
A Non-Consensus Based Decentralized Financial Transaction Processing Model
with Support for Efficient Auditing

by

Saurabh Gupta

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved June 2016 by the
Graduate Supervisory Committee:

Rida Bazzi, Chair
Gail-Joon Ahn

Maurice Herlihy

ARIZONA STATE UNIVERSITY

August 2016

ABSTRACT

The success of Bitcoin has generated significant interest in the financial community to

understand whether the technological underpinnings of the cryptocurrency paradigm

can be leveraged to improve the efficiency of financial processes in the existing infras-

tructure. Various alternative proposals, most notably, Ripple and Ethereum, aim to

provide solutions to the financial community in different ways. These proposals derive

their security guarantees from either the computational hardness of proof-of-work or

voting based distributed consensus mechanism, both of which can be computationally

expensive. Furthermore, the financial audit requirements for a participating financial

institutions have not been suitably addressed.

This thesis presents a novel approach of constructing a non-consensus based decen-

tralized financial transaction processing model with a built-in efficient audit struc-

ture. The problem of decentralized inter-bank payment processing is used for the

model design. The two key insights used in this work are (1) to utilize a majority

signature based replicated storage protocol for transaction authorization, and (2) to

construct individual self-verifiable audit trails for each node as opposed to a common

Blockchain. Theoretical analysis shows that the model provides cryptographic secu-

rity for transaction processing and the presented audit structure facilitates financial

auditing of individual nodes in time independent of the number of transactions.

i

To my parents.

ii

ACKNOWLEDGMENTS

I would like to acknowledge that the central idea presented in this thesis, i.e. a

transaction processing model without distributed consensus, was conceived by Rida

Bazzi and Maurice Herlihy, and I express my utmost gratitude to them for giving me

the opportunity to work on this interesting research problem. It would not have been

possible without their ideas and insights that guided me throughout the duration of

this work.

I am profoundly grateful and honored to have Rida Bazzi, Maurice Herlihy and

Gail-Joon Ahn on my thesis committee, all of whom are meritorious scholars and have

made exceptional contributions in this area of research. I am particularly thankful to

Rida Bazzi for his exceptional guidance, constant support and patience as my adviser

and mentor over the past year, which has been pivotal to this thesis. I am indebted

to him for his in-depth reviews, vital inputs and critical insights that helped shape

my work.

I thank Arizona State University for providing me the platform to pursue my

interests. And finally, I would like to thank all the colleagues, friends and family who

supported and motivated me during my time as a graduate student.

iii

TABLE OF CONTENTS

Page

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Background and Motivation . 1

1.2 Inter-bank Payment Processing . 2

1.2.1 Centralized Payment Processing . 2

1.2.2 Decentralized Payment Processing. 3

1.3 Financial Auditing . 4

1.4 Organization of the Thesis . 5

2 RELATED WORK . 6

2.1 Distributed Consensus . 6

2.2 Cryptocurrency Systems . 6

2.3 Replicated Storage . 7

2.4 Distributed Checkpointing . 8

2.5 Payment Systems . 8

3 SYSTEM MODEL. 10

3.1 Pre-conditions . 10

3.2 Network Model and Assumptions . 11

3.3 Transaction Overview . 13

4 TRANSACTION PROCESSING MODEL . 16

4.1 Transaction Data Structures . 18

4.2 Transaction Validations . 20

4.2.1 Structural Validations . 23

4.2.2 Functional Validations. 24

iv

CHAPTER Page

4.3 Transaction Protocol . 24

4.3.1 Sender Protocol . 25

4.3.2 Receiver Protocol . 26

4.3.3 Server Node Protocol . 28

4.4 Analysis . 30

4.5 Efficiency Improvement Ideas . 37

4.5.1 Receiver Protocol . 37

5 AUDIT STRUCTURE . 39

5.1 Audit Trail Model . 42

5.2 Audit Data Structures . 48

5.2.1 Audit Checkpoints . 48

5.2.2 Audit Trail . 50

5.2.3 Authorized Checkpoints Set . 51

5.3 Audit Structure Validations . 52

5.3.1 Structural Validations . 56

5.3.2 Functional Validations. 56

5.4 Audit Checkpoint Protocol . 57

5.4.1 Sender Protocol . 57

5.4.2 Server Node Protocol . 59

5.5 Analysis . 61

5.5.1 Checkpoint Processing Protocol . 61

5.5.2 Audit Trail . 65

5.5.3 Audit Process . 68

5.6 Efficiency Improvement Ideas . 70

v

CHAPTER Page

5.6.1 Audit Checkpoint Protocol . 70

6 CONCLUSIONS AND FUTURE WORK . 72

6.1 Summary . 72

6.2 Future Work . 72

REFERENCES . 74

vi

LIST OF FIGURES

Figure Page

1.1 Centralized Payment Processing Model . 3

1.2 Decentralized Payment Processing Model . 4

3.1 Network Model Example . 12

4.1 Transaction Model . 19

4.2 Transaction Sender Protocol . 25

4.3 Transaction Receiver Protocol . 27

4.4 Server Node Protocol for Transaction Processing . 28

4.5 Transaction Commit Procedure . 30

5.1 Transaction Set Summary Examples . 40

5.2 Audit Trail Example . 44

5.3 Audit Checkpoint Model . 50

5.4 Audit Checkpoint Sender Protocol . 58

5.5 Server Node Protocol for Audit Checkpoint Processing 59

5.6 Audit Checkpoint Commit Procedure . 60

vii

Chapter 1

INTRODUCTION

1.1 Background and Motivation

Bitcoin [21], as a cryptographic proof-of-work based decentralized value exchange

mechanism, has demonstrated that it is practically possible for a distributed set of

networked nodes, which don’t trust each other, to arrive at a consensus about the

validity of individual transactions and maintain the collective transaction history of

the network, using a distributed ledger, without the need of centralized control. The

success of Bitcoin and the Blockchain structure have generated significant interest in

the financial community to understand whether the technological underpinnings of

the cryptocurrency paradigm can be leveraged to improve the efficiency of financial

processes in the existing infrastructure.

Decentralized inter-bank payment processing, smart contracts and distributed as-

set management have emerged as some interesting problems from this discussion.

Various alternative proposals, most notably, Ripple [24] and Ethereum [28], aim to

provide solutions to these problems in different ways. These proposals derive their

security guarantees from either the computational hardness of proof-of-work or vot-

ing based distributed consensus mechanism, both of which can be computationally

expensive. Furthermore, the financial audit requirements for a participating finan-

cial institution have not been suitably addressed. In this thesis, we present a novel

approach of constructing a non-consensus based decentralized financial transaction

processing model with a built-in efficient audit structure. We use the problem of

decentralized inter-bank payment processing for the model design.

1

1.2 Inter-bank Payment Processing

Given banks B1 and B2 with respective customers c1 and c2, an inter-bank pay-

ment transaction T can be defined as an electronic transfer of amount x from customer

c1 at bank B1 to customer c2 at bank B2 such that the completed atomic transaction

consists of the following components.

1. Reduction of Liability for bank B1 towards customer c1 by amount x.

2. Increment of Liability for bank B2 towards customer c2 by amount x.

3. Electronic transfer of amount x from bank B1 to bank B2 as settlement towards

the transfer of Liability.

Note that the changes in liability for a bank towards its customer are managed

by the corresponding bank subject to its internal processes. Our discussion will focus

on the third component of the transaction processing.

1.2.1 Centralized Payment Processing

FFIEC IT Booklets [13] describe various payment processing mechanisms used by

the banking industry in US and mention that financial institutions are increasingly

relying on third-party service providers to perform payment processing functions on

their behalf. For instance, the most common methods for wholesale inter-bank pay-

ment processing are FedWire, operated by the Federal Reserve Banks, and CHIPS,

operated by The Clearing House Payments Company, wherein participating banks

rely on the corresponding service provider for payment processing. A simplified cen-

tralized payment processing model is depicted by the figure 1.1.

In the centralized payment processing model, Bank-1 and Bank-2 rely on the

Financial Institution, at the center of the figure, to perform the payment processing

2

Figure 1.1: Centralized Payment Processing Model

on their behalf when, for instance, Client-1 submits a transaction request at Bank-1

for the transfer of amount X to Client-2 at Bank-2.

1.2.2 Decentralized Payment Processing

Our model aims to replace the centralized control of the Financial Institution in

figure 1.1 by a distributed network of banks, as depicted by figure 1.2, that perform

the payment processing in a decentralized manner, while complying with regulatory

requirements. The figure shows an example of the distributed network containing 4

banks, however, we generalize the problem to include n banks.

The key elements of the decentralized inter-bank payment processing problem are

as follows. Given a distributed network consisting of process nodes S = {si : 1 ≤

i ≤ n}, where si is a server node federated by bank Bi, any inter-bank payment

transaction T should

• be completed securely and atomically, to reflect the transfer of amount x from

bank B1 to bank B2, in presence of Byzantine failures,

• have self-verifiable properties with non-repudiation, upon completion, for veri-

3

Figure 1.2: Decentralized Payment Processing Model

fication in case of future transaction processing and auditing, and

• be included in an immutable and self-verifiable audit structure for efficient fi-

nancial auditing subject to regulatory requirements.

1.3 Financial Auditing

Financial Auditing is an important aspect of the financial infrastructure. As per

US Government regulations [12, 25], public companies, including commercial banks,

are required to publish periodic financial statements along with an auditor’s attesta-

tion and the audit is required to be performed by an independent public accountant

in case of large companies.

PCAOB Auditing Standards [22] define the objective of audit of financial state-

ments as ”the expression of an opinion on the fairness with which they present, in

all material respects, financial position, results of operations, and its cash flows in

4

conformity with generally accepted accounting principles.” Audit procedures include

assessment of internal controls over reporting as well as substantive procedures for

gathering evidence. Thus, it is important for a financial system to have efficient sup-

port for substantive procedures with strong internal controls in order to be efficiently

audited.

We propose an audit structure that establishes periodic partial ordering of trans-

actions into summarized checkpoints with respect to each participant and create in-

dividual audit trails for efficient auditing. Our results show that our audit structure

facilitates financial auditing of individual nodes in time independent of the number

of transactions.

1.4 Organization of the Thesis

The organization of the thesis is as follows:

• Chapter 2 discusses the related work in the field of cryptocurrency and dis-

tributed systems.

• Chapter 3 introduces the system model for the decentralized inter-bank payment

processing problem.

• Chapter 4 presents the transaction model and authorization protocol, along

with the detailed analysis of the protocol.

• Chapter 5 presents the audit structure used for efficient financial auditing, along

with detailed theoretical analysis.

• Chapter 6 concludes the thesis and discusses future work on the problem.

5

Chapter 2

RELATED WORK

2.1 Distributed Consensus

Pease, Shostak and Lamport [23, 16] introduced the term Byzantine Fault Tol-

erance using the Byzantine Generals Problem, as a distributed consensus problem,

where a set of f faulty process nodes may arbitrarily deviate from the defined pro-

cess by tampering with or suppressing messages. Their results showed the solution

requires at least 3f + 1 process nodes.

Fischer et al. [14] showed that it is impossible to achieve distributed consensus in

presence of even one faulty node using totally asynchronous model of computation.

Practical solutions, like Bitcoin [21], adopt a model that allows partial synchrony in

order to aim for probabilistic consensus over a period of time.

Our analysis shows that a non-consensus based transaction processing model can

provide Byzantine fault tolerance in an asynchronous distributed network.

2.2 Cryptocurrency Systems

Back [6] first introduced, through Hashcash, the notion of cryptographic proof

of computational work as a mechanism for secure value transfer over the Internet.

This idea was later expanded and developed by Nakamoto [21] into Bitcoin as a

cryptocurrency implementation wherein the network can securely achieve distributed

consensus over the validity of financial transactions and collectively build a distributed

immutable ledger, namely the Blockchain. Bitcoin has been extensively studied and

analyzed most notably by Garay et al. [15], Clark et al. [11], Bonneau et al. [9],

6

Tschorsch and Scheuermann [27].

Factom, introduced by Snow et al. [26], aims at providing a mechanism for busi-

nesses to access the Bitcoin blockchain to record their transactions for generating an

immutable audit trail. Wood [28] discusses Ethereum as a generalized platform with

a Turing-complete scripting language upon which various decentralized transaction

systems can be built.

As a computationally inexpensive alternative to proof-of-work mechanism, Bentov

et al. [8] discuss pure proof-of-stake based protocols and their potential gains in terms

of efficiency, while hypothesizing that the cryptographic security can possibly be worse

relative to Bitcoin subject to short-term human behavior.

Alternatively, Ripple, introduced by Schwartz et al. [24], has shown that an

efficient currency exchange and financial clearing system can be built upon a federated

system using voting based-consensus mechanism. Mazieres [20] introduced Federated

Byzantine Agreement, and Stellar Consensus Protocol as its construction, which uses

two-phases voting mechanism to achieve consensus in a network that allows open

membership and dynamic growth.

All the current proposals aim to solve the problem of achieving distributed con-

sensus in order to provide cryptographic security for the transaction processing. Our

work introduces the novel approach of using a non-consensus based transaction pro-

cessing model.

