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ABSTRACT

The work presented in this dissertation examines three different nonequilibrium par-

ticle physics processes that could play a role in answering the question “how was

the particle content of today’s universe produced after the big bang?” Cosmic strings

produced from spontaneous breaking of a hidden sector U(1)X symmetry could couple

to Standard Model fields through Higgs Portal or Kinetic Mixing operators and radi-

ate particles that contribute to the diffuse gamma ray background. In this work we

calculate the properties of these strings, including finding effective couplings between

the strings and Standard Model fields. Explosive particle production after inflation,

known as preheating, would have produced a stochastic background of gravitational

waves (GW). This work shows how the presence of realistic additional fields and inter-

actions can affect this prediction dramatically. Specifically, it considers the inflaton

to be coupled to a light scalar field, and shows that even a very small quartic self-

interaction term will reduce the amplitude of the gravitational wave spectrum. For

self-coupling λχ & g2, where g2 is the inflaton-scalar coupling, the peak energy density

goes as Ω
(λχ)
GW /Ω

(λχ=0)
GW ∼ (g2/λχ)2. Finally, leptonic charge-parity (CP) violation could

be an important clue to understanding the origin of our universe’s matter-antimatter

asymmetry, and long-baseline neutrino oscillation experiments in the coming decade

may uncover this. The CP violating effects of a possible fourth “sterile” neutrino can

interfere with the usual three neutrinos; this work shows how combinations of various

measurements can help break those degeneracies.
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To my grandmother, Jean Randt Morgan, unrelenting fan and critic:

“Darling, I don’t know how you understand any of this!”
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Chapter 1

INTRODUCTION

“Art is anything you can get away with.”

–Andy Warhol

The current understanding of fundamental physics and cosmology explains an

enormous range of observed phenomena, but also embodies some unavoidable con-

tradictions. How does the universe get away with this? The work presented in this

dissertation examines three different nonequilibrium particle physics processes that

could help resolve the question “how was the particle content of today’s universe

produced after the big bang?” In each case, the work ties the details of an observable

(or potentially observable) quantity to the underlying parameters responsible for it.

Studying out-of-equilibrium particle physics is difficult because it is not obvious a

priori how the free parameters of a model will manifest themselves in the resulting

physical phenomena. For this reason, it is essential to couple numerical solutions with

analytic understanding of simpler situations.

The first subject will be “dark sector” cosmic strings formed when a hidden sec-

tor U(1)X that couples to the electroweak sector is spontaneously broken before the

electroweak phase transition. The interplay between the electroweak and dark sec-

tor symmetry breaking scales makes it difficult to determine which scale controls the

properties of the strings that affect present-day observability. The second subject will

be gravitational wave production during a period of “preheating” after inflation, and

the effect of new interactions on the predicted spectrum. The third subject will be the

effect of “generic” types of new interactions on the observability of CP violation in
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neutrino oscillation experiments. In particular, this work develops the biprobability

representation of flavor oscillation probabilities in order to provide a straightforward

way to understand the effects of each new interaction parameter.

The rest of this introductory chapter will be organized in the following way.

Sec. 1.1 will describe the aspects of the Standard Model of particle interactions rele-

vant to this work, focusing on the electroweak interaction and its modification in the

(now-known) case of nonzero neutrino masses. Sec. 1.2 will describe the aspects of

the “ΛCDM” standard cosmological model relevant to this work. It will also review

some unresolved problems and potential solutions (inflation, reheating, baryon asym-

metry) that are relevant to the work in this dissertation. Sec. 1.3 will describe some

specific ways that the particle interactions described above could be modified towards

the goal of resolving these or other gaps our current understanding of the universe.

Because the work described in the following chapters is diverse, some of these will

begin with an extended introduction where some other relevant background is devel-

oped. Sec. 1.4 will summarize this chapter and specify the context for the work that

is described in the remaining chapters of this dissertation.

1.1 The Standard Model of Particle Interactions

Here we will briefly review the Standard Model and certain extensions that have

been studied for this dissertation, setting notation that will be used throughout this

document. This mainly focuses on phenomenology of extensions to the electroweak

sector.

Briefly, the Standard Model of particle interactions describes a set of quark and

lepton fields charged under a SU(3)color×SU(2)L×U(1)Y gauge group, whose gauge

bosons are responsible for the strong nuclear, weak and electromagnetic forces [1,

2]. The interaction of quarks and gluons, the SU(3)color gauge bosons, constitutes

2



Quantum Chromodynamics (QCD), the accepted theory of the strong interaction (see

e.g. [3]). Interactions of quarks and leptons with the gauge bosons of SU(2)L×U(1)Y

constitutes the electroweak (EW) interaction.

1.1.1 Electroweak Interactions

The electroweak interaction is the main component of the Standard Model studied

in this work. The overall structure of this interaction is

LEW = Lgauge bosons + Lleptons + Lquarks + LHiggs + Linteractions (1.1)

This model involves interaction of the lepton fields e, µ, τ, νe, νµ, ντ via the gauge

bosons W a
µ and Yµ of SU(2)L and U(1)Y, respectively. It is most convenient to write

the Lagrangian in terms of separate left- and right-handed fields:

eL ≡ PLe =
1

2
(1− γ5) e

eR ≡ PRe =
1

2
(1 + γ5) e (1.2)

where e is a Dirac field and similarly for the other charged fermion fields: µL and µR,

etc. For convenience of notation, we’ll label the charged lepton fields (li)L and (li)R,

with i = e, µ, τ , and the neutrinos by (νi)L. Here in the Standard Model there is no

neutrino mass term, so only the left-handed neutrino states contribute. As will be

discussed later, neutrinos are now known to have small masses, but it is not known

whether they are Dirac or Majorana fermions.

In terms of the SU(2)L doublets

Le,µ,τ ≡

(νL)e,µ,τ

(eL)e,µ,τ

 , Φ ≡

Φ+

H

 , (1.3)

the kinetic term and interaction terms for leptons are together

Lleptons = L†i iσ
µDµLi − ylijL

†
iΦ(lR)j − ylij∗(lR)†jΦ

†Li (1.4)

3



where σµ ≡ (1,−~σ) and the covariant derivative is

Dµ = ∂µ + iQYYµ + iQLσ
aW a

µ . (1.5)

When dealing with all three generations of fermions, we will frequently avoid writing

sums over the generation (flavor) indices by using the “unindexed” symbols (barred

symbols) to represent column (row) vectors of fields (barred fields):

l ≡


e

µ

τ

 , ν ≡


νe

νµ

ντ

 , u ≡


uu

uc

ut

 , d ≡


dd

ds

db

 , (1.6)

and double brackets [M ] refer to a matrix in flavor space that is 3×3 in the Standard

Model case.

After electroweak symmetry breaking (EWSB), the leptons have an effective mass-

squared matrix M that couples left- and right-handed fields:

Llepton masses = −lL
[
M l
]
lR − lR

[
M l
]†
lL (1.7)

Transforming the lepton fields by

lL → U l
LlL, lR → U l

RlR, (1.8)

and choosing U l
L,R such that

U l
L

[
M l
]
U l

R
† =

[
Dl
]

= diag(me,mµ,mτ ), (1.9)

L will be written in a basis where the charged leptons have definite masses and

definite weak interactions (diagonal mass terms and diagonal weak neutral current

and charged current terms).
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1.1.2 Quark Mixing and Lepton Mixing

As seen above, in the Standard Model there is no problem choosing a basis

where the lepton fields have definite mass (i.e. diagonal Higgs Yukawa couplings)

as well as flavor (neutral and charged current). Here we will see that this is not true

for quark mixing in the Standard Model as described by the Cabibbo-Kobayashi-

Maskawa (CKM) matrix. We will then see that with nondegenerate nonzero neutrino

masses, the exact same form of mixing occurs in the lepton sector as described by the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.

Directly analogous to the charged leptons, the part of the Lagrangian covering

electroweak interactions of quarks (fields ui = u, c, t and di = d, s, b) is written in

terms of the SU(2)L doublet

Qi
L ≡

uiL
diL

 , (1.10)

as

Lquarks
EW = Lquarks

Yukawa + Lquarks
CC + Lquarks

NC + Lquarks
EM (1.11)

with

Lquarks
Yukawa = −ydij(Q

i

LΦd jR + Φ†Q i
Ld

j

R)− yuij(Q
i

LΦu jR + Φ
†
Q i

Lu
j
R)

Lquarks
CC =

g′√
2
W+
µ u

i
Lγ

µd iL +
g′√
2
W−
µ d

i

Lγ
µu iL (1.12)

Lquarks
NC =

e

swcw
Zµ

(
1

2
u iLγ

µu iL −
1

2
d
i

Lγ
µd iL − s2

w

2

3
u iLγ

µu iL + s2
w

1

3
d
i

Lγ
µd iL

)
The Lquarks

Yukawa term results in mass matrices that are not diagonal as written:

Lquarks
mass = −uL [Mu]uR − dR

[
Md
]†
dL + h.c. (1.13)

As in the charged lepton case, field redefinitions

uiL,R → Uu
L,Ru

i
L,R, diL,R → Ud

L,Rd
i
L,R (1.14)

5



allow the mass matrices to be diagonalized by

Uu
L [Mu]Uu

R
† = [Du] = diag(mu,mc,mt),

Ud
L

[
Md
]
Ud

R
† =

[
Dd
]

= diag(md,ms,mb) (1.15)

The charged current part of the Lagrangian, then, involves

Lquarks
CC =

g′√
2
W+
µ uL(Uu

L)†(Ud
L)γµdL +

g′√
2
W−
µ dL(Ud

L)†(Uu
L)γµuL

≡ g′√
2
W+
µ uLVCKMγ

µdL +
g′√
2
W−
µ dLV

†
CKMγ

µuL (1.16)

The neutral current interactions only involve the combinations uLγ
µuL and dLγ

µdL, so

there won’t be factors of VCKM. However, because V †CKMVCKM = 1 we can generalize

and say that the up-type fields that participate in the weak interaction are related

to the up-type fields of definite mass by uflavor
L = V †CKMu

mass
L (since this will make the

neutral current interaction end up with a factor of 1 in it). This way of expressing

the result is not the usual language, but we use it here because it directly maps onto

the language used in the leptonic sector. There, we say that the upper component of

the SU(2)L doublet – i.e. neutrino – fields with definite flavor content are related to

the fields of definite mass by a linear transformation.

In the Standard Model, neutrinos are exactly massless left-handed fermions. The

earliest evidence that the Standard Model is insufficient to account for all neutrino

phenomenology was the “solar neutrino problem” – the flux of electron neutrinos from

nuclear reactions in the sun was found to be much less than predicted by solar models.

This suggested the phenomenon of neutrino flavor mixing that is analogous to mixing

of quarks via the weak interaction; eventually it was shown that the flavor mixing

probabilities follow the dependence on length and energy that would be expected

if neutrinos have mass eigenstates that differ from their flavor eigenstates [4] and

solve the solar neutrino problem [5]. Of particular interest is that this allows for
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the possibility of CP violation in the lepton sector. Phenomenology of neutrino

oscillations and CP violation will be discussed and studied further in Chapter 4.

Finally, it is useful to point out that, even though quark mixing and lepton mixing

are formally described in the same way, there are very significant differences in prac-

tice. One is that the components of VCKM are nearly diagonal with relatively small

off-diagonal elements, while the analogous UPMNS has relatively large off-diagonal

elements. Their magnitudes are [6]

|VCKM| =


0.974 0.225 0.00413

0.225 0.986 0.0411

0.0084 0.040 1.021

 , |UPMNS| =


0.82 0.54 0.15

0.35 0.70 0.62

0.44 0.45 0.77

 (1.17)

Difficulty in measuring neutrino mixing stems from the difficulty in detecting neutri-

nos in general.

1.2 Cosmology

1.2.1 The Homogeneous and Isotropic Universe

Observation indicates a universe that is homogeneous and isotropic on large scales

(& 300 Mpc) and that is expanding (the fractional rate of change of distances is today

H0 ≈ 70 km s−1 Mpc−1). This universe can be described by the Einstein Equations

Rµν −
1

2
Rgµν = 8πGTµν + Λgµν (1.18)

where Rµν is the Ricci tensor, R is the Ricci scalar, G is Newton’s constant and Λ

is the cosmological constant term, with the Friedmann Lemaitre Robertson Walker

(FLRW) metric, given in terms of its line element as

ds2 = dt2 + a2(t)

(
dr2

1− kr2
− r2dθ2 − r2 sin2 θdφ2

)
= a2(η)

(
dη2 +

dr2

1− kr2
− r2dθ2 − r2 sin2 θdφ2

)
, (1.19)
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where the conformal time is defined by dη = dt/a. The parameter a is called the

scale factor, and comparison of scale factors at different times is used to quantify the

expansion of the universe. Since one effect of this is the gravitational redshift of light,

λf
λi

=
af
ai
, (1.20)

another frequently useful quantity (more popular among astronomers) is the redshift,

z, defined by

1 + z ≡ a0

a
. (1.21)

Here, the subscript 0 on a or H refers to present-day quantities; therefore the redshift

of a given time is the fraction by which the wavelength of a light signal emitted at

that time is stretched between then and now.

The overall matter content that determines the evolution of the scale factor a(t)

is well described as a perfect fluid with stress-energy tensor

Tµν = diag (ρ, −p, −p, −p) (1.22)

where ρ is the energy density and p is the pressure. Then the µ = 0, ν = 0 component

of Eq. (1.18) gives the Friedmann Equation,

H2 +
k

a2
=

8πG

3
ρ, (1.23)

where H ≡ 1
a
da
dt

is the Hubble parameter. The µ, ν = i component of Eq. (1.18) gives

2
ä

a
+H2 +

k

a2
= −8πGρ, (1.24)

which can be combined with Eq. (1.23) go give the acceleration equation

ä

a
= −4πG

3
(ρ+ 3p). (1.25)
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Each type of matter present in the universe contributes: ρ = ρelectrons + ρphotons +

ρbaryons + · · · . But for many purposes, the various components of matter that con-

tribute to the stress-energy tensor in the standard hot big bang cosmology are well

approximated as either relativistic particles (“radiation”), nonrelativistic particles

(“matter”) or vacuum energy / cosmological constant. Then the density and pres-

sure are related by a simple equation of state,

p = wρ, (1.26)

with w = 1/3 for radiation, w = 0 for matter, w = −1 for vacuum energy. A useful

expression for the dynamics then comes from the stress-energy conservation,

∇νT
µν = 0, (1.27)

whose µ = 0 component gives

d(ρa3) = −wρ d(a3), (1.28)

which is integrated to give

ρ ∝ a−3(1+w). (1.29)

The different power-law evolution of the scale factor, a(t), for different types

of matter means that the universe will nearly always be dominated by one type

of matter, punctuated by transitions from one form of scaling to the next as one

form or another becomes the main component. In particular, the ΛCDM model fits

observation very well by assuming the universe was radiation-dominated before Big

Bang Nucleosynthesis (BBN) began, but ρradiation ∝ a−4 while ρmatter ∝ a−3, so at

some aeq (equality of matter and radiation energy densities) the universe transitioned

to matter-dominated evolution. In 1998, careful measurements of Type Ia supernovae
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[7, 8] showed that the universe’s expansion is accelerating; i.e. five billion years ago

there was another transition from matter-dominated expansion to vacuum-dominated

expansion governed by a small cosmological constant (or “dark energy”).

The curvature constant k = −1, 0, +1 if the total energy density is respectively

less than, equal to, or greater than the critical density, defined as

ρcrit =
3H2

8πG
. (1.30)

Frequently it is useful to express energy densities as a fraction of the critical density:

for some component i of matter,

Ωi = ρi/ρcrit. (1.31)

If one treats the curvature term k
a2 in the Friedmann Equation Eq. (1.23) as an “energy

density” that scales as ρk ∝ a−2, then there will be an

Ωk = ρk/ρcrit. (1.32)

Observations indicate Ωk ≈ 0, so for our universe the critical density is approximately

the total energy density, and

∑
i

Ωi = 1. (1.33)

The ΛCDM model begins with a radiation dominated era, followed by a matter

dominated era, and finally a vacuum energy dominated era that we are currently

in. The Planck satellite [9] has measured from cosmic microwave background (CMB)

observations H0 = 67.3 km s−1 Mpc−1, ΩΛ = 0.69, Ωmatter = 0.315, zeq ≈ 3400 and

|Ωk| < 0.005. The matter density is divided into baryonic matter with Ωbaryon = 0.049

and dark matter with ΩDM = 0.264.

This basic picture is supported by computation and observation involving many

other observational tests, and serves very well to describe the observed content and
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evolution of the universe from BBN onward. In fact, this success demands that new

questions be answered. Some of them are directly questions of matter content – the

particle physics nature of dark matter and the abundance of matter over antimatter

are unexplained by any Standard Model physics. However, the initial conditions

setting the stage for BBN also invite explanation.

One such difficulty is the “flatness problem,” which is related to the observed flat-

ness (or very near flatness) of the universe today. Since Ωk evolves proportionally to

1/(aH)2, a quantity which has increased many times since the time of BBN (1/(aH)

is also known as the comoving Hubble radius), the universe must have entered the

radiation-dominated era with curvature extremely fine-tuned close to zero (equiva-

lently, with energy density fine-tuned very close to critical) [10]. If 1/(aH) were to

instead decrease by a large amount before the beginning of the radiation-dominated

era and standard big bang cosmology, a situation that will be examined in Sec. 1.2.2,

this would be avoided.

Another issue is the “horizon problem,” which can be stated in the following way

[11]. The comoving particle horizon is defined by

τ =

∫ t

0

dt′

a(t′)
. (1.34)

This gives the furthest that a light ray, and thus any causal effects, could have traveled

as a(t) evolves. Using the definition of H in terms of a to change the integration

variable, this can be expressed in terms of the comoving Hubble radius as

τ =

∫ a

0

(
1

aH

)
d ln a. (1.35)

With negligible curvature, H ∼ ρ1/2 or

1

aH
=

1

H0

a
3
2

(1+w)−1 (1.36)
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so

τ =

∫ a

0

(
a

1
2

(1+w)

H0

)
d ln a. (1.37)

In a universe of matter and radiation, the exponent will always be positive and there-

fore τ will always increase. In this case, the cosmic microwave background radiation,

observed to have a very nearly thermal blackbody spectrum, would be comprised of

photons carrying information from separate regions that have never been in causal

contact.

Finally, many grand unified field theories predict topological defect production

during early universe phase transitions, a topic that will be covered in more depth in

Chapter 2. In particular, there should be many more magnetic monopoles per Hubble

volume than the existing observational bounds.

1.2.2 Inflation

Sec. 1.2.1 reviewed the standard big bang cosmology that successfully describes

many observations, but suffers from several “initial conditions” problems. One way

to solve them is to have some era of a decreasing comoving horizon,

d

dt

(
1

aH

)
< 0, (1.38)

known as inflation. A consequence of Eq. (1.38) is that ä > 0, i.e. accelerated

expansion. Another expression that follows from Eq. (1.38) and will be useful later is

1 > − Ḣ

H2
≡ ε. (1.39)

In order to solve fine-tuning problems of many orders of magnitude, inflation has to

inflate a lot. How to quantify the duration of this inflationary era? One convenient

choice is the “number of e-folds” N between the initial and final scale factors ai, af ,
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defined by

af
ai

= eN , (1.40)

or

N = ln (af/ai)

=

∫ af

ai

da

a

=

∫ af

ai

d ln(a). (1.41)

Then since H = a−1 da
dt

, da
a

= H dt so

N =

∫ tf

ti

H(t) dt, (1.42)

where the beginning and ending times are defined following Eq. (1.39) as times when

ε = 1.

Having described inflation in terms of its duration and effects, we now ask how

it may be implemented. The simplest way is with a scalar field, φ(t, ~x), minimally

coupled to gravity with

L =
1

2
∇µφ

2 − V (φ). (1.43)

In the FLRW background of Eq. (1.19), it will have equation of motion

�φ+ 3Hφ̇+
dV

dφ
= 0, (1.44)

or for a homogeneous field configuration with no spatial gradients,

φ̈+ 3Hφ̇+
dV

dφ
= 0. (1.45)

Then the Friedmann Equation Eq. (1.23) gives

H2 =
8π

3M2
P

(
1

2
φ̇2 + V (φ)

)
. (1.46)
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Taken together with Eq. (1.39), this gives an expression for the slow roll parameter

in this situation:

ε =
3
(

1
2
φ̇2
)

(
1
2
φ̇2 + V (φ)

) . (1.47)

In other words, in this case inflation (ε < 1) occurs when the potential energy V (φ)

dominates over the kinetic energy term, 1
2
φ̇2. The simplest example is a polynomial

potential,

V (φ) =
1

n
λφn. (1.48)

The idea is that φ will start high up on its potential, and then execute a “slow roll”

to the minimum of the potential, during which time the potential energy dominates

and the universe inflates. A very flat potential, where the parameter λ is chosen to be

very small (e.g. λ ≈ 10−14 if n = 4), ensures that the kinetic energy remains small for

suffcient time to obtain enough e-folds of inflation as defined in Eq. (1.42). It turns

out that the simple polynomial models of inflation Eq. (1.48) are observationally

disfavored (this will be discussed in Sec. 1.2.3), but they are still a useful toy model

for understanding how inflation might work. There is no shortage of often-baroque

inflation models [12], many of which are not constrained by observation [13].

Inflation may solve the problems of flatness, super-horizon correlations, and of

magnetic monopoles by exponential increase of the scale factor over 60 or so e-folds,

but this would necessarily “inflate away” any other particle densities as well. “Re-

heating” refers to the process after the end of inflation that would populate the

universe with a thermal bath of relativistic particles prior to BBN. Interesting things

can happen during this period; this is the subject of Chapter 3.
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1.2.3 Cosmological Perturbations

So far, we have only discussed the dynamics of a homogeneous, isotropic universe.

While this is a good approximation to our universe as a whole, the existence of galaxy

clusters, solar systems, etc. means it is obviously not exact. These small deviations

from homogeneity and isotropy can be very important tools for understanding cos-

mology, since early processes that would produce them can be constrained or detected

through careful observation. In this section, we will first understand them in a formal

way, and then apply this to understand observational consequences of processes such

as inflation and reheating.

Perturbations to the FLRW metric can be written [14] as

ds2 = a2
(
dη2 − γij(~x)dxidxj − hµν(~x, t)dxµdxν

)
(1.49)

The physical (as opposed to gauge) perturbations may be classified as scalar, vector,

or tensor according to their transformation properties. This is useful because the

evolution of each type of mode is independent of the others. The tensor perturbation

is the pair of hij’s physical degrees of freedom – “transverse, traceless” (TT) – that

can’t be expressed as the gradient of a scalar or vector; hTT
ij is gravitational radiation

with two degrees of freedom.

The perturbations described above are of tremendous importance in the early uni-

verse: quantum fluctuations during inflation are “frozen in” as the comoving horizon

shrinks, and then begin to evolve as essentially classical perturbations once they re-

enter the horizon. This process would produce a nearly scale invariant spectrum of

scalar and tensor perturbations. Scalar perturbations matching this expectation have

been very precisely measured by CMB experiments and are responsible for seeding

the formation of large scale structure of galaxiy clusters, while the search is ongoing

for primordial tensor perturbations.
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Additionally, and of importance to the work presented in Chapter 3 of this dis-

sertation, other early universe processes such as reheating after inflation could also

produce a spectrum of tensor perturbations whose detection would provide a direct

window to the high energy physics of that era.

1.2.4 Baryon Asymmetry

There is one more situation evident in cosmology that poses a problem for particle

physics. This is the abundance of matter compared with antimatter, or “baryon

asymmetry of the universe” (BAU). It is frequently quantified by the baryon number

to photon ratio [10]

η = 5× 10−10. (1.50)

A period of inflation would wipe out any pre-existing matter densities, requiring

the baryon asymmetry to be generated dynamically rather than as an initial condi-

tion. The Sakharov conditions [15] enumerate the requirements in order for this to

happen. First, there must be processes that violate baryon number, if net baryon

number is to be produced from a situation with equal numbers of baryons and anti-

baryons. Baryon number violation is expected to be present in the Standard Model

via sphaleron processes, although it has never been observed experimentally. Second,

both C (charge conjugation) and CP (simultaneous charge conjugation and parity)

must not be symmetries that always hold, because the presence of a baryon asymme-

try violates C and CP. It is known that weak interactions satisfy this requirement.

Third, there must have been processes occurring out of thermal equilibrium, because

a baryon-number-violating process and its reverse would have the same rates in equi-

librium.

In spite of the existence of all of these necessary elements separately, there is no
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successful baryogenesis mechanism among known physics. In particular, electroweak

baryogenesis would require additional CP violation beyond that present in the CKM

matrix, as well as a first-order electroweak phase transition [16]. The search for new

sources of CP violation leads to the question of whether the PMNS lepton mixing

matrix introduced in Sec. 1.1.2 also violates CP. This is the subject of Chapter 4.

