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ABSTRACT

Bayesian networks are powerful tools in system reliability assessment due to their

flexibility in modeling the reliability structure of complex systems. This dissertation

develops Bayesian network models for system reliability analysis through the use of

Bayesian inference techniques.

Bayesian networks generalize fault trees by allowing components and subsystems

to be related by conditional probabilities instead of deterministic relationships; thus,

they provide analytical advantages to the situation when the failure structure is not

well understood, especially during the product design stage. In order to tackle this

problem, one needs to utilize auxiliary information such as the reliability information

from similar products and domain expertise. For this purpose, a Bayesian network

approach is proposed to incorporate data from functional analysis and parent prod-

ucts. The functions with low reliability and their impact on other functions in the

network are identified, so that design changes can be suggested for system reliability

improvement.

A complex system does not necessarily have all components being monitored at

the same time, causing another challenge in the reliability assessment problem. Some-

times there are a limited number of sensors deployed in the system to monitor the

states of some components or subsystems, but not all of them. Data simultaneously

collected from multiple sensors on the same system are analyzed using a Bayesian

network approach, and the conditional probabilities of the network are estimated

by combining failure information and expert opinions at both system and compo-

nent levels. Several data scenarios with discrete, continuous and hybrid data (both

discrete and continuous data) are analyzed. Posterior distributions of the reliability

parameters of the system and components are assessed using simultaneous data.
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Finally, a Bayesian framework is proposed to incorporate different sources of

prior information and reconcile these different sources, including expert opinions

and component information, in order to form a prior distribution for the system.

Incorporating expert opinion in the form of pseudo-observations substantially sim-

plifies statistical modeling, as opposed to the pooling techniques and supra Bayesian

methods used for combining prior distributions in the literature. The methods pro-

posed are demonstrated with several case studies.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

Due to the increasing rate of introduction of new products in today’s marketplace,

it is becoming more and more important to satisfy the consumers’ demands, which

requires that the products be highly reliable. As the demand of reliability is strictly

increasing, achieving high quality and reliability has become a default requirement

during a product’s life cycle. The complexity of engineered products have also in-

creased vastly over the last decades; therefore, the need to develop efficient methods

for reliability assessment and building tools to incorporate these methods into the

product’s life cycle is undeniable and a lot of researchers and engineers have worked

on reliability assessment of complex systems to achieve good reliable products.

Therefore this dissertation aims to address the reliability assessment problem and

presents Bayesian network approaches for two research problems: early system re-

liability during functional design stage and system reliability assessment with incom-

plete and overlapping data. A third problem this research addresses is how to com-

bine prior information from diverse sources for reliability assessment in a Bayesian

framework. Systems are getting more and more complex due to added functional-

ities; therefore, traditional methods like fault trees and reliability diagrams are not

capable of analyzing these complex systems properly. As a result, there is a need for

a method to model and analyze complex systems and evaluate the system reliability

by incorporating information from different sources.
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The first challenge for the research problems mentioned above is the lack of

complete compatible system reliability information. A complex system is usually

composed of sub-systems and components, structured in a hierarchy. In addition,

information comes from multiple levels of the system in different forms. In most of

the cases in real life, we do not have complete information coming from all levels of

the system. We propose a Bayesian network methodology to incorporate available

information into the system and component reliability assessment processes. Espe-

cially, during the design stage of a system, we may not have the detailed knowledge

of all possible failure mechanisms of the system, and the scarcity and poor quality of

reliability data during the design phase might be very problematic. In these cases, we

would like to learn more about the interactions between components and how they

work together and the effects of these interactions on system reliability.

Bayesian networks (BNs) have significant advantages over traditional reliability

assessmentmethods due to their efficiency in evaluating associations and simplicity in

providing a system assessment. They are very efficient at propagating the uncertainty

and updating the system with new data in the network. They are also applicable when

system structures are too complex to be represented by fault trees or reliability block

diagrams. As fault trees and reliability block diagrams model the system’s reliability-

wise structure in a deterministic way, they are in general ill-suited for a conceptual

design where even the components of system and their configurations have not been

determined. Bayesian network, on the other hand, can model the uncertainties in

various system functions and the generating processes of system functions, thus it

is a viable tool for studying product reliability at its early design stages. Therefore,

the purpose of this research is to gain reliability insight starting from early stages of

2



the design of a new product using different sources of information using a Bayesian

network framework.

1.2 Motivation

Reliability prediction at a product’s very early design stages has been gaining atten-

tion over the last decade. Build-in-reliability (BIR) and design-for-reliability (DFR)

philosophies have been a great influence on the necessity to estimate the reliability of

a product during its conceptual design phase. However, predicting reliability during

the conceptual design stage is challenging, as the available knowledge is very limited

and it is descriptive and qualitative in nature.

Bayesian network models have been proved to be powerful tools that provide

important advantages over traditional techniques in early reliability assessment. Tra-

ditional methods, such as fault trees or reliability block diagrams, do not show enough

flexibility to capture the uncertainties in the dependencies among components and

the system. Bayesian networks are modeled by conditional probabilities instead of

deterministic “AND” and “OR” relationships, providing a probabilistic measure of

dependencies between components and the system. They are especially useful during

the early stage of product design process when we are not sure about the reliability

structure of a complex system. When we use Bayesian inference techniques for pa-

rameter estimation, BNs provide a very efficient framework for combining informa-

tion from multiple sources and multiple levels for system reliability assessment. As

a result, we aim to use BN models and Bayesian inference together for dependency

assessment in system reliability. BNs can effectively address the uncertainty in all

stages of the product life cycle due to their probabilistic structure and they can solve

3



complex problems due to advancements in simulation-based computing techniques,

making them very favorable to work with.

Reliability assessment techniques in the early stages of the product development

process have been studied extensively in the past few decades. Most of these ap-

proaches are centered on component-specific failures (Kurtoglu and Tumer, 2008;

Stone and Wood, 2000; Derelöv, 2008). These studies mostly focused on the func-

tional design stage, and they were descriptive and qualitative in nature. Sanchez and

Pan (2011) provided statistical inference on the failure rate of a new design, emphasiz-

ing the value of reliability prediction at a product’s very early design stage. However,

their study also analyzed the failure causes of components individually. With the

advent of highly complex systems that derive functionalities from multiple domains,

more emphasis is required on identifying failures arising due to various interactions

among components, which is largely absent in existing failure analysis approaches.

There are many mechanisms through which failures occur in any given system.

One typical example of a complex failure mechanism is carburetor icing in internal

combustion engines (ICE), which results due to the freezing of air moisture dur-

ing the suction of highly humid air through the carburetor (Augustine et al., 2012).

An ICE has many components and these components all interact with each other.

We need to understand how these interactions affect the working mechanism of the

system in order to gain an understanding of the reliability structure. However, assess-

ment of these interactions in early stages of product development is limited due to

the general non-availability of hard numerical data and representative mathematical

relationships. There exist very few techniques that support effective identification

of failure mechanisms at the design stage and help generate an understanding of the

early reliability.
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Many advantages can be gained by beginning the reliability analysis of a new de-

sign at the conceptual design stage. The main advantage comes from arriving at a

more reliable product without the need for multiple redesigns in order to eliminate

failure modes in advanced stages of the design process, as happens in the traditional

approaches such as FMEA. Reliability for any product or service is crucial. It be-

comes even more crucial for those complex systems that cannot fail, such as military

weapon systems, aerospace systems, automotive systems and nuclear systems. For

new products in these applications, reliability must be considered in the design phase

to meet all the requirements given the high risks in case of failure.

In the early stages of product design, traditional reliability information is scarce.

Many studies in literature assess complex system reliability with complete indepen-

dent data. Therefore, it is of utmost importance to develop methods to incorporate

available information to assess system reliability. There might be different sources

of data that provide reliability information while designing a new product and these

data might be available from different components or different levels of the system,

as complex systems are usually structured in hierarchical levels. As another example,

we can think of a contaminant reduction device (CRD) used in automotive industry

(Sanchez, 2014; Yontay et al., 2015). If we would like to propose improvements on

the existing design to comply with some regulations, we will have to evaluate several

design options. Since the development of the CRD is in the conceptual design phase,

the data for the new model is scarce. In this scenario, using a Bayesian network to

create a graphical model of the design parameters (functions of the system) and com-

bine whatever information is available from the previous designs (parent products)

is crucial in assessing the early reliability of the device because of the uncertainty in-
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volved in the design. We can then compare different design options using the early

reliability analysis using a Bayesian network framework and choose the best design.

Motivated by the above-mentioned facts, this dissertation presents Bayesian net-

work methods for system reliability assessment of complex systems. The main moti-

vation for this research is to address the gap in the area of addressing the dependen-

cies in a system using incomplete and simultaneous data due to the fact that recent

research on BNs has mostly focused on using complete and independent data for

system reliability assessment.

1.3 Overview of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 proposes a

Bayesian network approach to incorporate data from functional analysis and parent

products in order to analyze the relationships among the functions of a system dur-

ing design stage. Chapter 3 and Chapter 4 look into the system in more detail and

these chapters are devoted to learning the parameters of a Bayesian network with

incomplete simultaneous data. Chapter 5 focuses on incorporating different sources

of prior information using a Bayesian model. Finally, in Chapter 6, we summarize

the contributions of our research and discuss further research directions in this area.

More specifically, in Chapter 2, we focus on the concept of integrating the prod-

uct design information from functional analysis with the product failure information

derived from other sources. A product failure is defined as when one or more of

its designed functions cannot be executed as expected. Failure modes can be stated

in terms of deviation of functions. Thus, we use functional analysis to reveal a pre-

liminary reliability structure for the product and to create a BN. The nodes of BN
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are the designed functions and their corresponding failure modes. The conditional

dependencies among these nodes are extracted from engineering experience, expert

opinions, and the failure data from historical failure occurrence of the same function

in similar (parent) products.

In Chapter 3, we present a Bayesian network approach for evaluating the con-

ditional probability of failure within a complex system, using a multilevel system

configuration. The novel feature of this model is that Bayesian network (BN) is used

to represent the probabilistic relationship between system and component reliability,

which is a generalization of the deterministic relationship usually modeled by fault

trees and reliability block diagrams. The model allows incorporating simultaneous

discrete data coming from several sensors in the system and can provide an initial

analysis of the dependency structure in system reliability especially when the failure

structure is not well known. The methodology is illustrated with three different sce-

narios, each scenario demonstrating our Bayesian methodology by using data coming

from different system levels.

In Chapter 4, we extend the main ideas in Chapter 3 to the incomplete and con-

tinuous failure time data, in which case the Bayesian inference becomes much more

challenging. In this case, we propose a Bayesian network approach for assessing the

time-to-failure distribution parameters of the components and for predicting early

reliability of the system and components over time. Our model allows us to incorpo-

rate incomplete and simultaneous life time data from several sensors in the system

and it is applicable to any lifetime distribution. We also extend the case to the hybrid

data structures, where we have both discrete and continuous data. We illustrate the

methodology through a demonstrative example.

Chapter 5 is devoted on combining multiple sources of prior information for the
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system. The aim of our research in this chapter is to obtain prior data from the sys-

tem and components, in addition to using expert opinion effectively and combining

these different streams of information to derive prior distributions for the parame-

ters of the Bayesian model. Specifying prior distributions in a Bayesian network is an

important part of the modeling process. We plan to develop a method that allows

us to incorporate non-observed, subjective and legacy information, such as expert

opinions, historical data and specifications from similar products, into the model

efficiently.
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Chapter 2

BAYESIAN NETWORKS FOR RELIABILITY PREDICTION IN

FUNCTIONAL DESIGN STAGE

2.1 Introduction

Reliability prediction at a product’s very early design stages has been gaining atten-

tion over the last decades. Build-in-reliability (BIR) and design-for-reliability (DFR)

philosophies have been a great influence on the necessity to estimate the reliability of

a product during its conceptual design phase. However, predicting reliability during

the conceptual design stage is challenging, as the available knowledge is very limited

and it is descriptive and qualitative in nature.

Probabilistic methods for the system reliability assessment of a product design

have been used extensively by reliability engineers. These modeling techniques

mostly utilize measures like mean time to failure (MTTF), failure rate and failure

distributions obtained by some life tests conducted in the detailed design stage. How-

ever, reliability should be incorporated into the product life cycle as early as possible

and maintained throughout the cycle to ensure good quality of a product (Pahl and

Beitz, 2013). The acceleration of product development speed and the reduction of

product’s life cycle cost are the major benefits that can be gained by beginning the

failure analysis of a new product at its conceptual design stage, in particular during

its functional analysis. Traditional approaches like FMEA, fault trees and reliabil-

ity block diagrams (RBD) could only be implemented after a detailed design of the
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product has been carried out; therefore, they are not well suited for product reliability

predict at early design stages.

