
GemV: A Validated Micro-architecture Vulnerability Estimation Tool

by

Srinivas Karthik Tanikella

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved December 2015 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Rida Bazzi

Carole-Jean Wu

ARIZONA STATE UNIVERSITY

May 2016



ABSTRACT

Several decades of transistor technology scaling has brought the threat of soft errors

to modern embedded processors. Several techniques have been proposed to protect

these systems from soft errors. However, their effectiveness in protecting the compu-

tation cannot be ascertained without accurate and quantitative estimation of system

reliability. Vulnerability – a metric that defines the probability of system-failure (re-

liability) through analytical models – is the most effective mechanism for our current

estimation and early design space exploration needs. Previous vulnerability estima-

tion tools are based around the Sim-Alpha simulator which has been to shown to have

several limitations. In this thesis, I present gemV: an accurate and comprehensive

vulnerability estimation tool based on gem5. Gem5 is a popular cycle-accurate micro-

architectural simulator that can model several different processor models in close to

real hardware form. GemV can be used for fast and early design space exploration

and also evaluate the protection afforded by commodity processors. gemV is compre-

hensive, since it models almost all sequential components of the processor. gemV is

accurate because of fine-grain vulnerability tracking, accurate vulnerability modeling

of squashed instructions, and accurate vulnerability modeling of shared data struc-

tures in gem5. gemV has been thoroughly validated against extensive fault injection

experiments and achieves a 97% accuracy with 95% confidence. A micro-architect

can use gemV to discover micro-architectural variants of a processor that minimize

vulnerability for allowed performance penalty. A software developer can use gemV

to explore the performance-vulnerability trade-off by choosing different algorithms

and compiler optimizations, while the system designer can use gemV to explore the

performance-vulnerability trade-offs of choosing different Insruction Set Architectures

(ISA).
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Chapter 1

INTRODUCTION

A soft error is a transient bit flip caused by external radiation, alpha particles,

neutrons, and cosmic rays Baumann (2005). With transistor technology scaling, soft

errors are becoming an important design concern Dixit and Wood (2011). Soft error

rate is increasing with decreasing feature size and supply voltage Martinez-Alvarez

et al. (2012). In modern embedded systems, reliability is especially important due to

aggressive dynamic voltage and frequency scaling Mahatme et al. (2013).

Many techniques have been proposed to protect embedded processors against soft

errors Nicolaidis (2011); Lee et al. (2011). However, soft error protection is not cheap,

and also not always effective. Traditionally, fault injection has been used to evaluate

the effectiveness of protection schemes against soft errors Entrena et al. (2012). Since

statistical fault injection is time consuming Nguyen and Yagil (2003), previous works

have used targeted fault injection to estimate the failure rate Michel et al. (1991);

Alkhalifa et al. (1999). However, estimating failure rate using targeted fault injection

is very difficult to set up correctly and is often flawed Shrivastava et al. (2014); Cho

et al. (2013).

An alternate method to estimate failure rate is to first estimate vulnerability

factor, which is the probability that a fault in a hardware bit will result in program

failure Mukherjee et al. (2005, 2003). For a given program, vulnerability is the sum of

vulnerable bits in a processor over its execution period. Compared to fault injection,

vulnerability analysis can be performed in a single simulation. This makes it useful for

fast and early design space exploration Biswas et al. (2008); Jeyapaul and Shrivastava
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(2011). Vulnerability analysis must take into account the effects of all masking effects

to accurately estimate the failure rate or reliability.

Several works have been presented to estimate the system vulnerability based on

cycle-accurate simulators Li et al. (2005); Fu et al. (2006). However, prior vulner-

ability estimations tools are limited by the underlying simulator platforms, due to

which they are: i) not comprehensive, i.e., only model the vulnerability of only a

small subset of the microarchitectural components of the processor, ii) are inaccurate

iii) are inflexible and iv) are not validated.

Gem5 is an accurate micro-architecture simulator Butko et al. (2012) that ad-

dresses several problems with previous simulators. It models the processor quite close

to hardware form and allows modeling various ISAs and also multicore processors.