1.3 Modeling Physics Beyond Standard Model

In trying to model new physics beyond SM, one can take a “top-down” approach

and write a full model such as SUSY, and work out the implications. One can also take

a “bottom-up” approach, writing effective operators that could come from integrating

out higher energy degrees of freedom, in a way exactly analogous to the appearance

of the “effective” Fermi interaction out of the full EW Lagrangian.

1.3.1 Higgs Portal and Kinetic Mixing

There are a few such effective operators that are both renormalizable (mass di-

mension four) and gauge-invariant. These include a “Higgs Portal” coupling to a

complex scalar field S that is a singlet of the SM gauge group:

LHP = −αΦ†ΦS∗S (1.51)

a “kinetic mixing” between the U(1)Y gauge boson Yµ and the gauge boson Xµ of a

spontaneously broken U(1)X:

LKM = −1

2
sin εXµνY

µν (1.52)

where Xµν (Yµν) is the field strength tensor associated with the field Xµ (Yµ). The

choice of coefficient sin ε, instead of ε, is purely a choice of convention.

There are many experiments that have searched for these kinds of interactions

at energies below the TeV scale. For example, kinetic mixing with a light Z ′ gauge
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boson can significantly affect electroweak precision variables which have been tightly

constrained, or show up as a dilepton resonance in a hadron collider [17]. Likewise,

many constraints from colliders and direct dark matter detection experiments place

stringent bounds on light scalar dark matter that interacts through a Higgs portal

[18]. Constraints on interactions with new particles above the TeV scale are virually

nonexistent. However, it turns out that there are cosmological consequences of these

models – the hidden U(1) is spontaneously broken, it can produce a network of cosmic

strings whose radiation of Standard Model particles could lead to a constraint. This

is the subject of Chapter 2.

1.3.2 Models of Reheating

The spirit of effective field theory is useful beyond studying minimal extensions

of the Standard Model. In the case of inflation and reheating, it is not known which

fields participate in the dynamics (i.e. whether they are SM fields as in Higgs inflation,

new scalar fields arising through supersymmetry, other scalar fields, gauge fields, etc.).

Therefore much study focuses on “generic” scenarios that aim to capture the main

dynamics and hope to generalize to more realistic cases. It is typical of inflationary

scenarios to end with an inflaton field φ(t, ~x) oscillating about a minimum of its

potential. Reheating, therefore, frequently studies particle production of a “light

field” χ(t, ~x) that is coupled weakly to φ in the context of “background oscillations”

of φ. This leads to an effective Lagrangian:

L = Linflation(φ) + Linteraction(φ, χ) + Lreheat fields(χ) (1.53)

where typically Vinteraction = 1
2
g2φ2χ2 and Vreheat fields = 0. Since we don’t know the

fields that interact (presumably in complex ways, if the SM is any guide) with these

toy model inflationary and reheating fields, the EFT framework is a motivation to
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add an effective interaction potential for χ that summarizes the effects of unknown

dynamics into a few parameters. Does the addition of small couplings with other fields

qualitatively alter the results from a toy model? If so, is this alteration predictable –

could quantitative observations directly tie back to parameters of these interactions?

This subject will be addressed in Chapter 3. There has been recent work by others

who are starting to consider such approaches to reheating [19, 20], but much is still

not understood.

1.4 Outline of This Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 introduces

topological defects as unavoidable relics of some early universe phase transitions,

and then presents work on “dark” cosmic strings formed when a hidden sector U(1)

is spontaneously broken by the vacuum expectation value of a hidden sector scalar

field. In particular, the properties of these strings are studied, with the goal of possibly

providing useful constraints on high energy physics models that feature dark sector –

Standard Model interactions through the Higgs Portal and kinetic mixing operators.

Chapter 3 picks up where the discussion of inflation left off at the end of Sec. 1.2.2.

Some models of reheating predict gravitational wave production during a brief, violent

unstable resonance known as “preheating” (since it would occur before most of the

period of reheating and thermalization). This chapter presents work that shows how

the spectrum of gravitational waves is very sensitive to the details of the underlying

particle physics model.

Chapter 4 addresses a question of particle physics phenomenology that is possibly

relevant to the baryon asymmetry of the universe – namely, is there CP violation

in the lepton sector? Recent work has shown that long baseline neutrino oscillation

experiments can be significantly affected by a “sterile neutrino” that mixes with the
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three active neutrinos. There is a degeneracy between the complex phases that would

be responsible for any violation of CP symmetry in these experiments. The work

presented in this chapter shows how the experimental results depend on the active-

sterile mixing parameters, and how combinations of experiments can help reduce

degeneracies.

Chapter 5 summarizes the results and points out interesting directions for possible

future work in these areas.
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Chapter 2

DARK STRINGS AND RADIATION OF STANDARD MODEL PARTICLES

2.1 Topological Defects in Cosmology

A fascinating consequence of the field theory description of particle interactions is

the existence of solutions to the equations of motion that are topologically stable, ex-

tended field configurations. These topological defects are commonplace in condensed

matter theory and experiment, and appear in many particle physics models relevant

to the early universe [21, 22], although no cosmological relic topological defects have

been found yet. For a given field theory, the collection of lowest-energy field con-

figurations is known as the vacuum manifold. If this has a nontrivial “fundamental

group” - i.e. if there are loops in this vacuum manifold that cannot be contracted to

a point, then there will be topological defect solutions to the equations of motion.

Depending on the model, these topological defects could be monopoles, strings,

domain walls, or textures, for example. Each of these has an analog system in the

realm of condensed matter physics. For example, vortices in superfluid helium are

directly analogous to cosmic strings. The standard example of such a string is the

Nielsen-Olesen string, which occurs in a model where a complex scalar field φ’s U(1)

symmetry is spontaneously broken:

L = (Dµφ)∗Dµφ− 1

4
XµνX

µν − λ (φ∗φ− η)2 (2.1)

where the covariant derivative is Dµφ = ∂µφ − ieXµ and Xµν is the field strength

tensor corresponding to the gauge field Xµ associated with the U(1).

This potential has a “ring” of minima with nonzero vacuum expectation value

for the field φ. At high temperatures, such as those present in the early universe,
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the expectation value of φ will be zero, but as the temperature decreases it will be

energetically favorable for the field to settle down to one of the minima. Since none

are preferred, the field will randomly choose them at different locations in space.

Inevitably, there will be some locations around which the phase of the field will wrap

from 0 to 2π, and the field at the location in the center won’t be able to settle down

to one of the minima while maintaining a continuous field configuration. A string is

born!

Since they are topologically stable, cosmic strings will persist throughout the

subsequent evolution of the universe. The nature of the string network will change,

though. When strings intersect, they can either pass through each other or reconnect

in a different configuration. They can also lose energy by gravitational radiation [23]

or radiation of particles that couple to the field forming the string. In particular,

features such as cusps - where a point on the string instantaneously approaches the

speed of light - or kinks - where the tangent vector to the string is discontinuous - will

violently radiate energy as they accelerate back towards a more stable configuration.

By looking for these effects, as well as others such as gravitational lensing, cosmic

strings can be discovered or constrained. Strings formed from symmetry breaking far

below the GUT scale, though, won’t be subject to gravitational probes. The work

presented in this chapter considers “light” strings formed in a specific model, and

computes properties relevant to particle radiation.

2.2 “Dark” Cosmic Strings

Many compelling extensions of the Standard Model (SM) require additional gauged

U(1)X factors that are spontaneously broken giving rise to massive vector bosons. The

high energy physics community has been studying the phenomenology of these mod-

els for years while collider experiments have been searching for the so-called Z ′ at
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energies up to O(TeV) (see, e.g., the reviews [17, 24]). Similar models have recently

attracted attention in the dark matter community as well. In this context it is com-

monly assumed that the fields that transform under the SM gauge group are singlets

under the U(1)X and vice versa. Such a theory decomposes into a visible sector (SM

fields) and a hidden or dark sector (fields charged under U(1)X). The massive vector

boson may either play the role of dark matter itself [25, 26, 27, 28] 1 , or it may act

as a mediator between the visible and the dark sectors [30, 31, 32, 33] 2 . In these

types of models, the breaking of the U(1)X during a cosmological phase transition is

invariably accompanied by the formation of a unique kind of cosmic string, known as

a “dark string” [36].

The presence of these dark strings in our universe has largely been overlooked.

The tension, which is on the order of the symmetry breaking scale µ ∼ TeV2, is far

too small for dark strings to have any detectable gravitational effect on the cosmic

microwave background [37] or pulsar timing [38], which typically provide the strongest

constraints on GUT-scale strings [39] . However, as we will see below, the fields that

compose the dark sting have very specific couplings to the SM fields, and therefore

they are able to radiate and scatter on SM particles. The presence of these cosmic

dark strings in our universe can, therefore, have observable consequences and yield

constraints on model building that are as yet largely unexplored.

The structure of dark strings was first studied in Refs. [36] and [40] (see also

[41]). Our analysis expands upon that work in a number of ways: (i) we retain the

complete electroweak gauge sector, specifically, we do not work in the semilocal limit

sin2 θw = 1, where θw is the weak mixing angle as in [40]; (ii) we restrict the parameter

1If the gauge symmetry is non-Abelian the massive vector may still be the dark matter [29], but
a topologically stable cosmic string solution is not guaranteed to exist.

2If the U(1)X is unbroken, the massless force carrier is known as a dark photon [34, 35]. In this
case the model has no string solution.
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space using the measured value of the Higgs boson mass MH ≈ 125 GeV [42, 43],

which had not been discovered at the time of the previous work; (iii) we include the

interaction between the Higgs field and the scalar field responsible for the formation

of the string [see Eq. (2.2.2)]; (iv) we do not necessarily assume that the gauge-kinetic

mixing is small (sin ε � 1; see below); and (v) we calculate, for the first time, the

effective couplings of the dark string to the SM fields. Understanding the structure

of the dark string and its couplings to SM fields, in particular, are important in

evaluating the cosmological signatures of dark strings.

Our analysis will focus on the smallest extension of the SM that contains a spon-

taneously broken, gauged Abelian symmetry. Specifically, we introduce a complex

scalar field S charged under the Abelian symmetry group U(1)X , which has X̂µ as its

vector potential; collectively, these fields will be referred to as the dark sector. After

S acquires a vacuum expectation value, the mass for X̂µ is generated. This model

is particularly interesting because the symmetries forbid all but two renormalizable,

tree-level interactions between the SM and hidden sector fields. These are the Higgs

portal (HP) operator [44]

Lhp = −αΦ†ΦS∗S (2.2.2)

where Φ is the SM Higgs doublet, and the gauge kinetic mixing (GKM) operator

[45, 46, 47]

Lgkm = −sin ε

2
X̂µνY

µν (2.2.3)

where X̂µν and Yµν are the field strength tensors for the U(1)X and U(1)Y hypercharge.

Vacuum stability considerations bound |α| from above [see Sec. 2.3], and the avoidance

of ghosts requires |sin ε| < 1. For the sake of generality, we will study this model with

α, ε 6= 0. However, note that in this case neither the S nor the X̂µ field is stable.
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The model must be extended if it is to include a stable dark matter candidate 3 .

Alternatively, imposing a discrete (reflectional) symmetry on X̂µ enforces sin ε = 0

[25, 26, 27, 28].

The interaction in Lhp gives rise to a mixing between the Higgs and the singlet

scalar, and therefore it is constrained in light of the Higgs discovery [48]. The interac-

tion in Lgkm is tightly constrained by a number of observables at low energies giving

roughly (see [49] for a review)

|sin ε| < O(10−3) for MX . TeV . (2.2.4)

However, it is important to recognize that the model is yet unconstrained if the masses

are large, MS ∼ MX > O(TeV), where laboratory tests have not yet explored. For

the sake of generality, we will not make any a priori assumptions about the scale of

symmetry breaking in our analytic analysis, and in our numerical analysis we will

focus on MS ∼MX > MH allowing sin ε = O(1).

After setting up the model in Sec. 2.3, we diagonalize the gauge sector and derive

the equations of motion relevant for a string. In Sec. 2.4 we find the dark string

solution and calculate the effective couplings of the string to the SM fields in terms of

the Higgs portal and gauge kinetic mixing parameters. The SM Higgs interacts with

the string and thus we also take into account the possibility that it winds around the

string. However the lightest string is obtained when only the dark scalar field winds

and so we focus on more detailed properties of these strings, especially their three

types of interactions with SM particles. Fermions of the SM can have Aharonov-Bohm

couplings to the dark string if there is gauge-kinetic mixing between the hypercharge

3After electroweak symmetry breaking, S mixes with the Higgs and thereby acquires all of its
interactions with the SM fields, which opens new decay channels. Similarly, X̂µ mixes with the
Z-boson. If the mass scale in the hidden sector is very low or the couplings very small, then the dark
matter can be metastable. Such models will also contain dark strings. In this paper, however, we
will focus on strings with energy scales higher than the electroweak scale and arbitrary couplings.
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and dark U(1)’s. The SM Higgs can have a non-trivial interaction in the presence

of a “Higgs portal” coupling – a quartic interaction between the Higgs and the dark

scalar field. The Z gauge field also has a non-trivial profile on the string because

of the gauge-kinetic mixing. Each of these interactions is potentially relevant to the

cosmological evolution of the dark string network. We summarize our findings in

Sec. 2.5.

2.3 The Dark String Model

In this section we introduce the model. We focus on the gauge sector first and

the role of the GKM operator, and then we turn to the scalar sector and the HP

operator. In the third subsection we derive the string equations and discuss the

boundary conditions.

2.3.1 Gauge Sector

We consider an extension of the SM electroweak sector that adds a complex scalar

field S(x) charged under a new gauge group, U(1)X , that has X̂µ(x) as its vector

potential. In general, one can only write two renormalizable interactions between the

SM and the dark sector: the Higgs portal operator, Φ†ΦS∗S, and the gauge kinetic

mixing operator, X̂µνY
µν . The Lagrangian that defines this model is

L = |DµΦ|2 + |DµS|2 − U(Φ, S)− 1

4

∑
a=1,2,3

(
W a
µν

)2 − 1

4

(
Yµν
)2 − 1

4

(
X̂µν

)2 − sε
2
X̂µνY

µν

(2.3.1.1)

plus the remaining terms in the SM Lagrangian, which are unmodified and not written

explicitly here. The parameter sε ≡ sin ε with −π/2 ≤ ε ≤ π/2 controls the strength
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of the gauge kinetic mixing. The covariant derivatives are given by

DµΦ =
(
∂µ − ig2 σ

aW a
µ − i

g′

2
Yµ
)
Φ

DµS =
(
∂µ − igx2 X̂µ

)
S

(2.3.1.2)

where Φ = (Φ+ , H)T is the Higgs doublet. The scalar potential is

U(Φ, S) = λ
(
Φ†Φ− η2

)2
+ κ
(
S∗S − σ2

)2
+ α

(
Φ†Φ− η2

)(
S∗S − σ2

)
, (2.3.1.3)

and the parameter α is called the “Higgs portal coupling” as it is the gateway for

interactions between the SM and dark sectors. This potential induces the vacuum

expectation values

〈Φ〉 = (0 , η)T and 〈S〉 = σ (2.3.1.4)

with η = v/
√

2 ≈ 174 GeV (see Sec. 2.3 for an extended discussion of the vacuum

structure). The parameter λ can be exchanged for the Higgs boson mass, and we are

left with five free parameters: α, κ, σ, gx, and sε.

The Lagrangian Eq. (2.3.1.1) gives rise to the following field equations:

(DνW
νµ)a = 1

2
gJaµΦ

∂νY
νµ − sε ∂νX̂νµ = 1

2
g′JµΦ

∂νX̂
νµ − sε ∂νY νµ = 1

2
gxJ

µ
S

DµD
µΦ = −2λ

(
Φ†Φ− η2

)
Φ− α (S∗S − σ2) Φ

DµD
µS = −2κ (S∗S − σ2)S − α

(
Φ†Φ− η2

)
S

(2.3.1.5)

where the currents are defined as

JaµΦ ≡ i
(

(DµΦ)† σaΦ− Φ†σaDµΦ
)

JµΦ ≡ i
(

(DµΦ)†Φ− Φ†DµΦ
)

JµS ≡ i (SDµS∗ − S∗DµS)

(2.3.1.6)
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and (DνW
µν)a ≡ ∂νW

aµν + gεabcW b
νW

c µν . The presence of the O(sε) terms in

Eq. (2.3.1.5) implies that both gauge fields Y µ and X̂µ are sourced when either JµΦ or

JµS is nonzero.

It will be convenient to move to a basis in which the GKM term is absent from the

Lagrangian. This could be accomplished by merely rotating between the U(1) gauge

fields, Y µ and X̂µ, as was done in previous studies of the dark string [40, 36]. However,

in order to connect with the low energy observables, we would like to choose the

basis that coincides with the mass eigenstates after electroweak symmetry breaking.

In order to identify the appropriate basis, we insert the vacuum expectation values

Eq. (2.3.1.4) into the Lagrangian Eq. (2.3.1.1) to obtain

L
∣∣
vevs

= m2
W

∣∣∣∣W 1
µ − iW 2

µ√
2

∣∣∣∣2 +
1

2
m2
Z

(
cwW

3
µ − swYµ

)2
+

1

2
m2
X

(
X̂µ

)2

− 1

4

∑
a=1,2,3

W a
µνW

aµν − 1

4
YµνY

µν − 1

4
X̂µνX̂

µν − sε
2
X̂µνY

µν (2.3.1.7)

where

mW ≡
gη√

2
, mZ ≡

ḡη√
2

, mX ≡
gxσ√

2
, (2.3.1.8)

and the weak mixing angle is defined as usual: sw ≡ sin θw = g′/ḡ and cw ≡ cos θw =

g/ḡ with ḡ ≡
√
g2 + g′ 2. Both the kinetic and the mass terms of the Lagrangian,

Eq. (2.3.1.7), can be diagonalized by the transformation

W 1
µ

W 2
µ

 =

 1√
2

1√
2

i√
2
− i√

2


W+

µ

W−
µ

 and


Yµ

W 3
µ

X̂µ

 = M


Aµ

Zµ

Xµ

 (2.3.1.9)

where

M =


cw −swcζ − tεsζ swsζ − tεcζ

sw cwcζ −cwsζ

0 sζ/cε cζ/cε

 . (2.3.1.10)
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We continue to use the shorthand sθ = sin θ, cθ = cos θ, and tθ = tan θ for θ = ε, ζ.

The angle ζ falls in the range −π/4 < ζ < π/4, and its value is given by

tan 2ζ =
−2swsεcε

(R2 − 1) + s2
ε(1 + s2

w)
. (2.3.1.11)

Here we have defined R ≡ mX/mZ , and we will assume R > 1. Note that M consists

of a rotation and a rescaling, otherwise known as a principal axis transformation.

After performing the transformation in Eq. (2.3.1.9), the full Lagrangian becomes

L = |DµΦ|2 + |DµS|2 − U(Φ, S)− 1

2
W−
µνW

+µν

− 1

4
AµνA

µν − 1

4
ZµνZ

µν − 1

4
XµνX

µν + Lint (2.3.1.12)

where we have written each of the field strength tensors in the form Kµν = ∂µKν −

∂νKµ for K = W−,W+, A, Z, and X. The term Lint corresponds to interactions

among the gauge fields, which are at least second order in W±. As we discuss below,

we can consistently set W± = 0 for our dark string analysis and neglect these terms.

The scalar field covariant derivatives now become

DµΦ =

DµΦ+ − i g√
2
W+
µ H

DµH − i g√2
W−
µ Φ+


DµS =

(
∂µ − i(gsaAµ + gszZµ + gsxXµ)

)
S (2.3.1.13)

where we have defined

DµΦ+ ≡
(
∂µ − i(gΦ+

a Aµ + gΦ+

z Zµ + gΦ+

x Xµ)
)

Φ+

DµH ≡ (∂µ − i(ghaAµ + ghzZµ + ghxXµ))H
. (2.3.1.14)

The couplings are found to be

gΦ+

a = e gΦ+

z = cζ
e
2

(
1
tw
− tw

)
− sζ e2

tε
cw

gΦ+

x = −cζ e2
tε
cw
− sζ e2

(
1
tw
− tw

)
gha = 0 ghz = −cζ e2

1
swcw
− sζ e2

tε
cw

ghx = −cζ e2
tε
cw

+ sζ
e
2

1
swcw

gsa = 0 gsz = sζ
gx
2

1
cε

gsx = cζ
gx
2

1
cε

(2.3.1.15)
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where e = g sw = g′cw = ḡswcw is the electromagnetic coupling constant.

Now one can see the consequences of the GKM operator. As reflected in the

nonzero couplings gΦ+

x , ghx, and gsz, the Higgs acquires an interaction with the mass

eigenstate X boson, and similarly the S interacts with the Z boson. However, the

vanishing of gha and gsa implies that the GKM does not induce a coupling between

the photon and the electromagnetically neutral scalars; this is a consequence of the

residual electromagnetic gauge invariance.

After electroweak symmetry breaking, see Eq. (2.3.1.4), the gauge fields acquire

masses

L
∣∣
vevs
3 M2

WW
+
µ W

−µ +
1

2
M2

A(Aµ)2 +
1

2
M2

Z(Zµ)2 +
1

2
M2

X(Xµ)2 (2.3.1.16)

with the spectrum

M2
W = m2

W

M2
A = 2(gha)2η2 + 2(gsa)2σ2 = 0

M2
Z = 2(ghz )2η2 + 2(gsz)

2σ2 = m2
Z (1 + swtζtε)

M2
X = 2(ghx)2η2 + 2(gsx)2σ2 =

m2
X

c2
ε(1 + swtζtε)

(2.3.1.17)

Once again, the massless photon is a sign of the residual gauge invariance. As can be

seen in Eq. (2.3.1.11), the angles ζ and ε always have opposite signs, and therefore

one has in general MZ < mZ and MX > mX . The Z and X boson masses are plotted

in Fig. 2.1. Over most of the parameter range, these masses are well approximated as

MZ ≈ mZ and MX ≈ mX ≈ RMZ . To provide a reference point, we also show (on the

left panel) the relative error bar on the measured Z boson mass, δMZ/MZ ' 2.3×10−5

[50], as a dashed line. Roughly speaking, the parameter range above the dashed line

is excluded, or conversely, sε becomes unconstrained in the decoupling limit R � 1.

However, to rigorously ascertain if a model is excluded, all available observables should

30



0.01 0.02 0.05 0.10 0.20 0.50 1.00
10-6

10-5

10-4

0.001

0.01

0.1

1

È Sin@ΕD È

1
-

M
Z
�

m
Z R = 1

R =
2

R =
5
R =

10

R =
20

R =
50

R =
100

0.01 0.02 0.05 0.10 0.20 0.50 1.00

10-4

0.001

0.01

0.1

1

10

100

È Sin@ΕD È

M
X
�

m
X
-

1

R = 1

R =
1.1

R =
¥

Figure 2.1: The spectrum of gauge bosons, given by Eq. (2.3.1.17), for various
values of sin ε and R = mX/mZ . We have fixed g = 0.654, g′ = 0.359, and η =
174 GeV. Roughly speaking, the parameter range above the dashed line is excluded
(see text).

be folded in together (see, e.g., [49]). Since it is not the goal of this paper to impose

phenomenological constraints, we will reserve that discussion for a future work.

We can now calculate the Euler-Lagrange equations for the diagonalized La-

grangian, Eq. (2.3.1.12). Since we are only interested in string solutions, it is prudent

at this point to recognize that because Φ+ does not acquire a vev, we can consistently

set Φ+ = W±
µ = Aµ = 0. That is, these fields are not sourced by the nontrivial

profiles of the remaining scalar and gauge fields. Then the remaining field equations

become

∂νZ
νµ = ghzJ

µ
H + gszJ

µ
S

∂νX
νµ = ghxJ

µ
H + gsxJ

µ
S

DµD
µH = −2λ (H∗H − η2)H − α (S∗S − σ2)H

DµD
µS = −2κ (S∗S − σ2)S − α (H∗H − η2)S

(2.3.1.18)

where the currents are given by

JµH ≡ i
(
H(DµH)∗ −H∗DµH

)
JµS ≡ i

(
S(DµS)∗ − S∗DµS

) , (2.3.1.19)

and the covariant derivatives are given by Eq. (2.3.1.13). These field equations will

be used in Sec. 2.3 to obtain the string equations.
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2.3.2 Scalar Sector

After symmetry breaking, both the fields H and S acquire vevs. The three SM

would-be Goldstone bosons, Φ+ and aH = Arg[H], and the fourth would-be Goldstone

boson, aS = Arg[S], are eaten leaving only two massive scalars, h̄ =
√

2(|H| − η) and

s̄ =
√

2(|S| − σ). The Higgs portal operator allows these scalars to mix.

