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ABSTRACT

E-Mail header injection vulnerability is a class of vulnerability that can occur in web
applications that use user input to construct e-mail messages. E-Mail injection is
possible when the mailing script fails to check for the presence of e-mail headers in
user input (either form fields or URL parameters). The vulnerability exists in the
reference implementation of the built-in “mail” functionality in popular languages like
PHP, Java, Python, and Ruby. With the proper injection string, this vulnerability
can be exploited to inject additional headers and/or modify existing headers in an

e-mail message, allowing an attacker to completely alter the content of the e-mail.

This thesis develops a scalable mechanism to automatically detect E-Mail Header
Injection vulnerability and uses this mechanism to quantify the prevalence of E-
Mail Header Injection vulnerabilities on the Internet. Using a black-box testing ap-
proach, the system crawled 21,675,680 URLs to find URLs which contained form
fields. 6,794,917 such forms were found by the system, of which 1,132,157 forms con-
tained e-mail fields. The system used this data feed to discern the forms that could
be fuzzed with malicious payloads. Amongst the 934,016 forms tested, 52,724 forms
were found to be injectable with more malicious payloads. The system tested 46,156
of these and was able to find 496 vulnerable URLs across 222 domains, which proves

that the threat is widespread and deserves future research attention.
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Chapter 1

INTRODUCTION

The World Wide Web has single-handedly brought about a change in the way
we use computers. The ubiquitous nature of the Web has made it possible for the
general public to access it anywhere and on multiple devices like phones, laptops,
personal digital assistants, and even on TVs and cars. This has ushered in an era of
responsive web applications which depend on user input. While this rapid pace of
development has improved the speed of dissemination of information, it does come
at a cost. Attackers have an added incentive to break into user’s e-mail accounts
more than ever. E-Mail accounts are usually connected to almost all other online
accounts of a user, and e-mails continue to serve as the principal mode of official
communication on the web for most institutions. Thus, the impact an attacker can
have by having control over the e-mail communication sent by websites to users is of
an enormous magnitude.

Since attackers typically masquerade themselves as users of the system, if user
input is to be trusted, then developers need to have proper sanitization routines in
place. Many different injection attacks such as SQL injection or cross-site scripting
(XSS) [31] are possible due to improper sanitization of user input.

Our research focuses on a lesser known injection attack known as E-Mail Header
Injection. E-Mail Header Injection can be considered as the e-mail equivalent of
HTTP Header Injection vulnerability [20]. The vulnerability exists in the reference
implementation of the built-in “mail” functionality in popular languages like PHP,
Java, Python, and Ruby. With the proper injection string, this vulnerability can be

exploited to inject additional headers and/or modify existing headers in an e-mail



message — with the potential to alter the contents of the e-mail message — while
still appearing to be from a legitimate source.

E-Mail Header Injection attacks have the potential to allow an attacker to perform
e-mail spoofing, resulting in phishing attacks that can lead to identity theft. The
objective of our research is to study the prevalence of this vulnerability on the World
Wide Web, and identify whether further research is required in this area.

We performed an expansive crawl of the web, extracting forms with e-mail fields,
and injecting them with different payloads to infer the existence of E-Mail Header
Injection vulnerability. We then audited received e-mails to see if any of the injected
data was present. This allowed us to classify whether a particular URL was vulnerable
to the attack. The entire system works in a black-box manner, without looking at
the web application’s source code, and only analyzes the e-mails we receive based on

the injected payloads.

Structure of document This thesis document is divided logically into the follow-

ing sections:

e Chapter 2 discusses the background of E-Mail Header Injection, a brief history
of the vulnerability, and enumerates the languages and platforms affected by

this vulnerability.

e Chapter 3 discusses the System design, the architecture, and the components

of the system.

e Chapter 4 describes the experimental setup and sheds light on how we overcame

the issues and assumptions discussed in Chapter 3.

e Chapter 5 presents our findings and our analysis of the results.



e Chapter 6 continues the discussion of the results; the lessons learned over the
course of the project, limitations, and a suitable mitigation strategy to overcome

the vulnerability.
e Chapter 7 explores related work in the area.

e Chapter 8 concludes this thesis, with ideas to expand the research in this area.

We hope that our research sheds some light on this relatively less well-known vul-
nerability, and find out its prevalence on the World Wide Web. In summary, we make

the following contributions:

e A black-box approach to detecting the presence of E-Mail Header Injection

vulnerability in a web application.

e A detection and classification tool based on the above approach, which will
automatically detect such E-Mail Header Injection vulnerabilities in a web ap-

plication.

e A quantification of the presence of such vulnerabilities on the World Wide Web,
based on a crawl of the Web, including 21,675,680 URLs and 6,794,917 forms.



Chapter 2

E-MAIL HEADER INJECTION BACKGROUND

This chapter goes into the background of the problem at hand and gives a brief
history of E-Mail Header Injection. It then describes the languages affected by this
vulnerability and discusses the overall impact E-Mail Header Injection can have, and

the attacks that can result from this vulnerability.
2.1 Problem Background

E-Mail Header Injection belongs to a broad class of vulnerabilities known simply
as injection attacks. However, unlike its more popular siblings, SQL injection [5],
[15], [45], Cross-Site Scripting (XSS) [22], [25] or even HTTP Header Injection [23],
relatively little research is available on E-Mail Header Injection.

As with other vulnerabilities in this class, E-Mail Header Injection is caused due
to improper sanitization (or lack thereof) of user input. If the script that constructs
e-mails from user input fails to check for the presence of e-mail headers in the user
input, a malicious user — using a well-crafted payload — can control the headers
set for this particular e-mail. This can be leveraged to enable malicious attacks,

including, but not limited to, spoofing, phishing, etc.
2.2 History of E-Mail Injection

E-Mail Header Injection seems to have been first documented over a decade ago,
in a late 2004 article on phpsecure.info [50] accredited to user tobozo@phpsecure.info
describing how this vulnerability existed in the reference implementation of the “mail”

function in PHP, and how it can be exploited. More recently, a blog post by Damon
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Kohler [26] and an accompanying wiki article [13] describe the attack vector and
outline a few defense measures for the same.

As this vulnerability was initially found in the mail() function of PHP, E-Mail
Header Injection can be traced to as early as the beginning of the 2000’s, present in
the mail() implementation of PHP 4.0.

The vulnerability was also described briefly (less than a page) by Stuttard and
Pinto in their widely acclaimed book, “ The Web Application Hacker’s Handbook: Dis-
covering and Ezploiting Security Flaws” [47]. A concise timeline of the vulnerability
is presented in Table 2.1.

An example of the vulnerable code written in PHP is shown in Listing 2.1. This
code takes in user input from the PHP superglobal “$_REQUEST['email']”, and stores
it in the variable “$from”, which is later passed to the “mail” function to construct

and send the e-mail.

$from = $§ REQUEST| 'email']|;
$subject = "Hello Sai Pc";
$message = "We need you to reset your password";

$to = "schand31l@asu.edu";

example attack string to be injected as the value for
$ REQUEST|['email '] = 'sai@sai.com\nCC:spc@spc.com '
$retValue = mail($to, $subject, $message, "From: $from");

E—Mail gets sent to both schand31@asu.edu AND spc@spc.com

Listing 2.1: PHP program with e-mail header injection vulnerability.

When this code is given the malicious input “sai@sai.com\nBCC:spc@spc.com” as
the value of the “$_REQUEST['email']”, it generates the SMTP Headers shown in

Listing 2.2. It can be seen that the ‘CC’ (carbon copy) header that we injected




appears as part of the resulting SMTP message. This will make the e-mail get sent

to the e-mail address specified as part of the ‘CC’ as well.

Received: from mail.ourdomain.com ([62.121.130.29])
by sai.com (Postfix) with ESMTP id 5A08E52C0154
for <sai@sai.com>; Sun, 20 Mar 2016 13:56:58 —0700 (MST)
To: sai@sai.com
Subject: Hello Sai Pc
CC: spc@spc.com
Date: Sun, 20 Mar 2016 13:56:58 —0700 (MST)

We need you to reset your password

Listing 2.2: SMTP headers generated by a PHP mailing script.

2.3 Languages Affected

This section describes the popular languages which exhibit this type of vulnerabil-
ity. This section is not intended as a complete reference of vulnerable functions and
methods, but rather as a guide that specifies which parts of the language are known

to have the vulnerability.

PHP

PHP was one of the first languages found to have this vulnerability in its implemen-
tation of the mail() function. The early finding of this vulnerability can be attributed
in part to the success and popularity of the language for creating web pages. Accord-
ing to w3techs [52], PHP is used by 81.9% of all the websites in existence, thereby
creating the possibility of this vulnerability to be widespread.

PHP’s low barrier to entry and lack of developer education about the existence

of this vulnerability have contributed to the vulnerability continuing to exist in the




Year

Notes

Early PHP 4.0 is released, along with support for the mail() function,

2000’s which has no protection against E-Mail Header Injection.

Jul 2004 Next Major version of PHP - Version 5.0 releases

Dec 2004 First known article about the vulnerability surfaces on phpse-
cure.info

Oct 2007 The vulnerability makes its way into a text by Stuttard and Pinto.

