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ABSTRACT  

  

As the world embraces a sustainable energy future, alternative energy resources, 

such as wind power, are increasingly being seen as an integral part of the future electric 

energy grid. Ultimately, integrating such a dynamic and variable mix of generation requires 

a better understanding of renewable generation output, in addition to power grid systems 

that improve power system operational performance in the presence of anticipated events 

such as wind power ramps. Because of the stochastic, uncontrollable nature of renewable 

resources, a thorough and accurate characterization of wind activity is necessary to 

maintain grid stability and reliability. Wind power ramps from an existing wind farm are 

studied to characterize persistence forecasting errors using extreme value analysis 

techniques. In addition, a novel metric that quantifies the amount of non-stationarity in 

time series wind power data was proposed and used in a real-time algorithm to provide a 

rigorous method that adaptively determines training data for forecasts. Lastly, large swings 

in generation or load can cause system frequency and tie-line flows to deviate from 

nominal, so an anticipatory MPC-based secondary control scheme was designed and 

integrated into an automatic generation control loop to improve the ability of an 

interconnection to respond to anticipated large events and fluctuations in the power system.  
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 INTRODUCTION 

 

 

 

 

Renewable energy resources, such as wind power, are a substantial component of 

the future generation portfolio. According to the U.S. Department of Energy (DOE), global 

generation capacity of renewable energy has drastically increased during the past decade, 

and the U.S. consumption of renewable fuel is projected to continue its increase by 1.6 

percent per year until the year 2040 [1]. Specifically regarding wind power, a study by the 

DOE and Sandia National Laboratories shows that 20% wind energy penetration is a 

possibility by 2030 [2, 3]. Ultimately, integrating such a dynamic and variable mix of 

generation requires the development of tools and practices capable of coordinating the 

many renewable resources, such as wind and solar energy, to be added to the electric grid. 

With the increase in renewable energy penetration comes an increasingly complex power 

system, with a need to address stability and reliability through improved control. This study 

aims to contribute to stability of the smart grid and future power system by contributing to 

three interconnected focus areas: 1) characterizing the extreme deviations in wind farm 

power output, 2) quantifying non-stationarity in training data used in statistical forecasting, 

and 3) integrating prior knowledge of events into the control loop by the use of anticipatory 

secondary control. 
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Extreme wind power ramp characterization is helpful for wind power modeling, 

which is used in power systems planning and research. A method for quantifying non-

stationarity for wind power forecasts would ultimately provide improved short-term 

forecasts, used in power system operations. Both improved modeling and improved short-

term forecasts can help create a better understanding of wind power output over time, 

which is used in anticipatory secondary control.  

This dissertation groups each main work into its own chapter. Chapter 1 outlines 

the structure of the dissertation and details the motivation for the studies as well as some 

prior work in literature. Chapter 2 presents the characterization of the extreme wind ramp 

events, and Chapter 3 presents a novel method for quantifying non-stationarity within 

potential sets of training data for short-term wind power forecasting. Chapter 4 presents 

work on anticipatory secondary control within the power system, with a given forecast of 

a disturbance. Chapter 5 concludes by detailing the impact of this work along with 

providing possible future research directions for this work. 

1.1. Motivation 

This section provides a brief motivation for each section of the work. Individual 

chapters detail the motivation for individual topics. 

Rare events in the power system may be extremely difficult to predict, but they 

have extreme economic and social impact. Examples include the Northeast U.S. blackout 

of 2003, where estimates for cost of lost service range from $7-10 billion for the 

approximately 16 hours of lost service, or the Bellingham pipeline rupture in 1999, 

resulting in 3 deaths and a loss of $45 million [4, 5]. In the context of wind power, rare 



 3 

events include sudden fluctuations called wind ramps that lead to errors in persistence 

forecasts for wind farm power outputs. Modeling wind power output with an appropriate 

representation of rare events helps to maintain stability in a power system, as the 

penetration of renewable energy may introduce many rare but catastrophic events such as 

sudden power generation drops or extended periods of low power generation. 

In addition to characterizing rare events in wind power, improvements in short-term 

wind power forecasts would lower power system operating costs and increase reliability. 

As renewable energy generation capacity increases across the globe, the economic 

importance of improved renewable generation forecasts grows [6]. The U.S. Department 

of Energy, the National Oceanic and Atmospheric Administration, and many large private 

industry members propose that the uncertainties in state-of-the-art short-term (0 to 6 hour-

ahead) wind forecasts add unnecessary increased costs and risks to the U.S. electrical grid 

[7, 8]. Improved forecasts can lower power system operating costs by decreasing the 

necessary amounts of spinning reserve and improve the reliability of the power system [9, 

10]. Short-term forecast improvements can also improve the performance or computation 

speed of power systems operations tools, such as through scenario reduction of wind farm 

power outputs in stochastic power system operations studies [11]. The variability of 

renewable energy is directly linked to the variance in the forecast, and smaller forecasting 

errors would allow a balancing authority (BA) to carry fewer reserves, lowering the overall 

cost of energy to the power system. One aspect in short-term forecasting that is frequently 

overlooked is the importance of the stationarity in the training data for short-term wind 

power forecasts. Quantifying the amount of non-stationarity in the training data, ultimately 

leading to the determination of a suitable training window, is presented in this work.  
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Renewable energy is inherently stochastic, as renewable energy sources depend 

almost solely on weather-related events such as wind speeds. Thus, replacing conventional, 

dispatchable generation with renewable resources may require careful planning, including 

the design of new control systems that may not have existed before. Improvements in the 

secondary control of a power system may be desirable, such that rare generation or 

transmission events can be handled more effectively. The proposed improvement centers 

on the use of an external anticipatory controller, augmented onto the existing AGC 

framework through a modification of the area control error (ACE) signal. This anticipatory 

controller would use an event forecast and a linearized model of the power system to 

proactively minimize the impact of sudden, predictable events. 

1.2. Literature Review 

This section provides a literature review of the works presented in this dissertation. 

Prior work surrounding the three subjects of extreme wind ramp characterization, 

determining non-stationarity in wind power output time series, and anticipatory secondary 

control will be explored.  

1.2.1. Extreme Wind Ramp Events 

Accounting for wind ramp events covers a broad set of topics, including defining a 

wind ramp, linking wind speeds to wind power outputs, and creating techniques to 

accurately forecast wind in the short-term or long-term. A general overview of these topics 

will be presented in the following sections. 
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(i) Wind Ramp Definitions 

Defining a wind ramp is not trivial, as it is not always clear what timescale and 

magnitude impact the definition should encompass. Realizing the end time of the wind 

ramp is also important, especially in short-term forecasting that takes place in resolutions 

of less than an hour. To illustrate the difficulty of defining a ramp, Figure 1-1 shows a 

generic ramp with the main variables of interest for a wind ramp. The start and end point 

of the wind ramp is currently point B and point D, respectively, based on the marked 

duration, ramp rate, and power swing. However, point A and point C are another pair of 

viable start and end points with different duration, ramp rate, and power swing. Choosing 

these exact points is subjective, usually only specific to the context in which this wind ramp 

definition would be used. 

 

Figure 1-1 Generic Wind Power or Speed Curve 

Recent work in this area includes [12], which developed rules and algorithms to 

detect wind ramps in a set of data, offline. The work uses dynamic programming to find 

ramp events that meet certain criteria such as whether a ramp is above a certain threshold, 
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and provides a framework to add more rules to for wind ramp definition and detection. 

Also, Argonne National Laboratory has performed a fairly thorough review of ramp 

definitions, compiling information on varying methods to both define and use information 

on wind ramps [13]. Some other work defines ramps by a very static, specific set of rules, 

such as [14] which defines a ramp as a change in wind farm power output that is greater 

than 50% of the capacity within four hours, or [15], defining it as a 20% change in less 

than an hour. 

(ii) Present Efforts to Quantify Wind Variance in Speed and Power 

Wind energy output is highly correlated with the wind speeds around the wind 

turbines of interest, due to the fact that wind turbines are powered by the kinetic energy 

force of wind. A power curve is shown in Figure 1-2, mapping turbine output to wind speed 

through the blades of a variable pitch GE turbine [16]. Other turbines with variable blade 

pitch have power curves with the same shape, while turbines with static blades have an 

optimal wind speed at which rated output is reached. In addition, it is important to note that 

all commercial turbines have wind speed cut-off points, where the turbine is shut off and 

power output is quickly brought to zero to prevent high wind speeds from damaging the 

turbine. The existence of these power curves would imply that the vast amount of work in 

meteorology and weather prediction could be directly applied to this wind power prediction 

problem, allowing for minimal variation between forecasted and actual wind outputs in a 

farm. 
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Figure 1-2 Power vs. Speed Curve for GE Turbine 2.5-103 [16] 

However, due to the great variations that wind speeds can have even over the 

distance of a few hundred meters, a resolution much greater than that of existing weather 

forecasts would have to exist to accurately predict the output of a particular wind turbine. 

It is not economical and often times impossible to measure wind speeds at each turbine, so 

mapping the many wind forecasts to exact power output at a given wind farm is not trivial. 

There is much work focused on using wind speeds to predict behavior of power systems 

through spatial or temporal correlation [17, 18, 19]. 

Because of the stochastic nature of wind, forecasting is an invaluable tool in wind 

power scheduling. The power system operator must know the expected power output of 

the wind farm to be able to dispatch the conventional generation appropriately, and smaller 

deviations in predicted and actual wind power outputs is desired. Numerical weather 

prediction (NWP) algorithms exist, but because power system economic dispatch operates 

on a much smaller timescale, NWP algorithm results are generally not as useful for short-
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term wind power forecasts. In small geographical regions, such as wind farms, persistent 

wind forecasts are most commonly utilized for very short-term (less than 30 minutes ahead) 

forecasts. This method simply takes the existing wind speed or power output statistic and 

extrapolates the same value into the next time slot, assuming that no changes will occur 

between the time slots. Although this is an elementary approach to prediction, the 

simplicity and relative accuracy of persistence predictions on small timescales have made 

this a popular choice for short-term forecasting and benchmark tests for experimental 

forecasts [20]. 

For day-ahead forecasts used in unit commitment, there are numerous wind speed 

and power forecasting services that are available to industry, including 3TIER, Aeolis, and 

AWS. For long-term planning purposes, the forecast offerings are fairly sparse, though 

3TIER mentions the tools they have for this as well. 

The statistics of the errors on wind predictions on the economic dispatch timescale 

are important to characterize for both economic reasons and for power system reliability. 

A very low variance in errors, for example, may signal that only a small amount of reserve 

needs to be allocated for compensation of the generation variation, while considerable 

amounts of large deviations may suggest that more fast-ramping reserves should be kept 

online to maintain power system security. Load curtailment scenarios must be a last-resort 

action to preserve reliability, as this is an expensive option for the power system [21, 22]. 

Wind ramps and wind errors on the short timescale has been assumed to be Gaussian in 

distribution simply because of the small amounts of wind generation power systems. 

However, many characteristics of wind do not have Gaussian properties, and persistence 

forecasting methods show non-Gaussian error statistics [21]. It is important to determine 
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the distribution of errors for purposes of reserve planning as well as wind forecasting 

efforts. The distribution of errors may also determine how often the generation/load 

balance is upset, indicating the frequency of a large secondary control action to correct this 

generation/load imbalance. 

(iii) Extreme Events and Applications in Power Systems 

Extreme value analysis (EVA) has been used in the engineering field in applications 

ranging from power estimation in VLSI circuits to statistically characterizing sonar 

reverberation [22, 23]. However, little work has been published on characterizing wind 

ramp events using EVA, but there has been related work on the power system in general 

referencing extreme values. 

Many studies detail the impacts that extreme events have on power systems, 

offering different ways to tackle or circumvent such problems, such as an adaptive learning 

method or load shedding algorithm [24, 25]. In addition, EVA has been studied in relation 

to the power bidding market, using price spikes as extreme events [26]. Another group 

established a tool that would allow for the prediction of an extreme event given a wind 

power prediction (WPP) model by simply applying ramp detection algorithms [27]. 

It is important to include any work in wind power forecasting as well, as it has the 

same end goal of reducing uncertainty with stochastic generation. The authors in [28] 

perform a basic review of the forecasting studies used globally, including numerical 

weather prediction (NWP) models, statistical methods, artificial networks, and hybrid 

forecasting models, and discusses the differences between wind power forecasting and 

wind speed forecasting. Learning schemes with fuzzy logic or neural network approaches 

are used, with demonstrated cases of performing better than persistence forecasting [29, 
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30]. Use of spatio-temporal analysis also shows promising results for short-term wind 

forecasting [31]. Characterization of extreme wind ramps would help construct or validate 

these other forecasting methods. 

1.2.2. Optimal Training Windows for Wind Power Forecasts 

Though many forecasting works contain some notion of finding stationary time 

periods in the data set, very few works explicitly calculate or quantitatively explore 

stationarity. Typically, non-stationary features such as trends are considered, where the 

time series is differenced or filtered such that the time series has properties that signal a 

stationary signal [32]. There are also methods that are used to test for stationarity, but they 

are not meant for use in finding training data sets for time series forecasting. Lastly, the 

notion of stationarity within the data set may not be mentioned, as the performance of the 

model is used to justify the fact that the assumptions underlying the data (that the time 

series is stationary) is met. However, the results of the tests involve some subjectivity and 

may in-fact conflict with each other, as mentioned in Chapter 3. In one wind power 

forecasting work, an approximately stationary epoch is determined by combining periods 

of wind generation with similar PDFs over different days in a month [31]. This provided 

improved forecasting results, but it was a heuristic method which may not apply to all types 

of wind farm forecasts.  

1.2.3. Controller Design for AGC 

The automatic generation control (AGC) function for the power system involves 

both economic dispatch of the committed generation units (by simply using the 

participation factors assigned to each set of responsive generation) and load frequency 
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control [33]. With knowledge of the wind ramp error, a controller could be designed to 

assist the power system by ramping generators before extreme events to prevent 

overloading transmission lines or shedding load. An assessment of AGC was performed 

by N. Jaleeli et al., describing the regular operation of automatic generation control as well 

as its inherent limits [34]. A more recent assessment has been done in 2005 in [35], 

detailing the modern advancements in the AGC and area control error (ACE) as well as the 

integration of flexible alternating current transmission system (FACTS) devices and 

renewable technologies. 

Specific to wind-related applications, [36] introduces another automatic generation 

control system for individual wind farms, separate from a system-wide AGC. A study was 

also done on the effects of wind ramps on power system operation, with the conclusion that 

ramping capabilities of the AGC and generation are the limiting factor [37]. It was also 

found in [38] with a simple model that there is a limit in wind penetration in a modern 

power system with AGC to maintain a frequency within limits, namely that a power 

fluctuation of 5% of the total thermal plant capacity may be tolerated without exceeding 

1% frequency deviation. 

One notable study that performed the integration of wind power forecasting error 

into AGC was from [39], where any deviations from predicted or scheduled wind outputs 

is supplemented by controllable generation. Specifically, hydro generation was assumed to 

have enough ramping capability to account for any errors in the wind output, and any 

deviations from the estimated wind output was added to the ACE value, which would be 

integrated over a set timeframe to establish any changes in generation set points that would 
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be needed. An overview of some downfalls of present AGC setups with high penetrations 

of wind power is discussed in [40], focusing on economic optimization. 

Recent research in improvements to AGC include: 1) creating accurate, non-linear 

power system models with deadband effects [41, 42, 43], 2) applying newer, nonlinear 

control techniques such as genetic algorithms or neural networks [44, 45, 46], and 3) 

introducing forms of storage into the AGC framework [47, 48, 49]. Optimal control theory 

has also been applied to AGC, where the frequency control is shown to be tighter for certain 

cost matrices in the optimal controller’s optimization function [50, 51]. Notably, works 

involving AGC in the context of renewables integration include dynamic load dispatch, in 

which the participation factor of each generator changes dynamically, and the application 

of a fuzzy logic PI controller [52, 53]. 

The application of MPC in secondary control has been seen in other works as well, 

though it is implemented through a replacement of the conventional AGC system rather 

than as an add-on module, and does not take into account any anticipated disturbance. The 

most comprehensive work involves the use of MPC for load frequency control in a 

simplified model of the Nordic power system, where limitations on tie-line power flow, 

generation capacity, and generation rate of change were taken into account [54]. The work 

used a centralized MPC controller as opposed to distributed MPC, which was explored 

through an example power system simulation in another work [55]. Simulations using MPC 

for frequency control in an isolated wind-aluminum power system also found that MPC 

has benefits when using it to control load in addition to generation in a small power system 

[56]. 
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This work plans to build off of the prior work presented in this section. Original 

work on wind ramp characterization, determining non-stationarity in wind power time 

series, and anticipatory secondary control will be discussed in the next few chapters.  
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 CHARACTERIZATION OF EXTREME WIND RAMP EVENTS 

 

 

 

 

2.1. Background and Motivation 

Rare events in the power system such as blackouts may be extremely difficult to 

predict, but they have extreme economic and social impact. Examples include the 

Northeast U.S. blackout of 2003, where estimates for cost of lost service range from $7-10 

billion for the approximately 16 hours of lost service, or the Bellingham pipeline rupture 

in 1999, resulting in 3 deaths and a loss of $45 million [4, 5]. The scientific community 

has attributed these rare events to physical issues, where a downed power line or sudden 

generation loss resulted in cascading blackouts, and software issues, where simple network 

elements failed to respond. In the context of wind power, rare events include sudden 

fluctuations called wind ramps that lead to errors in persistence forecasts for wind farm 

power outputs. In a system with a large wind penetration, such a collective wind ramp can 

drastically change the operating points for generators in the system, possibly overloading 

certain system elements. 

So far, existing wind power forecasting models aim for the best average forecast 

error, that is, close to zero error when averaged over a large number of forecasts. Small 

numbers of extreme errors hardly affect averaged errors, but can be costly or even 

catastrophic to the power system. Extreme power system errors are not necessarily extreme 

meteorological events, so even correctly modeling all extreme variations in the weather 
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may not account for the errors in wind power output. Maintaining a model of rare events 

is an integral part of maintaining stability in a complex power system, as the penetration 

of renewable energy may prove to introduce many rare but catastrophic events such as 

sudden power generation drops or extended periods of low power generation. 

2.1.1. Potential Operational Problems with Wind Energy 

A critical concern about renewable energy is the inability to precisely control its 

output, as balancing the load and generation is necessary to ensure power quality and 

reliability to the load. In the past, power systems were planned with the assumption of a 

controllable, unidirectional power flow from the generation sources to the loads [57]. 

Conventional generation is almost completely controllable, with known constraints on the 

ramp rate limits and operating points of the generation. Load patterns introduce some 

randomness, but is highly cyclical and follows general trends. For example, demand is 

generally higher in the daytime and the early evening in peak load hours, and are generally 

lowest in the middle of the night during off-peak [58]. This leads to controllable generation 

following the load in both unit commitment and economic dispatch, which operate on 

different timeframes. 

Unit commitment solves the optimization problem of which generation units to turn 

on during some period of time, typically decided at least one day in advance. If too few 

units are committed to generating power given a level of load, the power system operator 

may have to purchase excessive reserves. In extreme cases, the power system may have to 

shed load, as the system would not be able to provide reliable power to all loads. If too 

many units are committed, the system would still have to pay for this unused power because 

of no-load costs incurred by the generation. Economic dispatch is defined by the U.S. 
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Energy Policy Act of 2005 in Section 1234 as the "operation of generation facilities to 

produce energy at the lowest cost to reliably serve consumers, recognizing any operational 

limits of generation and transmission facilities" [59]. In modern energy systems, economic 

dispatch is performed in real-time, compensating for any mismatches between the 

scheduled and real generation requirements. In the present market, this can mean anywhere 

from a 5-minute to a 15-minute period for its iterative optimization process. 

In the future, power flow in the grid may not be unidirectional, but in diverse, time-

varying directions with varying magnitudes. Power flows in all directions as a consequence 

of the integration of renewable energy and storage [60]. In addition, the future grid 

incorporates a large suite of sensors, creating a communication network layer overlay on 

the already complex power system. 

This complex grid of power and communication introduces many problems over 

the traditional power grid, one of which is the ability to perform real-time load balancing. 

Economic dispatch depends on the ability of the generation to be flexible enough to meet 

changes in demand over a small timeframe, and existing techniques for dispatch depend on 

both spinning and non-spinning reserve in conventional generation. Modern day dispatch 

assumes scheduled generation to be completely controllable, and any generation scheduled 

in a day-ahead market would be the baseline from which to establish any load imbalance 

to be met. 

However, with the introduction of stochastic, uncontrollable generation such as 

wind and solar, the generation base becomes increasingly stochastic. Given two 

independent random variables X and Y, the variance of the sum of the variables is simply 

the sum of the variances. As applied to the load balancing problem, adding the variation in 
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load and the variation in wind will give a larger variance, which necessitates more reserves 

to be available to the system operator. 

So far, existing wind power forecasting models aim for the best aggregate forecast 

error, that is, close to zero error when averaged over a large number of forecasts. Small 

numbers of extreme errors barely affect averaged errors, but can be very costly or 

catastrophic to the power system. Worse yet, extreme power system errors are not 

necessarily extreme meteorological events, so even correctly modeling all extreme 

variations in the weather may not account for the errors in wind power output. With 

increasing penetrations of wind energy in the power system, power system planning and 

economic dispatch would benefit with a characterization of the extreme variations in wind 

power outputs. 

2.1.2. Wind Ramps 

Wind power ramps are defined as quick and large changes in wind power output 

[13]. With persistence forecasting methods for wind power output, wind ramps constitute 

the error between the forecasted and real power output. Wind ramps have been defined 

using many different sets of rules, but in this study, a wind ramp is only defined as an 

increase or decrease of wind power during a set duration in time, dt. There is no minimum 

threshold of power output ramping in this case. 

A mathematical definition for a wind ramp down as used in this work follows 

 {(𝑋(𝑡) − 𝑋(𝑡 − 𝑑𝑡)) ∈ 𝑊𝑅 | 𝑋(𝑡) − 𝑋(𝑡 − 𝑑𝑡) < 0} ( 2-1 ) 

where X is the time series data and WR is the set of wind ramps. Likewise, a wind ramp up 

would involve the difference of the time series data being positive. 
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2.2. Extreme Value Analysis 

Extreme value analysis (EVA) shifts focus from what classical statistics 

characterizes as the average behavior of a stochastic process. The central limit theorem, for 

example, motivates much of classical statistics, with outliers generally ignored in the 

creation of the model for a process. However, low-probability, high-impact events can 

result in disasters, breaking down a financial system or otherwise dramatically affecting 

human society. EVA has been developed over the years to understand and characterize 

these events. 

2.2.1. Historical Background on Extreme Value Analysis 

Extreme value analysis (EVA) has seen an explosion of development recently due 

to the financial market, but the first recorded work on extreme values in a statistical context 

was made as early as the 19th century. In the 1920s, L. H. C. Tippett noticed a pattern in 

the yarn breakage rates used in weaving, linking the strength of a thread to the strength of 

its weakest fiber. Both R. A. Fisher and Tippett published a paper on the extremes of a 

distribution, with the patterns seen in data [61]. In this paper, the distribution of the largest 

member of a sample from a normal population was fit to a curve, utilizing a shape 

parameter 𝛼𝑒𝑣. Soon after in 1943, B. Gnedenko published a paper detailing the 

generalization and unification of the theory dealing with maxima [62]. E. J. Gumbel then 

published a book, including details on the statistics of the extremes [63]. Further research 

was performed in extremes, and Pickands, Balkema, and de Haan found ways to 

characterize the asymptotic tail distribution of a random variable [64, 65]. This work 

spawned two separate approaches to characterizing the extremes of a distribution, based 
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on what is now known as the Fisher-Tippett-Gnedenko theorem and the Pickands-

Balkema-de Haan theorem. 

Uses of EVA have historically revolved around the insurance and financial markets, 

as well as weather-related phenomena [66]. For example, Value at Risk (VaR) is a common 

risk measure used by financial risk management experts to determine the probability of an 

extreme loss [67]. Meteorology has used this tool primarily in natural disaster assessments, 

such as the 100-year flood measure that predicts a flood event that has a 1% probability of 

occurring in any given year [68]. 

2.2.2. Extreme Value Theory 

The main result of the Fisher-Tippett-Gnedenko theorem (also referred to as the 

extreme value theorem) is most easily described as an analogue of the well-known central 

limit theorem. That is, if a random variable 𝑋𝑖 is independent and identically distributed 

(i.i.d.), then 

 𝑋̅ =
1

𝑛
(∑ 𝑋𝑖

𝑛
𝑖=1 ) → 𝑁 (𝜇,

𝜎2

𝑛
) ( 2-2 ) 

The central limit theorem in (2-2) addresses the results of summing a series of i.i.d. 

random variables, but does not address maxima or minima. An analogue specific to 

extreme value theory must try to relate 𝑚𝑎𝑥 (𝑋1, . . . , 𝑋𝑛) to a distribution. First, note that 

𝑋𝑖 for 𝑖 =  1,2, . . . , 𝑛 must be i.i.d. random variables. 

Define 𝑀𝑛 ≔ max (𝑋1, … , 𝑋𝑛), a set of maxima for many random variables. It is of 

interest to prove that 𝑀𝑛 or some transformation of 𝑀𝑛 gives a stable distribution. This 

means that any linear combinations of two independent random variables 𝑀𝑛 will give the 

same distribution. Extreme value theory has shown that if there are sequences 
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{𝑎𝑛}𝑛=1
∞ , {𝑏𝑛}𝑛=1

∞  with 
(𝑀𝑛−𝑏𝑛)

𝑎𝑛

𝑑
→ 𝑍, then Z has a maximum stable distribution. The minima 

of a set of i.i.d. random variables can also be represented by such a distribution for Z, shown 

as a simple extension of the proof for the maximum. 

In the realm of extreme value theory are three types of distributions that Z can 

converge to, labeled as Type I, Type II, and Type III, all with different properties and, 

importantly, different tails. These compose the generalized extreme value (GEV) 

distribution family: 

Type I (Gumbel Distribution) 

 This is the most basic distribution of the extreme value distribution family, with 

two parameters, 𝜇 as the location parameter and 𝛽 as the scale parameter (𝛽 must be 

positive). The cumulative distribution function (CDF) of the Gumbel distribution is: 

 𝐹(𝑥) =  𝑒−𝑒−(𝑥−𝜇)/𝛽
 ( 2-3 ) 

This distribution is considered to have a light upper tail, and is positively skewed. 

The tail is in reference to values that are far away from the median of the distribution. The 

Gumbel distribution’s light tail indicates that the extreme or tail values display a lower 

probability of occurrence than in the case of the normal distribution, or that the extreme 

portion of the distribution spreads out less than that of the normal distribution. Figure 2-1 

shows the probability density function (PDF) of the distribution over a range of parameters. 



 21 

 

Figure 2-1 Type I Gumbel Distribution PDFs with Various Parameters 

Type II (Fréchet Distribution) 

The Fréchet distribution has three parameters, 𝜇 as the location parameter, 𝛽 as the 

scale parameter, and 𝛼𝑒𝑣, the shape parameter. Note that by convention, 𝜉 = 1/𝛼𝑒𝑣, where 

𝜉 is also referred to as the shape parameter. The CDF of the Fréchet distribution is: 

 𝐹(𝑥) =  𝑒
−(

𝑥−𝜇

𝛽
)

−
1
𝜉

 ( 2-4 ) 

Any value 𝑥 ≤ 𝜇 gives 𝐹(𝑥) = 0. This distribution is considered to have a heavy 

or ‘fat’ upper tail, and also has a minimum value specified by the location parameter. The 

Fréchet distribution’s light tail indicates that the extreme or tail values display a high 

probability of occurrence than in the case of the normal distribution, or that the extreme 

portion of the distribution spreads out more than that of the normal distribution. Figure 2-2 

shows the PDF of the distribution over a range of parameters. 
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Figure 2-2 Type II Fréchet Distribution PDFs with Various Parameters 

Type III (Reversed Weibull Distribution)  

The reversed Weibull distribution is similar to the standard Weibull distribution 

used in classical statistics, but has one extra parameter and is reversed such that the 

distribution has an absolute maximum (no tail). This distribution has three parameters, 𝜇 

as the location parameter, 𝛽 as the scale parameter, and 𝛼𝑒𝑣, the shape parameter. Note that 

similar to the Fréchet distribution, 𝜉 = −1/𝛼𝑒𝑣, where 𝜉 is also referred to as the shape 

parameter. The CDF of the reversed Weibull distribution is: 

 𝐹(𝑥) =  𝑒
−(

−(𝑥−𝜇)

𝛽
)

−
1
𝜉

 ( 2-5 ) 

Any value 𝑥 ≥ 𝜇 gives 𝐹(𝑥) = 1, and this distribution has no upper tail though 

some refer to its tail as light or thin. This distribution is not common in applications of 

extreme value theory because of this inherent limitation of a set maximum. For example, 
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in many applications it is difficult to verify that the distribution has a meaningful and 

predictable maximum value. Figure 2-3 shows the PDF of the distribution over a range of 

parameters. 

 

Figure 2-3 Type III Reversed Weibull PDFs with Various Parameters 

These three types of distributions all fall under the generalized extreme value 

distribution family, and apply to the two different theorems in EVA. 

First Theorem of Extreme Value Theory 

Also known as the Fisher-Tippett-Gnedenko theorem, this theory gives a general 

result of the asymptotic distribution of extreme order statistics.  

If 𝑀𝑛 ≔ max (𝑋1, … , 𝑋𝑛), 

and {𝑎𝑛}𝑛=1
∞ , {𝑏𝑛}𝑛=1

∞  with 
(𝑀𝑛−𝑏𝑛)

𝑎𝑛

𝑑
→ 𝑍 

Then the limit distribution of Z belongs to the GEV family. 
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Second Theorem of Extreme Value Theory 

Also known as the Pickands-Balkema-de Haan theorem, this theory gives an 

asymptotic tail distribution of a random variable 𝑋 when the true underlying distribution 

of 𝑋 is unknown. In other words, we’re interested in estimating the tail distribution of a 

random variable 𝑋, defined as the conditional excess distribution function: 

 𝐹𝑢(𝑦) = 𝑃(𝑋 − 𝑥𝑚𝑖𝑛  ≤ 𝑦|𝑋 > 𝑥𝑚𝑖𝑛) =
𝐹(𝑥𝑚𝑖𝑛+𝑦)−𝐹(𝑥𝑚𝑖𝑛)

1−𝐹(𝑥𝑚𝑖𝑛)
 ( 2-6 ) 

In (2-6), 𝑥𝑚𝑖𝑛 is known as the threshold, and 𝑦 is the new random variable of 

interest. The range of this distribution is 0 ≤ 𝑦 ≤ 𝑥𝐹 − 𝑥𝑚𝑖𝑛, where 𝑥𝐹 is the final 

(maximum or minimum) endpoint of the underlying distribution. To determine 𝐹𝑢(𝑦), the 

theorem shows that 𝐹𝑢(𝑦) is well approximated by the generalized Pareto distribution 

(GPD), with very similar structure to that of the GEV family (Type I, Type II, and Type 

III). The same location, scale, and shape parameters apply to the GPD family, and in fact, 

the value of the shape factor 𝜉 is the same when applying either theorem to the same set of 

empirical data.  

2.2.3. Data Analysis Methods using EVA 

The origin of EVA stemmed from applications within manufacturing and 

optimization, and continues to thrive through its use in financial risk analysis. It is therefore 

important to explore the ways empirical data can be characterized with the theories in EVA. 

Two main methods exist for analyzing empirical data with EVA, the annual maxima series 

(AMS) method and the peaks over threshold (POT) method. While AMS analysis has been 

in place for longer than the more modern POT analysis, both approaches have distinct 

advantages. 
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Annual Maxima Series (AMS) 

 The implementation of the AMS method stems directly from the conclusions in the 

first theorem of extreme value theory. The first theorem of extreme value theory states that 

a set of maxima taken from a set of random variables will conform to one of three GEV 

distributions. To actually fit a set of data to a distribution, it is necessary to define a ‘block’ 

representing a random variable. This block must be assumed independent of all other 

blocks, such that they may represent a series of random variables. The maximum of each 

block will represent the values 𝑀𝑛 ≔ max (𝑋1, … , 𝑋𝑛), and standard maximum likelihood 

estimation or generalized method of moments can be applied to estimate the parameters in 

this statistical model. 

Peaks Over Threshold (POT) 

 The POT method relies on the second theorem of EVA, namely that the asymptotic 

tail distribution of any given distribution will fall under the GPD family. That is, defining 

𝐹𝑢(𝑦) = 𝑃(𝑋 − 𝑥𝑚𝑖𝑛  ≤ 𝑦|𝑋 > 𝑥𝑚𝑖𝑛), the distribution of 𝐹𝑢(𝑦) falls under the GPD 

family. This method requires 𝑥𝑚𝑖𝑛 to be chosen, though there is presently no analytical 

method to determine this value. Estimation of GPD parameters in the POT method utilizes 

maximum likelihood estimators or the generalized method of moments, similar to the AMS 

method. 

Uses and Limitations of AMS vs. POT 

Both methods are used in modern characterization of extreme events, as both have 

their strengths. The AMS method is by far the oldest method, and also the most 
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straightforward to implement. The POT method is fairly new and less straightforward to 

implement, but has shown to create higher resolution models. 

Models using AMS only need to divide the data into blocks of similar size, typically 

throughout time, to determine block maxima or minima. Choosing the block size in AMS 

can be important, as there is a tradeoff between bias and variance [69]. If the blocks are too 

small, then the approximation of the distribution is poor, leading to bias in estimation. On 

the other hand, very large blocks generate fewer data for analysis, leading to a large 

estimation variance. However, standard practice in literature sets the block size to 

something easily conceptualized, such as taking hourly, daily, or yearly data. These choices 

do not seem to affect the validity of the modeling. 

In the POT method, all data is taken above a threshold, usually resulting in many 

more data points than the AMS method. However, the threshold determination in this 

method is less straightforward, though like the block size in the AMS method, there is a 

tradeoff between bias and variance. A low threshold includes too many points, introducing 

bias because of the inclusion of points outside the tail of the distribution, while a high 

threshold includes too few observations and results in high variance. It is important to 

recognize that in the POT method, too low of a threshold will dramatically affect the 

estimation, as only the asymptotic tail of the distribution is captured by the POT theory. 