The scalar fields can be parametrized as H = (η + h̄/
√

2) exp [iaH ] and S =

(σ + s̄/
√

2) exp [iaS]. After defining

mH ≡
√

4λη2 and mS ≡
√

4κσ2 , (2.3.2.1)

the scalar potential becomes

U 3 1

2

(
h̄ s̄

) m2
H 2αησ

2αησ m2
S


h̄
s̄

 (2.3.2.2)

plus higher order interactions. This mass matrix is diagonalized byh̄
s̄

 =

 cos θ sin θ

− sin θ cos θ


φH
φS

 (2.3.2.3)

where the mixing angle, −π/4 < θ < π/4, is given by

tan 2θ =
4αησ

m2
S −m2

H

, (2.3.2.4)

and the eigenstates φH and φS have masses

M2
H = m2

H −
(
m2
S −m2

H

) sin2 θ

cos 2θ
(2.3.2.5)

M2
S = m2

S +
(
m2
S −m2

H

) sin2 θ

cos 2θ
, (2.3.2.6)

respectively. We will assume that MS > MH (equivalently, mS > mH) and that

MH ≈ 125 GeV is the mass of the Higgs boson measured by the LHC.
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The mixing angle can also be written as

tan 2θ =
α

α0

8mHmS

m2
S −m2

H

(2.3.2.7)

where α0 ≡
√

4λκ. To ensure that the determinant of the mass matrix in Eq. (2.3.2.2)

is positive, we must have α < α0. In the decoupling limit, mS � mH , the mixing

angle becomes |θ| ≈ (|α| /α0)(4MH/MS)� 1, and the eigenvalues become MH ≈ mH

and MS ≈ mS. In this limit, the heavy scalar φS ≈ s̄ is decoupled from the SM Higgs

φH ≈ h̄. As we reduce the hierarchical ratio, MS/MH , the amount of mixing grows

larger until it becomes maximal (θ = 45◦) and MS/MH = 1. Observations of the

Higgs at the LHC constrain the mixing with a hidden sector scalar to be θ . 40◦ [48].

Since, for the present study, we are not interested in rigorously applying observational

constraints, we will simply take MH = 125 GeV and require MS > MH . The scalar

self-couplings are then determined by

λ =
M2

H

4η2
+
M2

S −M2
H

8η2

1−

√
1−

(
4αησ

M2
S −M2

H

)2


κ =
M2

S

4σ2
− M2

S −M2
H

8σ2

1−

√
1−

(
4αησ

M2
S −M2

H

)2
 (2.3.2.8)

provided that

|α| < αmax ≡
M2

S −M2
H

4ησ
. (2.3.2.9)

Note that Eq. (2.3.2.9) subsumes the previous bound, α < α0 =
√

4λκ , because

Eq. (2.3.2.8) gives α0 = |α|
√

1 + (MSMH/4ησ)2 > |α|.

In order to discuss the string solutions below, it will be useful here to identify

the extrema of the scalar potential Eq. (2.3.1.3). We set Φ+ = 0 and solve the

two equations ∂U/∂H = ∂U/∂S = 0. There are four solutions with both H and S
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nonnegative:

H = η , S = σ ⇒ minimum

H = 0 , S = 0 ⇒ maximum

H = H0 , S = 0 ⇒ saddle point

H = 0 , S = S0 ⇒ saddle point

(2.3.2.10)

where

H0 ≡ η
√

1 + ασ2

2λη2

S0 ≡ σ
√

1 + αη2

2κσ2

. (2.3.2.11)

For the case α < 0, the saddle point solutions do not exist if |α| > 2κσ2/η2.

2.3.3 Dark String Ansatz

Let us now derive the equations for the dark string. We will work in cylindrical

coordinates, ρ =
√
x2 + y2 and ϕ = arctan(y/x), and we will use the dimensionless

radial coordinate ξ = ρ/ρ0 where ρ0 = 1/σ. Seeking the straight, static dark string

solution, we take the ansatz 4

Φ+(x) = 0 , H(x) = η h(ξ)einϕ , Zµ(x) =
1

ρ0

z(ξ)

ξ
Vµ(ϕ) ,

W±
µ = Aµ = 0 , S(x) = σ s(ξ)eimϕ , Xµ(x) =

1

ρ0

x(ξ)

ξ
Vµ(ϕ) , (2.3.3.1)

where n,m ∈ Z and h, s, z, x ∈ R and Vµ ≡ ρ∂µϕ =
{

0 , − sinϕ , cosϕ , 0
}

. With this

ansatz, the currents in Eq. (2.3.1.19) become

JµH =
2η2

ρ0

h2CH
ξ

V µ and JµS =
2σ2

ρ0

s2CS
ξ

V µ (2.3.3.2)

where

CH(ξ) ≡ n− ghz z(ξ)− ghxx(ξ)

CS(ξ) ≡ m− gszz(ξ)− gsxx(ξ)
. (2.3.3.3)

4This corresponds to Zµdx
µ = z dϕ and Xµdx

µ = x dϕ.
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The field equations in Eq. (2.3.1.18) become(
z′

ξ

)′
=− 2ghz (ρ0η)2 h2CH

ξ
− 2gsz(ρ0σ)2 s2CS

ξ
(2.3.3.4a)(

x′

ξ

)′
=− 2ghx(ρ0η)2 h2CH

ξ
− 2gsx(ρ0σ)2 s2CS

ξ
(2.3.3.4b)

(ξh′)′ =C2
H

h

ξ
− 2λ(ρ0η)2

(
1−h2

)
ξh− α(ρ0σ)2(1−s2)ξh (2.3.3.4c)

(ξs′)′ =C2
S

s

ξ
− 2κ(ρ0σ)2(1−s2)ξs− α(ρ0η)2(1−h2)ξs . (2.3.3.4d)

Although we take ρ0 = 1/σ, we have retained ρ0 in these expressions so as to avoid

confusion as to where the σ enters explicitly as the VEV of S and where it enters as

our choice of the radial length scale. If we were to turn off both the GKM and HP

operators by taking ε = α = 0, then we would regain the string equations for two,

uncoupled Nielsen-Olesen strings of winding n and m.

The scalar field boundary conditions can be divided into three cases depending on

which of the two winding parameters, n and m, are nonzero. In each case, we must

require h(∞) = s(∞) = 1 at spatial infinity and that H(x) and S(x) are regular at

the origin. The cases are:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Case 1 :

n 6= 0

m 6= 0
⇒

h(0) = 0

h(∞) = 1

s(0) = 0

s(∞) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Case 2 :

n = 0

m 6= 0
⇒

h′(0) = 0

h(∞) = 1

s(0) = 0

s(∞) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Case 3 :

n 6= 0

m = 0
⇒

h(0) = 0

h(∞) = 1

s′(0) = 0

s(∞) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.3.3.5)
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Case 3 resembles the SM semilocal and electroweak strings [51], which are not topo-

logical and therefore not stable. For this reason, we will focus on Cases 1 and 2. In

Case 2 we have mixed Neumann and Dirichlet boundary conditions, and we do not

expect h(0) = 1 in general. By considering the energetics, it is clear that h(0) = 1 will

minimize the gradient contribution to the energy of the string. However, in terms of

the potential energy, we expect that the value of the Higgs condensate at the core of

the string will relax toward the saddle point at H = H0 and S = 0 [see Eq. (2.3.2.10)].

In general we expect

Case 2 :


h0 < h(0) < 1 α < 0

1 < h(0) < h0 α > 0

(2.3.3.6)

where h0 ≡ H0/η =
√

1 + ασ2/(2λη2) and H0 is given by Eq. (2.3.2.11).

The gauge field boundary conditions are

z(0) = x(0) = 0 , z(∞) =
gsxn− ghxm
gsxg

h
z − ghxgsz

, x(∞) =
ghzm− gszn
gsxg

h
z − ghxgsz

.

(2.3.3.7)

These ensure that Zµ(x) and Xµ(x) are regular at the origin and that at spatial

infinity

CH(∞) = CS(∞) = 0 , (2.3.3.8)

and the action is finite. An interesting consequence of the GKM is that both gauge

fields have nontrivial profiles if either scalar field has a winding (either n or m is

nonzero). This is evident in the limit sε � 1 where

z(∞) ≈ −
√

2η

mZ

n−
√

2swR
2σ

mX(R2 − 1)
msε +O(s2

ε)

x(∞) ≈
√

2σ

mX

m−
√

2swη

mZ(R2 − 1)
n sε +O(s2

ε) . (2.3.3.9)

36



For example, taking n = 0 and m = 1 induces an O(sε) expectation value for the Z

field.

2.4 Properties of the Dark String

The dark string is the solution of the system of equations given by Eq. (2.3.3.4)

along with the boundary conditions in Eqs. (2.3.3.5) and (2.3.3.7). We solve these

equations numerically as described in Appendix ??.

We calculate the dark string solution for various values of the model parameters:

(n,m), α, sε, gx, σ, and MS while fixing η = 174 GeV, MH = 125 GeV, g = 0.654,

and g′ = 0.359 and using Eq. (2.3.2.8) to determine λ and κ. With this choice of

parameters, the masses MZ and MX are given by Eq. (2.3.1.17). Although these

masses depend upon sε, it is typically the case that MZ ≈ 91.2 GeV and MX ≈

mX = gxσ/
√

2. Having obtained the dark string solution, we study its properties and

couplings, which are discussed in the remainder of this section.

2.4.1 String Solution

Generally, the strings with higher order windings, (n,m) with n,m > 1, are

unstable, and they will decay on a microscopic time scale into the lightest strings.

The winding m of the singlet scalar S is topological by virtue of the U(1)X symmetry,

however the winding n of the Higgs field is not topological – just as in the case of the

electroweak strings in the SM [51]. This means that any (n,m) string with n ≥ 1 will

fragment and decay into the (0, 1) string, which generally has a lower tension than

the (1, 1) string. We will focus on the properties of the (0, 1) string, but we will also

compare against the (1, 1) string.

In Figures 2.2, 2.3, and 2.4 we show the profile functions of the (n,m) = (0, 1) and

(1, 1) strings for MS = MX = σ/
√

2 = 200 GeV, 1 TeV, and 10 TeV. In the lower
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(c) (0,1) string solution in (H,S) plane.
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(d) (1,1) string solution in (H,S) plane.

Figure 2.2: String solutions for mX = MS = σ/
√

2 = 200 GeV, α = 0.1, sε = 0.1,
and gx = 1. The bottom panels show the scalar potential, Eq. (2.3.1.3), where the
blue (red) contours are lower (higher).

panels, we also show contour plots of the scalar potential, Eq. (2.3.1.3), where we

have overlaid the string trajectories {H,S} = {η h(ξ), σ s(ξ)}. There are a number of

qualitative features which can be seen in these figures that we will discuss at length

below. First, at the core of the (0, 1) strings the Higgs condensate deviates from its

vacuum value. Second, the strings have a tight “core” where the gradients of the S

and Xµ fields are large, and this core extends out to ξ = O(1) or equivalently the
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Figure 2.3: Same as Fig. 2.2 but for mX = MS = σ/
√

2 = 1 TeV.

physical length ρ = O(1/σ). The H and Zµ profiles are much wider than the string

core.

For the (0, 1) string, the Higgs field does not wind and satisfies only a Neumann

boundary conditions at the origin [see Eq. (2.3.3.5)]. We anticipated in Eq. (2.3.3.6)

that the value of the Higgs profile at the core of the (0, 1) string should rise or fall

toward h(0) = h0 =
√

1 + ασ2/2λη2 depending on the sign of α. Figures 2.2a, 2.3a,

and 2.4a reveal that h(0) > 1, indicating that the Higgs condensate is “attracted”
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Figure 2.4: Same as Fig. 2.2 but for mX = MS = σ/
√

2 = 10 TeV and α = 0.01.
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by the string core in the case α > 0. Numerically, we find that the magnitude

of the deviation is |h(0)− 1| ≈ O(0.1 − 1), depending on the parameter choices.

In some cases we find h(0) . h0, which confirms the energetic arguments that led

to Eq. (2.3.3.6), whereas in other cases h(0) � h0 suggesting that the tension is

dominated by gradient energy instead of potential energy, and our previous estimate

breaks down. We compare h(0) and h0 in Fig. 2.5 where we plot both quantities

against α (left panel) and σ (right panel). For large values of α, both h(0) and

h0 =
√

1 + ασ2/(2λη2) reach a maximum and turn over. To understand this behavior,

recall that λ is allowed to vary with α according to Eq. (2.3.2.8) while MH and MS

are held fixed, and therefore h0 ∼
√
α/λ is not monotonically increasing with α. For

negative values of α, Fig. 2.5a reveals that h(0) asymptotes toward zero whereas h0

vanishes at α = −2λη2/σ2. In this case, the Higgs condensate is “repelled” by the

string core. We show the behavior of h(0) and h0 in the decoupling limit, σ � η, in

Fig. 2.5b. In this limit, h0 ∼ σ/η grows rapidly, but the value of the condensate at

the string core, h(0), rises much more slowly.

In order to better characterize the string solution, we calculate the “full width at

half maximum” of the scalar profile functions. In terms of the dimensionless radial

coordinate, these are given by the solutions of h(ξh/2) = h(0)/2 and s(ξs/2) = s(0)/2.

Figure 2.6 shows the physical widths

∆ρh = ρ0ξh and ∆ρs = ρ0ξs (2.4.1.1)

for the (0, 1) and (1, 1) strings as a function of σ. In both cases the width of the S

condensate falls off like ∆ρs ' 2/MS = 2
√

2/σ. The Higgs condensate, on the other

hand, has a significantly different behavior in the two cases. For the (1, 1) string the

width of the Higgs condensate is insensitive to σ and remains approximately equal

to ∆ρh ' 2/MH ≈ 16 TeV−1. For the (0, 1) string the Higgs condensate is narrower,

41



-2 -1 0 1 2
0

1

2

3

4

Higgs Portal Coupling, Α

h
H0
L

hH0L h0

(a) MS = 1 TeV, MX = 400 GeV, sε = 0.1,

gx = 1.

1 2 5 10 20
1.

1.05

1.1

1.15

1.2

1.25

1.3

Σ HTeVL

h
H0
L

hH0L

h0

(b) MX = MS = σ/
√

2, α = 0.01, sε = 0,

gx = 1

Figure 2.5: The Higgs profile at the string core, h(ξ = 0), for the (0, 1) string. For
comparison we also show h0 = H0/η (dashed) where H0 is given by Eq. (2.3.2.11).

and its width decreases with increasing σ, but not as fast as σ−1.

Let us now take Figures 2.2–2.6 together, and construct a coherent picture of the

(0, 1) dark string. The behavior is similar to what is seen in the familiar case of

bosonic superconductivity [52]. When sε = α = 0 the S and Xµ fields form a Nielsen-

Olesen string and the Higgs condensate is equal to its vacuum value everywhere.

Roughy speaking, the Higgs field is unaware of the presence of the string since there

is no coupling between them. For α > 0 (α < 0) the Higgs condensate is “attracted”

(“repelled”) by the string and h(0) > 1 (h(0) < 1). In the decoupling limit, σ ∼

MS � η ∼ MH , and with α > 0, the saddle point moves to h0 � 1, but the tension

becomes gradient dominated and h(0) � h0, contrary to expectations. The S and

X profiles fall off on a length scale 2/MS, which defines the string core. The Higgs

condensate, however, forms a wide halo around the core. For a 10 TeV scale string,

the halo is approximately an order of magnitude wider than the core, but it is still
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Figure 2.6: The widths of the scalar field condensates (H dashed; S solid) sur-
rounding the dark string. See Eq. (2.4.1.1). The parameters are taken to be
MX = MS = σ/

√
2, gx = 1, α = 0.01, and sε = 0. In both cases, ∆ρs ' 2/MS,

but ∆ρh ' 2/MH for the (1, 1) string, and it decreases gradually for the (0, 1) string.

smaller than 2/MH by another order of magnitude.

2.4.2 Tension

The tension of the dark string is defined by µ ≡
∫∞

0
ρdρ

∫ 2π

0
dϕT 0

0 where T µν is

the energy-momentum tensor. Inserting the dark string ansatz, Eq. (2.3.3.1), this

becomes 5

µ = 2πσ2

∫ ∞
0

E ξ dξ (2.4.2.1)

where

E = EX + EZ + EH + ES + u (2.4.2.2)

is the dimensionless energy density, which consists of contributions from each of the

5See Appendix Sec. B
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fields:

EX =
1

(σρ0)2

(x′)2

2ξ2
(2.4.2.3a)

EZ =
1

(σρ0)2

(z′)2

2ξ2
(2.4.2.3b)

EH =
(η
σ

)2
(

(h′)2 +
h2

ξ2
C2
H

)
(2.4.2.3c)

ES =

(
(s′)2 +

s2

ξ2
C2
S

)
(2.4.2.3d)

u =λ(ρ0σ)2
(η
σ

)4 (
h2 − 1

)2
+ κ(ρ0σ)2

(
s2 − 1

)2
+ α(ρ0η)2

(
h2 − 1

) (
s2 − 1

)
.

(2.4.2.3e)

For the special case ε = α = 0 we have CH = n − ghz z and CS = m − gsx x [see

Eq. (2.3.3.3)]. Thus, as expected, in the absence of interactions between the SM and

dark sector the energy reduces to the sum of energies of two separate Nielsen–Olesen

strings. In particular, for a (0, 1) string with ε = α = 0 and mS = mX , the integral

in Eq. (2.4.2.1) numerically evaluates to 1, and we find the tension to be µ = 2πσ2.

From the individual terms in Eq. (2.4.2.3), we can see that with our choice ρ0 = σ−1,

some terms are independent of σ and the rest go as (η/σ)2 or (η/σ)4. Thus when

σ ∼ η, the tension will not follow a simple power law, but when σ � η, it will

increase as σ2. The terms that scale as inverse powers of σ are more significant for

the (1, 1) string than for the (0, 1) string, so we would expect the (0, 1) string tension

to essentially scale as σ2 even for σ ∼ η.

Figure 2.7 compares the tension of the (1, 1) and (0, 1) strings along various slices

of parameter space. Each subfigure illustrates that the tension of the (0, 1) string is

always smaller than the tension of the (1, 1) string. The scaling behavior mentioned

above is evident in Figures 2.7a and 2.7b. Figure 2.7a shows the tension as a function

of the U(1)X gauge coupling, gx, and it is seen that the tension scales like µ ∝ g−2
x .

This scaling is understood by noting that we hold mX = gxσ/
√

2 fixed and vary
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σ ∝ g−1
x . Then the figure simply shows that µ ∝ σ2. Figure 2.7b shows the tension as

a function of the mass of the X gauge boson, and since we are now holding gx fixed

and varying σ ∝ mX , this figure also shows that µ ∝ σ2. In both cases, the (0, 1)

string tension scales as σ2 for all values of σ, while the (1, 1) string tension departs

from this behavior at the lower values of σ.

Figures 2.7c and 2.7d show how the tension depends on the GKM parameter sε.

From these it can be seen that the tension decreases monotonically with increasing

|sε| for the (0, 1) string and almost monotonically for the (1, 1) string. This behavior

can be understood by noting that the gauge kinetic terms of the original Lagrangian,

Eq. (2.3.1.1), can be written as

L 3 −1

4

(
1 + sε

2

)(
Yµν + X̂µν

)2 − 1

4

(
1− sε

2

)(
Yµν − X̂µν

)2
. (2.4.2.4)

In the limit sε → ±1 it “costs no energy” to excite the gauge field Yµ ∓ X̂µ, and the

tension of the string is reduced. Here it is important to note that we hold fixed the

parameter mX = gxσ/
√

2, which differs from the mass eigenvalue MX for nonzero sε

[see Eq. (2.3.1.17)]. In 2.7c, for example, at sε = 0 we have MX = 200 GeV, while at

|sε| = 0.9 it has increased to MX = 450 GeV.

The dependence of the tension on α is shown in Fig. 2.7e. For the (1, 1) string,

the tension rises nearly linearly with α, whereas for the (0, 1) string the tension is

symmetric in α. This parametric behavior is understood by noting that at the core

of the (1, 1) string the profile functions become s(0) = h(0) = 0, while at the core

of the (0, 1) string they become s(0) = 0 and h(0) = 1 + O(α) [see Eq. (2.3.3.5)].

The tension depends on α primarily through the potential energy density, u(h, s),

given by Eq. (2.4.2.3e). The parametric behavior of the tension is estimated by

µ(1,1) ∼ u(0, 0) = λη4+κσ4+αη2σ2 for the (1, 1) string and by µ(0,1) ∼ u(1+O(α), 0) =

λη4 + κσ4 + O(α2) for the (0, 1) string. In this way, the dependence on α seen in
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Fig. 2.7e is explained.

Finally, let us remark that our string solutions and tension are consistent with

the results available in the literature. The authors of Ref. [40] considered a model

similar to ours, in which they include a gauge kinetic mixing term but no Higgs portal

term. They also take the semilocal limit sw = 1. Our model reduces to theirs upon

setting α = 0, sw = 1, and MH = 125 GeV. For a particular parameter range given

in Figure 3 of Ref. [40], we calculate the string tension and find agreement to better

than O(1%). The author of Ref. [41] considered a model and solutions corresponding

to the (0, 1) string in our work with a Higgs portal term but no gauge kinetic mixing

term, and also found that the string carries a Higgs condensate.

2.4.3 Coupling of the Higgs to the String

The dark string acts as a source for the scalar fields H and S. This source causes

the fields to locally deviate from their vacuum expectation values and to form a long

range “cloud” around the string core. As discussed in Sec. 2.3, we can parametrize

the fields as H = (η+ h̄/
√

2)eiaH and S = (σ+ s̄/
√

2)eiaS , and the physical scalars, h̄

and s̄, mix with one another with a mixing angle θ, given by Eq. (2.3.2.4). Only the

lighter Higgs-like mass eigenstate, φH = cos θ h̄ − sin θ s̄, can be radiated efficiently

from the dark string since the S-like eigenstate, φS, has a mass comparable to the

string tension. We therefore are only interested in the effective coupling of φH to the

dark string.

The field equations for H and S, given previously by Eq. (2.3.1.18), may be written
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as follows after expanding out the covariant derivatives:

�H = i (ghz∂µZ
µ + ghx∂µX

µ)H + 2i (ghzZ
µ + ghxX

µ) ∂µH + (ghzZ
µ + ghxX

µ)2H

− 2λ
(
|H|2 − η2

)
H − α

(
|S|2 − σ2

)
H (2.4.3.1)

�S = i (gsz∂µZ
µ + gsx∂µX

µ)S + 2i (gszZ
µ + gsxX

µ) ∂µS + (gszZ
µ + gsxX

µ)2 S

− 2κ
(
|S|2 − σ2

)
S − α

(
|H|2 − η2

)
S . (2.4.3.2)

In the vicinity of the dark string, the fields acquire position-dependent expectation

values, and the interactions on the right hand side of these equations become source

terms. In order to illustrate the nature of this source, we can evaluate the right

hand sides of Eqns. (2.4.3.1) and (2.4.3.2), denoted as SH and SS respectively, in the

presence of the string background, given by Eq. (2.3.3.1). Doing so we obtain

SH = S(core)
H + S(cloud)

H and SS = S(core)
S + S(cloud)

S (2.4.3.3)

where

S(core)
H ≡ − η

ρ2
0

h

ξ2
(ghz z(∞) + ghxx)2 + αησ2

(
1− s2

)
h +

η

ρ2
0

h

ξ2
(ghz )2z(∞)2(1− s2)

(2.4.3.4)

S(cloud)
H ≡ −2λη3

(
h2 − 1

)
h− η

ρ2
0

h

ξ2
(ghz )2

(
z2 − z(∞)2

)
− 2

η

ρ2
0

h

ξ2
(ghz g

h
x)x (z− z(∞))

− η

ρ2
0

h

ξ2
(ghz )2z(∞)2(1− s2) (2.4.3.5)

S(core)
S ≡ − σ

ρ2
0

s

ξ2
(1− gszz(∞)− gsxx)2 + 2κσ2

(
1− s2

)
s (2.4.3.6)

S(cloud)
S ≡ −αση2

(
h2 − 1

)
s− σ

ρ2
0

s

ξ2

[
(gsz)

2 (z + z(∞))− 2gsz(1− gsxx)
]

(z− z(∞)) ,

(2.4.3.7)

and where z(∞) is given by Eq. (2.3.3.7) with (n,m) = (0, 1). We have added and

subtracted the term − η
ρ2

0

h
ξ2 (ghz )2z(∞)2(1− s2) from S(core)

H and S(cloud)
H in order to keep

these functions finite at the origin. We show these various contributions to the sources
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Figure 2.8: Vacuum expectation value of S as a function of the scaled radial
coordinate ξ, where SH and SS are given by Eq. (2.4.3.3), and we have defined

S(core) = S(core)
H + S(core)

S and S(cloud) = S(cloud)
H + S(cloud)

S . We have held fixed
MS = MX = 1 TeV, α = 0.1, ε = 0.1 and gx = 1.

in Fig. 2.8. The figure confirms that the sources are characterized by a tight core,

which drops off on a scale ξ & few corresponding to ρ & σ, surrounded by a wide tail

or cloud, which is smaller in magnitude and drops off more slowly. In the decoupling

limit, σ � η, the cloud can be much wider than the core. This motivates our

prescription for calculating the effective couplings, which we employ in this section

and the following one. We will consider fluctuations of the light fields (φH ≈ H

and Zµ) about their vacuum expectation values in the presence of the background

expectation values of the heavy fields (φS ≈ S and Xµ), which are determined by the

long straight string solution. Then, we can treat the heavy fields which compose the

core as providing the source for the light fields which compose the cloud.

