading, the

simplified form the above equation is as

da =
A

2

Kmax
B∆Keff

2Eσy
(2.16)

Crack opening stress as a fraction of peak tensile load can also be expressed as

σop/σmax = 1− U(1−R) (2.17)

Where U is the fraction of the load cycle during which the crack is open and is obtained

by combining Eq. (1.2), Eq. (2.4) and Eq. (2.16) as follows

U =
(da(1−R)B

√
2Eσy

A∆K2

)0.5

(2.18)

From Eq. (2.17) and Eq. (2.14), the scaling parameter β can be expressed as

β =
0.6− U(1−R)

0.6R
(2.19)

By substituting the values for U and the corresponding stress ratio R, the parameter

β is calculated and observed to vary for different materials.
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2.3.2.3 Effect of Material Yield Strength

Based on the previous section, the parameter β was calculated and found to vary

for different materials. Fig 6 plots β for materials with different yield strength. The

closure load at R = -1 is calculated for each material by Eq. (2.18) and is observed to

increase with the increase in yield strength for different materials.

Figure 6. Parameter β as a function of yield strength for three materials

A non-linear function is fit to capture the trend in which β varies for different

yield strength and is give as

β =
3.06

σ0.472
y

(2.20)

A discussion of this solution is given in the next section by comparing with other

models for crack closure at negative stress ratio. The modified virtual crack annealing
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Figure 7. Model prediction for crack opening stress as a function of stress ratio

model is then used to formulate the fatigue crack growth behavior under variable

amplitude loading (VAL).

2.4 Discussion

The proposed empirical model for fatigue crack closure at negative stress ratio

accounts for the effect of loading parameters and yield stress. However, Plasticity

induced crack closure is the only mechanics considered in this model. Further develop-

ment may be required to include other parameters. The model presented is fascinating

to study the effect of loading parameters and the effect of yield strength on crack

closure at negative stress ratio. Figure 8 plots the σop/σmax against σy for different

negative stress ratios.
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Figure 8. Empirical model: Effect of yield stress σy on crack closure at negative stress
ratio

Table 4. Summary of literature models for σop as a function of stress ratio

Author σop/σmax Material Validity R
(Elber 1997) 0.5 + 0.1R + 0.4R2 2024-T3 -0.1 to 0.7
(Schijve 1981) 0.45 + 0.22R + 0.21R2 + 0.12R3 2024-T3 -1 to 0.5
(S. Zhang et al. 1987) (0.38 + 0.36R + 0.14R2)(1−R) 7475-T73 -1 to 0.5
(Kumar 1995) (0.3 + 0.15R(2 +R))(1−R) Steel -1 to 0.5
(Lang 2000) 0.45 + 0.34R + 0.13R2 + 0.07R3 7475-T7351 -0.7 to 1
(J. J. Newman 1984) 0.53 + 0.07R + 0.14R2 + 0.25R3 7075-T6 -1 to 0.9

The plot 9 shows the crack opening stress as a function of stress ratio for different

empirical models obtained from the literature. The value of σop decreases with stress

ratio. The variations in σop for negative stress ratio is moderate compared to positive

stress ratio. Different materials were considered to generate these models. Hence, a

significant difference in the value of σop is observed although the global trend presented

by the different literature models is similar. The plot 10 shows the crack opening stress
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σop against stress ratio for different values of yield strength σy, using the empirical

model proposed here Eq (2.18).

Figure 9. Comparison of literature models for closure ratio as a function of stress ratio

For positive stress ratio, the closure loads are not dependent on the material yield

strength. However, there is a significant influence of σy and its decrease decreases the

crack opening level σop for negative stress ratio. The comparison of plots in 9 and

10 indicates similar trends and similar crack opening values. The scatter observed

for negative stress ratio in Fig 9 compared to Fig 10 may be explained by loading

parameters and different material yield strength.
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Figure 10. Model predictions for closure ratio as a function of stress ratio for different
yield strength

2.5 Model Validation

In order to demonstrate the validity of the fatigue crack growth formulation

presented above, its predictions are compared to the test date for different materials.

