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ABSTRACT  

Origami and kirigami, the technique of generating three-dimensional (3D) 

structures from two-dimensional (2D) flat sheets, are now more and more involved in 

scientific and engineering fields. Therefore, the development of tools for their theoretical 

analysis becomes more and more important. Since much effort was paid on calculations 

based on pure mathematical consideration and only limited effort has been paid to 

include mechanical properties, the goal of my research is developing a method to analyze 

the mechanical behavior of origami and kirigami based structures. Mechanical 

characteristics, including nonlocal effect and fracture of the structures, as well as 

elasticity and plasticity of materials are studied. For calculation of relative simple 

structures and building of structures’ constitutive relations, analytical approaches were 

used. For more complex structures, finite element analysis (FEA), which is commonly 

applied as a numerical method for the analysis of solid structures, was utilized. The 

general study approach is not necessarily related to characteristic size of model. I believe 

the scale-independent method described here will pave a new way to understand the 

mechanical response of a variety of origami and kirigami based structures under given 

mechanical loading. 
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CHAPTER 1 : INTRODUCTION 

1.1. Outline 

This dissertation begins with Chapter 1 for introduction. In this chapter, 

background of work related to origami and kirigami based structure will be briefly 

summarized in Section 1.2. Then, a brief introduction of conventional finite element 

method will be shown in Section 1.3. After that, the nonlocal finite element method, 

which is specially designed by me for the study for the nonlocal effect of 3D complex 

rigid origami, will be introduced in Section 1.4. In this section, the relationship between 

the nonlocal finite element method (NFEM) and the conventional finite element method 

will also be discussed. After the introduction of the necessary background, detailed study 

will be included in the following chapters. My research begins with the study of origami 

based structures. In Chapter 2, the most simple but also the most well-known origami 

pattern—Miura-ori, will be studied. By taking advantage of its periodic characteristics, an 

analytical expression of the Poisson’s ratio for Miura-ori is derived
1
. By introducing the 

non-periodic feature of the unit cell, which has long been ignored by others, new and 

interesting results can be obtained. Then, for a more complex non-periodic rigid origami, 

it is impossible to reach an analytical solution. Instead, a numerical method should be 

introduced. In Chapter 3, a non-periodic rigid origami pattern called water bomb will be 

studied
1
 as an example. NFEM, which is originate from atomic-scale finite element 

method (AFEM)
2
 (See details in Section 1.4), is applied as the tool to analyze water 

bomb pattern under given complex boundary conditions. This specific case is shown here 

to illustrate the generality of NFEM on the study of rigid origami based structures. It is 
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proved to give a good accuracy. After the study of rigid origami, non-rigid origami is 

considered. In Chapter 4, a commonly observed locking effect was captured in finite 

element analysis (FEA) by including plasticity in the analysis. It suggests the long 

ignored plasticity during modelling of origami should be included. After having the three 

projects related macroscale origami, my study begins to focus on microscale origami. In 

Chapter 5, I developed a new manufacture process of microscale silicon origami, i.e. 

using buckling of silicon thin film bonded by predesign soft suspension (or wall), which 

was impossible to obtain before on this small scale. This process is guided under the 

prediction from FEA, which enables people to design the pattern and predict its 

deformation behaviors without the need of physical experiment. After finishing all the 

study for origami based structures, kirigami based structures, which provides more 

degree of freedom compared with origami based ones, attract me by their much higher 

stretchability. In Chapter 6, analysis is carried out on kirigami based lithium-ion battery
3
. 

Both fracture, which is introduced during cutting process, and plastic, which is 

introduced during folding process, are considered during the modelling process. By an 

approach combines numerical and analytical method, the fracture of kirigami based 

lithium-ion battery can be avoided. In Chapter 7, by taking advantage of the stretchability 

of kirigami and observations of existing design of stretchable interconnection, an 

innovative non-periodic spiral-based pattern for the interconnection in electrical circuit 

was created, optimized and analyzed
4
. It is proved by FEA that the new design provide 

much higher stretchability.  
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1.2. Background 

Origami and kirigami, originally two kinds of the traditional art form of paper 

folding, which create 3D structures from 2D sheets, have become a source of inspiration 

for not only artists (See example of origami and kirigami in Fig. 1.1) but also scientists 

and engineers. The former involves only folding along the crease while the latter also 

involves cutting to form desired pattern.  

 

 

 

 

1.                                                                 (b) 

 

Fig. 1.1. Example of origami and kirigami. (A) Paper made origami crane. Reprinted 

from Origami crane, In Wikipedia, n.d., Retrieved June 28, 2016, from 

https://en.wikipedia.org/wiki/Origami#/media/File:Origami-crane.jpg. Copyright 2006 by 

Andreas Bauer. Reprinted with permission. (B) Paper made foldable kirigami stairs. 

Reprinted from Stairs to Paradise A, In Virtual Gallery of Origamic Architecture, 

Retrieved June 28, 2016, from http://webpages.charter.net/gstormer/. Copyright1999 by 

Gerry Stormer. Reprinted with permission.  

 

By utilizing the origami’s deformability and compactness, its applications range 

from space exploration (e.g., a foldable telescope lens
5
) to automotive safety (e.g., 

airbags
6
), biomedical devices (e.g., heart stent

7
),  and extremely foldable and stretchable 

A B 
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electronics
8,9

. An example of buckling induced Miura-ori, the simplest origami pattern, 

based polymer (SU8) structure is shown in Fig. 1.2A
10

. The method to obtain the pattern 

is commonly applied for the fabrication of origami pattern. Another example, which is 

shown in Fig. 1.2B
8
, illustrates a solar cell design based on the idea of Miura-ori. Instead 

of starting from a continued 2D flat sheet, the crease pattern is formed by assembly of 

individual solar panels by multiple hinges. Recently investigation has been done on self-

folding by external stimuli (e.g., light and temperature) and novel materials (e.g., shape 

memory polymers and alloys, gels)11-17 (examples shown in Fig. 1.2 C and D). In Fig. 

1.2C
16

, self-folded hydrogel cube is shown. Since the gel is thermal sensitive, by 

changing the temperature, it can deform automatically. In Fig. 1.2D, a light sensitive gel 

is made by applying radiation to the material and releasing the strain to enable the self-

folding of the structure. Among all types of origami, a specific one called rigid origami, 

in which the faces between the creases remain rigid during folding/unfolding and only the 

creases deform, is different from most origami patterns that require faces bending or 

partial crumpling to make many-step folds. Due to its finite number of degrees of 

freedom, the deformation of it can be well controlled. Thus, it can be readily used as a 

new kind of metamaterial
18

, i.e. man-made material that can hold properties hardly found 

in natural ones.  
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Fig. 1.2. Photos of origami based structures. (A) Origami pattern made by SU8 

polymer. (B) Origami based solar cell. In this photo, each of solar panels (shown as 

yellow part) is connected with other ones by hinges. (C) Fluorescence (top) and optical 

micrographs (inset) of a self-folded hydrogel cube at room temperature made of five tri-

strip hinges connecting six square plates. Upon increasing the temperature to 50 C  , the 

cube unfolds (bottom). Scale bars: 300 m . (D) A six-sided box fabricated by photo-

origami that with multiple hinges. 

A B 

C D 
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On the other hand, if the face is considered to be deformable, many interesting 

phenomenon, including defects in origami pattern
19

, bending in faces
20,21

 can be studied. 

In Fig. 1.3
19

, A and B, different defects of origami can be obtained by introducing the 

vertex dislocations. Simple analytical solution is obtained to study the sensitivity of 

defect in various boundary conditions. In Fig. 1.3C
21

, a simple theory based on 

variational method is developed to study the stability of origami, conical surfaces, based 

metamaterial. A bi-stability is discovered.  

 

 

 

 

 

 

 

 

 

Fig. 1.3. Theory of origami based structures. (A) and (B) shows study of edge 

dislocation generated by lattice vacancies and grain boundary generated by edge 

dislocation. (C) Theoretical prediction of f-cone patterns corresponding to semi-infinite 

crease configuration.    

 

 

A B C 
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Compared with origami, kirigami has its own advantages. By involving the 

cutting process, the resulted structure has more degrees of freedom. This will normally 

introduce the out-of-plane deformation, with which the strain concentration can be 

dramatically reduced
22-25

. Based on the fact, numerous works focus on the design of 

kirigami based interconnection. In Fig. 1.4, finite element analysis is carried out to study 

the deformation of self-similar serpentine based interconnection design. It is clear from 

the figure, even with a 100% stretch applied on the interconnection, the maximum strain 

is still about 1%. This indicates the ability of kirigami based structure to reduce strain 

concentration.  

 

 

 

 

 

 

Fig. 1.4. Results from finite element analysis of self-similar serpentine kirigami 

based interconnection. In this figure, strain contour and the corresponding legend are 

given. 100% stretch is applied on the interconnection. A zoom in view is given to see the 

positions for relative high strain.  

 

Large deformation is common for the practical application of origami and 

kirigami based structures, which indicates the significance of mechanics analysis. 

Although notable progress has been made in the area of origami theory including tree 
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theory
26

 and its corresponding computer program
27

 (figure of the interface shown in Fig. 

1.5A), folding along creases
28-32

, imperfection study
19

, foldability of rigid origami
33

, 

general pattern design
26,34,35

 and geometric mechanics of a periodic folding pattern
36

 

(figure of the contour of Poisson’s ratio is shown in Fig. 1.5B), few contain the 

understanding from a finite element aspect. Finite element analysis (FEA), a numerical 

method which originates from the principle of virtual displacement to solve the weak 

form partial differential equation, is currently the most widely used method in the area of 

solid mechanics, especially for analysis of 3D complex geometry. Since a large number 

of faces and creases are included in origami based structures, FEA becomes the best 

choice for their simulation. Based on the facts mentioned above, my research topic 

focuses on applying analytical method and FEA on the study of origami and kirigami 

based structures.  

 

 

 

 

 

 

 

Fig. 1.5. Figures for the existing theories of origami. (A) Interface of the software, 

which is called Rigid Origami Simulator, with a 3D configuration of water bomb shown. 

(B) In-plane Poisson’s ratio of Miura-ori. Here, angle   decides the shape of faces and 

A B 
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angle   is the dihedral angle which measures the folding degree of the pattern. It can be 

found the in-plane Poisson’s ratio will always be negative in the contour plot.  
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1.3. Conventional Finite Element Method 

This section serves as the background introduction of conventional nonlinear 

finite element method for large displacement. The content in this section will cover a 

brief derivation of the formula for finite element method originates from displacement 

based virtual work principle. In Section 1.3.1, a brief introduction for the background of 

finite element method will be given. In Section 1.3.2, useful knowledge of continuum 

mechanics for large deformation will be introduced. The PDE obtained in this section 

will be approximately solved using finite element method. This is one of the key points 

for nonlinear finite element method.  In Section 1.3.3, the variational form of finite 

element formula will be obtained based on the PDE obtained in Section 1.3.2. In Section 

1.3.4, linearization of the nonlinear formula obtained in Section 1.3.3 will be introduced. 

And, the final expression for nonlinear finite element method will be obtained. The 

derivation process discussed in this section will be used to compare with the special finite 

element methods introduced in Section 1.4. It will help the reader to understand the 

derivation of special finite element method better.  

 

1.3.1. Introduction of Conventional Finite Element Method 

In the macro-scale viewpoint, objects in the real world are commonly treated as 

continuum, which means their physical behaviors can normally be mathematically 

modelled by using partial differential equation (PDE). However, due to limits of 

computational capability, only few PDE with simple boundary condition (BC) and 

solving domains can be solved analytically (or exactly). Instead, for complex PDE with 
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complex BCs and solving domains, approximation should be made, which leads to 

numerical method. Numerical method, as a general approximation method, simplifies the 

PDE, the corresponding BC and solving domain by using the proper assumptions.  

To solve problems in the solid mechanics field which are impossible to solve 

analytically, finite element method, as a numerical method with long history, is 

commonly applied. It introduces the equilibrium on an integral level, not on a pointwise 

one. By introducing this assumption, the continuum in the real world is discretized into a 

finite number of smaller pieces, called elements in FEM, so that complex structures can 

be analyzed. The discretization process is based on a variational method called principle 

of virtual work, which basically says in the equilibrium state, the total virtual work done 

by external forces should equal the total virtual work done by internal forces. Generally 

speaking, there are two types of principle of virtual work. One is displacement based 

while the other is force based. The difference is due to the fact that in variational method, 

variation is taken with respect to the primary variable. In the former, variation is taken on 

displacement while in the later, variation is taken on force. Normally, in the solid 

mechanics field, displacement is chosen as the primary variable. So finite element 

method is commonly displacement based. Considering the elastic body as a special case, 

the principle of virtual work can also be called the minimum total potential energy 

principle, which just states that the real motion of objects is the kinematically admissible 

one which can minimize the total potential energy of the object.  
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1.3.2. Useful Basics of Continuum Mechanics 

In order to obtain the formulation of displacement based FEM, several concepts 

of continuum mechanics should be introduced. Firstly, some basic definitions should be 

given. As shown in Fig. 1.6, for large deformation theory in continuum mechanics, the 

volume (or domain) to solve PDE is different for reference and current state. If the 

position of any point of interest P  can be represented by X  and x  for reference and 

current state, respectively, the mapping between these two states can be shown as 

 , tx x X .  

 

 

 

 

 

 

 

Fig. 1.6. The configurations of an object under deformation at reference and current 

states. As it is shown, an example point P  moves from reference configuration on left to 

current configuration on right. Deformation gradient ijF  will serve as a bridge between 

current and reference coordinates, represented by x  and X , respectively .  
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Then, the two positions of the same point can be linked using the deformation 

gradient i
ij

j

x
F

X





as:  

 i
i j

j

x
dx dX

X





  (1) 

Secondly, the governing equation needs to be solved. It is based on the 

conservation of linear momentum, i.e. force equilibrium. According to the integral form 

of conservation of linear momentum, the following can be obtained:  

 
S B

i i i
V S V

d
v dV f dS f dV

dt
       (2) 

Here, V and S are current volume (or domain) and surface (or boundary) of the 

continuum, respectively.   is the current density of the continuum. S

if  and B

if are the 

surface traction and the body force of the continuum on i -direction, respectively.  i  can 

be 1, 2 and 3, which correspond to x, y and z, respectively. The subscript i , if it appears 

individually, will always mean the direction. This rule will be followed in the rest of the 

dissertation. t  is time. iv  is velocity.  

Using the Cauchy stress principle and divergent theorem, the following can be 

obtained:  

 ,

B B

i ij j i ij j i
V S V V V

d
v dV n dS f dV dV f dV

dt
            (3) 

Here, ij is the Cauchy stress on the surface with normal on i -direction and points to j

direction. in  is the component of the normal vector  on  i -direction. 0 is the density 

corresponding to reference configuration.  

Also, note that the LHS of the equation can be transformed as the following:  
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 

0 0 0

0

0 0 0

0 0

i i i i
V V V V

i i i
V V V

d d
v dV v JdV J v dV Jv dV

dt dt

v dV v dV v dV

   

  

  

  

   

  
  (4) 

Here, 0V  is the volume of the object in reference state. J  is the determinant of the 

deformation gradient F . The dot-hat means time derivative.  

Finally, the following can be obtained:  

  , 0B

i ij j i
V

v f dV      (5) 

As the volume of integration is arbitrary, the differential form for the conservation 

of linear momentum can be obtained:  

 ,

B

ij j i if v     (6) 

For the static case, 0iv  is satisfied, the following can be obtained:  

 , 0B

ij j if     (7)  
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1.3.3. Derivation of General Formula 

The derivation should begin with the derivation of the virtual work principle
37

 

(exclude the damping and the inertial terms):  

The variation of external virtual work can be written as: 

 

 , ,

f

B S S

ext i i i i
V S

B S S

i i i i
V S

B S

i i ij j i
V S

B

i ij j i ij i j
V V

W f u dV f u dS

f u dV f u dS

f u dV n u dS

f u dV u dV

  

 

  

   

 

 

 

  

 

 

 

 

　  

　  

　  

  (8) 

Here,  means taking the variation by adding the symbol. So iu is the variation of 

displacement iu . S

iu is the variation of displacement on the boundary.  

As it is known from continuum mechanics, the body in its equilibrium state 

should satisfy , 0B

i ij jf   . So, the following can be obtained:  

 , intext ij i j ij ij
V V

W u dV e dV W           (9) 

Here the symmetry of stress tensor τ is applied so that  

      , , , , , , ,

1 1 1

2 2 2
ij i j ij i j ji i j ij i j ij j i ij i j j i ij iju u u u u u u e              

 
       

 
 (10) 

So, it can be found that the principle of virtual displacement just says that for a 

body in equilibrium, the variation of total internal virtual work equals the variation of 

total external virtual work under any kinematically admissible displacement field. It 

should be noted that this principle is valid for any constitutive relation.  
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int

int

f

ij ij
V

B S S

ext i i i i
V S

ext

W e dV

W f u dV f u dS

W W

  

  

 



 





    (11) 

This is the general formula for linear FEM. For large deformation, as discussed in 

the last section, difference between reference and current configuration needs to be taken 

into consideration. As the integration domain, i.e. current volume, is unknown before 

solving the PDE, the formula above is difficult to handle. Therefore, transformation is 

needed to change the integration domain from current volume to reference volume. Then, 

the modified formula will be easier to deal with. About the choice of the reference state, 

two candidates are available—initial configuration and configuration computed at last 

iteration. The former corresponds to total Lagrangian (TL) formulation while the later 

corresponds to updated Lagrangian (UL) formulation. In the following derivation, the TL 

formulation will be considered. Note here UL formulation can also be obtained in a very 

similar way. So, in order to transfer the formula from the configuration in current state to 

the reference one, the following derivation will be necessary:  

 

 

0

1 1

int 0

0

ln0

t

ij ij kl ik jl mi nj mn
V V

t

kl km mn kl kl
V V

W e dV S F F F F dV

S dV S d V


   




   



  
   

 

 

 

 

  (12) 

Here the formulas 
0

t

ij kl ik jlS F F





 and 
1 1

ij mi nj mne F F   in large deformation theory in 

continuum mechanics are applied. ijS is second-PK stress. ij is Green-Lagrangian strain 

tensor.  

So, the general formulation for large deformation is as follows:  
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0

0

ij ij ext
V

S d V W    (13) 
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1.3.4. Linearization of General Formula 

Normally, the nonlinear PDE as shown in the last section cannot be solved 

analytically. Therefore, numerical method should be applied to give an approximated 

result. In order to readily solve the general nonlinear formula numerically, a process must 

be taken to make it solvable. One of the techniques is making a linearization of it. After 

linearization, techniques for linear algebra can be applied. Note here the linearization 

process is where approximation is introduced for the first time. The obtained results are 

then approximated results. The method can be called the incremental step-by-step 

method. Assume the time of interest is from 0 to t t , which is properly discretized 

into shorter time steps (e.g. 0 to t , t  to 2 t , 2 t  to 3 t , …). t  is the chosen time 

increment in the current step. The solution from 0 to t  has already been obtained. 

Consider the force balance at time t t  :   

 int

t t t t

ext

  F F 0   (14) 

where extF and intF are external and internal force vectors, respectively.  

Assume int

t t
F is independent of deformation and the incremental decomposition 

is possible for intF , i.e. int int int

t t t  F F F . And, introduce that approximation for the 

increment intF has the following relation:  

 int

t
F KU   (15) 

where  
t

t

t





F
K

U
 is tangential stiffness matrix.  

Finally, the linearized equation can be obtained as:  

 int

t t t t

ext

 KU F F   (16) 
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This equation written in matrix form is what is actually solved in FEM. In the 

following, the general FEM formula derived in the last section is linearized in similar 

fashion to arrive at the same matrix-form equation.  

Applying the general formula to current time t t , the following can be 

obtained: 

 

int

int

t t

t t t t
f

t t t t t t

ij t t ij
V

t t t t B t t t t S S t t

ext i i i i
V S

t t t t

ext

W e d V

W f u d V f u d S

W W

 

 



 

  



    

 



 





    (17) 

Here the subscript t t stands for the configuration the derivative taken with respect to 

is for the current time t t . The superscript t t stands for the value to take the 

derivative of is taken at the current time t t . The same rule will be applied in all the 

following derivation.  

Then, the following incremental decompositions should be introduced:  

 0 0 0

t t t

i i iu u u     (18) 

 0 0 0

t t t

ij ij ijS S S     (19) 

 0 0 0

t t t

ij ij ij       (20) 

 0 0 0ij ij ije     (21) 

  0 0 , 0 , 0 , 0 , 0 , 0 ,

1

2

t t

ij i j j i k i k j k i k je u u u u u u      (22) 

 0 0 , 0 ,

1

2
ij k i k ju u    (23) 

Here, 0 ije is the linear (with respect to incremental displacement 0 iu ) part of the 

incremental strain and 0 ij is the nonlinear part. The value with superscript t t is the 
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one to solve for. The one with superscript t is the result from the last iteration. The one 

without the superscript is the corresponding incremental value between the two adjacent 

times.  