2.3 Replicated Storage

Aiyer et al. [4] presented a bounded wait-free distributed register that does not

require communication channels among processing nodes in order to improve message

complexity of the protocol.

Aiyer et al. [5] introduced a MAC based signature scheme for distributed system

7

by constructing a matrix of MAC tags {hi,j : 1 ≤ i, j ≤ n}, such that each tag hi,j is

said to be signed by node i and can be verified by node j.

Our model derives ideas from both these papers. We use a model of commu-

nication where a sender node communicates with the processing nodes that do not

interact with each other during the processing of the transaction. Also, our protocol

constructs a set of digital signatures for a transaction similar to the matrix of MAC

tags.

2.4 Distributed Checkpointing

For our audit structure design, we use distributed audit checkpoints. Distributed

checkpointing was introduced by Chandy and Lamport [10] as a useful tool for com-

puting the global state of a distributed computation. In their model, all the nodes

coordinate in recording the local states of all nodes and channels into a distributed

snapshot representing the global state.

However, we introduce a different approach wherein each node constructs its check-

points comprising only of the transactions involving itself and proceeds to request

authorization from the network to construct its own audit trail for financial auditing

purposes.

2.5 Payment Systems

FFIEC IT Booklets [13] describe various payment processing mechanisms used by

the banking industry in US as discussed in section 1.2.1. Commonly used electronic

payment processing methods include The Automated Clearing House (ACH) 1 for

1 ACH networks operate in accordance with guidelines by NACHA — The Electronic Payments
Association. https://www.nacha.org/ach-network

8

retail payments, and FedWire 2 and CHIPS 3 for wholesale payments. These payment

methods are centralized and rely on a service provider to process and settle payments

on behalf of the participating commercial banks and financial institutions. Our model

introduces a decentralized approach to payment processing and settlement where

participating banks can process payments without the aid of any third party service

provider.

2 FedWire is operated by the Federal Reserve Banks. https://www.frbservices.org

3 CHIPS is operated by The Clearing House (formerly known as the New York Clearing House
Association). https://www.theclearinghouse.org

9

Chapter 3

SYSTEM MODEL

In this chapter, we firstly discuss the initial pre-conditions required to be satisfied

in order for the proposed system model to be implemented. Then, we present the

network model along with its assumptions. Finally, we discuss an overview of the

customer transaction in view of the network model.

3.1 Pre-conditions

We assume that the bootstrapping of the proposed system will begin with an offline

legal binding contract among a set of commercial banks B = {Bi : 1 ≤ i ≤ n}, such

that each bank Bi will allocate a server node si and a minimum pre-funding amount xi

for the server node si in order to participate in the decentralized inter-bank payment

processing, in presence of a set of legally authorized auditors A = {ai : i ≥ 1}

external to the banks in set B. Each bank Bi will be expected to maintain explicit

private ledger entries specifying the allocation of amount xi from its liquid accounts

for the purpose of transparent reconciliation and auditing between its private ledger

and the system’s distributed ledger.

For the current state of this work, the execution of contracts is out of scope

of the system and will be expected to be performed in traditional offline fashion.

However, any changes proposed to the server node membership or pre-funding amount

corresponding to a bank Bi ∈ B will be required to be cryptographically signed by an

auditor upon verification of Bi’s private and distributed ledger histories for meeting

contract compliance requirements.

10

3.2 Network Model and Assumptions

We define the network as composed of 3 categories of nodes:

• Server Nodes consisting of the set S = {si : 1 ≤ i ≤ n}, where each server node

si is federated by the corresponding bank Bi, while the set S is decentralized

subject to offline contractual accountability requirements.

• Interface Nodes: We define an interface node ei, federated by bank Bi, as an

application server node acting as a transaction request interface for the bank’s

customers. The set of interface nodes is defined as E = {ei : 1 ≤ i ≤ n}. The

purpose of separation between interface nodes and server nodes is to provide

a layer of abstraction between a bank’s private ledger functionality and the

distributed ledger functionality to be separately managed by interface nodes

and server nodes respectively.

• Auditor Nodes comprising of logical or physical nodes corresponding to the

set of auditors A = {ai : i ≥ 1} in accordance with the offline contract.

Figure 3.1 demonstrates an example of our network model consisting of four Banks

and one Auditor Node. The solid boundary corresponds to the distributed network

consisting of the server nodes, and the dashed boundaries correspond to individual

banks, each containing the interface node and server node for corresponding bank.

Note that an interface nodes interact with only the server node within its bank’s

boundary.

We assume that the auditor nodes and interface nodes are benign, while the up

to f server nodes can be subject to Byzantine failures, such that n = 3f + 1.

We assume that each server node has a key pair 〈sk , pk〉, where sk is the se-

cret signing key and pk is the public signature verification key, and the signature

11

Figure 3.1: Network Model Example

verification key pk is known to every server and auditor node in the network. Addi-

tionally, we assume that there exists a Digital Signature scheme 〈Sign, Verify〉, where

Sign : d← Signsk(m) is the function used to producing the digital signature d for the

message m, and Verify : b ← Verifypk(m, d), such that b ∈ {true, false}, is the func-

tion that verifies the digital signature d for the message m and Verifypk(m, d) = true

if and only if the signature d is valid for the message m. Additionally, we assume

that signatures can not be forged.

We assume that interface nodes will validate and process customer transaction

requests in accordance with the process specifications of the corresponding bank, and

we do not wish to propose any changes to the internal transaction processing functions

of any bank.

12

3.3 Transaction Overview

Let us consider a transaction submitted by customer c1 using interface node e1

at bank B1 for payment of amount x to customer c2 at bank B2. The transaction

processing will involve the following steps.

1. Interface node e1 reduces the customer c1’s balance by amount x in bank B1’s

private ledger

2. Bank B1’s server node s1 performs a payment processing transaction to transfer

amount x to bank B2’s server node s2 using the distributed network of server

nodes S

3. Bank B1 communicates the customer information for the transaction to Bank

B2 for reconciliation with the payment processing transaction in step 2 and

transfer of amount x to customer c2

4. Interface node e2 increments customer c2’s balance by amount x in bank B2’s

private ledger

Steps 1 and 4 involve changes in the private ledgers of the corresponding banks,

and we assume that these changes will be managed by the corresponding banks subject

to their internal processes.

Although steps 2 and 3 can intuitively be combined, we have mentioned them

separately to make an interesting distinction. Note that the transaction in step 2

involves server s1 and s2, and can be agnostic of the customers involved in the overall

transaction. Whereas, the communication in step 3 requires customer information to

be transmitted. If the customer information is included in the payment processing

transaction in step 2, it will be visible to all the server nodes in the network, which

includes potentially Byzantine server nodes.

13

We do not wish to make the assumption whether this will be desirable to the

banks involved. So, let us consider the various cases in terms of possible requirements

according to the banks.

• Case 1: Customer information can be transmitted as plain-text in the payment

processing transaction according to the requirements. In this case, steps 2-3 can

be combined and customer information can be included as plain-text metadata

to the payment processing transaction in step 2. The metatdata information

can be used by bank B2 for reconciliation and transfer of funds to the customer.

• Case 2: Encrypted customer information can be transmitted in the payment

processing transaction according to the requirements. We assume that the en-

cryption scheme will be decided as a part of the requirements and corresponding

keys will be suitably shared among the banks. Now, steps 2-3 can be combined

and the bank B1 can provide its server node s1 with the encrypted customer

information, such that it can be decrypted by bank B2 only, to be included

as metadata to the payment processing transaction in step 2. The decrypted

metatdata information can be used by bank B2 for reconciliation and transfer

of funds to the customer.

• Case 3: Customer information can not be transmitted in the payment processing

transaction according to the requirements. In this case, the steps 2 and 3 will be

required to be processed separately. After the payment processing transaction

in step 2 is completed, bank B1 can communicate the information to the bank

B2 using a separate private channel for reconciliation and step 4 processing.

Therefore, irrespective of the case adopted by the banks involved in the imple-

mentation of the system model, we assume that step 3 will be performed as a part of

14

the transaction processing. We will focus on the payment processing transaction in

step 2 for our transaction model in chapter 4.

15

Chapter 4

TRANSACTION PROCESSING MODEL

In a traditional transaction model, each entity is associated with a balance value,

which is a cumulative total of all the incoming and outgoing transactions for the entity,

and the validity of a transaction is contingent upon availability of funds represented

by the balance value.

In contrast, Bitcoin [21] represents a transaction as a mapping between input

transactions and redeemable outputs. A transaction output is said to be an can-

didate for being used as an input for a new transaction if it has not been used as

an input for any transaction, and such a transaction output is termed as an un-

spent transaction. As a result, the input-output mapping transaction model provides

a proof of availability of funds that can be verified without the knowledge of the

balance value associated with the transaction initiator if the distributed transaction

processing model prevents a spent transaction output to be used as an input in a new

transaction, referred to as a double-spend transaction. Bitcoin attempts to enforce

this constraint by requiring eventual network consensus over complete transaction set

using the Blockchain, where a block containing a double-spend transaction is rejected

by all the non-faulty processing nodes and not included in the longest branch of the

Blockchain.

We adopt a transaction model similar to the Bitcoin transaction model where a

transaction is represented as an input-output mapping. However, our transaction

processing model differs from Bitcoin such that each server node si is required to

maintain only the set of transactions that are processed by the node si, instead of

requiring it to maintain all the transactions. Also, each server node si validates a

16

transaction independent of the validations performed by other server nodes in the

network and provides a signature for the transaction if si considers it valid according

to the information available to it. A transaction is said to be authorized when it

receives valid signatures from 2f + 1 server nodes, and the resulting signature set

is considered a proof of validity for the transaction. Each server node si, that signs

a transaction, is required to maintain the transaction as a part of its transaction

set, which is used by the node si to validate future transactions. Our results show

that double-spend transaction can not be authorized in our model, without requiring

network consensus over either the complete transaction set or the validity of individual

transactions during processing.

Authorized transactions should become part of the permanent record of activity of

servers involved in the transaction as a sender or receiver. In order to support auditing

of transactions, each server should reconcile, in a permanent record and at regular

intervals, the sequence of transactions it is involved in. Before being committed to

this permanent record, a transaction is new, and after it is committed, the transaction

changes status and is no longer new. The discussion of the details of this commitment

process is given in Chapter 5.

The organization of this chapter is as follows.

• In section 4.1, we define the transaction data structures used in our model.

• Section 4.2 defines the validation structure to be used by a server node for

validating transactions.

• Section 4.3 discusses the transaction processing protocol for a transaction sender

node, receiver node and a processing node.

• In section 4.4, we analyze the transaction processing model.

17

• Section 4.5 discusses some efficiency improvement ideas pertaining to the trans-

action processing model.

4.1 Transaction Data Structures

The life-cycle of a transaction involves 2 stages:

1. Proposed: When a sender node initiates the transaction for authorization, the

transaction is said to be a proposed transaction. We use T to denote a proposed

transaction. The structural composition of a proposed transaction is described

in definition 4.1.

2. Authorized: When a server node receives a proposed transaction T , it vali-

dates the transaction and responds with a signature if the proposed transaction

is valid according to it. Once the sender node receives 2f + 1 signatures from

the network, the transaction is said to be authorized by the network. We use T

to denote an authorized transaction. The authorized transaction data structure

is described in definitions 4.2.1 and 4.2.2.

Definition 4.1. (Proposed Transaction) A proposed transaction T is defined as a

5-tuple 〈s, id, I, O, d〉, where

• s is the server node that initiates the transaction T .

• id is integer sequence number assigned to the transaction T .

• O is the set of redeemable outputs of the transaction T and is defined as

O = {〈j, sj, xj〉 : sj is the jth recipient server node, and xj is the amount to

be received by it }

18

• I is the set of input transactions for T and is defined as

I = {〈T, j〉 : T is an authorized input transaction, and j is the output index to

be used from the transaction T }

• d is the digital signature of the sender node s for the transaction 〈s, id, I, O〉.

For simplifying the notations, we have included the authorized transactions T in

the definition of input transactions set I. However, for implementation purposes, it

can be replaced by a pair 〈s, id〉 where s is the sender node and id is the sequence

number of the corresponding transaction T.

Definition 4.2. (Authorized Transaction) An authorized transaction T, depicted by

the figure 4.1, is defined as a pair 〈T, D〉, where T = 〈s, id, I, O, d, 〉 is the under-

lying proposed transaction and D represents the set of 2f + 1 server node signatures

collected during the authorization of the transaction T .

Figure 4.1: Transaction Model

Definition 4.2.1. (Authorized Transaction) A transaction T : 〈T, D〉 is said to be

authorized if D contains 2f + 1 valid signatures from distinct server nodes.

authorized(〈T,D〉) , (∀(sj, dj) ∈ D, Verifypkj(T, dj) = true) ∧ |D| = 2f + 1

19

Using the transaction model discussed above, each server si maintains the follow-

ing data structures for the local image of the distributed transaction history.

1. Authorized Transactions (TA) is a set of transactions T authorized according

to the server node si.

2. New Transactions (TN) is set of 3-tuples 〈T, s, θ〉, where θ is the status

of authorized transaction T with respect to the server node s involved in the

transaction as a sender or receiver. When a transaction T is authorized, the

status θ = new for the transaction T with respect to each server node sj involved

in it. When the transaction is committed to the permanent record by the

corresponding server node, the status θ changes and is no longer new. The

discussion of the details of this commitment process is given in Chapter 5.