In this work, we present gemV: a tool for comprehensive and accurate vulnerability

estimation based on gem5 Binkert et al. (2011). gemV comprehensively models the

architectural vulnerability for all the sequential components of a processor. Architec-

tural vulnerability takes into account the masking effects at micro-architectural level,

but does not consider logical masking or software level masking. gemV achieves accu-

rate architectural vulnerability estimation through i) fine-grained modeling of hard-

ware components in a processor, ii) correctly modeling the vulnerability of squashed

instructions, and iii) correctly modeling the vulnerability of inaccurately modeled

hardware components. gemV is thoroughly validated by extensive fault injection

experiments against benchmarks with minimal software masking. Extensive fault

injection experiments validate gemV to 97% accuracy with 95% confidence.

These qualities allow gemV to be used as an early design space exploration tool

for architectural vulnerability analysis. It enables us to answer questions like: how

does altering the issue width of the processor affect vulnerability? Is a dual-issue

processor more vulnerable than a single-issue processor? The answer is not obvious,
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as reducing the size of the hardware reduces the number of vulnerable bits at a given

time but it could also increase the runtime. Since bit-size and runtime affect vulner-

ability in opposing terms, the effect of varying hardware size can only be answered

through quantitative experiments. In the same vein, how does the number of cores

affect vulnerability? The algorithm of the program, the compiler used or the level of

optimization used also affect the runtime. These questions of the trade-offs between

runtime, hardware and software configuration, and vulnerability can now be answered

rapidly and accurately. A hardware designer can use gemV to find alternate proces-

sor designs to minimize vulnerability. In my experiments, I observe that vulnerability

decreases when increasing issue-width from 1 to 3. Beyond this, any increase in issue-

width does not have a noticeable effect on vulnerability as any decrease in runtime is

offset by the increased hardware size. A software designer can also use gemV to find

the least vulnerable algorithm for a program. For example, I show that switching

from a selection sort to a quick sort algorithm can affect the system vulnerability by

91%.
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Chapter 2

BACKGROUND AND PREVIOUS WORK

2.1 Background

Mukherjee et al. (2003) propose the concept of vulnerability and present a system-

atic methodology to calculate vulnerability. A bit b in a microarchitectural component

at a specific time t is vulnerable if a soft error in (b,t) results in system failure Mukher-

jee et al. (2003). Vulnerability is the sum of all vulnerable bits in a processor. The

vulnerability of a processor can be estimated through micro-archtectural simulation

by tracking the vulnerable bits in the processor. To accurately estimate vulnerability,

the simulation must evaluate the effects of masking. Masking occurs when a soft error

in a bit of the processor does not translate to system failure.

A transient error in a logical circuit might not be captured in a memory circuit

because of masking Blome et al. (2005). This masking could be because of:

Logical masking, which occurs when the transient error is effectively gated from

propagating futher due to other input values. For example, a transient error at the

output of a circuit which is ANDed with 0 is logically masked.

Temporal masking, which occurs when the transient error does not arrive at a latch

at the clock transition and is not latched.

Electrical masking, which occurs when the transient error is attenuated by subse-

quent logical gates due to the electrical properties of the gates.

Once a transient error is captured in a memory circuit, it is still possible for the

error to be masked by one of the following:
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Architectural masking, which occurs when the soft error is masked by the architec-

tural state of the processor. For example, a soft error in a misspeculated instruction

in an out-of-order processor does not result in system failure and thus is said to be

masked.

Software masking, which occurs when the soft error is masked by the instructions

being executed on the processor. For example, a soft error in a dynamically dead

instruction does not result in system failure and is said to be masked.

A vulnerability model that can capture all masking effects will give an accurate

estimation of reliability or failure rate. In this work, we only model architectural level

masking effects.

2.2 Limitations of Previous Works

Several works have used cycle-accurate simulators to estimate vulnerability. Soft-

Arch Li et al. (2005) modeled the error generation and propagation based on a prob-

abilistic model in Turandot simulator Moudgill et al. (1999), a trace drive simulator.

SoftArch Li et al. (2005) requires circuit-level details, such as latch and gate count,

to estimate vulnerability. This is not always possible during design space explo-

ration. Mukherjee et al. (2003) propose the concept of vulnerability and present a

systematic methodology for calculating it. However, this tool is not publicly avail-

able. The closest work to this is Sim-SODA Fu et al. (2006), a microarchitectural

simulator based vulnerability estimation tool which uses the Sim-Alpha simulator.

Sim-SODA presents a unified simulator framework to estimate the vulnerability of

various hardware structures within a processor using vulnerability computing meth-

ods introduced in Mukherjee et al. (2003). They estimate vulnerability by tracking

the vulnerable bits in the processor pipeline for committed instructions and discard-
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ing squashed instructions. However, Sim-SODA has several limitations primarily due

to the limitations of Sim-Alpha.