Dec 2008 Blog post and accompanying wiki about the header injection attack
in detail with examples.

Apr 2009 Bug filed about email.header package to fix the issue on Python
Bug Tracker

Jan 2011 Bug fix for Python 3.1, Python 3.2, Python 2.7 for email.header
package, backport to older versions not available.

Sep 2011 The vulnerability is described with an example in the 2nd edition
of the text by Stuttard and Pinto.

Aug 2013 | Acunetix adds E-Mail Header Injection to the list of vulnerabilties
they detect, as part of their Enterprise Web Vulnerability Scanner
Software.

May 2014 | Security Advisory for JavaMail SMTP Header Injection via method
setSubject is written by Alexandre Herzog.

Dec 2015 PHP 7 releases, mail function still unpatched.

Table 2.1: A brief history of e-mail header injection.




language. After 13 further iterations of the language since the 4.0 release (the current
version is 7.1), the mail() function is yet to be fixed after 15 years. However, it is
specified in the PHP documentation [34] that the mail() function does not protect
against this vulnerability. A working code sample of the vulnerability, written in

PHP 5.6 (latest well-supported version), is shown in Listing 2.1.

Python

A bug was filed about the vulnerability in Python’s implementation of the email. header
library and its header parsing functions allowing newlines in early 2009, which was
followed up with a partial patch in early 2011.

Unfortunately, the bug fix was only for the email.header package, and thus is
still prevalent in other frequently used packages such as email.parser, where both
the classic Parser() and the newer FeedParser() exhibit the vulnerability even in the
latest versions - 2.7.11 and 3.5. The bug fix was also not backported to older versions
of Python. There is no mention of the vulnerability in the Python documentation for
either library. A working code sample of the vulnerability, written in Python 2.7.11,

is shown in Listing 2.3.

from email.parser import Parser

import cgi

form = cgi.FieldStorage ()

to = form["email"| # input() exhibits the same behavior
msg = """To: """ + to + """\n

From: <user@example.com>\n

Subject: Test message\n\n

nnn

Body would go here\n

f = FeedParser () # Parser.parsestr () also

f contains the same vulnerability



f.feed (msg)

headers = FeedParser.close (f)

# attack string => 'sai@sai.com\nBCC:spc@spc.com'

# for form|" email"]

# both to:sai@sai.com AND bcc:spc@spc.com
# are added to the headers

print 'To: %s' % headers|'to']

print 'BCC: %s' % headers|'becc']

Listing 2.3: Python program with e-mail header injection vulnerability.

Java

Java has a bug report about E-Mail Header Injection filed against its JavaMail API.
A detailed write-up by Alexandre Herzog [16] is complete with a proof of concept

program that exploits the API to inject headers.

Ruby

From our preliminary testing, Ruby’s built-in Net::SMTP library has this vulnerabil-
ity. This is not documented on the library’s homepage. A working code sample of the
vulnerability, written in Ruby 2.0.0 (the latest stable version at the time of writing),

is shown in Listing 2.4.

require 'sinatra'

require 'met/smtp'

get '/hello' do

email = params [: email |




message = """

From: Sai <schand31@asu.edu>
Subject: SMIP e—mail test
To: #{email}

This is a test e—mail message.

nmnn

# construct a post request with email set to attack string
attack string => sai@sai.com%0abcc:spc@spc.com%0aSubject: Hello

Net : :SMTP. start ( 'localhost ', 1025) do |smtp|

smtp.send message message, 'schand3l@asu.edu',

'"to@todomain . com'

end

# Headers get added, and Subject field changes to what we set.

end

Listing 2.4: Ruby program with e-mail header injection vulnerability.

2.4 Potential Impact

The impact of the vulnerability can be pretty far-reaching. Table 2.2 shows the
current server-side language usage statistics on the Web [52].
PHP, Java, Python, and Ruby (combined) account for over 85% ! of the websites

measured. The vulnerability can be exploited to do potentially any of the following:

e Phishing and Spoofing Attacks
Phishing [33] (a variation of spoofing [59]) refers to an attack where the recipient
of an e-mail is made to believe that the e-mail is a legitimate one. The e-mail

usually redirects them to a malicious website, which then steals their credentials.

LA website may use more than one server-side programming language
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Server Side Language % of Usage
PHP 81.9

ASP.NET 15.8

Java 3.1

Ruby 0.6

Perl 0.5

JavaScript 0.2

Python 0.2

Table 2.2: Language usage statistics compiled from w3techs [52].

E-Mail Header Injection gives attackers the ability to inject arbitrary headers
into an e-mail sent by a website and control the output of the e-mail. This adds
credibility to the generated e-mail, as it is sent right from the websites and
people are more ready to trust e-mail that is received from the website directly

and can thus result in more successful phishing attacks.

Spam Networks

Spam networks can use E-Mail Header Injection vulnerabilities on the ability
to send a large amount of e-mail from servers that are trusted. By adding
additional “cc” or “bcc” headers to the generated e-mail, attackers can easily

achieve this effect.

Due to the e-mails being from trusted domains, recipient e-mail clients might
not flag them as spam. If they do flag them as spam, then that can lead to the

website being blacklisted as a spam generator.

Information Extraction of legitimate users

E-Mails can contains sensitive data that is meant to be accessed only by the

11



user. Due to E-Mail Header Injection, an attacker can easily add a “bcc” header,
and send the e-mail to himself, thereby extracting important information. User
privacy can thus be compromised, and loss of private information can by itself

lead to other attacks.

e Denial of service by attacking the underlying mail server
Denial of service attacks (DoS), can also be aided by E-Mail Header Injec-
tion. The ability to send hundreds of thousands of e-mails by just injecting one
header field can result in overloading the mail server, and cause crashes and/or

instability.

It is evident that E-Mail Header Injection is a critical vulnerability that web

applications must address.
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Chapter 3

SYSTEM DESIGN

This chapter discusses the System design, and explains the architecture and the com-
ponents of the System in detail. It then proceeds to enumerate the issues faced and

the assumptions made during the building of the system.
3.1 Our Approach to measure prevalence of E-Mail Header Injection

We took a black-box approach to measure the prevalence of E-Mail Header Injec-
tion vulnerability on the World Wide Web. Black-box testing [53] is a way to examine
the functionality of an application without looking at its source code.

As we did not have the source code for each of these websites, black-box testing
was the ideal approach for this project. Black-box testing allows our system to detect
E-Mail Header Injection vulnerabilities in any server-side language (not simply those
we identified in Section 2.3). A high level logical overview of our system is presented
in Figure 3.1. The components shown in Figure 3.1 can be more broadly categorized

into different modules, as discussed in the following section.
3.2 System Architecture

The black-box testing system can be divided broadly into two modules; Data

Gathering and Payload Injection.

1. Data Gathering
The Data Gathering module (shown in Figure 3.2) is primarily responsible for

the activities listed below.

13



Overall System Architecture

Crawler
Form Parser

E-Mail Field
Checker
E-Mail
Analyzer

Figure 3.1: Overall system architecture - logical overview.

e Interface with the Crawler (Section 3.3.1) and receive the URLs.

e Parse the HTML for the corresponding URL and store the relevant form
data (Section 3.3.2).

e Check for the presence of forms that allow the user to send/receive e-mail,

and store references to these forms (Section 3.3.3).

2. Payload Injection
The Payload Injection module (shown in Figure 3.3) is primarily responsible for

the activities listed below.
e Retrieve the forms that allow users of a website to send /receive e-mail and
reconstruct these forms (Section 3.3.4).

e Inject these forms with benign data (non-malicious payloads) and generate

an HTTP request to the corresponding URL (Section 3.3.5).

e Analyze the e-mails, extracting the header fields and checking for the pres-

ence of the injected payloads (Section 3.3.6).

14



Data Gathering - Crawler System

Crawler
Crawler Feed —
! ~ §
i Forms found
Form Parser | URLs with Forms | -
(Running on Celery Queues) Database J Forms with E-Mail fields Email Field Checker
—

Figure 3.2: System architecture - crawler & form parser.

e Inject the forms that sent us e-mails with malicious payloads, and generate
an HTTP request to the corresponding URL to check if E-Mail Header

Injection vulnerability exists in that form (Section 3.3.5).

The functionality of each component is discussed further in the ‘Components’
section (Section 3.3). The Payload Injection pipeline is not a linear, but cyclic

process, as we inject different payloads and analyze the received e-mails.

3.3 System Components

The Data Gathering module and Payload Injection module are made up of a
number of smaller components. This section describes in detail the functionality of

each of the components.
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Payload Injection - Fuzzer System

E-Mail Form Retriever [Reconstructed forms Fuzzer ]
(reconstructs the form) (Non-Malicious Payload) T~

~~_ HTTP Request with Payload

~—_

Mails with injected

HTTP Request T~
E-Mail Analyzer | payloads

URL's that sent

- Malicious

Fuzzer | Payload

(Malicious External Website
Payload)

back E-Mails

(Checks for injected payload)

Database

- ~E-Mail from website

Postfix
Mail
Server

Figure 3.3: System architecture - fuzzer & e-mail analyzer.