Fatigue test data under constant amplitude loading for Aluminum alloy 7075-T6 and

2024-T3, 4340 Steel, Ti-6AL-4V Titanium alloy and AM60B Magnesium alloy,are

used to validate the present model. Figure. 11 to 15 plots experimental fatigue data

obtained from the literature. A summary of the model parameters calculated for each

material is given in Table 5 below. The test data obtained from the literature are

cited next to the corresponding material in Table 5.
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Table 5. Summary of model parameters for each material

Material A B E σy β
AM60B Mg alloy 1.99E-06 2.87 40000 150 0.284
2024-T3 Al alloy 1.25E-07 2.67 71700 315 0.187
D16 Al alloy 7.99E-06 1.51 72000 345 0.179
Al 7075-T6 Al alloy 1.75E-06 2.29 69600 520 0.154
Ti-6Al-4V alloy 5.68E-07 2.303 117000 1185 0.10
4340 Steel 1.73E-06 1.51 200000 1410 0.098

Table 6. Summary of test data for different metallic materials under different stress
ratio

‘

Material Stress ratio R Reference
AM60B Mg alloy 0, 0.25, 0.5, -0.3, -0.6, -1.0 (Mehrzadi and Taheri 2012)
2024-T3 Al alloy 0 , 0.1, 0.3, 0.5, -0.5, -1, -2 (Forman et al. 2005)
Al 7075-T6 Al alloy 0, 0.33, 0.75, -0.7, -1, -2 (Forman et al. 2005)
Ti-6Al-4V alloy 0, 0.5, 0.7, -0.1, -1, -3, -5 (Zhang, Yang, and Lin 2015)
4340 Steel 0, 0.1, 0.5, 0.7, -1 (Sadananda and Vasudevan 2003)

Figure 11. Constant amplitude loading test data of Al 2024 alloy
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Figure 12. Constant amplitude loading test data of 7075-T6 Al alloy

Figure 13. Constant amplitude loading test data of 4340 Steel
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Figure 14. Constant amplitude loading test data of AM60B Mg alloy

Figure 15. Constant amplitude loading test data of Ti-6Al-4V Titanium alloy

The fatigue crack growth data collapse into a single master curve for different load

ratios, indicating that the crack closure can be used to explain the mean stress effect.
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An equivalent stress intensity factor is used to collapse the test data into a single

curve. Figure. 16 – 19 plots da/dN vs ∆Keqn curves, for evaluating the ability of

model for each material. The equivalent stress intensity factor ∆Keff is given as

∆Keq =
(U∆KB+1

(1−R)B

)0.5

(2.21)

∆K obtained from plots 11 to 15 and model parameter B obtained from Table 5

are used in the equation above to calculate ∆Keq for each material and are plotted

against model prediction for R = 0. The predictions show a good corelation with the

experimental data as shown in the figure below.

Figure 16. Comparison of model prediction with test data of Al2024 alloy as a
function of ∆Keq
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Figure 17. Comparison of model prediction with test data of Al7075-T6 alloy as a
function of ∆Keq

Figure 18. Comparison of model prediction with test data of 4340 Steel as a function
of ∆Keq

31



Figure 19. Comparison of model prediction with test data of AM60B Mg alloy as a
function of ∆Keq

Figure 20. Comparison of model prediction with test data of Ti-6Al-4V alloy as a
function of ∆Keq
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Chapter 3

FATIGUE CRACK GROWTH UNDER VARIABLE AMPLITUDE LOADING

3.1 Overview

Based on the improved small time scale model introduced in the previous chapter,

the prediction results are in good agreement with the test data for a wide range of

metallic materials under constant amplitude loading. However, most structures or

industrial components in real life are subjected to complex loading spectrum. It brings

the necessity to model fatigue crack growth rate under variable amplitude loading

for design and life predictions. Several models has been proposed by researchers to

predict and understand crack growth under variable loading. Most of the work has

been done on single peak tensile overload which leads to crack growth retardation.