Then, the following derivation can be obtained:  

 

 

   

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

t t t t t t t t t

ij ij ij ij ij ij ij
V V V

t t

ij ij ij ij ij ij ij ij
V V V

t t

ij ij ij ij ij ij
V V V

S d V S d V S d V

S S d V S d V S e d V

S d V S d V S e d V

      

     

    

     

    

  

  

  

  

  (24) 

Note here, 0 0t

ij   because the variation is taken with respect to t t . As it is assumed 

to be given the variation of the displacement field, i.e. the value of 0 iu  is known, the 

second term in the above equation is therefore linear in the incremental displacement 0 iu . 

The last term is known. So, only the first term should be linearized.  

By using the Taylor series expansion at time t , the first term can be linearized as 

followed:  

 
0

0 0 0

0

higher order terms

t

ijt t t

ij ij ijt

ij

S
S S 






  


  (25) 

Then, the following can be obtained:  

 

 

   

0 0

0

0

00 0

0 0 0 0 0

0

0 0

0 0 0 0

0

0

0 0 0

higher order terms

higher order terms

t

ij

ij ij ij ij ijtV V
ij

t

ij

ij ij ij ijtV
ij

ijkl kl ij
V

S
S d V e d V

S
e e d V

C e e d V

    


  




 
     

 
      

 





  (26) 

 

Neglect Neglect Neglect 
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Finally, linearized equation for general nonlinear problem can be shown as 

followed (For total Lagrangian formulation):  

 
0 0 0

0 0 0

0 0 0 0 0 0 0

t t t t

ijkl kl ij ij ij ij ij
V V V

C e e d V S d V S e d V          (27) 

Compared with Equation(16), the following will be clear:  

 

0 0

0

0 0

0 0 0 0 0

0

0 0 int

t T t

ijkl kl ij ij ij
V V

t t T t

ext

t T t

ij ij
V

C e e d V S d V

S e d V

   



 



 

 



 



U KU

U F

U F

  (28) 

As U is arbitrary, it is clear that Equation (28) above is the final formula to be solved in 

FEM. 
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1.4. Nonlocal Finite Element Method 

This chapter serves as introduction of two special finite element methods called 

atomic-scale finite element method and nonlocal finite element method, respectively. The 

content will cover a brief derivation of the formula atomic-scale finite element method. 

And, it will be compared with conventional finite element method described in Section 

1.3 (in Section 1.4.1). Finally, in Section 1.4.2, the relationship between atomic-scale 

finite element method and nonlocal finite element method will be discussed. From the 

comparison of the three different methods, people can understand the origin of nonlocal 

finite element method which is proposed by author and used to study the nonlocal 

behaviors of origami based structures in Chapter 4 and 5. 

 

1.4.1. Atomic-scale Finite Element Method and Its Relation with Conventional Finite 

Element Method 

Atomic-scale Finite Element Method (AFEM) is a numerical method designed to 

combine molecular dynamics and conventional FEM in order to consider the nonlocal 

mechanical effect of materials. The biggest difference between AFEM and conventional 

FEM arises from the introduction of element overlaps. The reason to introduce the 

overlap is that atomic interaction of any atom will, in most of the cases, involve not only 

its most adjacent atoms but also certain of their neighbors. A 1D example is shown in 

Fig. 1.7. As it is shown in Fig. 1.7B, the bond energy of the ith  atom is 

2, 1 1, , 1 1, 2tot i i i i i i i iU U U U U         . It is clear that the energy not only includes the 

interaction between the most adjacent atoms i-1 and i+1, i.e. 1,i iU   and , 1i iU  , but also the 
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other two terms from effect of the two neighbors (atom i-2 and i+2). This nonlocal effect 

is not included in conventional FEM as the element in conventional FEM does not 

include the overlap shown above, e.g. element i shown in Fig. 1.7C  does not have any 

information from the neighbor atoms i-2, i+1 and i+2.  

 

 

 

 

 

 

 

 

Fig. 1.7. Comparison of element definitions of conventional FEM and AFEM. (A) 

Global mesh with nodal number from 1 to N. (B) The ith  element of AFEM with nodal 

number from i-2 to i+2. (C) The ith  element of Conventional FEM with nodal number 

from i to i+1.  

 

Although many differences exist between AFEM and conventional FEM, they 

share the same theoretical bases. Firstly, both of the methods discretize the complex 

global model into smaller and simpler pieces which is called “element”. The element in 

AFEM, which is on micro-scale, contains all atoms which apply atomic interactions on 

central atom. All atoms and the atomic energy bonds connecting them form AFEM 

element. The element in conventional FEM, which is on macro-scale, contains all nodes 

A 

1 2 i-2 i-1 i i+1 i+2 N-1 N 

i-2 i-1 i i+1 i+2 

B 

i i+1 
C  
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in the smaller continuum pieces partitioned from global continuum model. Secondly, the 

derivations of the general formulas for the two methods are based on variational method 

and the minimization of total potential energy. In what follows, the general derivation 

process of AFEM will be shown. By comparison of the content here and the one shown 

in the last chapter for conventional FEM, the similarities between the two numerical 

methods will be introduced.  

The first step for the derivation is to build the function of total potential energy. It 

is consisted of two parts. One is internal energy (in this case atomic bond energy) and the 

other is external energy (in this case concentrated force applied on atom). Therefore, the 

total energy can be written as:  

  int int

1

N

ext i i

i

W W W


     x F x   (29) 

where  int intW W x is the internal energy due to the multi-body interaction from the 

atomic bonds.  int

1

N

ext i i

i

W W


  x F x  is the external energy due to the concentrated 

forces iF  (if any) applied on atoms, x  is the coordinate vector of all the atoms, N  is the 

total number of atom in the system.   is the total potential energy. As stated in the 

minimum of total potential energy discussed in the last chapter, the equilibrium of a 

system is obtained if the kinematically admissible deformation of the system enables the 

total potential energy of the system reaches its stationary point. So, the following can be 

obtained:  

 
 int

int

1

0
N

ext i i

i

W
W W    




      




x
x F x

x
  (30) 
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Since the variation x is arbitrary, the following can be obtained:  

 
 

0





x

x
  (31) 

The PDE above, similarly as discussed in the last section, is usually impossible to be 

solved analytically. In order to obtain the solution, numerical method should be applied 

so that an approximate solution can be obtained. Again, linearization is applied on the 

PDE so that the obtained linearized (or approximated) equation can be readily solved by 

computer. In order to linearize the PDE, again the Tylor series expansion is applied at

 0
x , which is the position of the atom at last time step.    

    

 

   

 

 

0 0

2
0 0 0 01

( ) ( ) ( ) ( )
2

T

 

  
         

  x x

x x x x x x x x
x x x

x x

  (32) 

Substitute the expression of   x  to 
 

0





x

x
, the PDE can be linearized. Then, 

similarly as done in the last section for conventional FEM, the concept of displacement 

can be introduced as
 0

 u x x , stiffness matrix as 
   0 0

22

intW

 

 
 
   

K
x x x x

x x x x

, 

reaction force  as 
 

 

 0 0

int

i

W

 


   

 x x x x

x
P F

x x
 .  

After all the linearization, the final expression to be solved by computer can be 

shown as:  

 KU P   (33) 

which no matter on its form or on its physical meaning is almost the same as the final 

formula for conventional FEM shown in the last section.  
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1.4.2. Relation between Atomic-scale Finite Element Method and Nonlocal Finite 

Element Method 

 Nonlocal effect also exists in origami due to its special structure, i.e. multiple 

dihedral angles between adjacent faces are connected to form a network.  In order to 

capture the nonlocal effect of origami, nonlocal finite element method (NFEM) is built. 

The only difference between the NFEM and AFEM discussed in the last section is on the 

definition of element. In AFEM, element is made of atoms as nodes and atom bounds as 

connection of the nodes. In NFEM, however, element is made of vertexes where multiple 

creases meet as nodes and dihedral angles between adjacent faces (the face is normally 

flat with vertexes as its corners) to connect vertexes. The total energy of an element in 

AFEM is assumed to be stored in atom bounds. It is a function of the length of the 

bounds. The energy in NFEM for origami is assumed to be stored in the artificial 

rotational spring mounted in any two adjacent faces connected by a crease. The spring is 

used to give stiffness to the two faces when there is a relative motion between them. 

Therefore, the total energy of an element in NFEM is a function of the dihedral angle of 

the two faces. Besides that difference, the rest of the two methods are the same.   
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CHAPTER 2 : SINGLE DEGREE OF FREEDOM RIGID ORIGAMI: MIURA-ORI—

ANALYTICAL SOLUTION OF POISSON’S RATIO 

From this chapter to Chapter 7, details of the projects for the study of origami and 

kirigami based structures will be presented. This chapter includes detailed study for the 

Poisson’s ratio of an origami pattern called Miura-ori, which is the simplest and, at the 

same, probably the most well-known origami pattern. By introducing a complete list of 

design parameters, general Miura-ori pattern can be studied. The non-periodic feature of 

Miura-ori, which has long been ignored, is included in the calculation. Analytical 

solutions for out-of-plane and in-plane Poisson’s ratio of the general Miura-ori pattern 

can be obtained. Finally, from the obtained results, the in-plane Poisson’s ratio of Miura-

ori, which has long been believed to always negative is shown can also be positive. 

Corresponding geometrical explanation of the interesting phenomenon will also be given.  

Unit cell and the whole pattern of a Miura-ori are shown in Fig. 2.1, A and B, 

respectively. Fig. 2.1A illustrates a Miura-ori ( 1n , 2n ) in its folded state, containing 1n   

vertices in 1x  direction and 2n  vertices in 2x  direction, with 3x as the out-of-plane 

direction. The geometry of a Miura-ori is defined by many identical rigid parallelogram 

faces linked by edges that can be folded into ‘‘mountain’’ and ‘‘valley’’ creases. In Fig. 

2.1B, four parallelograms are identical with the short sides of length a  , the long sides of 

length b  , and the acute angle 0 ,90     . 
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Fig. 2.1. Geometry of Miura-ori pattern
1
. (A) The whole pattern with 1 11n   vertices 

on 1x  direction and 2 11n   vertices on 2x  direction, 45  , / 1/ 2a b  . (B) A unit 

cell of Miura-ori. 1  and 2  are two dihedral angles. 

 

Since the necessary condition for rigid origami states that there are 3n  degrees 

of freedom, where n  is the number of edges at one vertex
38,39

.  Miura-ori with 4n   has 

only one degree of freedom. Therefore, if the shape of a parallelogram face is prescribed, 

i.e.  a , b  and   are given, one parameter 0 ,2    , the projection angle between two 

ridges, can be used to characterize the folding of the unit cell of Miura-ori, with 2   

for the planar state and 0  for the completely collapsed state. The size of the unit cell 

is  2 sin / 2l b  , 
 

cos
2

cos / 2
w a




  and

 

 

2 2sin sin / 2

cos / 2

a
h

 




  , in 1x , 2x  and 3x  

A B 
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directions, respectively. It is noted that the length of the “tail”  cos / 2b   is normally 

not considered in the unit cell. The periodicity of this pattern only requires two dihedral 

angles 
1 0 ,180     and

2 0 ,180     to characterize the geometry (Fig. 2.1B), which 

are given by:  

 
 2

1

1 2

sin / 2
cos 1 2

sin







 

  
 

  (34) 

  1 2 2

2 cos 1 2cot tan / 2         (35) 

and equal 180  for the planar state and 0  for the completely collapsed state. When the 

whole structure of a Miura-ori is put in an imaginary box with the dashed lines as the 

boundaries (Fig. 2.1A), the dimension of the whole Miura-ori is then given by:  

    1
1

1
1 sin / 2

2

n
L l n b 


     (36) 

 
 

   
 

 2

2

1 cos
cos / 2 1 cos / 2

2 cos / 2

n
W w b n a b


 




       (37) 

 
 

 

2 2sin sin / 2

cos / 2

a
H h

 




    (38) 

and thus the imaginary volume occupied by this Miura-ori is given by:  

 V L W H     (39) 

Apparently even the Miura-ori is periodic, its size in 2x  direction (i.e. W ) is not 

proportional to its counterpart for the unit cell, w , due to the existence of the ‘‘tail’’ with 

length  cos / 2b  . Consequently, it is not accurate to use the unit cell to study the size 

change of a whole Miura-ori (e.g., Poisson’s ratio), particularly for smaller patterns
36,40

.  
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In-plane Poisson’s ratio of Miura-ori is believed to be negative from intuitive 

observations and as testified by some theoretical studies using the unit cell
36,40

 (Fig. 

2.1B). An accurate mean to define the Poisson’s ratio is to use the size of whole Miura-

ori, i.e. L , W  and H , instead of using that of unit cell, i.e. l , w  and h . Specifically, the 

in-plane Poisson’s ratio 12   is defined as 

22

11
12

22 0







  , where 
11

dL

L
   and 

22

dW

W
   

are the infinitesimal strains in x1- and x2-directions, respectively.  Using equation (36) to 

(38), the in-plane Poisson’s ratio 
12 is obtained as:  

  
   

   

2

22

12 2

2

1 cos cos 2
cot 2

1 cos cos 2

n

n

  
 

  

 
 

 
  (40) 

where /a b  . Another in-plane Poisson’s ratio 
21  is just the reciprocal of 

12 . 

Similarly, the analytical expressions of out-of-plane Poisson’s ratio can be obtained as:  

 
   

33

2 2 2

11
13 2

33 0

cot 2 sin sin 2

cos


  


 


  
     (41) 

 
     

   
33

2 2 2

222
23 2 2

33 20

sin sin 2 1 cos cos 2

cos 1 cos cos 2

n

n


    


    


        
  

   

  (42) 

where 33

dH

H
   is the strain in x3-direction.   

For in-plane Poisson’s ratio, as shown in Fig. 2.2A, the contour of 
12  as a 

function of angle  and a combination parameter  2 1 cosn   . The combination 

parameter can be completely determined after the creation of the crease pattern.  

Therefore, after the design of the pattern, only is needed when calculating the Poisson’s 

ratio. Clearly, 12 can be negative or positive, which is different from commonly 
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observed negative in-plane Poisson’s ratio.  The boundary separating the negative and 

positive regimes of 12v  is defined by vanishing the denominator of 12, i.e., 

   2

2 1 cos cos 2n     .  At this boundary, 12 flips between positive and negative 

infinities; thus  12 ,    .   

In addition to the negative and positive in-plane Poisson’s ratio of the Miura-ori, 

the ranges of out-of-plane Poisson’s ratios, as shown in Fig. 2.2, B and C, i.e.  13 0,   , 

 23 ,    , are also fascinating if the range of Poisson’s ratio for common materials is 

considered as the reference, i.e.,  1,0.5   . For 
23 , the same boundary, i.e. 

   2

2 1 cos cos 2n      to separate the negative and positive value of Poisson’s ratio 

also exist. In the application of Miura-ori, the sudden change of the Poisson’s ratio can be 

used or avoided by using the contour plot. The contour plot here can be used as guidance 

for the design of Miura-ori for the interaction between the motions on any two 

perpendicular directions.  
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Fig. 2.2. Contour plot of Poisson’s ratio of Miura-ori [33]. (A) Contour plot of in-

plane Poisson’s ratio 12  as a function of   and combination parameter  2 1 cosn   . 

(B) Contour plot of out-of-plane Poisson’s ratio 13  as a function of   and  . (C) 

Contour plot of out-of-plane Poisson’s ratio 23  as a function of   and  .   
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Fig. 2.3 provides an intuitive explanation of the sign change in the in-plane Poisson’s 

ratio 12.  For the specific example with 
1 2 5n n  , 1/ 2   and 78.5  , the size of this 

Miura pattern in x1 direction, L, decreases monotonically from the planar state to the 

collapsed state, which is pictorially shown in the three insets for  157 2   , 140  , 

and 20   with 
1 2 3L L L  .  In contrast to L, the respective size of this pattern in the x2 

direction, W, does not change monotonically with the angle .  As shown in Fig. 2.3A, 

from the planar state to the collapsed state, 
1 2W W  but 

2 3W W , which gives 
12 0   when 

L and W change in the same direction and 
12 0   when L and W change in the opposite 

direction.  The non-monotonic change of W is due to the “tail” term  cos 2b   in 

equation (37), which was missed in previous studies
36,40

. Fig. 2.3B shows the derivatives 

of W’s two terms, i.e.,  
 

2

cos
1

cos / 2
n




 

 
 

   
 and 

 cos / 2



   



, along with W, as a 

function of , for 
1 2 5n n  , 1/ 2   and 78.5  , the same parameters used in Fig. 

2.3A.  It can be seem that these two derivatives work against each other with 

 
 

2

cos
1 0

cos / 2
n




 

 
  

   
 to decrease W, while with 

 cos / 2
0





   



 to increase W, 

from a planar state to a collapsed state.  Therefore, the one among these two derivatives 

with larger absolute value dominates the change of W.  It is apparent that when one folds 

a Miura-ori from its planar state to a collapsed state,  
 

2

cos
1 0

cos / 2
n




 

 
  

   
 

dominates firstly to decrease W.  Once the stationary point is reached, 
 cos / 2

0




   



 

starts to dominate and increase W.  
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Fig. 2.3. Mathematical Explanation of negative and positive in-plane Poisson’s ratio 

12 1
. (A) Change of W and L with  . The three representative configurations during the 

folding process are shown as the visual explanation. (B) Change of size W with  . Here 

the change rate of W ’s two terms with respective to   is also shown.  
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CHAPTER 3 : MULTI-DEGREE OF FREEDOM RIGID ORIGAMI: WATER 

BOMB—NUMERICAL ANALYSIS BY NONLOCAL FINITE ELEMENT METHOD 

 After the study for relative simple rigid origami pattern shown in last chapter 

(Chapter 2), the content in this chapter will cover the analysis of a relative complex rigid 

origami pattern called water bomb. Nonlocal finite element method (NFEM) is used to 

capture the nonlocal effect during the deformation of water bomb structure under 

complex boundary conditions. Details for application of the basic NFEM theory (See 

details in Section 1.4) on water bomb pattern are shown. Finally, by the comparison 

between the results from numerical simulation and the ones from experiment, the 

accuracy of NFEM is validated. The current method can be readily used to study a variety 

of origami pattern.  

NFEM is applied here to model the non-local effect of origami due to the 

interaction between the adjacent rigid faces. For rigid origami, all the degree of freedom 

is the rotational movement of flat faces along the creases which connect them. All the 

faces are treated as rigid in the whole simulation process. The NFEM applied in the 

analysis is origin from the atomic–scale finite element method
2
 (AFEM), in which the 

pair interatomic potential is considered to represent the interaction between adjacent 

atoms. In the non-local finite element developed for rigid origami, the rotational stiffness 

is analog to the atomic bond potential in AFEM. Since NFEM is different from 

conventional FEM on the fact that existence of the overlap on the definition of the 

element in NFEM will not appear in conventional FEM. The introduction of the overlap 

enables the interaction between the adjacent elements. For water bomb pattern, two types 

of element exist. One is the non-local element which account for the non-local interaction 
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between adjacent nodes and the other is the spring element to ensure the rigidity of the 

creases during the whole calculation.  

The requirement of this non-local element is that the non-local interaction must be 

completely captured within a single element. Using water bomb pattern as an example (Fig. 

3.1), because the blue vertex affects its surrounding 12 red vertices, a non-local element is 

just defined by these 13 vertices with the blue vertex as the center (Fig. 3.1). This non-local 

element focuses on the central vertex to characterize its full interactions with neighboring 

vertices. Within this single element, the non-local effect is thus completely captured. Another 

non-local element centering on another vertex has the same structure as that of the blue 

vertex, and therefore these two neighboring non-local elements overlap in space. In fact, this 

overlap enables accurate characterization of the non-local effect for origami within a single 

element since it does not involve any interpolation as in conventional finite element method. 

By observation, two sorts of element exist due to their different connection of nodes. The 

global crease pattern and two kinds of the unit cells are shown in Fig. 3.1. All the vertices 

of the unit cell are numbered from 1 to 13 with the central node numbered as 1. The dash 

lines represent valley creases (creases move away from people) while the solid lines 

represent mountain ones (creases move toward people) 
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Fig. 3.1. Crease pattern of Water bomb with nodal number of non-local elements. 

(A) Type I non-local element with No. 1 node as the central node. (B) Type II non-local 

element with No. 1 node as the central node.  Here, the dash lines represent valley creases 

(creases move away from people) while the solid lines represent mountain ones (creases 

move toward people). The blue dot stands for the central node while the red nodes are its 

neighbor nodes which are necessary to form a whole NFEM element. 

 

After defining the basic element types, the total potential energy of one unit cell 

can be written as:  

     
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where R
i

k  are the stiffness constants of the dihedral angles i
  with ,i eq

  as the 

equilibrium angle, the superscript R  stands for the rotational stiffness of the element and 
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nT  is the number of types of dihedral angles. Note here, dihedral angle is a function of 

the position of the nodes x , while is a constant set by the user initially. R  is the 

external applied force (if any) on node i . N  is the total number of the node. For the 

calculation of  i
 x  and its related derivatives 

ix




, 

2

i jx x



 
, an generic and efficient 

method based on vector product is proposed (See details in Appendix).  