For this reason, it is popular to assume a threshold slightly above what one would normally, 

intuitively assume, to be conservative.  

As both methods have a parameter that balances the bias and variance of the 

theoretical fit, the model is only as good as the determination of this parameter. 
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2.2.4. Determination of xmin in POT Method 

Because of the effects that the determination of 𝑥𝑚𝑖𝑛 has on the parameters of the 

POT method, many different ways to determine 𝑥𝑚𝑖𝑛 have been explored [70]. One of the 

simplest methods involve plotting the data or the frequency of the data on a logarithmic 

plot and noting when the tail begins, which under many conditions would be a clear linear 

section of the graph. The choice of 𝑥𝑚𝑖𝑛 is then the ‘elbow’ of this log-log chart, which is 

when the tail begins. Another popular approach to estimate the threshold is by using the 

Hill plot, which is simply the Hill estimator of the tail index plotted against varying 

threshold values [71, 72]. The threshold is then chosen to be the lowest threshold after 

which the tail index stabilizes. The intuition behind this method is that since the tail 

parameters depend on the data subset chosen, the parameter should ‘converge’ to a stable 

value once the proper tail data has been identified. 

It is known that for a given sample size 𝑛, there exists a unique sequence of 

thresholds 𝑠𝑛 = 𝑥𝑚𝑖𝑛,𝑛 that allow for the bias and variance of a tail parameter to decrease 

at the same rate as 𝑛 increases [73]. However, estimation of 𝑠𝑛 would require the mean 

squared error (MSE) of 
1

𝛼

̂
𝑒𝑣

, an estimation of the MSE of 1/𝛼𝑒𝑣, which is itself affected by 

the choice of 𝑠𝑛. A more comprehensive and thorough approach to threshold estimation 

has been explored by J. Danielsson and C. G. de Vries [71, 72]. They solve this problem 

by using the idea behind control variates in Monte Carlo estimation, reducing the variance 

of a variable (in this case, 1/𝛼𝑒𝑣̂) by subtracting another carefully constructed parameter 

with known errors and variance. 
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An overview of the theory behind this procedure follows. The goal is to find a 

suitable estimate 𝑠𝑛 = 𝑥𝑚𝑖𝑛 for the threshold which will allow for parameter estimates with 

the least bias and variance. Because minimizing the bias and variance are conflicting goals 

given a set sample size 𝑛, it will be sufficient to find a 𝑠𝑛 such that, as 𝑛 → ∞ , the bias 

and variance of 1/𝛼𝑒𝑣̂ converge to nothing at the same rate. With the vision of using sub-

sample bootstrapping and control variate techniques, it is important to show what the k-

moment ratio tail index estimators are, and for that the definition of the conditional kth order 

log empirical moment must be defined. Given a sample 𝑋1, … , 𝑋𝑛 of 𝑛 i.i.d. observations 

from the distribution 𝐹(𝑥): 

 𝑢𝑘(𝑚𝑛) ≡
1

𝑚𝑛
∑ (log

𝑋(𝑖)

𝑠𝑛
)

𝑚𝑛
𝑖=1

𝑘

, 𝑠𝑛 = 𝑋𝑚𝑛+1 ( 2-7 ) 

where 𝑋(𝑖) are the descending order statistic and 𝑚𝑛 is the number of order statistics used 

(number of statistics above 𝑠𝑛). The k-moment ratio estimator is defined as 

 𝑤𝑘(𝑠𝑛) ≡
1

𝛼𝑒𝑣

̂
=

𝑢𝑘(𝑠𝑛)

𝑘𝑢𝑘−1(𝑠𝑛)
 ( 2-8 ) 

where 𝑘 is a positive integer, the moment number. After some extensions of the proof in 

[72], the asymptotic mean squared error (AMSE) of 1/𝛼𝑒𝑣̂ is 

 AMSE(𝑤𝑘(𝑠𝑛)) ≈
𝜅(𝑘)𝑠𝑛

𝛼

𝑎𝛼𝑒𝑣
2 𝑛

+
𝑏2𝛽2𝛼𝑒𝑣

2𝑘−4𝑠𝑛
−2𝛽

(𝛼𝑒𝑣+𝛽)2𝑘
 ( 2-9 ) 

where 𝑎, 𝑏 are scaling constants, 𝛼𝑒𝑣 and 𝛽 are the shape and scale factors of the extreme 

value distribution, and 𝜅(𝑘) is an increasing function 

 𝜅(𝑘) ≡
(2𝑘)!

(𝑘!)2
+

(2𝑘−2)!

((𝑘−1)!)
2 −

2(2𝑘−1)!

𝑘!(𝑘−1)!
 ( 2-10 ) 

There is a unique sequence 𝑠𝑛 that asymptotically balances the two terms in (2-9) as 𝑛 →

∞, which is derived from the first order condition that 
𝛿AMSE

δsn
= 0. 
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 The minimization of the subsample bootstrap MSE utilizes control variate 

techniques, where the variance of the estimator is minimized by adding or subtracting a 

term for which many of the parameters or errors are known. A difference statistic is used, 

such that the AMSE has the same convergence rate: 

 𝑧(𝑠𝑛) ≡ 𝑤2(𝑠𝑛) − 𝑤1(𝑠𝑛) ( 2-11 ) 

The minimization of the subsample bootstrap MSE is then 

 min
𝑠𝑛1

1

𝑅
∑ [(𝑧(𝑠𝑛))

2
]𝑅

𝑟=1  ( 2-12 ) 

where 𝑅 is the number of bootstrap resamples. As the AMSE[𝑧] has the same order of 

magnitude as the AMSE[𝑤𝑘], (2-12) can be used to find the optimal threshold 𝑠𝑛, calculated 

under two different sample sizes 𝑚𝑛1
 and 𝑚𝑛2

. To arrive at this consistent estimator, 

calculate: 

 𝑚̂𝑛(𝑤2) =
(𝑚𝑛1

∗ (𝑧))
2

𝑚𝑛2
∗ (𝑧)

[
√2 log 𝑚𝑛1

∗ (𝑧)

2 log 𝑛1−2 log 𝑚𝑛1
∗ (𝑧)

]
𝑓𝑢

 ( 2-13 ) 

and 𝑚𝑛1
∗ , 𝑚𝑛2

∗  are optimal number of points in two different bootstraps and where 𝑓𝑢 is 

defined as 

 𝑓𝑢 =
2 log 𝑛1−2 log 𝑚𝑛1

∗ (𝑧)

log 𝑛1
 ( 2-14 ) 

The procedure for finding this threshold would involve first choosing a bootstrap 

size 𝑛1 < 𝑛, then drawing 𝑅 bootstrap resamples of size 𝑛1. Then calculate the bootstrap 

MSE of the difference statistic 𝑧 at each 𝑚𝑛1
 and find the optimal 𝑚𝑛1

∗  such that the 

bootstrap is minimized. Repeat the entire procedure for a smaller resample size 𝑛2 =
(𝑛1)2

𝑛
, 

yielding 𝑚𝑛2
∗ . Then calculate 𝑚𝑛̂(𝑤2) using (2-13), and estimate the parameter 𝜉 =

1

𝛼𝑒𝑣
 

using this threshold. The difficulty in this procedure lies in determining how many values 
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of 𝑛1 to sweep over, as ideally all values would be examined. It will be shown in the 

following section that this would take a prohibitively long time given a large enough data 

set size and a standard computer, and so a grid over which 𝑛1 would be used must be 

defined. 

2.3. Characterization of Wind Ramps Results 

Characterizing wind ramps initially involved fitting the data with a Gaussian 

distribution. However, after this was shown to be inadequate, EVA was introduced as a 

viable method to characterize these wind ramps. After validating that EVA in fact gave 

more reasonable results than traditional statistical methods, both the AMS and POT 

methods were used to model the wind ramps. Lastly, a more rigorous method presented in 

the previous section was used to find 𝑥𝑚𝑖𝑛 within the POT method to validate the results. 

Evidence of stationarity must exist for any model’s statistics to be a reasonable 

predictor for future wind ramp behavior. It is well known that the non-stationarity of wind 

speeds presents a challenge to statistical wind speed modeling [74, 75]. However, many 

non-stationary processes are either trend-stationary or difference-stationary, and simply 

taking the derivative of the time series data will result in a stationary process [76, 77]. 

Common models such as the autoregressive integrated moving average (ARIMA) model 

commonly use the difference process of wind speed or power to forecast, as it has been 

seen that the difference in wind power output may be stationary [78]. To ensure that the 

assumption of stationarity is reasonable, resulting extreme value models will be examined 

for trends.  
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The National Renewable Energy Laboratory (NREL) provided wind generation 

data from one 300.5 MW wind farms in Colorado for both 2009 and 2010, with 10-minute 

resolution. This led to a total of 105120 data points for total wind farm output for statistical 

analysis of wind power ramps. The data was provided in an Excel worksheet, and was 

imported into the software MATLAB for analysis. A small amount of preprocessing was 

necessary, as some data values were incorrectly negative due to calibration errors. All 

negative power output data was changed to an output of 0 MW. 

2.3.1. Traditional Gaussian Characterization of Wind Ramps 

The present most popular distribution for wind ramps and forecasting errors is the 

Gaussian distribution, which stems from both the central limit theorem and the familiar 

properties that it presents [21].  

First, the wind power ramps for a set interval were calculated by taking the 

differences of power output in MATLAB software. That is, sweeping over all 𝑋(𝑡), 𝑋(𝑡) −

𝑋(𝑡 − 𝑑𝑡) was iteratively calculated, resulting in a vector of data stored as wind ramps 

with 𝑑𝑡 duration. With 10-minute resolution, there are 105119 wind ramps for analysis. 

Figure 2-4 shows the wind ramps, which are also the errors in persistence forecasts, as a 

distribution over the two years divided into 1000 bins between the absolute extreme values 

of the distribution. A small portion of the histogram is shown in Figure 2-5, showing the 

difference in the Gaussian fit versus the actual data. The maximum value was 232.009 MW 

(the greatest down ramp was 232.009 MW), while the minimum value was -213.062 MW 

(the greatest up ramp was 213.062 MW). 

By simple inspection, it can be seen that the distribution is not well approximated 

by the Gaussian distribution. The Gaussian peak predicts the number of events to be around 
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1600, while the actual data presents a frequency of around 11,000 at its peak. Also, using 

the Gaussian curve to predict the number of events past + or - 90 MW suggests that no 

events should occur, while the empirical data shows events out to hundreds of megawatts. 

 

Figure 2-4 Frequency of Wind Ramps with 1000 Uniform Bins with Gaussian Fit 

Overlay 
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Figure 2-5 Close-up of One Section of the Gaussian Overlay 

 Using the Gaussian distribution to predict the errors will incorrectly place weight 

within a few standard deviations of the mean, falsely showing a light tail over the clearly 

heavy tail of the data. 

2.3.2. Extreme Value Analysis Application to Wind Ramps 

To characterize wind power ramps, two years of wind farm output data was used 

for analysis. Two separate methods for characterization of extreme probability events were 

used based on the first and second theorems in extreme value theory, the annual maxima 

series (AMS) method and the peaks over threshold (POT) method. Both methods utilized 

a user-defined parameter dt to establish the time over which a 'ramp' would be defined. 

There was a total of 105120 data points, and 49372 (about 50%) were down-ramps 

using a 10-minute resolution. Of the 50%, about 730 were used for the AMS method while 
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10430 of those were used for extreme value analysis (EVA) with the POT method (about 

20% of the down-ramps, as P (𝑋 > 𝑠𝑛) ~ 0.2). The standard deviation of the data was 𝜎 = 

11.165 MW. 

To calculate frequency of ramp events, constant bin sizes were used, and any bins 

with a zero value were erased from the final data set. Parameters for each distribution were 

created using maximum likelihood estimators by sweeping over other controlling 

parameters if necessary. Best fits between the empirical and theoretical CDFs are shown 

in Figure 2-6 and Figure 2-7. Then, correlation coefficients were calculated between the 

observed and model-estimated data, and the coefficient of determination R2 values are 

shown in the Table 2-1 and Table 2-2 for both the AMS and POT methods, respectively. 

 

Figure 2-6 Fits of Gumbel, Fréchet, and Reverse Weibull CDF Distributions of the 

Empirical Data 
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For the AMS method, daily maxima were used, meaning that over the two years 

only 730 data points were used.  

 

Figure 2-7 Frequency of Wind Ramps with 1000 Uniform Bins 

 

Table 2-1 R2 for Various Distributions (AMS Approach) 

dt (min) Type I Type II Type III 

10 0.92312417 0.99673653 0.98932896 

20 0.93840394 0.98988342 0.98133986 

30 0.95552943 0.99042254 0.98638262 

 

 

Table 2-2 R2 for Generalized Pareto Distribution (POT Approach) 

 xmin (MW) 

dt (min) 10 15 20 25 30 

10 0.99963597 0.9980683 0.99831987 0.99743223 0.99281193 

20 0.99989439 0.99983859 0.99930766 0.9986667 0.9991671 

30 0.99995681 0.99991618 0.9997878 0.99953153 0.99894556 
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For the POT method, 10430 data points were used for a threshold of 10 MW ramps. 

There is around ten times more data available for the POT method versus the AMS method, 

displaying one of the strengths of the POT method. Note that if X is the 𝑑𝑃 down-ramp, 

𝑃(𝑋)  =  𝑃(𝑋, 𝑋 > 𝑠𝑛) = 𝑃(𝑋 > 𝑠𝑛)  ∗  𝑃(𝑋 | 𝑋 >  𝑠𝑛). 

The POT method fit showed a shape parameter 𝜉 of 0.170 and a scale parameter 𝜎 

of 7126, with a 𝑥𝑚𝑖𝑛 of 10 MW. The positive shape parameter suggests that the best 

representation comes from a Fréchet Type II distribution under the generalized Pareto 

distribution (GPD) family. 

Determining 𝑥𝑚𝑖𝑛 for characterization with the POT method involved the 

bootstrapping procedure discussed before, as well as verifying the choice through various 

other common methods. Usually, the first test is ‘eyeballing’ the log-log plot of frequency 

vs. value, shown in Figure 2-8, choosing a threshold value of 𝑥𝑚𝑖𝑛 that seems to sit on the 

beginning of the linear tail of the plot. It can be seen that at 104 kW, or 10 MW, the 

distribution seems to transition into its tail. A second test was performed with the Hill plot, 

where a suitable threshold 𝑥𝑚𝑖𝑛 can be found by finding a general region in which the Hill 

plot starts to converge. In Figure 2-9, the Hill plot shows a flattened response around 10 

MW as well. 

To verify these observations, a grid of 𝑛1 was chosen to be 1000 to 5000 in steps 

of 500. A finer grid or a larger range could have been chosen to improve the consistency 

of the results. The lowest ratio AMSE(𝑧𝑛1
)

2
/AMSE(𝑧𝑛2(𝑛1)) was seen at a threshold level 

of 𝑥𝑚𝑖𝑛 = 22.7 MW. This was close enough to verify the choice of 𝑥𝑚𝑖𝑛 = 10 MW, so this 

value was used in the POT method fitting of the data. Final POT fitted results for the values 

of the parameters are 𝜉 = 0.1707, 𝜎 = 7125.9, and 𝑥𝑚𝑖𝑛 = 𝜇 = 10 MW. 
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Figure 2-8 Empirical Data of Frequency vs. Power Ramp 

 

Figure 2-9 Hill plot of Empirical Data 
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For planning purposes, this distribution must apply to future years of interest, so 

there must be evidence of non-stationarity between years of data. Xcel Energy's 2009 data 

was fit to a Fréchet GPD curve and was compared to the fit of the second year. The two 

results were very similar, with the PDFs of the two shown in Figure 2-10 (R2 of 0.9993). 

Figure 2-11 shows the 90% confidence bounds around the 2-year best GPD fit. 

 

Figure 2-10 PDFs of Year 1 (2009) and Year 2 (2010) 
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Figure 2-11 Log-log Plot of a 90% Confidence Interval about GPD Fit 

To display the fit to the empirical data, Figure 2-12 shows the GPD curve fit to the 

empirical data in a log-log format for better visibility. In this figure, the x-axis shows the 

logarithm of the power above the 𝑥𝑚𝑖𝑛 threshold cutoff of the POT method. It seems that 

the extremely high power ramp data does not fit the curve very well, over about 11.5 MW 

on the plot. However, the theoretical curve at this point dips below zero on the y-axis log 

scale, and the logarithm of frequencies of an event cannot be negative. Anything over 11.5 

MW lies in a region where the probability is very small that an event would occur given 

the number of samples. The data is more sparse (spaced apart) in this area, which agrees 

with the fit. If much more data was used, the curve would be shifted up and the empirical 

data would fit well onto the curve. 
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Figure 2-12 Log-log Plot of GPD Fit to Empirical Data 

The POT fits shown are given for a shifted version of the data. The threshold cut-

off 𝑥𝑚𝑖𝑛 is simply subtracted from all the data such that the GPD would easier fit the data. 

Because this extreme value distribution only accounts for 20% of the down-ramps, the 

majority of the down-ramps (the lower 80%) must be modeled with another distribution. 

The uniform or normal distribution would suffice for this, though based on the sharp drop-

off some might choose to use a beta distribution. 

2.3.3. Wind Ramp Stationarity 

Though some work has already shown that year-to-year stationarity in the wind 

ramp data exists, a more formal procedure testing wind ramp stationarity is needed. 
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Currently, there is no work that explicitly proves that wind ramps are stationary, but it is 

well known that wind speeds are non-stationary [74, 75]. This work has assumed that the 

ARIMA models applied to wind speeds hold, or that the wind speed is difference 

stationary. However, testing for a deterministic trend within the year as well as stochastic 

trends throughout the wind ramp processes would be necessary to ensure that the 

assumption holds. 

2.4. Conclusions on EVA 

The results show that traditional statistical methods do not appropriately model 

wind ramp events, corresponding to the errors in persistence wind power forecasting 

methods. EVA methods were applied to fit various distributions to the data, with both AMS 

and POT approaches. The POT approach was first used with traditional fitting methods, 

and then the parameters were verified with a newer approach using sub-sample bootstrap 

and control variate techniques. The wind ramp distribution can be used to take into account 

the time-varying nature of wind power, used in applications such as controller design or 

power system planning. 

This chapter discussed wind power modeling which is useful in offline planning 

situations. For improvements in real-time forecasting, the next chapter presents a metric 

which will be helpful in determining the set of training data to be used, subject to the 

quantified degree of non-stationarity in the signal. 
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 NON-STATIONARY DATA ANALYSIS FOR SHORT-TERM WIND POWER 

FORECASTS 

 

 

 

3.1. Importance of Stationarity for Statistical Forecasting Methods 

In short-term wind forecasts, statistical models are preferred to physical models as 

physical modeling approaches are generally computationally intensive or inaccurate for 

use in short-term wind forecasting [79]. Past data is used to produce point forecasts or 

probabilistic forecasts in statistical models, both for parametric and non-parametric 

models. These statistical models are frequently built with the assumption that the modeled 

data is, in some sense, stationary, even though real time series data seldom meet any criteria 

for stationarity. However, there is no common metric intended for use in a real-time 

forecasting algorithm that quantifies the level of stationarity of time series data. 

This chapter will detail a novel approach to quantify the degree to which a signal 

may be non-stationary, based on existing work in Empirical Mode Decomposition (EMD). 

This work will 1) introduce a metric called the Ensemble Degree of Non-Stationarity 

(EDNS) to quantify the degree of non-stationarity present in a time series, 2) introduce a 

real-time algorithm to adaptively determine optimal training windows with the assistance 

of the EDNS, and 3) analyze the performance impact of determining optimal training 

windows using this real-time algorithm on two different sets of wind power output data. 

The work is organized as follows. Section 3.1 covers the importance of stationarity, also 
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exploring basic definitions and existing tests for stationarity. Section 3.2 reviews three 

popular models used for forecasting, the persistence model, the autoregressive model and 

the support vector regression model. Section 3.3 describes the novel EDNS metric, 

detailing the steps to arrive at the EDNS. Section 3.4 presents a real-time algorithm that 

uses the EDNS, also showing some simulation results using this real-time algorithm. The 

chapter concludes in Section 3.5. 

3.1.1. Motivation for Quantifying Stationarity 

The length of training data can affect the forecasting performance of statistical 

forecasting methods, which will be illustrated through an example in this section. 

Autoregressive (AR) models were used to perform one-step-ahead forecasts on two 

separate 2-month segments of 5-minute resolution wind power output data in a 160 MW 

wind farm in the Australian Energy Market Operator (AEMO) during 2012, one year of a 

two-year data set of wind farm power outputs in AEMO1 [80]. A new AR model was fitted 

at each of the 34,560 time steps in each segment with a sliding window of the most recent 

set of data of length 𝑇. Four lags were used in the AR models as a result of applying the 

Bayesian Information Criterion (BIC) [81]. See Section 3.2.2 for details on AR models. 

Training window lengths ranging from 2 days to 90 days were used, tested in 

increments of 1 day, which resulted in the forecasting errors shown in Figure 3-1 and Figure 

3-2. The mean absolute error (MAE) is an important metric in this work, where for some 

time series 𝑥 with 𝑛 elements, and with a predicted time series 𝑥̂, the mean absolute error 

                                                 
1 The authors would like to acknowledge the original provider of the data (AEMO in Australia), as well as 

Jethro Dowell (University of Strathclyde), Stefanos Delikaraoglou, and Pierre Pinson (Technical University 

of Denmark), for preparing the dataset and making it available. 
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is defined as MAE =
1

𝑛
∑ |𝑥̂𝑖 − 𝑥𝑖|𝑛

𝑖=1 . A roughly “convex” behavior is seen over each of 

the two datasets, where a minimum mean absolute error (MAE) exists for some training 

data length. The result shows a clear dependence of the forecasting performance on the 

length of the training dataset for AR. In addition, it is seen that a poor choice of the training 

window length may result in worse AR forecasting performance in comparison with 

persistence forecasting. Lastly, it is clear that the optimal training window length is 

different in the two subsets of data. The optimal training length in the 1st subset of data is 

approximately 17-25 days, whereas the optimal training length in the 2nd subset of data is 

approximately 30-40 days. Appendix A I contains results for a similar test with another 

forecasting method, SVR. 

 

Figure 3-1 AR MAE Error Versus Training Data Length for the 1st Subset of AEMO 

Data 
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Figure 3-2 AR MAE Error Versus Training Data Length for the 2nd Subset of AEMO 

Data 

Intuitively, it is well known that noise dominates parameter fitting with small 

amounts of training data, so it is common practice to use as much training data as possible 

to obtain a forecasting model. However, using excessively large amounts of training data 

may result in extra forecasting error because of the inclusion of some “irrelevant data” far 

away from the present time. Specifically, the irrelevance phenomenon can be attributed to 

non-stationarity, because the underlying model for the process may have changed over 

time. As a result, it is desirable to avoid including excessively large amounts of data in a 

non-stationary time series. However, a key question is: At what time scale does a training 

window contain an excessively large amount of data? Historically, this point of excess has 

been found by increasing the training data length until forecasting performance suffers, but 

this is not rigorous and grants only a qualitative insight into the non-stationarity of the 
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process. Further, one static training window (e.g. 60 days) is typically applied to an entire 

time series, though it is seen through the present example that the point of excess changes 

over time, and so the training window should change over time. This work seeks to quantify 

the non-stationarity of a time series process in a rigorous manner, which should also allow 

for a quick identification of the point of excess in training windows. This metric of non-

stationarity would then allow for the dynamic adjustment of training windows in real-time. 

To reiterate, it is presently common practice in wind power forecasting to select a 

single training window length that gives a minimum error for some amount of data (e.g. 1 

year) as a result of a sweep over many training window lengths. It is unlikely that a 

drastically small training data set would be selected because of the large errors introduced 

by such a small training data set that would be seen (see Figure 3-1 and Figure 3-2). 

However, slight over-selection or under-selection is likely, especially as standard 

forecasting methods do not adjust training window size over time at all. Based on Figure 

3-1 and Figure 3-2, expected improvements of correctly adjusting the training window size 

may be relatively small, when compared to a static, intelligently selected training window. 

For example, if a 90 day static training window was selected, there could be at maximum 

a 0.5% decrease in error by adjusting the training window size, as a 90 day static training 

window is close to optimal. Even smaller improvements may be seen if the static training 

window was chosen to be 40 days, with this data set. However, any performance gain in 

forecasting is desirable, however small. 

This exercise was motivated by a work in which autoregressive and vector 

autoregressive forecasting models were used on this AEMO dataset, which resulted in 

errors greater than that of persistence forecasting [82]. A constant window size of 60 days 
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was used for AR forecasting in this study over an entire year of data, resulting in an AR 

MAE of 2.347% of nominal capacity versus the persistence MAE of 2.308%. 

Transformations were applied to the data in this work to ensure that the noise was Gaussian 

white noise. However, the assumption of stationarity was not addressed, which may 

account for the majority of the extra error in AR over persistence forecasting. 

3.1.2. Definitions of Stationarity 

To understand the importance of stationarity in forecasting and the construction of 

a stationarity metric, a brief review of stationarity is necessary. First, formal definitions of 

stationarity will be presented. Let 𝑋𝑡 be a stochastic process as function of 𝑡, the index of 

time, and let 𝐹𝑋(𝑥𝑡1+𝜏 … 𝑥𝑡𝑘+𝜏) be the cumulative distribution function (CDF) of the joint 

distribution of 𝑋𝑡. A time series 𝑋𝑡 is defined to be strictly stationary if, for all 𝜏, for all 𝑘, 

and for all 𝑡1, … , 𝑡𝑘, 

 𝐹𝑋(𝑥𝑡1
, … , 𝑥𝑡𝑘

) = 𝐹𝑋(𝑥𝑡1+𝜏 , … , 𝑥𝑡𝑘+𝜏). ( 3-1 ) 

That is, a time series is strictly stationary if the joint distribution for some contiguous range 

of values in 𝑋𝑡 is the same for any other contiguous range of values in 𝑋𝑡. A weaker 

definition of stationarity is wide-sense stationarity (WSS), which applies to a time series 

𝑋𝑡 when the conditions below are met: 

 𝐸(|𝑋𝑡|2) < ∞ ( 3-2 ) 

 𝐸(𝑋𝑡) = 𝑚 ( 3-3 ) 

 𝐶(𝑋𝑡1
, 𝑋𝑡2

) = 𝐶(𝑋𝑡1+𝜏, 𝑋𝑡2+𝜏) = 𝐶(𝑡1 − 𝑡2) ( 3-4 ) 

where 𝐶(∙) is the covariance function and 𝐸(∙) is the expected value. The first WSS 

condition (3-2) states that the variance 𝐸 ((𝑋𝑡 − 𝐸(𝑋𝑡))
2

) is finite, while the second 
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condition (3-3) states that there exists a mean 𝑚 for the time series. The third condition (3-

4) states that the covariance of the time series with a shifted version of itself is only a 

function of the shift 𝜏. Other definitions of stationarity exist, such as asymptotic 

stationarity, which deals with restricting the definitions of WSS to the regime in which 𝜏 

approaches infinity in (3-2) through (3-4) [83]. However, WSS remains the most widely 

used notion of stationarity, and so stationarity in this work will now refer to the WSS 

definition of stationarity. Further details of stationarity can be seen in many existing 

references or textbooks [84]. 

The stationarity of a signal relates to the fact that the statistical properties of the 

signal remain constant over time. If a time series meets the criterion of stationarity, the 

time series would be able to be forecasted to a high degree of accuracy. In other words, if 

a dataset were to be described by an unchanging, underlying model, one model could be 

fit to the existing data, and all forecasts would be accurately represented by this model. 

However, existing definitions of stationarity are extremely restrictive, and there exist very 

few datasets (even in controlled, ideal simulations) that meet the criterion of being 

stationary. There is also no agreed-upon metric to show how non-stationary a time series 

is. Thus, time series analysis techniques are typically applied to non-stationary datasets. It 

is worth noting that, although measured data is seldom stationary, there has been much 

success in the application of statistical forecasting methods to existing data, even to wind 

speed or power output data, which is recognized to be highly variable and non-stationary 

[85]. An underlying metric which can show the degree to which a time series is non-

stationary would be useful to verify the stationarity of a training set, or to even select a 

suitably stationary training set for a forecasting model.  
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3.1.3. Existing Methods to Test for Stationarity 

Although there are no common methods to quantify the degree of stationarity in a 

signal for real-time forecasting use, there are existing methods to test for stationarity within 

a dataset. These methods typically test for a specific type of non-stationarity within the 

dataset as well, which include sensing the existence of a deterministic trend or a stochastic 

trend (unit root). This includes ad hoc methods, unit root tests such as the Kwiatkowski, 

Phillips, Schmidt, and Shin (KPSS) test, and spectrum analysis methods such as the 

Priestley-Subba Rao (PSR) test. 

Ad hoc methods refer to the simple ‘eyeball’ analysis of the autocorrelation 

function of a signal, performed over many lags at various points in a signal. To be WSS, a 

signal must have a constant autocovariance curve regardless of the subset of data analyzed, 

so plotting the autocovariance at various points gives a user some notion of the non-

stationarity in the signal. If the autocovariance function changes rapidly in one section, but 

stays relatively constant over another section, a relatively non-stationary and stationary 

segment has been identified. Although the method is simple and intuitive, this approach is 

very qualitative and subjective, as the procedure itself is not rigorously defined. The user 

cannot calculate the autocovariance function to infinite lags in a finite dataset, so some 

subjective lag length must be used. In addition, it is difficult to tell exactly how different 

one autocovariance function is from another, which often makes it difficult to tell even if 

one segment is more non-stationary than another. 

The KPSS test was introduced in 1992 as a popular test to determine the existence 

of a stochastic trend, commonly called a unit root [86, 87]. The term ‘unit root’ comes from 

the fact that a coefficient of one is applied to the 𝑡 − 1 lag (when determining the point at 
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time 𝑡), which creates a random walk. This test takes as its null hypothesis the absence of 

a unit root, with an alternative hypothesis of the existence of a unit root. The test will signal 

that there is a unit root present if enough evidence exists; otherwise, the test will accept the 

null hypothesis of stationarity. There are other tests that have the same general goal, such 

as the Dickey-Fuller test, the Phillips-Perron test, and the ADF-GLS test, but these tests 

are all designed to tackle the exact problem of determining a unit root in a time series [88, 

89, 90]. They are only designed to provide a binary decision and not a quantitative degree 

of non-stationarity. In addition, unit-root tests were created with the assumption that the 

analysis would be based on an autoregressive model, limiting the utility of the method in 

non-linear forecasting. 

The PSR test was introduced in 1969 as one of the first spectrum analysis methods, 

which involves calculating the frequency information in the signal and determining the 

signal’s stationarity from this [91, 92]. The PSR test uses the fact that a stationary time 

series has a constant frequency spectrum over time, and so investigates the Fourier 

spectrum 𝑓𝑡(𝑤) for its variations over time in order to reject or accept its null hypothesis 

of stationarity. Specifically, it analyzes the variance in the Fourier spectrum estimate by 

applying the standard rules of the analysis of variance (ANOVA). If there are significant 

differences in the Fourier spectrum over different sections of time, the PSR test rejects its 

null hypothesis of stationarity. These spectrum analysis techniques are meant to provide a 

binary decision on stationarity, but provides the notion of non-stationarity in a more general 

sense than unit-root tests as it is not meant to apply to simply an autoregressive framework. 

These methods are the closest works related to the novel EDNS metric that is provided in 

this chapter, as they are built on the same intuition of relating non-stationarity in the time 



 51 

series to variations in the frequency spectrum. However, one critical disadvantage of 

spectrum analysis methods based on Fourier transforms or wavelet analysis lies in the lack 

of resolution and accuracy in the spectral estimate itself. A detailed review of the 

drawbacks of Fourier or wavelet analysis is presented in N. Huang’s work [93]. 

In any case, a stationarity test is useful in forecasting only if it can influence the 

decision of the forecasting method in its selection of training data. The next section will 

introduce popular forecasting methods and the training data used in each method.  

3.2. Popular Statistical Forecasting Approaches for Wind Power Forecasts 

Existing statistical forecasting methods for short-term wind power forecasting 

include autoregressive (AR) forecasting and all of its variants as well as machine learning 

methods [94]. For instance, AR models and vector AR models can linearly relate past 

inputs of one or more time series to determine the output of a wind farm [82]. Machine 

learning methods such as artificial neural networks, Markov chains, and support vector 

machines (SVMs) can generally fit a non-linear model, and provide a forecast from a 

smaller set of training data [31, 85]. This section provides some background on three 

popular time series forecasting models that are used in this work, the persistence model, 

the AR model and the SVR model. 

3.2.1. Persistence Forecasts 

The persistence model is the simplest statistical model that can be used for short-

term forecasting, but the model tends to perform very well in practice. Persistence 

forecasting assumes no change in output, such that 

 𝑋𝑡 = 𝑋𝑡−1 ( 3-5 ) 



 52 

where 𝑋𝑡 is the wind power process at time 𝑡, which is assumed to be the same value as in 

the previous period 𝑡 − 1. Persistence forecasting remains the main forecasting method by 

which all new short-term forecasting methods are benchmarked against in the wind power 

forecasting community, partially because of its good performance but also because of its 

simple implementation. No training or tuning is needed with this method, and the method 

can provide a forecast instantly. However, because of its lack of training data and model 

complexity, it does not have the ability to model time-varying phenomena accurately. 

3.2.2. Autoregressive (AR) Forecasts 

Autoregressive (AR) models define a process in which an output variable depends 

linearly on previous values in the process, a stochastic noise term, and a constant. This AR 

model can be written in discrete form as 

 𝑋𝑡 = ∑ 𝛼𝑖𝑋𝑡−𝑖 + 𝜀𝑡
𝑝
𝑖=1 + 𝑐 ( 3-6 ) 

where the process 𝑋𝑡 at time 𝑡 is defined by 𝑝 previous data points weighted by the AR 

coefficients 𝛼𝑖, a Gaussian white noise term 𝜀𝑡, and some constant 𝑐. To fit an AR model, 

some set of training data with a vector 𝑋𝑡 and a set of vectors 𝑋𝑡−𝑖 is used to estimate the 

𝛼𝑖 parameters. 