Several other load scenarios have also been investigated by various researchers. The

retardation and acceleration in crack growth rate due to overload, underload and

overload followed by an underload has been investigated by Yen and Teheri (Yuen

and Taheri 2006) and Rushton and Taheri (Rushton and Taheri 2003) and proposed

few modifications to the Wheeler’s model.

Various mechanisms have been proposed to explain fatigue crack growth under

variable amplitude loading. As reviewed in the chapter 2, some of them are crack

tip blunting, crack closure, hardening effect and residual stresses at the crack tip.

Often these mechanisms operate simultaneously to affect the overall crack growth

rate under variable amplitude loading. However, it is understood from the various

research studies that plasticity induced crack closure have been considered the most
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important fatigue crack growth mechanisms. In this chapter, the small time scale

model is developed to predict under variable loading spectrum. Firstly, crack opening

stress is modelled based on the largest monotonic and reversed plastic zone size in

the load history. The model is modified to assume the maximum memory stress as a

function of the current and overload plastic zone, and the current crack length. The

retardation effect on crack growth due to an overload within a constant amplitude

loading is investigated. The sensitivity of different materials to overload are explained

to indicate that the size of the monotonic plastic zone is affected by an effective plastic

zone co-efficient. Subsequently, a new parameter, referred to as sensitivity parameter

is introduced to evaluate the affected zone size on different materials. The sensitivity

parameter establishes an effective plastic zone radius is obtained with experimental

data for different materials, and have no tangible physical meaning; as they have been

developed by best fitting the test data to the closure equation, so that a better match

to the retarded fatigue cycles could be obtained. Further more, crack closure due

to load interaction effects is investigated. The integrity of the model combining the

effects of overload and underload is validated. Several other block loadings are also

used to validate the improved small time scale model.

3.2 Methodology Development

3.2.1 Crack Closure under Variable Amplitude Loading

Under cyclic loading, the stress field ahead of the crack tip is affected to form

a larger monotonic plastic zone (Yang, Zhang, and Liu 2014) and a cyclic reversed

plastic zone within the monotonic zone. This plastic deformation of the material

34



results in crack closure. Under constant amplitude loading, the crack opening is

merely approximated to be constant. Based on this, a simple analytical crack closure

solution was proposed in the previous chapter for both positive and negative stress

ratios. Under variable amplitude loading, the crack opening stress is understood to

change every cycle. For instance, application of an overload causes the crack opening

stress to increase rapidly and gradually decrease to the steady state. This indicates

the crack growth retardation. While an underload has the reverse effect and indicates

crack growth acceleration. To account for the change of crack opening stress level,

the virtual crack annealing method is once again used to model these effects. The

value of the crack opening stress is not identical to that of the closure stress in the

previous cycle. Under this hypothesis, the analytical approximation of crack opening

stress can be obtained from Eq.

π

8
(
σmax − βσmin

2σy
)
2

π(a− d)− π

8
(
σmax − σcl

2σy
)
2

π(a) =
π

8
(
σop − βσmin

σy
)
2

π(a− d) (3.1)

The above equation based on virtual crack model can be rewritten using the

monotonic zone size and the reversed plastic zone size in the load history as

π

8
(
(

rf
απaY

)
0.5
σy − βσmin
2σy

)

2

π(a)− dr =
π

8
(
σop − βσmin

σy
)
2

π(a) (3.2)

where ρf and dr are the monotonic plastic zone size and the reversed cyclic plastic

zone size in the load history and are evaluated as

rf = α(
K

σy
)
2

(3.3)

dr =
π

8
(
Kmax −Kcl

2σy
)
2

(3.4)
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The reversed plastic zone is estimated based on dugdale’s model, however the

co-efficient α to evaluate the monotonic plastic zone size is further investigated in the

subsection 3.2.3. Finally, Eq.(3.2) is rewritten to solve for crack opening stress σop as

σop = βσmin + ((
(

rf
απaY

)
0.5
σy − βσmin
2

)

2

− 8σy
2

π2aY
dr)

0.5

(3.5)

In the next subsection, the above equation is developed to predict crack opening

stress under an application of single overload or underload.

