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ABSTRACT

As the world embraces a sustainable energy future, alternative energy resources,
such as wind power, are increasingly being seen as an integral part of the future electric
energy grid. Ultimately, integrating such a dynamic and variable mix of generation requires
a better understanding of renewable generation output, in addition to power grid systems
that improve power system operational performance in the presence of anticipated events
such as wind power ramps. Because of the stochastic, uncontrollable nature of renewable
resources, a thorough and accurate characterization of wind activity is necessary to
maintain grid stability and reliability. Wind power ramps from an existing wind farm are
studied to characterize persistence forecasting errors using extreme value analysis
techniques. In addition, a novel metric that quantifies the amount of non-stationarity in
time series wind power data was proposed and used in a real-time algorithm to provide a
rigorous method that adaptively determines training data for forecasts. Lastly, large swings
in generation or load can cause system frequency and tie-line flows to deviate from
nominal, so an anticipatory MPC-based secondary control scheme was designed and
integrated into an automatic generation control loop to improve the ability of an

interconnection to respond to anticipated large events and fluctuations in the power system.
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1. INTRODUCTION

Renewable energy resources, such as wind power, are a substantial component of
the future generation portfolio. According to the U.S. Department of Energy (DOE), global
generation capacity of renewable energy has drastically increased during the past decade,
and the U.S. consumption of renewable fuel is projected to continue its increase by 1.6
percent per year until the year 2040 [1]. Specifically regarding wind power, a study by the
DOE and Sandia National Laboratories shows that 20% wind energy penetration is a
possibility by 2030 [2, 3]. Ultimately, integrating such a dynamic and variable mix of
generation requires the development of tools and practices capable of coordinating the
many renewable resources, such as wind and solar energy, to be added to the electric grid.
With the increase in renewable energy penetration comes an increasingly complex power
system, with a need to address stability and reliability through improved control. This study
aims to contribute to stability of the smart grid and future power system by contributing to
three interconnected focus areas: 1) characterizing the extreme deviations in wind farm
power output, 2) quantifying non-stationarity in training data used in statistical forecasting,
and 3) integrating prior knowledge of events into the control loop by the use of anticipatory

secondary control.



Extreme wind power ramp characterization is helpful for wind power modeling,
which is used in power systems planning and research. A method for quantifying non-
stationarity for wind power forecasts would ultimately provide improved short-term
forecasts, used in power system operations. Both improved modeling and improved short-
term forecasts can help create a better understanding of wind power output over time,
which is used in anticipatory secondary control.

This dissertation groups each main work into its own chapter. Chapter 1 outlines
the structure of the dissertation and details the motivation for the studies as well as some
prior work in literature. Chapter 2 presents the characterization of the extreme wind ramp
events, and Chapter 3 presents a novel method for quantifying non-stationarity within
potential sets of training data for short-term wind power forecasting. Chapter 4 presents
work on anticipatory secondary control within the power system, with a given forecast of
a disturbance. Chapter 5 concludes by detailing the impact of this work along with

providing possible future research directions for this work.

1.1. Motivation

This section provides a brief motivation for each section of the work. Individual
chapters detail the motivation for individual topics.

Rare events in the power system may be extremely difficult to predict, but they
have extreme economic and social impact. Examples include the Northeast U.S. blackout
of 2003, where estimates for cost of lost service range from $7-10 billion for the
approximately 16 hours of lost service, or the Bellingham pipeline rupture in 1999,

resulting in 3 deaths and a loss of $45 million [4, 5]. In the context of wind power, rare



events include sudden fluctuations called wind ramps that lead to errors in persistence
forecasts for wind farm power outputs. Modeling wind power output with an appropriate
representation of rare events helps to maintain stability in a power system, as the
penetration of renewable energy may introduce many rare but catastrophic events such as
sudden power generation drops or extended periods of low power generation.

In addition to characterizing rare events in wind power, improvements in short-term
wind power forecasts would lower power system operating costs and increase reliability.
As renewable energy generation capacity increases across the globe, the economic
importance of improved renewable generation forecasts grows [6]. The U.S. Department
of Energy, the National Oceanic and Atmospheric Administration, and many large private
industry members propose that the uncertainties in state-of-the-art short-term (0 to 6 hour-
ahead) wind forecasts add unnecessary increased costs and risks to the U.S. electrical grid
[7, 8]. Improved forecasts can lower power system operating costs by decreasing the
necessary amounts of spinning reserve and improve the reliability of the power system [9,
10]. Short-term forecast improvements can also improve the performance or computation
speed of power systems operations tools, such as through scenario reduction of wind farm
power outputs in stochastic power system operations studies [11]. The variability of
renewable energy is directly linked to the variance in the forecast, and smaller forecasting
errors would allow a balancing authority (BA) to carry fewer reserves, lowering the overall
cost of energy to the power system. One aspect in short-term forecasting that is frequently
overlooked is the importance of the stationarity in the training data for short-term wind
power forecasts. Quantifying the amount of non-stationarity in the training data, ultimately
leading to the determination of a suitable training window, is presented in this work.
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Renewable energy is inherently stochastic, as renewable energy sources depend
almost solely on weather-related events such as wind speeds. Thus, replacing conventional,
dispatchable generation with renewable resources may require careful planning, including
the design of new control systems that may not have existed before. Improvements in the
secondary control of a power system may be desirable, such that rare generation or
transmission events can be handled more effectively. The proposed improvement centers
on the use of an external anticipatory controller, augmented onto the existing AGC
framework through a modification of the area control error (ACE) signal. This anticipatory
controller would use an event forecast and a linearized model of the power system to

proactively minimize the impact of sudden, predictable events.

1.2. Literature Review

This section provides a literature review of the works presented in this dissertation.
Prior work surrounding the three subjects of extreme wind ramp characterization,
determining non-stationarity in wind power output time series, and anticipatory secondary

control will be explored.

1.2.1. Extreme Wind Ramp Events

Accounting for wind ramp events covers a broad set of topics, including defining a
wind ramp, linking wind speeds to wind power outputs, and creating techniques to
accurately forecast wind in the short-term or long-term. A general overview of these topics

will be presented in the following sections.



(i) Wind Ramp Definitions

Defining a wind ramp is not trivial, as it is not always clear what timescale and
magnitude impact the definition should encompass. Realizing the end time of the wind
ramp is also important, especially in short-term forecasting that takes place in resolutions
of less than an hour. To illustrate the difficulty of defining a ramp, Figure 1-1 shows a
generic ramp with the main variables of interest for a wind ramp. The start and end point
of the wind ramp is currently point B and point D, respectively, based on the marked
duration, ramp rate, and power swing. However, point A and point C are another pair of
viable start and end points with different duration, ramp rate, and power swing. Choosing
these exact points is subjective, usually only specific to the context in which this wind ramp

definition would be used.

Power
Swing

‘Ramp Rate

Duration
P

— >t
Figure 1-1 Generic Wind Power or Speed Curve
Recent work in this area includes [12], which developed rules and algorithms to
detect wind ramps in a set of data, offline. The work uses dynamic programming to find

ramp events that meet certain criteria such as whether a ramp is above a certain threshold,
5



and provides a framework to add more rules to for wind ramp definition and detection.
Also, Argonne National Laboratory has performed a fairly thorough review of ramp
definitions, compiling information on varying methods to both define and use information
on wind ramps [13]. Some other work defines ramps by a very static, specific set of rules,
such as [14] which defines a ramp as a change in wind farm power output that is greater
than 50% of the capacity within four hours, or [15], defining it as a 20% change in less

than an hour.

(if) Present Efforts to Quantify Wind Variance in Speed and Power

Wind energy output is highly correlated with the wind speeds around the wind
turbines of interest, due to the fact that wind turbines are powered by the kinetic energy
force of wind. A power curve is shown in Figure 1-2, mapping turbine output to wind speed
through the blades of a variable pitch GE turbine [16]. Other turbines with variable blade
pitch have power curves with the same shape, while turbines with static blades have an
optimal wind speed at which rated output is reached. In addition, it is important to note that
all commercial turbines have wind speed cut-off points, where the turbine is shut off and
power output is quickly brought to zero to prevent high wind speeds from damaging the
turbine. The existence of these power curves would imply that the vast amount of work in
meteorology and weather prediction could be directly applied to this wind power prediction
problem, allowing for minimal variation between forecasted and actual wind outputs in a

farm.
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Figure 1-2 Power vs. Speed Curve for GE Turbine 2.5-103 [16]

However, due to the great variations that wind speeds can have even over the
distance of a few hundred meters, a resolution much greater than that of existing weather
forecasts would have to exist to accurately predict the output of a particular wind turbine.
It is not economical and often times impossible to measure wind speeds at each turbine, so
mapping the many wind forecasts to exact power output at a given wind farm is not trivial.
There is much work focused on using wind speeds to predict behavior of power systems
through spatial or temporal correlation [17, 18, 19].

Because of the stochastic nature of wind, forecasting is an invaluable tool in wind
power scheduling. The power system operator must know the expected power output of
the wind farm to be able to dispatch the conventional generation appropriately, and smaller
deviations in predicted and actual wind power outputs is desired. Numerical weather
prediction (NWP) algorithms exist, but because power system economic dispatch operates

on a much smaller timescale, NWP algorithm results are generally not as useful for short-



term wind power forecasts. In small geographical regions, such as wind farms, persistent
wind forecasts are most commonly utilized for very short-term (less than 30 minutes ahead)
forecasts. This method simply takes the existing wind speed or power output statistic and
extrapolates the same value into the next time slot, assuming that no changes will occur
between the time slots. Although this is an elementary approach to prediction, the
simplicity and relative accuracy of persistence predictions on small timescales have made
this a popular choice for short-term forecasting and benchmark tests for experimental
forecasts [20].

For day-ahead forecasts used in unit commitment, there are numerous wind speed
and power forecasting services that are available to industry, including 3TIER, Aeolis, and
AWS. For long-term planning purposes, the forecast offerings are fairly sparse, though
3TIER mentions the tools they have for this as well.

The statistics of the errors on wind predictions on the economic dispatch timescale
are important to characterize for both economic reasons and for power system reliability.
A very low variance in errors, for example, may signal that only a small amount of reserve
needs to be allocated for compensation of the generation variation, while considerable
amounts of large deviations may suggest that more fast-ramping reserves should be kept
online to maintain power system security. Load curtailment scenarios must be a last-resort
action to preserve reliability, as this is an expensive option for the power system [21, 22].
Wind ramps and wind errors on the short timescale has been assumed to be Gaussian in
distribution simply because of the small amounts of wind generation power systems.
However, many characteristics of wind do not have Gaussian properties, and persistence
forecasting methods show non-Gaussian error statistics [21]. It is important to determine
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the distribution of errors for purposes of reserve planning as well as wind forecasting
efforts. The distribution of errors may also determine how often the generation/load
balance is upset, indicating the frequency of a large secondary control action to correct this

generation/load imbalance.

(iii) Extreme Events and Applications in Power Systems

Extreme value analysis (EVA) has been used in the engineering field in applications
ranging from power estimation in VLSI circuits to statistically characterizing sonar
reverberation [22, 23]. However, little work has been published on characterizing wind
ramp events using EVA, but there has been related work on the power system in general
referencing extreme values.

Many studies detail the impacts that extreme events have on power systems,
offering different ways to tackle or circumvent such problems, such as an adaptive learning
method or load shedding algorithm [24, 25]. In addition, EVA has been studied in relation
to the power bidding market, using price spikes as extreme events [26]. Another group
established a tool that would allow for the prediction of an extreme event given a wind
power prediction (WPP) model by simply applying ramp detection algorithms [27].

It is important to include any work in wind power forecasting as well, as it has the
same end goal of reducing uncertainty with stochastic generation. The authors in [28]
perform a basic review of the forecasting studies used globally, including numerical
weather prediction (NWP) models, statistical methods, artificial networks, and hybrid
forecasting models, and discusses the differences between wind power forecasting and
wind speed forecasting. Learning schemes with fuzzy logic or neural network approaches

are used, with demonstrated cases of performing better than persistence forecasting [29,
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30]. Use of spatio-temporal analysis also shows promising results for short-term wind
forecasting [31]. Characterization of extreme wind ramps would help construct or validate

these other forecasting methods.

1.2.2. Optimal Training Windows for Wind Power Forecasts

Though many forecasting works contain some notion of finding stationary time
periods in the data set, very few works explicitly calculate or quantitatively explore
stationarity. Typically, non-stationary features such as trends are considered, where the
time series is differenced or filtered such that the time series has properties that signal a
stationary signal [32]. There are also methods that are used to test for stationarity, but they
are not meant for use in finding training data sets for time series forecasting. Lastly, the
notion of stationarity within the data set may not be mentioned, as the performance of the
model is used to justify the fact that the assumptions underlying the data (that the time
series is stationary) is met. However, the results of the tests involve some subjectivity and
may in-fact conflict with each other, as mentioned in Chapter 3. In one wind power
forecasting work, an approximately stationary epoch is determined by combining periods
of wind generation with similar PDFs over different days in a month [31]. This provided
improved forecasting results, but it was a heuristic method which may not apply to all types

of wind farm forecasts.

1.2.3. Controller Design for AGC
The automatic generation control (AGC) function for the power system involves
both economic dispatch of the committed generation units (by simply using the

participation factors assigned to each set of responsive generation) and load frequency
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control [33]. With knowledge of the wind ramp error, a controller could be designed to
assist the power system by ramping generators before extreme events to prevent
overloading transmission lines or shedding load. An assessment of AGC was performed
by N. Jaleeli et al., describing the regular operation of automatic generation control as well
as its inherent limits [34]. A more recent assessment has been done in 2005 in [35],
detailing the modern advancements in the AGC and area control error (ACE) as well as the
integration of flexible alternating current transmission system (FACTS) devices and
renewable technologies.

Specific to wind-related applications, [36] introduces another automatic generation
control system for individual wind farms, separate from a system-wide AGC. A study was
also done on the effects of wind ramps on power system operation, with the conclusion that
ramping capabilities of the AGC and generation are the limiting factor [37]. It was also
found in [38] with a simple model that there is a limit in wind penetration in a modern
power system with AGC to maintain a frequency within limits, namely that a power
fluctuation of 5% of the total thermal plant capacity may be tolerated without exceeding
1% frequency deviation.

One notable study that performed the integration of wind power forecasting error
into AGC was from [39], where any deviations from predicted or scheduled wind outputs
is supplemented by controllable generation. Specifically, hydro generation was assumed to
have enough ramping capability to account for any errors in the wind output, and any
deviations from the estimated wind output was added to the ACE value, which would be

integrated over a set timeframe to establish any changes in generation set points that would
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be needed. An overview of some downfalls of present AGC setups with high penetrations
of wind power is discussed in [40], focusing on economic optimization.

Recent research in improvements to AGC include: 1) creating accurate, non-linear
power system models with deadband effects [41, 42, 43], 2) applying newer, nonlinear
control techniques such as genetic algorithms or neural networks [44, 45, 46], and 3)
introducing forms of storage into the AGC framework [47, 48, 49]. Optimal control theory
has also been applied to AGC, where the frequency control is shown to be tighter for certain
cost matrices in the optimal controller’s optimization function [50, 51]. Notably, works
involving AGC in the context of renewables integration include dynamic load dispatch, in
which the participation factor of each generator changes dynamically, and the application
of a fuzzy logic P1 controller [52, 53].

The application of MPC in secondary control has been seen in other works as well,
though it is implemented through a replacement of the conventional AGC system rather
than as an add-on module, and does not take into account any anticipated disturbance. The
most comprehensive work involves the use of MPC for load frequency control in a
simplified model of the Nordic power system, where limitations on tie-line power flow,
generation capacity, and generation rate of change were taken into account [54]. The work
used a centralized MPC controller as opposed to distributed MPC, which was explored
through an example power system simulation in another work [55]. Simulations using MPC
for frequency control in an isolated wind-aluminum power system also found that MPC
has benefits when using it to control load in addition to generation in a small power system

[56].
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This work plans to build off of the prior work presented in this section. Original
work on wind ramp characterization, determining non-stationarity in wind power time

series, and anticipatory secondary control will be discussed in the next few chapters.
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2. CHARACTERIZATION OF EXTREME WIND RAMP EVENTS

2.1. Background and Motivation

Rare events in the power system such as blackouts may be extremely difficult to
predict, but they have extreme economic and social impact. Examples include the
Northeast U.S. blackout of 2003, where estimates for cost of lost service range from $7-10
billion for the approximately 16 hours of lost service, or the Bellingham pipeline rupture
in 1999, resulting in 3 deaths and a loss of $45 million [4, 5]. The scientific community
has attributed these rare events to physical issues, where a downed power line or sudden
generation loss resulted in cascading blackouts, and software issues, where simple network
elements failed to respond. In the context of wind power, rare events include sudden
fluctuations called wind ramps that lead to errors in persistence forecasts for wind farm
power outputs. In a system with a large wind penetration, such a collective wind ramp can
drastically change the operating points for generators in the system, possibly overloading
certain system elements.

So far, existing wind power forecasting models aim for the best average forecast
error, that is, close to zero error when averaged over a large number of forecasts. Small
numbers of extreme errors hardly affect averaged errors, but can be costly or even
catastrophic to the power system. Extreme power system errors are not necessarily extreme

meteorological events, so even correctly modeling all extreme variations in the weather
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may not account for the errors in wind power output. Maintaining a model of rare events
is an integral part of maintaining stability in a complex power system, as the penetration
of renewable energy may prove to introduce many rare but catastrophic events such as

sudden power generation drops or extended periods of low power generation.

2.1.1. Potential Operational Problems with Wind Energy

A critical concern about renewable energy is the inability to precisely control its
output, as balancing the load and generation is necessary to ensure power quality and
reliability to the load. In the past, power systems were planned with the assumption of a
controllable, unidirectional power flow from the generation sources to the loads [57].
Conventional generation is almost completely controllable, with known constraints on the
ramp rate limits and operating points of the generation. Load patterns introduce some
randomness, but is highly cyclical and follows general trends. For example, demand is
generally higher in the daytime and the early evening in peak load hours, and are generally
lowest in the middle of the night during off-peak [58]. This leads to controllable generation
following the load in both unit commitment and economic dispatch, which operate on
different timeframes.

Unit commitment solves the optimization problem of which generation units to turn
on during some period of time, typically decided at least one day in advance. If too few
units are committed to generating power given a level of load, the power system operator
may have to purchase excessive reserves. In extreme cases, the power system may have to
shed load, as the system would not be able to provide reliable power to all loads. If too
many units are committed, the system would still have to pay for this unused power because

of no-load costs incurred by the generation. Economic dispatch is defined by the U.S.
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Energy Policy Act of 2005 in Section 1234 as the "operation of generation facilities to
produce energy at the lowest cost to reliably serve consumers, recognizing any operational
limits of generation and transmission facilities™" [59]. In modern energy systems, economic
dispatch is performed in real-time, compensating for any mismatches between the
scheduled and real generation requirements. In the present market, this can mean anywhere
from a 5-minute to a 15-minute period for its iterative optimization process.

In the future, power flow in the grid may not be unidirectional, but in diverse, time-
varying directions with varying magnitudes. Power flows in all directions as a consequence
of the integration of renewable energy and storage [60]. In addition, the future grid
incorporates a large suite of sensors, creating a communication network layer overlay on
the already complex power system.

This complex grid of power and communication introduces many problems over
the traditional power grid, one of which is the ability to perform real-time load balancing.
Economic dispatch depends on the ability of the generation to be flexible enough to meet
changes in demand over a small timeframe, and existing techniques for dispatch depend on
both spinning and non-spinning reserve in conventional generation. Modern day dispatch
assumes scheduled generation to be completely controllable, and any generation scheduled
in a day-ahead market would be the baseline from which to establish any load imbalance
to be met.

However, with the introduction of stochastic, uncontrollable generation such as
wind and solar, the generation base becomes increasingly stochastic. Given two
independent random variables X and Y, the variance of the sum of the variables is simply
the sum of the variances. As applied to the load balancing problem, adding the variation in
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load and the variation in wind will give a larger variance, which necessitates more reserves
to be available to the system operator.

So far, existing wind power forecasting models aim for the best aggregate forecast
error, that is, close to zero error when averaged over a large number of forecasts. Small
numbers of extreme errors barely affect averaged errors, but can be very costly or
catastrophic to the power system. Worse yet, extreme power system errors are not
necessarily extreme meteorological events, so even correctly modeling all extreme
variations in the weather may not account for the errors in wind power output. With
increasing penetrations of wind energy in the power system, power system planning and
economic dispatch would benefit with a characterization of the extreme variations in wind

power outputs.

2.1.2. Wind Ramps

Wind power ramps are defined as quick and large changes in wind power output
[13]. With persistence forecasting methods for wind power output, wind ramps constitute
the error between the forecasted and real power output. Wind ramps have been defined
using many different sets of rules, but in this study, a wind ramp is only defined as an
increase or decrease of wind power during a set duration in time, dt. There is no minimum
threshold of power output ramping in this case.

A mathematical definition for a wind ramp down as used in this work follows

{(X(t) = X(t—dt)) e WR | X(t) — X(t — dt) < 0} (2-1)

where X is the time series data and WR is the set of wind ramps. Likewise, a wind ramp up

would involve the difference of the time series data being positive.
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2.2.  Extreme Value Analysis

Extreme value analysis (EVA) shifts focus from what classical statistics
characterizes as the average behavior of a stochastic process. The central limit theorem, for
example, motivates much of classical statistics, with outliers generally ignored in the
creation of the model for a process. However, low-probability, high-impact events can
result in disasters, breaking down a financial system or otherwise dramatically affecting
human society. EVA has been developed over the years to understand and characterize

these events.

2.2.1. Historical Background on Extreme Value Analysis

Extreme value analysis (EVA) has seen an explosion of development recently due
to the financial market, but the first recorded work on extreme values in a statistical context
was made as early as the 19th century. In the 1920s, L. H. C. Tippett noticed a pattern in
the yarn breakage rates used in weaving, linking the strength of a thread to the strength of
its weakest fiber. Both R. A. Fisher and Tippett published a paper on the extremes of a
distribution, with the patterns seen in data [61]. In this paper, the distribution of the largest
member of a sample from a normal population was fit to a curve, utilizing a shape
parameter a,,. Soon after in 1943, B. Gnedenko published a paper detailing the
generalization and unification of the theory dealing with maxima [62]. E. J. Gumbel then
published a book, including details on the statistics of the extremes [63]. Further research
was performed in extremes, and Pickands, Balkema, and de Haan found ways to
characterize the asymptotic tail distribution of a random variable [64, 65]. This work

spawned two separate approaches to characterizing the extremes of a distribution, based
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on what is now known as the Fisher-Tippett-Gnedenko theorem and the Pickands-
Balkema-de Haan theorem.

Uses of EVA have historically revolved around the insurance and financial markets,
as well as weather-related phenomena [66]. For example, Value at Risk (VaR) is a common
risk measure used by financial risk management experts to determine the probability of an
extreme loss [67]. Meteorology has used this tool primarily in natural disaster assessments,
such as the 100-year flood measure that predicts a flood event that has a 1% probability of

occurring in any given year [68].

2.2.2. Extreme Value Theory

The main result of the Fisher-Tippett-Gnedenko theorem (also referred to as the
extreme value theorem) is most easily described as an analogue of the well-known central
limit theorem. That is, if a random variable X; is independent and identically distributed

(i.i.d.), then

X=1amx) - (1) (2:2)
The central limit theorem in (2-2) addresses the results of summing a series of i.i.d.
random variables, but does not address maxima or minima. An analogue specific to
extreme value theory must try to relate max (X,..., X,,) to a distribution. First, note that
X;fori= 1,2,...,n must be i.i.d. random variables.
Define M,, := max(X;, ..., X,), a set of maxima for many random variables. It is of
interest to prove that M,, or some transformation of M,, gives a stable distribution. This
means that any linear combinations of two independent random variables M,, will give the

same distribution. Extreme value theory has shown that if there are sequences
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- d
{antn=1, {bn}m=q With (M’;—b") — Z, then Z has a maximum stable distribution. The minima

of aset of i.i.d. random variables can also be represented by such a distribution for Z, shown
as a simple extension of the proof for the maximum.

In the realm of extreme value theory are three types of distributions that Z can
converge to, labeled as Type I, Type Il, and Type Ill, all with different properties and,
importantly, different tails. These compose the generalized extreme value (GEV)

distribution family:

Type | (Gumbel Distribution)

This is the most basic distribution of the extreme value distribution family, with
two parameters, u as the location parameter and B as the scale parameter (8 must be
positive). The cumulative distribution function (CDF) of the Gumbel distribution is:

F(x) = e—e "W/ (2-3)

This distribution is considered to have a light upper tail, and is positively skewed.
The tail is in reference to values that are far away from the median of the distribution. The
Gumbel distribution’s light tail indicates that the extreme or tail values display a lower
probability of occurrence than in the case of the normal distribution, or that the extreme
portion of the distribution spreads out less than that of the normal distribution. Figure 2-1

shows the probability density function (PDF) of the distribution over a range of parameters.
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Type Il (Fréchet Distribution)
The Fréchet distribution has three parameters, u as the location parameter, S as the
scale parameter, and a,,,, the shape parameter. Note that by convention, ¢ = 1/a,,,, where

¢ is also referred to as the shape parameter. The CDF of the Fréchet distribution is:

F(x) = e_(%)_?

(2-4)

Any value x < u gives F(x) = 0. This distribution is considered to have a heavy
or ‘fat” upper tail, and also has a minimum value specified by the location parameter. The
Fréchet distribution’s light tail indicates that the extreme or tail values display a high
probability of occurrence than in the case of the normal distribution, or that the extreme
portion of the distribution spreads out more than that of the normal distribution. Figure 2-2

shows the PDF of the distribution over a range of parameters.
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Figure 2-2 Type Il Fréchet Distribution PDFs with Various Parameters

Type 111 (Reversed Weibull Distribution)

The reversed Weibull distribution is similar to the standard Weibull distribution
used in classical statistics, but has one extra parameter and is reversed such that the
distribution has an absolute maximum (no tail). This distribution has three parameters, u
as the location parameter, 8 as the scale parameter, and «,,,, the shape parameter. Note that
similar to the Fréchet distribution, ¢ = —1/a,,, where £ is also referred to as the shape

parameter. The CDF of the reversed Weibull distribution is:

1

F(x) = e_(#)_?