 Then the reaction force vector and the stiffness matrix can be obtained in the way 

similar to the ones in AFEM
2
:  
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t

t

total
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i j
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x x
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F

x
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
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 


 



x x

x x

  (44) 

here, t
x is the coordinate vector calculated at the last time step, ijK is the interaction on 

stiffness between the ith  and the jth  node in the element, iF is the nonequilibrium force 

on the ith  node in the element.  

In the current case, 
total

U  is substituted into the above two general equations, the 

following can be obtained:  

 

 

 

2
R R

ij eq

i j i j
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i eq i

i

K k k
x x x x

F k R
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  
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
   



  (45) 
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where,  is the dihedral angle which is a function of the corresponding coordinate ix . If 

the expression of in term of ix  can be obtained, the final expressions of ijK and iF can 

be obtained.  

 Detailed expressions of element stiffness matrix K and element nonequilibrium force 

vector can be shown as following:  
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  (46) 

Note here, the terms in the lower right part of the stiffness matrix and in the lower part of 

nonequilibrium force vector are all zero. This is due to the fact that, as described before 

in this section, interactions between the neighboring nodes are ignored in every AFEM 

element. The 
1

2
 factor before the terms on the upper right and lower left is added since 

the AFEM elements, which overlap with each other in their definitions, cannot double 

account the energy stored in dihedral angles. By defining the element in this general 

method, the assembly process can be much more comprehensive and also much easier.  

 For spring elements, relative high stiffness is used so that the deformation of them 

can be ignored compared to that of the non-local elements. The total potential energy of it 

is:  

   (47) 



 
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0

1

2

Lk r r
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here, Lk  is the stiffness of the linear spring elements. r  and 0r  are the current and 

reference length of the linear spring elements. Then, by the similar method described 

above for non-local elements, the expressions of and of linear spring elements can 

be written as:  
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 

2

0

0

L L

ij
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  (48) 

 For the FEA, commercial software ABAQUS, which is known for its accuracy on 

nonlinear FEA, is applied. Since applied load is considered slow enough, ABAQUS 

Standard static analysis is chosen. To implement the NFEM, a user developed subroutine 

called User-defined Element (UEL) is applied to define element properties of water bomb 

pattern. For the UEL, a user needs to define the residual vector RHS  and stiffness matrix 

AMATRX . Note here, is defined on the element level. So the term iR , which is 

usually defined on the global level, in Equation (45) will be excluded, i.e. 

 eq

i

RHS k
x


 


  


. just equals to the stiffness matrix ijK . See the 

FORTRAN code for user subroutine of NFEM in Appendix E.  

Since the problem is highly nonlinear, the stiffness matrix may become not 

positive definite, which is bad for the convergence of the numerical calculation. To 

ensure the positive definite of the stiffness matrix, an adjust factor is added. It will help 

the calculation to converge while not affect the accuracy of the final results. This is 

achieved as the factor will decrease when approaching the equilibrium state. Finally, 

i jK
iF

R H S

AMATRX
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when the equilibrium is reached, the factor goes to zero, i.e. it has no effect on the final 

results.   

Firstly a 2D pattern of water bomb is generated by using AutoCAD with the 

number of period on two in-plane directions to be 7 and 16, respectively. Instead of 

calculating the water bomb pattern from 2D sheet to the final 3D ball-shape, which 

requires a large amount of computational effort, an approximate configuration which is 

relative close to the final 3D ball-shape equilibrium configuration is firstly obtained as 

the intermediate configuration. This is achieved by using the Rigid Origami Simulator
41

 

with the 2D CAD file as the input.  For the resulted obtained configuration, a big gap 

exists between two of edges of the model. It is only when the two edges exactly meet, the 

final water bomb configuration can be obtained. After that, one of the dihedral angles in 

the elements on the central layer of the water bomb is fixed to be 60 while the rest of 

angles are left free to change. At the same time, constraints of some linear spring 

elements along the creases are released, i.e. the change of the corresponding crease 

lengths are allowed. During the iteration of the numerical calculation, the constrains for 

the linear spring elements are gradually added back. Finally, all the constraints are added 

back to ensure the designated length of the creases pattern. A configuration is obtained 

which will be used in the next step as the initial undeformed geometry. All the dihedral 

angles in this configuration will be used as their corresponding equilibrium angles in the 

following analysis. The equilibrium state is shown in Fig. 3.2A. (Equilibrium, R105, T3) 

After applying different loads, multiple configurations can be obtained. Fig. 3.2, 

B and C show two of the examples. The former is compression along axis direction and 

the latter is stretching.  
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Fig. 3.2. FEA results of Water bomb under different mechanical loadings. (A) 

Equilibrium configuration of Water bomb. (B) Water bomb under axial compression. (C) 

Water bomb under axial stretch.  
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CHAPTER 4 : PLASTICITY AND LOCKING IN ORIGAMI 

After the study of rigid origami shown in Chapter 2 and Chapter 3, my focus turns 

to the study of non-rigid origami based structures. Here, non-rigid means deformation of 

each individual face is allowed. In this chapter, plasticity, which has long been ignored 

by others, is included during the modelling of origami. The locking phenomenon, which 

means the origami based structure cannot recover its equilibrium state after releasing all 

the applied loadings, can be well captured by buckling analysis via FEA. Based on the 

final results from FEA and experiment, it is suggested here, plasticity should be included 

in the modelling of origami due to the existence of sharp creases in most of origami 

pattern.  

In existing work on origami simulation, people often ignore the effect of plasticity 

in order to simplify the problem. It works for most of cases while very local behaviors 

cannot be captured. Here in order to model a phenomenon called “locking”, which is 

commonly observed in real non-rigid origami based structures, plasticity is introduced 

during the modelling process. Here, “locking” means the origami based structure will not 

go back to its equilibrium state after releasing all of the applied loads. Instead, it will stay 

in a quasi-stable state and appear as being “locked”.  

Since large deformation and shell-structure will be included in the 3D analysis of 

origami based structure, difficulty on convergence of result will be an issue if implicit 

analysis is applied. Therefore, all implicit numerical methods which are commonly 

applied in FEM will not be appropriate. Based on the fact, explicit method will be 

applied. By taking advantage of explicit method, i.e. no iteration applied thus no 

convergence issue, final result will be efficiently obtained. Instead of using ABAQUS 
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Standard as people normally do, current simulation is done by using ABAQUS Explicit 

dynamic analysis. To simplify current analysis, inertial effect is excluded, i.e. quasi-static 

analysis was carried out. This is possible in ABAQUS Explicit dynamic analysis when 

user give relative long simulation time so that the inertial effect can be ignored. This can 

be easily checked by comparing the kinetic and strain energy of the whole model, e.g. if 

kinetic energy is much lower than strain energy it indicates the inertial effect is weak 

enough to be ignored.    

Inspired by the locking phenomenon described in the last section, I decided to 

study the reason why it can happen. It should be noted that the locking happened during 

the study of rigid origami model is always be accompanied with relative large energy in 

linear spring, i.e. only with certain amount of breaking of the rigidity of the model can 

locking happen. Based on the observation, it is reasonable for me to consider non-rigid 

origami when studying locking phenomenon. In order to enable locking, plasticity should 

be introduced. The initial geometry of the paper-made origami based structure is shown 

in Fig. 4.1A and its corresponding numerical model is shown in Fig. 4.1B. Instead of 

making each face rigid as done in previous section, the whole model is now considered to 

be deformable. To simplify, the simplest plasticity model, linear plasticity model, was 

applied to the material of the whole model. Quasi-static analysis was carried out by using 

ABAQUS Explicit dynamic. Proper mass scaling was applied to make the simulation 

more efficient. The comparison of the kinetic energy and strain energy is shown in Fig. 

4.2. It is clear that the kinetic energy is much lower than the strain energy, which 

indicates the inertial effect can be ignored and the simulation can be treated as quasi-
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static. As shown in Fig. 4.1B, one end of the model is fixed while displacement boundary 

load is applied on the other. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Comparison of the experiment and simulation results. (A) Initial state of 

origami from experiment. (B) Initial state of origami from simulation. (C) Quasi-stable 

state of origami from experiment. (D) Quasi-stable state of origami from simulation. It 

can be seen here the results from experiment and from FEA are almost the same. This 

validates the accuracy of the introduction of plasticity into origami modelling.  
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Fig. 4.2. Comparison of normalized kinetic energy and strain energy.  

 

 The initial and deformed structure from experiment and simulation is shown in 

Fig. 4.1. It can be found that no matter in initial state or in deformed state the resulted 

geometries are almost the same, which indicates introducing plasticity model is 

reasonable, i.e. the locking mechanism is a result of plasticity.  
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CHAPTER 5 : MICROSCALE ORIGAMI BASED STRUCTURES—FINITE 

ELEMENT ANALYSIS GUIDED DESIGN 

After the study of macroscale origami based structures shown in Chapter 2, 

Chapter 3 and Chapter 4, I begin to focus of the study of micro scale origami based 

structures. In this chapter, a new method to fabricate microscale origami is proposed. 

This method is based on the buckling of thin-film which is bonded with predesigned 

walls on a soft substrate. Due to the fact that there is a large amount of design parameter, 

numerical simulation will be necessary. By using FEA as the tool for numerical analysis, 

the design and optimization of the wall patterns can be much more efficient. The results 

from experiment shown in this chapter further validate the FEA results, which indicates 

the accuracy of FEA. Please note I only design the manufacture process in this section. 

The actual physical experiments were done by Zeming Song. Some of the experiment 

results are shown here for the purpose to illustrate the basic idea and used to compare 

with my FEA results.  

Although numerous effort has been paid on design and optimize buckling of 

ribbon-liked kirigami based structures (thin film structures involves cutting and folding) 

42-47
 to form 3D complex structures, few has even consider the buckling of origami based 

structures (thin film structures involves folding only). Here I demonstrate a new strategy 

to fabricate microscale origami using Si nanomembrances (NMs) as the materials which 

was previously impossible by using conventional fabrication methods. In the current 

approach, Si NMs are supported by elevated polydimethylsiloxane (PDMS) walls on top 

of a PDMS substrate. Thus the Si NMs are suspended. Upon relaxation of the pre-stretch 

applied on the PDMS substrates, the suspended Si NMs buckle with the pre-patterned 
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wall as the support and constraints to form designated microscale Si origami. Thus the 

final microscale origami patterns with 3D complex structures are controlled by the 

patterning of the elevated wall. Because the microscale characteristics of the origami 

architectures and the continuum feature of the NMs, the microscale origami may lead to 

multiple breakthroughs, such as in electromagnetics. Applications include microscale 

grating, thermal invisible device, and low observable (stealth) structures.  

The methodology is illustrated in Fig. 5.1. An elastomeric substrate PDMS 

(Sylgard 184, Dow Corning) is mold cast to a shape with pre-patterned, elevated walls on 

top of a stab, followed by biaxial or uniaxial pre-stretch (from L to  and  

along the two perpendicular in-plane directions), which can be achieved by mechanical 

means or heating. The characteristic sizes of the elevated walls are on the order of 10 ̶ 

200 m. The pre-stretched PDMS is subjected to ultraviolet/ozone treatment in order to 

form activated hydroxyl groups for bonding. Because the PDMS walls are elevated, they 

thus provide selective bonding sites. Then a Si NM, derived from the device layer of a 

silicon-on-insulator (SOI) wafer, is brought to contact with the patterned PDMS. 

Specifically, the elevated PDMS walls provide supports to Si NM and thus Si NM is 

suspended. Because of the surface treatment, condensation reactions occur at room 

temperature between the elevated PDMS walls and the native oxide surfaces of Si 

NMs
25,48,49

. Si NMs then can be exfoliated from the SOI wafer and adhered to the 

elevated PDMS walls. Once the pre-stretch exceeds a certain critical level, relaxation of 

the pre-stretch suspended Si NMs enables its buckling and forms predesigned origami 

patterns. The buckling is the result of releasing the membrane energy through the out-of-

plane deformation via mainly bending and sometime twisting. The resulted origami 

1L L 2L L
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patterns are defined by two factors: (1) the shape of the pre-patterned, elevated walls, and 

(2) the nature of pre-stretch (i.e., biaxial with different pre-stretches in two directions vs. 

equi-biaxial pre-stretch). The first factor determines the type of the origami and later 

tunes the patterns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Schematic illustration of using elevated PDMS walls to suspend Si NM and 

releasing the pre-stretch to generate designated microscale origami patterns
50

. Here 

the elevated PDMS walls have been pre-patterned for the Miura-ori pattern 

 

The finite element analysis (FEA) was conducted using commercial finite element 

software package ABAQUS, and consists of two steps. The first step, mode analysis, or 
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pre-buckling analysis, is carried out by calculating the eigenvalues of the model under the 

given loads and boundary conditions. The loads applied are simply in-plane equi-biaxial 

compressions which are equivalent to the uniform shrinkage due to the uniform decrease 

of temperature of the whole model. After the calculation, possible buckling shapes can be 

obtained. Then the static analysis, or post-buckling analysis, can be carried out since the 

post-buckling process is slow enough to be regarded as quasi-static. Same loads as above 

are applied in this step. The buckling modes obtained from previous step can be added to 

the initial geometry as the imperfection to trigger the buckling of the model. Finally, the 

stress and strain distribution of the buckling model can be obtained. 

As a specific example using the pre-patterned walls with shapes illustrated in Fig. 

5.1, a Miura-ori pattern
51

 can be obtained. Fig. 5.2A shows a photography of a Si NM 

Miura-ori pattern generated using this approach, where the thickness of the Si NM is 300 

nm and the equi-biaxial pre-strain of 3.6% was introduced by heating the PDMS from 

room temperature to 120
o
C. The detailed geometry of the pre-patterned PDMS wall is 

given in s Fig. A4, A and B. It is apparent that in a 2.2 mm × 2.2 mm area this Si NM 

Miura-ori pattern replicates the paper-based Miura-ori, given by the inset of Fig. 5.2A. 

The observable difference is that the sharp "mountain" creases in paper-based Miura-ori 

are replaced by the flat PDMS walls in the Si NM Miura-ori, because the downwards out-

of-plane buckling occurs and the elevated PDMS walls actually serve as “mountain” 

supports for the Si NMs. The “valley” creases are not as sharp as paper-based pattern 

because of, as stated by the minimum total potential energy principle, much lower energy 

state of relative smooth crease is usually preferred by the deformed system. It is 

emphasized here that using this origami inspired methodology, a planar structure is 
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transferred to a 3D architecture across an entirely continuum film, rather than discretized 

ribbons
52

. Fig. 5.2B provides the optical profilometer images of the Si NM Miura-ori 

pattern. It is observed that the Si NM has apparent deformation at the vertices of the 

elevated wall (marked by the red triangle) in Fig. 5.2B, which suggests a localized and 

possibly large strain. To compare the experiments with calculated stress and strain during 

buckling, finite element analysis (FEA) was conducted. A unit cell of the Si NM is 

simulated in the FEA (Fig. A9, A and B give illustration of an ideal Miura-ori unit cell in 

Appendix G), which consists of four parallelograms. For simplicity, PDMS walls are not 

explicitly included and just implicitly appear as boundary conditions to the Si NMs. 

Using the equi-biaxial pre-strain of 3.6%, the FEA results (Fig. 5.3) show a simulated 

Miura-ori pattern with good agreement with that observed in experiments. The good 

alignment between FEA and experiments suggests that FEA can be utilized to design the 

origami patterned generated by buckling. FEA results show that the maximum principal 

strain 0.87% appears at the vertex of the “mountain” creases, which is less than the 1% 

fracture strain of single crystalline Si. Fig. 5.4, A, B and C show the line-cut comparison 

between the experiments, FEA results, and analytical expression of rigorous Miura-

pattern. For Miura-ori pattern, the closed loop solution can be obtained (detailed in the 

Appendix G) because it has only one degree of freedom. Use n to denote the number of 

creases at one vertex and thus n =4 for Miura-ori. For ideally rigid origami (e.g., Miura-

ori) where all facets are rigid and only the creases deform during folding, it is known that 

there are n-3 degrees of freedoms
38,53

; thus Miura-ori has only one degree of freedom. It 

is observed that the generated Si NM origami agrees reasonably well with both the 

analytical and FEA results. The major discrepancies occur at the “mountain” vertices 
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since the analytical solution and FEA results are based on zero size of creases while the 

experiments have finite size of the elevated PDMS walls.  

                                                                                    

 

 

 

 

 

Fig. 5.2. Silicon (Si) nanomembrane (NM) Miura-ori pattern obtained from physical 

experiment
50

. (A) A photography of a Si NM Miura-ori pattern. The inset shows a paper-

based Miura-ori pattern for comparison. (B) An optical profilometer image shows the Si 

NM Miura-ori pattern. The line cut measurement was performed. 

 

 

 

 

 

 

Fig. 5.3. Finite element analysis (FEA) results of Si NM Miura-ori pattern. The 

contour plot is for the principal strain of buckled Si NM
50

. 
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Fig. 5.4. Line cut comparisons between the experiment, FEA, and analytical 

solution. The inset shows an image of optical profilometer, in which the line cut 

profile was measured in experiment
50

. The measured directions are: (A) "mountain"-

"valley"-"mountain" cut along y-direction, (B) along the mid-point of "mountain" 

creases, and (C) "mountain"-"valley"-"mountain" cut along x-direction. 

A B 

C 
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Wide range and more complicated Si NM origami patterns can be realized, 

with the inspiration from the paper-based origami. The logic is to vary the shape of the 

elevated PDMS walls. As there are significant variations of paper-based origami, the first 

extension from Fig. 5.2A (Miura-ori with one degree of freedom) is an origami pattern 

with three degrees of freedoms. Fig. 5.5A shows a photography of a Si NM origami with 

water bomb pattern, or the nickname "magic ball" pattern, through the relaxation of equi-

biaxial 3.6% pre-strain via thermal expansion of the PDMS. The detailed shape and 

geometry of the elevated PDMS walls to form this pattern are given in the Fig. A5, A and 

B. Great similarity is observed when compared with the paper-based "magic ball" pattern 

(inset of Fig. 5.5A). However, a discrepancy is also noticed and in fact related to the 

methodology of generating microscale origami using elevated PDMS walls. For ideal 

"magic ball" pattern (as detailed in the Appendix G), the "mountain" creases always form 

a curved geometry and cannot stay flat unless at the completed collapsed state, which is 

different from the Si NM origami (Fig. 5.5A) where the "mountain" creases (i.e., elevated 

PDMS walls) are on the flat state. The reason is that Si NM is not ideal rigid and facets 

are allowed to deform.  
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Fig. 5.5. Demonstration of other silicon (Si) nanomembrane (NM) origami patterns 

with different characteristics
50

. (A) A photography of a Si NM "magic ball" pattern. 

The inset shows a paper-based Miura-ori pattern for comparison. (B) A photography of a 

Si NM non-rigidly foldable pattern. (C) A photography of a Si NM star pattern. (D) A 

photography of a Si NM US Flag pattern.  
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Fig. 5.5B provide more Si NM origami patterns that, by theory
38,53

, cannot be 

rigidly folded while can be achieved using the present methodology. Fig. 5.5B presents 

the photography of a non-rigidly foldable pattern using staggered PDMS walls given in 

the Fig. A6, A and B. Very sharp creases are observed. Related to this pattern that it is 

not rigid foldable at all vertices, some patterns are rigid foldable at the unit cell level but 

not at the assembled level, such as the star pattern shown in Fig. 5.5C. The shape and 

geometry of the PDMS walls are given in the Fig. A7, A and B. In this pattern, the unit 

cell is a star, which is rigid foldable. However, when two stars are assembled, their 

boundaries are not compatible. Composite and non-periodic patterns can be generated by 

combing multiply patterns, such as the mimicked US Flag shown in Fig. 5.5D consisting 

of stars and stripes. Detailed shape and geometry of US Flag pattern are given in the Fig. 

A7, A, B and C.  

In this section, I report a new methodology to create 3D origami patterns out of 

Si NMs using pre-stretched and pre-patterned PDMS substrates. The key parameter here 

is the shape of the pre-patterned PDMS walls. This approach is complementary to a 

recent work that is able to achieve 2D origami shapes where the creases are pre-defined 

by cutting, i.e., the concept of kirigami
54,55

. We demonstrated that this approach is able to 

mimic paper-based origami patterns and even modifies the paper-based origami for some 

non-rigidly foldable structures. Though the demonstrations are based on Si NWs, richer 

materials, such as metal and composites can be adopted to generate complex 3D 

architectures. We believe that the combination of origami-based microscale 3D 

architectures and antenna will lead to a breakthrough on physically and geometrically 

reconfigurable systems.   
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CHAPTER 6 : FAILURE ANALYSIS OF KIRIGAMI LITHIUM-ION BATTERIES 

CONSIDERING USING FEA 

After the study of origami based structures (details shown from Chapter 2 to 

Chapter 5), the kirigami based structures, which involves more degree of freedom, will be 

studied. In this chapter, the failure mechanisms of kirigami based lithium-ion battery will 

be introduced. As cutting is necessary for fabrication of kirigami based structures, initial 

crack cannot be avoided. Plasticity is another issue if sharp crease is introduced during 

folding of the structure. So, the deformation of kirigami based structures will be coupled 

with the competition of the two mechanisms. The one which costs lower energy will be 

preferred the structure. By using FEA and classical theories, different geometry can be 

test so that the one with robust structure can be obtained.   