Note that the each transaction T has one entry in the authorized transaction set

TA, whereas it can have multiple independent entries in the new transaction set TN

because each transaction T has at least 2 server nodes involved, i.e. a sender and a

receiver.

For simplifying the notations, we have included the authorized transactions T in

the definition of new transaction set TN . However, for implementation purposes, it

can be replaced by a pair 〈s′, id〉 where s′ is the sender node and id is the sequence

number of the corresponding transaction T. The 〈s′, id〉 pair can be used to retrieve

the corresponding authorized transaction from the authorized transaction set TA.

4.2 Transaction Validations

In order to ensure that a server’s transactions are processed in order, we require

that the server provide consecutive sequence numbers for its transaction. This re-

quirement is enforced by having the server include the last authorized transaction

20

initiated by the server.

When a sender node si sends a proposed transaction T : 〈si, idc, I, O, di〉 to the

server nodes for authorization, it is accompanied by the last authorized transaction

Tp for the sender node si. Note that the definition of the input transaction set

I includes the authorized input transactions that can be used for validations by a

processing server node even if the corresponding transactions are not present in its

local authorized transaction set TA. For implementation purposes, the authorized

input transactions can be required to accompany the transaction processing request,

which serves the equivalent objective.

The transaction T is considered valid by a non-faulty server node if all the following

conditions hold.

1. The transaction request parameters 〈T,Tp〉 are structurally well-formed, i.e.

(a) The transaction Tp is an authorized transaction with si as the sender node

and sequence number used in Tp is one less than the sequence number idc

used in T

(b) All the input transactions, in I, are authorized transactions received by

the node si

(c) The sum of amounts in the input set I is equal to the sum of amounts in

the output set O

(d) The signature di is the valid signature for the sender for si over the trans-

action 〈si, idc, I, O〉

2. The transaction T is functionally valid, i.e.

(a) All the input transactions, in I, are unspent transactions as per the au-

thorized transaction set TA of the processing node

21

(b) The sequence number idc used in T is greater than all the sequence num-

bers used by the node si in previous transactions as per the authorized

transaction set TA of the processing node

Note that the structural validations depend upon the request parameters 〈T,Tp〉

only, while the functional validations depend upon the authorized transaction set

TA. Therefore, if a transaction is structurally valid according to one non-faulty node,

it will be structurally valid according to all non-faulty nodes. However, the func-

tional validity of a transaction may vary among non-faulty nodes depending upon the

transactions in their authorized transaction set TA.

Also, the previous transaction Tp is unique with respect to each proposed trans-

action T because according to validation 1(a), it is required to be an authorized

transaction with exactly the previous sequence number, and according to validation

2(b), the sequence number in T is required to be new, which will not be valid if Tp is

used multiple times.

We now formally define the individual validations as building blocks for the struc-

tural and functional validations as mentioned above.

Definition 4.3. (Amounts Validation) A transaction T : 〈s, id, I, O, d〉 is said to

be valid in terms of the transaction amounts if the sum of input amounts and the sum

of output amounts are equal.

validAmounts(I, O) ,
∑
xj∈O

xj =
∑

(T,j)∈I

T.O[j].x

Definition 4.4. (Previous Transaction Validation) A transaction Tp : 〈Tp, Dp〉 is

said to be the valid previous transaction corresponding to the proposed transaction T

if Tp is an authorized transaction and and T.id = Tp.id+1 and both transactions were

22

initiated by the same node.

validPrevTxn(T,Tp) , authorized(Tp) ∧ (T.s = Tp.s) ∧ (T.id = Tp.id+ 1)

Definition 4.5. (Own Inputs Validation) A node s is said to have included only its

own authorized input transactions in the proposed transaction T : 〈s, id, I, O, d〉 if

all the authorized transaction inputs in I correspond to the node s.

ownInputs(s, I) , ∀(T, j) ∈ I, authorized(T) ∧ (T.O[j].sj = s)

Definition 4.6. (Unspent Input Validation) A set of inputs I in a proposed transac-

tion Tc, initiated by the node s, is said to be unspent if none of the input transactions

has been used as an input for another transaction by the node s.

unspent(s, I) , ∀(T, j) ∈ I, (T, j) /∈ {TA[s].I}

Definition 4.7. (Sequence Number Validation) A sequence number idc in a proposed

transaction T , initiated by the node s, is said to be valid if it is greater than the

maximum sequence number used by the node s in previously authorized transactions.

validId(s, idc) , idc > max{id : id ∈ TA[s]}

4.2.1 Structural Validations

When a server node s receives a transaction for authorization from the sender node

sj, the node s first validates the structural integrity of the transaction, i.e. ascertains

whether it is well-formed. If the transaction is structurally invalid, the node s rejects

the transaction. The corresponding validation is defined as follows.

Definition 4.8. (Well-formed Transaction) A transaction T proposed by a node sj,

along with previous transaction evidence Tp, is said to be well-formed if sender’s

23

signature is valid, all the inputs in T are sj’s own authorized transactions, and the

transaction amounts and the previous transaction are valid.

wellFormed(T,Tp) , (Verifypkj(T, Tc.d) = true) ∧ ownInputs(T.s, T.I)

∧ validPrevTxn(T,Tp) ∧ validAmounts(T.I, T.O)

4.2.2 Functional Validations

After validating the structural integrity of the transaction processing request us-

ing definition 4.8, the server node s performs functional validations to verify that

the transaction is not a double-spend transaction using definition 4.6. In doing the

validation, the server node s uses its local knowledge of the authorized transaction

set TA. So it is possible that a non-faulty server node will consider a double-spend

transaction valid because it may not be aware of the conflicting transaction. Never-

theless, if a transaction is a double-spend transaction, it will not be considered valid

by enough servers required for authorizing it.

Similarly, the server node s also verifies, using its local knowledge, that the se-

quence number has not been used previously using definition 4.7.

Definition 4.9. (Functionally Valid Transaction) A transaction T proposed by a node

s is said to be functionally valid if all the inputs are unspent and the sequence number

is valid.

validTxn(T) , unspent(T.s, T.I) ∧ validId(T.s, T.id)

4.3 Transaction Protocol

We now present the transaction authorization protocol used by the server nodes

to propose, authorize and accept transactions.

24

4.3.1 Sender Protocol

Without loss of generality, let us consider a transaction submitted by customer

c1 using interface node e1 at bank B1 for payment of amount x to customer c2 at

bank B2. The interface node e1 will send the transaction to the server node s1 for

processing. The server node s1 will construct the transaction in the form of a pair

(I, O) as the input and output transaction sets respectively, where one of the outputs

in O will correspond to a server node s2 for amount x, and initiate the protocol

depicted in figure 4.2 for transaction authorization.

Figure 4.2: Transaction Sender Protocol

The sender node si maintains a current identifier counter value (idc) to assign the

id value to its transactions. The function Process-Txn takes the transaction in the

form of (I, O) as input and returns the authorized transaction (T,D) as output. It

25

begins by constructing the transaction (lines 5-6) and processes the transaction in 2

phases:

• Phase 1 (Authorization): Sender node si sends the authorization request to

all servers (line 8). The transaction authorization request is accompanied by

the previous authorized transaction (with identifier idc− 1) as a proof that the

node si is using sequential identifier values. Sender node waits for 2f + 1 valid

node signatures (lines 10-16). Once the transaction is authorized, si proceeds

to phase 2.

• Phase 2 (Commit): Sender node si sends the transaction commit request

along with the set D containing 2f + 1 signatures to all server nodes (line

18) and waits for acknowledgements from 2f + 1 server nodes (line 19). Once

the acknowledgements are received, si commits the transaction (line 20) using

the commit-txn procedure depicted in figure 4.5 and returns it (line 21) for

internal processing, if any.

Note that the transaction is authorized at the end of phase 1 from the sender

node’s perspective, but only the sender node has the proof of authorization, i.e. the

signature set D, at the end of phase 1. Phase 2 is used to communicate the signature

set D to the network so that it can be read by the receiver node without depending

on the sender node.

4.3.2 Receiver Protocol

In an ideal scenario, we would expect the sender node to communicate the com-

mitted transaction to the receiver node. However, since the sender node could be

faulty, we do not assume that such a communication will take place in a timely man-

ner. Therefore, we define a protocol, depicted in figure 4.3, for the receiver node, say

26

sk, to read and process incoming transactions from the network.

Figure 4.3: Transaction Receiver Protocol

The receiver node sk sends the read request for new transactions to all server nodes

(line 3) and processes responses from 2f + 1 nodes (lines 5-10). Node sk compiles

a transaction set TR, which is the union of all the transaction sets T∗ returned by

the server nodes (line 6), and a set R to keep track of the server nodes that respond

in order to satisfy the termination condition of 2f + 1 responses (line 10). Once it

receives 2f + 1 responses, node sk commits, using the commit-txn procedure, all

authorized transactions that are not already committed (lines 11-13).

Firstly, we know that at most f nodes can be faulty, and as a result sk is guaranteed

to receive 2f + 1 responses which guarantees termination. Now, let a set TR denote

the set of transaction authorized at the time when the node sk initiates the protocol

such that each transaction in TR is initiated by a non-faulty node and has sk as an

output receiver. We know that each such transaction is written back to 2f + 1 server

nodes in the network by its sender node, i.e. at least f + 1 non-faulty nodes have

the authorized transaction with the signature set. Therefore, sk is guaranteed to

receive each transaction from at least one server node during the processing of 2f + 1

27

responses. So, sk is guaranteed to have received all the transactions in TR at the end

of the receiver protocol.

4.3.3 Server Node Protocol

We now discuss the protocol used by server nodes, depicted in figure 4.4, to process

transaction requests from sender and receiver nodes. Consider a server node sj that

receives the processing request.

Figure 4.4: Server Node Protocol for Transaction Processing

The transaction authorization protocol is represented in lines 1-23.

• Phase 1 (Authorization): When the node sj receives the transaction autho-

28

rization request for transaction T with previous transaction Tp from the node si

(line 2), sj processes it only if the transaction request is well-formed as per the

definition 4.8 (line 3). If either the previous transaction Tp or any of the input

transactions is not a committed transaction, sj commits those transactions for

further processing (lines 5-8). Now, if the transaction is functionally valid (line

10), sj saves the transaction (line 12) and sends the signed transaction to the

sender node (line 13).

• Phase 2 (Commit): When the node sj receives the transaction commit re-

quest for transaction T with signature set D from the node si (line 18), sj verifies

whether the transaction is authorized (line 19). If the validation succeeds, sj

commits the transaction and responds to the sender node.

The new transaction request protocol for the server nodes is represented in lines

25-28. The node sj responds to requests from server nodes sk (line 25) by constructing

the set TR of new transactions that involve the node sk as a receiver (line 26) and

sending the set to the node sk in response (line 27).

The transaction commit procedure commit-txn is depicted in figure 4.5. When

a transaction is committed, it is stored in two transaction sets: authorized trans-

actions (line 6) and new transactions (line 7). The new transaction set stores one

copy of the transaction for each node involved in the transaction as input or out-

put. The procedure also ensures that commit is not performed for already committed

transactions.

Server nodes commit missing transactions (fig 4.4, lines 5-8) for two reasons.

Firstly, it helps them improve their local knowledge of the authorized transactions

in the network. Secondly, if a faulty sender node terminates sender protocol at the

end of phase 1, the transaction will not be committed by any server node in the

29

Figure 4.5: Transaction Commit Procedure

network. As a result, it will not be available as a new transaction for any server node

and consequently, the receiver will not receive the transaction during the receiver

protocol. However, we know that the sender node will be required to send the this

authorized transaction while processing the next transaction, and each server node

can commit the transaction at this time and guarantee progress.

4.4 Analysis

For our analysis of the transaction processing protocol, we consider the following

properties:

• Theorem 4.1: If non-faulty sender node initiates a transaction, the sender pro-

tocol is guaranteed to terminate.

• Theorem 4.2: All transactions initiated by non-faulty sender nodes will be

accepted as authorized transactions by their corresponding non-faulty receiver

nodes.

• Theorem 4.3: A transaction is authorized if and only if it is structurally and

functionally valid.

Theorem 4.1. If non-faulty sender node initiates a transaction, the sender protocol

30

is guaranteed to terminate.

Proof. If the sender node is non-faulty, then its transaction must be valid because

a non-faulty sender node validates the transaction before sending it to the network

and the sender node has complete knowledge of all the transactions sent by it in the

past, which prevents it from accidentally constructing a double-spend transactions.

Therefore, we can say that the transaction must be structurally and functionally valid

as per definitions 4.8 and 4.9 respectively.

So, as per algorithm 3 (fig 4.4), each non-faulty server node will sign the transac-

tion. We know that there are at most f faulty nodes, i.e. there are at least 2f + 1

non-faulty nodes in the network, so the sender is guaranteed to receive at least 2f +1

signatures, which may or may not contain signatures from faulty nodes, in phase 1.

Therefore, the sender will be able to complete phase 1 and proceed to phase 2.