(2-5)
Any value x = u gives F(x) = 1, and this distribution has no upper tail though
some refer to its tail as light or thin. This distribution is not common in applications of

extreme value theory because of this inherent limitation of a set maximum. For example,
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in many applications it is difficult to verify that the distribution has a meaningful and
predictable maximum value. Figure 2-3 shows the PDF of the distribution over a range of

parameters.

PDFs of Reversed Weibull Distribution

Pl

Figure 2-3 Type 1l Reversed Weibull PDFs with Various Parameters

These three types of distributions all fall under the generalized extreme value

distribution family, and apply to the two different theorems in EVA.

First Theorem of Extreme Value Theory
Also known as the Fisher-Tippett-Gnedenko theorem, this theory gives a general
result of the asymptotic distribution of extreme order statistics.

If M,, == max(Xy, ..., Xy),
0 [o'e) H (Mn_bn) d
and {an}n=1, {bn}n=q With——=-Z

Then the limit distribution of Z belongs to the GEV family.
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Second Theorem of Extreme Value Theory

Also known as the Pickands-Balkema-de Haan theorem, this theory gives an
asymptotic tail distribution of a random variable X when the true underlying distribution
of X is unknown. In other words, we’re interested in estimating the tail distribution of a

random variable X, defined as the conditional excess distribution function:

F( mint )-F min
Fu(y) = P(X — Xmin < le > xmin) = = 1_Fj(zxmirgc ) (2'6)

In (2-6), x,nin 1S known as the threshold, and y is the new random variable of
interest. The range of this distribution is 0 <y < xp — X, Where xp is the final
(maximum or minimum) endpoint of the underlying distribution. To determine F, (y), the
theorem shows that E,(y) is well approximated by the generalized Pareto distribution
(GPD), with very similar structure to that of the GEV family (Type I, Type Il, and Type
I11). The same location, scale, and shape parameters apply to the GPD family, and in fact,
the value of the shape factor ¢ is the same when applying either theorem to the same set of

empirical data.

2.2.3. Data Analysis Methods using EVA

The origin of EVA stemmed from applications within manufacturing and
optimization, and continues to thrive through its use in financial risk analysis. It is therefore
important to explore the ways empirical data can be characterized with the theories in EVA.
Two main methods exist for analyzing empirical data with EVA, the annual maxima series
(AMS) method and the peaks over threshold (POT) method. While AMS analysis has been
in place for longer than the more modern POT analysis, both approaches have distinct

advantages.

24



Annual Maxima Series (AMS)

The implementation of the AMS method stems directly from the conclusions in the
first theorem of extreme value theory. The first theorem of extreme value theory states that
a set of maxima taken from a set of random variables will conform to one of three GEV
distributions. To actually fit a set of data to a distribution, it is necessary to define a ‘block’
representing a random variable. This block must be assumed independent of all other
blocks, such that they may represent a series of random variables. The maximum of each
block will represent the values M,, := max(X;, ..., X;;), and standard maximum likelihood
estimation or generalized method of moments can be applied to estimate the parameters in

this statistical model.

Peaks Over Threshold (POT)

The POT method relies on the second theorem of EVA, namely that the asymptotic
tail distribution of any given distribution will fall under the GPD family. That is, defining
E,(y) = P(X — xmin < Y|X > xmin), the distribution of F,(y) falls under the GPD
family. This method requires x,,;, to be chosen, though there is presently no analytical
method to determine this value. Estimation of GPD parameters in the POT method utilizes
maximum likelihood estimators or the generalized method of moments, similar to the AMS

method.

Uses and Limitations of AMS vs. POT
Both methods are used in modern characterization of extreme events, as both have

their strengths. The AMS method is by far the oldest method, and also the most
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straightforward to implement. The POT method is fairly new and less straightforward to
implement, but has shown to create higher resolution models.

Models using AMS only need to divide the data into blocks of similar size, typically
throughout time, to determine block maxima or minima. Choosing the block size in AMS
can be important, as there is a tradeoff between bias and variance [69]. If the blocks are too
small, then the approximation of the distribution is poor, leading to bias in estimation. On
the other hand, very large blocks generate fewer data for analysis, leading to a large
estimation variance. However, standard practice in literature sets the block size to
something easily conceptualized, such as taking hourly, daily, or yearly data. These choices
do not seem to affect the validity of the modeling.

In the POT method, all data is taken above a threshold, usually resulting in many
more data points than the AMS method. However, the threshold determination in this
method is less straightforward, though like the block size in the AMS method, there is a
tradeoff between bias and variance. A low threshold includes too many points, introducing
bias because of the inclusion of points outside the tail of the distribution, while a high
threshold includes too few observations and results in high variance. It is important to
recognize that in the POT method, too low of a threshold will dramatically affect the
estimation, as only the asymptotic tail of the distribution is captured by the POT theory.
For this reason, it is popular to assume a threshold slightly above what one would normally,
intuitively assume, to be conservative.

As both methods have a parameter that balances the bias and variance of the

theoretical fit, the model is only as good as the determination of this parameter.
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2.2.4. Determination of Xmin in POT Method

Because of the effects that the determination of x,,;, has on the parameters of the
POT method, many different ways to determine x,,,;,, have been explored [70]. One of the
simplest methods involve plotting the data or the frequency of the data on a logarithmic
plot and noting when the tail begins, which under many conditions would be a clear linear
section of the graph. The choice of x,,,;, is then the ‘elbow’ of this log-log chart, which is
when the tail begins. Another popular approach to estimate the threshold is by using the
Hill plot, which is simply the Hill estimator of the tail index plotted against varying
threshold values [71, 72]. The threshold is then chosen to be the lowest threshold after
which the tail index stabilizes. The intuition behind this method is that since the tail
parameters depend on the data subset chosen, the parameter should ‘converge’ to a stable
value once the proper tail data has been identified.

It is known that for a given sample size n, there exists a unique sequence of
thresholds s,, = x5, that allow for the bias and variance of a tail parameter to decrease

at the same rate as n increases [73]. However, estimation of s,, would require the mean
squared error (MSE) of% , an estimation of the MSE of 1/a,,,, which is itself affected by
ev

the choice of s,,. A more comprehensive and thorough approach to threshold estimation
has been explored by J. Danielsson and C. G. de Vries [71, 72]. They solve this problem
by using the idea behind control variates in Monte Carlo estimation, reducing the variance
of a variable (in this case, 1/a,,) by subtracting another carefully constructed parameter

with known errors and variance.
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An overview of the theory behind this procedure follows. The goal is to find a
suitable estimate s,, = x,,,;,, for the threshold which will allow for parameter estimates with
the least bias and variance. Because minimizing the bias and variance are conflicting goals
given a set sample size n, it will be sufficient to find a s,, such that, as n — o , the bias
and variance of T/a,,, converge to nothing at the same rate. With the vision of using sub-
sample bootstrapping and control variate techniques, it is important to show what the k-
moment ratio tail index estimators are, and for that the definition of the conditional k'™ order
log empirical moment must be defined. Given a sample Xj, ..., X;, of n i.i.d. observations

from the distribution F (x):

1 n X k
we(my) = =37 (l0g72) , 50 = Xmyia (2-7)

sn
where X ;) are the descending order statistic and m,, is the number of order statistics used

(number of statistics above s,,). The k-moment ratio estimator is defined as

Tep kug—1(sn)

where k is a positive integer, the moment number. After some extensions of the proof in
[72], the asymptotic mean squared error (AMSE) of 1/a,,, is

k(s | b2pPaZk—ts;?F

aag,n (aey+pB)2k

AMSE(w, (s,)) ~ (2:9)

where a, b are scaling constants, a,,, and § are the shape and scale factors of the extreme

value distribution, and k (k) is an increasing function

_ @, @k-2)!  2(2k-1)!
(k) = w2 T ((k-1)1)*  K(K=D)!

(2-10)

There is a unique sequence s,, that asymptotically balances the two terms in (2-9) asn —

oo, Which is derived from the first order condition that ‘S‘Zﬁ =0.

Sn
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The minimization of the subsample bootstrap MSE utilizes control variate
techniques, where the variance of the estimator is minimized by adding or subtracting a
term for which many of the parameters or errors are known. A difference statistic is used,
such that the AMSE has the same convergence rate:

z(sn) = wz(sp) — w1 (sn) (2-11)
The minimization of the subsample bootstrap MSE is then

min g TR, | (2(s0))’] (2-12)

where R is the number of bootstrap resamples. As the AMSE|[z] has the same order of
magnitude as the AMSE[wy], (2-12) can be used to find the optimal threshold s,,, calculated
under two different sample sizes m,  and m,,. To arrive at this consistent estimator,

calculate:

My (wy) =

(m* (Z))z Vz1 2 (2) fu
n1 ogmy, (z i
(Z)] (2-13)

m;“lz(z) Zlognl—zlogm;1
and my,_, my, are optimal number of points in two different bootstraps and where f, is

defined as

__ 2logni—2logmy, (2)

fu (2-14)

logn,

The procedure for finding this threshold would involve first choosing a bootstrap
size n; < n, then drawing R bootstrap resamples of size n,. Then calculate the bootstrap
MSE of the difference statistic z at each m,, and find the optimal m,,] such that the

2
bootstrap is minimized. Repeat the entire procedure for a smaller resample size n, = (";) :

yielding m,,;. Then calculate m,(w,) using (2-13), and estimate the parameter & = ai

ev

using this threshold. The difficulty in this procedure lies in determining how many values
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of n; to sweep over, as ideally all values would be examined. It will be shown in the
following section that this would take a prohibitively long time given a large enough data
set size and a standard computer, and so a grid over which n; would be used must be

defined.

2.3. Characterization of Wind Ramps Results

Characterizing wind ramps initially involved fitting the data with a Gaussian
distribution. However, after this was shown to be inadequate, EVA was introduced as a
viable method to characterize these wind ramps. After validating that EVA in fact gave
more reasonable results than traditional statistical methods, both the AMS and POT
methods were used to model the wind ramps. Lastly, a more rigorous method presented in
the previous section was used to find x,,;,, within the POT method to validate the results.

Evidence of stationarity must exist for any model’s statistics to be a reasonable
predictor for future wind ramp behavior. It is well known that the non-stationarity of wind
speeds presents a challenge to statistical wind speed modeling [74, 75]. However, many
non-stationary processes are either trend-stationary or difference-stationary, and simply
taking the derivative of the time series data will result in a stationary process [76, 77].
Common models such as the autoregressive integrated moving average (ARIMA) model
commonly use the difference process of wind speed or power to forecast, as it has been
seen that the difference in wind power output may be stationary [78]. To ensure that the
assumption of stationarity is reasonable, resulting extreme value models will be examined

for trends.
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The National Renewable Energy Laboratory (NREL) provided wind generation
data from one 300.5 MW wind farms in Colorado for both 2009 and 2010, with 10-minute
resolution. This led to a total of 105120 data points for total wind farm output for statistical
analysis of wind power ramps. The data was provided in an Excel worksheet, and was
imported into the software MATLAB for analysis. A small amount of preprocessing was
necessary, as some data values were incorrectly negative due to calibration errors. All

negative power output data was changed to an output of 0 MW.

2.3.1. Traditional Gaussian Characterization of Wind Ramps

The present most popular distribution for wind ramps and forecasting errors is the
Gaussian distribution, which stems from both the central limit theorem and the familiar
properties that it presents [21].

First, the wind power ramps for a set interval were calculated by taking the
differences of power output in MATLAB software. That is, sweeping over all X(t), X(t) —
X(t — dt) was iteratively calculated, resulting in a vector of data stored as wind ramps
with dt duration. With 10-minute resolution, there are 105119 wind ramps for analysis.
Figure 2-4 shows the wind ramps, which are also the errors in persistence forecasts, as a
distribution over the two years divided into 1000 bins between the absolute extreme values
of the distribution. A small portion of the histogram is shown in Figure 2-5, showing the
difference in the Gaussian fit versus the actual data. The maximum value was 232.009 MW
(the greatest down ramp was 232.009 MW), while the minimum value was -213.062 MW
(the greatest up ramp was 213.062 MW).

By simple inspection, it can be seen that the distribution is not well approximated

by the Gaussian distribution. The Gaussian peak predicts the number of events to be around
31



1600, while the actual data presents a frequency of around 11,000 at its peak. Also, using
the Gaussian curve to predict the number of events past + or - 90 MW suggests that no

events should occur, while the empirical data shows events out to hundreds of megawatts.

Histogram of Wind Ramp Events
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Figure 2-4 Frequency of Wind Ramps with 1000 Uniform Bins with Gaussian Fit
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Histogram of Wind Ramp Events
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Figure 2-5 Close-up of One Section of the Gaussian Overlay

Using the Gaussian distribution to predict the errors will incorrectly place weight
within a few standard deviations of the mean, falsely showing a light tail over the clearly

heavy tail of the data.

2.3.2. Extreme Value Analysis Application to Wind Ramps
To characterize wind power ramps, two years of wind farm output data was used
for analysis. Two separate methods for characterization of extreme probability events were
used based on the first and second theorems in extreme value theory, the annual maxima
series (AMS) method and the peaks over threshold (POT) method. Both methods utilized
a user-defined parameter dt to establish the time over which a ‘'ramp' would be defined.
There was a total of 105120 data points, and 49372 (about 50%) were down-ramps

using a 10-minute resolution. Of the 50%, about 730 were used for the AMS method while
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10430 of those were used for extreme value analysis (EVA) with the POT method (about
20% of the down-ramps, as P (X > s,,) ~ 0.2). The standard deviation of the data was o =
11.165 MW.

To calculate frequency of ramp events, constant bin sizes were used, and any bins
with a zero value were erased from the final data set. Parameters for each distribution were
created using maximum likelihood estimators by sweeping over other controlling
parameters if necessary. Best fits between the empirical and theoretical CDFs are shown
in Figure 2-6 and Figure 2-7. Then, correlation coefficients were calculated between the
observed and model-estimated data, and the coefficient of determination R? values are
shown in the Table 2-1 and Table 2-2 for both the AMS and POT methods, respectively.

Empircal vs. Theoretical CDF Utilizing AMS Method, dt = 10min, X = 10000kW
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Figure 2-6 Fits of Gumbel, Fréchet, and Reverse Weibull CDF Distributions of the

Empirical Data
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Table 2-1 R? for Various Distributions (AMS Approach)

dt (min) Type | Type Il Type I

10 0.92312417 0.99673653 0.98932896
20 0.93840394 0.98988342 0.98133986
30 0.95552943 0.99042254 0.98638262

For the AMS method, daily maxima were used, meaning that over the two years

only 730 data points were used.

Empirical vs. Theoretical CDF Utilizing POT Method, dt=10min, xmin=10MW
100 T -
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Figure 2-7 Frequency of Wind Ramps with 1000 Uniform Bins

Table 2-2 R? for Generalized Pareto Distribution (POT Approach)

Xmin (MW)

dt (min) 10 15 20 25 30
10 0.99963597 0.9980683 0.99831987 0.99743223 0.99281193
20 0.99989439 0.99983859 0.99930766 0.9986667 0.9991671
30 0.99995681 0.99991618 0.9997878 0.99953153 0.99894556
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For the POT method, 10430 data points were used for a threshold of 10 MW ramps.
There is around ten times more data available for the POT method versus the AMS method,
displaying one of the strengths of the POT method. Note that if X is the dP down-ramp,
P(X) = P(X,X>5s,)=P(X >s,) * PX|X > sp).

The POT method fit showed a shape parameter ¢ of 0.170 and a scale parameter o
of 7126, with a x,,;, of 10 MW. The positive shape parameter suggests that the best
representation comes from a Fréchet Type Il distribution under the generalized Pareto
distribution (GPD) family.

Determining x,,;, for characterization with the POT method involved the
bootstrapping procedure discussed before, as well as verifying the choice through various
other common methods. Usually, the first test is ‘eyeballing’ the log-log plot of frequency
vs. value, shown in Figure 2-8, choosing a threshold value of x,,;;,, that seems to sit on the
beginning of the linear tail of the plot. It can be seen that at 10* kW, or 10 MW, the
distribution seems to transition into its tail. A second test was performed with the Hill plot,
where a suitable threshold x,,;,, can be found by finding a general region in which the Hill
plot starts to converge. In Figure 2-9, the Hill plot shows a flattened response around 10
MW as well.

To verify these observations, a grid of n, was chosen to be 1000 to 5000 in steps

of 500. A finer grid or a larger range could have been chosen to improve the consistency

of the results. The lowest ratio AMSE(znl)2 /AMSE (2, (n,)) Was seen at a threshold level

of x,nin = 22.7 MW. This was close enough to verify the choice of x,,;, = 10 MW, so this
value was used in the POT method fitting of the data. Final POT fitted results for the values

of the parameters are ¢ = 0.1707, ¢ = 7125.9, and x,,;, = 4 = 10 MW.
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For planning purposes, this distribution must apply to future years of interest, so
there must be evidence of non-stationarity between years of data. Xcel Energy's 2009 data
was fit to a Fréchet GPD curve and was compared to the fit of the second year. The two
results were very similar, with the PDFs of the two shown in Figure 2-10 (R? of 0.9993).

Figure 2-11 shows the 90% confidence bounds around the 2-year best GPD fit.
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Figure 2-10 PDFs of Year 1 (2009) and Year 2 (2010)
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Log-log Plot of GPD Fit to Data
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Figure 2-11 Log-log Plot of a 90% Confidence Interval about GPD Fit

To display the fit to the empirical data, Figure 2-12 shows the GPD curve fit to the
empirical data in a log-log format for better visibility. In this figure, the x-axis shows the
logarithm of the power above the x,,;, threshold cutoff of the POT method. It seems that
the extremely high power ramp data does not fit the curve very well, over about 11.5 MW
on the plot. However, the theoretical curve at this point dips below zero on the y-axis log
scale, and the logarithm of frequencies of an event cannot be negative. Anything over 11.5
MW lies in a region where the probability is very small that an event would occur given
the number of samples. The data is more sparse (spaced apart) in this area, which agrees
with the fit. If much more data was used, the curve would be shifted up and the empirical

data would fit well onto the curve.
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Figure 2-12 Log-log Plot of GPD Fit to Empirical Data

The POT fits shown are given for a shifted version of the data. The threshold cut-
off x,,,;,, is simply subtracted from all the data such that the GPD would easier fit the data.
Because this extreme value distribution only accounts for 20% of the down-ramps, the
majority of the down-ramps (the lower 80%) must be modeled with another distribution.
The uniform or normal distribution would suffice for this, though based on the sharp drop-

off some might choose to use a beta distribution.

2.3.3. Wind Ramp Stationarity
Though some work has already shown that year-to-year stationarity in the wind

ramp data exists, a more formal procedure testing wind ramp stationarity is needed.
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Currently, there is no work that explicitly proves that wind ramps are stationary, but it is
well known that wind speeds are non-stationary [74, 75]. This work has assumed that the
ARIMA models applied to wind speeds hold, or that the wind speed is difference
stationary. However, testing for a deterministic trend within the year as well as stochastic
trends throughout the wind ramp processes would be necessary to ensure that the

assumption holds.

2.4. Conclusions on EVA

The results show that traditional statistical methods do not appropriately model
wind ramp events, corresponding to the errors in persistence wind power forecasting
methods. EVA methods were applied to fit various distributions to the data, with both AMS
and POT approaches. The POT approach was first used with traditional fitting methods,
and then the parameters were verified with a newer approach using sub-sample bootstrap
and control variate techniques. The wind ramp distribution can be used to take into account
the time-varying nature of wind power, used in applications such as controller design or
power system planning.

This chapter discussed wind power modeling which is useful in offline planning
situations. For improvements in real-time forecasting, the next chapter presents a metric
which will be helpful in determining the set of training data to be used, subject to the

quantified degree of non-stationarity in the signal.
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3. NON-STATIONARY DATA ANALYSIS FOR SHORT-TERM WIND POWER

FORECASTS

3.1. Importance of Stationarity for Statistical Forecasting Methods

In short-term wind forecasts, statistical models are preferred to physical models as
physical modeling approaches are generally computationally intensive or inaccurate for
use in short-term wind forecasting [79]. Past data is used to produce point forecasts or
probabilistic forecasts in statistical models, both for parametric and non-parametric
models. These statistical models are frequently built with the assumption that the modeled
data is, in some sense, stationary, even though real time series data seldom meet any criteria
for stationarity. However, there is no common metric intended for use in a real-time
forecasting algorithm that quantifies the level of stationarity of time series data.

This chapter will detail a novel approach to quantify the degree to which a signal
may be non-stationary, based on existing work in Empirical Mode Decomposition (EMD).
This work will 1) introduce a metric called the Ensemble Degree of Non-Stationarity
(EDNS) to quantify the degree of non-stationarity present in a time series, 2) introduce a
real-time algorithm to adaptively determine optimal training windows with the assistance
of the EDNS, and 3) analyze the performance impact of determining optimal training
windows using this real-time algorithm on two different sets of wind power output data.

The work is organized as follows. Section 3.1 covers the importance of stationarity, also
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exploring basic definitions and existing tests for stationarity. Section 3.2 reviews three
popular models used for forecasting, the persistence model, the autoregressive model and
the support vector regression model. Section 3.3 describes the novel EDNS metric,
detailing the steps to arrive at the EDNS. Section 3.4 presents a real-time algorithm that
uses the EDNS, also showing some simulation results using this real-time algorithm. The

chapter concludes in Section 3.5.

3.1.1. Motivation for Quantifying Stationarity

The length of training data can affect the forecasting performance of statistical
forecasting methods, which will be illustrated through an example in this section.
Autoregressive (AR) models were used to perform one-step-ahead forecasts on two
separate 2-month segments of 5-minute resolution wind power output data in a 160 MW
wind farm in the Australian Energy Market Operator (AEMO) during 2012, one year of a
two-year data set of wind farm power outputs in AEMO? [80]. A new AR model was fitted
at each of the 34,560 time steps in each segment with a sliding window of the most recent
set of data of length T. Four lags were used in the AR models as a result of applying the
Bayesian Information Criterion (BIC) [81]. See Section 3.2.2 for details on AR models.

Training window lengths ranging from 2 days to 90 days were used, tested in
increments of 1 day, which resulted in the forecasting errors shown in Figure 3-1 and Figure
3-2. The mean absolute error (MAE) is an important metric in this work, where for some

time series x with n elements, and with a predicted time series X, the mean absolute error

! The authors would like to acknowledge the original provider of the data (AEMO in Australia), as well as
Jethro Dowell (University of Strathclyde), Stefanos Delikaraoglou, and Pierre Pinson (Technical University
of Denmark), for preparing the dataset and making it available.
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is defined as MAE = ;Z?:llxi — x;|. A roughly “convex” behavior is seen over each of

the two datasets, where a minimum mean absolute error (MAE) exists for some training
data length. The result shows a clear dependence of the forecasting performance on the
length of the training dataset for AR. In addition, it is seen that a poor choice of the training
window length may result in worse AR forecasting performance in comparison with
persistence forecasting. Lastly, it is clear that the optimal training window length is
different in the two subsets of data. The optimal training length in the 1% subset of data is
approximately 17-25 days, whereas the optimal training length in the 2" subset of data is
approximately 30-40 days. Appendix A | contains results for a similar test with another
forecasting method, SVR.
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Intuitively, it is well known that noise dominates parameter fitting with small
amounts of training data, so it is common practice to use as much training data as possible
to obtain a forecasting model. However, using excessively large amounts of training data
may result in extra forecasting error because of the inclusion of some “irrelevant data” far
away from the present time. Specifically, the irrelevance phenomenon can be attributed to
non-stationarity, because the underlying model for the process may have changed over
time. As a result, it is desirable to avoid including excessively large amounts of data in a
non-stationary time series. However, a key question is: At what time scale does a training
window contain an excessively large amount of data? Historically, this point of excess has
been found by increasing the training data length until forecasting performance suffers, but

this is not rigorous and grants only a qualitative insight into the non-stationarity of the
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process. Further, one static training window (e.g. 60 days) is typically applied to an entire
time series, though it is seen through the present example that the point of excess changes
over time, and so the training window should change over time. This work seeks to quantify
the non-stationarity of a time series process in a rigorous manner, which should also allow
for a quick identification of the point of excess in training windows. This metric of non-
stationarity would then allow for the dynamic adjustment of training windows in real-time.

To reiterate, it is presently common practice in wind power forecasting to select a
single training window length that gives a minimum error for some amount of data (e.g. 1
year) as a result of a sweep over many training window lengths. It is unlikely that a
drastically small training data set would be selected because of the large errors introduced
by such a small training data set that would be seen (see Figure 3-1 and Figure 3-2).
However, slight over-selection or under-selection is likely, especially as standard
forecasting methods do not adjust training window size over time at all. Based on Figure
3-1 and Figure 3-2, expected improvements of correctly adjusting the training window size
may be relatively small, when compared to a static, intelligently selected training window.
For example, if a 90 day static training window was selected, there could be at maximum
a 0.5% decrease in error by adjusting the training window size, as a 90 day static training
window is close to optimal. Even smaller improvements may be seen if the static training
window was chosen to be 40 days, with this data set. However, any performance gain in
forecasting is desirable, however small.

This exercise was motivated by a work in which autoregressive and vector
autoregressive forecasting models were used on this AEMO dataset, which resulted in
errors greater than that of persistence forecasting [82]. A constant window size of 60 days
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was used for AR forecasting in this study over an entire year of data, resulting in an AR
MAE of 2.347% of nominal capacity versus the persistence MAE of 2.308%.
Transformations were applied to the data in this work to ensure that the noise was Gaussian
white noise. However, the assumption of stationarity was not addressed, which may

account for the majority of the extra error in AR over persistence forecasting.