3.2.2 Effect of Single Overload or Underload

It is well known that on the application of a tensile overload, the fatigue crack

growth rate has been shown to retard. During a tensile overload, the magnitude of the

residual compressive stress field ahead of the crack tip is large and increases the level

of crack opening stress when the crack enters this compressive plastic region. The

crack opening stress level increases instantaneously to the maximum value, and then

gradually attains a steady state as the crack penetrates the large monotonic plastic

zone in the subsequent cycles. To account for this retardation effect, the monotonic

plastic zone size rf under variable loading is expressed as a function of the current

crack length and the overload plastic zone size rOL.

As illustrated in Figure. 21 below, when the current monotonic plastic zone size

reaches the large monotonic boundary, the crack opening stress returns to a steady

state. If ai and ρf are the current crack length and monotonic plastic zone size,

and aOL and ρOL are the overload crack length and monotonic plastic zone size, the

following relationship can be established.
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Figure 21. A schematic representation of crack opening stress σop under load
sequence with single overload

|rf + ai = aOL + rOL, | rf = aOL + rOL − ai (3.6)

The large monotonic compressive plastic zone is evaluated as

rOL = α(
KOL

σy
)
2

(3.7)

On the contrary, when an underload is applied in the constant amplitude baseline

loading, the residual stress field ahead of the crack tip is tensile. As illustrated in

Figure 22, an enlarged cyclic plastic zone embeds over the constant amplitude reversed

plastic zone (RL 1998). The crack propagation rate will not resume the steady state
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characteristics unless the crack propagates through the enlarged cyclic plastic zone.

This causes the crack opening stress level to decrease and accelerate the fatigue crack

growth rate. This mechanism is modelled by depleting the cyclic plastic zone with

respect to largest cyclic plastic zone in the load history dr,max.

Figure 22. Cyclic plastic zone: (a) immediately after a compressive underload, (b)
the crack propagating through the underload plastic zone.

The retardation effect due to enlarged plastic zone is modelled by substituting

Eq.(3.6) into Eq.(3.5). The acceleration in crack growth and decrease in opening

stress level is modelled by rewriting the σmin as σminmem in Eq.(3.5). The final form

of the equation to calculate opening stress is given as

σop = βσminmem+

(
(
(aOL+rOL−ai

απaY
)
0.5
σy − βσminmem
2

)

2

− 8σy
2

π2aY
(dr,max − ai)

)0.5

(3.8)

3.2.3 Modified Plastic Zone Size Co-efficient

The plastic zone size is usually related to the stress intensity factor K and material

yield strength σy, by the coefficient α. Several approaches has been proposed by
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various researchers to establish α. Some obtained by considering linear elastic material

behavior, while others are obtained considering perfectly plastic material behavior. In

the previously proposed model based on Eq.(3.8), the affected monotonic plastic zone

size based on dugdale’s model is approximated to be

rf =
π

8
(
K

σy
)
2

(3.9)

Using the above relation for plastic zone size with α = π
8
, the small time scale model

predicted lesser life cycles compared to that of the test date for different materials.

This signifies that the demonstrated affected zone size does not match the actual

zone size. Moreover, it is understood that for different materials, the actual affected

zone would be different than that demonstrated by the model. Therefore it could be

concluded that the materials sensitivity to overload cycles varies from one material to

another. In our investigation, a modification parameter γ is introduced to address the

sensitivity of the material to an overload in an effective way.