Simulation is done by using ABAQUS and a simplified model is shown in Fig. 

6.1, where two pre-existing cracks are presumably caused by initial folding and/or cutting 

and located at the present positions when a pair of concentrated moment M is applied at 

the end of the strip with length L and width H.  The concentrated moment M is used to 

characterize the applied stretching deformation that causes bending about the folding 

creases.  Angle  is used to denote the relative positions of two strips with  = 0 for the 

initial folded position.  When the moment M is applied, there exist two modes of 

deformation.  The first mode causes the growth of the pre-existing cracks from a to a + 

a, while maintaining the angle  unchanged, which refers as “crack growth”.  The 

second mode leads to plastic deformation of the thin foil at the vicinity of the fold by 

altering  to  + , which is referred to as “plastic rolling”. 
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Fig. 6.1. Introduction of the deformation mechanisms
3
. The crack growth introduces 

the extension of the crack length a  while the plastic rolling introduce nothing but normal 

folding process. 

The critical condition for “crack growth” is given by the modified Griffith's 

criterion for linear elastic material
56

. Griffith applied the result from Inglis that, as shown 

in Fig. 6.2, the potential caused by the internal strain and external applied load can be 

written as:  

 
2 2

0

a B

E


     (49) 

here, 0 is the potential energy for the uncrack plate, B  is the thickness of the plate,  is 

the constant stress applied far from crack, a  is half of the length of crack, E  is Young’s 

modulus.  
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Fig. 6.2. Model of Griffith’s facture analysis
56

. The model is simplified with 2a  be the 

existing crack length,   be the uniformly distributed load applied far from the crack.  

 

 

Then, by Griffith energy balance, the total energy for the equilibrium with crack 

will have a minimum value, i.e.  

 
0

2

total s

c c c

s c

dW dWd

dA dA dA

W A 


  



  (50) 

here totalW  is the total energy, cA  is the area of crack, sW work required to create new 

surface,  [unit: Newton/meter] is the surface energy of the material. By using Equation 

(50), the driving force, or the release of the elastic energy due to the propagation of 

cracks can be obtained as: 
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 2 / 2
c

d
a E

dA
 


     (51).  

For the current study, the model may not follow the conclusion from simple linear 

elastic Griffith model. It is necessary to introduce a modification to better understand the 

problem. Here, in Equation (51), instead of  , a non-dimensional geometrical factor A 

that depends on angle , i.e.,  A A  is introduced. It is used to account the effect of 

different geometry. So the driving force applied in current calculation is:  

 2 / 2
c

d
A a E

dA
 


     (52) 

here  is the normal traction applied on the crack surface and related to the moment M by 

Euler–Bernoulli beam theory 
  2

3

/ 2
6 /

/12

H M
M H

H
   ; and  [unit: Newton/meter] is 

the surface energy. To obtain the value of the surface energy of the material, the J-

integral is calculated. In the theory of facture mechanics for nonlinear elastic materials, 

the relation 
c

d
J

dA


  is commonly used. To obtain J-integral, FEA is applied. The 

geometry of the FEA model is shown in Fig. 6.3. Numerical integration along the 

elements on a circle with the crack tip as its center is done. The values of E , a  and  are 

fixed while   changes from 0 to / 3 . For different angle   different value of J-integral 

can be obtained. By using the relationship 2 /
c

d
J A a E

dA



   , the value of A  for the 

corresponding J can be obtained. Finally, the function  A A   can be obtained. 

Combing all the derivation above, the critical moment for "crack growth" is given by:  
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  crack growth 2 / 2 / 3crM H E Aa   (53) 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3. Finite element model for the fracture analysis
3
. The existing crack is 

highlighted by the dash line. A zoom in view near the crack is shown on the lower right 

corner. The angle to characterize the geometry is denoted as .  

 

For “plastic rolling”, the rate of energy dissipation due to the plastic deformation 

during the rolling about the creases provides the resistance. During the plastic rolling 

(i.e., the angle  changes), the plastic zone is highlighted by the shaded area as shown in 

Fig. 6.4.  The area of the plastic zone is 
2 tan / 4H  .  So the critical moment plastic rolling

crM  

for plastic rolling can be obtained by the following:  

    plastic rolling plastic rolling 2 2 2/ tan / 4 / 1 tan / 2crM H H               (54) 

 

Crack 

   
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Fig. 6.4. Plastic zone generated during plastic rolling
3
. The plastic zone is highlighted 

as the shaded area.  

 

Here the driving force is the rate of release of potential energy due to the increase of , 

given by M/2.   [unit: Newton/meter
2
] is the dissipated energy per unit area due to 

plastic rolling, which is related to the extent of the plastic deformation (i.e., hard crease 

versus soft crease) and can be associated with the yield stress of plastic materials. Itwas 

calculated by the simulation of folding a thin foil by a prescribed folding thickness. This 

problem was modeled by bending a thin film around a rigid circular die (as shown in Fig. 

6.5).  It is used as an analogy of the real folding process, in which the diameter of the 

rigid circular die corresponds to the folding thickness.  The material parameters of Al 

were used in the analysis.  Contact was defined between the deformable thin foil and the 
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rigid die.  1,571 B22 (3-node quadratic beam) elements are used in the analysis.  Once 

the thin foil enters the plastic zone, the plastic energy density can then be calculated.  

 

 

 

 

 

 

 

 

Fig. 6.5. FEA model for the calculation of the energy dissipation density due plastic 

rolling for different folding situation
3
. foldingH  is the diameter of the rigid die and fh  is 

the thickness of the thin foil.  

When M is applied, the smaller one between crack growth

crM  and plastic rolling

crM  is activated as 

the critical moment during deformation, which leads to either “crack growth” mode, 

when crack growth plastic rolling

cr crM M , or “plastic rolling” mode, when plastic rolling crack growth

cr crM M . 

Finite element simulations were conducted using commercial package ABAQUS 

to analyze these two deformation modes.  Because in a lithium-ion battery (LIB), Al foil 

tends to crack due to its lowest fracture toughness, the material parameters of Al were 

used in the analysis, with the surface energy 0.868 /N m  , elastic modulus

69E GPa  , and Poisson’s ratio  =0.33
57,58

.  The geometry is H = 3 mm, and L = 10 

Deformable thin foil 

Rigid circular 

die

H
folding

 

h
foil
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mm to match with the experiments.  The pre-existing crack is assumed small as compared 

with the width H.  , dissipated plastic energy per area, is calculated by folding a 10 m-

thick Al foil (the same thickness as that used in LIB) with different folding radius via 

finite element simulations. Thus the plot of   and ratio between the folding thickness 

and foil thickness /folding foilH h  can be obtained, which is shown in Fig. 6.6. It is found 

that as the ratio /folding foilH h  increases,  decreases.   

 

 

 

 

 

 

 

 

 

Fig. 6.6. The dissipated plastic energy per area (  ) as a function of the extent of the 

folding crease that is characterized by the ratio between folding thickness foldingH

and foil thickness foilh
3
. 

 

Figure 6.7 shows the “safe zone” (i.e., crack growth plastic rolling/ 1cr crM M  ) and the “fracture zone” 

(i.e., crack growth plastic rolling/ 1cr crM M  ) as a function of  for various a and .  For example, a = 

0 20 40 60 80
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0.03 mm (i.e., 1% of H, the width of strip) and  = 20 MPa, corresponding in creating a 

sharp crease of a 10 m-thick Al foil with bending diameter of 70 m (see Fig. 6.6), "safe 

mode" is activated for all angle of .  The results also show that for a larger  (or 

equivalently shaper crease) or a (i.e., larger initial crack), "fracture mode" tends to occur.  

For the real battery setup, Al foil is 10 m  in thickness, while the entire battery cell is 

500 800m m   in thickness depending on the mass loading of the active materials, 

which gives the ratio /folding foilH h  about 50 to 80.  Within this range, Fig. 6.6 shows that 

  is on the order of 1 MPa, which indicates that it is always the scenario to activate the 

"safe mode".  Thus this analysis verifies that the robust electrochemical and mechanical 

performance of the kirigami LIB is due to the activated "safe mode".  
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Fig. 6.7. Theoretical analysis of kirigami crack growth versus plastic rolling
3
.  (A)  

Illustration of the two deformation modes, i.e. crack growth and plastic rolling.  (B) "Safe 

zone" and "fracture zone" that are characterized by the ratio of critical moments, i.e.,

crack growth plastic rolling/cr crM M , as a function of angle  , for various a  and  .  
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CHAPTER 7 : STRETCHABILITY OF ARCHIMEDEAN SPIRAL BASED 

INTERCONNECTION DESIGN 

 In this chapter, a new interconnection pattern is designed for large stretchability. 

The contour line for the interconnection is called Archimedean spiral. Instead of using 

periodic patterns with high in-plane curvature as in conventional designs, current design 

is non-periodic with relative low in-plane curvature. To illustrate the outstanding 

stretchability of the pattern, stretchability of two of the most commonly seen patterns for 

the interconnection are compared with it under the same constraints. The new design is 

proved to provide great improvement on stretchability.  

 For a typical island-interconnect structure, at the unstrained state, the islands 

should occupy the majority of the in-plane area to increase the areal coverage.  Without 

losing generality, a 2 mm × 2 mm island and a 1 mm gap between islands are considered, 

where a 2 mm × 2 mm island size is consistent with the size of some small chips and the 

areal coverage can achieve over 45%. Thus the area can be filled in by interconnects is 2 

mm × 1 mm. In this area, one interconnect or multiply interconnects can be placed. From 

the consideration of electrical conductivity, multiply interconnects have the merit since 

the breaking of one interconnect does not cause the electrical failure of the entire 

structure.  Thus it is considered to place four identical interconnects in the gap and each 

interconnect occupies no more than 0.5 mm (height) × 1 mm (width).  Another constraint 

to fairly compare the stretchability among different interconnects is that the same cross-

sectional area and in-plane contour length should be used and thus the electrical 

resistance among different interconnects are the same.  With these constraints in placed, 

three different interconnects are studied (See Fig. 7.1). 
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Fig. 7.1. Geometry with dimensions for three interconnections
4
. (A) Geometry and 

dimension of serpentine pattern. (B) Geometry and dimension of fractal pattern. (C) 

Geometry and dimension of Archimedean spiral pattern.  
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The in-plane shapes and the dimensions of the three interconnects patterns are 

shown in Fig. 7.1, A, B and C, with names of regular serpentine, self-similar serpentine 

and Archimedean spiral, respectively.  The regular serpentine has been extensively used 

as interconnects and the self-similar serpentine was studied very recently and found to be 

more stretchable under different constraints 
22

.  Here this new pattern is proposed, 

Archimedean spiral.  The patterns have the same thickness of 1 m and the same strip 

width of 40 m.  The radius used in the regular and semi-similar serpentines is 20 m 

and 10 m, respectively.  Other geometrical parameters are designed to satisfy the 

constraints as discussed in the previous section.  In addition to the parameter shown in 

Fig. 7.1, the Archimedean spiral is prescribed by an analytical function in the polar 

coordinate as  1/1.760   = 0,3r     ， , and thus all three patterns have approximately the 

same span of 1000 m in x-direction, the same height of 400 m in y-direction and the 

approximately same contour length of 5,650 m.  The interconnections are modelled as 

copper.  The Young’s modulus E is 119GPa  and the Poisson's ratio  is 0.34 
22

.  

Plasticity is considered and described by 
n

Y p pE E     with Y = 0.3% as the yield 

strain 
22

, Ep = 530 MPa, and n = 0.44 
59

.  

Finite element package ABAQUS is used to conduct the analysis.  Buckling 

analysis is carried out to obtain the first 10 buckling modes followed by importing these 

10 buckling modes with random weight factors as imperfections.  Then the prescribed 

displacement is applied at the rightmost end to stretch the interconnections while the 

leftmost end is fixed.  At certain loading step, the prescribed displacement is removed to 
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study if the deformation is recoverable.  20-node quadratic elements with reduced 

integration (C3D20R) are used in the analysis and the mesh convergence is ensured.  

Fig. 7.2 to 7.4 show elastic stretchability of the three patterns (Fig. 7.1) under the 

constraints of the same in-plane span and contour length.  Here the elastic stretchability is 

defined as at this critical strain the interconnection enters the plastic zone, i.e., the 

maximum equivalent strain exceeds the yield strain. The capability of restoration when 

the stretch is removed was also studied.  Thus both the deformed state at the critical strain 

and the released state when the stretch is removed are shown for the three patterns, with 

the color map showing the equivalent plastic strain.  To compare, the two states 

(deformed and released) at the half way of the critical strain are also given, which is still 

at the elastic range and thus the deformation is fully recoverable.  

 

 

 

 

 

 

 

 

Fig. 7.2. Deformed and undeformed shapes of the three interconnect structures
4
. (A) 

54% and 112% strain are applied on the serpentine structure (Fig. 7.1A) and followed by 

strain relaxation. For 112% applied strain, plasticity begins to happen. The zoom-in view 

for one of the strain concentration location is shown. 
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Fig. 7.3. 49% and 98% strain are applied on the semi-similar serpentine structure 

(Fig. 7.1B) and followed by strain relaxation
4
. For 98% applied strain, plasticity begins 

to happen. The zoom-in view for one of the strain concentration location is shown. 
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Fig. 7.4. 80% and 200% strain are applied on the Archimedean spiral structure 

(Fig. 7.1C) and followed by strain relaxation
4
. For 200% applied strain, plasticity 

begins to happen. The zoom-in view for one of the strain concentration location is shown. 

The color maps indicate the magnitude of the equivalent plastic strain. 
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Fig. 7.5. The relationship between the maximum value of the maximum principal 

strain, maximum out-of-plane displacement and the applied strain with a color map 

indicating percentage of plastic zone
4
. (A) the serpentine structure, (B) the self-similar 

structure, and (C) the Archimedean spiral structure.  
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 The results clearly show that the Archimedean spiral has the largest elastic 

stretchability, up to 200%, while the regular serpentine and the semi-similar serpentine 

have 112% and 98% elastic stretchability, respectively.  The deformed states show that 

the in-plane stretching is companied by out-of-plane deformation (mainly twisting and 

bending) or in other words, the out-of-plane deformation compensates the in-plane 

deformation.  Particularly for the Archimedean spiral structure, the unfolding-like 

deformation occurs to compensate the in-plane stretching.  When the critical strain is 

released, the interconnects almost recover to the undeformed shapes, even when the 

plastic deformation has occurred, which is because at the critical point or little over the 

critical point, the regions that enter the plastic zone are very limited and the majority of 

the interconnects are still within the elastic domain.  Not surprisingly, the plastic 

deformation is localized at the regions with large curvature.  The reason that the 

comparison on elastic stretchability between the regular serpentine and the semi-similar 

serpentine is different from the previous study 
22

 is due to the different constraints.  

 Figure 7.5 further compares the stretchability of the three patterns.  Here the 

stretchability is defined as the critical strain at which the maximum of the maximum 

principal strain exceeds the fracture strain, 1%.  Fig. 7.5 also compares the out-of-plane 

deformation among these three patterns.  The color map indicates the percentage of the 

materials with plastic deformation.  The results conclude that the Archimedean spiral still 

has the largest stretchability, up to 270%, while the other two serpentine structures are 

very similar, with about 220% stretchability.  The Archimedean spiral structure also has 

the greatest out-of-plane deformation when the outer ring of the spiral rotates to 

compensate the in-plane stretching.  From the application perspective, smaller out-of-
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plane deformation is desired in order to have denser stacking in the thickness direction.  

However the maximum out-of-plane deformation, 300 m, is within the range of the 

thickness of a island or device, which will not affect the stacking density in the vertical 

direction.  As the color map shows that the percentage of entering plastic deformation is 

rather small, on the order of 1%, which indicates that the structure has fairly good 

capability of restoring to the undeformed state even entering the plastic zone.  

 The comparisons shown in Fig. 7.2 to 7.5 seem to suggest that an uniform and 

small curvature may contribute to a greater stretchability under the constraints of same 

in-plane span and contour length.  The regular and semi-similar serpentines have zero 

curvatures over the straight lines but also large curvatures at the junctions between 

straight lines.  Because of the design limitations for the serpentine based structures, large 

curvatures are needed to have a large areal filling ratio.  Thus the curvature for the 

serpentine based structure has to change from zero to a large curvature.  To obtain a 

smooth and small curvature along the contour length, lessons can be sought from nature, 

which in fact motivated this work to study the spiral structures.  One particular pattern is 

the golden spiral that can be found in many species, such as a nautilus shell, where the 

curvature evolves smoothly along the contour length.  However, the golden spiral 

(expressed in br ae   in a polar coordinate system) cannot be directly applied as a 

stretchable interconnect because the spiral lines aggregate at the center of the spiral, in 

other words, the spacing between the spiral lines decreases as the spiral curves to the 

center, which leads to large curvatures and does not benefit the stretchability of the 

interconnects.  Therefore, the Archimedean spiral (in general tr a   (t < 1) in a polar 
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coordinate system) is used to have a uniform and small curvature along the contour 

length.   

However, the Archimedean spiral also has one limitation, which is the horizontal 

span and vertical span are very close; such that to fill in a non-square area (e.g., 1 mm in 

width and 0.5 mm in height as in this Letter), two spirals have to be used.  To make the 

spiral-based structure more versatile to fit in non-square area, a modified Archimedean 

spiral is used, as shown in Fig. 7.6A.  The spirit of this modification is to adjust the ratio 

between the horizontal and vertical dimensions to fit the non-square area.  The approach 

used here is to modify the original Archimedean spiral by multiplying with a smooth 

approximation to a step function of  in polar coordinate system and then inserting 

straight lines to fit the in-plane area. 
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Fig. 7.6. Geometry and results for the modified Archimedean spiral design
4
. (A) In-

plane geometry and dimensions of the modified Archimedean spiral design. (B) The 

relationship between the maximum value of the maximum principal strain, maximum 

out-of-plane displacement and the applied strain with a color map indicating percentage 

of plastic zone for the modified Archimedean spiral design. The red dots show the 

corresponding results for the original spiral design (Fig. 7.1C).  
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The stretchability of the modified Archimedean spiral was then studied by 

applying a prescribed displacement at one end while the other end is fixed and the results 

are shown in Fig. 7.6B.  The same legend as that in Fig. 7.5 was used here and the results 

for the original spiral design were marked by the red dots.  Clearly, Fig. 7.6B shows that 

the modified Archimedean spiral is more stretchable than the original spiral design, with 

over 250% elastic stretchability and 325% stretchability before fracture.  The maximum 

out-of-plane displacement is about 450 m and acceptable.  The reason that the modified 

Archimedean spiral is more stretchable is because the newly added straight portions make 

the structure easier to generate out-of-plane deformation while at the same time does not 

introduce large curvatures. 
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CHAPTER 8 : SIDE PROJECT: SIMULATION OF HYDROCHLORIC ACID IN 

GELATIN 

The content in this chapter illustrates another very important aspect of my 

research. It shows the simulation of deformation of gelatin in hydrochloric acid which 

will form a gel. During the deformation process, the diffusion will increase the volume of 

the gel and, at the same time, the chemical reaction between gelatin and hydrochloric acid 

will reduce the volume of the gel. I developed a 1D theory to explain the phenomenon. 

This is for the first time the theory is developed with chemical reaction coupling with 

diffusion and large deformation of a gel. The final result from the 1D theory for the 

deformation of gel is compared with experimental results. Good agreement of the two 

results indicates the accuracy of the newly developed 1D theory. Please note I only 

involved in the design of physical experiment shown in this chapter. The actual physical 

experiments were done by Xu Wang.    

Numerous works have been carried out on the simulation of gel including large 

deformation
60

, capillary force
61

, mass diffusion
62-66

, heat transfer
67,68

, electrical field
69

 

and so on. However, few of them consider the effect of chemical reaction and its effect 

on the volume change on gel. Based on the fact, I decided to couple the chemical reaction 

into the deformation process of gel. This section summarizes the general derivation of the 

related theory and presents some of the primary results
70

.  

To begin the discussion, the experiment process should be briefly described. A 

gelatin sheet with dimensions of 160 µm (thickness) × 1,090 µm × 4,000 µm was used 

for the observation. The gelatin sheet was held vertically by a sponge stage in a glass dish 
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under an optical microscope in room temperature 25 C  .  The sponge stage was able to 

keep the gelatin sheet standing in the glass dish and impose mechanical constraints in the 

horizontal direction. To implement this in experiments, by surrounding the gelatin film 

with sponge, the sponge is able to confine the gelatin film horizontally, while leave the 

films relatively free to swell in the thickness direction. The simulated gastric fluid was 

composed of 2.0 g of sodium chloride and 3.2 g of purified pepsin (derived from porcine 

stomach mucosa, with an activity of 800 to 2,500 units per mg of protein) in 7.0 mL of 

hydrochloric acid (HCl) and water (1000 mL).  This test solution has a pH of about 1.2.  