3.3.1 Crawler

We used an open-source Apache Nutch based Crawler. The Crawler provides us

with a continuous feed of URLs and the HTML contained in those pages. This feed

is sent to our Form Parser over a Celery Queue.

3.3.2 Form Parser

The actual pipeline begins at the Form Parser. This module is responsible for

parsing the HTML and retrieving data about the forms on the page, including the
following;:

e Form attributes, such as method and action. These dictate where we send the

HTTP request and what kind of request it is (GET or POST).
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e Data about the input fields, such as their attributes, names, and default values.
The default values are essential for fields like <input type—"hidden"> as these

fields are usually used to check for the submission of forms by bots.

e Presence of the <base> element in the HTML, as this affects the final URL to

which the form is to be submitted.

e Headers associated with the page, such as referrer. Once again, these were

required to avoid the website from ignoring our system as a bot.

The Form Parser stores all this data in our database, so as to allow us to reconstruct

the forms later for fuzzing, as required.
3.3.3 E-Mail Field Checker

The E-Mail Field Checker script is the final stage in the Data Gathering pipeline.
It receives the output of the previous stage—form data from the queue—and checks
for the presence of e-mail fields in those forms. If any e-mail fields are found, it
stores references to these forms in a separate table. This separates the forms that are
potentially vulnerable from the forms that are not.

The E-Mail Field Checker searches for the words ‘e-mail’, ‘mail’ or ‘email’ within
the form, instead of an explicit e-mail field (e.g., <input type="email"> ). This is by
design, taking into account a very common design pattern used by web developers,
where they may have a text field with an “id” or “name” set to ‘email’, instead of an
actual e-mail field, for purposes of backward compatibility with older browsers.

Compared to searching for explicit e-mail fields, by searching for the presence
of the words ‘e-mail’, ‘mail’ or ‘email’ in the form, we are assured very few false
negatives. This is because our system is bound to find e-mail fields with their “type”,

“name”, or “id” set to one of these words. The system is also substantially faster as we

17



do not have to parse the individual form fields at this point in the pipeline. However,
despite the advantages, this might also lead to a false positive rate. We discuss this
possibility in detail in Section 3.4 - Design Issues.

The output of this stage is stored in the database for persistence and acts as the

input to the ‘Payload Injection’ pipeline.
3.3.4 E-Mail Form Retriever

The E-Mail Form Retriever is the first stage in the Payload Injection Pipeline. It

has the following important functions:

e Retrieve the newly inserted forms in the “email_forms” table, checking to en-

sure no duplication occurs before the fuzzing stage.

e Reconstruct each form, using the data stored in the “form” table, complete with

input fields and their values.

e Construct the URL for the ‘action’ attribute of the form so that we can send

the HTTP request to the correct URL.
3.3.5 Fuzzer

The Fuzzer is the heart of the system and is the only component that interacts
directly with the external websites. The Fuzzer is split into smaller modules, each
of which is responsible for a particular type of fuzzing. We inject payloads in two
different stages, to improve the efficiency, and reduce the total number of HTTP
requests we generate. This is because making HTTP requests is an expensive process
[27], and can be a cause of bottlenecks in a Crawler-Fuzzer system [46]. The two

different types of payloads we use for fuzzing are explained below.
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Non-Malicious Payload The regular or non-malicious payload is a straight for-
ward e-mail address of the format — ‘reguser(xxxx)@example.com’, where ‘xxxx’ is
replaced by our internal “form_id”, to create a one-to-one mapping of the payloads
to the forms, and ‘example.com’ is replaced by the required domain. In our case,
this domain was ‘wackopicko.com’. This non-malicious payload allows us to check
whether we can inject data into a form and whether we can overcome the ‘anti-bot’

measures on the given website, without attempting to fuzz the website.

Malicious Payload In the malicious payload scenario, we inject the fields with the
“bee” (blind carbon copy) element. If the vulnerability is present, this will cause the
server to send a copy of the e-mail to the e-mail address we added as part of the “bcc”
field.

We consider a special case: the addition of a “x-check:in” header field to the
payloads. This is due to Python’s exhibited behavior when attaching headers. Instead
of overwriting a header if it is already present, it ignores duplicate headers. So, in
case the “bec” field is already present as part of the headers, our injected “becc” header
would be ignored. To overcome this, we need to inject a new header that is not likely
to be generated by the web application. Hence, we inject our own “x-check:in”
header to ensure we can get results if the injection was successful.

The malicious payloads consist of 4 different payloads. Each of these payloads is

crafted for a particular use case. The four payloads are:

1. nuser(xxxx)@wackopicko.com\nbcc:maluser (xxxx)@wackopicko.com - This is the most

minimal payload, it injects a ‘newline’ character followed by the “bcc” field.

2. nuser(xxxx)@wackopicko.com\r\nbcc:maluser (xxxx)@wackopicko.com - This payload is
added for purposes of cross-platform fuzzing: ‘\r\n’ is the ‘Carriage Return -

New Line (CRLF)’ used on Windows systems.
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3. nuser(xxxx)@wackopicko.com'\nbcc:maluser (xxxx) @wackopicko.com\nx—check:in - As dis-
cussed above, the addition of the “x-check:in” header is to inject Python based

websites.

4. nuser(xxxx)@wackopicko.comr\nbcc:maluser (xxxx)@wackopicko.com'\r\nx—check:in - Same
as the previous payload, but containing the additional ‘\r’ for Windows com-

patibility.

The ‘xxxx’ in all of the payloads is replaced by our internal “form_id”, so as to create
a one-to-one mapping of the payloads to the forms. The coverage provided by each

payload is shown in Table 3.1.

Payload | Languages covered | Platforms covered
1 PHP, Java, Ruby, etc. Unix
2 PHP, Java, Ruby, etc. Windows
3 Python Unix
4 Python Windows

Table 3.1: Payload coverage, each payload covers a different platform/language.

Along with the payload, the Fuzzer also injects data into the other fields of the
form. This data must pass validation constraints on the individual input fields e.g.,
for a name field, numbers might not be allowed. It is essential that the data we inject
into the input fields adhere to the constraints. Our Fuzzer does this by making use of
a ‘Data Dictionary’ which has predefined ‘keys’ and ‘values’ for standard input fields
such as name, date, username, password, text, and submit. The default values for

these are generated on-the-fly for each form, based on generally followed guidelines
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for such fields. For example, password fields should consist of at least one uppercase
letter, one lowercase letter, and a special character.

Once the data (including the payload) for the form is ready, the Fuzzer constructs
the appropriate HTTP request (GET or POST) and sends the HTTP request to the

URL that was generated by the E-Mail Form Retriever (Section 3.3.4).
3.3.6 E-Mail Analyzer

The E-Mail Analyzer checks for the presence of injected data in the received e-
mails. This module works on the e-mails received and stored by our Postfix server,

and depending on the user who received the e-mail, it performs different functions.

Analyzing regular e-mail ‘Regular e-mail’ refers to the e-mails received by the
reguser (xxxx)@wackopicko.com — where ‘xxxx’ is our internal “form_id” — that were
sent due to injecting the ‘regular or non-malicious’ payload (discussed in Section 3.3.5).
The objective of the analysis on this e-mail is identify if the input fields that we in-
jected with data appear on the resulting e-mail, and if so, which fields appear where.

To find this, we read through each received e-mail, and check whether any of the
fields we injected with data appear as part of either the headers or the body of the
e-mail. If they do, we add them to the list of fields that can potentially result in an
E-Mail Header Injection for the given e-mail. we then pass on this information back
to the Fuzzer pipeline, along with the “form_id”, so that the Fuzzer can now inject

the malicious payloads into the same form.

Analyzing e-mail with payloads The ‘e-mails with payloads’ refer to e-mails
received by either the nuser(xxxx)@wackopicko.com or maluser(xxxx)@wackopicko.com ac-

counts. These e-mails were received due to injecting the malicious payloads that were
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discussed in Section 3.3.5. Analysis of these e-mails is considerably simpler than that
of the regular e-mails. This is due to the fact that this involves lesser processing of

the contents of the e-mail compared to the previous section.

Detecting injected bcec headers As discussed in the payloads section (3.3.5),
the payloads were crafted in such a way that the e-mails received by ‘maluser’ account
directly indicate the presence of the injected “bcc” field. Thus, we simply parse the

e-mails and store them in the database.

Detecting injected x-check headers E-Mails not received by the ‘maluser’
account but by the ‘nuser’ account constitute a special category of e-mails. These

e-mails could have been generated due to two reasons:

1. The websites performed some sanitization routines and stripped out the “bcc”
part of the payload, thereby sending e-mails only to the ‘nuser’ account. These
e-mails then act as proof that the vulnerability was not found on the given

website.

2. A more conducive scenario is when the “bcc” header was ignored for some
reason, e.g. Python’s default behavior when it encounters duplicate headers. In
this case, we check whether the e-mail contains the custom header “x-check”.
If it does, then this is a successful exploit of the vulnerability, and we store it

in the database.

3.3.7 Database

We collect and store as much data as possible at each stage of the pipeline. This

is due to the two following reasons:

1. The data is used to validate our findings.
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2. The data collected can be used for other research projects in this area.