We know that the sender node verifies each received signature during construction

of the signature set D (fig 4.2, lines 12-13), so the signature set D must be valid and

as a result, it will be accepted as an authorized transaction, as per definition 4.2.1,

by each non-faulty server node during phase 2. So, the sender will receive at least

2f + 1 acknowledgements during phase 2 and terminate the protocol.

Theorem 4.2. All transactions initiated by non-faulty sender nodes will be accepted

as authorized transactions by their corresponding non-faulty receiver nodes.

Proof. Using the argument from Theorem 4.1, we can say that if a non-faulty sender

node initiates a transaction T , the sender is guaranteed to complete phase 2 and

terminate. This means that the transaction T will be authorized at the end of phase

1, and the authorized transaction will be acknowledged by at least 2f + 1 nodes

during phase 2. As per algorithm 3 (fig 4.4), during phase 2, a non-faulty server

node commits the transaction T before acknowledging it (lines 20-21). Since at most

31

f nodes can be faulty, we can conclude that the transaction will be committed by at

least f + 1 non-faulty nodes at the end of phase 2. We consider the worst case that

when the sender node received 2f + 1 acknowledgements during phase 2, f of them

were sent by faulty nodes which did not commit the transaction, and exactly f + 1

non-faulty nodes committed the transaction T .

As per algorithm 2 (fig 4.3), when a non-faulty receiver node requests new trans-

actions from the network, it only processes the first arrived 2f + 1 responses before

termination. If a transaction T is committed by f + 1 non-faulty nodes and a non-

faulty receiver, say sr, of the transaction T executes the receiver protocol, the node sr

is guaranteed to receive a response from at least one of those f + 1 non-faulty nodes,

say si, as a part of the first arrived 2f + 1 responses. Since the si is non-faulty, it will

communicate the transaction T in its response. As the transaction T is authorized,

the receiver sr will accept the transaction as authorized as per definition 4.2.1.

For the proof of Theorem 4.3, we consider the following lemmas.

• Lemma 4.1: If a transaction is authorized, then it must be structurally valid.

• Lemma 4.2: A sender node si completes phase 1 for a transaction T , with se-

quence number idc, if and only if each of the preceding transactions initiated by

the node si, with sequence numbers id < idc, are authorized and are committed

by at least f + 1 non-faulty nodes.

• Lemma 4.3: If a transaction is authorized, then it must be functionally valid.

Lemma 4.1. If a transaction T is authorized, then it must be structurally valid.

Proof. We know that each non-faulty server node performs structural validations

using the request parameters only, and as a result, if a transaction is structurally

invalid according to definition 4.8, it will be invalid according to every non-faulty

32

server node (fig 4.4, line 3). Therefore, a structurally invalid transaction will be

rejected by each non-faulty server node. Since there are at most f faulty nodes and

at least 2f+1 non-faulty nodes, the structurally invalid transaction can not be signed

by more than f node (all faulty). Hence, a structurally invalid transaction can not

be authorized as per definition 4.2.1.

Lemma 4.2. A sender node si completes phase 1 for a transaction T , with sequence

number idc, if and only if each of the preceding transactions initiated by the node si,

with sequence numbers id < idc, are authorized and are committed by at least f + 1

non-faulty nodes.

Proof. We know that the sender node si is required to include the previous authorized

transaction Tp, with sequence number idc − 1, as a transaction processing request

parameter in phase 1 of the processing of the transaction T , and it is validated during

the structural validations as per definitions 4.8 and 4.4. As per the hypothesis, the

sender node si is able to complete phase 1 for a transaction T , which means that it has

received 2f + 1 signatures and is considered authorized as per definition 4.2.1. From

lemma 4.1, we know that if the transaction T is authorized, it must be structurally

valid. Therefore, the transaction Tp must be authorized and its sequence number

must be idc − 1.

If the transaction Tp is authorized, the sender node si must have completed phase

1 of the sender protocol for it. Let us consider the two cases for the processing of the

transaction Tp.

• Case 1: If the sender node si is non-faulty, we know from the arguments in

theorems 4.1 and 4.2 that the sender node si must have completed phase 2 for

the the transaction Tp and it must be committed by at least f + 1 non-faulty

nodes.

33

• Case 2: If the sender node si is faulty, it may not have completed or even

initiated phase 2 for the transaction Tp. For the worst case consideration, we

assume that the sender node si did not initiate phase 2 for the transaction Tp.

As a result, no non-faulty node can have committed the transaction Tp because

transaction commit is a part of phase 2 processing for the server nodes.

As discussed earlier, the sender node si sends the transaction Tp as a request

parameter in the succeeding transaction T and the transaction T is authorized.

This means that the transaction T has been signed by at least f + 1 non-

faulty nodes. We know from algorithm 3 (fig 4.4), that a non-faulty server node

commits the previous transaction Tp (line 5) before signing the transaction

T . This means that each of the (at least) f + 1 non-faulty nodes would have

committed the authorized transaction Tp before signing the transaction T , and

as a result, the transaction Tp must be committed by at least f + 1 non-faulty

nodes.

Therefore, we have established that if a transaction T , sent by server node si with

sequence number idc, is authorized, then the previous authorized transaction Tp, sent

by server node si with sequence number idc− 1, must be committed by at least f + 1

non-faulty nodes.

We can apply the same argument to say that the transaction T′p, sent by server

node si with sequence number idc−2, must be committed by at least f+1 non-faulty

nodes because its succeeding transaction Tp is authorized and the sender node si must

have completed phase 1 for it. Therefore, using induction, we can conclude that each

of the preceding transaction sent by sender node si, with sequence numbers id < idc

must be committed by at least f + 1 non-faulty nodes.

Lemma 4.3. If a transaction T is authorized, then it must be functionally valid.

34

Proof. As per functional validation definition 4.9, a transaction T, initiated by the

sender node si, can be functionally invalid in two cases.

• Case 1: The sequence number idc, used in the transaction T, is invalid.

We know that the sender node si is required to include the previous authorized

transaction Tp, with sequence number idc−1, as a transaction processing request

parameter in phase 1 of the processing of the transaction T , and it is validated

during the structural validations as per definitions 4.8 and 4.4. As the trans-

action T is authorized, it must be structurally valid according to lemma 4.1,

and as a result, sequence number idc in the transaction T must be one greater

than the sequence number in the transaction Tp. So, the sequence number idc

can not be arbitrarily large. It can only be invalid if it is not greater than the

largest sequence number used node si in previous transactions.

As the transaction T is authorized, the sender must have completed phase 1 for

it, and using lemma 4.2, we can say that each of the preceding transaction sent

by sender node si, with sequence numbers id < idc must be committed by at

least f + 1 non-faulty nodes. Therefore, if the sequence number idc is not the

largest sequence number used node si so far, there must be another authorized

transaction with the same sequence number idc, and it must be committed by

at least f + 1 non-faulty nodes. So, at least f + 1 non-faulty nodes would

have detected the transaction T as functionally invalid and rejected it. As a

result, the transaction T can only be signed by at most 2f nodes, which is not

sufficient for the transaction T to be authorized as per definition 4.2.1. Hence,

if the transaction T is authorized, its sequence number idc must be valid.

• Case 2: The transaction T is a double-spend transaction, i.e. at least of the

inputs used in T has been used as an input by another transaction.

35

Let us consider that there exists a transaction T′ initiated by the node si that

used an input which has been re-used by the transaction T. If the sequence

number of T′ is greater than or equal to the sequence number of T, then the

transaction T will not be authorized as per the argument in case 1. Alternatively,

if the sequence number used in T′ is less than the sequence number used in T,

then using lemma 4.2, we can say that the transaction T′ is authorized and is

committed by at least 2f+1 server nodes prior to the functional validation of the

transaction T. This means that the transaction T will be detected as a double-

spend transaction by at least f + 1 non-faulty nodes, and can be signed by at

most 2f nodes, which is not sufficient for the transaction T to be authorized

as per definition 4.2.1. Hence, if a transaction T is authorized, it can not be a

double-spend transaction.

Hence, a functionally invalid transaction can not be authorized as per definition

4.2.1.

Theorem 4.3. A transaction is authorized if and only if it is structurally and func-

tionally valid.

Proof. Combining lemmas 4.1 and 4.3, we can say that if a transaction is authorized,

it must be structurally and functionally valid. Conversely, if a transaction is either

structurally or functionally invalid, and the transaction is authorized, it would lead

to a contradiction of the the hypothesis in lemmas 4.1 or 4.3 respectively.

Corollary 4.3.1. A double-spend transaction can not be authorized.

Proof. We know that a double spend transaction is considered functionally invalid as

per definitions 4.9 and 4.6. Therefore, as per theorem 4.3, it can not be authorized.

36

4.5 Efficiency Improvement Ideas

As mentioned earlier, the authorized transactions T are included in the input

transactions I of a proposed transaction and in the new transaction set TN . For effi-

cient implementation, these sets can be defined with pair 〈s, id〉 where s is the sender

node and id is the sequence number of the corresponding transaction T. Correspond-

ing validations can be suitably modified to retrieve the authorized transactions, before

validation, from the authorized transaction set TA using the 〈s, id〉 pair.

Note that the size of a pair 〈s, id〉 is constant, whereas the size of the corresponding

transaction depends on the number of inputs, outputs and the server node signatures.

As a result, the size of the pair 〈s, id〉 is much smaller as compared to the transaction

data structure.

4.5.1 Receiver Protocol

We now discuss the efficiency concerns and potential improvements concerning

the receiver protocol depicted in figure 4.3 and figure 4.4 (lines 25-28).

As discussed in subsection 4.3.2, using the protocol, a node is guaranteed to

receive all the newly authorized transactions wherein it is the receiver. However, it

can receive all the transactions again that received during the last execution of the

protocol along with the transactions that were authorized after the last execution.

We can control this redundancy in successive responses to the receiver protocol

by modifying the protocol as follows.

• The receiver node si constructs a known transactions set TK of 〈s, id〉 pairs

using its new transaction set TN such that all the corresponding transactions

involved si as a receiver.

• The receiver node si sends the set TK as a request parameter in the receiver

37

protocol to all server nodes and collects 2f + 1 responses before termination.

• Each server node processes the request by constructing the response transaction

set TR similar to the construction shown in figure 4.4 (line 26) with a modifica-

tion that it excludes all the transactions that have been included in the request

parameter TK , and sends the response set TR to the node si.

• The receiver process the received transactions in the same way as shown in

figure 4.3.

Now, observe that the receiver’s known transactions set TK may contain a lot

of transactions, but they are specified in the minimal possible way using a 〈s, id〉

pair, and as a result, the size of the set TK will be smaller than set of corresponding

transactions. Using the set TK , each server node reduces the size of its response set

and the number of transactions received and processed by the receiver node during

the protocol will correspond to the newly authorized transactions only.

Future work can introduce new model parameters to further optimize the proto-

col.

38

Chapter 5

AUDIT STRUCTURE

PCAOB Auditing Standards [22] define the objective of audit of financial state-

ments as ”the expression of an opinion on the fairness with which they present, in

all material respects, financial position, results of operations, and its cash flows in

conformity with generally accepted accounting principles.” Audit procedures include

assessment of internal controls over reporting as well as substantive procedures for

gathering evidence.

Before we discuss our audit structure, let us discuss an audit procedure in context

of a financial transaction processing system. We assume that, given a server node si

and set TCi of transaction involving si as input or output, there exists a deterministic

summarizing function summarize : (si,T
C
i) → σ that produces a summary σ of

the transaction set TAi with respect to the node si, and the function is known to all

nodes in the network. By virtue of this assumption, we defer the definition of the

summarizing function to the financial experts so that it conforms to the requirements

of substantive procedures to be used in the financial audit.

Figure 5.1 illustrates some potential examples of the transaction set summary.

Given the set of transactions shown in figure, where transactions 1-5 are sent by s1

and transactions 6-10 are received by s1, the possible summaries for the node s1 can

be as follows.

• σ1 = Sum(Received by s1)− Sum(Sent by s1)

• σ2 = 〈 Sum(Sent by s1), Sum(Received by s1) 〉

• σ3 = {〈si,Total〉 : Total = Sum(Received by s1 from si) − Sum(Sent by s1 to si)}

39

Figure 5.1: Transaction Set Summary Examples

• σ4 = { 〈si, Sent, Received〉 : Received = Sum(Received by s1 from si),

Sent = Sum(Sent by s1 to si)}

Let TC be the complete set of authorized transactions for the entire network, i.e.

a union of all the authorized transactions sets of all server nodes in the network, at

the time of the audit. And let TCi be the set of authorized transactions that involve

the node si as a sender or a receiver at the time of the audit. We define the audit

procedure as follows.

Definition 5.1. (Audit) Given a complete set of authorized transactions TC, a set

of transactions TCi involving node si as a sender or receiver and a summary value σ

at a particular time, an audit of the node si is defined as a procedure of verifying the

following criteria.

1. σ = summarize(si,T
C
i), i.e. the value σ corresponds to the set TCi for the node

si as per the summarizing function summarize,

2. the set TCi is complete, i.e. it contains all the transactions in TA involving node

si as a sender or receiver, and

3. the set TCi is sound, i.e. it does not contain any transaction not in TC

40

Let us analyze this audit procedure in absence of any audit structure. We discuss

naive approaches for the analysis, but we use the minimal possible lower bounds of

processing time required in order to be representative of an optimal solution. We

consider two scenarios as follows.

