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ABSTRACT 

 Despite the safe and effective use of attenuated vaccines for over fifty years, 

measles virus (MV) remains an insidious threat to global health. Problematically, infants 

less than one year of age, who are the most prone to severe infection and death by 

measles, cannot be immunized using current MV vaccines. For this dissertation, I 

generated and performed preclinical evaluation of two novel MV vaccine candidates. 

Based on data from clinical trials that showed increasing the dosage of current MV 

vaccines improved antibody responses in six-month-old recipients, I hypothesized that 

increasing the relevant antigenic stimulus of a standard titer dose would allow safe and 

effective immunization at a younger age. I generated two modified MVs with increased 

expression of the hemagglutinin (H) protein, the most important viral antigen for 

inducing protective neutralizing immunity, in the background of a current vaccine-

equivalent. One virus, MVvac2-H2, expressed higher levels of full-length H, resulting in 

a three-fold increase in H incorporation into virions, while the second, MVvac2-Hsol, 

expressed and secreted truncated, soluble H protein to its extracellular environment. The 

alteration to the virion envelope of MVvac2-H2 conferred upon that virus a measurable 

resistance to in vitro neutralization. In initial screening in adult mouse models of 

vaccination, both modified MVs proved more immunogenic than their parental strain in 

outbred mice, while MVvac2-H2 additionally proved more immunogenic in the gold 

standard MV-susceptible mouse model. Remarkably, MVvac2-H2 better induced 

protective immunity in the presence of low levels of artificially introduced passive 

immunity that mimic the passive maternal immunity that currently limits vaccination of 

young infants, and that strongly inhibited responses to the current vaccine-equivalent. 
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Finally, I developed a more physiological infant-like mouse model for MV vaccine 

testing, in which MV-susceptible dams vaccinated with the current vaccine-equivalent 

transfer passive immunity to their pups. This model will allow additional preclinical 

evaluation of the performance of MVvac2-H2 in pups of immune dams. Altogether, in 

this dissertation I identify a promising candidate, MVvac2-H2, for a next generation 

measles vaccine.  
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CHAPTER 1 

INTRODUCTION 

Measles, Still a Threat 

 The unqualified success of decades of attenuated measles vaccination has 

drastically reduced incidence of this highly infectious viral disease. Ironically, the 

disappearance of endemic measles transmission from many areas of the world has 

resulted in the secondary effect that measles infection is not always regarded as a serious 

threat, and subsequent refusal of vaccination by eligible individuals (1). Apart from 

allowing the eruption of measles outbreaks after importation to areas of local elimination, 

as for a recent highly publicized outbreak (2) that culminated in the first death of a patient 

from measles in the U.S. in nearly a decade (3), this social phenomenon obscures the 

persistent global health impact of this pathogen. 

Measles remains a leading cause of death and disability around the world, 

infecting 20 million people and killing 114,900 in 2014 (4), which equates to 300-400 

deaths around the world every day due to a virus that we have good vaccines against (5). 

As recently as 2008, measles ranked 10th among the leading causes of death for children 

under the age of 5 globally (6). Even in areas of control, where the first measles virus 

(MV) vaccine dose is received at one year of age, failure to maintain high vaccine 

coverage allows outbreak transmission after MV importation (7); in recent years, this 

problem has been of particular importance in the U.S. and European Union, where 

vaccine coverage has faltered and measles has subsequently resurfaced (8). The impact of 

measles persists despite the availability of attenuated vaccines with proven effectiveness 

in adults and older children.  
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Nonetheless, measles virus can and should be eradicated, according to biological 

criteria that have been suggested for eligibility for eradication (9). MV is of a single 

serotype, persistent infections are rare, and no animal or environmental reservoir exists, 

apart from humans. Generally accurate diagnostic tests exist and global surveillance 

systems are in place. Most significantly, effective intervention measures exist in the form 

of MV vaccines, and these vaccines have already allowed local elimination of 

transmission in large geographical areas, including all of the Americas. The 2011 

eradication of rinderpest virus, the evolutionary sister of measles, sets the stage for 

eradication of biologically similar MV (10).  

How, then, can we promote eradication of measles? Increasing delivery of the 

MV vaccine to all eligible individuals will certainly increase herd immunity. Apart from 

increasing delivery, though, opportunities remain to perfect the already effective measles 

vaccines. Current vaccines are dependent upon cold-chain maintenance and are delivered 

by the subcutaneous or intramuscular route; a next generation of measles vaccine would 

ideally be less heat labile and delivered without a needle. We may also suggest that, 

although MV vaccines are generally considered among the most effective vaccines 

available, inducing protective immunity in approximately 95% of recipients, an even 

more effective vaccine would further expand herd immunity against this highly infectious 

pathogen. And finally, an MV vaccine that is more effective in young infants, and that 

could thus be delivered at a younger age, has been highly sought after. This dissertation 

explores strategies to address these latter two points. 
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Biology of Measles: The Hemagglutinin Protein 

 Measles is an enveloped, pleiomorphic virus with a non-segmented, negative 

sense RNA genome of 15,894 ribonucleotides in length. The genome contains six 

cistrons encoding eight viral proteins (11).  

Of special importance to this dissertation is the hemagglutinin, or H, protein 

encoded by the second-to-last cistron of the viral genome. H is a 617 amino acids-long 

type II transmembrane glycoprotein composed of an N-terminal cytoplasmic tail, a 

transmembrane region, a membrane-proximal stalk domain, and a large C-terminal 

globular ectodomain. H serves as the receptor attachment protein of measles. The crystal 

structure of the H ectodomain has been solved; it is composed of a six-bladed β-propeller 

fold (12). Much of this propeller-like structure is masked by N-linked sugars, but residues 

to the side of the propeller are unshielded. In virions, two H proteins form a disulfide-

linked dimer in which the two proteins tilt significantly away from one another, orienting 

the unshielded “side” residues of each propeller upward and away from the viral 

envelope, and toward host cells. The unshielded region contains residues that are highly 

conserved and have been demonstrated to be important for binding to the signaling 

lymphocyte activation molecule (SLAM, also known as CD150), a measles receptor, both 

by mutagenesis (13) and by further crystallization of H in complex with SLAM (14). 

Importantly, the epitopes of neutralizing antibodies against the H protein also map to this 

unshielded, conserved, SLAM-binding region of the H protein. This finding helps to 

explain why measles is of a single serotype, despite the high mutation rate of such an 

RNA virus: SLAM exerts strong selective pressure on the region of H responsible for 

binding this cellular receptor, such that neutralizing immunity may easily confer 
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protection against the virus by targeting this unshielded and conserved region of the 

protein.  

The H protein also helps to explain the tropism and pathogenesis of MV (15). MV 

is spread by respiratory droplets and infects susceptible individuals via the respiratory 

route. The virus initially infects SLAM-expressing cells in the respiratory epithelia, likely 

dendritic cells, and is trafficked to regional lymph nodes. Here the virus encounters a 

significant SLAM+ cell population, allow rapid primary replication and dissemination to 

diverse body sites. The SLAM-directed lymphotropism of MV explains the main 

pathological consequence of measles infection, a profound immunosuppression that 

renders the patient susceptible to secondary infections for weeks, months, and perhaps 

even years after measles infection and is the primary cause of measles-related morbidity 

and mortality (11). The tropism of MV H also helps to explain the extreme infectiousness 

of the virus. It has been recognized for decades that MV must make use of a host receptor 

expressed on epithelial cells, but the identity of that receptor remained a mystery until 

recently, when two independent groups simultaneously defined it to be nectin-4 (16, 17). 

Nectin-4 is expressed on the basolateral surface of epithelial cells. MV is thus able to 

enter epithelial cells, replicate prodigiously, and bud from the apical epithelial cell 

surface. Accumulation of infectious virus budding from epithelial cells in the respiratory 

tract in combination with the cough and sneezing induced by the virus ensure effective 

respiratory transmission to the next susceptible host. Morbilliviruses like MV are thus 

among the most infectious agents in existence. The basic reproduction number (R0) of 

measles is estimated to be 15 to 20 secondary infections produced by every typical 

infective person in an entirely susceptible population (18). 
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The function of H has two important implications for development of new 

measles vaccines. First, while neutralizing antibodies are directed against the two surface 

glycoproteins of MV, which include the fusion (F) protein in addition to the H protein, 

the great majority of neutralizing antibodies are directed against H (19). H has thus been 

recognized as the most relevant MV antigenic stimulus for induction of neutralizing 

immunity. Second, the high R0 of MV, conferred at least in part by the tropism of the H 

protein, necessitates that similarly high population-level immunity is required to interrupt 

transmission of the virus, estimated at 95% immunity (20). Measles eradication, thus 

requires more than the current 83-84% global vaccination coverage to attain this goal 

(21) and, indeed, the requisite level immunity is difficult to envision achieving with 

imperfect adherence to a current vaccine regimen of the same approximate effectiveness 

(9). 

Predicting Protection 

Neutralizing immunity against MV is the correlate of protection against infection, 

and therefore the target to achieve for a successful experimental vaccine. It is 

documented that measles rash is the clinical manifestation of the T cell-mediated 

response peak, which is important for viral clearance and recovery from MV infection. 

For immunity to reinfection, however, T cell responses in the absence of humoral 

immunity are not consistently protective (22). On the other hand, neutralizing antibody 

titers in excess of a defined threshold (200 mIU/mL using the 1st International Standard 

for anti-MV serum or 120 mIU/mL for the 2nd International Standard) (23) measured by 

plaque reduction neutralization (PRN) assay consistently provide protection (24, 25). 

Neutralizing antibody titers measured by PRN appear to slightly underestimate 
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protection, as some children testing seronegative against MV are still protected from 

infection (25, 26). Protection in these instances might result from low levels of 

neutralizing immunity, from cellular immune responses, or from a combination thereof. 

Nonetheless, the power of neutralizing immunity for predicting protection is well 

established and is used in the field of MV vaccinology, including in this dissertation, as 

the measure of vaccine efficacy. 

Vaccines Against Measles 

 Before MV vaccines were introduced in 1963, measles infected an estimated 135 

million people and killed more than 6 million people globally each year, most of them 

children (5). Despite opportunities for improvement, measles vaccination has thus proven 

to be one of the most successful public health interventions of all time. 

 The derivation of measles vaccines has been extensively described elsewhere by 

Rota and colleagues (27) and Strebel and colleagues (28). In brief, measles virus was first 

isolated from an infected child, David Edmonston, by John Enders and Thomas Peebles 

(29). Subsequent passage of the wild-type Edmonston virus in human kidney and amnion 

cells resulted in the Edmonston-Enders stain, and further passage in the intraamniotic 

cavity of chick embryos and in chick embryo fibroblasts resulted in the derivation of an 

attenuated strain, Edmonston B, which was licensed as a measles vaccine in 1963. The 

vaccine was immunogenic and induced protection in recipients, but also proved 

reactogenic, causing fever and rash. To eliminate this reactogenicity, two independent 

groups further passaged Edmonston B at low temperature (32°C) in chick embryo 

fibroblasts, resulting in the Moraten (“More attenuated”) vaccine developed by Maurice 

Hilleman (30), which is currently used in the United States, and the Schwarz vaccine 
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developed by Anton Schwarz (31), which is used in many other countries. Despite the 

separate passage histories of the Moraten and Schwarz vaccines, the two attenuated 

viruses are, surprisingly, genomically identical (32). The Edmonston-Enders strain was 

also separately attenuated to derive two additional vaccine strains, the Edmonston-Zagreb 

and AIK-C vaccine strains. Additionally, attenuation of three other individual wild-type 

isolates has resulted in the production of the Changchun-47, Shanghai-191, and CAM-70 

vaccine strains. Germane to this dissertation is the Moraten vaccine strain, which has 

identical protein-coding capacity to the parental, control vaccine MVvac2 first presented 

in Chapter 2 that served as the genomic background for my development of modified 

vaccines; by extension, MVvac2 also has identical protein coding capacity to the 

Schwarz vaccine. The Schwarz and Edmonston-Zagreb vaccines are also important to 

this dissertation for their use at high titer doses in young infants, discussed in the next 

section.  

Barriers to Immunization of Young Infants  

Problematically, current vaccines are much less effective in infants under one year 

of age than they are in older children and adults (33, 34). Young infants are a greater risk 

than any other age group of death and disability from measles infection. During epidemic 

outbreaks infants younger than one year of age experience the highest fatality rates of any 

demographic group due to measles infection; case fatality rates two and nearly eight 

times higher than in three- and four-year-old children, respectively, have been recorded 

(35).  Ironically, as measles vaccination coverage increases, a greater proportion of young 

infants are susceptible to MV infection. For example, in recent outbreaks of measles in 

Europe, infants too young to vaccinate constituted between 0.25-83% of case incidence in 
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individual outbreaks, or approximately 10% of case incidence in the region in total (36)).  

In recent outbreaks in the United States, one in four of all cases identified occurred in an 

infant less than one year of age (37). 

Current MV vaccines’ inefficiency at ages less than one year stems primarily 

from the variable presence of maternal antibodies (38). In humans, a mother passes her 

own IgG antibodies across the placenta to the bloodstream of her developing fetus, 

especially in the last month of pregnancy; this transfer is proposed to occur at least in part 

by a neonatal Fc receptor (FcRn)-mediated mechanism (39). A mother also transmits IgA 

antibodies to the gastrointestinal tract of her child in breast milk. Maternal immunity is 

crucial to protecting young infants from severe neonatal infection; over time, however, 

passively transferred maternal immunity will decline to a level that may no longer protect 

against wild-type pathogen challenges but can still suppress vaccine-induced immunity 

(40-43). Consequently, only approximately 85% of nine-month- old (44) and 65% of six-

month-old infants (45) will mount antibody responses to vaccination. Vaccination is 

therefore generally not indicated before nine months of age due to poor responses, but 

many infants become susceptible to infection before nine months due to the loss 

of maternal protection (36). Infants thus enter a window of susceptibility to severe MV 

infection defined by two related and opposing trends: the decline of protective maternal 

antibody and the simultaneous increase of successful vaccination as they age (Fig. 1.1). A 

vaccination strategy that closes this window is highly desirable.  