(i) Sim-SODA has limited usability due to Sim-Alpha. The Sim-Alpha

simulator Desikan et al. (2001b) is a purely user-level functional simulator. The

simulator has been shown to be up to 43% inaccurate in runtime estimations Desikan

et al. (2001a). They show that in many cases, Sim-Alpha underestimates the runtime

of macro benchmarks with a maximum negative error of -38.4%, while its performance

is inaccurate by up to 43% for other benchmarks. Since vulnerability is directly

proportional to runtime of the program Mukherjee et al. (2003), the inaccuracy is

also reflected in the estimated vulnerability. Furthermore, Sim-SODA is limited to a

single ISA (ALPHA) model. It can only simulate single core architectures and has

limited microarchitectural detail. Several pipeline buffers are not modeled in Sim-

Alpha. It does not model a floating point pipeline and thus is limited to integer

benchmarks.

(ii) Sim-SODA is inaccurate. They estimate vulnerability at a coarse level of

granularity, leading to inaccurate estimation of vulnerability. For instance, several

hardware structures in the instruction fetch and issue logic are modeled as a single

hardware structure – “the instruction window”, which does not model individual

hardware structures such as the fetch queue, decode queue, and therefore cannot be

evaluated for their vulnerability.

(iii) Sim-SODA is not comprehensive in its vulnerability modeling. Sev-

eral hardware structures such as the pipeline registers, rename map, and history buffer

are not modeled. Comprehensiveness is an important quality for a vulnerability es-

timation tool to study the breakdown of vulnerability of a specific hardware struc-

ture as a percentage of the total processor vulnerability. This is useful in studying

the effectiveness of new protection mechanisms and also in designing new protection
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mechanisms to target the hardware structure contributing the highest percentage of

the overall system vulnerability. Furthermore, Sim-SODA does not model realistic

hardware with protection mechanisms. Caches on many modern processors are built

with parity protection techniques or ECC. Modeling these protection mechanisms

within a vulnerability estimation tool allows for realistic estimation of vulnerability.

(iv) Sim-SODA tool is not validated. As described in Section 3.1.3 , gemV

has been validated against fault injection experiments and its accuracy established.
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Chapter 3

GEMV: FINE-GRAINED COMPREHENSIVE VULNERABILITY ESTIMATION

3.1 Modeling

This section describes my approach to gemV as a vulnerability estimation tool by

addressing the problems observed in previous works.

3.1.1 GemV is Accurate

I achieve accurate vulnerability estimation with a four-pronged approach:

Leveraging the gem5 simulator framework: gemV is built on gem5, which is

a pretty accurate cycle-accurate simulator, with 1-17% error in runtime estimation

Butko et al. (2012). Furthermore, unlike previous simulation infrastructures (e.g.,

Simplescalar, Sim-Alpha), gem5 models the microarchitectural components of pro-

cessor in a close to hardware form. This allows us to track the read and write to the

bits inside the component accurately and therefore model vulnerability accurately.

Further, gem5 has the ability to run in full system mode that can simulate the be-

haviour of an operating system. Any operating system activity during the execution

of the program should also be analyzed for vulnerability. By adding the vulnerability

due to operating system calls, the accuracy of total system vulnerability is improved.

Fine-grained vulnerability tracking: To understand why fine-grained modeling is

important, it is first important to understand what fine-grained modeling is. This sec-
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tion describes fine-grained modeling and its importance using two examples - pipeline

registers and cache.

A naive or coarse grained vulnerability analysis model views a hardware structure

as monolothic for the purposes of vulnerability analysis. This means that when an

instruction is read in that hardware structure, all the bits in the hardware structure

are considered vulnerable. In a fine-grained vulnerability model, the hardware struc-

ture is broken down into its indivudual fields. Some of these fields may not be used

by some instructions. For example, pipeline registers in the Rename/IEW stage have

fields to hold memory addresses for memory reference instructions. However, these

fields are not used by other instructions. Thus treating them as vulnerable would lead

to inaccurate vulnerabilty estimates. In an ARM-v7a pipeline, ALU instructions use

