
Probabilistic Fatigue Damage Diagnostics and Prognostics  

for Metallic and Composite Materials  

by 

Tishun Peng 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment  

of the Requirements for the Degree 

Doctor of Philosophy  

 

 

 

 

 

 

Approved May 2016 by the 

Graduate Supervisory Committee: 

 

Yongming Liu, Chair 

Aditi Chattopadhyay 

Marc Mignolet 

Antonia Papandreou-Suppappola 

Pingbo Tang 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY 

 

August 2016 



i 

ABSTRACT 

In-situ fatigue damage diagnosis and prognosis is a challenging problem for both 

metallic and composite materials and structures. There are various uncertainties arising 

from material properties, component geometries, measurement noise, feature extraction 

techniques, and modeling errors. It is essential to manage and incorporate these 

uncertainties in order to achieve accurate damage detection and remaining useful life (RUL) 

prediction.  

The aim of this study is to develop an integrated fatigue damage diagnosis and prognosis 

framework for both metallic and composite materials. First, Lamb waves are used as the 

in-situ damage detection technique to interrogate the damaged structures. Both 

experimental and numerical analysis for the Lamb wave propagation within aluminum are 

conducted. The RUL of lap joints under variable and constant fatigue loading is predicted 

using the Bayesian updating by incorporating damage detection information and various 

sources of uncertainties. Following this, the effect of matrix cracking and delamination in 

composite laminates on the Lamb wave propagation is investigated and a generalized 

probabilistic delamination size and location detection framework using Bayesian imaging 

method (BIM) is proposed and validated using the composite fatigue testing data. The RUL 

of the open-hole specimen is predicted using the overall stiffness degradation under fatigue 

loading. Next, the adjoint method-based damage detection framework is proposed 

considering the physics of heat conduction or elastic wave propagation. Different from the 

classical wave propagation-based method, the received signal under pristine condition is 

not necessary for estimating the damage information. This method can be successfully used 

for arbitrary damage location and shape profiling for any materials with higher accuracy 



ii 

and resolution. Finally, some conclusions and future work are generated based on the 

current investigation. 
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1 INTRODUCTION 

1.1 Background 

Damage can be induced by fatigue, impact, creep or other mechanical loadings during 

the service of engineering structures, such as bridges, rotorcrafts, aircrafts and space 

vehicles. Aluminum alloy and composites are widely used in these structures because of 

their high strength, low weight, and long durability. For metallic materials, such as 

aluminum or steel, fatigue is the most common failure pattern. For composite materials, 

the delamination and matrix cracking detection induced by fatigue or impact loading is still 

an important and challenging issue.  Structural health monitoring (SHM) and non-

destructive evaluation (NDE) of the current fatigue damage information will avoid 

significant catastrophic event in many critical systems by performing early prevention or 

unit replacement. 

Because of the small length scale and possible embedded nature of these fatigue 

damage, visual inspection is not able to detect it easily and, therefore, nondestructive 

evaluation (NDE) techniques are generally used and extensively investigated for this type 

of diagnosis problems in metallic and composite materials. Currently, there are many non-

destructive techniques (NDT) available for damage diagnosis, such as thermography [1, 2], 

ultrasonic techniques [3], X-ray [4], and eddy currents [5, 6]. Lamb wave-based structural 

health monitoring techniques are also widely investigated for the in-situ damage 

diagnostics. There are two detection techniques that are commonly used in practice, that 

are pulse-echo method and pitch-catch method [7]. Pulse-echo technique is usually 

employed to detect the damage position using triangulation [8, 9]. Pitch-catch technique 

can be used to detect the damage size when prior knowledge about damage is obtained [10]. 

Simultaneous location and size detection framework is desired by extracting the damage 
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information from the received sensor signal.  In addition, most existing damage detection 

method cannot systematically include the uncertainties, such as measurement uncertainty 

and detection model uncertainty.   

Lamb wave-based detection technique can be successfully used for 1D (e.g. crack), 2D 

(e.g. delamination) and single damage detection. Generally speaking, the damage in an 

arbitrary object can be three dimensional, with arbitrary shapes and at multiple locations. 

It would be extremely difficult to detect these kinds of damages using such a technique 

based solely on signal processing and feature extraction. Most existing methods also 

require the wave propagation information under the pristine condition and damage 

identification features are usually obtained by comparing the received signal between 

pristine and damaged conditions. For most practical cases, the wave propagation under the 

pristine condition may not be available for comparison.  Some baseline free techniques, 

such as X-ray or eddy current are not extensively used because of their high cost and 

complexity in field applications. Conceptually, more damage information can be extracted 

from the received signal if the physics of the physical phenomenon is incorporated instead 

of only considering the waveform change. Therefore, more robust, economical, and 

generalized damage diagnosis technique should be developed to detect the damage with 

more generalized configuration by considering the physics of the physical phenomenon.   

From the prognosis point of view, prediction of the remaining useful life (RUL) should 

be continuously updating by incorporating the current damage diagnosis information and 

other sources of uncertainties, such as mechanism model uncertainty, modeling parameters 

uncertainty, and future loading uncertainty. Bayesian theorem [11-13] plays an important 

role in the uncertainty management. It has been extensively used for prognosis in various 
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engineering fields [14] [15]. The Bayes’ theorem allows updating the distribution of 

parameters of interest based on the condition monitoring system responses, which may 

come from the damage diagnosis model. The posterior distribution of the parameters can 

be obtained by combining its prior information and the current system response. More 

accurate RUL prediction and health management can be achieved by considering the 

updated physics model and structure heath state. 

Because of the complexity of the posterior marginal from Bayesian updating, it is 

generally required to generate samples from the target distribution. Many Monte Carlo-

based sampling algorithms have been used for this purpose since the analytical solution is 

not available for most engineering problems. Importance sampling method is able to 

generate samples from a similar distribution rather than the target distribution for which 

direct sampling is difficult [16-19]. The generated samples are corrected using the weight 

given by the ratio between the target distribution and the sampling distribution. It is very 

difficult to find the similar distribution if very little information is known about the problem. 

As an alternative sampling method, Metropolis-Hastings(M-H) algorithm was first 

proposed by Metropolis et al. and later extended by Hasting to a more general case [20, 

21]. In this algorithm, a candidate is generated sequentially from the previous state using a 

proposed random walk. The sample is either accepted or rejected based on the computed 

metropolis ratio. There are several modified versions of M-H sampling algorithm, which 

are achieved by combining with the Delay Rejection[22, 23], the Adaptive Metropolis[24, 

25], or the DRAM[26]. Delay rejection method generates another sample using a different 

proposal when a candidate is rejected, which may increase the acceptance ratio and 

sampling efficiency. Adaptive method makes use of the past Markov chain to adaptively 

http://en.wikipedia.org/w/index.php?title=Arianna_W._Rosenbluth&action=edit&redlink=1
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compute the Gaussian proposal distribution, which typically results in a faster convergence 

of the Markov chain. These modified M-H sampling algorithms can keep the ergodic 

properties of Markov chain and achieve higher efficiency. The choice a particular algorithm 

for generating samples depends highly on the nature of the problem. In this dissertation, 

the classical M-H samples algorithm is used to generate samples from the posterior 

distribution of Bayesian theorem.  

1.2 Research Objectives 

The objective of this study is to propose a probabilistic fatigue damage diagnosis and 

prognosis framework, in which both metallic and composite materials are investigated 

numerically and experimentally. The experimental results will be used as the validation for 

finite element simulation and ground truth measurement for proposed fatigue damage 

diagnosis method. A more advanced damage detection technique is proposed to extend the 

application fields and improve accuracy and resolution comparing with existing techniques.  

The whole task can be organized as five chapters and presented in the rest of the 

dissertation: 

In CHAPTER 2, the fatigue crack growth on the metallic material (e.g. lap joints) is 

monitored using Lamb wave-based damage detection method. Based on the diagnosis 

results, the remaining useful life (RUL) is predicted by considering various sources of 

uncertainties. The prognosis performance is validated using prognosis metrics, such as such 

as Prognostic Horizon (PH), α − λ  accuracy. This deterministic crack diagnosis method is 

extended to simultaneously detect the crack size and location considering various sources 

of uncertainties using numerical simulation results.  

In CHAPTER 3, a finite element model is built to investigate the delamination and 
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matrix cracking effect on Lamb wave propagation. Damage identification features are 

extracted from the numerical simulation and compared with the experimental datasets for 

validation. With the comprehensive understanding of Lamb wave propagation within 

composites, a Bayesian imaging method (BIM) is proposed to simultaneously detect the 

delamination size and location based on the Lamb wave signals. To predict the fatigue life 

of composite materials, an in-situ RUL prognosis framework is proposed based on the 

overall stiffness degradation of the open-hole specimen. It overcomes the difficulties for 

explicitly incorporate the detected damage into prognosis framework and is more efficient 

for real time fatigue life prognosis.  

In CHAPTER 4, a more robust and accurate damage diagnosis technique is proposed 

based on the adjoint formulation. The adjoint method derivation for detecting the heat 

source location, thermal conductivity, and shear modulus is provided. This developed 

method can be successfully applied for detecting arbitrary damage configurations in 

metallic and composite materials.  Multiple damage diagnosis can also be successfully 

achieved by considering physics of wave propagation and heat transfer.  

In CHAPTER 5, some conclusions and future research directions are given based on 

the current study on the probabilistic damage diagnosis and prognosis for both metallic and 

composite materials.  
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2 FATIGUE DAMAGE DIAGNOSIS AND PROGNOSIS FOR METALLIC 

MATERIALS  

2.1 Introduction 

For metallic structures, fatigue failure is one of the most common failure modes and 

has significant impact on structure integrity. Fatigue damage diagnosis and even prognosis 

remains a challenging problem. Due to the invisibility property, the initial small crack is 

difficult to be detected. It makes it even harder if these cracks comes with the intrinsic 

material defects, or manufacturing treatments.   

Recently, piezoelectric (PZT) ceramic wafers have been extensively used to generate 

Lamb waves because of its low cost and efficiency characteristics. It is well known that 

multiple modes will be generated when interacting with the boundaries of flaws [27-30]. It 

becomes more severe for the lap joint case, because the received signal is polluted by the 

echoes from the cracks and rivets. Besides that, multiple cracks may appear for a particular 

specimen and crack may initiate at different locations for different specimens.  In this study, 

damage features are extracted from the received Lamb wave signals using an advanced 

signal-processing algorithms and these features are combined to reduce the uncertainties 

introduced by the crack initiation location and boundary reflection. In order to predict the 

RUL of lap joints, multiple uncertainties, such as measurement uncertainty, model 

parameter uncertainty, and detection model uncertainty are managed by the Bayesian 

inference framework.   

2.2 Fatigue Testing for Lap Joints 

In this section, the whole procedure of lap joint testing is presented and several damage 

diagnosis models are compared with experimental observations.  
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2.2.1 Experiment Setup 

The experiment setup for damage prognosis of riveted lap joint coupons consists of 

three major modules: sensing and data acquisition system, optical fatigue crack 

measurement system, and fatigue cyclic loading system (Fig. 2.1). Sensing and data 

acquisition system generates a 3.5 cycle tone burst lamb wave from Piezoelectric (PZT) 

actuators and records the corresponding signal received by PZT sensors.  Optical crack 

measurement system uses a traveling microscope to measure the crack length after a certain 

number of loading cycles at regular intervals. The specimen is subjected to tensile cyclic 

loading using a hydraulic testing machine. The coupons were subjected to two types of 

loading spectrums: constant block loading and variable block loading as shown in Fig. 2.2.       

 

Fig. 2.1 Systematic Representation for the Lap Joint Damage Diagnosis System 

 

a)                                                                b)  
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Fig. 2.2 Loading Spectrum. a) Constant Loading; b) Variable Loading 

2.2.2 Specimen Geometry and Sensor Layout Design                                                                                                                                                               

The riveted panels are made of 1.6 mm Al 2024-T3 sheets that were originally provided 

by NRC, Canada. For repeatability, additional coupons were manufactured at NASA. Three 

rows of rivets are embedded in the panels. The detailed geometry is shown in Fig. 2.3 and 

corresponding mechanical properties of the material are listed in Table 2.1. Multiple 

specimens are tested to show the reproducibility of the proposed method and to include the 

effect of uncertainties among different specimens. Detailed information for the specimens 

is given in Table 2.2. 

Experimental results have shown that the major crack always appears at the 

countersunk hole in the first row. Therefore, the first row was considered as the target 

region for damage detection. Actuators and sensors are placed on the opposite sides of the 

first row. This ensures the crack would be on the direct wave path of the sensor-actuator 

pairs whenever it appears. To employ a pitch-catch method [7] , PZTs acting as actuators 

and sensors are glued on the two sides of the rivet holes. The corresponding sensor network 

configuration is shown in Fig. 2.4.  Red dots represent actuators away from the target region 

and the green dots represent sensors near the target region. Each pair of sensors can 

interrogate the damage information on their direct wave path.  

Table 2.1 Mechanical Properties of Al2024-T3 

Material 

Yield 

strength 

(Mpa) 

Elastic 

modulus 

(Mpa) 

𝜎𝑢 

(Mpa) 

∆𝐾𝑡ℎ 

(Mpam0.5) 

Al2024-T3 360 72000 490 1.1164 
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Fig. 2.3 Geometry of the Lap Joint and Detailed Dimension of the Connection Part 

 

Fig. 2.4 Sensor Network Layout for Damage Detection on Riveted Lap Joint 

Table 2.2 Testing Information for Different Specimens 

Specimen # Loading spectrum 
Crack initiation 

wave path 

T1 Constant loading 4 ⟷ 4 

T2 Constant loading 8 ⟷ 8 

T3 Constant loading 6 ⟷ 6 

T4 Constant loading 9 ⟷ 9 

T5 Constant loading 4 ⟷ 4 

T6 Constant loading 8 ⟷ 8 

T7 Variable loading 2 ⟷ 2 

 

 

2.3 Fatigue Crack Size Diagnosis  

In the above discussion, a Lamb-based damage detection experiment is setup and used 
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to detect the crack evolution of lap joints between any two rivet holes.  In this section, the 

collected PZT sensor signal is processed and a deterministic damage detection method is 

proposed based on the extracted damage identification features. Several regression models 

are compared to investigate the detection model uncertainty, which will be incorporated in 

the physic fatigue propagation law for predicting remaining life.   

2.3.1  Experimental Results and Data Processing  

In this study, a Hamming-windowed sinusoidal tone burst with 3.5 cycles was used as 

the actuating signal. The central frequency of this signal was set at 200kHz, as shown in 

Fig. 2.5. After installing the specimen on the hydraulic machine, the baseline signal for 

normal condition is collected first. Further data are collected periodically and the traveling 

microscope is used to measure the surface crack length at regular intervals.  Fig. 2.6 

illustrates a typical signal obtained for specimen T4 subjected to the constant amplitude 

loading. With further signal processing, changes in selected features (phase change, 

correlation coefficient, and amplitude change) are calculated. The amplitude change 

reflects the energy dissipation due to the crack. The phase angle change is due to the 

traveling distance change due to the crack. The correlation coefficient change reflects the 

signal perturbation due to the new waves generated at the crack surfaces [31]. All of these 

feature changes can be obtained by comparing the received signal under normal and defect 

conditions. Detailed description is available from the open literature [32-34]. The 

relationship between trends in features and crack length is shown in Fig. 2.7. 
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Fig. 2.5 A Tone Burst Signal of 3.5 Cycles with 200 kHz Central Frequency 

 

Fig. 2.6 Received Signal for Specimen T4 Shows Amplitude Changes 

with Increasing Number of Fatigue Cycles, i.e. Increased Crack Lengths  

 

Fig. 2.7 The Relationship between Signal Features and Crack Length 

2.3.2 Fatigue Crack Detection Using Extracted Features  

2.3.2.1 Linear Regression Model    

As shown in Fig. 2.7, all features exhibit monotonic relationships with increasing crack 
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length. Thus, all three features are potentially good candidates for crack detection and crack 

length estimation. A linear regression model is used to combine all three features and to 

predict the crack lengths. Using datasets from several test specimens, a linear regression as 

shown in Eq.(2-1), is trained using datasets from five different specimens (T1, T2, T3, T4, 

and T5). Table 2.3 lists the regression coefficients for this formulation.   

                        𝑎 = 𝛽 + 𝛽1𝑥 + 𝛽2𝑦 + 𝛽3𝑧     (2-1)  

where 𝑎 is the detected crack length. 𝑥 is the correlation coefficient, 𝑦 is the phase change 

variable, and z is the normalized amplitude. 

Table 2.3 Coefficients for the Linear Regression Model 

Coefficients Value 

𝛽 4.23 

𝛽1 1.98 

𝛽2 4.23 

𝛽3 -4.79 

 

Using the diagnostic model trained above, crack lengths for other specimens can be 

obtained. Fig. 2.8 shows experimentally measured crack lengths and the detection results 

for the two specimens (NRC T6 and variable loading T7). It can be observed that detection 

results show general agreement with experimentally measured crack length in general.  
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Fig. 2.8 Measurement and Detection Model Prediction Using the Linear Regression 

Model 

2.3.2.2   Quadratic Regression Model 

Following the same procedure as the above discussed linear regression model, the 

quadratic detection model is given as Eq.(2-2) . This model is trained by datasets from five 

different specimens (T1, T2, T3 T4, and T5).  The corresponding coefficients for this model 

are listed in Table 2.4.  

𝑎 = 𝐴 + 𝛼1𝑥 + 𝛼2𝑦 + 𝛼3𝑧 + 𝛼4𝑥𝑦 + 𝛼5𝑥𝑧 + 𝛼6𝑦𝑧 + 𝛼7𝑥2 + 𝛼8𝑦2 + 𝛼9𝑧2 (2-2) 

Table 2.4 Coefficients for Second Order Multivariate Regression 

Coefficients Value 

A 7.92 

1  -2.77 

2  -2.69 

3  -9.41 

4  0.529 

5  -5.19 

6  10.0 

7  6.21 

8  0.67 

9  3.50 

 

Using the quadratic regression model described above, crack length estimates for 

validation specimen can be obtained. The measurement and model prediction of specimen 

T6 and T7 are shown in Fig. 2.9.  
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Fig. 2.9 Measurement and Detection Model Prediction Using the Quadratic Regression 

Model 

2.3.2.3  Gaussian Regression Model 

Gaussian process regression is a generalization of the Gaussian probability distribution 

[35]. Random variables, such as scalars or vectors (for multivariate distributions) are 

considered using a probability distribution. Given a dataset 𝐷 = {𝑋1, 𝑋2, … 𝑋𝑘|𝑋𝑖 ∈ 𝑅𝐷}  

and 𝑦 = {𝑦1, 𝑦2, … 𝑦𝑘}, the system measurement  𝑦 can always be related to an underlying 

function 𝑓(𝑋) using a Gaussian noise model, 

                                   𝑦 = 𝑓(𝑋) + 𝑁(0, 𝑘(𝑋, 𝑋′))   (2-3) 

where 𝑘(𝑋, 𝑋′) = 𝐸[(𝑓(𝑋) − 𝑚(𝑋))(𝑓(𝑋′) − 𝑚(𝑋′))]  and 𝑚(𝑋) = 𝐸(𝑓(𝑋)) . A quick 

introduction of Gaussian processes in given in [36].  

With an appropriate choice of mean function, covariance function, the function y =

g(x) can be defined as 𝑔(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′). In comparison with several mean and 

covariance functions, the mean function and covariance function are chosen as  

 𝑚(𝑋)=([𝛾1 𝛾2   … 𝛾𝐷]𝑋 + 𝛾0)2 (2-4) 

                                              𝑘(𝑋, 𝑋′) = 𝜎𝑓
2𝑓𝑑(𝑟𝑑)𝑒𝑥𝑝 (−𝑟𝑑)  (2-5) 
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𝑟𝑑 = √
𝑑

𝑙2
(𝑋 − 𝑋′)𝑇(𝑋 − 𝑋′) 

where γ0 ⋯ γD, σf, 𝑙 are parameters need to be tuned to maximize the likelihood function. 