It has also been suggested that young infants may be immunologically 

incompetent to respond successfully to measles vaccination. Indeed, six-month-old 

infants even in the absence of passive immunity have been observed to seroconvert at 
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lower rates and to lower PRN titers than infants first immunized at a later age (33, 41-43, 

46). At the same time, however, infants immunized at six months of age can mount 

detectable, protective-level neutralizing responses (33, 41-43, 46), which are boosted 

after receipt of the second recommended MV vaccine dose to match those of infants first 

immunized at a later age (41, 42, 46). Clinical data also show that maternal antibodies are 

the primary barrier to overcome (42). For example, infants immunized in the presence of 

detectable maternal immunity failed to mount protective neutralizing responses after a 

first dose of MMR-II, a vaccine cocktail containing attenuated rubella and mumps viruses 

in addition to the Moraten measles vaccine strain, at six months of age (average 39 

mIU/mL, 95% confidence interval 16-95 mIU/mL). On the other hand, six-month-old 

infants lacking detectable maternal immunity mounted protective responses after a single 

dose of MMR-II (average 516 mIU/mL, 95% confidence interval 209-1274 mIU/mL). 

Consequently, following two doses of MMR-II, the proportion of six-month-old infants 

lacking maternal antibodies at time of first vaccine dose who were considered protected 

from infection matched that of infants who received their first dose at nine months of age 

(93% vs. 94%, respectively), as well as population level estimates for the protectiveness 

of two doses of MV vaccine. Significantly, this demonstrates that, if the barrier of 

maternal immunity can be overcome, the outcomes of vaccination of even young infants 

match those of individuals first vaccinated at an older age.  

High Titer Measles Vaccines in Infants 

Alternative measles vaccination strategies that would allow immunization of 

infants at a younger age have been strongly sought after. The most extensively tested MV 

vaccination strategy tailored to younger ages made use of higher titer doses of current 
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vaccines in infants as young as four months of age. In clinical trails, six-month-old 

infants administered a standard (103.7-103.8 PFU), medium (104.5-104.6 PFU), or high 

(105.3-105.6 PFU) titer dose of the Edmonston-Zagreb or Schwarz MV vaccines 

demonstrated a statistically significant, dose- dependent increase in response to 

vaccination so that seroconversion rates of six-month-old recipients of the high 

titer vaccine improved to match those of nine-month-old recipients of the standard titer 

vaccine (Fig. 1.2) (47). Two other studies demonstrated that four-month-old recipients of 

the medium titer dose were at least as well protected from wild-type MV as nine- month-

old infants administered the standard titer dose (48, 49). Despite the increase in 

seroconversion against and protection from measles, however, female recipients of the 

high titer vaccines experienced higher rates of mortality from non-measles causes in the 

years after vaccination (50-54). Measles was the first viral pathogen associated with 

immunosuppression, and opportunistic infections during and early after measles rash are 

the major cause of measles-associated mortality (55). It has been proposed that high titer 

vaccine-induced immunosuppression, similar to that caused by wild-type measles 

infection, is the cause of the high mortality observed mainly in African females. The 

strategy was withdrawn, but these findings demonstrate that current MV vaccines are 

sufficient to effectively immunize even young infants if their stimulus is increased; the 

challenge is to present this increased stimulus within the safe context of the current 

vaccine dosage.  

Central Hypothesis 

Based on the clinical performance of high titer doses of MV vaccines, which 

improved infant seroresponses but were unsafe, as well as the demonstrated primacy of 



	   11 

the H protein in inducing protective neutralizing immunity against MV, we explored an 

alternative pediatric vaccine strategy based on increasing the antigenic dosage of H 

protein in a standard titer MV vaccine. We specifically hypothesized that selective 

increase of H expression in the background of the current MV vaccine would safely 

improve the vaccine’s immunogenicity and potentially evade inhibition by maternal 

immunity to allow infant responses to vaccination (Fig. 1.3). The goal of this dissertation 

has been to develop modified MVs with increased H expression and test their 

immunogenicity in mouse models incorporating barriers that prevent successful 

immunization of young infants, with the expectation that this research would lay the 

foundation for future experimentation in more relevant primate models. 

Chapter Organization 

 Chapter 2 of my dissertation, entitled “Generation of a more immunogenic 

measles vaccine by increasing its hemagglutinin expression,” describes my development 

of two MVs with increased expression of envelope-bound or soluble H protein by 

inserting another full-length or truncated copy of the H-coding cistron in a high 

expression locus in a Moraten-equivalent genome. The two vectors replicate with equal 

efficiency to their parental strain in two cell lines, and form plaques not suggestive of 

over-attenuation. I show that the vector encoding a truncated additional copy of H 

secretes measurable levels of the soluble protein to its extracellular environment, and that 

the insertion of another full-length copy of H in the other vector results in an 

approximately three-fold relative increase of its incorporation into viral particles. I 

provide evidence that the modification to the latter virus’s envelope confers upon it a 

degree of resistance to neutralization by polyclonal immune serum in vitro without 
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impacting its thermostability. I finally provide evidence that both vectors are more 

immunogenic than their parental strain in a non-susceptible mouse model, and that the 

virus with increased expression of envelope-bound H is additionally more immunogenic 

in the gold standard MV-susceptible small animal model for MV vaccination. 

 Chapter 3 of my dissertation, entitled “A measles vaccine with increased 

hemagglutinin expression outperforms its parental Moraten-equivalent in infant-like 

mouse models,” describes further evaluation of the two modified MVs introduced in 

Chapter 2 in mouse models that replicate barriers that prevent immunization of young 

infants. Here, I show that neither use of particulate inocula nor inclusion of a boosting 

dose rescue the immunogenicity of the vector expressing soluble H protein in MV-

susceptible mice, but that the virus expressing additional full-length H is more 

immunogenic than its parental strain even in young animals. Most significantly, I show 

that the virus that incorporates higher levels of full-length H induces stronger immune 

responses than its parental current vaccine-equivalent in a mouse model of passive 

immunity, where inoculation of homologous polyclonal anti-MV serum was able to 

significantly inhibit responses of MV-susceptible mice to the parental strain. Finally, I 

show that dam-to-pup transfer of maternal immunity against MV occurs in the gold 

standard MV-susceptible mouse model, and suggest the utility of this model for 

preclinical assessment of alternative pediatric MV vaccines. 

 Chapter 4 of my dissertation, entitled “Summary and future directions,” discusses 

the implications of the findings presented in this dissertation as well as avenues for future 

research. Much work remains to be done, but this dissertation has importantly identified a 

likely candidate for a next generation pediatric measles vaccine. 
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Figure 1.1 The window of opportunity for measles infection. In young infants, 
susceptibility to measles infection (indicated by red shading) is defined by two related 
and opposing trends: the decline of maternal antibodies (gray squares) and increase in 
responsiveness to vaccination (blue circles). The youngest infants are protected from 
infection by passively transferred maternal antibodies, but over time maternal immunity 
declines to intermediate levels (approximately four to eight months of age) where it 
interferes with vaccination, but no longer protects against wild-type infection, thus 
creating a window of opportunity for measles infection where infants cannot be 
vaccinated but are prone to severe infection. Percentage of infants seropositive for 
maternal antibodies are derived from Caceres and colleagues (56) and percentage of 
infants seroresponsive to vaccination are derived from Moss and Scott (45). 
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Figure 1.2 Increasing the dose of measles vaccine improved antibody responses of six-
month-old infants. (A) Six-month-old infants (blue bars) were administered a standard 
(103.7 PFU), medium (104.5-104.6 PFU), or high (105.3-105.6 PFU) titer infectious dose of 
the Schwarz (S, striped bars) or Edmonston-Zagreb (EZ, solid bars) measles vaccine. For 
the Edmonston-Zagreb vaccine, two separate batches produced in Mexico and 
Yugoslavia were used, indicated by –M and –Y respectively. Vaccine efficacy is 
indicated as the percentage of infants with seropositivity greater than 200 mIU/mL, the 
protective threshold for neutralizing immunity against measles, at 18 weeks after 
vaccination. (B) Outset are the results from (A) for the Schwarz vaccine, which has 
identical protein coding capacity to the vaccine strain background used for the 
development of the modified MVs described in this dissertation. Statistical significance 
was assessed by Mantel-Haenszel chi-square test, using responsiveness to the standard 
dose of Schwarz vaccine in nine-month-old infants as reference. Statistical comparisons 
are omitted from (A) for clarity, but with the exception of the two significant differences 
indicated in (B), the only other difference to reach significance was between the reference 
and six-month-old recipients of the high titer EZ vaccine (P < 0.01). ***, P < 0.001. Data 
shown here are derived from Markowitz and colleagues (47). 
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Figure 1.3 Central hypothesis. The left panel depicts a cartoon representation of a current 
MV vaccine, in gray, to which infant immune responses are inhibited in the presence of 
residual maternal antibodies (purple). In the central panel, a modified MV (blue) 
incorporates additional H protein (rectangles) into its viral envelope, quenching the 
inhibitory effect of residual maternal immunity to allow induction of active infant 
neutralizing responses. The right panel illustrates a second modified MV (green) that 
induces release of high levels of soluble H protein from infected cells. Here, soluble H 
proteins may serve as antigenic decoys to divert the inhibitory effect of maternal 
immunity and again allow active immune responses from young infants.  
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CHAPTER 2 

GENERATION OF A MORE IMMUNOGENIC MEASLES VACCINE BY 

INCREASING ITS HEMAGGLUTININ EXPRESSION 

ABSTRACT 

Imported measles virus (MV) outbreaks are maintained by poor vaccine 

responders and unvaccinated people. A convenient but more immunogenic vaccination 

strategy would enhance vaccine performance contributing to measles eradication efforts.  

We report here the generation of alternative pediatric vaccines against MV with increased 

expression of the H protein in the background of the current MV vaccine strain. We 

generated two recombinants: MVvac2-H2, with increased full-length H expression 

resulting in a three-fold increase in H incorporation into virions, and MVvac2-Hsol, 

vectoring a truncated, soluble form of H protein that is secreted to the supernatants of 

infected cells. Replication fitness was conserved despite the duplication of the H cistron 

for both vectors. The modification to the envelope of MVvac2-H2 conferred upon that 

virus a measurable level of resistance to in vitro neutralization by MV polyclonal 

immune sera, without altering its thermostability.  Most interestingly, both recombinant 

MVs with enhanced H expression were significantly more immunogenic than their 

parental strain in outbred mice, while MVvac2-H2 additionally proved more 

immunogenic after a single, human-range dose in genetically modified MV-susceptible 

mice. 
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IMPORTANCE 

 Measles incidence reduced drastically following introduction of attenuated 

vaccines, but progress toward eradication of this virus has stalled and MV still threatens 

unvaccinated populations. Due to the contribution of primary vaccine failures and too-

young-to-be-vaccinated infants to this problem, more immunogenic measles vaccines are 

highly desirable. We generated two experimental MV vaccines based on a current 

vaccine’s genome but with enriched production of H protein, the main MV antigen in 

provoking immunity. One incorporated H to higher rates in the viral envelope, and the 

other secreted a soluble H protein from infected cells. Increased expression of H by these 

vectors improved neutralizing responses induced in two small animal models of MV 

immunogenicity. The enhanced immunogenicity of these vectors, mainly from the MV 

that incorporates additional H, suggests their value as potential alternative pediatric MV 

vaccines. 
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INTRODUCTION 

Despite the existence of an effective vaccine, measles virus (MV) infections 

remain an insidious threat to global health. After decades of reduction in measles-related 

mortality due to vaccination, this has stalled between 110,000-120,000/year since 2012. 

Approximately 20 million people are infected by measles each year with significant 

morbidity and up to 1% mortality (1). In 2014, the United States saw the highest number 

of annual measles cases since native transmission was declared locally eliminated in 2000 

(2) and experienced a large multi-state outbreak in the first months of 2015 (3).  

Protecting young infants against measles is an important goal to attain to improve 

the current MV vaccine (4).  The highest fatality rates due to MV infection occur in 

infants younger than one year of age (5).  Ironically, with the current vaccine and 

schedule, the higher the coverage, the greater proportion of young infants is susceptible 

to MV infection. Infants retain antibodies passed from their mothers across the placenta 

and in breast milk for months after birth and these protect against early-life infection, but 

interfere with early vaccination (6). Only approximately 85% of nine-month-olds (7) and 

65% of six-month-olds mount antibody responses to the vaccine (8).  This level of 

efficiency proves prohibitive for a public health intervention that must balance cost 

against protection; infants are therefore vaccinated at nine months of age in areas at great 

risk of measles transmission, or at twelve to fifteen months of age where there is not 

significant risk of infection. 

Young infants can however, mount protective immune responses to current MV 

vaccines.  Clinical trials revealed a dose-dependent, statistically significant increase in 

seroconversion with increasing measles vaccine titer (9), thus demonstrating that the 
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increased immunogenic stimulus of the higher titer vaccine was sufficient to overcome 

barriers to MV immunization in young infants.  Although efficient, the use of high-titer 

MV vaccines was withdrawn following observation of increased mortality rates not 

related to wild-type MV infection in female recipients (10-14) reviewed in (15). Here, we 

show a strategy to present an enhanced immunogenic stimulus within the safe context of 

the current vaccine dosage. 

For the Paramyxoviridae, the progressive transcriptional attenuation from the 3’ 

end leader region of the negative-sense genome, determines the expression level of viral 

proteins. Cistrons encoding the structural envelope proteins, which are the principal 

targets of protective neutralizing immunity, are located in the second- or third-to-last 

positions of the genomes of paramyxoviruses, resulting in relatively low expression 

levels (16).  Envelope protein expression can be augmented by increasing the copy 

number of their coding cistrons and/or by moving these cistrons proximally within the 

viral genome (17-27). To develop an MV vaccine containing a greater immunogenic 

stimulus within the standard WHO-approved dosage, we constructed two recombinant 

MVs that express an additional copy of the hemagglutinin (H) protein in membrane-

bound or soluble form from the second position of a Moraten strain-equivalent genome, 

resulting in increased expression and incorporation or secretion of H while maintaining 

replicative fitness and stability.  We show here that both viruses induce significantly 

stronger neutralizing antibody responses in non-MV-susceptible mice.  The vector 

expressing additional envelope-bound H also proved more immunogenic in an MV-

susceptible mouse model and shows resistance to marginal levels of neutralizing 

antibodies in vitro. 
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MATERIALS & METHODS 

Cells and viruses. Vero/hSLAM cells (28, 29) were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM, Sigma-Aldrich, St. Louis, MO) supplemented with 5% fetal 

bovine serum (FBS, Atlanta Biologicals, Flowery Branch, GA), 1% penicillin-

streptomycin (Sigma-Aldrich, St. Louis, MO) and 0.5 mg/mL G418 (Enzo Life Sciences, 

Farmingdale, NY).  Helper 293-3-46 cells (30) were maintained in DMEM with 10% 

FBS, 1% PS, and 1.2 mg/mL G418.   