To implement the above strategy, we will write

S =

(
σ s(ξ)− sin θ

φH√
2

+ cos θ
φS√

2

)
eiϕ , Xµ =

x(ξ)

ρ
V µ ,

H = η + cos θ
φH√

2
+ sin θ

φS√
2

, and Zµ =
z(∞)

ρ
V µ . (2.4.3.8)
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By taking the appropriate linear combination of Eqns. (2.4.3.1) and (2.4.3.2), we find

the field equation for φH to be

(
�+M2

H + δM2
H

)
φH + δµ2φS = S +O(φ2

H , φHφS) (2.4.3.9)

where the mass M2
H was given by Eq. (2.3.2.5), the mass shift is defined by

δM2
H(ξ) ≡ cos2 θ

ρ2
0ξ

2
(ghz z(∞) + ghxx)2 +

sin2 θ

ρ2
0ξ

2

(
1− gszz(∞)− gsxx

)2 − 2λη2 sin2 2θ

cos 2θ

− 2κσ2
(
1− 3s2 − 2 sec 2θ

)
sin2 θ − ασ

(
(1− s2)σ cos θ + 4η s sin θ

)
cos θ ,

(2.4.3.10)

the residual mixing is defined by

δµ2(ξ) ≡ sin 2θ

2ρ2
0ξ

2

[
(ghz z(∞) + ghxx)2 −

(
1− gszz(∞)− gsxx

)2
]

+ 2λη2 sin 2θ + κσ2
(
1− 3s2

)
sin 2θ +

α

2
σ
(
4ηs cos 2θ − σ(1− s2) sin 2θ

)
,

(2.4.3.11)

and the source term is defined by

S(ξ) ≡
√

2 cos θ
[
− η

ρ2
0

1

ξ2
(ghz z(∞) + ghxx)2 + αησ2

(
1− s2

)
+

η

ρ2
0

1

ξ2
(ghz )2z(∞)2(1− s2)

]
−
√

2 sin θ
[ σ
ρ2

0

s′′ − σ

ρ2
0

s

ξ2

(
1− gszz(∞)− gsxx

)2
+ 2κσ3

(
1− s2

)
s
]
. (2.4.3.12)

We have dropped terms in Eq. (2.4.3.9) which are higher order in φH and φS, because

these represent interactions among the quanta of the scalar fields, and they are not

relevant for the particle production calculation. Near the string core, the spectrum is

shifted as compared with far from the string. This leads to a residual mixing, δµ2(ξ),

and a position-dependent mass eigenvalue, M2
H + δM2

H(ξ). Since these shifts vanish

rapidly outside of the string, and we are interested in the dynamics of the long range

fields, we can neglect these terms and take δµ2 = 0 = δM2
H .

We would like to reduce the source term, S, down to a single effective coupling

parameter ghstr. This is accomplished by noting that long wavelength modes of the
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Higgs field cannot resolve the internal structure of the string, i.e., the core, and for

the purposes of studying these modes it is a good approximation to treat the source

term as a Dirac delta function:

S ≈ ghstr ησ
2 δ(σx)δ(σy) . (2.4.3.13)

The effective, dimensionless coupling constant, ghstr ≡ η−1
∫
dxdy S, is given by

ghstr = 2π
√

2

∫ ∞
0

ξdξ

×

(
− cos θ

[ 1

ξ2
(ghz z(∞) + ghxx)2 − α(ρ0σ)2

(
1− s2

)
− 1

ξ2
(ghz )2z(∞)2(1− s2)

]
+
σ

η
sin θ

[
−s′′ +

s

ξ2

(
1− gszz(∞)− gsxx

)2 − 2κ(ρ0σ)2
(
1− s2

)
s
])

. (2.4.3.14)

This expression simplifies in the decoupling limit where we can write

s(ξ) ≈


ξ

ξmax
ξ ≤ ξmax

1 ξ > ξmax

and x(ξ) ≈


x(∞)

(
ξ

ξmax

)2

ξ ≤ ξmax

x(∞) ξ > ξmax

. (2.4.3.15)

Using Eq. (2.4.1.1), the parameter ξmax is related to the profile widths as ξmax ≈

(∆ρs)σ. This can be determined by solving for the full profile functions, but we

will take ξmax = O(1) for numerical estimates. Then after expanding in the ratio

(η2/σ2)� 1 we find

(ghstr)
(dec.) '

(
e2π√
2 c2

wg
2
x

)
s2
ε +

π

15
√

2

(
64

κ
− 17ξ2

max

)
α +O

(
η2

σ2

)
. (2.4.3.16)

Although alternative definitions of the coupling can be proposed, they will differ from

our definition in terms that are suppressed by factors of O(η/σ) and can be ignored

in the decoupling limit.

Once the string solution is obtained, it is straightforward to perform the integral

in Eq. (2.4.3.14) and evaluate ghstr. Figures 2.9a and 2.9b show the dependence of ghstr
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Figure 2.9: Effective coupling of the (0, 1) string with the Higgs field, given by
Eq. (2.4.3.14).

on the Higgs portal coupling, and they suggest the approximate relationship ghstr ∝ α.

This behavior is understood by noting that ghstr depends explicitly on α through

one term in Eq. (2.4.3.14) and implicitly through the profile functions. The explicit

dependence dominates at small α and gives ghstr ∼ α
∫
ξdξ(1− s2), and at larger α the

subdominant dependence in s and h emerges. Figure 2.9c shows that ghstr has a weak

dependence on the gauge kinetic mixing parameter ghstr ∼ const.−O(s2
ε). This follows

from the relations ghx ∼ gsz ∼ z∞ ∼ O(sε) and ghz ∼ gsx ∼ x∞ ∼ O(1) and sin θ ∼ O(α)

[see Eq. (2.3.2.4)]. Finally, Fig. 2.10 shows the dependence of ghstr on the scale σ. In

the decoupling limit, σ � η, we see that ghstr becomes asymptotically independent

of σ, which confirms that dimensionally S ∼ ησ2, as given by Eq. (2.4.3.13). The
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Figure 2.10: Effective couplings of (0, 1) string to Z and H fields as the scale
σ becomes large. We have held fixed MS = MX = σ/

√
2, α = 0.01, sε = 0.1,

and gx = 1. For comparison, the decoupling limit approximations, given by
Eqs. (2.4.3.16) and (2.4.4.14), give (ghstr)

(dec.) ≈ 0.70 and (gzstr)
(dec.) ≈ −0.17 for

ξmax = 1.5 and 2.7, respectively.

appearance of the Higgs VEV, η, is an important result. It reflects the fact that the

linear coupling of the Higgs to the string only emerges after electroweak symmetry

breaking. Prior to electroweak symmetry breaking, the coupling of the Higgs bosons

to the string is higher order in powers of the Higgs field, i.e., the string can only radiate

Higgs/anti-Higgs pairs. This result is not totally obvious since it is possible for the

string to carry a Higgs condensate, and thereby break the electroweak symmetry

locally, even if the Higgs VEV vanishes outside the string, as in the case of bosonic

superconductivity [52].

Thus far we have considered the coupling between the Higgs and the straight

static string. Now we generalize to the case of an arbitrary Nambu-Goto string with

spacetime coordinate Xµ(τ, ζ) where τ and ζ are the world coordinates. The source

term in Eq. (2.4.3.9) derives from the Lagrangian L = φHS. Upon approximating
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the source as a delta function, as in Eq. (2.4.3.13), the action becomes

SHstr =

∫
d4xφH S

= ghstr η

∫
d4x φH(x)

∫
dτdζ

√
−γ δ(4)(x− Xµ(τ, ζ))

= ghstr η

∫
dτdζ

√
−γ φH(Xµ) (2.4.3.17)

where the worldsheet metric is defined by γab = gµν∂aXµ∂bXν (a, b = 0, 1) and γ =

det(γab) = (1/2)εacεbdγabγcd.

2.4.4 Coupling of the Z Boson to the String

As in the case of the Higgs field, the string provides a source for the Z field. Recall

that the Z boson field equation, Eq. (2.3.1.18), was given by

∂νZ
νµ =ghz

[
i (H∂µH∗ −H∗∂µH)− 2 (ghzZ

µ + ghxX
µ) |H|2

]
+ gsz

[
i (S∂µS∗ − S∗∂µS)− 2 (gszZ

µ + gsxX
µ) |S|2

]
(2.4.4.1)

where we have explicitly written out the currents using Eq. (2.3.1.19). As we discussed

in Sec. 2.4, the decoupling approximation, σ � η, allows us to replace the heavy

fields with the string background and to expand the light fields about their vacuum

expectation values:

S →
(
σ s(ξ) + S̄

)
eiϕ , Xµ → x(ξ)

ρ
V µ ,

H = η + H̄ , and Zµ =
z(∞)

ρ
V µ + Z̄µ , (2.4.4.2)

where z(∞) is given by Eq. (2.3.3.7) with (n,m) = (0, 1). Since we are now interested

in radiation of the Z field, and we are not concerned with its coupling to the scalar

fields, we can take S̄ = H̄ = 0. Inserting Eq. (2.4.4.2) into Eq. (2.4.4.1) yields the

field equation for the fluctuation Z̄µ,

∂νZ̄
νµ +M2

ZZ̄
µ + δM2

ZZ̄
µ = J µ , (2.4.4.3)
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where Z̄µν ≡ ∂µZ̄ν − ∂νZ̄µ, the mass MZ is given by Eq. (2.3.1.17), the position-

dependent mass shift is defined as

δM2
Z(ξ) ≡ −2(gsz)

2σ2
(
1− s2

)
, (2.4.4.4)

and the source current is given by

J µ =
η2

ρ0

j(ξ)V µ(ϕ) (2.4.4.5)

where

j(ξ) ≡ 2ghz
1

ξ

(
−ghz z(∞)− ghxx

)
+ 2gsz

σ2

η2

s2

ξ

(
1− gszz(∞)− gsxx

)
(2.4.4.6)

for the (0, 1) string. Despite the factor of (σ2/η2) in the second term above, both

terms in j(ξ) scale like (σ/η)0 because gsz ∼ η2/σ2.

Using the complete set of orthonormal basis vectors

Tµ = ∂µt , Rµ = ∂µρ , Vµ = ρ ∂µϕ , and Lµ = ∂µz (2.4.4.7)

the current can also be written as

J µ = η2 εµαβγ∂α

(
k(ξ)TβLγ

)
(2.4.4.8)

where

k(ξ) ≡
∫ ξ

∞
dξ′ j(ξ′) . (2.4.4.9)

Note that j(ξ) is approximately equal to the right hand side of the string equation,

Eq. (2.3.3.4a), and if we were to replace h → 1 and z → z(∞), then they would be

identical. As such, k(ξ) is approximately given by

k(ξ) ≈ − 1

(ρ0η)2

(
z′

ξ
− lim

ξ→∞

z′

ξ

)
= − 1

η2
BZ(ξ) (2.4.4.10)
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where BZ(ξ) ≡ z′/(ρ2
0ξ) is the magnitude of the Z-magnetic field,

(BZ)i = (−1/2)εijkZjk = εijk∂jA
k. (2.4.4.11)

The profile functions s and x both reach their asymptotic values exponentially

fast on a scale ξ = O(1) corresponding to ρ = O(ρ0 = σ−1). In the decoupling limit,

MZ � σ, long wavelength modes of the Z field cannot resolve the string core, and

we can use delta function approximations. The mass shift, given by Eq. (2.4.4.4),

becomes negligible outside of the narrow string core. Therefore it is not relevant for

the particle radiation calculation, and we will neglect it by taking δM2
Z = 0. The

profile function k(ξ) can also be approximated as a delta function

k(ξ) ≈ gzstr σ
−2 δ(x)δ(y) (2.4.4.12)

where the effective coupling, gzstr ≡ 2π
∫∞

0
ξdξ k(ξ), is given by

gzstr = 2π

∫ ∞
0

ξdξ

∫ ξ

∞
dξ′
[
2ghz

1

ξ′

(
−ghz z(∞)− ghxx

)
+ 2gsz

σ2

η2

s2

ξ′

(
1− gszz(∞)− gsxx

)]
(2.4.4.13)

after inserting Eq. (2.4.4.6) into Eq. (2.4.4.9). Note that the approximation given

in Eq. (2.4.4.10) would give the effective coupling to be gzstr ≈ ΦZ/(ρ0η)2 where

ΦZ ≡
∫
dxdy BZ is the Z-magnetic flux. In the decoupling limit [see Eq. (2.4.3.15)]

we find

(gzstr)
(dec.) ' −

(
11e2π

36c2
wswgx

ξ2
max

)
sε +O

(
η2

σ2

)
(2.4.4.14)

where ξmax = O(1).

From Fig. 2.10 we see that gzstr asymptotes to a constant in the decoupling limit

that is given approximately by Eq. (2.4.4.14). Figures 2.11a and 2.11b show that

gzstr depends weakly on the Higgs portal coupling, with the approximate relationship

gzstr ∝ −α2. Since α does not appear explicitly in Eq. (2.4.4.13), the dependence is

56



-0.10 -0.05 0.00 0.05 0.10

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Higgs Portal Coupling, Α

S
tr
in
g
-
Z
C
o
u
p
lin
g
,
g
s
tr
Z

ÈsinHΕLÈ = 0.1

ÈsinHΕLÈ = 0.5

(a) mX = MS = σ/
√

2 = 200 GeV, gx = 1

-0.10 -0.05 0.00 0.05 0.10

-0.8

-0.6

-0.4

-0.2

0.0

Higgs Portal Coupling, Α

S
tr
in
g
-
Z
C
o
u
p
lin
g
,
g
s
tr
Z

ÈsinHΕLÈ = 0.1

ÈsinHΕLÈ = 0.5

(b) mX = MS = 1 TeV, gx = 1.

-0.5 0.0 0.5

-1.0

-0.5

0.0

0.5

1.0

Gauge Kinetic Mixing, sinHΕL

S
tr
in
g
-
Z
C
o
u
p
lin
g
,
g
s
tr
Z

Α = 0.01

Α = 0.1

(c) mX = MS = σ/
√

2 = 200 GeV, gx = 1

Figure 2.11: Effective coupling of the (0, 1) string with the Z boson, given by
Eq. (2.4.4.13).

only through the profile functions. Figure 2.11c shows that gzstr depends linearly on

the gauge kinetic mixing parameter gzstr ∼ O(sε) for small values of sε, which can

be understood from the dependence on gsz in Eq. (2.4.4.13) and by noting that gsz is

linear in sε. As |sε| increases, the terms that are higher order in sε begin to have an

effect.

Thus far we have been assuming that the string is long and straight. To generalize

to an arbitrary Nambu-Goto string, we can write the source term, Eq. (2.4.4.8), as

J µ = gzstr(η/σ)2∂ν

∫
dσµν δ(4)(x− X(τ, ζ)) (2.4.4.15)

where dσµν = dτdζεµναβεab∂aXα∂bXβ is the areal element of the string worldsheet. A
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source of this form was first given in Ref. [53]. This source can be derived from a

term in the effective action

SZstr =

∫
d4xZµJ µ

=
gzstr
2

(η
σ

)2
∫
d4x Zµν

∫
dσµνδ(4)(x− X(τ, ζ))

=
gzstr
2

(η
σ

)2
∫
dσµνZµν(Xµ) (2.4.4.16)

where total derivative terms have been dropped. We have factored off the (η/σ)2

scaling such that gzstr is constant in the limit η � σ.

2.4.5 Coupling to the Fermions

Finally, let us turn to the coupling between the dark string and the SM fermions.

Like the coupling to the bosons, this interaction can give particle radiation from the

string [54]. Additionally, as the string passes through the plasma, this interaction

induces a drag force that has an important influence on the evolution of the string

network as a whole [55].

The interaction that we seek to calculate arises from the kinetic terms for the SM

fermions,

L = Q†iσ̄µDµQ+ u†Riσ
µDµuR + d†Riσ

µDµdR + L†iσ̄µDµL+ e†Riσ
µDµeR (2.4.5.1)

where we use the two component spinor notation and the doublets are Q = (uL , dL)

and L = (νL , eL). The covariant derivatives are given by

DµQ =
(
∂µ − ig2σ

aW a
µ − i

g′

2
yqYµ

)
Q

DµuR =
(
∂µ − ig

′

2
yuRYµ

)
uR

DµdR =
(
∂µ − ig

′

2
ydRYµ

)
dR

DµL =
(
∂µ − ig2σ

aW a
µ − i

g′

2
ylYµ

)
L

DµeR =
(
∂µ − ig

′

2
yeRYµ

)
eR

(2.4.5.2)
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where we have turned off the SU(3) gauge coupling, since it does not modify the

coupling to the dark string, and the hypercharge assignments are

yq =
1

3
, yuR =

4

3
, ydR = −2

3
, yl = −1 , and yeR = −2 . (2.4.5.3)

After performing the field redefinition given by Eq. (2.3.1.9), the covariant derivatives

become

DµQ =

DµuL − i g√2
W+
µ dL

DµdL − i g√2
W−
µ uL

 (2.4.5.4)

with

DµuL =
(
∂µ − i(guLa Aµ + guLz Zµ + guLx Xµ)

)
uL

DµdL =
(
∂µ − i(gdLa Aµ + gdLz Zµ + gdLx Xµ)

)
dL

DµuR =
(
∂µ − i(guRa Aµ + guRz Zµ + guRx Xµ)

)
uL

DµdR =
(
∂µ − i(gdRa Aµ + gdRz Zµ + gdRx Xµ)

)
uL (2.4.5.5)

and

DµL =

DµνL − i g√2
W+
µ eL

DµeL − i g√2
W−
µ νL

 (2.4.5.6)

with

DµνL =
(
∂µ − i(gνLa Aµ + gνLz Zµ + gνLx Xµ)

)
νL

DµeL =
(
∂µ − i(geLa Aµ + geLz Zµ + geLx Xµ)

)
eL

DµeR =
(
∂µ − i(geRa Aµ + geRz Zµ + geRx Xµ)

)
eR (2.4.5.7)
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where

guLa = 2e
3

guLz = cζ
e
6

(
3
tw
− tw

)
− sζ e6

tε
cos θw

guLx = −cζ e6
tε

cos θw
− sζ e6

(
3
tw
− tw

)
guRa = 2e

3
guRz = −cζ 2e

3
tw − sζ 2e

3
tε

cos θw
guRx = −cζ 2e

3
tε

cos θw
+ sζ

2e
3
tw

gdLa = − e
3

gdLz = −cζ e6( 3
tw

+ tw)− sζ e6
tε

cos θw
gdLx = −cζ e6

tε
cos θw

+ sζ
e
6
( 3
tw

+ tw)

gdRa = − e
3

gdRz = cζ
e
3
tw + sζ

e
3

tε
cos θw

gdRx = cζ
e
3

tε
cos θw

− sζ e3tw

geLa = −e geLz = −cζ e2
(

1
tw
− tw

)
+ sζ

e
2

tε
cos θw

geLx = cζ
e
2

tε
cos θw

+ sζ
e
2

(
1
tw
− tw

)
geRa = −e geRz = cζ e tw + sζe

tε
cos θw

geRx = cζe
tε

cos θw
− sζ etw

gνLa = 0 gνLz = cζ
e
2

(
1
tw

+ tw

)
+ sζ

e
2

tε
cos θw

gνLx = cζ
e
2

tε
cos θw

− sζ e2
(

1
tw

+ tw

)

.

(2.4.5.8)

We have included the couplings to the photon field Aµ for completeness, but since

the dark string does not contain any electromagnetic flux, these interactions are not

relevant for couplings of the string to the SM fermions.

The dominant interaction between fermions and the dark string is the Aharonov-

Bohm (AB) interaction [56, 53]. In general when a particle of charge e and momentum

p (in the rest frame of the string) is incident on a string carrying magnetic flux Φ,

it will scatter with a differential cross section per unit length dσ/dθ. It is useful to

define the transport cross section, σt ≡
∫ 2π

0
dθ (dσ/dθ)(1− cos θ), which is given by

σt =
2

|p|
sin2 πθ (2.4.5.9)

where θ ≡ (e/2π)Φ. In general these need not be electromagnetic charge and flux,

and in fact the dark string carries no electromagnetic flux. Instead, the particles

scatter off of the Z-flux and X-flux carried by the string.

The fluxes are defined by

ΦZ ≡
∫

BZ · dA and ΦX ≡
∫

BX · dA (2.4.5.10)

where the integral extends over the plane normal to the string and the magnetic fields

are given by ~BZ = ~∇× ~Z where ~Zi = Zi and similarly for Xµ. Using Stokes theorem
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along with the boundary conditions Eq. (2.3.3.7), the fluxes are easily found to be

ΦZ = 2π
gsxn− ghxm
gsxg

h
z − ghxgsz

(2.4.5.11)

ΦX = 2π
ghzm− gszn
gsxg

h
z − ghxgsz

(2.4.5.12)

Note that ΦZ is nonzero even for the (0, 1) string for which the Higgs field does not

wind, but instead ΦZ ∝ sε due to the gauge kinetic mixing.

As a particle moves around the string, its phase changes due to both fluxes.

Therefore to calculate the transport cross section for a particle of species i we sum

the phases:

σt

∣∣∣
i

=
2

|p|
sin2 πθi (2.4.5.13)

where

θi ≡
gizΦZ

2π
+
gixΦX

2π
(2.4.5.14)

and the giz and gix are given by Eq. (2.4.5.8). Upon performing the sum in Eq. (2.4.5.14)

a remarkable simplification occurs, and we are left with

θi = (yi − 2c2
wg

i
a)n+

(
−2

cwesε
gx

gia

)
m (2.4.5.15)

where yi and gia are the hypercharge and electromagnetic charges of species i given

by Eqns. (2.4.5.3) and (2.4.5.8). Specifically, for the case (n,m) = (0, 1) we find

θi = qiΘ with Θ ≡ −2
cwsε
gx

(2.4.5.16)

and qi = e gia is the electromagnetic charge. Note that we have not expanded in sε � 1;

these expressions are exact. It is remarkable that the phases θi are independent of

the ratio of mass scales R = mX/mZ , even though gizΦZ and gixΦX separately depend

upon R. This has the important and interesting implication that the scattering of

particles from the string is unchanged in the decoupling limit R� 1.
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As an example, let us consider the scattering of a few elementary particles from

the (0, 1) dark string. Upon setting n = 0 and m = 1 in Eq. (2.4.5.16) we see that

the left- and right-chiral components have identical AB phases, e.g., θuL = θuR ≡ θu.

We calculate the transport cross section for the electron, proton, neutron, hydrogen

atom, and neutrino as

σt

∣∣∣
e

=
2

|p|
sin2 πθe ≈

1

|p|
8π2c2

we
2

g2
x

s2
ε +O(s4

ε) (2.4.5.17)

σt

∣∣∣
p

=
2

|p|
sin2 π(2θu + θd) ≈

1

|p|
8π2c2

we
2

g2
x

s2
ε +O(s4

ε) (2.4.5.18)

σt

∣∣∣
n

=
2

|p|
sin2 π(θu + 2θd) = 0 (2.4.5.19)

σt

∣∣∣
H

=
2

|p|
sin2 π(2θu + θd + θe) = 0 (2.4.5.20)

σt

∣∣∣
ν

=
2

|p|
sin2 πθνL = 0 , (2.4.5.21)

respectively. In the second equalities of Eqns. (2.4.5.17) and (2.4.5.18) we have ex-

panded for sε � 1. In performing this expansion, both terms in Eq. (2.4.5.14) are

of the same order because ΦZ ∼ geLx ∼ geRx = O(s1
ε) and ΦX ∼ geLz ∼ geRz = O(s0

ε).

After recombination, when the SM particle content of the universe consists mainly of

neutral hydrogen and neutrinos, the AB interactions vanish. Then, scattering arises

from the typically subdominant hard-core interaction between the fermions and the

Higgs and Z boson condensates on the string. If additionally α → 0, then even this

interaction vanishes and the string does not feel the SM fermions at all.

If the original model had contained fermion fields charged under the U(1)X , for

example a dark matter candidate, then the interactions of these particles with the

string would not vanish even as sε, α→ 0. For example, let Ψ be a Dirac spinor field

with gauge interactions specified by the covariant derivative

DµΨ =
(
∂µ − igx

qx
2
X̂µ

)
Ψ =

(
∂µ − i(gΨ

aAµ + gΨ
z Zµ + gΨ

xXµ)
)
Ψ (2.4.5.22)
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where

gΨ
a = 0 , gΨ

z =
gxqx
2cε

sζ , and gΨ
x =

gxqx
2cε

cζ . (2.4.5.23)

Its AB phase is simply θΨ = mqx and the AB interaction is found to be

σt

∣∣∣
Ψ

=
2

|p|
sin2 πqx . (2.4.5.24)

If qx is an integer, then the transport cross-section vanishes and there is no AB

interaction between the dark string and Ψ.

2.5 Conclusion

We have studied the properties and couplings of the dark string including, for

the first time, the full electroweak gauge sector, the gauge kinetic mixing, and Higgs

portal interaction.