When the sponge was soaked with simulated gastric fluid and touched the gelatin sheet, it 

could be used to simulate the gelatin sheet in stomach environment.  After the simulated 

gastric fluid was poured into the glass dish, swelling and digestion of the gelatin sheet 

were observed in-situ by microscopy (Nikon eclipse lv100). It was observed that a gelatin 

sheet with an initial cross-sectional area of 160 µm × 1,090 µm first swells due to the 

diffusion of the gastric fluid into the polymeric gelatin network, and then shrinks due to 

the digestion of gelatin and eventually becomes undetectable microscopically (Nikon 

eclipse lv100, 5X objective) after 2.5 hours.  During this process (swelling → shrinking), 

because of the constraint in the horizontal direction, the maximum strain in the horizontal 

direction  was only 17%, while its counterpart in the thickness direction  

was 261%.  This quasi-one-dimensional constrained digestion process can be understood 

by a theoretical model that considers the coupling of mass diffusion, chemical reaction, 

and extremely large mechanical deformation. 

 A theoretical model was developed to characterize the digestive process.  This 

model considers the coupling of mass diffusion, chemical reaction as well as the 

horizontal thickness
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nonlinear mechanical behavior. The mixture of gelatin and HCl forms a gel, with the 

former as polymeric network and later as solvent. During the digestive process, the HCl 

will have chemical reaction with gelatin. This in general complex chemical reaction will 

cause the reduction of gelatin network, which will lead to the reduction of the gel 

volume. To characterize the digestive process, classical gel model with coupled diffusion 

and large deformation
60,62

 will be applied and the first order reaction will be introduced to 

account for the volume reduction caused by chemical reaction.  

 The general time-dependent diffusion equation with Fickian first law is used to 

model the diffusion of HCl in gelatin, i.e.  

 i i
V a

d
CdV j n da r

dt
   , (55) 

 i

i

j cD
x





, (56) 

where C  and c  are the nominal and true concentration of HCl in gel, V  is the initial 

volume of gel, j  is true flux of HCl into the gel, a  is current area of gel, n  is the normal 

vector of a surface in the current state, r  is the source of HCl generation, the subscript i  

can vary from 1 to 3. 

 The first-order chemical reaction model is applied here as the source of HCl 

generation, i.e.  

 
V

r kCdV    (57) 

where k  is the first-order reaction constant
71

.  

 For nonlinear solid mechanics part, the normalized free energy can be written as 
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F F
F

F

  (58) 

Here The deformation gradient /  F x X  is decomposed into the mechanical stretch 

part and chemical reaction part using polar decomposition, i.e., diff rec F F F , where diff
F  

is the diffusion induced deformation and rec
F  represents the chemical reaction induced 

deformation. diff
F  stretches the polymeric network, and rec

F  eliminate materials (i.e., 

digestion).   diff

sW F  and  mW C  are the stretch energy (depending on diff
F ) and mixing 

energy (depending on nominal concentration C), respectively,  R  is the gas constant and 

T  is temperature of the gel.    is the dimensionless parameter that relates to the enthalpy 

of mixing.  n  is the molar number of chain divided by the dry volume of gel with a unit 

of 3/mol m .  The incompressibility of all the particles is assumed, so that the following 

can be obtained:  

  1 1 1 detA A A ACv kCtn V v ktn V C BC        F   (59) 

 1 det diffCv  F   (60) 

where v  and AV  are the molar volume of HCl and gelatin, respectively, An  is the molar 

ratio between the reactant A  (gelatin) and the solvent (HCl) in the chemical reaction 

balance and t  is the total simulation time.  

Substitute Eq. (59) into Eq. (58) and use the Legendre transformation, the following can 

be obtained:  

        ˆ , , , , det 1 /diff diff diff diffW W C C W v      F F F F F F   (61) 
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where Ŵ is defined as a function of ,diffF F and  .   

Notice here, due to the chemical reaction, the reduction of the material which affects the 

reference volume needs to be considered. So the relation can be obtained as:  

    ˆ , , , ,diff diffW V W V  F F F F   (62) 

where det recV V  F  is the reduced volume of gel considering the effect of chemical 

reaction and  , ,diffW F F  is the modified free energy. As hyperelastic model is applied 

to calculate the large deformation behavior of the gel, the normalized nominal stress can 

be obtained:  

 
   , , , ,diff diff

diff

v t W t

RT






s F F F F

F
  (63) 

As described before in the experiment part, the change of the in-plane stretch ratio is very 

small compared to the out-of-plane one, a 1D model is developed based on the general 

3D model mentioned above. Thus the deformation gradient can be written as:  

 

1 1

2 2

3 3 3 3 3

0 0 0 0 1 0 0 1 0 0 1 0 0
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0 0 0 0 0 0 0 0 0 0

c r
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c r c r

 

 

    
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          
       
       

F F F  (64) 

where the in-plane stretch ratios due to diffusion and chemical reaction are fixed to one. 

3 thickness  will be the only value to be calculated in the following analysis.  

 Combing Eq. (55) to (64), the time-dependent partial differential equation (PDE) 

of the out-of-plane stretch ratio 3  can be obtained as:  

 
   2 2

1 3 1 32 3
12 2 2
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1 11
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t x x B
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     

      
    
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  (65) 
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.  

 The PDE shown above is solved by using commercial software COMSOL. The 

module of coefficient form PDE is used. The geometry of the model is only one straight 

line with a length of 160 m . For material properties, shear modulus 33.3nRT kPa  and 

the value of 7/ 4 10RT v Pa  , 5 31 10 /v m mol   are firstly obtained
62,72,73

. To 

calculate the free swelling of gel without considering the effect of chemical reaction, the 

incompressible condition needs to be modified as:  1 detCv  F , i.e. B v . 
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Substituting it to the Eq. (65) and using the experiment data for the stretch ratio of 400%, 

1 0.554  can be obtained. Diffusivity 10 28 10 /D m s   is obtained through fitting the 

short-time-range data for the stretch ratio thickness  from experiment due to the lack of exist 

data. The first-order reaction constant 58 10 /k s   is obtained by fitting the long-time-

range data for the stretch ratio thickness  from experiment due to the difficulty on measuring 

it from experiment. For boundary conditions, the flux of one side is fixed to be zero, i.e. 

3

0
x





. The chemical potential is fixed to be zero on the other side, i.e. 0  . After 

solving the PDE, the curve of the simulation for the stretch ratio s

thickness , which is shown 

in Fig. 9.1, can be obtained. 

 

 

 

 

 

 

 

 

 

Fig. 8.1. Comparison of experimental and FEA result for the out-of-plane (in the 

direction of thickness) stretch ratio of the gel
70

. Here the red dots stand for the 

experimental data and the black solid stand for the data from analytical expression 
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derived form the 1D theory.  The symbol s

thickness  stands for stretch ratio from simulation 

and the symbol thickness  stands for stretch ratio from experiment. 
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CHAPTER 9 : CONCLUSIONS 

 My research starts from relative simple single degree of freedom origami pattern: 

Miura-ori. In the theoretical analysis for the Poisson’s ratio, the non-periodic nature of 

Miura-ori, which is often ignored by other related theories, has been included. By the 

introduction of the non-periodic feature, the in-plane Poisson’s ratio, which was long 

believed to be always negative, is shown can change from negative to positive. This 

effect will be more obvious when the pattern is with few periods. Geometric explanation 

is given to better understand the phenomenon. Current analytical solution can be readily 

utilized as a guide for design of general Miura-ori pattern.  

 After the study of relative simple origami based structure, more complex origami 

pattern with multi-degree of freedom, the water bomb, is studied. Based on the idea of 

atomic-scale finite element method (AFEM), a non-local finite element method (NFEM) 

and its corresponding ABAQUS user subroutine are developed to study the non-local 

effect of origami patterns. I also develop a general vector based method to derive the 

dihedral angles in rigid origami by using necessary nodal coordinates. For the current 

study, water bomb is used as an example to illustrate the power of the NFEM. The 

simulation result matches the real water bomb based structures very well. To study other 

origami patterns, only minor changes on the element definition are needed.  

 Then my study focus turns to non-rigid origami based structures. By including 

plasticity of material, which is long ignored by others in their simulation of origami, in 

the modelling of origami based structures, very local phenomenon called locking can be 

captured. By using dynamics explicit algorithm, final results can be obtained with 
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sufficient efficiency and accuracy.  The final results suggest plasticity should be included 

in the simulation of origami based structures.  

 After the study of macroscale origami based structures, the microscale origami 

catches my attention. A new fabrication approach for the manufacture of microscale 

origami is proposed. By introducing the predesigned elevated wall on soft substrate and 

buckling of the thin film attached to the wall, a variety of microscale 3D complex origami 

pattern can be obtained. Comparison of FEA and experiment results proves the accuracy 

of current numerical analysis. Therefore, FEA can be readily applied as a tool to guide 

the design and optimization of the origami based structures.  

 Kirigami based structure, compared with origami based ones, provides much 

more degree of freedom. However, initial crack introduced during the fabrication process 

is an issue for this type of structures. To model a kirigami based lithium-ion battery, 

plastic deformation and the fracture mechanism are considered. By using a new method 

combines FEA and classical theories, the geometric factors of the model can be tested 

numerically. Therefore, the features of kirigami based structure can be readily designed 

according to final result of simulation.   

 Finally, in order to make use of the advantage of kirigami, a new design of 

interconnection is proposed. Based on the observation of existing designs, an innovative 

Archimedean spiral kirigami pattern is applied to the design of the interconnection. By 

carry out the buckling analysis via FEA, the new non-periodic design with smaller in-

plane curvature is proved to have much higher stretchability compared to the 

conventional periodic ones. Finally, a modified spiral pattern is also obtained based on 
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the understanding of the large deformation behavior of the interconnection. The modified 

pattern broadens the application of current design and provides even higher stretchability.  

 In the side project, the numerical calculation of HCl in gelatin couples the 

diffusion, chemical reaction and extremely large deformation behaviors. It is for the first 

time the influence of chemical reaction on the gel volume is considered in the gel 

simulation. From the comparison of the experimental and simulation results, very good 

match can be observed, which indicates the current 1D model is sufficient to capture all 

the necessary characteristics of the physical phenomenon while still ensure the high 

efficiency of numerical calculation.  

 By developing all the above theoretical and numerical models, I believe the 

understanding of origami and kirigami based structures, which are now more and more 

involved in our daily life, can go to the next level.   
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CHAPTER 10 : FUTURE WORK 

 For origami, more detailed geometry and the material behavior of the creases in 

the origami pattern can be formulated with higher accuracy. Introducing the cross section, 

i.e. the thickness of the pattern, will help to develop the concept of strain and stress and 

thus make the FEA more accurate. Introducing the effect of imperfection in the dynamics 

behaviors for origami will make the study relate more to practical applications. For the 

kirigami, model of crack can be refined to make it more accurate. For the HCl in gelatin, 

a 3D model can be developed to calculate general 3D case. The model of the chemical 

reaction can be improved to better fit the experiment results.  
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APPENDIX A  

A CALCULATION OF DIHEDRAL ANGLE BASED ON NODAL COORDINATES-

SITUATION 1  

 

 

 

  



99 

The illustration of the situation can be shown in Fig. A1:  

 

 

 

                             

Fig. A1. The simplified model to illustrate idea of vector product applied for two 

adjacent faces in origami for situation 1. The vectors along edges of origami are noted 

as iX  with i  changes from 1 to 4. All the vertices are numbered from 1 to 4.  The normal 

vectors of the faces are noted as iN  with  changes from 1 to 2.   

Firstly, the following general derivation can be obtained:  

The angle between plane 1-2-3 and plane 2-3-4 is set to be .  

  arccos cos    (A1) 

 1 2

1 2

cos
 


N N

N N
  (A2) 

where 1N and 2N are the normal vectors of the two adjacent faces. They can be obtained 

by the vector product as shown below:  

 1 1 2 N X X   (A3) 

 2 3 4 N X X   (A4) 

where 

 1 2 1 2 1 2 1, ,x x y y z z   X  

 2 3 1 3 1 3 1, ,x x y y z z   X  

 3 3 4 3 4 3 4, ,x x y y z z   X  

i

1 

3 

2 

4 

1X
  

4X
  

    

1N
  2N
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 4 2 4 2 4 2 4, ,x x y y z z   X  

here ix , iy  and iz  are the coordinates of the node i  on three directions.   

 

Then the following derivative can be obtained based on the content mentioned above:  

First Derivative: 

 
cos

cos

ij kl

mn ij kl mn

N X

x N X x

  



   


    
  (A5) 

Here, it should be noted i  is number of the normal vector which can change from 1 to 2, 

j  is the direction of the normal vector which can change from 1 to 3, k  is number of the 

in-plane vector which can change from 1 to 4, l  is direction of the in-plane vector which 

can change from 1 to 3, m  is number of the node which can change from 1 to 4, n  is 

direction of the node which can change from 1 to 3.  

 

Then the following is the derivation of the components of the equation above:  

Part 1:  

 
2

1

cos 1 cos



 


 

 
  (A6) 

 

Part 2:  

cos

ijN




 

 

For 1i   , the following can be obtained:  
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2 1 2 1

1 23 2

1 1 2 1 21 2 1

cos
cos

j j j j

j

N N N N

N





      


N N

N N N NN N N
  (A7) 

 

For 2i   , the following can be obtained:  

 
1 2 1 2

1 23 2

2 1 2 1 21 2 2

cos
cos

j j j j

j

N N N N

N





      


N N

N N N NN N N
  (A8) 

 

Part 3:  

ij

kl

N

X




 

Using the index notation, the following can be obtained:  

 

1 1 2

1

2

1

1

2

1

    j jpq p q

j

jpq lp q

l

j

jlq q

l

N X X

N
X

X

N
X

X



 






 




 



  (A9) 

 

So the following can be obtained: 

1

1

2

j

jpl p

l

N
X

X






 

2

4

3

j

jlq q

l

N
X

X






 

2

3

4

j

jpl p

l

N
X

X






 

If 1,  1,2i k   or 2,  k 3,4i    ,  
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0
ij

kl

N

X





 

 

Part 4:  

kl

mn

X

x




 

If n l  , then 0kl

mn

X

x





.  

If n l  , then, for 1k  , if 1m  , 1kl

mn

X

x


 


, if 2m  , 1kl

mn

X

x





 

                        for 2k  ,if 1m  , 1kl

mn

X

x


 


,if 3m  , 1kl

mn

X

x





 

                        for 3k  ,if 4m  , 1kl

mn

X

x


 


,if 3m  , 1kl

mn

X

x





 

                        for 4k  ,if 4m  , 1kl

mn

X

x


 


,if 2m  , 1kl

mn

X

x





 

                        In the rest situation, 0kl

mn

X

x





.  

 

 

 

 

 

 

Second Derivative 
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2 2
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1 1

2

1

2

1

cos cos

cos

cos

cos

cos

cos

ij xykl uv

m np ij kl m uv xy np
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ij uv kl m xy np
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x x N X x N X x
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N N X x X x
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N X X x x
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               

    
          

    
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2

1

cos

cos

ij kl

ij kl m np

N X

N X x x

 


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

   
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  (A10) 

Here, it should be noted i  and u  are from 1 to 2, j  and v  are from 1 to 3, k and x  are 

from 1 to 4, l  and y  are from 1 to 3, n is from 1 to 4, m and p  are from 1 to 3.  

 

Then the following is the derivation of some of the components of the equation above:  

Part 1: 

 

 

2

3 22 2

cos

cos 1 cos

 

 


 

 
  (A11) 

 

Part 2: 

2 cos

ij uvN N



 
 

For 1 and 1i u  , the following can be obtained:  

 

2
2 1 1 2 1 1

1 2 1 23 3 3 5

1 1 1 2 1 2 1 2 1 2

2 1 1 2 1 1

3 2 3 4

1 2 1 1 2 1

cos
3

                = cos  3 cos

j v jv j v j v

j v

j v jv j v j v

N N N N N N

N N

N N N N N N




 


     

 

  

N N N N
N N N N N N N N

N N N N N N

  (A12) 

For 1 and 2i u  , the following can be obtained: 
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2
2 2 1 2 1 1

1 23 3 3 3

1 2 1 2 1 2 1 2 1 2

2 2 1 2 1 1

3 2 2 3

1 2 1 2 1 2 1 2

cos

                = cos

jv j v j v j v

j v
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N N N N N N
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
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
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 

   
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N N N N N N N N

N N N N N N N N

  (A13)  

For 2 and 1i u  , the following can be obtained: 
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                = cos
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



     

 

   
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N N N N N N N N

  (A14) 

For 2 and 2i u  , the following can be obtained:   

 

2
1 2 2 1 2 2
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                = cos 3 cos
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
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
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  
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  (A15) 

 

Part 3: 

2

ij

kl uv

N

X X



 
 

Using the previous conclusion for
ij

kl

N

X




, the following can be obtained by using the index 

notation:  

 

2

1

1 2

j

jlq qv jlv

l v

N

X X
  


 

 
  (A16) 

So the following can be obtained: 

2

1

2 1

j

jpl pv jvl

l v

N

X X
  


 

 
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2

2

3 4

j

jlq qv jlv

l v

N

X X
  


 

 
 

2

2

4 3

j

jpl pv jvl

l v

N

X X
  


 

 
 

For other situation, 

2

0
ij

kl uv

N

X X




 
 

 

Part 4: 

 

2

1

0kl

m np

X

x x




 
  (A17) 
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APPENDIX B  

B CALCULATION OF DIHEDRAL ANGLE BASED ON NODAL COORDINATES-

SITUATION 2  
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The situation can be shown in Fig. A2:  

 

 

                          

Fig. A2. The simplified model to illustrate idea of vector product applied for two 

adjacent faces in origami for situation 1. The vectors along edges of origami is are 

noted as iX  with i  changes from 1 to 3. All the vertices are numbered from 1 to 4.  The 

normal vectors of the faces are noted as iN  with  changes from 1 to 2.   

Firstly, the following general derivation should clear:  

The angle between plane 1-2-4 and plane 1-3-4 is set to be .  

  arccos cos    (A18) 

 1 2

1 2

cos
 


N N

N N
  (A19) 

 1 1 2 N X X   (A20) 

 2 3 1 N X X   (A21) 

where 

 1 4 1 4 1 4 1, ,x x y y z z   X  

 2 2 1 2 1 2 1, ,x x y y z z   X  

 3 3 1 3 1 3 1, ,x x y y z z   X  

Then the rest of derivations are similar to the ones above.   

  

i

4 

3 2 
1 

1X
  

    1N
  2N
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APPENDIX C 

C CALCULATE DERIVATIVES OF ENERGY FOR SPRING ELEMENT OF NFEM 
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In the SUBROUTINE, I need to define 
i

r

x




 and

2

i j

r

x x



 
.  

Note here, ix  can be 1 1 1 2 2 2, y ,z , x , y ,zx   

As the distance between two adjacent nodes is:  

      
2 2 2

1 2 1 2 1 2r x x y y z z        (A22) 

In the program, the definitions of DR1 and DDR2 will be necessary. And it is clear that 

taking the derivative with respect to a coordinate of node “2” will have a negative sign 

before the derivative with respect to the same coordinate of node “1”, i.e. 
2 1

r r

x x

 
 

 
. 

And the following can be obtained as an example for the general case:  

 

      

     
 

 

     

 

2 2 2

1 2 1 2 1 2

1 1

1 2
2 2 2

1 2 1 2 1 2

1 2

2 2 2

1 2 1 2 1 2

1 2

1 1
     2

2

     

     

r
x x y y z z

x x

x x
x x y y z z

x x

x x y y z z

x x

r

 
     

 

 
    




    




  (A23) 

For the second derivative, two different cases exist. One is the derivative with respect to 

two different coordinate and the other is the one with respect two same coordinate. The 

following are the two examples for the two cases:  
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  (A24) 
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
  




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  (A25) 

 

And the examples of the derivative of the energy can be shown as followed:  

First derivative:  

 

 

 

 
 

 
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


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  (A26) 
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Second derivative:  
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  (A27) 
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  (A28) 
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APPENDIX D 

D NUMBER OF TYPE 1 AND TYPE 2 ELEMENT FOR NFEM 
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As shown in Fig. A3, different element types are defined according to the 

different connection of nodes. For each of element, nodes are numbered from 1 to 13. 

Different stiffness values are given to the rotational springs along creases according to 

the different kind of dihedral angles. For each of the situation and the corresponding 

stiffness value, the numbers of the necessary nodes to determine the corresponding 

dihedral angle are summarized on the right side of each figure. This number rules will be 

very useful for the development of UEL for NFEM.  
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Fig. A3. Water bomb crease pattern with definitions of different NFEM element 

types. (A) For element type 1. (B) For element type 2 (1). (C) For element type 2 (2). 