The detailed discussion of its application can be found in [35]. Since the signal feature 

space is three dimensional (Correlations coefficient, Phase change, and Amplitude), 

function  𝑓𝑑(𝑡) is chosen as 𝑓3(𝑡) = 1 + 𝑡. Following the previous procedure, this model 

is trained using datasets for (T1, T2, T3, T4, and T5), the datasets for T6 and T7 are used 

as validation. The results are shown in Fig. 2.10.  

 

Fig. 2.10 Measurement and Detection Model Prediction for Specimens  

Using the GP Regression Model 

Based on the above discussion of detection models, the relevant measures of goodness of 

fit statistics can be obtained, which are given as  

Table 2.5 Comparison of Regression Statistic for Different Regression Models 

 R square Standard error 
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    Quadratic regression 
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R square measures the wellness of the fitting model and standard error is obtained by 

averaging the model prediction error from T6 and T7. By comparing above regression 

statistics, the Quadratic regression model gives the smallest standard error and the largest 

R square value.   By fusion of three features, the large uncertainties caused by 

manufacturing, loading, and boundary effect can be significantly reduced.  

2.4 Remaining Useful Life (RUL) Prognosis of Lap Joints 

2.4.1 Bayes’ Theorem and Uncertainties Management 

Prognosis of the remaining useful life should be continuously updated using the latest 

measurement information available from the system. New information should be 

incorporated to improve the knowledge about the system, including distributions of its 

model parameters, modeling accuracy, and future loading conditions, all of which directly 

affect prognostic performance. The Bayes’ theorem allows updating the distribution of 

parameters of interest based on condition monitoring system responses. The posterior 

distribution of the parameters can be obtained by combining its prior information and the 

current system response. Assume 𝜃  is the vector of parameters of interest, which are 

considered random variables and are updated using the evidence from monitored data 𝑑. 

The posterior distribution of the parameters can be expressed as 

  𝑞(𝜃|𝑑) ∝ 𝑝(𝜃)𝑝(𝑑|𝜃) (2-6) 

 where p(𝜃) is the prior distribution of the parameter, which may come from expert opinion, 

analysis of existing data [37], etc.  𝑝(𝑑|𝜃) is the likelihood function and 𝑞(𝜃|𝑑) is the 

posterior distribution of the parameter. In Bayesian updating, model and measurement 

uncertainties are incorporated in the construction of the likelihood function. Details are 

given below. 
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In the prognosis problem, the sources of uncertainties usually include, but not limited 

to, the mechanism modeling uncertainty (e.g., Paris law, crack closure model, and other 

mechanical models), the model parameter uncertainty (e.g., the power coefficients and the 

initial crack length in a model), and the measurement uncertainty (e.g., crack length 

measurements from different NDT techniques). Consider a generic mechanism model to 

describe the time-dependent behavior of a system,  

 𝑥′ = 𝑀(𝑁, 𝜃)+𝜖1 (2-7) 

 where  𝑥′  is system response, 𝜖1 is model prediction error, and 𝑀(𝑁, 𝜃) is the physics 

model prediction, in which  𝑁 is the index variable (i.e., non-random variable, such as time 

and spatial coordinates), and 𝜃 is a vector of model parameters.  

In some engineering applications, the system response cannot be directly measured and 

needs to be inferred from indirect measurements. For example, the crack in a component 

cannot be easily measured directly using optical method due to the inaccessible locations 

of these cracks. Features from NDT sensor signals are generally used to infer the crack 

length. In this case, the inference (i.e., the feature integration model in the proposed study) 

itself introduces additional uncertainties. The proposed feature integration model include 

components like data reduction schemes, feature extraction, regression analysis to establish 

correlation between features and system responses, etc. For a certain feature integration 

model 𝐷(𝐹) using signal features F to infer the system response, the relationship between 

𝐷(𝐹) and  𝑥′ can be expressed as   

  𝐷(𝐹) = 𝑥′ + 𝜖2 (2-8) 
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 where a random variable 𝜖2 is used to describe measurement uncertainty introduced by the 

feature integration model. To update the target system using the detected system response, 

the likelihood function 𝑝(𝐷(𝐹)|𝜃) is constructed below.  

The probability distribution of 𝜖1  is represented as 𝑝(𝜖1|𝜃) = 𝑓1(𝜖1)  and the 

probability of measurement error  𝜖2 is  𝑝(𝜖2| 𝜃) = 𝑓2(𝜖2). The conditional probability of  

𝑝(𝐷(𝐹)|𝜃) can be obtained by marginalizing the joint probability 𝑝(𝐷(𝐹), 𝑥′, 𝜖2|𝜃) over 

𝑥′ and 𝜖2, which is given as  

 𝑝(𝐷(𝐹)|𝜃) = ∬ 𝑝(𝐷(𝐹), 𝑥′, 𝜖2|𝜃)𝑑𝑥′𝑑𝜖2 
𝑥′,𝜖2

=

                                           ∬ 𝑝( 𝑥′|𝜃)
𝑥′,𝜖2

𝑝(𝜖2| 𝜃)𝑝(𝐷(𝐹)|𝑥′, 𝜖2, 𝜃)𝑑𝑥′𝑑𝜖2 (2-9) 

 Given the above relationship, the constraint shown in Eq.(2-7) and  (2-8) can be 

incorporated into Eq.(2-9)  using Dirac delta function. The likelihood function 𝑝(𝐷(𝐹)|𝜃) 

can be expressed as 

 𝑝(𝐷(𝐹)|𝜃) = ∫ 𝑓1(𝑥′ − 𝑀(𝑁, 𝜃))
𝑥′ 𝑓2(𝐷(𝐹) − 𝑥′)𝑑𝑥′ (2-10) 

It can be seen that the condition probability 𝑝(𝐷(𝐹)|𝜃) is the convolution between 

probability distribution 𝑓1(𝜖1) and 𝑓2(𝜖2). It should be noted that Eq. (2-10) is the general 

solution and is capable of correlated non-Gaussian random variables. The general solution 

for Eq.(2-10) is not apparent and numerical simulations can be used to approximate the 

distribution. In the proposed study, the two uncertainty terms  𝑓1(𝜖1)  and 𝑓2(𝜖2)  are 

assumed to be independent Gaussian distributions [38, 39] to demonstrate the overall 

methodology. In that case, the convolution of the two Gaussian probability distribution can 

be expressed as  
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 𝑝(𝐷(𝐹)|𝜃) =
1

√2𝜋(𝜎𝜖1
2 +𝜎𝜖2

2 )
𝑒𝑥𝑝 (−

1

2

(𝐷(𝐹)−𝑀(𝑁,𝜃))2

𝜎𝜖1
2 +𝜎𝜖2

2 ) (2-11) 

 where 𝜎𝜖1
 and 𝜎𝜖2

are standard deviation of these two variables. Substituting Eq.(2-11) 

into Eq.(2-6) and omitting the constant term, the posterior distribution of model parameters 

can be expressed as 

  𝑞(𝜃|𝐷(𝐹)) ∝ 𝑝(𝜃) ∙ 𝑒𝑥𝑝 (−
1

2

(𝐷(𝐹)−𝑀(𝑁,𝜃))2

𝜎𝜖1
2 +𝜎𝜖2

2 ) (2-12) 

 In Eq. (2-12), it is shown that the modeling error and measurement noise are “lumped” 

to a single uncertainty term using the independent Gaussian assumptions. Future 

experimental and theoretical work is required to separately investigate their effect on the 

prognosis results. In the Bayesian updating, direct estimate of the posterior distribution 

with complex mechanism models is different and numerical method, such as the Markov-

Chain Monte-Carlo (MCMC) method, is used to draw samples for the posterior distribution 

estimation. The MCMC method is well documented in open literatures [20, 40-42] and 

details are not given in this paper. Interested readers can find more details in the cited 

references. 

2.4.2 Fatigue Crack Growth Model 

To use the mechanism-based approach, a fatigue crack growth model is introduced here 

to calculate the crack length for given loading cycles, which utilizes the transformation 

between random loading and its equivalent constant loading. The used equivalent stress 

model is very efficient for the random variable loadings without the cycle-by-cycle 

calculation and has been validated with different sets of experimental data [43]. A brief 

discussion for the model is given below. In the equivalent stress level fatigue crack growth 

model, a generalized crack growth rate curve is assumed as  
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𝑑𝑎

𝑑𝑁
= 𝑓(∆𝜎, 𝑅, 𝑎) (2-13) 

 where 
𝑑𝑎

𝑑𝑁
 is the crack growth rate,  ∆𝜎 is the applied stress amplitude, 𝑅 is the stress ratio, 

and 𝑎  is the crack length. The total fatigue life 𝑁𝑡𝑜𝑡𝑎𝑙  under arbitrary random loading 

history can be written as 

 𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑁𝑖 = ∑ ∫
𝑑𝑎

𝑓(∆𝜎𝑖,𝑅𝑖,𝑎)

𝑎𝑖+1

𝑎𝑖
𝑑𝑎𝑛

0
𝑛
0   (2-14)                                               

 where 𝑎0 is the initial crack size and 𝑁𝑖 is the loading cycles when crack size increases 

from 𝑎𝑖  to 𝑎𝑖+1 . For random variable loading, the proposed model tries to find an 

equivalent constant amplitude loading crack growth process under which the fatigue life 

obtained would be same with that of the true random loading case. The fatigue life of this 

equivalent crack growth process can then be expressed as 

 𝑁𝑡𝑜𝑡𝑎𝑙 = ∫
𝑑𝑎

𝑓(∆𝜎𝑒𝑞,𝑅𝑒𝑞 ,𝑎)

𝑎𝑛+1

𝑎0
𝑑𝑎            (2-15)                                                                                                                   

 Theoretically, the proposed model can be applied to any type of crack growth model and 

variable loading case. Here a modified Paris model under two constant loading spectrum 

within one block is derived. 

First, to incorporate the stress ratio effect, the Paris’ law is modified as  

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 = 𝑔(𝑅)(∆𝐾)𝑚 (2-16) 

 where C and m are the fitting parameters in the Paris’ law. Parameter C can be expressed 

as 𝑔(𝑅) = 𝑘𝑏𝑅, where 𝑘 and 𝑏 are fitted by experimental data under different stress ratios 

R. Based on Eq.(2-14) and (2-15) , the equivalent stress level ∆𝜎𝑒𝑞 in above equation can 

be described as 
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  ∆𝜎𝑒𝑞 = (
𝑁1

𝑁1+𝑁2

𝑔(𝑅1)(∆𝜎1)𝑚

𝑔(0)
+

𝑁2

𝑁1+𝑁2

𝑔(𝑅2)(∆𝜎2)𝑚

𝑔(0)
)

1

𝑚       (2-17) 

where 𝑁1 and  𝑁2 are the two constant loading cycles in one block.  For the equivalent 

loading condition, the parameters  𝑘 and 𝑚 should be calibrated for specific specimens and 

are treated as random variables to express uncertainty. 

To correctly predict the fatigue life, an initial crack length estimate is needed as input 

to the crack growth model. An equivalent initial flaw size (EIFS) concept [44] is applied 

to calculate the crack length for a given number of load cycles.  In the probabilistic crack 

growth analysis, the EIFS, the parameter k, and m are three random variables that need to 

be updated. The initial estimation of EIFS can be calculated as   

 𝑎 =
1

𝜋
(

∆𝐾𝑡ℎ

∆𝜎𝑓𝑌
)2 (2-18) 

where Y is a geometry correction factor depending on specimen geometry and crack 

configuration, ∆𝜎𝑓 is fatigue limit, and ∆𝐾𝑡ℎ is the threshold stress intensity factor. For lap 

joints, the corresponding detailed solution for Y is given in [45].  

To clarify the whole process, a schematic of the probabilistic fatigue damage prognosis 

framework is shown in Fig. 2.11 and a step-by-step summary with reference to each 

equation is given below, 

 Determine the prior distribution of parameters (i.e. EIFS, k, and m ) p(θ) 

 Train the feature integration model M(N, θ), such as Eq.(2-1), (2-2) or (2-3) to 

build the likelihood function Eq. (2-12), which should also incorporate the fatigue 

crack growth model expressed in Eq.(2-13)-(2-17). Estimate the posterior 

distribution (i.e. Eq.(2-12)) of parameters using MCMC simulation 
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 Remaining useful life (RUL) is recalculated by plugging the posterior 

distribution of parameters into the fatigue crack growth model (Eq.(2-13)-(2-17))  

 

Fig. 2.11 Overall Prognosis Framework Based on Bayesian Updating 

2.4.3 Lap Joint Fatigue Life Prediction Using Bayesian Inference 

2.4.3.1 Constant Loading Case 

Based on the prognostic method discussed before, the detected crack length from the 

above Quadratic model is used to update the model parameters, and then predict the 

remaining useful fatigue life (RUL). Since the experimentally measured crack length is 

used as validation, the measurement error of the crack length is omitted in the 

demonstration examples. Fig. 2.12 shows the prior belief and Fig. 2.13 shows the updated 

results from the proposed prognosis method. Blue solid line is the median prediction using 
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the prior distribution. Hollow rectangular points are the optically measured crack length 

and are considered as the true crack length. Black solid points are the crack estimation from 

the Lamb wave-based damage detection method.  

 

Fig. 2.12 Prior Belief and Dataset for T6 
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b. 

 

c. 

Fig. 2.13 Bayesian Updating Results.  

a) Updating One, b) Updating Two, c) Updating Three. 

From Fig. 2.13, it can also be seen that the median prediction trend gets closer to the testing 

dataset with additional updating using detection data. The uncertainty bounds become 

narrower with additional updating, which indicates the effectiveness of the Bayesian 

updating method in reducing prognostic uncertainties. This trend can also be observed in 

the updated parameter distribution, shown in Fig. 2.14. 
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a. 

 

b. 

 

c. 
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Fig. 2.14 Parameter Updating Results.  

a) Updated EIFS, b) Updated log(k),  c) Updated m. 

2.4.3.2 Variable Loading Case 

Following the same procedure as described in Section 2.4.3.1, the prognosis is carried 

out for the variable amplitude loading case. The detected crack length from the Quadratic 

regression model is used as the updating dataset. Fig. 2.15 shows the prior belief and two 

sets of data (i.e., crack length measurements from optical microscope and those from Lamb 

wave detection). Fig. 2.16 shows the updated results using the proposed prognosis method.  

 

Fig. 2.15 Prior Belief and Dataset for T7 
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b.  

 

c. 

 

Fig. 2.16 Bayesian Updating Results.  

a) Updating One, b) Updating Two, c) Updating Three. 

From the above figures, a similar trend can be observed for the updated crack growth 

trajectory as well as for the constant amplitude loading case. The 99% confidence bound 

is reduced when additional updating is performed. Fig. 2.17 shows the updated parameter 

distribution. The distribution of the updated parameters converges as more detected data is 

used in the Bayesian updating.  
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c.  

Fig. 2.17 Parameter Updating Results.  

a) Updated EIFS, b) Updated log(k), c) Updated m. 

2.4.4 Prognostic Performance Evaluation Using Prognostic Metrics 

To evaluate the performance of the prognostic model, prognostic metrics are employed. 

A detailed discussion of metrics-based model validation can be found in [46-49]. Several 

relevant metrics, such as Prognostic Horizon (PH), α − λ Accuracy, Relative Accuracy 

(RA), Cumulative Relative Accuracy (CRA), and Convergence are discussed in that 

publication. In this paper, Prognostic Horizon is used to assess prognostic algorithms 

performance. The Prognostic Horizon describes the length of time before end–of–life 

(EoL) when a prognostic algorithm starts predicting with desired accuracy limits. The limit 

is expressed using an α-bound given by ±α ∙ tEoF. In contrast, α − λ Accuracy determines 

whether prediction accuracy is within desired accuracy levels (specified by α) around RUL 

at any given time specified by λ. The smaller α means the higher desired accuracy. The 

performance is visually depicted on an RUL vs. Time plot, where accurate predictions 

would lie on the ground truth RUL line (black solid line) for all times. The red dots in the 

plots represent predicted performance at times when the Bayesian updating was applied. 

Error bars represent the spread of predicted PDF for corresponding prediction. The 

prognosis performance validation for the constant loading case and the variable loading 

case is shown below.  

 Constant loading prediction performance assessment 
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Fig. 2.18 Parameter Updating Results.  

a) Updated EIFS, b) Updated log(k),  c) Updated m. 

Fig. 2.18 shows that the excellent median prediction is obtained after each updating. The 

99% RUL prediction interval enters the 10% error bound at the third updating, so the 

proposed prognostic method can provide a satisfactory prediction of RUL.  

 Variable loading prediction performance assessment 

 
Fig. 2.19 Prognostic Performance Validation for Variable Loading 

From Fig. 2.19, the same trend can be observed. The 99% RUL interval prediction enters 

the 10% error bound after each updating. In addition, the confidence bound is reduced to a 

certain level when sequential updating is applied. Given the latest system response, the 
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Bayesian updating can provide a more accurate RUL prediction considering all the 

uncertainties. Therefore, the updating result can provide an informative knowledge for 

health and risk management at the early stage of the whole lifecycle.  

2.5 Numerical Simulation of Lamb Wave Propagation within Aluminum Plates 

Many studies have been proposed to use the Lamb wave technique for defects detection 

in composite and metallic components. Numerical modeling of Lab waves were proposed 

to handle the local interaction between PZT sensor and host material [50]. Models of 

surface-bounded PZT disks are modeled based on effective force, moment and 

displacement [51]. The piezoelectric element is also coupled in FE model to simulate the 

Lamb wave propagation in composite structures [52]. In the proposed study, the direct 

coupled analysis of piezoelectric and mechanical finite element analysis is used to obtain 

the received signal at multiple sensor locations. This approach can include the possible 

coupling effect of electric potential variation and mechanical vibrations.   

2.5.1 FE Modeling and Sensor Layout 

The specimen in this simulation is made of Al 2024-T3 with dimension 150× 

150×1.6mm. In the center of the plate, a crack is introduced to represent the damage (Fig. 

2.20).This plate is meshed using 8-node 3-D brick element and the left and right boundaries 

of the plate are fixed in all degree of freedoms. One actuator and six sensors are attached 

on the plate and perfect bonding is assumed between the sensors and the aluminum plate. 

The PZT disks are meshed using C3D8E elements. The electric potential for the top and 

bottom surface of the piezoelectric disk is coupled to the master nodes assigned to each 

surface. The actuating signal is applied at the master node of the actuator’s top surface and 

reaction electrical charge can be monitored at the master nodes of the sensors’ top surfaces. 
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In the simulation, the master nodes on the bottom surfaces are set to be zero electrical 

boundary condition.  The detailed specimen dimension and sensors layout are shown in 

Fig. 2.20. 

 

 

 

 

 

 

 

 

 

Fig. 2.20 Specimen Dimension and Sensors Layout (mm) 

The mechanical and piezoelectric constants for PZT sensors are shown in Table 2.6 and 

Table 2.7. 

Table 2.6  The Mechanical Constant of PZT Sensors 

Elastic 

Consta

nt 

(Gpa) 

𝐸11 𝐸22 𝐸33 𝜈12 𝜈13 𝜈23 𝐺12 𝐺13 𝐺23 

7

6 

7

6 
56 0.

3 

0.

3 

0.

3 
18 23 23 

 

Table 2.7  The Piezoelectric Constant of PZT Sensors 

Dielectri

c 

(10−3F/

m) 

𝐸11 𝐸22 𝐸33 Piezoelectr

ic 

(10−10V/

m) 

𝑑11 𝑑22 𝑑33 

0 0 1.6 -

1.9 

-

1.9 

-

4.5  

In the simulation, sensor signals are collected under the pristine and damaged 

conditions. For the damaged condition, multiple crack length is manipulated and the 

corresponding signal response is received for each sensor. Based on the above sensor 
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network layout, different crack length information is captured by a particular sensor pair 

and crack position information is captured by different sensor pairs. Using advanced signal 

processing techniques, the crack length and location are expected to be correlated with the 

signal features. Details are shown below. 