Given a model with 𝑝 = 1 lags, fitting coefficients 𝛼𝑖 to a set of training data can 

be as simple as the use of a least-square estimator, solving for 𝛼1 in the over-determined 

system 𝑋𝑡 = 𝛼1𝑋𝑡−1. However, for a larger set of lags, the computation and inversions 

involved in directly calculating 𝛼 values can be excessive. The Yule-Walker equations can 

then be used to solve for the AR coefficients, to save on computation time [95]. 
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To calculate the lag length 𝑝, typically the Akaike Information Criterion (AIC) or 

the Bayesian Information Criterion (BIC) are used [81, 96]. Both the AIC and BIC present 

a metric that weight the complexity of the model with the likelihood or accuracy (goodness 

of fit) of a model, shown here for completeness: 

 AIC = 2𝑘 − 2 ln(𝐿) ( 3-7 ) 

 BIC = 𝑘 ln(𝑛) − 2 ln(𝐿) ( 3-8 ) 

where 𝑘 is the number of free parameters, 𝑛 is the sample size, and 𝐿 and is the optimized 

likelihood value of the model (or, the probability that the outcomes came from the 

parameter fit of the model). Given a set of candidate models, the optimal model is the one 

with the lowest AIC or BIC. Note that there is a trade-off captured between model 

complexity and accuracy in both the AIC and BIC, which is meant to prevent overfitting. 

 After a model is selected, the training data is selected, which determines the best fit 

𝛼 coefficients in the AR model. To train the model, 𝑚 previous data points are selected, 

where 𝑚 is the number of training samples. The computational complexity of the model 

training (parameter fitting) in AR is 𝑂(𝑚2), when assisted by the use of the Yule-Walker 

equations in conjunction with the Levinson-Durbin algorithm. The choice of 𝑚 is 

important and ultimately affects the performance of the forecasting model, as shown in 

Figure 3-1 and Figure 3-2 in Section 3.1.1. 

3.2.3. Support Vector Regression Forecasts 

Support Vector Regression (SVR) is a supervised learning method which can 

provide non-linear fitting to data. SVR is built on Support Vector Machines (SVM), which 

is applied in many classification and function fitting problems. Only a brief explanation of 
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SVR will be presented here, and more details on SVR and other tools using support vectors 

can be found in many reviews and papers [97, 98, 99]. This method can be thought of as a 

simple linear regression similar to AR, but in a transformed, higher-dimensional space. 

 Let empirical data be provided in the form {(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)} ⊂ 𝒳 x ℝ for 

some training data set length 𝑚. The goal of SVR is to map some set of features 𝑥1, … , 𝑥𝑚 

to corresponding labels 𝑦1, … , 𝑦𝑚 by first mapping the features into a higher-dimension 

feature space ℱ via some nonlinear mapping Φ and perform linear regression in this higher 

dimensional space. For clarity, the linear case will be first introduced and the nonlinear 

mapping will be introduced later. Also, for its relevance to time series forecasting, the 

features space 𝒳 will be limited to the d-dimensional real space ℝ𝑑. Consider the following 

function  

 𝑓(𝑥) = ⟨𝑤,𝑥⟩ + 𝑏 ( 3-9 ) 

where ⟨𝑤,𝑥⟩ is the dot product of 𝑤 and 𝑥 in ℝ𝑑. An accurate model with a low degree of 

complexity is desired for this fit. The complexity of the model is related to its flatness, 

where a greater degree of flatness corresponds to a smaller 𝑤. Minimization of the norm 

of 𝑤 would ensure a smaller 𝑤 and thus a less complex model, so the fitting problem can 

then be seen as an optimization problem 

 minimize 
1

2
‖𝑤‖2  

 subject to 𝑦𝑖 − ⟨𝑤𝑖,𝑥𝑖⟩ − 𝑏 < 𝜀 ( 3-10 ) 

  −𝑦𝑖 + ⟨𝑤𝑖,𝑥𝑖⟩ + 𝑏 < 𝜀 

where ‖𝑤‖2 is the inner product of 𝑤 with itself [100]. This optimization will perform a 

linear fit on the provided data such that all pairs (𝑥𝑖, 𝑦𝑖) will be within 𝜀 of the fitted 

function 𝑓. However, this optimization problem has limited utility in that a large 𝜀 would 
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have to be used to ensure feasibility, and so the fit may not be very accurate or precise. 

Thus, slack variables 𝜉𝑖 and 𝜉∗ can be introduced as shown 

 minimize 
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)ℓ
𝑖=1   

 subject to 𝑦𝑖 − ⟨𝑤𝑖,𝑥𝑖⟩ − 𝑏 < 𝜀 + 𝜉𝑖 ( 3-11 ) 

  −𝑦𝑖 + ⟨𝑤𝑖,𝑥𝑖⟩ + 𝑏 < 𝜀 + 𝜉𝑖
∗ 

  𝜉𝑖, 𝜉𝑖
∗ ≥ 0  

such that a constant 𝐶 > 0 penalizes the deviations of points beyond 𝜀 of the fitted function. 

This constant 𝐶 determines a trade-off between the flatness of the function and the 

tolerance of deviations greater than 𝜀 from the fit, so larger values of 𝐶 will encourage a 

less flat, or more complex, fit. This tolerance of values larger than 𝜀 introduces what is 

called an 𝜀-insensitive loss function |𝜉|𝜀 described as 

 |𝜉|𝜀 = {
    0                         if |𝜉| ≤ 𝜀         

|𝜉| − 𝜀               otherwise.  
                    ( 3-12 ) 

Figure 3-3 shows the graphical representation of a linear SVR fit, taken from [98], which 

shows the 𝜀-insensitive loss function. 

 

Figure 3-3 Graphical Representation of SVR, with the 𝜀-insensitive Loss Function [98] 

𝑥 

𝑓(𝑥) 
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Now, the Lagrange function of the formulation in (3-11) is shown: 

 𝐿 ∶=
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)ℓ
𝑖=1 − ∑ (𝜂𝑖𝜉𝑖 + 𝜂𝑖

∗𝜉𝑖
∗)ℓ

𝑖=1   

 − ∑ 𝛼𝑖
ℓ
𝑖=1 (𝜀 + 𝜉𝑖 − 𝑦𝑖 + ⟨𝑤𝑖,𝑥𝑖⟩ + 𝑏)  

 − ∑ 𝛼𝑖
∗ℓ

𝑖=1 (𝜀 + 𝜉𝑖
∗ + 𝑦𝑖 − ⟨𝑤𝑖,𝑥𝑖⟩ − 𝑏) ( 3-13 ) 

where 𝜂𝑖, 𝜂𝑖
∗, 𝛼𝑖, and 𝛼𝑖

∗are the Lagrange multipliers and thus all non-negative. The partial 

derivatives of 𝐿 with respect to the primal variables 𝑤, 𝑏, 𝜉𝑖 , and 𝜉𝑖
∗ must be zero at an 

optimal solution, so  

 𝛿𝑏𝐿 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)ℓ

𝑖=1 = 0 ( 3-14 ) 

 𝛿𝑤𝐿 = 𝑤 − ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑥𝑖

ℓ
𝑖=1 = 0 ( 3-15 ) 

 𝛿𝜉𝑖
𝐿 = 𝐶 − 𝛼𝑖 − 𝜂𝑖 = 0 ( 3-16 ) 

 𝛿𝜉𝑖
∗𝐿 = 𝐶 − 𝛼𝑖

∗ − 𝜂𝑖
∗ = 0. ( 3-17 ) 

The dual optimization problem is then 

 maximize {
−

1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)⟨𝑥𝑖,𝑥𝑗⟩       ℓ

𝑖,𝑗=1

−𝜀 ∑ (𝛼𝑖 − 𝛼𝑖
∗) + ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗)ℓ
𝑖=1

ℓ
𝑖=1

 

 subject to ∑ (𝛼𝑖 − 𝛼𝑖
∗)ℓ

𝑖=1  = 0 ( 3-18 ) 

  𝛼𝑖, 𝛼𝑖
∗ ∈ [0, 𝐶]  

as 𝜂𝑖 and 𝜂𝑖
∗ have been substituted in as 𝜂𝑖 = 𝐶 − 𝛼𝑖 and 𝜂𝑖

∗ = 𝐶 − 𝛼𝑖
∗. Also, (3-15) can be 

written as  𝑤 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑥𝑖

ℓ
𝑖=1 , so 

 𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)⟨𝑥𝑖,𝑥⟩ℓ

𝑖=1 + 𝑏. ( 3-19 ) 

which provides the insight that 𝑤 is described as a linear combination of the training data 

𝑥𝑖. Also, note that when finding the fit 𝑓(𝑥), 𝑤 does not even need to be explicitly 

computed, as the dot products between the data is all that is needed. The parameter 𝑏 is 
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computed by using the Karush-Kuhn-Tucker (KKT) conditions, and details can be seen in 

the references [97].  

 Next, the non-linearity will be introduced. As the dot product between training data 

determines the fit of the function, kernel methods can be used to provide a computationally 

efficient method to map the existing feature set into a higher dimension [101]. The features 

in this higher dimensional space then can be better fit by a linear function, which provides 

a non-linear fit in the original space ℝ𝑑 of the training data. The kernel function 𝑘(𝑥𝑖, 𝑥) 

is now introduced, where 

 𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝑥𝑖, 𝑥)ℓ

𝑖=1 + 𝑏 ( 3-20 ) 

and the SVR algorithm applies nonlinear fits by transforming the training data through the 

kernel by a map Φ: ℝ𝑑 → ℱ where ℱ is some feature space. This work will use a popular 

kernel function called the Gaussian radial basis function (RBF), which is typically used for 

datasets that require a non-linear fit. The Gaussian RBF is written as 

 𝑘(𝑥𝑖, 𝑥) = exp(−𝛾‖𝑥𝑖 − 𝑥‖2) ( 3-21 ) 

where 𝛾 is a free parameter that the user of the SVR algorithm must choose. 

 It is important to point out that the optimization problem is a quadratic 

programming problem, as the dual objective function is quadratic in 𝛼𝑖 and has linear 

constraints. In addition, the problem itself is convex, and thus has a unique global optimum. 

Thus, a variety of convex quadratic programming methods can be used to solve this 

problem, including interior point methods. 
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(i) Considerations for SVR Implementation with Gaussian RBF Kernel 

 There are three parameters that are user-defined in the SVR algorithm with the use 

of the Gaussian RBF kernel: the parameter 𝐶, the parameter 𝜀, and the Gaussian RBF kernel 

parameter 𝛾. The typical approach to fitting an SVR model is to sweep all parameters over 

a large parameter space and select the parameter set that results in the highest accuracy, or 

lowest fitting error (so for example, each parameter can be swept over some set of values 

{2−15, 2−13, … , 215}) [85, 102]. The model complexity is controlled by both 𝐶 and 𝜀, so 𝐶 

can be fixed while 𝜀 remains a free parameter, to save on computation time [103]. 

In addition, cross validation within the training data set should be used to ensure a 

robust set of parameters. In a 𝑘-fold cross validation approach, where 𝑘 is usually 5 or 10, 

the training data is split into 𝑘 subsets. One subset is selected as the test data and 𝑘 − 1 

subsets are selected to be the training data, and a parameter grid search is performed to find 

the optimal parameter values. This search is run 𝑘 times such that each subset is the test 

dataset exactly once, and parameter values with the highest average accuracy are selected 

to represent the entire training dataset. Lastly, before using SVR, it is important to 

normalize the time series to [0,1] or [−1,1] to avoid numerical difficulties. 

Existing software packages such as R and MATLAB have well-documented 

toolboxes that can handle SVR and SVM. However, an external, open-source library 

LIBSVM was used in this study for its flexibility (with source code in C++, Java, and 

functions for use in MATLAB), prevalence in existing literature, and available extensions 

[104]. 

The complexity of applying SVR to forecasting problems widely varies with the 

use of different kernel functions. The worse-case complexity for training an SVR model 
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once is 𝑂(𝑚3) where 𝑚 is the number of features in the training data, though in practice, 

the complexity is seen to be approximately 𝑂(𝑚2) [105]. The complexity for running an 

SVR model (for fitting or prediction with test data) is linear with respect to the number of 

support vectors, or 𝑂(𝑚𝑆), where 𝑆 is the number of support vectors in the SVR model. 

Added onto the core complexity of SVR model training is the computation time added by 

running parameter sweeps as well as the 𝑘-fold cross validation. Specific to this work, only 

two parameters are examined as free parameters in a grid search, introducing 

approximately 60 iterations of the original SVR training problem, as well as a 5-fold cross 

validation, resulting in 300 total iterations of the SVR training problem. Formally, this 

would be as a worst-case complexity of 𝑂(𝑘𝜀𝑠𝑤𝛾𝑠𝑤𝑚3), where 𝑘 is the number of subsets 

of data in the 𝑘-fold cross validation and 𝜀𝑠𝑤 and 𝛾𝑠𝑤 are the number of parameters values 

to sweep over for 𝜀 and 𝛾, respectively.  

The selection of the training data length 𝑚 is as important in SVR forecasting as it 

is in AR forecasting, as seen in Appendix A I. The length of training data will affect the 

SVR model fit, but there is presently no common way to select the training data set other 

than with a brute force approach that iteratively tests some range of training data lengths, 

where the training data length with the lowest error is selected. A metric that quantifies the 

non-stationarity in the data would show to what degree the underlying model has changed 

over time, and it would provide insight into the selection of an appropriate training window. 

3.3. The Ensemble Degree of Non-Stationarity (EDNS) Metric  

To quantify the non-stationarity of a time series, the EDNS metric is introduced. 

The EDNS metric is based upon the use of the Hilbert-Huang Transform and the Hilbert 
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amplitude spectrum, all of which will be reviewed in this section. Results will be presented 

for each step of the process with a simple example. 

3.3.1. The Hilbert-Huang Transform 

The Hilbert-Huang transform (HHT) was introduced as a tool to analyze non-linear, 

non-stationary time series data by decomposing a signal into instantaneous frequency 

components [93]. In obtaining the instantaneous frequency components, this method 

improves upon other methods based on the Fourier transform or wavelet transform by 

providing much higher resolution and more accurate instantaneous frequencies over time. 

The core of the HHT is in empirical mode decomposition (EMD), which breaks down a 

signal into a relatively small number of components which are called intrinsic mode 

functions (IMFs). Each IMF exhibits a well-behaved Hilbert transform, which accurately 

represents the frequencies present throughout time. The flow diagram representing the 

steps to arrive at the Hilbert amplitude spectrum, which is simply a matrix of frequency 

amplitudes over time, is shown in Figure 3-4. 

 

Figure 3-4 Diagram Detailing the Steps to Arrive at the the Hilbert Amplitude Spectrum 

To illustrate this process with a reference example, an example discrete time series 

process will be introduced. The input time series data in Figure 3-4 will be defined as the 

sum of a stationary signal 𝑋𝑠𝑡(𝑡) = sin (2𝜋 (
1

20
) 𝑡) + 5, and a popular non-stationary 

signal, the random walk process 𝑋𝑟𝑤(𝑡) defined by 𝑋𝑟𝑤(t + 1) = 𝑋𝑟𝑤(𝑡) + 𝑁(0,1), where 

𝑁(0,1) is a zero-mean, unit variance Gaussian white-noise process. The random walk 
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process is initialized with an initial value of zero, and the sampling frequency is 1 Hz. The 

final resulting signal 𝑋(𝑡) is 

 𝑋(𝑡) = {
    𝑋st(𝑡)                                  for 𝑡 ∈ [0,200)        

   𝑋st(𝑡) + 𝑋𝑟𝑤(𝑡)                for 𝑡 ∈ [200,400].  
                    ( 3-22 ) 

which results in the signal shown in Figure 3-5. 

 

Figure 3-5 Example Time Series Signal 

(i) Empirical Mode Decomposition (EMD) 

EMD is an iterative, empirical method used to decompose a single signal into a set 

of oscillatory signals, each with meaningful amplitudes and phases, with the assumption 

that the process is composed of a group of oscillatory modes [106, 107]. One result of this 

decomposition is the ability to arrive at a set of instantaneous frequencies over time. Given 

some signal 𝑓(𝑡), the decomposition results in a set of modes 

 𝑓(𝑡) = ∑ 𝜑𝑗(𝑡)𝑀
𝑗=1  ( 3-23 ) 

where each mode should have the form 

 𝜑(𝑡) = 𝑟(𝑡) sin(𝜃(𝑡)). ( 3-24 ) 
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Note that there are infinitely many ways to satisfy (3-23) with a set of modes. Now, 

however, each mode is restricted to satisfy two conditions: 1) the number of extrema and 

zero crossings must equal or differ at most by one and 2) at any point, the mean value of 

the envelope defined by the local maxima and the envelope defined by the local minima is 

zero. Modes satisfying these criteria are termed intrinsic mode functions (IMFs).  

 To arrive at a set of IMFs from a signal, an iterative procedure called sifting is 

applied. First, the signal envelopes must be calculated as a spline fit of the local maxima 

and local minima, as shown in Figure 3-6 and Figure 3-7. The mean of the envelopes, 𝑚1, 

is then subtracted from the original signal 𝑓(𝑡) to arrive at the signal ℎ1,1, that is, ℎ1,1 =

𝑓(𝑡) − 𝑚1, shown in Figure 3-8. The resulting ℎ1,1 signal does not yet satisfy the criteria 

of an IMF, so the process of subtracting the mean of the upper and lower envelopes is 

repeated to arrive at ℎ1,2 = ℎ1,1 − 𝑚2. The process is repeated 𝑘 times until the signal 

meets the criteria of the IMF, and the signal 𝑐1 = ℎ1,𝑘 is generated. See Appendix A II for 

details on the practical implementation on enforcing the IMF criteria.  
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Figure 3-6 Envelopes and Mean Values of Original Signal 

 

Figure 3-7 Close-up of Envelopes and Mean Values of Original Signal 
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Figure 3-8 Resulting Signal of ℎ1, after Subtracting 𝑚1 

After the first IMF, 𝑐1, is calculated, the new residual signal 𝑟1 = 𝑓(𝑡) − 𝑐1 is now 

considered the ‘original’ data signal on which the sifting process is applied to, such that 𝑐2 

is calculated and 𝑟2 = 𝑟1 − 𝑐2. The sifting process is repeated 𝑀 times until the residual 

𝑟𝑀−1 itself is constant or monotonic, such that 𝑓(𝑡) = ∑ 𝑐𝑗
𝑀
𝑗=1  and the last signal 𝑟𝑀−1 =

𝑐𝑀. Note that the time series 𝑐𝑀 is usually not an IMF, and can be considered a trend in the 

data. The result is a set of modes that are considered complete, in that the sum of the modes 

recreates the original signal 𝑓(𝑡). All of the modes calculated through this process from 

the example signal are shown in Figure 3-9. The time complexity of EMD is 𝑂(𝑚 log 𝑚) 

where 𝑚 is the number of points, which is equivalent to the complexity of the Fourier 

Transform [108]. 
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Figure 3-9 All IMFs in Original Signal 

(ii) Perform Hilbert Transform on IMFs for Instantaneous Frequency Information 

To calculate instantaneous frequencies, the Hilbert transform is applied to each 

IMF. Let 𝑥(𝑡) be a real-valued signal. The Hilbert transform 𝑦(𝑡) = 𝐻{𝑥(𝑡)} is 

  𝑦(𝑡) =
1

𝜋
∫

𝑥(𝜏)

𝜏−𝑡
𝑑𝜏

∞

−∞
 ( 3-25 ) 

where the Cauchy principal value of the integral is used. This can be thought of as a 

convolution of the original signal 𝑥(𝑡) with the function 
1

𝜋𝑡
, which heavily weights the local 

values of 𝑥(𝑡) at some time 𝑡. A complex analytic signal 𝑧(𝑡) is then defined as 

 𝑧(𝑡) = 𝑥(𝑡) + 𝑗𝑦(𝑡) = 𝑎(𝑡)𝑒𝑗𝜃(𝑡) ( 3-26 ) 
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where the amplitude is 𝑎(𝑡) = √𝑥(𝑡)2 + 𝑦(𝑡)2 and the phase is 𝜃(𝑡) = tan−1 𝑦(𝑡)

𝑥(𝑡)
. The 

instantaneous frequency can then be defined as 

 𝜔(𝑡) =
𝑑𝜃(𝑡)

𝑑𝑡
. ( 3-27 ) 

Applying this definition of instantaneous frequency to the analytic signal of each IMF 

results in a set of instantaneous frequency time series, as shown in Figure 3-10. 

 

Figure 3-10 Instantaneous Frequencies Present for Each IMF 

 Before creating the Hilbert amplitude spectrum 𝐻(𝜔, 𝑡), discretization of the 

frequencies is necessary. If the total data length is 𝑇 and the sampling rate is Δ𝑡, then the 

lowest frequency that can be extracted is 𝑓𝑚𝑖𝑛 =
1

𝑇
 while the highest frequency is 𝑓𝑚𝑎𝑥 =
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1

𝑛Δ𝑡
, where 𝑛 is the minimum number of samples that are needed to accurately represent the 

frequency. Note that although five points are needed to completely describe a sine wave 

oscillation, fewer points are needed to define a stable derivative, so this parameter is kept 

as a user-defined variable. The maximum number of frequency cells that can be used in the 

discretization is defined as 

 𝑁 =
𝑓𝑚𝑎𝑥

𝑓𝑚𝑖𝑛
=

𝑇

𝑛Δ𝑡
. ( 3-28 ) 

To compose 𝐻(𝜔, 𝑡), which is a matrix of size 𝑁 x 𝑇, the amplitude 𝑎(𝑡) is added to the 

frequency bin that contains its instantaneous frequency 𝜔(𝑡) for each IMF, effectively 

summing the amplitudes of frequencies across all IMFs. The Hilbert amplitude spectrum 

for the example signal is shown in Figure 3-11, with adjacent cells averaged for 

presentation purposes. Notes on the Hilbert amplitude spectrum are presented in Appendix 

A III. 

 

Figure 3-11 Hilbert Amplitude Spectrum for Entire Example Signal 
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3.3.2. The EDNS Metric 

The Ensemble Degree of Non-Stationarity (EDNS) metric is based upon the Degree 

of Stationarity (DS) definition presented by N. Huang, so the definition of the DS will first 

be presented [93]. The definition of the DS is 

 DS(𝜔) =
1

𝑇
∫ (1 −

𝐻(𝜔,𝑡)

𝑛(𝜔)
)

2

𝑑𝑡
𝑇

0
 ( 3-29 ) 

where 𝑛(𝜔) =
1

𝑇
∫ 𝐻(𝜔, 𝑡)

𝑇

0
𝑑𝑡, the mean amplitude for a given frequency, and 𝑇 is the 

total length of time series data. This work will consider discrete time series and frequency 

bins, so the definition of the DS can be rewritten as 

 DS(𝜔) =
1

𝑇
∑ (1 −

𝐻(𝜔,𝑡)

𝑛(𝜔)
)

2
𝑇
𝑡=0  ( 3-30 ) 

and 𝑛(𝜔) =
1

𝑇
∑ 𝐻(𝜔, 𝑡)𝑇

𝑡=0 .  

The DS captures the variation of a signal in a certain frequency bin over time. If 

the DS is large (i.e. the ratio 
𝐻(𝜔,𝑡)

𝑛(𝜔)
 is far from one), this indicates large variations in the 

bin.  If the DS is zero (i.e. the ratio 
𝐻(𝜔,𝑡)

𝑛(𝜔)
 is 1), there is no variation in the frequency bin. 

Thus, a larger DS is indicative of non-stationary behavior, while a smaller DS indicates 

more stationary behavior. The DS values for the example signal are shown in Figure 3-12. 

For a given frequency bin, if there are only very few non-zero instances of the frequency 

in time, the value of the DS is approximately 1/𝑁, as seen in multiple frequencies in Figure 

3-12. In this work, a DS of 0 is assigned to frequency bins with no energy. 
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Figure 3-12 DS Values of the Example Signal 

The DS is only defined for a given frequency bin, which does not capture the 

stationarity of the entire time series. To provide a measure for the stationarity for the signal 

as a whole, the EDNS is introduced as the sum of the DS values across all frequency bins, 

weighted by the average amplitude in each frequency bin, written as 

 EDNS𝑇 =  
∑ DS(𝜔)∙𝑛(𝜔)𝜔

𝑛𝑠𝑢𝑚
 ( 3-31 ) 

where 𝑛𝑠𝑢𝑚 = ∑ 𝑛(𝜔)𝜔 , and where the subscript in EDNS𝑇 simply denotes that the EDNS 

was calculated for some length of data 𝑇. The EDNS sums the DS values, but weights them 

by the amplitude of the corresponding oscillation frequency to ensure that small, relatively 

insignificant oscillations do not dominate the metric. A graph of DS(𝜔) ∙ 𝑛(𝜔) is shown in 

Figure 3-13 to contrast with Figure 3-12. The normalization by 𝑛𝑠𝑢𝑚 allows the EDNS to 

be compared to other EDNS values, regardless of the signal amplitudes. The resulting value 
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for the EDNS is 15.19 for the example signal, which is the sum of the values in Figure 3-13 

divided by 𝑛𝑠𝑢𝑚. 

 

Figure 3-13 Weighted DS Values of the Example Signal 

For use in forecasting, the EDNS would be used to determine the non-stationarity 

of training data subsets in the time series signal. To establish the degree of non-stationarity 

for different subsets of training data, the EDNS can be calculated on each subset and 

compared. Thus, for applications in time series forecasting, the EDNS values from different 

past time series data lengths 𝑇𝑚𝑖𝑛, … , 𝑇𝑚𝑎𝑥 can be compared. An EDNS curve is created as 

a function of the time series data length, defined as 

 EDNS(𝑇ℓ) =  
∑ DS(𝜔)∙𝑛(𝜔)𝜔

𝑛𝑠𝑢𝑚
|

𝑇ℓ

 ( 3-32 ) 

where 𝑇ℓ ∈ 𝑇𝑚𝑖𝑛, … , 𝑇𝑚𝑎𝑥. 
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An example of this comparison is shown in Figure 3-14, where EDNS values for 

data lengths from 𝑇 = 20 seconds to 𝑇 = 400 seconds were calculated in steps of 20 

seconds, where the length of data 𝑇 was taken to start from 𝑡 = 0. As expected, the EDNS 

is very low for the stationary period from 0 to 200 seconds, but rises rapidly as the non-

stationary random walk is included in the data length. This is the result of variations in 

frequency from the underlying, non-stationary model. It is important to note that the EDNS 

only shows the degree of non-stationarity of different windows of data and does not 

determine the optimal training windows alone. Discussion on the use of the EDNS in 

forecasting is presented in Section 3.4.1. 

 

Figure 3-14 EDNS Values for a Range of Dataset Lengths 

Note that the computational complexity is now 𝑂 (∑ 𝑇𝑖 log 𝑇𝑖
𝑇𝑚𝑎𝑥
𝑖=𝑇𝑚𝑖𝑛

), as the EMD 

method is now repeated over lengths 𝑇𝑚𝑖𝑛, … , 𝑇𝑚𝑎𝑥. This can be repeated at every time step 

(e.g. every 5 minutes) to calculate the most accurate EDNS curve for the most recent data. 
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To establish this EDNS curve, an iterative calculation over different dataset lengths is 

summarized in Figure 3-15. This method allows a user to arrive at a curve similar to that 

shown in Figure 3-14 that relates different lengths of training data to their EDNS values, 

which can be parallelized to significantly speed computation. 

 

Figure 3-15 Diagram Detailing the Steps to Arrive at a Range of EDNS Values 

3.4. Application of the EDNS in Wind Power Forecasting 

The EDNS only provides a notion of the non-stationarity within a signal. However, 

the EDNS can be used in an algorithm to adaptively provide optimal training window sizes 

in real-time, with the goal of establishing some optimal training window 𝑇∗ that may 

change over time. Use of the EDNS in this manner will be termed the dynamic training 

window method, which will be contrasted with the use of optimal static training windows 

in wind power forecasting simulations. 

3.4.1. Dynamic Training Window Method for Wind Power Forecasting 

The strength of the dynamic training window method lies in its ability to adaptively 

adjust the training window size subject to the stationarity of the past data, with the use of 



 73 

the EDNS. An outline of the algorithm is shown in Figure 3-16. Each step will be detailed 

in the following subsections. 

 

Figure 3-16 Dynamic Training Window Method for Use in Short-term Forecasting 

(i) Create EDNS vs. Training Length Curve 

After obtaining the present power output of the wind farm time series, the EDNS 

curve must be calculated for a range of past data 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑖𝑛 + Δ𝑇ℓ … , 𝑇𝑚𝑎𝑥 with some step 

size Δ𝑇ℓ. The process shown in Figure 3-15 is used to arrive at a curve of the EDNS vs. 

training length. One consideration is that this curve must include 𝑇∗, such that 𝑇𝑚𝑖𝑛 ≤ 𝑇∗ ≤

𝑇𝑚𝑎𝑥. Though the optimal training windows change over time, in practice, 𝑇∗ has some 

finite variance over time specific to a time series (as shown in simulations later in this 

work), so it is possible to define some static  𝑇𝑚𝑖𝑛, … , 𝑇𝑚𝑎𝑥 range such that it contains 𝑇∗ 
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for over all time. As a rule of thumb, sweeping from 𝑇𝑚𝑖𝑛 = Δ𝑡 to 𝑇𝑚𝑎𝑥 = 2𝑇̅∗, where Δ𝑡 

is the sampling rate and 𝑇̅∗ is the mean optimal training window over some representative 

set of data (e.g. 1 month or over 8000 data points) in a time series works well. 

(ii) Determining Optimal Training Length 

Forecasting models are built on the assumption that the analyzed length of data is 

stationary, and so it may seem that the optimal set of training data should be the most 

stationary one (for example, a set with the lowest EDNS). Intuitively, small sets of data 

exhibit a low degree of non-stationarity, and taken to the extreme, a dataset consisting of a 

single point would grant the most stationary process (and indeed, the EDNS of a single 

point is always 0). However, using a single point as training data is usually undesirable and 

not implemented in practice for most forecasting methods, as there would be little to no 

information to build a forecasting model. Figure 3-17 shows the EDNS curves at four 

randomly selected points in the year for a varying length of potential training windows, 

which shows that wind power output data generally increases in its EDNS value (and 

therefore, non-stationarity) over time. The legend shows the day that the training window 

is calculated backwards from, such that a training window of 48 hours on February 22nd 

shows the EDNS for a set of data from February 20th to February 22nd. 
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Figure 3-17 EDNS Curves at Four Randomly Selected Points in AEMO Data 

There is a fundamental trade-off in time series forecasting between stationarity and 

the need for a forecasting method to use as much training data as possible. Most forecasting 

methods tolerate some degree of non-stationarity in producing a useful forecast, but 

previously, this tolerance was never quantified. This degree of tolerance will be captured 

by 𝜀, which will treated as a threshold for the EDNS value of the optimal training window. 

The EDNS vs. training length curve will be used to select an optimal training length 𝑇∗ at 

every time step according to the following optimization problem 

 𝑇∗ = maximize 𝑇 ( 3-33 ) 

 subject to 
∑ DS(𝜔)∙𝑛(𝜔)𝜔

𝑛𝑠𝑢𝑚
|

𝑇
 < 𝜀 ( 3-34 ) 

  𝑇 ∈ [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑖𝑛 + Δ𝑇ℓ … , 𝑇𝑚𝑎𝑥] ( 3-35 ) 

in which (3-34) provides an 𝜀 upper limit for the non-stationarity allowed in the EDNS 

value for all lengths 𝑇, and (3-35) provides the bounded range of training windows. If the 

problem is infeasible, it is recommended to use the training window 𝑇 = 𝑇𝑚𝑖𝑛 to ensure 
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that the threshold of 𝜀 non-stationarity is met in the training data. This optimization will 

allow the forecasting method to use as much training data as possible, subject only to a 

constraint on the EDNS of the training window. 

To solve the optimization problem efficiently, the following algorithm was used. 

Note that the algorithm requires a sweep over the ordered set {𝑇𝑚𝑖𝑛, … , 𝑇𝑚𝑎𝑥} such that 

larger values of 𝑇 overwrite 𝑇∗ if the EDNS value is under the 𝜀 threshold. 

 

 

 

 

 

 

The selected optimal training lengths points are visually shown in Figure 3-18 given an 𝜀. 

 

Figure 3-18 Optimal Windows Given Some 𝜀 at Two Points in AEMO Data 

Algorithm 1 Algorithm for determining optimal training window length 

Input:  𝑇𝑚𝑖𝑛, Δ𝑇ℓ, 𝑇𝑚𝑎𝑥 , EDNS(𝑇ℓ) 

Output: 𝑇∗ 

 Initialization: 𝑇∗ = 0 

1. for 𝑇𝑖 = 𝑇𝑚𝑖𝑛 to 𝑇𝑚𝑎𝑥 in steps of Δ𝑇ℓ do 

2.  if EDNS(𝑇𝒊) < 𝜀 

3.  𝑇∗ = 𝑇𝒊 

4.  end if 

5. end for 

6. return 𝑇∗ 

𝜀 
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The value of 𝜀 is determined in this study by two methods: 1) creation from as much 

prior data as possible, termed the rigid epsilon approach and 2) creation from some set of 

most recent data, termed the adaptive epsilon approach. In the rigid epsilon approach, the 

value of epsilon may be found simply by sweeping epsilon values over lengths of training 

data to find the best epsilon value for a forecasting method (which in this study is one year 

of data). The epsilon value is only calculated once in the rigid epsilon approach and does 

not change. However, the adaptive epsilon approach acknowledges that the EDNS is based 

off of a noisy Hilbert amplitude spectrum, which does not always represent the frequencies 

present in the signal accurately due to the empirical nature of the EMD method. The 

resulting EDNS values then do not perfectly capture the non-stationarity in the time series, 

and so the optimal 𝜀 threshold may change in practice over time for a single forecasting 

method. In the adaptive epsilon approach, a smaller, more recent set of data is used to 

determine 𝜀 by sweeping over a range of [𝜀 − 𝜀𝑠𝑤, 𝜀 + 𝜀𝑠𝑤] thresholds and evaluating 

performance, where 𝜀𝑠𝑤 defines the swept range around the original 𝜀. This is performed 

iteratively throughout time, and it has been found that changing the 𝜀 threshold every 

month, based on the best 𝜀 of the past month of data, has shown good results. This monthly 

update of 𝜀 is used in this study for the adaptive epsilon approach. 