3.1.2. Definitions of Stationarity

To understand the importance of stationarity in forecasting and the construction of
a stationarity metric, a brief review of stationarity is necessary. First, formal definitions of
stationarity will be presented. Let X, be a stochastic process as function of t, the index of

time, and let FX(xt1+T xtkﬂ) be the cumulative distribution function (CDF) of the joint
distribution of X;. A time series X, is defined to be strictly stationary if, for all 7, for all k,
and for all t4, ..., t,

FX(xt1: ...,xtk) = FX(xt1+T, ...,xtkﬂ). (3-1)
That is, a time series is strictly stationary if the joint distribution for some contiguous range
of values in X; is the same for any other contiguous range of values in X,. A weaker
definition of stationarity is wide-sense stationarity (WSS), which applies to a time series

X, when the conditions below are met:

E(1X¢]?) < o0 (3-2)
E(X;) =m (3-3)
C(th,th) = C(Xt1+r»Xt2+r) =C(t, — tp) (3-4)

where C(+) is the covariance function and E(-) is the expected value. The first WSS

condition (3-2) states that the variance E((Xt — E(Xt))z) is finite, while the second
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condition (3-3) states that there exists a mean m for the time series. The third condition (3-
4) states that the covariance of the time series with a shifted version of itself is only a
function of the shift 7. Other definitions of stationarity exist, such as asymptotic
stationarity, which deals with restricting the definitions of WSS to the regime in which =
approaches infinity in (3-2) through (3-4) [83]. However, WSS remains the most widely
used notion of stationarity, and so stationarity in this work will now refer to the WSS
definition of stationarity. Further details of stationarity can be seen in many existing
references or textbooks [84].

The stationarity of a signal relates to the fact that the statistical properties of the
signal remain constant over time. If a time series meets the criterion of stationarity, the
time series would be able to be forecasted to a high degree of accuracy. In other words, if
a dataset were to be described by an unchanging, underlying model, one model could be
fit to the existing data, and all forecasts would be accurately represented by this model.
However, existing definitions of stationarity are extremely restrictive, and there exist very
few datasets (even in controlled, ideal simulations) that meet the criterion of being
stationary. There is also no agreed-upon metric to show how non-stationary a time series
is. Thus, time series analysis techniques are typically applied to non-stationary datasets. It
is worth noting that, although measured data is seldom stationary, there has been much
success in the application of statistical forecasting methods to existing data, even to wind
speed or power output data, which is recognized to be highly variable and non-stationary
[85]. An underlying metric which can show the degree to which a time series is non-
stationary would be useful to verify the stationarity of a training set, or to even select a

suitably stationary training set for a forecasting model.
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3.1.3. Existing Methods to Test for Stationarity

Although there are no common methods to quantify the degree of stationarity in a
signal for real-time forecasting use, there are existing methods to test for stationarity within
a dataset. These methods typically test for a specific type of non-stationarity within the
dataset as well, which include sensing the existence of a deterministic trend or a stochastic
trend (unit root). This includes ad hoc methods, unit root tests such as the Kwiatkowski,
Phillips, Schmidt, and Shin (KPSS) test, and spectrum analysis methods such as the
Priestley-Subba Rao (PSR) test.

Ad hoc methods refer to the simple ‘eyeball’ analysis of the autocorrelation
function of a signal, performed over many lags at various points in a signal. To be WSS, a
signal must have a constant autocovariance curve regardless of the subset of data analyzed,
so plotting the autocovariance at various points gives a user some notion of the non-
stationarity in the signal. If the autocovariance function changes rapidly in one section, but
stays relatively constant over another section, a relatively non-stationary and stationary
segment has been identified. Although the method is simple and intuitive, this approach is
very qualitative and subjective, as the procedure itself is not rigorously defined. The user
cannot calculate the autocovariance function to infinite lags in a finite dataset, so some
subjective lag length must be used. In addition, it is difficult to tell exactly how different
one autocovariance function is from another, which often makes it difficult to tell even if
one segment is more non-stationary than another.

The KPSS test was introduced in 1992 as a popular test to determine the existence
of a stochastic trend, commonly called a unit root [86, 87]. The term ‘unit root” comes from
the fact that a coefficient of one is applied to the t — 1 lag (when determining the point at
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time t), which creates a random walk. This test takes as its null hypothesis the absence of
a unit root, with an alternative hypothesis of the existence of a unit root. The test will signal
that there is a unit root present if enough evidence exists; otherwise, the test will accept the
null hypothesis of stationarity. There are other tests that have the same general goal, such
as the Dickey-Fuller test, the Phillips-Perron test, and the ADF-GLS test, but these tests
are all designed to tackle the exact problem of determining a unit root in a time series [88,
89, 90]. They are only designed to provide a binary decision and not a quantitative degree
of non-stationarity. In addition, unit-root tests were created with the assumption that the
analysis would be based on an autoregressive model, limiting the utility of the method in
non-linear forecasting.

The PSR test was introduced in 1969 as one of the first spectrum analysis methods,
which involves calculating the frequency information in the signal and determining the
signal’s stationarity from this [91, 92]. The PSR test uses the fact that a stationary time
series has a constant frequency spectrum over time, and so investigates the Fourier
spectrum f;(w) for its variations over time in order to reject or accept its null hypothesis
of stationarity. Specifically, it analyzes the variance in the Fourier spectrum estimate by
applying the standard rules of the analysis of variance (ANOVA). If there are significant
differences in the Fourier spectrum over different sections of time, the PSR test rejects its
null hypothesis of stationarity. These spectrum analysis techniques are meant to provide a
binary decision on stationarity, but provides the notion of non-stationarity in a more general
sense than unit-root tests as it is not meant to apply to simply an autoregressive framework.
These methods are the closest works related to the novel EDNS metric that is provided in

this chapter, as they are built on the same intuition of relating non-stationarity in the time
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series to variations in the frequency spectrum. However, one critical disadvantage of
spectrum analysis methods based on Fourier transforms or wavelet analysis lies in the lack
of resolution and accuracy in the spectral estimate itself. A detailed review of the
drawbacks of Fourier or wavelet analysis is presented in N. Huang’s work [93].

In any case, a stationarity test is useful in forecasting only if it can influence the
decision of the forecasting method in its selection of training data. The next section will

introduce popular forecasting methods and the training data used in each method.

3.2.  Popular Statistical Forecasting Approaches for Wind Power Forecasts

Existing statistical forecasting methods for short-term wind power forecasting
include autoregressive (AR) forecasting and all of its variants as well as machine learning
methods [94]. For instance, AR models and vector AR models can linearly relate past
inputs of one or more time series to determine the output of a wind farm [82]. Machine
learning methods such as artificial neural networks, Markov chains, and support vector
machines (SVMs) can generally fit a non-linear model, and provide a forecast from a
smaller set of training data [31, 85]. This section provides some background on three
popular time series forecasting models that are used in this work, the persistence model,

the AR model and the SVR model.

3.2.1. Persistence Forecasts
The persistence model is the simplest statistical model that can be used for short-
term forecasting, but the model tends to perform very well in practice. Persistence
forecasting assumes no change in output, such that
Xt =X (3-5)

51



where X; is the wind power process at time t, which is assumed to be the same value as in
the previous period t — 1. Persistence forecasting remains the main forecasting method by
which all new short-term forecasting methods are benchmarked against in the wind power
forecasting community, partially because of its good performance but also because of its
simple implementation. No training or tuning is needed with this method, and the method
can provide a forecast instantly. However, because of its lack of training data and model

complexity, it does not have the ability to model time-varying phenomena accurately.

3.2.2. Autoregressive (AR) Forecasts

Autoregressive (AR) models define a process in which an output variable depends
linearly on previous values in the process, a stochastic noise term, and a constant. This AR
model can be written in discrete form as

Xe=X0 jaXe i +e+c (3-6)
where the process X, at time t is defined by p previous data points weighted by the AR
coefficients «;, a Gaussian white noise term ., and some constant c. To fit an AR model,
some set of training data with a vector X, and a set of vectors X,_; is used to estimate the
@; parameters.

Given a model with p = 1 lags, fitting coefficients «; to a set of training data can
be as simple as the use of a least-square estimator, solving for a, in the over-determined
system X, = a,X;_,. However, for a larger set of lags, the computation and inversions
involved in directly calculating a values can be excessive. The Yule-Walker equations can

then be used to solve for the AR coefficients, to save on computation time [95].
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To calculate the lag length p, typically the Akaike Information Criterion (AIC) or
the Bayesian Information Criterion (BIC) are used [81, 96]. Both the AIC and BIC present
a metric that weight the complexity of the model with the likelihood or accuracy (goodness
of fit) of a model, shown here for completeness:

AIC = 2k — 21n(L) (3-7)

BIC = kIn(n) — 21In(L) (3-8)

where k is the number of free parameters, n is the sample size, and L and is the optimized

likelihood value of the model (or, the probability that the outcomes came from the
parameter fit of the model). Given a set of candidate models, the optimal model is the one
with the lowest AIC or BIC. Note that there is a trade-off captured between model
complexity and accuracy in both the AIC and BIC, which is meant to prevent overfitting.

After a model is selected, the training data is selected, which determines the best fit
a coefficients in the AR model. To train the model, m previous data points are selected,
where m is the number of training samples. The computational complexity of the model
training (parameter fitting) in AR is 0(m?), when assisted by the use of the Yule-Walker
equations in conjunction with the Levinson-Durbin algorithm. The choice of m is
important and ultimately affects the performance of the forecasting model, as shown in

Figure 3-1 and Figure 3-2 in Section 3.1.1.

3.2.3. Support Vector Regression Forecasts
Support Vector Regression (SVR) is a supervised learning method which can
provide non-linear fitting to data. SVR is built on Support Vector Machines (SVM), which

is applied in many classification and function fitting problems. Only a brief explanation of
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SVR will be presented here, and more details on SVR and other tools using support vectors
can be found in many reviews and papers [97, 98, 99]. This method can be thought of as a
simple linear regression similar to AR, but in a transformed, higher-dimensional space.

Let empirical data be provided in the form {(x1,y1), ..., o Ym)} © X xR for

some training data set length m. The goal of SVR is to map some set of features x, ..., xp,
to corresponding labels y,, ..., v, by first mapping the features into a higher-dimension
feature space F via some nonlinear mapping ® and perform linear regression in this higher
dimensional space. For clarity, the linear case will be first introduced and the nonlinear
mapping will be introduced later. Also, for its relevance to time series forecasting, the
features space X will be limited to the d-dimensional real space R¢. Consider the following
function

f@x)=wx)+b (3-9)
where (w,x) is the dot product of w and x in R%. An accurate model with a low degree of
complexity is desired for this fit. The complexity of the model is related to its flatness,
where a greater degree of flatness corresponds to a smaller w. Minimization of the norm
of w would ensure a smaller w and thus a less complex model, so the fitting problem can
then be seen as an optimization problem

minimize = [|w|?

subjectto y; —(wy,x;)—b <e¢ (3-10)
—Yi + (wi,xi) +bhb<e

where ||w||? is the inner product of w with itself [100]. This optimization will perform a
linear fit on the provided data such that all pairs (x;,y;) will be within & of the fitted

function f. However, this optimization problem has limited utility in that a large € would
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have to be used to ensure feasibility, and so the fit may not be very accurate or precise.

Thus, slack variables &; and &* can be introduced as shown

C e . 1 *
minimize > Wl + CXi (& +ED

subjectto y; —(w;,x;)—b <e+¢ (3-11)
—yitwpx)) +b<e+§;
fil EL* =0

such that a constant C > 0 penalizes the deviations of points beyond ¢ of the fitted function.
This constant C determines a trade-off between the flatness of the function and the
tolerance of deviations greater than e from the fit, so larger values of C will encourage a
less flat, or more complex, fit. This tolerance of values larger than & introduces what is
called an e-insensitive loss function |&|, described as

0 if|é| < ¢

iEle = { €] — & otherwise. (3-12)

Figure 3-3 shows the graphical representation of a linear SVR fit, taken from [98], which

shows the e-insensitive loss function.

y—f(x)

Figure 3-3 Graphical Representation of SVR, with the e-insensitive Loss Function [98]
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Now, the Lagrange function of the formulation in (3-11) is shown:
L= lIwl? + CEL, (& + &) — Sin (i + 1i€0)
— Vi (e + & —y; + (wyx;) + b)
=Yl (e + & +yi— (wix) — b) (3-13)
where n;, n{, @;, and a; are the Lagrange multipliers and thus all non-negative. The partial

derivatives of L with respect to the primal variables w, b, §;, and & must be zero at an

optimal solution, so

SpL = Niq(a; —aj) =0 (3-14)
Syb=w—Y (a;—a))x; =0 (3-15)
SgL=C—a;—n;=0 (3-16)
6§;L=C—a§‘—n§“=0. (3-17)

The dual optimization problem is then

1oy . .
maximize { 2 =1 = “i)(“j - “j)<xi,xj>

—e iy (a —a)) + Xi yila — af)
subjectto Y (a;—a;) =0 (3-18)
a;, a; € [0,C]

as n; and n; have been substituted inasn; = C — a; and n; = C — «; . Also, (3-15) can be

writtenas w = ¥'t_, (a; — a})x;, SO
f(x) = Zioi (e — ai){xx) + b. (3-19)
which provides the insight that w is described as a linear combination of the training data
x;. Also, note that when finding the fit f(x), w does not even need to be explicitly
computed, as the dot products between the data is all that is needed. The parameter b is
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computed by using the Karush-Kuhn-Tucker (KKT) conditions, and details can be seen in
the references [97].

Next, the non-linearity will be introduced. As the dot product between training data
determines the fit of the function, kernel methods can be used to provide a computationally
efficient method to map the existing feature set into a higher dimension [101]. The features
in this higher dimensional space then can be better fit by a linear function, which provides
a non-linear fit in the original space R? of the training data. The kernel function k(x;, x)
IS now introduced, where

f() = Tii(a — aDk(x;,x) +b (3-20)
and the SVR algorithm applies nonlinear fits by transforming the training data through the
kernel by a map ®: R — F where F is some feature space. This work will use a popular
kernel function called the Gaussian radial basis function (RBF), which is typically used for
datasets that require a non-linear fit. The Gaussian RBF is written as

k(xy, x) = exp(—yllx; — xI1) (3-21)
where y is a free parameter that the user of the SVR algorithm must choose.

It is important to point out that the optimization problem is a quadratic
programming problem, as the dual objective function is quadratic in «; and has linear
constraints. In addition, the problem itself is convex, and thus has a unique global optimum.
Thus, a variety of convex quadratic programming methods can be used to solve this

problem, including interior point methods.
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(i) Considerations for SVR Implementation with Gaussian RBF Kernel

There are three parameters that are user-defined in the SVR algorithm with the use
of the Gaussian RBF kernel: the parameter C, the parameter €, and the Gaussian RBF kernel
parameter y. The typical approach to fitting an SVR model is to sweep all parameters over
a large parameter space and select the parameter set that results in the highest accuracy, or
lowest fitting error (so for example, each parameter can be swept over some set of values
{2715,2713 ., 215}) [85, 102]. The model complexity is controlled by both € and &, so C
can be fixed while & remains a free parameter, to save on computation time [103].

In addition, cross validation within the training data set should be used to ensure a
robust set of parameters. In a k-fold cross validation approach, where k is usually 5 or 10,
the training data is split into k subsets. One subset is selected as the test data and k — 1
subsets are selected to be the training data, and a parameter grid search is performed to find
the optimal parameter values. This search is run k times such that each subset is the test
dataset exactly once, and parameter values with the highest average accuracy are selected
to represent the entire training dataset. Lastly, before using SVR, it is important to
normalize the time series to [0,1] or [—1,1] to avoid numerical difficulties.

Existing software packages such as R and MATLAB have well-documented
toolboxes that can handle SVR and SVM. However, an external, open-source library
LIBSVM was used in this study for its flexibility (with source code in C++, Java, and
functions for use in MATLAB), prevalence in existing literature, and available extensions
[104].

The complexity of applying SVR to forecasting problems widely varies with the

use of different kernel functions. The worse-case complexity for training an SVR model
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once is 0(m?) where m is the number of features in the training data, though in practice,
the complexity is seen to be approximately 0(m?) [105]. The complexity for running an
SVR model (for fitting or prediction with test data) is linear with respect to the number of
support vectors, or 0(mS), where S is the number of support vectors in the SVR model.
Added onto the core complexity of SVR model training is the computation time added by
running parameter sweeps as well as the k-fold cross validation. Specific to this work, only
two parameters are examined as free parameters in a grid search, introducing
approximately 60 iterations of the original SVR training problem, as well as a 5-fold cross
validation, resulting in 300 total iterations of the SVR training problem. Formally, this
would be as a worst-case complexity of 0 (ks ¥swm?), where k is the number of subsets
of data in the k-fold cross validation and &, and y,, are the number of parameters values
to sweep over for € and y, respectively.

The selection of the training data length m is as important in SVR forecasting as it
is in AR forecasting, as seen in Appendix A I. The length of training data will affect the
SVR model fit, but there is presently no common way to select the training data set other
than with a brute force approach that iteratively tests some range of training data lengths,
where the training data length with the lowest error is selected. A metric that quantifies the
non-stationarity in the data would show to what degree the underlying model has changed

over time, and it would provide insight into the selection of an appropriate training window.

3.3.  The Ensemble Degree of Non-Stationarity (EDNS) Metric

To quantify the non-stationarity of a time series, the EDNS metric is introduced.

The EDNS metric is based upon the use of the Hilbert-Huang Transform and the Hilbert
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amplitude spectrum, all of which will be reviewed in this section. Results will be presented

for each step of the process with a simple example.

3.3.1. The Hilbert-Huang Transform

The Hilbert-Huang transform (HHT) was introduced as a tool to analyze non-linear,
non-stationary time series data by decomposing a signal into instantaneous frequency
components [93]. In obtaining the instantaneous frequency components, this method
improves upon other methods based on the Fourier transform or wavelet transform by
providing much higher resolution and more accurate instantaneous frequencies over time.
The core of the HHT is in empirical mode decomposition (EMD), which breaks down a
signal into a relatively small number of components which are called intrinsic mode
functions (IMFs). Each IMF exhibits a well-behaved Hilbert transform, which accurately
represents the frequencies present throughout time. The flow diagram representing the
steps to arrive at the Hilbert amplitude spectrum, which is simply a matrix of frequency

amplitudes over time, is shown in Figure 3-4.

Timeseries Use EMD Perform Hilbert Use Inst. Freg. to Amplitude of
Data —bp >€ X o Transform on IMFs to 4 Calculate Hilbert —» Frequencies
Decompose into IMFs . )
get Inst. Freq. Amplitude Spectrum over Time

Figure 3-4 Diagram Detailing the Steps to Arrive at the the Hilbert Amplitude Spectrum

To illustrate this process with a reference example, an example discrete time series

process will be introduced. The input time series data in Figure 3-4 will be defined as the
sum of a stationary signal X (t) = sin (Zn (2—10) t) + 5, and a popular non-stationary

signal, the random walk process X,., (t) defined by X,.,(t + 1) = X,., (t) + N(0,1), where

N(0,1) is a zero-mean, unit variance Gaussian white-noise process. The random walk
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process is initialized with an initial value of zero, and the sampling frequency is 1 Hz. The
final resulting signal X (t) is

X () for t € [0,200)

X(6) = { Xoe(©) + Xy (D) for t € [200,400]. (3-22)
which results in the signal shown in Figure 3-5.
8 T
740 50 1 (I)O 1 5‘0 260 25‘0 3(;0 350 400

Time(sec)

Figure 3-5 Example Time Series Signal

(i) Empirical Mode Decomposition (EMD)

EMD is an iterative, empirical method used to decompose a single signal into a set
of oscillatory signals, each with meaningful amplitudes and phases, with the assumption
that the process is composed of a group of oscillatory modes [106, 107]. One result of this
decomposition is the ability to arrive at a set of instantaneous frequencies over time. Given
some signal f(t), the decomposition results in a set of modes

f@®) =X 0;(t) (3-23)
where each mode should have the form

p(t) =r(t)sin(6(t)). (3-24)
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Note that there are infinitely many ways to satisfy (3-23) with a set of modes. Now,
however, each mode is restricted to satisfy two conditions: 1) the number of extrema and
zero crossings must equal or differ at most by one and 2) at any point, the mean value of
the envelope defined by the local maxima and the envelope defined by the local minima is
zero. Modes satisfying these criteria are termed intrinsic mode functions (IMFs).

To arrive at a set of IMFs from a signal, an iterative procedure called sifting is
applied. First, the signal envelopes must be calculated as a spline fit of the local maxima
and local minima, as shown in Figure 3-6 and Figure 3-7. The mean of the envelopes, m,,
is then subtracted from the original signal f(t) to arrive at the signal h, 4, that is, h; ; =
f(t) —my, shown in Figure 3-8. The resulting h, ; signal does not yet satisfy the criteria
of an IMF, so the process of subtracting the mean of the upper and lower envelopes is
repeated to arrive at h; , = hy ; — m,. The process is repeated k times until the signal
meets the criteria of the IMF, and the signal c; = h,  is generated. See Appendix A 1l for

details on the practical implementation on enforcing the IMF criteria.
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Figure 3-7 Close-up of Envelopes and Mean Values of Original Signal
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Figure 3-8 Resulting Signal of h,, after Subtracting m,

After the first IMF, c,, is calculated, the new residual signal r;, = f(t) — c¢; is now
considered the ‘original’ data signal on which the sifting process is applied to, such that c,
is calculated and r, = r; — c¢,. The sifting process is repeated M times until the residual
ry—1 itself is constant or monotonic, such that f(t) = j-”zlcj and the last signal ry,_; =
cy - Note that the time series c,, is usually not an IMF, and can be considered a trend in the
data. The result is a set of modes that are considered complete, in that the sum of the modes
recreates the original signal f(t). All of the modes calculated through this process from
the example signal are shown in Figure 3-9. The time complexity of EMD is O (mlogm)
where m is the number of points, which is equivalent to the complexity of the Fourier

Transform [108].
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Figure 3-9 All IMFs in Original Signal

(if) Perform Hilbert Transform on IMFs for Instantaneous Frequency Information

To calculate instantaneous frequencies, the Hilbert transform is applied to each

IMF. Let x(t) be a real-valued signal. The Hilbert transform y(t) = H{x(t)} is
y(©) == [7 e (3-25)
where the Cauchy principal value of the integral is used. This can be thought of as a

convolution of the original signal x(t) with the function % which heavily weights the local

values of x(t) at some time t. A complex analytic signal z(t) is then defined as

z(t) = x(t) + jy(t) = a(t)el?® (3-26)
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where the amplitude is a(t) = /x(t)? + y(t)? and the phase is 6(t) = tan‘l%. The

instantaneous frequency can then be defined as

dG(t)

w(t) =—= (3-27)

Applying this definition of instantaneous frequency to the analytic signal of each IMF

results in a set of instantaneous frequency time series, as shown in Figure 3-10.
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Figure 3-10 Instantaneous Frequencies Present for Each IMF

Before creating the Hilbert amplitude spectrum H(w,t), discretization of the

frequencies is necessary. If the total data length is T and the sampling rate is At, then the

lowest frequency that can be extracted is f,,i, = %while the highest frequency is frax =
66



ﬁ, where n is the minimum number of samples that are needed to accurately represent the

frequency. Note that although five points are needed to completely describe a sine wave
oscillation, fewer points are needed to define a stable derivative, so this parameter is kept
as a user-defined variable. The maximum number of frequency cells that can be used in the

discretization is defined as

N = mex — T (3-28)

fmin nAt

To compose H(w, t), which is a matrix of size N x T, the amplitude a(t) is added to the
frequency bin that contains its instantaneous frequency w(t) for each IMF, effectively
summing the amplitudes of frequencies across all IMFs. The Hilbert amplitude spectrum
for the example signal is shown in Figure 3-11, with adjacent cells averaged for
presentation purposes. Notes on the Hilbert amplitude spectrum are presented in Appendix
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Figure 3-11 Hilbert Amplitude Spectrum for Entire Example Signal
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3.3.2. The EDNS Metric
The Ensemble Degree of Non-Stationarity (EDNS) metric is based upon the Degree
of Stationarity (DS) definition presented by N. Huang, so the definition of the DS will first

be presented [93]. The definition of the DS is

DS(w) = 2 [ (1 - D) g (3-29)

n(w)
where n(w) = %fOTH(a), t) dt, the mean amplitude for a given frequency, and T is the

total length of time series data. This work will consider discrete time series and frequency

bins, so the definition of the DS can be rewritten as

DS(w) = 231, (1 - L2y’ (330)

n(w)
and n(w) = X7 H(w, 1),

The DS captures the variation of a signal in a certain frequency bin over time. If

the DS is large (i.e. the ratio HWD s far from one), this indicates large variations in the

n(w)

H(w,t)
n(w)

bin. If the DS is zero (i.e. the ratio is 1), there is no variation in the frequency bin.