 Recombinant MVs were rescued using the method of Radecke et al. (30) modified 

by Parks et al. (31).  After detecting cytopathic effect in mixed cultures of Helper 293-3-

46 and Vero/hSLAM cells, individual syncytia were transferred to and propagated in 

Vero/hSLAM cells.  To prepare stocks of the viral clones thus generated, Vero/hSLAM 

cells were infected at a multiplicity of infection (MOI) of 0.03 and incubated at 37°C.  

When approximately 80% cytopathic effect was observed, cells were scraped in Opti-

MEM (Life Technologies, Grand Island, NY) and viral particles were released by two 

freeze-thaw cycles. 

 Multi-step growth kinetics of the viruses were measured by infecting 

Vero/hSLAM cells at an MOI of 0.03 and incubating them at 37°C.  Supernatants and 

infected cells were collected and lysed by a single freeze-thaw cycle at prescribed times 

post-infection, and the 50% tissue culture infectious dose (TCID50) was assessed in 

Vero/hSLAM using the Spearman-Kärber end-point dilution method (32). 

Construction and recovery of recombinant MVs.  The recombinant MVs were 

constructed in the background of pB(+)MVvac2(HBsAg)N (33).  The MV genome 

coding capacity in this plasmid is identical to those of the Moraten and Schwartz vaccine 
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strains (34) with an additional transcription unit (ATU) inserted downstream of the 

nucleocapsid  (N) cistron to direct the expression of an inserted foreign gene.  To obtain 

the recombinant MVs with higher H expression levels, MluI and AatII digestion swapped 

the HBsAg insert with a modified H cistron obtained by PCR. To generate the insertion 

for pB(+)MVvac2-H2, the H coding sequence was amplified by PCR from 

pB(+)MVvac2(HBsAg)N using forward primer 5’-

ACTGACGCGTCAGGGTGCAAGATCATCGA-3’ and reverse primer 5’-

ACTGGACGTCAATCTAGTGATGGTGATGGTGGTGTCTGCGATTGGTTCCATCT

TCCCGGGTGAC-3’ to amplify the entire transcribed region of H with 18 added 

nucleotides encoding a carboxy-terminal tag composed of six histidines (His tag). To 

generate the insertion for pB(+)MVvac2-Hsol, the same reverse primer was used in 

conjunction with forward primer 5’-

ACTGACGCGTATTATGTACAGGATGCAACTCCTGTCTTGCATTGCACTAAGTC

TTGCACTTGTCACAAATAGCCGACTTCATCGGGCAG-3’ to amplify the portion of 

the H cistron corresponding to the H stalk and ectodomain with additional sequence 

encoding a carboxy-terminal His tag and an amino-terminal signal sequence from 

interleukin-2.  MluI and AatII restriction sites are underlined. Sanger sequencing 

confirmed correct junctions and coding sequence within the ATUs.  

We constructed in the background of pB(+)MVvac2(ATU)N two additional 

viruses used as controls here, each encoding a fluorescent protein at the same locus as the 

insertions in pB(+)MVvac2-H2 and pB(+)MVvac2-Hsol. We inserted an enhanced green 

fluorescent protein (EGFP) as well as a red fluorescent protein (RFP, tandem dimer 

Tomato, obtained initially by PCR from pCS2-tdTO) coding sequence into the ATU 
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downstream of the N cistron. Expression of both proteins in cells infected with the 

corresponding virus was confirmed by epifluorescence microscopy. 

Western blot analysis.  For protein expression analysis, 1 x 106 Vero/hSLAM cells were 

seeded in 100-mm-diameter dishes and infected at an MOI of 0.3 with MVvac2-H2 or 

MVvac2(EGFP)N, or were mock-infected.  Forty h after infection, cells were washed 

three times with phosphate-buffered saline (PBS) then lysed with RSB-NP40 buffer (1.5 

mM MgCl2, 10 mM Tris-HCl, 10 mM NaCl, and 1% Nonidet P-40, Sigma-Aldrich, St. 

Louis, MO) plus protease inhibitors (cOmplete Mini Protease Inhibitor Tablets, Roche 

Diagnostics, Manheim, Germany).  The protein extracts were mixed with Laemmli buffer 

(Bio-Rad Laboratories, Hercules, CA) containing β-mercaptoethanol and denatured at 

96°C for 10 min. 

 To purify viral particles for protein incorporation analysis, the supernatants of 5 x 

106 cells infected with the parental strain MVvac2, MVvac2-H2, or MVvac2(RFP)N 

were initially clarified by centrifugation at 5,000 x g for 15 min in an SX4750 rotor.  The 

clarified supernatants were layered over a 2 mL 20% sucrose cushion and viral particles 

were pelleted by ultracentrifugation at 104,000 x g for 2 h in an SW 28 rotor.  The pellets 

were resuspended in TNE buffer (10 mM Tris [pH 7.8], 100 mM NaCl, 1 mM EDTA) 

and the infectivity of each particle preparation was determined by end-point dilution 

assay.  Purified particles were mixed with 6X SDS-PAGE sample buffer (0.35 M Tris 

[pH 6.8], 30% glycerol, 10.28% sodium dodecyl sulfate [SDS], 0.6 M dithiolthreitol, 

0.012% bromphenol blue) and denatured at 96°C for 10 min. 

 Protein extracts or purified virion lysates were separated by SDS polyacrylamide 

gel electrophoresis (PAGE) in a 4-15% or 10% acrylamide gel, respectively.  Protein 
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extracts were loaded in volumes that achieved equalized expression of F and N, while for 

the viral particles 2.5 x 103 TCID50 were loaded for each sample.  Following 

electrophoretic separation, proteins were transferred to nitrocellulose for immunoblotting 

using a 1:20,000 dilution of rabbit polyclonal anti-MV N, a 1:7,500 dilution of rabbit 

polyclonal anti-MV-F, a 1:10,000 dilution of rabbit polyclonal anti-MV-H (35), or a 

1:10,000 dilution of mouse anti-actin (Sigma-Aldrich, St. Louis, MO), followed by the 

appropriate horseradish peroxidase (HRP)-conjugated secondary antibody (GE 

Healthcare, Little Chalfont, United Kingdom).  An additional immunoblot was performed 

using a 1:5,000 dilution of anti-His (C-term)-HRP (Invitrogen, Carlsbad, CA).  Reactions 

were developed using a chemiluminescence kit (SuperSignal West Pico 

Chemiluminescent Substrate, Pierce Biotechnology, Rockford, IL). 

Immobilized cobalt ion affinity chromatography.  To isolate 6x His-tagged soluble H 

protein from the supernatants of MVvac2-Hsol-infected cells, 100-mm-diameter dishes 

were seeded with 1 x 106 Vero/hSLAM cells and infected with MVvac2 or MVvac2-Hsol 

at an MOI of 0.1.  Supernatants and cells were collected at 24 h intervals and lysed by 

one freeze-thaw cycle, and supernatants were clarified by centrifugation at 3,000 x g for 5 

min in an SX4750 rotor.  TALON Superflow Metal Affinity Resin (Clontech 

Laboratories, Mountain View, CA) equilibrated in interaction buffer (50 mM NaH2PO4 

pH 8, 200 mM NaCl, 1% Triton X-100) was added to the clarified supernatants for 2 h of 

batch-interaction.  The resin was subsequently washed four times in washing buffer (50 

mM NaH2PO4 pH 8, 500 mM NaCl, 5 mM imidazole, 1% Triton X-100), followed by a 

final wash in 0.5X PBS.  The resin was resuspended in 6X SDS-PAGE sample buffer and 

incubated at 96°C for 10 min, then separated by SDS-PAGE in a 10% acrylamide gel.  
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The electrophoretically separated proteins were visualized by staining with Coomassie 

Brilliant Blue G-250.  A replicate gel was transferred to nitrocellulose and subjected to 

immunoblot for the 6 x His tag as described above to visualize soluble H protein.  

Preparation of viral particles for thermostability assay and animal experiments.  To 

generate high titer preparations of purified viral particles, viral stocks were layered over 1 

mL 20% sucrose cushions through which viral particles were pelleted by 

ultracentrifugation at 147,000 x g for 2 h in an MLS-50 rotor.  Pellets were resuspended 

in TNE buffer and titrated by end-point dilution assay. 

Thermostability assay.  To test the thermostability of recombinant MVs, particles of 

MVvac2 and MVvac2-H2 were diluted in Opti-MEM to generate aliquots of 

approximately 1 x 105 TCID50/mL.  Aliquots of each virus were treated by incubation at 

4°C, 24°C, 37°, 45°C, or 96°C for one hour.  Additionally, one aliquot of each virus was 

titrated immediately to determine the baseline titer.  Titers were determined by 

measurement of plaque-forming units (PFU) generated in plaque assays.  Briefly, serial 

10-fold dilutions of the untreated or treated viruses were inoculated in duplicate onto 

Vero/hSLAM cells in 24-well plates.  After allowing 2 h for infection, the plates were 

overlaid with carboxymethylcellulose (CMC) in DMEM to bring the final concentration 

of CMC in the plate to 0.75%.  Five days later, titer was determined by counting the 

plaques per mL virus applied in the first well with discrete countable plaques, averaging 

the titers from the two tests.  Infectivity was calculated as the PFU/mL in the treated 

sample as a percentage of the PFU/mL in the untreated sample for that virus. 

In vitro neutralization of viruses with MV-immune sera.  To test the susceptibility of 

our recombinant MVs to neutralization by anti-MV antibodies, we performed a modified 
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logarithmic neutralization index using sera of defined MV neutralization titer from mice 

that had been immunized with MVvac2.  In a 96-well plate, 1:100 dilutions of sera  (MV 

neutralization titers of 1:33, 1:80, 1:133, 1:213, 1:427, 1:640, and 1:1066) in Opti-MEM 

were incubated with 1 x 104 TCID50 of MVvac2, MVvac2-H2, or MVvac2-Hsol for one 

hour at 37°C.  Following incubation, serial ten-fold dilutions of the serum-virus mixture 

were generated, then transferred onto Vero/hSLAM cells and incubated at 37°C for three 

days, at which time infectivity in the samples was assessed as TCID50.  

Mouse inoculations.  All experimental procedures were performed according to a 

protocol approved by the Arizona State University Institutional Animal Care and Use 

Committee. To determine the immunogenicity of recombinant MVs in a non-susceptible 

small animal host, groups of eight CD1 mice  (Jackson Laboratories, Maine) were 

inoculated initially by the intraperitoneal (i.p.) route with 105 TCID50 of purified viral 

particles in 100 µL of Opti-MEM.  Three weeks after the initial inoculation, the mice 

received a second i.p. dose of 105 TCID50 of purified particles in Opti-MEM.  Two weeks 

after the second dose, mice were bled.  Sera were separated and heat-inactivated at 56°C 

for 1 h. To determine the immunogenicity of recombinant viruses in an MV-susceptible 

model, groups of six HuCD46Ge-IFNarKO mice (36) were inoculated by the i.p. route 

with 103 TCID50 of the viruses in 100 µL of Opti-MEM.  Mice were bled 28 days post-

inoculation and sera were separated and heat-inactivated. 

MV microneutralization assay.  Serial two-fold dilutions of heat-inactivated sera in 

Opti-MEM were incubated with 100 TCID50 of MVvac2 for 1 h at 37°C.  Vero/hSLAM 

cells were added to the serum-virus mixtures and the plates were then incubated at 37°C 

for three days, at which time neutralization titer was assessed as the highest dilution of 



	   32 

serum capable of complete neutralization of infectivity, defined as the absence of MV 

cytopathic effect.  Neutralization titers were reported as the average of a determination 

made in triplicate.  

MV ELISA. Overall anti-MV IgG reactivity from available individual samples was 

determined with a mouse-adapted semi-quantitative ELISA kit (Alpha Diagnostic 

International, San Antonio, TX) and expressed as arbitrary ELISA units per milliliter by 

comparison with internal standards supplied by the manufacturer. 

RESULTS 

Generation of measles vaccine vectors encoding additional H protein in the second 

position of the genome. We hypothesized that H expression could be augmented by 

inserting an additional copy of the H-encoding sequence at a high-expression locus in the 

viral genome. To generate recombinant MV vaccines with an increased expression of H, 

we made use of a previously described MV cDNA identical in amino acid sequence to 

the Moraten vaccine strain with an inserted additional transcriptional unit (ATU) 

downstream from the N cistron (34).  Initially, an additional copy of the full-length 

Moraten H-encoding sequence was cloned into this ATU, yielding pB(+)MVvac2-H2 

(Fig. 2.1A).  To distinguish expression at the ATU from expression of H at its native 

locus in the viral genome, we tagged the extracellular carboxy-terminus of H with six 

histidines (His tag), increasing the length of the additional H copy to 623 amino acids.  

By this approach, we expected pB(+)MVvac2-H2 to generate recombinant MVs 

incorporating additional H into the viral envelope.  We then generated a second vector 

encoding a modified copy of H from the same ATU locus.  Here we exchanged the 

amino-terminal cytoplasmic tail and transmembrane region of the additional H (58 amino 
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acids) with 20 amino acids corresponding to the signal sequence of interleukin-2.  The 

modified copy of H was again marked with a carboxy-terminal His tag for a total length 

of 565 amino acids, following cleavage of the signal sequence.  We expected this 

recombinant genome to direct secretion of soluble forms of H from infected cells, and 

thus named it pB(+)MVvac2-Hsol (Fig. 2.1A). 