Each table in our database is listed in Table 3.2 along with the data it is designed to

hold. A schema of the database is shown in Figure 3.4.

j received_emails v j email_forms v j params v
id INT(11) id INT(10) id INT(10)
form_id INT(11) 1.1 ‘ form_id INT(10) element_type VARCHAR(20)
fields_found VARCHAR(1024) || v type VARCHAR(20)
v PRIMARY ‘ name VARCHAR(50)
PRIMARY form_id value VARCHAR(50)
form_id o I form_id INT(10)
4 v
] fuzzed forms v | form v PRIMARY |
-—
id INT(11) id INT(10)
form_id INT(10) url VARCHAR(250)
url_fuzzed VARCHAR(500) NN attributes VARCHAR(250)
payload_for_fuzzing VARCHAR(500) | | & request_id INT(10) _] requests v
input_data VARCHAR(1024) xpath VARCHAR(2048) 1.1 ’ id INT(10)
time_of_fuzzing TIMESTAMP method VARCHAR(5) url VARCHAR(250)
v action VARCHAR(250) v
PRIMARY | absolute_action VARCHAR(250) |PRIMARY ‘
params VARCHAR(250)
”_I g
= PRIMARY
"] successful_attack_emails v request_id "] blacklisted_urls v
id INT(11) id INT(11)
form_id INT(11) ‘ blacklist_url VARCHAR(760)
recipient_email VARCHAR(512) v
v PRIMARY
PRIMARY blacklist_url ‘

Figure 3.4: Database schema.

3.4 Design Issues

This section will describe the issues we faced with the design decisions we made,

and how we did our best to mitigate them, and their effect on the system.

e False Positive rate for the E-Mail Field Checker
As discussed in Section 3.3.3, we only search for the words ‘email’; ‘mail’ or ‘e-

mail’ (case insensitive) inside the forms to detect the presence of e-mail fields,
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S.No Table Name Purpose

1 form To hold data about all the forms that we re-
ceive from the Form Parser.

2 email forms Holds the output of the E-Mail Field
Checker, i.e. references to the ID’s of the
forms that contain e-mail fields.

3 params Holds the actual input fields of the forms,
including their default values.

4 fuzzed forms Holds the data of the forms that were in-
jected, including the payload used to inject
and the URL to which the HTTP Request
was delivered.

D received _emails Contains data about the e-mails received for
the regular payload, including which injected
data fields were present in the e-mail.

6 successful _attack emails Contains data about the e-mails received for
the malicious payload. This contains the end
result of the payload injection pipeline.

7 requests Contains data about the requests generated
for each URL.

8 blacklisted urls Used for skipping certain websites that may

blacklist our Crawler-Fuzzer.

Table 3.2: The different tables in our database.
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instead of searching for an <input type = email> . This might result in a false

positive in certain forms, like the one shown in Listing. 3.1.

<form method="post">

E-Mail us if you have any questions!!
<input type="text" name="query"><br>
<input type="submit" value="Search">

</ form>

Listing 3.1: E-Mail field checker - false positives, the system

incorrectly classifies this as an e-mail form.

The word ‘E-Mail’ on Line 2 will result in our system classifying this form as
a potential e-mail form, while it clearly is not. However, as we will see, this
is not really a significant issue, as despite being added to the “email_forms”
table, this form will never be injected in the Fuzzer due to the absence of the
appropriate input field in the form. We chose to go with this design, as it allows
us to detect almost every form that provides the capability to send or receive

e-mail, while keeping the complexity low.

Parallelism for the system

Every component in the pipeline benefits hugely from parallel processing of
the data. However, Python’s GIL (Global Interpreter Lock) does not allow the
running of multiple native threads concurrently. To overcome this, we used a
Celery task queue (discussed in Section 4.4), which allowed a level of parallelism
that Python does not provide by default. Even though this makes the system
faster than a single-threaded approach, it still leaves room for improvement in
terms of performance. Despite the speed drop that results from lack of full
parallelism, we chose to go with Python, for the raw power it provides, its text

processing capabilities, PCRE (Perl Compatible Regular Expressions) compat-
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ibility, and the numerous libraries available for parsing HTML, interfacing with

databases and generating HTTP requests.

e URL Construction
The multiple ways in which a URL is specified (i.e. Relative and Absolute URLs)
complicates the construction of the URL from the ‘action’ attribute of the form.
As an example, the following URLs are all equivalent (as parsed by a browser,

assuming we are in the path ‘www.website.com’):

— action=mail.php
— action=./mail.php
— action=nhttp://website.com /mail.php

— action=www.website.com /mail.php

Add to this, if the form is a self-referencing form !, and is present in mail.php,

the following are equivalent to the above URLs as well:

— action=""

— action=+#

— ‘action’ is completely omitted

Also, relative URLs pose another problem. If the URL of the form page ends
with ‘/” and the ‘action’ specifies a path starting with ¢/’ (illustrated in Listing
3.2), we would need to strip one of the two slashes. This increases the overall
complexity of our URL generator, as we have to account for all these possibilities

and edge-cases.

LA self-referencing form is one which submits the form data to itself. It includes logic to both

display the form and process it. It is a very common feature in PHP-based scripts.
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Current URL = www. website .com/

<form action=/mail.php>

Listing 3.2: URL construction, the resulting url needs to be

www.website.com/mail.php and not www.website.com//mail.php

As using a browser engine to reconstruct these URLs and connecting it to the
fuzzer pipeline would have added unnecessary bulk to the project, we chose
to go with a best-effort approach to this problem, where our system covers all
these possibilities with a lightweight URL Generator, however, we cannot know

for certain whether this works for other unforeseen ways of specifying a URL.

Black-box Testing

The approach that we have selected — Black-box testing — is highly beneficial
as explained in Section 3.1. However, it also has a drawback in that we cannot
verify whether the reported vulnerability exists in the source code or is a feature
of the website (e.g., the website allows users to send bulk e-mail, adding as many

“cc” or “bec” headers). We have to manually e-mail the developers to get this

feedback.

Mapping responses to requests

As we are generating multiple payloads for each form, and the received e-mail
may not contain the name of the domain from which we received the e-mail, it
is difficult to map the response e-mails to the right requests. We instead use

the “form_id” as part of the payload to map responses to requests accurately.

Bot Blockers
Because our system is fully automated, it is also susceptible to being stopped

by ‘bot-blockers’ i.e. mechanisms built-in to a website to prevent automated
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crawls or form submissions. Measures like CAPTCHA (Completely Automated
Public Turing test to tell Computers and Humans Apart) and hidden form fields

are often used to detect bots [37], [51].

We have made sure that we do not affect hidden fields in the form, however, we
do not have an anti-CAPTCHA functionality built into our system, and thus

our system will not test such websites.

e Handling Malformed HTML
The parser that we use for HI'ML parsing — Beautiful Soup — does not try to
parse malformed HTML, and throws an exception on encountering malformed
content. Thus, we have designed the system to exit gracefully on such occasions.
A side-effect of this is that our system is unable to parse websites which contain

bad markup 2.

e Crawling WordPress and other CMS-based websites
In contrast to bot blockers that try to prevent the automated systems from
attacking them, WordPress and other CMS based websites use a blacklisting
approach to prevent bot attacks. Unfortunately, because we generate multiple
requests to each website, this results in our IPs getting blacklisted. To overcome

this, we did two things:

1. Used an IP range of 60 different IP addresses.

2. Used a blacklist of our own to prevent our Fuzzer from fuzzing websites

that are known to blacklist automated crawlers.

2We do not have any data about whether bad markup indicates an overall lower quality of the
website, and thus cannot comment on whether such websites are more likely to have vulnerabilities,

although the author strongly suspects that that might be the case.
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3.5 Assumptions

We made certain assumptions while building the system. This section describes

the assumptions and explores to what extent these hold true:

1. Crawler is not blocked by firewalls
This is a requisite for our system to work. If the Crawler is blocked for any
reason, we do not get the data feed for our system, and without this input, it

is almost impossible to set our system up.

2. The Crawler feed is an ideal representation of the World Wide Web

This is a reasonable expectation, albeit an unrealistic one.

It is unrealistic because Crawlers work on the concept of proximity. They detect
for the presence of In-Links and Out-Links from a particular URL, and hence
the returned URLSs are usually related to each other (at least the ones that are

returned adjacent to each other).

However, this assumption is reasonable due to the ‘Law of averages’ [54], the
‘Law of big numbers’ [55], and the concept of ‘Regression to the mean’ [58].
Simply stated, a crawl of this large magnitude should give us a very distributed
sample of the overall Web, eventually converging to the average of all websites

in existence.

3. Injection of “bcc” indicates the existence of E-Mail Header Injection
Vulnerability
We assume that the ability to inject a “bcc” header field is proof that the E-
Mail Header Injection vulnerability exists in the application. We do not inject
any additional payloads that can modify the subject, message body, etc. as

this analysis is designed to be as benign as possible. We believe that this is a
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reasonable assumption, as altering e-mail headers is a goal of exploiting E-Mail

Header Injection vulnerability.