(iii) Run Forecasting Method w/ Training Length 

After selecting the optimal set of training data, the forecasting method is simply run 

for one time step with this set of training data. The process of selecting a training window 

𝑇∗ can then be repeated at the next time step. If the data has relatively low EDNS values 

in general, then it is possible to run the forecasting method for multiple time steps with the 
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same 𝑇∗ training window to limit computational effort in arriving at the EDNS values for 

different training window lengths. 

3.4.2. Simulations using the EDNS 

This real-time algorithm was tested with SVR models because better forecasting 

performance was seen with SVR than with AR on the wind power output time series, and 

SVR also used less training data to achieve the results. This resulted in drastically faster 

computation for both the creation of the EDNS curves and the forecasting itself. The 

features of the SVR model were defined to be the 𝑝 = 4 past power output measurements, 

which corresponds to the results of the AIC and BIC methods, and the label was defined to 

be the difference between the past and present power output. As a result, the matrix of 

training data was of dimension (𝑇∗ − 3) x 4, while the label vector was of dimension 

(𝑇∗ − 3) x 1 for the creation of an SVR model. A new SVR model was created at every 5-

minute time step based on the most recent data of length 𝑇∗, which was contrasted with an 

SVR created at every 5-minute time step based on a static training window 𝑇𝑠𝑡
∗ , the optimal 

static training window. MATLAB 9.0 was used for these simulations in conjunction with 

the LIBSVM library [104]. In this work, 𝐶 = max 𝑦 − min 𝑦 = 1 after data normalization, 

and a grid search is performed over 𝜀 = 0,0.01, … 0.05 and 𝛾 = 2−2, 2−1, … , 27. A 5-fold 

cross validation was performed at every time step to optimize the SVR parameters. 

(i) Simulations using the EDNS with a Single Wind Farm in AEMO 

The AEMO dataset was used for the first set of simulations, as it is a highly non-

stationary dataset with statistical forecasting methods that performed worse than 

persistence in published literature [82]. Five forecasting approaches were applied to the 
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dataset: 1) persistence, 2) static training window SVR, in which the optimal training 

window from one year was used for the next, 3) rigid 𝜀 dynamic training window SVR, in 

which the optimal 𝜀 from one year was used for the next, 4) monthly static training window 

SVR, in which the most recent month was iteratively used to establish the optimal static 

training window, and 5) adaptive 𝜀 dynamic training window SVR, in which the optimal 𝜀 

was computed iteratively at the beginning of each month, based upon results from the last 

month. 

Two years (2012-2013) of a power output time series with a 5-minute resolution 

from a 160 MW wind farm in AEMO were used in this forecasting study. One-step-ahead 

forecasting tests were performed on the complete year of 2013. The training window of 67 

hours was identified as the optimal static training window in 2012 by sweeping over values 

of training windows and identifying the one that yielded the lowest forecasting errors. For 

the rigid epsilon method, the EDNS value of 𝜀 = 27 was chosen as the best performing 

epsilon value for the year of 2012. The adaptive epsilon method used a range of 𝜀 ∈

[19,32] at a resolution of 0.25, where each month the best 𝜀 value from the prior month 

was chosen for forecasting. Training windows and chosen epsilon values over each month 

of the test year are shown in Figure 3-19. 
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Figure 3-19 Training Windows or Epsilon Values over the Test Year of 2013 

Forecasting results on the entire year of 2013 data are presented in Table 3-1, 

showing that the use of a dynamic training window results in improved results for both the 

complete year and just in the presence of ramps, where a ramp is defined to be a change in 

power of greater than 7.5 MW in 5 minutes (which is 5% of the wind farm capacity). When 

compared with the static training window methods, the forecasting improvement using the 

dynamic training window decreases the MAE by 0.2%-0.3%, which is close to expected as 

discussed in Section 3.1.1. In this dataset, recalculating the optimal training windows (both 

Table 3-1 Forecasting Results for AEMO Wind Farm, 2012 

Forecasting Method 
MAE 

(%) 

MAE 

(MW) 

RMSE 

(%) 

RMSE 

(MW) 

Ramp MAE 

(%) 

Ramp MAE 

(MW) 

Persistence 2.015 3.224 3.566 5.706 7.830 12.53 

Static 67-hour Training 

Window SVR  
2.003 3.205 3.513 5.621 7.513 12.02 

Rigid 𝜀 = 27 Dynamic 

Training Window SVR 
1.998 3.197 3.507 5.611 7.490 11.98 

Monthly Static Training 

Window SVR 
1.993 3.189 3.507 5.611 7.520 12.03 

Adaptive Epsilon, Dynamic 

Training Window SVR 
1.990 3.184 3.506 5.610 7.501 12.00 
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for epsilon and for the static training window size) results in lower error for the entire year, 

compared with the case in which an entire year was used to calculate a single epsilon or 

training window size. Notice that no special attention has been paid to ramp identification 

or prediction, and that only the overall MAE was minimized. This is seen in the monthly 

training cases, where the ramp MAE is higher in the monthly re-calculated cases when 

compared with the yearly cases. Ramp prediction can be improved with the implementation 

of a ramp detection algorithm, such as the one in the work by L. Yang et al. [85]. 

(ii) Simulations using the EDNS with a Wind Farm in Colorado 

The dynamic window algorithm may show improved results over use of a static 

training window when a highly non-stationary process is forecasted, but if the time series 

itself is highly stationary, the dynamic window algorithm may result in the same 

performance as when a static training window is used. Forecasting performance was 

compared using a single 10-minute resolution time series from a 300.5 MW wind farm in 

Colorado, with two full years of data from 2011-2012, sourced from NREL. The Colorado 

data has a more stationary time series than in the AEMO data, as the EDNS curves for the 

Colorado data have lower EDNS values than the AEMO data, as shown in Figure 3-20. In 

addition, AR forecasts were performed on two months of Colorado data with the same 

model and procedure as shown Section 3.1.1, with a 4-lag AR, one-step-ahead forecasting 

model. The MAE vs. AR model training length plot is seen in Figure 3-21, which shows 

that for extremely long training window lengths (up to half of a year for the AR model), 

the performance of the AR forecast does not degrade. This can compared with Figure 3-1 

and Figure 3-2, where the forecast performance does degrade with long training window 

lengths. 
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Figure 3-20 Comparison of Two Colorado EDNS Curves and Two AEMO EDNS Curves 

 

Figure 3-21 AR MAE Error Versus Training Data Length for 2 Months of Colorado Data 

SVR forecasting models with a feature length of 4 were also created using the same 

procedure as with the AEMO data, and the SVR forecasting error versus epsilon for the 

year of data is shown in Figure 3-22, with the use of the dynamic training windows. The 

curve shows that SVR performance does not degrade with long training lengths. An epsilon 

of 23 was selected for the year of data, and results for the rigid epsilon approach of the 
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dynamic training window algorithm are shown in Table 3-2. Similar results between the 

use of a dynamic training window and static training window are seen in the table, where 

a ramp was defined as 5% (15 MW) of the wind farm capacity. 

 

Figure 3-22 SVR MAE Error versus Epsilon for a Year of Colorado Data, 2011 

To examine the ability of the adaptive epsilon algorithm to correct for poor initial 

choices of epsilon, an epsilon value of 10 was initially selected for the month-to-month 

adaptive epsilon and contrasted with an rigid epsilon approach with 𝜀 = 10 for the year of 

Colorado data. For this simulation, the range over which surrounding epsilons were tested 

each month in the range [𝜀 − 𝜀𝑠𝑤, 𝜀 + 𝜀𝑠𝑤] was set to 𝜀𝑠𝑤 = 2.5, with a sweep resolution 

of 0.5. This allowed for a maximum change of 2.5 in the epsilon value each month. The 

Table 3-2 Forecasting Results for Colorado Wind Farm, 2012 

Forecasting Method 
MAE 

(%) 

MAE 

 (MW) 

RMSE 

(%) 

RMSE 

(MW) 

Ramp MAE 

(%) 

Ramp MAE 

(MW) 

Persistence 1.809 5.436 3.351 10.07 8.593 25.82 

Static 121-hour Training 

Window SVR  
1.500 4.506 2.840 8.533 5.711 17.16 

Rigid 𝜀 = 27 Dynamic 

Training Window SVR 
1.500 4.506 2.839 8.530 5.711 17.16 
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movement of epsilon over time is shown in Figure 3-23, which shows movement to the 

optimal epsilon value of 27. Table 3-3 shows that the adaptive epsilon approach improves 

upon the static epsilon case with a poor initialization of epsilon. 

 

Figure 3-23 Epsilon Movement with the Adaptive Epsilon Approach, Over Each Month 

(iii) Simulations using the EDNS Utilizing Spatio-Temporal Information for Wind 

Farm Forecast in AEMO 

Performance of the dynamic window algorithm was also tested in a multi-wind 

farm forecast case using SVR, as spatio-temporal forecasts are becoming increasingly 

common in published literature regarding wind power forecasting [31, 82]. Forecasting 

tests were performed on the same single power output time series from Subsection (i), a 5-

minute resolution time series from a 160 MW wind farm in AEMO (referred to as the main 

Table 3-3 Rigid vs. Adaptive Epsilon Approaches with Poor Initialization of Epsilon  

Forecasting Method 
MAE 

(%) 

MAE 

 (MW) 

RMSE 

(%) 

RMSE 

(MW) 

Ramp MAE 

(%) 

Ramp MAE 

(MW) 

Rigid 𝜀 = 10 Dynamic 

Training Window SVR 
1.627 4.890 3.055 9.180 6.557 19.70 

Adaptive Epsilon, Dynamic 

Training Window SVR 
1.515 4.552 2.908 8.738 5.966 17.93 
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wind farm), also using the power output a nearby wind farm (referred to as the auxiliary 

wind farm) less than 10 km away to assist in the forecast of the main wind farm. There 

were twice the number of features used versus the SVR forecasting case with only one 

wind farm, which were the 𝑝 = 4 past power output measurements of both the main and 

auxiliary wind farms. The label definition remained as the difference between the past and 

present power output of the main wind farm. As a result, the matrix of training data was of 

dimension (𝑇∗ − 3) x 8, while the label vector was of dimension (𝑇∗ − 3) x 1 for the 

creation of an SVR model. 

The same epsilon was used for both wind farms, as the EDNS curves were fairly 

similar as shown in Figure 3-24. The dates in the legend are the dates for which the training 

length was calculated backward from, such that a training window length of 72 hours from 

September 30th corresponds to a training window of the first hour of September 27th to the 

first hour of September 30th. The optimal training window 𝑇∗ was found for both the 

auxiliary wind farm and the main wind farm at every time step. This resulted in two 𝑇∗ 

values, 𝑇𝑎𝑢𝑥
∗  for the auxiliary wind farm and 𝑇𝑚𝑎𝑖𝑛

∗  for the main wind farm, so the simple 

minimum among the two 𝑇∗ values was used as the global 𝑇∗ to ensure that both training 

sets were suitably stationary, such that 

 𝑇∗ = min(𝑇𝑚𝑎𝑖𝑛
∗ , 𝑇𝑎𝑢𝑥

∗ ). ( 3-36 ) 
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Figure 3-24 EDNS Curves at Two Times for Both the Main and Auxiliary Wind Farms 

Forecasting results are shown in Table 3-4, showing that the use of a dynamic 

training window results in slightly improved results for overall performance. The small 

improvements in performance in this dual wind farm approach (less than 0.1%) as opposed 

to the single wind farm approaches may be due to the fact that any changes in correlation 

between the wind farms are ignored, as the present algorithm only focuses on the 

stationarity of an individual time series. 

Table 3-4 Forecasting Results Using Spatio-temporal Information in AEMO, 2013 

Forecasting Method 
MAE 

(%) 

MAE 

 (MW) 

RMSE 

(%) 

RMSE 

(MW) 

Ramp 

MAE 

(%) 

Ramp 

MAE 

(MW) 

Persistence 2.015 3.224 3.566 5.706 7.830 12.53 

Static 59-hour Training 

Window SVR  
1.970 3.151 3.460 5.537 7.226 11.56 

Rigid 𝜀 = 26 Dynamic 

Training Window SVR 
1.968 3.148 3.459 5.534 7.210 11.54 

Monthly Static Training 

Window SVR 
1.968 3.149 3.461 5.538 7.224 11.56 

Adaptive Epsilon, Dynamic 

Training Window SVR 
1.967 3.147 3.458 5.532 7.207 11.53 
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3.5. Conclusions on the EDNS 

This work introduced the EDNS, which is a metric that quantifies the degree of 

non-stationarity present in a time series. In addition, a real-time dynamic training window 

algorithm was introduced that used the EDNS, which was able to determine an 

appropriately stationary set of training data for SVR short-term wind power forecasting. 

The dynamic training window algorithm, with the assistance of the EDNS, was able to 

provide an estimate of the optimal training window length based on the quantified non-

stationarity in the past data. When using the real-time dynamic training window algorithm, 

improvements of 0.2% to 0.3% were seen when compared with the optimal static training 

window selection through its application to a highly non-stationary dataset, AEMO data. 

The adaptive epsilon approach in the dynamic training window algorithm saw further 

performance improvements, especially if the training window or epsilon were initialized 

far from the optimal epsilon. In a more stationary dataset from a wind farm in Colorado, it 

was seen that the use of the dynamic training windows did not improve performance, as 

very long training windows did not degrade performance and did not need to change over 

time. Further research directions with the EDNS are identified in the final chapter of the 

dissertation. 

Quantifying stationarity may increase the accuracy of short-term forecasts in highly 

non-stationary datasets, which can then be used in various power system operation tools to 

improve operations performance in the presence of high penetrations of renewable energy. 

One such application could be in the use of security constrained economic dispatch, in 

which dispatch occurs at 5-minute intervals in some modern power systems such as those 

in controlled by PJM Interconnection [109]. However, these applications exclude the 
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proposed anticipatory control improvement to secondary control presented in the next 

chapter, as secondary control operates on a sub-minute time scale and thus would likely 

use persistence forecasts for useful short-term forecasts (e.g. 30-second-ahead forecasts) 

because of the small errors expected from persistence forecasts over such small time 

intervals. The next chapter presents an improvement to secondary control with the use of a 

disturbance forecast provided approximately 30 seconds in advance of the disturbance, 

which is separate from the work performed in this chapter.  



 89 

 ANTICIPATORY SECONDARY CONTROL 

 

 

 

 

4.1. Introduction to Anticipatory Secondary Control 

In power systems, secondary control is used to continuously balance supply with 

demand to maintain a stable and reliable service to the consumers. Automatic Generation 

Control (AGC) provides secondary control, sending commands to a set of responsive 

generators to change generation levels and minimize load and generation imbalances, 

which ultimately correct for deviations in system frequency or tie-line power flow. The 

fundamental operation of AGC as a feedback controller responding to deviations in 

measured frequency or tie-line flow has changed little over its industry adoption [110, 111, 

112, 113]. However, as significant amounts of renewable energy continues to be integrated 

into modern power systems, extra uncertainty in the generation and load balance has been 

introduced which can dwarf the short-term load forecasting errors as a percentage error of 

generation [31, 114, 115]. Also, with increased integration of renewable generation, ramp 

rates in generation can be much larger than previously experienced in a power system, so 

spinning or non-spinning reserve on-hand may not be able to follow these ramps as tightly 

as desired [39, 116]. Prediction accuracy of renewable generation is improving, as much 

research is focused on short-term renewable energy forecasts, including both point and 

distributional forecasts, which can predict future disturbances in renewable energy with 
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increasing accuracy [31, 85]. In addition, predictable generation or load events, including 

large social events and some transmission outages, can also result in sudden and relatively 

large generation and load imbalances that can be anticipated to a high degree of accuracy.  

When a disturbance is anticipated, it may be reasonable to manually raise or lower 

the frequency area reference before the disturbance, in anticipation of the sudden 

generation and load imbalance. However, manual frequency set-point changes require 

human intervention and may have limited or no feedback response to allow for control 

corrections to an imperfect forecast of an anticipated event. An automated, anticipatory 

control solution would save time for system operators and improve system operational 

performance by responding to forecasts of large disturbances before the disturbance, and 

by correcting for imperfections in the control signals with feedback control. In this work, 

prior knowledge of an event in the power system will be used in an anticipatory controller 

to improve operational performance in a simulated power system by adjusting the system 

frequency reference as an external controller to the existing AGC system. This work will 

only consider anticipated generation or load imbalances that can be predicted to some 

degree of accuracy in the very short term (< 5 minutes), though a short study will be 

performed using a 5-minute-ahead forecast. The main contributions of this work are: 

1) Use of a (possibly imperfect) disturbance forecast in secondary control: The 

integration of anticipated events or generation forecasts into the secondary control loop 

greatly improves the ability of the power system to respond to forecasted changes in 

generation or load as compared to conventional AGC. 

2) Design of the controller as an add-on module: Much existing literature on novel 

secondary control methods involves the partial or complete replacement of traditional 
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AGC, which may not be practical. Designing the MPC controller as an add-on module 

preserves the existing AGC system architecture, allowing for a plug-and-play operation. In 

addition, this allows the operator to easily weight the decision of the controller with 

traditional AGC action or preplanned actions if desired. 

3) Highlighting trade-offs between inter-area communication of forecasted 

disturbances: Communication of data over great distances is becoming more common, so 

system operators between different control areas may be linked by communication 

channels in order to increase operational performance for all areas. However, forecasts are 

frequently incorrect, and depending on the magnitude of the errors, broadcasting an 

incorrect forecast may result in worse system performance than in the case of no 

broadcasting. 

The work is organized as follows. Section 4.1 includes the motivation for the work 

as well as some background on secondary control in the power system. Section 4.2 

introduces the general MPC model that will be used for anticipatory secondary control. 

Section 4.3 introduces the power system model for testing and the selection of the 

parameters for the controller. Section 4.4 presents the detailed MPC formulation used in 

this study along with simulations and the comparisons of the anticipatory secondary 

controller with other control methods. Conclusions are presented in Section 4.5. 

4.1.1. Secondary Control in the Power System 

Secondary control refers to generation and load balancing services that control area 

typically provides within a few minutes, restoring frequency and tie-line flows to its 

nominal values. The core of secondary control is automatic generation control (AGC), 

which is a control scheme that uses measurements from the Supervisory Control and Data 
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Acquisition (SCADA) system in an electric system to respond to changes in measured 

frequency and tie-line flows. AGC has two main objectives: 1) to hold the system 

frequency close to a specified nominal value and 2) to maintain the correct interchanges 

between control areas subject to contracts and transmission line constraints. These 

objectives are captured by minimizing the ACE, defined as 

 ACE = Δ𝑃𝑡𝑖𝑒 − 10BΔ𝑓 = (𝑃𝑡𝑖𝑒 − 𝑃𝑡𝑖𝑒_𝑟𝑒𝑓) − 10B(𝑓𝑠𝑦𝑠 − 𝑓𝑟𝑒𝑓) ( 4-1 ) 

where Δ𝑃𝑡𝑖𝑒 is the difference between the net actual interchange 𝑃𝑡𝑖𝑒 and the net scheduled 

interchange 𝑃𝑡𝑖𝑒_𝑟𝑒𝑓 (excess power flow out of the area is defined to be positive), B is the 

frequency bias factor in units of MW/0.1 Hz (the value of B is negative), and Δ𝑓 is the 

deviation of actual frequency 𝑓𝑠𝑦𝑠 from the area frequency reference 𝑓𝑟𝑒𝑓 in Hz (the value 

is negative when the area is below its reference frequency). A negative value of ACE means 

that the control area, or balancing area (BA), should be generating more power to return 

the ACE value to zero. AGC minimizes the ACE value with a proportional-integral (PI) 

controller that sends signals to responsive generation, used for its simplicity and ability to 

eliminate steady-state errors [117].  

In North American power systems, the frequency bias factor B is typically close to 

the frequency response of the system, which is roughly the change in power (in MW) over 

ten times the change in frequency (in Hz) given some event. For example, a loss of around 

1000 MW of generation in the Electric Reliability Council of Texas (ERCOT) resulted in 

a drop of around 0.17 Hz in frequency, and a loss of 150-300 MW in Bonneville Power 

Administration (BPA) resulted in a drop of 0.1 Hz. Based on these two events, the 

frequency responses of the ERCOT and BPA systems are approximately 588 MW/0.1Hz 

and 150-300 MW/0.1 Hz, respectively [118, 119]. The precise calculation of the power 
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system frequency response involves multiple measurements to compose an appropriate 

value, and more details are available in the references. Further details of secondary control, 

especially details regarding its implementation within the North American interconnected 

power system, is available in a North American Electric Reliability Corporation (NERC) 

training document [120]. In this work, B is calculated using the droop and load damping 

factors of the system, discussed in Section 4.3.2. 

A high-level block diagram of the AGC system and its relationship to the control 

area is shown in Figure 4-1, where 𝜔𝑠𝑒𝑡 is the vector of governor frequency set points for 

responsive generation in the power system. The measurements 𝑃𝑡𝑖𝑒 and 𝑓𝑠𝑦𝑠 are sampled 

and sent through the SCADA system to the central controller for the control area, AGC. 

ACE is calculated within the AGC block, and the vector of governor frequency set points 

is then adjusted accordingly to minimize ACE. The scheduled power flow 𝑃𝑡𝑖𝑒_𝑟𝑒𝑓 and the 

reference frequency 𝑓𝑟𝑒𝑓 is not represented in this diagram, but note that the reference value 

of 𝑃𝑡𝑖𝑒_𝑟𝑒𝑓 and 𝑓𝑟𝑒𝑓 is contained within the AGC block as a constant reference. Detailed 

implementation of the blocks in Figure 4-1 is discussed in the next section. 

 

Figure 4-1 Information Flow Between the AGC System and the Power System 

Traditional AGC does not take advantage of prior knowledge of disturbances 

because it only reacts to deviations in frequency or scheduled tie-line flows. Especially 

with the enforcement of the newer CPS1 and CPS2 standards, interconnections must strive 

to minimize large ACE values when disturbances occur in the power system, so it may be 
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desirable to act before a disturbance occurs to minimize frequency or tie-line deviations 

[111, 120, 121]. Also, in cases of extreme changes in the generation and load balance, 

traditional AGC may not be able to react as quickly as desired, so a modification of 

traditional AGC is of interest [39, 116]. Anticipatory secondary control is introduced in 

this work, which is a novel secondary control scheme that will react prior to a disturbance, 

using MPC to optimally calculate control actions for the area. 

4.2. Anticipatory Secondary Control Design 

A new method of secondary control, termed anticipatory secondary control can be 

used to minimize frequency and tie-line deviations with feed-forward control in the 

presence of anticipated disturbances. In this section, model predictive control (MPC) is 

introduced as the optimal control framework by which anticipatory secondary control is 

implemented. The integration of MPC with the power system will be discussed in a general 

sense as well, with details of the formulation presented in Section 4.4.1, after the power 

system model is introduced. 

To implement anticipatory secondary control, an external predictive controller is 

used with a disturbance forecast time series input and various measured inputs from the 

power system to change the area frequency reference, which modifies the traditional ACE 

value to that of an effective ACE (eACE). This eACE is not the true ACE of the system, 

but is nevertheless minimized by the existing conventional integral controller in the AGC 

system. This anticipatory approach to secondary control utilizes externally-provided event 

forecasts in the power system’s secondary control loop, thus significantly improving the 

power system’s ability to respond to large changes in generation or load fluctuations. The 
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proposed approach also allows for seamless integration into the existing power system 

control architecture, as the existing control infrastructure can be efficiently augmented with 

the envisioned controller, as shown in Figure 4-2. The MPC controller uses a forecasted 

disturbance estimate 𝑑̂ within its own area as well as estimates of the future disturbances 

in other areas {𝑑̂𝑎} (if available), measured system variables such as system frequency 𝑓𝑠𝑦𝑠, 

the net inter-area tie-line flow 𝑃𝑡𝑖𝑒, the effective area control error eACE, and the set of 

area frequency references {𝑓𝑠𝑒𝑡
𝑎 } from the other 𝑎 areas in the power system interconnection 

to provide a frequency area reference 𝑓𝑠𝑒𝑡 for AGC. The existing AGC system then uses 

the modified 𝑓𝑠𝑒𝑡 to send out a vector of governor speed set-points 𝜔𝑠𝑒𝑡 to the responsive 

generators in the system. Note that the actual disturbance 𝑑 to the power system differ from 

the forecasted disturbance 𝑑̂ by some forecast error 𝜀𝑑. 

 

Figure 4-2 Anticipatory Secondary Control, with an Augmented Controller 
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Traditional AGC in a power system minimizes deviations from a system area 

frequency reference 𝑓𝑠𝑒𝑡 using a tuned integral controller. Specifically, it minimizes ACE, 

repeated here for convenience: 

 ACE = Δ𝑃𝑡𝑖𝑒 − 10B(𝑓𝑠𝑦𝑠 − 𝑓𝑟𝑒𝑓) ( 4-2 ) 

which is a combination of the net tie-line power flow deviation Δ𝑃𝑡𝑖𝑒 and the system 

frequency deviation from a seldom-adjusted frequency reference 𝑓𝑟𝑒𝑓 weighted by the 

frequency bias B. To adjust the area frequency set point and leave the existing AGC system 

with its integral control intact, the effective system area frequency reference will be 

changed by an external anticipatory MPC controller by adjusting 𝑓𝑠𝑒𝑡 in eACE, defined as: 

 eACE = Δ𝑃𝑡𝑖𝑒 − 10B (𝑓𝑠𝑦𝑠 − (𝑓𝑟𝑒𝑓 + 𝑓𝑠𝑒𝑡)) ( 4-3 ) 

where eACE is still minimized using the same integral controller that exists within AGC. 

The only difference between eACE and the traditional ACE calculation is the change in 

the effective area frequency reference term. With traditional ACE, 𝑓𝑟𝑒𝑓 seldom changes, 

usually only offset in normal operation by a maximum of 0.02 Hz for time error corrections 

[120]. Using eACE, however, the external controller will manipulate 𝑓𝑠𝑒𝑡 to shift the 

effective area frequency reference 𝑓𝑟𝑒𝑓 + 𝑓𝑠𝑒𝑡, which changes the behavior of AGC. This 

will enable the external controller to ultimately control the governor speed reference values 

to more quickly correct frequency or tie-line flow deviations. 

4.2.1. Background on MPC Controller Design 

MPC is an optimal control method used to solve control problems, with advantages 

over traditional linear quadratic regulation in being able to compensate for uncertainties in 

future inputs or errors in the plant model. MPC can offer these benefits by solving a 
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quadratic programming problem at every time step and applying a control action after every 

solution [122]. 

To describe the MPC controller that performs anticipatory secondary control (in 

Figure 4-2), some background material on MPC controllers must first be presented. Let a 

system be represented by the linear time-invariant (LTI) discrete state-space process model 

 𝑋𝑖+1 = 𝐴𝑋𝑖 + 𝐵𝑈𝑖 ( 4-4 ) 

where 𝐴 is the 𝑁 x 𝑁 matrix describing the system, 𝐵 is the 𝑁 x 𝑀 matrix for the effect of 

the input, 𝑋𝑖 is the 𝑁 x 1 vector of states at time 𝑖, and 𝑈𝑖 is the 𝑀 x 1 vector of manipulated 

variables at time 𝑖. A measured, uncontrollable input (such as a step change in generation) 

is modeled as a disturbance 𝑑𝑖, which is contained within the vector 𝑈𝑖. In this model, 𝑑𝑖 

differs from the actual disturbance by some forecast error 𝜀𝑑. 

MPC is an iterative control method, solving an optimization problem at every time 

step that minimizes a cost function subject to a set of constraints over a finite, rolling 

horizon. Resulting control actions are discrete with a resolution of 𝑇𝑠 seconds, also called 

the control interval. MPC minimizes a weighted sum of 𝑝 future predicted states values 

where 𝑖 ∈ [0,1 … 𝑝 − 1] and the states 𝑋𝑖 and inputs 𝑈𝑖 at some present time 𝑡 are defined 

as: 

 𝑋𝑖 = 𝑋(𝑡 + 𝑇𝑠𝑖) ( 4-5 ) 

 𝑈𝑖 = 𝑈(𝑡 + 𝑇𝑠𝑖) ( 4-6 ) 

Let there be 𝑁 states with 𝑀 inputs to a plant to be controlled. MPC minimizes the 

cost function J as follows [122]: 

 min
𝑈1…𝑈𝑝

𝐽 = ∑ 𝑋𝑖
𝑇𝑄𝑋𝑖 + 𝑈𝑖

𝑇𝑅𝑈𝑖
𝑝
𝑖=1   ( 4-7 ) 
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where 𝑋𝑖 is the 𝑁 x 1 state vector on the 𝑖th step in the prediction horizon, 𝑈𝑖 is the 𝑀 x 1 

input vector on the 𝑖th step, 𝑄 is the 𝑁 x 𝑁 penalty matrix for state deviations, 𝑅 is the 𝑀 

x 𝑀 penalty matrix for control actions, and 𝑝 is the length of the prediction horizon. Note 

that 𝑄 must be positive semi-definite and 𝑅 must be positive definite for a solution to be 

obtained. This formulation minimizes movements from both desired states and desired 

control levels. To both control the shape of the control action and reduce computation time, 

an extra cost term may be applied to smooth the controller output and a control horizon 𝑚 

can be defined for control actions: 

 min
𝑈1…𝑈𝑚

𝐽 = (∑ 𝑋𝑖
𝑇𝑄𝑋𝑖

𝑝
𝑖=1 ) + (∑ 𝑈𝑗

𝑇𝑅𝑈𝑗
𝑚
𝑗=1 + 𝑈̇𝑗

𝑇𝑆𝑈̇𝑗)  ( 4-8 ) 

where 𝑈̇ is the 1st derivative of the control action, and 𝑆 is the weighting matrix associated 

with 𝑈̇. Note that 𝑝 ≥ 𝑚, and  

 𝑈̇𝑗 = 𝑈𝑗 − 𝑈𝑗−1  for 𝑡 > 0 ( 4-9 ) 

 𝑈̇𝑗 = 0  for 𝑡 = 0. ( 4-10 ) 

Now the formulation allows for some smaller set of actions 𝑈1 … 𝑈𝑚 to be calculated, rather 

than the full set of 𝑈1 … 𝑈𝑝, which saves on computation time if 𝑚 < 𝑝. Because the states 

𝑋𝑖 must be calculated out to the prediction horizon to solve the optimization problem, the 

control inputs after the control horizon are defined as  

 𝑈𝑗 = 𝑈𝑚 for 𝑚 < 𝑗 ≤ 𝑝. ( 4-11 ) 

Let 𝑝 denote the length of the prediction horizon in the optimization problem, where 

all system states and 𝑚 control actions during this horizon are accounted for in the 

minimization. After the optimization problem is solved at some time 𝑡, only the first action 

in [𝑈1 … 𝑈𝑚] is taken, 𝑈1. In the next time step, all states are sampled, and the future states 

are estimated again while MPC again calculates a new optimal series of 𝑈𝑖, then again 
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executing the new first action 𝑈1. Note that the size of [𝑈1 … 𝑈𝑚] does not change, always 

maintaining 𝑚 vectors of size 𝑀 x 1. In this way, MPC implements its receding horizon, 

and it is in this sense that it is termed a real-time or online method of optimization. 

Determining a suitable length of the horizon 𝑝 is non-trivial, though it has been shown that 

there exists a horizon 𝑝 for which MPC is stable and feasible, for any given controlled 

system [123]. 

The choice of 𝑇𝑠, 𝑝, and 𝑚 can drastically affect the function of the controller, 

balancing performance with computational effort [124]. Smaller 𝑇𝑠 results in better 

performance at the cost of computational effort, as the greater temporal resolution in state 

computation allows the controller more overall control actions and a better estimate of the 

impact of these control actions over a given time. Typically, 𝑇𝑠 is preferred to be less than 

10% to 25% of the desired closed-loop response time. The size of 𝑝 controls how far in the 

future the controller will calculate system states, defining the horizon of the process model. 

A needlessly large 𝑝 introduces a large computational burden, but may also exacerbate any 

model inaccuracies as any errors build up over the prediction horizon. Too small of a 𝑝 

will result in poor performance due to the inability of the controller to compensate for 

future effects of a disturbance. Typically, 𝑝 should be chosen to be greater than both the 

desired closed-loop response time and the plant delay. The choice of 𝑚 determines the 

number of control actions calculated, defining the horizon of the controller model. After 𝑚 

steps, the system inputs remain constant for the rest of the process model horizon 𝑝. A 

small 𝑚 reduces the computational burden with a tradeoff in performance from the limited 

number of control actions the controller can take, and 𝑝 ≥ 𝑚. 
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4.2.2. Implementing MPC for Anticipatory Secondary Control 

The MPC controller and its plant model for a single controller in a multi-area 

system is shown in Figure 4-3, where the plant represents the standard secondary control 

loop group shown in Figure 4-2. The power system plant model shown in Figure 4-3 is the 

linear state-space process model that the controller uses to describe the dynamic behavior 

of the actual plant, which is the multi-area power system. The full plant model will be 

described in Section 4.4.1, after the construction of the power system model. For this 

section, the generic state-space plant definition shown in (4-4) will suffice.  

 

Figure 4-3 The MPC Controller and Plant Model Relationship 

The plant is modeled to have inputs of a manipulated variable input 𝑓𝑠𝑒𝑡 from the 

controller, a forecasted disturbance 𝑑̂, a forecast error 𝜀𝑑, and the estimation error in net 
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tie-line interchange 𝜀𝑝𝑡𝑖𝑒. The plant also has a set of measured outputs consisting of the 

measured system frequency at a bus 𝑓𝑠𝑦𝑠, a set of measured turbine total outputs {𝑃𝑡𝑢𝑟𝑏}, 

measured net tie-line flow (through a low-pass filter) out of the area 𝑃𝑡𝑖𝑒
𝑚 , and the eACE. 