In order to evaluate the sensitivity parameter γ, a portion of the overload plastic

zone is considered in the Eq.(3.8). In other words, the crack opening stress is modified

to account for the material’s sensitivity to overload, described by the equation below

σop = βσminmem +

(
(
8(aOL+γrOL−ai

γπ2aY
)
0.5
σy − βσminmem

2
)

2

− 8σy
2

π2aY
(dr,max − ai)

)0.5

(3.10)

Comparing equations (3.8) and (3.10) reveals that an additional parameter is

included in the original crack opening stress based on virtual crack method. This

parameter accounts for material’s sensitivity to an applied overload. This sensitivity

factor acts over the crack length until the current plastic zone reaches the large

monotonic boundary. The parameter γ are determined based on the experimental
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data obtained for different materials with various overload ratios, as presented in

Table.

Table 7. Sensitivity parameter γ for different materials

Material γ OL ratios
AM60B 1.3 1.75, 2.0
Al 2024-T3 4.54 2.0
D16 Al alloy 4 2.0
Al 7075-T6 3.33 2.0
Ti-6Al-4V 1.87 2.0

The figure illustrating the model predictions in case of an applied single overload,

with the established sensitivity parameter γ is shown in section 3.3 under validation.

Using the modified plastic zone size coefficient for various materials, the model is

extended to predict growth rate under load interactions with the combined effect of

overload and underload.

3.2.4 Overload-Underload Interactions

The modified crack opening stress model introduced in the previous section has the

capacity of modelling crack growth retardation or acceleration due to an application

of tensile single or multiple overloads or underloads in a constant amplitude baseline.

However, the model is incapable of considering the combination of an overload and

underload. Based on the state of art, when an underload is applied prior to an an

overload, the change in the amount of retardation is assumed to be negligible (Murthy,

Palani, and N. Iyer 2004). However, when an underload is applied followed by an

overload, it has been observed that the retardation effect is lesser (Murthy, Palani,

and N. R. Iyer 2007), indicating that a portion of the large monotonic plastic zone gets
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depleted by the underload. To account for this effect, the plastic zone size increment

caused by the underload is subtracted from the monotonic large boundary due to the

overload. A schematic representation of the depletion in monotonic plastic zone size

is illustrated in Figure23.

Figure 23. Schematic representation of depleting plastic zone sizes to account for the
effect of underload following overloading (Huang, Torgeir, and Cui 2008)

The plastic zone size increment due to underload is understood to vary for different

materials and is assumed that it can be addressed by the material sensitivity parameter

γ as well. Under this hypothesis, Eq.(3.10) is rewritten to model the depleted large

monotonic boundary
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σop = βσminmem+

((
4(
aOL + γ(rOL − rUL)− ai

γπ2aY
)
0.5

σy −
βσminmem

2

)2

− 8σy
2

π2aY
(dr,max − ai)

)0.5

(3.11)

where rUL is monotonic tensile plastic zone size caused by the application of an

underload, and can be calculated as

rUL =
π

8
(
(Kmin −Kminmem

σy
)
2

(3.12)

The equation (3.11) for crack opening stress has the capacity to model growth

rate under single or multiple overloads, underloads or the interaction of the two load

types. A qualitative analysis to investigate the performance of the improved model is

carried out and discussed in the next section.

3.3 Discussion

In this section, the capacity of the improved small time scale model is investigated

by performing a qualitative analysis. As illustrated in Figure. 24 and 25, the effects

of the sensitivity parameter γ and overload ratio (OLR) on predicted results when a

single overload is applied can be explained. Based on Figure 24, the level of fatigue

crack growth rate retardation will be changed with the sensitivity parameter, and the

retardation phenomenon can be adequately simulated by fitting a relevant value for

different materials. It is also understood that the crack growth retardation will be

more with the increase in overload ratio. This can be clearly observed in Figure.25.