71 bits of the Rename/IEW pipeline stage, whereas memory-reference instructions

use 132 bits Jeyapaul (2015). Fine-grained modeling is thus important because not all

bits of a hardware structure are vulnerable for every instruction. During execution of

an instruction, only the bits in a micro-architectural component that store data spe-

cific to that instruction are vulnerable. By identifying the subset of fields in a pipeline

registers that are vulnerable for different instruction types, we can compare the dif-

ference between a fine-grained and a coarse-grained vulnerability model. The subset

of fields in the pipeline register used by different instruction types can be identified

using RTL analysis on the processor pipeline. As shown in Fig. 3.1, on an average

21% of the fields in the pipeline registers are actually vulnerable. Coarse-grained

vulnerability models assume that all the fields are vulnerable, thus overestimating

the vulnerability by 5X.

In the case of caches, coarse-grained vulnerability models treat entire cache blocks

as vulnerable. However, reads and writes to the cache often occur at the word-level.

Treating the entire cache block as vulnerable in this case would again lead to an over-

9



Figure 3.1: Percentage of Pipeline Register Fields That Are Actually Vulnerable. A
Naive Method of Vulnerability Analysis Assumes That All The Pipeline Register Bits
Are Vulnerable. However, Fine-grained Analysis Shows That Actual Vulnerability Of
the Pipeline Is Only 21% of the Naive Method.

estimation of vulnerability. Fine-grained vulnerability analysis is thus also important

for caches for accurate vulnerability estimation. Fig. 3.2 shows the comparison be-

tween a coarse-grained vs a fine-grained cache vulnerability mode. The coarse-grained

model treats entire cache blocks as vulnerable whereas the fine-grained model tracks

vulnerability for individual words in the cache. We observe that the coarse-grained

model consistently overestimates the vulnerability of the cache for various benchmarks

and on an average it overestimates it by about 12%.

To achieve fine-grained vulnerability estimation in gemV, I instrument every hard-

ware component modeled in the gem5 out-of-order processor with a Vulnerability

Tracker – which tracks the read/write accesses on each component and thereby com-

putes their respective vulnerable periods at the field level granularity. In this, with

10



Figure 3.2: Cache Vulnerability Comparison Between a Coarse-Grained (Word) and
Fine-Grained (Block) Model for Various Benchmarks. The Coarse-grained Model
Overestimates Cache Vulnerability By an Average 12%

.

the knowledge of the type of instruction accessing the hardware, instruction specific

vulnerability modeling can be applied. For instance, if an ALU instruction is passing

through the Rename/IEW pipeline stage, the vulnerability tracker only tracks the

vulnerability of the bits that are vulnerable for an ALU instruction. For the cache,

accesses to a word (in a cache-block) is monitored individually, and based on the con-

figured working of the cache architecture (movement of blocks between cache levels

and memory), the vulnerability periods are computed accurately.

Accurate modeling of the vulnerability of shared data structures in gem5:

As shown in Fig. 3.3, gem5 uses the dynamic instruction structure to handle the in-

tricacies of microarchitectural simulation in software. This structure is shared across

multiple hardware components such as the pipeline registers. This is done for ease

11



Figure 3.3: Shared Dynamic Instruction in Gem5 is Split Among Individual Hard-
ware Structures in GemV for Realistic Hardware Modeling.

of programming and fast simulation. However, this is not how the hardware would

work. Accurate vulnerability estimation requires that all hardware structures be in-

dependently analyzed. To achieve this, I modified the gem5 framework to separate

all the hardware components using the dynamic instruction and track their states

independently. This allows us to estimate the vulnerability and inject faults on each

hardware component independently.

Accurate modeling of the vulnerability of squashed instructions: Correctly

accounting for vulnerability when an instruction is squashed improves accuracy. An

instruction is squashed due to mis-speculation in an out-of-order processor. Under

these conditions, most of the bits used by the instruction are considered not vulner-

able. However, certain bits are still vulnerable. As shown in Fig. 3.4, the rename

map is used to maintain a mapping between architectural and physical registers. The

rename map uses a history buffer to maintain the previous mapping of an architec-

12



Figure 3.4: A Scenario Under Which the History Buffer is Vulnerable.

tural register. This is so that when an instruction is squashed, the processor state

can be rolled back to the last committed instruction. Therefore, when an instruc-

tion is squashed, the history buffer is vulnerable as it is read and the old mapping

written back to the rename map. Previous vulnerability estimation tools such as

Sim-SODA Fu et al. (2006) considered all squashed instructions to be not vulnerable.