Note that in the state-space model, the calculated tie-line flow can differ from 𝑃𝑡𝑖𝑒
𝑚  because 

of a disturbance in another area. Instead of attempting to estimate this disturbance, the 

disturbance is estimated as a power injection into the area, which is why 𝜀𝑝𝑡𝑖𝑒 is an input. 

The actual disturbance 𝑑 to the plant is equivalent to the sum of the forecasted disturbance 

𝑑̂ and the forecast error 𝜀𝑑, though the two are separated for the convenience of modeling 

the forecast error of the disturbance, which is unmeasured and unknown. Thus, from the 

controller’s perspective, input variables into the plant are all measured and known 

variables, with the exception of 𝜀𝑑 and 𝜀𝑝𝑡𝑖𝑒 as unknown inputs. The MPC controller is 

composed of an optimizer and a state estimator, as most of the states in the system are not 

measured and must be estimated with the possibility of measurement errors, imperfect 

modeling, or a non-zero forecast error 𝜀𝑑. The state estimator uses all measured plant 

outputs, the provided time series of forecasted disturbance in its area 𝑑̂ as well as other 

areas {𝑑̂𝑎}, and sampled external area frequency references {𝑓𝑠𝑒𝑡
𝑎 }. The optimizer uses the 

state estimator’s estimated states 𝑥̂𝑎𝑙𝑙 as well as the provided data for the forecasted 

disturbance and external area frequency references. At every time step, the state estimator 

estimates the state vector 𝑥̂ based on the measured outputs in the power system, then passes 

this estimated state vector into the optimizer. The optimizer predicts the sequence of 

frequency set point movements that minimizes the frequency error, using a linear system 

model to predict the effect of its frequency set point movements some number of steps in 
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advance. Details of the optimizer and state estimator used in this work will be provided in 

the next two subsections, though further details are available in MATLAB’s documentation 

[125]. 

With the structure shown in Figure 4-3, the state-space plant model can be further 

refined. Recall that the general state space formulation of the plant is written as 

 𝑋𝑖+1 = 𝐴𝑋𝑖 + 𝐵𝑈𝑖. ( 4-12 ) 

Now, a vector of outputs is defined as 𝑌𝑖 = [𝑓𝑠𝑦𝑠, {𝑃𝑡𝑢𝑟𝑏}, 𝑃𝑡𝑖𝑒
𝑚 , eACE]

T
 and a vector of 

inputs is defined as 𝑈𝑖 = [𝑑̂, 𝜀𝑑, 𝑃𝑡𝑖𝑒 , 𝑓𝑠𝑒𝑡]
T
 such that a more detailed state-space 

representation can be written: 

 𝑋𝑖+1 = 𝐴𝑋𝑖 + 𝐵𝑈𝑖 ( 4-13 ) 

 𝑌𝑖 = 𝐶𝑋𝑖 + 𝐷𝑈𝑖 ( 4-14 ) 

Details of the actual states used are presented in Section 4.4.1 after the power 

system is formulated in detail. Now, the MPC controller formulation is written as 

 min
𝑓𝑠𝑒𝑡1…𝑓𝑠𝑒𝑡𝑚

𝐽 = (∑ 𝑌𝑖
𝑇𝑄𝑌𝑖

𝑝
𝑖=1 ) + (∑ 𝑈𝑗

𝑇𝑅𝑈𝑗
𝑚
𝑗=1 + 𝑈̇𝑗

𝑇𝑆𝑈̇𝑗) ( 4-15 ) 

 s.t.  𝑋𝑖+1 = 𝐴𝑋𝑖 + 𝐵𝑈𝑖 ( 4-16 ) 

 𝑌𝑖      = 𝐶𝑋𝑖 + 𝐷𝑈𝑖 ( 4-17 ) 

  𝑢𝑚𝑖𝑛 ≤ 𝑓𝑠𝑒𝑡 ≤ 𝑢𝑚𝑎𝑥 ( 4-18 ) 

where 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 are the bounds for the manipulated frequency set-point movement 

𝑓𝑠𝑒𝑡, which are set to -0.1 Hz and 0.1 Hz, respectively. Notice that the objective function 

minimizes some combination of outputs 𝑌𝑖, inputs 𝑈𝑖, and the change in inputs 𝑈̇𝑖. In 

particular, the controller will only be concerned with minimizing the system frequency 

deviations Δ𝑓𝑠𝑦𝑠 and the tie-line deviations Δ𝑃𝑡𝑖𝑒
𝑚  in the output vector 𝑌𝑖, its controlled input 

𝑓𝑠𝑒𝑡 in the input vector 𝑈𝑖, and the rate of change of its controlled input 𝑓𝑠̇𝑒𝑡 in 𝑈̇𝑖. Thus, 
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the weighting matrix 𝑄 has only two non-zero elements on its diagonal, and is otherwise 

empty. In addition, 𝑅 and 𝑆 have only one non-zero element. This structure, where 

weighting matrices are used with only a couple of non-zero elements, is directly used for 

the ease of implementation of the MPC controller in MATLAB. However, the problem can 

be equivalently stated as follows: 

 min
𝑓𝑠𝑒𝑡1…𝑓𝑠𝑒𝑡𝑚

𝐽 = (∑ 𝑄𝑓(Δ𝑓𝑠𝑦𝑠)
2𝑝

𝑖=1 + 𝑄𝑝𝑡𝑖𝑒(Δ𝑃𝑡𝑖𝑒
𝑚 )2 ) ( 4-19 ) 

 + (∑ 𝑅𝑓(𝑓𝑠𝑒𝑡)2𝑚
𝑗=1 + 𝑆𝑓(𝑓𝑠̇𝑒𝑡)

2
)  

 s.t.  𝑋𝑖+1 = 𝐴𝑋𝑖 + 𝐵𝑈𝑖 ( 4-20 ) 

 𝑌𝑖      = 𝐶𝑋𝑖 + 𝐷𝑈𝑖 ( 4-21 ) 

  −0.1 ≤ 𝑓𝑠𝑒𝑡 ≤ 0.1 ( 4-22 ) 

where the objective function is now explicitly defined with scalar penalties 𝑄𝑓 for the 

frequency deviation, 𝑄𝑝𝑡𝑖𝑒 for the net tie-line flow deviation, 𝑅𝑓 for non-zero 𝑓𝑠𝑒𝑡, and 𝑆𝑓 

for non-zero changes in the frequency set point 𝑓𝑠̇𝑒𝑡. These weights are time-invariant in 

this work, and will be defined prior to the actual simulations, as they can drastically change 

the performance of the controller. However, the weights 𝑄𝑓 and 𝑄𝑝𝑡𝑖𝑒 are greater than or 

equal to those of the frequency set point weights, which are set to 𝑅𝑓 = 0.15 and 𝑆𝑓 = 0.75 

for these simulations. 

With the formulation now described, the MPC state estimator and optimizer will be 

discussed in the following two subsections. 

(i) MPC State Estimator 

The controller does not have measurements for all states inside of the plant, and so 

many of the states must be estimated based upon measured outputs. The state estimator is 

based on a steady state Kalman filter, where the state-space matrices A, B, C, and D are 
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time-invariant and the states are iteratively estimated at each time step. The state estimator 

is based on the state space observer, which is simply the same formulation as shown in 

(4-13) and (4-14). For convenience of discussing the Kalman filter, the equations are 

rewritten as 

 𝑥(𝑖 + 1) = 𝐴𝑥(𝑖) + 𝐵𝑢(𝑖) + 𝐺𝑤𝑘 ( 4-23 ) 

 𝑦(𝑖) = 𝐶𝑥(𝑖) + 𝐷𝑢(𝑖) + 𝐻𝑤𝑘 + 𝑣𝑘 ( 4-24 ) 

where 𝑤𝑘 and 𝑣𝑘 represent white noise vectors that is adds white noise to all states or 

measurements, respectively, following the normal distributions 𝑤𝑘~𝑁(0, diag(𝑄𝑘𝑎𝑙)) and 

𝑣𝑘~𝑁(0, diag(𝑅𝑘𝑎𝑙)), where diag(∙) is the diagonal of a matrix. In this work, 𝐺 and 𝐻 are 

identity matrices to create a one-to-one correspondence from a given value in 𝑄𝑘𝑎𝑙 or 𝑅𝑘𝑎𝑙 

to a state or measurement. The importance of these variance values in the state estimation 

will be presented later in this section. The Kalman filter uses observations to provide a 

corrected estimate of the states and measurements in the system. Assume the following are 

given: 

- 𝑥(𝑖|𝑖 − 1), the controller state estimate from the previous control interval 𝑖 − 1 

- 𝑢𝑎𝑐𝑡(𝑖 − 1), the manipulated variable used in the plant from 𝑖 − 1 to 𝑖 

- 𝑑(𝑖), measured disturbances 

- 𝑦𝑚(𝑖), measured plant outputs 

- 𝐵𝑢, 𝐵𝑣, columns of observer parameter 𝐵 corresponding to measured plant outputs 

- 𝐷𝑚𝑣, rows and columns of observer parameter 𝐷 corresponding to measured plant 

outputs and measured disturbance inputs 

- 𝐿, 𝑀, constant Kalman gain matrices 
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First, the innovation is computed as 

 𝑒(𝑖) = 𝑦𝑚(𝑖) − [𝐶𝑚𝑥(𝑖|𝑖 − 1) + 𝐷𝑚𝑣𝑣𝑘(𝑖)] ( 4-25 ) 

which is the difference between the measured and previously calculated output. Then, the 

states are updated to take into account the latest measurements 

 𝑥(𝑖|𝑖) = 𝑥(𝑖|𝑖 − 1) + 𝑀𝑒(𝑖) ( 4-26 ) 

This corrected state 𝑥𝑐(𝑖|𝑖) is then passed to the optimizer to solve the quadratic program 

at interval 𝑖, and the solution is the control action 𝑢𝑎𝑐𝑡(𝑖). The state estimator then 

calculates the next set of estimates for the next interval as 

 𝑥(𝑖 + 1|𝑖) = 𝐴𝑥(𝑖|𝑖 − 1) + 𝐵𝑢𝑢𝑎𝑐𝑡(𝑖) + 𝐵𝑣𝑣𝑘(𝑖) + 𝐿𝑒(𝑖) ( 4-27 ) 

This iterative process repeats at every time step to arrive at estimates of the states, subject 

to user-defined noise levels in the signal. The Kalman gains 𝐿 and 𝑀 are directly 

proportional to 𝑄𝑘𝑎𝑙 and 𝑅𝑘𝑎𝑙, such that larger Kalman gain values result in a heavier 

weight on measurements. 

A brief discussion on the importance of the process and noise covariances will be 

covered here, though more details are available in the references. Define the process noise 

covariance matrix as 𝑄𝑘𝑎𝑙 and the measurement noise covariance matrix as 𝑅𝑘𝑎𝑙. These 

matrices must be defined by the user, and may be time-varying, though in this work the 

matrices remain constant. If 𝑄𝑘𝑎𝑙 is larger than 𝑅𝑘𝑎𝑙, then the Kalman gains 𝐿 and 𝑀 grow 

which weights the error more heavily, and the Kalman filter places more weight on 

measurements in determining state estimates. If 𝑅𝑘𝑎𝑙 is larger than 𝑄𝑘𝑎𝑙, then the state 

estimates place more weight on the process model by weighting the residual less heavily. 

Thus, the choice of 𝑄𝑘𝑎𝑙 and 𝑅𝑘𝑎𝑙 can be seen as a sort of trust measure, as if a particular 

state calculation or measurement is to be trusted more, its corresponding row in the 
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covariance matrix 𝑄𝑘𝑎𝑙 or 𝑅𝑘𝑎𝑙 should be smaller. In this work, 𝑄𝑘𝑎𝑙 and 𝑅𝑘𝑎𝑙 are simply 

diagonal matrices, and the values in 𝑄𝑘𝑎𝑙 and 𝑅𝑘𝑎𝑙 are described in Section 4.4.1. More 

details on the Kalman filter can be seen in literature [126]. 

(ii) MPC Optimizer 

The MPC optimizer solves a quadratic program (QP) at each control interval, which 

determines the value 𝑢𝑎𝑐𝑡(𝑖) that is used as the controller output to the plant until the next 

interval. The KWIK algorithm was used to solve the QP problem, as a part of the MATLAB 

Model Predictive Control Toolbox, which has performance gains over other popular QP 

solvers in that it can solve the problem in 𝑂(𝑛2) time versus 𝑂(𝑛3) time, where 𝑛 is the 

number of degrees of freedom in the optimization problem [127]. More details are available 

in literature and in the MATLAB documentation [128].  

4.3. Power System Models to Test Secondary Control Methods 

A power system model was required to analyze the performance of secondary 

control schemes in a realistic environment, so a representation of a power system was 

constructed, based on publicly available data of the Electric Reliability Council of Texas 

(ERCOT) [129]. First, a single-area system was modeled and various simulations were run 

to validate the primary response and secondary response of the system under traditional 

AGC control, and to introduce the models used in this work. A 2-area system, based on the 

two validated single-area power systems, was tested under a load disturbance with tie-line 

bias control. Finally, the 3-area system was modeled and tested for use as a testbed for the 

anticipatory secondary control method. 
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4.3.1. Single-Area Model Construction & Validation 

First, a 6-bus, single-area system was created as shown in Figure 4-4, with 

generation and load data as shown in Table 4-1 and a system base of 25,000 MVA. This 

system has 7,500 MW (0.3 pu on a system base) of primary response capability, all of 

which is also responsive to AGC, at buses 1, 4, 5, and 6. There is a total capacity of 17,500 

MW of constant, non-responsive generation at buses 1, 2, 4, 5, and 6, operating at 100% 

of their capacity. In this study, there is 24,250 MW of load in the system, which results in 

responsive generation operating at 90% of their capacity. 

 
Figure 4-4 Power System One-line Diagram, Marking Responsive Generation with an ‘R’ 

 

Table 4-1 Generation and Load in Test Power System 

Bus 
Total Generation 

Unit Size (MW) 

Responsive Generation 

Capacity (MW) 

Non-responsive 

Generation (MW) 

Load 

(MW) 

1 2700 900 1800 - 

2 2500 0 2500 - 

3 - - - 8000 

4 4500 1500 3000 6000 

5 6600 2200 4400 7000 

6 8700 2900 5800 3250 

 
Responsive generation, present at buses 1, 4, 5, and 6, are modeled with classical 

steam-electric models at each bus, while non-responsive generation, present at all buses 

except for bus 3, are modeled as electrical power injections at each bus. All buses were 
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assumed to be at 1 pu voltage, so electrical models of generation, such as exciter models, 

were not used. Figure 4-4 shows responsive generation marked with an ‘R’ in the diagram. 

 

Figure 4-5 The Steam-electric Representation of a Generation Unit at a Responsive Bus 

Table 4-2 Parameters of the Steam-electric Model 

Parameter Value 

𝑅 4% 

𝑇𝐴 0.5 

𝑇𝐵 10 

𝑇𝐶 3 

𝑃𝑡𝑠𝑖𝑧𝑒,𝑖 Gen. size / 25,000 MW 

𝑉𝑀𝐴𝑋 1 

𝑉𝑀𝐼𝑁 0 

𝐷 1 

𝐻 4 

 
The steam-electric model used in these simulations is shown in Figure 4-5 with 

parameter data shown in Table 4-2. The governor droop setting for all responsive 

generation was chosen to be 4%, resulting in an equivalent system droop value of 13.3%, 

and the time constant 𝑇𝐴 of the governor was set to 0.5 seconds. The valve limits 𝑉𝑀𝐼𝑁 and 

𝑉𝑀𝐴𝑋 were set to the full range of 0 and 1 pu on the machine base, respectively. The 
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turbine’s 𝑇𝐵 and 𝑇𝐶 values were chosen to be 10 seconds and 3 seconds, respectively, to 

reflect that 30% of the power appears immediately, while the rest of the power appears 

over time. This lead-lag representation emulates a simple model of a steam plant’s boiler 

and turbine, which has a high pressure turbine whose power follows the steam valve 

position with a negligible delay, as well as low pressure turbine whose power is lagged 

from the steam valve position as a result of the large amounts of volume in the reheater 

piping [130].  

The values of 𝑃𝑡𝑠𝑖𝑧𝑒,𝑖 for each generator at a bus i was the pu size of the generator 

in the system base, based on the values in Table 4-1. The load damping value 𝐷 was set to 

1/6 pu at every bus, resulting in a system per-unit value of 1 which reflects a 1% load loss 

for a 1% frequency decrease. The inertia constant 𝐻 was set to 4/6 pu at every bus, resulting 

in a system per-unit value of 4. 

The governor speed reference 𝜔𝑠𝑒𝑡
𝑛  for responsive generation at bus 𝑛 is provided 

directly by AGC. To avoid excessive strain on responsive generation, a rate limit is 

imposed such that the turbine power will only ramp at some value per minute. Unless stated 

otherwise, the ramp limit is set such that the responsive generation is ramp-limited at 0.02 

pu/minute on the responsive turbine base. Note that the primary response in the system is 

not rate-constrained, and that only the secondary control commands are constrained. 

The transmission line connections between each bus in the power system model are 

not rigid. The power flow between connected buses i and j follows a DC representation  

 𝑃𝑡𝑖𝑒−𝑖𝑗 = 𝐾(𝛿𝑖 − 𝛿𝑗) ( 4-28 ) 
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where K= 0.2 in these simulations, which corresponds to a 5 pu impedance on a 25000 

MVA base or 0.02 pu on a 100 MVA base. Actual implementation in the model follows 

the equation 

 Δ𝑃𝑡𝑖𝑒−𝑖𝑗 = 377 ∗
𝐾

𝑠
(Δ𝜔𝑖 − Δ𝜔𝑗) ( 4-29 ) 

where 𝑠−1 is the integration operator, as the per unit speed deviation Δ𝜔𝑖 is equivalent to 

the change in the per unit rotor angle deviation 
𝑑

𝑑𝑡
(Δ𝛿𝑖) = 𝑠(Δ𝛿𝑖). Note that the factor of 

377 is in rad/sec to convert Δ𝛿𝑖 (radians) to Δ𝜔𝑖 (pu speed change). Modeling the power 

flow in this manner lowers the number of states that must be calculated in the system by 

ignoring actual rotor angles. Details of the selection of transmission line impedances are 

presented in the Appendix B I. 

(iii) System Response to a Unit Step Load Increase: No AGC 

For this simulation, a disturbance was modeled as a unit step increase in load at bus 

2, which can represent either a step increase in load or a step decrease in generation. 

Turbine speed deviations from nominal were used to represent system frequency at the 

buses. The frequency at bus 6 was chosen to represent the system frequency, as the 

frequencies at every bus through the system were tightly connected as shown in Appendix 

B, Section II .The frequency at the monitored bus as a result of a 250 MW load increase 

(0.01 pu system base) at bus 2 at t = 25 seconds is shown in Figure 4-6. The theoretical 

drop in frequency is 

 Δ𝜔 =
Δ𝑃𝐿

𝐷+
𝐺𝑒𝑛𝑟𝑒𝑠

𝑅

=
0.01

1+
0.3

0.04

= 0.0012 𝑝𝑢 = 0.0706 Hz ( 4-30 ) 
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where 𝐺𝑒𝑛𝑟𝑒𝑠 is the fraction of responsive generation in the system, 𝑅 is the governor 

droop for responsive generation, 𝐷 is the load damping value, and Δ𝑃𝐿 is the increase in 

load. The system settles at 59.9294 Hz, which agrees with the theoretical results. 

 

Figure 4-6 The Frequency Time Series of the System without AGC after a 0.01 pu Drop 

Droop control in responsive generation is responsible for arresting the frequency. 

A 4% droop control corresponds to a full-range 1 pu turbine output change for 2.4 Hz of 

change in a 60 Hz system, which means that 0.0706 Hz change should result in 0.0294 pu 

change in responsive generation, which is seen in Figure 4-7. 
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Figure 4-7 The Responsive Turbine Output of the System without AGC after a 0.01 pu 

Drop 

In addition, the swing equation shows that the initial rate of decline of frequency 

should be 

 
d𝜔

dt
=

ΔP

2𝐻
=

0.01

2∗4
= 0.00125 pu/sec = 0.075 Hz/sec ( 4-31 ) 

which is shown in Figure 4-8. Low-frequency oscillations are seen at around 1 Hz. 

 

Figure 4-8 A Close-up of the System Frequency after a 250MW Load Change 
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(iv) Automatic Generation Control Model Description 

Automatic Generation Control (AGC) functioned as pure frequency control in this 

single area system and was modeled as shown in Figure 4-9 and Table 4-3. The frequency 

of the system at bus 6 was chosen to represent the system frequency 𝑓𝑠𝑦𝑠 as the bus 

frequencies across the area were relatively tightly connected (see the Appendix B, Section 

II for details). The difference between the system frequency and the nominal reference 

frequency 𝑓𝑠𝑒𝑡 = 60 Hz was then minimized by an integral controller. The gain of the 

integral controller was tuned to return the measured frequency to within 0.01 Hz of nominal 

in 200 seconds with no overshoot, given a 0.01 pu load increase at bus 2. This yielded 𝐾𝑖 =

0.015. Participation factors 𝑝𝑓𝑖 for a unit at bus i were set equally to 0.25 for all four 

controllable generation units. The limiter imposes limits eACE𝑚𝑎𝑥 = 325 MW =

−eACE𝑚𝑖𝑛 on the eACE value passed into the integral controller such that the turbines will 

only ramp at 2% of the responsive generation capacity per minute, also staying under the 

ramp limit of the speed reference 𝜔𝑠𝑒𝑡
𝑖  at a generator 𝑖. However, in this section, eACE is 

equal to ACE as the area frequency reference 𝑓𝑠𝑒𝑡 = 60 Hz. 

 

Figure 4-9 Automatic Generation Control Model 
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Table 4-3 Parameters of the AGC Model 

Parameter Description Nominal Value 

𝑓𝑠𝑒𝑡 Frequency reference of AGC 60 Hz 

𝑓𝑠𝑦𝑠 Frequency of system at bus 6 - 

𝐾𝑖 Integral gain of AGC 0.015 

𝑝𝑓𝑖 Participation factor for unit at bus i 
25% for each AGC-

responsive generator 

eACE𝑚𝑎𝑥 Maximum eACE value 325 MW 

eACE𝑚𝑖𝑛 Minimum eACE value -325 MW 

𝜔𝑡𝑜𝑡 AGC output set point - 

𝜔𝑠𝑒𝑡
𝑖  Governor speed reference at bus i - 

(v) System Response to a Unit Step Load Increase: With AGC 

For this simulation, a load disturbance was modeled as a unit step increase in load 

at bus 2. The result of this 250 MW load increase (0.01 pu system base) at t = 25 seconds 

is shown in Figure 4-10. The frequency settles to within 0.01 Hz of 60 Hz before 200 

seconds. 

 

Figure 4-10 The Frequency Time Series of the AGC Controlled System after a 0.01 pu 

Drop at t = 25 seconds 
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Responsive turbine output is seen in Figure 4-11, which approaches the final value 

of 0.933 pu as it picks up all 250 MW of extra load. 

 

Figure 4-11 The Responsive Turbine Output with AGC in Turbine pu Base 

4.3.2. Two-Area System Model Construction & Validation 

The construction of a 2-area system is described in this section, to test and validate 

AGC. The 2-area system, shown in Figure 4-12, is simply two of the single-area systems 

described in Section 4.3.1, connected by a single tie-line. The system base is set to 25000 

MVA, which is the generation capacity of either area. As in the single-area system, the DC 

power flow approximation is used to represent power flow across transmission lines, and 

the tie-line’s inverse-impedance value 𝐾𝑡𝑖𝑒 is set to 0.2 pu. Note that this corresponds to a 

tie-line capacity of 20 percent of either area’s capacity, as a tie-line flow of 0.2 pu results 

in one radian angular displacement between the two systems. The steam-electric model 

parameters were unchanged from the single-area system. 
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Figure 4-12 Two-area Power System with a Single Tie-line between Buses 6 and 26 

(vi) Response of the System to a Unit Step Load Increase: No AGC 

A 250 MW sudden load increase was simulated at bus 2 in Area 1 at 𝑡 = 25 

seconds. Shown in Figure 4-13 is the rotational speed of the turbines at bus 6, which was 

used to represent the system frequency, compared with the response in the single area 

system (Figure 4-6). Section III in the Appendix B shows that the speeds at all buses in the 

system were tightly connected following a disturbance. Note that per-unit effective system 

droop and load damping values for the two-area system are doubled when compared with 

the single-area case, as twice the response generation and load damping is in the system. 

Following a 0.01 pu sudden increase in load, the theoretical drop in frequency is 

 Δ𝜔 =
Δ𝑃𝐿

𝐷+
𝐺𝑒𝑛𝑟𝑒𝑠

𝑅

=
0.01

2+
0.6

0.04

= 5.8824 x 10−4 𝑝𝑢 = 0.0353 Hz ( 4-32 ) 

which results in a frequency of 59.9647 Hz, agreeing with simulated results. 
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Figure 4-13 Frequency of the 2-area System Compared with the Frequency of the Single-

Area System 

The two-area system has twice as much load and turbine inertia as the single-area 

system, so the initial rate of decline of frequency is expected to be half of that in the single-

area system. The swing equation shows that the initial rate of decline of frequency should 

be 

 
d𝜔

d𝑡
=

Δ𝑃

2𝐻
=

0.01

2∗8
= 6.25 x 10−4 pu/sec = 0.0375 Hz/sec ( 4-33 ) 

which is shown in Figure 4-14. Low-frequency oscillations are seen at approximately 1 Hz. 

As the two systems were identical there was exactly 125 MW of assistance from Area 2 to 

Area 1 with no secondary control, as seen in the tie-line flow in Figure 4-15. 
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Figure 4-14 Initial Rate of Frequency Decline Comparison between the Single-area and 

2-area System 

 

Figure 4-15 Tie-line Flow Out of Area 1 
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(vii) Automatic Generation Control Model Description for Multiple Areas  

With the introduction of multiple areas, automatic generation control must now 

minimize both frequency and tie-line deviations. Traditional AGC accomplishes this with 

the use of the Area Control Error (ACE) defined as 

 ACE = Δ𝑃𝑡𝑖𝑒 − 10BΔ𝑓𝑠𝑦𝑠 ( 4-34 ) 

where Δ𝑃𝑡𝑖𝑒 is the sum of tie-line deviations out of the area in MW, B is the frequency bias 

in MW/0.1 Hz, and Δ𝑓𝑠𝑦𝑠 is the deviation of system frequency in Hz. If the frequency 

reference 𝑓𝑠𝑒𝑡 is a constant 60 Hz, the eACE is the same as the ACE. This value is then 

minimized with an integral controller, and the resulting governor set point is sent out to the 

governors of the responsive generation. The block diagram of this AGC system is shown 

in Figure 4-16. 

 

Figure 4-16 Automatic Generation Control for a Single Area in the Multi-area System 

The automatic generation control system of an area should only minimally react if 

a load disturbance occurred outside of its controlled area, only providing initial frequency 

support. When load disturbances occur outside of an area, the tie-line flow deviation Δ𝑃𝑡𝑖𝑒 
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of the area is the opposite sign of the frequency deviation Δ𝑓𝑠𝑦𝑠. Recognizing this, the 

frequency bias B can be set to weight the frequency deviation equally to the tie-line 

deviation following a disturbance in the power system, in hopes of ‘cancelling out’ the two 

Δ𝑃𝑡𝑖𝑒 and Δ𝑓𝑠𝑦𝑠 values which results in an ACE value of zero when the disturbance is 

outside of the area. Although the tie-line flows and system frequency do not have the same 

dynamic behavior and thus are impossible to completely cancel out with one weighting 

factor, B can be roughly set by balancing the steady-state values of Δ𝑃𝑡𝑖𝑒 and Δ𝑓𝑠𝑦𝑠 

following a disturbance. Details of the derivation can be seen in Kirchmayer’s work [113]. 

After balancing Δ𝑃𝑡𝑖𝑒 and 10BΔ𝑓𝑠𝑦𝑠, it can be seen that a theoretical value for B for the 

automatic generation control of one area in the constructed two-area system is: 

 B = 0.1 (𝐷 +
1

𝑅
) = 0.1 (1 +

0.3

0.04
) = 0.1 (8.5 

pu MW

pu Hz
) = 354.2

MW

0.1 Hz
 ( 4-35 ) 

where 𝐷 and 𝑅 are the load damping and droop of the controlled system, respectively. 

Section IV in the Appendix B shows the effect of this choice of frequency bias B on the 

calculation of ACE and tie-line frequency control. 

(viii) 2-Area System Response to a Load Increase: With AGC 

For this simulation, a load disturbance was modeled as a unit step increase in load 

at bus 2 in Area 1. The frequency and tie-line flows within the system with a 250 MW load 

increase (0.01 pu system base) at 𝑡 = 25 seconds is shown in Figure 4-17 and Figure 4-18. 

The frequency settles to within 0.01 Hz of 60 Hz within 200 seconds of the load 

disturbance, and the tie-line flow settles to within 5 MW of the nominal flow within 275 

seconds. 
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Figure 4-17 Frequency Output of the Power System with Functioning Automatic 

Generation Control 

 
Figure 4-18 Tie-line Flow into Area 1 with Functioning Automatic Generation Control 

Responsive turbine outputs in both areas are shown in Figure 4-19, which reflect 

the proper allocation of changes in steady-state generation as Area 1 begins to picks up all 

250 MW of increased load. 
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Figure 4-19 Responsive Turbine Changes in Generation in Both Areas 

4.3.3. Three-Area System Model Construction & Validation 

A 3-area power system was created from three single area systems, connected as 

shown in Figure 4-20. 

 

Figure 4-20 The 3-area Test System, with Tie-lines Between Areas Shown in Red 
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The 3-area system was validated by examining its performance with traditional 

AGC. With all tie-lines in service, the performance of the system under traditional AGC 

will be shown. 

 A 500 MW sudden increase in load is applied to bus 2 in Area 1 at t = 40 seconds. 

Recall that there is 7500 MW of responsive generation in each area, with a total generation 

capacity of 25000 MW and an initial load of 24250 MW. Responsive generation outside 

the area with the load disturbance initially responded to the disturbance to arrest the 

frequency dive and then returned to the pre-disturbance power output, while responsive 

generation within Area 1 raised its generation by 500 MW to meet its 500 MW load 

increase as shown in Figure 4-21. 

 

Figure 4-21 Power Output of the AGC-responsive Fraction of Generation in Each Area 

Figure 4-22 shows the rotor rotational speeds at bus 6 of each area, representing the 

frequencies of each area. Though the frequencies are tightly connected, the oscillations in 
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Area 1 are slightly greater than that of the other areas due to the disturbance taking place 

in Area 1. 

Figure 4-23 shows the tie-line flows. Before the disturbance, there is no flow on 

any of the tie-lines as each of the 3 areas are identical in generation and load. After the 

disturbance, tie-flows are brought back to 0 MW by AGC. Note that there is close to no 

flow on the line connecting Area 2 and Area 3 during or after the disturbance because the 

two areas are identical. Each of the two areas’ responsive generation acts in the exact same 

manner, so there is no net flow on the line connecting the two areas as the qualities that 

affect the area dynamics (such as inertia) are identical as well. 

 

Figure 4-22 Frequencies in Each Area of the System 
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Figure 4-23 Tie-line Flows of Each of the Three Lines Connecting the Three Areas 

With the 3-area power system model validated under traditional secondary control, 

the new anticipatory controller can be augmented into the existing control system and 

tested for its performance.  

4.4. Simulation Studies and Results 

To examine the performance of anticipatory secondary control in the 3-area power 

system, the controller must be integrated into the power system model. In this section, the 

integration of the MPC controller into the power system is first presented. Then, the 

performance of anticipatory secondary control with an MPC controller was examined in 1) 

a single area with a step disturbance, with and without errors in the forecast 2) multi-area 

response with a step disturbance, with and without broadcasts of a possibly erroneous 
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anticipated disturbance in an area, and 3) multi-area response with a 5-minute forecast, 

with an assumed model to interpolate the disturbances between the given 5-minute forecast. 

4.4.1. Complete Controller and Plant Formulation 

With the construction and validation of the power system models in the previous 

section, the controller and plant can now be completely defined for a multi-area system. 

The single-area system formulation will also be shown as a simplified version of the full, 

multi-area system formulation. Recall the MPC formulation from Section 4.2.2, repeated 

here for convenience: 

 min
𝑓𝑠𝑒𝑡1…𝑓𝑠𝑒𝑡𝑚

𝐽 = (∑ 𝑄𝑓(Δ𝑓𝑠𝑦𝑠)
2𝑝

𝑖=1 + 𝑄𝑝𝑡𝑖𝑒(Δ𝑃𝑡𝑖𝑒
𝑚 )2 ) ( 4-36 ) 

 + (∑ 𝑅𝑓(𝑓𝑠𝑒𝑡)2𝑚
𝑗=1 + 𝑆𝑓(𝑓𝑠̇𝑒𝑡)

2
)  

 s.t.  𝑋𝑖+1 = 𝐴𝑋𝑖 + 𝐵𝑈𝑖 ( 4-37 ) 

 𝑌𝑖      = 𝐶𝑋𝑖 + 𝐷𝑈𝑖 ( 4-38 ) 

  −0.1 ≤ 𝑓𝑠𝑒𝑡 ≤ 0.1 ( 4-39 ) 

where the MPC controller step size is set at 2 seconds for this study. 