Here the latter two types of element only have difference on their directions. The red 

numbers shows the local nodal number in each element. Each kind of stiffness value is 

assigned according to the geometry of the involved faces. Dash lines indicate valley 

creases and solid lines indicate mountain creases.  

A B 

C 
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APPENDIX E 

E NFEM USER SUBROUTINE UEL FOR WATER BOMB SIMULATION 
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     SUBROUTINE USED TO DEFINE NFEM ELEMENT PROPERTY 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                       

  SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS,           

     1 PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME,         

     2 KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF,NPREDF,       

     3 LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP,PERIOD)         

C 

C********************************************************************** 

C The description of unit: 

C energy : 10^(-3) J=1N*1mm 

C length : 1 mm  

C     force  : 1 N 

C********************************************************************** 

  IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

       PARAMETER ( NTOTPART = 480, NTOTEL = 1408)                                                                                                                            

   DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),PROPS(*),          

     1 SVARS(NSVARS),ENERGY(8),COORDS(MCRD,NNODE),U(NDOFEL),             

     2 DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),PARAMS(*),               

     3 JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*),DDLMAG(MDLOAD,*),               

     4 PREDEF(2,NPREDF,NNODE),LFLAGS(*),JPROPS(*)                        

C-----  The above is the standard input in the USER-ELEMENT in ABAQUS.      

C***********************ELEMENT USER VARIABLE********************** 

C NODEL=39:number of degree of freedom in the element                                                                                  

C NRHS=1                                                                                                                             

C MCRD=3                                                                                                                             

C NNODE=13: number of nodes on the element   

C NTOTPART: total vertices for simulation 

C NTOTEL  : total number of elements for simulation                                                                                             

 

   REAL*8 EX(13,3),EK(39,39),EF(3)          

        REAL*8 SPRINGEX(2,3),SPRINGEX0(2,3),SPRINGEK(6,6),SPRINGEF(6)    

   DIMENSION ANGLE_SUB(2,1256,4,6) 

   INTEGER NELE(13),NRANGE 

   COMMON ITIME,ICALL 

   COMMON ETTOT,ESPR 

   COMMON ANGLE(2,1256,4,6) 

   REAL*8 MASS 

          

C----- NRANGE  : the number of node in a row of mesh  

C----- EX  : the coordinates of current increment for this element 

C----- EK  : stiffness matrix. The left-top 3*3 is the stiffness of 

center vertex, and the 3*27 and 27*3 have be divided by 2 because the  

C other half contribution comes from another elements. 

C      EK = partial ^2 energy / partial (x) partial (x) 

C----- EF  : force due to the unequilibrium vertex postions. 

C      EF = partial energy / partial (x) 

C----- NELE : local vertex array. The arrangement refers to the 

drawing. 

C      NELE(1) = 1 always 

C      If else is 1, say, NELE(j) =1, then that means there is no 

vertex. 
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C      ITIME : identifier to initiate energy and used to check if 

current iteraction should end. 

C      ICALL : identifier to indicate if it is first iteration.   

 

   OPEN(2000, FILE='D:\ASUchenglv\Origami\Magic_Ball\Deformation\ 

     &coors.TXT') 

   OPEN(105, FILE='D:\ASUchenglv\Origami\Magic_Ball\Deformation\ 

     &energy.dat') 

  OPEN(6000, FILE='D:\ASUchenglv\Origami\Magic_Ball\warning.dat') 

   OPEN(4000, 

FILE='D:\ASUchenglv\Origami\Magic_Ball\eq_angle.dat') 

C       Create file coor.txt to store the current coordinates of every 

C       node. Create file energy.txt to store the total energys of the  

C       whole model. Create file warning.dat to check the large  

C       deformation of linear spring element. Read file eq_angle.dat to  

C       obtain the equilibrium angles of evergy dihedral angle.   

 

C**********************************************************************    

C       Read equilibrium values for every dihedral angle 

C**********************************************************************    

        IF(ICALL.EQ.0) THEN 

     DO I=1,3904 

       READ(4000,*) N1,N2,N3,N4,ANGLE_EQ 

      ANGLE(N1,N2,N3,N4)=ANGLE_EQ 

     ENDDO 

   ENDIF 

 

C********************************************************************** 

C       Initiate values 

C**********************************************************************    

   ANGLE_SUB=ANGLE 

   ICALL=1 

   AMATRX = 0.D0  

   MASS = 1.D0 

   ADJUST_K = 0.d0  

   NRANGE = 32 

        IF(ITIME.EQ.0) THEN 

          ETTOT = 0.D0 

          ESPR = 0.D0 

        ENDIF                  

   DO K1 = 1,NDOFEL                

     DO KRHS = 1,NRHS 

   RHS(K1,KRHS) = 0.D0 

     ENDDO 

   ENDDO 

 

C********************************************************************** 

C**********************************************************************

C       Loop for the first element type 

C********************************************************************** 

C********************************************************************** 

        IF (JTYPE.EQ.1) THEN 
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C**********************************************************************            

C       Update coordinates  

C**********************************************************************     

          DO INODE = 1,NNODE                                                  

      DO IMCRD = 1,MCRD                                                  

        IPOSN = 3*(INODE-1)+IMCRD                                        

        EX(INODE,IMCRD) = COORDS(IMCRD,INODE)+U(IPOSN) 

      ENDDO                                                        

     ENDDO 

     

C**********************************************************************

C       Loop to decide whether the node exist or not 

C********************************************************************** 

     NELE = 1      !initiate NELE array    

     DO INODE = 2,NNODE 

      DIS = DSQRT((EX(INODE,1)-EX(1,1))**2.D0                 

     &       +(EX(INODE,2)-EX(1,2))**2.D0+(EX(INODE,3)-

EX(1,3))**2.D0)  

      IF (DIS.LT.1.D-7) THEN 

        NELE(INODE) = 1 

      ELSE 

        NELE(INODE) = INODE 

      ENDIF 

     ENDDO 

 

C********************************************************************** 

C       Update EK and EF 

C********************************************************************** 

     CALL CALEMEF(EX,NELE,EK,EF,ETTOT,JELEM,JTYPE,ANGLE_SUB) 

 

   ENDIF 

C********************************************************************** 

C**********************************************************************

C       End loop for the first element type 

C********************************************************************** 

C********************************************************************** 

 

 

C********************************************************************** 

C**********************************************************************

C       Loop for the second element type 

C********************************************************************** 

C********************************************************************** 

        IF (JTYPE.EQ.2) THEN  

 

C********************************************************************** 

C       Update coordinates   

C**********************************************************************        

     DO INODE = 1,NNODE                                                 

      DO IMCRD = 1,MCRD                                                  

        IPOSN = 3*(INODE-1)+IMCRD                                        
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        EX(INODE,IMCRD) = COORDS(IMCRD,INODE)+U(IPOSN)     

      ENDDO                                                        

     ENDDO  

 

C**********************************************************************  

C       Loop to decide whether the node exist or not          

C********************************************************************** 

     NELE = 1      !initiate NELE array    

     DO INODE = 2,NNODE 

      DIS = DSQRT((EX(INODE,1)-EX(1,1))**2.D0                 

     &       +(EX(INODE,2)-EX(1,2))**2.D0+(EX(INODE,3)-

EX(1,3))**2.D0)   

      IF (DIS.LT.1.D-7) THEN 

        NELE(INODE) = 1 

      ELSE 

        NELE(INODE) = INODE 

      ENDIF 

     ENDDO 

 

C********************************************************************** 

C       Update EK, EF and ETTOT 

C********************************************************************** 

     CALL CALEMEF(EX,NELE,EK,EF,ETTOT,JELEM,JTYPE,ANGLE_SUB) 

 

   ENDIF 

C********************************************************************** 

C**********************************************************************

C       End loop for the second element type 

C********************************************************************** 

C********************************************************************** 

 

 

C********************************************************************** 

C**********************************************************************

C       Loop for the third, fourth and fifth element type 

C********************************************************************** 

C********************************************************************** 

   IF (JTYPE.EQ.3.OR.JTYPE.EQ.4.OR.JTYPE.EQ.5)THEN 

 

C********************************************************************** 

C       Update coordinates   

C**********************************************************************        

  DO INODE = 1,NNODE                                                     

    DO IMCRD = 1,MCRD                                                    

   IPOSN = IMCRD+3*(INODE-1)                                           

   SPRINGEX(INODE,IMCRD) = COORDS(IMCRD,INODE)+U(IPOSN)                 

   SPRINGEX0(INODE,IMCRD) = COORDS(IMCRD,INODE)  

    ENDDO                                                                

  ENDDO 

 

C********************************************************************** 

C       Update SPRINGEK, SPRINGEF and ESPR 



120 

C**********************************************************************  

  CALL 

SPRINGEMEF(JTYPE,SPRINGEX,SPRINGEX0,SPRINGEK,SPRINGEF,ESPR, 

     &  jelem)  

    

   ENDIF 

C********************************************************************** 

C**********************************************************************

C       End loop for the third, fourth and fifth element type 

C********************************************************************** 

C********************************************************************** 

 

C********************************************************************** 

C**********************************************************************

C       For static analysis 

C********************************************************************** 

C**********************************************************************      

   IF (LFLAGS(1).EQ.1.OR.LFLAGS(1).EQ.2) THEN  

 

C********************************************************************** 

C       Assign value to RHS and AMATRIX for the first element type 

C********************************************************************** 

  IF (JTYPE.EQ.1) THEN 

    RHS(1,1) = -EF(1)     !3 translational degrees of freedom 

    RHS(2,1) = -EF(2) 

    RHS(3,1) = -EF(3) 

    DO K1 = 1,NDOFEL 

   DO K2 = 1,NDOFEL 

     AMATRX(K2,K1) = EK(K2,K1)  

   ENDDO 

    ENDDO 

 

C********************************************************************** 

C       Add adjust factor to AMATRIX to help converge 

C********************************************************************** 

    amatrx(1,1) = amatrx(1,1) + ADJUST_K                               

    amatrx(2,2) = amatrx(2,2) + ADJUST_K 

    amatrx(3,3) = amatrx(3,3) + ADJUST_K 

 

C********************************************************************** 

C       Output current coordinates to file coor.txt 

C********************************************************************** 

    WRITE(2000,2000) JELEM,EX(1,1),EX(1,2),EX(1,3) 

2000    FORMAT(I8,',',f30.20,',',f30.20,',',f30.20) 

  ENDIF 

 

C********************************************************************** 

C       Assign value to RHS and AMATRIX for the second element type 

C********************************************************************** 

  IF(JTYPE.EQ.2) THEN 

    RHS(1,1) = -EF(1)     !3 translational degrees of freedom 

    RHS(2,1) = -EF(2) 
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    RHS(3,1) = -EF(3) 

    DO K1 = 1,NDOFEL 

   DO K2 = 1,NDOFEL 

     AMATRX(K2,K1) = EK(K2,K1)  

   ENDDO 

    ENDDO 

 

C********************************************************************** 

C       Add adjust factor to AMATRIX to help converge 

C********************************************************************** 

    amatrx(1,1) = amatrx(1,1) + ADJUST_K                              

    amatrx(2,2) = amatrx(2,2) + ADJUST_K 

    amatrx(3,3) = amatrx(3,3) + ADJUST_K 

 

C********************************************************************** 

C       Output current coordinates to file coor.txt 

C********************************************************************** 

    WRITE(2000,2000) JELEM,EX(1,1),EX(1,2),EX(1,3) 

  ENDIF 

 

C********************************************************************** 

C       Assign value to RHS and AMATRIX for the third, fourth and fifth  

C       element type 

C********************************************************************** 

  IF(JTYPE.EQ.3.OR.JTYPE.EQ.4.OR.JTYPE.EQ.5) THEN 

    RHS(1,1) = -SPRINGEF(1)                      

    RHS(2,1) = -SPRINGEF(2) !6 degrees of freedom  

    RHS(3,1) = -SPRINGEF(3) !(3 translational + 3 rotational) 

    RHS(4,1) = -SPRINGEF(4) 

    RHS(5,1) = -SPRINGEF(5) 

    RHS(6,1) = -SPRINGEF(6) 

    DO K1 = 1,NDOFEL 

   DO K2 = 1,NDOFEL 

     AMATRX(K2,K1) = SPRINGEK(K2,K1)                  

   ENDDO 

    ENDDO  

  ENDIF 

   ENDIF 

C********************************************************************** 

C**********************************************************************

C       End for static analysis 

C********************************************************************** 

C**********************************************************************      

  

 

C********************************************************************** 

C**********************************************************************

C       For eigenvalue analysis 

C********************************************************************** 

C**********************************************************************      

   IF(LFLAGS(1).EQ.41) THEN 
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C**********************************************************************

C       Define current stiffness matrix AMATRIX 

C********************************************************************** 

  IF(LFLAGS(3).EQ.2) THEN 

    IF(JTYPE.EQ.1) THEN 

   DO K1=1,NDOFEL 

     DO K2=1,NDOFEL 

    AMATRX(K2,K1)=EK(K2,K1) 

     ENDDO 

   ENDDO     

    ENDIF 

    IF(JTYPE.EQ.2) THEN 

   DO K1=1,NDOFEL 

     DO K2=1,NDOFEL 

    AMATRX(K2,K1)=SPRINGEK(K2,K1) 

     ENDDO 

      ENDDO   

    ENDIF 

  ENDIF 

 

C**********************************************************************

C       Define current mass matrix AMATRIX 

C********************************************************************** 

  IF(LFLAGS(3).EQ.4) THEN 

    IF(JTYPE.EQ.1) THEN 

   DO K1=1,3 

     AMATRX(K1,K1)=MASS 

   ENDDO 

    ENDIF 

    IF(JTYPE.EQ.2) THEN 

   DO K1=1,NDOFEL 

     AMATRX(K1,K1)=MASS 

   ENDDO 

    ENDIF 

  ENDIF 

 

   ENDIF 

C********************************************************************** 

C**********************************************************************

C       End for eigenvalue analysis 

C********************************************************************** 

C**********************************************************************      

 

         

C**********************************************************************

C       Operation at the end of each iteration 

C**********************************************************************         

        ITIME=ITIME+1         

        IF(ITIME.EQ.NTOTEL) THEN     !marks completion of 1 loadstep 

            WRITE(105,*) ETTOT,ESPR  !total energys written in the file 

            ITIME=0 

            REWIND(2000)             !coors and warning are rewound 
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            REWIND(6000) 

        ENDIF 

         

         

   RETURN                                                                

   END           

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

 

 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     SUBROUTINE USED TO DEFINE PROPERTY FOR LINEAR SPRING ELEMENT 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC    

      SUBROUTINE SPRINGEMEF(JTYPE,SPRINGEX,SPRINGEX0,SPRINGEK,SPRINGEF 

     &      ,ESPR,NEE) 

C******************************************************************** 

C    FUNCTION: 

C    INPUT: 

C      BY ENTRANCE:SPRINGEX(2,3),SPRINGEX0(2,3),JTYPE,NEE 

C    OUTPUT: 

C      BY EXIT:SPRINGEK(6,6),SPRINGEF(6),ESPR 

C******************************************************************** 

 

      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

   REAL*8 SPRINGEX(2,3),SPRINGEX0(2,3),SPRINGEK(6,6),SPRINGEF(6) 

 

   STIFF=1.0D4   !Stiffness of spring element 

  

   X1=SPRINGEX(1,1) 

   Y1=SPRINGEX(1,2) 

   Z1=SPRINGEX(1,3) 

   X2=SPRINGEX(2,1) 

   Y2=SPRINGEX(2,2) 

   Z2=SPRINGEX(2,3) 

  

C**********************************************************************

C       Decide the equilibrium length of spring element 

C**********************************************************************         

   R=DSQRT((X2-X1)**2.D0+(Y2-Y1)**2.D0+(Z2-Z1)**2.D0) 

   IF(JTYPE.EQ.3) THEN 

     R0=1.0D1 

   ELSEIF(JTYPE.EQ.4) THEN 

     R0=DSQRT(2.D0)*1.0D1 

   ELSEIF(JTYPE.EQ.5) THEN 

     R0=2.0D1 

   ENDIF 

 

C**********************************************************************

C       Calculate ESPR. And calculate DR1, DDR2 which are useful to  

C       calculate first and second derivative of R with respective to x 

C**********************************************************************         

        ESPR=ESPR+0.5D0*STIFF*(R-R0)**2.D0                              

   DR1=STIFF*(1.D0-R0/R) 
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   DDR2=STIFF*R0/R**3.D0 

 

C**********************************************************************

C       Check if the length change of the spring element more than 0.1% 

C**********************************************************************         

        IF(DABS(((R-R0)/R0)*100).GE.0.1) THEN 

     WRITE(6000,*) NEE,R,((R-R0)/R0)*100 

   ENDIF 

  

C**********************************************************************

C       Calculate SPRINGEF and SPRINGEK, see details in APPENDIX C 

C**********************************************************************         

   SPRINGEF(1)=DR1*(X1-X2)                

   SPRINGEF(2)=DR1*(Y1-Y2) 

   SPRINGEF(3)=DR1*(Z1-Z2) 

   SPRINGEF(4)=-DR1*(X1-X2) 

   SPRINGEF(5)=-DR1*(Y1-Y2) 

   SPRINGEF(6)=-DR1*(Z1-Z2) 

 

   SPRINGEK(1,1)=DDR2*(X1-X2)*(X1-X2)+DR1 

   SPRINGEK(1,2)=DDR2*(X1-X2)*(Y1-Y2) 

   SPRINGEK(1,3)=DDR2*(X1-X2)*(Z1-Z2) 

   SPRINGEK(1,4)=-SPRINGEK(1,1) 

   SPRINGEK(1,5)=-SPRINGEK(1,2) 

   SPRINGEK(1,6)=-SPRINGEK(1,3) 

 

   SPRINGEK(2,1)=SPRINGEK(1,2) 

   SPRINGEK(2,2)=DDR2*(Y1-Y2)*(Y1-Y2)+DR1 

   SPRINGEK(2,3)=DDR2*(Y1-Y2)*(Z1-Z2) 

   SPRINGEK(2,4)=-SPRINGEK(2,1) 

   SPRINGEK(2,5)=-SPRINGEK(2,2) 

   SPRINGEK(2,6)=-SPRINGEK(2,3) 

 

   SPRINGEK(3,1)=SPRINGEK(1,3) 

   SPRINGEK(3,2)=SPRINGEK(2,3) 

   SPRINGEK(3,3)=DDR2*(Z1-Z2)*(Z1-Z2)+DR1 

   SPRINGEK(3,4)=-SPRINGEK(3,1) 

   SPRINGEK(3,5)=-SPRINGEK(3,2) 

   SPRINGEK(3,6)=-SPRINGEK(3,3) 

 

   SPRINGEK(4,1)=SPRINGEK(1,4)   ! symmetry takes care from hereon 

   SPRINGEK(4,2)=SPRINGEK(2,4) 

   SPRINGEK(4,3)=SPRINGEK(3,4) 

   SPRINGEK(4,4)=-SPRINGEK(4,1) 

   SPRINGEK(4,5)=-SPRINGEK(4,2) 

   SPRINGEK(4,6)=-SPRINGEK(4,3) 

                                                                                       

   SPRINGEK(5,1)=SPRINGEK(1,5) 

   SPRINGEK(5,2)=SPRINGEK(2,5) 

   SPRINGEK(5,3)=SPRINGEK(3,5) 

   SPRINGEK(5,4)=-SPRINGEK(5,1) 

   SPRINGEK(5,5)=-SPRINGEK(5,2) 
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   SPRINGEK(5,6)=-SPRINGEK(5,3) 

 

   SPRINGEK(6,1)=SPRINGEK(1,6) 

   SPRINGEK(6,2)=SPRINGEK(2,6) 

   SPRINGEK(6,3)=SPRINGEK(3,6) 

   SPRINGEK(6,4)=-SPRINGEK(6,1) 

   SPRINGEK(6,5)=-SPRINGEK(6,2) 

   SPRINGEK(6,6)=-SPRINGEK(6,3) 

 

   END    

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

                                                                

 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C     SUBROUTINE USED TO DEFINE PROPERTY FOR ROTATIONAL SPRING ELEMENT 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      SUBROUTINE CALEMEF(EX,NELE,EK,EF,ETTOT,JELEM,JTYPE,ANGLE_SUB) 

C******************************************************************** 

C    FUNCTION: 

C    INPUT: 

C      BY ENTRANCE:EX(13,3),NELE(13),JELEM,JTYPE 

C    OUTPUT: 

C      BY EXIT:EK(39,39),EF(39),ETTOT,ANGLE_SUB(2,1256,4,6) 

C******************************************************************** 

      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

   REAL*8 EX(13,3),EK(39,39),EF(3),ASTIFF(4),ANGLE_SUB(2,1256,4,6) 

   REAL*8 X(4,3),PVPX(3),PPVPXPX(3,4,3),PCPN(2,3) 

   INTEGER NELE(13),NN(3) 

   DIMENSION NAORDER(2,2,4,12),NRANGE(2),N2(2,6),N3(2,6),N4(2,6) 