That concludes our discussion about the design of the system. To recap, we
discussed our approach, the system architecture and how the components fit into our
architecture. We also discussed the issues faced, and the assumptions that we made

while building the system.
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Chapter 4

EVALUATION

This chapter describes the experimental setup for our project including the servers
used, the software and the platforms involved, the languages used, and the task queue
system that was used for parallelism. We follow this up with our evaluation of the

system, with a test suite, and proof of concept examples.

4.1 System Configuration

We used two systems for the project, and their configurations are as follows:

e Dell PowerEdge T110 II Server

CPU: Intel(R) Xeon(R) CPU E3-1220 V2 @ 3.10GHz
Cache size : 8192 KB

No. of Cores : 4

Total Memory (RAM) : 16 GB

Disk Space : 2 TB

e MacBook Pro

CPU: Intel Core i7 @ 2.8 GHz
Cache size : 6144 KB

No. of Cores : 4

Total Memory (RAM) : 16 GB

Disk Space : 500 GB
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4.2 Platforms and Software

We enumerate the platforms and the software used for our project in Table 4.1.

Operating system Ubuntu 14.04
Server Apache - 2.4.17
Database MariaDB - 10.1.9
Mail Server Postfix - 2.11.0
Other software used | Mailcatcher, PostMan, HTTPRequester, RabbitMQ

Table 4.1: Platforms and software used for our project.

4.3 Languages Used

We used Python 2 to build the system. The following factors influenced our
choice of language: text processing capabilities, PCRE (Perl Compatible Regular
Expressions) compatibility, and the numerous libraries for HTML Parsing, HTTP
request generation, mail processing etc. We made use of the following major libraries

(shown in Table 4.2) for our system.

Library Functionality

Requests HTTP Request Generation

Beautiful Soup HTML Parsing
Mailbox Mail Processing
Celery Task Queues

Table 4.2: Libraries that we used and their functions.

Despite the many benefits that Python 2 provides, we had certain issues with the

language — discussed in Section 3.4 — such as Python’s GIL (Global Interpreter
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Lock) which does not allow the running of multiple native threads concurrently. The
following section (Section 4.4) describes in detail the task queue system (Celery) that

we used to overcome this limitation of Python.
4.4 Celery Queues

We used a Celery task queue running on RabbitMQ to overcome the GIL. Ac-

cording to Celery Project Homepage [7]:

“Celery is an asynchronous task queue/job queue based on distributed

message passing.”

Simply put, Celery allows us to process multiple tasks in parallel by making use
of what is known as a task queue. Celery instantiates multiple workers that listen
to these queues and processes each task individually. This simulates pseudo-parallel
processing to a certain degree, by allowing us to run multiple instances of the same
program. It does this by using a message broker called RabbitMQ. According to
RabbitMQ’s Wikipedia page [57],

“RabbitMQ is an open source message broker software that implements

the Advanced Message Queuing Protocol (AMQP)”

RabbitMQ facilitates the storage and transport of messages on queuing systems. It
is also cross-platform and open source, providing us with clients and servers for many
different languages, thereby being the ideal fit for Celery. Thus, by using Celery
and RabbitMQ together, we were able to achieve a certain degree of parallelism that

would not have been possible with traditional Python.
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4.5 Test Suite

The test plan for our system includes a set of unit tests for each module in the
pipeline. Further, we have unit tests for every individual function in the modules.
The functions are tested separately, using mocks and stubs, so as to ensure isolated
testing. This section outlines the test plan in the following manner. We list the

modules that are tested, and then describe what each unit test tests for.

e Form Parser
— test_url exception - Tests whether the system handles incorrect or mal-
formed URLs properly and terminates cleanly.

— test_db_connection - Tests whether the database connection is set up and

queries can be executed.
— test_form parser - Tests for the proper parsing of HTML, and if the system
exits cleanly in case parsing is not possible.

o F-Mail Field Checker

— test_check for email - Tests whether the system finds e-mail fields in the
form when the words ‘e-mail’ or ‘email” are present in the form (case in-

sensitive).

— test_check for no_ email - Tests whether the system finds no e-mail fields
when the words ‘e-mail’ or ‘email’ are not present in the form (case insen-

sitive).
o F-Mail Form Retriever

— test_reconstruct form - Tests for the proper reconstruction of the form

stored in the database.

34



— test_construct_url - Tests whether the URL for submission was constructed
properly, includes checks for relative URLSs, absolute URLs, and presence

of “base' tags.

— test_email form retriever already fuzzed - Tests for duplicate fuzz requests,

and whether the system rejects these requests.

— test_email form retriever calls fuzzer for new fuzz - Tests whether the E-
Mail Form Retriever calls the Fuzzer module with the proper data when

it gets a new fuzz request.

e Fuzzer

— test_send get request - Tests for the proper handling of GET requests.
— test_send post request - Tests for the proper handling of POST requests.

— test_correct fuzzer data - Tests whether the payload generated for the
given form data is correct and consistent. Also tests whether the pay-

load was part of the resulting HT'TP request.

— test_incorrect fuzzer data - Tests for incorrect form data, and ensures that
a payload does not end up in the wrong input field in the resulting HT'TP

request.

e E-Mail Analyzer

— test_load mail - Tests whether the e-mails are loaded and parsed correctly

by the E-Mail Analyzer.

— test_parse headers - Tests for the proper parsing of headers present in the

e-mail.
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— test_analyze regular mail - Tests whether the E-Mail Analyzer parses the
regular e-mail properly and extracts the injected input fields that are

present in the e-mail.

— test_analyze malicious_mail - Tests whether the E-Mail Analyzer parses the
e-mails received due to the malicious payloads properly, is able to extract
the “bcc” headers, and is able to link them to the proper fuzzing request

and payload.

— test analyze x check header - Tests whether the “x-check” header is read

by the E-Mail Analyzer.

The unit tests were written using Python’s built-in ‘Unittest’ module, mocking was
done using the built-in ‘MagicMock” module. The tests allow us to be reasonably

certain that our system works as expected.
4.6 Proof of Concept Attacks

The previous section (Section 4.5) discussed in detail how we verified that our sys-
tem functions according to our expectations. This section describes how we validated
our expectations. In order to do this, we constructed three sets of web applications
in PHP, Python, and Ruby. Each of these applications was a simple web app that
accepted user input to construct and send an e-mail.

The front-end for each of the three applications is shown in Listing 4.1. The
server-side code for the three languages are shown in Listings 2.1, 2.3, and 2.4.

We tested for the headers being injected in real-time by running an instance of
MailCatcher, set to listen on all SMTP messages. A sample screenshot of a fuzzed
request for the Ruby backend (generated in PostMan) is shown in Figure 4.1. The

e-mail sent due to injecting this payload (as captured by MailCatcher) is shown in
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Figure 4.2. It can be seen that the headers have been added to the resulting e-mail,
and we have successfully managed to overwrite the “Subject” field with our message,
‘hello’.

A similar injection example for PHP is shown in Figure 4.3 and the corresponding
e-mail caught by MailCatcher is shown in Figure 4.4. The astute reader might have
noticed that in the given examples we have used ‘%0a’ to separate the headers, while
in Section 3.3.5, we had used ‘\n’. This is due to URL encoding [3], wherein special
characters in th URL are ‘encoded’ or ‘escaped’ with their ASCII equivalent. The
reason why we do not have to do this with the payloads our system injects is due to
the fact that the Python Requests library that we use to generate the HT'TP requests

automatically does this encoding for us.

<!doctype html>

<html lang="en">

<head>

<meta charset="utf—-8">

<meta name="author" content="Sai Pc">

<title>Mock Email</title>

</head>

<body>

<form action="{Replace with path to back—end}" method="post">
<input type="text" placeholder="Email" name="email" id="e—mail"><br>
<textarea name="msg" rows="20" cols="120"></textarea>

<input type="submit" value="Email Me!">

</form>

</body>

</html>

Listing 4.1: HTML page for showcasing e-mail header injection, a simple front-end

for our examples.
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http://localhost:808... No environ

GET v http://localhost:8080/hello?email i i.com%0abcc com%0ax-check:in%0aSubject:Hello Params Send ~

Authorization Headers (1) Pre-request script Tests
No Auth ~
Body Cookies Headers(7) Tests(0/0) Status 2000K Time 39ms

Raw Preview HTML ~ =

i 1~ khtml>

2~ <head>

5 <title>E-Mail Injection PoC</title>

4 </head>

5~ <body>

6~ <p>

7 I just wanted to say

8~ <em style="color: green; font-size: 2em;">

9 From: Private Person

10 ~ <me@fromdomain.com>
11 Subject: SMIP e-mail test

12 To: sai@sai.com

13 Dbcc:sss@sss.com

14 x-check:in

15 Subject:Hello

16

17

18 This is a test e-mail message.
19 , sai@sai.com

20 bcc:sss@sss.com
21 x-check:in
22 Subject:Hello
823 </em>.

25 </p>

Figure 4.1: Fuzzing a request for the Ruby backend, the payload can be seen inside

the address bar.