Moreover, to verify the simulation capability of the model under different loading

sequences, Figure 26 describes five basic types of loading and Figure 27 depicts the
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Figure 24. The effect of Sensitivity parameter γ on the predicted results

Figure 25. The effect of overload ratio ROL on the predicted results

prediction curves of crack length (a) versus number of life cycles Nf under different

load types. Different tendency of a−Nf curves has been observed for the different

43



typed of loading mode. The fatigue life of the constant amplitude case is larger than

the fatigue life of the case due to an underload, while the fatigue life is quite longer

under a single applied overload. It can also be clearly observed that the fatigue life of

the case (underload followed by overload) is shorter than that of just the overload.

The simulated results are in accordance with the general agreements that are observed

in the test data.

[a] [b]

[c] [d]

[e]

Figure 26. Basic loading modes
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Figure 27. Predicted a-N curve for the basic loading modes mentioned above
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3.4 Model Validation

In the previous section, the capacity of explaining the load interaction effects has

been investigated by the qualitative analysis. In this section, the applicability of the

small time scale model is further validated under variable amplitude loading (VAL)

by comparing the predicted results with the fatigue crack growth experimental data.

Several types of loading are considered including single and multiple spike tensile

overloads, underloads, combination of overload and underload and variable sized block

loading.

3.4.1 Single Spike Loading

In this section, test data for fatigue crack growth under a constant amplitude

loading with single spike overload is used to fit the model parameter γ discussed in the

section 3.2. In case of single overload, the overload ratio ROL is given as σOL/σmax.

While in case of an underload, the underload ratio RUL is defined as σUL/σmin. A

summary of all the test data collected for the single spike overload or underload case

for the corresponding material and the references for each one of them are presented

in the Table 8.
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Table 8. Constant amplitude loading with single overload or underload

Load specs(Stress ratio) Material σmax References
CA(0.1) + OL(2) AM60B 45 MPa (Mehrzadi 2013)
CA(0.1) + OL(1.75) AM60B 45 MPa (Mehrzadi 2013)
CA(0.05) + OL(2) 7075-T6 68 MPa (Zhao, Zhang, and Jiang 2008)
CA(0) + OL(2) 2024-T3 100 MPa (Newman Jr 1997)
CA(0) + OL(2) + UL(-0.8) 2024-T3 100 MPa (Newman Jr 1997)
CA(0.1) + OL(2) Ti-6Al-4V 25 MPa (Belnoue et al. 2010)
CA(0.1) + OL(2) Ti-6Al-4V 20 MPa (Belnoue et al. 2010)

Figure 28. Constant amplitude baseline spectrum with single spike overload
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Figure 29. Comparison of predictions with test data of AM60B Mg Alloy under single
overload

Figure 30. Comparison of predictions with test data of 7075-T6 Aluminum alloy
under single overload
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Figure 31. Comparison of predictions with test data of 2024 Aluminum alloy under
single overload

Figure 32. Comparison of predictions with test data of Ti− 6Al− 4V Titanium alloy
under single overload
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3.4.2 Repeated Spike Loading

Figure 33. Constant amplitude load spectrum with repeated spike overload provided
for test data of 7075-T6 alloy (Porter 1972)

Figure 34. Comparison of predictions with test data of Al7075-T6 under repeated
overloads with variable overload stress ratios
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Figure 35. Constant amplitude load spectrum with repeated spike overload-underload
provided for test data of 7075-T6 alloy (Porter 1972)

Figure 36. Comparison of predictions with test data of Al7075-T6 under repeated
overload-underload
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Figure 37. Constant amplitude load spectrum with repeated spike underload
provided for test data of AM60B alloy (Mehrzadi and Taheri 2013)

Figure 38. Comparison of predictions with test data of AM60B Mg alloy under
repeated compressive spike underload
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3.4.3 Variable Size Block Loading

Figure 39. Variable size block load spectrum provided for test data for 7075-T6
(Porter 1972)