Before presenting the linear state-space plant model, there must be some discussion 

regarding the estimation of unknown, unmeasured variables of the error in the forecasted 

disturbance 𝜀𝑑 and the error in tie-line flow 𝜀𝑝𝑡𝑖𝑒. Recall the discussion in Section 4.2.2(i), 

where the process noise covariance matrix 𝑄𝑘𝑎𝑙 and the measurement noise covariance 

matrix 𝑅𝑘𝑎𝑙 determines the ‘trust’ placed in the process model or the measurements 

themselves. Thus, a row in 𝑄𝑘𝑎𝑙 with large values will result in a corresponding state 

estimate that follows the measurements closely, rather than the process model. Because the 

errors 𝜀𝑑 and 𝜀𝑝𝑡𝑖𝑒 are unknown and unmeasured, the Kalman filter is used to estimate 𝜀𝑑 

and 𝜀𝑝𝑡𝑖𝑒 by introducing these inputs as actual states in the system and by making the 
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corresponding diagonal noise entries in the process noise covariance matrix 𝑄𝑘𝑎𝑙 very 

large. To estimate the forecasted disturbance error and the tie-line flow error, the plant 

state-space matrix is augmented with 𝜀𝑑 and 𝜀𝑝𝑡𝑖𝑒 such that 

 [

𝑋𝑖+1

𝜀𝑑,𝑖+1

𝜀𝑝𝑡𝑖𝑒,𝑖+1

] = [
𝐴 𝐵𝑑 𝐵𝑝𝑡𝑖𝑒

0 1 0
0 0 1

] [

𝑋𝑖

𝜀𝑑,𝑖

𝜀𝑝𝑡𝑖𝑒,𝑖

] + [
𝐵
1
1

] 𝑈𝑖 ( 4-40 ) 

where the last two elements of 𝑈𝑖 are the white noise inputs 𝑤𝑑 and 𝑤𝑡𝑖𝑒, which have a 

zero mean and some variance 𝜎𝑑 and 𝜎𝑝𝑡𝑖𝑒 which will be defined later. These white noise 

inputs do not actually affect the plant model calculations directly as they are zero mean, 

but they are present to represent the noise in the 𝑄𝑘𝑎𝑙 matrix for the Kalman filter. In this 

way, the variances 𝜎𝑑 and 𝜎𝑝𝑡𝑖𝑒 of the white noise inputs 𝑤𝑑 and 𝑤𝑝𝑡𝑖𝑒 match the diagonal 

entries in 𝑄𝑘𝑎𝑙, which causes the estimates of 𝜀𝑑 and 𝜀𝑝𝑡𝑖𝑒 to be heavily weighted by 

measurements and not the process model (which shows that 𝜀𝑑 and 𝜀𝑝𝑡𝑖𝑒 stay constant over 

time). Thus, although the errors 𝜀𝑑 and 𝜀𝑝𝑡𝑖𝑒 are inputs into the system conceptually, the 

actual implementation results in 𝜀𝑑 and 𝜀𝑝𝑡𝑖𝑒 as states of the system, being driven by white 

noise inputs 𝑤𝑑 and 𝑤𝑝𝑡𝑖𝑒. In this work, the variances of 𝑤𝑑 and 𝑤𝑝𝑡𝑖𝑒 are both set to 25, 

in contrast to a noise variance of 1 on every other state in the system, unless otherwise 

noted. This produces a diagonal 𝑄𝑘𝑎𝑙 and 𝑅𝑘𝑎𝑙 matrix, which are identity matrices with the 

exception of the two elements 𝜎𝑑 = 25 and 𝜎𝑝𝑡𝑖𝑒 = 25. Sensitivities to these parameters 

are shown in Appendix B V. 

The linear state-space plant model will now be presented. A full overview of the 

state variables for the multi-area system model are shown in Table 4-4.  
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Table 4-4 State-space Model State Variables, in 𝑋 

 

State 

Variable 

# of State 

Variables 

Used in  

Single-area 

Formulation 

Description 

𝑉𝑝,𝑖
0  4 Yes Valve position at bus 𝑖 within own area 

𝑃𝑚,𝑖
0  4 Yes Mechanical power output of turbine at bus 𝑖 

within own area 

Δ𝜔𝑖
0 6 Yes Speed deviation of turbine model at bus 𝑖 

within own area 

𝑃𝑡𝑖𝑒−𝑖𝑗
0  7 Yes Tie-line flows between connected buses 𝑖 and 

𝑗 within own area 

𝑃𝑡𝑜𝑡
0  1 Yes AGC area governor set point 

𝑃𝑡𝑖𝑒
𝑖𝑗

 3 No Net tie-line flows between areas 𝑖 and 𝑗 

𝑉𝑝
𝑗
 2 No Valve position of equivalent turbine in area 𝑗 

𝑃𝑚
𝑗
 2 No Mechanical power output of equivalent 

turbine in area 𝑗 

Δ𝜔𝑗 2 No Speed deviation of equivalent turbine model 

in area 𝑗 

𝑃𝑡𝑜𝑡
𝑗

 2 No AGC area governor set point in area 𝑗 

eACE 1 Yes Measurement of the eACE through a low-pass 

filter 

𝑃𝑡𝑖𝑒
𝑚  1 No Measurement of net tie-line flow within own 

area through a low-pass filter 

𝜀𝑑 1 Yes Error of the disturbance forecast in own area 

𝜀𝑝𝑡𝑖𝑒 1 No Error of the tie-line flow in own area 

 

Each responsive generator is modeled with a classic steam-electric model as shown 

in Figure 4-5, so the state variables 𝑉𝑝,𝑖
0 , 𝑃𝑚,𝑖

0 , and Δ𝜔𝑖
0 are present at each of the four buses 

with responsive generation. Bus 2 and bus 3 had no responsive generation, so only Δ𝜔𝑖
0 

was represented which models the load with inertia at the bus. In addition, the power flow 

on the transmission lines were modeled using the formulation shown in (4-29), integrating 

the differences between Δ𝜔𝑖 and Δ𝜔𝑗 between connected buses 𝑖 and 𝑗. A single area has 7 

transmission lines between buses within its own area, so this adds the 7 states 𝑃𝑡𝑖𝑒−𝑖𝑗
0 , where 

𝑖 and 𝑗 are connected buses as shown in Figure 4-4. The traditional integral control of AGC 
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which minimizes frequency deviations in the system also has a state 𝑃𝑡𝑜𝑡
0 , the area governor 

set point. Neighboring areas were modeled with a single equivalent classical steam-electric 

turbine representation connected to a simple integral control as its AGC system, as it was 

assumed that the details of neighboring areas would not be known. Thus, each of the two 

neighboring areas each had one state for valve position 𝑉𝑝
𝑗
, the mechanical power from the 

turbine 𝑃𝑚
𝑗
, the speed deviation of the turbine Δ𝜔𝑗, and the AGC area governor set point 𝑃𝑡𝑜𝑡

𝑗
. 

Both the eACE and the net tie-line flow within the area 𝑃𝑡𝑖𝑒
𝑚  was measured through 

individual low-pass filters, with time constants of 0.05 Hz and 0.1 Hz, respectively. Lastly, 

the errors of the disturbance forecast 𝜀𝑑 and the tie-line flow error 𝜀𝑝𝑡𝑖𝑒 discussed earlier 

in this section are the last two elements of the vector. All of these states add to a vector of 

size 37 x 1, which can be written as 

 𝑋 ≜ [𝑉𝑝,1
0 … 𝑉𝑝,6

0 , 𝑃𝑚,1
0 , … , 𝑃𝑚,6

0 , Δ𝜔1
0, … , Δ𝜔6

0, 𝑃𝑡𝑜𝑡
0 , 𝑃𝑡𝑖𝑒

12 , 𝑃𝑡𝑖𝑒
23, 𝑃𝑡𝑖𝑒

13 , … ( 4-41 ) 

 𝑉𝑝,𝑖
1 , 𝑉𝑝,𝑖

2 , 𝑃𝑚
1 , 𝑃𝑚

2 , Δ𝜔1, Δ𝜔2, 𝑃𝑡𝑜𝑡
1 , 𝑃𝑡𝑜𝑡

2 , eACE, 𝑃𝑡𝑖𝑒
𝑚 , 𝜀𝑑, 𝜀𝑝𝑡𝑖𝑒]T  

making the original system matrix 𝐴 of dimension 37 x 37. The single-area formulation is a 

limited case of this formulation, which has a size of 24 x 24 with the variables as denoted in 

Table 4-4. 

The outputs 𝑌 of the plant are simply the measured deviation of frequency of the 

system, measured deviation of net tie-line flow out of the area (measured through a low-

pass filter), the turbine power output (said to be equivalent to the electronic power output), 

and the measured eACE (measured through a low-pass filter). This is shown in Table 4-5.  
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Table 4-5 State-space Model Output Variables, in 𝑌 

State 

Variable 

# of 

Variables 
Description 

Δ𝑓𝑠𝑦𝑠 1 Deviation of system frequency, measured at bus 6 

Δ𝑃𝑡𝑖𝑒
𝑚  1 Deviation of net tie-line flow  

𝑃𝑡𝑢𝑟𝑏
𝑖  5 Turbine model power output at bus 𝑖 within own area 

eACE 1 Measurement of the eACE through a low-pass filter 

 

So then, the plant output vector is written as 

 𝑌 ≜ [Δ𝑓𝑠𝑦𝑠, Δ𝑃𝑡𝑖𝑒
𝑚 , 𝑃𝑡𝑢𝑟𝑏

1 , 𝑃𝑡𝑢𝑟𝑏
2 , 𝑃𝑡𝑢𝑟𝑏

4 , 𝑃𝑡𝑢𝑟𝑏
5 , 𝑃𝑡𝑢𝑟𝑏

6 , eACE]
T
 ( 4-42 ) 

which is 8 elements long. Recall that bus 2 has a direct electrical injection of generation, 

which is why 𝑃𝑡𝑢𝑟𝑏
2  is present without a classic steam-electric turbine representation at the 

bus. The single-area simulations use an output 𝑌 that excludes the Δ𝑃𝑡𝑖𝑒
𝑚  term in (4-41). 

The composition of the plant input 𝑈 depends on whether or not inter-area 

communication is implemented. Table 4-6 shows all of the variables that can be present in 

the input vector of the plant model. 

Table 4-6 State-space Model Input Variables, in 𝑈 

State 

Variable 

# of 

Variables 
Description 

𝑑̂ 1 Disturbance forecast for own area 

𝑓𝑠𝑒𝑡 1 Frequency set point within own area 

𝑓𝑠𝑒𝑡
𝑖  2 Frequency set point in area 𝑖 

𝑑̂𝑖 2 Disturbance forecast in area 𝑖  

𝑤𝑑 1 White-noise input for disturbance error 

𝑤𝑝𝑡𝑖𝑒 1 White-noise input for tie-line flow error 

 

If inter-area communication exists, then the full vector is 

 𝑈 ≜ [𝑑̂, 𝑓𝑠𝑒𝑡, 𝑓𝑠𝑒𝑡
1 , 𝑓𝑠𝑒𝑡

2 , 𝑑̂1, 𝑑̂2, 𝑤𝑑, 𝑤𝑡𝑖𝑒 , ]
T
 ( 4-43 ) 
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which is 8 elements long, resulting in a 𝐵 matrix of size 37 x 8 and a 𝐷 matrix of size 8 x 8, 

for the multi-area model. If inter-area communication does not exist, then the input is 

written as 

 𝑈 ≜ [𝑑̂, 𝑓𝑠𝑒𝑡, 𝑤𝑑 , 𝑤𝑡𝑖𝑒]
T
 ( 4-44 ) 

which is 4 elements long, resulting in a 𝐵 matrix of size 37 x 4 and a 𝐷 matrix of size 8 x 4 

for the multi-area model. The single-area formulation is limited to the 𝑈 in (4-43) without 

𝑤𝑡𝑖𝑒. The entire 3-area power system was built in Simulink and the MATLAB linearization 

function was used to create the 𝐴, 𝐵, 𝐶, and 𝐷 matrices used in this study. 

Now, the objective function of the MPC optimization problem will be discussed. 

The weights 𝑅𝑓 and 𝑆𝑓 are used to constrain the movement of the frequency set point such 

that overly aggressive action does not occur. For example, if the controller were to act 

aggressively for an imperfect forecast, responsive turbine outputs in the system might 

swing needlessly for a disturbance that was predicted incorrectly. Also, penalties on the 

movement prevent oscillatory movements in the controller output. Throughout this work, 

the values of  𝑅𝑓 = 0.15 and 𝑆𝑓 = 0.75 were used to produce a smoother controller output 

that responds moderately to predicted disturbances in the power system, where the output 

𝑓𝑠𝑒𝑡 is given by the controller in units of Hz. 

Measured frequency deviations (measured in Hz) are penalized by the factor 𝑄𝑓, 

while tie-line deviations (measured in system pu base) were penalized by the factor 𝑄𝑝𝑡𝑖𝑒. 

Values of 𝑄𝑓 = 0.75 and 𝑄𝑝𝑡𝑖𝑒 = 3.5 were the default values used in this study, as those 

values resulted in a reasonably smooth response by the controller as well as a ‘balanced’ 

response given tie-line and frequency deviations. That is, given a disturbance outside of 
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the controlled area, the effective frequency reference was kept at 60 Hz and the 𝑓𝑠𝑒𝑡 

controller output was near zero, which mirrors the response of conventional AGC (where 

only disturbances within its own area require substantial movement of governor set points). 

However, other values of 𝑄𝑓 and 𝑄𝑝𝑡𝑖𝑒 are explored in the multi-area simulations, and the 

weights specific to the study will be presented within the multi-area study. 

To reiterate, for the single-area simulations, the formulation is a limited case of the 

full formulation shown in (4-36) to (4-39) with no inter-area communication. The objective 

function has no 𝑄𝑝𝑡𝑖𝑒(Δ𝑃𝑡𝑖𝑒
𝑚 )2 term, and the state-space formulation contains no inter-area 

terms, such as the inter-area tie-line flows, which was discussed throughout this section. 

4.4.2. Single-area Step Disturbance Simulations 

Simulations for a single area power system with anticipatory secondary control are 

presented in this subsection, comparing the performance of MPC-based secondary control 

against conventional AGC, an external PI controller, and preplanned human frequency set 

point adjustments. The effects of perfect disturbance forecasts, erroneous disturbance 

forecasts, and differing amounts of responsive generation on the operational performance 

of anticipatory secondary control are presented. 

The PI controller was chosen as an alternative real-time external controller as it is 

robust, easy to implement, and is well-characterized as a traditional method of control. 

However, unlike MPC-based control, PI control is unable to predict future plant response. 

The external PI controller uses the system frequency deviation as its input, and it adjusts 

the area frequency set point in response to errors in frequency such that 𝑓𝑠𝑒𝑡(𝑡) =

𝐾𝑝
𝑒𝑥𝑝𝑖Δ𝑓𝑠𝑦𝑠(𝑡) + 𝐾𝑖

𝑒𝑥𝑝𝑖
∫ Δ𝑓𝑠𝑦𝑠(𝜏)𝑑𝜏

𝑡

0
, where the proportional gain 𝐾𝑝

𝑒𝑥𝑝𝑖
 and the integral 
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gain 𝐾𝑖
𝑒𝑥𝑝𝑖

 are set to ensure the fastest settling time with minimum overshoot of the 

measured frequency past 60 Hz. Calibration of the external PI set-point controller was 

subject to 1) limiting its frequency set-point output to the 59.9 Hz – 60.1 Hz limits applied 

to the MPC controller, 2) allowing a maximum overshoot comparable to that of MPC, and 

3) tuning for the fastest settling time. These criteria resulted in a choice of 𝐾𝑝
𝑒𝑥𝑝𝑖 = 0.5 and 

𝐾𝑖
𝑒𝑥𝑝𝑖 = 0.001 for the gains of the external PI controller. Note that this controller is 

external to the conventional AGC system, and works in addition to the PI controller which 

is contained inside conventional AGC. 

Preplanned patterns for the frequency set-point 𝑓𝑠𝑒𝑡 were chosen as other 

benchmark comparisons because of the ability for preplanned frequency set point patterns 

to be implemented in modern power systems. When an event is predicted in advance, it is 

possible to create a frequency set-point plan that will minimize the system frequency 

deviations. Although this allows for some fine tuning of the frequency set-point pattern 

prior to the event, the pattern is assumed to remain unchanged after it is finalized. There is 

no feedback control using preplanned control, so incorrect modeling of the power system 

as well as errors in the forecast can cause significant frequency deviations.  

Metrics to characterize the performance of the controllers include the frequency 

settling time, the maximum frequency deviation, the average frequency deviation Δ𝑓𝑠𝑦𝑠 

over the simulation horizon, and the integral of the ACE value over the simulation horizon. 

The settling time is defined as the amount of time between the disturbance and the 

frequency settling to within 0.0035 Hz (this is approximately 5% of the maximum 

frequency deviation under conventional control, for the step disturbance), and the 
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maximum frequency deviation is the frequency nadir, the minimum measured frequency 

after the disturbance. The metrics of the average frequency deviation and the integral of 

ACE are inspired by other works regarding the improvement of secondary control systems 

[54]. 

The step disturbance anticipated throughout these simulations was a 250 MW (0.01 

pu system base) generation power drop, simulating a generation trip or other sudden 

generation-related event by instantly dropping power within one simulation time step (0.02 

seconds) at t = 30 seconds. The actual disturbance in a perfect forecast case matches the 

expected disturbance, while errors in the disturbance are elaborated upon in its 

corresponding subsection. 

(i) Comparisons with the Perfect Forecast Case 

Performance of the MPC controller, an external PI controller, preplanned human 

operator control actions, and a conventional AGC controller with no external adjustments 

are first compared with perfect forecasts, in this subsection. After this, the performance of 

the controllers with errors in both time and magnitude of the forecast are presented. 

To establish a base case, a 0.01 pu sudden generation loss at bus 3 at t = 30 seconds 

was simulated for the single-area power system in Figure 4-4 under conventional AGC, 

with results similar to the simulation shown in Section 4.3.1. The frequency is shown in 

Figure 4-24, the responsive turbine output is shown in Figure 4-25, and ACE is shown in 

Figure 4-26. The settling time was 257 seconds, with a frequency nadir of 59.85 Hz, an 

average frequency deviation Δ𝑓𝑎𝑣𝑔 of 26.3 mHz, and an integrated ACE value of 32546 

MW over the 400 second simulation window.  
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Figure 4-24 Frequency in a Single Area for a 0.01pu Drop in Generation  

 

Figure 4-25 Responsive Turbine Output under Conventional Control 
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Figure 4-26 ACE under Conventional Control, with No Tie-line Flows 

 Anticipatory secondary control was then implemented to compare against the 

performance of conventional AGC. Results are also plotted for use of MPC without any 

anticipation, which is simply the use of MPC without any prior knowledge of a disturbance, 

other than what is measured from the system. Lastly, the results are also compared 

alongside an external PI controller. Results are shown in Figure 4-27, Figure 4-28 and 

Table 4-7.  

 

Figure 4-27 Detailed View of Frequency under Anticipatory Secondary Control 
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Figure 4-28 Frequency, Turbine Power, and ACE with MPC versus Conventional AGC 
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Table 4-7 Performance of Single-area System with Various Secondary Control Schemes 

Control Type 
Settling 

Time (sec) 

Max Freq. 

Dev. (Hz) 

Average 

Δ𝑓𝑠𝑦𝑠 (mHz) 

Integrated 

ACE (MW) 

Conventional AGC 257 0.153 15.5 21926 

External PI 142 0.153 10.3 14545 

MPC, no anticipation 70 0.153 6.3 8940 

MPC, with anticipation 55 0.133 4.6 6518 

 

The results show that the power system operational performance is the best under 

MPC control with the metrics considered. Frequency is shown to recover more quickly 

with the MPC controller than in the cases with conventional AGC and external PI control, 

and the maximum frequency deviation under anticipatory MPC control was lower than that 

of the other compared control methods, as anticipatory control was able to bring the 

frequency higher in anticipation of the sudden drop in generation. As there is no tie-line 

flow in this single-area system, the integrated ACE value is directly related to the average 

frequency deviation in the system. Also, although the external PI controller seems to 

perform better than conventional AGC, it results in an overshoot of the system frequency, 

whereas conventional AGC and MPC control does not. See Appendix C I for a simulation 

with perfect forecasting, but with white noise integrated into the load of the power system. 

As the system can be prepared for an anticipated event by raising frequency before 

an anticipated decrease in generation (or increase in load), anticipatory secondary control 

can be compared with reasonable, preplanned human operator actions as well. Three types 

of preplanned actions are considered: 1) aggressive action, 2) conservative action, and 3) 

near optimal action. Each preplanned action path was restricted to linear or exponential 

ramps, not allowing for complex shapes of the frequency set point such as that shown in 

Figure 4-27 for MPC. Each of the three preplanned actions are meant to mimic the possible 

range of behaviors that would reasonably be seen in a case where the frequency set point 
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would be directly manipulated by a human. The comparisons with three different types of 

preplanned operator schemes are shown in Figure 4-29 with the frequency set point paths 

drawn on each frequency plot, and the performance comparison between them and MPC is 

shown in Table 4-8. Further results to accompany these figures, such as turbine outputs 

and ACE comparisons, are shown in Appendix C I. 

Table 4-8 Performance of Single-area System with Various Preplanned Schemes 

Control Type 
Settling 

Time (sec) 

Max Freq. 

Dev. (Hz) 

Average 

Δ𝑓𝑠𝑦𝑠 (mHz) 

Integrated 

ACE (MW) 

Anticipatory MPC 55 0.133 4.6 6518 

Aggressive, Preplanned 155 0.134 6.3 8926 

Conservative, Preplanned 230 0.150 12.1 17208 

Near Optimal, Preplanned 60 0.141 4.9 6999 
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(a) 

 
(b) 

 
(c) 

Figure 4-29 Frequency Results for MPC versus Various Operator’s (a) Aggressive, (b) 

Conservative, or (c) Near Optimal Preplanned Actions  
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Anticipatory MPC shows better performance than the preplanned frequency set 

point responses. The near optimal preplanned response will be used to represent the 

preplanned response in future simulations with errors in the disturbance forecast. Unless 

otherwise noted, anticipatory MPC control will be referred to as MPC control, as non-

anticipatory control is not discussed further. 

(ii) Comparisons with the Erroneous Forecast Case 

Uncertainties in the disturbance forecast, both in time and magnitude of the event, 

are likely to exist. The simulations are split into two groups: one study on the effects of 

magnitude errors on operational performance, and one study on the effects of temporal 

errors on operational performance. Anticipatory secondary control is compared against 

preplanned control, external PI control, and conventional AGC. In these simulations, near-

optimal action was chosen to represent preplanned action. 

First, the study concerning magnitude errors is presented. It is assumed that a ±50% 

error occurred in the disturbance forecast, where the disturbance forecast was 0.01 pu, but 

the true disturbance was of a 0.005 pu magnitude (such that the actual disturbance is -50% 

of the forecast) or 0.015 pu magnitude (such that the actual disturbance is +50% of the 

forecast). Results for simulations with magnitude errors in the disturbance forecast are 

shown in Figure 4-30 and Table 4-9, comparing conventional control, external PI control, 

preplanned control, and anticipatory MPC control. For preplanned control, the exact profile 

of the frequency set point as seen in Figure 4-29(c) is used. Only the frequency set point 

trace of MPC is shown in Figure 4-30, as the actions of preplanned control do not change 

with forecasting errors and controller actions of external PI control are simply scaled 
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versions of the frequency deviation. Plots of turbine output and ACE are shown in 

Appendix C III. 

 
(a) 

 
(b) 

 

Figure 4-30 Frequency Results from Various Controllers in When (a) a 250 MW 

Generation Drop was Predicted for an Actual 375 MW Drop and (b) a 250 MW Drop was 

Predicted for an Actual 125 MW Drop 
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Table 4-9 Performance of Various Control Schemes with Forecast Errors of ±50% 

 
Control Type 

Settling 

Time (sec) 

Max Freq. 

Dev. (Hz) 

Average Δ𝑓𝑎𝑣𝑔 

(mHz) 

Integrated ACE 

(MW) 

Actual is  

1.5x 

Forecast 

Conventional 292 0.230 23.2 32889 

External PI 155 0.229 15.4 21815 

Preplanned 212 0.218 12.8 17961 

MPC 70 0.214 8.1 11447 

Actual is 

0.5x 

Forecast 

Conventional 197 0.077 7.7 10963 

External PI 115 0.076 5.1 7272 

Preplanned 178 0.064 5.5 7585 

MPC 26 0.060 1.6 2241 

 

The results now show a greater performance divide between MPC and preplanned 

control than in the perfect disturbance forecast case. Preplanned control does not adjust to 

the errors in the forecast, so its performance is much worse than the other methods with 

external control. External PI control outperforms preplanned control in many metrics, as 

the PI controller was unaware of any forecast to begin with and so only reacts to the 

disturbance as seen in the system. MPC control consistently performs better than the other 

control methods, as it quickly changes its behavior after the disturbance occurs from the 

measured generation output, which is then passed to the estimator within the MPC module. 

This allows MPC to adjust the frequency set point to minimize any further deviations in 

the system. 

The next set of simulations involve a timing error in the disturbance forecast, such 

that the actual disturbance occurs 15 seconds before or after the forecasted disturbance 

time. The magnitude of the disturbance remains the same in these simulations (0.01 pu 

system base). The frequencies of the system are shown in Figure 4-31 and Table 4-10, and 

the responsive turbine power output and ACE plots are shown in Appendix C III. 
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(a) 

 
(b) 

 

Figure 4-31 Plots of System Frequency for the MPC, PI, and Preplanned Near-optimal 

Controller with a Forecast Error, where the Actual Event Happens (a) Early, 15 Seconds 

Before the Predicted Time and (b) Late, 15 Seconds Past the Predicted Time 
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Table 4-10 Performance of Various Control Schemes with Temporal Forecasting Errors 

of ± 15 seconds 

 

Control Type 

Settling 

Time 

(sec) 

Max 

Freq. 

Dev. (Hz) 

Average 

Δ𝑓𝑠𝑦𝑠 

(mHz) 

Integrated 

ACE 

(MW) 

Disturbance 

-15 sec 

of Forecast 

Conventional 257 0.153 15.5 21973 

External PI 142 0.153 10.4 14667 

Preplanned 49 0.152 5.7 8136 

MPC 55 0.149 5.0 7026 

Disturbance 

+15 sec 

of Forecast 

Conventional 257 0.153 15.5 21871 

External PI 142 0.153 10.3 14422 

Preplanned 133 0.127 6.1 8702 

MPC 65 0.135 6.0 8468 

 

Timing errors in the disturbance forecast result in less of a gap between preplanned 

and MPC control than magnitude errors, as preplanned control still raises the frequency set 

point by the same pattern and eliminates the frequency error relatively quickly in the 

simulation time window, regardless of when the disturbance occurs. The MPC controller, 

on the other hand, reacts to the disturbance (or lack of a disturbance) by changing its 

frequency set point path. Although the ramping of the frequency set point is limited by 

weights in the MPC optimization objective function, it is still seen that the trace of the 

MPC frequency set point varies significantly during the simulation. Increased or decreased 

weightings on frequency set point changes in the objective function of the MPC controller 

would exacerbate or lessen this behavior. 

(iii) Simulations with Sweeps of Percent Responsive Generation 

In addition to improved operational performance, the use of anticipatory secondary 

control may allow for less responsive generation to be kept online. That is, a power system 

with less responsive generation using anticipatory secondary control may be able to 

achieve the same results as a power system with a greater amount of responsive generation 
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under conventional AGC. The effect of responsive generation is studied in this subsection, 

where both the primary and secondary response are swept over a range of 10% to 30% of 

the system generation capacity. The same generation drop of 0.01 pu at t = 30 seconds is 

performed in this system as a perfectly forecasted disturbance for MPC. Results are shown 

in Figure 4-32 and Table 4-11, with plots of the turbine power output and ACE in Appendix 

C IV. 

 
Figure 4-32 Frequency Comparison Between Conventional AGC and MPC under 

Different Amounts of Responsive Generation in the Power System 
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Table 4-11 Responsive Generation Sweep Results 

Control Type 
Settling 

Time (sec) 

Max Freq. 

Dev. (Hz) 

Average 

Δ𝑓𝑠𝑦𝑠 (mHz) 

Integrated 

ACE (MW) 

Conventional AGC 

30% Responsive Gen. 
257 0.153 15.5 21926 

MPC 

10% Responsive Gen. 
370 0.249 53.1 30999 

MPC 

15% Responsive Gen.  
227 0.203 22.0 17407 

MPC 

20% Responsive Gen. 
112 0.173 11.2 11186 

MPC 

30% Responsive Gen. 
55 0.133 4.6 6518 

 

The results indicate that the use of anticipatory secondary control may require less 

responsive generation when compared with a similar case under conventional AGC, which 

could lead to a reduction in operating costs. In this scenario, MPC outperforms 

conventional AGC when the amount of responsive generation in the system is similar (at 

30%), and conventional AGC in a system with 30% responsive generation outperforms 

MPC in a system with 10% responsive generation. However, the amount of responsive 

generation necessary in an MPC-controlled system to match performance with 

conventional AGC depends on the performance metric. For example, matching the settling 

time or integrated ACE metric between a system with conventional AGC and a system 

with MPC control would allow as little as 10-15% of responsive generation in the MPC-

controlled system. However, matching the average frequency deviation would require 

somewhere between 15-20% of responsive generation, and matching the maximum 

frequency excursion would require somewhere between 20%-30% of responsive 

generation. 
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Power system operational performance for anticipatory secondary control has been 

compared against the performance of preplanned control, external PI control, and 

conventional AGC. In most metrics, anticipatory secondary control met or exceeded the 

performance of other control schemes, even with extremely inaccurate forecasts. However, 

these results are limited to a single-area system. Many power systems are connected with 

other systems through tie-lines, forming a multi-area power system with multiple, local 

secondary control schemes. The next subsection will present anticipatory secondary 

control within a multi-area power system. 

4.4.3. Multi-area Step Disturbance Simulations 

Simulations with anticipatory secondary control within a 3-area power system will 

be presented in this subsection. Distributed MPC will be considered here, with each of the 

three areas in Figure 4-20 controlled by a separate secondary control system. This is in 

contrast to centralized MPC, where one MPC controller is aware of a complete model and 

measurements from all areas in the interconnection. Distributed control with and without 

inter-area communication will be shown with a perfect forecast, then performance of 

anticipatory secondary control will be analyzed with an imperfect forecast. The controllers 

in each area are identical, as each area is identical.  

(i) Perfect Disturbance Forecast 

The performance of the distributed MPC controllers are studied with and without 

communication with a perfect disturbance forecast. The disturbance is the same 0.01 pu 

sudden decrease in generation as in the previous section, only occurring in Area 1 at bus 2. 

All inter-area communication assumed a 1 second delay in the exchange of information 
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between areas every 2 seconds, and the variables transmitted were the present frequency 

set point 𝑓𝑠𝑒𝑡
𝑎  as well as the predicted time series of the forecasted disturbance 𝑑̂𝑎, from the 

present time 𝑡 until 25 seconds from then 𝑡 + 25, of area 𝑎. This resulted in 1 set point 

value and 26 forecasted disturbance points being transmitted every 2 seconds, from each 

area to the other two areas. All inputs must be defined from some time 𝑡 = 0 to the 

prediction horizon 𝑝, so 𝑓𝑠𝑒𝑡
𝑎  is assumed to be held constant throughout the prediction 

horizon. 

With the introduction of a net tie-line deviation term in the objective function of 

the MPC controller, the performance gains of communication rely heavily on the weights 

in the objective function for MPC given to the frequency or tie-line deviations terms. The 

default balanced weights of 𝑄𝑓 = 0.75 and 𝑄𝑝𝑡𝑖𝑒 = 3.5 are used to weight the frequency 

and tie-line deviations in the objective function of the MPC controller in all areas, though 

other weights are explored later in this subsection. Further comments on determining 𝑄𝑓 

and 𝑄𝑝𝑡𝑖𝑒 weights are discussed in Appendix B VI.  Figure 4-33 and Figure 4-34 show the 

frequency and net tie-line flows as seen from Area 1, with more plots contained in 

Appendix C V. Metrics such as the integrated ACE are presented at the end of this 

subsection. Note that because Area 2 and Area 3 is identical, the tie-line flows between the 

areas is 0, so the net tie-line deviations are half of that shown in Figure 4-34 and so are not 

shown. 
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Figure 4-33 Frequency With and Without Inter-area Communication, Balanced 

 
Figure 4-34 Tie-line Flow With and Without Inter-area Communication, Balanced 

The frequency set points of Area 2 and Area 3 do not vary much in response to a 

disturbance outside of their areas, so the frequency set point traces of simulations with and 

without inter-area communication are nearly identical. Hence, the operational performance 

of the areas with and without inter-area communication with balanced weights on 

frequency and tie-line deviations are nearly identical. 

Now unbalanced weights in the objective function of the MPC controller are 

introduced. If the value of 𝑄𝑓 is doubled to 𝑄𝑓 = 1.5, frequency deviations are now heavily 
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penalized. The controllers now have more incentive to minimize frequency deviations at 

the cost of some more tie-line flow or tie-line flow overshoot. The results are shown in 

Figure 4-35 and Figure 4-36.  

 
(a) 

 
(b) 

Figure 4-35 Frequency Results with Increased 𝑄𝑓 = 1.5 Where (a) the Frequency Set 

Points are Shown for a Case Without Communication and (b) the Frequency Set Points 

are Shown for a Case with Communication 
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Figure 4-36 Net Tie-line Flows With and Without Inter-area Communication, Large 𝑄𝑓 

Now, controllers outside of the area work to bring frequency back to nominal, 

which results in some overshoot in the tie-line flows. In the scenario with inter-are 

communication, the frequency set points of all areas raise before the disturbance in 

anticipation of the disturbance, while without communication, Area 2 and Area 3 frequency 

set points act opposite to Area 1’s frequency set point. This is because without knowledge 

of a future disturbance in Area 1, the controllers in other areas simply see an increase in 

frequency before the disturbance, and so act to bring the frequency back to 60 Hz. In the 

scenario without communication, the swinging frequency set points of all areas cause an 

oscillatory frequency trace after the disturbance, while in the scenario with communication, 

the controllers work together to bring the frequency quickly to nominal without any 

overshoot. 

Restrictions on tie-line flow may be desired as well, so in the next set of 

simulations, 𝑄𝑓 = 0.75 and 𝑄𝑝𝑡𝑖𝑒 is doubled to 𝑄𝑝𝑡𝑖𝑒 = 7. Results are shown in Figure 

4-37 and Figure 4-38, with more results in Appendix C V. 