© MailCatcher

From To Subject Received
<me@fromdomain.com> <to@asu.com> Hello Sunday, 6 Mar 2016 7:16:07 PM

Received Sunday, 6 Mar 2016 7:16:07 PM
From <me@fromdomain.com>
To <to@asu.com>
Subject Hello

Plain Text ~ Source

From: Private Person <me@fromdomain.com>
Subject: SMTP e-mail test

To: sai€sai.com

bee:sssésss.com

x-check:in

Subject:Hello

This is a test e-mail message.

Figure 4.2: E-Mail header injection proof of concept - Ruby, we can see that

multiple headers (bce, x-check, subject) have been inserted into the resulting e-mail.
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http://localhost:633... No environr

GET v http://localhost:63342/htdocs/TestProject/MailTest.php?emai i i.com%0abcc com%0ax-check:in% Params Send ~

Authorization Headers (1) Pre-request script Tests
No Auth v
Body Cookies Headers(4) Tests(0/0) Status 2000K Time 1251ms

Raw Preview HTML v =

i 1 sai@sai.com

2 Dbcc:sss@sss.com

3 x-check:in

4 Subject:HelloKey: email and Value: saig@sai.com

5 bcc:sss@sss.com

6 x-check:in

7 Subject:Hello

8

9 <br>

10 Another email herel this was returned

Figure 4.3: Fuzzing a request for the PHP backend, the payload can be seen inside

the address bar on top.

© MailCatcher

From To Subject
<schandramouli@Sai-Pc.local> <schand31@asu.edu>, <sss@sss.com> Hello
<me@fromdomain.com> <to@asu.com> Hello

Received Sunday, 6 Mar 2016 9:40:37 PM
From <schandramouli@Sai-Pc.local>
To <schand31@asu.edu>, <sss@sss.com>
Subject Hello

Plain Text ' Source

Received: by Sai-Pc.local (Postfix, from userid 501)
id 50DD62C1D250; Sun, 6 Mar 2016 21:40:36 -0700 (MST)
To: schand3l€asu.edu
Subject: Hello Sai Pc
X-PHP-Originating-Script: 501:MailTest.php
From: sai@sai.com
x-check:in
Subject:Hello
Message-Id: <20160307044037.50DD62C1D250@Sai-Pc.local>
Date: Sun, 6 Mar 2016 21:40:36 -0700 (MST)

We need you to reset your password, in the following page: http://localhost:63342/htdocs/saipcHackerPage/resetpassword.php

Figure 4.4: E-Mail header injection proof of concept - PHP, we can see that

multiple headers (bce, x-check, subject) have been inserted into the resulting e-mail.
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Chapter 5

DATA ANALYSIS AND RESULTS

This chapter serves to present our findings: the data that we gathered from our crawl,

the data generated due to the fuzzing attempts and our analysis on this data.

5.1 Collected Data

From our extensive crawl of the web, we were able to gather the data shown
in Table 5.1. The following paragraphs describe in detail what each kind of data

represents, and what they signify.

S.No Type of Data Quantity
1 URLs crawled 21,675,680
2 Total forms found 6,794,917

3 Forms with e-mail fields | 1,132,157

Table 5.1: The data collected for our project.

URL’s crawled This represents the total number of unique URLs that we crawled
on the World Wide Web. It is to be noted that this quantity refers to unique URL’s,

and not websites.

Total forms found This represents the total number of forms that were found
on the URL’s crawled. We found a total of 6,794,917 forms from 1,019,921 unique

domains.
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Forms with e-mail fields

found to contain e-mail fields. We found 1,132,157 such forms from 197,570 unique

domains.

We performed our fuzzing attempts on the gathered data with both the regular
payload and malicious payload. Table 5.2 shows the quantity of e-mails that we

received for each payload. We explain in detail what each piece of data shown in the

5.2 Fuzzed Data

table represents, in the following sections.

This represents the total number of forms that were

S.No | Type of fuzzing | Forms fuzzed | E-Mails received
1 Regular payload 934,016 52,724
2 Malicious payload 46,156 496

Table 5.2: The data that we fuzzed and the e-mails that we received.

E-Mail received from forms

gorized into two categories:

1. E-Mails due to regular payload
This represents the total number of websites that sent e-mails to us.

indicates that we were able to successfully submit the forms on these sites.

2. E-Mails due to malicious payload

Once we receive an e-mail from a website due to the regular payload, we go back
and fuzz those forms with more malicious payloads. This field, in essence, rep-

resents the total number of unique URLs that contain E-Mail Header Injection

vulnerability.
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5.3 Our Analysis of the received e-mail data

During our analysis of the received e-mails, we found that the e-mails that we

received belonged to one of three broad categories:

1. E-Mails with the “bcc” header successfully injected
This form of injection was our initial objective and we found 304 such e-mails
in our received e-mails. This indicates that the websites that sent out these
e-mails are vulnerable to e-mail header injection, where we could inject and

manipulate any header.

2. E-Mails with the “To” header successfully injected
We discovered an unintended vulnerability which we would like to christen
“To header injection”. These injections reflect the ability to inject any num-
ber of e-mail addresses into the “To” field while being unable to inject any other
header into the e-mails. We attribute this behavior to inconsistent sanitization
by the application. The vulnerability is further aided by the leniency shown by
mail servers, wherein they parsed malformed e-mail addresses and delivered it
to the right mail server, and on the receiving end, the mail was delivered to the

right mailbox.

While not allowing us complete control over the e-mails sent, “To” header in-
jection makes it possible to append any number of e-mail addresses, thereby
enabling us to leak information, and/or perform DoS (Denial of Service) at-

tacks.

3. E-Mails with the “x-check” header successfully injected
The third category of e-mails received were e-mails with the “x-check” header

injected. As discussed in Section 3.3.6, these let us differentiate between un-
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successful attempts and successful attempts by injecting the additional header,

allowing us to check whether headers other than the “bcc” header can be in-

jected into the generated e-mail.

We list each category and the number of e-mails received by the category in Table 5.3.

S.No Type of Injection No. of e-mails
received
1 E-Mail Header Injections with ‘bee” header 304
2 E-Mail Header Injections with ‘x-check’ header 252
3 ‘To’ header injections alone 157
4 E-Mail Header Injections with ‘bec” and ‘x-check” headers 216
5 Both ‘To’ header injections and x-check headers 12
6 ‘x-check’ headers found in ‘nuser’ e-mails 67
7 Unique ‘x-check’ headers found in ‘nuser’ e-mails 35
8 Total successful injections (1 + 3 + 7) 496

Table 5.3: Classification of the e-mails that we received into broad categories of the

vulnerability.

We explain the combination of these header injections (4-7) as follows:

e E-Mail Header Injections with “bcc” and “x-check” headers

These represent the perfect attack scenario where we are able to inject multiple

headers into the e-mails. We can see that over 75% of the received “bcc” header

injected e-mails are also susceptible to other header injections.

e Both “To header injections” and “x-check” headers

This combination shows us that in addition to being able to inject into the “To”
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fields, we are able to inject additional headers into the e-mail. It is not clear
what causes this behavior; however, these can be exploited to achieve the same

result as a regular E-Mail Header Injection.

e “x-check” headers found in ‘nuser’ e-mails
In addition to analyzing the ‘maluser’ account, we also analyze emails received
by the ‘nuser’ account. We explain the presence of these headers in the following

paragraph.

e Unique “x-check” headers found in ‘nuser’ e-mails
These represent the e-mails with “form_ids” that were not already found in the
‘maluser’ account. We attribute these e-mails to (probably) having a backend
that was built with Python or another language having a similar behavior with

respect to constructing headers.

e Total successful injections
This represents the total number of successful injections our system made. This
includes the E-Mail Header Injections with “bcc” header (1), “To” header injec-
tions alone (3), and Unique “x-check” headers found in ‘nuser’ e-mails (7). This

is the total number of vulnerabilities that were found by our system.

5.4 Understanding the pipeline

This section serves to represent our pipeline quantitatively and graphically. Ta-
ble 5.4 showcases the data gathered by our pipeline, with the differential changes at
each stage of the pipeline.

At each stage of the pipeline, the amount of data trickles down, for instance, out
of the 21,675,680 URLs we crawled, only 6,794,917 forms (31.35%) were found. Out

of these, only 1,132,157 forms (16.66%) contained e-mail fields.
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In our fuzzing attempts, the same behavior is repeated. We fuzzed 934,016 forms
with the regular payload, which resulted in a total of 52,724 e-mails (5.64%). After
analysis of the received e-mails, we further fuzzed 934,016 forms, which resulted in

496 e-mails (1.07%) which contain the vulnerability.

S.No Pipeline Stage Quantity Differential
A d2/d1 * 100
1 Crawled URLs 21,675,680 —
2 Forms found 6,794,917 31.35%
3 E-Mail forms found 1,132,157 16.66%
4 Fuzzed with regular payload 934,016 82.50%
5 Received e-mails 52,724 5.64%
6 Fuzzed with malicious payload 46,156 87.54%
7 Successful attacks 496 1.07%

Table 5.4: Data gathered by our pipeline at each stage, with the differential between

the stages.