2.5.2 Simulation Results and Data Processing 

In this study, a Hamming-windowed sinusoidal tone burst with 3.5 cycles was used as 

the actuating signal. The central frequency of this signal was set to be 200kHz, as shown 

in Fig. 2.21. For any sensor pair, sensor signals under pristine and different crack length 

conditions are collected. Fig. 2.22 illustrates signal received by different sensors.    

 

Fig. 2.21 A Tone Burst Signal of 3.5 Cycles with 200kHz Central Frequency 
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a) Signal received by sensor                           b) Signal received by sensor  

 

c) Signal received by Sensor 2                        d)  Signal received by Sensor 3 
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e) Signal received by Sensor 4 

Fig. 2.22 Received Signal of Sensor 0 to Sensor 4 for Different Crack Length 

As illustrated in above figures, the signal changes as the crack size changes. The signal 

change magnitude decreases as the sensor pair path is away from the crack location. With 

further signal processing, changes in selected features (correlation coefficient and 

normalized amplitude) are calculated. The amplitude change reflects the energy dissipation 

due to the crack. The correlation coefficient change reflects the signal perturbation due to 

the new waves generated at the crack surfaces [7]. All of these feature changes can be 

obtained by comparing the received signal under pristine and damaged conditions. Detailed 

description is given in literatures [32-34]. The signal features for different crack length, 

crack location are shown in Fig. 2.23. 
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a) Normalized Amplitude 

b) Correlation Coefficient 
Fig. 2.23 Features for Different Crack Size and Locations 

As shown in Fig. 2.23, the normalized amplitude feature is more sensitive to the 

damage even the crack is 20 mm away from the direct path. The correlation coefficient is 

not able to reliably detect the crack when the crack is 10 mm away from the sensor path. 

From this analysis, the normalized amplitude feature is used for the damage detection.  In 

order to use the normalized amplitude in the Bayesian updating algorithm discussed later, 

a model is proposed to expressed the relationship between this feature and the crack size, 

position, which can be expressed as 

                                                         𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑓(𝑎, 𝑑)  (2-19) 

where 𝑎 is the crack length, 𝑑 is the distance from crack center to the direct path. It should 

be noted that Eq.(2-19) is a generic expression and does not limit to a specific function 

type. In the proposed study, a polynomial regression model is used. From the trend of the 

curves in Fig. 2.23 and analysis of the dataset, the model for the normalized amplitude (NA) 

is given as  
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𝑁𝐴 = (𝛼1 + 𝛼2 𝑙𝑛(𝑎)) × 𝑑3 + 

(𝛼3 + 𝛼4 𝑙𝑛(𝑎)) × 𝑑2+ 

(𝛼5 + 𝛼6 𝑙𝑛(𝑎)) × 𝑑+ 

 (𝛼7 + 𝛼8 𝑙𝑛(𝑎)) (2-20) 

where α1 − α8 are regression coefficients, which can be obtained by the training datasets. 

After tuning these coefficients, the simulated and fitted features can be obtained. Fig. 2.24 

shows the comparison between simulation and model fitting for the training dataset and 

validation dataset.  It is shown that the employed simple regression model gives 

satisfactory results except for the region where the crack is very far away from the sensor 

pair path.  

 

a) Training datasets (crack length: 4, 8, 12, 16 mm) 
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b) Validation dataset (crack length: 10 mm) 

Fig. 2.24 Simulation and Fitting results for Normalized Amplitude 

2.6 Damage Size and Location Diagnosis Using Bayesian Inference  

Based on the discussion in section 2.4.1, Bayes’ theorem can be used to manage the 

uncertainties embedded in the fatigue life prediction.  The uncertainties in the damage 

diagnosis should also be considered.  Unlike the deterministic damage diagnosis method 

mentioned in section 2.3, a probabilistic damage size and location detection method is 

proposed here using the finite element simulation results from section 2.5.  The size and 

location are considered as two parameters in the Bayes’ theorem, which will be updated 

when additional measurements (i.e. signal features) are available.  

2.6.1 Damage Diagnosis Procedure 

In the damage detection problem, the sensor signal can be collected during the daily 

service of structures and signal features can also be extracted using some signal processing 

techniques.  To predict the damage size and location, a physics model 𝑀(𝜃) describing the 

relationship between signal features and damage information should be built, which can be 

substituted by the regression model shown in Eq. (2-20). By tuning this model using 

training datasets, the difference between this model prediction and true simulated system 
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measurements are determined, which can be used to build the likelihood of the Bayesian 

updating algorithm. Following this, the posterior belief about damage can be estimated by 

the posterior distribution of the updated parameters. Parameter  𝜃   represents the crack 

center coordinate (𝑥0,𝑦0) and crack size 𝑎. Since no prior belief is available for those three 

parameters, the prior distributions of them are assumed to be 𝑥0~U(−40,40) , 

𝑦0~U(−60,60) , 𝑎~U(0.001,16) . U indicates the uniform distribution (i.e., non-

informative distribution). It should be noted that the crack distribution should be uniformly 

distributed from zero to a large length (e.g, the physical length of the specimen as the 

largest possible crack length). A very small quantity (i.e., 0.001 mm) for the crack 

distribution lower bound is used to avoid numerical difficulties. The overall diagnosis 

framework is shown in Fig. 2.25. 

  
Fig. 2.25 The Overall Detection Framework Using Bayesian Updating 
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2.6.2 Demonstration Examples 

2.6.2.1 Center Crack Location with Unknown Crack Size 

To check the feasibility of this framework, a centered crack with different crack length 

is introduced in the aluminum plate. The sensor layout is shown in Fig. 2.26. Since the 

relative position of the crack and actuator is the same with that of the tuning datasets, only 

one actuator is used to actuate the signal. After the simulation, the corresponding received 

signal for each sensor is given in Table 2.8, which is used as the manipulated measurements 

to update the crack location and crack length. The data will be ignored if the normalized 

amplitude is greater than 1. The samples drawn by MCMC are plotted on the X-Y plane to 

show to evolution of the crack position after each updating and sample number remains the 

same through all the updating interactions. At the same time, the median and confidence 

bound prediction of crack length are extracted to show the accuracy of the crack size 

updating. The crack position and crack length updating are shown in Fig. 2.27 and Fig. 

2.28.  

 

 

 

 

 

 

 

 

Fig. 2.26 Centered Crack Location with Unknown Size 
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Table 2.8  The Received Signal for Each Sensor Pair 

Sensor pair 
Normalized 

Amplitude 

Actuator-Sensor0 0.6843 

Actuator -Sensor1 0.6422 

Actuator -Sensor2 0.6341 

Actuator -Sensor3 0.7392 

Actuator -Sensor4 0.8767 

Actuator -Sensor5 1.001 

Actuator -Sensor6 1.0038 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Updating one 
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b) Updating two 

 

c) Updating three 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d) Updating four 
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e) Updating five 

 

f) Updating six 

Fig. 2.27 Crack Location Prediction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.28 Crack Length and its Confidence Bound Prediction 

As shown in Fig. 2.28, the crack coordinate estimated is approaching closer and closer 

to the true crack location when applied more and more updating iterations. In Fig. 2.28, the 

confidence bound is narrowed as updating continues, but there is always a system error for 

the updated crack size, which is mainly due to the fitting error involved in the Eq. (2-20). 
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In that case, the performance of Bayesian updating can be improved by better physics 

model with reduced system error.  

2.6.2.2 Random Crack Location with Unknown Crack Size 

If the crack is located at a random location of the aluminum plate, multiple sensors 

should be used to provide enough updating information. To cover the entire plate, three 

actuators are attached on the left of the plate and thirteen sensors are put on the right of the 

plate.  The sensor layout is shown in Fig. 2.29. During each run of simulation, only one of 

three actuators actuates signal and all the sensors act as the receivers. Similarly, the 

normalized amplitude feature is extracted from the received sensor signal. Following the 

above procedure, the median and confidence bound prediction of the crack location and 

crack size can be estimated from the posterior distribution of the parameters after each 

updating. The crack center coordinate  (𝑥0, 𝑦0) and crack length a median and confidence 

bound prediction are given in Fig. 2.30. To show the updating performance, the predicted 

and true crack location is shown in Fig. 2.31. 

 

 

 

 

 

 

Fig. 2.29 General Crack Location with Unknown Size 
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a) X coordinate prediction                                         b) Y coordinate prediction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) Crack length prediction 

Fig. 2.30 Crack Location and Size Prediction for Random Damage Configuration 
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Fig. 2.31 Comparison between Predicted and True Crack Location 

From Fig. 2.30, the crack size and location updated are approaching the true value after 

around ten updating iterations. This result can also be observed from the comparison shown 

in Fig. 2.31. 

2.7 Conclusions 

In this chapter, Lamb wave-based damage diagnosis and remaining useful life (RUL) 

prognosis is proposed. The proposed method is demonstrated and validated using fuselage 

lap joint test datasets. Finally, the model prediction is evaluated using prognostic metrics 

quantitatively. 

It can be concluded that, by properly interpreting the changes in features of the received 

signal, the proposed diagnostic model provides a reasonable estimate of the crack length 

in lap joints. Among various crack length prediction models, the Quadratic regression 

model shows better results in the current investigation. Based on the demonstration 

example, Bayesian updating can successfully represent and manage the uncertainties 

introduced by model parameters and detection model. Additional measurements can 

greatly reduce uncertainties of prognostic estimates. 

In order to consider the uncertainties from modeling and measurements for damage 

diagnosis, a probabilistic damage size and location updating algorithm is proposed, which 

incorporates the Lamb wave simulation results into Bayesian updating. It can be seen that 

the normalized amplitude change and correlation coefficient in the received signal are 

correlated with the damage size and location. The normalized amplitude change shows 

larger change compared to the correlation coefficient when the crack is far away from the 
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sensor path. Bayesian updating can represent and manage the uncertainties introduced 

during the damage detection, including both modeling uncertainty and measurement 

uncertainty. Probabilistic estimation of crack size and location can be obtained. The 

proposed detection algorithm can provide satisfactory median and confidence bound 

prediction for both centered crack and random crack location in the current investigation. 
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3 FATIGUE DAMAGE DIAGNOSIS AND PROGNOSIS FOR COMPOSITE 

MATERIALS 

3.1 Introduction 

Composite materials are widely used in many applications, such as rotorcrafts, 

aerospace, automobiles, and civil engineering structures because of their low weight and 

high strength properties [53-56]. However, due to lack of complete understanding of 

composite fatigue and corresponding failure models, it is difficult to express similar 

amount of trust as in metallic structures, which limits the usage and application of 

composite structures. Delamination and matrix cracking are the most common failure 

patterns for composite materials. Visual inspection is very difficult to identify this type of 

damage and therefore expensive and time consuming nondestructive evaluation (NDE) 

techniques have been extensively investigated and relied upon for composite materials. 

Development of structural health monitoring alternatives through continuous monitoring 

for the assessment of structural integrity has gained a lot of attention in recent years.  

With the development of the Lamb wave-based damage detection methods, 

piezoelectric (PZT) sensors have been widely used for structural health monitoring because 

of their low cost and high efficiency. In certain modes, Lamb waves can propagate in thin 

plates without excessive dispersion [57] .  Therefore, a typical practice in the Lamb wave-

based damage detection is to use the signal features extracted from those special modes of 

the received signal by certain signal-processing algorithms. Several features from the 

received signal, such as the attenuation and phase shift, can effectively indicate the damage 

characteristics quantitatively [31].  A detailed review of the Lamb wave-based structure 

health monitoring techniques for composite materials is given in [58]. It has been shown 

that holes or cutting damage on composite plates can be identified using the A0 mode of 
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the Lamb waves [59, 60] and its interaction with delamination in composites has been 

studied both experimentally and numerically [61, 62]. A method proposed in [63, 64] uses 

the reflected wave from the damage to detect the through-width delamination, in which the 

delamination location and size are determined by embedded piezoelectric material. Many 

simulation methods have also been developed to simulate the Lamb wave propagation 

within composite plates [51, 64-69]. Local defects are captured by modeling the interaction 

of wave and local discontinuities [51, 70, 71]. Although considerable amount of work has 

been done for both numerical and experimental investigation of Lamb wave-based damage 

detection, very few studies focused on a quantitative comparison and validation of 

numerical simulations.  

In numerical simulation, the received signal is always clean and deterministic without 

considering uncertainties from measurements, modeling, and parameters. However, 

multiple sources of uncertainties should be incorporated in order to detect the damage in 

real practical scenarios. Therefore, a probabilistic damage detection method for in-situ 

applications is proposed in this study. The novel method is presented here to estimate 

damage location and the size, as along with corresponding confidence bounds. The 

proposed method combines the Lamb wave-based damage detection technique with 

Bayesian Imaging Method (BIM) to achieve these goals. 

Many existing studies have been done on explicitly incorporating the different types of 

detected damages (e.g. cracks, delamination) in the damage evolution model for the fatigue 

life prediction [72-77]. Majority of these methods are based on finite element method 

(FEM), which focuses on the mechanisms investigation and modeling. In-situ fatigue life 

prognosis that directly uses these models will be very difficult due to the computational 
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complexity. In addition, the diagnosis and quantification of various types of damages in-

situ is a challenging problem, which makes the prediction based on the high fidelity FEM 

model very difficult. Some researchers use an alternative approach for life prediction at the 

macro level, which is based on the strength or stiffness degradation induced by fatigue 

loading [78-83]. Whitworth [82] proposed a statistical model that describes the residual 

stiffness using a two-parameter Weibull distribution. In [83], a normal distribution was 

proposed to predict the residual stiffness of composite laminates. In both approaches, the 

residual stiffness model ignores the effect of applied stress which is generally not true for 

fatigue problems. Shirazi and Varvani-Farahani [84] proposed to use the stiffness 

degradation to develop a fatigue damage model for a unidirectional fiber-reinforce polymer 

(FRP)  laminates system. A relationship between the stiffness reduction and the remaining 

fatigue life ratio was developed.  This model is relatively difficult for the in-situ fatigue 

prediction because the field measurements for stiffness are very difficult and the 

knowledge of ultimate fatigue life is not available beforehand. Unlike the stiffness 

measurement in the laboratory conditions, it is difficult to obtain stiffness reduction 

measurements directly under service conditions. Thus, it would be desirable if the stiffness 

degradation can be inferred using a feasible structural health monitoring system. Based on 

the fact that Lamb wave propagation is highly dependent on material stiffness, it is 

expected that stiffness degradation will be captured by the received Lamb wave signal 

propagating through the specimen. Since piezoelectric sensors are embedded in the 

structure, system health can be measured in-situ on a continuous basis, which lays 

foundation for more accurate RUL prognosis. 
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The objective of this chapter is to first develop a new co-simulation framework to 

include the delamination and matrix cracking effect simultaneously to explain the observed 

changes in wave signal due to different damage types and intensities. Parametric studies 

are used to investigate the sensitivity of model parameters on the simulation results.  

Following this, a probabilistic delamination size and location detection framework is 

proposed using Bayesian imaging method (BIM). Damage diagnosis uncertainty bounds 

are generated simultaneously by considering measurement and model uncertainties. After 

that, an in-situ fatigue life prognosis framework is proposed based macro level stiffness 

degradation. Lamb wave signals are used for specimen stiffness degradation detection, 

which is incorporated in the Bayesian inference for real time reaming useful life (RUL) 

prediction. Finally, some conclusions and future work are generated based on the current 

investigation.  

3.2 Fatigue Testing for Composite Coupons 

Fatigue experiments were conducted using composite coupons with 12 plies. Torayca 

T700G uni-directional carbon-prepreg material was used for this 15.24 cm × 35.56 cm  

dog bone geometry coupons and an edge notch (5.08 mm × 19.3mm) was introduced to 

induce stress concentration, as shown in Fig. 3.1.  
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Fig. 3.1 The Geometry of the Dog Bone Coupon 

These experiments served for several objectives - (i) collection of run-to-failure data 

with periodic system health data using PZT sensors, (ii) collection of ground-truth data (X-

ray imaging) for the delamination to validate the sensor measurement analysis, (iii) 

accounting for variations between samples of same internal structure (layup), and (iv) 

characterizing variations between samples of different internal structures. Three symmetric 

layup configurations were chosen to account for the effect of the ply orientation: Layup 1: 

[02/904]2, Layup 2: [0 /902 /45 /−45 /90]2, and Layup 3: [902 /45 /−45 ]2. Two six-

PZT sensor SMART Layers from Acellent Technologies, Inc (Fig. 3.2(a)) were attached to 

the surface of each sample. In Fig. 3.2(a), actuator 1 to 6 were used to actuate the PZT 

signal and sensors 7-12 were used collect the corresponding signal propagation through the 

plate. Each actuator and sensor acted as a diagnosis path to interrogate the damage 

information. A more detailed description about these experiments is given in [85]. Fig. 

3.2(a) shows such a path form actuator 5 to sensor 8, which is represented as path 5⟶8.  

The other paths follow the same rule as above in the following sections.  
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Fig. 3.2 (a) Coupon Specimen, Smart Layers Location, and Diagnostic Path From 

Actuator 5 to Sensor 8, (b) Development of Matrix Cracks and Delamination Leading to 

Fatigue Failure,(c) Growth in Delamination Area During the Increased Loading Cycles. 

Using this configuration of sensor network, all PZTs are used one by one as actuator to 

actuate the Lamb wave, which is received by other acting as sensors. It is expected that the 

growth in delamination size will be captured in the received signal from a particular 

diagnosis paths that cover the delamination area (e.g. path 5⟶8), which was validated by 

the comparison between features and delamination size in literature[85]. For diagnosis path 

5⟶8, the signal received by sensor 8 at different loading cycles is plotted in Fig. 3.3. As 

illustrated in Fig. 3.3, an increase in delamination size can be captured by monotonic trends 

in features (amplitude, correlation coefficient, and phase change). Conceptually, a change 

(decrease) in normalized amplitude reflects the energy dissipation due to the damage. The 

phase angle change is attributed to the increased wave traveling distance induced by the 

damage. The correlation coefficient change reflects the signal perturbation due to the new 

waves generated at the damage surfaces due to reflections [7]. All of these features are 

computed by comparing the received signal from a pristine coupon, called baseline and the 

signal from damaged coupons. 
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Fig. 3.3 Changes in Signal Received at Sensor 8 with Increased Fatigue Cycles 

3.3 Numerical Simulation for Lamb Wave Propagation within Composite 

Coupons 

Many numerical methods have been developed to simulate the propagation of Lamb 

wave within a thin plate. In this part, a finite element model (FEM) is developed by 

coupling the piezoelectric and mechanical elements using the commercially available code 

ABAQUS.   

3.3.1 Finite Element Modeling 

The FE model geometry is chosen identical to that discussed in section 3.2. The FE 

model and the orientation of each ply are schematically shown in Fig. 3.4.  The composite 

plate is finely meshed using 8-node 3-D brick element and the right and left end of the 

specimen are fixed for all degree of freedoms (DOFs). Six actuators and six sensors are 

attached on the composite plate and perfect bonding is assumed between them. The PZT 

disks are meshed using piezoelectric C3D8E elements. The electric potential for the top 

and bottom surfaces of the piezoelectric disk is coupled to the master nodes assigned to 

each surface. The actuating signal is applied at the master node of the actuator’s top surface 

and the reaction electrical chaFgiurge can be monitored at the master nodes of the sensors’ 
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top surfaces. During simulation, the master nodes on the bottom surfaces are set to be zero 

electrical boundary condition. The PZT sensor property is characterized by its polarization 

direction, which is illustrated as the axis-3 in Fig. 3.5. This polarization direction is 

identical with the normal direction of composite plate the FE model. The mechanical 

constants of the composite material and the piezoelectric constants of the sensors are given 

in  Table 3.1 and  

Table 3.2, in which 1 mean horizontal direction (i.e. x-axis),  2 means  vertical direction 

(i.e. y-axis), and 3 means normal direction (i.e. z-axis).   