 We rescued the two recombinant viruses using the system of Radecke et al. (30) 

and assessed their replication fitness in vitro by multi-step growth kinetics using as hosts 

Vero/hSLAM cells and primary chick embryo fibroblasts grown at 370C and 320C, 

respectively. The replication of parental MVvac2 was determined as reference.  As 

shown in Fig. 1B, in Vero/hSLAM cells recombinant vectors with an additional H copy 

reached maximal titers of approximately 106.5 to 106.25 TCID50/mL for cell-associated 

virus and of 104 to 105 TCID50/mL for cell-free virus at 36 and 48h post-infection, 

respectively.  Viral replication in chick embryo fibroblasts did not show a different trend 

(Fig 2.1C). Recombinants and the parental strain MVvac2 reached titers around 104 

TCID50/mL for the intracellular and an order of magnitude lower for the secreted virus at 

6 days post-infection. Thus, our recombinant viruses with duplicated H genes thus 

replicated as efficiently as the parental strain using two different cell substrates.  Finally, 

we determined viral plaque size in Vero/hSLAM cells. While the parental strain MVvac2 

and MVvac2-H2 had indistinguishable, homogeneous plaques with a diameter of 1.09 

mm in average, MVvac2-Hsol showed heterogeneous plaques of 0.51 to 1.2 mm in 

diameter (Fig 2.2D).   

Recombinant MVs express H at higher rates.  We initially tested whether our 

incorporation of an additional H-encoding cistron in the genome of MVvac2-H2 resulted 
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in increased H expression by Western blot of infected cell extracts, 48 h post-infection.  

Non-infected cells and cells infected with the reference MVvac2(eGFP)N  were used as 

controls.  With approximately equivalent levels of expression of actin and two viral 

proteins, N and F, expression of H was greatly increased in cells infected with MVvac2-

H2 (Fig. 2.2A).  We also documented that the expression of the immature form of the F 

protein (an approximately 60kDa protein band) was slightly increased in MVvac2-H2-

infected cell extracts.   

To test if the increased cellular expression of H resulted in increased 

incorporation of H into virions, we performed a similar analysis using purified particles 

of MVvac2-H2, with MVvac2 and MVvac2(RFP)N  as controls.  Western blot detection 

of 2.5 x 103 TCID50 of purified particles of each virus demonstrated increased levels of H 

in MVvac2-H2 particles (Fig. 2.2B).  While expression of N and F is also slightly higher 

in MVvac2-H2 particles, densitometric analysis of the blots revealed an approximately 

1.5- to 3-fold increase in the ratio of H to the other viral proteins in MVvac2-H2 relative 

to MVvac2, supporting increased incorporation of H into MVvac2-H2 virions.  The bona 

fide nature of the analyzed material is supported by the absence of the immature form of 

F, as seen in lysates of infected cells. Additionally, immunoblot using an anti-His tag 

monoclonal antibody showed a band of approximately 78 kD, the expected size of the H 

protein, in MVvac2-H2 particles.  Taken together, these results indicate that the 

expression of additional His-tagged H protein from an ATU downstream of N in 

MVvac2-H2 results in increased cellular expression of H and enhanced incorporation of 

H into MVvac2-H2 particles. 
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 To test whether the enhanced H expression by MVvac2-Hsol induces the 

secretion of soluble H forms upon infection and to purify this protein using affinity 

chromatography, we collected supernatants of cells infected at an MOI of 0.1 at 24 h 

intervals and interacted their clarified supernatants with immobilized cobalt ion resin 

using a batch approach to isolate His-tagged proteins. We used supernatant from 

MVvac2-infected cells as a control.  We were able to isolate by affinity chromatography 

a protein doublet with electrophoretic migration of 73 and 70 kDa specifically in 

supernatants of MVvac2-Hsol-infected cells from 48 to 96 h post-infection (Fig. 2.2C, 

left panel). Quantitatively, according to our Coomassie stain analysis of the purified 

material, we estimated a yield of approximately 250ng/mL at 96h post-infection 

(intracellular virus replication peaked at 48-72h post-infection for this experiment). 

Furthermore, an immunoblot using anti-His tag antibodies to probe the affinity 

chromatography-purified material documented that the 73 kDa band protein results from 

the H secretion driven by MVvac2-Hsol infection from 48 to 96 h PI (Fig. 2.2C, right 

panel). These results indicated that soluble His-tagged H protein is expressed from the 

ATU of MVvac2-Hsol and secreted from cells; it is possible that the His tag addition 

altered its electrophoretic migration as observed in the Coomassie stained gel. 

Alternatively, immature unglycosilated His-tagged H was secreted from infected cells. 

Recombinant MV with enhanced H incorporation is as thermostable as 

parental MV and possesses a different kinetic of neutralization by measles-immune 

sera. To test the stability of MVvac2-H2 at temperatures ranging from 4 to 96°C, 

aliquots of purified viral particles, each with an infectivity of approximately 105 TCID50, 

were incubated at increasing temperatures for 1 h, using MVvac2 as a control.  Following 
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treatment, the remaining infectivity in each sample was determined by plaque assay and 

compared to the pre-treatment titer.  As shown in Fig. 3, MVvac2-H2 responds to heat 

treatment in a similar manner as MVvac2, maintaining most of its infectivity at 20°C for 

1 h, while the infectivity was reduced to 21% (MVvac2) or 25% (MVvac2-H2) of the 

pre-treatment titer by heating the viral particles at 37°C for the same period of time.  

MVvac2-H2 thus possesses equivalent thermostability to MVvac2, despite the enhanced 

H incorporation in its envelope. 

MV H is the major target of neutralizing antibodies against MV (37).  We 

therefore aimed to test whether the susceptibility to neutralization of our recombinant 

MVs expressing additional H differed from that of their parental strain.  We hypothesized 

that in the presence of marginal levels of anti-MV antibodies, additional envelope-bound 

H in MVvac2-H2 could remain free to bind receptors or to alter the ratio of H antigen to 

neutralizing antibodies, increasing the amount of antibodies required to prevent the virus-

cell interaction that triggers entry.  We assessed this by comparing the sensitivities of 

MVvac2, MVvac2-H2, and MVvac2-Hsol to neutralization in vitro by polyclonal mouse 

sera of varying neutralizing capacities generated by immunization with MVvac2.  

Aliquots of recombinant MVs or the parental strain, each with a defined equalized 

infectivity, were mixed with 1:100 dilutions of seven anti-MV serum samples, ranging in 

microneutralization titer from 1:33 to 1:1067, and incubated at 37°C for one hour.  

Residual infectivity was then determined by end-point dilution assay. 

 As shown in Fig. 2.4, for serum dilutions with relatively lower capacity to 

neutralize MV (neutralizing titer ≤1:213), all three viruses maintained their titer in an 

approximately equivalent manner.  When incubated with the more strongly neutralizing 
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preparations obtained from dilutions of neutralizing sera with titers >1:427, however, 

MVvac2 precipitously lost most of its infectivity so that the aliquot incubated with the 

most strongly neutralizing sera retained less than 0.1% of its original titer, while 

MVvac2-H2 retained approximately 10% of its original titer.  Indeed, while MVvac2 

infectivity declined almost three logs in titer over the assayed range of neutralization, 

MVvac2-H2 lost only one log of titer over the same series.  This suggests that the 

presence of additional H protein on the envelope of MVvac2-H2 renders this virus 

relatively more resistant than MVvac2 to neutralizing antibodies.  Since MVvac2-Hsol 

and MVvac2 preparations had a theoretically equivalent viral surface, they showed a 

similar pattern of reduction in infectivity in response to serum dilutions of increased 

neutralization potential.  

MVs expressing additional H are more immunogenic. Since H is the major 

antigenic target of neutralizing immunity, we hypothesized that the enhanced expression 

of H protein by our recombinant MVs correlated with an increased immunogenicity 

relative to that of the parental vaccine strain.  To test this hypothesis, we initially 

inoculated non-MV-susceptible CD1 mice with the three viruses.  This animal host does 

not replicate measles to the best of our knowledge, but we reasoned that their immune 

system would detect differences in viral structure such as the enhanced display of H 

epitopes in the absence of the potentially confounding effects of viral replication.  In this 

host, we expected MVvac2-H2 to generate stronger neutralizing immunity, given the 

enhanced display of envelope-bound H by particles of this virus.  Three experimental 

groups of eight mice (MVvac2, MVvac2-2H, or MVvac2-Hsol) received two 

intraperitoneal doses of purified particles with an infectivity of 105 TCID50 on a 28 days 
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time interval.  Two weeks after the second dose, we assessed the neutralizing immunity 

of individual mice against MV by microneutralization assay.  In support of our 

hypothesis, animals that received MVvac2-H2 developed significantly higher 

neutralizing titers (1:733 in average) than those immunized with MVvac2 (1:297 in 

average Fig. 2.5A). This 2.46-fold difference reached statistical significance (P = 0.0229, 

unpaired two-tailed T test). Unexpectedly, MVvac2-Hsol also induced greater 

neutralizing titers in average than did MVvac2 in these mice, also statistically significant 

(1:861 vs. 1:297, respectively with P = 0.0473).  Furthermore, serous IgG reactivity 

against MV was determined using a quantitative ELISA.  As shown in Figure 2.5B, 

animals from the three experimental groups were indistinctively reactive against MV 

with readings from 181 to 468 arbitrary ELISA units per ml (AEU/ml).   To corroborate 

the antigenic nature of the inocula in terms of viral proteins composition, we analyzed the 

presence of N, F and H proteins in viral particles with an infectivity of 2.5 x 103 TCID50 

by immunoblots (Fig. 2.5C). We used the same viral particle preparations for 

immunoblots as were used for animal experiments.  As expected, MV H was 

incorporated to higher rate in MVvac2-H2 than MVvac2, while the viral surface of MV-

Hsol more closely resembled the virion surface composition of MVvac2, although with a 

relatively lower signal for MV N.  Since we were not able to detect the His-Tag signal in 

MVvacHsol virion preparations, the secreted Hsol may not have been passively adsorbed 

in virions. Thus, by increasing the incorporation of the MV H glycoprotein or inducing its 

secretion, we demonstrated an increased neutralizing immune response in CD1 mice.  

 To further validate the enhanced immunogenic potential of our recombinant MVs, 

we inoculated HuCD46Ge-IFNarKO mice with the viruses.  These mice express the 
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human CD46 receptor for vaccine strains of MV with human-like specificity in a type I 

interferon knockout background and are therefore susceptible to measles (36), allowing 

evaluation of our vaccine candidates’ immunogenicity in a more human-like model than 

the CD1 mouse.  In consequence, we inoculated animals with a single dose of 103 

TCID50.  Four weeks after inoculation, we documented neutralizing titers that were 

significantly higher in mice immunized with MVvac2-H2 than in those immunized with 

MVvac2 (1:79 vs. 1:214 in average respectively, P = 0.0436, Fig. 2.5D). Contrary to our 

expectations, mice immunized with a single dose of MVvac2-Hsol generated neutralizing 

titers almost three times lower but not significantly different from those documented in 

mice immunized with MVvac2 (1:79 vs. 1:27 in average respectively, P = 0.1117); 

MVvac2-Hsol provoked detectable neutralizing immunity in five out of six recipients 

while the other two viruses elicited measurable titers in all of the animals tested. As 

expected, Ig reactivity against MV did not differ among the three experimental groups. 

Quantitative readings from 7 to 23 AEU/ml were documented (Fig. 2.5E).  Again, the 

relative content of MV H, F and N was documented by immunoblot of viral preps used in 

the animal experiment and with the same infective potential (103 TCID50) as inoculated to 

the mice (Fig. 2.5F).  These demonstrated that the increase of measles immunogenicity 

per infective unit was not caused merely by the initial antigenic input. In sum, the 2.79-

fold enhanced immunogenicity documented for MVvac2-H2 confirms our hypothesis that 

increased display of H targets on the virion surface improves stimulation of neutralizing 

immunity against MV in two small animal models of measles vaccination, with similar 

rates of increased immunogenicity compared to the parental strain in both hosts.  
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DISCUSSION 

 Eradication of MV remains a theoretically feasible but elusive goal. The variable 

presence of maternal antibodies is the hurdle to overcome to reduce measles mortality 

among the very young. The use of DNA vaccines (38-50), non-MV vectors expressing H, 

F, and/or N (51-57), immune-stimulating complexes incorporating the H and F proteins 

(57) or a combination of these strategies (58) have been proposed.  Vaccination by these 

methods presumably avoids inhibition by maternal antibodies, and some have indeed 

proven protective when administered to infant macaques with circulating maternal 

antibodies. Still, for the most part, the strength, durability, and safety of the immunity 

induced by the current MV vaccine has been difficult to recapitulate in these 

experimental vaccines. Our approach is appealing because it takes advantage of the time-

tested efficiency of the current vaccine, industrial production and distribution operative 

procedures are already in place and safety studies would be arguably more 

straightforward and experience-based.  More appealing is the fact that our optimization of 

the current vaccine by genetically modifying its antigenic potency is cost-effective, if 

safety and efficacy as assessed in the macaque model support its further development. 

We show here that recombinant MV can express and incorporate additional 

copies of its hemagglutinin into its viral envelope by doubling the H cistron. In vitro, we 

have corroborated that passage six of MVvac2-H2 still expresses the additional copy of 

H. The genetic stability of the insertion of an additional copy of H gene in MV after in 

vivo passage remains to be explored. But in other studies, the stability of genetic 

modification in the MVvac2 vector platform has been documented after an in vivo 

passage in non-human primates.   Inactivation of the interferon-control viral proteins V 
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and C or expression of HBsAg (34, 59) was genetically stable. The genetic stability of 

MVvac2-H2 could be promoted, if necessary, by deletion of the native H cistron, forcing 

selection on the added copy of H at the high expression locus.  