Thus, our pipeline can be visualized as a funnel (shown in Figure 5.1), where the

quantity decreases until it reaches the end product.
5.5 Responsible Disclosure of Discovered Vulnerabilities

After we had discovered E-Mail Header Injection vulnerability on a particular
website, we e-mailed the developers of these vulnerable websites disclosing the pages
that contained the vulnerability, along with a brief description of the vulnerability. We

chose to e-mail the following mailboxes, following the rules specified in RFC 2142 [9]:
e security@domain.com - Used for Security bulletins or queries.
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E-Mail Header Injection Pipeline

[
E-Mail Field Regular Malicious
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I I

46,156 Forms
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I I * 934,016 Forms I

| | fuzzed. |

* 21.68 Million I- 6,794,917 Forms | | . I
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1 1 1

Figure 5.1: Pipeline - shows the quantity of data gathered at each stage of the

pipeline.

e admin@domain.com - Used to contact the administrator of a website.

e webmaster@domain.com - Synonym for administrator, same functionality as

admin.

Out of the 222 vulnerable domains found, only 108 websites had the mailboxes
specified above set-up to receive e-mails. For the remaining domains, we used the

“whois” [19]| data to get the contact details of the owner, and then e-mailed them

with the same disclosure data.

We received 13 developer responses, confirming 9 discovered vulnerabilities. Two

of the developers fixed the vulnerability on their website.

From our research, it is clear that E-Mail Header Injection is quite widespread

as a vulnerability, appearing on 1.07% of forms that we were able to perform auto-
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mated attacks on. This value acts as a “lower bound” for E-Mail Header Injection
vulnerability, and can quite easily be much more if the attacks were of a more con-
centrated nature, crafted for the individual websites and less automated. We discuss
this possibility, and other concepts such as limitations and methods for mitigation of

the vulnerability in the following chapter.
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Chapter 6

DISCUSSION

In the previous chapter, we discussed our results and presented our analysis of the
data gathered. In this chapter, we discuss the things we learned, and the limitations of

our system. We conclude this chapter with a few ways to mitigate this vulnerability.
6.1 Lessons Learned

From our results, it is evident that the vulnerability exists in the wild. Despite its
relatively low occurrence rate compared to the more popular SQL Injection and XSS
(Cross-Site Scripting), when we take the total number of websites on the World Wide
Web — 1,018,863,952 according to Internet Live Stats [21] as of early 2016 — and
calculate 1.07% percent (the occurrence rate of E-Mail Header Injection vulnerability
as found by our system) of that number, we end up with 10,901,844 websites - a
pretty significant number. We agree that an extrapolation of that kind might not be
an accurate measure of the prevalence of the vulnerability. However, even with as
few as a thousand websites affected by this vulnerability, it can still have a disastrous
impact on these websites, and also on overall World Wide Web due to the traffic
caused by the sheer number of generated e-mails.

After analyzing the results, we would like to make a few more observations. We
believe that one of the reasons for the small percentage of occurrence (compared
to SQL Injection or XSS), can be attributed to what we like to call the ‘car parking
analogy’. The car parking analogy is something like this: Imagine that we are parking

a car on a road that is prone to attacks by thieves. Now, if all the cars were unlocked,
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the car that is most likely to get stolen is quite unsurprisingly the most expensive
one or the one that is easiest to get away with.

Now imagine the same thing on the World Wide Web: we have websites that can
each have multiple vulnerabilities. Now, it makes sense for an attacker to try and
attack websites with more widespread vulnerabilities such as SQL Injection or XSS,
rather than attempt to exploit E-Mail Header Injection, seeing as this requires a more
concentrated effort, with carefully crafted payloads and a waiting time for the e-mail
to be delivered. SQL Injection attacks and XSS attacks are also better documented,
with well-known attack vectors, and automated tools to help detect the presence of
these vulnerabilities on websites.

This also gives more incentive for the website developer to add protection against
attacks such as SQL injection and XSS. The developer might then (possibly with
the help of a sanitization library) sanitize the user input and remove all special
characters, including the newline characters (\n, \r), which adversely affects E-Mail
Header Injection attacks.

We come to this conclusion because of our discovery of the “To header injection”.
Clearly, this is possible due to incomplete sanitization performed by the application.
We suspect that this incomplete sanitization is actually sanitization that is performed
for some other vulnerability, and not specifically for E-Mail Header Injection attacks.
We would also like to remark that “To header injection” is not complete E-Mail
Header Injection, but only a special subset.

Thus, indirectly, this kind of protection against other attacks affects the attempts
to perform E-Mail Header Injection. However, this does not completely negate the
attempts if the checks are only on the client-side. Also, even with server-side valida-

tion, often, the only input fields that are validated are ones that are either inserted
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into the database (SQL Injection) and the ones that are displayed to the user as part
of the web site (XSS).

A second and a far more common reason for our fuzzing attempts to fail is the bot-
blocking mechanisms built into the websites. CAPTCHAs (as explained in Section
3.4 and in the following section) pose a very difficult problem for our system to exploit
E-Mail Header Injection, even if it is present.

This does not mean that the vulnerability is not a large threat. In fact, this
vulnerability can also have some major consequences, the least of which can be spam-
ming and phishing attacks. In today’s digital world, identity theft has become all the
more common. E-Mail Header Injection provides attackers with the ability to easily
extract information about users, not just from a server, but from the user himself, by
sending him fake messages that look extremely authentic, since these messages are
sent by the mail server of the website itself.

From our research, we found two different forms of the E-Mail Header Injection
Vulnerability: the first one is the traditional one, where we are able to inject any
header into the forms, allowing us complete control over the contents of the e-mail.
We identify this with the presence of both the “bcc” header and the “x-check” header.
This is the most potent form of the vulnerability and is found on quite a few websites.
This is also the vulnerability that is documented and discussed on many websites.

The second attack is an interesting one, as this has not yet been documented,
and provides the ability to inject multiple e-mail addresses into only the “To” field.
We christened this as “To header injection”. In this form of the vulnerability,
we are able to simply add addresses to the “To” field of the form with newlines
separating the e-mail addresses. Whether this particular form of the vulnerability
is found due to the websites in question, or whether this is an implementation issue

with a particular language or framework, is unclear. However, from our preliminary
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analysis, it is evident that these websites do not share much with respect to the
languages and frameworks used. Even in this form of the attack, we are still able
to extract information that should be private to a given user, and in some of these
cases, able to inject enough data to spoof the first few lines of the e-mail message.
From Table 5.3, information leakage using “To header injection” was possible on
157 forms, while spoofing using “To header injection” was possible on 12 forms.
While not being as impactful as the primary vulnerability, this second form of the
vulnerability does still provide the ability to send e-mails to multiple recipients, and

can easily result in information leakage or spam generation on a large scale.
6.2 Limitations of the Project

This section complements Section 3.4, and discusses the limitations of our project.
The following list, although not exhaustive, goes into the limitations of our project

in detail:

e CAPTCHAS - As noted in section 3.4, CAPTCHASs pose a significant problem
to our automated system. As CAPTCHASs are designed to be robust, there is
no easy way to break them. There has been considerable research in this area
[51], [60] to name a few and although not impossible to break, it remains out of

the scope of this project, and thus, we chose to ignore websites which require

CAPTCHA verification.

e JavaScript Apps - Due to the growing emphasis on responsive web applica-
tions, more and more single-page web applications are being built purely with
JavaScript. Even conventional applications are now making use of JavaScript

to dynamically insert content and update the pages. This means that these

o1



dynamically injected components are not a part of the initial source code that

is sent to the client by the web server.

Thus, our system never receives dynamically injected forms from the web server
and hence is unable to detect whether these vulnerabilities are present in such
forms. The only workaround would be, to use a JavaScript engine to query for
the document.getElementsByTagName('html')[0].innerHTML (from inside web browser
automation tools like Selenium, etc.), and then use that as the source code for

our URL.

Since this would add unnecessary bulk and complexity to our application, we

chose not to do it, and thus, we consider this to be a limitation.

Blogs powered by WordPress/Drupal

In addition to what was discussed in Section 3.4, we found that certain Word-
Press ‘plugins’ also prevent the E-Mail Header Injection attack by sanitizing
user input on Contact Forms. Some of these plugins are discussed in the fol-
lowing section. Although not all websites built with WordPress are secure from
the attack, between the presence of the plugins on some websites, and getting
tagged as ‘spambots’ by others, we were able to do vulnerability analysis on

very few sites powered by WordPress.

Blacklisting by websites and ISPs

During the actual crawl, our system was blacklisted by a few websites (mostly
WordPress ones), and Internet Service Providers (ISPs). We then created a
blacklist of our own to ensure that we did not inject these websites. The result

was that we could not gather any data about these websites.
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e E-Mail libraries
E-Mail libraries like the PHP Extension and Application Repository’s (PEAR)
mail library provide sanitization checks for user input. While this is technically
not a limitation of our project, it still makes it such that we are not able to inject
these sites successfully. A few other libraries for each language are discussed in

the following section.

e Websites that are not in English
Because we are only searching for the words ‘e-mail’, ‘mail’ or ‘email’ within
the form, if the website does not use English names for its forms, our system
will not be able to find the presence of an e-mail field. An example is shown
in Listing 6.1. Here, the French word for ‘e-mail’ — courrier électronique — is

used, and our system is unable to find the presence of the e-mail form.