However, one of the limitations of gemV is that it does not consider the effects

of software masking on vulnerability. Masking due to dynamically dead instructions

could impact the system vulnerability, but is not modeled in gemV.

3.1.2 GemV is Comprehensive

gemV is comprehensive as it models the vulnerability of all major hardware struc-

tures in a processor - such as the fetch queue, decode queue, rename queue, issue

13
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Figure 3.5: Breakup of Total Processor Vulnerability of Which 53% Has Not Been
Modeled in Previous Work.

queue. I also model the complete rename map by tracking vulnerability of the re-

name map, history buffer and pipeline queue registers. Fig. 3.5 shows the breakup of

processor vulnerability in the default configuration of gem5 ARM out-of-order pro-

cessor running stringsearch benchmark. About 54% of the total system vulnerability

that gemV models has not been modeled in previous works.

Figure 3.6: Vulnerability Tracking in GemV. The Tracker Tracks Read and Write
Accesses to Calculate Total Vulnerability.
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I classify the hardware structures in gem5 into two types for vulnerability mod-

eling. (i) Pipeline structures such as the fetch queue, decode queue, rename queue.

The vulnerability of these structures is modeled by tracking an instruction moving

through the pipeline. I track the cycles at which an instruction is written to and read

from a pipeline structures. (ii) Storage structures such as the register file, rename

table and history buffer. The vulnerability of these structures is modeled by inter-

instruction dependency. Reads and writes from all the instructions to these storage

structures is tracked to find vulnerable write to read intervals. As shown in Fig. 3.6,

if an instruction writes to the rename map at cycle t1 and another instruction reads

from the rename map at cycle t2. Then t2 − t1 is the vulnerable period of that entry

of the rename map. A vulnerability tracker records all the reads and writes to each

field in a structure along with the corresponding cycle number. When an instruction

is committed, the tracker compiles the sequence of reads and writes into vulnerable

tv and non-vulnerable periods tnv. The vulnerability of a hardware structure can be

calculated as
∑

tv ∗ S where S is the size of the hardware structure.

3.1.3 GemV is Validated

In order to establish the accuracy of gemV, I perform extensive fault injection on

every microarchitectural component modeled. For each fault injection run, a single-

bit in a component is flipped at a random time (during program execution). In this

validation campaign, I inject 300 faults per component for each of the ten benchmarks

from MiBench Guthaus et al. (2001) and SPEC CPU2006 Henning (2006). 300 fault

injections give us 95% confidence in the test results Leveugle et al. (2009).

Table 3.1 lists the results of the fault injection experiments. The results show that

component vulnerability estimated using gemV is about 97% accurate. Benchmarks

were chosen to minimize the effects of software masking on error propagation.
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Table 3.1: GemV Validation Against Fault Injection. 300 Faults Injected Per Com-
ponent for Each of the Following Benchmarks: Matrix Multiplication, Hello World,
Stringsearch, Perlbench, Gsm, Qsort, Jpeg, Bitcount, Fft, and Basicmath

Component Faults

Injected

Match Mismatch Accuracy

Register file 3000 2899 101 96.63

Rename map 3000 2748 252 91.60

History buffer 3000 2781 219 92.70

Instruction

queue

3000 2978 22 99.27

Reorder buffer 3000 2760 240 92.00

Load-store

queue

3000 2979 21 99.30

Fetch queue 3000 2890 110 96.33

Decode queue 3000 2902 98 96.73

Rename queue 3000 2827 173 94.23

I2E queue 3000 2959 41 98.63

IEW queue 3000 2873 127 95.77

Overall Accuracy 96.78%

I implement the fault injection setup in gem5. For components that are modeled as

independent structures (lists, queues, etc.), I implement a wrapper to pick a random

bit and flip it during a random cycle of execution. gem5 is designed such that there

is sharing of dynamic instruction information across some of the components like

ROB, LSQ and IQ. In such components, it is not possible to directly utilize the

software design to implement bit level fault injections. To circumvent this problem,

I instrument the simulator infrastructure in such a way that for each component the

bit-fields and structures can be manipulated independently.

The result of a validation run is declared as a match if the result of the fault

injection agrees with the prediction made by gemV. For example, if gemV predicts

that a bit is vulnerable, then the corresponding fault injection run should result in an
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incorrect output or program failure. As shown in Table 3.1, there are 2899 matched

results and 101 mismatched results for the Register File - accuracy of 96.63%.