 

Fig. 3.4 Sensor Layout and Orientation for Each Ply 

 

 

 

   

 

 

Fig. 3.5 The Local Coordinate of the PZT Sensor 

Table 3.1  The Mechanical Constant of the Composite Material 

Elastic 𝐸11 𝐸22 𝐸33 𝜐12 𝜐13 𝜐23 𝐺12 𝐺13 𝐺23 

3 
Polarization 

 

2 

1 
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constant(Gpa) 127.5 8.4 8.4 0.31 0.31 0.36 6.2 6.2 3.4 

 

 

Table 3.2  The Piezoelectric Constant of PZT Sensors 

Dielectric 

(10−8𝐹/𝑚) 

𝐸11 𝐸22 𝐸33 
Piezoelectric 

(10−10𝑉/𝑚) 

𝑑11 𝑑22 𝑑33 

0 0 1.68 -1.9 -

1.9 

-

4.5 

 

It is suggested in the literature that a hamming windowed sinusoidal tone burst with 5.5 

cycles can be used for the damage detection [60]. The central frequency of this signal is set 

at 150 kHz, as shown in Fig. 3.6. Since the actuator is attached on only one side of the 

composite plate, both symmetric mode and anti-symmetric modes will be actuated.  For 

current frequency thickness product (i.e. 270 Hzm), the dominant Lamb wave mode should 

be 𝑆0 mode based on the wave speed dispersion curve. The PZT sensors can actuate and 

receive Lamb waves by coupling with in-plane stain motion [86]. Therefore, the Lamb 

wave mode can be justified by extracting the in-plane displacement on the symmetric side 

of the composite plate. Fig. 3.7 shows the schematic representation of the Lamb wave mode 

and the x, y displacement of these two nodes.  

 

Fig. 3.6 A Tone Burst Signal of 5.5 Cycles with 150 kHz Central Frequency 
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(a) 

 

(b) 

Fig. 3.7 Extracted X, Y Displacement of the FE Model.   

(a) Schematic Representation of the Lamb Wave Mode, (b) The Extracted X, Y 

Displacement.  

3.3.2 Convergence Analysis and Parameter Tuning 

In order to evaluate the convergence of the finite element solution, a convergence 

analysis was conducted with respect to the element size and time increment. In general, the 

accuracy of the FE model should increase as element size is further refined and smaller 
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time increments are used, which of course in turn results in longer computational times. 

Therefore, a balance needs to be maintained between these factors.  

For Lamb wave propagation, certain criteria should be satisfied when choosing the 

critical element size and a time step.  It is required that there are at least ten elements within 

the smallest wavelength and there are at least twenty time steps within a cycle of wave at 

the highest frequency  [87]. The time of arrival (ToA) is an important factor for damage 

detection and is used as a metric to evaluate the convergence of calculation.  The time of 

arrival (ToA) for different time increments is shown in Fig. 3.8. The mesh size convergence 

study is conducted under defect condition, in which both delamination and matrix cracking 

exist.  The ToA and amplitude against different mesh size are given in Fig. 3.9.  It is 

observed that when the time increment and the element size are small enough, the relative 

variation of the solution is small (i.e., an asymptotic behavior). For a balance between 

computational efficiency and accuracy, the time step is set to be 0.25μs and element size 

is set to be 0.45 mm. In that case, there are four elements through the thickness, which can 

ensure convergence of the received signal for both ToA and amplitude features.  
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Fig. 3.8 The ToA for Different Time Increments 

 

Fig. 3.9 The ToA and Amplitude for Different Mesh Sizes under Defect Conditions 

The first time window of the simulation is compared with that of experiment under the 

pristine condition. Due to various uncertainties associated with materials (e.g., initial void 

count, size, and locations, inhomogeneity and anisotropy of materials, and manufacturing 

variations), the basic material properties, such as Young’s modulus and density, need to be 

calibrated. Because of the anisotropy of the composite laminates, the wave speed is a 

complex function of elastic properties (i.e., unlike the isotropic solids). Eq.(3-1) is used for 

the model calibration and is a simplified approximation based on the solution for isotropic 

solids. The results show that this simplification can greatly reduce the model calibration 

work and give satisfactory agreement between FE simulation and experimental 

measurements.  

 𝑣 ∝ √
𝐸

𝜌
 (3-1) 

where 𝐸 is the Young’s modulus and 𝜌 is the density. Since material density usually varies 

during the manufacturing process, it is chosen as one of the parameters to be tuned in the 
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FE model. Based on the online database [88], the material density is assumed to be 

1780𝑘𝑔/𝑚3 initially. By tuning the parameter ρ, the received signals for the experiment 

and simulation are given in Fig. 3.10.  

 

Fig. 3.10 Model Parameter Tuning for FE Simulation 

As shown in above figure, the numerical simulation can match the experiment for the 

wave propagation velocity when the material density is tuned to be 2220kg/m3. This value 

is used in the rest of the analysis.  

3.3.3 Delamination Modeling  

Due to the high stress concentration around the notch tip, delamination initiates at this 

location as expected. Based on the X-ray images from the experiment, the delamination 

initiates between the middle layer and grows gradually as applied higher loading cycles. In 

the FE model, the nodes for the two semi-elliptical areas between the 6th and the 7th ply 

of the composite plate are released, with other parts of these two plies connected using tie 

constraint.  Fig. 3.10 shows an example of X-ray image and FE model of the delamination 

for different loading cycles. 
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Fig. 3.11 X-ray Image and FE Model for Delamination 

First a numerical simulation is carried out to observe the simulated wave propagation 

signal with delamination damage alone (Fig. 3.12).To compare with the experiment, the 

signal on diagnosis path 5⟶8 is collected correspondingly. The received signal package 

shows slight changes between the pristine conditions and the damaged conditions. This 

trend observed is different from the observations from the experimental testing, which 

indicates that the delamination along does not fully explain the changes in the Lamb wave 

signal and other types of damages must be included for a comprehensive investigation. 
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Fig. 3.12 The Simulation Signal Received by Sensor 8 for Delamination Damage 

Modeling 

3.3.4 Co-simulation of Delamination and Matrix Cracking 

Experimental data (Fig. 3.2(a)) suggest that matrix crack are always present before 

delamination is initiated. Therefore, changes in the features during fatigue cycles may be 

induced by a combination of delamination damage and matrix cracking. In that case, matrix 

cracks should be modeled simultaneously in order to represent the true material condition. 

It is very time consuming, if not infeasible, to model every single matrix crack in the finite 

element simulation. Therefore, in this research a simplified algorithm was used to include 

the matrix crack for the co-simulation. The key hypotheses are: 1) the matrix cracks mostly 

exist close to the delamination region; 2) the matrix cracks are uniformly distributed in the 

targeted high stress region. The matrix crack is modeled by taking a very thin slit in the 

FEM model. In the current study, the width of the crack is 0.1 mm, which is determined by 

the convergence study. The number of cracks is from experimental record and the crack 

length is assumed be the same with the delamination size from the X-ray images. A 

schematic representation of the matrix crack distribution is given in Fig. 3.13(b).   

 

(a)  
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(b) 

Fig. 3.13 Experimental and Numerical Representation of Damage.  

(a) X-ray Image from Experiment, (b) Schematic Representation of the Matrix Crack.  

Following the procedure discussed above, the FE model with the combination of 

delamination and matrix crack can be developed and the corresponding signal for the 

delaminated/cracked condition is recorded. Fig. 3.14 illustrates the simulation signal 

received by sensor 8 under different loading cycles. Comparing the simulation results in 

Fig. 3.14 and experimental observations in Fig. 3.2, the simulated signal trend qualitatively 

agrees with that from the experimental testing.  

 

Fig. 3.14 The Simulation Signal Received by Sensor 8 for Co-simulation of  

Delamination and Matrix Cracking 

In addition to the qualitative comparison as shown above, signal features are extracted 

from received signals for data reduction, damage diagnosis and prognosis. It has been 

shown that the normalized amplitude change, correlation coefficient, and phase change are 
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good feature candidates for the fatigue damage detection and quantification for metallic 

structures [10]  . In the following analysis, these three features are used for comparisons as 

quantitative validation, which are presented in Fig. 3.15. The x-axis is the delamination 

size and the y-axis represents the feature values. As can be seen a good agreement is 

observed between the simulation results and experimental data for most part, but there is 

still difference between simulation and experiment. Further analysis of experimental data 

were required to identify the reason for the difference. One possible reason is that the true 

matrix crack configuration cannot be simulated accurately.  However, the proposed co-

simulation framework is shown to be able to model the change in wave signals, which are 

of critical importance from the prognosis point of view. It must also be observed that that 

the three features that were identified have unique monotonic trends with the damage 

progression. This supports the hypothesis that they can serve as the potential damage 

indicators in SHM applications, at least for the components similar to those used in this 

study. Further experimental and numerical research is required for other types of composite 

components and material properties. 
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(a) 

 
(b) 

 
(c) 

Fig. 3.15 Features Comparison between Experiment and Simulation 

3.3.5 Sensitivity Analysis 

Another important aspect for a comprehensive numerical simulation study of the wave 

propagation is the parametric sensitivity analysis of model parameters. This is important to 

show the impact of model hypotheses on the final simulation results. For instance, in the 

experimental measurements there is no information available for matrix crack extension in 

the thickness direction. This is partially due to the limitation of NDE techniques available 
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for use in the experiments. The modeling approach, however, needs this information and 

hence has to make an assumption about this information for the simulation. The impact of 

this assumption must be investigated. In the proposed parametric study, the matrix crack 

depth, gaps, and lengths are investigated (as shown in Fig. 3.16). The corresponding 

sensitivity analysis of these three parameters is given in Fig. 3.17, in which three features 

for each modeling parameter are illustrated.  The x-axis represents the investigated 

parameters and the y-axis is the corresponding features.  

 

 

Fig. 3.16 The Three Parameters That Determine the Matrix Crack Configuration 
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(a) 

 
(b) 

 
(c) 

Fig. 3.17 The Sensitivity Analysis for Three Parameters 

From Fig. 3.17, it can be seen that these three features show similar trend for each model 

parameter. They are not sensitive to the matrix depth change, if the depth is beyond a 

certain value. The matrix crack gap and length have significant effect on the received signal 

features, which must be carefully included in a FEM framework for Lamb wave 

propagation analysis. For the current analysis, they are not quantitative incorporated 

because of the limitation of current NDE technique.  
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3.4 Delamination Size and Location Diagnosis Using Bayesian Imaging Method  

In section 2.6, a crack size and location detection framework is proposed for aluminum 

using the numerical results from the finite element method (FEM), in which the uncertainty 

can be strictly controlled. There will be more sources of uncertainties if we want to build 

the detection framework from experiment point of view.  To apply this method for the 

composite delamination, two critical problems should be solved, (1), how to predict 

delamination area with only one dimensional signal features; (2), how to incorporate 

various uncertainties in the real composite experiment. In this section, a probabilistic 

delamination localization and size detection framework using Bayesian imaging method 

(BIM) is developed. This proposed method is also demonstrated and validated using the 

experimental datasets.  

3.4.1 Damage Diagnosis and Bayesian Imaging Development  

The introduction for Bayes’ theorem and uncertainties management are given in section 

2.4.1.  In order to utilize Bayesian theorem for delamination size and location detection, it 

is essential to build a model 𝑀(𝜃) describing the relationship between the signal features 

and damage information, which is developed using information extracted from available 

testing datasets. Next, a likelihood function for the updated parameters, i.e., delamination 

size and location is built considering the measurement and model uncertainties. The 

posterior belief about damage can be estimated from the posterior distribution of the 

updated parameters. In this case the parameter vector  𝜃  comprises of delamination 

geometric center coordinate (𝑥0 ,𝑦0) and delamination size 𝑎 . Since no prior belief is 

available for any of these three parameters, the prior distributions of 𝑥0, 𝑦0 are assumed to 

be uniform distribution over the entire possible region where the delamination may appear. 



69 

The delamination size distribution is uniformly distributed from zero to a large size (e.g, 

the physical length of the specimen as the largest possible delamination size). A very small 

quantity (i.e., 0.001 mm) for the delamination distribution lower bound is used to avoid 

numerical difficulties. The overall diagnosis framework in the proposed study is shown in 

Fig. 3.18. 

 

Fig. 3.18 Flowchart for the Damage Diagnosis Method 

In Bayesian updating, it is nontrivial to derive an analytical solution if the posterior 

distribution is non-parametric or very complex, which is the case in this problem. Therefore, 

the Markov-Chain Monte-Carlo (MCMC) method is used to draw samples.  

The key idea behind the proposed BIM is that the entire specimen is discretized into 

many small cells (e.g., with size  1mm × 1mm  in the current study) and each cell is 

assigned an associated probability of damage. The probability of damage is updated based 

on measured signal features using the Bayesian technique. The updated posterior 

distribution at each cell can be used to construct an image that directly represents the 
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damage location and size. 

3.4.2 Data Processing of the Composite Coupon Fatigue Testing 

The experiment data for the composite coupon testing discussed in section 3.3 is 

processed in this section. A model 𝑀(𝜃)  describing the relationship between the signal 

features and damage information is developed based on the extracted damage identification 

features.  

Observation from X-ray images of the damaged coupons reveal that damage grows 

from the tip of the slit to semi- elliptical shapes, approximately. Therefore, damage shapes 

are modeled as half elliptical lobes. Using the sensor network and the analysis method 

described above, there are two parameters describing these half elliptical shapes that would 

possibly affect the received signal, which is shown in Fig. 3.19.  The green ellipse is the 

delamination area observed from the X-ray and the red envelop is introduced to cover the 

entire area, whose radius is used as a damage parameter for delamination size 𝑎 . The 

distance from the delamination center to the diagnosis path is denoted by 𝑑.  For a given 

layup specimen (e.g., L2S11_F in this case), features can be extracted from the collected 

PZT datasets and the corresponding features for actuator 5 is given in Fig. 3.20.  

   
 

Fig. 3.19 X-Ray Image and Schematic Representation of Delamination 
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Fig. 3.20 Features Related to Actuator 5 for Different Delamination Size and Distance. 

(a) Normalized Amplitude, (b) Correlation Coefficient, (c) Phase Change. 

As shown in Fig. 3.20, the correlation coefficient and phase change features are more 

sensitive to the distance compared to the normalized amplitude.  For example, for a fixed 

distance, these two features have monotonic relationship with the delamination size, which 

is consistent with the trend in Fig. 3.3. In order to use these two features in the proposed 

BIM, a model is introduced to express the relationship between the features with the 

delamination size and position. A generic expression can be written as  

 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑓(𝑎, 𝑑)  (3-2) 

 where 𝑎  is the delamination size, 𝑑  is the distance from the delamination center to the 

direct diagnosis path. It should be noted that Eq.(3-2) is a generic expression and does not 

limit to a specific function type. In this study, a polynomial regression model is used.  Using 

the trend in the datasets, the model used for these two features is given as  

 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑓1(𝑑) × 𝑎2 + 𝑓2(𝑑) × 𝑎 + 𝑓3(𝑑)  (3-3) 

 where  𝑓𝑖(𝑑) = 𝛽𝑖1 × 𝑙𝑛(𝑑) + 𝛽𝑖2  for correlation coefficient.  𝛽𝑖𝑗  is the regression 

coefficient, which can be obtained by learning from the training datasets. After tuning these 

coefficients, the testing and fitted results for features are shown in Fig. 3.21. The yellow 

circular dots are the validation data and the rest are used for the training. It is can be seen 

that the simple regression model above gives satisfactory results except for the regions 

where the delamination is far away from the diagnostic path. 
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(a)                                                                                    (b) 

Fig. 3.21 The Testing Data and Curve Fitting 

The data analysis presented above is from a single actuator (actuator 5). Similar trends 

are observed for data from other actuators. For a given delamination defect, damage 

information from different actuators and wave paths can be combined to provide a better 

estimation of the delamination size and location. The following section presents an 

example of the BIM demonstration and validation. 

3.4.3 Demonstration Examples  

As described in section 3.4.1, the model 𝑀(𝜃)  is needed to show the relationship 

between damage information and signal features, which can be substituted by the fitting 

model shown in Eq.(3-3). The posterior belief about the damage is estimated by the 

posterior distribution of the updated parameters. Parameter  𝜃 represents the delamination 

center coordinate (𝑥0,𝑦0) and delamination size 𝑎. Since no prior belief is available for 

these three parameters, the prior distribution of location is assumed as 𝑥0~U(93.5,259.5), 

𝑦0~U(25,125), which covers all the possible location where delamination may appear. 

The coordinate definition of this specimen is given in Fig. 3.22. The delamination size 

distribution is assumed as 𝑎~U(0.001,18) , where U means uniform distribution. The 
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likelihood function is developed based on the difference between fitting model and real 

experimental data.  The measurements from actuator 5 and 6 are utilized in Bayesian 

updating, as given in Table 3.3. It should be noted that each updating iteration incorporates 

one measurement in the BIM framework. The aspect ratio for the delamination area is 

assumed to be 2.5 based on the experimental X-ray image. 

Table 3.3  The Sensor Measurements for Given Delamination 

Actuator 

 

Sensor 

5 6 

Correlation 

Coefficient 

Phase  

change 

Correlation 

Coefficient 

Phase  

change 

8 0.7142 10 0.6858 10 

9 0.8351 7 0.8279 7 

10 0.9595 3 0.9476 4 

The posterior distribution of   (𝑥0, 𝑦0, 𝑎) can be estimated by the samples drawn using 

the MCMC, which updates the belief about the delamination location and delamination 

size at each updating iteration. At the same time, corresponding median and uncertainty 

bound predictions are computed to describe the accuracy of each updating result. The 

delamination location estimates after each updating iteration are shown in Fig. 3.23. 

 
Fig. 3.22 The Definition of the Sample Coordination and Specific Area to Show the 

Bayesian Image 
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Fig. 3.23 The Delamination Location Updating 

As shown in Fig. 3.23, the estimated delamination location is approaching the true 

location as more data are used for the updating. Additionally, the uncertainty bounds 

narrow down as more measurements become available. Fig. 3.24 illustrates the Bayesian 

imaging of the damage probability at each cell of the specimen. It is obvious that the 

possible delamination area is narrowed down and the probability is increasing as more 

updating observations are available. At the final updating, the location with the highest 

probability is considered as the most probable delamination centers, which is almost the 

same with the true value as show in Fig. 3.24(d).  

  

(a) One updating iteration                                         (b) Four updating iterations 
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(c) Eight updating iterations                           (d) Twelve updating iterations 

Fig. 3.24 Bayesian Images of the Damage Probability at Each Cell of the Specimen 

Simultaneously, delamination size is updated gradually, as shown in Fig. 3.25. By 

incorporating the location and size information, the estimated delamination area can be 

calculated. Fig. 3.26 gives the comparison between the true delamination from the X-ray 

images and the updated results using the proposed BIM. Satisfactory agreement is observed.  

 
Fig. 3.25 The Delamination Size Updating 
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(a) One updating iteration                                  (b)  Four updating iterations 

(c) Eight updating iterations                             (d)  Twelve updating iterations 

Fig. 3.26 The Comparison between the True Value and Updated Results 

As given in Fig. 3.26, the predicted delamination is reconstructed based on the location 

and size prediction after each updating iteration.  More updating iterations mean more 

information is incorporated in the Bayesian updating. At the same time, the uncertainty 

bound is decreased as more observations are available, which is consistent with the result 

given in Fig. 3.23 and Fig. 3.25.  