Bayesian networks (BNs) have significant advantages over traditional reliability

assessmentmethods due to their efficiency in evaluating associations and simplicity in

providing a system assessment. They are very efficient at propagating the uncertainty

and updating the system with new data in the network. They are also applicable when

system structures are too complex to be represented by fault trees or reliability block

diagrams. As fault trees and reliability block diagrams model the system’s reliability-

wise structure in a deterministic way, they are in general ill-suited for a conceptual

design where even the components of system and their configurations have not been

determined. Bayesian network, on the other hand, can model the uncertainties in

various system functions and the generating processes of system functions, thus it is

a viable tool for studying product reliability at its early design stages.

This chapter focuses on the concept of integrating the product design informa-

tion from functional analysis with the product failure information derived from other

sources. A product failure is defined as when one or more of its designed functions

cannot be executed as expected. Failure modes can be stated in terms of deviation

of functions. Thus, we use functional analysis to reveal a preliminary reliability struc-

ture for the product and to create a BN. A typical BN model consists of two parts:

a direct acyclic graph (DAG) modeling presentation and conditional probability ta-

bles between parent and child nodes. The nodes of BN are the designed functions

and their corresponding failure modes. The conditional dependencies among these

nodes can be extracted from engineering experience, expert opinions, and the fail-

ure data from historical failure occurrence of the same function in similar (parent)

products. The chapter is organized as follows: A literature review is provided in
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Section 2.2. Section 2.3 presents specific descriptions of the framework introducing

functional analysis and Bayesian networks. Our proposed methodology is described

in Section 2.4, followed by a case study in Section 2.5. Finally, Section 2.6 draws the

conclusion.

2.2 Literature Review

System reliability can be defined as the probability that a system will perform its

intended function for a specified period of time under stated conditions. Analytical

methods, with the assistance of graphical tools such as fault trees, reliability block

diagrams and network graphs, are frequently used to estimate system reliability.

In literature, the idea of using BNs for system reliability assessment was discussed

by several studies (Langseth and Portinale, 2007; Wilson and Huzurbazar, 2007; Ma-

hadevan et al., 2001). Mahadevan et al. (2001) proposed themethodologies of applying

BNs to structural system reliability assessment with multiple failure sequences. Bob-

bio et al. (2001) and Boudali and Dugan (2006) also proposed BNs as the alternatives

to traditional reliability estimation approaches. Doguc and Ramirez-Marquez (2009)

presented a holistic method for constructing a BN model for estimating system re-

liability. They introduced a method that uses historical data and provided efficient

techniques for construction of the BN model.

The aforementioned studies were conducted at existing products with the avail-

ability of product failure data. There are very few studies implementing reliability-

based design at the very early product design stage. Clark and Paasch (1996) de-

scribed a diagnostic modeling methodology in the conceptual design phase. Their

method was based on the relationship between a system’s functions and the failure
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modes of components. Eubanks et al. (1997) proposed a method to address reliability

during the early stages of design. They utilized behavior modeling to identify failures

with the help of function-structure relationships and then analyzed the effects of

these failures. Derelöv (2008) proposed a qualitative framework of potential failure

identification in a conceptual design. He modeled the system in a qualitative and

deterministic way. Huang and Jin (2008) addressed the gap between reliability and

design, and developed a conceptual strength interference theory by parameterizing

the conceptual design space via introducing reliability-related parameters into func-

tional design. Due to the lack of direct reliability information in the early design stage,

some unconventional sources of reliability information need to be explored. Even so,

how to integrate objective and subjective information from disparate sources in a sys-

tematic way is still a challenging task. Sanchez and Pan (2011) presented an enhanced

parenting process for predicting reliability of a new product by using the reliability

information of parent products. They relied on expert elicitation for assessing the

effects on design changes on individual failure causes.

Product functional analysis is a critical step in the product conceptual design.

Qian and Gero (1996) presented an approach of using the associations between func-

tion, behavior and structure to build a formal structure. Stone and Wood (2000)

introduced a consistent design language, called a functional basis, in which they pro-

vided clear definitions for each function and flow. Otto and Wood (1998) discussed

various techniques in product design and development that address conceptual for-

mulation, and functional design issues. Hirtz et al. (2002) provided a set of function

bases in order to standardize and formalize function structure design, modeling and

evaluation. Sridharan and Campbell (2005) presented an approach to developing the

graph grammar for function structures. In addition, Chandrasekaran et al. (1993) used
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functional representation (FR) to define the design space, describing the overall func-

tion first, and then the behavior of each component with respect to that function.

They presented FR as a good framework for capturing the casual components in

performing the product’s functions. Wang and Jin (2002) proposed an analytical ap-

proach to functional design by introducing a new concept, called function-behavior,

and developing a BN based analysis method. The function-failure design method,

developed by Tumer and Stone (2001), relates failure modes to product functions. It

can be utilized for the conceptual design of new products or the redesign of existing

products.

In general, the existing methods are largely qualitative and the function-failure

relationships are often represented by a matrix, which is inadequate for modeling

failure-cause dynamics and for representing the intricate connections amongmultiple

functional failure modes and their causes. We propose a methodology of transferring

functional analysis to BNs such that the quantitative analysis of a new product’s

reliability could be performed even at its early design stage.

2.3 Background and Framework

2.3.1 Conceptual Design

Conceptual design is the first phase of design, providing a description of the

proposed system through a set of concepts about its functionalities. A conceptual

design utilizes concept and function structure formulations corresponding to func-

tional requirements for the product. It does not address the detailed information

about physical components.
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The tasks of conceptual design are defined differently in various sources in litera-

ture. But according to the definition of the design process by Pahl and Beitz (2013),

the stages of a conceptual design are:

• Identify customer requirements.

• Decompose the customer requirements into design requirements.

• Establish functional structures.

• Generate candidate conceptual design solutions.

• Evaluate the design concepts and the functional structures for the detailed de-

sign stage.

As a result, the conceptual design phase generates the concepts that will be im-

plemented during the next stages of the product design. Function structures are

used during conceptual design to transform the customer requirements into specific

functional tasks.

2.3.2 Functional Analysis

Functional design is an important step in the product design process. The lack

of analysis for functional design is a factor that can cause inefficient and unreliable

designs. The problems might not be detected until the embodiment design, which

might be costly and time consuming.

In early stages of design, system failures are identified as failure to achieve one or

more predefined functions, and a functional model of a system is simply a graphical

representation of the system functionality, without any details of the structure (Otto

andWood, 1998). In the initial stages of design, based on the customer requirements,

an overall function for the design can be identified, which includes the flows of
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energy, material and signal of the function. This overall function is then broken

down into sub-functions with less complexity but more details (Tumer and Stone,

2001). In order to effectively represent functions and sub-functions, a standardized

modeling language is required. Various studies have been conducted on a generic

functional basis for functional modeling (Hirtz et al., 2002).

Failure of a system is defined as the termination of the ability of the system to

complete its intended function. Thus, a system failure mode can be correlated to

functions of components. If this correlation can be established, then failure modes

can be eliminated or significantly reduced by improving component quality or recon-

figuring system reliability structure. This is the fundamental logic behind the system

reliability improvement using FTA or FMEA. Following the same logic, in functional

analysis a function failure is caused by the interruption of material, energy and signal

flows. Different design concepts may cause different types of interruption, which

are the failure causes that designer should be aware of. When a new product is being

designed, its intended functionalities will be matched to the functionalities of exist-

ing products, so the designer can generate several design options to materialize the

intended function. Therefore, the new design will inherit the failure mode from its

parent products and the reliability prediction for the intended function will become

possible by combining the failure information from parent products and from expert

opinions.

2.3.3 Bayesian Networks

A Bayesian network (BN) consists of two main parts:

• Qualitative part: consists of a directed acyclic graph (DAG) where the nodes
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represent random variables (continuous or discrete) and directed arcs repre-

senting causal relationships between the random variables.

• Quantitative part: conditional probability tables between parent and child

nodes.

In a BN, the nodes without any arrows directed into them are called root nodes

and they are described according to their marginal probability distributions. The

nodes that have arrows directed into them are called child nodes and the nodes that

have arrows directed from them are called parent nodes. Each child has a conditional

probability table associated with it, given the values of parent nodes.

Consider a BN over variables X1, X2, . . . , Xn. By the chain rule of probability

theory, the joint probability P (X1, X2, . . . , Xn) is

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi | pa(Xi)) (2.1)

where pa(Xi) is the set of parents of node Xi.

Certain nodes in a BN may become uncorrelated if there is no link between these

nodes. This situation is called conditional independence. These conditional inde-

pendences allow us to decrease the number of terms in the chain rule, providing a

simpler structure.

BNs can be utilized to model function structures where the nodes are represented

by the designed functions and their corresponding failure modes. The conditional

dependencies among these nodes can be extracted from engineering experience, ex-

pert opinions, and the failure data from historical failure occurrence from existing

products with similar functions.
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2.4 Methodology

2.4.1 BNs from Functional Analysis

A product’s functions are typically determined based on customer requirements,

as well as marketing analysis. A rigorous functional analysis provides the possible

failure causes from material, energy and signal aspects that can be utilized for con-

structing Bayesian networks. It needs to be emphasized that in early design stages

it is the product function, instead of component, to be analyzed, as individual com-

ponents will only be materialized in a later design stage. For example, assuming that

a functional failure is caused by four possible direct causes as shown in Figure 1, a

designer can select different design options (e.g., choosing different function gener-

ating mechanisms or different components) during the embodiment design process

so that some failure causes can be avoided. In functional analysis, all possible causes

for a functional failure are elicited. They are, in general, structured hierarchically,

extended to multiple levels. For simplicity, Figure 1 only shows one level, i.e., the

direct causes to a functional failure.

Figure 1. A simple BN from functional analysis
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2.4.2 Conditional Probability Table

In a discrete BN each node may take values from several states. For example, the

function node in Figure 1, F1, have two states, 1 or 0, corresponding to failure or

success. However, a node, in general, can have more than two states. For example,

let the direct parent node, C1, in Figure 1 be the material strength, then its states

can be assigned as Strong, Medium or Weak. Conditional Probability Tables (CPTs)

are needed to quantify the probabilistic relationships between nodes; i.e., to specify

Pr(F1 | C1, C2, C3, C4) in Figure 1. This is not addressed in a typical functional

analysis. We propose two approaches to the quantification problem by integrating

available data about a function and subjective assessment from experts.

2.4.3 With Complete Function Log Data

Consider a single function and two direct causes that govern the successful execu-

tion of this function. Given two states to each cause and the CPT as shown in Table

1, there are four parameters, p1, p2, p3, p4, that need to be specified. Although it is

uncommon in practice, we start our discussion with this naïve scenario – a complete

historical dataset of the states of the function and its direct causes is available. This

is possible if this function and its associated causes are continuously monitored by

sensors and the log data from existing products that perform the same function can

be obtained.

Using all observed instances of function states and cause states it is straightfor-

ward to obtain the estimation of the conditional failure probability given a combina-

18



tion of cause states. For the previous example,

pi = Pr(F = 1 | C1i, C2i) =
∑

k Ik(F = 1, C1i, C2i)∑
k Ik(C1i, C2i)

(2.2)

where the denominator is the total number of instances of the specific combination

of C1 and C2 and the numerator is the number of instances of function failure at

this combination.

Table 1. Conditional probability table.
C1 C2 Pr(F = 1 | C1, C2) Pr(F = 0 | C1, C2)
0 0 p1 1− p1
0 1 p2 1− p2
1 0 p3 1− p3
1 1 p4 1− p4

However, even this simple formula could become troublesome in practice when

there are many states for each cause node. In such case, the number of combinations

grows large, thus the log file could be highly fragmented. There might be no observa-

tion for a particular combination. Therefore, it is better to combine Eq. 2.2 with the

expert’s opinion on how many function failure may happen for a given parent nodes

combination. This is equivalent to assign a prior distribution to the function failure

probability. Assume a Beta prior distribution, Beta(ai, bi), for pi, then the posterior

estimation of pi is given by

pi =

∑
k Ik(F = 1, C1i, C2i) + ai∑
k Ik(C1i, C2i) + (ai + bi)

(2.3)

where (ai + bi) is the equivalent sample size in the prior and ai is the equivalent

number of failures in prior samples.

Therefore, in the expert opinion elicitation process, two questions would be

asked: In your experience, how frequent this type of combination of C1 and C2
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may happen? And, in your experience, what is the chance of function failure given

this type of combination of C1 and C2? The prior parameters, ai and bi, can be

derived from the answers of these questions. By combining expert assessments and

historical data, a robust conditional failure probability can be obtained.

2.4.4 With Function Failure Records

A function failure record is often maintained within an organization and it is the

most common type of information that one can track for assessing the function

failure probability. For example, given a checklist such as Table 2, we can see that

function F1 failed once due to C1 and C2, and F2 failed once due to C3, etc.

Table 2. Function failure records.
Function C1 C2 C3

F1 X X
F2 X
. . . . . . . . . . . .