Thus, a larger DS is indicative of non-stationary behavior, while a smaller DS indicates
more stationary behavior. The DS values for the example signal are shown in Figure 3-12.
For a given frequency bin, if there are only very few non-zero instances of the frequency
in time, the value of the DS is approximately 1/N, as seen in multiple frequencies in Figure

3-12. In this work, a DS of 0 is assigned to frequency bins with no energy.
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Figure 3-12 DS Values of the Example Signal

The DS is only defined for a given frequency bin, which does not capture the
stationarity of the entire time series. To provide a measure for the stationarity for the signal
as a whole, the EDNS is introduced as the sum of the DS values across all frequency bins,

weighted by the average amplitude in each frequency bin, written as

EDNs, = 2eDS@)In(®) (3-31)

Nsum

where ng,,, = X, n(w), and where the subscript in EDNS; simply denotes that the EDNS
was calculated for some length of data T. The EDNS sums the DS values, but weights them
by the amplitude of the corresponding oscillation frequency to ensure that small, relatively
insignificant oscillations do not dominate the metric. A graph of DS(w) - n(w) is shown in
Figure 3-13 to contrast with Figure 3-12. The normalization by ng,,, allows the EDNS to

be compared to other EDNS values, regardless of the signal amplitudes. The resulting value
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for the EDNS is 15.19 for the example signal, which is the sum of the values in Figure 3-13

divided by ng, .
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Figure 3-13 Weighted DS Values of the Example Signal

For use in forecasting, the EDNS would be used to determine the non-stationarity
of training data subsets in the time series signal. To establish the degree of non-stationarity
for different subsets of training data, the EDNS can be calculated on each subset and
compared. Thus, for applications in time series forecasting, the EDNS values from different
past time series data lengths Ty, ---, Trmax €an be compared. An EDNS curve is created as

a function of the time series data length, defined as

EDNS(T,) = 2eD3@)n() (3-32)

Nsum T,

where Ty € Thins - » Tmax-
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An example of this comparison is shown in Figure 3-14, where EDNS values for
data lengths from T = 20 seconds to T = 400 seconds were calculated in steps of 20
seconds, where the length of data T was taken to start from t = 0. As expected, the EDNS
is very low for the stationary period from 0 to 200 seconds, but rises rapidly as the non-
stationary random walk is included in the data length. This is the result of variations in
frequency from the underlying, non-stationary model. It is important to note that the EDNS
only shows the degree of non-stationarity of different windows of data and does not
determine the optimal training windows alone. Discussion on the use of the EDNS in

forecasting is presented in Section 3.4.1.
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Figure 3-14 EDNS Values for a Range of Dataset Lengths

Note that the computational complexity is now O ( iT;”;;m T; log Ti), as the EMD

method is now repeated over lengths Ty,in, ..., Tmax- TiS can be repeated at every time step

(e.g. every 5 minutes) to calculate the most accurate EDNS curve for the most recent data.
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To establish this EDNS curve, an iterative calculation over different dataset lengths is
summarized in Figure 3-15. This method allows a user to arrive at a curve similar to that
shown in Figure 3-14 that relates different lengths of training data to their EDNS values,

which can be parallelized to significantly speed computation.
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Tonin lags Value

— EDNS Value

Tiin + 1lags Value

Trai ; lculate EDN
y Trainingsetof | . - 4,{‘:““3“3 > L) EDNS Value

Timeseries
Data

Tnax lags Value

Training set of M HHT 4’{Calculate EDNS L ) EDNS Value

Figure 3-15 Diagram Detailing the Steps to Arrive at a Range of EDNS Values

3.4.  Application of the EDNS in Wind Power Forecasting

The EDNS only provides a notion of the non-stationarity within a signal. However,
the EDNS can be used in an algorithm to adaptively provide optimal training window sizes
in real-time, with the goal of establishing some optimal training window T* that may
change over time. Use of the EDNS in this manner will be termed the dynamic training
window method, which will be contrasted with the use of optimal static training windows

in wind power forecasting simulations.

3.4.1. Dynamic Training Window Method for Wind Power Forecasting
The strength of the dynamic training window method lies in its ability to adaptively

adjust the training window size subject to the stationarity of the past data, with the use of
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the EDNS. An outline of the algorithm is shown in Figure 3-16. Each step will be detailed

in the following subsections.

Present,
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Power Data

Create EDNS vs.
Training Length Curve

Solve Optimization to
Find T*

|

Run Forecasting
Method w/ Optimal
Training Length

Wait AT Minutes
Next Observation

Figure 3-16 Dynamic Training Window Method for Use in Short-term Forecasting

(i) Create EDNS vs. Training Length Curve

After obtaining the present power output of the wind farm time series, the EDNS
curve must be calculated for a range of past data Ty,in, Trnin + ATp ..., Tnax With Some step
size AT,. The process shown in Figure 3-15 is used to arrive at a curve of the EDNS vs.
training length. One consideration is that this curve must include T*, such that 7,,;,, < T* <
Tmax- Though the optimal training windows change over time, in practice, T* has some
finite variance over time specific to a time series (as shown in simulations later in this

work), so it is possible to define some static T, -, Tmax fange such that it contains T*
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for over all time. As a rule of thumb, sweeping from T,,;,, = At t0 T, = 2T, Where At
is the sampling rate and T* is the mean optimal training window over some representative

set of data (e.g. 1 month or over 8000 data points) in a time series works well.

(ii) Determining Optimal Training Length

Forecasting models are built on the assumption that the analyzed length of data is
stationary, and so it may seem that the optimal set of training data should be the most
stationary one (for example, a set with the lowest EDNS). Intuitively, small sets of data
exhibit a low degree of non-stationarity, and taken to the extreme, a dataset consisting of a
single point would grant the most stationary process (and indeed, the EDNS of a single
point is always 0). However, using a single point as training data is usually undesirable and
not implemented in practice for most forecasting methods, as there would be little to no
information to build a forecasting model. Figure 3-17 shows the EDNS curves at four
randomly selected points in the year for a varying length of potential training windows,
which shows that wind power output data generally increases in its EDNS value (and
therefore, non-stationarity) over time. The legend shows the day that the training window
is calculated backwards from, such that a training window of 48 hours on February 22"

shows the EDNS for a set of data from February 20" to February 22",
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Figure 3-17 EDNS Curves at Four Randomly Selected Points in AEMO Data

There is a fundamental trade-off in time series forecasting between stationarity and
the need for a forecasting method to use as much training data as possible. Most forecasting
methods tolerate some degree of non-stationarity in producing a useful forecast, but
previously, this tolerance was never quantified. This degree of tolerance will be captured
by &, which will treated as a threshold for the EDNS value of the optimal training window.
The EDNS vs. training length curve will be used to select an optimal training length T* at

every time step according to the following optimization problem

T*= maximize T (3-33)
: DS(w)-
subject to ZoDS@)n@)| (3-34)
Nsum T
T € [Thmin Tmin + ATy ., Trnax] (3-35)

in which (3-34) provides an & upper limit for the non-stationarity allowed in the EDNS
value for all lengths T, and (3-35) provides the bounded range of training windows. If the

problem is infeasible, it is recommended to use the training window T = T,,;, t0 ensure
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that the threshold of & non-stationarity is met in the training data. This optimization will
allow the forecasting method to use as much training data as possible, subject only to a
constraint on the EDNS of the training window.

To solve the optimization problem efficiently, the following algorithm was used.
Note that the algorithm requires a sweep over the ordered set {T,,in, ---» Tmax} SUCh that

larger values of T overwrite T™* if the EDNS value is under the ¢ threshold.

Algorithm 1 Algorithm for determining optimal training window length
Input: Tpin, ATy, Tonax, EDNS(T,)
Output: T*
Initialization: T* = 0
for T; = Tpyin 10 Tppgy in Steps of AT, do

if EDNS(T;) < ¢

T* - Ti

end if
end for
return T*

o Uk~ whE

The selected optimal training lengths points are visually shown in Figure 3-18 given an ¢.
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Figure 3-18 Optimal Windows Given Some ¢ at Two Points in AEMO Data
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The value of ¢ is determined in this study by two methods: 1) creation from as much
prior data as possible, termed the rigid epsilon approach and 2) creation from some set of
most recent data, termed the adaptive epsilon approach. In the rigid epsilon approach, the
value of epsilon may be found simply by sweeping epsilon values over lengths of training
data to find the best epsilon value for a forecasting method (which in this study is one year
of data). The epsilon value is only calculated once in the rigid epsilon approach and does
not change. However, the adaptive epsilon approach acknowledges that the EDNS is based
off of a noisy Hilbert amplitude spectrum, which does not always represent the frequencies
present in the signal accurately due to the empirical nature of the EMD method. The
resulting EDNS values then do not perfectly capture the non-stationarity in the time series,
and so the optimal & threshold may change in practice over time for a single forecasting
method. In the adaptive epsilon approach, a smaller, more recent set of data is used to
determine & by sweeping over a range of [¢ — &g, € + &4, ] thresholds and evaluating
performance, where &g, defines the swept range around the original . This is performed
iteratively throughout time, and it has been found that changing the & threshold every
month, based on the best € of the past month of data, has shown good results. This monthly

update of ¢ is used in this study for the adaptive epsilon approach.

(iii) Run Forecasting Method w/ Training Length

After selecting the optimal set of training data, the forecasting method is simply run
for one time step with this set of training data. The process of selecting a training window
T* can then be repeated at the next time step. If the data has relatively low EDNS values

in general, then it is possible to run the forecasting method for multiple time steps with the
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same T training window to limit computational effort in arriving at the EDNS values for

different training window lengths.

3.4.2. Simulations using the EDNS

This real-time algorithm was tested with SVR models because better forecasting
performance was seen with SVR than with AR on the wind power output time series, and
SVR also used less training data to achieve the results. This resulted in drastically faster
computation for both the creation of the EDNS curves and the forecasting itself. The
features of the SVR model were defined to be the p = 4 past power output measurements,
which corresponds to the results of the AIC and BIC methods, and the label was defined to
be the difference between the past and present power output. As a result, the matrix of
training data was of dimension (T* — 3) x 4, while the label vector was of dimension
(T* — 3) x 1 for the creation of an SVR model. A new SVR model was created at every 5-
minute time step based on the most recent data of length T*, which was contrasted with an
SVR created at every 5-minute time step based on a static training window Ty, the optimal
static training window. MATLAB 9.0 was used for these simulations in conjunction with
the LIBSVM library [104]. In this work, C = maxy — miny = 1 after data normalization,
and a grid search is performed over € = 0,0.01, ...0.05 and y = 272,271, ..., 27. A 5-fold

cross validation was performed at every time step to optimize the SVR parameters.

(i) Simulations using the EDNS with a Single Wind Farm in AEMO

The AEMO dataset was used for the first set of simulations, as it is a highly non-
stationary dataset with statistical forecasting methods that performed worse than

persistence in published literature [82]. Five forecasting approaches were applied to the
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dataset: 1) persistence, 2) static training window SVR, in which the optimal training
window from one year was used for the next, 3) rigid € dynamic training window SVR, in
which the optimal & from one year was used for the next, 4) monthly static training window
SVR, in which the most recent month was iteratively used to establish the optimal static
training window, and 5) adaptive ¢ dynamic training window SVR, in which the optimal ¢
was computed iteratively at the beginning of each month, based upon results from the last
month.

Two years (2012-2013) of a power output time series with a 5-minute resolution
from a 160 MW wind farm in AEMO were used in this forecasting study. One-step-ahead
forecasting tests were performed on the complete year of 2013. The training window of 67
hours was identified as the optimal static training window in 2012 by sweeping over values
of training windows and identifying the one that yielded the lowest forecasting errors. For
the rigid epsilon method, the EDNS value of € = 27 was chosen as the best performing
epsilon value for the year of 2012. The adaptive epsilon method used a range of ¢ €
[19,32] at a resolution of 0.25, where each month the best ¢ value from the prior month
was chosen for forecasting. Training windows and chosen epsilon values over each month

of the test year are shown in Figure 3-19.
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Figure 3-19 Training Windows or Epsilon Values over the Test Year of 2013

Table 3-1 Forecasting Results for AEMO Wind Farm, 2012

Forecasting Method MAE MAE RMSE RMSE Ramp MAE Ramp MAE

%) MW) (%) (MW) (%) (MW)
Persistence 2.015 3.224  3.566 5.706 7.830 12.53

Static 67-hour Training
Window SVR 2.003 3.205 3.513 5.621 7.513 12.02

Rigid € = 27 Dynamic
Training Window SVR 1998 3.197 3.507 5.611 7.490 11.98

Monthly Static Training
Window SVR 1993 3189 3.507 5.611 7.520 12.03
Adaptive Epsilon, Dynamic g9y 3184 3506 5610  7.501 12.00

Training Window SVR

Forecasting results on the entire year of 2013 data are presented in Table 3-1,
showing that the use of a dynamic training window results in improved results for both the
complete year and just in the presence of ramps, where a ramp is defined to be a change in
power of greater than 7.5 MW in 5 minutes (which is 5% of the wind farm capacity). When
compared with the static training window methods, the forecasting improvement using the
dynamic training window decreases the MAE by 0.2%-0.3%, which is close to expected as

discussed in Section 3.1.1. In this dataset, recalculating the optimal training windows (both
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for epsilon and for the static training window size) results in lower error for the entire year,
compared with the case in which an entire year was used to calculate a single epsilon or
training window size. Notice that no special attention has been paid to ramp identification
or prediction, and that only the overall MAE was minimized. This is seen in the monthly
training cases, where the ramp MAE is higher in the monthly re-calculated cases when
compared with the yearly cases. Ramp prediction can be improved with the implementation

of a ramp detection algorithm, such as the one in the work by L. Yang et al. [85].

(i) Simulations using the EDNS with a Wind Farm in Colorado

The dynamic window algorithm may show improved results over use of a static
training window when a highly non-stationary process is forecasted, but if the time series
itself is highly stationary, the dynamic window algorithm may result in the same
performance as when a static training window is used. Forecasting performance was
compared using a single 10-minute resolution time series from a 300.5 MW wind farm in
Colorado, with two full years of data from 2011-2012, sourced from NREL. The Colorado
data has a more stationary time series than in the AEMO data, as the EDNS curves for the
Colorado data have lower EDNS values than the AEMO data, as shown in Figure 3-20. In
addition, AR forecasts were performed on two months of Colorado data with the same
model and procedure as shown Section 3.1.1, with a 4-lag AR, one-step-ahead forecasting
model. The MAE vs. AR model training length plot is seen in Figure 3-21, which shows
that for extremely long training window lengths (up to half of a year for the AR model),
the performance of the AR forecast does not degrade. This can compared with Figure 3-1
and Figure 3-2, where the forecast performance does degrade with long training window

lengths.
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Figure 3-21 AR MAE Error Versus Training Data Length for 2 Months of Colorado Data

SVR forecasting models with a feature length of 4 were also created using the same
procedure as with the AEMO data, and the SVR forecasting error versus epsilon for the
year of data is shown in Figure 3-22, with the use of the dynamic training windows. The
curve shows that SVR performance does not degrade with long training lengths. An epsilon

of 23 was selected for the year of data, and results for the rigid epsilon approach of the
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dynamic training window algorithm are shown in Table 3-2. Similar results between the
use of a dynamic training window and static training window are seen in the table, where

a ramp was defined as 5% (15 MW) of the wind farm capacity.
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Figure 3-22 SVR MAE Error versus Epsilon for a Year of Colorado Data, 2011

Table 3-2 Forecasting Results for Colorado Wind Farm, 2012
MAE MAE RMSE RMSE Ramp MAE Ramp MAE

Forecasting Method

%) MW) %) MW) (%) (MW)
Persistence 1.809 5.436 3.351 10.07 8.593 25.82

Static 121-hour Training
Window SVR 1500 4506 2.840 8.533 5.711 17.16
Rigid e = 27 Dynamic oy 4506 2839 8530 5711 17.16

Training Window SVR

To examine the ability of the adaptive epsilon algorithm to correct for poor initial
choices of epsilon, an epsilon value of 10 was initially selected for the month-to-month
adaptive epsilon and contrasted with an rigid epsilon approach with e = 10 for the year of
Colorado data. For this simulation, the range over which surrounding epsilons were tested
each month in the range [e — &, € + €, ] Was set to €, = 2.5, with a sweep resolution

of 0.5. This allowed for a maximum change of 2.5 in the epsilon value each month. The
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movement of epsilon over time is shown in Figure 3-23, which shows movement to the
optimal epsilon value of 27. Table 3-3 shows that the adaptive epsilon approach improves

upon the static epsilon case with a poor initialization of epsilon.
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Figure 3-23 Epsilon Movement with the Adaptive Epsilon Approach, Over Each Month

Table 3-3 Rigid vs. Adaptive Epsilon Approaches with Poor Initialization of Epsilon
MAE MAE RMSE RMSE Ramp MAE Ramp MAE

Forecasting Method @) (MW) (%)  (MW) (%) (MW)
Rigid ¢ = 10 Dynamic

Training Window SVR 1.627 4890 3.055 9.180 6.557 19.70

Adaptive Epsilon, Dynamic 4 515 4550 908 8738 5966 17.93

Training Window SVR

(iif) Simulations using the EDNS Utilizing Spatio-Temporal Information for Wind
Farm Forecast in AEMO

Performance of the dynamic window algorithm was also tested in a multi-wind
farm forecast case using SVR, as spatio-temporal forecasts are becoming increasingly
common in published literature regarding wind power forecasting [31, 82]. Forecasting
tests were performed on the same single power output time series from Subsection (i), a 5-

minute resolution time series from a 160 MW wind farm in AEMO (referred to as the main
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wind farm), also using the power output a nearby wind farm (referred to as the auxiliary
wind farm) less than 10 km away to assist in the forecast of the main wind farm. There
were twice the number of features used versus the SVR forecasting case with only one
wind farm, which were the p = 4 past power output measurements of both the main and
auxiliary wind farms. The label definition remained as the difference between the past and
present power output of the main wind farm. As a result, the matrix of training data was of
dimension (T* — 3) x 8, while the label vector was of dimension (T* — 3) x 1 for the
creation of an SVR model.

The same epsilon was used for both wind farms, as the EDNS curves were fairly
similar as shown in Figure 3-24. The dates in the legend are the dates for which the training
length was calculated backward from, such that a training window length of 72 hours from
September 30" corresponds to a training window of the first hour of September 27%" to the
first hour of September 30™. The optimal training window T* was found for both the
auxiliary wind farm and the main wind farm at every time step. This resulted in two T*

values, T, for the auxiliary wind farm and T,,,;, for the main wind farm, so the simple

ain
minimum among the two T* values was used as the global T* to ensure that both training
sets were suitably stationary, such that

T* = min(T;4im Taux)- (3-36)
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Figure 3-24 EDNS Curves at Two Times for Both the Main and Auxiliary Wind Farms

Forecasting results are shown in Table 3-4, showing that the use of a dynamic
training window results in slightly improved results for overall performance. The small
improvements in performance in this dual wind farm approach (less than 0.1%) as opposed
to the single wind farm approaches may be due to the fact that any changes in correlation
between the wind farms are ignored, as the present algorithm only focuses on the
stationarity of an individual time series.

Table 3-4 Forecasting Results Using Spatio-temporal Information in AEMO, 2013

RMSE RMSE Ramp Ramp

Forecasting Method I\él(;/A)E ?I/\I/IA\\IE) (%) (MW) MAE MAE
° (%) (MW)

Persistence 2.015 3224 3566 5.706  7.830 12.53

Static 59-hour Training
Window SVR

Rigid € = 26 Dynamic

Training Window SVR

Monthly Static Training
Window SVR

Adaptive Epsilon, Dynamic
Training Window SVR

1970 3.151 3.460 5537 7.226 11.56

1968 3.148 3.459 5534 7.210 11.54

1968 3.149 3461 5538 7.224 11.56

1967 3.147 3.458 5532 7.207 11.53
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3.5. Conclusions on the EDNS

This work introduced the EDNS, which is a metric that quantifies the degree of
non-stationarity present in a time series. In addition, a real-time dynamic training window
algorithm was introduced that used the EDNS, which was able to determine an
appropriately stationary set of training data for SVR short-term wind power forecasting.
The dynamic training window algorithm, with the assistance of the EDNS, was able to
provide an estimate of the optimal training window length based on the quantified non-
stationarity in the past data. When using the real-time dynamic training window algorithm,
improvements of 0.2% to 0.3% were seen when compared with the optimal static training
window selection through its application to a highly non-stationary dataset, AEMO data.
The adaptive epsilon approach in the dynamic training window algorithm saw further
performance improvements, especially if the training window or epsilon were initialized
far from the optimal epsilon. In a more stationary dataset from a wind farm in Colorado, it
was seen that the use of the dynamic training windows did not improve performance, as
very long training windows did not degrade performance and did not need to change over
time. Further research directions with the EDNS are identified in the final chapter of the
dissertation.

Quantifying stationarity may increase the accuracy of short-term forecasts in highly
non-stationary datasets, which can then be used in various power system operation tools to
improve operations performance in the presence of high penetrations of renewable energy.
One such application could be in the use of security constrained economic dispatch, in
which dispatch occurs at 5-minute intervals in some modern power systems such as those

in controlled by PJM Interconnection [109]. However, these applications exclude the
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proposed anticipatory control improvement to secondary control presented in the next
chapter, as secondary control operates on a sub-minute time scale and thus would likely
use persistence forecasts for useful short-term forecasts (e.g. 30-second-ahead forecasts)
because of the small errors expected from persistence forecasts over such small time
intervals. The next chapter presents an improvement to secondary control with the use of a
disturbance forecast provided approximately 30 seconds in advance of the disturbance,

which is separate from the work performed in this chapter.
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4. ANTICIPATORY SECONDARY CONTROL

4.1. Introduction to Anticipatory Secondary Control

In power systems, secondary control is used to continuously balance supply with
demand to maintain a stable and reliable service to the consumers. Automatic Generation
Control (AGC) provides secondary control, sending commands to a set of responsive
generators to change generation levels and minimize load and generation imbalances,
which ultimately correct for deviations in system frequency or tie-line power flow. The
fundamental operation of AGC as a feedback controller responding to deviations in
measured frequency or tie-line flow has changed little over its industry adoption [110, 111,
112, 113]. However, as significant amounts of renewable energy continues to be integrated
into modern power systems, extra uncertainty in the generation and load balance has been
introduced which can dwarf the short-term load forecasting errors as a percentage error of
generation [31, 114, 115]. Also, with increased integration of renewable generation, ramp
rates in generation can be much larger than previously experienced in a power system, so
spinning or non-spinning reserve on-hand may not be able to follow these ramps as tightly
as desired [39, 116]. Prediction accuracy of renewable generation is improving, as much
research is focused on short-term renewable energy forecasts, including both point and

distributional forecasts, which can predict future disturbances in renewable energy with

89



increasing accuracy [31, 85]. In addition, predictable generation or load events, including
large social events and some transmission outages, can also result in sudden and relatively
large generation and load imbalances that can be anticipated to a high degree of accuracy.

When a disturbance is anticipated, it may be reasonable to manually raise or lower
the frequency area reference before the disturbance, in anticipation of the sudden
generation and load imbalance. However, manual frequency set-point changes require
human intervention and may have limited or no feedback response to allow for control
corrections to an imperfect forecast of an anticipated event. An automated, anticipatory
control solution would save time for system operators and improve system operational
performance by responding to forecasts of large disturbances before the disturbance, and
by correcting for imperfections in the control signals with feedback control. In this work,
prior knowledge of an event in the power system will be used in an anticipatory controller
to improve operational performance in a simulated power system by adjusting the system
frequency reference as an external controller to the existing AGC system. This work will
only consider anticipated generation or load imbalances that can be predicted to some
degree of accuracy in the very short term (< 5 minutes), though a short study will be
performed using a 5-minute-ahead forecast. The main contributions of this work are:

1) Use of a (possibly imperfect) disturbance forecast in secondary control: The
integration of anticipated events or generation forecasts into the secondary control loop
greatly improves the ability of the power system to respond to forecasted changes in
generation or load as compared to conventional AGC.

2) Design of the controller as an add-on module: Much existing literature on novel
secondary control methods involves the partial or complete replacement of traditional
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AGC, which may not be practical. Designing the MPC controller as an add-on module
preserves the existing AGC system architecture, allowing for a plug-and-play operation. In
addition, this allows the operator to easily weight the decision of the controller with
traditional AGC action or preplanned actions if desired.

3) Highlighting trade-offs between inter-area communication of forecasted
disturbances: Communication of data over great distances is becoming more common, so
system operators between different control areas may be linked by communication
channels in order to increase operational performance for all areas. However, forecasts are
frequently incorrect, and depending on the magnitude of the errors, broadcasting an
incorrect forecast may result in worse system performance than in the case of no
broadcasting.

The work is organized as follows. Section 4.1 includes the motivation for the work
as well as some background on secondary control in the power system. Section 4.2
introduces the general MPC model that will be used for anticipatory secondary control.
Section 4.3 introduces the power system model for testing and the selection of the
parameters for the controller. Section 4.4 presents the detailed MPC formulation used in
this study along with simulations and the comparisons of the anticipatory secondary

controller with other control methods. Conclusions are presented in Section 4.5.

4.1.1. Secondary Control in the Power System

Secondary control refers to generation and load balancing services that control area
typically provides within a few minutes, restoring frequency and tie-line flows to its
nominal values. The core of secondary control is automatic generation control (AGC),

which is a control scheme that uses measurements from the Supervisory Control and Data
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Acquisition (SCADA) system in an electric system to respond to changes in measured
frequency and tie-line flows. AGC has two main objectives: 1) to hold the system
frequency close to a specified nominal value and 2) to maintain the correct interchanges
between control areas subject to contracts and transmission line constraints. These
objectives are captured by minimizing the ACE, defined as

ACE = APy — 10BAf = (Prie = Pric_rer) — 10B(fiys = frer) (4-1)
where AP;;, is the difference between the net actual interchange P;;, and the net scheduled
interchange Py, ¢ (eXcess power flow out of the area is defined to be positive), B is the
frequency bias factor in units of MW/0.1 Hz (the value of B is negative), and Af is the
deviation of actual frequency f;,; from the area frequency reference f..r in Hz (the value
is negative when the area is below its reference frequency). A negative value of ACE means
that the control area, or balancing area (BA), should be generating more power to return
the ACE value to zero. AGC minimizes the ACE value with a proportional-integral (PI)
controller that sends signals to responsive generation, used for its simplicity and ability to
eliminate steady-state errors [117].