To validate the generality of this framework, the fatigue testing data for another two 

specimens are processed and two sensitive features are extracted. Fig. 3.27 and Fig. 3.28 

show the extracted features for sample L2S20_F and L2S17_F . 
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Fig. 3.27 Feature Extraction of Specimen L2S20_F 
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Fig. 3.28 Feature Extraction of Specimen L2S17_F 

As shown in Fig. 3.27 and Fig. 3.28, the correlation coefficient and phase change 

features have different patterns, which represent the uncertainties associated with each 

specimen. Following the same procedure discussed in section 3.4.1, the fitting models can 

be assumed as the same form given in Eq.(3-3). It should be noted that this model shows 

good performance for different specimens, but the corresponding model regression 

coefficients βij  may vary. The final location and delamination size updating results are 

given in Fig. 3.29 and Fig. 3.30 for L2S20_F specimen. Similarly, Fig. 3.31shows the final 
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Fig. 3.29 The Delamination Location Updating for L2S20_F 

 

 

 

 

 

 

 

 

 

 

 

 

   

Fig. 3.30 The Delamination Size and Final Delamination Prediction for L2S20_F 
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Fig. 3.31 The Final Delamination Prediction for Specimen L2S17_F 

3.5 Remaining Useful Life (RUL) Prognosis of Composite Materials 

In this section, a general framework for composites RUL prediction using stiffness 

degradation is discussed. The main focus is on stiffness degradation model development 

and Lamb wave-based overall material stiffness diagnosis.  

3.5.1 Stiffness Degradation Model Development 
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using a growth rate kinetics. The stiffness degradation rate is assumed to be a function of 

the applied stress amplitude and the current stiffness. Detailed the discussion is given below.  

Under fatigue loadings, different forms of damage such as matrix cracking, 

delamination and fiber breaking will occur simultaneously or sequentially, which will 

eventually lead to the final failure of the entire composite component. The concept of the 

stiffness degradation-based life prediction is to implicitly incorporate different forms of 

damage mechanism into different stages of stiffness degradation curve. A schematic 

representation of a general stiffness degradation curve for composites is shown in Fig. 3.32.  
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Fig. 3.32 The General Trend for Composite Stiffness Degradation 

As shown in Fig. 3.32, the x-axis is the normalized fatigue life (i.e., normalized with 
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monotonically and reaches its maximum at final failure stage. Second, for the same 

material, the stiffness degradation rate is assumed to be a function of the applied stress and 

the current stiffness. Based on the above assumptions, the generalized stiffness degradation 

model can be proposed as  

 
𝑑𝑠

𝑑𝑁
= −𝑓(∆𝜎, 𝑠) (3-4) 

where ∆𝜎 is the applied stress amplitude. s is the current normalized stiffness, which is 

obtained by dividing the current stiffness by value under the health condition.  𝑁 is the 

fatigue cycles and 
𝑑𝑠

𝑑𝑁
  is the stiffness degradation rate during one cycle. 𝑓  is a generic 

function which describes the relationship between the stiffness degradation rate, the stress 

amplitude, and stiffness. In the proposed study, a power law function is used to represent 

the general trend for the second and third stage of the stiffness degradation curve. Thus, 

the proposed stiffness degradation model is expressed as  

 
𝑑𝑠

𝑑𝑁
= −𝐶(∆𝜎𝑠−𝑟)𝑚  (3-5) 

where 𝐶 , 𝑟 and 𝑚 are model parameters which are assumed to be positive and can be 

calibrated using experimental datasets. Using Eq.(3-5), the predicted stiffness for given 

fatigue cycles can be calculated by integrating both sides as  

 ∫ 𝑠𝑟𝑚 𝑑𝑠 =
𝑠

𝑠0
∫ −𝑐(∆𝜎)𝑚  𝑑𝑁

𝑁

0
 (3-6) 

In the fatigue life prognosis, the model proposed above is used to determine the system 

degradation under fatigue loading. Once the system response (e.g. stiffness) is available, 

the model parameter and uncertainties can be updated to achieve more accurate prediction. 

One method to incorporate the stiffness measurement for the life prediction updating is the 

Bayesian inference method, which is discussed below.  
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3.5.2 Fatigue Life Prognosis Using Bayesian Inference 

Remaining useful life prognosis for a structural component should be continuously 

updated using the latest measurement information. New information should be 

incorporated to improve prognostics algorithm by updating model parameters, their 

distributions, correcting for model errors, and updating future loading conditions.  Widely 

used Bayes’ theorem [14, 89, 90] allows updating of the parameter distributions based on 

the condition monitoring data from the system. The detailed derivation for uncertainties 

integration using Bayesian inference has been provided in section 2.4.1. The difference is 

to replace the physics model using the stiffness degradation model proposed before. The 

feature integration model will be similar with the stiffness diagnosis model discussed 

below.  

Based on above discussions, the general framework for the in-situ fatigue life prognosis 

framework is given below,  

 

 

 

 

 

 

Fig. 3.33 The General Framework for In-situ Fatigue Life Prognosis 
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sensor network system, the stiffness is estimated using the extracted damage features from 

digital signal processing.  

3.5.3.1 Experiment Setup 

The test setup for stiffness diagnosis of open-hole composites includes two major 

systems: data acquisition system and fatigue testing system (Fig. 3.34). Data acquisition 

system is used to generate exciting signal to the PZT sensor network and to collect the 

signal received by sensors.  The specimen is subject to tensile-tensile constant loading 

spectrum using fatigue testing system. Loads with different stress amplitude are applied 

for different specimens. For all fatigue tests in the current study, stress ratio is fixed to be 

0.1.   

 

 

 

 

 

 

 

 

 

Fig. 3.34 Open-Hole Fatigue Testing Setup 

The composite open-hole specimen is made of 12 plies of composite lamina with layup 

[903/03]s. The raw material for manufacturing the composites is carbon fiber cloth, resin, 

hardener and other consuming materials, such as nylon membrane and cloth. The fiber is 

unidirectional carbon fiber, the resin is resin epoxy system FS-A23, Part(A) and the 

hardener is epoxy system FS-B412, Part(B). All of them are produced by Fiberglast.com.  
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The composite layup is conducted manually, and then applied with 160Mpa pressure under 

100 Celsius. The schematic layup before the hot pressing is shown in Fig. 3.35.  The 

specimen thickness and width varies slightly due to manufacturing variability. The nominal 

specimen dimension 200x20x2 mm with a center hole diameter of 5 mm. The nominal 

specimen geometry is schematically shown in Fig. 3.36. Actuators and sensors are mounted 

on both sides of the open-hole specimen to add redundancy to the measurement system. 

Actuator 1 and sensor 1 are mounted on the front side; actuator 2 and sensor 2 are mounted 

on the back side of the specimen. Each actuator and sensor pair forms a diagnosis path.  

 
Fig. 3.35 Schematic Representation of Composite Layup 

 

 

 

 

 

 

 

Fig. 3.36 The Nominal Geometry for the Open-Hole Specimen 

3.5.3.2 Experimental Results and Diagnosis Model Development 
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3.37. Under fatigue loading, initially matrix cracking starts to appear in 90∘ plies, and then 

delamination follows and grows between 0∘  and 90∘ plies with fiber breaking at the same 

time. Most specimens fail near the center hole location. Some specimens fail at the other 

locations due to the splitting of the laminates. The final failure for the open-hole specimens 

is shown in Fig. 3.38.  

 
Fig. 3.37 A Tone Burst Signal of 3.5 Cycles with 200kHz Central Frequency 

 
Fig. 3.38 The Final Failure Pattern for Open-Hole Specimens 
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a 13kN maximum force. Fig. 3.39 (a) is the overall raw signals collected during the testing. 

Fig. 3.39(b) shows the first time-window of interest between the dashed lines in Fig. 

3.39(a).   With further signal processing, changes in selected features, such as normalized 

amplitude, correlation coefficient, and cross correlation are calculated. All of these feature 

changes can be obtained by comparing the received signals under pristine and damaged 

conditions. Normalized amplitude change reflects the energy dissipation due to the damage 

and correlation coefficient change reflects the first time window signal perturbation due to 

the new waves generated at the delamination or matrix cracking [10]. Cross correlation 

measures the similarity between these two time series. For the cross correlation at different 

time lags, the maximum value is extracted and normalized w.r.t. the maximum value under 

pristine condition. Specimen stiffness is measured using the force-displacement curve from 

the hydraulic machine output. Multiple specimens are tested here to assess reproducibility 

of the diagnosis method and investigate the effect of variability among different specimens. 

A detailed experiment summary for these specimens is provided in Table 3.4. To compare 

with different specimens under different stress amplitude, the extracted features and 

specimen stiffness are normalized with respect to their maximum value under pristine 

conditions. Normalized stiffness vs. different sensor signal features for different specimens 

is shown in Fig. 3.40. 
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a)                                                                              b) 

Fig. 3.39 The Received Signal for Specimen S2 at Different Cycles 

Table 3.4. Testing Information Summary for Different Specimens 

Specimen # Max stress (𝑀𝑝𝑎) 

()(

Type equation here.

) 

Stress ratio Fatigue life (cycles) 

S1 296 0.1 423500 

S2 325 0.1 163400 

S3 326 0.1 85600 

S4 428 0.1 10680 

S5 410 0.1 45000 

S6 379 0.1 41257 
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(b) 

 
(c) 

Fig. 3.40 These Three Features vs. Normalized Stiffness for Six Specimens 
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validation.  Fig. 3.41 shows the predicted normalized stiffness using the proposed second 

order regression model.  

𝑠 = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑦 + 𝛼3𝑧 + 𝛼4𝑥2 + 𝛼5𝑦2 + 

 𝛼6√𝑧 + 𝛼7𝑥𝑦 + 𝛼8𝑥√𝑧 + 𝛼9𝑦√𝑧 (3-7) 

s:  normalized stiffness 

x:  normalized amplitude 

y:  correlation coefficient 

z:  cross correlation 

 

Table 3.5. Coefficients for the Second Order Multivariate Regression Model 

Coefficient Value 

𝜶𝟎 0.5108 

𝜶𝟏 0.0919 

𝜶𝟐 -0.0440 

𝜶𝟑 -0.5370 

𝜶𝟒 0.2938 

𝜶𝟓 -0.0250 

𝜶𝟔 0.9516 

𝜶𝟕 -0.1060 

𝜶𝟖 -0.4040 

𝜶𝟗 0. 2675 

 

 
Fig. 3.41 The Predicted Normalized Stiffness vs. Experimental Measurements 
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From Fig. 3.41 above, it can be seen that the proposed model can provide reasonable 

prediction for the normalized stiffness. The predicted normalized stiffness for specimen S6 

will be used in the following section as a demonstration example for RUL prediction. 

3.5.3.3 Probability of Detection 

The probability of detection (PoD) measures the detection capability of Non-

destructive technique (NDT) under certain inspection conditions [91]. As discussed above, 

the system response (i.e. the stiffness degradation) is estimated using ultrasonic signal 

features. The PoD of the diagnosis model is derived and presented in detailed below. 

Assume ŝ is the detected normalized stiffness and s is the true system response of interest, 

then the PoD curve for these data can be approximated using linear relationship between 

ln ( �̂�) and ln (𝑠) [91], which is expressed as, 

 𝑙𝑛(�̂�) = 𝛽0 + 𝛽1 𝑙𝑛(𝑠) + 𝛿 (3-8) 

where 𝛿  is an error term, which is normally distributed with zero mean and standard 

deviation σδ, 𝛽0 and 𝛽1 are model coefficients. In this problem, the normalized stiffness 

will be considered as detected if ŝ is less than the pre-specified threshold 𝑠𝑡ℎ. Therefore, 

the function PoD(𝑠) can be given as,  

 𝑃𝑜𝐷(𝑠) = 𝑃(𝑙𝑛(�̂�) < 𝑙𝑛( 𝑠𝑡ℎ)) = 1 − Φ((𝑙𝑛(𝑠) − 𝜇)/𝜎) (3-9) 

 𝜇 = (𝑙𝑛( 𝑠𝑡ℎ) − 𝛽0)/𝛽1 (3-10) 

 𝜎 = 𝜎𝛿/𝛽1 (3-11) 

where Φ is the cumulative distribution function of the standard normal distribution. Given 

the detected �̂� and available true system response 𝑠, the coefficients in Eq. (3-8) can be 

estimated using linear regression, which is expressed as, 

 𝑙𝑛(�̂�) = −0.0096 + 0.8465 𝑙𝑛(𝑠) + 𝛿 (3-12) 
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where 𝛿 is the error term. In order to validate the distribution of 𝛿, its histogram and normal 

probability paper are shown in Fig. 3.42.  

  
Fig. 3.42 The Histogram and Probability Plot of Term 𝛿 

From Fig. 3.42, it can be observed that the probability plot shows highly linear trend 

based on the linear regression statistics, which also substantiates that the error term is 

normally distributed. Observation from the data suggests that the normalized stiffness can 

be detected once it is less than 1, thus the pre-specified threshold 𝑠𝑡ℎ is set to be 1. With 

above information, the parameter 𝜇 and σ can be calculated as,  

 𝜇 =
𝑙𝑛( 𝑠𝑡ℎ)−𝛽0

𝛽1
=

𝑙𝑛( 1)−(−0.0096)

0.8465
= 0.0113 (3-13) 

 𝜎 =
𝜎𝛿

𝛽1
=

0.0255

0.8465
= 0.0301 (3-14) 

Using Eq. (3-9), the PoD for different normalized stiffness is illustrated below in Fig. 3.43. 

It can be seen that over 90% PoD can be achieved when normalized stiffness is less than 

0.97. It demonstrates the accuracy and sensitivity of the proposed detection method for 

stiffness degradation.  
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Fig. 3.43 The PoD for Different Normalized Stiffness 

3.5.3.4 Stiffness Degradation Model Validation  

To validate the general stiffness degradation trend shown in Fig. 3.32, measured 

stiffness degradation curves for all the specimens are shown in Fig. 3.44. In order to get 

the kinetics equation for the stiffness degradation, local time derivatives (i.e., rate) are 

required. To get a smooth estimation for local derivatives, 5 point local polynomial 

regression is used [92]. The stiffness changing rate per cycle is shown in Fig. 3.45. 

 
Fig. 3.44 The Stiffness Degradation Curves for All Specimens 
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(a)                                                                                                  (b) 

Fig. 3.45 The Stiffness Degradation Rate for Different Specimens (Log-log scale). 

(a) w.r.t. Normalized Stiffness, (b) w.r.t. Applied Stress.  

From Fig. 3.44, it can be observed that normalized stiffness decreases very fast at the 

initial stage and so does the stiffness degradation rate. The degradation rate reaches its 

minimum at the transition point from stage 1 to stage 2 shown as red dashed line in Fig. 

3.45(a). During stage 2, the degradation rate is increasing gradually and reaching to its 

maximum at its final failure stage. Fig. 3.45 indicates that the stiffness degradation rate is 

log-linear with respect to the current normalized stiffness value and applied stress. The 

stiffness degradation rate is plotted with respect to a mixed stiffness and stress term in Fig. 

3.46. 
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Fig. 3.46 The Stiffness Degradation Rate Considering the Applied Stress (Log-log scale) 

From Fig. 3.46, all the curves coalesce and form a general linear relationship can be 

obtained between the stiffness degradation rate and the term of  ∆𝜎𝑠−1.2 in log-scale. Based 
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 𝑑𝑠/𝑑𝑁 = −𝐶(∆𝜎𝑠−1.2)𝑚  (3-15) 
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specimens. These distributions will be updated using the proposed Bayesian inference 

framework.  A demonstration example will be given in the following section. 
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Following the framework shown in Fig. 3.33, the stiffness degradation model and 

diagnosis model proposed above are integrated using Bayesian inference for fatigue life 
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with initial stage stiffness degradation data obtained from all specimens. The value is 

around 0.99 for all specimens. The prior distributions of parameters 𝐶  and 𝑚  are 

determined by the linear regression statistics illustrated in Table 3.6. In this study, the 

normalized stiffness is inferred from piezoelectric sensor signal and is estimated using the 

quadratic regression model given in Eq.(3-7) . The failure threshold is set to 0.75, which is 

consist for all specimens.  

Predictions using the proposed diagnosis and prognosis framework and the 

experimentally measured stiffness and life are compared together in Fig. 3.47 and Fig. 3.48. 

In those figures, the x-axis is the fatigue cycles and the y-axis is the normalized stiffness. 

The measured stiffness using hydraulic machine (ground truth), the inferred stiffness from 

piezoelectric sensor signal (diagnosis), and the Bayesian updating results (prognosis) are 

shown together. Fig. 3.47 shows the predictions with prior distributions of parameters. The 

prior distributions for the two parameters are listed in Table 3.6. As can be seen, the prior 

distributions of parameters are from other testing specimen data and is very different from 

the investigated specimen. Thus, a large error is observed for the prediction of stiffness 

degradation and life (i.e., the fatigue cycles when the unstable stiffness degradation occurs). 

Fig. 3.48 shows the updated results from the proposed prognosis method with different 

numbers of observation points. Blue solid line is the median prediction using the prior 

distribution. Hollow rectangular points are the experimentally measured stiffness. Black 

solid points are the stiffness inferred from the Lamb wave-based damage detection method. 

Table 3.6  The Prior Distribution of Two Model Parameters 

Parameter 𝐶 m 

PDF Log-normal normal 

Mean -60 8.3 
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Standard      

deviation 
0.2 0.1 

 

 
Fig. 3.47 The Prior Belief and Experimental Datasets 
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(e) 

Fig. 3.48 Bayesian Updating Results. (a) Updating One, (b) Updating Two, 

(c) Updating Three, (d), Updating Four, and (e) Updating Five.  

From Fig. 3.48, it can also be seen that the median prediction trend gets closer to the 

experimentally measured ground truth with additional updating using inferred stiffness 

data. The uncertainty bounds become narrower with additional updating, which indicates 

the effectiveness of the Bayesian updating method in reducing prognostic uncertainties. 

This trend can also be observed in the updated parameter distribution, shown in Fig. 3.49. 

  
Fig. 3.49 Parameters Updating Results. (a) Updated Log(c), (b) Updated m.  

To evaluate the performance of the prognostic model, prognostic metrics are employed. 

A detailed discussion of metrics-based model validation can be found in [46-49]. Following 

the similar procedure discussed in section 2.4.4. The performance is visually depicted on 

an RUL vs. Time plot, where accurate predictions would lie on the ground truth RUL line 
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(black solid line) for all times. The red dots in the plots represent predicted performance at 

times when the Bayesian updating was applied. Error bars represent the spread of predicted 

PDF for corresponding prediction. The validation of the proposed prognostic method is 

given in Fig. 3.50. 

 

             
Fig. 3.50 Prognostic Performance Assessment 

Fig. 3.50 shows that the excellent median prediction illustrated as pink dot is obtained 

after each updating. The proposed prognostic method can provide accurate median RUL 

prediction when prognosis horizon (PH) is about 2 × 104  cycles and the 95% RUL 

prediction interval enters the 15% error bound at the fourth updating. 

3.6 Conclusions 

In this chapter, a Lamb wave-based fatigue damage diagnosis and remaining useful life 

(RUL) prognosis method is proposed. Following the similar procedure discussed in section 

2.5, a new probabilistic damage size and location estimation algorithm (BIM) based on in-
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detected overall stiffness is considered as the in-situ system response for predicting the 

RUL of open-hole composite specimens. 

Based on numerical investigation, the delamination and matrix cracking of composite 

materials have significant effect on signal features. The normalized amplitude change, 

correlation coefficient, and phase angle change are proven to be good candidates for the 

damage detection in composite plates, which are compared and validated using 

experimental data. Additionally, the matrix cracking depth has little effect on the received 

wave signal, if the depth is beyond one ply thickness. On the contrary, gaps between matrix 

cracks (crack density), crack lengths, and delamination size have significant effect on the 

received signals.  

From the proposed Bayesian imaging method, it can be concluded that the correlation 

coefficient and phase change features in the received signal varies as the damage size and 

location changes. The variation is very small if the sensor path is far away from the damage 

location. The BIM can simultaneously estimate the damage size and location information 

with corresponding uncertainty bounds. These uncertainty bounds tend to converge after 

about 6~8 updating points in the current study.  