Notice that given these records, we can estimate the probability of failure causes

given a failure mode; i.e., Pr(C1, C2 | F1), but not the probability of a failure mode

given failure causes. This is because, unlike the log data, Table 2 records only failure

events. To obtain the conditional probability of failure given causes, we need to have

the probability of occurrence of cause combination and the marginal probability of

failure, because

Pr(F | C1, C2) = Pr(C1, C2 | F )Pr(F )
Pr(C1, C2)

(2.4)

Expert opinions on these marginal probabilities (Pr(F ) and Pr(C1, C2)) can be

solicited. Experts are asked what the chance of a function failure is during the prod-

uct’s lifetime and what the chance of a cause state combination is. This can be ob-
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tained by directly estimating the occurrence rate of these events, then converting

them to event probabilities based on exponential distribution. That is,

Pr(F ) = 1− e−λF t (2.5)

Pr(C1, C2) = 1− e−λC1,C2t (2.6)

where λF and λC1,C2 are the occurrence rate of function failure event and cause com-

bination event, respectively, and t is the product lifetime.

This approach is an extension of the parenting process presented by Sanchez and

Pan (2011), in which only the probability of one failure mode given one failure cause

was discussed. That is, they assumed that the effects of failure causes are indepen-

dent to each other. Here, we generalize it to a general case without independence

assumption.

2.5 A Case Study

A new contaminant reduction device (CRD) is being introduced for use in an

automotive industry. A CRD is used to convert toxic exhaust emissions into less-

toxic substances. A chemical reaction is stimulated through the exhaust flow and

then contaminants are reduced in the system before the gas is released. Using func-

tional analysis approach, some function structures are analyzed for the system. The

functions to be represented by the Bayesian network are listed as follows:

• Flow of exhaust gas

• Injection of fluid

• Chemical reaction of catalysis

• Amount of contaminants
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• Back pressure at outlet

• Filtering of the substances

It is assumed that the new CRD maintains the same failure structure as the pre-

vious designs; hence, information from the previous CRD products can be used to

form the functional relationships. The function failure record from the parent prod-

ucts is analyzed and is combined with expert elicitation.

Our aim is to assess the product’s reliability at the conceptual design stage. We use

the methodology presented in this research to create a graphical model for capturing

the relationships between the main functions of the system. The basic functional

structure of the product is shown in Figure 2.

Figure 2. The relationship between the main functions

The next step is to obtain the conditional probability table for each node. The

states of each node are expressed in binary variables: “1” for function failure and
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“0” for function performing properly. Figure 3 shows the conditional probability

tables for each node obtained using the failure records from parent products and

then eliciting expert opinions to calculate the new failure rates for each function.

Figure 3. Conditional probability tables

Hugin Lite 8.0 was used for propagating the information through the network.

The initial analysis of marginal distribution for each node shows that the key func-

tion, filtering of substances, is functional only 73% of the time. In order to find

the probability distributions given that the filtering is not functioning, the evidence

was propagated using the software and the back pressure node was found to be the

function highly associated with the filter malfunction.

Figure 4 shows the impact of the state of back pressure on the distribution of

filtering. It is obvious from the figure that it is very important that the back pressure

at outlet must function properly so that the filtering could function properly too.
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Figure 4. Evidence analysis of filter function failure

In this case study, the Bayesian network approach is able to provide the design

team the information about which function parameters needed to be improved to

meet the design specifications. Furthermore, sensitivity analysis is utilized for assist-

ing an objective decision making process. As a result, the changes in the design are

justified as they provide a more robust CRD.

2.6 Conclusion

In this chapter we propose to model system reliability using Bayesian network at

the system’s early design stage. The key idea is to utilize the reliability information

of parent products that was stored as a function failure record. The relationships

between failure modes and failure causes can be found from these historical records.

Expert elicitation is also used in order to account for the changes from the parent

products. Integrating both objective and subjective reliability information, we pro-

vide insights for the early reliability prediction problem. In our approach, the first

step is the functional analysis of the system. It is necessary to identify and establish

the relationships between the functions and a BN is constructed. Using belief prop-
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agation, the designer is able to evaluate the impact of different design scenarios on

the system reliability of a conceptual design.
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Chapter 3

A COMPUTATIONAL BAYESIAN APPROACH TO DEPENDENCY

ASSESSMENT IN SYSTEM RELIABILITY

3.1 Introduction

Due to increasing demands of product functionality, engineered products have

become more and more complex over time. The traditional reliability assessment

methods for simple systems are often inadequate in analyzing more complex systems.

Conducting full system tests is often too expensive to be implemented on such sys-

tems. This situation calls for a method to develop reliability models for complex

systems and to integrate all available information for predicting system reliability.

There are situations that we do not have complete information of how a complex

system would fail in its operating environment. We would like to learn more about

the interaction between the system and its components and how they work together.

In this chapter, we use Bayesian network (BN) to represent the probabilistic relation-

ship between system and component reliability, which is a natural extension of the

deterministic relationship typically modeled by block diagrams or fault trees when

the failure structure is well understood.

The BN model has been proved to be a powerful tool that provides important

methodological advantages over traditional techniques in reliability assessment. Tra-

ditional methods, such as fault tree or reliability block diagram, are still common

representation in system reliability analysis; however, they are not flexible enough

to capture the uncertainties in the dependencies among component, subsystem, and
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system (see Bobbio et al. (2001); Mahadevan et al. (2001); Boudali and Dugan (2006);

Langseth and Portinale (2007); Wilson and Huzurbazar (2007)). BNs generalize fault

trees by allowing components and subsystems to be related by conditional probabil-

ities instead of deterministic “AND” and “OR” relationships; thus, they provide

analytical advantages to the situation when we are not sure about the reliability struc-

ture of a complex system, especially during the early stage of product design process.

Another important advantage of BN over the traditional approach is its ability of

combining information from multiple sources at multiple levels for system reliability

prediction, especially when the BN model is coupled with statistical Bayesian infer-

ence techniques. As a result, it is worthwhile to explore the use of BN model and

Bayesian inference together for the dependency assessment in system reliability.

A BNmodel requires conditional probabilities to model the dependencies among

components, subsystems, and systems. These conditional probabilities are capable

of representing complex, probabilistic failure relationships in a multilevel system con-

figuration. In a complex system, the failure relationship between system and compo-

nent could be significantly more complicated than a typical series or parallel system,

especially when the specific failure cause and failure mechanism has yet been under-

stood, such as in a newly developed system (Sanchez and Pan, 2011). Therefore,

investigating the conditional probability table of BN model can help engineers to

sort out the unknown influential factors, if there are any.

The conditional probabilities in a BN model can be estimated by combining in-

formation from different sources. There are objective information sources, such

as failures of older generation products, life test of component, and available field

data, and there are subjective sources too, such as expert opinions. These data come

with different types and different structures, causing difficulties in the estimation of
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conditional probability. Furthermore, a system evolves over time, so assigning fixed

values to these probabilities limits the flexibility to account for the evolution process

of system development. Therefore, we choose Bayesian inference for parameter es-

timation in the BN model. Bayesian inference is a statistical inference method that

enables model parameter estimation by deriving the posterior distribution from a

combination of prior distribution and likelihood function. It allows us to integrate

both the prior information of model parameter and the data coming from different

sources for model inference; therefore, we can obtain more precise estimation of BN

model parameter.

The goal of this chapter is to develop the methodology of estimating conditional

probabilities in a BN model using Bayesian inference so that the reliability-relevant

information from different sources at different reliability structure levels of a com-

plex system can be combined together. The next section presents a literature review

of BN model and Bayesian inference. Our BN framework for system reliability and

its inference method are discussed in Section 3.3. We start by discussing how to infer

conditional probability using a conjugate model for a simple 2-state Bayesian network

and then extend it to a multi-state model. We also briefly discuss the case where we

have only system failure records. Finally, we develop a data analysis method for the

scenario of having incomplete information from components. We illustrate the pro-

posed method with a case study in Section 3.4 and conclude the chapter in Section

3.5.

28



3.2 Background

3.2.1 Models for Multilevel System Reliability Assessment

System reliability can be defined as the probability that a system will perform its

intended function for a specified period of time under stated conditions. Analytical

methods, with the assistance of graphical tools such as fault trees, reliability block

diagrams and network graphs, are frequently used to estimate system reliability.

One of the primary goals in system design evaluation is to predict the reliability

of the full system. A system is comprised of subsystems and components, or on

functional wise, sub-functions and elementary functions, which can be represented

by nodes in the system reliability topology. All nodes are potential source of failure.

Consequently, reliability information may come from different levels of the system

and it tends to be fragmented and heterogeneous. With data available at different sys-

tem levels, the challenge becomes how to combine them to learn about the reliability

of the system. The Bayesian method is very appealing for this challenging problem.

Martz et al. (1988) and Martz and Wailer (1990) addressed the problem of integrating

multilevel binary data from various levels of the system and expert guesses about the

reliability of system components. These papers focused on series and parallel sys-

tems, whose component failure data were modeled using binomial distributions and

beta distributions were used for the prior information at components, subsystem and

system levels. They used approximations to provide a posterior distribution for sys-

tem reliability. Several follow-up papers considered other computational Bayesian ap-

proaches to model inference and system reliability prediction. For example,Johnson

et al. (2003) proposed a hierarchical Bayes model approach to system reliability pre-
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diction. Their approach utilized Markov chain Monte Carlo (MCMC) to infer model

parameters, thus avoided analytical approximation. Hamada et al. (2004) applied the

same approach on the non-overlapping, continuous failure time data of basic and

higher-level failure events in a fault tree. Graves et al. (2007) further extended this

line of research by considering multi-state fault trees. They used Dirichlet distri-

bution to define the prior information about the probabilities of the states in the

model. In addition, Graves et al. (2008) proposed a Bayesian approach to properly

account for simultaneous multilevel data, i.e., use the simultaneous higher-level and

partial lower-level data to determine the event of component failure. In a follow-up

study, Reese et al. (2011) considered lifetime data throughout the system. They pre-

sented a Bayesian model that accommodates multiple lifetime information sources

and provided a method to model the time evolution of a system’s reliability. Wilson

et al. (2006) proposed a methodology that allowed for the combination of different

types of data at the component and system levels, and took a Bayesian approach to

the estimation of reliability measure. Wilson et al. (2011) showed how to combine

different types of reliability data with an example that had binomial data (modeled

with a logistic regression) from the system and one component, lifetime data from

another component, and degradation data from a third component. Guo (2011) dis-

cussed a unified Bayesian approach for simultaneously predicting system, subsystem,

and component reliabilities when there are pass/fail, lifetime, degradation, or expert

judgment data at any level of the system, which extended the work in Wilson et al.

(2006). However, these studies were mostly based on fault trees and reliability block

diagrams and did not cover the BN representation of system reliability.

In the system reliability literature, the idea of using BN model as the alternative

to fault tree or block diagram for representing system reliability structure has been
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discussed by many authors (e.g., Bobbio et al. (2001); Mahadevan et al. (2001); Boudali

and Dugan (2006); Langseth and Portinale (2007); Wilson and Huzurbazar (2007);

Li et al. (2014)). However, previous studies do not address the problem of assessing

reliability dependencies between system and its components. In this chapter, we will

assess these dependencies using a computational Bayesian inference method; that is,

given reliability information from multiple sources and at multiple levels of the sys-

tem, we will provide the Bayesian estimation to the conditional probability parameter

required in a BN model. The posterior distribution of conditional probability can be

used to quantify of the variability of the dependency of system reliability to its com-

ponents.

The aforementioned studies were conducted at existing products with the avail-

ability of product failure data. There are very few studies implementing reliability-

based design at the very early product design stage. Furthermore, previous studies

have not addressed the effect of simultaneous, yet incomplete, data, drawn from

different system levels, on the BN model estimation. Since we aim to measure relia-

bility dependencies within a system, datasets should be drawn simultaneously from

the system and its components. Independent datasets will not be able to capture the

dependencies within a system. However, getting simultaneous data from all compo-

nents/subsystems may not always be possible due to lack of sensors or other obser-

vation limitations, especially during the design phase. Graves et al. (2008) and Jackson

(2011) analyzed the effect of simultaneous data on system reliability prediction.
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3.2.2 Computational Methods in Bayesian Inference

The posterior distribution resulting from a complex Bayesian model often cannot

be written in a closed form. This results from the fact that the joint posterior distribu-

tion of multiple parameters in a complex model cannot be obtained analytically. This

difficulty has hindered the adoption of Bayesian reliability assessment for many years.

However, since the 1990s, advances in Bayesian computing through Markov chain

Monte Carlo (MCMC) have facilitated inference based on samples from the targeted

posterior distribution (Gelman et al., 2014). MCMC is a simulation algorithm for

performing Bayesian inference when conjugation is impossible (thus analytical result

is impossible), which is particularly useful for high-dimensional Bayesian inference.

MCMC algorithms draw samples from the joint posterior distribution of model pa-

rameters. Gibbs sampler, the most popular MCMC algorithm, relies on the fact that

samples drawn sequentially from complete conditional distributions will converge to

the joint posterior distribution as long as distribution parameters are constantly up-

dated. So, after a certain number of preliminary iterations, the samples drawn from

simulation chains can be viewed as from the targeted joint posterior distribution.