Despite a careful clonal selection process, our MV-Hsol vector showed a 

heterogeneous array of plaque size in Vero/hSLAM cells. This observation might be 

caused by subtle interference of the soluble H protein with viral fusion. The two 

recombinants showed a conserved replicative profile in both Vero/hSLAM cells and 

primary chick embryo fibroblasts, grown at 320C, the latter of which are suitable for 

vaccine production. For our vector expressing an additional full-length copy of the H 

cistron, western blots demonstrated a much greater increase in the cellular expression of 

H than in its incorporation into virions. The excess of H expression relative to its 

incorporation suggests a structural limitation preventing further inclusion of H into 

virions. This result is interesting given the generally accepted pleiomorphic structure of 

measles virions (60-62).  Others have proposed the notion of a more highly structured 

particle for members of the Mononegavirales, such as Newcastle disease virus (NDV 

(63).  Such a rigid model of envelope structure for MV would seem not permissive of the 

up to three-fold incorporation enhancement of H per infectious unit documented here. 

Nonetheless, even the presumably more rigidly structured RV can incorporate additional 

glycoprotein units in its bullet-shaped envelope (19). It remains to be tested if further H 

expression intensifies H incorporation in a functional viral vector.  

The enhancement of H immunogenic stimulus increased neutralizing responses in 

both non-susceptible and MV-susceptible mice.  Inoculation of viral particles purified by 

ultracentrifugation resulted in improved induction of neutralizing immunity by our 
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modified H-expression vectors in non-susceptible, outbred mice.  We expected these 

hosts to provide only a limited number of replicative cycles, so that the antigenic stimulus 

these animals received would be majorly represented by the composition of the viral 

envelope. Purified viral particles were used to eliminate the presence of unincorporated H 

or soluble H present in crude viral preparations as a confounding factor, and as shown in 

the corresponding immunoblot. The MVvac-Hsol viral envelope did not differ majorly 

from the parental strain’s, indicating that the initial antigenic stimulus presented to the 

CD1 mice was the same for animals receiving either MVvac2 or MVvac2-Hsol. As 

expected, MVvac2-H2 was significantly more immunogenic than the parental vaccine 

MVvac2 in this host.  Surprisingly, MVvac2-Hsol also induced significantly higher 

neutralizing antibody responses than did MVvac2 in the CD1 mice.  In contrast, 

HuCD46Ge-IFNarKO mice represent a more human-like model of measles virus infection 

than CD1 mice; their interferon signaling-deficient background is permissive of viral 

replication.  These mice are susceptible to MV infection and considered the gold-standard 

small animal model for MV vaccine immunogenicity. Indeed, recent results from the first 

clinical trial of a recombinant MV vaccine vectoring Chikungunya glycoproteins 

document the relevance of immunogenicity results obtained using HuCD46Ge-IFNarKO 

mice as host in preclinical developments (64). A single IP dose of 103 TCID50 allowed a 

significant separation of vaccine performance. This dosage is equivalent to the minimal 

WHO-mandated dosage.  As in the CD1 mice, MVvac2-H2 was significantly more 

immunogenic than the parental strain, further supporting the notion that increased H 

dosage improves MV immunogenicity. Contrary to our findings in CD1 mice, MVvac2-

Hsol provoked immune responses from HuCD46Ge-IFNarKO mice that were not 
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statistically different from those observed in animals immunized with parental MVvac2, 

and in fact showed a downward trend. It is possible that production of high levels of 

soluble H subverted the immune response as observed in other viral systems (65).  The 

possibility that genetic differences between the outbred CD1 and our genetically 

modified HuCD46Ge-IFNarKO mouse strain account for the documented differences in 

immunogenicity is impossible to discard experimentally. The fact that serous anti-MV 

IgG reactivity determined by ELISA did not show any difference between experimental 

groups supports the idea that we have specifically increased neutralizing immunity with 

our approach while maintaining the overall anti-MV humoral immune response largely 

directed against MV-N.  

A more immunogenic MV vaccine might further support measles control. More 

robust neutralizing immune responses would positively impact the proportion of first-

dose responders and would prolong measles immunity after a second optimized dose 

(66). With the current 83-84% coverage levels (67), a more immunogenic vaccine will 

more efficiently reach herd immunity.  MVvac2-H2 might more reliably elicit efficacious 

neutralizing titers in very young infants where initiation of vaccination at six months of 

age has been successfully implemented in epidemic settings (68, 69).  Some have 

promoted the adoption of early (<9 months) vaccination against MV in endemic areas to 

reduce child mortality (70). We hypothesize that since our MVvac2-H2 vector has a 

different dynamic neutralization profile in vitro (Fig 4), it may maintain infective 

stimulus and immunogenicity better than the current vaccine in the presence of maternal 

antibodies, reducing infants’ window of susceptibility to measles. In the future, the 

potential of MVvac2-H2 in particular as an alternative pediatric vaccine can be more 
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definitely assessed in infant-like HuCD46Ge-IFNarKO models that incorporate features 

such as artificial or natural passive immunity and relative immunological immaturity. 
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Figure 2.1 Generation and multi-step growth kinetics of recombinant MVs expressing 
additional H protein. (A) Diagram of MVvac2, MVvac2-H2 and MVvac2-Hsol. In the 
second and third viruses an additional, engineered H coding sequence was inserted as an 
ATU downstream of the N cistron. MV genes are indicated in gray with the added copies 
of H in black. A lighter grey bar represents the signal sequence for interleukin-2 (IL2 ss), 
replacing the transmembrane region and cytoplasmic tail coding sequence of the added H 
cistron in MVvac2-Hsol to direct secretion of a truncated, soluble form of the H protein. 
Each added copy of H was modified to encode a six histidine tag (6X-His COOH) at its 
carboxy terminus, as indicated. (B) Time-course of cell-associated (upper panel) and cell-
free (lower panel) virus production at the indicated time points after Vero/hSLAM cells 
grown at 370Cwere infected at an MOI of 0.03 with either the parental strain MVvac2 
(black circles) MVvac2-H2 (grey squares), or MVvac2-Hsol (grey diamonds). Averages 
and standard deviations of three independent experiments are shown. (C) Growth kinetic 
profile of cell-associated (upper panel) and cell-free (lower panel) MVs obtained from 
primary chick embryo fibroblasts grown at 320C and infected at an MOI of 0.03, same 
symbols as the previous graphics.  (D) Viral plaque appearance in Vero/hSLAM cells 
infected with the indicated MV. Plaques were visualized five days post-infection when 
ethanol-fixed cells were stained with naphthol blue black.  
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Figure 2.2 Characterization of additional H expression by recombinant viruses. (A) 
Expression of H by MVvac2-H2 in infected cells. Total protein extracts from non-
infected cells or cells infected with MVvac2(eGFP)N (-GFP, a control virus expressing a 
fluorescent reporter from the same locus as the additional H) and MVvac2-H2 (-H2) were 
probed with antibodies against MV-H, F, N, and actin. Migration of molecular weight 
standards are indicated to the left. Detection of the immature form of MV F is indicated 
by an arrowhead. (B) Incorporation of the additional H in viral particles (right panel). 
Two thousand and five hundred TCID50 of sucrose-gradient purified particles of 
MVvac2, MVvac2(RFP)N (-RFP, a control virus similar to previous)  and MVvac2-H2 
served as antigenic material in immunoblots  using antibodies against H, the His tag, F, 
and N. (C) Detection of H sol in supernatant of cells infected with MVvac2Hsol. 
Coomassie stain (left panel) and anti His tag immunoblot (right panel) of immobilized 
cobalt ion affinity chromatography-purified supernatants of cells infected with MVvac2 
or MVvac2-Hsol. Supernatants were collected at the indicated time points after infection. 
Molecular weight standard positions are indicated to the left. 
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Figure 2.3 Thermostability of MVvac2-H2. Purified particles of MVvac2 or MVvac2-H2 
recombinant viruses were incubated at 4, 20, 37, 45, or 96 °C for 1 hour, then infectivity 
in each sample was determined by end-point dilution assay. Remaining infectivity is 
expressed as a percentage of the titer of pre-treatment particles. A representative 
experiment is shown. 
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Figure 2.4 Kinetic of neutralization of recombinant MVs by anti-MV polyclonal sera. 
Standardized titers of MVvac2, MVvac2-H2, or MVvac2-Hsol were incubated at 37 °C 
for 1 hour with 100-fold dilutions of immune sera of known anti-MV titer from 
HuCD46Ge-IFNarKO mice vaccinated with MVvac2. Anti-MV neutralizing potency 
ranged in titer from 1:33 to 1:1067 as indicated. Following incubation, the remaining 
infectivity in each sample was determined in triplicate by end-point dilution assay, and 
graphed. 
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Figure 2.5 Humoral immune responses in outbred and genetically modified mice 
vaccinated with MVs expressing additional H. (A) Groups of eight CD1 mice received 
two doses of 105 TCID50 of purified particles of MVvac2, MVvac2-H2, or MVvac2-Hsol 
on a 28-day interval.  Sera obtained 14 days after the boosting dose were assayed for anti-
MV neutralizing immunity. (B) Anti-MV IgG reactivity measured by ELISA, readings 
were obtained from individual mice; group average and standard deviation from each 
animal reading are shown. (C) Analysis of the antigenic composition of the viral inocula 
used for the previous experiment. Viral particles with the indicated infectivity were 
subjected to SDS-PAGE and analyzed by immunoblot using antibodies with the indicated 
specificity (D) Groups of six HuCD46Ge-IFNarKO mice received a single dose of 103 
TCID50 MVvac2, MVvac2-H2, or MVvac2-Hsol. Anti-MV microneutralization titers 
were assessed in sera obtained 28 days post-immunization. (D) Reactivity against MV 
determined by ELISA as before. (F) Analysis of expression of key MV proteins in viral 
preparations used for the previous animal experiment. Antigenic material of the same 
titer used in the animal experiment was subjected to SDS-PAGE, membrane-transferred 
and probed against the indicated antibody. In (A) and (D), statistical significance of 
differences in neutralizing immunity was assessed by two-tailed, unpaired t-test. In (B) 
and (E) AEU, arbitrary ELISA units were quantitatively determined by comparison with 
an internal MV standard.  
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CHAPTER 3 

A MEASLES VIRUS WITH INCREASED HEMAGGLUTININ EXPRESSION 

OUTPERFORMS THE IMMUNOGENICITY OF A MORATEN-EQUIVALENT IN 

AN INFANT-LIKE MOUSE MODEL. 

ABSTRACT 

 A more immunogenic measles vaccine that could be administered at a younger 

age would contribute strongly to the stalled effort toward measles eradication. This 

contribution builds upon previous work from our group reporting the development of a 

more immunogenic modified measles virus (MV) vaccine, MVvac2-H2, with increased 

hemagglutinin (H) expression and incorporation in the background of the current vaccine 

strain. Given that our previous work documented the immunogenicity of MVvac2-H2 in 

a mature mouse model, we aimed here to test its potential in more infant-like conditions. 

We show that MVvac2-H2 retains its enhanced immunogenicity when administered in 

purified particulate form to very young mice. Most interestingly, we show that MVvac2-

H2 resists low levels of neutralizing immunity in vivo, such that it is not inhibited at 

concentrations that prove significantly inhibitory for its parental Moraten vaccine-

equivalent, and subsequently induces significantly stronger neutralizing antibody titers 

than that parental vaccine. Finally, toward a more physiological model of maternal anti-

measles immunity transfer, we measure vertical acquisition of passive anti-MV immunity 

in the clinically predictive genetically modified MV-susceptible mouse model.   
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IMPORTANCE 

Despite the use of effective attenuated vaccines, measles still threatens 

unvaccinated populations, the most numerically significant of which is infants too young 

to be vaccinated by current means. We expand here on previous work from our group 

documenting the generation of two MV vaccines in the background of the current vaccine 

but with enriched production of H. Here, we show that our alternative MV vaccine 

incorporating additional H is more immunogenic than the current vaccine-equivalent in a 

very young small animal model and in the presence of artificial passive immunity, the 

primary limiting factor preventing vaccination of young infants. Our results support our 

central hypothesis that this virus will prove to be a more effective measles vaccine for 

young infants, a hypothesis that we are currently testing in a small animal model that 

combines both relative youth and the presence of natural passive immunity. 
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INTRODUCTION 

 Infection by measles virus (MV) continues to have a weighty effect on global 

health, and particularly on the health of the very young. Despite the use of safe and 

effective attenuated vaccines against MV for more than 50 years, this extremely 

infectious virus still killed 114,900 people in 2014, the great majority of them young 

children. Furthermore, though measles incidence declined drastically over the first four 

decades of attenuated vaccine use, measles incidence stabilized over the last decade at 

approximately 20 million cases and 100,000 to 150,000 deaths each year. Part of the 

continuing impact of MV results from the interplay of the extreme infectiousness of this 

pathogen, with a basic reproduction number of 15-20 (1), the imperfect effectiveness of 

current vaccines, and the low reliability of current vaccines in young infants. Indeed, up 

to 2-10% of recipients may lack protective immunity after vaccination (2). In a further 

limitation to herd immunity, apart from those individuals who fail to mount a successful 

response to vaccination, several significant groups are considered ineligible for 

vaccination by   current methods. Among these, the most numerous is the very young. 

 Infants below a certain age are considered ineligible for current MV vaccination 

methods due to their poor rates of seroresponsiveness. In countries with high risk of MV 

transmission, the vaccine is administered at 9 months of age, when it induces protective 

immunity in approximately 85% of recipients, while vaccination is delayed until 12 to 15 

months of age in countries at low risk of MV transmission, when it reaches its maximal 

efficiency of approximately 95% responsiveness in a single dose (3, 4). But the highest 

fatality and complication rates from MV infection occur in infants less than one year of  
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age (5). A next-generation measles vaccine with a higher rate of responsiveness and that 

can be administered to younger infants is thus needed.  

Previously, our group developed two Moraten-equivalent background modified 

MVs with added copies of the full-length (MVvac2-H2) or truncated (MVvac2-Hsol) 

hemagglutinin (H) cistron (6). For MVvac2-H2 in particular, its enhanced 

immunogenicity in two mouse models suggested that it might improve responses to 

vaccination, and its marginal resistance to in vitro neutralization by low levels of 

polyclonal immune serum suggested another intriguing possibility. The primary factor 

that limits successful vaccination of young infants is their variable retention of passive 

maternal immunity. This humoral immunity, passed across the placenta and in breast 

milk, protects against early life infection (7), but soon declines to subneutralizing levels 

that may interfere with vaccination but not with wild-type MV infection (8-11). The 

maintenance of infectivity by MVvac2-H2 in the presence of low level neutralizing 

immunity suggested another potential benefit of this modified virus as a new measles 

vaccine—it might retain immunogenicity in the presence of the maternal immunity that 

proves limiting for current vaccines.  