The dark string solution field profiles are discussed in Sec. 2.4. The ansatz of the

dark string can include a non-topological winding of the electroweak Higgs, labeled

by an integer n, in addition to the topological winding of the new scalar field, S,

given by an integer m. We have evaluated (n,m) = (0, 1), (1, 1) classes of solutions.

Since the (0,1) string is lighter, and there is no topology protecting the (1,1) solution,

we expect that the (1,1) solution will be unstable to decay into the (0,1) solution.

Hence, we mainly focus on the (0,1) string which we have also referred to as the “dark

string”.

In Sec. 2.4 we have evaluated the tension of the dark string and the results can

be summarized in the formula

µ ≈ 2π
κ1/4

g
1/2
x

σ2

[
1 +

η2

σ2
O(α2, s2

ε)

]
(2.5.1)

where the approximate dependencies are derived from the plots in Fig. 2.7 for small

values of the hidden sector scalar self-coupling, κ, the gauge kinetic mixing parameter,
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DS Core

SM Cloud

Figure 2.12: Structure of the Dark String.

sε, the Higgs portal coupling α, and the dark gauge coupling, gX . In the decoupling

limit when the electroweak VEV is much less than the hidden sector VEV, η � σ,

the expression reduces to that of a Nielsen-Olesen string.

A novel feature of the dark string is that it also carries a condensate of the elec-

troweak Higgs and Z fields. The structure of the string is a core of size ∼ M−1
X

that contains flux of the dark gauge field X and in which the new scalar S departs

from its VEV. This is just as in the case of the Nielsen-Olesen string. Around the

Nielsen-Olesen core we also have a “cloud” or “dressing” of Higgs and Z fields that

extend out to a radius ∼M−1
H as illustrated in Fig. 2.12.

The presence of the electroweak cloud can be of phenomenological importance

because it connects a topological defect in the dark sector to the matter content of

the visible sector. In particular, an oscillating loop of dark string may be expected to

copiously radiate Higgs bosons [57] and Z gauge bosons (similar to Goldstone boson

radiation discussed in [58]). With these effects in mind, we have proposed effective

interactions of the dark string with the Higgs excitations, φH , and Z bosons that take

the form

Sint = ghstr η

∫
d2σ
√
−γ φH(Xµ) +

gzstr
2

(η
σ

)2
∫
dσµνZµν(Xµ) (2.5.2)

given by Eqs. (2.4.3.17) and (2.4.4.16). The first term carries a factor of η because the
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emission of a single Higgs boson can only occur after electroweak symmetry break-

ing. The factor of (η/σ)2 in the second term reflects the suppressed interaction of

the Z boson with the hidden sector fields in the decoupling limit where the gauge

sector mixing is small. The coupling constants in these interactions are shown in

Figs. 2.9, 2.10, and 2.11. In the decoupling limit they can be approximated as in

Eqs. (2.4.3.16) and (2.4.4.14) by

(ghstr)
(dec.) '

(
e2π√
2 c2

wg
2
x

)
s2
ε +

π

15
√

2

(
64

κ
− 17ξ2

max

)
α

(gzstr)
(dec.) ' −

(
11e2π

36c2
wswgx

ξ2
max

)
sε . (2.5.3)

up to terms of order η2/σ2. The parameter ξmax = O(1) is the rescaled width of the

profile functions.

The gauge kinetic mixing term in the model also leads to an Aharonov-Bohm

interaction between fermions and the dark string [57]. These interactions are im-

portant since, in a cosmological setting, the strings are surrounded by a plasma of

fermions that can scatter and affect the evolution of the string network. In ad-

dition, the Aharonov-Bohm interaction will allow for dark string loops to radiate

standard model fermions [54]. We give the Aharonov-Bohm phases for the fermions

in Eq. (2.4.5.16), where we should set n = 0 for the (0,1) string. The result is simply

that the Aharonov-Bohm phase of a fermion with electric charge q is

θq = −2cwsε
gX

q. (2.5.4)

Following Ref. [53], we have also calculated the transport cross sections for fermions

scattering off dark strings in Sec. 2.4.

Our analysis has not made any assumptions about the nature of the dark matter.

Depending on its interaction with the fields that make up the dark string, string loop

decays can contribute to the dark matter relic abundance [59, 60].

65



Having mapped out the properties of the dark string, we plan to explore their

cosmological consequences and phenomenological connections in future work. Here

we will provide a brief discussion of the nature of that work. The coupling of a

dilation (or more general scalar moduli field) to the string takes the same form that

we found for the coupling of the Higgs boson to the string, namely Eq. (2.4.3.17).

Quanta of this scalar field can be emitted from cusps or kinks on string loops [61, 57].

It has been shown that this radiation leads to astrophysical signals in the form of the

diffuse gamma ray flux, cosmic rays, and high energy neutrinos [57, 62]. The non-

observation of these signals places constraints on the string model. For the specific

case of the dark string discussed here, these constraints may be complimentary to

direct laboratory searches for evidence of the hidden sector as discussed in Sec. 2.2.

The coupling of the Z-boson to the string through the interaction in Eq. (2.4.4.16)

may allow for a second form of radiation. To our knowledge, the emission of vector

bosons has not been studied extensively (see, however, [53]), and this may prove

a unique feature of the dark string. The Aharonov-Bohm interaction calculated in

Sec. 2.4 will provide a friction force the dark string in the hot, dense conditions of the

early universe. This may have a significant impact on the evolution of the network

of light strings.
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Chapter 3

GRAVITATIONAL WAVES FROM PREHEATING

3.1 Introduction

Inflation leaves the universe cold and nearly empty of particles, so there needs to

be a reheating mechanism for energy transfer between inflaton and Standard Model

fields in order to create the thermalized particles that existed before Big Bang Nu-

cleosynthesis began. This is typically modeled by a small, direct coupling between

inflaton and another field. The first discussions of reheating [63, 64, 65, 66, 67, 68, 69]

studied a perturbative calculation of inflaton decay into the coupled field, with energy

gradually transferred to matter fields. (Also see the reviews [70, 71].)

However, inflaton decay occurs in the context of large, coherent field oscillations

and nonperturbative effects should also be taken into account [72, 68, 69, 73]. Typi-

cally, the inflaton φ is considered to be coupled to a field χ by an interaction 1
2
g2φ2χ2,

which is χ’s only potential energy term. As the inflaton oscillates about the bottom

of its potential after inflation, the phenomenon of parametric resonance leads to some

modes of the decay product χ being excited at an exponential rate. This effect, which

may occur briefly at the beginning of a longer period of reheating, is called preheat-

ing. (Most of the work on this subject has been in the context of direct couplings

between inflaton and matter fields; see [74] for a scenario that does not require this.)

Preheating in these models can produce gravitational waves [75, 76, 77, 78, 79, 80],

since the exponential amplification of certain modes leads to a large contribution to

anisotropic stress, which sources tensor perturbations. Predictions for the resulting

spectrum are around h2Ωgw ∼ 10−10 and f ∼ 104 to 106 Hz today for massive or λφ4
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inflation or could be as low as 102 to 103 Hz for hybrid inflation models. Some work

[79, 81, 82, 83, 84, 85, 86] has addressed this problem in the context of various models

that relate to processes that are more specific. These find a wide range of possibilities.

For example, [83] found that decay into fermions after inflation could produce Ωgw ∼

10−12 to 10−18, f ∼ 109 to 1010 Hz today, depending on the parameters.

These tend to fall outside the range of current, planned or proposed gravitational

wave experiments such as Advanced LIGO and VIRGO, KAGRA, Einstein Telescope,

eLISA, DECIGO or BBO (for an exception, see [82]). Roughly speaking, these are

most sensitive to frequencies around 10−3 to 103 Hz and signal strength corresponding

to h2Ωgw ∼ 10−5 to possibly 10−14. (See [87, 88] or the review [89]. 1 ) LIGO

and VIRGO have jointly placed upper bounds on a stochastic gravitational wave

background on the order of Ωgw ∼ 5 × 10−6 around 102 Hz [90]. Gravitational wave

detection at MHz frequencies has also been considered [91, 92, 93]. It has not been a

major focus, though, since comparatively reliable astrophysical sources (e.g. neutron

star mergers) are not expected in this frequency range.

This motivates the study of how robust are the predictions for the gravitational

wave spectrum from preheating. We would expect that a realistic preheating process

in the early universe would include couplings of the decay product to other fields, as

well as possible self-interactions. It will be useful to know whether these can signifi-

cantly affect the observability of such a process. 2 Specifically, it would be interest-

ing to answer the question “Given a model of preheating with some self-interaction

strength, how does one estimate the overall gravitational wave production?” This

is analogous to the discussion in [95], which estimates the maximum energy den-

1Note that some results are given in terms of h2Ωgw, others in terms of Ωgw and still others in
terms of strain h, which is distinct from today’s Hubble constant in units of 100 km/s/Mpc that
appears in h2Ωgw. Consistent comparison of experimental sensitivities is discussed in [87].

2While this paper was in preparation, another work [94] appeared that addresses some of these
questions. We will discuss it in Sec. 3.6.
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sity in gravitational waves that could be produced by a cosmological process such as

preheating.

Previous work has shown that for self-couplings λχ ∼ O(10−2) � g2, where g2 is

the coupling between the inflaton and scalar, parametric resonance can be significantly

affected [96, 97]. However, there has been little discussion of gravitational wave

production in this scenario. 3 Therefore it is difficult to give a thorough answer

to the above question based on the existing literature. This also means that it is

unclear how general a gravitational wave prediction is when it ignores interactions of

the decay products.

In this work, we begin to address this by studying the development and termina-

tion of parametric resonance and the production of gravitational waves in the context

of λφ4 chaotic inflation coupled to a self-interacting light scalar field. We verify

by lattice simulation that the resonance terminates early for self-coupling λχ & g2,

demonstrating the condition ρfinal
χ ∼ g2/λχ mentioned in footnote 19 of [96] (their g

is our g2), and show that this leads to significant suppression of gravitational wave

production. The resonance terminates early because the self-interaction term allows

more efficient rescattering of particles out of the resonant mode, and this can be

characterized by a condition comparing the energy density associated with the self-

interaction to the inflaton-scalar interaction energy. The early termination of the

resonance means that there is less energy in the light scalar’s fluctuations, which

directly source gravitational waves. Therefore, gravitational wave production is re-

duced. For λχ & λ∗χ = g2, the energy density goes as Ω
(λχ)
gw ∼ (g2/λχ)2 Ω

(λχ=0)
gw .

In Sec. 3.5 we show that this result is robust to changes in initial conditions, and

that the same scaling occurs in massive (m2φ2) inflation. Although this suggests

3A study of gravitational waves in M-flation preheating [98] mentions that a self-interaction can
suppress the resonance, but does not quantify this in a way that allows comparison with [96].

69



generality to inflationary models that are quadratic or quartic about the minimum,

we point out that an important goal of future work is to understand the effect of

realistic interactions on other models that have predicted gravitational wave spectra.

As an application of this result, one could imagine the universe reheating by

a coupling between the Higgs and inflaton, and we argue in Sec. 3.6 that such a

scenario would likely produce no observable gravitational radiation. This is due to

the size of the Higgs self-coupling, despite its eventual running to zero in the Standard

Model. However, we point out that even a resonance too brief to produce observable

gravitational waves could be relevant for the issue of vacuum stability. Finally, if

the inflaton preheats a scalar field with an extremely small self-coupling, then the

gravitational wave spectrum could directly measure this potential.

3.2 Model

Representing the universe by a spatially flat Friedmann-Robertson-Walker metric,

we will describe gravitational waves as transverse and traceless perturbations to this

metric, specifically as hij such that

ds2 = a2(η)
(
−dη2 + (δij + hij)dx

idxj
)

(3.2.1)

with ∂ihij = 0 and hii = 0. We will take the inflaton to be a real scalar field, φ(t, ~x),

and consider it to be coupled to a massless real scalar field χ(t, ~x), with potential

given by

V =
1

4
λφ4 +

1

4
λχχ

4 +
1

2
g2φ2χ2 (3.2.2)

Here we have chosen to study λφ4 chaotic inflation, and this requires some justifica-

tion since standard slow-roll inflation with this potential is inconsistent with Cosmic

Microwave Background (CMB) observations [99]. Much literature on gravitational
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waves from preheating takes the potential as 1
4
λφ4, in particular the thorough numer-

ical study [78], whose model corresponds to ours with the choice λχ = 0. We expect

the qualitative nature of our results to be relevant to a broad range of inflationary

scenarios (this will be discussed further in Sec. 3.6), and it will be useful to refer to

specific previous results in order to understand the production of gravitational waves.

We are also studying the behavior of a “light” scalar field, and so we neglect a χ

mass term in comparison with the effective χ mass that comes from the interaction

term 1
2
g2φ2χ2. Comparing these terms using the amplitude of the φ oscillations shows

that this is roughly equivalent to requiring the χ mass to be mχ �
√
g2/λ × 1012

GeV.

Here the inflaton self-coupling is set by the amplitude of the scalar power spectrum

of the CMB as λ = 10−13. The unknown coupling g2 must be small, but we will also

take it to be larger than λ; in terms of the resonance parameter q ≡ g2/λ this means

1 � q � λ−1; here we will examine the range 10 . q . 2000, which contains most

of the region with the largest gravitational wave production [78]. We will see that

this peaks around q ≈ 100− 200 and falls off slightly as q gets larger or smaller (see

Fig. 3.2d), although there are examples with smaller q that do not exactly follow this

trend [78]. We consider the light scalar’s self-interaction in the range λ < λχ < 1.

We study the dynamics in this model beginning at the end of inflation, t0 ≡ 0, once

the comoving horizon (aH)−1 begins to expand, with the inflaton as a homogeneous

field given everywhere by φ0 = 0.342MPl.
4 The field χ is a light “spectator” field

during inflation, and at the end of inflation each χ mode is in the de Sitter vacuum

state. As shown in previous work [100, 101], as the inflaton decays the quantum state

quickly approaches a semiclassical regime with large occupation numbers, and the

4This particular point along the inflaton’s phase space trajectory is identical to that of [78]. This
choice is further addressed in Sec. 3.5.
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evolution here is equivalent to the classical evolution of an initial classical distribution

that gives

〈|χk(0)|2〉 = 1/(2λ3/2φ3
0ωk), χ̇k(0) = (iωk +H(0))χk(0) (3.2.3)

at the beginning of reheating. 5 The dynamics considered here occurs on sub-horizon

scales. 6

Since φ is homogeneous, the equations of motion for these fields in a spatially flat

Friedmann-Robertson-Walker (FRW) background are

φ̈+ 3Hφ̇+ λφ3 = 0 (3.2.4)

�χ+ 3Hχ̇+ λχχ
3 + g2φ2χ = 0 (3.2.5)

where H ≡ ȧ/a is the Hubble parameter, whose value is related to the total energy

density ρ by the Friedmann equation

H2 =
8πG

3
ρ. (3.2.6)

In order to study the behavior of φ and χ that follows from the above, we will express

χ in terms of modes χk
7 :

χ(t, ~x) =
1

(2π)3/2

∫
d3k

(
akχk(t)e

−i~k·~x + a†kχ
∗
k(t)e

i~k·~x
)
. (3.2.7)

The amplitude of φ is still very large at the end of inflation, λχχ
2 � g2φ2, and

Eq. (3.2.5) is approximately linear in χ. We can then use the mode equation

χ̈k + 3Hχ̇k +

(
k2

a2
+ g2φ2

)
χk = 0 (3.2.8)

5χk and ωk are defined below. The specific implementation for initial field condi-
tions of [100] is as described in the documentation for LATTICEEASY code, available at
http://www.felderbooks.com/latticeeasy/.

6For the typical example q = 120, numerical results show that preheating begins at about H =
1.1× 10−9MPl and a = 5.5 (for a = 1 at the beginning of the simulation) and the mode k∗ ≈

√
λφ0

is excited. Then at formation the wavelength of these perturbations is a fraction R∗/Rhorizon =
(a k−1

∗ )H ∼ 10−2 of the horizon size. Since inflation has ended, the comoving horizon (aH)−1 is
increasing, so aH is decreasing and the modes excited later will be an even smaller fraction of the
horizon size.

7Here we always use the Fourier Transform convention f(~x) = (2π)−3/2
∫
d3k f(~k) exp(i~k · ~x).
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to study the beginning of the reheating process. It will be convenient to introduce

conformally rescaled fields φ ≡ aφ/φ0, χ ≡ aχ/φ0, and time dη ≡ dt/a and define a

dimensionless time parameter and wave number

τ ≡
√
λφ0η, κ ≡ k/(

√
λφ0). (3.2.9)

Following e.g. [73, 78], we study the field spectrum in terms of a comoving number

density for the field χ,

nκ =
1

2

(
ωκ|χκ|2 +

1

ωκ
|χ ′κ |2

)
, (3.2.10)

and comoving energy density ρκ = ωκnκ, where

ωκ =
√
κ2 +m2

eff =

√
κ2 + qφ

2
+ 3(λχ/λ)χ 2. (3.2.11)

3.3 Preheating in This Model

We begin by briefly outlining some results from previous studies of preheating,

beginning with the case λχ = 0 (see [73] and references therein). We then use these to

develop an approximate relation that quantifies the end of preheating and that will be

useful in the gravitational wave calculation. After the end of inflation, φ oscillates in

its potential with period T ≈ 7.416 (in terms of the dimensionless time parameter τ)

[73] while the modes χκ can be excited by the phenomenon of parametric resonance.

This process is typically described in terms of the resonance parameter q = g2/λ. In

general, certain modes κ will be excited as χκ ∝ exp (µκτ). The exponential growth

factor µκ will vary with κ, giving rise to resonance “bands” characterized by some

central κ and width ∆κ. We will consider the case of “broad resonance” where q � 1

(as compared with “narrow resonance” when q < 1). In this case the spectrum of

resonantly excited modes takes the form of a broad peak whose location and width

are approximately characterized by

κ∗, ∆κ ∼ q1/4. (3.3.1)
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For a particular value of q, the maximum growth exponent µmax ≡ max{µκ} is [73]

µmax =
1

π
ln

(√
1 + exp

[
−πκ2

√
2/q
]

+ exp
[
−πκ2/

√
2q
])

(3.3.2)

and the resonance is efficient when κ2 ≤
√
q/(2π2). Numerically we find that typical

resonant momenta are κ∗ ∼ 1, so µmax ∼ (3/2π) exp
(
−π
√

2/q
)

which is O(10−1) for

the range of q we consider. Number density nχ ≡
∫
d3κnχκ increases in steps, twice

per φ oscillation – every time the inflaton passes through φ = 0 and χ’s effective

mass-squared m2
χ = g2φ2 goes to zero, a burst of χ particles are created.

The exponential amplification of some χκ derived from Eq. (3.2.8) is a solution

for small χ (approximately zero) and homogeneous φ, when the mode equation for

χκ is linear. As this process evolves, this will become a worse approximation and

the problem will become fully nonlinear. Therefore, Eq. (3.2.8) is only useful for

understanding the beginning of the reheating process, and in general it is the coupled

equations of motion Eq. (3.2.4) and Eq. (3.2.5) that must be solved.

These can be studied by lattice simulation, and we have used the C++ code LAT-

TICEEASY [102] in order to simulate the evolution of these interacting scalar fields

in an expanding universe. Fig. 3.1 shows results for q = 120. This is a useful example

since [78] presents detailed results for preheating and gravitational wave production

for q = 120 in the absence of a self-coupling. Fig. 3.1a shows the spatially-averaged

energy density ρχ ≡ 〈12 χ̇
2+ 1

2a2 (∂jχ)2+ 1
4
λχχ

4〉 as a function of time. Fig. 3.1c shows for

λχ = 0 the sum of the spatially-averaged energy densities ρφ ≡ 〈12 φ̇
2+ 1

2a2 (∂jφ)2+1
4
λφ4〉

and ρχ, as well as the energy density only in the interaction term, ρint ≡ 〈12g
2φ2χ2〉.

Fig. 3.1e shows the spectrum in χ for the same choice of parameters. The spectrum

is shown at several times, and the solid line corresponds to approximately the time

when the exponential growth ends.

We can understand how preheating progresses by observing that the transfer of
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Evolution of preheating for q = 120. (a) Energy density ρχ as a function
of time for λχ = 0. (b) Energy density ρχ as a function of time for λχ = 10−8.
(c) Energy density of φ and χ, as well as energy density in the interaction term, for
λχ = 0. (d) Same as (c), but for λχ = 10−8. The spatially averaged quantity q〈1

4
λχχ

4〉
is also shown. (e) The spectrum in χ at several times of interest, for λχ = 0. The
solid line corresponds to approximately the time when the exponential growth ends.
(f) Same as (e), for λχ = 10−8.
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energy between χ and φ, and among different modes χκ and φκ, occurs in the following

distinct stages. First, oscillations of the homogeneous φ excite modes of χ centered

around some κ = κ∗, and the initially small inhomogeneities of χ become large.

There is some backreaction onto φ, whereby the g2

2
φ2χ2 interaction term broadly

excites modes φκ up through ≈ 2κ∗, and inhomogeneities in φ begin to grow.

The second stage occurs once q1/2ρint ≈ ρφ + ρχ. This is a useful, approximate

numerical result, that is essentially the same as Eq. 6 in [103]. Then χκ∗ efficiently

rescatters, i.e. interacts with other modes, and its exponential growth ends. The

total energy in χ continues to grow a bit until ρχ ≈ ρφ. This is evident in Fig. 3.1a.

Large field inhomogeneities break up and the spectrum broadens towards larger k.

This broad spectrum where energy density becomes approximately evenly distributed

among modes is evident in Fig. 3.1e. This figure indicates the spectrum at the time

when the exponential growth ends with a solid curve. Spectra before this time are

indicated by dashed curves, and spectra after this time are indicated by dotted curves.

This stage is discussed and examples of field configurations are shown in [104]. Some

work has also examined the final, so-called “turbulent thermalization” stage in detail

[105, 106].

We now consider the case of nonzero λχ. This has been studied to some extent in

[96, 97, 107], and here we find results consistent with theirs. Fig. 3.1b shows ρχ as a

function of time. The resonance ends earlier in comparison with the λχ = 0 situation

of Fig. 3.1a. Fig. 3.1d shows ρφ + ρχ, ρint and 〈1
4
λχχ

4〉 for λχ = 10−8. Fig. 3.1f shows

the spectrum in χ at several times of interest, and the solid line again corresponds to

approximately the time when the exponential growth ends. Here the end of this stage

still corresponds to a large mixing between modes, but in this case it is the quartic

self-interaction that is significant.

In general, we find from numerical simulation that when λχ becomes significantly
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larger than g2, the resonance terminates earlier than for the λχ = 0 case, i.e. for

any λχ > λ∗χ ∼ g2. In terms of energy transfer, when q1/2
〈

1
4
λχχ

4
〉
≈ ρint, the

resonance ends. This is analogous to the condition we described for λχ = 0, and will

be useful. Depending on the size of λχ, this may occur before or after the relation

q1/2ρint ≈ ρφ+ρχ becomes true. To summarize, the resonant stage of preheating ends

by the following condition:

(ρφ + ρχ) ≈ q1/2ρint for λχ < λ∗χ, (3.3.3)

ρint ≈ q1/2

〈
1

4
λχχ

4

〉
for λχ > λ∗χ. (3.3.4)

The powers of 1/2 are approximate – when comparing the size of the oscillating

energy densities, as in Fig. 3.1c and Fig. 3.1d for example, there is some ambiguity

in determining exactly what the value of the energy is when the resonance ends. We

can estimate the value λ∗χ where the condition Eq. (3.3.4) becomes more important

than Eq. (3.3.3) in terms of an energy argument. For small enough λχ, we will have

〈1
4
λχχ

4〉 � ρφ+ρχ, so the self-interaction will not play a role in ending the resonance.

This will no longer be true once

q1/2

〈
1

4
λχχ

4

〉
∼ ρφ + ρχ. (3.3.5)

This can be related to the value of χ when the resonance ends by observing that,

around this critical value λ∗χ where behavior transitions from Eq. (3.3.3) to Eq. (3.3.4),

we will also have

ρφ + ρχ ∼ q1/2

〈
1

2
g2φ2

endχ
2
end

〉
(3.3.6)

so that

1

4
λχ〈χ4

end〉 ∼
1

2
g2〈φ2

endχ
2
end〉 (3.3.7)
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For (〈φ2χ2〉/〈χ4〉)end ∼ O(1) this means that

λ∗χ ∼ g2. (3.3.8)

This agrees with numerical results showing that the maximum energy density begins

to decrease dramatically with increasing λχ around this value. For example, q = 120

will give λ∗χ ∼ 120×10−13 ∼ 10−11. We check this by defining for each λχ the quantity

ρmax
χ as the time average over several oscillations once ρχ has stopped increasing with

time. Fig. 3.2b shows that around λ∗χ ≈ 10−11, ρmax
χ begins to decrease as λ−1

χ . We

now seek to quantify the effect that this has on gravitational wave production.