MCMC has also made the Bayesian models solvable when addressing the system

reliability problem. In the reliability literature several authors used the MCMC tech-

nique for Bayesian inference (e.g., Johnson et al. (2003); Hamada et al. (2004); Reese

et al. (2005a); Wilson et al. (2006); Graves et al. (2007); Wilson and Huzurbazar (2007);

Graves et al. (2008); Pan and Rigdon (2009); Guo (2011)). To implement MCMC,

we use WinBUGS, a statistical software for Bayesian inference (Spiegelhalter et al.,

2003).
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3.3 Methodology

In this section Bayesian inference methods are discussed for simultaneously esti-

mating conditional probabilities in a Bayesian network when data are collected from

different levels of the system. We give a brief summary about Bayesian networks, and

then present three different data scenarios with decreasing amount of available infor-

mation along these scenarios. The first scenario involves a simple 2-state Bayesian

network where all nodes and their states are recorded. We develop a conjugation

model for inferring conditional probabilities and also extend it to a multi-state BN.

In the second scenario, we discuss the case when we have only system failure records.

Lastly, we consider a scenario where only the system and a subset of components

are monitored by sensors, thus system health information is incomplete. We present

a Bayesian inference method for estimating reliability dependency in such a system.

3.3.1 Bayesian Networks

Bayesian networks (BNs) are probabilistic graphical models depicting condi-

tional independence relations and inducing a factorization into the joint probability

mass/density function over the network variables (Koller and Friedman, 2009). The

joint probabilities can be therefore expressed as a product of conditional probabil-

ities, one for each variable given the corresponding values of the parent values. A

Bayesian network consists of two main parts:

• Qualitative part: consists of a directed acyclic graph (DAG) where the nodes

represent random variables (continuous or discrete) and directed arcs repre-

senting causal relationships between the random variables.
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• Quantitative part: conditional probability tables between parent and child

nodes.

In a BN, the nodes without any arrows directed into them are called root nodes

and they are described according to their marginal probability distributions. The

nodes that have arrows directed into them are called child nodes and the nodes that

have arrows directed from them are called parent nodes. Each child has a conditional

probability table associated with it, given the values of parent nodes.

Consider a BN over variables X1, X2, . . . , Xn. By the chain rule of probability,

the joint probability P (X1, X2, . . . , Xn) is

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi | pa(Xi)) (3.1)

where pa(Xi) is the set of parents of node Xi.

Certain nodes in a BN may become uncorrelated if there is no link between these

nodes. This situation is called conditional independence. These conditional inde-

pendences allow us to decrease the number of terms in the chain rule, providing a

simpler structure.

Figure 5 shows a BN with 3 nodes and 2 arcs. Each node Ci is a random variable.

If there is a directed arc from Ci to Cj , Ci is called a “parent” of Cj . An arc character-

izes the probabilistic dependency of a node on its parent nodes. That is, depending

on the values a node’s parents take on, the conditional probability distribution of

the node may be different. In this example, node C0 has 2 parents, C1 and C2. The

marginal probabilities of these parent those are listed in Table 3. Assuming binary

states for each node (functional state is 0 and dysfunctional state is 1), Table 4 shows

the conditional probability table (CPT) for each combination of the parents of C0. In

this chapter, a BN is employed to represent the cause-and-effect failure relationship
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among elements of a multilevel system, in which the final child node represent the

system and other nodes represent either components or subsystems of the system.

Figure 5. A simple 2-component system BN example

Table 3. Marginal probability tables for the BN example.
C1 = 0 C1 = 1
1− p1 p1

C2 = 0 C2 = 1
1− p2 p2

Table 4. Conditional probability table (CPT) for the BN example.
C0 = 0 C0 = 1

C1 = 0, C2 = 0 1− p00 p00
C1 = 0, C2 = 1 1− p01 p01
C1 = 1, C2 = 0 1− p10 p10
C1 = 1, C2 = 1 1− p11 p11

The parameters, p1 and p2, listed in Table 3 are the distribution parameters of

the marginal distributions (binomial) of the failure count variables of these 2 com-

ponents, while Table 4 gives the parameters used in the conditional distribution of

Eq. 3.1. A BN is fully defined if all of these parameters are specified, as the joint

distribution of all nodes, Eq. 3.2, has become analytically available. In a fault tree (or

reliability block diagram) representation of system reliability, the conditional proba-

bilities in Table 4 are already pre-specified for a given logic gate (or the block diagram
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configuration). For example, for an “AND” gate, we have p00 = p01 = p10 = 0 and

p11 = 1, while for an “OR” gate, we have p00 = 0 and p11 = p10 = p01 = 1. However,

in our BN representation, these relationships are not pre-specified, as the depen-

dency of system reliability to its components is unknown and needs to be evaluated

by the data collected from the system and from other information sources such as

expert opinions.

3.3.2 Bayesian Parameter Estimation in Bayesian Networks

In this section, we discuss Bayesian inference on model parameters in the context

of a Bayesian network. Bayesian framework requires us to specify a joint distribution

over the unknown parameters and the data instances. In this case, BN is parameter-

ized by the marginal probabilities of components and conditional probabilities of the

system given the states of the components. Suppose we want to estimate the param-

eters of the BN in Figure 5. Our network is parameterized by a parameter vector

p, where p = {p1, p2, p11, p10, p01, p00}. Given the prior distribution of this parameter

vector and the data collected from all nodes, Bayesian inference provides the poste-

rior distribution of the parameter of interest and the posterior prediction of system

or component reliability.

3.3.2.1 Complete System Log Data

Although it is uncommon in practice, we start our discussion with this naïve sce-

nario – a complete history of the states of the system and its components are available.

This is possible if this system and its components are continuously monitored by sen-
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sors and the log data from existing products can be obtained. In this example, each

historical record is a tuple C = {C(i)} = {⟨C0(i), C1(i), C2(i)⟩} for i = 1, . . . , N that

describes a particular assignment (0 or 1) to nodes C0, C1 and C2. The likelihood

function is then given by

L(C | p) =
N∏
i=1

P (C0(i), C1(i), C2(i) | p)

=
∏
i

P (C1(i) | p)P (C2(i) | p)P (C0(i) | C1(i), C2(i),p)

= (
∏
i

P (C1(i) | p))(
∏
i

P (C2(i) | p))(
∏
i

P (C0(i) | C1(i), C2(i),p)) (3.2)

According to the equation above, we have a separate factor for each node. These

factors are called local likelihood functions and they depend on their corresponding

node’s conditional or marginal probability table parameters.

We can further decompose the conditional likelihood, P (C0(i) | C1(i), C2(i),p),

as

=
∏

C1(i)=0,C2(i)=0

P (C0(i) | C1(i), C2(i), p00)
∏

C1(i)=0,C2(i)=1

P (C0(i) | C1(i), C2(i), p01)

∏
C1(i)=1,C2(i)=0

P (C0(i) | C1(i), C2(i), p10)
∏

C1(i)=1,C2(i)=1

P (C0(i) | C1(i), C2(i), p11)

(3.3)

Assume that M [Cx
0 , C

y
1 , C

z
2 ] represent the counts where C0(i) = x,C1(i) = y and

C2(i) = z (x, y, z = 0 or 1). Then, the terms in the right hand side of Eq. 3.3 can be

reduced to be

∏
C1(i)=1,C2(i)=1

P (C0(i) | C1(i), C2(i), p11) = p
M [C1

0 ,C
1
1 ,C

1
2 ]

11 (1− p11)M [C0
0 ,C

1
1 ,C

1
2 ] (3.4)

37



As a result, the likelihood function of Eq. 3.2 becomes

L(C | p) =pM [C1
1 ]

1 (1− p1)M [C0
1 ]p

M [C1
2 ]

2 (1− p2)M [C0
2 ]

p
M [C1

0 ,C
0
1 ,C

0
2 ]

00 (1− p00)M [C0
0 ,C

0
1 ,C

0
2 ]p

M [C1
0 ,C

0
1 ,C

1
2 ]

01 (1− p01)M [C0
0 ,C

0
1 ,C

1
2 ]

p
M [C1

0 ,C
1
1 ,C

0
2 ]

10 (1− p10)M [C0
0 ,C

1
1 ,C

0
2 ]p

M [C1
0 ,C

1
1 ,C

1
2 ]

11 (1− p11)M [C0
0 ,C

1
1 ,C

1
2 ] (3.5)

We can maximize the likelihood function above and get maximum likelihood

function estimates for the parameters. However, even this simple formula could

become troublesome in practice when there are many states for each component

node. In such case, the number of combinations grows exponentially and the log

file could be highly fragmented. There might be no observation for a particular

combination. Therefore, it is better to combine the likelihood with expert opinions.

This is equivalent to assigning a prior distribution to model parameter.

In this approach, we encode our prior knowledge about p with a probabilistic

distribution. We now treat p as a random variable. According to the Bayes’ formula,

the posterior distribution over parameters given the observed data is

Pr(p | C) = Pr(C | p)Pr(p)
Pr(C)

(3.6)

The term Pr(p) is the prior distribution function of p, Pr(C | p) is the likelihood

function, and Pr(C) can be viewed as a normalizing constant.

Since all model parameters are probabilities, an appropriate prior is the beta dis-

tribution. A Beta distribution is specified by two hyperparameters – a and b, which

are positive real numbers. The distribution is defined as follows:

θ ∼ Beta(a, b) with pdf of p(θ) = γθa−1(1− θ)b−1 (3.7)

where γ is a normalizing constant, defined by

γ =
Γ(a+ b)

Γ(a)Γ(b)
(3.8)
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where Γ(x) =
∫∞
0
tx−1e−tdt is the Gamma function.

If a beta prior distribution, Beta(ai, bi), is assumed for each pi, it is easy to shown

that the posterior distribution of p is given by

Pr(p | C) ∝ Pr(C | p)Pr(p)

∝ p
M [C1

1 ]
1 (1− p1)M [C0

1 ]p
M [C1

2 ]
2 (1− p2)M [C0

2 ]

p
M [C1

0 ,C
0
1 ,C

0
2 ]

00 (1− p00)M [C0
0 ,C

0
1 ,C

0
2 ]p

M [C1
0 ,C

0
1 ,C

1
2 ]

01 (1− p01)M [C0
0 ,C

0
1 ,C

1
2 ]

p
M [C1

0 ,C
1
1 ,C

0
2 ]

10 (1− p10)M [C0
0 ,C

1
1 ,C

0
2 ]p

M [C1
0 ,C

1
1 ,C

1
2 ]

11 (1− p11)M [C0
0 ,C

1
1 ,C

1
2 ]

pa1−1
1 (1− p1)b1−1pa2−1

2 (1− p2)b2−1pa00−1
00 (1− p00)b00−1

pa01−1
01 (1− p01)b01−1pa10−1

10 (1− p10)b10−1pa11−1
11 (1− p11)b11−1

= p
a1+M [C1

1 ]−1
1 (1− p1)b1+M [C0

1 ]−1p
a2+M [C1

2 ]−1
2 (1− p2)b2+M [C0

2 ]−1

p
a00+M [C1

0 ,C
0
1 ,C

0
2 ]−1

00 (1− p00)b00+M [C0
0 ,C

0
1 ,C

0
2 ]−1p

a01+M [C1
0 ,C

0
1 ,C

1
2 ]−1

01

(1− p01)b01+M [C0
0 ,C

0
1 ,C

1
2 ]−1p

a10+M [C1
0 ,C

1
1 ,C

0
2 ]−1

10 (1− p10)b10+M [C0
0 ,C

1
1 ,C

0
2 ]−1

p
a11+M [C1

0 ,C
1
1 ,C

1
2 ]−1

11 (1− p11)b11+M [C0
0 ,C

1
1 ,C

1
2 ]−1 (3.9)

Eq. 3.9 is comprised of beta distributions for all parameters in the BN. That is,

their posterior distributions are analytically available as

pi ∼ Beta(ai +M [C1
i ], bi +M [C0

i ])

pij ∼ Beta(aij +M [C1
0 , C

i
1, C

j
2 ], bij +M [C0

0 , C
i
1, C

j
2 ])

This result illustrates a conjugation property of the beta distribution when cou-

pled with binomial likelihood (see Koller and Friedman (2009) for more details). Ex-

act inference is possible in case of binomial likelihood (pass/fail tests) and fully ob-

served variables. In literature, beta-binomial conjugation has been extensively used

for reliability prediction (see Martz et al. (1988); Martz and Wailer (1990); Johnson

et al. (2003); Wilson and Huzurbazar (2007)).
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We can easily extend the discussion to multi-state models. In our BN model so

far, we have assumed that all nodes have two distinct states: pass and fail. Now,

consider the system and components having multiple states; for example, k states

for the system, C0, such as {0, . . . , k−1}, where state k−1 represents state of failure,

state 0 represents state of full functionality and the rest of the states between rep-

resent degraded states; l states for component C1 and m states for the component

C2 (see Tables 5 and 6). The likelihood function of the system can be derived from

multinomial distributions and the conjugate priors need to be specified by Dirichlet

distributions.