 We show here that MVvac2-H2 is more immunogenic than its parental Moraten-

equivalent, MVvac2, in young mice, while the immunogenicity of its counterpart, 

MVvac2-Hsol, could not be rescued in MV-susceptible mice. Compellingly, in the 

presence of artificially introduced sub-neutralizing anti-MV titers, mimicking what might 

be observed in a human infant, MVvac2-H2 induced substantially stronger neutralizing 

antibody responses than MVvac2, which was significantly inhibited. Finally, we 

document the transfer of passive anti-MV immunity in the gold standard MV-susceptible 
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mouse strain, and suggest its utility for evaluating next-generation infant-targeted MV 

vaccine candidates.  

MATERIALS & METHODS 

Cells and viruses. Vero/hSLAM cells served as hosts for growth of viral stocks and for 

microneutralization assays. Cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM, Sigma-Aldrich, St. Louis, MO) supplemented with 5% fetal bovine serum 

(FBS, Atlanta Biologicals, Flowery Branch, GA), 1% penicillin-streptomycin (Sigma-

Aldrich, St. Louis, MO) and also 0.5 mg/mL G418 (Enzo Life Sciences, Farmingdale, 

NY) to maintain expression of the hSLAM receptor.  

 Three MVs recombinant strains were used in the experiments presented here. The 

first, MVvac2 (12), has identical amino acid coding capacity to the Moraten and Schwarz 

vaccine strains and so serves as a current vaccine-equivalent control. The second, 

MVvac2-H2, a modified MV with increased expression of the H protein, was constructed 

by inserting an additional, His-tagged copy of the full-length H coding cistron into an 

additional transcription unit downstream of the nucleocapsid (N) cistron in the MVvac2 

genomic background. The third, MVvac2-Hsol, directs the secretion of a His-tagged, 

soluble form of the H protein. It is genomically identical to MVvac2-H2 except that its 

cytoplasmic tail and transmembrane region were swapped by a signal sequence of 

interleukin-2. The recovery of those strains by reverse genetics and their initial 

characterization has been described in detail elsewhere (6). 

 Viruses were amplified by passage at a multiplicity of infection (MOI) of 0.03 in 

Vero/hSLAM cells incubated at 37°C. When approximately 80% cytopathic effect was 

observed, cells were scraped in Hank’s Balanced Salt Solution (HBSS, Mediatech, 
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Manassas, VA) with 1% FBS, and viral particles were released by two freeze-thaw 

cycles. Viral titer was determined as 50% tissue culture infectious dose (TCID50) in 

Vero/hSLAM by the Spearman-Kärber end-point dilution method (13).  

Mouse inoculations and sera transfers. All experimental procedures were performed 

according to a protocol approved by the Arizona State University Institutional Animal 

Care and Use Committee.  

Immunogenicity of purified particles in young mice. To determine the immunogenicity 

of viral particles after a single human-standard titer dose in young MV-susceptible mice, 

groups of three-week-old HuCD46Ge-IFNarKO mice (14) were inoculated by the 

intraperitoneal (i.p.) route with a viral particle dose of 103 TCID50. Mice were bled 28 

days after inoculation and sera were separated and heat-inactivated. To test whether a 

second standard titer dose of viral particles boosted responses, groups of approximately 

five-week-old HuCD46Ge-IFNarKO mice were initially inoculated by the i.p. route with 

103 TCID50 of purified viral particles in HBSS with 1% serum. Four weeks after the 

initial inoculation, mice received a similar booster dose. Two weeks after the second 

dose, mice were bled, and sera were separated and heat-inactivated. 

Immunogenicity in the presence of artificial passive immunity. To artificially model the 

passive anti-MV immunity that hinders vaccination of young infants, we introduced 

dilute MV-immune serum to young HuCD46Ge-IFNarKO mice and subsequently 

inoculated these mice with MVs. Strongly neutralizing serum, with an anti-MV 

neutralization titer of 1:3413, was obtained from a HuCD46Ge-IFNarKO mouse 

immunized with two 105 TCID50 MVvac2 vaccine vector doses. This strongly 

neutralizing serum was diluted 1:300 in HBSS with 1% FBS for a final neutralization 
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potency of approximately 1:10. As a control, non-immune serum derived from a naïve 

HuCD46Ge-IFNarKO mouse was diluted and inoculated by the same procedure. Five-

week-old mice received 500 µL of the diluted anti-MV or the control serum via the i.p. 

route. One day after artificial introduction of passive immunity, the mice that received 

anti-MV serum were bled to measure anti-MV passive immunity present at the time of 

vaccination. Mice were inoculated by the i.p. route with a 105 TCID50 dose of MVvac2 or 

MVvac2-H2, or with vehicle alone. All mice were terminally bled 28 days after 

inoculation of viruses or mock to determine the immunogenicity of the viruses in the 

presence of artificial passive immunity. Sera were separated and decomplemented at 

56°C for 1 h. 

Kinetic of anti-MV maternal passive immunity transfer. The kinetic of anti-MV 

maternal passive immunity transfer and waning in HuCD46Ge-IFNarKO mice was 

determined by comparing serous anti-MV neutralization titers of MV-immune dams to 

those of their two-, three-, and four-week-old pups. Initially, a single six-week-old female 

was inoculated with a 105 TCID50 i.p. dose of an MVvac2 vaccine vector and mated. She 

bore two litters. Anti-MV titers in pup sera were assessed for the first litter when they 

reached four weeks of age and for the second litter when they reached two weeks of age. 

For this group, pup titers were expressed both as their absolute value of reciprocal 

neutralization titer, and as a ratio compared to the immunity in their dam. To obtain an 

additional time point, 105 TCID50 of MVvac2 were inoculated by the subcutaneous route 

to three additional six-week-old females, which were subsequently mated. Neutralizing 

immunity was assessed at three weeks of age in pups of these immune dams and 

expressed as a ratio of their dam’s titer.  
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MV microneutralization assay. In 96-well plates, serial two fold dilutions of heat-

inactivated sera in HBSS with 1% FBS were incubated with 100 TCID50 of MVvac2 in a 

volume of 100 µL for 1 h at 37°C. An equal volume of DMEM with 5% FBS containing 

1 x 104 Vero/hSLAM cells was added to the serum-virus mixture in each well and the 

plates were incubated at 37°C for three days. Microneutralization titer was determined as 

the highest dilution of sera affording elimination of infectivity, defined as the absence of 

syncytia. Titers were reported as the average of a determination made in triplicate. 

RESULTS 

 MV incorporating additional H is more immunogenic in young mice. 

Previously, a modified MV with increased expression and incorporation of the full-length 

H protein, termed MVvac2-H2, proved significantly more immunogenic than the parental 

vaccine MVvac2 in mature (6-8 week old) outbred, non-susceptible CD1 mice and in 

mature genetically modified MV-susceptible HuCD46Ge-IFNarKO mice, eliciting 

approximately 2.5-fold higher neutralization titers than those elicited by MVvac2 in both 

animal models (6). On the other hand, MVvac2-Hsol, a modified MV that vectors a 

soluble form of H from a high expression locus, was significantly more immunogenic 

than MVvac2 in non-susceptible mice but slightly less immunogenic in MV-susceptible 

mice. We initially hypothesized that differences in the vaccination schedule used for each 

animal model accounted for the observed difference in the immunogenicity of MVvac2-

Hsol in the two mouse models; MV-susceptible mice received a single standard titer dose 

(103 TCID50) of viral preparation, while non-susceptible mice received two high titer 

doses (105 TCID50) of purified viral particles. 
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 To assess whether the immunogenicity of MVvac2-Hsol could be rescued in the 

more relevant MV-susceptible model by the use of purified viral particles rather than a 

crude viral preparation, we inoculated three-week-old HuCD46Ge-IFNarKO mice with a 

single dose of 103 TCID50 of purified viral particles. Four weeks later, we documented 

neutralizing immunity in sera of individual animals by MV neutralization assay. Titers 

followed the same trend as observed previously using the same immunization schedule 

but with crude viral preparations, with MVvac2-H2 inducing neutralization titers 2.13-

fold higher than those induced by MVvac2 (1:117 for MVvac2 vs. 1:249 for MVvac2-H2 

in average, Fig. 3.1) and MVvac2-Hsol inducing neutralization titers almost three times 

lower than those induced by MVvac2 (1:117 for MVvac2 vs. 1:40 for MVvac2-Hsol). 

One animal with an undetectable neutralization titer (<1:10) was observed in both the 

MVvac2-H2 and MVvac2-Hsol groups. At this point, it is unclear whether these outliers 

represent non-takers of the vaccine or whether the viruses were indeed able to replicate, 

but the animals failed to mount a neutralizing response. If the outlier is excluded from the 

MVvac2-H2 group, the difference in induction of neutralizing immunity between this 

virus and MVvac2 increases to 2.55-fold (now 1:299 for MVvac2-H2 in average) and 

reaches statistical significance (P = 0.0354, two-tailed, unpaired t test), while the 

difference is not significant if the outlier is included (P = 0.1248). For the MVvac2-Hsol 

group, exclusion of the outlier results in a non-significant difference in immunogenicity 

compared to MVvac2 (now 1:50 for MVvac2-Hsol in average, P = 0.0599), while this 

animal’s inclusion results in a significant difference (P = 0.0383). Though the statistical 

importance of these results thus remains undefined, this nonetheless documents 

approximately equivalent differences in immunogenicity using either inocula prepared 
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from purified viral particles or from cell lysates in MV-susceptible mice, with induction 

of neutralizing antibody responses more than 2-fold higher by MVvac2-H2 and nearly 3-

fold lower by MVvac2-Hsol than those induced by parental strain. We thus rejected our 

hypothesis that use of purified viral particles could alone improve the immunogenicity of 

MVvac2-Hsol in a single standard titer dose in susceptible mice. Furthermore, the 

difference in age between animals with neutralizing titers documented here (three weeks) 

and in previous experiments (six weeks) (6) demonstrates that even relatively young mice 

develop higher neutralization titers in response to MVvac2-H2 than in response to 

MVvac2. 

 We next assessed whether the use of two doses of purified particles could boost 

responses against MVvac2-Hsol. Groups of mice received two doses of 103 TCID50 of 

purified particles of MVvac2, MVvac2-H2, or MVvac2-Hsol on an interval of 28 days. 

Two weeks after the boosting dose, mice inoculated with MVvac2 or MVvac2-Hsol 

developed comparable levels of neutralizing immunity (1:173 vs. 1:152, respectively, P = 

0.7874). The use of two doses of particles in MV-susceptible mice thus improved 

neutralizing responses induced by MVvac2-Hsol in most mice to match those induced by 

MVvac2, but failed to improve the immunogenicity of MVvac2-Hsol to the level 

observed in non-susceptible mice. Mice that received MVvac2-H2 developed 

neutralization titers 2.53-fold higher (1:437 in average) than those documented in 

MVvac2 recipients, with the notable caveat that neutralizing responses from two animals 

in the MVvac2-H2 group were undetectable by our neutralization assay. As above, it is 

currently not clear whether these animals were non-takers or failed to develop  
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neutralizing immunity, but the presence of non-neutralizing immunity could be assessed 

by anti-MV ELISA. 

 Taken together, these results suggested that the difference in induction of 

neutralizing immunity by MVvac2-Hsol in non-susceptible versus MV-susceptible mice 

did not result from differences in the vaccine schedules and inocula used in each animal 

model. Given that we could not reproduce the enhanced immunogenicity of MVvac2-

Hsol observed in non-susceptible mice in the MV-susceptible model, we focused further 

testing in this latter, more relevant model on MVvac2-H2, which demonstrated consistent 

enhanced immunogenicity. 

 MV incorporating additional H is more immunogenic in the presence of 

artificially introduced, low level, anti-MV passive immunity. In previous work from 

our group, MVvac2-H2 proved more resistant than did MVvac2 to diluted strongly 

neutralizing serum in vitro. For example, when both viruses were incubated with a 100-

fold dilution of polyclonal mouse serum with a microneutralization titer of 1:1066, thus 

generating a solution with approximate anti-MV titer of 1:10, MVvac2 retained less than 

0.1% of its infectivity, while MVvac2-H2 retained approximately 10% of its original 

infectivity (6). Based on these results and its performance in mouse models, as discussed 

above, we hypothesized that MVvac2-H2 would better induce humoral immunity at 

protective levels than would MVvac2 in the presence of sub-protective, low level 

neutralizing immunity. Specifically, we predicted that MVvac2-H2 would induce higher 

neutralizing titers than MVvac2 would in the presence of passive immunity. To initially 

test this, we sought to artificially introduce in vivo enough neutralizing serum potential to 

allow us to discern between the infectivity retention of MVvac2 and MVvac2-H2. We 
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aimed to introduce an approximate titer of 1:10 anti-MV in HuCD46IFNarKO mice by 

inoculating diluted MV-immune serum to the animals. The day after administration of 

passive immunity, three experimental groups consisting of two (mock), seven (MVvac2), 

or eight (MVvac2-H2) mice were bled and then received a single intraperitoneal dose of 

105 TCID50 virus or vehicle alone. A control group of mice received diluted non-immune 

sera the day prior to inoculation with either MVvac2 (seven animals) or MVvac2-H2 

(seven animals). 

 As expected, the passive anti-MV serum became further diluted within the mouse 

system so that anti-MV titers in sera obtained from mice on the day of viral inoculation 

fell below the limit of detection by our microneutralization assay (<1:4). Though only 

sub-neutralizing anti-MV passive immunity was thus introduced, this passive immunity 

nonetheless interfered with vaccination by MVvac2. Mice vaccinated with MVvac2 in 

the presence of anti-MV artificial passive immunity developed 17-fold lower neutralizing 

titers on average (1:43) than those vaccinated with MVvac2 in the presence of control 

non-immune artificial passive immunity (1:731), a difference that was highly statistically 

significant (P = 0.0005, Fig. 1). On the other hand, while mice that received MVvac2-H2 

in the presence of anti-MV artificial passive immunity developed 1.86-fold lower titers 

on average (1:242) than those that received MVvac2-H2 in the presence of the irrelevant 

sera (1:449), the difference did not reach statistical significance (P = 0.0749). 