In North American power systems, the frequency bias factor B is typically close to
the frequency response of the system, which is roughly the change in power (in MW) over
ten times the change in frequency (in Hz) given some event. For example, a loss of around
1000 MW of generation in the Electric Reliability Council of Texas (ERCOT) resulted in
a drop of around 0.17 Hz in frequency, and a loss of 150-300 MW in Bonneville Power
Administration (BPA) resulted in a drop of 0.1 Hz. Based on these two events, the
frequency responses of the ERCOT and BPA systems are approximately 588 MW/0.1Hz

and 150-300 MW/0.1 Hz, respectively [118, 119]. The precise calculation of the power
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system frequency response involves multiple measurements to compose an appropriate
value, and more details are available in the references. Further details of secondary control,
especially details regarding its implementation within the North American interconnected
power system, is available in a North American Electric Reliability Corporation (NERC)
training document [120]. In this work, B is calculated using the droop and load damping
factors of the system, discussed in Section 4.3.2.

A high-level block diagram of the AGC system and its relationship to the control
area is shown in Figure 4-1, where wg,, is the vector of governor frequency set points for
responsive generation in the power system. The measurements P.;. and f,,s are sampled
and sent through the SCADA system to the central controller for the control area, AGC.
ACE is calculated within the AGC block, and the vector of governor frequency set points

is then adjusted accordingly to minimize ACE. The scheduled power flow P ... and the
reference frequency f;..r is not represented in this diagram, but note that the reference value
of Pyje ref and fro is contained within the AGC block as a constant reference. Detailed

implementation of the blocks in Figure 4-1 is discussed in the next section.

Weer | Control

AGC Area

Figure 4-1 Information Flow Between the AGC System and the Power System

Traditional AGC does not take advantage of prior knowledge of disturbances
because it only reacts to deviations in frequency or scheduled tie-line flows. Especially
with the enforcement of the newer CPS1 and CPS2 standards, interconnections must strive

to minimize large ACE values when disturbances occur in the power system, so it may be
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desirable to act before a disturbance occurs to minimize frequency or tie-line deviations
[111, 120, 121]. Also, in cases of extreme changes in the generation and load balance,
traditional AGC may not be able to react as quickly as desired, so a modification of
traditional AGC is of interest [39, 116]. Anticipatory secondary control is introduced in
this work, which is a novel secondary control scheme that will react prior to a disturbance,

using MPC to optimally calculate control actions for the area.

4.2.  Anticipatory Secondary Control Design

A new method of secondary control, termed anticipatory secondary control can be
used to minimize frequency and tie-line deviations with feed-forward control in the
presence of anticipated disturbances. In this section, model predictive control (MPC) is
introduced as the optimal control framework by which anticipatory secondary control is
implemented. The integration of MPC with the power system will be discussed in a general
sense as well, with details of the formulation presented in Section 4.4.1, after the power
system model is introduced.

To implement anticipatory secondary control, an external predictive controller is
used with a disturbance forecast time series input and various measured inputs from the
power system to change the area frequency reference, which modifies the traditional ACE
value to that of an effective ACE (eACE). This eACE is not the true ACE of the system,
but is nevertheless minimized by the existing conventional integral controller in the AGC
system. This anticipatory approach to secondary control utilizes externally-provided event
forecasts in the power system’s secondary control loop, thus significantly improving the

power system’s ability to respond to large changes in generation or load fluctuations. The
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proposed approach also allows for seamless integration into the existing power system
control architecture, as the existing control infrastructure can be efficiently augmented with
the envisioned controller, as shown in Figure 4-2. The MPC controller uses a forecasted
disturbance estimate d within its own area as well as estimates of the future disturbances
in other areas {c?“} (if available), measured system variables such as system frequency fsys,
the net inter-area tie-line flow P;;,, the effective area control error eACE, and the set of
area frequency references {fZ,} from the other a areas in the power system interconnection
to provide a frequency area reference f;,; for AGC. The existing AGC system then uses
the modified f;.; to send out a vector of governor speed set-points w,,; to the responsive
generators in the system. Note that the actual disturbance d to the power system differ from

the forecasted disturbance d by some forecast error ¢.

Standard Secondary Control Loop

_____________ |
Actual .
: | > I
Dlstuzlbance | Wgp, | CONErOl Prie |
| » AGC —»  Area fsys |
| r 1eACE |
| I
MPC Controller
a
Forecasted fset {fset}
Disturbance(s)
a,{de)

Figure 4-2 Anticipatory Secondary Control, with an Augmented Controller
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Traditional AGC in a power system minimizes deviations from a system area
frequency reference f,., using a tuned integral controller. Specifically, it minimizes ACE,
repeated here for convenience:

ACE = APy — 10B(foys — frey) (4-2)
which is a combination of the net tie-line power flow deviation AP;;, and the system
frequency deviation from a seldom-adjusted frequency reference f..r weighted by the
frequency bias B. To adjust the area frequency set point and leave the existing AGC system
with its integral control intact, the effective system area frequency reference will be

changed by an external anticipatory MPC controller by adjusting f;.; in eACE, defined as:

eACE = APyio — 10B (foys = (frer + foet) ) (4-3)
where eACE is still minimized using the same integral controller that exists within AGC.
The only difference between eACE and the traditional ACE calculation is the change in
the effective area frequency reference term. With traditional ACE, f,.., seldom changes,
usually only offset in normal operation by a maximum of 0.02 Hz for time error corrections
[120]. Using eACE, however, the external controller will manipulate f;.; to shift the
effective area frequency reference f,..r + fsee, Which changes the behavior of AGC. This
will enable the external controller to ultimately control the governor speed reference values

to more quickly correct frequency or tie-line flow deviations.

4.2.1. Background on MPC Controller Design
MPC is an optimal control method used to solve control problems, with advantages
over traditional linear quadratic regulation in being able to compensate for uncertainties in

future inputs or errors in the plant model. MPC can offer these benefits by solving a
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quadratic programming problem at every time step and applying a control action after every
solution [122].

To describe the MPC controller that performs anticipatory secondary control (in
Figure 4-2), some background material on MPC controllers must first be presented. Let a
system be represented by the linear time-invariant (LTI) discrete state-space process model

Xi+1 = AX; + BU; (4-4)
where A is the N x N matrix describing the system, B is the N x M matrix for the effect of
the input, X; is the N x 1 vector of states at time i, and U; is the M x 1 vector of manipulated
variables at time i. A measured, uncontrollable input (such as a step change in generation)
is modeled as a disturbance d;, which is contained within the vector U;. In this model, d;
differs from the actual disturbance by some forecast error .

MPC is an iterative control method, solving an optimization problem at every time
step that minimizes a cost function subject to a set of constraints over a finite, rolling
horizon. Resulting control actions are discrete with a resolution of T seconds, also called
the control interval. MPC minimizes a weighted sum of p future predicted states values
where i € [0,1...p — 1] and the states X; and inputs U; at some present time t are defined
as:

X; = X(t + T,i) (4-5)
U; = U(t + Tyi) (4-6)

Let there be N states with M inputs to a plant to be controlled. MPC minimizes the
cost function J as follows [122]:

min J = Y!_ X7 QX; + U/ RU; (4-7)
Uy..Up
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where X; is the N x 1 state vector on the ith step in the prediction horizon, U; isthe M x 1
input vector on the ith step, Q is the N x N penalty matrix for state deviations, R is the M
X M penalty matrix for control actions, and p is the length of the prediction horizon. Note
that @ must be positive semi-definite and R must be positive definite for a solution to be
obtained. This formulation minimizes movements from both desired states and desired
control levels. To both control the shape of the control action and reduce computation time,
an extra cost term may be applied to smooth the controller output and a control horizon m

can be defined for control actions:

Jmin J = (X, xTQx;) + (X7, UTRU; + U SU;) (4-8)

where U is the 1°t derivative of the control action, and S is the weighting matrix associated
with U. Note that p > m, and

Up = U; = Uiy fort >0 (4-9)
U=0 fort = 0. (4-10)

Now the formulation allows for some smaller set of actions Uj; ... U,, to be calculated, rather

than the full set of U, ... U,, which saves on computation time if m < p. Because the states

X; must be calculated out to the prediction horizon to solve the optimization problem, the
control inputs after the control horizon are defined as

Uy=Upform<j<p. (4-11)

Let p denote the length of the prediction horizon in the optimization problem, where

all system states and m control actions during this horizon are accounted for in the

minimization. After the optimization problem is solved at some time t, only the first action

in [U; ...U,,] is taken, U;. In the next time step, all states are sampled, and the future states

are estimated again while MPC again calculates a new optimal series of U;, then again
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executing the new first action U,. Note that the size of [U; ... U,,] does not change, always
maintaining m vectors of size M x 1. In this way, MPC implements its receding horizon,
and it is in this sense that it is termed a real-time or online method of optimization.
Determining a suitable length of the horizon p is non-trivial, though it has been shown that
there exists a horizon p for which MPC is stable and feasible, for any given controlled
system [123].

The choice of Ty, p, and m can drastically affect the function of the controller,
balancing performance with computational effort [124]. Smaller T results in better
performance at the cost of computational effort, as the greater temporal resolution in state
computation allows the controller more overall control actions and a better estimate of the
impact of these control actions over a given time. Typically, T; is preferred to be less than
10% to 25% of the desired closed-loop response time. The size of p controls how far in the
future the controller will calculate system states, defining the horizon of the process model.
A needlessly large p introduces a large computational burden, but may also exacerbate any
model inaccuracies as any errors build up over the prediction horizon. Too small of a p
will result in poor performance due to the inability of the controller to compensate for
future effects of a disturbance. Typically, p should be chosen to be greater than both the
desired closed-loop response time and the plant delay. The choice of m determines the
number of control actions calculated, defining the horizon of the controller model. After m
steps, the system inputs remain constant for the rest of the process model horizon p. A
small m reduces the computational burden with a tradeoff in performance from the limited

number of control actions the controller can take, and p > m.

99



4.2.2. Implementing MPC for Anticipatory Secondary Control

The MPC controller and its plant model for a single controller in a multi-area
system is shown in Figure 4-3, where the plant represents the standard secondary control
loop group shown in Figure 4-2. The power system plant model shown in Figure 4-3 is the
linear state-space process model that the controller uses to describe the dynamic behavior
of the actual plant, which is the multi-area power system. The full plant model will be
described in Section 4.4.1, after the construction of the power system model. For this

section, the generic state-space plant definition shown in (4-4) will suffice.

Measured outputs

Forecasted ith
Disturbance (within area)
~ m
Forecast d— Afsys: {Pturb}r A Mo eACE
Error
€d Power System External area
Eptie ——» Plant Model - frequency
Net Tie-line references
a
Flow Error {fset}
Manipulated r _S: _41_ Forecasted
Input fset I Estiriae';or :—'—’_ Disturbance(s)
5 — d,{d%}
| ixau I ’
I Optimizer J I —
h
L — — — |

MPC Controller

Figure 4-3 The MPC Controller and Plant Model Relationship

The plant is modeled to have inputs of a manipulated variable input f,.; from the

controller, a forecasted disturbance d, a forecast error ¢4, and the estimation error in net
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tie-line interchange &,.;.. The plant also has a set of measured outputs consisting of the
measured system frequency at a bus f;,,s, a set of measured turbine total outputs {P,},
measured net tie-line flow (through a low-pass filter) out of the area P/}, and the eACE.
Note that in the state-space model, the calculated tie-line flow can differ from P/, because
of a disturbance in another area. Instead of attempting to estimate this disturbance, the
disturbance is estimated as a power injection into the area, which is why &,;. is an input.
The actual disturbance d to the plant is equivalent to the sum of the forecasted disturbance
d and the forecast error &4, though the two are separated for the convenience of modeling
the forecast error of the disturbance, which is unmeasured and unknown. Thus, from the
controller’s perspective, input variables into the plant are all measured and known
variables, with the exception of e, and &, as unknown inputs. The MPC controller is
composed of an optimizer and a state estimator, as most of the states in the system are not
measured and must be estimated with the possibility of measurement errors, imperfect
modeling, or a non-zero forecast error &4. The state estimator uses all measured plant
outputs, the provided time series of forecasted disturbance in its area d as well as other
areas {d“}, and sampled external area frequency references {f.%;}. The optimizer uses the
state estimator’s estimated states X,; as well as the provided data for the forecasted
disturbance and external area frequency references. At every time step, the state estimator
estimates the state vector X based on the measured outputs in the power system, then passes
this estimated state vector into the optimizer. The optimizer predicts the sequence of
frequency set point movements that minimizes the frequency error, using a linear system

model to predict the effect of its frequency set point movements some number of steps in
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advance. Details of the optimizer and state estimator used in this work will be provided in
the next two subsections, though further details are available in MATLAB’s documentation
[125].

With the structure shown in Figure 4-3, the state-space plant model can be further
refined. Recall that the general state space formulation of the plant is written as

Xi+1 :AX,_+BU1 (4'12)

Now, a vector of outputs is defined as Y; = [fsys, {Prurp}, Pg‘-e,eACE]T and a vector of
inputs is defined as U; = [&,ed,Ptie,fset]T such that a more detailed state-space

representation can be written:

Xi+1 =AXL+BUL (4'13)
Y; = CX; 4+ DU; (4-14)

Details of the actual states used are presented in Section 4.4.1 after the power

system is formulated in detail. Now, the MPC controller formulation is written as

P tmi}p t J=Cr, ey + (Z}”:l U'RU; + UjTSUj) (4-15)
setq-Jsetm

st Xiv1 = AX; + BU; (4-16)

Y, =CX;+DU; (4-17)

Umin < fset < Umax (4'18)

where u,,;, and u,,,, are the bounds for the manipulated frequency set-point movement
fset» Which are set to -0.1 Hz and 0.1 Hz, respectively. Notice that the objective function
minimizes some combination of outputs Y;, inputs U;, and the change in inputs U;. In
particular, the controller will only be concerned with minimizing the system frequency

deviations Af;,,s and the tie-line deviations AP/, in the output vector Y;, its controlled input

feer In the input vector U;, and the rate of change of its controlled input f;, in U;. Thus,
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the weighting matrix Q has only two non-zero elements on its diagonal, and is otherwise
empty. In addition, R and S have only one non-zero element. This structure, where
weighting matrices are used with only a couple of non-zero elements, is directly used for
the ease of implementation of the MPC controller in MATLAB. However, the problem can

be equivalently stated as follows:

min ] = (I, Qr(Afys)” + Qpric(APIL)? ) (4-19)

fsetl---fsetm
;. 2
+ ( ;'n=1Rf(fset)2 + Sf(f:qet) )

St Xi+1 =AXl +BUl (4'20)
Y, =CX;+DU, (4-21)
—0.1 < fyp <0.1 (4-22)

where the objective function is now explicitly defined with scalar penalties Q for the
frequency deviation, Q,.;. for the net tie-line flow deviation, Ry for non-zero f,,, and S¢

for non-zero changes in the frequency set point f,... These weights are time-invariant in
this work, and will be defined prior to the actual simulations, as they can drastically change
the performance of the controller. However, the weights @ and Q,.;. are greater than or
equal to those of the frequency set point weights, which are setto Ry = 0.15 and Sy = 0.75
for these simulations.

With the formulation now described, the MPC state estimator and optimizer will be

discussed in the following two subsections.

(i) MPC State Estimator

The controller does not have measurements for all states inside of the plant, and so
many of the states must be estimated based upon measured outputs. The state estimator is

based on a steady state Kalman filter, where the state-space matrices A, B, C, and D are
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time-invariant and the states are iteratively estimated at each time step. The state estimator
is based on the state space observer, which is simply the same formulation as shown in
(4-13) and (4-14). For convenience of discussing the Kalman filter, the equations are
rewritten as

x(i+1) = Ax(i) + Bu(i) + Gwy (4-23)
y(@) = Cx(@) + Du(i) + Hwy, + vy, (4-24)

where w;, and v, represent white noise vectors that is adds white noise to all states or
measurements, respectively, following the normal distributions w;, ~N (0, diag(Q;)) and
vk~N(0, diag(Rkal)), where diag(+) is the diagonal of a matrix. In this work, G and H are
identity matrices to create a one-to-one correspondence from a given value in Qyq; OF Ryq;
to a state or measurement. The importance of these variance values in the state estimation
will be presented later in this section. The Kalman filter uses observations to provide a
corrected estimate of the states and measurements in the system. Assume the following are
given:

- x(ili — 1), the controller state estimate from the previous control interval i — 1

- u%t(i — 1), the manipulated variable used in the plant from i — 1 to i

- d(i), measured disturbances

- ym (i), measured plant outputs

- By, By, columns of observer parameter B corresponding to measured plant outputs

- D,,,, rows and columns of observer parameter D corresponding to measured plant

outputs and measured disturbance inputs

- L, M, constant Kalman gain matrices
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First, the innovation is computed as
e(@) = ym(0) — [Crx(ili — 1) + Dy v ()] (4-25)
which is the difference between the measured and previously calculated output. Then, the
states are updated to take into account the latest measurements
x(i]i) = x(ili — 1) + Me(i) (4-26)
This corrected state x.(i|i) is then passed to the optimizer to solve the quadratic program
at interval i, and the solution is the control action u%t(i). The state estimator then
calculates the next set of estimates for the next interval as
x(i + 1]i) = Ax(ili — 1) + Byu®t(i) + B,v, (i) + Le(i) (4-27)
This iterative process repeats at every time step to arrive at estimates of the states, subject
to user-defined noise levels in the signal. The Kalman gains L and M are directly
proportional to Q. and Ry,;, such that larger Kalman gain values result in a heavier
weight on measurements.

A brief discussion on the importance of the process and noise covariances will be
covered here, though more details are available in the references. Define the process noise
covariance matrix as Qy,; and the measurement noise covariance matrix as Ryq;. These
matrices must be defined by the user, and may be time-varying, though in this work the
matrices remain constant. If Q,; is larger than R;,,;, then the Kalman gains L and M grow
which weights the error more heavily, and the Kalman filter places more weight on
measurements in determining state estimates. If R,,; is larger than Qy,;, then the state
estimates place more weight on the process model by weighting the residual less heavily.
Thus, the choice of Q,,; and Ry,; can be seen as a sort of trust measure, as if a particular

state calculation or measurement is to be trusted more, its corresponding row in the
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covariance matrix Qy4; Or Ry, should be smaller. In this work, Q4; and Ry,; are simply
diagonal matrices, and the values in Qu4; and Ry,; are described in Section 4.4.1. More

details on the Kalman filter can be seen in literature [126].

(i) MPC Optimizer
The MPC optimizer solves a quadratic program (QP) at each control interval, which
determines the value u ¢t (i) that is used as the controller output to the plant until the next
interval. The KWIK algorithm was used to solve the QP problem, as a part of the MATLAB
Model Predictive Control Toolbox, which has performance gains over other popular QP
solvers in that it can solve the problem in 0(n?) time versus 0(n®) time, where n is the
number of degrees of freedom in the optimization problem [127]. More details are available

in literature and in the MATLAB documentation [128].

4.3.  Power System Models to Test Secondary Control Methods

A power system model was required to analyze the performance of secondary
control schemes in a realistic environment, so a representation of a power system was
constructed, based on publicly available data of the Electric Reliability Council of Texas
(ERCQOT) [129]. First, a single-area system was modeled and various simulations were run
to validate the primary response and secondary response of the system under traditional
AGC control, and to introduce the models used in this work. A 2-area system, based on the
two validated single-area power systems, was tested under a load disturbance with tie-line
bias control. Finally, the 3-area system was modeled and tested for use as a testbed for the

anticipatory secondary control method.

106



4.3.1. Single-Area Model Construction & Validation

First, a 6-bus, single-area system was created as shown in Figure 4-4, with
generation and load data as shown in Table 4-1 and a system base of 25,000 MVA. This
system has 7,500 MW (0.3 pu on a system base) of primary response capability, all of
which is also responsive to AGC, at buses 1, 4, 5, and 6. There is a total capacity of 17,500
MW of constant, non-responsive generation at buses 1, 2, 4, 5, and 6, operating at 100%
of their capacity. In this study, there is 24,250 MW of load in the system, which results in

responsive generation operating at 90% of their capacity.
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Figure 4-4 Power System One-line Diagram, Marking Responsive Generation with an ‘R’

Table 4-1 Generation and Load in Test Power System
Total Generation  Responsive Generation Non-responsive Load

Bus Unit Size (MW) Capacity (MW) Generation (MW)  (MW)
1 2700 900 1800 -
2 2500 0 2500 -
3 - - - 8000
4 4500 1500 3000 6000
5 6600 2200 4400 7000
6 8700 2900 5800 3250

Responsive generation, present at buses 1, 4, 5, and 6, are modeled with classical
steam-electric models at each bus, while non-responsive generation, present at all buses

except for bus 3, are modeled as electrical power injections at each bus. All buses were
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assumed to be at 1 pu voltage, so electrical models of generation, such as exciter models,

were not used. Figure 4-4 shows responsive generation marked with an ‘R’ in the diagram.
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Figure 4-5 The Steam-electric Representation of a Generation Unit at a Responsive Bus

Table 4-2 Parameters of the Steam-electric Model

Parameter Value
R 4%
T, 0.5
Ty 10
T¢ 3
Ptgizei Gen. size / 25,000 MW

VMAX 1

VMIN 0
D 1
H 4

The steam-electric model used in these simulations is shown in Figure 4-5 with
parameter data shown in Table 4-2. The governor droop setting for all responsive
generation was chosen to be 4%, resulting in an equivalent system droop value of 13.3%,
and the time constant T,, of the governor was set to 0.5 seconds. The valve limits V,,;, and

Vmax Were set to the full range of 0 and 1 pu on the machine base, respectively. The
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turbine’s Ty and T, values were chosen to be 10 seconds and 3 seconds, respectively, to
reflect that 30% of the power appears immediately, while the rest of the power appears
over time. This lead-lag representation emulates a simple model of a steam plant’s boiler
and turbine, which has a high pressure turbine whose power follows the steam valve
position with a negligible delay, as well as low pressure turbine whose power is lagged
from the steam valve position as a result of the large amounts of volume in the reheater
piping [130].

The values of Pt;,,; for each generator at a bus i was the pu size of the generator
in the system base, based on the values in Table 4-1. The load damping value D was set to
1/6 pu at every bus, resulting in a system per-unit value of 1 which reflects a 1% load loss
for a 1% frequency decrease. The inertia constant H was set to 4/6 pu at every bus, resulting
in a system per-unit value of 4.

The governor speed reference w?.; for responsive generation at bus n is provided
directly by AGC. To avoid excessive strain on responsive generation, a rate limit is
imposed such that the turbine power will only ramp at some value per minute. Unless stated
otherwise, the ramp limit is set such that the responsive generation is ramp-limited at 0.02
pu/minute on the responsive turbine base. Note that the primary response in the system is
not rate-constrained, and that only the secondary control commands are constrained.

The transmission line connections between each bus in the power system model are

not rigid. The power flow between connected buses i and j follows a DC representation

Piie—ij = K(8; — 6;) (4-28)
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where K= 0.2 in these simulations, which corresponds to a 5 pu impedance on a 25000
MVA base or 0.02 pu on a 100 MVA base. Actual implementation in the model follows

the equation
APtie—ij = 377 * g (A(I)l - A(l)j) (4'29 )

where s~1 is the integration operator, as the per unit speed deviation Aw; is equivalent to

the change in the per unit rotor angle deviation % (A6;) = s(AS;). Note that the factor of

377 is in rad/sec to convert Ad; (radians) to Aw; (pu speed change). Modeling the power
flow in this manner lowers the number of states that must be calculated in the system by
ignoring actual rotor angles. Details of the selection of transmission line impedances are

presented in the Appendix B 1.

(ii1) System Response to a Unit Step Load Increase: No AGC

For this simulation, a disturbance was modeled as a unit step increase in load at bus
2, which can represent either a step increase in load or a step decrease in generation.
Turbine speed deviations from nominal were used to represent system frequency at the
buses. The frequency at bus 6 was chosen to represent the system frequency, as the
frequencies at every bus through the system were tightly connected as shown in Appendix
B, Section Il .The frequency at the monitored bus as a result of a 250 MW load increase
(0.01 pu system base) at bus 2 at t = 25 seconds is shown in Figure 4-6. The theoretical
drop in frequency is

A(U = D I%};ll‘res = 10;2):}3 = 00012 pu = 00706 HZ (4_30)
TR "0.04
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where Gen,..s is the fraction of responsive generation in the system, R is the governor

droop for responsive generation, D is the load damping value, and AP, is the increase in

load. The system settles at 59.9294 Hz, which agrees with the theoretical results.
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Figure 4-6 The Frequency Time Series of the System without AGC after a 0.01 pu Drop

Droop control in responsive generation is responsible for arresting the frequency.

A 4% droop control corresponds to a full-range 1 pu turbine output change for 2.4 Hz of

change in a 60 Hz system, which means that 0.0706 Hz change should result in 0.0294 pu

change in responsive generation, which is seen in Figure 4-7.

111



0.935

093

0.925 0.9294 pu
0.92r

0915

Power (pu)

091

0.905

0.9

0895 1 1 1 1 1 1 Il Il Il I}
0 20 40 60 80 100 120 140 160 180 200

Time (sec)
Figure 4-7 The Responsive Turbine Output of the System without AGC after a 0.01 pu
Drop
In addition, the swing equation shows that the initial rate of decline of frequency

should be

do _ AP _ 0.01
dt ~ 2H  2+4

= 0.00125 pu/sec = 0.075 Hz/sec (4-31)

which is shown in Figure 4-8. Low-frequency oscillations are seen at around 1 Hz.
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Figure 4-8 A Close-up of the System Frequency after a 250MW Load Change
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(iv) Automatic Generation Control Model Description

Automatic Generation Control (AGC) functioned as pure frequency control in this
single area system and was modeled as shown in Figure 4-9 and Table 4-3. The frequency
of the system at bus 6 was chosen to represent the system frequency f;,s as the bus
frequencies across the area were relatively tightly connected (see the Appendix B, Section
Il for details). The difference between the system frequency and the nominal reference
frequency fs.; = 60 Hz was then minimized by an integral controller. The gain of the
integral controller was tuned to return the measured frequency to within 0.01 Hz of nominal
in 200 seconds with no overshoot, given a 0.01 pu load increase at bus 2. This yielded K; =
0.015. Participation factors pf; for a unit at bus i were set equally to 0.25 for all four
controllable generation units. The limiter imposes limits eACE,,,, = 325 MW =
—eACE,,,;, on the eACE value passed into the integral controller such that the turbines will
only ramp at 2% of the responsive generation capacity per minute, also staying under the
ramp limit of the speed reference w!,, at a generator i. However, in this section, eACE is

equal to ACE as the area frequency reference f.; = 60 Hz.