Table 5. Marginal probability tables for the multi-state BN example
C1 = 0 C1 = 1 · · · C1 = l − 1

p01 p11 · · · pl−1
1

C2 = 0 C2 = 1 · · · C2 = m− 1
p02 p12 · · · pm−1

2

Table 6. Conditional probability table (CPT) for the multi-state BN example.
C0 = 0 C0 = 1 · · · C0 = k − 1

C1 = 0, C2 = 0 p000 p100 · · · pk−1
00

C1 = 0, C2 = 1 p001 p101 · · · pk−1
01

... ... ... . . . ...
C1 = i, C2 = j p0ij p1ij · · · pk−1

ij
... ... ... . . . ...

C1 = l − 1, C2 = m− 1 p0l−1,m−1 p1l−1,m−1 · · · pk−1
l−1,m−1

Note that
∑

L p
L
1 = 1,

∑
M pM2 = 1 and

∑
K p

K
ij = 1 for ∀i, j.

The likelihood function in this model has the same form as in Eq. 3.5. However,

since there aremultiple states, there will be a larger number of combinations of parent

nodes. The likelihood function has the following multinomial form:

L(C | p) =
∏
L

(pL1 )
M [CL

1 ]
∏
M

(pM2 )M [CM
2 ]
∏
∀i,j

(∏
K

(pKij )
M [CK

0 ,Ci
1,C

j
2 ]

)
(3.10)
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In this case, an appropriate prior for the probabilities in the model is Dirichlet

distribution, which is a generalization of beta distribution. A Dirichlet distribution

is specified by a set of hyperparameters α1, . . . , αk, so that

θ ∼ Dirichlet(α1, . . . , αK) with the pdf of P (θ) ∝
∏
k

θαk−1
k (3.11)

If we assume a Dirichlet prior distribution, Dirichlet(α0
i , . . . , α

k−1
i ), for pi, then

the posterior distribution of p is given by

P (p | C) ∝P (C | p)P (p)

∝
∏
L

(pL1 )
M [CL

1 ]
∏
M

(pM2 )M [CM
2 ]
∏
∀i,j

(∏
K

(pKij )
M [CK

0 ,Ci
1,C

j
2 ]

)
∏
L

(pL1 )
αL
1 −1
∏
M

(pM2 )α
M
2 −1

∏
∀i,j

(∏
K

(pKij )
αK
ij−1

)

=
∏
L

(pL1 )
αL
1 +M [CL

1 ]−1
∏
M

(pM2 )α
M
2 +M [CM

2 ]−1
∏
∀i,j

(∏
K

(pKij )
αK
ij+M [CK

0 ,Ci
1,C

j
2 ]−1

)
(3.12)

Eq. 3.12 is comprised of posterior Dirichlet distributions for all parameters in

the BN; that is,

pi ∼ Dirichlet(a0i +M [C0
i ], . . . , a

k−1
i +M [Ck−1

i ])

pij ∼ Dirichlet(a0ij +M [C0
0 , C

i
1, C

j
2 ], . . . , a

k−1
ij +M [Ck−1

0 , C i
1, C

j
2 ])

Bayesian conjugation is convenient for obtaining analytical results; however, in

most scenarios, the prior distribution may not come from a conjugation family and

the system is too complex to model with conjugate pairs. For such cases, computa-

tional Bayesian methods such as MCMC need to be employed.

It is also of research interest to examine the effect of prior distribution assumption

on posterior estimation. In general, specifying a more informative prior reduces the
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variance of the posterior distribution, resulting in a more precise estimation. There-

fore, eliciting prior distributions in Bayesian inference is rather important for rep-

resenting prior knowledge more accurately and comprehensively. However, it is

not usually a straightforward task to elicit prior distributions for the parameters of

the model and special techniques must be used. One of the most commonly used

techniques is expert elicitation, which converts an expert’s opinions into a statistical

expression of these opinions Garthwaite and O’Hagan (2000). Experts are asked to

give their opinions about quantities for the distribution parameters such as the mean,

mode and median values. As a result, we can obtain an appropriate prior for the

parameters.

Figure 6. Box plots of conditional probabilities with different prior distributions

A sensitivity analysis has been carried out using the system in Figure 6 to show the

effect of using a more informative prior. A dataset consisting of pass/fail data for all

components was simulated and used as observations for calculating the likelihood.

Beta(1, 1) and Beta(10, 10) were assigned as the priors for model parameters, sepa-
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rately. The box plots of the posterior samples of some model parameters are shown

in Figure 6. According to the results, we get more precise results when Beta(10, 10)

is used as a prior. Therefore, we would like to emphasize that special cares to these

prior distribution assignments are needed when Bayesian inference is in use.

3.3.2.2 Summarized System Failure Data

A system failure record is often maintained within an organization and it is the

most common type of information that one can track for system failure diagnosis.

In this case, once a system failure occurs, the components that are causing the failure

are identified and this event is recorded. For example, given a checklist such as Table

7, one can see that a failure event occurred once due to C1 and C2, and once due to

C1 only, etc.

Table 7. System failure records.
System - C0 C1 C2

Failure event 1 × ×
Failure event 2 ×

· · · · · · · · ·

Notice that, with these records, we can directly estimate the probability of com-

ponent failure given a system failure, i.e., Pr(C1, C2 | C0 = 1), but not the probability

of system failure given the states of components. This is because, unlike the log

data, Table 7 records only system failure events. The joint probability of component

states and the marginal probability of system failure are required in order to obtain

the conditional probability of system failure, because

Pr(C0 | C1, C2) =
Pr(C1, C2 | C0)Pr(C0)

Pr(C1, C2)
(3.13)
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In Eq. 3.13, Pr(C0) represents the prior knowledge about system failure and

Pr(C0 | C1, C2) represents the posterior failure distribution after observing the failure

record data. Yontay et al. (2015) discussed a method for deriving the prior probability,

Pr(C0). If each failure event is recorded with its time stamp, we can use failure times

to estimate the failure rate of the system. Assuming the time to failure is exponentially

distributed, after estimating the occurrence rate of the failure events, we can then

convert failure times to event probabilities based on exponential distribution. That

is,

Pr(C0 = 1) = Pr(T < t) = 1− e−λF t (3.14)

where λF is the occurrence rate of system failure event and t is the system lifetime.

The next step is to calculate, Pr(C1, C2 | C0), which is the likelihood for each combi-

nation of component states, using Table 7.

As an example, consider the system in Figure 5. In this scenario, the system failure

might be caused by C1 or C2, or C1 and C2 together, or the system might fail even

when both of the components are functioning (by an unknown failure cause). Given

the recorded failure times, we can obtain an initial estimate of the prior distribution

for system failure, which is defined as Beta(1.28, 1.30). The field observations of the

system, which are summarized as the counts for each combination as shown in Table

8, can be modeled by a multinomial distribution.

We ran simulations in WinBUGS and obtained the results in Table 9. Since the

system failure probability when at least one of the components is working is very

small, we can conclude that the system behaves like a parallel system. However, since

there exists an un-ignorable probability of system failure (its mean value is 0.0516 and

95% credible interval is [0.01779, 0.1019]) when both components are functional, it
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indicates some unknown factors that are influencing system reliability. As a result,

we need to conduct further investigation of these unknown factors.

Table 8. Data from a system failure record.
Cause combinations Counts

C1 = 0, C2 = 0 4
C1 = 0, C2 = 1 9
C1 = 1, C2 = 0 12
C1 = 1, C2 = 1 75

Table 9. Empirical mean, standard deviation, and quantiles for posterior failure
probabilities.

Mean 2.5% 25% 50% 75% 97.5%
Pr(C0 = 1 | C1 = 0, C2 = 0) 0.0516 0.01779 0.03574 0.04863 0.06429 0.1019
Pr(C0 = 1 | C1 = 0, C2 = 1) 0.1002 0.05038 0.07898 0.09769 0.1186 0.1646
Pr(C0 = 1 | C1 = 1, C2 = 0) 0.1294 0.07218 0.1059 0.1271 0.1503 0.2001
Pr(C0 = 1 | C1 = 1, C2 = 1) 0.7434 0.6542 0.715 0.7451 0.7735 0.8227

This approach can also been seen as an extension of the reliability parenting pro-

cess presented in Sanchez and Pan (2011), in which the authors utilized the failure

information of old-generation products stored in a failure database.

3.3.2.3 Incomplete Lower-Level Data

One big challenge in system reliability assessment is the lack of the complete

lower-level data as presented in previous sections. A complex system does not nec-

essarily have all components or subsystems being monitored at the same time. There

can be a limited number of sensors deployed in the system to monitor the states of

some components or subsystems, but not all of them. In addition, these sensor data

are stored by sensor, not in the system format such as the row entries in Table 7.
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Since system’s functionality is conditional on the functionality of subsystems and

components, collectively analyzing these data yields significant information about

the reliability. However, data collected by multiple sensors in the same system at

multiple system levels may contain duplicated system reliability information, thus

they require different data analysis technique.

The basic problem for analyzing this type of data is that we cannot treat them

as independent data although they come from individual sensors. The dependen-

cies between the states of systems and components under monitoring must be taken

into consideration in data analysis. Only a few previous studies have addressed this

problem. Graves et al. (2008) proposed a method that incorporates overlapping data

for traditional binary-state series/parallel systems. Their methodology relies on dis-

joint cut-set generation and considers each observation in isolation. Jackson (2011)

extended this line of research by adding continuous failure time data. However,

their methodology can only apply to the system failure that is represented by a fault

tree. In addition, using their approach, generating all possible system failure cases

was cumbersome. In this section, we consider the data scenario with simultaneous,

multi-level sensor data from the same system and incorporate it into the BN model

analysis. A Bayesian inference method is developed for dealing with simultaneous

higher-level data and partial lower-level data.

Suppose that a system-level sensor monitors the system’s health status. Some

(not all) of its components/subsystems are also monitored by their own sensors.

Each sensor will store the information such as how many failures occurred in a time

interval (e.g., a day). These failures at different levels are correlated, as they come

from the same system. For instance, considering a two-component series system, if

the system is known to be functioning, this implies that both components must be
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functioning too. But, if both components are not monitored and the system is not

functioning, it is impossible to know which component has failed or both of them

failed. Only if we have one component monitored, the other component’s state can

be inferred by the observations at both system and component levels. In general,

tracking and consolidating the states of monitored system and components can be

done when a deterministic system reliability configuration is known. However, this

process can be very tedious and varies according to system configuration. Using BN

models, we are able to provide a generic algorithm of sensor data consolidation and

code it into a computer program.

To develop the likelihood function of a BNmodel with simultaneous, multi-level

sensor data, all possible instances of component and system states that imply the

observed evidence by sensors need to be captured. To formulate the probability

function for each of these combinations, we start by constructing state vector of all

nodes in a Bayesian network. The state variable of the ith node is denoted by xi, (0

for functional and 1 for dysfunctional). The states of all nodes are given by the state

vector, x = {x1, x2, . . . , xn, x0}, when the BN model has n component nodes and

one system node (x0).

Assume that all nodes are binary-state nodes, then there are 2(n+1) possible com-

binations and hence 2(n+1) possible state vectors. For example, for a 2-component

system, there are 2(2+1) = 8 possible state vectors. They can be represented such

that: x1 = {0, 0, 0}, x2 = {0, 0, 1}, x3 = {0, 1, 0}, x4 = {0, 1, 1}, x5 = {1, 0, 0}, x6 =

{1, 0, 1}, x7 = {1, 1, 0}, and x8 = {1, 1, 1}. The probability of each state vector’s oc-

currence is defined by the joint distribution of the BN (see Eq. 2.1). As an example,

for the 2-component system in Figure 1, we can define the joint probability of each
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combination such as

Pr(x1) = Pr(x1 = 0)Pr(x2 = 0)Pr(x0 = 0 | x1 = 0, x2 = 0)

Pr(x2) = Pr(x1 = 0)Pr(x2 = 0)Pr(x0 = 1 | x1 = 0, x2 = 0)

Pr(x3) = Pr(x1 = 0)Pr(x2 = 1)Pr(x0 = 0 | x1 = 0, x2 = 1)

Pr(x4) = Pr(x1 = 0)Pr(x2 = 1)Pr(x0 = 1 | x1 = 0, x2 = 1)

Pr(x5) = Pr(x1 = 1)Pr(x2 = 0)Pr(x0 = 0 | x1 = 1, x2 = 0)

Pr(x6) = Pr(x1 = 1)Pr(x2 = 0)Pr(x0 = 1 | x1 = 1, x2 = 0)

Pr(x7) = Pr(x1 = 1)Pr(x2 = 1)Pr(x0 = 0 | x1 = 1, x2 = 1)

Pr(x8) = Pr(x1 = 1)Pr(x2 = 1)Pr(x0 = 1 | x1 = 1, x2 = 1) (3.15)

with the constraint that
∑8

i=1 Pr(xi) = 1.

After formulating these state vector probabilities, we need to count how many

times each state vector is observed in a specific evidence set. Thus, we represent

the occurrence of each state vector by a count vector, y = {y1, y2, . . . , yj, . . . , y2n+1},

where yj is the number of occurrences of the jth state vector, xj.