Furthermore, in the presence of anti-MV immunity, MVvac2-H2 induced significantly 

stronger, 5.63-fold higher neutralizing titers than MVvac2 induced (1:242 vs. 1:43, 

respectively, P = 0.0375). Taken together, these results show that even very low levels of 

passive anti-MV immunity strongly inhibit the induction of active humoral immunity by 
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MVvac2. This low-level passive anti-MV immunity proved insufficient, however, to 

significantly interfere with vaccination by MVvac2-H2, though neutralization titers of 

animals inoculated with MVvac2-H2 in the presence of passive immunity trended 

slightly downward from those inoculated in the presence of dilute non-immune serum. 

MVvac2-H2 thus elicits significantly higher neutralizing antibody titers than MVvac2 

does in the presence of artificial passive anti-MV immunity. Interestingly, in the presence 

of the irrelevant non-immune sera, MVvac2 induced slightly higher neutralization titers 

than MVvac2-H2 (averages of 1:731 compared to 1:449, respectively, p=0.0500). We 

have also observed this trend, not reaching statistical significance, in another MV-

susceptible mouse model simply immunized with 105 TCID50 virus without prior 

introduction of homologous sera and bled 28 days after inoculation (averages of 1:516 

and 1:354 for MVvac2 and MVvac2-H2, respectively, p=0.3949).  

MV-susceptible mice transfer maternal anti-MV passive immunity from dam 

to pup. While the increased performance of MVvac2-H2 in the presence of artificially 

introduced passive immunity signals the promise of this candidate as an alternative 

pediatric MV vaccine, we seek to evaluate the modified virus in a more physiologically 

relevant mouse model. Specifically, we seek to test the immunogenicity of MVvac2-H2 

in the presence of natural passive anti-MV immunity, transferred from dam to pup. 

Though we had every expectation that this transfer should occur in HuCD46Ge-IFNarKO 

mice, it has not been documented before, to our knowledge. We thus aimed to detect and 

quantify maternally-derived humoral immunity in pups of MV-immune HuCD46Ge-

IFNarKO dams. 
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Initially, a single female mouse received 105 TCID50 of an MVvac2 derivative 

and was co-housed with a male of the same strain. The female became pregnant and gave 

birth to two successive litters, which were analyzed at four and two weeks of age, 

respectively, to assess anti-MV passive immunity. Neutralizing immunity was also 

assessed in the dam at the time of collection of sera from the second, two-week-old litter. 

At two weeks of age, we documented neutralization titers in pups an average of 1.98-fold 

higher than those documented in their dam (1:133 on average vs. 1:67, respectively) (Fig. 

3.3A, B). By four weeks of age, neutralizing immunity in pups declined to a level similar 

to that in their dam (1:61 on average vs. 1:67, respectively, 0.91-fold difference).  

To obtain another, intermediate time point for measuring the waning of maternal 

passive immunity in this animal model, three additional female mice received 105 TCID50 

of MVvac2 and were co-housed with males of the same strain. The females became 

pregnant and each gave birth to a single litter. Neutralizing titers against MV were 

measured at three weeks of age in two pups from each litter, and anti-MV titers were also 

determined for their dams at the same time. Given that dams displayed a range of 

neutralization titers against MV (1:160, 1:267, and 1:320), pup versus dam titers for this 

second group were expressed only as the ratio of pup over dam titer (Fig. 3.3B). On 

average, neutralization titers of three-week-old pups were 1.21-fold higher than those of 

their dams. 

Altogether, MV-immune HuCD46Ge-IFNarKO dams thus passively transmit their 

own anti-MV humoral immunity to their pups. The efficiency of this transfer is such that 

passive immunity accumulates to levels almost twice as high as in dams when pups reach 

two weeks of age. Over the next two weeks of life, passive maternal immunity in pups 
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declines so that it approximates the level of immunity in their dams when pups reach four 

weeks of age. 

DISCUSSION 

 We show here that, consistent with our previous findings in older mice, young 

mice respond more strongly to MVvac2-H2 than to its parental current vaccine-

equivalent, MVvac2. Remarkably, in the presence of low levels of artificially introduced 

passive immunity, responses of MV-susceptible mice to MVvac2 are significantly 

inhibited, while those to MVvac2-H2 are not, and MVvac2-H2 thus induces significantly 

stronger neutralizing antibody responses than MVvac2 in the presence of this passive 

immunity. Finally, we show that female MV-susceptible HuCD46Ge-IFNarKO mice 

efficiently transfer anti-MV passive immunity to their pups. These mice are already 

considered the gold-standard small animal model for MV vaccine immunogenicity.  

Remarkably, data obtained from this mouse model of MV immunogenicity was recently 

corroborated in Phase I clinical trials (15, 16). Our results presented here further suggest 

the utility of HuCD46Ge-IFNarKO mice as a model for preclinical evaluation of 

experimental pediatric vaccines against measles. 

 In this and our previous work, we have shown that MVvac2-H2 can induce titers 

of neutralizing antibodies more than 2-fold higher than those induced by MVvac2 in both 

non-susceptible and MV-susceptible mice, at young (3 weeks) or older (6-8 weeks) ages, 

delivered in purified particulate or crude preparation forms, in one or two doses. 

Intriguingly, thus far the apparent single exception to the relatively enhanced 

immunogenicity of MVvac2-H2 is its administration in a high titer dose (105 TCID50) to 

MV-susceptible mice. Recipients of high titer MVvac2-H2 developed neutralizing 
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responses approximately 1.5-fold lower than those of MVvac2 recipients in this (Fig. 3.2, 

Non immune serum groups) and another MV-susceptible mouse model (Julik and Reyes-

del Valle, unpublished observation). Furthermore, while increasing the dosage of 

MVvac2 inoculated to HuCD46Ge-IFNarKO mice drastically increased the neutralization 

titers elicited, the increase is much more modest for MVvac2-H2. Use of 105 rather than 

103 TCID50 of MVvac2 increased neutralization responses nearly 10-fold from an 

average of 1:79 (my paper) to an average of 1:731 (Fig. 3.2, Non immune serum groups), 

while the same increase of viral dosage for MVvac2-H2 increased responses by only 

approximately 2-fold from an average of 1:214 (my paper) to one of 1:449 (Fig. 3.2, Non 

immune serum groups). While this difference in increase results partially from the 

enhanced immunogenicity of 103 TCID50 of MVvac2-H2 compared to MVvac2, it 

nonetheless points to a different dynamic range of induction of neutralizing immunity 

between MVvac2 and MVvac2-H2, where a single high titer dose of an MV vector with 

increased H expression paradoxically is less immunogenic. As mentioned, this effect 

disappears when the single dose is reduced by two orders of magnitude. It remains of 

great interest to us to test MVvac2-H2 at a medium titer dose, such as 104 TCID50. 

Furthermore, the presence of multiple animals with undetectable neutralizing titer in the 

groups of mice that received MVvac2-H2 and MVvac2-Hsol in the experiments 

presented in Fig. 3.1 suggests that the genetic stability of these viruses should be defined 

by sequencing viral genomes isolated after in vivo passage.  

 Previously, we documented a perplexing difference in the immunogenicity of 

MVvac2-Hsol in outbred CD1 mice, where this virus induced significantly stronger 

neutralizing antibodies than did MVvac2, as compared to in HuCD46Ge-IFNarKO mice, 
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where MVvac2-Hsol induced antibody titers on a downward trend from those induced by 

MVvac2 (6). The difference in vaccination schema for non-susceptible CD1 mice and 

MV-susceptible HuCD46Ge-IFNarKO could have precipitated this difference; non-

susceptible mice received two doses of 105 TCID50 of purified particles, while susceptible 

mice received a single dose of 103 TCID50 of a crude viral preparation. To test this, we 

initially changed the nature of the inoculated material, measuring neutralizing responses 

of MV-susceptible mice to 103 TCID50 of purified particles. We documented the same 

trend in immunogenicity as was observed when crude viral preparations of the same dose 

were inoculated to these mice, with MVvac2-H2 inducing stronger antibody responses 

and MVvac2-Hsol inducing slightly weaker neutralizing responses than MVvac2, and 

thus discarded the use of purified particulate material as the origin of the enhanced 

immunogenicity of MVvac2-Hsol in non-susceptible mice. Similarly, the administration 

of two doses of 103 TCID50 of purified viral particles to MV-susceptible mice boosted 

responses to MVvac2-Hsol to approximate those to MVvac2, on average, but could not 

recapitulate the enhanced immunogenicity of the modified virus that was observed in 

non-susceptible mice. These doses, of course, were lower than those administered to the 

non-susceptible animals. Even inoculation of 105 TCID50 of a crude preparation of 

MVvac2-Hsol to susceptible mice, however, could not improve their responses to match 

those mounted in response to MVvac2 (1:208 vs. 1:725, respectively, Julik and Reyes-del 

Valle, unpublished observation). We found these data sufficient to trust that MVvac2-

Hsol is slightly less immunogenic than its parental strain in HuCD46Ge-IFNarKO mice 

and, given that results in this mouse model have proven predictive for vaccine 

performance in clinical trials, we would expect MVvac2-Hsol to also induce slightly 
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lower neutralizing antibody titers in humans in the absence of passive immunity. It is 

important to note that observations in these animals do not necessarily predict vaccine 

performance in animals with passive immunity. For example, recombinant modified 

vaccinia virus vectoring the MV F and H proteins was less effective than a control in 

older macaques, but performed better than that control in infant macaques with passive 

immunity, where responses to the current vaccine were significantly inhibited (17). We 

nonetheless focused our efforts on MVvac2-H2, whose enhanced immunogenicity made 

it a stronger next-generation vaccine candidate. 

 Remarkably, in the presence of artificially introduced anti-MV passive immunity 

in the form of dilute homologous polyclonal immune serum, MVvac2-H2 elicits 

significantly stronger neutralizing immunity than MVvac2 elicits. The level of anti-MV 

passive immunity in mice on the day of viral inoculation fell below the limit of detection 

of our neutralization assay; we are working to more precisely define this level of 

immunity by a more sensitive logarithmic neutralization index approach. Nonetheless, 

passive immunity to MV was clearly successfully introduced, as neutralization responses 

to MVvac2 in the presence of anti-MV passive immunity were strongly significantly 

inhibited compared to responses in the presence of irrelevant artificial passive immunity. 

Responses to MVvac2-H2 were also slightly lower in the presence of anti-MV passive 

immunity compared to in the presence of non-immune serum, but the reductive effect on 

MVvac2-H2 was more than ten times less than the effect on MVvac2 and did not reach 

statistical significance. The slight downward trend of the immunogenicity of MVvac2-H2 

in the presence of anti-MV passive immunity suggests that this modified virus is not 

without limitation in its performance in the presence of neutralizing passive immunity. 
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Similarly, however, the much higher neutralization titers elicited by MVvac2-H2 than by 

MVvac2 suggest that the modified virus has also not reached its limit in terms of 

resistance to neutralizing immunity. It remains of interest to us to test the range of 

resistance of MVvac2-H2 to passive immunity in vivo by repeating this experiment in 

mice with different levels of artificially introduced neutralizing immunity. In this era of 

vaccination, however, when only approximately 40% (18) of infants have detectable 

maternal immunity by 4 months of age, and the neutralization titer of such immunity is of 

a low level correspondent to its waning, we may argue that vaccine performance in the 

presence of faded immunity is the most clinically relevant indicator of potential success 

in young infants.  

 The passive transfer of maternal immunity has been described in the cotton rat 

model of measles infection (19). To our knowledge, however, we present here the first 

report of the dam-to-pup transfer of passive maternal immunity to MV in HuCD46Ge-

IFNarKO mice. While unsurprising, this result is significant nonetheless, given the proven 

preclinical utility of this mouse model for testing MV vector vaccine responses. These 

results suggest the further utility of this model for testing responses to experimental 

infant-targeted MV vaccines. Certainly, there are known differences in the transfer of 

passive maternal immunity in mice as compared to humans. For example, human 

maternal immunity is transferred primarily across the placenta, and subisotype IgG1 is 

transferred most efficiently, while for mice, maternal antibodies are transferred primarily 

in breast milk (20, 21). Maternal immunity also accumulates and fades on a slightly 

different kinetic in humans compared to mice. Studies of the fading of human maternal 

immunity measured by neutralization titer have suggested an average half-life of 



	   79 

approximately 47 days (4). Our data suggest a more rapid half-life for the waning of 

neutralizing maternal immunity in these mice of approximately 14 days. Notably, in the 

cotton rat model where maternal antibody titers were also measured by neutralization 

assay (19), maternal immunity also appears to fade on a more rapid kinetic, similar to our 

observations. In these mice, neutralizing passive maternal immunity accumulated in pups 

to levels at least 1.98-fold higher than in their dams. While it is not clear whether this 

represents the absolute maximal accumulation of maternal antibodies in MV-susceptible 

mice, it nonetheless reflects observations in certain human populations, where maternal 

antibodies accumulate in newborns to levels 1.8-fold higher than in their mothers (18). 

Though the maximal accumulation of maternal immunity is not yet defined in mice, to 

our knowledge, the transfer of maternal immunity against hemorrhagic fever with renal 

syndrome virus from dam to pup was observed to peak at two weeks of age and had 

entirely disappeared by eight weeks of age in rats (22). In preliminary experiments, we 

also observed that maternal immunity can significantly inhibit pup responses to MVvac2 

(Julik and Reyes-del Valle, unpublished observations).  