1
eACE 40 ¥ pfi P Wier
+ - K.
f?ys / Limiter < Wiot
eACE; .
T m » of, —F Weer

S

Figure 4-9 Automatic Generation Control Model
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Table 4-3 Parameters of the AGC Model

Parameter Description Nominal Value
fset Frequency reference of AGC 60 Hz
fsy Frequency of system at bus 6 -
K; Integral gain of AGC 0.015
pfi Participation factor for unit at bus i 25% fo_r each AGC-
responsive generator
eACE,,qx Maximum eACE value 325 MW
eACE,in Minimum eACE value -325 MW
Weot AGC output set point -
Wl Governor speed reference at bus i -

(v) System Response to a Unit Step Load Increase: With AGC

For this simulation, a load disturbance was modeled as a unit step increase in load
at bus 2. The result of this 250 MW load increase (0.01 pu system base) at t = 25 seconds
is shown in Figure 4-10. The frequency settles to within 0.01 Hz of 60 Hz before 200

seconds.
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Figure 4-10 The Frequency Time Series of the AGC Controlled System after a 0.01 pu

Drop at t = 25 seconds

114



Responsive turbine output is seen in Figure 4-11, which approaches the final value
of 0.933 pu as it picks up all 250 MW of extra load.
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Figure 4-11 The Responsive Turbine Output with AGC in Turbine pu Base

4.3.2. Two-Area System Model Construction & Validation

The construction of a 2-area system is described in this section, to test and validate
AGC. The 2-area system, shown in Figure 4-12, is simply two of the single-area systems
described in Section 4.3.1, connected by a single tie-line. The system base is set to 25000
MVA, which is the generation capacity of either area. As in the single-area system, the DC
power flow approximation is used to represent power flow across transmission lines, and
the tie-line’s inverse-impedance value K;;, is set to 0.2 pu. Note that this corresponds to a
tie-line capacity of 20 percent of either area’s capacity, as a tie-line flow of 0.2 pu results
in one radian angular displacement between the two systems. The steam-electric model

parameters were unchanged from the single-area system.
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Figure 4-12 Two-area Power System with a Single Tie-line between Buses 6 and 26

(vi) Response of the System to a Unit Step Load Increase: No AGC

A 250 MW sudden load increase was simulated at bus 2 in Area 1 at t = 25
seconds. Shown in Figure 4-13 is the rotational speed of the turbines at bus 6, which was
used to represent the system frequency, compared with the response in the single area
system (Figure 4-6). Section 111 in the Appendix B shows that the speeds at all buses in the
system were tightly connected following a disturbance. Note that per-unit effective system
droop and load damping values for the two-area system are doubled when compared with
the single-area case, as twice the response generation and load damping is in the system.

Following a 0.01 pu sudden increase in load, the theoretical drop in frequency is

Aw = gt = 5 = 5.8824 x 10~ pu = 0.0353 Hz (4-32)

 Genres
D+ R " 0.04

which results in a frequency of 59.9647 Hz, agreeing with simulated results.
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Figure 4-13 Frequency of the 2-area System Compared with the Frequency of the Single-
Area System
The two-area system has twice as much load and turbine inertia as the single-area
system, so the initial rate of decline of frequency is expected to be half of that in the single-
area system. The swing equation shows that the initial rate of decline of frequency should

be

do _ AP _ 001 _ —4 = -
T on = o = 0-25x107" pu/sec = 0.0375 Hz/sec (4-33)

which is shown in Figure 4-14. Low-frequency oscillations are seen at approximately 1 Hz.
As the two systems were identical there was exactly 125 MW of assistance from Area 2 to

Area 1 with no secondary control, as seen in the tie-line flow in Figure 4-15.
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Figure 4-15 Tie-line Flow Out of Area 1
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(vii) Automatic Generation Control Model Description for Multiple Areas

With the introduction of multiple areas, automatic generation control must now
minimize both frequency and tie-line deviations. Traditional AGC accomplishes this with
the use of the Area Control Error (ACE) defined as

ACE = APy, — 10BAf,s (4-34)
where AP;;, is the sum of tie-line deviations out of the area in MW, B is the frequency bias
in MW/0.1 Hz, and Af;, is the deviation of system frequency in Hz. If the frequency
reference f;. is a constant 60 Hz, the eACE is the same as the ACE. This value is then
minimized with an integral controller, and the resulting governor set point is sent out to the
governors of the responsive generation. The block diagram of this AGC system is shown

in Figure 4-16.

P tie,sch

1
l eACE, . pf\— Wset

Py; LIV a i K;
tie,sys —’ /‘—N\ —>» Limiter — Weot
S s

eACEmin of, P Wget

+ "-7\\
fsys —u/\ /}—) 10B

1

fset

Figure 4-16 Automatic Generation Control for a Single Area in the Multi-area System
The automatic generation control system of an area should only minimally react if
a load disturbance occurred outside of its controlled area, only providing initial frequency

support. When load disturbances occur outside of an area, the tie-line flow deviation AP;;,
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of the area is the opposite sign of the frequency deviation Af;,s. Recognizing this, the
frequency bias B can be set to weight the frequency deviation equally to the tie-line
deviation following a disturbance in the power system, in hopes of ‘cancelling out’ the two
APy, and Afsys values which results in an ACE value of zero when the disturbance is
outside of the area. Although the tie-line flows and system frequency do not have the same
dynamic behavior and thus are impossible to completely cancel out with one weighting
factor, B can be roughly set by balancing the steady-state values of AP, and Af;,,
following a disturbance. Details of the derivation can be seen in Kirchmayer’s work [113].
After balancing AP, and 10BAf;,, it can be seen that a theoretical value for B for the

automatic generation control of one area in the constructed two-area system is:

B=01(D+3)=01(1+55)=01(852) = 3542570

(4-35)
where D and R are the load damping and droop of the controlled system, respectively.
Section IV in the Appendix B shows the effect of this choice of frequency bias B on the

calculation of ACE and tie-line frequency control.

(vii) 2-Area System Response to a Load Increase: With AGC

For this simulation, a load disturbance was modeled as a unit step increase in load
at bus 2 in Area 1. The frequency and tie-line flows within the system with a 250 MW load
increase (0.01 pu system base) at t = 25 seconds is shown in Figure 4-17 and Figure 4-18.
The frequency settles to within 0.01 Hz of 60 Hz within 200 seconds of the load
disturbance, and the tie-line flow settles to within 5 MW of the nominal flow within 275

seconds.
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Figure 4-18 Tie-line Flow into Area 1 with Functioning Automatic Generation Control
Responsive turbine outputs in both areas are shown in Figure 4-19, which reflect

the proper allocation of changes in steady-state generation as Area 1 begins to picks up all

250 MW of increased load.
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Figure 4-19 Responsive Turbine Changes in Generation in Both Areas

4.3.3. Three-Area System Model Construction & Validation

A 3-area power system was created from three single area systems, connected as

shown in Figure 4-20.

Area l

Figure 4-20 The 3-area Test System, with Tie-lines Between Areas Shown in Red
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The 3-area system was validated by examining its performance with traditional
AGC. With all tie-lines in service, the performance of the system under traditional AGC
will be shown.

A 500 MW sudden increase in load is applied to bus 2 in Area 1 at t = 40 seconds.
Recall that there is 7500 MW of responsive generation in each area, with a total generation
capacity of 25000 MW and an initial load of 24250 MW. Responsive generation outside
the area with the load disturbance initially responded to the disturbance to arrest the
frequency dive and then returned to the pre-disturbance power output, while responsive
generation within Area 1 raised its generation by 500 MW to meet its 500 MW load
increase as shown in Figure 4-21.
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Figure 4-21 Power Output of the AGC-responsive Fraction of Generation in Each Area
Figure 4-22 shows the rotor rotational speeds at bus 6 of each area, representing the

frequencies of each area. Though the frequencies are tightly connected, the oscillations in
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Area 1 are slightly greater than that of the other areas due to the disturbance taking place
in Area 1.

Figure 4-23 shows the tie-line flows. Before the disturbance, there is no flow on
any of the tie-lines as each of the 3 areas are identical in generation and load. After the
disturbance, tie-flows are brought back to 0 MW by AGC. Note that there is close to no
flow on the line connecting Area 2 and Area 3 during or after the disturbance because the
two areas are identical. Each of the two areas’ responsive generation acts in the exact same
manner, so there is no net flow on the line connecting the two areas as the qualities that

affect the area dynamics (such as inertia) are identical as well.
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Figure 4-22 Frequencies in Each Area of the System
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Figure 4-23 Tie-line Flows of Each of the Three Lines Connecting the Three Areas
With the 3-area power system model validated under traditional secondary control,
the new anticipatory controller can be augmented into the existing control system and

tested for its performance.

4.4. Simulation Studies and Results

To examine the performance of anticipatory secondary control in the 3-area power
system, the controller must be integrated into the power system model. In this section, the
integration of the MPC controller into the power system is first presented. Then, the
performance of anticipatory secondary control with an MPC controller was examined in 1)
a single area with a step disturbance, with and without errors in the forecast 2) multi-area

response with a step disturbance, with and without broadcasts of a possibly erroneous
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anticipated disturbance in an area, and 3) multi-area response with a 5-minute forecast,

with an assumed model to interpolate the disturbances between the given 5-minute forecast.

4.4.1. Complete Controller and Plant Formulation

With the construction and validation of the power system models in the previous
section, the controller and plant can now be completely defined for a multi-area system.
The single-area system formulation will also be shown as a simplified version of the full,
multi-area system formulation. Recall the MPC formulation from Section 4.2.2, repeated

here for convenience:

min ] = (S0, Q¢ (Afsys)” + Qpric(APIL)? ) (4-36)

fsetl---fsetm
. 2
+ (T R (free)? + S;(frer) )

St Xi+1 == AXl + BUl (4'37)
—0.1 < fyer < 0.1 (4-39)

where the MPC controller step size is set at 2 seconds for this study.

Before presenting the linear state-space plant model, there must be some discussion
regarding the estimation of unknown, unmeasured variables of the error in the forecasted
disturbance ¢4 and the error in tie-line flow &,,;.. Recall the discussion in Section 4.2.2(i),
where the process noise covariance matrix Q,,; and the measurement noise covariance
matrix Ry, determines the ‘trust’ placed in the process model or the measurements
themselves. Thus, a row in Q. With large values will result in a corresponding state
estimate that follows the measurements closely, rather than the process model. Because the
errors 4 and &, are unknown and unmeasured, the Kalman filter is used to estimate ¢4
and &, by introducing these inputs as actual states in the system and by making the
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corresponding diagonal noise entries in the process noise covariance matrix Qq; Very
large. To estimate the forecasted disturbance error and the tie-line flow error, the plant

state-space matrix is augmented with £, and &,,;, such that

Xiv1 A Bg Bpie X; B
€ai+1 [ =10 1 0 Eaqi |+ |1]U; (4-40)
Eptie,i+1 0 0 1 1 l&ptiei 1

where the last two elements of U; are the white noise inputs w,; and wy,;., which have a
zero mean and some variance o4 and o,,.;. Which will be defined later. These white noise
inputs do not actually affect the plant model calculations directly as they are zero mean,
but they are present to represent the noise in the Q,,; matrix for the Kalman filter. In this
way, the variances o, and o, Of the white noise inputs w, and w,,.;, match the diagonal
entries in Qyq;, Which causes the estimates of e, and &,,;, to be heavily weighted by
measurements and not the process model (which shows that ¢, and ¢, stay constant over
time). Thus, although the errors &, and &, are inputs into the system conceptually, the
actual implementation results in £, and &, as states of the system, being driven by white
noise inputs wg and wy,.. In this work, the variances of w, and wy,;, are both set to 25,
in contrast to a noise variance of 1 on every other state in the system, unless otherwise
noted. This produces a diagonal Qy,; and Ry,; matrix, which are identity matrices with the
exception of the two elements o, = 25 and o,,;;, = 25. Sensitivities to these parameters
are shown in Appendix B V.

The linear state-space plant model will now be presented. A full overview of the

state variables for the multi-area system model are shown in Table 4-4.
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Table 4-4 State-space Model State Variables, in X

State # of_ State _Used in o
Variable Variables Slngle-a(ea Description
Formulation
Vpi 4 Yes Valve position at bus i within own area
PR 4 Yes Mechanical power output of turbine at bus i
within own area
Aw) 6 Yes Speed deviation of turbine model at bus i
within own area
Pfe_ij 7 Yes Tie-line flows between connected buses i and
j within own area
P, 1 Yes AGC area governor set point
Ptii]; 3 No Net tie-line flows between areas i and j
fo 2 No Valve position of equivalent turbine in area j
an; 2 No Mechanical power output of equivalent
turbine in area j
Aw’ 2 No Speed deviation of equivalent turbine model
in area j
ptf(') . 2 No AGC area governor set point in area j
eACE 1 Yes Measurement of the eACE through a low-pass
filter
Pl 1 No Measurement of net tie-line flow within own
area through a low-pass filter
€4 1 Yes Error of the disturbance forecast in own area
Eptie 1 No Error of the tie-line flow in own area

Each responsive generator is modeled with a classic steam-electric model as shown

in Figure 4-5, so the state variables Vzﬂi, PR ;, and Aw] are present at each of the four buses

with responsive generation. Bus 2 and bus 3 had no responsive generation, so only Aw?
was represented which models the load with inertia at the bus. In addition, the power flow
on the transmission lines were modeled using the formulation shown in (4-29), integrating

the differences between Aw; and Aw; between connected buses i and j. A single area has 7
transmission lines between buses within its own area, so this adds the 7 states P,_; » Where

i and j are connected buses as shown in Figure 4-4. The traditional integral control of AGC
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which minimizes frequency deviations in the system also has a state P2, the area governor
set point. Neighboring areas were modeled with a single equivalent classical steam-electric
turbine representation connected to a simple integral control as its AGC system, as it was

assumed that the details of neighboring areas would not be known. Thus, each of the two

neighboring areas each had one state for valve position ij , the mechanical power from the

turbine P;., the speed deviation of the turbine Aw/, and the AGC area governor set point Pt{)t.
Both the eACE and the net tie-line flow within the area P/, was measured through
individual low-pass filters, with time constants of 0.05 Hz and 0.1 Hz, respectively. Lastly,
the errors of the disturbance forecast &, and the tie-line flow error &,;, discussed earlier
in this section are the last two elements of the vector. All of these states add to a vector of
size 37 x 1, which can be written as
X & [V)y Ve Pl s Pore DY, o, AwQ, Py, P2, Pl Piiy .. (4-41)
Vpis Vigis Bh BA, A, Aw?, Pl Phy, eACE, Pl €4, €prie] "
making the original system matrix A of dimension 37 x 37. The single-area formulation is a
limited case of this formulation, which has a size of 24 x 24 with the variables as denoted in
Table 4-4.
The outputs Y of the plant are simply the measured deviation of frequency of the
system, measured deviation of net tie-line flow out of the area (measured through a low-

pass filter), the turbine power output (said to be equivalent to the electronic power output),

and the measured eACE (measured through a low-pass filter). This is shown in Table 4-5.
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Table 4-5 State-space Model Output Variables, in Y

Stgte #. of Description

Variable Variables
Afsys 1 Deviation of system frequency, measured at bus 6
AP, 1 Deviation of net tie-line flow
Pl 5 Turbine model power output at bus i within own area
eACE 1 Measurement of the eACE through a low-pass filter

So then, the plant output vector is written as

Y 2 [Afays APSy, Phivp Plirns Pias Prns Plurns eACE]T (4-42)
which is 8 elements long. Recall that bus 2 has a direct electrical injection of generation,
which is why P2, is present without a classic steam-electric turbine representation at the
bus. The single-area simulations use an output Y that excludes the AP/, term in (4-41).
The composition of the plant input U depends on whether or not inter-area
communication is implemented. Table 4-6 shows all of the variables that can be present in

the input vector of the plant model.

Table 4-6 State-space Model Input Variables, in U

State # of Description
Variable Variables

d 1 Disturbance forecast for own area
foet 1 Frequency set point within own area
iy 2 Frequency set point in area i

4t 2 Disturbance forecast in area i

Wy 1 White-noise input for disturbance error
Wptie 1 White-noise input for tie-line flow error

If inter-area communication exists, then the full vector is

n Ay A T
U= [d» fsev fser: feer A dZ'Wd'Wtie'] (4-43)

130



which is 8 elements long, resulting in a B matrix of size 37 x 8 and a D matrix of size 8 x 8,
for the multi-area model. If inter-area communication does not exist, then the input is
written as

U 2 [d froe Wa Weie] (4-44)
which is 4 elements long, resulting in a B matrix of size 37 x 4 and a D matrix of size 8 x 4
for the multi-area model. The single-area formulation is limited to the U in (4-43) without
Weie. The entire 3-area power system was built in Simulink and the MATLAB linearization
function was used to create the A, B, C, and D matrices used in this study.

Now, the objective function of the MPC optimization problem will be discussed.
The weights Ry and Sy are used to constrain the movement of the frequency set point such
that overly aggressive action does not occur. For example, if the controller were to act
aggressively for an imperfect forecast, responsive turbine outputs in the system might
swing needlessly for a disturbance that was predicted incorrectly. Also, penalties on the
movement prevent oscillatory movements in the controller output. Throughout this work,
the values of R = 0.15 and Sy = 0.75 were used to produce a smoother controller output
that responds moderately to predicted disturbances in the power system, where the output
fset 1S given by the controller in units of Hz.

Measured frequency deviations (measured in Hz) are penalized by the factor Qy,
while tie-line deviations (measured in system pu base) were penalized by the factor Qe
Values of Qr = 0.75 and Q. = 3.5 were the default values used in this study, as those
values resulted in a reasonably smooth response by the controller as well as a ‘balanced’

response given tie-line and frequency deviations. That is, given a disturbance outside of
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the controlled area, the effective frequency reference was kept at 60 Hz and the f,;
controller output was near zero, which mirrors the response of conventional AGC (where
only disturbances within its own area require substantial movement of governor set points).
However, other values of @ and Q,.;. are explored in the multi-area simulations, and the
weights specific to the study will be presented within the multi-area study.

To reiterate, for the single-area simulations, the formulation is a limited case of the
full formulation shown in (4-36) to (4-39) with no inter-area communication. The objective
function has no Q. (AP{j,)?* term, and the state-space formulation contains no inter-area

terms, such as the inter-area tie-line flows, which was discussed throughout this section.

4.4.2. Single-area Step Disturbance Simulations

Simulations for a single area power system with anticipatory secondary control are
presented in this subsection, comparing the performance of MPC-based secondary control
against conventional AGC, an external PI controller, and preplanned human frequency set
point adjustments. The effects of perfect disturbance forecasts, erroneous disturbance
forecasts, and differing amounts of responsive generation on the operational performance
of anticipatory secondary control are presented.

The PI controller was chosen as an alternative real-time external controller as it is
robust, easy to implement, and is well-characterized as a traditional method of control.
However, unlike MPC-based control, PI control is unable to predict future plant response.
The external PI controller uses the system frequency deviation as its input, and it adjusts

the area frequency set point in response to errors in frequency such that fi..(t) =

K Afsys () + KT [ Afsys(T)dt, where the proportional gain Kg*** and the integral
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gain Kiexpi are set to ensure the fastest settling time with minimum overshoot of the
measured frequency past 60 Hz. Calibration of the external Pl set-point controller was
subject to 1) limiting its frequency set-point output to the 59.9 Hz — 60.1 Hz limits applied

to the MPC controller, 2) allowing a maximum overshoot comparable to that of MPC, and

3) tuning for the fastest settling time. These criteria resulted in a choice of K;** = 0.5 and

K" = 0.001 for the gains of the external PI controller. Note that this controller is
external to the conventional AGC system, and works in addition to the PI controller which
is contained inside conventional AGC.

Preplanned patterns for the frequency set-point f;.; were chosen as other
benchmark comparisons because of the ability for preplanned frequency set point patterns
to be implemented in modern power systems. When an event is predicted in advance, it is
possible to create a frequency set-point plan that will minimize the system frequency
deviations. Although this allows for some fine tuning of the frequency set-point pattern
prior to the event, the pattern is assumed to remain unchanged after it is finalized. There is
no feedback control using preplanned control, so incorrect modeling of the power system
as well as errors in the forecast can cause significant frequency deviations.

Metrics to characterize the performance of the controllers include the frequency
settling time, the maximum frequency deviation, the average frequency deviation Af,
over the simulation horizon, and the integral of the ACE value over the simulation horizon.
The settling time is defined as the amount of time between the disturbance and the
frequency settling to within 0.0035 Hz (this is approximately 5% of the maximum

frequency deviation under conventional control, for the step disturbance), and the
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maximum frequency deviation is the frequency nadir, the minimum measured frequency
after the disturbance. The metrics of the average frequency deviation and the integral of
ACE are inspired by other works regarding the improvement of secondary control systems
[54].

The step disturbance anticipated throughout these simulations was a 250 MW (0.01
pu system base) generation power drop, simulating a generation trip or other sudden
generation-related event by instantly dropping power within one simulation time step (0.02
seconds) at t = 30 seconds. The actual disturbance in a perfect forecast case matches the
expected disturbance, while errors in the disturbance are elaborated upon in its

corresponding subsection.

(i) Comparisons with the Perfect Forecast Case

Performance of the MPC controller, an external PI controller, preplanned human
operator control actions, and a conventional AGC controller with no external adjustments
are first compared with perfect forecasts, in this subsection. After this, the performance of
the controllers with errors in both time and magnitude of the forecast are presented.

To establish a base case, a 0.01 pu sudden generation loss at bus 3 at t = 30 seconds
was simulated for the single-area power system in Figure 4-4 under conventional AGC,
with results similar to the simulation shown in Section 4.3.1. The frequency is shown in
Figure 4-24, the responsive turbine output is shown in Figure 4-25, and ACE is shown in
Figure 4-26. The settling time was 257 seconds, with a frequency nadir of 59.85 Hz, an
average frequency deviation Af,,, of 26.3 mHz, and an integrated ACE value of 32546

MW over the 400 second simulation window.
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Figure 4-25 Responsive Turbine Output under Conventional Control
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Figure 4-26 ACE under Conventional Control, with No Tie-line Flows
Anticipatory secondary control was then implemented to compare against the
performance of conventional AGC. Results are also plotted for use of MPC without any
anticipation, which is simply the use of MPC without any prior knowledge of a disturbance,
other than what is measured from the system. Lastly, the results are also compared
alongside an external Pl controller. Results are shown in Figure 4-27, Figure 4-28 and

Table 4-7.
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Figure 4-27 Detailed View of Frequency under Anticipatory Secondary Control
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137



Table 4-7 Performance of Single-area System with Various Secondary Control Schemes

Control Type Settling Max Freq. Average Integrated
Time (sec) Dev.(Hz) Afsys (mHz) ACE (MW)
Conventional AGC 257 0.153 15.5 21926
External PI 142 0.153 10.3 14545
MPC, no anticipation 70 0.153 6.3 8940
MPC, with anticipation 55 0.133 4.6 6518

The results show that the power system operational performance is the best under
MPC control with the metrics considered. Frequency is shown to recover more quickly
with the MPC controller than in the cases with conventional AGC and external PI control,
and the maximum frequency deviation under anticipatory MPC control was lower than that
of the other compared control methods, as anticipatory control was able to bring the
frequency higher in anticipation of the sudden drop in generation. As there is no tie-line
flow in this single-area system, the integrated ACE value is directly related to the average
frequency deviation in the system. Also, although the external PI controller seems to
perform better than conventional AGC, it results in an overshoot of the system frequency,
whereas conventional AGC and MPC control does not. See Appendix C | for a simulation
with perfect forecasting, but with white noise integrated into the load of the power system.

As the system can be prepared for an anticipated event by raising frequency before
an anticipated decrease in generation (or increase in load), anticipatory secondary control
can be compared with reasonable, preplanned human operator actions as well. Three types
of preplanned actions are considered: 1) aggressive action, 2) conservative action, and 3)
near optimal action. Each preplanned action path was restricted to linear or exponential
ramps, not allowing for complex shapes of the frequency set point such as that shown in
Figure 4-27 for MPC. Each of the three preplanned actions are meant to mimic the possible

range of behaviors that would reasonably be seen in a case where the frequency set point
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would be directly manipulated by a human. The comparisons with three different types of
preplanned operator schemes are shown in Figure 4-29 with the frequency set point paths
drawn on each frequency plot, and the performance comparison between them and MPC is
shown in Table 4-8. Further results to accompany these figures, such as turbine outputs
and ACE comparisons, are shown in Appendix C I.

Table 4-8 Performance of Single-area System with Various Preplanned Schemes

Control Type Settling Max Freq. Average Integrated

Time (sec) Dev.(Hz) Afsys (mHz) ACE (MW)
Anticipatory MPC 55 0.133 4.6 6518
Aggressive, Preplanned 155 0.134 6.3 8926
Conservative, Preplanned 230 0.150 12.1 17208
Near Optimal, Preplanned 60 0.141 4.9 6999
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Anticipatory MPC shows better performance than the preplanned frequency set
point responses. The near optimal preplanned response will be used to represent the
preplanned response in future simulations with errors in the disturbance forecast. Unless
otherwise noted, anticipatory MPC control will be referred to as MPC control, as non-

anticipatory control is not discussed further.

(i) Comparisons with the Erroneous Forecast Case

Uncertainties in the disturbance forecast, both in time and magnitude of the event,
are likely to exist. The simulations are split into two groups: one study on the effects of
magnitude errors on operational performance, and one study on the effects of temporal
errors on operational performance. Anticipatory secondary control is compared against
preplanned control, external P1 control, and conventional AGC. In these simulations, near-
optimal action was chosen to represent preplanned action.