Consider the 2-component system example in Figure 5. We need to keep track

of the counts for each of the 8 state vectors. If we observe the state vector x8 =

{1, 1, 1} 2 times in an evidence set, then y8 = 2. If we also observe x4 = {0, 1, 1}

once, then y4 = 1. Combining them together, the count vector is given by y =

{0, 0, 0, 1, 0, 0, 0, 2}.

The likelihood function of specific evidence set is derived from a multinomial

distribution. As a sensor signal only depends on the state of the node under its

monitoring, each observation set from the system leads to exactly one state vector,

then the count vector clearly follows a multinomial distribution with its parameters

being the state vector probabilities defined in Eq. 3.15. That is, the random variables
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yj indicate the number of occurrence state vector xj observed overN instances (total

number of sensor signals).

Therefore, the likelihood function of one specific evidence set is given by

Pr(y | p) = N !

y1!y2! . . . y2n+1 !
(Pr(x1))y1 (Pr(x2))y2 . . . (Pr(x2n+1))

y2n+1

=N !
2n+1∏
j=1

(
Pr(xj)

)yj
yj!

=N !
2n+1∏
j=1

{ 1

yj!
[

(
n∏

i=1

(pi)
(xi)j(1− pi)[1−(xi)j ]

)

(p(x1)j ...(xn)j)
(x0)j(1− p(x1)j ...(xn)j)

[1−(x0)j ]]} (3.16)

When there are only a partial set of components are monitored, it is im-

portant to realize that there could be more than one count vector that satisfy

the evidence set from sensors. Thus, we need to keep track of the count vec-

tor for each possible scenario. Let the kth possible count vector to be yk =

{(y1)k, (y2)k, . . . , (yl)k, . . . , (y2n+1)k}, where (yj)k is the number of occurrences of the

jth state vector, xj, in the kth scenario that satisfies the given evidence. Then, the

likelihood of observing the evidence, E, should be the sum of the probability of all

possible count vectors that these evidences imply. That is,

Pr(E | p) =
∑
∀yk

Pr(yk | p)

=N !
∑
∀yk

[
2n+1∏
j=1

{ 1

yj!
[

(
n∏

i=1

(pi)
(xi)j(1− pi)[1−(xi)j ]

)

(p(x1)j ...(xn)j)
(x0)j(1− p(x1)j ...(xn)j)

[1−(x0)j ]]}] (3.17)
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Therefore,

L(E | p) ∝
∑
∀yk

[
2n+1∏
j=1

{ 1

yj!
[

(
n∏

i=1

(pi)
(xi)j(1− pi)[1−(xi)j ]

)

(p(x1)j ...(xn)j)
(x0)j(1− p(x1)j ...(xn)j)

[1−(x0)j ]]}] (3.18)

To illustrate the computation, we use the BNmodel in Figure 5 as an example. In

this 2-component system we assume there is one sensor placed on the component

1 node and another sensor on the system node (see Figure 7). Over the observation

period, a series of 5 failure events were detected at the system level by sensor 1 and

one failure event was detected at the component level by sensor 2. However, no

direct information of component 2 is available, as it is not monitored by sensor.

Figure 7. Basic two component BN system with sensors on the system and
component 1.

Since there are two components (i.e. n = 2), the number of possible state vec-

tors is 2n+1 = 23 = 8. The state vectors are listed in Table 10, along with their

probabilities.
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Table 10. State Vectors of system in Figure 7.

State Vector # j
Node states State vector xj Probability Pr(xj | p)(x1)j (x2)j (x0)j

1 0 0 0 {0, 0, 0} (1− p1)(1− p2)(1− p00)
2 0 0 1 {0, 0, 1} (1− p1)(1− p2)p00
3 0 1 0 {0, 1, 0} (1− p1)p2(1− p01)
4 0 1 1 {0, 1, 1} (1− p1)p2p01
5 1 0 0 {1, 0, 0} p1(1− p2)(1− p10)
6 1 0 1 {1, 0, 1} p1(1− p2)p10
7 1 1 0 {1, 1, 0} p1p2(1− p11)
8 1 1 1 {1, 1, 1} p1p2p11

The five observed system failure events are certainly related to the events at the

component level. For each system event, it invokes one or more of the 8 possible

state vectors. In this example, as we observe 5 failures at the system and 1 failure at

component 1, the state vectors must be four {0, x2, 1} and one {1, x2, 1}. As there

are two possible states for the unobservable node x2, the four events of {0, x2, 1} are

distributed among two possible state vectors and there are 5 distinct arrangements.

Similarly, there are 2 arrangements for the single event of {1, x2, 1}. Thus, the total

number of possible count vectors is 5× 2 = 10.

For example, among the 5 observed system events, one possible scenario is that

x2 = {0, 0, 1} occurred 4 times and x6 = {1, 0, 1} occurred 1 time. Correspondingly,

we have y2 = 4 and y6 = 1, and other yj ’s are zeros. This is the first row in Table 11.

Another possible scenario is that x4 = {0, 1, 1} occurred 4 times and x8 = {1, 1, 1}

occurred 1 time. This is the last row in Table 11. After enumerating all possible

scenarios, their corresponding count vectors are listed in Table 11.

We used the likelihood function given by Eq. 3.18 along with uniform prior

distributions of p to generate the posterior distributions of the parameters of BN

model. MCMC was performed to draw samples from the unnormalized joint pos-

terior distribution. We used the Bayesian software package, WinBUGS, to carry out
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the computation. One advantage of using WinBUGS software is that it can be also

called from the statistical software R (R CORE TEAM et al., 2012) through a package

called R2WinBUGS, making it more convenient for the analysis of simulation results.

Table 11. Possible state vector combinations of system in Figure 7.

Count Vector # k
Count vector, yk

(no. of jth state vectors)
(y1)k (y2)k (y3)k (y4)k (y5)k (y6)k (y7)k (y8)k

1 0 4 0 0 0 1 0 0
2 0 4 0 0 0 0 0 1
3 0 3 0 1 0 1 0 0
4 0 3 0 1 0 0 0 1
5 0 2 0 2 0 1 0 0
6 0 2 0 2 0 0 0 1
7 0 1 0 3 0 1 0 0
8 0 1 0 3 0 0 0 1
9 0 0 0 4 0 1 0 0
10 0 0 0 4 0 0 0 1

The following results are based on discarding the first 20, 000 draws from the

MCMC sampling chain and then keeping every other sample (to reduce the auto-

correlation of drawn samples) until there were 100, 000 draws from the joint posterior

distribution.

Based on the results in Table 12, we can conclude that the system behaves like

a series system, because the system has high probability of failure when at least one

of the components has failed. It is also found that there is a notable probability of

system failure even when both components are functioning, so there might be some

unknown factors that affect the working mechanism of the system. As a result, we

are able to assess the dependencies between the system’s health and the states of its

components even when only a partial set of components are monitored.
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Table 12. Empirical mean, standard deviation, and quantiles for parameters.
Mean SD 2.5% 25% 50% 75% 97.5%

p1 0.148967691 0.062107504 0.02870975 0.1008 0.1535 0.2015 0.2452
p2 0.169756133 0.062686748 0.02449975 0.1295 0.1849 0.2217 0.2475
p00 0.183846816 0.055111599 0.0452995 0.1531 0.1987 0.2279 0.2481
p01 0.799470654 0.138742057 0.524 0.6922 0.8218 0.9197 0.9926
p10 0.772466599 0.142763382 0.5171 0.6534 0.7832 0.8973 0.9899
p11 0.876228065 0.072134488 0.7562 0.8143 0.8767 0.9389 0.9938

3.4 Case Study

In this section, we demonstrate our methodology on a hypothetical mechatronic

system: an active vehicle suspension (AVS), previously presented in Zhong et al.

(2010). In the previous study, the system reliability configuration was deterministic,

represented by a fault tree. In our study, we remodel one of its subsystems by a

BN, assuming that this subsystem is redesigned and its reliability structure is more

complex than the old generation. We start by introducing the AVS system.

The AVS system supports the vehicle body and reduces body vibration from the

road surface. The system consists of tires, springs, dampers (shock absorbers) and

linkages that connect a vehicle to its wheels and allows relative motion between the

two. Suspension systems contribute to the vehicle’s road handling and braking for

good active safety, and keep vehicle occupants isolated from road noise and bumps.

The suspension also protects the vehicle from damage and wear. Fully active sus-

pension systems use electronic monitoring of vehicle conditions, in order to impact

vehicle suspension and behavior in real time to directly control the motion of the

car.

Figure 8 shows the fault tree of a simplified version of the system. The system

has a parallel structure. The parallel system is composed of two subsystems: a pas-
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sive subsystem and an actuator subsystem. The passive subsystem works in a series

structure with the spring and damper (shock absorber) components, where the shock

absorbers damp out the motions of a vehicle up and down on its springs. The actu-

ator subsystem also works in a series structure with mechanical and electronic parts.

Active suspensions use actuators to raise and lower the chassis independently at each

wheel. The mechanical parts include components like pump, piston, and servovalve;

whereas the electronic parts include power, sensors, and the controller. The suspen-

sion reacts to signals from the electronic controller (which means the suspension is

externally controlled). Sensors continually monitor body movement and vehicle ride

level, constantly supplying the computer with new data.

Figure 8. The fault tree of an active vehicle suspension.

Next, we model the AVS system as a Bayesian network (see Figure 9). Suppose

that the parallel structure of the system reliability and the series structure of the ac-

tuator reliability are unchanged, but, due to a redesign, the reliability structure of

the passive device reliability becomes uncertain. Therefore, we are interested in ex-
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ploring the relationship between node X2 and its parent nodes, X4 and X5, through

conditional probabilities.

Figure 9. The corresponding BN model of the fault tree model in Figure 8.

In this scenario we continually monitor the system with sensors on nodes X1, X4

and X7. We observe a series of 10 events where 10 failures were detected at the

system level (by sensor 1), 2 failures were detected by sensor 2 and no failures were

detected by sensor 3 (see Figure 10).

Since there are 7 components in the system, the number of possible state vectors

would be 27 = 128 if we did not observe any evidence. As some parts of system

reliability structure are deterministic, we can eliminate a great amount of state vectors

according to the evidence coming from the sensor.

The first step is to construct the state vectors as explained in Section 3.3.2.3. The

states of X6 and X7 uniquely define the state of X3, and the states of X2 and X3

uniquely define the state of X1. Therefore, we only need to consider the stochastic

nodes, X2, X4, X5, X6, X7, in the model inference. Thus, we have 25 = 32 state
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vectors. The joint probability is represented as

P (X) = P (X4)P (X5)P (X6)P (X7)P (X2 | X4, X5) (3.19)

Figure 10. The AVS model with sensors.

Therefore, the parameters that we would like to estimate in this system are the

failure probabilities p = {p4, p5, p6, p7, p11, p10, p01, p00} where pij = P (X2 = 1 | X4 =

i,X5 = j). Note that p3 = (1− (1− p6)(1− p7) (series system) and p1 = p2p3 (parallel

system). The state vectors are listed in Table 13, along with their probabilities.
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Table 13. State Vectors of system in Figure 10.

Vector x1 x2 x3 x4 x5 x6 x7 Probability

1 0 0 0 0 0 0 0 (1− p4)(1− p5)(1− p6)(1− p7)(1− p00)

2 0 0 0 0 1 0 0 (1− p4)p5(1− p6)(1− p7)(1− p01)

3 0 0 0 1 0 0 0 p4(1− p5)(1− p6)(1− p7)(1− p10)

4 0 0 0 1 1 0 0 p4p5(1− p6)(1− p7)(1− p11)

5 0 0 1 0 0 0 1 (1− p4)(1− p5)(1− p6)p7(1− p00)

6 0 0 1 0 0 1 0 (1− p4)(1− p5)p6(1− p7)(1− p00)

7 0 0 1 0 0 1 1 (1− p4)(1− p5)p6p7(1− p00)

8 0 0 1 0 1 0 1 (1− p4)p5(1− p6)p7(1− p01)

9 0 0 1 0 1 1 0 (1− p4)p5p6(1− p7)(1− p01)

10 0 0 1 0 1 1 1 (1− p4)p5p6p7(1− p01)

11 0 0 1 1 0 0 1 p4(1− p5)(1− p6)p7(1− p10)

12 0 0 1 1 0 1 0 p4(1− p5)p6(1− p7)(1− p10)

13 0 0 1 1 0 1 1 p4(1− p5)p6p7(1− p10)

14 0 0 1 1 1 0 1 p4p5(1− p6)p7(1− p11)

15 0 0 1 1 1 1 0 p4p5p6(1− p7)(1− p11)

16 0 0 1 1 1 1 1 p4p5p6p7(1− p11)

17 0 1 0 0 0 0 0 (1− p4)(1− p5)(1− p6)(1− p7)p00

18 0 1 0 0 1 0 0 (1− p4)p5(1− p6)(1− p7)p00

19 0 1 0 1 0 0 0 p4(1− p5)(1− p6)(1− p7)p10

20 0 1 0 1 1 0 0 p4p5(1− p6)(1− p7)p11

21 1 1 1 0 0 0 1 (1− p4)(1− p5)(1− p6)p7p00

22 1 1 1 0 0 1 0 (1− p4)(1− p5)p6(1− p7)p00

Continued on next page
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Table 13 – Continued from previous page

Vector x1 x2 x3 x4 x5 x6 x7 Probability

23 1 1 1 0 0 1 1 (1− p4)(1− p5)p6p7p00

24 1 1 1 0 1 0 1 (1− p4)p5(1− p6)p7p01

25 1 1 1 0 1 1 0 (1− p4)p5p6(1− p7)p01

26 1 1 1 0 1 1 1 (1− p4)p5p6p7p01

27 1 1 1 1 0 0 1 p4(1− p5)(1− p6)p7p10

28 1 1 1 1 0 1 0 p4(1− p5)p6(1− p7)p10

29 1 1 1 1 0 1 1 p4(1− p5)p6p7p10

30 1 1 1 1 1 0 1 p4p5(1− p6)p7p11

31 1 1 1 1 1 1 0 p4p5p6(1− p7)p11

32 1 1 1 1 1 1 1 p4p5p6p7p11

For the 10 observed events (i.e. N = 10), there are many possible state vector

combinations, as each event will invoke one of the 32 possible state vectors. We

elicited these vectors by a MATLAB program (Hunt et al., 2014) and counted the

occurrence of each state vector for the given evidence. In this example, we obtained

27 possible counts vectors, yk, that imply the evidence; that is, there are 27 possible

arrangements of state vectors that match the evidence coming from the sensors.