Since it is very difficult to directly incorporate the detected delamination and matrix 

cracking for real time fatigue life prognosis, the stiffness degradation is chosen as an 

alternative for system response measurement of open-hole composite specimens. From 

experimental testing, three stages of stiffness degradation are observed from the 

experimental testing results and stiffness degradation rate is shown to be dependent on the 

current stiffness value and applied loading. A power law stiffness degradation model is 

proposed to consider the stiffness degradation physics. The detected stiffness degradation 
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is included in the Bayesian updating for RUL prediction. Satisfactory results are achieved 

based on the performance assessment using prognostic metrics.  
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4 THE ADJOINT METHOD-BASED DAMAGE DIAGNOSIS  

4.1 Introduction 

From the discussion of previous chapters, the widely used Lamb wave-based damage 

diagnosis method is highly dependent on the baseline signal and extracted damage 

identification features using signal processing techniques. These properties limit its 

application on general detection of complex 3D damages. Therefore, in this chapter, the 

physics of the physical scenarios, such as heat transfer and wave propagation will be 

incorporated in the damage diagnosis algorithm to achieve higher accuracy and resolution.  

Recently, Han et. al. proposed a sonic IR technique for delamination and fatigue crack 

detection in composites and metallic materials [93, 94]. In this method, a high power 

ultrasonic transducer is used to excite ultrasonic wave within the composites coupon, which 

can generate heat flux at crack-like damage areas due to friction between interfaces [95]. 

The sonic IR offers very unique capabilities for fast full field damage imaging and the 

proposed study focuses on this technique. The original development of sonic IR was for 

the 2D area/size estimation and the technique was extended for delamination depth 

profiling in [96]. The existing sonic IR method uses the surface temperature profile to 

estimate the damage size and cannot provide accurate delamination shape detection 

because the surface temperature profile blurs at the sharp delamination edges. In addition, 

the depth profiling in [96] is a semi-3D imaging method and use the analytical solution for 

isotropic homogeneous material for approximation, which might yield large errors for 

materials showing strong thermal anisotropy or heterogeneity. 

In view of the above brief review, a new method for accurate and efficient true 3D 

imaging technique is developed to reconstruct the crack-like damage based on the surface 

measured temperature history. Inverse heat conduction (IHC) is employed to incorporate 
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full surface temperature history measurements and to achieve more accurate damage shape 

and depth detection. Inverse heat conduction was initially proposed to estimate the surface 

heat flux of space vehicles using the discrete temperature measurements of interior 

sensors[88, 97] . The objective to the IHC is to estimate the unknown initial conditions, 

boundary conditions or thermal properties, which minimizes the difference between the 

estimated and measured temperature history [98]. The majority of the existing work focus 

on estimating heat source waveforms [88, 99-101], which is not the case for damage 

detection problems because the heat source waveforms are determined by the ultrasonic 

transducer and is known beforehand. Thus, the damage detection excited by ultrasonic 

transducer should be considered as heat source location detection problem.  

Additionally, damage in materials will cause thermal properties, such as density, 

specific heat, or thermal conductivity change, which can highly impact the physics of heat 

conduction.  The temperature-dependent thermal conductivity estimation has been 

investigated using the general framework of IHC [102, 103]. However, the thermal 

conductivity is space-dependent for damage detection problems because its value for some 

elements may be reduced due to certain types of damages. After discretization, the thermal 

conductivity values for all elements are considered as unknown parameters, whose 

dimensions are much greater than that of the temperature-dependent thermal conductivity 

estimation problems. Space-dependent thermal conductivity estimation for general 3D 

objects was rarely investigated. 

Similarly, mechanical properties, such as modulus and density change can affect the 

physics of elastic wave propagation. Therefore, the damage detection problem can be 

transferred to modulus detection for wave propagation problems. The shear/Young’s 
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modulus can be estimated following the similar procedure of space-dependent thermal 

conductivity by just substituting the governing equations. Sensitivity of the objective 

function with respect to the shear modulus can be efficiently computed using the adjoint 

method, which has been implemented to compute the sensitivity for seismic problems [104, 

105], in which a single element with perturbed density is assumed and detected with very 

low frequency excitation. The application of the adjoint method is extended to ultrasonic 

wave-based multiple damage detection with arbitrary shapes and at random locations. The 

effect of certain conditions, such as the number of measurement sensors, measurement 

duration, and level of measurement noise will be investigated.  

This chapter is organized as follows.  First, the IHC formulation for detecting 3D crack-

like defects is derived by considering the heat source generated by the ultrasonic transducer. 

The adjoint method is used to enhance the computational efficiency for large scale 

simulation. Following this, the derivation for thermal conductivity estimation is given and 

two thermal conductivity detection problems (i.e. 1D and 3D) are provided to demonstrate 

the overall procedure. Some parametric studies are conducted in this part. After that, the 

shear modulus estimation for wave propagation problems is discussed. Several 2D 

examples are used to illustrate the efficacy of this proposed method. Parametric studies are 

performed to investigate the effect of the number of measurement sensors as well as the 

measurement noise.  Finally, some conclusions and future work are generated based on the 

current investigation.  

4.2 Crack-Like Damage Diagnosis Using Inverse Heat Conduction (IHC)  

In this section, a general crack-like damage diagnosis framework is introduced.  A 

formula is proposed to link the ultrasonic transducer with the heat source term of heat 
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transfer problems. Its corresponding adjoint problem is derived to compute the derivative 

of the objective function with respect to the unknown parameters. Examples for metallic 

and composite materials are used to demonstrate the feasibility of the proposed method.   

4.2.1 3D Crack-Like Damage Reconstruction Based on IHC  

The general formulation and derivation of inverse heat conduction problem and its 

solution method are provided. Our key contribution is to propose a new formulation which 

makes the 3D crack-like damage detection problem solvable using the inverse heat 

conduction.  

From the sonic IR setup discussed in [96], several hypothesis are made for the proposed 

study: 1) heat flux is generated between crack/delaminated interfaces after ultrasonic 

excitation; 2) the waveform of the generated heat flux is proportional to the ultrasonic 

excitation waveform; 3) full-field temperature history for each node on the surface can be 

measured by infrared camera. A brief derivation of IHC based on above hypothesis will be 

provided below. The detailed discussion on IHC and corresponding solution techniques can 

be found in [88].  

4.2.1.1 IHC Formulation  

Based on the above discussion, the unknown internal heat source is parameterized as 

the weighted sum of the heat source at each node and the temperatures history for each 

node on the surface is available. Thus, the one dimensional IHC corresponding to the crack-

like damage detection problem can be formulated by minimizing the objective function 

given as  

𝐹(𝑊) = ∑ ∑[𝑌𝑚(𝑥𝑚, 𝑡𝑗) − 𝑇𝑚(𝑥𝑚, 𝑡𝑗)]
2

𝐽

𝑗=1

𝑀

𝑚=1
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 = ∬ (𝑌(𝑥, 𝑡) − 𝑇(𝑥, 𝑡))
2

𝛿(𝑥 − 𝑥𝑚)𝑑𝑡𝑑𝑥
𝑥,𝑡

 (4-1) 

 where  𝐹(𝑊) is the sum of the square error for temperature measurements. 𝑌𝑚(𝑥𝑚, 𝑡𝑗) is 

the available temperature history measurement at surface node 𝑥𝑚, time 𝑡𝑗. 𝑇𝑚(𝑥𝑚, 𝑡𝑗) is 

the estimated temperature history measurement at surface node 𝑥𝑚, time 𝑡𝑗. 𝑊 is the vector 

for the weight at each node 𝑊 = [𝑤1 𝑤2 … 𝑤𝐼]𝑇 , where I   is the total number of 

possible heat source locations. 𝑀 is the total number of measurement points. 𝐽 is the total 

number of time points. 

The estimated temperature 𝑇𝑚(𝑥𝑚, 𝑡𝑗)  can be obtained by solving the direct heat 

conduction problem given as  

    𝜌𝑐
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
= 𝜆

𝜕𝑇2(𝑥,𝑡)

𝜕𝑥2 + 𝑔(𝑥, 𝑡; 𝑊) (4-2) 

where 𝜌  is mass density, 𝑐  is specific heat, and 𝜆  is thermal conductivity. The initial 

temperature is the same with the surrounding environment and the top and bottom surfaces 

are applied with free convection boundary condition. Without loss of generality, the 

environment temperature is set to be a reference temperature zero. Thus, the boundary and 

initial conditions are given as  

 𝜆
𝜕𝑇(𝑥,𝑡)

𝜕𝑥
= ℎ𝑇(𝑥, 𝑡) for 𝑥 = 0  (4-3) 

 𝜆
𝜕𝑇(𝑥,𝑡)

𝜕𝑥
= −ℎ𝑇(𝑥, 𝑡) for 𝑥 = 𝐿 (4-4) 

 𝑇(𝑥, 0) = 0  (4-5) 

where ℎ is the free convection coefficient. 

4.2.1.2 Gradient Calculation Using the Adjoint Problem 

In order to minimize the least square problem in Eq. (4-1), the key step is to compute 
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the function gradient with respect to unknown parameters. Since each node in the domain 

is assigned with a weight, there will be a large number of unknown parameters for realistic 

applications. In classical IHC analysis, the derivative with respect to each unknown 

parameter is computed using finite difference methods, which is not feasible for high 

dimensional problems. The adjoint method is able to compute the derivative for all 

parameters using one direct heat conduction simulation, which can significantly enhance 

the computational efficiency. The formulation for gradient calculation using adjoint 

method is shown below.  

The sensitivity problem is defined as the perturbation of 𝑇𝑚(𝑥𝑚, 𝑡𝑗) as a result of the 

perturbation of unknown heat source parameters, which is defined as  

 𝜌𝑐
𝜕∆𝑇(𝑥,𝑡)

𝜕𝑡
= 𝜆

𝜕∆𝑇2(𝑥,𝑡)

𝜕𝑥2 + ∆𝑔(𝑥, 𝑡; 𝑊)  (4-6) 

 𝜆
𝜕∆𝑇(𝑥,𝑡)

𝜕𝑥
= ℎ∆𝑇(𝑥, 𝑡) for 𝑥 = 0  (4-7) 

 𝜆
𝜕∆𝑇(𝑥,𝑡)

𝜕𝑥
= −ℎ∆𝑇(𝑥, 𝑡) for 𝑥 = 𝐿  (4-8) 

Given the perturbation of the heat source term, the sensitivity problem can be solved using 

the direct heat conduction solver. Following the procedures discussed in [88, 101], the 

adjoint problem is formulated by introducing a generalized Lagrange multiplier 𝜑(𝑥, 𝑡) to 

incorporate the heat conduction PDE constraint, which is given as   

            𝐹(𝑊) = ∫ ∫ (𝑌(𝑥, 𝑡) − 𝑇(𝑥, 𝑡))
2

𝛿(𝑥 − 𝑥𝑚)𝑑𝑥𝑑𝑡
𝐿

𝑥=0

𝑡𝑓

𝑡=0
+ 

                                     ∫ ∫ 𝜑(𝑥, 𝑡)(𝜆
𝜕𝑇2(𝑥,𝑡)

𝜕𝑥2 + 𝑔(𝑥, 𝑡; 𝑊) − 𝜌𝑐
𝜕𝑇(𝑥,𝑡)

𝜕𝑡
)𝑑𝑥𝑑𝑡

𝐿

𝑥=0

𝑡𝑓

𝑡=0
 (4-9) 

for 𝑚 = 1, … , 𝑀 

Thus, the variation of the objective function is derived as  
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∆𝐹(𝑊) = ∇𝐹(𝑊)𝑇∆𝑊 = 

∫ ∫ 2(𝑇(𝑥, 𝑡) − 𝑌(𝑥, 𝑡))𝛿(𝑥 − 𝑥𝑚)∆𝑇(𝑥, 𝑡)𝑑𝑥𝑑𝑡
𝐿

𝑥=0

𝑡𝑓

𝑡=0

+ 

 ∫ ∫ 𝜑(𝑥, 𝑡) (𝜆
𝜕∆𝑇2(𝑥,𝑡)

𝜕𝑥2 + ∆𝑔(𝑥, 𝑡; 𝑊) − 𝜌𝑐
𝜕∆𝑇(𝑥,𝑡)

𝜕𝑡
) 𝑑𝑥𝑑𝑡

𝐿

𝑥=0

𝑡𝑓

𝑡=0
 (4-10) 

        for 𝑚 = 1, … , 𝑀  

Integrating by part and applying boundary conditions from the sensitivity problem yields  

∆𝐹(𝑊) = ∇𝐹(𝑊)𝑇∆𝑊 = 

∫ 𝜆 (−ℎ𝜑(𝐿, 𝑡) −
𝜕𝜑(𝐿, 𝑡)

𝜕𝑥
) ∆𝑇(𝐿, 𝑡) − 𝜆 (ℎ𝜑(0, 𝑡) −

𝜕𝜑(0, 𝑡)

𝜕𝑥
) ∆𝑇(0, 𝑡)

𝑡𝑓

𝑡=0

𝑑𝑡 −              

      ∫ 𝜌𝑐𝜑(𝑥, 𝑡𝑓)∆𝑇(𝑥, 𝑡𝑓)
𝐿

𝑥=0
𝑑𝑥 + ∫ ∫ 𝜑(𝑥, 𝑡)∆𝑔(𝑥, 𝑡; 𝑊)𝑑𝑥𝑑𝑡

𝐿

𝑥=0

𝑡𝑓

𝑡=0
+  (4-11) 

∫ ∫ ∆𝑇(𝑥, 𝑡) (𝜆
𝜕𝜑2(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌𝑐

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
+ 2(𝑇(𝑥, 𝑡) − 𝑌(𝑥, 𝑡))𝛿(𝑥 − 𝑥𝑚)) 𝑑𝑥𝑑𝑡

𝐿

𝑥=0

𝑡𝑓

𝑡=0

 

                                                                     for 𝑚 = 1, … , 𝑀 

 The adjoint problem is obtained by eliminating the term ∆𝑻(𝒙, 𝒕) and it is expressed as 

    𝜆
𝜕𝜑2(𝑥,𝑡)

𝜕𝑥2 + 𝜌𝑐
𝜕𝜑(𝑥,𝑡)

𝜕𝑡
+ 2(𝑇(𝑥, 𝑡) − 𝑌(𝑥, 𝑡))𝛿(𝑥 − 𝑥𝑚) = 0   (4-12) 

 𝜆
𝜕𝜑(𝑥,𝑡)

𝜕𝑥
= ℎ𝜑(𝑥, 𝑡) for x = 0 (4-13) 

 𝜆
𝜕𝜑(𝑥,𝑡)

𝜕𝑥
= −ℎ𝜑(𝑥, 𝑡) for x = L  (4-14) 

 𝜑(𝑥, 𝑡𝑓) = 0 (4-15) 

The above adjoint problem is not the standard form of the heat conduction problem, as the 

final time condition instead of the initial condition is specified. Using the change of 

variable 𝜏 = 𝑡𝑓 − 𝑡, the above equations can be transformed into the standard form of direct 

heat conduction problem, which can be solved by any thermal analysis solver.  After 

introducing the adjoint problem, the Eq.(4-11) is simplified as   
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 ∆𝐹(𝑊) = 𝛻𝐹(𝑊)𝑇∆𝑊 = ∫ ∫ 𝜑(𝑥, 𝑡)∆𝑔(𝑥, 𝑡; 𝑊)𝑑𝑥𝑑𝑡
𝐿

𝑥=0

𝑡𝑓

𝑡=0
  (4-16) 

 In order to get the explicit expression for gradient term ∆𝐹(𝑊), the heat source is defined 

as 

 𝑔(𝑥, 𝑡; 𝑊) = ∑ 𝑤𝑖𝑓(𝑡)𝛿(𝑥 − 𝑥𝑖)
𝐽
𝑖=1  (4-17) 

where 𝑓(𝑡) is the given heat source waveform, 𝑥𝑖 is the possible heat source location (i.e., 

nodes). Substituting Eq.(4-17) into Eq.(4-16), the gradient can be expressed as 

 ∆𝐹(𝑊) = ∇𝐹(𝑊)𝑇∆𝑊 = ∫ ∫ 𝜑(𝑥, 𝑡)∆𝑔(𝑥, 𝑡; 𝑊)𝑑𝑥𝑑𝑡
𝐿

𝑥=0

𝑡𝑓

𝑡=0
 

 = ∫ ∫ 𝜑(𝑥, 𝑡) ∑ ∆𝑤𝑖𝑓(𝑡)𝛿(𝑥 − 𝑥𝑖)𝐼
𝑖=1 𝑑𝑥𝑑𝑡

𝐿

𝑥=0

𝑡𝑓

𝑡=0
 

 = ∑ ∫ ∫ ∆𝑤𝑖𝑓(𝑡)𝛿(𝑥 − 𝑥𝑖)𝜑(𝑥, 𝑡)𝑑𝑥𝑑𝑡
𝐿

𝑥=0

𝑡𝑓

𝑡=0
𝐼
𝑖=1  (4-18) 

` = ∑ ∫ 𝑓(𝑡)𝜑(𝑥𝑖, 𝑡)𝑑𝑡
𝑡𝑓

𝑡=0
∆𝑤𝑖

𝐼
𝑖=1   

Thus, the component of the derivative is written as    

 [∇𝐹(𝑊)]𝑖 = ∫ 𝑓(𝑡)𝜑(𝑥𝑖, 𝑡)𝑑𝑡
𝑡𝑓

𝑡=0
 (4-19) 

Using Eq.(4-19), the gradient with respect to each parameter 𝑤𝑖 can be directly computed 

after solving the adjoint problem.  In the next section, the method for applying nonnegative 

or bound constraints and the flowchart of conjugate gradient method coupling with the 

adjoint problem will be presented as the numerical algorithm for the IHC solution. 

4.2.2 Conjugate Gradient Method with Bound Constraints 

In [88],  a conjugate gradient with adjoint problem has been discussed in detail for 

estimating heat source function with the known source location. This algorithm is different 

from the one investigated here since the heat source function can take both positive and 

negative values. In the 3D crack-like damage imaging problem, there is no heat sink 

induced by the ultrasonic transducer, thus the weight for each possible heat source is 
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nonnegative. In addition, the proposed method used a normalized weight factor for each 

possible heat source and the normalized weight at each node is not greater than 1. Thus, 

the optimization of the proposed IHC is a bounded inverse problem and a constraint should 

be applied on each parameter. Generally speaking, constrained least square problems are 

much slower than the unconstrained problems because they usually include nested loops 

in order to identify the active sets or free variables [106-109].  An intuitive approach which 

sets the parameter to be zero when it is outside the bound is applied in our problem. 

Although this method may cause inaccuracy or divergence issues [106], it proves to be 

very efficient and can converge to the true solution by some modifications. This method 

will be discussed in detail below.  

4.2.2.1 Algorithm Description and Modification 

In conjugate gradient method, two critical steps are: computing the direction of descent 

𝑑𝑘and step size 𝛽𝑘. As illustrated in [88], the equations for computing these two quantities 

are expressed as  

 𝑑𝑘 = 𝛻𝐹(𝑊𝑘) + 𝛾𝑘𝑑𝑘−1  (4-20) 

where  𝛾𝑘 =
∇𝐹(𝑊𝑘)

𝑇
(∇𝐹(𝑊𝑘)−∇𝐹(𝑊𝑘−1))

∇𝐹(𝑊𝑘−1)
𝑇

∇𝐹(𝑊𝑘−1)
  

 𝛽𝑘 =
∑ ∫ (𝑇(𝑥𝑚,𝑡)−𝑌(𝑥𝑚,𝑡))∆𝑇(𝑥𝑚,𝑡)𝑑𝑡

𝑡𝑓

𝑡=0
𝑀
𝑚=1

∑ ∫ [∆𝑇(𝑥𝑚,𝑡)]2𝑑𝑡
𝑡𝑓

𝑡=0
𝑀
𝑚=1

  (4-21) 

To show the procedures, let’s define 𝑆𝑘 = {𝑠: 𝑤𝑠
𝑘 < 0 or 𝑤𝑠

𝑘 > 1 } and set 𝑊𝑘(𝑆𝑘) = 0. 