1. Bitcoin Blockchain: In Bitcoin, the network maintains a common Blockchain

structure and the Blockchain is expected to contain all the completed transac-

tions at any given time. So, we assume that downloading the Blockchain from

the network will provide the auditor with the correct transactions set TC , which

can be used as a reference for verifying the completeness and soundness of the

set TCi , provided by node si, and it would require at least Ω(|TCi |) time. Now,

the auditor can verify the summary σ, provided by node si, with respect to the

set TCi and it would also require at least Ω(|TCi |) time. Therefore, the audit

procedure on the Bitcoin Blockchain can be expected to take at least Ω(|TCi |)

time. Additionally, an auditor will be required to query the network to down-

load the Blockchain in order to validate the completeness and soundness of the

set TCi provided by the node si.

2. Our Transaction Model: In our model, none of the server nodes are expected to

maintain the complete set of authorized transactions. So, in order to compile

the set TC , the auditor needs to request authorized transaction sets from all the

nodes in the network and construct a union of all the responses. The auditor

is expected to receive at least 2f + 1 responses as f can be faulty, i.e. O(f)

responses each of size O(|TC |) ≈ O(|TCi |). The union operation will take at least

Ω(|TCi |) time. Then, the auditor can perform the verification of the set TCi and

the summary σ, provided by node si, which would again require at least Ω(|TCi |)

time. So, the audit procedure can be expected to take at least Ω(|TCi |) time.

41

Again, the auditor will be required to query the network in order to compile the

set TC so as to validate the completeness and soundness of the set TCi provided

by the node si.

Therefore, in either scenario, the audit procedure time complexity depends upon

the number of transactions in the set TCi , which can be significantly large for a bank

and is very inefficient for an audit. Furthermore, the auditor will be required to

query the network to construct the set TC as an accurate representation of the set of

transactions in the system that can be used as a point of reference in validating the

completeness and soundness of the set TCi provided by the node si. We also note that

validating the soundness of the set TCi can be done without constructing the set TC

in presence of verifiable evidence, e.g. set of server signatures in our model, however,

the validation of the completeness of the set TCi requires set TC to ensure that the

node si has not withheld any transactions from the auditor.

We propose an audit trail model that (1) provides the auditor with the guarantee

that the set of transactions provided by the corresponding node is sound and complete,

without querying any other node in the network, and (2) allows the audit procedure

to be completed in time independent of the number of transactions. This would

significantly improve the efficiency of the audit procedure, thereby reducing the cost

of an external audit.

5.1 Audit Trail Model

Financial audit is a periodic activity, where the periodicity can be monthly, quar-

terly, yearly or some other established time period. And therefore, the audit of a

particular period needs to distinguish the transactions that occurred during the con-

cerned period from the ones that occurred during other periods. We do not assume a

specific periodicity or the start/end parameters of those periods in our model. We as-

42

sume that the participating entities will define time-periods as per their requirements

and utilize our model accordingly.

Each node si constructs a linear audit trail consisting of only the transactions that

involve node si as either the sender or a receiver, and this audit trail can be used as

the node si’s transaction set TCi during an audit. The audit trail is sub-divided into

a connected sequence of audit checkpoints, each of which represents a consolidated

record of financial activity, both the transactions and the summary, for the concerned

node during a specified time-period.

To illustrate the idea, we use an example. Let us consider a scenario where the

bank B is subject to annual auditing, i.e. at the end of each year, the bank B is

required to publish an audited summary of its financial activity for the year. So,

for the year-end audit, the bank B is required to provide the auditor with the set

of transactions that occurred during the year involving it as either the sender or a

beneficiary. Let us assume that the bank B decides to perform daily checkpointing,

i.e. it constructs one audit checkpoint every day to represent its financial activity for

the day. Consequently, at the year-end audit, the bank B can provide the auditor

with the corresponding section of its audit trail consisting of 365 (or 366) checkpoints,

such that the first checkpoint represents day 1 of the year and the last checkpoint

represents the last day of the year. Figure 5.2 used to demonstrate an example

audit trail for this scenario, where the time-period k represents day 1 of the year

and time-period k + 364 represents last day of the year. The (*) symbol is used to

denote a reference to the previous checkpoint (pointed to by the respective arrows).

If the auditor can be provided with the guarantee that the audit trail construction

ensures completeness and soundness of the underlying transaction sets, and that each

summary can be guaranteed to be an accurate representation of the corresponding

transaction set, then the auditor is only required to validate the consolidated value

43

of the 365 checkpoint summaries, which is independent of the number of transactions

in the underlying transaction sets.

Figure 5.2: Audit Trail Example

In this way, our model allows each participating bank to define its own frequency

of checkpointing and its correlation with the periodicity of its audit requirements.

It is important to note that, in our model, each node constructs its own audit

trail independent of other nodes, unlike the Bitcoin [21] Blockchain where the entire

network shares a common linear chain of transaction blocks. Furthermore, an audit

trail in our model differs from the Bitcoin Blockchain in terms of its correlation to

the processing of underlying transactions. In Bitcoin, a transaction is considered as

completed when it has been included sufficiently deep in the Blockchain, which means

that the frequency of block creation constrains the productivity of the Bitcoin network

in terms of transaction processing. Whereas, in our model, transaction authorization

is performed independently of the audit trail construction.

The key characteristic considerations of the model are as follows.

• When a node si constructs an audit checkpoint, it should include all the trans-

actions that involve si as the sender or receiver of the transaction and were

authorized during the time-period to which the audit checkpoint corresponds.

• For any node, the set of transactions in every audit checkpoint is required to

be mutually exclusive from the transaction sets in all other audit checkpoints.

44

• Each audit checkpoint is required to include an accurate summary for its set of

transaction.

• Each node is required to link its audit checkpoints together in a linear audit

trail, such that each audit checkpoint contains a reference to the previous audit

checkpoint.

We enforce the above mentioned constraints by requiring each audit checkpoint to

be validated and signed by at least 2f+1 processing server nodes in the network, and

the resulting signature set is considered as a proof of validity for an audit checkpoint.

An audit checkpoint validated and signed by 2f+1 nodes is referred to as an authorized

checkpoint. Similar to our transaction processing model, each processing server node

validates a checkpoint using its local knowledge only and no server node is required to

maintain all the checkpoint information for any node. Each server node si, that signs

a checkpoint, is required to maintain the checkpoint as a part of its local checkpoint

set and also keep track of the transactions that have been included in a checkpoint

by a node. The node si uses this local knowledge to validate future checkpoints.

We would like to make an important distinction before discussing how a server

node validates the transaction set in a checkpoint. For the purpose of abstraction,

we refer to the constituents of an audit checkpoint as transactions. It should be

construed that an audit checkpoint contains transactions only in a symbolic sense,

i.e. it contains verifiable references to the corresponding authorized transactions.

As discussed in chapter 4, each authorized transaction is added to the new trans-

actions set TN for each server node involved in it as a sender or receiver. Initially,

the status of the transaction is set to be new. Each server node constructs its audit

checkpoints by including all its new transactions from its local copy of the set TN .

Similarly, each server node validates a checkpoint using its local copy of the set TN .

45

Once, the checkpoint is authorized, the corresponding entries are removed from the

set TN by the checkpoint initiator as well as all the server nodes that sign it, and

those entries no longer considered new. If a server node detects that a transaction

included in the audit checkpoint being processed is not a new transaction, it rejects

the checkpoint. We show that our protocol guarantees that no authorized transaction

can be included in more than one authorized audit checkpoint by any server node.

We also consider the possibility that, during the construction of an audit check-

point, the server node may not be aware of a newly authorized transaction, or a

transaction being processed at the same time, where it is the receiver. So we allow

the server nodes to exclude such a transaction at most once from its checkpoint pro-

cessing, i.e. it is required to include that transaction in the subsequent checkpoint.

This constraint is enforced by a notification mechanism. If a server node detects that

a new transaction is excluded from the audit checkpoint being processed, the node

notifies the checkpoint initiator about the transaction, and changes the status of the

transaction in the set TN as notified. If a server node detects that a notified transac-

tion is excluded from the audit checkpoint being processed, it rejects the checkpoint.

We show that our protocol guarantees that an authorized transaction is required to

be included in one of the subsequent two audit checkpoints by the receiver node of

the transaction.

As a result, if a sender node si completes phase 2 of transaction authorization

protocol for a transaction T at time t, then

• the node si must include the transaction T only in its first checkpoint con-

structed after time t, and

• each node sj, involved in the transaction T as a receiver, must include the

transaction T in exactly one of its first two checkpoints constructed after time

46

t.

At any given time t, the audit trail for any node must contain all its audit check-

points authorized by the time t, such that each audit checkpoint contains a reference

to the previous authorized checkpoint.

For audit checkpoints, we consider a stronger reference mechanism which ensures

that an authorized checkpoint must be rendered immutable once it is referenced in

another checkpoint as its previous authorized checkpoint. Similar to Bitcoin [21]

Blockchain, we use collision-resistant hash values as references for the authorized

checkpoints because it can be assumed, by virtue of the definition of collision-resistant

hash functions (CRHF), that an efficient (i.e. probabilistic polynomial time) server

node will not be able to modify the checkpoint without affecting a detectable change in

the corresponding hash value. Therefore, when we symbolically include the authorized

checkpoint in its succeeding checkpoint, it can be construed that a collision-resistant

hash value of the said checkpoint is used as the reference mechanism.

Using this audit trail construction, we derive an interesting property that if a

checkpoint in an audit trail is verified to be authorized, then each checkpoint, that

can be traced from its sequence of preceding checkpoint references in the audit trail,

must also be authorized. We use this property of our audit trail model to show that

the audit procedure (definition 5.1) can be performed in time independent of the

number of the transactions and the auditor is not required to query any other node in

the network to validate the soundness or completeness of the underlying transaction

set.

The further discussion of the audit trail model in this chapter is organized as

follows.

• In section 5.2, we define the audit checkpoint and audit trail data structures

47

used in our model.

• Section 5.3 defines the validation structure to be used by a server node for

validating audit checkpoints.

• Section 5.4 discusses the audit checkpoint processing protocol for a checkpoint

initiator node and a processing node.

• In section 5.5, we analyze the audit trail model in detail.

• Section 5.6 discusses some efficiency improvement ideas pertaining to our audit

trail model.

5.2 Audit Data Structures

In this section, we define and discuss the data structures used by our audit trail

model.

5.2.1 Audit Checkpoints

The life-cycle of an audit checkpoint involves 2 stages:

1. Proposed: When a initiator node sends the checkpoint for authorization to the

network, the checkpoint is said to be a proposed checkpoint. We use α to denote

a proposed checkpoint. The structural composition of a proposed checkpoint is

described in definition 5.2.

2. Authorized: When a server node receives a proposed checkpoint α, it validates

the checkpoint using its local knowledge and responds with a signature if the

proposed checkpoint is valid according to it. Once the initiator node receives

2f +1 signatures from the network, the checkpoint is said to be authorized. We

48

use β to denote an authorized checkpoint. Authorized checkpoint data structure

is formally defined in definitions 5.3.1 and 5.3.2.

Definition 5.2. (Proposed Checkpoint) A proposed checkpoint α is defined as a 6-

tuple 〈s, δ,TC , σ, βp, d〉, where

• s is the server node which initiates the checkpoint.

• δ is the integer time-period value for the checkpoint. It is used in a similar

manner to the sequence number id used in the transaction model.

• TC is the set of transactions that involve node s as input or output during the

time-period δ − 1 to δ. The transaction set is validated by server nodes using

their local knowledge of the new transaction set TN .

• σ is the summary for the checkpoint calculated by the summarizing function

summarize. The summary is validated by the server nodes while authorizing

the checkpoint.

• βp is the reference to previous authorized checkpoint for the node s, such that if

δp is the time-period for the checkpoint βp, then δ − δp = 1.

• d is the digital signature of the sender node for the checkpoint (s, δ,TC , σ, βp).

The definition of the time-period δ has been left abstract in order to account for

individual financial reporting and auditing requirements. An example of time-period

can be a day, where s creates an audit checkpoint each day. Similarly, a node can

define its time-period δ to be less than or more than the length of the day depending

upon their requirements.

For simplicity of the discussion, we have defined the set TC as a set of transactions.

However, it can replaced by a set of 〈s′, id〉 pairs, where s′ is the sender node and id

49

is the sequence number of the concerned transactions. Also, as discussed in section

5.1, the reference βp to the previous authorized checkpoint should be understood as

a collision-resistant hash value of the checkpoint.

Definition 5.3. (Authorized Checkpoint) An authorized checkpoint β, depicted by the

figure 5.3, is defined as a pair 〈α, D〉, where α = 〈s, δ,TC , σ, βp, d〉 is the underlying

proposed checkpoint and D represents the set of 2f+1 server node signatures collected

during the authorization of the checkpoint α.