First, the study concerning magnitude errors is presented. It is assumed that a +50%
error occurred in the disturbance forecast, where the disturbance forecast was 0.01 pu, but
the true disturbance was of a 0.005 pu magnitude (such that the actual disturbance is -50%
of the forecast) or 0.015 pu magnitude (such that the actual disturbance is +50% of the
forecast). Results for simulations with magnitude errors in the disturbance forecast are
shown in Figure 4-30 and Table 4-9, comparing conventional control, external PI control,
preplanned control, and anticipatory MPC control. For preplanned control, the exact profile
of the frequency set point as seen in Figure 4-29(c) is used. Only the frequency set point
trace of MPC is shown in Figure 4-30, as the actions of preplanned control do not change

with forecasting errors and controller actions of external Pl control are simply scaled
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versions of the frequency deviation. Plots of turbine output and ACE are shown in

Appendix C 1.
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Figure 4-30 Frequency Results from Various Controllers in When (a) a 250 MW
Generation Drop was Predicted for an Actual 375 MW Drop and (b) a 250 MW Drop was

Predicted for an Actual 125 MW Drop
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Table 4-9 Performance of Various Control Schemes with Forecast Errors of +50%
Settling  Max Freq. Average Afy,, Integrated ACE

Control Type

Time (sec) Dev. (Hz) (mHz) (MW)

Actual i Conventional 292 0.230 23.2 32889
1 Ex External PI 155 0.229 15.4 21815
Forecast Preplanned 212 0.218 12.8 17961
MPC 70 0.214 8.1 11447

Actual i Conventional 197 0.077 7.7 10963
0.5x External PI 115 0.076 5.1 7272
Forecast Preplanned 178 0.064 55 7585
MPC 26 0.060 1.6 2241

The results now show a greater performance divide between MPC and preplanned
control than in the perfect disturbance forecast case. Preplanned control does not adjust to
the errors in the forecast, so its performance is much worse than the other methods with
external control. External PI control outperforms preplanned control in many metrics, as
the PI controller was unaware of any forecast to begin with and so only reacts to the
disturbance as seen in the system. MPC control consistently performs better than the other
control methods, as it quickly changes its behavior after the disturbance occurs from the
measured generation output, which is then passed to the estimator within the MPC module.
This allows MPC to adjust the frequency set point to minimize any further deviations in
the system.

The next set of simulations involve a timing error in the disturbance forecast, such
that the actual disturbance occurs 15 seconds before or after the forecasted disturbance
time. The magnitude of the disturbance remains the same in these simulations (0.01 pu
system base). The frequencies of the system are shown in Figure 4-31 and Table 4-10, and

the responsive turbine power output and ACE plots are shown in Appendix C IlI.
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Figure 4-31 Plots of System Frequency for the MPC, PI, and Preplanned Near-optimal
Controller with a Forecast Error, where the Actual Event Happens (a) Early, 15 Seconds

Before the Predicted Time and (b) Late, 15 Seconds Past the Predicted Time

144



Table 4-10 Performance of Various Control Schemes with Temporal Forecasting Errors
of + 15 seconds

Settling Max Average Integrated
Control Type Time Freq. Afsys ACE
(sec) Dev. (Hz) (mHz) (MW)
Disturbance Conventional 257 0.153 15.5 21973
-15 sec External Pl 142 0.153 104 14667
of Forecast  replanned 49 0.152 5.7 8136
MPC 55 0.149 5.0 7026
Disturbance Conventional 257 0.153 15.5 21871
+15 sec External Pl 142 0.153 10.3 14422
of Forecast - replanned 133 0.127 6.1 8702
MPC 65 0.135 6.0 8468

Timing errors in the disturbance forecast result in less of a gap between preplanned
and MPC control than magnitude errors, as preplanned control still raises the frequency set
point by the same pattern and eliminates the frequency error relatively quickly in the
simulation time window, regardless of when the disturbance occurs. The MPC controller,
on the other hand, reacts to the disturbance (or lack of a disturbance) by changing its
frequency set point path. Although the ramping of the frequency set point is limited by
weights in the MPC optimization objective function, it is still seen that the trace of the
MPC frequency set point varies significantly during the simulation. Increased or decreased
weightings on frequency set point changes in the objective function of the MPC controller

would exacerbate or lessen this behavior.

(iii) Simulations with Sweeps of Percent Responsive Generation

In addition to improved operational performance, the use of anticipatory secondary
control may allow for less responsive generation to be kept online. That is, a power system
with less responsive generation using anticipatory secondary control may be able to

achieve the same results as a power system with a greater amount of responsive generation
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under conventional AGC. The effect of responsive generation is studied in this subsection,

where both the primary and secondary response are swept over a range of 10% to 30% of

the system generation capacity. The same generation drop of 0.01 pu at t = 30 seconds is

performed in this system as a perfectly forecasted disturbance for MPC. Results are shown

in Figure 4-32 and Table 4-11, with plots of the turbine power output and ACE in Appendix

CIv.
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Figure 4-32 Frequency Comparison Between Conventional AGC and MPC under

Different Amounts of Responsive Generation in the Power System
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Table 4-11 Responsive Generation Sweep Results

Control Tvpe Settling Max Freq. Average Integrated
P Time (sec) Dev. (Hz) Afi,s (mHz) ACE (MW)
Conventional AGC

30% Responsive Gen. 257 0.153 15.5 21926
MPC

10% Responsive Gen. 370 0.249 531 30999
MPC

15% Responsive Gen. 221 0.203 22.0 17407
MPC

20% Responsive Gen. 112 0.173 11.2 11186
MPe 95 0.133 4.6 6518

30% Responsive Gen.

The results indicate that the use of anticipatory secondary control may require less
responsive generation when compared with a similar case under conventional AGC, which
could lead to a reduction in operating costs. In this scenario, MPC outperforms
conventional AGC when the amount of responsive generation in the system is similar (at
30%), and conventional AGC in a system with 30% responsive generation outperforms
MPC in a system with 10% responsive generation. However, the amount of responsive
generation necessary in an MPC-controlled system to match performance with
conventional AGC depends on the performance metric. For example, matching the settling
time or integrated ACE metric between a system with conventional AGC and a system
with MPC control would allow as little as 10-15% of responsive generation in the MPC-
controlled system. However, matching the average frequency deviation would require
somewhere between 15-20% of responsive generation, and matching the maximum
frequency excursion would require somewhere between 20%-30% of responsive

generation.
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Power system operational performance for anticipatory secondary control has been
compared against the performance of preplanned control, external Pl control, and
conventional AGC. In most metrics, anticipatory secondary control met or exceeded the
performance of other control schemes, even with extremely inaccurate forecasts. However,
these results are limited to a single-area system. Many power systems are connected with
other systems through tie-lines, forming a multi-area power system with multiple, local
secondary control schemes. The next subsection will present anticipatory secondary

control within a multi-area power system.

4.4.3. Multi-area Step Disturbance Simulations

Simulations with anticipatory secondary control within a 3-area power system will
be presented in this subsection. Distributed MPC will be considered here, with each of the
three areas in Figure 4-20 controlled by a separate secondary control system. This is in
contrast to centralized MPC, where one MPC controller is aware of a complete model and
measurements from all areas in the interconnection. Distributed control with and without
inter-area communication will be shown with a perfect forecast, then performance of
anticipatory secondary control will be analyzed with an imperfect forecast. The controllers

in each area are identical, as each area is identical.

(i) Perfect Disturbance Forecast

The performance of the distributed MPC controllers are studied with and without
communication with a perfect disturbance forecast. The disturbance is the same 0.01 pu
sudden decrease in generation as in the previous section, only occurring in Area 1 at bus 2.

All inter-area communication assumed a 1 second delay in the exchange of information
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between areas every 2 seconds, and the variables transmitted were the present frequency
set point £.2, as well as the predicted time series of the forecasted disturbance d¢, from the
present time t until 25 seconds from then t + 25, of area a. This resulted in 1 set point
value and 26 forecasted disturbance points being transmitted every 2 seconds, from each
area to the other two areas. All inputs must be defined from some time t = 0 to the
prediction horizon p, so f&, is assumed to be held constant throughout the prediction
horizon.

With the introduction of a net tie-line deviation term in the objective function of
the MPC controller, the performance gains of communication rely heavily on the weights
in the objective function for MPC given to the frequency or tie-line deviations terms. The
default balanced weights of @ = 0.75 and @, = 3.5 are used to weight the frequency
and tie-line deviations in the objective function of the MPC controller in all areas, though
other weights are explored later in this subsection. Further comments on determining Q
and Q. Weights are discussed in Appendix B VI. Figure 4-33 and Figure 4-34 show the
frequency and net tie-line flows as seen from Area 1, with more plots contained in
Appendix C V. Metrics such as the integrated ACE are presented at the end of this
subsection. Note that because Area 2 and Area 3 is identical, the tie-line flows between the
areas is 0, so the net tie-line deviations are half of that shown in Figure 4-34 and so are not

shown.
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The frequency set points of Area 2 and Area 3 do not vary much in response to a
disturbance outside of their areas, so the frequency set point traces of simulations with and
without inter-area communication are nearly identical. Hence, the operational performance
of the areas with and without inter-area communication with balanced weights on
frequency and tie-line deviations are nearly identical.

Now unbalanced weights in the objective function of the MPC controller are

introduced. If the value of Q@ is doubled to Q@ = 1.5, frequency deviations are now heavily
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penalized. The controllers now have more incentive to minimize frequency deviations at

the cost of some more tie-line flow or tie-line flow overshoot. The results are shown in

Figure 4-35 and Figure 4-36.
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Figure 4-35 Frequency Results with Increased @ = 1.5 Where (a) the Frequency Set

Points are Shown for a Case Without Communication and (b) the Frequency Set Points

are Shown for a Case with Communication
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Figure 4-36 Net Tie-line Flows With and Without Inter-area Communication, Large Q

Now, controllers outside of the area work to bring frequency back to nominal,
which results in some overshoot in the tie-line flows. In the scenario with inter-are
communication, the frequency set points of all areas raise before the disturbance in
anticipation of the disturbance, while without communication, Area 2 and Area 3 frequency
set points act opposite to Area 1’s frequency set point. This is because without knowledge
of a future disturbance in Area 1, the controllers in other areas simply see an increase in
frequency before the disturbance, and so act to bring the frequency back to 60 Hz. In the
scenario without communication, the swinging frequency set points of all areas cause an
oscillatory frequency trace after the disturbance, while in the scenario with communication,
the controllers work together to bring the frequency quickly to nominal without any
overshoot.

Restrictions on tie-line flow may be desired as well, so in the next set of
simulations, @ = 0.75 and Q.. is doubled to Q. = 7. Results are shown in Figure

4-37 and Figure 4-38, with more results in Appendix C V.
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Figure 4-37 Frequency Results with Increased @, = 7 Where (a) the Frequency Set

Points are Shown for a Case Without Communication and (b) the Frequency Set Points

are Shown for a Case With Communication
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Figure 4-38 Net tie-line Flows With and Without Inter-area Communication, Large Qp;e

Results of the large Q,;. value mirror the results of a large Q, with tighter control
seen in minimizing AP, for a scenario with communication. Table 4-12 shows the
summary of frequency-related results for the simulations with perfect forecasting, varying
Qf and Q.. Table 4-13 shows the summary of tie-line flow related metrics for the same
simulations, where the P,;, Settling Time is defined as the time between the disturbance
and the time when the net tie-line flow deviation settles to within 15 MW. Both tables
contain the Integrated ACE metric for ease of comparison. As expected, the system showed
better performance through the frequency metrics when Q, was doubled in value, and
better performance through the tie-line metrics when Q,,;. was doubled in value. However,
in these scenarios with unbalanced @ and @, the presence of inter-area communication
had a large impact on the performance of the anticipatory controllers, as frequency set
points in Areas 2 and 3 moved significantly in response to a disturbance in Area 1. In fact,
in scenarios with unbalanced weights, inter-area communication is necessary to ensure

robust operation with no frequency or tie-line flow overshoot. In other words, inter-area
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communication is highly beneficial in power systems using anticipatory secondary control
with unbalanced weights Qf and @, and does not change the performance metrics in
systems with balanced weights Q; and Qe

Table 4-12 Multi-area Results With and Without Communication, Frequency Metrics
Freq. Max Freq. Average Integrated

Comiol semiing  Dev.  Af,,  ACE

yp Time (sec)  (Hz) (MHz)  (MW)

Conv.AGC 161 0.057 5.2 21974

Balanced nol\gcljr%m 41 0.051 1.6 6886
— 0.7 :

o= 355 MPC, 41 0.051 16 6884

CQptie = 3. with comm. ' '

0 =15 e 50 0050 15 7818

Qptie =3.5  MPC, 31 0.046 1.2 6549
with comm.

0, =075  nocomm 78 0049 25 6105

Qprie =7 MPC, 43 0.053 21 6135

with comm.

Table 4-13 Multi-area Results With and Without Communication, Tie-line Flow Metrics

Pie Average Integrated
C?”tr:' Settling AP, ACE
yp Time (sec) (MW) (MW)
Conv. AGC 203 36.7 21974
Balanced no'\ggri’m 95 11.8 6886
—0.75 '
u _35 MPC, 95 117 6884
Qptie = 3- with comm. '
Q=15 nol\ggr%m 105 16.7 7818
Qptie =35 MPC, 55 12.3 6549
with comm.
MPC.
Qf =0.75  nocomm. > 8.1 6105
Qprie =7 MPC, 45 8.0 6135

with comm.
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As shown in Figure 4-33, the anticipatory secondary control system where the Af;,
term and AP;;, weights are balanced sees almost no difference in performance between
scenarios with and without inter-area communication because of the similar frequency set
points. However, if more weight is placed on either Afs,s or APy, inter-area
communication improves the performance of the controllers immensely. More accurately,
the lack of communication in these two situations (where the MPC controller weights either
Afsys or AP, more than the other) hinders the ability of MPC to perform well.

These results were all achieved with the assumption of a perfect disturbance
forecast. The effects of imperfect disturbance forecasts on distributed MPC control is

investigated in the next subsection.

(if) Imperfect Disturbance Forecasts

Large errors in the magnitude of the forecasted disturbance will be investigated,
where a 0.01 pu disturbance is always anticipated. The actual disturbance ranges from 0 pu
to 0.02 pu, which means that the actual disturbance was 0% of the forecast (referred to as
Ox magnitude) or 200% of the forecast (referred to as 2x magnitude). First, simulations will
be performed with balanced weights Q; = 0.75 and Q. = 3.5, such that the frequency
set points of areas without a disturbance should only move minimally. Figure 4-39 shows
the frequency and frequency set points of the extreme scenarios with either a 0 pu or 0.02
pu drop in generation when a 0.01 pu drop in generation was anticipated. Figure 4-40 shows
the settling time, average frequency deviation, average tie-line deviation, and integrated
ACE values for various values of the actual disturbance, when the predicted disturbance is

0.01 pu. A magnitude multiplier of 1 means the actual disturbance is exactly the predicted
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disturbance, while a multiplier of 0 means there was no actual disturbance and a multiplier

of 2 means that the actual disturbance was twice the magnitude of the predicted

disturbance.
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Figure 4-39 System Frequencies (a) Without and (b) With Inter-area Communication,
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157



x

—_

<
(9]

© 80 ~ 6

EBO —— 2, ~
= 40 T ] _—
220 N N A ——No Comm. g 2 /No Comm.
E=) ~F —w/ Comm. o —~— _ ——w/ Comm.

job} > — T

w 0 I 0

0 0.5 1 1.5 2 0 0.5 1 1.5 2
Magnitude Multiplier Magnitude Multiplier
o 4

g 40 s 2 x10
= =

® 30 / w 1o

Q

% 20 T 1

il [4h]

2 10 — ——No Comm. g0.5 ——No Comm.

b ~—~ —w/ Comm. o P ——w/ Comm.
z 0 < 0

0 0.5 1 1.5 2 0 0.5 1 1.5 2

Magnitude Multiplier

Magnitude Multiplier

Figure 4-40 Operating Metrics with Imperfect Forecasting, under Equal Weighting

As expected, the operational performance for situations with and without
communication are very similar because of the balanced weighting of the Af;,; and AP,
values. As seen in Figure 4-39, the frequency set points of Area 2 and Area 3 are always
close to zero, as areas outside of the disturbed area only contribute in primary response,
avoiding heavy contribution in secondary response. This results in similar metrics between
the systems with and without inter-area communication.

Simulations with large Q = 1.5 are now presented, with the same sweep of actual
disturbances ranging from 0 pu to 0.02 pu and a predicted disturbance of 0.01 pu. Figure
4-41 shows the frequencies and frequency set points in the extreme scenarios of no
disturbance and a 0.02 pu disturbance, and Figure 4-42 shows performance metrics swept

over a range of disturbances.
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Figure 4-41 Frequencies and Set Points for Imperfect Forecasting with Heavy Weight on

Frequency Deviations @ = 1.5
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Figure 4-42 Operating Metrics with Imperfect Forecasting, with Q@ = 1.5

With imperfect forecasts, communication of the anticipated disturbance actually
hurts operational performance, as areas outside of the Area 1 (which predicted the
disturbance) react prior to the predicted disturbance. In situations with communication
where the actual disturbance magnitude was less than ~75% of the predicted disturbance
magnitude, neighboring areas over-prepared for the disturbance by excessively raising
frequency. That is, in these simulations, if the true disturbance is less than approximately
75% of the anticipated forecast, performance suffers if areas are communicating. Thus, if
areas set non-balanced Qy and Q,.;. Weights, it becomes important to only broadcast a
forecasted disturbance with some degree of accuracy.

The multi-area simulations in this subsection offered insight on the performance of
distributed MPC for anticipatory secondary control in situations with a perfect forecast and
an imperfect forecast. It was seen that the weights of the frequency and tie-line deviations

heavily affect the results, but that in general, inter-are communication is beneficial if the
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forecasted disturbance is relatively accurate. Results so far have been limited to the cases
of a discrete step disturbance, which can reflect the sudden disruption of generation from
a transmission or generation outage. However, short-term forecasts for renewable energy
are generally given in discrete time intervals, such as at a 5-minute basis. The next section

will present results on MPC actions given a 5-minute-ahead forecasted disturbance.

4.4.4. 5-Minute Ahead Forecasts with Intra-Forecast Uncertainty

Anticipatory secondary control can utilize a prediction less than a minute in
advance of rare, sudden events, as is shown in the previous subsection. This sub-minute
prediction includes generation trip events, given through a signal given to the operator
before the trip, as well as renewable energy events, which can be predicted through a
weather station a kilometer or less upstream from a solar or wind farm.

In contrast to rare and sudden discrete events, short-term renewable energy
forecasts are given consistently to wind farm and power system operators in set intervals
(e.g. on a 5-minute basis). These point forecasts can also be used with anticipatory control,
and simulations incorporating these forecasts into anticipatory secondary control are
presented. Although short-term forecasts (e.g. 30-second forecasts) may be available from
the use of weather towers that surround a wind farm, this study is limited to use of a 5-
minute window because of the present availability of 5-minute-ahead wind power
forecasting data.

Given an initial operating point of renewable energy generation P;,;;, the point

forecast will provide the expected value Py;,q; the generation will be at after some time

duration T;. However, T; = 5 minutes, and AGC operates on a smaller timescale, so the
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shape of the generation between these two points Py,;; and Pr,q; is must be assumed. A

predicted disturbance P(t) over time t is assumed to be:
t\Y
P(®) = Pa(5) + Poue (4-45)
where P;,;; is the initial value of the generation at the beginning of the disturbance, P, is
the delta change of the disturbance value Pring — Pinie, Tq is the duration of the

disturbance, and y is a controllable parameter determining the shape of the disturbance,

controlling the shape of the change, as shown in Figure 4-43. Note that y € [0, inf).

[T
-

final
0

Figure 4-43 Shape of the Disturbance Curve Between the Initial Value and the Final
Value

It is important to note that the controller only has knowledge of the next point
forecast, and it is assumed in this work that one-step-ahead forecasts are given every 5
minutes. Simulations in this section will use the profile of the forecast shown in Figure
4-44, where the unknown window is where the shape determined by y in Figure 4-43 will
occur. This mirrors the generation points before and after a disturbance seen in prior
simulations in this work, where the generation at bus 2 in Area 1 drops from 2500 MW to

2250 MW.
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Figure 4-44 Assumed Generation Shape with a Window that Contains a Predicted Path
With the forecast in Figure 4-44, when the controller operates in the interval of t
[0 100) seconds the controller will anticipate the point forecast for 2500 MW at t = 100
seconds, which is no change. When operating in the interval of t & [100 400) seconds, the

controller will know that there is a forecast of 2250 MW at t = 400 seconds. The controller
IS given some type of interpolation defined by the y value to fill in the forecasted power
output gaps between the 5-minute-ahead forecasts. It is assumed that the power output is
steady at 2500 MW before t = 100 seconds, and that the output is steady at 2250 MW after
t = 400 seconds.

To evaluate the effectiveness of anticipatory secondary control using 5-minute
forecasts, the shape y of the actual disturbance was assumed to be one of the three values
shown in Figure 4-43, which are 0.33, 1, and 3. Multiple 600 second simulations were ran
to compare anticipatory secondary control with conventional AGC and external PI control.
Because of the longer forecast (5-minutes), it was beneficial to increase the prediction and

control horizons of the MPC controller, so the forecast horizon for the controller was set
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to 120 seconds, while the control horizon was set to 60 seconds. Figure 4-45 and Figure
4-46 show the frequency and net tie-line flow for Area 1 for various y values using
conventional AGC. Next, a set of anticipated values y were tested with an actual linear
ramp (where the actual y = 1), with frequency and tie-line results shown in Figure 4-47
and Figure 4-48, and responsive turbine power and ACE outputs shown in Appendix C VI.
Table 4-14 shows the integrated ACE values (integrated over the simulation time of 600
seconds) for anticipatory control assuming it anticipated y = 0.33,7 = 1, or y = 3 for all
three scenarios of the actual y = 0.33, y = 1, or y = 3, and compares them with external

P1 and conventional AGC.
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Figure 4-45 Frequency of Multi-area System under Conventional AGC for Varied y
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Table 4-14 Integrated ACE for Various Predicted vs. Actual Wind Ramps

Note that given an actual y, MPC produces a lower integrated ACE than other
methods, even if the anticipated ¥ was the inverse of the actual y. That is, in every column
of the table, the integrated ACE for MPC under any of the anticipated y values is the lowest

of all methods. In practice, keeping y = 1 for MPC with the lack of any knowledge on the

Actual y
0.33 1 3
0.33 5791 5749 9103
Anticipated y for MPC 1 6222 3382 7165
3 10409 4974 2811
Conventional 21973 21697 21256
External PI 18650 18657 18559

inter-forecast shape of the disturbance would work well, based on these results.

As mentioned earlier, very strong assumptions about the shape of the wind power
curve between the point forecasts were used, as readily available wind power output data

is at a 5-minute or greater timescale, though secondary control operates on a minute and
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sub-minute timescale. In addition to showing the performance of anticipatory secondary
control under such assumptions, this simulation highlights the need for available data on a
30-second-ahead or 1-minute-ahead basis to 1) test the performance of anticipatory
secondary control under realistic conditions without assumptions on the behavior of
renewable generation between 5-minute point forecasts, and 2) take advantage of the
strengths of anticipatory control with a minute or less advance notice of a disturbance, as

shown in prior simulations in this chapter.

4.5.  Conclusions on Anticipatory Secondary Control

Anticipatory secondary control was compared with various forms of secondary
control in both single-area and multi-area simulations in this work, using a power system
model that was validated through simulation. Single area simulations showed the basic
functions of MPC in a system, while multi-area simulations highlighted the importance of
the weights in the objective function of its MPC controller, balancing deviations in
frequency with deviations in net tie-line flow. In both the single-area and multi-area
scenarios, errors in the forecast were introduced, which showed that MPC still was able to
outperform traditional methods of secondary control with large forecast errors. Varying
objective function weights in the MPC were shown to change the behavior of distributed
MPC within a multi-area system, showing that a system with unbalanced objective function
benefits heavily from inter-area communication. Integration of this controller would not
require completely replacing the existing infrastructure, as it was designed as an add-on
module that only manipulated the effective area frequency reference. In addition, the

simulations in this section show advantages to using anticipatory control with a minute or
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less notice of a disturbance, highlighting the benefits for available 30-second ahead or
minute-ahead forecasts. Further work with this controller would involve the use of a more
detailed power system model, in addition to examination of its performance with measured

disturbances, as expanded upon in the next chapter.
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5. CONCLUSIONS & FUTURE RESEARCH

5.1. Conclusions

This dissertation has presented work focused on characterization and improvements
in short-term wind power forecasting along with the introduction of a new, anticipatory
method of secondary control that can enhance power system operational performance.
With increasing penetrations of wind energy, limiting the risk of integrating large amounts
of stochastic generation is important from both an economic and reliability standpoint, and
characterizing the extreme forecasting errors in expected generation is helpful in planning
the future of the power system, covered in Chapter 2. Short-term forecasts are an integral
part of power system operations with high amounts of wind energy, and so a novel metric
that characterizes the amount of non-stationarity along with a proposed algorithm to find
optimal training windows for statistical forecasting methods was presented in Chapter 3.
An anticipatory secondary control scheme that makes use of prior knowledge of a major
disturbance was proposed and tested on simulated power systems in Chapter 4.

Because of the stochastic nature of renewable resources, thorough characterization
of wind activity is necessary to maintain grid stability and reliability. Results from extreme
wind power ramp characterization indicated that standard Gaussian assumptions about

wind power ramps would not capture low probability, high impact events that would raise
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problems with power system economics or reliability. The proper characterization of
extreme wind ramp events using EVA allows for proper risk assessment in a wind farm,
indicating that a power system is exposed to more risk than previously modeled from
integration of a wind farm. In the event that persistence forecasts are used, for example,
these extreme wind ramps represent actual forecasting error, which would be previously
underrepresented. Quantifying these risks will spur more research interest in stochastic
generation, as this model poses new questions about reliability and pricing concerns
surrounding wind power generation. In addition, the work can be extended to model
extreme, rare occurrences in the power system, providing a mechanism to quantify risk for
low-probability events.