 In sum, these data show that MVvac2-H2 maintains its enhanced immunogenicity 

in young MV-susceptible mice and in the presence of low levels of passively transferred 

anti-MV neutralizing antibodies. These two key observations support our central 

hypothesis that MVvac2-H2 will perform better than current MV vaccines in young 

infants. We expect this to prove true both in young infants retaining passive maternal 

immunity, where MVvac2-H2 may overcome the inhibitory effect of this immunity on 

vaccine responses, and in young infants lacking maternal immunity, where the enhanced 

immunogenicity of this vaccine at a standard titer dose will boost protective 
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neutralization responses. We also present a new twist on a proven mouse model for MV 

vaccination. The passage of neutralizing maternal antibodies in MV-susceptible mice will 

allow preclinical assessment of the performance of MVvac2-H2 in the presence of 

passive immunity. We anticipate that experiments presented here and ongoing 

experiments in our mouse model of natural passive antibody transfer will lay additional 

foundation for future evaluation of MVvac2-H2 in the most relevant animal model for 

MV, the macaque, where features like potential reactogenicity and protection from 

challenge can be assessed in addition to measuring immunogenicity. 
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Figure 3.1 Humoral responses of genetically modified mice vaccinated with one or two 
standard doses of purified particles. (A) Groups of five to six HuCD46Ge-IFNarKO mice 
received a single dose of 103 TCID50 of purified particles of MVvac2, MVvac2-H2, or 
MVvac2-Hsol and sera were assayed for anti-MV neutralizing immunity 28 days later. 
(B) Groups of five to six HuCD46Ge-IFNarKO mice received two doses of 103 TCID50 of 
purified particles of MVvac2, MVvac2-H2, or MVvac2-Hsol on a 28-day interval. Sera 
were obtained and assayed for anti-MV neutralizing immunity 14 days after the boost. 
Dashed line indicates limit of detection. 
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Figure 3.2 Humoral responses of genetically modified mice vaccinated with MV 
expressing additional H in the presence of artificially introduced passive anti-MV 
immunity. Groups of seven to eight HuCD46IFNarKO mice received 0.5 mL of diluted 
sera obtained from an MV-naïve mouse of the same strain (Non immune serum) or from 
a strongly MV-immune mouse of the same strain (MV immune serum). One day later, the 
mice received a single dose of 105 TCID50 MVvac2 or MVvac2-H2; an additional control 
group consisting of two mice that received MV immune serum the previous day were 
inoculated with vehicle alone (Mock vaccine). Twenty-eight days after the viral or mock 
vaccine inoculations, sera were obtained and assayed for anti-MV neutralizing immunity. 
Anti-MV microneutralization titers were assayed in the sera obtained on the day of viral 
inoculation and also in sera obtained 28 days later. Microneutralization titers obtained on 
the day of inoculation fell below the limit of detection by our test (<1:4). Dashed line 
indicates limit of detection. 
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Figure 3.3 Transfer of maternal anti-MV humoral immunity from dam to pup in 
HuCD46IFNarKO mice. (A) A single HuCD46Ge-IFNarKO female was vaccinated with an 
MVvac2 vector and mated to a male of the same strain. Sera were obtained from 
sequential litters from this dam at two or four weeks of age to assay anti-MV immunity, 
reported as the reciprocal of neutralization titer. Serum obtained from the dam was also 
assayed for comparison. (B) Pup anti-MV neutralization titers from (A) are reported as 
the ratio of pup to mother neutralization titer. To obtain an additional time point, three 
additional HuCD46Ge-IFNarKO females were vaccinated with MVvac2 and mated to a 
male of the same strain. Sera obtained from pups when they reached three weeks of age 
were assayed for anti-MV neutralization, expressed at the ratio of pup to mother 
neutralization titer. w, weeks; PI, post-immunization. 
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CHAPTER 4 
 

SUMMARY AND FUTURE DIRECTIONS 

 All in all, this work explores the competence of measles virus for enhanced 

expression of its hemagglutinin and the consequences of this modification. In Chapter 2, I 

describe the generation of two novel modified MVs with increased expression of 

incorporated, full-length or soluble, truncated H glycoprotein. The first recombinant MV 

is able to incorporate additional H protein to levels up to three-fold higher than observed 

in its parental strain, and this additional H incorporation likely accounts for the relative 

resistance of this modified virus to neutralization in vitro by immune serum without 

impacting its thermostability. The second recombinant MV is capable of secreting H 

glycoproteins in a measurable manner. I describe also the increased immunogenicity of 

these vectors with higher H expression in non-susceptible and, for the virus with 

increased H incorporation, in MV-susceptible mice. In Chapter 3, I document that the 

vector with higher incorporation of full-length H is more immunogenic than its parental 

strain in MV-susceptible mice at young ages and in the presence of artificially introduced 

passive immunity. These two features recapitulate barriers that prevent successful 

immunization of young infants using current MV vaccines, and constitute a major hurdle 

towards measles eradication.  I additionally present measurements of the transfer of 

neutralizing maternal immunity in the gold standard MV-susceptible small animal model, 

and suggest the value of this genetically-modified mouse for ongoing and future 

evaluation of alternative pediatric MV vaccines that can circumvent maternal immunity 

either by enhanced immunogenicity or by surpassing the waning maternally-acquired  

 



	   89 

immunity that contraindicates the administration of current measles vaccine to very 

young infants. 

This effort intrinsically depended on the robustness of the measles virus reverse 

genetics system, which has provided a platform for production of recombinant and 

modified MVs (1), as well as a full-length, infectious cDNA encoding a Moraten-

equivalent genome with engineered unique restriction sites for insertion of additional 

coding sequence (2). Immunogenicity studies presented in Chapters 2 and 3 also 

depended upon the availability of a reliable and relevant small animal model for 

preclinical evaluation of MV vaccines, the HuCD46Ge-IFNarKO mouse (3). 

This dissertation contributes to the field of vaccinology in three clearly 

discernible ways. First, while enhancement of glycoprotein expression has been reported 

for other non-segmented negative sense RNA viruses, this work represents the first such 

report for MV. Measles thus joins rabies, vesicular stomatitis, and respiratory syncytial 

viruses among vectors of the Mononegavirales that are amenable to such manipulation. 

For RV and VSV as for MV, increasing full-length glycoprotein expression can also 

improve immunogenicity (4-6), suggesting that this strategy might be more broadly 

applied among attenuated Mononegavirales vaccines to improve immune responses. This 

group of viruses has members that represent very important human pathogens. Nipah and 

Hendra viruses are the cause of lower respiratory-tract infections with high mortality and 

epidemic potential (7). Parainfluenza and Metapneumoviruses are the most frequent 

causes of viral pneumonia for children and adults (8, 9). Intriguingly, among the vectors 

whose glycoprotein expression has been increased by similar means as reported in this 

dissertation, increasing expression of the glycoprotein (G) of RSV failed to increase 
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either higher G-specific IgG or neutralizing responses, and increasing its fusion (F) 

protein expression similarly failed to increase neutralizing responses (10). As RSV 

natively produces an soluble version of its G protein through alternative initiation of 

translation (11), and we similarly observed relatively inefficient induction of immunity 

by our modified MV vectoring soluble H protein, we may speculate that high level 

production of soluble glycoprotein by Paramyxoviruses is not an effective strategy to 

enhance vaccine immunogenicity. To our knowledge this dissertation reports the first 

application of a virus with modified levels of envelope protein expression to avoid 

neutralizing immunity. While the vectors above have been evaluated for their 

immunogenicity in animal models, none have been tested for performance in the presence 

of passive immunity; we believe that such experimentation would be particularly 

interesting for these other, currently available vectors, and particularly for RSV with 

increased glycoprotein expression. For the MV with another copy of full-length H, we 

documented an up to three-fold increase of H incorporation into virions, but cellular 

expression of H was increased even to higher levels, which may suggest that this is the 

maximal increase of H expression that the MV envelope can incorporate. It remains of 

interest of us to see how modulation of H incorporation changes the neutralization 

susceptibility and immunogenicity of this virus. It would also be interesting to see the 

effect of modulating the level of MV F protein expression, given that this other envelope 

glycoprotein represents the other, albeit more minor, target of neutralizing immunity 

against measles. 

In a second broad contribution to the field, this dissertation suggests that new 

vaccines based on current attenuated MV strains represent a viable option for immunizing 
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infants against measles at a younger age. To our knowledge, this is the first report of a 

current MV vaccine-based strategy targeted as an alternative pediatric vaccine since the 

clinical trials that documented the improved immunogenicity of high titer attenuated 

measles vaccines (reviewed in Chapter 1). Development of alternative pediatric MV 

vaccines since that time has centered on DNA vaccines, non-MV vectors, and immune-

stimulating complexes, each delivering MV antigens (reviewed in Chapter 2). Apart from 

the potential of our MV vaccine with an additional copy of full-length H, we suggest that 

this work lays the foundation for other experimentation with the glycoprotein-coding 

capacity of current MV vaccines to attempt to improve their immunogenicity. For RV, 

for example, increased glycoprotein expression was initially achieved by increasing the 

coding gene’s copy number, but has also been increased by codon optimization of the 

single copy of the native gene (12), and this strategy could be applied to MV. It is also 

possible that changing, or increasing the diversity of, the genetic background of the MV 

H-coding gene in multiple copies could improve immunogenicity. For example, we 

considered inserting the H-coding sequence from the Edmonston-Zagreb vaccine, which 

induces a greater proportion of seroresponders in six-month-old infants than the Schwarz 

vaccine induces (13), into our Moraten vaccine strain-equivalent genetic background, 

which, notably, is also identical in terms of protein-coding capacity to the Schwarz 

vaccine. While four amino acids differ between the Edmonston-Zagreb and 

Moraten/Schwarz H proteins (differences L117F, V280A, T484N, S546G, using MVvac2 

H as reference for comparison to Edmonston H from GenBank AAF85697.1), they have 

not been predicted to contribute majorly to neutralizing immunity, and so we have not yet 

pursued this strategy, but it nonetheless provokes interesting possibilities. Substitution of 
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attenuated H for wild-type H in a wild-type MV background MV had an attenuating 

effect on the virus (14), but to our knowledge the inverse exchange (a wild-type H in a 

vaccine strain MV background) has not been documented. We may speculate that 

introduction of another copy of wild-type H in our Moraten-equivalent background might 

elicit stronger neutralizing immunity. Insertion particularly of another copy of H-coding 

sequence from a contemporaneous MV into the Moraten background might provide 

better protection. Finally, it has long been suggested that a non-MV Morbillivirus, like 

rinderpest, could avoid inhibition by maternal antibodies and elicit broadly protective 

anti-Morbillivirus immunity (Norrby, E., original communication). In similar manner, 

MV itself has long been used to vaccinate puppies against canine distemper virus in the 

presence of maternal immunity and has been shown to provide a degree of protection 

against challenge (15), and there is some evidence that immunity raised against other 

Morbilliviruses can cross-neutralize MV. For example, sera from cattle exposed to 

virulent rinderpest weakly neutralized MV in vitro (16). The eradication of rinderpest 

makes use of this virus itself an unfeasible strategy, but H-coding sequence from 

rinderpest or other Morbilliviruses might be inserted in multiple copies to the Moraten-

equivalent background to elicit a broad protective immune response. Overall on this 

point, we argue that modification of current MV vaccines represents a viable and, as yet, 

relatively unexplored strategy to achieve a successful vaccine for young infants. 

Third, and significantly, this dissertation identifies a promising candidate for an 

alternative pediatric measles vaccine. MVvac2-H2, so named for its increased expression 

of full-length H, induces significantly stronger immune responses than its parental current 

vaccine-equivalent in mature and young mice and, most remarkably, in the presence of 
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passive immunity. Currently, we are testing the performance of MVvac2-H2 compared to 

its parental strain, MVvac2, in the MV-susceptible mouse model of natural passive 

transfer of maternal immunity introduced in Chapter 3, where we anticipate that 

MVvac2-H2 will be able to induce protective levels of active neutralizing immunity in 

the presence of maternal antibodies that entirely inhibit pup responses to MVvac2. 

Moving forward, we suggest three main experimental thrusts that will together provide 

enough evidence for advancement of this vaccine to clinical trials. First, given the 

established importance of vaccine dose to infant responses, reviewed in Chapter 1, the 

dose relationship between MVvac2 and MVvac2-H2 in MV-susceptible mice should be 

established. Intriguingly, in this work we have shown MVvac2-H2 to induce significantly 

stronger neutralization responses than MVvac2 induces at a standard titer dose, but 

slightly lower responses than MVvac2 at a high titer dose. It remains of interest to us to 

measure the immunogenicity of MVvac2-H2 at an intermediate dose of 104 TCID50, the 

maximum allowable MV vaccine dose mandated by the World Health Organization (17). 

We aim also to evaluate whether there is a dosage of MVvac2-H2 that elicits a 

comparable neutralizing response to 105.3 PFU of MVvac2, which corresponds to the 

dose of the Schwarz vaccine that significantly improved 6 months old infant responses. 

Second, MVvac2-H2 should be evaluated for performance at a human-range dose of 103 

to 104 TCID50 in adult non-human primates. Macaques are susceptible to MV infection, 

allowing challenge after vaccination, and replicate many of the clinical and 

immunological features of MV infection in humans (18). Macaques have also been 

shown to develop an atypical measles-like syndrome upon challenge after administration 

of formalin-inactivated MV vaccine, and thus reproduce an important measles 
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complication of humans (19). Testing in adult macaques will thus allow evaluation of the 

reactogenicity in addition to the immunogenicity of MVvac2-H2, and will also allow 

assessment of protection from wild-type challenge. The third and most important arm of 

preclinical evaluation of MVvac2-H2 will consist of testing the efficacy of the vaccine in 

neonatal and infant macaques of an MV-vaccinated colony. This final experiment directly 

tests our central hypothesis, that MV with increased H expression will prove a better 

inducer of protective immunity than current vaccines in the very young, in the most 

relevant non-human model for measles. MVvac2-H2 should be administered in a 

standard dose of 103 to 104 TCID50 to young macaques divided into monthly cohorts from 

newborns to 12-month-old infants, with the presence of maternal immunity assessed in 

recipients just prior to vaccination. Immune responses of the young animals to 

vaccination should be measured, as well as protection from challenge one year after 

vaccination. We expect that MVvac2-H2 will evoke protection from infection at earlier 

ages than MVvac2 will. These experiments may provide a foundation for advancement to 

testing in humans.  

In sum, this dissertation explores modifications to the H-coding capacity of MV 

and most importantly presents a promising candidate, MVvac2-H2, for a next generation 

measles vaccine targeted to very young infants. I sincerely hope that this work will prove 

generative to the intelligent design of vaccines against measles and other viral pathogens. 
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