3.1.4 GemV is Flexible

gemV is flexible in its support for multiple ISAs, multi-cores and system call

simulation Binkert et al. (2011). Due to this, gemV offers several advantages in

vulnerability estimation over previous works. Firstly, gemV can estimate vulnerability

irrespective of the underlying ISA. This can be used in estimating vulnerability of the

same program across different ISAs such as x86, ARM, SPARC, etc as demonstrated

in Fig. 4.3. Secondly, gemV can estimate the vulnerability of a program running on

out-or-order processors in both single core and multi-core configurations.

3.1.5 GemV Models COTS Processors

gemV is capable of estimating vulnerability for commodity off-the-shelf (COTS)

processors. This is achieved by taking advantage of the gem5 platform as an accurate

and complete simulator framework and further build on it by modeling protection

techniques such as parity and ECC protected caches. Several modern and popular

embedded processors such as the ARM1156T2S, ARM Cortex A8 and AM3359 Ko

et al. (2015) use parity protection for reads and writes in their caches. The vulnera-

bility of programs running on such processors can be studied using gemV.

3.1.6 Limitations of GemV

While gemV offers several advantages over existing vulnerability estimation tools,

it also has a few limitations. (i) gemV does not model several masking effects such as

logical masking and dynamic dead code masking. (ii) gemV is limited by the accuracy

of the processor model in gem5.
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3.2 GemV: Implementation in Gem5

gemV is implemented in gem5 with a Vulnerability Tracker. The vulnerability

tracker is a modular plugin to the gem5 code base that allows fast prototyping and

rapid development of vulnerability tracking for new components. An an instruction

passes through the pipeline, the vulnerability tracker tracks the reads and writes to

each hardware structure simulated in gem5. When the instruction is committed, the

vulnerability tracker computes its associated vulnerability.

The vulnerability tracker wraps around all reads, writes, commits and squashes

that occur in the gem5 simulation framework. For example, when an instruction

enters the rename stage, it is written in the rename table. The vulnerability tracker

captures the tick of this write as shown in 3.1.

Listing 3.1: Capturing a read in the register file with the vulnerability tracker

FullO3CPU<Impl>::readArchIntReg(int reg_idx, ThreadID tid)

{

intRegfileReads++;

PhysRegIndex phys_reg = commitRenameMap[tid].lookupInt(reg_idx);

//Vulnerability tracking. Capture the register number and the CPU cycle

this->regVulTrack.vulOnRead(phys_reg, tick);

return regFile.readIntReg(phys_reg);

}

Similarly, reads are also tracked in all the micro-architectural components. When

the instruction is retired after a commit or squash, the vulnerable intervals are cal-

culated from the reads and writes as shown in 3.2.
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Listing 3.2: Calculating vulnerable intervals when an instruction is retired

RegisterVulnerabilityCalculator::instRetire()

{

for(int idx = 0; idx < numRegs; ++idx) {

// Iterate over the list of reads and writes to find vulnerable

intervals

if(!hist[idx].empty()) {

std::list<History>::iterator hiter = hist[idx].begin();

Cycle previous_cycle = hiter->cycle;

Operation previous_op = hit->op;

while(hit != hist[idx].end()) {

// If READ after WRITE, then interval is vulnerable

if(hit->op == READ && (previous_op == READ || previous_op ==

WRITE)) {

vul += REGISTER_WIDTH*(hiter->this_cycle -

previous_cycle)/TICKS_PER_CYCLE;

}

prev_cycle = hiter->cycle;

prev_op = hiter->op;

hiter++;

}

}

}

}
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Chapter 4

GEMV FOR DESIGN SPACE EXPLORATION

The value of gemV is in making possible fast and early Design Space Exploration

(DSE). Radiation testing requires developers to build a fully working prototype before

evaluating the reliability, and even RTL fault injection requires developers to bring

down the design to synthesizable form before reliability can be quantified. As op-

posed to these, gemV allows designers to evaluate reliability at a very early high-level

modeling stage. As opposed to fault injections in micro-architecture simulator, gemV

is hundreds of times faster, since it can estimate reliability in just one simulation run.