The likelihood function is constructed by summing up individual likelihoods de-

fined by the multinomial distribution for each count vector, yk, as was formulated in

Eq. 3.18. The posterior distributions for these failure probabilities are obtained by

using uniform priors inWinBUGS.

The evidence set claims that, out of 10 system failures, sensor 2 only detected 2

failures, and sensor 3 did not detect any failures; therefore the probability of failure
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for node 4 and node 7 (p4 and p7) should be very small. This is confirmed by the

MCMC output. Since we do not have any information about node 5, p5 is around

0.5. The posterior failure probability of node 6 is very large because it is needed

to compensate the low failure probability of node 7, for the series structure of their

subsystem. More importantly, with the evidence set we are able to infer the reliability

structure of the passive device subsystem (including nodes 2, 4 and 5). The condi-

tional probabilities listed in Table 14 show that this subsystem has a high probability

of failure when at least one of its components has failed. So, we can conclude that

the reliability structure of the passive device subsystem is close to a series system.

Table 14. Empirical mean, standard deviation, and quantiles for parameters.
Mean SD 2.5% 25% 50% 75% 97.5%

p4 0.184684 0.067958 0.05203 0.1333 0.1883 0.2409 0.2936
p5 0.517456 0.076611 0.3156 0.4831 0.5398 0.5747 0.5978
p6 0.917133 0.07627 0.7163 0.8821 0.9393 0.9745 0.9977
p7 0.083205 0.07647 0.002211 0.0256 0.06082 0.118 0.2859
p00 0.16214 0.06627 0.01738 0.1156 0.1773 0.2183 0.2471
p01 0.885807 0.099819 0.6257 0.8343 0.914 0.9638 0.9968
p10 0.774643 0.143001 0.517 0.656175 0.787 0.8993 0.9908
p11 0.881724 0.072124 0.7572 0.8203 0.8849 0.9448 0.9945

The plots of prior and posterior distributions of these conditional probabilities

are shown in Figure 11. From these plots we can see that, after combining evidence

from sensors, the uniform prior evolves to a more narrowly distributed posterior. As

a result, our method proves to be an effective way to assess dependencies in system

reliability, even in the case of only a partial set of components being monitored.

59



Figure 11. Prior (dashed lines) and posterior (solid lines) distributions of
conditional probabilities.

3.4.1 Computational Complexity

As one can see from this case study, the computation complexity of our algorithm

is not trivial. The evaluation of the likelihood function presented in this paper relies

on identifying combinations of state vectors that are implied by the evidence. The

speed of evaluation is largely dependent on the generation of possible state vectors

for the system and then identifying all combinations of those state vectors. Once

the state vector combinations are developed, the likelihood function can easily be

calculated.

The generation of the set of combinations of state vectors is the most compu-

tationally intensive part for developing the likelihood function. We have developed

an algorithm to rapidly identify these combinations. The first part of the algorithm,

compiled in MATLAB, constructs all combinations of the count vectors for a given

number of tests. The complexity of this part of the algorithm is O(mn), where m is
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the number of tests and n is the number of state vector combinations. Therefore,

the number of count vectors increases exponentially with number of state vectors.

As a result, the complexity of the algorithm is polynomial in the number of tests, but

exponential in the number of state vector combinations. We admit that this might

be problematic for very complex systems with hundreds of components.

We, however, suggest an alternative solution for combining state vectors. The

matrix of count vectors is actually very sparse due to the fact that we do not observe

all of the combinations. Therefore, it is not necessary to calculate all combinations.

Note that the number of combinations of state vectors is related to number of ways

distributing n identical objects among r groups and this can be done in C(n + r −

1, r − 1) ways, where n is the number of counts of a specific vector combination

observed and r is the number of possible combinations for unknown nodes. We

have devised a formula that will rapidly give us the number of count vectors that

satisfy the evidence and hence will provide rapid analysis of the likelihood function

for subsequent Bayesian analysis.

For example, in the case study, according to the given evidence, we can specify

what vectors are possible to be observed, so we do not need to combine all of the

state vector combinations in our algorithm. Following the evidence, we infer that the

state vectors must be eight {1, 1, 1, 0, x5, 1, 0}’s (n1 = 8) and two {1, 1, 1, 1, x5, 1, 0}’s

(n2 = 2). As there are two possible states for the unobservable node x5, r1 = r2 =

2. Therefore, total number of count vectors satisfying the evidence can be directly

calculated as C(9, 1) × C(3, 1) = 27. As a result, we can generate count vectors

without going through all the possible combinations of state vectors.

Since probabilistic inference using BN is NP-hard (Cooper, 1990), we suggest

designing efficient special-case algorithms, rather than using general probabilistic in-
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ference algorithms, for a specific problem. Stochastic simulation algorithms such as

MCMC are very efficient, and they can be tuned to improve run times, especially in

the incomplete data case.

3.5 Conclusion and Future Research

In this chapter we generalize the system reliability configuration of a complex sys-

tem to a Bayesian network model. We are interested in exploring the relationship of

system/subsystem reliability to its components. This research is particularly mean-

ingful to a new system design where the system reliability configuration is uncertain.

Using the Bayesian inference approach, we are able to combine information from

multiple sources and multiple levels of the system to infer the conditional probabili-

ties in BN.

Three data scenarios are discussed in this chapter. In a naïve scenario where the

complete historical dataset of the states of the system and its components are avail-

able, we develop the conjugate Bayesian method for estimating the parameters in a

binary state BN, and then extend it to a multi-state BN.When only failure records are

available, we propose a method for quantifying the marginal distribution of system

failure. Finally, we discuss the scenario of incomplete lower-level system informa-

tion.

Data drawn simultaneously from the same system are fundamentally different

from independent datasets. The dependencies between higher-level failure data and

lower-level failure data are characterized by the conditional probabilities in a BN

model. In the case of having incomplete lower-level data, the likelihood function of

evidence becomes a summation of several likelihoods that correspond to all possible
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state vectors of the system. For such complicated function, it is impossible to find

a closed form solution of posterior probability; therefore, we employed the compu-

tational Bayesian method, MCMC. The resulting method is successful at quantifying

system reliability structure with incomplete data.

In this chapter, we studied simultaneous data analysis of binary-state systems.

This research will be extended to Bayesian networks modeled by continuous life

metric systems in the next chapter. Our proposed Bayesian network model can also

be coupled with Hierarchical Bayesian (HB) inference to enable model parameter

estimation without explicitly specifying its prior distribution. One concern is that, as

the number of components and possible states increase, the exponentially increasing

number of possible combinations of state vectors that comply with the observed

evidence set will significantly worsen computational efficiency. In this research, we

developed aMATLAB program to perform a rapid compilation of the set of combi-

nations of state vectors to be used in theMCMC simulation inWinBUGS. However,

a future research direction could be to develop more efficient algorithms that can

handle multi-state systems and/or continuous state systems.

Furthermore, in the Bayesian inference of multi-level system, one may encounter

the problem of the prior distribution of system reliability can be derived from two

different channels. One is from the direct estimation on the system, such as expert

opinions on the system reliability, and the other one is derived from component

priors, because system reliability is a function of component reliability. Consequently,

we need to combine the prior information from different channels. Guo (2011) used

the Bayesian melding method originally proposed by Poole and Raftery (2000). In

Chapter 4, we plan to incorporate Bayesian melding and other prior specification

methods of system reliability into BN models.
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Assessing the posterior distribution of conditional probabilities is critical to the

understanding of both the functional and physical structure of a system. More re-

search is needed on the techniques and tools for carrying out this activity. In our

current study, we usedWinBUGS, a tool for applyingMCMC simulation in Bayesian

inference. However, to reduce computational burden, other computational Bayesian

methods should be investigated in future research.
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Chapter 4

A BAYESIAN APPROACH TO SYSTEM RELIABILITY ASSESSMENT

WITH INCOMPLETE HETEROGENEOUS DATA

4.1 Introduction

Estimating the reliability of complex systems has been a challenging problem

as systems has grown more and more complex. Reliability engineers often have to

deal with uncertain information in a complex environment, causing them to make

decisions based on limited knowledge about the failure mechanisms of the system.

Therefore, the statistical models used for representing complex systems should be

mathematically robust, and at the same time easy to understand for reliability analysts.

These models should be able to account for different sources of information, e.g.,

reliability tests, historical data, or expert judgments. These requirements have caused

to a shift from traditional system reliability models, like fault trees and reliability

block diagrams, to more flexible modeling frameworks, like Bayesian network (BN)

(Wilson and Huzurbazar, 2007; Langseth and Portinale, 2007; Bobbio et al., 2001).

In a complex system, even if many sensors have been deployed on various sys-

tem levels for monitoring the health of the system and its components, it would be

unrealistic to assume that the states of all components can be continuously observed.

It is more common to have sensory data from some components/subsystems, but

not all. In such case, a proper integration of multiple sources of information from

different components or subsystems, as well as from expert opinions, for inferring

the state of the system or some unobserved components becomes a crucial aspect
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for reliability assessment. This situation calls for a method to develop a reliability

inference method that can combine simultaneous online information from various

system levels for system and component reliability prediction.

BNs generalize fault trees by representing the relationship between components

and subsystems by conditional probabilities instead of deterministic “AND” and

“OR” gates, providing advantages when we are not sure about the reliability structure

of a complex system, especially when there is uncertainty. In addition, BNs can

accommodate different types of information, such as discrete, continuous or hybrid

datasets. These uncertainties can be easily assessed using a BN, which would be

rather difficult with conventional techniques, such as fault trees and reliability block

diagrams since they are deterministic systems. However, parameter uncertainty of

failure distributions of components has not received enough attention in the BN

literature. This uncertainty of these parameters especially become apparent when

there are some unobserved components in a complex system, and it is a challenging

problem.

A great majority of this line of work considers the case of discrete Bayesian

networks, i.e., networks that contain only discrete variables. Incorporation of dis-

crete sources of data, such as pass/fail tests, from various levels in the system using

Bayesian inference has been studied extensively (seeGraves et al. (2007); Hamada et al.

(2004); Johnson et al. (2003); Martz et al. (1988); Reese et al. (2005a). However, incor-

porating continuous data is more challenging, especially in the context of Bayesian

inference, due to the integrals involved in calculations. Discrete networks are some-

times inadequate, since many important domains have continuous attributes as well

as discrete ones. One can always discretize the continuous variables by partitioning

their domain into some finite number of subsets, and transform the model to a dis-
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crete BN. However, this simple approach is often very problematic and might lead to

poor performance. In our approach, we treat the continuous variables as continuous

without trying to discretize them.

When a system is continuously monitored, the time at which the system or any of

its components transitions from one state to another is a continuous random variable,

thus the probability (or reliability) that they exist in a particular state is a function of

time. Binary-state systems are those whose variables exist in either “failed” or “suc-

cessful” states. The scope of this work is limited to binary-state systems. As failure

times are observed, the likelihood function is a function of failure times. However,

these observed failure data from different components and subsystems can be over-

lapping because in a coherent system they may represent the same event at different

system levels. The probability of a component having failed at a given time is defined

by the failure distribution parameters of that component.

This chapter presents a Bayesian network methodology for incorporating over-

lapping higher level data when making inferences about component reliability pa-

rameters associated with a time based reliability function. We develop a Bayesian

model that accommodates lifetime information coming from some of the variables

of a BN simultaneously. We show that our Bayesian network model can incorporate

any parametric lifetime distribution for modeling the time-to-failure of the system

components and can handle continuous variables without applying discretization.