 153 

 
(a) 

 
(b) 

Figure 4-37 Frequency Results with Increased 𝑄𝑝𝑡𝑖𝑒 = 7 Where (a) the Frequency Set 

Points are Shown for a Case Without Communication and (b) the Frequency Set Points 

are Shown for a Case With Communication 
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Figure 4-38 Net tie-line Flows With and Without Inter-area Communication, Large 𝑄𝑝𝑡𝑖𝑒 

Results of the large 𝑄𝑝𝑡𝑖𝑒 value mirror the results of a large 𝑄𝑓, with tighter control 

seen in minimizing Δ𝑃𝑡𝑖𝑒 for a scenario with communication. Table 4-12 shows the 

summary of frequency-related results for the simulations with perfect forecasting, varying 

𝑄𝑓 and 𝑄𝑝𝑡𝑖𝑒. Table 4-13 shows the summary of tie-line flow related metrics for the same 

simulations, where the 𝑃𝑡𝑖𝑒 Settling Time is defined as the time between the disturbance 

and the time when the net tie-line flow deviation settles to within 15 MW. Both tables 

contain the Integrated ACE metric for ease of comparison. As expected, the system showed 

better performance through the frequency metrics when 𝑄𝑓 was doubled in value, and 

better performance through the tie-line metrics when 𝑄𝑝𝑡𝑖𝑒 was doubled in value. However, 

in these scenarios with unbalanced 𝑄𝑓 and 𝑄𝑝𝑡𝑖𝑒, the presence of inter-area communication 

had a large impact on the performance of the anticipatory controllers, as frequency set 

points in Areas 2 and 3 moved significantly in response to a disturbance in Area 1. In fact, 

in scenarios with unbalanced weights, inter-area communication is necessary to ensure 

robust operation with no frequency or tie-line flow overshoot. In other words, inter-area 
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communication is highly beneficial in power systems using anticipatory secondary control 

with unbalanced weights 𝑄𝑓 and 𝑄𝑝𝑡𝑖𝑒, and does not change the performance metrics in 

systems with balanced weights 𝑄𝑓 and 𝑄𝑝𝑡𝑖𝑒. 

Table 4-12 Multi-area Results With and Without Communication, Frequency Metrics 

 
Control 

Type 

Freq. 

Settling 

Time (sec) 

Max Freq. 

Dev. 

(Hz) 

Average 

Δ𝑓𝑠𝑦𝑠 

(mHz) 

Integrated 

ACE 

(MW) 

 Conv. AGC 161 0.057 5.2 21974 

Balanced  
𝑄𝑓 = 0.75 

𝑄𝑝𝑡𝑖𝑒 = 3.5 

MPC, 

no comm. 
41 0.051 1.6 6886 

MPC, 

with comm. 
41 0.051 1.6 6884 

𝑸𝒇 = 𝟏. 𝟓 

𝑄𝑝𝑡𝑖𝑒 = 3.5 

MPC, 

no comm. 
50 0.050 1.5 7818 

MPC, 

with comm. 
31 0.046 1.2 6549 

𝑄𝑓 = 0.75 

𝑸𝒑𝒕𝒊𝒆 = 𝟕  

MPC, 

no comm. 
78 0.049 2.5 6105 

MPC, 

with comm. 
43 0.053 2.1 6135 

 

Table 4-13 Multi-area Results With and Without Communication, Tie-line Flow Metrics 

 
Control 

Type 

𝑃𝑡𝑖𝑒 
Settling 

Time (sec) 

Average 

Δ𝑃𝑡𝑖𝑒 
(MW) 

Integrated 

ACE 

(MW) 

 Conv. AGC 203 36.7 21974 

Balanced  
𝑄𝑓 = 0.75 

𝑄𝑝𝑡𝑖𝑒 = 3.5 

MPC, 

no comm. 
95 11.8 6886 

MPC, 

with comm. 
95 11.7 6884 

𝑸𝒇 = 𝟏. 𝟓 

𝑄𝑝𝑡𝑖𝑒 = 3.5 

MPC, 

no comm. 
105 16.7 7818 

MPC, 

with comm. 
55 12.3 6549 

𝑄𝑓 = 0.75 

𝑸𝒑𝒕𝒊𝒆 = 𝟕  

MPC, 

no comm. 
59 8.7 6105 

MPC, 

with comm. 
45 8.0 6135 
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As shown in Figure 4-33, the anticipatory secondary control system where the Δ𝑓𝑠𝑦𝑠 

term and Δ𝑃𝑡𝑖𝑒 weights are balanced sees almost no difference in performance between 

scenarios with and without inter-area communication because of the similar frequency set 

points. However, if more weight is placed on either Δ𝑓𝑠𝑦𝑠 or Δ𝑃𝑡𝑖𝑒, inter-area 

communication improves the performance of the controllers immensely. More accurately, 

the lack of communication in these two situations (where the MPC controller weights either 

Δ𝑓𝑠𝑦𝑠 or Δ𝑃𝑡𝑖𝑒 more than the other) hinders the ability of MPC to perform well. 

These results were all achieved with the assumption of a perfect disturbance 

forecast. The effects of imperfect disturbance forecasts on distributed MPC control is 

investigated in the next subsection. 

(ii) Imperfect Disturbance Forecasts 

Large errors in the magnitude of the forecasted disturbance will be investigated, 

where a 0.01 pu disturbance is always anticipated. The actual disturbance ranges from 0 pu 

to 0.02 pu, which means that the actual disturbance was 0% of the forecast (referred to as 

0x magnitude) or 200% of the forecast (referred to as 2x magnitude). First, simulations will 

be performed with balanced weights 𝑄𝑓 = 0.75 and 𝑄𝑝𝑡𝑖𝑒 = 3.5, such that the frequency 

set points of areas without a disturbance should only move minimally. Figure 4-39 shows 

the frequency and frequency set points of the extreme scenarios with either a 0 pu or 0.02 

pu drop in generation when a 0.01 pu drop in generation was anticipated. Figure 4-40 shows 

the settling time, average frequency deviation, average tie-line deviation, and integrated 

ACE values for various values of the actual disturbance, when the predicted disturbance is 

0.01 pu. A magnitude multiplier of 1 means the actual disturbance is exactly the predicted 
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disturbance, while a multiplier of 0 means there was no actual disturbance and a multiplier 

of 2 means that the actual disturbance was twice the magnitude of the predicted 

disturbance.  

 
(a) 

 
(b) 

Figure 4-39 System Frequencies (a) Without and (b) With Inter-area Communication, 

Balanced 
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Figure 4-40 Operating Metrics with Imperfect Forecasting, under Equal Weighting 

As expected, the operational performance for situations with and without 

communication are very similar because of the balanced weighting of the Δ𝑓𝑠𝑦𝑠 and Δ𝑃𝑡𝑖𝑒 

values. As seen in Figure 4-39, the frequency set points of Area 2 and Area 3 are always 

close to zero, as areas outside of the disturbed area only contribute in primary response, 

avoiding heavy contribution in secondary response. This results in similar metrics between 

the systems with and without inter-area communication. 

Simulations with large 𝑄𝑓 = 1.5 are now presented, with the same sweep of actual 

disturbances ranging from 0 pu to 0.02 pu and a predicted disturbance of 0.01 pu. Figure 

4-41 shows the frequencies and frequency set points in the extreme scenarios of no 

disturbance and a 0.02 pu disturbance, and Figure 4-42 shows performance metrics swept 

over a range of disturbances.   
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(a) 

 
(b) 

Figure 4-41 Frequencies and Set Points for Imperfect Forecasting with Heavy Weight on 

Frequency Deviations 𝑄𝑓 = 1.5 
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Figure 4-42 Operating Metrics with Imperfect Forecasting, with 𝑄𝑓 = 1.5 

With imperfect forecasts, communication of the anticipated disturbance actually 

hurts operational performance, as areas outside of the Area 1 (which predicted the 

disturbance) react prior to the predicted disturbance. In situations with communication 

where the actual disturbance magnitude was less than ~75% of the predicted disturbance 

magnitude, neighboring areas over-prepared for the disturbance by excessively raising 

frequency. That is, in these simulations, if the true disturbance is less than approximately 

75% of the anticipated forecast, performance suffers if areas are communicating. Thus, if 

areas set non-balanced 𝑄𝑓 and 𝑄𝑝𝑡𝑖𝑒 weights, it becomes important to only broadcast a 

forecasted disturbance with some degree of accuracy. 

The multi-area simulations in this subsection offered insight on the performance of 

distributed MPC for anticipatory secondary control in situations with a perfect forecast and 

an imperfect forecast. It was seen that the weights of the frequency and tie-line deviations 

heavily affect the results, but that in general, inter-are communication is beneficial if the 
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forecasted disturbance is relatively accurate. Results so far have been limited to the cases 

of a discrete step disturbance, which can reflect the sudden disruption of generation from 

a transmission or generation outage. However, short-term forecasts for renewable energy 

are generally given in discrete time intervals, such as at a 5-minute basis. The next section 

will present results on MPC actions given a 5-minute-ahead forecasted disturbance.  

4.4.4. 5-Minute Ahead Forecasts with Intra-Forecast Uncertainty 

Anticipatory secondary control can utilize a prediction less than a minute in 

advance of rare, sudden events, as is shown in the previous subsection. This sub-minute 

prediction includes generation trip events, given through a signal given to the operator 

before the trip, as well as renewable energy events, which can be predicted through a 

weather station a kilometer or less upstream from a solar or wind farm. 

In contrast to rare and sudden discrete events, short-term renewable energy 

forecasts are given consistently to wind farm and power system operators in set intervals 

(e.g. on a 5-minute basis). These point forecasts can also be used with anticipatory control, 

and simulations incorporating these forecasts into anticipatory secondary control are 

presented. Although short-term forecasts (e.g. 30-second forecasts) may be available from 

the use of weather towers that surround a wind farm, this study is limited to use of a 5-

minute window because of the present availability of 5-minute-ahead wind power 

forecasting data.  

Given an initial operating point of renewable energy generation 𝑃𝑖𝑛𝑖𝑡, the point 

forecast will provide the expected value 𝑃𝑓𝑖𝑛𝑎𝑙 the generation will be at after some time 

duration 𝑇𝑑. However, 𝑇𝑑 = 5 minutes, and AGC operates on a smaller timescale, so the 
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shape of the generation between these two points 𝑃𝑖𝑛𝑖𝑡 and 𝑃𝑓𝑖𝑛𝑎𝑙 is must be assumed. A 

predicted disturbance 𝑃(𝑡) over time 𝑡 is assumed to be: 

 𝑃(𝑡) = 𝑃Δ (
𝑡

𝑇𝑑
)

𝛾

+ 𝑃𝑖𝑛𝑖𝑡 ( 4-45 ) 

 

where 𝑃𝑖𝑛𝑖𝑡 is the initial value of the generation at the beginning of the disturbance, 𝑃Δ is 

the delta change of the disturbance value 𝑃𝑓𝑖𝑛𝑎𝑙 − 𝑃𝑖𝑛𝑖𝑡, 𝑇𝑑 is the duration of the 

disturbance, and 𝛾 is a controllable parameter determining the shape of the disturbance, 

controlling the shape of the change, as shown in Figure 4-43. Note that 𝛾 ∈ [0, inf). 

 

Figure 4-43 Shape of the Disturbance Curve Between the Initial Value and the Final 

Value 

It is important to note that the controller only has knowledge of the next point 

forecast, and it is assumed in this work that one-step-ahead forecasts are given every 5 

minutes. Simulations in this section will use the profile of the forecast shown in Figure 

4-44, where the unknown window is where the shape determined by 𝛾 in Figure 4-43 will 

occur. This mirrors the generation points before and after a disturbance seen in prior 

simulations in this work, where the generation at bus 2 in Area 1 drops from 2500 MW to 

2250 MW. 
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Figure 4-44 Assumed Generation Shape with a Window that Contains a Predicted Path 

With the forecast in Figure 4-44, when the controller operates in the interval of t ∈ 

[0 100) seconds the controller will anticipate the point forecast for 2500 MW at t = 100 

seconds, which is no change. When operating in the interval of t ∈ [100 400) seconds, the 

controller will know that there is a forecast of 2250 MW at t = 400 seconds. The controller 

is given some type of interpolation defined by the 𝛾 value to fill in the forecasted power 

output gaps between the 5-minute-ahead forecasts. It is assumed that the power output is 

steady at 2500 MW before t = 100 seconds, and that the output is steady at 2250 MW after 

t = 400 seconds. 

To evaluate the effectiveness of anticipatory secondary control using 5-minute 

forecasts, the shape 𝛾 of the actual disturbance was assumed to be one of the three values 

shown in Figure 4-43, which are 0.33, 1, and 3. Multiple 600 second simulations were ran 

to compare anticipatory secondary control with conventional AGC and external PI control. 

Because of the longer forecast (5-minutes), it was beneficial to increase the prediction and 

control horizons of the MPC controller, so the forecast horizon for the controller was set 



 164 

to 120 seconds, while the control horizon was set to 60 seconds. Figure 4-45 and Figure 

4-46 show the frequency and net tie-line flow for Area 1 for various 𝛾 values using 

conventional AGC. Next, a set of anticipated values 𝛾 were tested with an actual linear 

ramp (where the actual 𝛾 = 1), with frequency and tie-line results shown in Figure 4-47 

and Figure 4-48, and responsive turbine power and ACE outputs shown in Appendix C VI. 

Table 4-14 shows the integrated ACE values (integrated over the simulation time of 600 

seconds) for anticipatory control assuming it anticipated 𝛾 = 0.33, 𝛾 = 1, or 𝛾 = 3 for all 

three scenarios of the actual 𝛾 = 0.33, 𝛾 = 1, or 𝛾 = 3, and compares them with external 

PI and conventional AGC. 

 

Figure 4-45 Frequency of Multi-area System under Conventional AGC for Varied 𝛾 
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Figure 4-46 Net tie-line Flow of Area 1 under Conventional AGC for Varied 𝛾 

 

Figure 4-47 Frequency and Set Points for MPC with Varied Predicted 𝛾, given 𝛾 = 1 
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Figure 4-48 Net Tie-line Flows for MPC with Varied Predicted 𝛾, Given 𝛾 = 1 

Table 4-14 Integrated ACE for Various Predicted vs. Actual Wind Ramps 

 Actual 𝛾 

 0.33 1 3 

Anticipated 𝛾 for MPC 

0.33 5791 5749 9103 

1 6222 3382 7165 

3 10409 4974 2811 

Conventional 21973 21697 21256 

External PI 18650 18657 18559 

 

Note that given an actual 𝛾, MPC produces a lower integrated ACE than other 

methods, even if the anticipated 𝛾 was the inverse of the actual 𝛾. That is, in every column 

of the table, the integrated ACE for MPC under any of the anticipated 𝛾 values is the lowest 

of all methods. In practice, keeping 𝛾 = 1 for MPC with the lack of any knowledge on the 

inter-forecast shape of the disturbance would work well, based on these results. 

As mentioned earlier, very strong assumptions about the shape of the wind power 

curve between the point forecasts were used, as readily available wind power output data 

is at a 5-minute or greater timescale, though secondary control operates on a minute and 
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sub-minute timescale. In addition to showing the performance of anticipatory secondary 

control under such assumptions, this simulation highlights the need for available data on a 

30-second-ahead or 1-minute-ahead basis to 1) test the performance of anticipatory 

secondary control under realistic conditions without assumptions on the behavior of 

renewable generation between 5-minute point forecasts, and 2) take advantage of the 

strengths of anticipatory control with a minute or less advance notice of a disturbance, as 

shown in prior simulations in this chapter. 

4.5. Conclusions on Anticipatory Secondary Control 

Anticipatory secondary control was compared with various forms of secondary 

control in both single-area and multi-area simulations in this work, using a power system 

model that was validated through simulation. Single area simulations showed the basic 

functions of MPC in a system, while multi-area simulations highlighted the importance of 

the weights in the objective function of its MPC controller, balancing deviations in 

frequency with deviations in net tie-line flow. In both the single-area and multi-area 

scenarios, errors in the forecast were introduced, which showed that MPC still was able to 

outperform traditional methods of secondary control with large forecast errors. Varying 

objective function weights in the MPC were shown to change the behavior of distributed 

MPC within a multi-area system, showing that a system with unbalanced objective function 

benefits heavily from inter-area communication. Integration of this controller would not 

require completely replacing the existing infrastructure, as it was designed as an add-on 

module that only manipulated the effective area frequency reference. In addition, the 

simulations in this section show advantages to using anticipatory control with a minute or 
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less notice of a disturbance, highlighting the benefits for available 30-second ahead or 

minute-ahead forecasts. Further work with this controller would involve the use of a more 

detailed power system model, in addition to examination of its performance with measured 

disturbances, as expanded upon in the next chapter.
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 CONCLUSIONS & FUTURE RESEARCH 

 

 

 

 

5.1. Conclusions 

This dissertation has presented work focused on characterization and improvements 

in short-term wind power forecasting along with the introduction of a new, anticipatory 

method of secondary control that can enhance power system operational performance. 

With increasing penetrations of wind energy, limiting the risk of integrating large amounts 

of stochastic generation is important from both an economic and reliability standpoint, and 

characterizing the extreme forecasting errors in expected generation is helpful in planning 

the future of the power system, covered in Chapter 2. Short-term forecasts are an integral 

part of power system operations with high amounts of wind energy, and so a novel metric 

that characterizes the amount of non-stationarity along with a proposed algorithm to find 

optimal training windows for statistical forecasting methods was presented in Chapter 3. 

An anticipatory secondary control scheme that makes use of prior knowledge of a major 

disturbance was proposed and tested on simulated power systems in Chapter 4. 

Because of the stochastic nature of renewable resources, thorough characterization 

of wind activity is necessary to maintain grid stability and reliability. Results from extreme 

wind power ramp characterization indicated that standard Gaussian assumptions about 

wind power ramps would not capture low probability, high impact events that would raise 
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problems with power system economics or reliability. The proper characterization of 

extreme wind ramp events using EVA allows for proper risk assessment in a wind farm, 

indicating that a power system is exposed to more risk than previously modeled from 

integration of a wind farm. In the event that persistence forecasts are used, for example, 

these extreme wind ramps represent actual forecasting error, which would be previously 

underrepresented. Quantifying these risks will spur more research interest in stochastic 

generation, as this model poses new questions about reliability and pricing concerns 

surrounding wind power generation. In addition, the work can be extended to model 

extreme, rare occurrences in the power system, providing a mechanism to quantify risk for 

low-probability events. 

Statistical forecasts, which are essential to power system operations in power 

systems with large amounts of wind energy, use a set of training data that is commonly 

determined through a purely heuristic approach. Also, wind power data is may be highly 

non-stationary, which may result in different optimal sets of training data over time. This 

work introduced the EDNS metric and showed that the proposed metric can quantify the 

degree of non-stationarity in a signal, which was previously not explicitly defined in time 

series wind power data analysis. An algorithm was also presented that used the EDNS to 

find the optimal window of training data, which was designed as a module for use in any 

statistical time series forecasting method. Use of the dynamic window algorithm with a 

statistical forecasting approach lowered the mean absolute error versus a carefully selected, 

static training window, given some highly non-stationary data. The introduction of the 

EDNS and an algorithm to determine optimal training windows in real time helps to 
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quantify the effects of the training window on short-term forecasts and provides a more 

rigorous method to determine a suitable training window. 

Large disturbances such as generation trip events or large ramps in renewable 

generation can aversely effect power systems, resulting in large ACE values over time. The 

creation and characterization of an anticipatory secondary control scheme showed that, for 

both single-area and multi-area power systems, frequency deviation metrics can be 

improved with anticipation of an event over the use of conventional AGC or other proposed 

methods of secondary control. In a multi-area system, it was seen that the performance of 

the distributed MPC controllers are highly dependent on the weights in the MPC objective 

function as well as the existence of inter-area communication. Inter-area communication 

was seen to be almost essential in scenarios where an anticipatory secondary controller 

would act to remedy a disturbance outside of its own area. As the anticipatory controller is 

designed to be added onto an existing AGC system, this work provides insight into an 

effective method of utilizing prior knowledge of an event to minimize frequency deviations 

using existing secondary control infrastructure. 

This dissertation provided insight and methods for improving the stability of the 

power grid with a large penetration of wind energy. Natural directions for future research 

will be presented in the next section. 

5.2. Future Research 

Future research for the work presented in the dissertation is divided into three 

sections, each following one of the chapters for extreme wind ramp characterization, the 

quantification of non-stationarity, as well as anticipatory secondary control. 
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Although a method for extreme wind ramp characterization has been shown, the 

impacts of this on operations or planning in a power system have not been investigated. 

Future research can include the construction of a new wind power output model based upon 

an EVA-characterization of historical wind power output data, and the differences it would 

ultimately make in forecasting studies or planning studies in some geographic region. This 

approach could be compared to the existing wind speed models as shown by NREL, which 

provide high-resolution wind speed and wind power output models across much of the 

United States [131].  

The quantification of non-stationarity with the EDNS uses the spectrum, arrived at 

through an empirical approach called empirical mode decomposition (EMD). However, 

recent work from N. Huang addressed some limitations of the EMD method with a 

proposed method, Holo-Hilbert spectral analysis [132]. Use of the new method to arrive at 

a more accurate spectrum of frequencies over time can provide a more accurate way of 

characterizing the non-stationarity of a signal, which would ultimately lead to more 

accurate optimal training windows in short-term wind power forecasting. Also, the 

algorithm that uses the EDNS may be improved, as for example, it only takes into account 

the most recent data. Empirical studies have shown that the use of seasonal data, cut into 

epochs, may show improved forecasting results [31]. For example, instead of using the 

most recent 48 hours, forecasting may be improved with the use of data from midnight to 

noon on the two most recent days, because of the cyclic behavior of wind. 

Future research in anticipatory secondary control may involve the use of more 

detailed power system models. Voltage was assumed to be at 1 pu throughout the system 

in this work, and a simplified model of a power system was used. Full models may be used 
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to study the numerical efficiency of the method, testing the viability of using anticipatory 

secondary control with the tradeoffs of controller performance and power system model 

complexity. Also, further work can include the application of the anticipatory secondary 

controller as a constantly working distributed MPC controller, versus one that is only used 

when a large disturbance is predicted. As an extension of the 5-minute ahead forecast 

simulations in this work, an MPC controller that is constantly fed load and renewable 

energy forecasts must be examined for its robustness to error in both forecasts and its 

tangible improvements in reducing the cost to operate the power system. For example, 

comparisons over a year of operation for an actual interconnection between conventional 

AGC and anticipatory secondary control would provide important insights into the costs 

and benefits of integrating anticipatory secondary control. 

Although the methods proposed in this dissertation are not immediately ready for 

implementation in the actual power system, further research should effectively quantify 

their value in improving power system operations. These methods support future 

innovations in wind power modeling, wind power forecasting, and power system controls 

in scenarios with a large amount of installed wind capacity, and these innovations would 

improve power system operational performance in the future power grid.  
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I. Training Windows with SVR 

A range of training window sizes were swept over the same wind farm power output 

data outlined in Section 3.1.1 using an SVR forecasting approach. The features of the SVR 

model were defined to be the 𝑝 = 4 past power output measurements, which corresponds 

to the results of the BIC method, and the label was defined to be the difference between 

the past and present power output. As a result, the matrix of training data was of dimension 

(𝑇∗ − 3) x 4, while the label vector was of dimension (𝑇∗ − 3) x 1 for the creation of an 

SVR model. A new SVR model was created at every 5-minute time step based on the most 

recent data of length 𝑇∗, which was contrasted with an SVR created at every 5-minute time 

step based on a static training window 𝑇𝑠𝑡
∗ , the optimal static training window. MATLAB 

9.0 was used for these simulations in conjunction with the LIBSVM library [104]. In this 

work, 𝐶 = max 𝑦 − min 𝑦 = 1 after data normalization, and a grid search is performed 

over 𝜀 = 0,1, … 5 and 𝛾 = 2−2, 2−1, … , 27. A 5-fold cross validation was performed at 

every time step to optimize the SVR parameters. See Section 3.2.3 for further details on 

the SVR forecasting model.  

A selected month within the AEMO data was used to generate Figure A-1, which 

shows that a minimum error can be achieved if the training window is selected 

appropriately for SVR. This is similar to Figure 3-1 and Figure 3-2, in which the effect of 

the training window length is shown on AR forecasting performance. 
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Figure A-1 MAE vs. Training Window Size for SVR, 1st Subset of Data 

II. Stopping Criteria for Sifting in IMF Construction 

Recall that the two criteria for defining an IMF are as follows: 1) the number of 

extrema and zero crossings must equal or differ at most by one and 2) at any point, the 

mean value of the envelope defined by the local maxima and the envelope defined by the 

local minima is zero. Implementing the check for the first criterion during the sifting 

process is straightforward and comes with no issues, but strictly enforcing the second 

criterion during sifting would result in a pure frequency modulated signal of constant 

amplitude. Thus, the amplitudes throughout the IMF, which carry information about the 

strength of an oscillation over time, would be erased. To ensure that the IMF components 

retain enough information on amplitude modulations, a stopping criterion for the sifting 

process was created. The criterion is a limit on the standard deviation, 𝑆𝐷, computed from 

two consecutive sifting results defined as 
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  𝑆𝐷 = ∑
|ℎ1,𝑘−1(𝑡)−ℎ1,𝑘(𝑡)|

2

ℎ1,𝑘−1(𝑡)
𝑇
𝑡=0 < 𝐿𝑠𝑑 ( A-1 ) 

where the limit 𝐿𝑠𝑑 is typically set between 0.2 and 0.3. 

Although the 𝑆𝐷-based stopping criterion worked, further improvements to the 

method were made by introducing a new approach that was meant to guarantee globally 

small fluctuations in the mean while taking into account locally large fluctuations [133]. 

This requires the definition of what is called the mode amplitude 𝑎(𝑡) ≔  
𝑒𝑚𝑎𝑥(𝑡)−𝑒𝑚𝑖𝑛(𝑡)

2
 

where 𝑒𝑚𝑎𝑥(𝑡) and  𝑒𝑚𝑖𝑛(𝑡) are the upper and lower envelopes of the signal, respectively. 

Then, the evaluation function is defined as 

 𝜎(𝑡) ≔ |
𝑚(𝑡)

𝑎(𝑡)
| ( A-2 ) 

where sifting continues until 𝜎(𝑡) < 𝜃1 for some fraction (1 − 𝛼) of the total duration and 

𝜎(𝑡) < 𝜃2 for the rest of the signal. This allows the sifting procedure to preserve some 

large variations that may exist for some percentage 𝜃1 of the time series. Typical values 

are 𝛼 = 0.05, 𝜃1 = 0.05, and 𝜃2 = 10𝜃1 = 0.5, which are the default values used 

throughout the entire study with the EDNS metric. 

III. Comments on the HHT Hilbert amplitude spectrum Output 

Notice that the Hilbert amplitude spectrum for the entire example signal is not 

‘correct’ in that it does not correctly identify the underlying, piecewise creation of the 

example time series, with the example time series and Hilbert amplitude spectrum shown 

again in Figure A-2 and Figure A-3 for the reader’s convenience. Though it shows the 

existence of a 1/20 Hz frequency during the first 200 seconds and variable frequencies 

through the last 200 seconds due to the random walk process, it fails to show the existence 
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of the 1/20 Hz frequency through the entire time series. In addition, the spectrum shows 

multiple low frequency components where there were none explicitly introduced in the 

creation of the signal. These errors are introduced because of the underlying assumption in 

the EMD process that the signal is composed entirely of oscillatory modes (the IMFs), and 

this piecewise example time series does not agree with this assumption. This is one of the 

fundamental downfalls of the EMD process, which is indeed still being improved upon by 

the original authors. However, this behavior is acceptable in determining the stationarity 

of a process, especially as the EDNS reaches high values when EMD is used to arrive at 

the Hilbert amplitude spectrum. 

 

Figure A-2 Example Time Series Signal, Repeated from Figure 3-5 for Convenience 



 191 

 

Figure A-3 Hilbert Amplitude Spectrum for the Example Signal, Repeated from Figure 

3-11 for Convenience 

IV. PDFs of EDNS for Different Training Windows 

The probability density functions (PDFs) for the EDNS values in the AEMO wind 

farm power output data for various lengths of training data are shown in Figure A-4, for a 

set epsilon of 27. The PDF spreads out over larger sections of data, which indicates that, 

for a set epsilon over a short period of time, the EDNS values are very similar. If using the 

dynamic window algorithm proposed in this work, the PDF results suggest that the optimal 

training windows only fluctuate very little within a small time frame, though optimal 

training windows may change substantially over a long time frame.  
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Figure A-4 PDFs of the EDNS Values for Different Sizes of Training Data Sets 
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APPENDIX B  

NOTES ON POWER SYSTEM CONTRUCTION 
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I. Transmission Line Impedance Calculations 

A simplified power system based off of the geography of Texas was created as 

shown in Figure B-1, with labeled bus numbers corresponding to the one-line diagram bus 

labels in Figure 4-4. Each transmission line was assumed to be a 500 kV line with a 

reactance of 0.5 Ω/mile. Each path between connected buses were assumed to contain two 

transmission line connections as shown in Figure B-1, except for the Lubbock-Dallas 

connection and the Sherman-Dallas connection. Approximate distances between pairs of 

buses and equivalent reactances between those buses are shown in Table B-1. Note that 

𝑍𝑏𝑎𝑠𝑒 =
𝑉𝑏𝑎𝑠𝑒

2

𝑆𝑏𝑎𝑠𝑒
=

(500 kV)2

25000 MW
= 10Ω, and that 𝑋𝑝𝑢 is the equivalent per-unit reactance of the 

path between a pair of buses. 

 

Figure B-1 The 6-bus System Based Loosely Off of the Geography of Texas 
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Table B-1 Approximate Distances Between Buses 

Bus 

Pair 
Distance (miles) 

Total Reactance 

per Line (Ω) 

Total Reactance 

of Path (Ω) 
𝑋𝑝𝑢 (System 

Base) 

1-3 100 50 50 5 

2-3 300 150 50 5 

3-4 200 100 50 5 

3-5 200 100 50 5 

4-5 200 100 50 5 

4-6 200 100 50 5 

5-6 200 100 50 5 

 

Thus, the value 𝐾 is calculated to be 𝐾 =
1

𝑋𝑝𝑢
= 0.2 pu for each path. 

II. Measured Rotor Speeds and Tie-line Flows in Single-Area System 

A frequency time series plot is shown in Figure B-1 and Figure B-2 for a 0.01 pu 

generation decrease at bus 2. Buses 1 and 2 show larger oscillations while the other buses 

show smaller oscillations about the same path. Figure B-3 shows the power across the paths 

between connected buses, showing the larger oscillations across the power lines between 

buses 1 & 2 and 2 & 3. 

  

Figure B-2 Frequencies at Every Bus after a 0.01 pu Disturbance at Bus 2 
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Figure B-3 Frequencies at Every Bus after a Disturbance at Bus 2 

 

Figure B-4 Power (pu) Across Transmission Line Paths in the System 
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III. Two-Area System Rotor Rotational Speeds 

For the two-area system in Section 4.3.2, a frequency time series plot showing 

frequency at all 12 buses throughout the two areas is shown in Figure B-5 and Figure B-6. 

This is in response to a sudden 250 MW (0.01 pu) generation decrease at bus 2 in area 1 at 

t = 25 seconds. Buses 1 and 2 of Area 1, in red and blue as denoted in Figure B-5, show 

larger oscillations as they are electrically closer to the generation decrease. 

 

Figure B-5 Frequency Plot of the 2-area System in Response to a Sudden Generation 

Decrease 
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Figure B-6 A Close-up of the Two-area Frequency Time Series Immediately after the 

Generation Decrease 

IV. Effects of Frequency Bias Values in Secondary Control 

The value of the frequency bias term B can change the behavior of secondary 

control in a system. Figure B-7 shows the calculated ACE values for the two-area system 

with AGC turned off when a 250 MW load increase is seen at bus 2 in area 1 using the 

theoretical optimal value of B = 354.2
MW

0.1 Hz
. Notice that area 1’s ACE shows that area 1 

shows a 250 MW generation deficiency, while area 2 correctly shows that there is no 

increase in generation needed at steady state. With other values of B, an area’s ACE would 

no longer represent the true MW deficiency in that area in the steady state. Figure B-8 

shows the ACE values with B = 250
MW

0.1 Hz
 and B = 450

MW

0.1 Hz
, where the ACE values in 

either area do not reflect the true MW deficiency in the area. 
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Figure B-7 ACE values in Both Areas with B = 354.2
MW

0.1 Hz
 

 

Figure B-8 ACE Values in Both Areas with B = 250
MW

0.1 Hz
 and 450

MW

0.1 Hz
 

Frequency and tie-line results are shown in Figure B-9 and Figure B-10 for values 

of frequency deviation and tie-line gains. To allow for comparisons of these gains, note 

that the integral controller has a gain of 𝐾𝑖, and so acts on the value 𝐾𝑖(Δ𝑃𝑡𝑖𝑒 −
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10BΔ𝑓𝑠𝑦𝑠) = 𝐾𝑖Δ𝑃𝑡𝑖𝑒 − 10B𝐾𝑖Δ𝑓𝑠𝑦𝑠. To show the system’s sensitivity to the value of 

frequency bias, a range of B values will be tested keeping 𝐾𝑖 constant, and to show 

sensitivity to tie-line gains, 𝐾𝑖 will be swept while keeping 10B𝐾𝑖 constant. 

Various frequency deviation gains are shown in Figure B-9 and Figure B-10 for 

values of B = 25, 100, 354.2, 1000, 4500 with a constant integral gain of 𝐾𝑖 = 0.0015. 

Various tie-line gains are shown in Figure B-11 and Figure B-12 for values of 𝐾𝑖 =

0.00015, 0.001, 0.0015, 0.002, 0.01 with a constant value 10B𝐾𝑖 = 10 ∗ 354.2 ∗

0.0015 = 5.313. 

As expected, the frequency is not very sensitive to changes in the effective tie-line 

deviation gain, and the tie-line flow is not very sensitive to changes in the frequency bias. 

However, because there was gain placed on both Δ𝑃𝑡𝑖𝑒 and Δ𝑓𝑠𝑦𝑠, both the tie-line flow and 

system frequency eventually returns to nominal. This shows that turbine outputs in both 

areas fall to their correct final outputs (where area 1 turbines pick up all of the load 

increase). 