In order to ensure convergence of the method, the equations for updating 𝛾𝑘, 𝑑𝑘 and 𝑊𝑘 

are revised as  

 𝛾𝑘 =
𝛻�̌�(𝑊𝑘)

𝑇
(𝛻�̌�(𝑊𝑘)−𝛻�̌�(𝑊𝑘−1))

𝛻�̌�(𝑊𝑘−1)
𝑇

𝛻�̌�(𝑊𝑘−1)
 (4-22) 
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where ∇�̌�(𝑊𝑘) is the partition of ∇𝐹(𝑊𝑘)with index �̌� ∉ 𝑆𝑘. 

 𝑑𝑘(𝑠) = 0 for 𝑠 ∈ 𝑆𝑘 and 𝑑𝑘(�̌�) = 𝛻𝐹(𝑊𝑘)(�̌�) + 𝛾𝑘𝑑𝑘−1(�̌�) for �̌� ∉ 𝑆𝑘    (4-23) 

 𝑊𝑘+1 = 𝑊𝑘 − 𝛽𝑘𝑑𝑘and 𝑊𝑘+1(𝑆𝑘+1) = 0 (4-24) 

Clearly, the above modification will increase the speed for algorithm convergence, 

because more and more parameters are set to be inactive (i.e., 0) during the optimization. 

Another important issue is to choose the stopping criteria, which is determined such that 

the temperature difference at each time point is less than1 × 10−4 C∘ . Similar with that 

shown in [88], the flowchart for the revised conjugate gradient method is shown in Fig. 4.1. 

4.2.2.2 A numerical Exampe for Illustration 

In order to illustrate the proposed methodology, a simple 1D problem is used to 

demonstrate the entire heat source location detection procedures. A rod with material 

properties and dimension listed in Table 4.1 is selected as an example. The material 

properties are chosen to represent a composite coupon along thickness direction. There is 

an internal heat source at the middle of the rod (i.e., 𝑥 = 0.9𝑚𝑚) with waveform given in 

Fig. 4.2(a). Two free ends and lateral surface of the rod are applied with free convection 

and insulation boundary conditions, respectively. The direct heat conduction is formulated 

and solved using the finite element method documented in [110]. As mentioned in section 

4.2.1.1 , the environment temperature is set to be  T∞ = 0 C∘  to facilitate the computation. 

The schematic representation of the rod is shown in Fig. 4.3.The temperature history at the 

right end is collected for about 14 seconds, which is used for the heat source location 

estimation (shown in Fig. 4.2(b)).  
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Fig. 4.1 The Flowchart for the Conjugate Gradient Method with the Adjoint Problem 

Table 4.1. The Thermal Properties and Dimension of the Rod 

 

Length 

(mm) 

 

 

Area 

(mm2) 

 

Density 

(kg/m3) 

 

Specific heat 

(𝐽 𝑘𝑔 C∘⁄ ) 

Thermal 

conductivity 

(𝑊𝑎𝑡𝑡 C∘⁄ ) 

Free convection 

coefficient 

(𝑊𝑎𝑡𝑡 𝑚2 C∘⁄ ) 

1.8 0.01 2000 950 0.6 30 

 

Yes 

Solve 𝑇(𝑥𝑚, 𝑡) using Eq.(4-2)-(4-5) 
 

𝐹(𝑊𝑘)<𝜀 

Given the heat source  

2(𝑇(𝑥𝑚, 𝑡) − 𝑌(𝑥𝑚, 𝑡)) 

 Compute 𝜑(𝑥𝑖, 𝑡) using  
Eq.(4-12)-(4-15) 

 

Compute the gradient  

∇𝐹(𝑊𝑘) using Eq. (4-19) 
 

Calculate 𝛾𝑘 using Eq. (4-22) 

Calculate 𝑑𝑘 using Eq. (4-20) 

 

Solve the sensitivity 

problem given by  

Eq.(4-6)-(4-8)  

Calculate 𝛽𝑘 using  

Eq. (4-21) 

Update 𝑊𝑘using Eq. (4-24) 

𝑘 = 𝑘 + 1 

 

Initialize weight vector 𝑊𝑘 = [𝑤1, 𝑤2, … , 𝑤𝐼], 𝜀 

Determine heat source location vector [𝑥1, 𝑥2, … , 𝑥𝐼] 
Determine measurement location vector [𝑥1, 𝑥2, … , 𝑥𝑀] 

𝑘 = 0 

 

STOP 

No 
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(a)                                                                           (b) 

Fig. 4.2 The Waveform of the Internal Heat Source (a) and  

Temperature History at the Right End (b) 

 

 

 

 

Fig. 4.3 The Schematic Representation of the Rod 

 The rod is divided into 10 elements (11 nodes). Given the heat source waveform, the 

true heat source location is determined by the position with weight 1. Since the temperature 

at the right end is available, the heat source location can be estimated following the 

flowchart given Fig. 4.1. Initialized with uniform weights at all locations, the updated 

weight at each location after every 25 iterations is plotted in Fig. 4.4.  The evaluation of 

the objective function is shown in Fig. 4.5.  
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Fig. 4.4 The Estimated Weights at Possible Heat Source Locations 

  

Fig. 4.5 The Evaluation of the Objective Function at Each Iteration 

 From Fig. 4.5, it can be observed that the objective function is monotonically 

decreasing during the optimization, except for a couple of points which is caused by 

applying the bound constraint.  At the last iteration, the estimated weight(s) at x = 0.9 is 1 

and other locations are 0 (see Fig. 4.4), which means that the detected heat source location 

is at the original setup location. Generally, the weight at each node can be considered as 

the probability of heat source existing at that particular location. An estimation procedure 

for the mean location of the heating source can be formulated by treating all node weights 

as a discrete probability distribution.  If the mean value is used for estimating the true heat 
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source location, the estimated heat source can be expressed as  

 𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = �̅� = ∫ 𝑥𝑝(𝑥)𝑑𝑥 = ∑ 𝑥𝑖
𝐼
𝑖=1 𝑝𝑖 (4-25) 

 where 𝒙𝒊 is the node coordinate, 𝒑𝒊 is the probability at that node, x is the mean source 

location. Clearly, this formula is applicable to the optimization results shown in Fig. 4.4. 

This estimation is also applicable when the heat source is not on the discretization node 

and an example is shown below. 

 Assume that the heat source is at 𝑥 = 0.555 × 1.8𝑚𝑚, which will not fall on any node 

if the rod is discretized less than 200 elements. Thus, there will be multiple nodes with 

nonzero weights (probabilities). Fig. 4.6 shows the optimized probability at each node for 

different number of possible heat source locations on the rod.  

 

Fig. 4.6 Optimized Probability for Different Number of Possible Heat Source Locations 

As seen in Fig. 4.6, there will be more nodes with nonzero probabilities if more possible 

heat sources are assumed along the rod. With Eq. (4-25), the mean estimation can be 

obtained and compared with the true value, shown in Fig. 4.7.  
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Fig. 4.7 The Comparison between Mean Prediction and the True Value 

From Fig. 4.7, it can be concluded that the mean value is a good metric to achieve very 

accurate heat source location prediction when the true heat source is not on the grid node. 

Fig. 4.7 also indicates that the proposed methodology is robust with respect to the number 

of discretization used in the reconstruction. Thus, fewer number of elements are required 

if the probability distribution of the nodal weights is used for the imaging reconstruction. 

4.2.3 3D Crack-Like Damage Imaging 

In this section, the developed inverse heat conduction framework is applied for crack-

like damage detection for both isotropic homogeneous and anisotropic heterogeneous 

materials for three dimensional problems. To improve the detection accuracy for 3D 

problems, measurements on the top and bottom surfaces are both assumed to be available. 

The detailed discussion is provided below.  

4.2.3.1 Fish-Eye Crack Detection in High Strength Steel 

In this example, a fish-eye crack is inserted in the middle of a stainless steel A304 cubic 

with dimension 40mm x 40mm x 40mm (illustrated in Fig. 4.8). The thermal properties of 

the stainless steel are listed in Table 4.2. The heat source waveform is identical with that 

shown in Fig. 4.2(a). All six surfaces are applied with free convection boundary conditions. 
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As stated before, the ultrasonic transducer can generate heat flux in the crack/delaminated 

areas and the crack is simulated using areas with concentrated heat flux at each node. The 

direct and adjoint problems of the heat conduction are solved using the commercial finite 

element (FE) software ABAQUS. The temperature histories at each node on the top and 

bottom surfaces are collected. Twenty elements are generated along each dimension. Since 

it takes relatively longer for the heat propagating to the surface, the simulation is run for 

about 28 seconds. The spatial and temporal temperature profiles from FE simulation are 

plotted in Fig. 4.9. The red nodes on Fig. 4.9(a) are numbered as 1-5 from the edge to the 

center.  In the IHC framework, all internal nodes are considered as possible heat source 

locations and assigned with weights. The task of IHC is to estimate the weight using the 

available temperature history measurements on both surfaces. After optimization, weights 

for all nodes are plotted using OVITO 3D visualization software [111]. The final 

reconstructed damage imaging is illustrated in Fig. 4.10. The color bar included in Fig. 

4.10 indicates the identified weight (probability) and is applicable to all the contour images 

in this paper. By comparing the damage imaging with ground truth, it is shown that the 

proposed methodology can identify the damage accurately.  
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Fig. 4.8 The Fish-Eye Crack Inserted in a Stainless Steel Cubic 

 

(a) 

 

(b) 

Fig. 4.9 The Spatial (a) and Temporal (b) Temperature Profiles from FE Simulation 

Table 4.2. The Thermal Properties of the Stainless Steel 

 

Density 

(kg/m3) 

Specific 

heat 

(𝐽 𝑘𝑔𝐶°⁄ ) 

 Thermal 

conductivity 

(𝑊𝑎𝑡𝑡 𝐶°⁄ ) 

Free convection 

coefficient 

(𝑊𝑎𝑡𝑡 𝑚2𝐶°⁄ ) 
8000 500 16.2 30 
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Fig. 4.10 Reconstructed Crack Damage Imaging and the Middle Slice 

4.2.3.2 Delamination Detection in Carbon Fiber-Reinforced Composites  

In this example, the composite coupon is made of 12 plies of composite lamina with 

layups [902 / 452 /-452 ]s and dimension 120mm x 120mm x 1.8mm. The thermal 

properties of the carbon fiber composites are listed in Table 4.3. The heat source waveform 

is identical with that shown in Fig. 4.2(a). The top and bottom surfaces of the composite 

coupon is applied with free convection boundary conditions. The other surfaces are fixed 

with constant reference temperature. Delamination with different shapes and areas are 

inserted at different interfaces (illustrated in Fig. 4.11). Analogous to section 4.2.3.1, all 

internal nodes are assumed to be possible heat source locations. After optimization, the 

estimated weights at each interface are shown in Fig. 4.12. On each picture, the number 

means the location of the interface where the delamination is inserted. For example, 1&2 

means the interface is between the 1st and 2nd plies.   

Table 4.3. The Thermal Properties of the Composite Coupon 

 

Density 

(kg/m3) 

Specific 

heat 

(𝐽 𝑘𝑔 C∘⁄ ) 

 Transverse 

thermal 

conductivity 

(𝑊𝑎𝑡𝑡 C∘⁄ ) 

Longitudinal thermal  

conductivity 

(𝑊𝑎𝑡𝑡 C∘⁄ ) 

Free 

convection 

coefficient 

(𝑊𝑎𝑡𝑡 𝑚2 C∘⁄ ) 2200 950 0.6 6 30 
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Fig. 4.11 The Area and Location of the Inserted Delamination 

 

 

 

Fig. 4.12 The Estimated Weights at Each Interface 

From Fig. 4.12, it can be observed that the delaminated areas can be clearly identified. 

Along the thickness direction, the corresponding interface that each delamination exists is 

also clearly and accurately detected.  
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4.2.3.3 Measurement Noise Effect on Damage Detection 

In this section, the effect of measurement noise on the final detection performance is 

investigated. The collected temperature measurements are added with Gaussian random 

noise. The amplitude of the noise is varied and the corresponding delamination detection 

performance is compared.  Assume the composite coupon layup is identical with section 

4.2.3.2, but the dimension is reduced to 40mm x 40mm x 1.8mm.  Only one delamination 

is inserted between the 6th and 7th plies (illustrated in Fig. 4.13). With different level of 

measurement noise, the weights for three adjacent interfaces are shown in Fig. 4.14.  As 

demonstrated in Fig. 4.6, the weight at each node can be generally considered as probability. 

Therefore, the mean prediction can be computed using Eq.(4-25). The standard deviation 

for a discrete probability distribution can be expresses as  

 𝝈 = √∑ (𝒙𝒊 − �̅�)𝟐𝒑𝒊
𝒏
𝒊  (4-26) 

To measure the uncertainty, the mean and confidence bound prediction of delamination 

depth are demonstrated in Fig. 4.15.  

 

Fig. 4.13 The Area of the Inserted Delamination 
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Fig. 4.14 The Delaminated Area Detection for Different Levels of Noise 

 

Fig. 4.15 The Mean and ±𝟐𝝈 Prediction of Delamination Depth 

As seen from Fig. 4.14, the delamination area detection is not highly affected by 

different level of noise. Fig. 4.15 shows that the mean location for the delamination does 
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not varies much with respect to different level of noises, but the confidence bounds will 

increase as the noise level increases.   

4.3 Thermal Conductivity Diagnosis Using IHC 

As discussed above, the damage detection using sonic IR technique is considered as 

heat source estimation for IHC problems.  Additionally, damage in materials may also 

cause the degradation of thermal conductivity. Using appropriate formulation, some 

damage detection problems can be converted to thermal properties, such as thermal 

conductivity, density, heat capacity diagnosis if surface temperature history measurements 

are available. The general optimization method for IHC has be derived and discussed in 

[98], in which the derivation is based on the original heat conduction governing equation. 

To make it easier to understand, the optimization procedure is derived here using the 

generalized finite element equation for heat conduction problems. The idea for computing 

the objective function gradient will be clearly and explicitly demonstrated.  

4.3.1 Problem Formulation for Thermal conductivity Diagnosis 

The finite element method has been extensively used for solving physics problems 

governed by partial differential equations[112, 113]. As documented in [110], the heat 

conduction problem can be generally formulated as  

 𝑀�̇�(𝑡, Λ) + 𝐾(Λ)𝑇(𝑡, Λ) − 𝑓(𝑡) = 0 (4-27) 

 𝜆
𝜕𝑇

𝜕𝑥
= ℎ𝑇 at region Γ1    (4-28) 

 𝜆
𝜕𝑇

𝜕𝑥
= ℎ𝑇 at region Γ2 (4-29) 

 𝑇(𝑡) = 0 at 𝑡 = 0 (4-30) 

where Λ is the vector consisting of the thermal conductivity of each element, 𝑇 is the vector 

for nodal temperature, 𝑀 is the capacitance matrix, which is dependent on density and heat 
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capacity, 𝐾(Λ) is the conductivity matrix, �̇� is the time derivation of nodal temperature 

vector and 𝑓(𝑡) is the time dependent heat source. Taking the variation of on both sides of 

above equations, the sensitivity problem can be derived as 

 𝑀∆�̇�(𝑡, Λ) + 𝐾(Λ)∆𝑇(𝑡, Λ) + ∆𝐾(Λ)𝑇(𝑡, Λ) = 0 (4-31) 

 𝜆
𝜕∆𝑇

𝜕𝑥
= ℎ(∆𝑇 −

∆𝜆

𝜆
𝑇) at region Γ1    (4-32) 

 𝜆
𝜕∆𝑇

𝜕𝑥
= ℎ(∆𝑇 −

∆𝜆

𝜆
𝑇) at region Γ2 (4-33) 

 ∆𝑇(𝑡) = 0 at 𝑡 = 0 (4-34) 

Different from the heat source estimation problem, conductivity matrix is dependent 

on unknown thermal conductivity of each element and its variation will generate the 

equivalent heat source, which should be considered when computing the temperature 

variation ∆𝑇(𝑡, Λ). Additionally, the free convection boundary condition is dependent on 

the temperature from the direct heat conduction problem. Given the IHC problem shown 

in Eq.(4-1), the objective function with the direct heat conduction constraint can be 

expressed as  

𝐹(Λ) = ∫ (𝐼𝑇(𝑡, Λ) − 𝑌(𝑡))
𝑇

(𝐼𝑇(𝑡, Λ) − 𝑌(𝑡)) 𝑑𝑡
𝑡𝑓

𝑡=0

+ 

 ∫ 𝜑𝑇(𝑀�̇�(𝑡, Λ) + 𝐾(Λ)𝑇(𝑡, Λ) − 𝑓(𝑡))
𝑡𝑓

𝑡=0
𝑑𝑡 = 0 (4-35) 

𝐼  is diagonal matrix specifying measurement nodes and  𝜑  is the nodal temperature 

solution for the adjoint problem. Taking the variation of Eq.(4-35) and continuously 

applying integration by parts, the adjoint problem can be obtained by canceling the 

temperature variation term∆𝑇(𝑡, Λ).   

 𝑀�̇� + 𝐾(Λ)𝜑 + 2 (𝐼𝑇(𝑡, Λ) − 𝑌(𝑡)) = 0 (4-36) 
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 𝜆
𝜕𝜑

𝜕𝑥
= ℎ𝜑 at region Γ1    (4-37) 

 𝜆
𝜕𝜑

𝜕𝑥
= ℎ𝜑 at region Γ2 (4-38) 

 𝜑(𝑡) = 0 at 𝑡 = 𝑡𝑓 (4-39) 

Similarly, using the change of variable 𝜏 = 𝑡𝑓 − 𝑡, the adjoint problem is solved intuitively 

as the direct heat conduction problem. Therefore, the gradient of the objective function 

with respect to the conductive vector can be given as  

 
𝜕𝐹(Λ)

𝜕Λ
= ∫ 𝜑𝑇 𝜕𝐾(Λ)

𝜕Λ
𝑇𝑑𝑡

𝑡𝑓

𝑡=0
 (4-40) 

which can be easily computed after solving the direct and adjoint heat conduction problem. 

The derivative of the conductivity matrix is a three dimensional matrix, which can be 

obtained following the similar procedure discussed in [114].  

With the information of function gradient, conjugate gradient method is used to update 

the unknown parameters iteratively. Based on the properties of a particular problem, certain 

constraints on parameters can be applied to increase the speed of algorithm convergence. 

The equations for computing the step size and search direction are given in section 4.2.2.  

4.3.2 Demonstration Examples  

In this section, the above derived method is used to estimate the unknown thermal 

conductivity for each element of a 1D rod and a 3D cubic. For the 1D problem, the heat 

conduction solver is programmed using MATLAB. Some parametric studies are performed 

to investigate the effect of the temperature measurement duration, heat source waveform, 

and heat source frequency on final diagnostic performance. For the 3D problem, 

commercial software ABAQUS is employed here as the heat conduction solver. User 

subroutine UEL for the 3D linear brick element DC3D8 is developed to have full control 
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of the thermal conductivity for each element. Details will be discussed below.  

4.3.2.1 A 1D Example and Parametric Studies 

A simple 1D problem is introduced here to illustrate the feasibility of the thermal 

conductivity method. The material properties of the rod is chosen to be identical with that 

shown in Table 4.1. The rod is discretized into 10 elements. The thermal conductivity 

values of the second the eighth elements are assumed to be 0.3, which are used to simulate 

the damaged locations on the 1D rod. The direct heat conduction is formulated and solved 

using the finite element method documented in [110]. As mentioned before, the 

environment temperature is set to be  𝑇∞ = 0 C∘   to facilitate the computation. The 

schematic representation of the rod with two damage elements is shown in Fig. 4.16. The 

temperature history at the right and left ends is collected for about 14 seconds, which is 

used for the thermal conductivity estimation (shown in Fig. 4.17(b)). 