3.4 Gravitational Wave Spectrum

The metric perturbation hij defined in Eq. (3.2.1) can be rescaled as hij ≡ ahij.

Neglecting a term that goes as a′′/a ∼ (aH)2 [78], the equation of motion is

h
′′
ij −∇2hij = 16πGa3ΠTT

ij (3.4.1)

where G is Newton’s constant and ΠTT
ij is the transverse traceless projection of the

anisotropic stress:

Πij = a−2 (Tij − 〈p〉gij) , (3.4.2)

where p is the pressure. The second term in Eq. (3.4.2) will be neglected since gij is

the sum of a homogeneous, isotropic part whose transverse traceless projection is zero,

and a perturbation that is higher order in G. The Fourier Transform of Eq. (3.4.1) is

h
′′
ij(
~k) + k2hij(~k) = 16πGa3ΠTT

ij (~k) (3.4.3)

We consider ΠTT
ij to be a source acting continuously during the time interval

η0 < η < ηf , solve Eq. (3.4.1) using Green’s functions, and use this solution to find
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the energy density of the tensor perturbation. As shown in [78], the result of this

procedure is

dρgw

d ln k
(η > ηf ) =

Sk
a4(η)

(3.4.4)

where Sk is defined by

Sk =
4πGk3

V

∫
dΩ
∑
i,j

(∣∣∣∣∫ ηf

ηi

dη′ cos(kη′)a(η′)TTT
ij (η′, ~k)

∣∣∣∣2
+

∣∣∣∣∫ ηf

ηi

dη′ sin(kη′)a(η′)TTT
ij (η′, ~k)

∣∣∣∣2
)

(3.4.5)

where V is the volume of the box considered and
∫
dΩ is an integral over directions

in k space. 8 Sk only depends on the dynamics occurring during gravitational wave

generation, and the TT part of the energy-momentum tensor is defined in terms of

projection operators by

TTT
ij (η,~k) =

(
Pil(k̂)Pjm(k̂)− 1

2
Pij(k̂)Plm(k̂)

)
Tlm(η,~k) (3.4.6)

Pij(k̂) = δij − k̂ik̂j (3.4.7)

The LATTICEEASY code was modified to in order to compute Eq. (3.4.4) as

described above, in order to obtain the spectrum of gravitational waves numerically.

We will give results in terms of Ωgw = ρgw/ρtotal, at the “time of production” defined

as approximately the time when energy in gravitational waves stops increasing no-

ticeably. This is very well approximated by the value at the end of the simulation

at τ = 250, and denote with a subscript “p” quantities evaluated at this time. The

relation between the results we give and their present values depends somewhat on

the equation of state throughout reheating, but previous works have established that

8Our physical results (i.e. energy density) do not scale with box size, as we use a numerical Fourier
Transform that takes this into account. This is described in the LATTICEEASY documentation.
The number of modes for which results are computed in a given simulation do depend on the box
size and number of grid points.
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in λφ4 preheating, the equation of state very rapidly becomes that of radiation, so

that the energy density in gravitational waves will be [78]

h2Ωgw =

(
Sk
a4ρ

)
p

(
g0

g∗

)1/3

h2Ωrad

=
(
9.3× 10−6

)
(Ωgw)p (3.4.8)

where h2Ωrad = 4.3 × 10−5, g∗/g0 ≈ 100. Similarly, frequencies today are related to

comoving wave numbers at the time of preheating by

f =

(
k

aρ1/4

)
p

4× 1010 Hz ∼ κ× 107 Hz (3.4.9)

where in the last step we have taken (a4ρ)p ∼ λφ4
0 (see e.g. Fig. 3.1a; we begin with

ρχ ≈ 0 and ρφ ≈ 2× 1
4
λφ4

0 and throughout the simulation the quantity a4(ρφ + ρχ) ≈

constant).

Fig. 3.2a shows the spectrum obtained in the case q = 120, for λχ = 0 and

λχ = 10−9. The decrease in the energy produced in gravitational waves is evident

from this, and Fig. 3.2b shows how this depends on λχ, as a fraction of the peak energy

density when λχ = 0. The solid lines in Fig. 3.2c show Ωgw for the cases q = 12 and

q = 1200. Evidently the effect of λχ is to end the resonance early and suppress

gravitational wave production. Once preheating ends, the additional contribution of

inhomogeneities to the gravitational wave spectrum is negligible [78].

To estimate how this effect depends on the model parameters q and λχ, we note

that Ωgw ∼ (TTT
ij )2 ∼ (∂iχ)4. The energy density Ωgw is dominated by the most

recently produced part of the spectrum before the resonance ends (this is particularly

clear in Fig. 8 of [78]), so for the purposes of this estimate we will ask how the

maximum amplitude of χ depends on q and λχ. We have seen that χ grows until

the condition Eq. (3.3.4), 1
2
qλ〈φ2χ2〉 ∼ 1

4
λχ〈χ4〉, is satisfied. (Also, comparison of

Fig. 3.1a with Fig. 3.1b shows this since ρχ ∼ (∂iχ)2.) This suggests a parametric
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scaling

χ2
end ∝ qλ/λχ = g2/λχ (3.4.10)

Then the expectation that Ωgw ∼ (χ2
end)2 becomes

Ωgw ∝
(
g2/λχ

)2
. (3.4.11)

Our numerical results confirm this relation as shown in Fig. 3.2b and Fig. 3.2c.

For λχ < λ∗χ, the peak energy in gravitational waves decreases only very slightly with

increasing λχ, as the self-interaction term plays a small role in mixing modes and

damping inhomogeneities. Once λχ > λ∗χ, the energy density in gravitational waves

scales in the manner given by Eq. (3.4.11). For λχ ∼ 10−2, we see that ρχ and Ωgw no

longer decrease significantly with increasing λχ. This is simply because the unstable

resonance never begins, and the quartic self-interaction can no longer dramatically

decrease Ωgw by ending the resonance earlier. Fig. 3.2d shows how the value of Ωgw

at the time of production depends on the resonance parameter, q, for both λχ = 0

and λχ = 10−7. In the latter case, we also show the prediction of the scaling relation

Eq. (3.4.11).

3.5 Generality

So far, we have examined results in the context of λφ4 chaotic inflation, with the

self-coupling λ and the initial condition of the inflaton field identical to a previous

work that thoroughly investigated the dynamics of gravitational wave production

during preheating [78]. This allows the results of the previous sections to be directly

compared with that work. However, observational data indicates that the λφ4 chaotic

potential is not favored [99], so an important question is the generality of the results

we have quoted above. In this section we will address this question in two ways,
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before pointing out interesting directions for future work. We will consider massive

(m2φ2) inflation, another standard example in which preheating is studied, and we

will also consider a range of initial conditions for φ within both the λφ4 and m2φ2

cases.

Specifically, this means that we will begin the numerical situation – corresponding

to the end of inflation, with the inflaton’s energy about evenly split between kinetic

and potential – with the inflaton field at various lower points on its potential than in

the original case. Here, we are not primarily concerned with representing a complete

model of inflation, but rather are studying how preheating and gravitational wave

production proceed within a potential that is quadratic or quartic about the minimum,

without regard to the model’s behavior at higher (inflationary) field values. In this

spirit, we also study the m2φ2 case with a few choices of mφ. It is worth pointing

out that not all inflationary models end with oscillations of the field responsible for

inflation about its zero; see for example the Abelian Higgs and Higgs-dilaton models

[82, 108].

For every situation we have tried, the same approximate scaling behavior of re-

duced gravitational wave production with increased self-interaction λχ holds. In par-

ticular, we display some typical results in Fig. 3.3 and Fig. 3.4. For the case of λφ4

inflation, with q = 120 and φ(0) = φ0 ≡ 0.342MPl, we plot the gravitational wave

spectrum in Fig. 3.3 and the scaling behavior with λχ in Fig. 3.4a. These results

were presented in Sec. 3.4, and they are provided again for direct comparison with

alternative scenarios. We label this choice of parameters as φ4 − I. We also show

results for q = 120 and φ(0) = φ0/10, referred to as φ4 − II, as well as q = 120 and

φ(0) = φ0/100, referred to as φ4 − III.

Fig. 3.3 compares the gravitational wave spectra of the φ4−I and φ4−II parameter

choices, for both λχ = 0 and λχ = 10−9. In both cases, evidently, there is a significant
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reduction in gravitational wave production that accompanies an increase in λχ, despite

the difference in overall amplitude of the spectrum. In Fig. 3.4a, we show how this

reduction depends on λχ for each of the parameter choices φ4 − I, φ4 − II, φ4 − III.

We find the same scaling behavior as before: there is a λ∗χ above which gravitational

wave production is suppressed by a factor of (g2/λχ)2.

In the case of massive inflation, we replace Eq. (3.2.2) with the potential

V =
1

2
m2
φφ

2 +
1

4
λχχ

4 +
1

2
g2φ2χ2 (3.5.1)

i.e. the light field χ has the same potential and interactions with the inflaton as it did

previously, but the inflaton potential is quadratic rather than quartic. In this case

we find that, as above, there is some λ∗χ such that for λχ > λ∗χ, gravitational wave

production tends to be suppressed by λ−2
χ . We again plot three typical examples. We

refer to q ≡ g2φ(0)2/4m2
φ = 60, φ(0) = 0.1MPl, mφ = 10−6MPl as φ2 − I. We refer

to q = 15, φ(0) = 0.01, mφ = 10−9 as φ2 − II. We refer to q = 15, φ(0) = 0.001,

mφ = 10−9 as φ2 − III. Fig. 3.4b shows how the gravitational wave spectra in these

cases scale with λχ. For ease of comparison with the scaling relation λ−2
χ we plot the

results as a function of λχ/λ
∗
χ, where λ∗χ = 10−6, 10−9, 10−7 for φ2− I, φ2− II, φ2− III

respectively. As before, λ−2
χ fits well (until λχ becomes large enough that preheating

no longer starts, so that increasing λχ won’t further decrease the gravitational wave

production).

The numerical computations involved make it impractical to check here every

imaginable situation of interest to verify this relation. We have shown that gravi-

tational wave production from preheating in potentials with minimum at zero can

be extremely sensitive to the value of the light field’s self-coupling term, and that

result is not exclusive to one particular model or choice of parameters. Therefore, an

important goal of future work will be to fully characterize this effect in other realistic
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models, and better understand the implications for observability.

3.6 Discussion and Conclusions

In this work we have studied the effect of a nonzero self-interaction on gravitational

wave production during preheating of a scalar field. Previous work has considered the

dynamics of preheating for a light, self-interacting scalar, as well as gravitational wave

production by preheating of a non-self-interacting scalar. This work is an extension

of these results, and in particular shows that the spectrum of gravitational waves that

survive until today is very sensitive to the light scalar’s self-interaction. Our main

result within the λφ4 model is that for self-coupling λχ & g2, the preheating resonance

is terminated early, and the gravitational wave spectrum is significantly reduced:

Ωgw ≈
(
g2

λχ

)2

Ω(λχ=0)
gw for λχ & g2. (3.6.1)

We have also begun to address the question of generality of this result, as discussed

in Sec. 3.5. For various choices of the inflaton’s initial condition in the λφ4 model,

we have seen that Eq. (3.6.1) holds. Additionally, for an m2φ2 inflationary potential,

the result that the gravitational waves are suppressed as λ−2
χ is shown, for several

parameter choices. While this suggests generality to inflation models with potentials

quadratic or quartic about a minimum at zero, an important question for future work

is to study the effect of the light field’s interactions in other preheating models that

have been shown to predict gravitational waves. As our work shows, predictions that

neglect such interactions - even if they are extremely small - may not necessarily be

accurate.

It is easy to imagine that in a realistic preheating scenario, decay products will

have their own self-interactions or further interactions with other fields, that will

end the resonance early. Recently, another paper studied the effect of interactions
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of χ with further light degrees of freedom, as well as self-interactions in the context

of a curvaton decaying to Higgs [94]. Although the model is not identical to ours,

it also found that self-interactions can be important in terminating the resonance

early. Furthermore, they found that interaction with the additional light scalars, as

characterized by the contribution to a thermal term, has the ability to significantly

affect the resonance and either end it early or prevent it from occurring at all. They

did not consider gravitational wave production, but following the argument given

here in Sec. 3.4 it is reasonable to expect that this early termination of the resonance

can further reduce any production of gravitational waves. Analyses of other scenarios

have shown that preheating can be sensitive to nonlinear interaction terms of decay

products [85], or other nonperturbative effects motivated by new physics above the

TeV scale [109, 110, 111, 112, 113]. Another interesting goal for future work would

be to incorporate the effects of interactions such as those studied in this paper into a

more general framework for obtaining order-of-magnitude estimates of gravitational

wave production, as in [95]. Although current constraints on MHz gravitational wave

backgrounds are not sensitive to these processes [91], this could be very useful in

evaluating the potential for observability in future experiments.

One interesting possibility is that reheating occurred through an inflaton-to-Higgs

coupling, since the Higgs is a natural candidate to couple to beyond-Standard Model

fields [44, 114, 115, 116]. The running of the Higgs self-coupling is sensitive to any

new physics that comes in at high energies, but it has not been directly measured and

will be difficult to measure at the LHC. One might hope that since λH runs from 0.13

at the weak scale to zero around 1010 GeV in the Standard Model [117], the condition

λH � 1 could be satisfied. This would avoid enormous damping of the preheating

resonance, and thereby provide a possible cosmological probe of λH. The self-coupling

remains O (10−1) up to ∼ 108 GeV, though, which suggests that there will not be
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significant (or any) preheating resonance. However, above this scale the self-coupling

decreases and the effective potential reaches a maximum (in the Standard Model –

small changes in input parameters or new physics beyond the Standard Model can

significantly affect this; see e.g. [118, 119, 120, 121]).

The condition Eq. (3.3.4) suggests that a more relevant condition than the self-

coupling may be the magnitude of the Higgs potential. The configuration of χ at

the end of inflation (initial configuration for this problem) is certainly sensitive to

the potential at large field values, as it corresponds to approximately χrms ∼ 1012

GeV ∼ Hinf .
9 If one takes Eq. (3.3.4) to apply as the condition for whether

parametric resonance does or does not occur, then the result could be a resonance

pushing Higgs oscillations toward the vacuum instability region. 10 New physics that

prevents λH from becoming negative would likely be more than sufficient to prevent

a resonance from occuring. These rough estimates also ignore the possibilities of a

different running of λH from the new inflaton coupling, as well as thermal effects. We

leave the resolution of these questions to future work.

9The behavior of the Higgs after inflation, when there is no coupling to the inflaton, is discussed
in [122].

10There has been much work on the Higgs and vacuum stability, including discussion of the reheat
temperature; see e.g. [123, 124, 125] and references therein.
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(a) (b)

(c) (d)

Figure 3.2: Peak of gravitational wave energy density spectrum, defined in
Eq. (3.4.4), as a fraction of total energy density at end of preheating stage. (a)
Spectrum for q = 120 and two choices of self-coupling λχ. (b) Amplitude of peak of
GW spectrum, and final average value for ρχ after preheating ends, for q = 120 and
as a function of λχ. These quantities are presented as fractions of their value in the
λχ = 0 case. For comparison, dashed curves are also shown for the scaling behavior
Eq. (3.4.10) and Eq. (3.4.11). (c) Amplitude of peak of GW spectrum, Ω∗gw, as a
function of λχ for q = 12 and q = 1200, compared with Eq. (3.4.11). (d) Value of
Ωgw as a function of the resonance parameter, q, for λχ = 0 and λχ = 10−7, and the
prediction Eq. (3.4.11) applied to the latter case.
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Figure 3.3: Peak of gravitational wave energy density spectrum, defined in
Eq. (3.4.4), as a fraction of total energy density at end of preheating stage. Spectrum
for q = 120 and two choices of self-coupling λχ. The curves labeled φ(0) = φ0 are
identical to those shown in Fig. 3.2a, corresponding to the original initial condition
for the inflaton field. The curves labeled φ(0) = φ0/10 correspond to starting the in-
flaton a factor of 10 lower on the potential, as described in the text. The magnitude
of the gravitational wave spectrum is changed, but the effect of turning on λχ is the
same.

(a) (b)

Figure 3.4: Peak of gravitational wave energy density spectrum, defined in
Eq. (3.4.4), as a fraction of total energy density at end of preheating stage and nor-
malized to the value when λχ = 0. Here we show several typical examples where the
initial condition and/or parameters of the model are varied, as described in the text.
As in Sec. 3.4, there is some value λ∗χ above which the peak of the gravitational wave

spectrum decreases as λ−2
χ . Once λχ is large enough, the preheating resonance never

starts and there is no further suppression with increasing λχ, an effect also seen in
Sec. 3.4. (a) Varying initial conditions for λφ4 inflaton potential. (b) Varying initial
conditions and mass parameter for m2φ2 inflaton potential. For ease of comparison,
this result is given as a function of λχ/λ∗, where λI

∗ = 10−6, λII
∗ = 10−9, λIII

∗ = 10−7.
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Chapter 4

EFFECT OF STERILE NEUTRINO PARAMETERS ON CP VIOLATION

MEASUREMENTS

4.1 Introduction

The phenomenon of neutrino flavor oscillations, first predicted in 1957 [126], is

currently well-described by a 3-neutrino mixing matrix. Recent years have seen most

parameters of the three-neutrino mixing matrix measured with increasing precision.

The remaining questions of the ordering of the mass eigenstates (sign of m2
3−m2

1) and

the value of the complex phase δ13 are targets for on-going and planned experiments.

Having measured these parameters, more precise studies of neutrino physics promise

to constrain or reveal new physics that deviates from this model.

The on-going experiments directly relevant to the work presented in this chapter

include T2K, which has a baseline length of L = 295 km and neutrino energy peaked

at Eν = 0.6 GeV, and NOνA, which has a baseline length of L = 810 km and neutrino

energy peaked at Eν = 2 GeV. A useful overview of these experiments is provided in

[127]. As we will see in Sec. 4.3, these may or may not be able to determine both δ13

and the mass ordering, depending on the parameters nature has chosen. However, the

planned DUNE experiment, with a baseline length L = 1300 km and broad spectrum

of neutrino energies Eν ∼ 2 to 3 GeV, will be able to determine both quantities

simultaneously.

More specifically, an important goal of these long-baseline neutrino oscillation

experiments in the near future will be to measure the presence or absence of CP

violation in νµ → νe and νµ → νe oscillations, and furthermore to determine the
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value(s) of the parameter(s) in the underlying theory responsible for it. For mixing

among three “active” Dirac neutrinos that are members of weak isospin doublets,

CP violation is determined by the value of the single complex phase δ13 that appears

in the PMNS lepton mixing matrix. If the active neutrinos are Majorana rather

than Dirac fermions, there will be two additional phases, but they will not affect the

νµ → νe oscillations.

However, if the three active neutrinos mix with one or more sterile neutrinos, the

situation will be more complicated. The matrix U relating Dirac mass and weak flavor

eigenstates will include more phases (two more beyond δ13 for mixing with one addi-

tional sterile neutrino), and the expression for νµ → νe oscillation probabilities will

include terms that depend on the sum or difference of these phases [128, 129, 130, 131].

In this case, a measurement of P (να → νβ) 6= P (να → νβ) cannot unambiguously be

related to one parameter in the underlying model. To what extent can experiments

easily break these degeneracies? The goal of this paper is to provide a framework for

relating sterile neutrino parameters with observable features.

There is a long history in the literature of considering parameter degeneracies

strictly within the 3-neutrino framework. Most notably, the ordering of mass eigen-

states (sign of ∆m2
31) is degenerate with δ13: flipping the sign of ∆m2

31 is equivalent

to replacing δ13 → π − δ13, up to small corrections that would be difficult to ex-

perimentally distinguish [132, 133]. Although the mass ordering - δ13 degeneracy for

three-neutrino mixing hasn’t been experimentally resolved yet, its phenomenology has

been well-studied, and provides a useful guide for studying the degeneracy between

3 and 4 neutrino mixing. The effect of a new complex phase was explored in [128] in

the context of a general framework for non-standard interactions.

In the following Section, we will review the phenomenology of CP violation in

long-baseline oscillation experiments, in particular setting up a consistent notation
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that will be useful in the rest of the paper. We will also briefly review some of the

considerations that motivate the study of both sterile neutrinos and CP violation,

although we will not attempt a thorough review of either topic.

In the remaining Sections of this paper, we will present our results. In particular,

we will show the effect that each new parameter has on the CP violation measurement,

and discuss the extent to which long-baseline oscillation experiments can distinguish

them.

4.2 Formalism

The Standard Model of electroweak interactions includes three active neutrinos

that participate in weak interactions as members of weak isospin doublets. Many

experiments force us to the conclusion that these three neutrinos have some small

mass, and that the mass and flavor eigenstates do not coincide. Strict limits on the

invisible decay width of the Z boson restrict the mass of any fourth active neutrino to

be greater than half of the Z mass. 1 By contrast, a sterile neutrino is a new state

that written in the flavor basis is a singlet of the weak interaction. Just as in the

three-neutrino case, though, the change of basis relating flavor and mass eigenstates

will induce mixing between the sterile and active neutrinos.

In particular, the fields of definite flavor 2 να (α = e, µ, τ, s) are related to the

fields of definite mass νi (i = 1, 2, 3, 4) by the mixing matrix U:

να =
4∑
i=1

Uα iνi. (4.2.1)

As an approximate relation that turns out to be valid for the long baseline neutrino

oscillation experiments considered here [134], one can use Eq. (4.2.1) to represent the

1We specifically refer to the fourth mass eigenstate; the new flavor eigenstate would in general
be a linear combination of mass eigenstates.