 

Figure B-9 Frequencies for Various Values of B 
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Figure B-10 Tie-line Flow Out of Area 1 for Various Values of B 

 

Figure B-11 Frequency for a Sweep of Effective Tie-line Gain 
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Figure B-12 Tie-line Flow Out of Area 1 for a Sweep of Effective Tie-line Gain 

Plots for a sweep of integral gain in the AGC controller, holding the frequency bias 

value constant, are shown in Figure B-13 and Figure B-14. 

 

Figure B-13 Frequency for a Sweep of Integral Gain in the AGC Controller 
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Figure B-14 Tie-line Flows for a Sweep of Integral Gain in the AGC Controller 

V. Effects of Noise Covariance Values in State Estimation 

To study the effect of changing the noise covariance values on the performance of 

the MPC controller, a single-area MPC controller was used with the simulation parameters 

shown in Section 4.4.2(ii), which involve a sudden drop in generation at bus 2 in the single-

area power system model. In this simulation, a 0.01 pu drop is expected, while an actual 

0.02 pu drop occurs. Figure B-15 shows the state estimate over time for the disturbance 

forecast error 𝜀𝑑, for varying values of the noise parameter 𝜎𝑑 in the 𝑄𝑘𝑎𝑙 noise covariance 

matrix, while the corresponding system frequencies are shown in Figure B-16. Recall that 

the noise parameter 𝜎𝑑 is a user-defined input that changes the Kalman gains, such that a 

larger noise parameter results in a greater weight placed on measurements instead of the 

process model. Because the unmeasured disturbance is estimated with much greater 

accuracy with large noise parameter, the frequency recovers quicker when a large noise 

parameter is used. 
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Figure B-15 Error Estimate for the Disturbance Forecast for Varying Modeled Noise 

Values 

 

Figure B-16 Error Estimate for the Disturbance Forecast for Varying Modeled Noise 

Values 
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VI. Discussion on Determining Balanced Weights of 𝑸𝒇 and 𝑸𝒑𝒕𝒊𝒆 

As shown in the multi-area Chapter 4 simulations, the MPC objective function 

weights 𝑄𝑓 and 𝑄𝑝𝑡𝑖𝑒 have a large influence on the performance of anticipatory secondary 

control, and especially determine the importance of inter-area communication of the 

frequency set points and forecasted disturbances. It is shown in Section 4.4.3 that the 

balanced weights of 𝑄𝑓 = 0.75 and 𝑄𝑝𝑡𝑖𝑒 = 3.5 result in an MPC controller that responds 

effectively to disturbances within its own area and responds minimally to disturbances 

outside of the area. This weighting was arrived at heuristically, by setting an appropriate 

value of 𝑄𝑓, given static 𝑆𝑓 and 𝑅𝑓 weights, and then sweeping over 𝑄𝑝𝑡𝑖𝑒 values and 

examining the frequency set point movements. 

The dependence of the ratio 𝑄𝑓/𝑄𝑝𝑡𝑖𝑒 to the controller performance may be 

compared to the dependence of the frequency bias term B to conventional AGC’s integral 

control. With conventional AGC, an area should not respond significantly to disturbances 

outside of its own area, which is ensured by weighting the deviation in frequency Δ𝑓 term 

with B such that it matches the deviation in tie-line flow Δ𝑃𝑡𝑖𝑒 for a disturbance outside of 

the area. This is reviewed in Appendix B IV, and the calculation of B is only dependent on 

the area’s 𝐷 and 𝑅 values. However, a theoretical value for the ratio 𝑄𝑓/𝑄𝑝𝑡𝑖𝑒 that results 

in an anticipatory controller that only largely reacts to disturbances within its own area may 

be dependent on many factors within the system, and therefore the balanced ratio of 

𝑄𝑓/𝑄𝑝𝑡𝑖𝑒 may be most effectively calculated heuristically by sweeping over various values. 
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To illustrate the complexity of calculating a theoretical balanced 𝑄𝑓/𝑄𝑝𝑡𝑖𝑒, recall 

the MPC objective function  

 min
𝑓𝑠𝑒𝑡1…𝑓𝑠𝑒𝑡𝑚

𝐽 = (∑ 𝑄𝑓(Δ𝑓𝑠𝑦𝑠)
2𝑝

𝑖=1 + 𝑄𝑝𝑡𝑖𝑒(Δ𝑃𝑡𝑖𝑒
𝑚 )2 ) ( B-1 ) 

    + (∑ 𝑅𝑓(𝑓𝑠𝑒𝑡)2𝑚
𝑗=1 + 𝑆𝑓(𝑓𝑠̇𝑒𝑡)

2
) 

which shows that 𝑓𝑠𝑒𝑡 is manipulated such that the function 𝐽 is minimized. The objective 

of creating a balanced ratio of 𝑄𝑓/𝑄𝑝𝑡𝑖𝑒 involves picking 𝑄𝑓/𝑄𝑝𝑡𝑖𝑒 such that 𝑓𝑠𝑒𝑡 = 0 

throughout the control horizon 𝑚 in response to frequency and tie-line movements caused 

by a disturbance outside of the area. The integrated of tie-line flow deviations and the 

integrated system frequency deviation must be minimized with 𝑓𝑠𝑒𝑡 = 0, which depends 

on the rate at which the tie-line flow returns to nominal and the rate at which the frequency 

returns to nominal. In addition, the behavior of the tie-line flow and frequency is affected 

throughout time by MPC controller frequency set point movements in other areas. Lastly, 

because MPC calculates the values 𝑓𝑠𝑒𝑡1
… 𝑓𝑠𝑒𝑡𝑚

 at every time step based on updated 

measurements, an optimal 𝑓𝑠𝑒𝑡1
= 0 must be ensured for every step in the simulation, as at 

every time step, only 𝑓𝑠𝑒𝑡1
 is implemented by the MPC controller. 

 However, the selection of a balanced 𝑄𝑝𝑡𝑖𝑒 value, given 𝑄𝑓 = 0.75, can be 

examined and shown to vary with the effective system droop value 𝑅 with various sweeps. 

Figure B-17 and Figure B-18 show the MPC frequency set point values in Area 1 without 

inter-area communication, for a 0.01 pu step loss in generation in Area 2. To select a 

controller that acts minimally to disturbances outside the area, 𝑄𝑝𝑡𝑖𝑒 = 2.7 may work for a 

droop value of 0.03 for the 30% of responsive generation in the system while 𝑄𝑝𝑡𝑖𝑒 = 3.5 

works well for a droop value of 0.04. 
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Figure B-17 Frequency set point of Area 1 with a disturbance in Area 2 with 𝑅 = 0.03 

 

 

Figure B-18 Frequency set point of Area 1 with a disturbance in Area 2 with 𝑅 = 0.04 
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APPENDIX C  

SUPPLEMENTAL PLOTS FOR POWER SYSTEM SIMULATIONS 
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I. Supplementary Plots with White Noise in Load with MPC 

MPC is known for its immunity to white noise, as the estimator within it (which 

usually uses some variant of the Kalman filter) can prevent excessive controller action in 

the presence of white noise. This is an important consideration for any control systems to 

placed in the actual power system, as the load is constantly fluctuating. 

Figure C-1 and Figure C-2 compares the frequency  and ACE results of a single-

area system under MPC control and conventional AGC, where a zero-mean white-noise 

signal of a 0.0006 system pu (15 MW) variance was added to the load at every bus in the 

system, and the same white noise is applied to both control systems. MPC still outperforms 

conventional AGC, and the noise does not result in erratic movements of the MPC 

frequency set point.  

 

Figure C-1 Frequency in the Presence of White Noise with MPC and Conventional AGC 
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Figure C-2 ACE in the Presence of White Noise with MPC and Conventional AGC 

II. Supplementary Plots for Preplanned Action 

Responsive turbine power outputs and ACE plots are shown in this section for 

various preplanned, manual actions for the frequency set point paths shown in Figure 4-29. 

The plots for aggressive action are shown in Figure C-3 and Figure C-4, the plots for 

conservative action are shown in Figure C-5 and Figure C-6, and the plots for near optimal 

action are shown in Figure C-7 and Figure C-8. 
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Figure C-3 Responsive Turbine Output of System with Preplanned Aggressive Action 

 

Figure C-4 ACE of System under Preplanned Aggressive Action 
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Figure C-5 Responsive Turbine Output of System with Preplanned Conservative Action 

 

Figure C-6 ACE of System under Preplanned Conservative Action 
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Figure C-7 Responsive Turbine Output of System with Preplanned Near Optimal Action 

 

Figure C-8 ACE of System under Preplanned Near Optimal Action 

III. Supplementary Plots for Single-area Disturbance with Forecast Errors 

For the disturbances shown in Figure 4-30 which have errors in the magnitude 

estimate of the forecasted disturbance, plots for the responsive turbine power output and 

ACE are shown in Figure C-9, Figure C-10, Figure C-11, and Figure C-12. Timing error 

plots are shown in Figure C-13, Figure C-14, Figure C-15, and Figure C-16. 
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Figure C-9 Turbine Output of 1.5x Magnitude Error (Actual Drop of 0.015 pu) 

 

Figure C-10 ACE of 1.5x Magnitude Error (Actual Drop of 0.015 pu) 



 215 

 

Figure C-11 Turbine Power of 0.5x Magnitude Error (Actual Drop of 0.005 pu) 

 

Figure C-12 ACE of 0.5x Magnitude Error (Actual Drop of 0.005 pu) 
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Figure C-13 Turbine Power of a System with a Timing Error in the Forecast, where the 

Disturbance was 15 Seconds Before the Forecasted Time 

 

Figure C-14 ACE of a System with a Timing Error in the Forecast, where the Disturbance 

was 15 Seconds Before the Forecasted Time 
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Figure C-15 Turbine Power Output of a System with a Timing Error in the Forecast, 

where the Disturbance was 15 seconds after the Forecasted Time 

 

Figure C-16 ACE of a System with a Timing Error in the Forecast, where the Disturbance 

was 15 Seconds after the Forecasted Time 

IV. Supplementary Plots for Sweeps over Percent Responsive Generation 

In a single-area system, the amount of responsive generation in the system (both 

for primary response and secondary response) were swept over a range of 10% to 30%, as 
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seen in Figure 4-32. Responsive generation power output and the ACE of the system are 

plotted in Figure C-17 and Figure C-18. 

 

Figure C-17 Responsive Turbine Output of Responsive Generation Percentage Sweep 

 

Figure C-18 ACE of Responsive Generation Percentage Sweep 
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V. Supplementary Plots for Multi-area Simulations 

More results from the simulations in Section 4.4.3(i) are shown here. Plots of the 

responsive turbine power output and ACE for a multi-area system with a perfect forecast, 

with balanced weights in the objective function, are shown in Figure C-19, Figure C-20, 

and Figure C-21. 

 
Figure C-19 Turbine Power Output of Multi-area MPC with Balanced Objective Function 

Weights 

 
Figure C-20 ACE of Multi-area MPC with Balanced Objective Function Weights, Area 1 
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Figure C-21 ACE of Multi-area MPC with Balanced Objective Function Weights, Area 2 

In addition, turbine output and ACE plots for a heavily weighted frequency 

deviation, with 𝑄𝑓 = 1.5, are shown in Figure C-22, Figure C-23, and Figure C-24. 

 
Figure C-22 Turbine Power of Multi-area MPC, with 𝑄𝑓 = 1.5 
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Figure C-23 ACE of Multi-area MPC, with 𝑄𝑓 = 1.5 in Area 1 

 

Figure C-24 ACE of Multi-area MPC, with 𝑄𝑓 = 1.5 in Area 2 

Turbine output and ACE plots for a heavily weighted frequency deviation, with 

𝑄𝑝𝑡𝑖𝑒 = 7, is shown in Figure C-25, Figure C-26, and Figure C-27. 
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Figure C-25 Responsive Turbine Outputs of Multi-area MPC, with 𝑄𝑝𝑡𝑖𝑒 = 7 

 
Figure C-26 ACE of Multi-area MPC, with 𝑄𝑝𝑡𝑖𝑒 = 7 in Area 1 
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 Figure C-27 ACE of Multi-area MPC, with 𝑄𝑝𝑡𝑖𝑒 = 7 in Area 2  

VI. Supplementary Plots for 5-minute Ahead Forecast 

This section presents some more results on the 5-minute ahead forecast simulations 

in Section 4.4.4. Conventional AGC turbine power output and ACE plots are shown in 

Figure C-28, Figure C-29, and Figure C-30, and comparisons between turbine outputs and 

ACE for different MPC paths are shown in Figure C-31, Figure C-32, and Figure C-33. 

Average frequency and tie-line deviation metrics are shown in Table C-1 and Table C-2. 



 224 

 

Figure C-28 Turbine Outputs of System under Conventional Control with Varied 𝛾 

 

Figure C-29 ACE of System under Conventional Control with Varied 𝛾 for Area 1 
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Figure C-30 ACE of System under Conventional Control with Varied 𝛾 for Area 2 and 3 

 

Figure C-31 Responsive Turbine Output under MPC Control with Varied 𝛾 
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Figure C-32 ACE under MPC Control with Varied 𝛾 for Area 1 

 

Figure C-33 ACE under MPC Control with Varied 𝛾 for Area 2 and 3 
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Table C-1 Average Frequency Deviation (mHz) for Varying Predicted vs. Actual Wind 

Ramps 

 Actual 𝛾 

 0.33 1 3 

Anticipated 𝛾 (MPC) 

0.33 0.878 0.882 0.878 

1 0.939 0.501 1.095 

3 1.582 0.754 0.415 

Conventional 3.441 3.393 3.319 

PI 2.135 2.110 2.114 

 

Table C-2 Average Tie-line Deviation (MW) for Varying Predicted vs. Actual Wind 

Ramps 

 Actual 𝛾 

 0.33 1 3 

Anticipated 𝛾 (MPC) 

0.33 6.5 6.5 10.4 

1 7.1 3.9 8.1 

3 11.8 5.7 3.2 

Conventional 24.4 24.1 23.7 

PI 24.4 24.1 23.7 
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APPENDIX D  

POWER SYSTEM STATE-SPACE MATRICES  
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State-space matrices for the multi-area power system with communication is shown 

below, in terms of the variables in Section 4.4.1. The matrices are divided into multiple 

sections to fit the entire matrix into the document. 

A MATRIX: 

 𝑃𝑡𝑖𝑒
02 𝑃𝑡𝑖𝑒

01 𝑃𝑡𝑖𝑒
12  Δ𝜔2 𝑉𝑝

2 𝑃𝑚
2  𝑃𝑡𝑜𝑡

2  Δ𝜔1 

𝑃𝑡𝑖𝑒
02 0 0 0 -9.425 0 0 0 9.425 

𝑃𝑡𝑖𝑒
01 0 0 0 0 0 0 0 9.425 

𝑃𝑡𝑖𝑒
12  0 0 0 -9.425 0 0 0 0 

Δ𝜔2 1 0 1 -0.125 0.18 0.021 0 0 

𝑉𝑝
2 0 0 0 -3.125 -2 0 0.001 0 

𝑃𝑚
2  0 0 0 0 2 -0.1 0 0 

𝑃𝑡𝑜𝑡
2  37.5 0 37.5 -39.844 0 0 0 0 

Δ𝜔1 -1 -1 0 0 0 0 0 -0.125 

𝑉𝑝
1 0 0 0 0 0 0 0 -3.125 

𝑃𝑚
1  0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
1  -37.5 -37.5 0 0 0 0 0 -39.844 

Δ𝜔6
0 0 1 -1 0 0 0 0 0 

𝑃𝑡𝑖𝑒
𝑚  0 -1 1 0 0 0 0 0 

𝑉𝑝,1
0  0 0 0 0 0 0 0 0 

𝑃𝑚,1
0  0 0 0 0 0 0 0 0 

𝑉𝑝,4
0  0 0 0 0 0 0 0 0 

𝑃𝑚,4
0  0 0 0 0 0 0 0 0 

𝑉𝑝,5
0  0 0 0 0 0 0 0 0 

𝑃𝑚,5
0  0 0 0 0 0 0 0 0 

𝑉𝑝,6
0  0 0 0 0 0 0 0 0 

𝑃𝑚,6
0  0 0 0 0 0 0 0 0 

eACE 0 25000 -25000 0 0 0 0 0 

Δ𝜔1
0 0 0 0 0 0 0 0 0 

Δ𝜔2
0 0 0 0 0 0 0 0 0 

Δ𝜔3
0 0 0 0 0 0 0 0 0 

Δ𝜔4
0 0 0 0 0 0 0 0 0 

Δ𝜔5
0 0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
0  0 37.5 -37.5 0 0 0 0 0 

𝑃𝑡𝑖𝑒−13
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−32
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−35
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−34
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−45
0  0 0 0 0 0 0 0 0 
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𝑃𝑡𝑖𝑒−46
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−56
0  0 0 0 0 0 0 0 0 

𝜀𝑑 0 0 0 0 0 0 0 0 

𝜀𝑝𝑡𝑖𝑒 0 0 0 0 0 0 0 0 

 

 𝑉𝑝
1 𝑃𝑚

1  𝑃𝑡𝑜𝑡
1  Δ𝜔6

0 𝑃𝑡𝑖𝑒
𝑚  𝑉𝑝,1

0  𝑃𝑚,1
0  𝑉𝑝,4

0  

𝑃𝑡𝑖𝑒
02 0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒
01 0 0 0 -56.55 0 0 0 0 

𝑃𝑡𝑖𝑒
12  0 0 0 56.55 0 0 0 0 

Δ𝜔2 0 0 0 0 0 0 0 0 

𝑉𝑝
2 0 0 0 0 0 0 0 0 

𝑃𝑚
2  0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
2  0 0 0 0 0 0 0 0 

Δ𝜔1 0.18 0.021 0 0 0 0 0 0 

𝑉𝑝
1 -2 0 0.001 0 0 0 0 0 

𝑃𝑚
1  2 -0.1 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
1  0 0 0 0 0 0 0 0 

Δ𝜔6
0 0 0 0 -0.125 0 0 0 0 

𝑃𝑡𝑖𝑒
𝑚  0 0 0 0 -0.62832 0 0 0 

𝑉𝑝,1
0  0 0 0 0 0 -2 0 0 

𝑃𝑚,1
0  0 0 0 0 0 2 -0.1 0 

𝑉𝑝,4
0  0 0 0 0 0 0 0 -2 

𝑃𝑚,4
0  0 0 0 0 0 0 0 2 

𝑉𝑝,5
0  0 0 0 0 0 0 0 0 

𝑃𝑚,5
0  0 0 0 0 0 0 0 0 

𝑉𝑝,6
0  0 0 0 -18.75 0 0 0 0 

𝑃𝑚,6
0  0 0 0 0 0 0 0 0 

eACE 0 0 0 -1.59E+05 0 0 0 0 

Δ𝜔1
0 0 0 0 0 0 0.0216 0.00252 0 

Δ𝜔2
0 0 0 0 0 0 0 0 0 

Δ𝜔3
0 0 0 0 0 0 0 0 0 

Δ𝜔4
0 0 0 0 0 0 0 0 0.036 

Δ𝜔5
0 0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
0  0 0 0 -239.06 0 0 0 0 

𝑃𝑡𝑖𝑒−13
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−32
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−35
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−34
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−45
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−46
0  0 0 0 -56.55 0 0 0 0 
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𝑃𝑡𝑖𝑒−56
0  0 0 0 -56.55 0 0 0 0 

𝜀𝑑 0 0 0 0 0 0 0 0 

𝜀𝑝𝑡𝑖𝑒 0 0 0 0 0 0 0 0 

 

 𝑃𝑚,4
0  𝑉𝑝,5

0  𝑃𝑚,5
0  𝑉𝑝,6

0  𝑃𝑚,6
0  eACE Δ𝜔1

0 Δ𝜔2
0 

𝑃𝑡𝑖𝑒
02 0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒
01 0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒
12  0 0 0 0 0 0 0 0 

Δ𝜔2 0 0 0 0 0 0 0 0 

𝑉𝑝
2 0 0 0 0 0 0 0 0 

𝑃𝑚
2  0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
2  0 0 0 0 0 0 0 0 

Δ𝜔1 0 0 0 0 0 0 0 0 

𝑉𝑝
1 0 0 0 0 0 0 0 0 

𝑃𝑚
1  0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
1  0 0 0 0 0 0 0 0 

Δ𝜔6
0 0 0 0 0.0696 0.00812 0 0 0 

𝑃𝑡𝑖𝑒
𝑚  0 0 0 0 0 0 0 0 

𝑉𝑝,1
0  0 0 0 0 0 0 -18.75 0 

𝑃𝑚,1
0  0 0 0 0 0 0 0 0 

𝑉𝑝,4
0  0 0 0 0 0 0 0 0 

𝑃𝑚,4
0  -0.1 0 0 0 0 0 0 0 

𝑉𝑝,5
0  0 -2 0 0 0 0 0 0 

𝑃𝑚,5
0  0 2 -0.1 0 0 0 0 0 

𝑉𝑝,6
0  0 0 0 -2 0 0 0 0 

𝑃𝑚,6
0  0 0 0 2 -0.1 0 0 0 

eACE 0 0 0 0 0 -0.62832 0 0 

Δ𝜔1
0 0 0 0 0 0 0 -0.125 0 

Δ𝜔2
0 0 0 0 0 0 0 0 -0.125 

Δ𝜔3
0 0 0 0 0 0 0 0 0 

Δ𝜔4
0 0.0042 0 0 0 0 0 0 0 

Δ𝜔5
0 0 0.0528 0.00616 0 0 0 0 0 

𝑃𝑡𝑜𝑡
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−13
0  0 0 0 0 0 0 56.55 0 

𝑃𝑡𝑖𝑒−32
0  0 0 0 0 0 0 0 -56.55 

𝑃𝑡𝑖𝑒−35
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−34
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−45
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−46
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−56
0  0 0 0 0 0 0 0 0 
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𝜀𝑑 0 0 0 0 0 0 0 0 

𝜀𝑝𝑡𝑖𝑒 0 0 0 0 0 0 0 0 

 

 Δ𝜔3
0 Δ𝜔4

0 Δ𝜔5
0 𝑃𝑡𝑜𝑡

0  𝑃𝑡𝑖𝑒−13
0  𝑃𝑡𝑖𝑒−32

0  𝑃𝑡𝑖𝑒−35
0  𝑃𝑡𝑖𝑒−34

0  

𝑃𝑡𝑖𝑒
02 0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒
01 0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒
12  0 0 0 0 0 0 0 0 

Δ𝜔2 0 0 0 0 0 0 0 0 

𝑉𝑝
2 0 0 0 0 0 0 0 0 

𝑃𝑚
2  0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
2  0 0 0 0 0 0 0 0 

Δ𝜔1 0 0 0 0 0 0 0 0 

𝑉𝑝
1 0 0 0 0 0 0 0 0 

𝑃𝑚
1  0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
1  0 0 0 0 0 0 0 0 

Δ𝜔6
0 0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒
𝑚  0 0 0 0 0 0 0 0 

𝑉𝑝,1
0  0 0 0 0.001 0 0 0 0 

𝑃𝑚,1
0  0 0 0 0 0 0 0 0 

𝑉𝑝,4
0  0 -18.75 0 0.001 0 0 0 0 

𝑃𝑚,4
0  0 0 0 0 0 0 0 0 

𝑉𝑝,5
0  0 0 -18.75 0.001 0 0 0 0 

𝑃𝑚,5
0  0 0 0 0 0 0 0 0 

𝑉𝑝,6
0  0 0 0 0.001 0 0 0 0 

𝑃𝑚,6
0  0 0 0 0 0 0 0 0 

eACE 0 0 0 0 0 0 0 0 

Δ𝜔1
0 0 0 0 0 -1 0 0 0 

Δ𝜔2
0 0 0 0 0 0 1 0 0 

Δ𝜔3
0 -0.125 0 0 0 1 -1 -1 -1 

Δ𝜔4
0 0 -0.125 0 0 0 0 0 1 

Δ𝜔5
0 0 0 -0.125 0 0 0 1 0 

𝑃𝑡𝑜𝑡
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−13
0  -56.55 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−32
0  56.55 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−35
0  56.55 0 -56.55 0 0 0 0 0 

𝑃𝑡𝑖𝑒−34
0  56.55 -56.55 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−45
0  0 56.55 -56.55 0 0 0 0 0 

𝑃𝑡𝑖𝑒−46
0  0 56.55 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−56
0  0 0 56.55 0 0 0 0 0 

𝜀𝑑 0 0 0 0 0 0 0 0 
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𝜀𝑝𝑡𝑖𝑒 0 0 0 0 0 0 0 0 

 

 𝑃𝑡𝑖𝑒−45
0  𝑃𝑡𝑖𝑒−46

0  𝑃𝑡𝑖𝑒−56
0  𝜀𝑑 𝜀𝑝𝑡𝑖𝑒 

𝑃𝑡𝑖𝑒
02 0 0 0 0 0 

𝑃𝑡𝑖𝑒
01 0 0 0 0 0 

𝑃𝑡𝑖𝑒
12  0 0 0 0 0 

Δ𝜔2 0 0 0 0 0 

𝑉𝑝
2 0 0 0 0 0 

𝑃𝑚
2  0 0 0 0 0 

𝑃𝑡𝑜𝑡
2  0 0 0 0 0 

Δ𝜔1 0 0 0 0 0 

𝑉𝑝
1 0 0 0 0 0 

𝑃𝑚
1  0 0 0 0 0 

𝑃𝑡𝑜𝑡
1  0 0 0 0 0 

Δ𝜔6
0 0 1 1 0 -1 

𝑃𝑡𝑖𝑒
𝑚  0 0 0 0 1 

𝑉𝑝,1
0  0 0 0 0 0 

𝑃𝑚,1
0  0 0 0 0 0 

𝑉𝑝,4
0  0 0 0 0 0 

𝑃𝑚,4
0  0 0 0 0 0 

𝑉𝑝,5
0  0 0 0 0 0 

𝑃𝑚,5
0  0 0 0 0 0 

𝑉𝑝,6
0  0 0 0 0 0 

𝑃𝑚,6
0  0 0 0 0 0 

eACE 0 0 0 0 -25000 

Δ𝜔1
0 0 0 0 0 0 

Δ𝜔2
0 0 0 0 1 0 

Δ𝜔3
0 0 0 0 0 0 

Δ𝜔4
0 -1 -1 0 0 0 

Δ𝜔5
0 1 0 -1 0 0 

𝑃𝑡𝑜𝑡
0  0 0 0 0 -37.5 

𝑃𝑡𝑖𝑒−13
0  0 0 0 0 0 

𝑃𝑡𝑖𝑒−32
0  0 0 0 0 0 

𝑃𝑡𝑖𝑒−35
0  0 0 0 0 0 

𝑃𝑡𝑖𝑒−34
0  0 0 0 0 0 

𝑃𝑡𝑖𝑒−45
0  0 0 0 0 0 

𝑃𝑡𝑖𝑒−46
0  0 0 0 0 0 

𝑃𝑡𝑖𝑒−56
0  0 0 0 0 0 

𝜀𝑑 0 0 0 1 0 

𝜀𝑝𝑡𝑖𝑒 0 0 0 0 1 
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B MATRIX: 

 𝑓𝑠𝑒𝑡 𝑤𝑝𝑡𝑖𝑒 𝑑̂ 𝑤𝑑 𝑑̂2 𝑑̂1 𝑓𝑠𝑒𝑡
2  

𝑃𝑡𝑖𝑒
02 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒
01 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒
12  0 0 0 0 0 0 0 

Δ𝜔2 0 0 0 0 0 1 0 

𝑉𝑝
2 0 0 0 0 0 0 0 

𝑃𝑚
2  0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
2  0 0 0 0 0 0 0 

Δ𝜔1 0 0 0 0 1 0 0 

𝑉𝑝
1 0 0 0 0 0 0 0 

𝑃𝑚
1  0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
1  0 0 0 0 0 0 5.3125 

Δ𝜔6
0 0 -1 0 0 0 0 0 

𝑃𝑡𝑖𝑒
𝑚  0 1 0 0 0 0 0 

𝑉𝑝,1
0  0 0 0 0 0 0 0 

𝑃𝑚,1
0  0 0 0 0 0 0 0 

𝑉𝑝,4
0  0 0 0 0 0 0 0 

𝑃𝑚,4
0  0 0 0 0 0 0 0 

𝑉𝑝,5
0  0 0 0 0 0 0 0 

𝑃𝑚,5
0  0 0 0 0 0 0 0 

𝑉𝑝,6
0  0 0 0 0 0 0 0 

𝑃𝑚,6
0  0 0 0 0 0 0 0 

eACE 3541.7 -25000 0 0 0 0 0 

Δ𝜔1
0 0 0 0 0 0 0 0 

Δ𝜔2
0 0 0 1 1 0 0 0 

Δ𝜔3
0 0 0 0 0 0 0 0 

Δ𝜔4
0 0 0 0 0 0 0 0 

Δ𝜔5
0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
0  5.3125 -37.5 0 0 0 0 0 

𝑃𝑡𝑖𝑒−13
0  0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−32
0  0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−35
0  0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−34
0  0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−45
0  0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−46
0  0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−56
0  0 0 0 0 0 0 0 

𝜀𝑑 0 0 0 0 0 0 0 

𝜀𝑝𝑡𝑖𝑒 0 0 0 0 0 0 0 
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 𝑓𝑠𝑒𝑡
1  

𝑃𝑡𝑖𝑒
02 0 

𝑃𝑡𝑖𝑒
01 0 

𝑃𝑡𝑖𝑒
12  0 

Δ𝜔2 0 

𝑉𝑝
2 0 

𝑃𝑚
2  0 

𝑃𝑡𝑜𝑡
2  5.3125 

Δ𝜔1 0 

𝑉𝑝
1 0 

𝑃𝑚
1  0 

𝑃𝑡𝑜𝑡
1  0 

Δ𝜔6
0 0 

𝑃𝑡𝑖𝑒
𝑚  0 

𝑉𝑝,1
0  0 

𝑃𝑚,1
0  0 

𝑉𝑝,4
0  0 

𝑃𝑚,4
0  0 

𝑉𝑝,5
0  0 

𝑃𝑚,5
0  0 

𝑉𝑝,6
0  0 

𝑃𝑚,6
0  0 

eACE 0 

Δ𝜔1
0 0 

Δ𝜔2
0 0 

Δ𝜔3
0 0 

Δ𝜔4
0 0 

Δ𝜔5
0 0 

𝑃𝑡𝑜𝑡
0  0 

𝑃𝑡𝑖𝑒−13
0  0 

𝑃𝑡𝑖𝑒−32
0  0 

𝑃𝑡𝑖𝑒−35
0  0 

𝑃𝑡𝑖𝑒−34
0  0 

𝑃𝑡𝑖𝑒−45
0  0 

𝑃𝑡𝑖𝑒−46
0  0 

𝑃𝑡𝑖𝑒−56
0  0 

𝜀𝑑 0 

𝜀𝑝𝑡𝑖𝑒 0 
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C MATRIX (transposed, for clarity): 

 Δ𝑓𝑠𝑦𝑠 𝑃𝑡𝑢𝑟𝑏
1  𝑃𝑡𝑢𝑟𝑏

2  𝑃𝑡𝑢𝑟𝑏
4  𝑃𝑡𝑢𝑟𝑏

5  𝑃𝑡𝑢𝑟𝑏
6  Δ𝑝𝑡𝑖𝑒 eACE 

𝑃𝑡𝑖𝑒
02 0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒
01 0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒
12  0 0 0 0 0 0 0 0 

Δ𝜔2 0 0 0 0 0 0 0 0 

𝑉𝑝
2 0 0 0 0 0 0 0 0 

𝑃𝑚
2  0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
2  0 0 0 0 0 0 0 0 

Δ𝜔1 0 0 0 0 0 0 0 0 

𝑉𝑝
1 0 0 0 0 0 0 0 0 

𝑃𝑚
1  0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
1  0 0 0 0 0 0 0 0 

Δ𝜔6
0 45 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒
𝑚  0 0 0 0 0 0 0.62832 0 

𝑉𝑝,1
0  0 0.0216 0 0 0 0 0 0 

𝑃𝑚,1
0  0 0.00252 0 0 0 0 0 0 

𝑉𝑝,4
0  0 0 0 0.036 0 0 0 0 

𝑃𝑚,4
0  0 0 0 0.0042 0 0 0 0 

𝑉𝑝,5
0  0 0 0 0 0.0528 0 0 0 

𝑃𝑚,5
0  0 0 0 0 0.00616 0 0 0 

𝑉𝑝,6
0  0 0 0 0 0 0.0696 0 0 

𝑃𝑚,6
0  0 0 0 0 0 0.00812 0 0 

eACE 0 0 0 0 0 0 0 0.62832 

Δ𝜔1
0 0 0 0 0 0 0 0 0 

Δ𝜔2
0 0 0 0 0 0 0 0 0 

Δ𝜔3
0 0 0 0 0 0 0 0 0 

Δ𝜔4
0 0 0 0 0 0 0 0 0 

Δ𝜔5
0 0 0 0 0 0 0 0 0 

𝑃𝑡𝑜𝑡
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−13
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−32
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−35
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−34
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−45
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−46
0  0 0 0 0 0 0 0 0 

𝑃𝑡𝑖𝑒−56
0  0 0 0 0 0 0 0 0 

𝜀𝑑 0 0 0 0 0 0 0 0 

𝜀𝑝𝑡𝑖𝑒 0 0 0 0 0 0 0 0 
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D MATRIX: 

 𝑓𝑠𝑒𝑡 𝑤𝑝𝑡𝑖𝑒 𝑑̂ 𝑤𝑑 𝑑̂2 𝑑̂1 𝑓𝑠𝑒𝑡
2  𝑓𝑠𝑒𝑡 

Δ𝑓𝑠𝑦𝑠 0 0 0 0 0 0 0 0 

𝑃𝑡𝑢𝑟𝑏
1  0 0 0 0 0 0 0 0 

𝑃𝑡𝑢𝑟𝑏
2  0 0 1 1 0 0 0 0 

𝑃𝑡𝑢𝑟𝑏
4  0 0 0 0 0 0 0 0 

𝑃𝑡𝑢𝑟𝑏
5  0 0 0 0 0 0 0 0 

𝑃𝑡𝑢𝑟𝑏
6  0 0 0 0 0 0 0 0 

Δ𝑝𝑡𝑖𝑒 0 0 0 0 0 0 0 0 

eACE 0 0 0 0 0 0 0 0 

 