     

        PI=DACOS(-1.D0) 

   EK=0.D0 

   EF=0.D0 

        ET=0.D0 

        ASTIFF(1)=1.D1       !ASTIFF stores stiffness values for 

        ASTIFF(2)=1.D1       !different rotational springs 

        ASTIFF(3)=1.D1 

        ASTIFF(4)=1.D1 

         

        NAORDER(1,1,1,1)=2   !Meaning of the index (elem type,  

        NAORDER(1,1,1,2)=6   !situation num, stiff num, angle num) 

        NAORDER(1,1,1,3)=8   !see details in APPENDIX D 

        NAORDER(1,1,1,4)=7 

        NAORDER(1,1,1,5)=3 

        NAORDER(1,1,1,6)=9 

        NAORDER(1,1,1,7)=4 

        NAORDER(1,1,1,8)=7 

        NAORDER(1,1,1,9)=10 

        NAORDER(1,1,1,10)=6 

        NAORDER(1,1,1,11)=5 

        NAORDER(1,1,1,12)=11 
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        NAORDER(1,1,2,1)=3   

        NAORDER(1,1,2,2)=2 

        NAORDER(1,1,2,3)=12 

        NAORDER(1,1,2,4)=5 

        NAORDER(1,1,2,5)=4 

        NAORDER(1,1,2,6)=13 

         

        NAORDER(1,2,3,1)=5   

        NAORDER(1,2,3,2)=2 

        NAORDER(1,2,3,3)=6 

        NAORDER(1,2,3,4)=3 

        NAORDER(1,2,3,5)=4 

        NAORDER(1,2,3,6)=7 

         

        NAORDER(1,2,4,1)=6   

        NAORDER(1,2,4,2)=3 

        NAORDER(1,2,4,3)=2 

        NAORDER(1,2,4,4)=2 

        NAORDER(1,2,4,5)=7 

        NAORDER(1,2,4,6)=3 

        NAORDER(1,2,4,7)=7   

        NAORDER(1,2,4,8)=5 

        NAORDER(1,2,4,9)=4 

        NAORDER(1,2,4,10)=4 

        NAORDER(1,2,4,11)=6 

        NAORDER(1,2,4,12)=5 

         

        NAORDER(2,1,3,1)=3   

        NAORDER(2,1,3,2)=2 

        NAORDER(2,1,3,3)=9 

        NAORDER(2,1,3,4)=6 

        NAORDER(2,1,3,5)=5 

        NAORDER(2,1,3,6)=12 

         

        NAORDER(2,1,4,1)=2   

        NAORDER(2,1,4,2)=7 

        NAORDER(2,1,4,3)=8 

        NAORDER(2,1,4,4)=4 

        NAORDER(2,1,4,5)=3 

        NAORDER(2,1,4,6)=10 

        NAORDER(2,1,4,7)=5   

        NAORDER(2,1,4,8)=4 

        NAORDER(2,1,4,9)=11 

        NAORDER(2,1,4,10)=7 

        NAORDER(2,1,4,11)=6 

        NAORDER(2,1,4,12)=13 

         

        NAORDER(2,2,1,1)=2   

        NAORDER(2,2,1,2)=4 

        NAORDER(2,2,1,3)=3 

        NAORDER(2,2,1,4)=4 

        NAORDER(2,2,1,5)=6 
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        NAORDER(2,2,1,6)=5 

         

        NAORDER(2,2,2,1)=6   

        NAORDER(2,2,2,2)=2 

        NAORDER(2,2,2,3)=7 

         

        NAORDER(2,2,3,1)=3   

        NAORDER(2,2,3,2)=5 

        NAORDER(2,2,3,3)=4 

         

        NAORDER(2,2,4,1)=7   

        NAORDER(2,2,4,2)=3 

        NAORDER(2,2,4,3)=2 

        NAORDER(2,2,4,4)=5   

        NAORDER(2,2,4,5)=7 

        NAORDER(2,2,4,6)=6 

         

        NRANGE(1)=4  !number of situation combined with stiff 

        NRANGE(2)=6 

         

        N2(1,1)=1  !show which situation to use 

        N2(1,2)=1 

        N2(1,3)=2 

        N2(1,4)=2 

        N2(2,1)=1 

        N2(2,2)=1 

        N2(2,3)=2 

        N2(2,4)=2 

        N2(2,5)=2 

        N2(2,6)=2 

         

        N3(1,1)=1  !show which stiff to use 

        N3(1,2)=2 

        N3(1,3)=3 

        N3(1,4)=4 

        N3(2,1)=3 

        N3(2,2)=4 

        N3(2,3)=1 

        N3(2,4)=2 

        N3(2,5)=3 

        N3(2,6)=4 

         

        N4(1,1)=4  !number of angle for each stiff 

        N4(1,2)=2 

        N4(1,3)=2 

        N4(1,4)=4 

        N4(2,1)=2 

        N4(2,2)=4 

        N4(2,3)=2 

        N4(2,4)=1 

        N4(2,5)=1 

        N4(2,6)=2 
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   DO M=1,NRANGE(JTYPE) 

     DO N=1,N4(JTYPE,M) 

            J=N2(JTYPE,M) 

            K=N3(JTYPE,M) 

            L=N*3-2 

            NN(1)=NAORDER(JTYPE,J,K,L) 

            NN(2)=NAORDER(JTYPE,J,K,L+1) 

            NN(3)=NAORDER(JTYPE,J,K,L+2)                         

            IF(NELE(NN(1)).EQ.1) NN(1)=1 

            IF(NELE(NN(2)).EQ.1) NN(2)=1 

            IF(NELE(NN(3)).EQ.1) NN(3)=1                          

    IF(NN(1).NE.1.AND.NN(2).NE.1.AND.NN(3).NE.1) THEN   

         X(1,:)=EX(1,:) 

         DO II=1,3 

           X(II+1,:)=EX(NN(II),:) !assigning coordinates to X  

         ENDDO                    !corresponding to NN(II) 

         STIFF=ASTIFF(K) 

              IF(JTYPE.EQ.2.AND.M.EQ.5) THEN  !'NUMBER' is for the  

           NUMBER=N+2   !correction of the output of 'N' for type 

                             !2 elements  

         ELSEIF(JTYPE.EQ.2.AND.M.EQ.6) THEN 

           NUMBER=N+4 

         ELSE 

           NUMBER=N 

         ENDIF 

     EANGLE=ANGLE_SUB(JTYPE,JELEM,K,NUMBER)                                     

              CALL 

DIFF(EANGLE,STIFF,J,K,NUMBER,X,PVPX,PPVPXPX,ET,JELEM, 

     &                  JTYPE)   !passing index "J" and X. Getting back 

PVPX, PPVPXPX and ET 

              ETTOT=ETTOT+ET 

         EF(:)=EF(:)+PVPX(:) 

         DO L=1,3 

           DO I=1,4 

             DO J=1,3 

               IF (I.EQ.1) THEN 

                 EK(L,J)=EK(L,J)+PPVPXPX(L,I,J) !for central atom 

               ELSE 

                 EK(L,3*(NN(I-1)-1)+J)=EK(L,3*(NN(I-1)-1)+J) 

     &                             +0.5*PPVPXPX(L,I,J)         

                 EK(3*(NN(I-1)-1)+J,L)=EK(L,3*(NN(I-1)-1)+J)       

               ENDIF 

             ENDDO 

           ENDDO 

         ENDDO 

       ENDIF 

     ENDDO 

   ENDDO 

*********************************************************************** 

*The section above is to fill the stiffness matrix. The leftest upper * 
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*is the Partial V / (Partial X(1)_L) Partial (X(1)_J). The transversal* 

*3*36 and vertical 36*3 are the                                       * 

*         0.5 Partial V / (Partial (X(1)_L) Partial (X(I)_J)),        * 

*and the corresponding tranpose, respectively.                        * 

* The coefficient 0.5 is used to avoid the double count of energy     * 

* contributions.                                                      * 

*********************************************************************** 

 

      RETURN 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

 

 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C   SUBROUTINE USED TO CALCULATE NECESSARY DERIVATIVES OF STRAIN ENERGY 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      SUBROUTINE DIFF(EANGLE,STIFF,JNUM,KNUM,NNUM,X,PVPX,PPVPXPX,ET, 

     &                JELEM,JTYPE) 

C********************************************************************** 

C    INPUT: 

C      BY ENTRANCE:X(4,3),JNUM,KNUM,STIFF,EANGLE,JELEM,JTYPE 

C 

C    OUTPUT: 

C      BY EXIT:PVPX(3),PPVPXPX(3,4,3),ET 

C******************************************************************** 

      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

   REAL*8 X(4,3),PVPX(3),PAPX(4,3),PCPN(2,3),ANORMAL1(3), 

     &        ANORMAL2(3),PNPX(2,3,4,3),X1(3),X2(3),X3(3),X4(3), 

     &         PXPXS(4,3,4,3),PPVPXPX(3,4,3),PPCPNPN(2,3,2,3), 

     &         PPNPXPX(2,3,4,3,4,3),PART1(3,4,3),PART2(3,4,3), 

     &         PPAPXPX(3,4,3) 

 

C********************************************************************** 

C       Calculate current value of dihedral angle according to current  

C       nodal coordinates 

C********************************************************************** 

   CALL ALPHASUB(JNUM,X,X1,X2,X3,X4,ANORMAL1,ANORMAL2,COS_ALPHA 

     &              ,ALPHA) 

 

C********************************************************************** 

C       Initiate necessary values 

C********************************************************************** 

   PNPX = 0.D0 

   PAPX = 0.D0 

   PART1 = 0.D0 

   PART2 = 0.D0 

   PPVPXPX = 0.D0 

 

C********************************************************************** 

C       Calculation of necessary values 

C********************************************************************** 

        PVPA = STIFF*(ALPHA-EANGLE) 
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        PAPC = -1.D0/DSQRT(1.D0-COS_ALPHA**2.D0) 

        PPAPCPC = -COS_ALPHA/(1.D0-COS_ALPHA**2.D0)**(3.D0/2.D0) 

   PPVPAPA = STIFF 

   IF((JTYPE.EQ.1).AND.(KNUM.EQ.1.OR.KNUM.EQ.2)) THEN 

     ET = 0.5D0*0.5D0*STIFF*(ALPHA-EANGLE)**2.D0 

   ELSEIF((JTYPE.EQ.1).AND.(KNUM.EQ.3.OR.KNUM.EQ.4)) THEN 

     ET = 0.5D0*STIFF*(ALPHA-EANGLE)**2.D0 

   ELSE 

          ET = 0.D0 

        ENDIF   

        DO I=1,2 

          DO J=1,3 

            IF (I.EQ.1) THEN 

              PCPN(I,J) = -ANORMAL2(J) 

     &                  /(ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2)) 

     &                    -ANORMAL1(J)*COS_ALPHA 

     &                  /(ANORMFC(ANORMAL1))**2.D0 

            ELSE 

              PCPN(I,J) = -ANORMAL1(J) 

     &                  /(ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2)) 

     &                    -ANORMAL2(J)*COS_ALPHA 

     &                  /(ANORMFC(ANORMAL2))**2.D0 

            ENDIF 

          ENDDO 

        ENDDO 

 

C**********************************************************************

C Below is for situation 1 

C********************************************************************** 

        IF(JNUM.EQ.1) THEN 

          DO I=1,2 

            DO J=1,3 

              DO K=1,4 

                DO L=1,3 

                  IF (I.EQ.1.AND.K.EQ.1) THEN 

                    DO M=1,3 

                      PNPX(I,J,K,L) = PNPX(I,J,K,L)+EPS(J,L,M)*X2(M) 

                    ENDDO 

                  ELSEIF (I.EQ.1.AND.K.EQ.2) THEN 

                    DO M=1,3 

                      PNPX(I,J,K,L) = PNPX(I,J,K,L)+EPS(J,M,L)*X1(M) 

                    ENDDO 

                  ELSEIF (I.EQ.2.AND.K.EQ.3) THEN 

                    DO M=1,3 

                      PNPX(I,J,K,L) = PNPX(I,J,K,L)+EPS(J,L,M)*X4(M) 

                    ENDDO 

                  ELSEIF (I.EQ.2.AND.K.EQ.4) THEN 

                    DO M=1,3 

                      PNPX(I,J,K,L) = PNPX(I,J,K,L)+EPS(J,M,L)*X3(M) 

                    ENDDO 

                  ELSE 

                    PNPX(I,J,K,L) = 0 
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                  ENDIF 

                ENDDO 

              ENDDO 

            ENDDO 

          ENDDO 

         

          DO I=1,4 

            DO J=1,3 

              DO K=1,4 

                DO L=1,3 

                  IF (J.NE.L) THEN 

                    PXPXS(I,J,K,L) = 0 

                  ELSE 

                    IF ((I.EQ.1.AND.K.EQ.1).OR.(I.EQ.2.AND.K.EQ.1).OR. 

     &                 (I.EQ.3.AND.K.EQ.4).OR.(I.EQ.4.AND.K.EQ.4)) THEN 

                      PXPXS(I,J,K,L) = -1 

                    ELSEIF ((I.EQ.1.AND.K.EQ.2).OR.(I.EQ.2.AND.K.EQ.3) 

     &              .OR.(I.EQ.3.AND.K.EQ.3).OR.(I.EQ.4.AND.K.EQ.2)) 

THEN 

                      PXPXS(I,J,K,L) = 1 

                    ELSE  

                      PXPXS(I,J,K,L) = 0 

                    ENDIF 

                  ENDIF 

                ENDDO 

              ENDDO 

            ENDDO 

          ENDDO 

         

          DO M=1,4 

       DO N=1,3 

              DO I=1,2 

                DO J=1,3 

                  DO K=1,4 

                    DO L=1,3 

                      PAPX(M,N) = 

PAPX(M,N)+PAPC*PCPN(I,J)*PNPX(I,J,K,L) 

     &             *PXPXS(K,L,M,N) 

               ENDDO 

             ENDDO 

                ENDDO 

              ENDDO 

            ENDDO 

          ENDDO 

 

     PVPX(:) = PVPA*PAPX(1,:) 

 

C********************************************************************** 

C Below is for second derivative for situation 1 

C********************************************************************** 

          DO I=1,2 

       DO J=1,3 



132 

         DO K=1,2 

           DO L=1,3 

             IF (I.EQ.1.AND.K.EQ.1) THEN 

               PPCPNPN(I,J,K,L)=ANORMAL2(J)*ANORMAL1(L)/ 

     &       

(ANORMFC(ANORMAL1)**3.D0*ANORMFC(ANORMAL2))- 

     &                DELTA(J,L)*COS_ALPHA/ANORMFC(ANORMAL1)**2.D0+ 

     &                ANORMAL1(J)*ANORMAL2(L)/ 

     &       

(ANORMFC(ANORMAL1)**3.D0*ANORMFC(ANORMAL2))+ 

     &                3*ANORMAL1(J)*ANORMAL1(L)*COS_ALPHA/ 

     &                ANORMFC(ANORMAL1)**4.D0 

             ELSEIF (I.EQ.1.AND.K.EQ.2) THEN 

               PPCPNPN(I,J,K,L)=-DELTA(J,L)/ 

     &    (ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2))+ 

     &                ANORMAL2(J)*ANORMAL2(L)/ 

     &                (ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2)**3.D0)+ 

     &                ANORMAL1(J)*ANORMAL2(L)*COS_ALPHA/ 

     &                

(ANORMFC(ANORMAL1)**2.D0*ANORMFC(ANORMAL2)**2.D0)+ 

     &                ANORMAL1(J)*ANORMAL1(L)/ 

     &                (ANORMFC(ANORMAL1)**3.D0*ANORMFC(ANORMAL2)) 

                  ELSEIF (I.EQ.2.AND.K.EQ.1) THEN 

               PPCPNPN(I,J,K,L)=-DELTA(J,L)/ 

     &    (ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2))+ 

     &                ANORMAL1(J)*ANORMAL1(L)/ 

     &                (ANORMFC(ANORMAL1)**3.D0*ANORMFC(ANORMAL2))+ 

     &                ANORMAL2(J)*ANORMAL1(L)*COS_ALPHA/ 

     &                

(ANORMFC(ANORMAL1)**2.D0*ANORMFC(ANORMAL2)**2.D0)+ 

     &                ANORMAL2(J)*ANORMAL2(L)/ 

     &                (ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2)**3.D0) 

             ELSEIF (I.EQ.2.AND.K.EQ.2) THEN 

               PPCPNPN(I,J,K,L)=ANORMAL1(J)*ANORMAL2(L)/ 

     &       

(ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2)**3.D0)- 

     &                DELTA(J,L)*COS_ALPHA/ANORMFC(ANORMAL2)**2.D0+ 

     &                ANORMAL2(J)*ANORMAL1(L)/ 

     &       

(ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2)**3.D0)+ 

     &                3*ANORMAL2(J)*ANORMAL2(L)*COS_ALPHA/ 

     &                ANORMFC(ANORMAL2)**4.D0 

             ENDIF 

           ENDDO 

         ENDDO 

       ENDDO 

     ENDDO 

 

          DO I=1,2 

       DO J=1,3 

         DO K=1,4 

           DO L=1,3 
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             DO M=1,4 

               DO N=1,3 

                 IF (I.EQ.1.AND.K.EQ.1.AND.M.EQ.2) THEN 

                   PPNPXPX(I,J,K,L,M,N)=EPS(J,L,N) 

                 ELSEIF (I.EQ.1.AND.K.EQ.2.AND.M.EQ.1) THEN 

                   PPNPXPX(I,J,K,L,M,N)=EPS(J,N,L) 

                      ELSEIF (I.EQ.2.AND.K.EQ.3.AND.M.EQ.4) THEN 

                   PPNPXPX(I,J,K,L,M,N)=EPS(J,L,N) 

                 ELSEIF (I.EQ.2.AND.K.EQ.4.AND.M.EQ.3) THEN 

                   PPNPXPX(I,J,K,L,M,N)=EPS(J,N,L) 

                 ELSE 

                        PPNPXPX(I,J,K,L,M,N)=0.D0 

                 ENDIF 

               ENDDO 

             ENDDO 

           ENDDO 

         ENDDO 

       ENDDO 

     ENDDO 

 

          DO I=1,2 

       DO J=1,3 

         DO K=1,4 

           DO L=1,3 

             DO M=1,3 

                    DO II=1,2 

                 DO JJ=1,3 

                   DO KK=1,4 

                     DO LL=1,3 

                       DO MM=1,4 

                              DO NN=1,3 

     

PART1(M,MM,NN)=PART1(M,MM,NN)+PPCPNPN(I,J,II,JJ)*PNPX(I,J,K,L) 

     &                   *PXPXS(K,L,1,M)*PNPX(II,JJ,KK,LL) 

     &                   *PXPXS(KK,LL,MM,NN) 

                         ENDDO 

                       ENDDO 

                     ENDDO 

                   ENDDO 

                 ENDDO 

               ENDDO 

             ENDDO 

           ENDDO 

         ENDDO 

       ENDDO 

     ENDDO 

 

          DO I=1,2 

       DO J=1,3 

         DO K=1,4 

           DO L=1,3 

             DO M=1,3 
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               DO II=1,4 

                 DO JJ=1,3 

                   DO KK=1,4 

                     DO LL=1,3 

     

PART2(M,KK,LL)=PART2(M,KK,LL)+PCPN(I,J)*PPNPXPX(I,J,K,L,II,JJ) 

     &                   *PXPXS(K,L,1,M)*PXPXS(II,JJ,KK,LL) 

                     ENDDO 

                   ENDDO 

                 ENDDO 

               ENDDO 

             ENDDO 

           ENDDO 

         ENDDO 

       ENDDO 

     ENDDO 

 

     DO I=1,3 

       DO J=1,4 

         DO K=1,3 

           PPAPXPX(I,J,K)=PPAPCPC*PAPX(1,I)*PAPX(J,K)/PAPC**2.D0+ 

     &                   PAPC*PART1(I,J,K)+PAPC*PART2(I,J,K) 

         ENDDO 

       ENDDO 

     ENDDO 

 

     DO I=1,3 

       DO J=1,4 

         DO K=1,3 

           PPVPXPX(I,J,K)=PPVPAPA*PAPX(1,I)* 

     &                   PAPX(J,K)+PVPA*PPAPXPX(I,J,K) 

         ENDDO 

       ENDDO 

     ENDDO 

 

        ENDIF 

 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C 

C Below is for situation 2 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C 

        IF(JNUM.EQ.2) THEN 

          DO I=1,2 

            DO J=1,3 

              DO K=1,3 

                DO L=1,3 

                  IF (I.EQ.1.AND.K.EQ.1) THEN 

                    DO M=1,3 

                      PNPX(I,J,K,L) = PNPX(I,J,K,L)+EPS(J,L,M)*X2(M) 

                    ENDDO 

                  ELSEIF (I.EQ.1.AND.K.EQ.2) THEN 
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                    DO M=1,3 

                      PNPX(I,J,K,L) = PNPX(I,J,K,L)+EPS(J,M,L)*X1(M) 

                    ENDDO 

                  ELSEIF (I.EQ.2.AND.K.EQ.3) THEN 

                    DO M=1,3 

                      PNPX(I,J,K,L) = PNPX(I,J,K,L)+EPS(J,L,M)*X1(M) 

                    ENDDO 

                  ELSEIF (I.EQ.2.AND.K.EQ.1) THEN 

                    DO M=1,3 

                      PNPX(I,J,K,L) = PNPX(I,J,K,L)+EPS(J,M,L)*X3(M) 

                    ENDDO 

                  ELSE 

                    PNPX(I,J,K,L) = 0 

                  ENDIF 

                ENDDO 

              ENDDO 

            ENDDO 

          ENDDO 

         

          DO I=1,3 

            DO J=1,3 

              DO K=1,4 

                DO L=1,3 

                  IF (J.NE.L) THEN 

                    PXPXS(I,J,K,L) = 0 

                  ELSE 

                    IF ((I.EQ.1.AND.K.EQ.1).OR.(I.EQ.2.AND.K.EQ.1).OR. 