Figure 40. Comparison of predictions with test data of Al7075-T6 alloy under
variable size block loading
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3.4.4 Variable Spectrum Loading

Figure 41. Loading spectrum P1 (Ray and Patankar 2001)

Figure 42. Comparison of predicted results with the test data of Al2024-T3
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Figure 43. Loading spectrum P2 (Ray and Patankar 2001)

Figure 44. Comparison of predicted results with the test data of Al2024-T3
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Figure 45. Loading spectrum P3 (Ray and Patankar 2001)

Figure 46. Comparison of predicted results with the test data of Al2024-T3
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Chapter 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

The previously developed small time scale fatigue crack growth model for constant

amplitude under positive stress ratio has been extended and modified in order to

account for constant amplitude loading under negative stress ratio. This goal has been

accomplished through an investigation of crack closure under negative stress ratio for

different materials. An empirical model for crack opening stress is proposed in the

present paper to quantify the influence of loading parameters and the material yield

strength on plasticity induced crack closure. The crack opening level was defined as

a function of σmax and σmin. Yield stress σy was included in the model to account

for material effect for negative stress ratio. The proposed model has been compared

with several literature models for crack closure. The proposed model was applied to

literature results of fatigue crack growth rate and was able to collapse da/dN −∆Keq

for a wide range of materials.

From the analysis and validation carried out, the following conclusions can be

drawn:

• The modal parameters A and B for the small time scale model can be estimated

using the paris model constants C and m for stress ratio R = 0.

• The compressive portion of the load cycle has a significant effect on plasticity

induced crack closure. The crack opening stress decreases with decrease in the
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stress ratio. This was found to be associated with the increase in reversed plastic

deformation at the crack tip due to global crack contact.

• Literature results of da/dN-∆K for negative stress ratios were analysed using

the proposed crack closure model. The introduction of a scaling parameter β

that accounts for the global contact stress level, was able to collapse the curves,

indicating its applicability to explain the effect of negatice stress ratio.

While many engineering structures are always subjected to complex loading his-

tories in service, the load interaction effects can occur as a result of the variable

amplitude loading and affect the overall fatigue life. In the present research work,

a study has been executed based on the previous work and the applicability of the

improved small time scale model has been extended to the category of variable ampli-

tude loading by implementing plasticity induced crack closure phenomena. Then the

qualitative analysis has been carried out to investigate the performance capacity of

the improved small time scale model. Finally, model predictions and the experimental

data have been compared in the various load cases, including single, multiple overloads,

underloads, combination of overload and underload and block loading.

From the analysis carried out, the following conclusions can be drawn:

• The main idea in the improved model under VA loading is based on the concept

that the load interaction effect is due to changes in crack opening stress. Crack

opening stress under VA loading is derived using virtual crack annealing method.

• A good agreement between the predicted curves and the test data is observed,

which validates that the improved small time scale model has a good capability

to predict crack growth rate under variable amplitude loading involving some

basic loading spectra.
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• The fatigue crack growth retardation or acceleration effect can be well simulated

by fixing a relevant sensitivity parameter γ.

4.2 Future Work

The following suggestions are recommended for future investigations in order to

better understand the crack growth response under several other load scenarios.

• It has been shown that the material yield strength affects the proposed “scaling

parameter β”. It would be worthwhile to investigate the influence of other

parameters such as maximum applied stress etc.. that may affect the scaling

parameter.

• The great difference of the values of sensitivity parameter γ, for different materials

raises under different load magnitude raises a question whether the parameter

is a material constant or a loading sequence variable. This will be investigated

in the near future by comparing the values of γ for the same material under

various loading sequences.

• The model’s capability to simulate fatigue crack growth rate under any random

amplitude load history should be further investigated by applying under random

stress histories with noises, aircraft spectrum loading etc...

• Fatigue crack growth rate behaves differently under different environmental

conditions. This could be further investigated and implemented in the small

time scale model.
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