Statistical forecasts, which are essential to power system operations in power
systems with large amounts of wind energy, use a set of training data that is commonly
determined through a purely heuristic approach. Also, wind power data is may be highly
non-stationary, which may result in different optimal sets of training data over time. This
work introduced the EDNS metric and showed that the proposed metric can quantify the
degree of non-stationarity in a signal, which was previously not explicitly defined in time
series wind power data analysis. An algorithm was also presented that used the EDNS to
find the optimal window of training data, which was designed as a module for use in any
statistical time series forecasting method. Use of the dynamic window algorithm with a
statistical forecasting approach lowered the mean absolute error versus a carefully selected,
static training window, given some highly non-stationary data. The introduction of the

EDNS and an algorithm to determine optimal training windows in real time helps to
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quantify the effects of the training window on short-term forecasts and provides a more
rigorous method to determine a suitable training window.

Large disturbances such as generation trip events or large ramps in renewable
generation can aversely effect power systems, resulting in large ACE values over time. The
creation and characterization of an anticipatory secondary control scheme showed that, for
both single-area and multi-area power systems, frequency deviation metrics can be
improved with anticipation of an event over the use of conventional AGC or other proposed
methods of secondary control. In a multi-area system, it was seen that the performance of
the distributed MPC controllers are highly dependent on the weights in the MPC objective
function as well as the existence of inter-area communication. Inter-area communication
was seen to be almost essential in scenarios where an anticipatory secondary controller
would act to remedy a disturbance outside of its own area. As the anticipatory controller is
designed to be added onto an existing AGC system, this work provides insight into an
effective method of utilizing prior knowledge of an event to minimize frequency deviations
using existing secondary control infrastructure.

This dissertation provided insight and methods for improving the stability of the
power grid with a large penetration of wind energy. Natural directions for future research

will be presented in the next section.

5.2. Future Research

Future research for the work presented in the dissertation is divided into three
sections, each following one of the chapters for extreme wind ramp characterization, the

guantification of non-stationarity, as well as anticipatory secondary control.
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Although a method for extreme wind ramp characterization has been shown, the
impacts of this on operations or planning in a power system have not been investigated.
Future research can include the construction of a new wind power output model based upon
an EVA-characterization of historical wind power output data, and the differences it would
ultimately make in forecasting studies or planning studies in some geographic region. This
approach could be compared to the existing wind speed models as shown by NREL, which
provide high-resolution wind speed and wind power output models across much of the
United States [131].

The quantification of non-stationarity with the EDNS uses the spectrum, arrived at
through an empirical approach called empirical mode decomposition (EMD). However,
recent work from N. Huang addressed some limitations of the EMD method with a
proposed method, Holo-Hilbert spectral analysis [132]. Use of the new method to arrive at
a more accurate spectrum of frequencies over time can provide a more accurate way of
characterizing the non-stationarity of a signal, which would ultimately lead to more
accurate optimal training windows in short-term wind power forecasting. Also, the
algorithm that uses the EDNS may be improved, as for example, it only takes into account
the most recent data. Empirical studies have shown that the use of seasonal data, cut into
epochs, may show improved forecasting results [31]. For example, instead of using the
most recent 48 hours, forecasting may be improved with the use of data from midnight to
noon on the two most recent days, because of the cyclic behavior of wind.

Future research in anticipatory secondary control may involve the use of more
detailed power system models. Voltage was assumed to be at 1 pu throughout the system
in this work, and a simplified model of a power system was used. Full models may be used
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to study the numerical efficiency of the method, testing the viability of using anticipatory
secondary control with the tradeoffs of controller performance and power system model
complexity. Also, further work can include the application of the anticipatory secondary
controller as a constantly working distributed MPC controller, versus one that is only used
when a large disturbance is predicted. As an extension of the 5-minute ahead forecast
simulations in this work, an MPC controller that is constantly fed load and renewable
energy forecasts must be examined for its robustness to error in both forecasts and its
tangible improvements in reducing the cost to operate the power system. For example,
comparisons over a year of operation for an actual interconnection between conventional
AGC and anticipatory secondary control would provide important insights into the costs
and benefits of integrating anticipatory secondary control.

Although the methods proposed in this dissertation are not immediately ready for
implementation in the actual power system, further research should effectively quantify
their value in improving power system operations. These methods support future
innovations in wind power modeling, wind power forecasting, and power system controls
in scenarios with a large amount of installed wind capacity, and these innovations would

improve power system operational performance in the future power grid.
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APPENDIX A

NOTES ON THE EDNS METRIC FOR NON-STATIONARITY
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I.  Training Windows with SVR

A range of training window sizes were swept over the same wind farm power output
data outlined in Section 3.1.1 using an SVR forecasting approach. The features of the SVR
model were defined to be the p = 4 past power output measurements, which corresponds
to the results of the BIC method, and the label was defined to be the difference between
the past and present power output. As a result, the matrix of training data was of dimension
(T* — 3) x 4, while the label vector was of dimension (T* — 3) x 1 for the creation of an
SVR model. A new SVR model was created at every 5-minute time step based on the most
recent data of length T*, which was contrasted with an SVR created at every 5-minute time
step based on a static training window Tj;, the optimal static training window. MATLAB
9.0 was used for these simulations in conjunction with the LIBSVM library [104]. In this
work, C = maxy —miny = 1 after data normalization, and a grid search is performed
over e =0,1,..5 and y = 272,271, ...,27. A 5-fold cross validation was performed at
every time step to optimize the SVR parameters. See Section 3.2.3 for further details on
the SVR forecasting model.

A selected month within the AEMO data was used to generate Figure A-1, which
shows that a minimum error can be achieved if the training window is selected
appropriately for SVR. This is similar to Figure 3-1 and Figure 3-2, in which the effect of

the training window length is shown on AR forecasting performance.
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Figure A-1 MAE vs. Training Window Size for SVR, 1% Subset of Data

Il.  Stopping Criteria for Sifting in IMF Construction

Recall that the two criteria for defining an IMF are as follows: 1) the number of
extrema and zero crossings must equal or differ at most by one and 2) at any point, the
mean value of the envelope defined by the local maxima and the envelope defined by the
local minima is zero. Implementing the check for the first criterion during the sifting
process is straightforward and comes with no issues, but strictly enforcing the second
criterion during sifting would result in a pure frequency modulated signal of constant
amplitude. Thus, the amplitudes throughout the IMF, which carry information about the
strength of an oscillation over time, would be erased. To ensure that the IMF components
retain enough information on amplitude modulations, a stopping criterion for the sifting
process was created. The criterion is a limit on the standard deviation, SD, computed from

two consecutive sifting results defined as
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where the limit Ly, is typically set between 0.2 and 0.3.
Although the SD-based stopping criterion worked, further improvements to the
method were made by introducing a new approach that was meant to guarantee globally

small fluctuations in the mean while taking into account locally large fluctuations [133].

emax(t)—emin(t)

This requires the definition of what is called the mode amplitude a(t) := >

where e,,..(t) and e,,;,(t) are the upper and lower envelopes of the signal, respectively.

Then, the evaluation function is defined as

m(t)

a(t) = |- o

(A-2)

where sifting continues until o(t) < 6, for some fraction (1 — a) of the total duration and
o(t) < 6, for the rest of the signal. This allows the sifting procedure to preserve some
large variations that may exist for some percentage 6, of the time series. Typical values
are a = 0.05,6, = 0.05, and 6, = 106, = 0.5, which are the default values used

throughout the entire study with the EDNS metric.

I11.  Comments on the HHT Hilbert amplitude spectrum Output

Notice that the Hilbert amplitude spectrum for the entire example signal is not
‘correct’ in that it does not correctly identify the underlying, piecewise creation of the
example time series, with the example time series and Hilbert amplitude spectrum shown
again in Figure A-2 and Figure A-3 for the reader’s convenience. Though it shows the
existence of a 1/20 Hz frequency during the first 200 seconds and variable frequencies

through the last 200 seconds due to the random walk process, it fails to show the existence
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of the 1/20 Hz frequency through the entire time series. In addition, the spectrum shows
multiple low frequency components where there were none explicitly introduced in the
creation of the signal. These errors are introduced because of the underlying assumption in
the EMD process that the signal is composed entirely of oscillatory modes (the IMFs), and
this piecewise example time series does not agree with this assumption. This is one of the
fundamental downfalls of the EMD process, which is indeed still being improved upon by
the original authors. However, this behavior is acceptable in determining the stationarity
of a process, especially as the EDNS reaches high values when EMD is used to arrive at

the Hilbert amplitude spectrum.

0 50 100 150 200 250 300 350 400
Time(sec)

Figure A-2 Example Time Series Signal, Repeated from Figure 3-5 for Convenience
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Figure A-3 Hilbert Amplitude Spectrum for the Example Signal, Repeated from Figure

3-11 for Convenience

IV. PDFs of EDNS for Different Training Windows

The probability density functions (PDFs) for the EDNS values in the AEMO wind
farm power output data for various lengths of training data are shown in Figure A-4, for a
set epsilon of 27. The PDF spreads out over larger sections of data, which indicates that,
for a set epsilon over a short period of time, the EDNS values are very similar. If using the
dynamic window algorithm proposed in this work, the PDF results suggest that the optimal
training windows only fluctuate very little within a small time frame, though optimal

training windows may change substantially over a long time frame.
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NOTES ON POWER SYSTEM CONTRUCTION
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I.  Transmission Line Impedance Calculations

A simplified power system based off of the geography of Texas was created as
shown in Figure B-1, with labeled bus numbers corresponding to the one-line diagram bus
labels in Figure 4-4. Each transmission line was assumed to be a 500 kV line with a
reactance of 0.5 Q/mile. Each path between connected buses were assumed to contain two
transmission line connections as shown in Figure B-1, except for the Lubbock-Dallas
connection and the Sherman-Dallas connection. Approximate distances between pairs of
buses and equivalent reactances between those buses are shown in Table B-1. Note that

7 _ Vdase _ (500kV)?
base =~ g . T 25000 MW

= 10Q, and that X, is the equivalent per-unit reactance of the

path between a pair of buses.

Sherman
O e
Dallas

69 -y
Corpus Christi

Figure B-1 The 6-bus System Based Loosely Off of the Geography of Texas
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Table B-1 Approximate Distances Between Buses

Bus Distance (miles) Total Reactance ~ Total Reactance X, (System
Pair per Line () of Path () Base)
1-3 100 50 50 5

2-3 300 150 50 5

3-4 200 100 50 5

3-5 200 100 50 5

4-5 200 100 50 5

4-6 200 100 50 5

5-6 200 100 50 5

Thus, the value K is calculated to be K = Xi = 0.2 pu for each path.

pu
Il.  Measured Rotor Speeds and Tie-line Flows in Single-Area System
A frequency time series plot is shown in Figure B-1 and Figure B-2 for a 0.01 pu
generation decrease at bus 2. Buses 1 and 2 show larger oscillations while the other buses
show smaller oscillations about the same path. Figure B-3 shows the power across the paths
between connected buses, showing the larger oscillations across the power lines between

buses1 & 2 and 2 & 3.
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0

Figure B-2 Frequencies at Every Bus after a 0.01 pu Disturbance at Bus 2
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Figure B-3 Frequencies at Every Bus after a Disturbance at Bus 2
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Figure B-4 Power (pu) Across Transmission Line Paths in the System
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I11.  Two-Area System Rotor Rotational Speeds

For the two-area system in Section 4.3.2, a frequency time series plot showing
frequency at all 12 buses throughout the two areas is shown in Figure B-5 and Figure B-6.
This is in response to a sudden 250 MW (0.01 pu) generation decrease at bus 2 in area 1 at
t = 25 seconds. Buses 1 and 2 of Area 1, in red and blue as denoted in Figure B-5, show

larger oscillations as they are electrically closer to the generation decrease.

60.02 T T T . .

60

59.98

—~.59.96

f(Hz

59.94

59.92

59.9

5988 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100
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Figure B-5 Frequency Plot of the 2-area System in Response to a Sudden Generation

Decrease
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Figure B-6 A Close-up of the Two-area Frequency Time Series Immediately after the

Generation Decrease

IV.  Effects of Frequency Bias Values in Secondary Control

The value of the frequency bias term B can change the behavior of secondary

control in a system. Figure B-7 shows the calculated ACE values for the two-area system

with AGC turned off when a 250 MW load increase is seen at bus 2 in area 1 using the

theoretical optimal value of B = 354.2 %. Notice that area 1’s ACE shows that area 1

shows a 250 MW generation deficiency, while area 2 correctly shows that there is no

increase in generation needed at steady state. With other values of B, an area’s ACE would

no longer represent the true MW deficiency in that area in the steady state. Figure B-8

shows the ACE values with B = 250% and B = 450 % where the ACE values in

either area do not reflect the true MW deficiency in the area.
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Frequency and tie-line results are shown in Figure B-9 and Figure B-10 for values
of frequency deviation and tie-line gains. To allow for comparisons of these gains, note

that the integral controller has a gain of K;, and so acts on the value Ki(APtie -
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10BAfsy5) = K;AP;. — 10BK;Af;,s. To show the system’s sensitivity to the value of
frequency bias, a range of B values will be tested keeping K; constant, and to show
sensitivity to tie-line gains, K; will be swept while keeping 10BK; constant.

Various frequency deviation gains are shown in Figure B-9 and Figure B-10 for
values of B = 25,100,354.2,1000,4500 with a constant integral gain of K; = 0.0015.
Various tie-line gains are shown in Figure B-11 and Figure B-12 for values of K; =
0.00015,0.001,0.0015,0.002,0.01 with a constant value 10BK; = 10 * 354.2 x
0.0015 = 5.313.

As expected, the frequency is not very sensitive to changes in the effective tie-line
deviation gain, and the tie-line flow is not very sensitive to changes in the frequency bias.
However, because there was gain placed on both AP,;, and Af;,,s, both the tie-line flow and
system frequency eventually returns to nominal. This shows that turbine outputs in both

areas fall to their correct final outputs (where area 1 turbines pick up all of the load

increase).
T T T T —IB —o5
B =100
60.02 - —B=352.4]]
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60
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60
55.98
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5992 C | | | | | | | 1
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Time (sec)

Figure B-9 Frequencies for Various Values of B
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Figure B-10 Tie-line Flow Out of Area 1 for Various Values of B
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Figure B-11 Frequency for a Sweep of Effective Tie-line Gain
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Figure B-12 Tie-line Flow Out of Area 1 for a Sweep of Effective Tie-line Gain
Plots for a sweep of integral gain in the AGC controller, holding the frequency bias

value constant, are shown in Figure B-13 and Figure B-14.
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Figure B-13 Frequency for a Sweep of Integral Gain in the AGC Controller
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Figure B-14 Tie-line Flows for a Sweep of Integral Gain in the AGC Controller

V.  Effects of Noise Covariance Values in State Estimation

To study the effect of changing the noise covariance values on the performance of
the MPC controller, a single-area MPC controller was used with the simulation parameters
shown in Section 4.4.2(ii), which involve a sudden drop in generation at bus 2 in the single-
area power system model. In this simulation, a 0.01 pu drop is expected, while an actual
0.02 pu drop occurs. Figure B-15 shows the state estimate over time for the disturbance
forecast error g4, for varying values of the noise parameter o, in the Q,,; noise covariance
matrix, while the corresponding system frequencies are shown in Figure B-16. Recall that
the noise parameter g is a user-defined input that changes the Kalman gains, such that a
larger noise parameter results in a greater weight placed on measurements instead of the
process model. Because the unmeasured disturbance is estimated with much greater
accuracy with large noise parameter, the frequency recovers quicker when a large noise

parameter is used.
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Figure B-15 Error Estimate for the Disturbance Forecast for Varying Modeled Noise

Values
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VI.  Discussion on Determining Balanced Weights of @ and Qe

As shown in the multi-area Chapter 4 simulations, the MPC objective function
weights Qf and @y, have a large influence on the performance of anticipatory secondary
control, and especially determine the importance of inter-area communication of the
frequency set points and forecasted disturbances. It is shown in Section 4.4.3 that the
balanced weights of @ = 0.75 and Q. = 3.5 result in an MPC controller that responds
effectively to disturbances within its own area and responds minimally to disturbances
outside of the area. This weighting was arrived at heuristically, by setting an appropriate
value of Qf, given static Sy and Ry weights, and then sweeping over Q. values and
examining the frequency set point movements.

The dependence of the ratio Qf/Qp: to the controller performance may be
compared to the dependence of the frequency bias term B to conventional AGC’s integral
control. With conventional AGC, an area should not respond significantly to disturbances
outside of its own area, which is ensured by weighting the deviation in frequency Af term
with B such that it matches the deviation in tie-line flow AP;;, for a disturbance outside of
the area. This is reviewed in Appendix B 1V, and the calculation of B is only dependent on
the area’s D and R values. However, a theoretical value for the ratio Qf/Qp;. that results
in an anticipatory controller that only largely reacts to disturbances within its own area may
be dependent on many factors within the system, and therefore the balanced ratio of

Qr/Qptie may be most effectively calculated heuristically by sweeping over various values.
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To illustrate the complexity of calculating a theoretical balanced Qf/Qp¢ie, recall

the MPC objective function
. 2
min ] = (0 (8fiys)” + Quuie (AP? ) (B-1)
+ ( TLiRe(feer)® + Sf(fset)z)

which shows that f;., is manipulated such that the function J is minimized. The objective
of creating a balanced ratio of Q/Qp¢e involves picking Q/Qpsie Such that fo.r = 0
throughout the control horizon m in response to frequency and tie-line movements caused
by a disturbance outside of the area. The integrated of tie-line flow deviations and the
integrated system frequency deviation must be minimized with f.; = 0, which depends
on the rate at which the tie-line flow returns to nominal and the rate at which the frequency
returns to nominal. In addition, the behavior of the tie-line flow and frequency is affected
throughout time by MPC controller frequency set point movements in other areas. Lastly,
because MPC calculates the values fo;, .. fser,,, at every time step based on updated
measurements, an optimal fs.., = 0 must be ensured for every step in the simulation, as at
every time step, only fg., is implemented by the MPC controller.

However, the selection of a balanced Q.. Vvalue, given Q= 0.75, can be
examined and shown to vary with the effective system droop value R with various sweeps.
Figure B-17 and Figure B-18 show the MPC frequency set point values in Area 1 without
inter-area communication, for a 0.01 pu step loss in generation in Area 2. To select a
controller that acts minimally to disturbances outside the area, Q. = 2.7 may work for a
droop value of 0.03 for the 30% of responsive generation in the system while Q. = 3.5
works well for a droop value of 0.04.
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Figure B-17 Frequency set point of Area 1 with a disturbance in Area 2 with R = 0.03
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Figure B-18 Frequency set point of Area 1 with a disturbance in Area 2 with R = 0.04
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I.  Supplementary Plots with White Noise in Load with MPC

MPC is known for its immunity to white noise, as the estimator within it (which
usually uses some variant of the Kalman filter) can prevent excessive controller action in
the presence of white noise. This is an important consideration for any control systems to
placed in the actual power system, as the load is constantly fluctuating.

Figure C-1 and Figure C-2 compares the frequency and ACE results of a single-
area system under MPC control and conventional AGC, where a zero-mean white-noise
signal of a 0.0006 system pu (15 MW) variance was added to the load at every bus in the
system, and the same white noise is applied to both control systems. MPC still outperforms
conventional AGC, and the noise does not result in erratic movements of the MPC

frequency set point.
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Figure C-1 Frequency in the Presence of White Noise with MPC and Conventional AGC
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Figure C-2 ACE in the Presence of White Noise with MPC and Conventional AGC

Il.  Supplementary Plots for Preplanned Action

Responsive turbine power outputs and ACE plots are shown in this section for
various preplanned, manual actions for the frequency set point paths shown in Figure 4-29.
The plots for aggressive action are shown in Figure C-3 and Figure C-4, the plots for
conservative action are shown in Figure C-5 and Figure C-6, and the plots for near optimal

action are shown in Figure C-7 and Figure C-8.
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Figure C-3 Responsive Turbine Output of System with Preplanned Aggressive Action
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Figure C-4 ACE of System under Preplanned Aggressive Action
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Figure C-5 Responsive Turbine Output of System with Preplanned Conservative Action
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Figure C-6 ACE of System under Preplanned Conservative Action
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Figure C-7 Responsive Turbine Output of System with Preplanned Near Optimal Action
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Figure C-8 ACE of System under Preplanned Near Optimal Action

I11.  Supplementary Plots for Single-area Disturbance with Forecast Errors

For the disturbances shown in Figure 4-30 which have errors in the magnitude
estimate of the forecasted disturbance, plots for the responsive turbine power output and
ACE are shown in Figure C-9, Figure C-10, Figure C-11, and Figure C-12. Timing error

plots are shown in Figure C-13, Figure C-14, Figure C-15, and Figure C-16.
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Figure C-9 Turbine Output of 1.5x Magnitude Error (Actual Drop of 0.015 pu)
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Figure C-10 ACE of 1.5x Magnitude Error (Actual Drop of 0.015 pu)
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Figure C-11 Turbine Power of 0.5x Magnitude Error (Actual Drop of 0.005 pu)
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Figure C-12 ACE of 0.5x Magnitude Error (Actual Drop of 0.005 pu)
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Figure C-13 Turbine Power of a System with a Timing Error in the Forecast, where the

Disturbance was 15 Seconds Before the Forecasted Time
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Figure C-14 ACE of a System with a Timing Error in the Forecast, where the Disturbance

was 15 Seconds Before the Forecasted Time
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Figure C-15 Turbine Power Output of a System with a Timing Error in the Forecast,

where the Disturbance was 15 seconds after the Forecasted Time
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Figure C-16 ACE of a System with a Timing Error in the Forecast, where the Disturbance

was 15 Seconds after the Forecasted Time

IV.  Supplementary Plots for Sweeps over Percent Responsive Generation

In a single-area system, the amount of responsive generation in the system (both

for primary response and secondary response) were swept over a range of 10% to 30%, as
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seen in Figure 4-32. Responsive generation power output and the ACE of the system are

plotted in Figure C-17 and Figure C-18.
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Figure C-18 ACE of Responsive Generation Percentage Sweep
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V.  Supplementary Plots for Multi-area Simulations

More results from the simulations in Section 4.4.3(i) are shown here. Plots of the
responsive turbine power output and ACE for a multi-area system with a perfect forecast,
with balanced weights in the objective function, are shown in Figure C-19, Figure C-20,

and Figure C-21.
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Figure C-19 Turbine Power Output of Multi-area MPC with Balanced Objective Function
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Figure C-20 ACE of Multi-area MPC with Balanced Objective Function Weights, Area 1
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Figure C-21 ACE of Multi-area MPC with Balanced Objective Function Weights, Area 2

In addition, turbine output and ACE plots for a heavily weighted frequency

deviation, with Q = 1.5, are shown in Figure C-22, Figure C-23, and Figure C-24.
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Figure C-22 Turbine Power of Multi-area MPC, with @ = 1.5
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Figure C-24 ACE of Multi-area MPC, with Q; = 1.5 in Area 2
Turbine output and ACE plots for a heavily weighted frequency deviation, with

Qptie = 7, is shown in Figure C-25, Figure C-26, and Figure C-27.
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Figure C-27 ACE of Multi-area MPC, with Q. = 7 in Area 2

VI.  Supplementary Plots for 5-minute Ahead Forecast

This section presents some more results on the 5-minute ahead forecast simulations
in Section 4.4.4. Conventional AGC turbine power output and ACE plots are shown in
Figure C-28, Figure C-29, and Figure C-30, and comparisons between turbine outputs and
ACE for different MPC paths are shown in Figure C-31, Figure C-32, and Figure C-33.

Average frequency and tie-line deviation metrics are shown in Table C-1 and Table C-2.
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Figure C-28 Turbine Outputs of System under Conventional Control with Varied y
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Figure C-29 ACE of System under Conventional Control with Varied y for Area 1
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0.935 ‘ T T T
—Turb 1 MPC, Predicted ~ = 0.33 =
0.93L"~ Turb 2 MPC, Predicted v = 0.33 i
: —Turb 1 MPC, Predicted v =1
= —— Turb 2 MPC, Predicted v = 1
2 poos5L ——Turb 1 MPC, Predicted v= 3 |
. —— Turb 2 MPC, Predicted v = 3
g Turb 1 Conventional
5 092t Turb 2 Conventional 4
o
£
=1 [ -
o’ 0.915
2
w0911 -
c
8
Q 0.905 | .
[am
0.9 AL===--=== R S E s T
0895 | 1 1 1 |
0 100 200 300 400 500 600
Time (sec)

Figure C-31 Responsive Turbine Output under MPC Control with Varied y
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Figure C-33 ACE under MPC Control with Varied y for Area 2 and 3
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Table C-1 Average Frequency Deviation (mHz) for Varying Predicted vs. Actual Wind
Ramps

Actual y

0.33 1 3

0.33 0.878 0.882 0.878

Anticipated y (MPC) 1 0.939 0.501 1.095
3 1582 0.754 0.415

Conventional 3.441 3.393 3.319

Pl 2.135 2.110 2.114

Table C-2 Average Tie-line Deviation (MW) for Varying Predicted vs. Actual Wind
Ramps

Actual y

033 1 3

033 65 65 104

Anticipated y (MPC) 1 71 39 8.1
3 118 57 3.2

Conventional 244 241 237

Pl 244 241 23.7
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APPENDIX D

POWER SYSTEM STATE-SPACE MATRICES
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State-space matrices for the multi-area power system with communication is shown
below, in terms of the variables in Section 4.4.1. The matrices are divided into multiple
sections to fit the entire matrix into the document.
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B MATRIX:
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C MATRIX (transposed, for clarity):
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