<!doctype html>

<html lang="fr">

<head>

<meta charset="utf—-8">

<meta name="author" content="Sai Pc">

<title>Mock Email</title></head>

<body>

<form action="{Replace with path to back—end}" method="post">

<input type="text" placeholder="courrier électronique"
name="courrier électronique"><br>

<textarea name="msg" rows="20" cols="120"></textarea>

<input type="submit" value="courrier électronique!">

</form></body>

</html>

Listing 6.1: HTML page with e-mail form, written in a different language - French.
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6.3 How to prevent this attack

This section describes the most common measures that can be taken to prevent

the occurrence of this vulnerability, or at least reduce the impact.

e Use Mail Libraries
This is the preferred way of combating this vulnerability. Using a library that
is well tested can remove the burden of input sanitization from the developer.
Also, since most of these libraries are open-source, bugs are identified quicker
and fixes are readily available. A list of known secure libraries for each popular

language and framework is shown in Table 6.1.

Using libraries such as PEAR Mail, PHPMailer, Apache Commons E-Mail,
Contact Form 7, and Swiftmailer can significantly reduce the occurrence of

E-Mail Header Injection vulnerability.

Language Mail Libraries

PHP PEAR Mail!, PHPMailer?, Swiftmailer?

Python SMTPLib with email.header. Header*

Java Apache Commons E-Mail®

Ruby Ruby Mail >= 2.6°

WordPress | Contact Form 77

Table 6.1: Mail libraries that prevent e-mail header injection.
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e Use a Content Management System (CMS)
Content management systems like WordPress and Drupal include certain li-
braries and plugins to prevent E-Mail Header Injection. Thus, websites built
with such CMS’ are usually resistant to these attacks. However, it is advised
to use the right e-mail plugins when using such CMS’, as not all plugins might

be secure. An example of a secure plug-in is included as part of Table 6.1.

e Input Validation
If neither of the two options above is feasible, due to reasons such as the website
being an in-house production, or due to lack of support infrastructure, devel-
opers can choose to perform proper input sanitization. Sanitization should be
done keeping in mind RFC5322 [42], and care must be taken to ensure that all

edge cases are taken into account.

Client Side validation alone is not sufficient, and must be supplemented by
server-side validation to mitigate the attack. Constant updates to validation
methods are required so that new attack vectors do not harm the website in any
way. Test driven development for such validation methods is also encouraged

so that we can be reasonably sure of our defense mechanisms.

'PEAR Mail Website: https://pear.php.net/package/Mail

2PHPMailer Website: https://github.com/PHPMailer/PHPMailer

3Swiftmailer Website: http://swiftmailer.org/

4instead of using email.parser.Parser to parse the header

® Apache Commons E-Mail: https://commons.apache.org/proper/commons-email /
6Ruby Mail Website: https://rubygems.org/gems/mail

"Contact Form 7 Download: https://wordpress.org/plugins/contact-form-7/
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Chapter 7

RELATED WORK

There are different approaches to finding vulnerabilities in web applications, two
of them being Black-Box testing and White-Box testing. Our work is based on the
black-box testing approach to finding vulnerabilities on websites, and there has been
plenty of research that has made use of this methodology [2], [18], [24], [32], [61].
There has been significant discussion on both the benefits of such an approach [1]
and its shortcomings [11], [12].

Our work does not intend to act as a vulnerability scanner, but as a means to
identify the presence of E-Mail Header Injection vulnerabilities in a given web appli-
cation. In this sense, since we are injecting payloads into the web application, our
work is related to other injection based attacks, such as SQL Injection [5], [15], [45],
Cross-Site Scripting — XSS — [22], [25], HTTP Header Injection [23|, and is very
closely related to Simple Mail Transfer Protocol (SMTP) Injection [49].

The attack described by Terada [49] is one that attacks the underlying SMTP mail
servers by injecting SMTP commands (which are closely related to E-Mail Headers
and usually have a one-to-one mapping, e.g. “To” e-mail header has a corresponding
“To” SMTP header) to exploit the SMTP server’s pipelining mechanism. The paper
also describes proof-of-concept attacks against certain mailing libraries like ‘Ruby
Mail’ and ‘JavaMail’. This attack, although trying to achieve a similar result, is
distinctly different from ours. The paper by itself makes this observation and discusses
why it is different from E-Mail Header Injection.

In comparison, our work tries to exploit application-level flaws in user input san-

itization, which allow us to perform this attack. Our work does not intend to exploit
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the pipelining mechanism, but to exploit the implementation of the mail function
in most popular programming languages, which leaves them with no way to distin-
guish between user supplied headers and headers that are legitimately added by the
application.

As specified before, although this vulnerability has been present for over a decade,
there has not been much written about it in the literature, and we only find a few
articles on the Internet describing the attack.

The first documented article dates to over a decade ago; a late 2004 article on
phpsecure.info [50] accredited to user tobozo@phpsecure.info describing how this
vulnerability existed in the reference implementation of the mail function in PHP, and
how it can be exploited. Following this, we found other blog posts [6], [26], [28], [30],
[36], each describing how to exploit the vulnerability by using newlines to camouflage
headers inside user input. A wiki entry [13] also describes the ways to prevent such an
attack. However, none of these articles have performed these attacks against real-life
websites.

Another blog post written by user Voxel@Night on Vexatious Tendencies [4§],
recounts an actual attack against a WordPress plugin, ‘Contact Form’, with a proof
of concept!. It also showcases the vulnerable code in the plugin that causes this
vulnerability to be present. However, this article targets just one plugin and does not
aim to find the prevalence of said plugin usage. Neither does it inform the creators
of the plug-in to fix the discovered vulnerability. The vulnerability was described
briefly by Stuttard and Pinto in their book, “ The Web Application Hacker’s Handbook:
Discovering and Exploiting Security Flaws” [47]. The book, however, does not go into

detail on either the attack or the ways to mitigate such an attack. Our work, on the

!Note that this plugin is used actively on 300,000 websites (according to [4]), but is yet to be
fixed.
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other hand discusses the means to mitigate the attack. We also describe, in detail,
the payloads that can be used and the need for varying the payloads (Section 3.3.5).

To the best of our knowledge, no other research has been conducted to determine
the prevalence of this vulnerability across the World Wide Web. We have managed to,
on a large scale, crawl and inject websites with comparatively benign payloads (such
as the “bcc” header) to identify the existence of this vulnerability without causing
any ostensible harm to the website. Our injected payloads do not contain any special
characters other than the newline characters and thus cannot cause any unintended
consequences. Also, since we are only injecting a payload with the “bcc” header,
the underlying mail servers should not be affected by the additional load. Our work
serves to not only prove the existence of the vulnerability on the World Wide Web

but to quantify it.
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Chapter 8

CONCLUSION

We have showcased a novel approach involving black-box testing to identify the pres-
ence of E-Mail Header Injection in a web application. Using this approach, we
have demonstrated that our system was able to crawl 21,675,680 web pages find-
ing 6,794,917 forms, out of which 1,132,157 forms were fuzzable. We fuzzed 934,016
forms and found 52,724 forms that allowed us to send/receive e-mails. Out of these,
we were able to inject malicious payloads into 46,156 forms, identifying 496 vulnerable
forms (1.07% success rate). This indicates that the vulnerability is widespread, and
needs attention from both web application developers and library makers.

We hope that our work sheds light on the prevalence of this vulnerability and
that it ensures that the implementation of the “mail” function in popular languages is
fixed to differentiate between User-supplied headers, and headers that are legitimately
added by the application, and that the RFC’s are updated to be more stringent and

make it less ambiguous for future implementations.
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APPENDIX A

LIST OF LINKS TO WEBSITES
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Some quick links to the project website, and to this document:
e Project Repository

— Short URL: https://goo.gl/ctoUY4
— Long URL: https://github.com/TDA /EMaillnjectionVuln

e Links to this Document on the Web

— Short URL: https://goo.gl/PvHQTY
— Long URL: https://github.com/TDA /Email-Injection-Docs /blob/master /dis.pdf

66



	LIST OF TABLES
	LIST OF FIGURES
	1 
	2 
	2.1 Problem Background
	2.2 History of E-Mail Injection
	2.3 Languages Affected
	2.4 Potential Impact

	3 
	3.1 Approach
	3.2 System Architecture
	3.3 System Components
	3.3.1 Crawler
	3.3.2 Form Parser
	3.3.3 E-Mail Field Checker
	3.3.4 E-Mail Form Retriever
	3.3.5 Fuzzer
	3.3.6 E-Mail Analyzer
	3.3.7 Database

	3.4 Issues
	3.5 Assumptions

	4 
	4.1 System Configuration
	4.2 Platform
	4.3 Languages Used
	4.4 Celery Queues
	4.5 Test Suite
	4.6 Proof of Concept Attacks

	5 
	5.1 Collected Data
	5.2 Fuzzed Data
	5.3 Analysis of Data
	5.4 The Pipeline
	5.5 Responsible Disclosure

	6 
	6.1 Lessons Learned
	6.2 Limitations
	6.3 Mitigation Strategy

	7 
	8 
	REFERENCES
	A 