  

 

 

 

Fig. 4.16 The Schematic Representation of the Rod with Two Damaged Elements 

 

𝑇∞,  ℎ 𝑇∞,  ℎ 

Insulated surface 

𝐿 = 1.8𝑚𝑚 

0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

4000

Time(s)

H
e
a
t 

s
o
u
rc

e
 w

a
v
e
fo

rm
 (

W
a
tt

/m
3
)

0 2 4 6 8 10 12 14
-2

0

2

4

6

8

10

12

Time(s)

T
e
m

p
e
a
ra

tu
re

(C
e
lc

iu
s
)

 

 

Left end

Right end



128 

                    (a)                                                                                    (b) 

 

Fig. 4.17 The Waveform of the Heat Source (a) and  

Temperature History at Both Ends (b) 

 Given the heat source waveform and temperature history measurements, the thermal 

conductivity for each element can be estimated following the method discussed in section 

4.3.1. Initialized with uniform thermal conductivity for all elements, the updated thermal 

conductivity for each element after every 50 iterations is plotted in Fig. 4.18.   

 

Fig. 4.18 The Estimated Thermal Conductivity for Each Element 

From Fig. 4.18, it can be seen that these two damaged elements can be identified by 

two valleys. The estimated conductivity value for the eighth element doesn’t reach 0.3 

because the heat source is applied on the left end, which are relatively far away from this 

damaged element.  

In the example above, some configuration parameters, such as the heat source 

waveform, measurement duration, and number of measurement locations are selected 

conceptually. To comprehensively understand the effect of them on final diagnosis 

performance, the parametric study is performed on these parameters. With the same 
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damage assumption shown in  

, the final estimated conductivity using different heat source waveforms is illustrated 

in Fig. 4.17. The effect of the collected measurement duration on the final diagnosis results 

is given in Fig. 4.20.   Currently, only two measurement locations on both ends are 

assumed. If there are different number of evenly spaced measurement locations, the final 

estimated conductivity for each element is plotted in Fig. 4.21. 

 
             (a)                                                                              (b) 

Fig. 4.19 Heat Source Waveforms (a) and Final Estimated Conductivity for Each 

Waveform (b) 

 
Fig. 4.20 The Estimated Conductivity for Different Measurement Durations 
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Fig. 4.21 The Estimated Conductivity for Different Number of Measurement Locations 

From those three figures above, it can be concluded that the changes of heat source 

waveform doesn’t have significant effect on the final diagnosis performance. As long as it 

is not too short, no obvious improvement can be observed when changing the measurement 

duration. However, the diagnosis performance is clearly improved when increasing the 

number of measurement locations.  

4.3.2.2 A 3D Example 

In this example, internal damage is simulated using some elements with reduced 

thermal conductivity inside a stainless steel A304 cubic (illustrated in Fig. 4.22). The 

thermal properties of the stainless steel are identical with that listed in Table 4.2. Since 

waveform doesn’t have much effect the final diagnosis results, it is assumed to be 

waveform 1 in Fig. 4.9(a). The heat flux is applied on the bottom surface. Meanwhile, the 

temperature history measurements on the top and bottom surfaces are collected.  The direct 

and adjoint problems of the heat conduction are solved using the commercial finite element 

(FE) software ABAQUS. The element conductivity is specified using ABAQUS user 

subroutine UEL. Following the same procedure discussed before, the thermal conductivity 

for each element can be estimated using the IHC framework. After optimization, the 
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estimated conductivity values for all elements are plotted using OVITO 3D visualization 

software [111]. The final reconstructed damage imaging is illustrated in Fig. 4.23. The 

color bar included in Fig. 4.22 indicates the value of the thermal conductivity.     

 

(a)                                                                                        (b) 

Fig. 4.22 The 3D View (a) and X-Z Projection (b) of the Simulated True Damage  

 

Fig. 4.23 The Reconstructed Damage Imaging  

From above figures, it can been seen that the damage location can be approximately 

estimated with measurements on the top and bottom surfaces, but the accurate profiling 

about the damage can’t be achieved. Currently, it takes very long time for 3D damage 

reconstruction and most portion of the computational efforts are spent on the heat 
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conduction simulation. Extra work is needed for solving the heat conduction problem more 

efficiently.  

4.4 Modulus Diagnosis for Wave Propagation Problems 

In section 3.5, it has been demonstrated that the damage accumulation in materials will 

lead to stiffness/modulus degradation, which can highly affect the physics of elastic wave 

propagation. Following the similar procedure of thermal conductivity estimation using 

IHC, the material modulus detection using wave propagation can be derived by replacing 

the heat conduction equation with the elastic wave propagation governing equation. It is 

assumed there are embedded sensors that can measure the x-y nodal displacement of 2D 

plates.  That is a reasonable hypothesis, because PZT sensors are currently widely used for 

damage diagnosis and they can covert strain (displacement gradient) into electrical 

potential which can be measured easily.  The piezoelectric effect is not considered in this 

framework. The formulation for modulus diagnosis is briefly discussed and parametric 

studies are performed to investigate the detection algorithm performance for different 

parameters.   

4.4.1 Problem Formulation for Modulus Diagnosis 

Based on the finite element method, the dynamic response of materials can be modeled 

as  

 𝑀�̈�(𝑡, 𝑃) + 𝐾(𝑃)𝑢(𝑡, 𝑃) − 𝑓(𝑡) = 0 (4-41) 

where 𝑀 is the mass matrix, 𝐾(𝑃) is the stiffness matrix, 𝑢(𝑡, 𝑃) is the vector for nodal 

displacement, �̈� is the second order time derivative of displacement vector. 𝑃 is the vector 

consisting of the modulus of each element and 𝑓(𝑡) is the applied time dependent dynamic 

loading.  
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It can be seen that the above dynamic governing equation has almost the same form 

with that of the heat conduction problem.  Thus, all the derivation discussed above can be 

applied to derive the objective function gradient with respect to the element modulus, 

which is eventually given as  

 
𝜕𝐹(P)

𝜕P
= ∫ 𝜑𝑇 𝜕𝐾(P)

𝜕P
𝑢(𝑡, 𝑃)𝑑𝑡

𝑡𝑓

𝑡=0
 (4-42) 

where 𝜑  means the nodal displacement solution for the adjoint problem. Given the 

discussion in section 4.3.1, it is trivial to derive the above formula. Thus, the detailed 

procedures are omitted here for simplicity and clarity.  

4.4.2 Demonstration Examples  

4.4.2.1 Modulus Diagnosis of 2D Plates  

In this section, examples are given to demonstrate the shear modulus detection for 

ultrasonic wave propagation. The dimension (100×100mm) of the 2D plate and the sensor 

network layout is given in Fig. 4.24. The 2D plates is assumed to be made of aluminum.  

The red dot represents the ultrasonic signal actuator and the green ones are the sensors that 

can collect displacement measurements along 𝑥  and 𝑦  directions. These sensors are 

numbered from left to right as 1--14. Dynamic concentrated loading along 𝑦 direction is 

applied on the signal actuator and its waveform is illustrated in Fig. 4.25. Clamped 

boundary condition is applied on the bottom edge marked as blue.  
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Fig. 4.24 The Dimension and Sensor Network Layout 

 
Fig. 4.25 A Tone Burst Signal of 3.5 Cycles with 50 kHz Central Frequency 

Damage on the 2D plate is simulated using certain elements with reduced Young’s 

modulus. The nodal temperature solution for the direct and adjoint problems are essential 

for computing the gradient with respect to unknown parameters. The dynamic problem can 

be solved using any finite element/ finite difference solver selected by the investigator.  In 

this study, the dynamic analysis code documented in [115] is employed to solve the 

governing equation (4-41).  The simulation is run for 80𝜇𝑠  and at the same time, the 

measurements at all sensor locations are collected. The displacement measurements at 

selected sensor locations are plotted in Fig. 4.26. After the simulation, the true and 
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reconstructed damage images for 2 examples are shown in Fig. 4.27 and Fig. 4.28, 

respectively. 

 

Fig. 4.26 The Y Displacement for Selected Sensors 

  

(a)                                                                           (b) 

Fig. 4.27 The True (a) and Reconstructed (b) Damage Images for Example 1 
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(a)                                                                         (b) 

Fig. 4.28 The True (a) and Reconstructed (b) Damage Images for Example 2 

In example 1, the undamaged area is enclosed by damaged elements, which is not 

common in real practice.  It is only used to show the efficacy of this developed method. 

The driving force for minimizing the objective function is the effect of damage on final 

nodal displacement measurements. For letter ‘A’, only one layer of damaged elements are 

assumed and they don’t have significant effect on the received temperature measurements. 

In the second example, the damage shapes shown in Fig. 4.28 are the most common damage 

patterns encountered in practice. It can be seen that all the damage areas can be clearly 

identified.  

In order to quantitatively substantiate the reconstructed results, the correlation 

coefficient between the true and reconstructed damage images is computed and shown in 

Fig. 4.29. It can be seen that over 70% reconstruction can be achieved after 100 iterations. 

Within 2000 interactions, around 80% and 90% of the true damage can be reconstructed 

for example 1 and example 2, respectively.  
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(a)                                                                     (b) 

Fig. 4.29 The Correlation Coefficient for (a) Example 1 and (b) Example 2 

4.4.2.2 Parametric Studies  

In this section, the effect of several simulation configurations, such as the measurement 

duration, number of measurement sensors, and measurement noise will be investigated to 

have a comprehensive understanding of the damage detection algorithm. The damage 

patterns in example 2 is used in the parametric study. The matrix for the parametric studies 

can be summarized in Table 4.4. The damage configuration in example 2 is used 

throughout the parametric studies.  

Table 4.4. The Matrix for the Parametric Studies 

Parametric studies Duration(𝜇𝑠) # of sensors Noise level(%) 

Duration 40 120 80 80 

# of sensors 13 4 7 13 

Noise level 0 0 2.5 5 7.5 10 

Measurement duration effect 

Since the efficiency of the algorithm is controlled by the dynamic simulation solver, the 

collected measurement duration is investigated initially. The idea is to see if similar 

diagnosis performance is achieved if the simulation is run for a shorter time duration. The 

displacement measurements of selected sensors for different measurement durations are 
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shown in Fig. 4.30.The corresponding final reconstructed damage images are compared in 

Fig. 4.31. The corresponding correlation coefficient is plotted in Fig. 4.32.  

 

Fig. 4.30 The Y Displacement of Selected Sensors Measured for 40 𝜇𝑠(a) and 120 𝜇𝑠 (b) 

 

Fig. 4.31 The Reconstructed Damage Images for Difference Measurement Durations  

Combining Fig. 4.28(b) and Fig. 4.31, it can be concluded that the contrast of the 

reconstructed multiple damage is increased when increasing the measurement duration, 

which can also be substantiated using the correlation coefficient results shown in Fig. 4.32. 

Given the sensor network layout in Fig. 4.24, there will be reflected waves when the 

displacement is collected for 120𝜇𝑠. The detection result also means that the reflected 
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waves will not affect the performance of the algorithm, which is superior to the classical 

wave propagation-based damage detection method.  

 
Fig. 4.32 The Correlation Coefficient for Different Measurement Durations  

Number of sensors effect 

 The accessible locations of engineering components are usually limited or restricted in 

practice. Therefore, the number of sensors used for collecting the displacement 

measurements is changed and the corresponding the diagnosis performance is compared 

here. The number of sensors is reduced to 7 and 4 and they are placed evenly spaced along 

the plate edges shown in Fig. 4.33. The final reconstructed damage images for these two 

configurations are compared in Fig. 4.34. The corresponding correlation coefficient is 

shown in Fig. 4.35. Over 80% of the true damage can be identified and reconstructed using 

only 4 sensors located at corners. However, higher contrast and resolution is observed if 

more sensors are used.  
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(a)                                                                     (b) 

Fig. 4.33 The Network Layout for 7 Sensors (a) and 4 Sensors (b) 

 
 

Fig. 4.34 The Reconstructed Damage Images for 7 Sensors (a) and 4 Sensors (b)  

 
Fig. 4.35 The Correlation Coefficient for Different Number of Sensors  
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Measurement noise effect 

 Additionally, true sensor measurements are directly used above to estimate the modulus 

of each element.  However, sensor measurements are usually corrupted with noise in real 

applications. To investigate the measurement noise effect, the collected temperature 

measurements are added with Gaussian random noise. The y displacement measurements 

with 10% × 10−15  Gaussian random noise are plotted in Fig. 4.36. The amplitude of the 

noise is varied and the corresponding damage detection performance is compared and 

demonstrated in Fig. 4.37. The corresponding correlation coefficient for different levels of 

noise is illustrated in Fig. 4.38.  

 

Fig. 4.36 The Y Displacement with 10% Gaussian Noise for Selected Sensors 
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Fig. 4.37 The Reconstructed Damage Images for Different Levels of Noise 

 
Fig. 4.38 The Correlation Coefficient for Different Levels of Noise  

From Fig. 4.37, it can be seen that the shapes of multiple damage can be detected when 

the noise level is less than 10%. As shown in Fig. 4.38, the damage reconstruction ability 

is decreasing with the increased level of noise.  However, in practice, each sensor can be 

used for actuating the signal the others are used for collecting the displacement response. 

Each simulation run can be performed for each actuator-sensor configuration. By taking 

the average of different simulation runs, the effect of the noise can be cancelled or 

minimized. The reconstructed results for taking the average of different number of 

simulation runs are shown in Fig. 4.39.  
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(a) 1 run                                                          (b) 4 runs 

  

(c) 8 runs                                                        (d) 12 runs 

Fig. 4.39 The Reconstructed Results for Taking the Average of Different Number of 

Simulation Runs 

As shown above, the reconstructed damage image becomes clearer and closer to the true 

damage by taking the average of more simulation runs. Other methods such as filter 

algorithms can also be used to reduce the level of noise before plugging into the 

optimization algorithm. Generally, the inverse method is quite noise sensitive, thus the 

noise level should be carefully controlled in order to achieve optimal detection 

performance. 
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4.5 Conclusions 

In this chapter, the damage diagnosis problem is considered in other perspectives, such 

as heat source locations detection, thermal conductivity detection, mechanical modulus 

detection. With these assumptions, the adjont method is employed to show the feasibility 

of damage detection of arbitrary configurations (i.e. shape and location).  

A novel inverse heat conduction framework is proposed for 3D crack-like damage  

diagnosis. This method is successfully applied on fish-eye crack and delamination damage 

detection. Accurate damage detection can be achieved both in plane and along the thickness 

direction locations using the HC formulation. From the probabilistic point of view, the 

proposed mean location identification is insensitive to the discretization of the 

reconstruction. Measurement noise has little effect on the mean damage location 

identification, but it will impact the confidence bound prediction for the detected damage.  

The derivation for thermal conductivity detection is provided based on the finite element 

method in heat conduction analysis. For thermal conductivity detection, the algorithm is 

not sensitive to the heat source waveform and collected measurement duration, but the 

diagnosis contrast is highly dependent on the number of measurement locations. It can be 

seen that increasing the measurement locations can highly improve the diagnosis accuracy.  

A 3D example is given to demonstrate the feasibility of this method for complex internal 

damage reconstruction.  

The derivation of the material modulus detection is similar with that of the thermal 

conductivity detection. Damage detection with multiple locations and shapes is achieved 

by considering the physics of elastic wave propagation, which improves the flexibility and 

detection ability of the classical wave propagation-based damage detection method. With 
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increased level of Gaussian random noise, the reconstructed damage image contrast is 

reduced. Similar detection trend can be observed when decreasing of the number of 

measurement sensors, but satisfactory results are achieved using only limited number of 

sensors. Therefore, in order to achieve the optimal diagnosis performance, the noise level 

should be carefully controlled and more sensors should be used if possible.  
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5 CONCLUSIONS AND FUTURE WORK 

5.1 Significant Contributions 

Based on current investigation, the research objectives proposed at the beginning of the 

dissertation are achieved, but some promising future research directions are also generated. 

The significant contributions of this dissertation can be summarized below.  

Firstly, an integrated fatigue damage diagnosis and prognosis methodology for lap joints 

has been proposed, which combines a piezoelectric sensor network-based damage 

detection method, a physics-based fatigue crack propagation model, and a Bayesian 

updating framework. The uncertainties of the feature integration model, physics model 

parameters, system response measurements are incorporated.  The feature integration 

model should be carefully selected and it has significant effect on the final diagnosis 

performance. Satisfactory results are achieved for fuselage lap joints remaining useful life 

(RUL) prognosis based on the validation of the prognosis metrics.  The discussed 

deterministic Lamb wave-based damage detection method is extended for crack size and 

location diagnosis.  The proposed method is demonstrated using the datasets from finite 

element method with different damage configurations. It can provide accurate prediction 

for both centered crack and random crack location cases. 

Secondly, the co-simulation framework for finite element method is developed to 

simultaneously include the effect of both delamination and matrix cracking using Lamb 

wave propagation within composites. The simulation results are quantitatively compared 

with the experimental results for validation. Based on the simulation results, the effect of 

delamination and matrix cracking must be simultaneously included in a FEM simulation 

in order to fully quantify the changes in the wave signal observed from experiments. The 
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normalized amplitude change, correlation coefficient, and phase change are shown to be 

good candidates for the damage detection in composite plates, both numerically and 

experimentally. Gaps between matrix cracks (crack density), crack lengths, and 

delamination size have significant effect on the received signal and, therefore, should be 

estimated accurately.  

 Thirdly, a new probabilistic damage size and location updating algorithm is proposed, 

which incorporates the Lamb wave-based signal features into the Bayesian updating 

framework.  The proposed Bayesian Imaging Method can simultaneously estimate the 

damage size and location information and their uncertainty bonds. The uncertainty bonds 

get stabilized after about 6~8 updating points. This method is also proved to be applicable 

to multiple specimens with very different feature trends.  To predict the RUL of composite 

materials, an efficient overall stiffness degradation model is incorporated in Bayesian 

inference for fatigue life prognosis. The proposed stiffness degradation model is able 

capture the general trend of the overall stiffness reduction of open-hole specimens. With 

this model, the complexity of incorporating the detailed damage information in RUL 

prediction can be avoided and the computation effort is highly reduced for Bayesian 

inference. This proposed framework is demonstrated and validated using the experiment 

testing results of open-hole specimens.  

Finally, damage detection problems are considered from new perspectives, such as heat 

source locations detection, material properties detection. Efficient computation of the 

objective function gradient is achieved by employing the adjoint method. Using ultrasonic 

transducer excitation, the proposed crack-like damage detection method shows satisfactory 

performance for both in plane and out of plane damage detection. Increasing the random 
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noise level will increase confidence bound prediction of the thickness direction profiling, 

but it can provide almost identical mean prediction.  For thermal conductivity detection, 

increasing the measurement locations will highly improve the diagnosis accuracy. On the 

contrary, the heat source waveform and collected measurement duration show much less 

effect on the diagnosis results.  For modulus detection, similar diagnosis performance trend 

is observed when changing the number of measurement locations. The reconstructed 

damage shows improved contrast when increasing the collected measurement duration, 

which also means that the reflected waves from the boundaries have no effect on the 

detection algorithm. With higher random noise level, the reconstructed damage images 

show reduced contrast as well as the diagnosis accuracy.  
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5.2 Future Work 

Currently, an integrated damage diagnosis and prognosis framework has been proposed 

for both metallic and composite materials. Some promising future research directions can 

be generated based on current investigation.  

Firstly, further efforts are needed for more general crack growth model of metallic 

materials, which can predict the crack growth at different locations considering the 

interaction between cracks.  

Secondly, more studies are necessary to develop an efficient damage evolution model 

of composites, which allows the incorporation of true delamination and matrix cracking 

diagnosis for more accurate future remaining useful life prognosis.  

Thirdly, large uncertainties across different specimens, environment, and manufacturing 

process should be quantified and considered for RUL prognosis.  

Finally, it requires at least several hundreds of iterations to get satisfactory diagnosis 

performance for the adjoint method-based damage diagnosis. Therefore, the efficiency of 

the physics problems solver will highly affect the diagnosis efficiency. More studies are 

required to solve the governing equations more efficiently, such as from frequency domain.  
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