Figure 5.3: Audit Checkpoint Model

Definition 5.3.1. (Authorized Checkpoint) A checkpoint β : 〈α, D〉 is said to be

authorized if D contains 2f + 1 valid signatures from distinct server nodes.

authorized(〈α,D〉) , (∀(sj, dj) ∈ D, Verifypkj(α, dj) = true) ∧ |D| = 2f + 1

5.2.2 Audit Trail

For the discussion of an audit trail, we denote an authorized checkpoint as a

composite notation β[si, δ], where si is the initiator node and δ is the time-period

value used in the checkpoint.

50

Using the definitions for authorized audit checkpoints, we define an audit trail in

terms of the structural requirements as follows.

Definition 5.4. (Audit Trail) Given an audit period length l defined in terms of

number of audit checkpoint time-periods and a starting time-period δ, an audit trail

for the node si is defined as an audit checkpoint sequence βTsi, δ, l composed of the

checkpoints 〈 β[si, δ], β[si, δ + 1], ... β[si, δ + l − 1] 〉 where

• ∀β[si, k] ∈ βTsi, δ, l, β[si, k] contains a reference βp to the previous authorized

checkpoint β[si, k − 1].

We define an authorized audit trail as composed of a sequence of authorized audit

checkpoints as follows.

Definition 5.5. (Authorized Audit Trail) An audit trail βTsi, δ, l = 〈 β[si, δ], β[si, δ+

1], ... β[si, δ + l − 1] 〉 for the node si, where ∀β[si, k] ∈ βTsi, δ, l, β[si, k] contains a

reference βp to the previous authorized checkpoint β[si, k− 1], is said to be authorized

if

• ∀β ∈ βTsi, δ, l, authorized(β), i.e. all the audit checkpoints in the audit trail are

authorized as per definition 5.3.2.

5.2.3 Authorized Checkpoints Set

Using the audit data structures discussed above, each server si maintains the

following data structure for maintaining the local image of the distributed checkpoint

history.

• Authorized Checkpoints (βA) is the set of checkpoints β authorized by the

server node si.

51

5.3 Audit Structure Validations

In order to ensure that a server’s checkpoints are processed in order, we require

that the server provide consecutive time-period values for its checkpoints. This re-

quirement is enforced by having the server include the last authorized checkpoint

initiated by the server in the request parameters.

When a sender node si sends a proposed checkpoint α : 〈s, δ,TC , σ, βp, d〉 to the

server nodes for authorization, the last authorized checkpoint for the sender node si,

for which βp is the reference, is accompanied by the checkpoint α as an evidence. We

slightly abuse the notation for simplicity and use βp to denote the previous authorized

checkpoint during the discussion of the validations, however, it should be understood

that βp included in the data structure α is only a reference.

To ensure that the completeness and soundness of the transaction set included

in checkpoints, we make use of the new transaction set TN constructed during the

transaction commit procedure. As noted in chapter 4, initially, each transaction is

committed with a status new for each node involved in the transaction as the sender or

a receiver. When a node constructs its checkpoints, it includes all its new transactions

using its local copy of the new transaction set TN , and each server nodes validates

this criteria using its local copy of the new transaction set TN . We note that during

checkpoint construction, a server node is expected to be aware of all the transactions

where it was the sender, however, it can be unaware of some recently authorized

transactions, or the ones being processed, wherein it is a receiver. Therefore, if

a server node si detects that new transaction, sent by the checkpoint initiator, has

been excluded from the checkpoint being processed, the node si rejects the checkpoint

as invalid; whereas, if the node si detects that a new transaction, expected to be

received by the checkpoint initiator, has been excluded from the checkpoint being

52

processed, the node si notifies the checkpoint initiator about the transaction, changes

the status of the transaction as notified and signs the checkpoint under a conditional

expectation that if the checkpoint initiator excludes this notified transaction from the

next checkpoint, the node node si will reject it as invalid.

The audit checkpoint α is considered valid by a non-faulty server node si if all the

following conditions hold.

1. The checkpoint α is structurally well-formed, i.e.

(a) The summary value σ is valid for the transaction set TC in the checkpoint

with respect to the initiator node s

(b) All the transactions, in set TC , are authorized transactions where node s

is either the sender or receiver

(c) The checkpoint βp is an authorized checkpoint initiated by the node s with

the time-period value one less than the time-period value δ in checkpoint

α

(d) The signature d is the valid signature for the sender node s over the check-

point 〈s, δ,TC , σ, βp〉

2. The checkpoint α is functionally valid, i.e.

(a) All the transactions in set TC are new or notified transactions for node s

as per the new transaction set TN of the processing node si

(b) All the notified transactions, as per the new transaction set TN of the

processing node si, for the node s are included in the set TC

(c) All the new transactions, where the node s is the transaction sender node,

as per the new transaction set TN of the processing node si, are included

in the set TC

53

(d) The time-period value δc used in α is greater than all the time-period

values used by the node s in previous checkpoints as per the authorized

checkpoint set βA of the processing node si

Similar to the transaction model validations, the structural validations depend

upon the proposed checkpoint α and the accompanying previous authorized check-

point βp, while the functional validations depend upon the new transactions set TN

and the authorized checkpoints set βA. Therefore, if a checkpoint is structurally

valid according to one non-faulty node, it will be structurally valid according to all

non-faulty nodes. However, the functional validity of a checkpoint may vary among

non-faulty nodes depending upon the transactions in their new transaction set TN

and the checkpoints in their authorized checkpoints set βA.

Also, the previous checkpoint βp is unique with respect to each proposed check-

point α because according to validation 1(c), it is required to be an authorized check-

point with exactly the previous time-period value, and according to validation 2(d),

the time-period value in α is required to be new, which will not be valid if βp is used

multiple times.

We now formally define the individual validations as building blocks for the struc-

tural and functional validations as mentioned above.

Definition 5.6. (Summary Validation) A proposed checkpoint α : 〈s, δ,TC , σ, βp, d〉

is said to have a valid summary σ if the summarize function produces σ for the

comprising set of transactions TC corresponding to the node s.

validSummary(s,TC , σ) , (σ = summarize(s,TC))

Definition 5.7. (Previous Checkpoint Validation) A checkpoint βp, included in the

proposed checkpoint α, is said to be the valid previous checkpoint for α if βp is an

54

authorized checkpoint initiated by the same node and the time-period value in α is

one more than the time-period value in βp.

validPrevCP(α, βp) , authorized(βp) ∧ (α.s = βp.s) ∧ (α.δ = βp.δ + 1)

Definition 5.8. (Authorized Transactions Validation) A proposed checkpoint α, ini-

tiated by node s is structurally valid in terms of the included transactions TC if all

the transactions are authorized transactions and involve s as input or output.

authorizedTxns(s,TC) , ∀T ∈ TC , authorized(T) ∧ (s ∈ T.O ∪ T.I)

Definition 5.9. (Transaction Set Validation) The transaction set TC included in a

checkpoint α proposed by node si is valid if

• all the transactions in TC are new or notified transactions for node si,

• all the notified transactions for node si are included in TC and

• all the new transactions initiated by node si are included in TC

validTxnSet(si,T
C) , (∀T ∈ TC , 〈T, si〉 ∈ TN)

∧ (∀〈T, si, notified〉 ∈ TN , T ∈ TC)

∧ (∀〈T, si〉 ∈ TN , T.s = si =⇒ T ∈ TC)

Definition 5.10. (Time-period Validation) A time-period δc in a proposed checkpoint

α, initiated by the node s, is said to be valid if it is greater than the maximum time-

period used by the node s in previously authorized checkpoints.

validPeriod(s, δc) , δc > max{δ : δ ∈ βA[s]}

55

5.3.1 Structural Validations

When a server node si receives a checkpoint for authorization from the sender node

s, the node si first validates the structural integrity of the checkpoint, i.e. ascertains

whether it is well-formed. If the checkpoint is structurally invalid, the node si rejects

the checkpoint. The corresponding validation is defined as follows.

Definition 5.11. (Well-formed Checkpoint) A checkpoint α proposed by a node s is

said to be well-formed if all the transactions in the transaction set TC are authorized,

and the summary, the previous checkpoint and the sender node signature are valid.

wellFormed(α) , validPrevCP(α, α.βp) ∧ authorizedTxns(α.s, α.TC)

∧ validSummary(α.s, α.TC , α.σ) ∧ (Verifypkj(α, α.d) = true)

5.3.2 Functional Validations

After validating the structural integrity of the checkpoint using definition 5.11, the

server node si performs functional validations to verify that the transaction set TC

is valid using definition 5.9. In doing the validation, the server node si uses its local

knowledge of the new transaction set TN . So it is possible that a non-faulty server

node will consider an invalid transaction set as valid because it may not be aware of a

notified transaction or an excluded transaction that was initiated by node checkpoint

sender node. Nevertheless, if a checkpoint is invalid, it will not be considered valid

by enough servers required for authorizing it.

Similarly, the server node si also verifies, using its local knowledge, that the time-

period value has not been used previously using definition 5.10.

Definition 5.12. (Functionally Valid Checkpoint) A checkpoint α proposed by a node

56

s is said to be functionally valid if the transaction set and the time-period are valid.

validCP(α) , validTxnSet(α.s, α.TC) ∧ validPeriod(α.s, α.δ)

5.4 Audit Checkpoint Protocol

As mentioned earlier, the set TC in a proposed checkpoint α can be considered

as a set of transaction identifying pairs 〈s′, id〉 for implementation purposes, where

s′ is the sender node and id is the sequence number of the concerned transactions.

However, in context of the protocol discussed in this section, we assume that the

corresponding set of authorized transactions is sent by the initiator node to all server

nodes for validation, irrespective of the representation of the set TC , of the proposed

checkpoint α. We revisit this point in our efficiency improvement section 5.6 and

discuss ideas to improve the message complexity of the protocol.

We now present the audit checkpoint authorization protocol used by the server

nodes to propose and authorize checkpoints.

5.4.1 Sender Protocol

Each server node si periodically constructs an audit checkpoint and processes

its authorization using the process-checkpoint procedure depicted in figure 5.4.

Unlike the transaction authorization protocol, the audit checkpoint authorization

protocol only uses one phase of communication with the network.

The sender node si maintains a current time-period counter value δc to assign the

δ value to its checkpoints. It begins by constructing the checkpoint which involves

the following steps.

1. The time-period δc is incremented for the current checkpoint (line 6)

2. The transaction set TC is constructed using the new transactions for the node

57

Figure 5.4: Audit Checkpoint Sender Protocol

si as per the new transactions set TN (line 7)

3. The summary value σ is calculated using the summarize function for the trans-

action set TC (line 8)

4. The previous authorized checkpoint βp is retrieved from the authorized check-

points set βA using the time-period δc − 1 (line 9)

5. The checkpoint α is constructed as a 6-tuple (line 11) using the digital signature

di (line 10).

Once the checkpoint is constructed, si sends the checkpoint authorization request

58

to all server nodes (line 13) and waits for 2f + 1 valid signatures (lines 14-22). When

a server node sj responds (line 16), the signature dj is accompanied by a set of

transactions TE, which consists of transactions that are new transactions involving si

and are excluded from the checkpoint transaction set TC . A non-faulty server node

sj expects the transactions in TE to be included by si in its next checkpoint. So,

the node si collects the transactions notified by server nodes in the set TM (line 19)

and commits the transactions in TM if they have not already been committed and

are authorized transactions (lines 25-27). When 2f + 1 signatures are received, si

commits the checkpoint (line 24) using the commit-cp procedure depicted in figure

5.6.

5.4.2 Server Node Protocol

The corresponding protocol used by server nodes is depicted in figure 5.5.

Figure 5.5: Server Node Protocol for Audit Checkpoint Processing

When the node sj receives the checkpoint authorization request for audit check-

point α from the node si (line 2), sj processes it only if the checkpoint is well-formed

as per the definition 5.11 (line 3). If any of the transactions in the checkpoint are not

59

committed, sj commits those transactions for further processing (lines 5-7). Now,

if the checkpoint is functionally valid (line 9), sj digitally signs the checkpoint (line

10) and constructs the set of excluded transaction TE consisting of new transactions

involving si that have not been included in the checkpoint (line 11). Node sj commits

the checkpoint along with the excluded transactions (line 12) and sends the signed

checkpoint to the sender (line 13).

The audit checkpoint commit procedure commit-cp is depicted in figure 5.6. A

checkpoint commit involves three tasks. Firstly, the checkpoint 〈α,D〉 is stored as

an authorized checkpoint βA (line 5). Secondly, the new transactions included in the

checkpoint α.TC are removed from the new transactions set TN (lines 7-9) because

they are not considered new transactions after the checkpoint commit. And finally,

the excluded set of transactions TE are updated as notified in the new transactions

set TN (lines 11-13) to make sure that they are not excluded by the sender node again

in the next checkpoint.

Figure 5.6: Audit Checkpoint Commit Procedure

Server nodes commit missing transactions (fig 5.5, lines 5-7) for two reasons.

Firstly, it helps them improve their local knowledge of the authorized transactions

60

in the network. Secondly, if a faulty sender node terminates sender protocol while

processing a transaction at the end of phase 1, the transaction will not be committed

by any server node in the network. As a result, it will not be available as a new

transaction for any server node and consequently, the receiver will not receive the

transaction during the receiver protocol. However, we know that the sender node will

be required to send this authorized transaction while processing the checkpoint, and

each server node can commit the transaction at this time and guarantee progress for

the transaction receiver node.