     &                 (I.EQ.3.AND.K.EQ.1)) THEN 

                      PXPXS(I,J,K,L) = -1 

                    ELSEIF ((I.EQ.1.AND.K.EQ.4).OR.(I.EQ.2.AND.K.EQ.2) 

     &                     .OR.(I.EQ.3.AND.K.EQ.3)) THEN 

                      PXPXS(I,J,K,L) = 1 

                    ELSE  

                      PXPXS(I,J,K,L) = 0 

                    ENDIF 

                  ENDIF 

                ENDDO 

              ENDDO 

            ENDDO 

          ENDDO 

         

     DO M=1,4 

       DO N=1,3 

              DO I=1,2 

                DO J=1,3 

                  DO K=1,3 

                    DO L=1,3 

                      PAPX(M,N) = 

PAPX(M,N)+PAPC*PCPN(I,J)*PNPX(I,J,K,L) 

     &             *PXPXS(K,L,M,N) 

               ENDDO 

             ENDDO 
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                ENDDO 

              ENDDO 

            ENDDO 

          ENDDO 

 

     PVPX(:) = PVPA*PAPX(1,:) 

 

C********************************************************************** 

C Below is for second derivative for situation 2 

C********************************************************************** 

          DO I=1,2 

       DO J=1,3 

         DO K=1,2 

           DO L=1,3 

             IF (I.EQ.1.AND.K.EQ.1) THEN 

               PPCPNPN(I,J,K,L)=ANORMAL2(J)*ANORMAL1(L)/ 

     &       

(ANORMFC(ANORMAL1)**3.D0*ANORMFC(ANORMAL2))- 

     &                DELTA(J,L)*COS_ALPHA/ANORMFC(ANORMAL1)**2.D0+ 

     &                ANORMAL1(J)*ANORMAL2(L)/ 

     &       

(ANORMFC(ANORMAL1)**3.D0*ANORMFC(ANORMAL2))+ 

     &                3*ANORMAL1(J)*ANORMAL1(L)*COS_ALPHA/ 

     &                ANORMFC(ANORMAL1)**4.D0 

             ELSEIF (I.EQ.1.AND.K.EQ.2) THEN 

               PPCPNPN(I,J,K,L)=-DELTA(J,L)/ 

     &    (ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2))+ 

     &                ANORMAL2(J)*ANORMAL2(L)/ 

     &                (ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2)**3.D0)+ 

     &                ANORMAL1(J)*ANORMAL2(L)*COS_ALPHA/ 

     &                

(ANORMFC(ANORMAL1)**2.D0*ANORMFC(ANORMAL2)**2.D0)+ 

     &                ANORMAL1(J)*ANORMAL1(L)/ 

     &                (ANORMFC(ANORMAL1)**3.D0*ANORMFC(ANORMAL2)) 

                  ELSEIF (I.EQ.2.AND.K.EQ.1) THEN 

               PPCPNPN(I,J,K,L)=-DELTA(J,L)/ 

     &    (ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2))+ 

     &                ANORMAL1(J)*ANORMAL1(L)/ 

     &                (ANORMFC(ANORMAL1)**3.D0*ANORMFC(ANORMAL2))+ 

     &                ANORMAL2(J)*ANORMAL1(L)*COS_ALPHA/ 

     &                

(ANORMFC(ANORMAL1)**2.D0*ANORMFC(ANORMAL2)**2.D0)+ 

     &                ANORMAL2(J)*ANORMAL2(L)/ 

     &                (ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2)**3.D0) 

             ELSEIF (I.EQ.2.AND.K.EQ.2) THEN 

               PPCPNPN(I,J,K,L)=ANORMAL1(J)*ANORMAL2(L)/ 

     &       

(ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2)**3.D0)- 

     &                DELTA(J,L)*COS_ALPHA/ANORMFC(ANORMAL2)**2.D0+ 

     &                ANORMAL2(J)*ANORMAL1(L)/ 

     &       

(ANORMFC(ANORMAL1)*ANORMFC(ANORMAL2)**3.D0)+ 
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     &                3*ANORMAL2(J)*ANORMAL2(L)*COS_ALPHA/ 

     &                ANORMFC(ANORMAL2)**4.D0 

             ENDIF 

           ENDDO 

         ENDDO 

       ENDDO 

     ENDDO 

 

          DO I=1,2 

       DO J=1,3 

         DO K=1,3 

           DO L=1,3 

             DO M=1,3 

               DO N=1,3 

                 IF (I.EQ.1.AND.K.EQ.1.AND.M.EQ.2) THEN 

                   PPNPXPX(I,J,K,L,M,N)=EPS(J,L,N) 

                 ELSEIF (I.EQ.1.AND.K.EQ.2.AND.M.EQ.1) THEN 

                   PPNPXPX(I,J,K,L,M,N)=EPS(J,N,L) 

                      ELSEIF (I.EQ.2.AND.K.EQ.3.AND.M.EQ.1) THEN 

                   PPNPXPX(I,J,K,L,M,N)=EPS(J,L,N) 

                 ELSEIF (I.EQ.2.AND.K.EQ.1.AND.M.EQ.3) THEN 

                   PPNPXPX(I,J,K,L,M,N)=EPS(J,N,L) 

                 ELSE 

                        PPNPXPX(I,J,K,L,M,N)=0.D0 

                 ENDIF 

               ENDDO 

             ENDDO 

           ENDDO 

         ENDDO 

       ENDDO 

     ENDDO 

 

          DO I=1,2 

       DO J=1,3 

         DO K=1,3 

           DO L=1,3 

             DO M=1,3 

                    DO II=1,2 

                 DO JJ=1,3 

                   DO KK=1,3 

                     DO LL=1,3 

                       DO MM=1,4 

                              DO NN=1,3 

     

PART1(M,MM,NN)=PART1(M,MM,NN)+PPCPNPN(I,J,II,JJ)*PNPX(I,J,K,L) 

     &                   *PXPXS(K,L,1,M)*PNPX(II,JJ,KK,LL) 

     &                   *PXPXS(KK,LL,MM,NN) 

                         ENDDO 

                       ENDDO 

                     ENDDO 

                   ENDDO 

                 ENDDO 
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               ENDDO 

             ENDDO 

           ENDDO 

         ENDDO 

       ENDDO 

     ENDDO 

 

          DO I=1,2 

       DO J=1,3 

         DO K=1,3 

           DO L=1,3 

             DO M=1,3 

               DO II=1,3 

                 DO JJ=1,3 

                   DO KK=1,4 

                     DO LL=1,3 

     

PART2(M,KK,LL)=PART2(M,KK,LL)+PCPN(I,J)*PPNPXPX(I,J,K,L,II,JJ) 

     &                   *PXPXS(K,L,1,M)*PXPXS(II,JJ,KK,LL) 

                     ENDDO 

                   ENDDO 

                 ENDDO 

               ENDDO 

             ENDDO 

           ENDDO 

         ENDDO 

       ENDDO 

     ENDDO 

 

     DO I=1,3 

       DO J=1,4 

         DO K=1,3 

           PPAPXPX(I,J,K)=PPAPCPC*PAPX(1,I)*PAPX(J,K)/PAPC**2.D0+ 

     &                   PAPC*PART1(I,J,K)+PAPC*PART2(I,J,K) 

         ENDDO 

       ENDDO 

     ENDDO 

 

    DO I=1,3 

       DO J=1,4 

         DO K=1,3 

           PPVPXPX(I,J,K)=PPVPAPA*PAPX(1,I)* 

     &                     PAPX(J,K)+PVPA*PPAPXPX(I,J,K) 

         ENDDO 

       ENDDO 

     ENDDO 

 

        ENDIF 

      END 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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C     SUBROUTINE USED TO CALCULATE ALPHA ANGLE AND RELATED QUANTITIES 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      SUBROUTINE ALPHASUB(J,X,X1,X2,X3,X4,ANORMAL1,ANORMAL2,COS_ALPHA 

     &                ,ALPHA) 

      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

        REAL*8 X(4,3),X1(3),X2(3),X3(3),X4(3),ANORMAL1(3),ANORMAL2(3) 

        CALL COORD1SUB (J,X,X1) 

        CALL COORD2SUB (J,X,X2) 

        CALL COORD3SUB (J,X,X3) 

        IF(J.EQ.1) THEN 

          CALL COORD4SUB (J,X,X4) 

        ENDIF                         

   ANORMAL1=0.D0 

        ANORMAL2=0.D0 

        DO I=1,3 

          DO M=1,3 

       DO N=1,3 

         IF (J.EQ.1) THEN 

           ANORMAL1(I)=ANORMAL1(I)+EPS(I,M,N)*X1(M)*X2(N) 

         ENDIF 

         IF (J.EQ.2) THEN 

           ANORMAL1(I)=ANORMAL1(I)+EPS(I,M,N)*X1(M)*X2(N) 

         ENDIF 

       ENDDO 

     ENDDO 

   ENDDO 

   DO I=1,3 

          DO M=1,3 

       DO N=1,3 

         IF (J.EQ.1) THEN 

           ANORMAL2(I)=ANORMAL2(I)+EPS(I,M,N)*X3(M)*X4(N) 

         ENDIF 

         IF (J.EQ.2) THEN 

           ANORMAL2(I)=ANORMAL2(I)+EPS(I,M,N)*X3(M)*X1(N) 

         ENDIF 

       ENDDO 

     ENDDO 

   ENDDO 

 

   COS_ALPHA = -DOT_PRODUCT(ANORMAL1,ANORMAL2) 

     &              /((ANORMFC(ANORMAL1))*(ANORMFC(ANORMAL2))) 

      IF(DABS(COS_ALPHA-1.D0).LE.1D-4) THEN 

  COS_ALPHA=1.D0-1D-4 

      ENDIF 

      IF(DABS(COS_ALPHA+1.D0).LE.1D-4) THEN 

  COS_ALPHA=-1.D0+1D-4 

      ENDIF 

      ALPHA=DACOS(COS_ALPHA)      

      END 

***********************************************************************         
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

   FUNCTION DISTANCE(X1,X2) 

*********************************************************************** 

* The distance between two points                                 * 

***********************************************************************  

        IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

   REAL*8 DISTANCE 

   REAL*8 X1(3),X2(3) 

   DISTANCE = DSQRT((X1(1)-X2(1))**2.D0+(X1(2)-X2(2))**2.D0 

     &   +(X1(3)-X2(3))**2.D0) 

   RETURN 

   END 

*********************************************************************** 

       

 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      FUNCTION DELTA(I,J) 

*********************************************************************** 

* The function for Kronecker delta                                    * 

*********************************************************************** 

      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

        REAL*8 DELTA                      

   IF (I.EQ.J) THEN 

     DELTA=1.D0 

     RETURN 

   ElSE 

     DELTA=0.D0 

     RETURN  

   ENDIF    

 END 

*********************************************************************** 

       

 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      FUNCTION EPS(I,J,K) 

*********************************************************************** 

* The function for Levi-Civita symbol (epsilon)                       * 

*********************************************************************** 

      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

        REAL*8 EPS                      

   IF ((I.EQ.1.AND.J.EQ.2.AND.K.EQ.3) 

     &   .OR.(I.EQ.2.AND.J.EQ.3.AND.K.EQ.1) 

     &   .OR.(I.EQ.3.AND.J.EQ.1.AND.K.EQ.2)) THEN 

     EPS=1.D0 

     RETURN 

   ELSEIF ((I.EQ.3.AND.J.EQ.2.AND.K.EQ.1) 

     &   .OR.(I.EQ.2.AND.J.EQ.1.AND.K.EQ.3) 

     &   .OR.(I.EQ.1.AND.J.EQ.3.AND.K.EQ.2)) THEN 

     EPS=-1.D0 

     RETURN 

   ElSE 

     EPS=0.D0 
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     RETURN  

   ENDIF    

 END 

*********************************************************************** 

 

       

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

      FUNCTION ANORMFC(X) 

*********************************************************************** 

* The norm of vector "X"                                              * 

*********************************************************************** 

      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

      REAL*8 X(3) 

        ANORMFC=DSQRT((X(1))**2.D0+(X(2))**2.D0+(X(3))**2.D0)   

 END 

*********************************************************************** 

       

       

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC        

      SUBROUTINE COORD1SUB (J,X,X1) 

*********************************************************************** 

* Calculate vector X1 ("J" is the situation number)                   * 

*********************************************************************** 

      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

        REAL*8 X(4,3),X1(3) 

        IF (J.EQ.1) THEN 

     X1(:)=X(2,:)-X(1,:) 

     RETURN 

   ENDIF 

   IF (J.EQ.2) THEN 

     X1(:)=X(4,:)-X(1,:) 

     RETURN 

   ENDIF 

 END 

*********************************************************************** 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC        

      SUBROUTINE COORD2SUB (J,X,X2) 

*********************************************************************** 

* Calculate vector X2 ("J" is the situation number)                   * 

*********************************************************************** 

      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

        REAL*8 X(4,3),X2(3) 

        IF (J.EQ.1) THEN 

     X2(:)=X(3,:)-X(1,:) 

     RETURN 

   ENDIF 

   IF (J.EQ.2) THEN 

     X2(:)=X(2,:)-X(1,:) 

     RETURN 

   ENDIF 

 END 

*********************************************************************** 
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC        

      SUBROUTINE COORD3SUB (J,X,X3) 

*********************************************************************** 

* Calculate vector X3 ("J" is the situation number)                   * 

*********************************************************************** 

      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

        REAL*8 X(4,3),X3(3) 

        IF (J.EQ.1) THEN 

     X3(:)=X(3,:)-X(4,:) 

     RETURN 

   ENDIF 

   IF (J.EQ.2) THEN 

     X3(:)=X(3,:)-X(1,:) 

     RETURN 

   ENDIF 

 END 

*********************************************************************** 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC        

      SUBROUTINE COORD4SUB (J,X,X4) 

*********************************************************************** 

* Calculate vector X4 ("J" is the situation number)                   * 

*********************************************************************** 

      IMPLICIT DOUBLE PRECISION (A-H, O-Z) 

        REAL*8 X(4,3),X4(3) 

        IF (J.EQ.1) THEN 

     X4(:)=X(2,:)-X(4,:) 

     RETURN 

   ENDIF 

 END 

*********************************************************************** 
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APPENDIX F 

F PDMS WALL PATTERNS FOR FABRICATION OF SILICON 

NANOMEMBERANCE 
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The detailed geometry of the pre-patterned PDMS wall for Miura-ori pattern is 

given in Fig. A4, A and B.  

 

 

A 

 

B 

 

Fig. A4. Geometry of the pre-patterned PDMS wall with Miura-ori pattern. (A) 

Overall dimension. (B) Detailed dimension.  
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The detailed geometry of the pre-patterned PDMS wall for water bomb pattern is 

given in Fig. A5, A and B. 

      

A 

 

B 

 

Fig. A5. Geometry of the pre-patterned PDMS wall with magic ball pattern. (A) 

Overall dimension. (B) Detailed dimension. 
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The detailed geometry of the pre-patterned PDMS wall for non-rigidly foldable 

pattern is given in Fig. A6, A and B. 

 

A 

 

B 

 

Fig. A6. Geometry of the pre-patterned PDMS wall with non-rigidly foldable 

pattern. (A) Overall dimension. (B) Detailed dimension. 
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The detailed geometry of the pre-patterned PDMS wall for stars pattern is given 

in Fig. A7, A and B. 

 

A 

 

B 

 

Fig. A7. Geometry of the pre-patterned PDMS wall with star pattern. (A) Overall 

dimension. (B) Detailed dimension. 
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The detailed geometry of the pre-patterned PDMS wall for US Flag pattern is given in 

Fig. A8, A, B and C. 

 

A 

 

 

 

 

 

 

 

 

Fig. A8. Geometry of the pre-patterned PDMS wall with US flag pattern. (A) Overall 

dimension. (B) Detailed dimension. (C) Detailed dimension near the boundary of star 

pattern and strip pattern. 

  

B C 
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APPENDIX G 

G DERIVATION OF ANALYTIC SOLUTION FOR MIURA-ORI AND WATER 

BOMB PATTERN 
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Fig. A9, A and B show the 3D view and the top view of the unit cell of a Miura-

ori pattern. The origin of stationary coordinate system is “O”. Due to the biaxial 

compressive strain  (<0), the overall strain of the pattern in y-direction due to the 

biaxial compression is , thus the stretch ratio in y-direction is . The length of 

line  and  are assumed to be  and , respectively. The angle  is 

denoted as . Then we can obtain the vector , and 

. The normal vector of the plane OABC is then 

. As the origin O is in this plane, the equation of the plane can be shown as: 

( , ), where 

, , 

, , and .  

Similarly, the equation of the plane OCDE is:  ( , 

). The equation of the plane OAFG is:  

( ). The equation of the plane OEGH is: 

 ( , ).  

In both FEA and the experiment, we have the following dimensions:  (include 

the dimension of wall on y-direction), , , . Then we can 

obtain the constants as: , , , , 

. For the line cut by the -plane, we need only to solve the equations: 

 1  

BC AB a b ABC

  20, , 1OA a a    

  2
1 cos / , cos / ,0OC b b     

OA OC n

1 2 3 0A x A y A z   20 x B  1 2 1 2/ /B x B a y B x B  

2

1 1 cos /A ab         
22

2 1 1 cos /A ab       
 

 
2

3 1 cos /A ab     1 cosB b    
2

2 1 cos /B b   

1 2 3 0A x A y A z    20 x B 

1 2 1 2/ /B x B y B x B a   1 2 3 0A x A y A z   

2 0B x   1 2 1 2/ /B x B a y B x B    

1 2 3 0A x A y A z   20 x B  1 2 1 2/ /B x B y B x B a    

400a m

400b m 34  96.4% 

1 36588A   2 21710A   3 78708A  1 331.6150B 

2 204.1193B   yz
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 for line EO and  for line OA. 

After proper offset, we can obtain the theoretical profile for Miura-ori in y-

direction, which is shown in Fig. 5.4. Similarly, the other two profiles for Miura-ori can 

be obtained.  

 

 

 

 

 

 

 

 

 

Fig. A9. Analytical geometry of a unit cell for Miura-ori pattern. (A) Top view. (B) 

Perspective view. 
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3D view and the cross section view (cut along the plane COF) of the unit cell of 

the water bomb pattern are shown in Fig. A10, A and B. The origin of stationary 

coordinate system is “O”. Assuming we know the overall strain  of the pattern in x-

direction due to the biaxial compression, the stretch ratio in x-direction is . The 

length of line  and  are assumed to be  and , respectively. Then we can obtain 

the vector , , where, 

. The normal vector of the plane OBC is then

. As the origin O is in this plane, the equation of the plane can be shown as: 

 ( , , ), where, 

, , .  

Similarly, the equation of the plane OCD is:  ( , 

, ). The equation of the plane ODE is: 

 ( , , ). The equation of the plane 

OEF is: ( , , ). 

The equation of the plane OAF is: ( , , 

). The equation of the plane OAB is: 

 ( , , ).  



1  

BC OC a b

 0, sin , cosOC a a   2, , 1OB a b a   

   2 2arctan 1/ 1 arctan 1     

OC OB n

1 2 3 0C x C y C z   0x  0bx a y     sin sin 0b a x a y a     

2 2

1 sin 1 cosC a ab     2

2 cosC a   2

3 sinC a   

1 2 3 0C x C y C z    0x 

0bx a y      sin sin 0b a x a y a     

21 0x z    x a 0bx a y   0bx a y 

1 2 3 0C x C y C z    0x  0bx a y     sin sin 0b a x a y a     

1 2 3 0C x C y C z   0x  0bx a y  

   sin sin 0b a x a y a     

21 0x z    x a  0bx a y   0bx a y 
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In the experiment, we have the following dimensions: , 

(include the dimension of wall on y-direction), . Then we can 

obtain the constants as: , , , .   

 

A 

 

B 

Fig. A10. Analytical geometry of a unit cell for waterbomb pattern. (A) Perspective 

view. (B) Side view. 

 

400a m

457.735b m 96.4% 

60.22 
1 54015C   2 76609C  3 133870C 