2Throughout this paper, we will use Greek indices to refer to flavor basis and Latin indices to
refer to mass basis.
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flavor eigenstates as linear combinations of mass eigenstates:

|νl〉 =
3∑
i=1

U∗l i|νi〉 (4.2.2)

The change of basis between mass and flavor eigenstates leads to neutrino flavor oscil-

lations in the following way. Describing states of definite flavor as linear combinations

of mass eigenstates, each of which propagate at a well-defined velocity:

|να(t)〉 =
∑
j=1,2,3

U∗α jexp(−iEjt)|νj〉 (4.2.3)

=
∑

β=e,µ,τ

∑
j=1,2,3

U∗αjexp(−iEjt)Uβj|νβ〉 (4.2.4)

Then the α→ β flavor transition amplitude is

〈νβ(t)|να(0)〉 =
∑
j=1,2,3

U∗αjUβjexp(−iEjt) (4.2.5)

and the transition probability is

P (α→ β) = |〈νβ(t)|να(0)〉|2 =
3∑
i=1

3∑
j=1

UβiU
∗
αiU

∗
βjUαjexp (−i(Ei − Ej)t) (4.2.6)

We can simplify the energy difference in the exponential by noticing that for rela-

tivistic neutrinos (|~p|2 � m2), it is a very good approximation to take

E =
(
p2 +m2

)1/2
= p

(
1 + (m2/p2)

)1/2 ≈ p(1− 1

2
m2/p2 + · · · ) ≈ p−m2/2p2

(4.2.7)

Then the energy difference that we want is

Ek − Ej ≈ p− m2
i

2p
− p+

m2
j

2p
≈
m2
j −m2

i

2p
≡

∆m2
ji

2p
(4.2.8)

and with p ≈ E, t ≈ L (here c ≡ 1, ~ ≡ 1), the transition probability becomes

Pα→β(E,L) =
nν∑
i=1

nν∑
j=1

UβiU
∗
αiU

∗
βjUαjexp

(
i∆m2

ijL/2E
)

=
nν∑
i=1

nν∑
j=1

UβiU
∗
αiU

∗
βjUαjexp (2i∆ij) (4.2.9)
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where we have defined ∆ij ≡ ∆m2
ijL/4E, and allowed for the general case of nν

neutrino mass eigenstates (correspondingly, nν eigenstates of definite flavor). For

later use when comparing with experiment, we note that doing the same calculation

and keeping all powers of c and ~, the result is

∆ij = 1.27

(
∆m2

ij/(eV2/c4)
)

(L/km)

(E/GeV)
(4.2.10)

Expressing the complex integral in terms of trigonometric functions,

Pα→β(E,L) =
nν∑
i=1

nν∑
j=1

UβiU
∗
αiU

∗
βjUαj − 2

nν∑
i=1

nν∑
j=1

UβiU
∗
αiU

∗
βjUαj sin2 (∆ij)

+ i
nν∑
i=1

nν∑
j=1

UβiU
∗
αiU

∗
βjUαj sin (2∆ij)

=

(
nν∑
i=1

UβiU
∗
αi

)(
nν∑
j=1

U∗βjUαj

)

− 2
nν∑
j=1

∑
i<j

(
UβiU

∗
αiU

∗
βjUαj + (UβiU

∗
αiU

∗
βjUαj)

∗) sin2 (∆ij)

− 2
nν∑
i=1

(
UβiU

∗
αiU

∗
βiUαi + (UβiU

∗
αiU

∗
βiUαi)

∗) sin2 (∆ii)

+ i
nν∑
j=1

∑
i<j

(
UβiU

∗
αiU

∗
βjUαj − (UβiU

∗
αiU

∗
βjUαj)

∗) sin (2∆ij)

+ i
nν∑
i=1

(
UβiU

∗
αiU

∗
βiUαj + (UβiU

∗
αiU

∗
βiUαi)

∗) sin (2∆ii) (4.2.11)

The above expression may be further simplified using the unitarity of the mixing

matrix
∑3

i=1 UβiU
∗
αi = δαβ, and noticing that ∆ii = 0. Also, for any complex number

C, the real and imaginary parts are given by C + C∗ = 2Re[C], C − C∗ = 2iIm[C].
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Applying these simplifications to Eq. (4.2.11) gives

Pα→β(E,L) = δαβδαβ

− 4
nν∑
j=1

∑
i<j

Re
[
UβiU

∗
αiU

∗
βjUαj

]
sin2 (∆ji)

+ 2
nν∑
j=1

∑
i<j

Im
[
UβiU

∗
αiU

∗
βjUαj

]
sin (2∆ji) . (4.2.12)

One transition probability of interest here is the νµ → νe or νµ → νe, since they

are relevant to long-baseline oscillation experiments. For four neutrino species, the

oscillation probability is

P (µ→ e) = −4Re
[
Uµ1U

∗
e1U

∗
µ2Ue2

]
sin2 (∆21) + 2Im

[
Uµ1U

∗
e1U

∗
µ2Ue2

]
sin (2∆21)

− 4Re
[
Uµ1U

∗
e1U

∗
µ3Ue3

]
sin2 (∆31) + 2Im

[
Uµ1U

∗
e1U

∗
µ3Ue3

]
sin (2∆31)

− 4Re
[
Uµ2U

∗
e2U

∗
µ3Ue3

]
sin2 (∆32) + 2Im

[
Uµ2U

∗
e2U

∗
µ3Ue3

]
sin (2∆32)

− 4Re
[
Uµ1U

∗
e1U

∗
µ4Ue4

]
sin2 (∆41) + 2Im

[
Uµ1U

∗
e1U

∗
µ4Ue4

]
sin (2∆41)

− 4Re
[
Uµ2U

∗
e2U

∗
µ4Ue4

]
sin2 (∆42) + 2Im

[
Uµ2U

∗
e2U

∗
µ4Ue4

]
sin (2∆42)

− 4Re
[
Uµ3U

∗
e3U

∗
µ4Ue4

]
sin2 (∆43) + 2Im

[
Uµ3U

∗
e3U

∗
µ4Ue4

]
sin (2∆43)

(4.2.13)

In the case where all of the mass squared differences ∆m2
i4 � ∆m2

solar, ∆m2
atmospheric

(for i = 1, 2, 3) in any realistic detector these oscillations will be averaged over, making

the replacements

sin2 (∆i4)→ 1

2
, sin (2∆i4)→ 0 (4.2.14)
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valid. Then the above expression becomes

P (µ→ e) = −4Re
[
Uµ1U

∗
e1U

∗
µ2Ue2

]
sin2 (∆21) + 2Im

[
Uµ1U

∗
e1U

∗
µ2Ue2

]
sin (2∆21)

− 4Re
[
Uµ1U

∗
e1U

∗
µ3Ue3

]
sin2 (∆31) + 2Im

[
Uµ1U

∗
e1U

∗
µ3Ue3

]
sin (2∆31)

− 4Re
[
Uµ2U

∗
e2U

∗
µ3Ue3

]
sin2 (∆32) + 2Im

[
Uµ2U

∗
e2U

∗
µ3Ue3

]
sin (2∆32)

− 2Re
(
(Uµ1U

∗
e1 + Uµ2U

∗
e2 + Uµ3U

∗
e3)U∗µ4Ue4

)
(4.2.15)

Again using the unitarity condition
∑3

i=1 UeiU
∗
µi = δµe = 0, the sum

Uµ1U
∗
e1 + Uµ2U

∗
e2 + Uµ3U

∗
e3 = −Uµ4U

∗
e4. (4.2.16)

So, finally,

P (µ→ e) = −4Re
[
Uµ1U

∗
e1U

∗
µ2Ue2

]
sin2 (∆21) + 2Im

[
Uµ1U

∗
e1U

∗
µ2Ue2

]
sin (2∆21)

− 4Re
[
Uµ1U

∗
e1U

∗
µ3Ue3

]
sin2 (∆31) + 2Im

[
Uµ1U

∗
e1U

∗
µ3Ue3

]
sin (2∆31)

− 4Re
[
Uµ2U

∗
e2U

∗
µ3Ue3

]
sin2 (∆32) + 2Im

[
Uµ2U

∗
e2U

∗
µ3Ue3

]
sin (2∆32)

+ 2|U∗µ4Ue4|2. (4.2.17)

In the literature, there are two popular and nearly identical parametrizations of U :

U4 ν
I ≡ Õ(3, 4)O(2, 4)Õ(1, 4)O(2, 3)Õ(1, 3)O(1, 2) (4.2.18)

U4 ν
II ≡ Õ(3, 4)Õ(2, 4)O(1, 4)O(2, 3)Õ(1, 3)O(1, 2) (4.2.19)

where the matrices O(i, j) (Õ(i, j)) represent real (complex) rotations in the (i, j)

plane. We label the plane of rotation within parentheses, so it is part of the name of

the entire matrix. Specific elements of a matrix are labeled by subscripts. In general,

each O(i, j) will be a 4×4 identity matrix except for “nontrivial elements” responsible

for rotations in the (i, j) plane. For a given rotation matrix O(i, j) or Õ(i, j), the
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nontrivial elements of the matrix will be given byO(i, j)ii O(i, j)ij

O(i, j)ji O(i, j)jj

 =

 cos θij sin θij

− sin θij cos θij

 (4.2.20)

Õ(i, j)ii Õ(i, j)ij

Õ(i, j)ji Õ(i, j)jj

 =

 cos θij sin θijexp(−iδij)

− sin θijexp(+iδij) cos θij

 . (4.2.21)

The parametrizations Eq. (4.2.18) and Eq. (4.2.19) reduce to the usual parametriza-

tion of the PMNS three-neutrino mixing matrix when there is no mixing with the

fourth state (θi4 = 0 for i = 1, 2, 3).

In the vacuum case, it turns out that Uei and Uµi for i = 1, 2, 3 and the term

|U∗µ4Ue4|2 (see Eq. (4.2.23) below) are identical with the replacement δ14 ↔ −δ24, so

that P (δ14) = P (−δ24), P (δ14) = P (−δ24), and it is easy to convert between the final

results. In the matter case, though, there will be additional mixing among terms and

this simple replacement won’t be true in general. Of course, the physical results are

independent of parametrization and the overall range of results for δ14 and δ24 as each

varies from 0 to 2π will be identical. Here we will stick with Parametrization I, with

δ14.

The choice of Õ(3, 4) on the far left in Eq. (4.2.18) or Eq. (4.2.19) is convenient for

the study of oscillations between electron and muon flavor neutrinos, because these

processes end up involving only two independent combinations each of the phases

and mixing angles. We will see below that this arrangement of the rotation matrix

eliminates θ34 and δ34 from our probabilities at the outset.

In all of the calculations in this paper, we will take ∆m2
32 = 2.32 × 10−3 eV2,

∆m2
21 = 7.1×10−5 eV2, θ12 = 0.59, θ23 = 0.79, θ13 = 0.15. These values are consistent

with the Particle Data Group ranges [6] and are identical to those of [135], allowing

direct comparison with of our calculations with theirs. We assume a hierarchy between
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the fourth mass eigenstate and the usual three: ∆m2
4i � ∆m2

solar, ∆m2
atmospheric for

i = 1, 2, 3. This will correspond to rapid oscillations over a short distance – on the

order of meters for ∆m2
4i ∼ eV2 and E ∼ GeV according to Eq. (4.2.10). For the

detectors used in long-baseline experiments, these oscillations will be averaged over

and the replacements

sin2 (∆4i)→
1

2
, sin (2∆4i)→ 0 (4.2.22)

will be valid. Then the oscillation probability is

P (νµ → νe) = −4Re
[
Uµ1U

∗
e1U

∗
µ2Ue2

]
sin2 (∆21) + 2Im

[
Uµ1U

∗
e1U

∗
µ2Ue2

]
sin (2∆21)

− 4Re
[
Uµ1U

∗
e1U

∗
µ3Ue3

]
sin2 (∆31) + 2Im

[
Uµ1U

∗
e1U

∗
µ3Ue3

]
sin (2∆31)

− 4Re
[
Uµ2U

∗
e2U

∗
µ3Ue3

]
sin2 (∆32) + 2Im

[
Uµ2U

∗
e2U

∗
µ3Ue3

]
sin (2∆32)

+ 2|U∗µ4Ue4|2 (4.2.23)

where the last line has been simplified by using the unitarity of U . 3 The antineutrino

oscillation probability P (νµ → νe) is found in the same way as above; the mixing of

the CP-conjugate antineutrino fields is described by

να =
4∑
i=1

U∗α iνi (4.2.24)

where α = e, µ, τ, s and i = 1, 2, 3, 4. The oscillation probability between the muon

and electron flavors can then be put into a similar form, differing only in the coeffi-

3Here the convenience of placing Õ(3, 4) to the far left in the parametrization is apparent. The

probability only involves elements Uµi, Uei (i.e. “top two rows” of U), while Õ(3, 4) only has
nontrivial elements in the bottom two rows. Multiplying on the far left ensures that the top two
rows of U include no factors of θ34 or δ34.
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cients of sin(2∆ij):

P (νµ → νe) = −4Re
[
Uµ1U

∗
e1U

∗
µ2Ue2

]
sin2 (∆21)− 2Im

[
Uµ1U

∗
e1U

∗
µ2Ue2

]
sin (2∆21)

− 4Re
[
Uµ1U

∗
e1U

∗
µ3Ue3

]
sin2 (∆31)− 2Im

[
Uµ1U

∗
e1U

∗
µ3Ue3

]
sin (2∆31)

− 4Re
[
Uµ2U

∗
e2U

∗
µ3Ue3

]
sin2 (∆32)− 2Im

[
Uµ2U

∗
e2U

∗
µ3Ue3

]
sin (2∆32)

+ 2|U∗µ4Ue4|2 (4.2.25)

Since we will have much to say about the relative size of each probability, we define

the simplified notation P ≡ P (νµ → νe) and P ≡ P (νµ → νe) for these specific

processes. Violation of CP symmetry will be observed if the asymmetry

Aµe ≡ P − P (4.2.26)

is nonzero. Use of the expressions Eq. (4.2.23) and Eq. (4.2.25) provides a represen-

tation of this asymmetry in terms of the elements of the mixing matrix:

Aµe = 4Im
[
Uµ1U

∗
e1U

∗
µ2Ue2

]
sin (2∆12) + 4Im

[
Uµ1U

∗
e1U

∗
µ3Ue3

]
sin (2∆13)

+ 4Im
[
Uµ2U

∗
e2U

∗
µ3Ue3

]
sin (2∆23) (4.2.27)

It is interesting that, even though the term 2|U∗µ4Ue4|2 cancels, there can still be

significant effects of δ14. While the measurement of Aµe 6= 0 indicates CP violation, it

only represents the value along one “direction” in the space of possible (P, P ) values.

In Sec. 4.3, we will show a convenient way to represent the full (P, P ) information and

its role in possibly breaking some degeneracy between parameters. The expressions

for the P and P in terms of the specific parametrization of U are lengthy and not

central to the story we are telling, but for reference and to point out some features,

we present them in Appendix C.1.

Now we consider matter effects. Coherent forward scattering of active neutrinos off

of electrons and nuclei in matter provides an interaction Hamiltonian that modifies the
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above oscillation probabilities. Electron neutrinos will see weak charged-current (CC)

scattering from electrons in atoms as well as weak neutral-current (NC) scattering

from neutrons (as the contributions from protons and electrons come in with opposite

sign, and cancel in an electrically neutral medium). Therefore they experience an

interaction potential Ve = VNC + VCC =
√

2GF (Ne −Nn/2), where Ne is the number

density of electrons and Nn is the number density of neutrons. Muon and tau flavor

neutrinos will only interact via NC scattering, so their interaction potentials will be

Vµ = Vτ = −GFNn/
√

2. Antineutrinos of flavor α will have an interaction potential

Vα = −Vα. The sterile neutrino will, by definition, not interact with matter via the

weak interaction. In terms of the average matter density,

VCC = 7.63×
(

ρ

g/cm3

)
× 10−5 eV2. (4.2.28)

For all of the calculations in this paper, we will take ρ = 3 g/cm3. The precise values

for oscillation probabilities depend on ρ, of course, but the qualitative features of this

paper’s results do not.

In the flavor basis, the interaction Hamiltonian is then Hint = diag (Ve, Vµ, Vτ , 0)

for neutrinos and Hint = −Hint for antineutrinos; the full Hamiltonian will be

Hflavor = U †HmassU +Hint. (4.2.29)

where Hmass ≡ diag (0, ∆m2
21, ∆m2

31 ∆m2
41). In order to study neutrino oscillations,

it is again useful to transform to a basis where the Hamiltonian is diagonal. We will

define here a mixing matrix U ′ which diagonalizes Hflavor:

Hmatter ≡ U ′HflavorU
′† ≡ 1

2E
diag

(
m′21 , m

′2
2 , m

′2
3 , m

′2
4

)
=

1

2E
diag

(
0, ∆m′221, ∆m′231, ∆m′241

)
+

1

2E
diag

(
m′21 , m

′2
1 , m

′2
1 , m

′2
1

)
. (4.2.30)
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We have factored out the constant matrix proportional to the identity since it doesn’t

affect relative phases, and therefore has no effect on oscillation probabilities. Using

Eq. (4.2.30), the description of neutrino oscillations in matter is formally identical

to the starting point for the vacuum case, which led to Eq. (4.2.12). Therefore

Eq. (4.2.12) may still be used, with the replacements U → U ′ andmi → m′i: finding U ′

gives the required elements U ′e1, U
′
µ1, U

′
e2, U

′
µ2, U

′
e3, U

′
µ3, U

′
e4, U

′
µ4, and finding Hmatter

gives the quantities ∆′21, ∆′32, ∆′31 to substitute into Eq. (4.2.23).

4.3 Quantifying the Effect of New Parameters

As mentioned in Sec. 4.1, there is a long history in the literature of considering

parameter degeneracies strictly within the 3-neutrino framework. Most notably, the

ordering of mass eigenstates (sign of ∆m2
31) is degenerate with δ13: flipping the sign

of ∆m2
31 is equivalent to replacing δ13 → π − δ13, up to small corrections [132, 133].

This degeneracy is illustrated here in Fig. 4.1, showing curves relevant for the T2K

experiment.

This approximate degeneracy is important because the separation between these

curves is much finer than experiments are capable of measuring. In fact, up until

now, experiments have not been able to determine the mass ordering or rule out

any values of δ13. At long enough baseline, the curves for the inverted and normal

hierarchies separate enough so that there is no overlap. One of the main goals of the

upcoming Deep Underground Neutrino Experiment (DUNE) is to take advangate of

a long baseline measurement optimized to determine the mass ordering and the value

of δ13, using a high-intensity beam of muon neutrinos. 4

In the original work of Minakata and Nunokawa [133] that introduced biprobability

curves as a useful tool, they showed that in vacuum oscillations, the biprobability

4For an overview of DUNE’s science goals and experimental setup, see [136, 137].
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(a) (b)

Figure 4.1: Muon neutrino to electron neutrino flavor oscillation probabilities in
(P, P ) plane with each curve representing δ13 varying from 0 to 2π. This shows
the existence of a near degeneracy between the mass ordering (or “mass hierarchy”)
and the complex phase δ13 in vacuum, and the role of the matter effect to partially
remove it. This also illustrates the useful role of biprobability curves in understanding
parameter degeneracies.

curves are always elliptical; for neutrino oscillations in matter, they remain very

nearly elliptical. Much subsequent work has made use of this idea; see e.g. [138].

Some recent discussions of sterile-active neutrino mixing has made use of biprobability

plots and the range covered by this expanded parameter space, but have not explicitly

shown the relation between the new parameters and the resulting curves [135].

Here, we quantify the effect of each new parameter (θ14, θ24, θ34, δ14, δ34) on

the biprobability ellipses, as a first step towards understanding exactly how neutrino

oscillation experiments can unravel the possible effects of these new parameters. First,

we will study oscillations in vacuum. The insight gained from this simplification will

then be useful for the experimentally-relevant case of neutrino oscillations in matter.

It turns out that in the more general case here, it will still be true that varying

δ13 while keeping all other parameters fixed traces out an ellipse in the (P, P ) plane.
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However, the size, location and (to a lesser extent) orientation of this ellipse depend

on the hidden sector parameters θ14, θ24, and δ14. For some values of the hidden

sector parameters, the (P, P ) prediction will lie outside the realm of possibility for

the 3-neutrino scenario. In that case, the effect of the sterile sector parameters on

the biprobability plots provides a framework for interpreting the results phenomeno-

logically.

Since the proof of ellipticity and derivation of the parametric dependence is a

technical detour, we will present the details in Appendix C.2 and simply quote the

results here. A principal axis transformation allows us to put the probabilities P

and P into the form of an expression for an ellipse. Such a transformation can be

represented as a rotation along with a rescaling, and the rotation angle and rescaling

can be expressed in terms of the parameters L, E as well as the mixing angles and

phases. In general these are not very simple, but after choosing values for L and E a

dual series expansion in the small parameters θi4 is possible. To lowest order in the

parameters θ14 and θ24, the biprobability ellipses are rotated by an angle α and have

lengths L± of major / minor axes changed relative to the usual case by an angle

∆α ∝ θ14θ24, ∆L ∝ θ14θ24, (4.3.1)

with a more complex dependence on δ14. The proportionality depends on the choice

of neutrino energy E and baseline length L appropriate to a particular experiment,

but this provides a good approximation to the behavior in vacuum. As mentioned in

Sec. 4.2, θ34 and δ34 are irrelevant for neutrino oscillations in vacuum, so they have

no effect here.

Does the result described in Eq. (4.3.1) and the surrounding discussion extend to

the case of neutrino oscillations in matter? As discussed following Eq. (4.2.30), P

and P will have the same form as in the vacuum case, so it is no surprise that even
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with the new parameters, the resulting curves are elliptical. Doing a series expansion

in θ14 and θ24 to find a rotation angle and rescaling, analogous to the vacuum case, is

prohibitively complex. However, the important features of the biprobability ellipses

for neutrino oscillations in matter are easily seen by plotting the results.

Fig. 4.3 and Fig. 4.4 show how the biprobability ellipses change as δ14 varies

between 0 and π with fixed θ14 and θ24, for parameter choices of experimental interest.

Fig. 4.2 shows how the biprobability ellipses change as the product θ14θ24 varies with

fixed δ14. It provides examples of the more general case that the product θ14θ24, rather

than the individual mixing angles, controls the variation in the biprobability curves.

In other words, this result from the study of vacuum oscillations remains true in the

presence of matter effects.

Fig. 4.5 and Fig. 4.6 show more clearly the regions in which δ13 and δ14 are

or are not degenerate. For several experimental setups, the biprobability curve for

θ14 = θ24 = 0.1, δ14 = 0 is plotted, along with several points corresponding to the

choices δ13 = 0, π/2, π, 3π/2 and δ14 = nπ/4 with n = 0, . . . , 7. As detailed within

the figure, these points are color coded by δ14, while the shape of the plot marker

is determined by the value of δ13.The measurement of a point in some regions of

biprobability space corresponds to unique values of both phases, while in others there

is still ambiguity. This is apparent when comparing Fig. 4.5 and Fig. 4.6.

4.4 Summary and Conclusions

In this paper, we have shown how biprobability curves, a convenient tool for under-

standing neutrino and antineutrino oscillation probabilities, are affected by the new

parameters present when the active neutrinos mix with a sterile neutrino. The mixing

angles θ14 and θ24 affect the angle and size of the ellipses in a manner proportional

to θ14θ24. The most important result concerns degeneracies between δ13 and δ14. For
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a given experimental setup, there will be regions where a measurement would have

difficulty distinguishing between the predictions of different values for these complex

phases, while other regions would allow them to be easily distinguished. This makes

it sound like the possibility of experimentally determining δ14 and δ24 separately de-

pends only on the parameters nature has chosen. However, as seen by comparing

Fig. 4.5 and Fig. 4.6, different experimental setups may have different values of these

parameters that are degenerate. Since DUNE is expected to be able to determine

whether the mass ordering follows the normal hierarchy or inverted hierarchy, ex-

periments with shorter baselines will no longer have to worry about the sign(∆31)

ambiguity, and could be more useful in breaking a δ13 − δ14 degeneracy.

In order to fully explore the ability of combinations of experiments to fully deter-

mine both δ13 and a possible δ14, we would need to take into account each detector’s

characteristics, i.e. the “resolution” on the biprobability plot which can be distin-

guished. This is beyond the scope of this work. Another useful goal for future work

is to further develop the analytical understanding that relates each new mixing pa-

rameter with features of the biprobability plots.
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(a) (b)

(c) (d)

Figure 4.2: Ellipses in (P, P ) plane with each curve representing δ13 varying from
0 to 2π, for various choices of the product θ14θ24 with fixed δ14 = π/4. Results
for nonzero θi4 are plotted for the following combinations (θ14 = 0.1, θ24 = 0.04);
(θ14 = 0.04, θ24 = 0.1); (θ14 = 0.06325, θ24 = 0.06325); (θ14 = 0.1, θ24 = 0.08);
(θ14 = 0.08, θ24 = 0.1); (θ14 = 0.08944, θ24 = 0.08944). The curves corresponding to
the same values of θ14θ24 almost exactly coincide.
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(a) (b)

(c) (d)

Figure 4.3: Ellipses in (P, P ) plane with each curve representing δ13 varying from 0
to 2π, for one specific choice of δ14 and for fixed θ14 = θ24 = 0.1 and θ34, δ34 = 0. The
dependence of the θ13 points on a varying δ14 will be show in Fig. 4.5 and Fig. 4.6.
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(a) (b)

(c) (d)

Figure 4.4: Ellipses in (P, P ) plane with each curve representing δ13 varying from 0
to 2π, for one specific choice of δ14 and for fixed θ14 = θ24 = 0.1 and θ34, δ34 = 0. The
dependence of the θ13 points on a varying δ14 will be show in Fig. 4.5 and Fig. 4.6.
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(a) (b)

(c) (d)

Figure 4.5: Points in (P, P ) plane corresponding to various choices of δ13 and δ14,
for fixed θ14 = θ24 = 0.1 and θ34, δ34 = 0. Evidently some regions of parameter space
are more amenable than others to simultaneous determination of δ13 and δ14. The
black curve corresponds to the biprobability ellipse when δ14 = 0.
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(a) (b)

(c) (d)

Figure 4.6: Points in (P, P ) plane corresponding to various choices of δ13 and δ14,
for fixed θ14 = θ24 = 0.1 and θ34, δ34 = 0. Evidently some regions of parameter space
are more amenable than others to simultaneous determination of δ13 and δ14. The
black curve corresponds to the biprobability ellipse when δ14 = 0.
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Chapter 5

CONCLUSION

“Yes, but here I come to a stop! Gentlemen, you must excuse me for being

over-philosophical; it’s the result of forty years underground!”

–Fyodor Dostoevsky, Notes From Underground

This dissertation has examined several aspects of high energy physics relevant to

violent processes in the early universe. Early universe processes such as phase tran-

sitions and out-of-equilibrium particle production can provide a unique connection

between observation and physics far above the TeV scale.

The work presented in Chapter 2 describes a possible way to constrain new models

of particle physics which contain a scalar field that gets a vacuum expectation value

as a “dark sector” U(1) is spontaneously broken. The scalar S and the gauge boson

Xµ of the U(1) can couple to the Standard Model by Higgs Portal and Kinetic Mixing

operators. Many experiments constrain the strengths α, ε of these operators when

the dark symmetry breaking scale σ or dark photon mass mX is below O (TeV) but

there is little constraint at higher energies. When the U(1)X is spontaneously broken

in the early universe, though, a network of cosmic string topological defects would

have been formed and would still exist today.

Previous works had noted that these dark strings can radiate particles (e.g. [36]),

and that one can consider an “effective coupling” whereby the string acts as a delta-

function source of standard model fields, with coupling constants gH
str and gZ

str for the

Higgs and Z boson, respectively. The decay of these particles would contribute to the

diffuse gamma ray flux as measured, for example, by Fermi-LAT. However, it was
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not clear from previous works (i) how to calculate the effective coupling of the string

action to Higgs or Z fields directly from strength of HP and KM terms in L, (ii) how

the coupling scales with the relevant parameters – previous works assumed that the

coupling was proportional to the hidden sector symmetry breaking scale σ. It was

therefore unclear how to provide a quantitative constraint on these models.