5.5 Analysis

During our analysis of the audit structure, we denote an authorized checkpoint

as β[si, δ], where si is the initiator node and δ is the time-period value used in the

checkpoint. This provides a composite notation to refer to an authorized checkpoint

with its identifying characteristics.

5.5.1 Checkpoint Processing Protocol

For our analysis of the audit checkpoint processing protocol, we consider the

following properties:

• Theorem 5.1: If non-faulty node initiates a checkpoint, the sender protocol is

guaranteed to terminate.

• Theorem 5.2: All checkpoints initiated by non-faulty sender nodes will be au-

thorized.

• Theorem 5.3: If a transaction T is authorized after the checkpoint β[si, δ] is

authorized and before the checkpoint β[si, δ + 1] is proposed, and the node si

is either the sender or a receiver of the transaction, then si must include T in

61

exactly one of the committed checkpoints β[si, δ + 1] or β[si, δ + 2].

• Theorem 5.4: If a transaction T is not authorized, then it can not be included

in any authorized checkpoint.

Theorem 5.1. If non-faulty node initiates a checkpoint, the sender protocol is guar-

anteed to terminate.

Proof. We observe that the sender node has complete knowledge of all the transactions

initiated by it in the past, which prevents it from accidentally excluding an authorized

transaction where it was the sender node. It also has the knowledge of the transactions

that it has included in the past checkpoints, which prevents it from accidentally

including a transaction more than once. Also, if any transactions, where it was

the receiver node, were excluded in the previous checkpoint due to lack of local

knowledge, it would have received the notification from the server nodes and it would

have committed the notified transactions according to each of the server nodes (fig

5.4, lines 19, 25-27). This ensures that those transactions are not excluded during

the current checkpoint construction, so a non-faulty sender not can exclude notified

transactions. It keeps track of its time-period values, which can not be invalid for

any checkpoint. It also has the previous authorized checkpoint which is required to

be included in the current checkpoint. And finally, the summary value is calculated

as per the summarizing function summarize and it will be valid.

So, if the sender node is non-faulty, then its checkpoint must be valid because

a non-faulty sender node constructs the checkpoint as per these specifications (fig

5.4, lines 6-11). Therefore, we can say that the checkpoint must be structurally and

functionally valid as per definitions 5.11 and 5.12 respectively. So, as per algorithm

6 (fig 5.5), each non-faulty server node will sign the checkpoint. We know that there

are at most f faulty nodes, i.e. there are at least 2f + 1 non-faulty nodes in the

62

network, so the sender is guaranteed to receive at least 2f + 1 signatures, which may

or may not contain signatures from faulty nodes. Therefore, the sender will be able

to complete the protocol and terminate.

Theorem 5.2. All checkpoints initiated by non-faulty sender nodes will be authorized.

Proof. Using the argument from Theorem 5.1, we can say that if a non-faulty sender

node initiates a checkpoint, the sender is guaranteed to complete the protocol and

terminate. This follows that the checkpoint will be will be signed by at least 2f + 1

nodes and consequently, will be authorized as per definition 5.3.1.

For the proof of Theorem 5.3, we consider the following lemmas:

• Lemma 5.1: If a transaction T is authorized and the node si is either the sender

or a receiver of the transaction, then si can include T in at most one authorized

checkpoint.

• Lemma 5.2: If a transaction T is authorized after the checkpoint β[si, δ] is

authorized and before the checkpoint β[si, δ + 1] is proposed, and the node si

is either the sender or a receiver of the transaction, then si must include T in

at least one of the authorized checkpoints β[si, δ + 1] or β[si, δ + 2].

Lemma 5.1. If a transaction T is authorized and the node si is either the sender or a

receiver of the transaction, then si can include T in at most one authorized checkpoint.

Proof. As per commit-cp procedure defined in algorithm 7 (fig 5.6), once the check-

point β is committed by a node sj, all the transactions in the transaction set β.TC

are removed from the new transaction set TN for the node si. If a checkpoint β is

authorized, it is signed and committed by at least 2f + 1 nodes (fig 5.5, lines 10-12),

out of which at least f + 1 nodes must be non-faulty. So, if si includes a transaction

63

T ∈ β.TC in another checkpoint β′, at least f + 1 nodes will be able to detect it as

invalid as per definition 5.12 and will not sign the checkpoint β′, and as a result, the

checkpoint β′ will not be authorized.

Lemma 5.2. If a transaction T is authorized after the checkpoint β[si, δ] is authorized

and before the checkpoint β[si, δ+1] is proposed, and the node si is either the sender or

a receiver of the transaction, then si must include T in at least one of the authorized

checkpoints β[si, δ + 1] or β[si, δ + 2].

Proof. As per algorithm 7 (fig 5.5), if the transaction T is a new transaction according

to node sj and the new checkpoint β[si, δ+ 1] does not include T, the node sj notifies

the node si and changes the status of the transaction T for the node si as notified.

Because the transaction T is authorized after the checkpoint β[si, δ] is authorized and

before the checkpoint β[si, δ + 1] is proposed, the transaction T is a new transaction

for the checkpoint β[si, δ + 1] according to at least f + 1 non-faulty nodes, and they

will all change its status to notified upon its exclusion from β[si, δ + 1]. If the next

checkpoint β[si, δ + 2] does not include T, then at least f + 1 nodes will not sign

the checkpoint, and consequently, it will not be authorized. Therefore, the node si

must include the transaction T in at least one of its next 2 checkpoints β[si, δ + 1] or

β[si, δ + 2].

Theorem 5.3. If a transaction T is authorized after the checkpoint β[si, δ] is autho-

rized and before the checkpoint β[si, δ + 1] is proposed, and the node si is either the

sender or a receiver of the transaction, then si must include T in exactly one of the

committed checkpoints β[si, δ + 1] or β[si, δ + 2].

Proof. The result follows from combining Lemma 5.1 and 5.2.

Theorem 5.4. If a transaction T is not authorized, then si can not include T in any

authorized checkpoint.

64

Proof. If the checkpoint β[si, δ] is authorized, then it must be valid according to at

least 2f + 1 nodes, i.e. at least f + 1 non-faulty nodes. As per definition 5.8 and

5.11, a checkpoint is structurally invalid if a transaction in its transaction set TC is

not authorized, which is validated by the non-faulty server nodes in algorithm 6 (fig

5.5, line 3). Therefore, if β[si, δ] is authorized, then it can not contain a transaction

T which is not authorized.

5.5.2 Audit Trail

For our analysis of the audit trail model, we consider the following properties:

• Theorem 5.5: An audit trail is authorized if an only if the last checkpoint, in

the audit trail, is an authorized checkpoint.

• Theorem 5.6 If the audit trail is authorized, then it must satisfy all the prop-

erties required in the audit procedure as per definition 5.1.

For the proof of Theorem 5.5, we consider the following lemmas.

• Lemma 5.3: If a checkpoint β[si, δ], proposed by node si, is authorized and it

contains βp as a reference to the previous checkpoint β[si, δ− 1], it implies that

the checkpoint β[si, δ − 1] is authorized.

• Lemma 5.4: If a checkpoint β[si, δ− 1], proposed by node si, is not authorized,

it implies the checkpoint β[si, δ] can not be authorized given β[si, δ] contains βp

as a reference to the previous checkpoint β[si, δ − 1].

• Lemma 5.5: Given an audit trail βTsi, δ, l for the node si, if a checkpoint β[si, k] ∈

βTsi,δ,l is an authorized checkpoint, it implies that the audit trail βTsi,δ,k+1−δ ⊆s

βTsi,δ,l is authorized. (⊆s is used as a symbol for sub-sequence)

65

Lemma 5.3. If a checkpoint β[si, δ], proposed by node si, is authorized and it contains

βp as a reference to the previous checkpoint β[si, δ− 1], it implies that the checkpoint

β[si, δ − 1] is authorized.

Proof. If the checkpoint β[si, δ] is authorized, then it must be valid according to at

least 2f + 1 nodes, out of which at least f + 1 nodes must be non-faulty. As per

definition 5.7 and 5.11, a checkpoint is structurally invalid if the previous checkpoint,

for which βp is the reference, is not authorized; and it is verified by all the non-faulty

server nodes in algorithm 6 (fig 5.5, line 3). Therefore, if β[si, δ] is authorized and it

contains βp as a reference to the previous checkpoint β[si, δ− 1], then the checkpoint

β[si, δ − 1] must be authorized.

Lemma 5.4. If a checkpoint β[si, δ − 1], proposed by node si, is not authorized, it

implies the checkpoint β[si, δ] can not be authorized given β[si, δ] contains βp as a

reference to the previous checkpoint β[si, δ − 1].

Proof. If follows the same argument as the proof of Lemma 5.3.

Lemma 5.5. Given an audit trail βTsi, δ, l = 〈 β[si, δ], β[si, δ+1], ... β[si, δ+l−1] 〉 for

the node si, where ∀β[si, k] ∈ βTsi, δ, l, β[si, k] contains a reference βp to the previous

authorized checkpoint β[si, k − 1], if a checkpoint β[si, k] ∈ βTsi,δ,l is an authorized

checkpoint, it implies that the audit trail βTsi,δ,k+1−δ ⊆s βTsi,δ,l is authorized. (⊆s is

used as a symbol for sub-sequence)

Proof. We begin by observing that if the checkpoint β[si, k] ∈ βTsi,δ,l is authorized, then

as per definition 5.5, the audit trail βTsi,k,1 (containing only one checkpoint β[si, k]) is

authorized. We restructure the argument as follows: if the audit βTsi,k,1 ⊆s β
T
si,δ,l

is

authorized, it implies that the audit trail βTsi,δ,k+1−δ ⊆s βTsi,δ,l is authorized. We prove

this result using induction.

66

Consider 2 base cases. The base case with x = k, i.e. βTsi,k,k+1−k, refers to the audit

trail βTsi,k,1 which is clearly authorized given βTsi,k,1 is authorized. For the base case

x = k − 1, we show that if βTsi,k,1 is authorized, it implies that βTsi,x,k+1−x ⊆s βTsi,δ,l is

authorized. We know that β[si, k] is an authorized checkpoint and it contains βp as a

reference to the previous checkpoint β[si, k−1], so using Lemma 5.4, we can say that

β[si, k − 1] is an authorized checkpoint, which means that βTsi,x,k+1−x is authorized.

Let us consider k − 1 ≥ x > δ such that the audit trail βTsi,x,k+1−x ⊆s βTsi,δ,l is

authorized given that βTsi,k,1 is authorized. Our inductive hypothesis is that if the

audit trail βTsi,x,k+1−x ⊆s βTsi,δ,l is authorized given that βTsi,k,1 is authorized, then it

implies that the audit trail βTsi,x−1,k+1−(x−1) ⊆s βTsi,δ,l is authorized. We know that the

checkpoint β[si, x] ∈ βTsi,x,k+1−x is authorized as per definition 5.5 and β[si, x] contains

βp as a reference to the previous checkpoint β[si, x−1]. So, as per lemma 5.3, we can

say that β[si, x−1] is an authorized checkpoint, which means that βTsi,x−1,k+1−(x−1) ⊆s

βTsi,δ,l is authorized. Applying this inductive argument for x = δ − 1, we get the

required result.

Theorem 5.5. An audit trail βTsi, δ, l = 〈 β[si, δ], β[si, δ + 1], ... β[si, δ + l − 1] 〉

for the node si, where ∀β[si, k] ∈ βTsi, δ, l, β[si, k] contains βp as a reference to the

previous authorized checkpoint β[si, k − 1], is authorized if an only if the checkpoint

β[si, δ + l − 1] is an authorized checkpoint.

Proof. Clearly, as per definition 5.5, if the audit trail βTsi,δ,l is authorized, it implies

that the checkpoint β[si, δ + l − 1] must be an authorized checkpoint. Conversely,

using lemma 5.5, we can say that if the checkpoint β[si, δ + l − 1] is an authorized

checkpoint, it implies that the audit trail βTsi,δ,l is authorized.

Theorem 5.6. If the audit trail βTsi, δ, l = 〈 β[si, δ], β[si, δ+1], ... β[si, δ+l−1] 〉 for

the node si, where ∀β[si, k] ∈ βTsi, δ, l, β[si, k] contains βp as a reference to the previous

67

authorized checkpoint β[si, k − 1], is authorized, then the following 3 properties hold.

1. ∀β ∈ βTsi,δ,l, β.σ = summarize(si, β.T
C)

2. The set of transactions TAi =
⋃
β∈βTsi,δ,l

β.TC is sound, i.e.

(a) it contains only authorized transactions

(b) ∀β, β′ ∈ βTsi,δ,l, β.T
C∩β′.TC = ∅, i.e. no transaction is included in multiple

checkpoints.

3. The set of transactions TAi =
⋃
β∈βTsi,δ,l

β.TC is complete, i.e.

(a) it includes all transactions for node si that were authorized after the check-

point β[si, δ − 2] was authorized and were excluded from the checkpoint

β[si, δ − 1]

(b) it includes all transactions for node si authorized between the checkpoints

β[si, δ − 1] and β[si, δ + l − 3]

Proof. As per definition 5.5, we can say that ∀β ∈ βTsi,δ,l, β is an authorized checkpoint.