4.1 GemV for Hardware Design

Figure 4.1: Different Hardware Configurations Generates Interesting Design Space
in Terms of Runtime and Vulnerability. Vulnerability Can be Reduced by up to 82%
With Less Than 1% Runtime Overhead by Varying Hardware Configurations.
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gemV can quantitatively answer difficult performance-vulnerability trade-off ques-

tions, e.g., how does changing the issue-width in a processor affect runtime and vul-

nerability? On one hand, a wider issue-width could reduce the runtime and therefore

vulnerability. But on the other, a wider issue-width requires more sequential com-

ponents in the processor, thus increasing the vulnerability. The overall effect on

vulnerability is not obvious. With gemV, we can study the effects of such changes

and quantitatively answer such difficult questions. For our benchmarks, we observe

that vulnerability decreases when increasing issue-width from 1 to 3. Beyond this,

any increase in issue-width does not have a noticeable effect on vulnerability as any

decrease in runtime is offset by the increased hardware size.

Extending this example to a larger design space, one interesting question is, that

given an existing processor configuration, and performance leeway, how can I change

some design parameters, e.g., cache sizes, issue width, ROB size, load store queue

size etc., to minimize the vulnerability. This can be answered with gemV by plotting

design points for runtime against vulnerability. In this experiment, we vary the

total number of entries in the Re-order Buffer(ROB), Load-Store Queue(LSQ) and

Instruction Queue(IQ) to plot a design space for stringsearch Guthaus et al. (2001)

as shown in Fig. 4.1. We establish a baseline runtime and vulnerability with sizes

of 192, 64, and 8 entries for ROB, LSQ, and IQ respectively. A hardware designer

can use this design space to choose the required hardware configuration as dictated

by runtime and vulnerability bounds. Given a certain runtime target, the hardware

designer can now find several design points for vulnerability as shown by the grey

band in Fig. 4.1. In this example, for a runtime overhead of ±2%, it is possible to

find a design point with 81% less vulnerability. Given any runtime or vulnerability

overhead it is now possible to find alternate design points with lower vulnerability or

21



runtime with gemV. Note that the benchmarks were chosen to minimize the effects

of software level masking effects.

Table 4.1: Runtime Overhead(%) For an Optimal Component Size to Minimize
Vulnerability

ROB IQ LSQ FW DW RW I2EW

Runtime Overhead % 1.18 49.55 85.36 41.74 41.43 43.89 0.65

ROB: Re-Order Buffer, IQ: Instruction Queue, LSQ: Load-Store Queue, FW: Fetch Width, DW: Decode Width,

RW: Rename Width, I2EW: Issue Width

Table 4.2: Vulnerability Overhead(%) For an Optimal Component Size to Minimize
Runtime

ROB IQ LSQ FW DW RW I2EW

Vulnerability Overhead % 5.83 42.85 27.89 20.12 20.28 20.64 2.46

ROB: Re-Order Buffer, IQ: Instruction Queue, LSQ: Load-Store Queue, FW: Fetch Width, DW: Decode Width,

RW: Rename Width, I2EW: Issue Width

I also find interesting trade-offs between runtime and vulnerability by varying the

size of a component with all other components fixed. For example, Table 4.1 shows

that choosing an LSQ size for minimum vulnerability will increase runtime up to

85% for stringsearch. Similarly, Table 4.2 shows that choosing an Instruction Queue

size for minimum runtime can increase vulnerability up to 43%. I can also observe

that the trend in vulnerability and runtime variation per component. For example,

runtime is more sensitive to LSQ size than vulnerability since runtime can be reduced

by 64% while vulnerability increases by just 28%. On the other hand, both runtime

and vulnerability decrease as the issue width increases. Interestingly, the issue width

affects vulnerability more adversely than the runtime as opposed to the LSQ. Runtime

and vulnerability can be reduced by up to 21% and 59%, respectively, with increasing

issue width.
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Figure 4.2: Different Software Configurations can Generate Interesting Design Space
in Terms of Vulnerability on the Same Hardware. Vulnerability can be Reduced by
91% Without Runtime Overhead With Software Changes.