The work described in Chapter 2 found the “string solution” - the field profiles

with nonzero hidden-sector winding number that are solutions of the equations of

motion for the model. This is a boundary-value problem that is difficult to solve

because the Higgs Portal and Kinetic Mixing introduce significant nonlinearities that

couple the solutions. It is especially problematic when there is a large hierarchy be-

tween the electroweak and hidden sector symmetry breaking scales. The solution to

this included development of a numerical method that is able to handle the problem’s

nonlinearities by “bootstrapping” prior solutions in a way that takes advantage of

simpler, limiting cases. As a result, and contrary to assumptions made in some previ-

ous works, it was found that the effective coupling depends on the electroweak scale

η, rather than the hidden sector scale σ, with big implications for the observability

of dark strings.

Integrating these solutions produced the relevant coupling constants gstr
H and gstr

Z .

With these effective couplings in hand, in order to evaluate phenomenological con-

straints it is necessary to know the power spectrum emitted by features known as

cusps and kinks that occur as the string network evolves, the subject of the follow-up

paper [139]. Finally, [140] went on to show that for the range of parameters consid-

ered in the papers [141, 139], there won’t be an observable contribution to gamma ray

flux. On the other hand, a different group has argued [142] that for large Higgs Portal

coupling and large separation of scales, there will be an observable effect. This region

is very difficult to solve numerically, so at the moment it is still not clear whether
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there is any constraint – it is an important question to address in future work.

The inflationary scenario requires a reheating mechanism by which the inflaton

field’s energy density is converted into a thermal spectrum of particles, the subject of

Chapter 3. Its nature is not known but much work has gone into the study of simplified

models; for example, an inflaton φ oscillates about its minimum and excites a light

field χ, whose only interaction is a coupling ∆L = −1
2
g2φ2χ2 (where g2 is a coupling

constant). In this context, there can be an unstable resonance as some field modes

are excited at an exponential rate, for a brief “preheating” phase. Previous work has

shown that this produces anisotropic stress that sources gravitational waves. Today

this spectrum would be outside the sensitivity of existing or proposed experiments,

but in principle detectable.

The result described above leads to the question of how robust are the predictions.

Successful reheating into (ultimately) Standard Model particles requires more than

the simple field modeled by χ, but previous work had not shown explicitly the effect

of introducing new interactions. If we ask generically what interactions a light field

such as χ may have, either as fundamental terms or from integrating out a heavy

field, a well-motivated addition is a quartic self-interaction with self-coupling λχ.

(An example could be a small, effective coupling of Higgs to inflaton.) Then the

potential is

V = Vinflaton(φ) +
1

2
g2φ2χ2 +

1

4
λχχ

4. (5.0.1)

This work [143] showed how the spectrum of gravitational waves depends directly on

the light field’s quartic self-coupling, λχ, for a range of parameters and two often-

studied inflaton potentials.

A full understanding of reheating in this scenario requires both analytic and nu-

merical methods. At first, the mode equations for the small-amplitude χ field decouple
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and become independent harmonic oscillators with time-dependent frequencies (due

to the background inflaton oscillations). Parametric resonance leads to exponential

amplification of some modes, leading to an anisotropic stress in the fields’ energy

momentum tensor, which sources gravitational wave production. The source term for

gravitational waves grows exponentially.

The size of the gravitational wave spectrum is therefore directly tied to how long

the resonance lasts, so any effect that tends to terminate the resonance early will result

in a reduced spectrum of gravitational waves. Early termination of the resonance is

exactly the effect of λχ 6= 0. Heuristically, once χ becomes large the self-interaction

term will become more efficient in coupling different modes, so that energy is taken

from the resonant mode, ending its exponential growth. A full lattice simulation

of the field dynamics is necessary in order to understand when the nonlinear effects

become important. I found numerically that whether (and when) the quartic term

significantly affects the results depends on the variances of φ and χ as well as the

coupling constants g2 and λχ.

The above result was used to understand that the gravitational wave spectrum

scales with λχ as

Ω(λχ)
gw /Ω(λχ=0)

gw ∼ (g2/λχ)2 (5.0.2)

for λχ greater than some small critical value, a typical example being λ∗χ ∼ 10−10. I

also verified Eq. (5.0.2) numerically, by computing the anisotropic stress in the energy-

momentum tensor, and using it as a source for the wave equation for transverse-

traceless tensor perturbations (gravitational waves), solved by using Green’s func-

tions. I found Eq. (5.0.2) to be true whether Vinflaton(φ) takes a quartic or quadratic

form, and holds for several choices of initial condition for φ at the end of inflation.

(Even without V ∼ φ2 or φ4 at inflationary field values, oscillations about the bottom
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of the potential may have this form.)

There are important questions remaining for future work. In particular, numerical

simulations show a relationship between the variances of φ and χ that determined

whether the λχχ
4 term plays a significant role, and a calculation using nonequilibrium

field theory would be very useful in understanding the generality of this result. Also,

a recent paper estimates the maximum gravitational wave production from early

universe processes [95]. It would be interesting to see how the result of Chapter 3

could be incorporated into that picture, to estimate how specific interactions in a

model relate to features of the observable gravitational wave spectrum.

Chapter 4 showed how biprobability curves, a convenient tool for understanding

neutrino and antineutrino oscillation probabilities, are affected by the new parameters

present when the active neutrinos mix with a sterile neutrino. The mixing angles θ14

and θ24 affect the angle and size of the ellipses in a manner proportional to θ14θ24.

The most important result concerns degeneracies between δ13 and δ14. For a given

experimental setup, there will be regions where a measurement would have difficulty

distinguishing between the predictions of different values for these complex phases,

while other regions would allow them to be easily distinguished. This experimental

ambiguity makes it sound like the possibility of experimentally determining δ13 and

δ14 separately depends only on the parameters nature has chosen. However, different

experimental setups may have different values of these parameters that are degenerate.

Since the DUNE experiment is expected to be able to determine whether the mass

ordering follows the normal hierarchy or inverted hierarchy, experiments with shorter

baselines will no longer have to worry about the sign(∆31) ambiguity, and could be

more useful in breaking a δ13 − δ14 degeneracy.

In order to fully explore the ability of combinations of experiments to fully deter-

mine both δ13 and a possible δ14, it would need to take into account each detector’s
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characteristics, i.e. the “resolution” on the biprobability plot which can be distin-

guished. Incorporating these experimental details is beyond the scope of this work.

Another useful goal for future work is to further develop the analytical understanding

that relates each new mixing parameter with features of the biprobability plots.
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APPENDIX A

NUMERICAL SOLUTION OF DARK STRING FIELD EQUATIONS

125



The dark string is the solution of the system of equations given by 2.3.3.4 along
with the boundary conditions in Eqs. (2.3.3.5) and (2.3.3.7). We solve these equations
numerically using the Fortran solver Colnew, which implements collocation to solve
boundary value problems (BVPs) involving systems of ordinary differential equations
(ODEs) [144]. In order to obtain convergence, nonlinear BVPs frequently require a
very good initial guess as input to an iterative method of solution, and this is the
case with our problem.

We obtain this using the method of continuation [145]. In the absence of the HP
and GKM operators, the dark and standard model sectors decouple. In the (1, 1)
case this reduces to two independent Nielsen–Olesen strings, and in the (0, 1) case
this reduces to a Nielsen–Olesen string along with a vacuum solution. In either case,
their solution is straightforward. We then use continuation, which relies on the fol-
lowing observation: given two sets of model parameters whose values are very close,
we expect the corresponding solutions of Eq. (2.3.3.4) to be nearly identical. Thus,
we begin with the solution to the decoupled problem and then solve the system of
equations with the HP or GKM small but nonzero. This is the beginning of a series
of problems, each using the previous solution as Colnew’s initial guess and returning
a solution for incrementally larger HP and GKM. The final step in this procedure
solves Eq. (2.3.3.4) for the desired choice of parameters.

We impose the ξ = ∞ boundary conditions at some ξ∞ and solve numerically
on [0, ξ∞]. When σ and η are comparable, ξ∞ of 200 to 400 is typically sufficient to
ensure that the profiles and relevant integrals (tension and couplings) are insensitive
to the value of ξ∞. In the (1, 1) case and for σ � η we begin with two Nielsen–Olesen
strings varying on significantly different scales (as in Fig. 2.4, for example), and we
use ξ∞ of order 1000.
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APPENDIX B

CALCULATION OF DARK STRING TENSION
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This appendix presents the calculation behind Eq. (2.4.2.1). For a system of
several fields φi described by action S =

∫
d4x L(φi, ∂αφi), the energy–momentum

tensor is

T ν
µ =

∑
i

∂µφi
∂L

∂(∂νφi)
− δνµL (B.0.1)

For a static solution, time derivatives of all field components vanish, so the energy
density (energy per unit volume) is

E = T 0
0

=
∑
i

∂0φi
∂L

∂(∂0φi)
− L

= −L (B.0.2)

The string tension is energy per unit length, so it is the above quantity integrated
over directions transverse to the string axis:

µ =

∫
dA⊥ E (B.0.3)

This is done on the assumption that the string’s radius of curvature is much larger
than its width, so that it can be reliably described as axially symmetric.

Since our ansatz is given in cylindrical polar coordinates, it will be easiest to use
this choice for the entire calculation. We will use the notation f ′ ≡ df

dξ
. The line

element is

ds2 = gµνdx
µdxν = dr2 + r2dφ2 + dz2

=
1

η2
(dxξ)2 +

ξ2

η2
(dxφ)2 +

1

η2
(dxz)2 (B.0.4)

where dxξ = dξ = ηdr, dxφ = dφ, dxz = ηdz. This gives the components of the
metric

gξξ =
1

η2
, gφφ =

ξ2

η2
, gzz =

1

η2
, gij = 0 for i 6= j (B.0.5)

and the inverse metric

gξξ = η2, gφφ =
η2

ξ2
, gzz = η2, gij = 0 for i 6= j (B.0.6)

Since we have defined
Zµdx

µ = gµνZ
νdxµ = z(ξ)dxφ (B.0.7)

we get

gφφZ
φdxφ =

ξ2

η2
Zφdxφ = z(ξ)dxφ (B.0.8)

or the nonzero component of the gauge field Z is

Zφ =
η2z(ξ)

ξ2
(B.0.9)
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Similarly,

Xφ =
η2x(ξ)

ξ2
(B.0.10)

In order to compute the string tension, we will need the following quantities:

XµX
µ = gµνX

µXν = gφφX
φXφ =

ξ2

η2

η2x(ξ)

ξ2

η2x(ξ)

ξ2
=
η2x(ξ)2

ξ2
(B.0.11)

∂µS
∗∂µS = gµν∂µS

∗∂νS = gξξ∂ξS
∗∂ξS + gφφ∂φS

∗∂φS = η2∂ξS
∗∂ξS +

η2

ξ2
∂φS

∗∂φS

(B.0.12)

(∂µS
∗)Zµ = (∂φS

∗)Zφ = (∂φS
∗)
η2z(ξ)

ξ2
(B.0.13)

Zµ(∂µS) = gφφg
φφZφ(∂φS) =

η2z(ξ)

ξ2
(∂φS) (B.0.14)

Now,

|DµS|2 = DµS
∗DµS

=
(
∂µS

∗ + igSz ZµS
∗ + igSXXµS

∗) (∂µS − igSz ZµS − igSXXµS
)

= η2∂ξS
∗∂ξS +

η2

ξ2
∂φS

∗∂φS − igSz ∂φS∗
η2z(ξ)

ξ2
S − igSX∂φS∗

η2x(ξ)

ξ2
S

+igSz S
∗η

2z(ξ)

ξ2
∂φS + (gSz )2η

2z(ξ)2

ξ2
+ gSz g

S
X

η2z(ξ)x(ξ)

ξ2
|S|2

+igSXS
∗η

2x(ξ)

ξ2
∂φS + gSXg

S
z

η2x(ξ)z(ξ)

ξ2
|S|2 + (gSX)2η

2x(ξ)2

ξ2
|S|2

= η2σ2(s(ξ)′)2

+
η2σ2s(ξ)2

ξ2

(
m2 − 2[gSz z(ξ) + gSXx(ξ)] + [gSz z(ξ) + gSXx(ξ)]2

)
= η2σ2(s(ξ)′)2 +

η2σ2s(ξ)2

ξ2

(
[gSz z(ξ) + gSXx(ξ)]−m

)2
(B.0.15)

To find |DµΦ|2 we do the same calculation with m → n, σ → η, s, s′ → h, h′,
gSz → gHz , gSX → gHX which gives

|DµΦ|2 = η4(h(ξ)′)2 +
η4h(ξ)2

ξ2

(
[gHz z(ξ) + gHXx(ξ)]− n

)2
(B.0.16)
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The potential is

U = λ
(
Φ†Φ− η2

)2
+ κ

(
S∗S − σ2

)2
+ α

(
Φ†Φ− η

)
(S∗S − σ)

= λη4
(
h(ξ)2 − 1

)2
+ κσ4

(
s(ξ)2 − 1

)2
+ αη2σ2

(
h(ξ)2 − 1

) (
s(ξ)2 − 1

)
= η4

[
λ
(
h(ξ)2 − 1

)2
+ κ

(
σ

η

)4 (
s(ξ)2 − 1

)2
+ α

(
σ

η

)2 (
h(ξ)2 − 1

) (
s(ξ)2 − 1

)]
(B.0.17)

Finally, the kinetic terms for the gauge fields are

−1

4
XµνX

µν = −1

2
(∂µXν∂

µXν − ∂µXν∂
νXµ)

= −1

2

(
∂µgφφX

φgβµ∂βX
φ − ∂µgφφXφgφφ∂φX

µ
)

= −1

2

η4 (x(ξ)′)2

ξ2
(B.0.18)

and similarly

−1

4
ZµνZ

µν = −1

2

η4 (z(ξ)′)2

ξ2
(B.0.19)

The energy density is:

E = −L

=
η4(x′)2

2ξ2
+

η4(z′)2

2ξ2
+ η4(h′)2 +

η4h2

ξ2

(
[gHz z + gHXx]− n

)2

+ η4

(
σ

η

)2

(s′)2 + η4

(
σ

η

)2
s2

ξ2

(
[gSz z + gSXx]−m

)2

+ η4

[
λ
(
h2 − 1

)2
+ κ

(
σ

η

)4 (
s2 − 1

)2
+ α

(
σ

η

)2 (
h2 − 1

) (
s2 − 1

)]
(B.0.20)

For the special case ε = 0, α = 0 the Higgs portal term in the potential goes away,
and the coefficients gHZ = 1, gHX = 0, gSZ = 0, gSX = 1. As expected, in the absence
of interactions between the SM and dark sectors our energy reduces to the sum of
energies of two separate Nielsen–Olesen strings.

If we pull out the factor of η4 by writing this as E ≡ η4E0, then the energy per
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unit length (string tension) becomes

µ =

∫
EdA

= η4

∫
E0 r dr dθ

= η4

∫
E0

1

η2
ξ dξ dθ

= 2πη2

∫
E0 ξ dξ (B.0.21)

We use the profile functions to calculate the string tension in units of 2πη2, which
is the result of evaluating the integral

µ =

∫ ∞
ξ=0

(EX + EZ + EH + ES + u) ξ dξ (B.0.22)

where (defining A ≡ σ
η
)

EX =
(x′)2

2ξ2
(B.0.23)

EZ =
(z′)2

2ξ2
(B.0.24)

EH = (h′)2 +
h2

ξ2

(
[gHz z + gHXx]− n

)2
(B.0.25)

ES = A2(s′)2 + A2 s
2

ξ2

(
[gSz z + gSXx]−m

)2
(B.0.26)

u = λ
(
h2 − 1

)2
+ κA4

(
s2 − 1

)2
+ αA2

(
h2 − 1

) (
s2 − 1

)
(B.0.27)

131



APPENDIX C

ELLIPTICITY OF BIPROBABILITY PLOTS IN THE PRESENCE OF A
STERILE NEUTRINO

132



C.1 Four-Flavor Mixing Matrix in Vacuum

Here we present the elements of the four-lepton mixing matrix relevant to the
processes νµ → νe and νµ → νe in vacuum, and point out interesting features. In
“Parametrization II” (where we use δ24 rather than δ14), the combinations we need
for νµ → νe and νµ → νe can be put into a form where factors of sin δ13 and cos δ13
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are emphasized:

Re
[
Uµ1U

∗
e1U

∗
µ2Ue2

]
= [

1

16
c2

14(−2c23c
3
13s14 cos δ24 sin (4θ12) sin (2θ24)

+ c2
24s

2
23 sin2 (2θ12) sin2 (2θ13)

+ 16c2
12c

2
13s

2
12

(
c2

13s
2
14s

2
24 − c2

23c
2
24

)
)]

+ cos δ13[
1

8
c2

13c
2
14s13(2c13s14s23 cos δ24 sin2 (2θ12) sin (2θ24)

− c2
24 sin (4θ12) sin (2θ23))]

+ sin δ13[−1

4
c3

13c
2
14s13s14s23 sin δ24 sin2 (2θ12) sin (2θ24)] (C.1.1)

Im
[
Uµ1U

∗
e1U

∗
µ2Ue2

]
= c12c

3
13c

2
14c23c24s12s14s24 sin δ24 − sin δ13[c12c

2
13c

2
14c23c

2
24s12s13s23]

(C.1.2)

Re
[
Uµ1U

∗
e1U

∗
µ3Ue3

]
= [c12c13c

2
14s

2
13

(
c23c24s12s14s24 cos δ24 + c12c13

(
s2

14s
2
24 − c2

24s
2
23

))
]

+ sin δ13[
1

8
c2

12c
2
14s14s23 sin δ24 sin (4θ13) sin (2θ24)]

+ cos δ13[−1

8
c2

14(c2
12s14s23 cos δ24 sin (4θ13) sin (2θ24)

+ 2c2
13c

2
24s13 sin (2θ12) sin (2θ23))] (C.1.3)

Im
[
Uµ1U

∗
e1U

∗
µ3Ue3

]
=

1

2
c12c13c23c

2
14s12s

2
13s14 sin δ24 sin (2θ24)

+ cos δ13[
1

2
c2

12c13c
2
14s13s14s23 sin δ24 sin (2θ24)]

+ sin δ13[
1

2
c12c13c

2
14s13(c12s14s23 cos δ24 sin (2θ24)

+ c13c
2
24s12 sin (2θ23))] (C.1.4)

Re
[
Uµ2U

∗
e2U

∗
µ3Ue3

]
= −c13c

2
14s12s

2
13

(
c12c23c24s14s24 cos δ24 + c13s12

(
c2

24s
2
23 − s2

14s
2
24

))
+ sin δ13[

1

8
c2

14s
2
12s14s23 sin δ24 sin (4θ13) sin (2θ24)]

+ cos δ13[
1

2
c13c

2
14s12s13s23(2c12c13c23c

2
24

− s12s14 cos δ24 sin (2θ24) cos (2θ13))] (C.1.5)

Im
[
Uµ2U

∗
e2U

∗
µ3Ue3

]
= −1

2
c12c13c23c

2
14s12s

2
13s14 sin δ24 sin (2θ24)

+ cos δ13[
1

2
c13c

2
14s

2
12s13s14s23 sin δ24 sin (2θ24)]

+ sin δ13[
1

2
c13c

2
14s12s13(s12s14s23 cos δ24 sin (2θ24)

− c12c13c
2
24 sin (2θ23))] (C.1.6)

|U∗µ4Ue4|2 =
1

4
s2

24 sin2 (2θ14) (C.1.7)
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where cij ≡ cos θij and sij ≡ sin θij. We have written them in this form, singling out
sin δ13 and cos δ13, for a specific reason. Comparison with Eq. (4.2.23) and Eq. (4.2.25)
shows that we can always write the νµ → νe probability P and the νµ → νe probability
P in the form

P = A+B cos δ13 + C sin δ13, P = A+B cos δ13 + C sin δ13, (C.1.8)

where the coefficients A, B, C, A, B, C are independent of δ13 but complicated func-
tions of the other mixing parameters θij, δij, the mass-squared splittings δm2

ij, and
the ratio L/E of baseline length to neutrino energy. In Appendix C.2, we will put
this form to use towards understanding the effect of new parameters.

C.2 Generalized Proof of Ellipticity in (P, P ) Space, and Parametric Dependence

Here we present a proof that even in the presence of mixing with a fourth “sterile”
state, the trajectory in (P, P ) space is elliptical. This is directly analogous to the proof
given in [133] for the case of three-neutrino mixing. This will allow us to characterize
the deviation from the standard model case in terms of the new parameters.

As shown in Appendix C.1, the νµ → νe probability P and the νµ → νe probability
P can always be written in the form

P = A+B cos δ13 + C sin δ13, P = A+B cos δ13 + C sin δ13, (C.2.1)

where the coefficients A, B, C, A, B, C are independent of δ13 but complicated func-
tions of the other mixing parameters θij, δij, the mass-squared splittings δm2

ij, and
the ratio L/E of baseline length to neutrino energy.

Now we can eliminate cos δ13 and sin δ13 to get a parametric equation relating P
and P :

1 = cos2 δ13 + sin2 δ13

=

(
CP − CP + CA− CA

CB − CB

)2

+

(
BP −BP +BA−BA

BC −BC

)2

(C.2.2)

In the limit of no hidden sector, θi4 = 0, and in vacuum, we will have A = A, B = B,
C = −C and we have

1 =

(
P + P − 2A

2B

)2

+

(
P − P

2C

)2

(C.2.3)

This is also appeared in [133], and in coordinates P± ≡ 1√
2

(
P ± P

)
it describes an

ellipse centered at P− = 0 and P+ = A/
√

2. Since P− is the CP asymmetry Aµe

defined in Eq. (4.2.26) (up to a multiplying factor), we can see from Eq. (C.2.3) that
this provides a fuller picture of the probabilities in (P, P ) space.

Is Eq. (C.2.2) also an ellipse in (P, P ) space? By inspection is not obvious that
coordinates (x, y), analogous to P±, can be chosen so that Eq. (C.2.2) can be put
into the form 1 = (x/α)2 + (y/β)2. However, it turns out that we can always find a
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principal axis transformation that does this. We will shift the coordinates to eliminate
the linear terms, and then apply a principal axis transformation. In terms of the (P, P )
plane, this corresponds to first centering the ellipse on the origin, and then rotating
it.

To see this, we expand Eq. (C.2.2) as:

R2 = S P + SP + C1P
2

+ C2PP + C3P
2 (C.2.4)

where we have defined

R2 = B2C
2 − 2BCBC +B

2
C2 − A2B

2 − A2C
2

+ 2AABB + 2AACC − A2
B2 − A2

C2 (C.2.5)

S = 2ABB + 2ACC − 2AB2 − 2AC2 (C.2.6)

S = −2AB
2 − 2AC

2
+ 2ABB + 2ACC (C.2.7)

C1 = B2 + C2 (C.2.8)

C2 = −2BB − 2CC (C.2.9)

C3 = B
2

+ C
2

(C.2.10)

Defining new coordinates

u ≡ P +
S − 2C1S

4C1C3 − C2

(C.2.11)

v ≡ P + S − 2C3S − 4C1C3S

4C1C3 − C2

(C.2.12)

allows this to be written as a quadratic form:

R2 − α2 ≡ r2 = (u v)

(
C3 C2/2
C2/2 C1

)(
u
v

)
≡

2∑
i,j=1

ViWijVj = V T ·W · V (C.2.13)

where

α2 ≡ [C1

(
3C2

2S
2 + 4C3S

(
C3S

2
(S + 2)− 2S

)
− 2C2S

(
S − 2C3S(4S + 3)

))
+ 16C2

3C
3
1S

2(S + 1)2 + S
(
C2

(
−2C2S − 4C3S

2
+ S

)
+ C3S

)
− 4C3C

2
1S
(
S
(
4C2(S + 1)− 3

)
+ 4C3S(S + 1)2

)
]/((C2 − 4C1C3) 2) (C.2.14)

Now the principal axis transformation that we want is the one that diagonalizes the
matrix W , i.e. we want to find the coordinates (eigenvectors) (x, y) in which W is
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diagonal. If Z is the matrix of normalized eigenvectors of W , then

r2 = V T · (ZTZ) ·W · (ZTZ) · V
= (Z · V )T · (Z ·W · ZT) · (Z · V )

= (x y)

(
λ1 0
0 λ2

)(
x
y

)
(C.2.15)

This finally is in the form of an ellipse,

1 = λ1

(x
r

)2

+ λ2

(y
r

)2

, (C.2.16)

which has principal axes along x and y, of length Lx = r/
√
λ1, Ly = r/

√
λ2 respec-

tively. Now we can say how these properties depend on the new parameters in the
theory.
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PREVIOUSLY PUBLISHED WORK
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Some of the work presented here has been previously published. Chapter 2, “Dark
Strings and their Couplings to the Standard Model,” was published in Physical Re-
view D [141], and was coauthored by Tanmay Vachaspati and Andrew Long. They
have given their permission for this work to appear in this dissertation. Chapter 3,
“Sensitivity of Gravitational Waves from Preheating to a Scalar Field’s Interactions,”
was published in Physical Review D [143], and has no coauthors. Chapter 4, “Effect of
Sterile Neutrino Parameters on CP Violation Measurements,” has not been published
but will be submitted for publication in collaboration with Cecilia Lunardini.

139