As per definition 5.6 and 5.11, a checkpoint is structurally invalid if the summary σ is

not valid according to the summarize function, which is validated by the non-faulty

server nodes in algorithm 6 (fig 5.5, line 3). So, if a checkpoint is authorized, it must

be structurally valid and hence, property 1 must hold. Properties 2 and 3 follow from

Theorems 5.3 and 5.4 for authorized checkpoints.

5.5.3 Audit Process

Using theorem 5.6, we can redefine the audit process (definition 5.1) using our au-

dit trail model and show that the audit process can be completed in time independent

of the number of transactions in the audit trail using theorem 5.7.

68

Definition 5.13. (Audit) Given an audit trail βTsi,δ,l = 〈 β[si, δ], β[si, δ + 1], ...

β[si, δ + l − 1] 〉 and a summary σi for the node si, an audit can be defined as a

procedure to verify the following criteria

1. the audit trail βTsi,δ,l is authorized, and

2. σi =
∑

β∈βTsi,δ,l
β.σ, i.e. the summary σi is the aggregate of all the checkpoint

summaries in the audit trail.

Theorem 5.7. Given an audit trail βTsi, δ, l = 〈 β[si, δ], β[si, δ+1], ... β[si, δ+l−1] 〉

and a summary σi for a node si, the audit procedure can be performed in O(l + f)

deterministic time.

Proof. Using Theorem 5.5, we know that the audit trail βTsi,δ,l is authorized if (1)

β[si, δ+ l−1] is an authorized checkpoint, and (2) ∀β[si, k] ∈ βTsi, δ, l, β[si, k] contains

βp as a reference to the previous authorized checkpoint β[si, k − 1].

The sequence of checkpoint references can be verified in O(l) time. Let us consider

the check regarding whether β[si, δ + l − 1] is an authorized checkpoint or not. As

per definition 5.3.1, the checkpoint is authorized if it contains 2f + 1 valid signatures

from distinct server nodes. Deterministic check for the validity of the set of signatures

can be performed in O(f) time. Considering the size of summary values as a model

constant, the value σi can be verified in O(l) time. Hence, the audit procedure can

be performed in O(l + f) deterministic time.

Note that the time complexity of above audit procedure does not depend upon

the number of transactions |TCi |, which is at least Ω(|TCi |) factor improvement in the

audit procedure using our audit trail model.

69

5.6 Efficiency Improvement Ideas

As mentioned earlier, the set TC , in a checkpoint β, is defined as a set of autho-

rized transactions. For efficient implementation, these sets can be defined with pair

〈s, id〉 where s is the sender node and id is the sequence number of the corresponding

transaction T. Corresponding validations can be suitably modified to retrieve the au-

thorized transactions, before validation, from the authorized transaction set TA using

the 〈s, id〉 pair. As a result, the size of the set TC can reduced significantly because

each pair 〈s, id〉 has a constant size, whereas the size of corresponding transaction

depends upon the number of inputs, outputs and server signatures.

5.6.1 Audit Checkpoint Protocol

We now discuss the efficiency concerns and potential improvements concerning

the audit checkpoint protocol depicted in figure 5.4 and figure 5.5.

As discussed in section 5.4, our protocol depends upon the assumption that the

set of authorized transactions is sent by the initiator node to all server nodes for

validation, irrespective of the representation of the set TC , of the proposed checkpoint

α. This means that the message complexity of the audit checkpoint protocol is very

high and depends upon the number of transactions in the checkpoint, which is clearly

very inefficient.

We now discuss some revisions to the protocol that can provide significant effi-

ciency improvements in an implementations, by only requiring an additional round

of communication between the checkpoint initiator node and the server nodes.

• The checkpoint initiator node si constructs the set TC of 〈s, id〉 pairs using its

new transaction set TN such that all the corresponding transactions involved si

as either the sender or a receiver, and sends the set TC as the constituent of the

70

checkpoint instead of the set of corresponding authorized transactions.

• Each server node sj constructs a deficiency set TD ⊆ TC consisting of 〈s, id〉

pairs from the set TC which represents a transaction not available, for verifi-

cation, in node sj’s local copy of the authorized transaction set TA. Node sj

sends this set TD to the initiator node si as a request for missing transactions.

• When initiator node si receives a request for missing transactions in the form of

set TD, it can reply with the requested transactions and the rest of the protocol

proceeds in the same way as defined in figures 5.4 and 5.5.

If the checkpoint initiator is non-faulty, then all the transactions in its checkpoint

must be authorized transactions and each of them must have been signed by 2f + 1

nodes, out of which at most f can be faulty. Therefore, each node can be expected to

maintain a significant subset of the transactions included in the checkpoint, and each

deficiency set TD can be expected to be much smaller than the set TC . As a result,

the number of transactions communicated during this protocol will be significantly

lesser than the original protocol.

Another improvement in the size of the set TC can be made by simply including

the last sequence number of the transactions where the checkpoint initiator was the

sender node, instead of the entire list. The previous checkpoint included in the

checkpoint can be used to find the lower bound of the list of sequence numbers to be

used for the actual transactions set in the checkpoint.

71

Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary

While the existing cryptocurrency proposals focus on solving distributed con-

sensus problem in order to provide cryptographic security of the system, we have

presented a novel alternative non-consensus based approach which utilizes majority

signature based replicated storage protocol to process transactions securely, as shown

by our analysis. Furthermore, we have presented a self-verifiable audit trail model

which facilitates efficient financial auditing for individual financial entities, a desirable

property that has not been addressed by the existing cryptocurrency models. Our

analysis shows that an audit trail can be verified in time independent of the number

of transactions.

Additionally, our model presents an effective solution for the decentralized inter-

bank payment processing problem, which can serve as a practical alternative to the

existing centralized payment processing and settlement solutions. A system based

on our model can potentially enable inter-bank transactions to be completed with

lower cost to the customer due to the absence of a central processing entity levying a

transaction processing fee.

6.2 Future Work

Our work has introduced a new way of approaching the decentralized financial

transaction processing model, and there are a variety of exciting opportunities for

future work, summarized as follows.

72

• Our model assumes a trust relationship between the customers and the server

nodes federated by their corresponding banks. Further analysis could be built

upon a generalized model wherein customers interact with the network of nodes

without any implicit trust assumptions.

• We assume the number of server nodes to be n = 3f + 1. Future work can

aim to derive an equivalence with the model that allows n ≥ 3f + 1 using a

Byzantine quorum system based approach. Byzantine quorum systems have

been studied extensively in the literature [17, 18, 7, 19, 2, 3] and future work

can build a quorum system for extending this model.

• Our protocol and analysis assume a static network configuration, where the

number of banks and server nodes is n. Additional work is required to analyze

the schematics and impact of dynamic reconfigurations in the network. This

work can follow a similar approach as discussed by Aguilera et. al [1].

• Smart contracts execution is an exciting avenue that can be studied as an ex-

tension of our model to support additional financial applications.

• Finally, a practical study can be performed using a prototypical implementation

of the model to analyze its practical effectiveness and comparability to existing

protocols.

73

REFERENCES

[1] M. Aguilera, I. Keidar, D. Malkhi, and A. Shraer, Dynamic atomic Storage
Without Consensus. PODC, 2009.

[2] A. Aiyer, L. Alvisi, and R. Bazzi, On the Availability of Non-strict Quorum
Systems. DISC, 2005.

[3] ——, Byzantine and Multi-writer K-Quorums. DISC, 2006.

[4] ——, Bounded Wait-free Implementation of Optimally Resilient Byzantine Stor-
age Without (Unproven) Cryptographic Assumptions. DISC, 2007.

[5] S. Aiyer, L. Alvisi, R. Bazzi, and A. Clement, Matrix Signatures: From MACs
to Digital Signatures in Distributed Systems. DISC, 2008.

[6] A. Back, Hashcash - Amortizable Publicly Auditable Cost-Functions.
http://www.hashcash.org/papers/amortizable.pdf: Whitepaper, 2002.

[7] R. Bazzi, Access Cost for Asynchronous Byzantine Quorum Systems. Dis-
tributed Computing, 2001.

[8] I. Bentov, A. Gabizon, and A. Mizrahi, Cryptocurrencies Without Proof of Work.
http://arxiv.org/abs/1406.5694: Cryptography and Security, 2014.

[9] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. Kroll, and E. Felton, SoK:
Research Perspectives and Challenges for Bitcoin and Cryptocurrencies. Security
and Privacy, IEEE, 2015.

[10] K. Chandy and L. Lamport, Distributed Snapshots: Determining Global States
of Distributed Systems. ACM Transactions on Computer Systems, 3(1):63–75,
1985.

[11] J. Clark, A. Edward, and W. Felten, Research Perspectives on Bitcoin and
Second-generation Cryptocurrencies. Systematization of Knowledge draft,
diyhpl.us, 2015.

[12] FDIC, “Fdic law, regulations, related acts,” https://www.fdic.gov/regulations/
laws/rules/2000-8500.html, accessed: 2016-05-01.

[13] FFIEC, “IT booklets,” http://ithandbook.ffiec.gov/it-booklets.aspx, accessed:
2016-05-01.

[14] M. Fischer, N. Lynch, and M. Paterson, Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[15] J. Garay, A. Kiayias, and N. Leonardos, The Bitcoin Backbone Protocol: Analysis
and Applications. Eurocrypt, 2015.

74

https://www.fdic.gov/regulations/laws/rules/2000-8500.html
https://www.fdic.gov/regulations/laws/rules/2000-8500.html
http://ithandbook.ffiec.gov/it-booklets.aspx

[16] L. Lamport, R. Shostak, and M. Pease, The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,
1982.

[17] D. Malkhi and M. Reiter, Byzantine Quorum Systems. STOC, 1997.

[18] D. Malkhi, M. Reiter, and A. Wool, Load and Availability of Byzantine Quorum
Systems. SIAM J COMP, 2000.

[19] D. Malkhi, M. Reiter, A. Wool, and R. Wright, Probabilistic Quorum Systems.
Information and Computation, 2001.

[20] D. Mazieres, The Stellar Consensus Protocol: A Federated Model for
Internet-level Consensus. https://www.stellar.org/papers/stellar-consensus-
protocol.pdf: Whitepaper, 2015.

[21] S. Nakamoto, A Peer-to-peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf: Whitepaper, 2008.

[22] PCAOB, “Auditing standards,” http://pcaobus.org/Standards/Auditing/
Pages/ReorgStandards.aspx, accessed: 2016-05-01.

[23] M. Pease, R. Shostak, and L. Lamport, Reaching agreement in the presence of
faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[24] D. Schwartz, N. Youngs, and A. Brittos, The Ripple Protocol Consensus Algo-
rithm. https://ripple.com/files/ripple consensus whitepaper.pdf: Whitepaper,
2014.

[25] SEC, “Sarbanes-Oxley section 404,” https://www.sec.gov/info/smallbus/
404guide.pdf, accessed: 2016-05-01.

[26] P. Snow, B. Deery, J. Lu, D. Johnston, and P. Kirby, Factom: Business Processes
Secured by Immutable Audit Trails on the Blockchain. Whitepaper, 2014.

[27] F. Tschorsch and B. Scheuermann, Bitcoin and Beyond: A Technical Survey on
Decentralized Digital Currencies. IACR, 2015.

[28] G. Wood, Ethereum: A Secure Decentralised Generalized Transaction Ledger.
https://gavwood.com/paper.pdf: Whitepaper, 2015.

75

http://pcaobus.org/Standards/Auditing/Pages/ReorgStandards.aspx
http://pcaobus.org/Standards/Auditing/Pages/ReorgStandards.aspx
https://www.sec.gov/info/smallbus/404guide.pdf
https://www.sec.gov/info/smallbus/404guide.pdf

	LIST OF FIGURES
	INTRODUCTION
	Background and Motivation
	Inter-bank Payment Processing
	Centralized Payment Processing
	Decentralized Payment Processing

	Financial Auditing
	Organization of the Thesis

	RELATED WORK
	Distributed Consensus
	Cryptocurrency Systems
	Replicated Storage
	Distributed Checkpointing
	Payment Systems

	SYSTEM MODEL
	Pre-conditions
	Network Model and Assumptions
	Transaction Overview

	TRANSACTION PROCESSING MODEL
	Transaction Data Structures
	Transaction Validations
	Structural Validations
	Functional Validations

	Transaction Protocol
	Sender Protocol
	Receiver Protocol
	Server Node Protocol

	Analysis
	Efficiency Improvement Ideas
	Receiver Protocol

	AUDIT STRUCTURE
	Audit Trail Model
	Audit Data Structures
	Audit Checkpoints
	Audit Trail
	Authorized Checkpoints Set

	Audit Structure Validations
	Structural Validations
	Functional Validations

	Audit Checkpoint Protocol
	Sender Protocol
	Server Node Protocol

	Analysis
	Checkpoint Processing Protocol
	Audit Trail
	Audit Process

	Efficiency Improvement Ideas
	Audit Checkpoint Protocol

	CONCLUSIONS AND FUTURE WORK
	Summary
	Future Work

	REFERENCES