4.2 GemV for Software Design

gemV can also be used by the software engineer to find alternate design points with

lower vulnerability or runtime. Alternate design points can be realized with software

changes in either the algorithm, the compiler used or the level of optimization. For

example, given the choice of two sorting algorithms - such as quick sort and insertion

sort - which would be the optimal choice for the best trade-off between runtime

and vulnerability? gemV can be used to study the design space for runtime and

vulnerability due to changes in software. To study such changes, we perform an

experiment by establishing a baseline runtime and vulnerabiity for an insertion sort

algorithm compiled with gcc at the highest(O3) level of optimization. Fig. 4.2 presents

the normalized runtime and vulnerability for various combinations of algorithms,

compilers and optimization levels. We consider an array sorting application with
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five sorting algorithms (bubble, quick, insertion, selection, and heap sorting), two

compilers (GCC and LLVM Lattner and Adve (2004)), and four optimization levels

(no optimization, O1, O2, and O3). We note that vulnerability can be reduced by

up to 91% without additional runtime overhead with software changes. The software

engineer can use this design space to choose optimal design points to meet runtime and

vulnerability requirements. In this example, switching from a selection sort algorithm

at O1 level of optimization to quick sort at O3 level of optimization reduces runtime

by 53.34% and vulnerability by 91.4%.

Table 4.3: Effects of Software Configuration(Algorithm, Optimization Level And
Compiler) On Run-time and Vulnerability (Sorting)

Mean (%) Max (%) Min (%)

Algorithm
Runtime 32.73 113.95 11.23

Vulnerability 140.77 1005.44 23.44

Optimization
Runtime 33.03 101.19 9.69

Vulnerability 120.39 739.46 6.06

Compiler
Runtime 26.39 52.33 0.35

Vulnerability 48.46 314.08 5.16

As summarized in Table 4.3, software changes can result in a large design space

for runtime and vulnerability. In general, vulnerability is much more sensitive to

the software configurations than runtime. The maximum increase in runtime can

be up to 114% by changing the sorting algorithm. The choice of compiler can also

affect vulnerability up to a 314%. This vulnerability-aware design space exploration

in software can allow the software designer to meet specific requirements in runtime

or vulnerability or both.

4.3 GemV for System Design

A system designer can also use gemV to make design choices in several interesting

ways. In this experiment, we will demonstrate two such examples. (i) Given a choice
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Figure 4.3: Variation in Runtime And Vulnerability For Stringsearch Under Differ-
ent ISAs

of processors running different ISAs, which one offers the best trade-off in runtime

or vulnerability? We ran this experiment by changing the ISA within gemV while

keeping all hardware sizes constant. Fig. 4.3 shows vulnerability and runtime under

different ISAs such as ARM, SPARC, x86, and ALPHA for the stringsearch bench-

mark, with no change in hardware and software configurations. Baseline vulnerability

and runtime are established on the ARM ISA. Stringsearch running on an ALPHA is

38% less vulnerable than an equivalent SPARC. The system designer can choose the

ARM ISA for minimum runtime or the ALPHA for minimum vulnerability.

(ii) The system designer can also study the breakdown of vulnerability to individ-

ual hardware components. This can be used to design protection techniques targeting

specific components.Fig. 4.3 shows the detailed breakdown of each component such

as HB (history buffer), RM (rename map), LSQ, IQ, IEWQ (IEW queue), I2EQ,

RQ, DQ, FQ, RF (register file), and ROB. History buffer and IQ take up the highest
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fraction (50%) of the vulnerability in an ARM processor while the Rename Map and

Register File contribute the most in case of SPARC and ALPHA respectively. In this

example, a protection mechanism such as ECC can be applied to the register file on

the SPARC processor. However, the same protection is not very useful on the ARM

processor as the RF contributes only 21% to the system vulnerability.
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Chapter 5

SUMMARY

Several protection techniques against soft errors have been proposed ever since

reliability became an important design concern. The need to quantitatively study the

effectiveness of such protection techniques have led to several vulnerability estimation

tools be proposed. However, previous vulnerability estimation tools are incomplete,

inaccurate, and inflexible due to limitations in the underlying simulator. In this

thesis, I present gemV, a comprehensive and accurate vulnerability estimation based

on the cycle-accurate simulator gem5. I also validate my tool against fault injection

experiments. To demonstrate the value in gemV as a design space exploration tool,

I perform several experiments useful to hardware and software engineers. For the

hardware designer, I show the effects of microarchitectural changes on runtime and

vulnerability. For the software designer, I show the effects of the algorithm, compiler

and optimization level on runtime and vulnerability. I also demonstrate the usefulness

of gemV to a system designer in designing component specific or ISA specific soft-

error protection techniques. In the future, gemV will also model the effects of software

level masking. This will improve the accuracy and comprehensiveness of our tool

even further. The github location of the gemV tool will be made publicly available

on publishing of this thesis.
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