An outline of this chapter is as follows. The next section presents a literature re-

view of Bayesian network models with continuous and hybrid data structures. Our

framework for system reliability and the inference method are discussed in Section

4.3. We start by discussing how to formulate the likelihood function with incom-

plete lifetime data, and then extend the case to the hybrid datasets where we also
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incorporate discrete pass/fail data into the likelihood formulation. We illustrate the

proposed approach with an application to a missile guidance system in Section 4.4.

Finally, we conclude the chapter with a discussion in Section 4.5.

4.2 Background

Bayesian networks have been used extensively in system reliability analysis due to

their abilities in handling variables which are represented by a multivariate probability

distribution (Bobbio et al., 2001; Doguc and Ramirez-Marquez, 2009; Mahadevan

et al., 2001). Most of the research on Bayesian networks has focused on systems with

discrete variables, or continuous variables with Gaussian distributions. Handling

continuous variables have been a problematic issue for Bayesian networks due to

the integrals involved in the likelihood calculations.

There are different types of Bayesian networks with respect to the type of their

variables. These different types of BNs all require different analysis techniques be-

cause they all have different structures. In discrete state BNs, the state indicates

whether the component works or fails, and it can be deducted from fault trees or

reliability block diagrams. In this case, the variables of the BN are defined in dis-

crete space and the BN is characterized by the conditional probability tables. Most

of the research in the literature has focused on the discrete state BNs (Mahadevan

et al., 2001; Wilson and Huzurbazar, 2007). Exact inference in discrete state BNs is

possible with some algorithms, such as variable elimination, belief propagation and

junction trees (Heckerman, 1998; Koller and Friedman, 2009).

Continuous state BNs, on the other hand, assign a probabilistic distribution to the

time-to-failure data of a component (Langseth and Portinale, 2007). The difference is
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that, in a continuous BN, the variables have a continuous state space. The state space

represents the instant of time that the system component failed and covers the set of

nonnegative real numbers. In literature, Hulting and Robinson (1994) extended the

Martz et al. (1988) and Martz and Wailer (1990) methods to lifetime data. Like the

binomial data method, Hulting and Robinson (1994) employed approximations in

building up from component-reliability assessment to a system-reliability assessment.

Boudali and Dugan (2005) presented a non-parametric discrete-time time-to-failure

model, and Boudali and Dugan (2006) modeled a continuous-time time-to-failure in

close-form without considering model uncertainty. Their continuous BN framework

was able to capture the system components’ behaviors and interactions, proposing a

temporal Bayesian network reliability modeling and analysis method. However, it is

still a challenging task to model the time-to-failure distribution because of the com-

plexity of modeling a probability density in continuous space. Johnson et al. (2003)

modeled the distribution parameters of time-to-failure as a continuous unknown vari-

able, such as the scale and the shape of a 2-parameter Weibull density. This facilitates

passing information through the network and the reliability analysis at system level

based on the characteristics of the lifetime distributions of components. However,

the integral in continuous state space makes the calculations intractable when the

systems grow more complex.

Some researchers have proposed non-parametric methods for continuous

Bayesian networks. Zhong et al. (2010) formulated the problem of system relia-

bility assessment as a BN considering the parameter uncertainty. They modeled the

time-to-failure of the system/components by the parametric distributions whose

parameters are considered as random variables in the BN. For reasoning in a continu-

ous BN, their method provided an alternative solution to the other methods, such as
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mixture of truncated exponentials, dynamic discretization and Markov chain Monte

Carlo (MCMC). Warr and Collins (2014) also presented a hierarchical nonparametric

framework, using Dirichlet processes, in which time-to-event distributions may be

estimated from sample data or derived based on physical failure mechanisms. Their

goal was to develop reliability estimates for complex systems, including estimates

of uncertainty, using component, subsystem, and system data, and all available data

types, which may include subjective data such as expert opinion as well as data

collected from various formal tests.

Finally, hybrid-state BNs contain mixtures of discrete and continuous variables.

Continuous and hybrid state BNs show similar characteristics and hybrid state BNs

are also imposed to the same difficulties when it comes to computing posterior dis-

tributions. Previous research has suggested some discretization methods to perform

the inference in the continuous/hybrid Bayesian networks (Langseth et al., 2009; Neil

et al., 2007, 2008). Neil et al. (2008) have modeled time-to-failure distributions by

continuous random variables as well as by discrete random variables. Marquez et al.

(2010) showed how BN algorithms can be used to model time to failure distributions

and performed reliability analysis of complex systems. Their hybrid BN approach

extended fault trees by defining the time-to-failure of the fault tree constructs as de-

terministic functions of the corresponding input components’ time-to-failure. Their

approach incorporated an approximate inference algorithm for hybrid BNs, based

on a process of dynamic discretization of the domain of all continuous variables

in the BN. Iamsumang et al. (2015) also presented a hybrid BN-based methodology

for component degradation modeling and efficient algorithm development with an

application to online health monitoring of complex systems. They introduced a hy-

brid dynamic Bayesian network with component-based structure to represent com-
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plex engineering systems with underlying physics of failure by modeling an empirical

degradation model with continuous variables. However, all these methods have not

paid enough attention to the stochastic nature of parametric time-to-failure models

in system reliability. They also have not considered simultaneous and incomplete

data in their analyses.

Unfortunately, exact inference in continuous BNs with general distributions does

not exist, especially when the data is incomplete, although the inference for the case

where the distributions are Gaussians can be found in literature. Moral et al. (2001)

described a theory for exact inference where distributions are specified as a mixture

of truncated exponentials. However, at this point, in order to get the closed-form

solution, one needs to go through multiple integrations. This process is very time

consuming. Moreover, a closed-form solution can only be obtained if the integral is

analytically solvable. An approximate solution has to be performed in the case where

the closed-form solution cannot be explicitly derived.

All the aforementioned studies for continuous/hybrid BNs had good contribu-

tions. However, in highly complex systems, algorithms require large amount of com-

putational time for inference in a continuous/hybrid BN. The computation time

grows exponentially with each additional layer of network and becomes infeasible

with a large number of nodes. As a result, for continuous BNs and hybrid BNs

containing both discrete and continuous variables with non-Gaussian distributions,

exact inference becomes computationally intractable (Boyen and Koller, 1998).

Markov chains have also been used for modeling continuous Bayesian networks

in the literature (Boudali and Dugan, 2006). However, they present some limita-

tions. Specifying a Markov chain for a large system becomes a cumbersome and

tedious task. Markov chain modeling is limited to Markov processes, which gener-
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ally requires all failure times to be exponentially distributed. Markov chains are also

faced with the state space explosion problem; in fact, the number of states grows

exponentially with the size of the system. Consequently, the number of differential

equations to be solved grows exponentially with the size of the system. The state

space explosion is one of the main limitations in using Markov chains for modeling

large systems.

As a result, due to the limitations of Markov chains, discretization of the vari-

ables and assumption of Gaussian distributions, Bayesian researchers have focused

on developing more efficient methods for incorporating continuous variables in their

frameworks. For example, Wilson et al. (2006) showed how to combine reliability

data that change over time, with an example that had binomial data at the system

and one component, lifetime data at a second component, and degradation data at

a third component. However, this paper did not demonstrate how to incorporate

lifetime data at the system level. Guo (2011) proposed a model that considers life-

time data at every component. Their solution was to simply re-express system and

subsystem lifetime distributions in terms of component lifetime distributions using

deterministic relations derived from the system structure. However, their model was

based on reliability block diagrams and they used independent and complete data

in their analysis. Reese et al. (2011) presented a Bayesian model for assessing the

reliability of multicomponent systems. In their model, lifetime data collected at the

component, subsystem, or system level were integrated with prior information at

any level. However, they also assumed that the test data are completely observed

and independent from each other.

In literature, there have been very few studies developed for overlapping data at

various levels of a system. Jackson (2011) developed an overlapping data likelihood
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function to incorporate inherent dependencies between the datasets and generate the

correct inference within Bayes’ theorem for systems. Their overlapping data Bayesian

method incorporates all information and evidence that can possibly be generated or

observed by complex time based systems represented by a fault tree. In this research,

we focus on the problem of inference of the reliability model parameters in a BN in

system reliability context using simultaneous and incomplete hybrid data.

4.3 Methodology

In this section Bayesian inference methods are discussed for simultaneously esti-

mating parameters of lifetime distributions in a Bayesian network when lifetime and

pass/fail data are collected from different levels of the system. We develop the likeli-

hood function for simultaneous continuous and discrete data in a time based system

represented by a Bayesian network structure, thus presenting a generalization to the

standard series and parallel systems. We assume the structure of the network is given

and the conditional probabilities of the network are known.

4.3.1 Bayesian Networks in Reliability Assessment

In recent years, Bayesian networks (BNs) have been increasingly used in a wide

range of applications including computer science, bioinformatics, data fusion, de-

cision support systems and others. A Bayesian network is a directed acyclic graph

(DAG) that represents a joint probability distribution among a set of variables, where

the nodes denote random variables and the arcs between these variables denote
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the conditional dependencies (represented by conditional probability distributions)

among variables (Koller and Friedman, 2009).

A Bayesian network model allows for efficient calculation of belief revisions, i.e.

calculating the quantitative belief changes of variables when new evidence is ob-

served. This is very useful for diagnostic and prediction purposes in decision support

environments, such as reliability assessment domains. An example of a BN can be

seen in Figure 12.

Figure 12. A sample Bayesian network

In a BN, the nodes without any arrows directed into them are called root nodes

(also called parent nodes) and they are described according to their marginal prob-

ability distributions (nodes X1 and X2 in Figure 12). The nodes that have arrows

directed into them are called child nodes. Each child has a conditional probability

distribution associated with it, given the values of parent nodes.

Nodes in a Bayesian network are said to be uncorrelated if there is no arc between

these nodes. This situation is called conditional independence. The conditional in-

dependence structure reduces significantly the complexity of inference and allow to

decompose the underlying joint probability distribution as a product of local con-

ditional probability distributions (CPDs) associated to each node and its respective
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parents (Spiegelhalter and Lauritzen, 1990). If the variables are discrete, the CPDs

can be represented by conditional probability tables (CPTs), which list the probabil-

ity that the child node takes on each of its different values for each combination of

values of its parents.

Let G be the BN in Figure 12 with nodes X1, X2, X3, X4. The joint distribution

of G over the variables can be written as

P (X1, X2, X3, X4) =
4∏

i=1

P (Xi | pa(Xi)) = P (X1)P (X2)P (X3 | X1, X2)P (X4 | X3)

(4.1)

where the multiplication is replaced by an integral in case of continuous variables.

The simplest of Bayesian networks are binary-state BNs, where components are

either in the “functional” or “failed” states. “Multi-state” BNs involve components

that can be classified by order of severity in various degraded states ranging from

“functional” to “failed”. However, restricting our attention to models containing

only discrete variables seems very unsatisfactory in the domain of reliability analysis.

Bayesian networks based on continuous data are those whose failure probability is a

function of a time variable, which is our main focus in this chapter.

4.3.2 Integrating Incomplete Lifetime Data Using Bayesian Inference

Learning Bayesian networks from data has drawn lots of attention by researchers

in order to be able to apply BNs to real-world applications. Learning from complete

data has been studied extensively in the last decade. If the data is complete, or fully

observed, so that each of the network variables is observed, learning BN parameters

is not difficult, however, in many applications, data can be incomplete for various

reasons. In the complete data case, we can use binomial likelihood and beta priors
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and obtain a closed form solution for the distribution of the parameters (Martz et al.,

1988; Johnson et al., 2003; Hamada et al., 2004). If the data is complete, the learning

problem reduces to a set of local learning problems, one for each variable (Koller

and Friedman, 2009). However, in reality one frequently has to deal with incomplete

data. The problem gets more complicated for the incomplete data case, where the

variables are partially observed, so that, in each instance, some variables (known in

advance) are not observed in the Bayesian network. Learning Bayesian networks

from incomplete data is a very difficult problem. The occurrence of missing values

leads to analytical intractability and high computational complexity compared to the

complete data scenario. The existing methods either use inference algorithms to get

the expected values of statistics or delete the missing values. Approaches like the

expectation-maximization might get stuck at local optima (Lauritzen, 1995). In our

methodology, we prefer to use Bayesian inference for parameter learning, as it is

a powerful tool when used with probabilistic graphical models such Bayesian net-

works. A commonly adopted technique for applying Bayesian inference is Markov

Chain Monte Carlo (MCMC) methods, for their efficiency in sampling from the joint

probability distribution of the model (Gelman et al., 2014). To implement MCMC,

we use WinBUGS, a statistical software for Bayesian inference (Spiegelhalter et al.,

2003). WinBUGS is a general purpose modeling language, which takes as its input

a BN model and returns samples that can be used for estimating the posterior prob-

ability distributions of the model parameters. In this paper, we develop a method

that is statistically valid, and correctly reflects the increased uncertainty due to miss-

ing data. We also demonstrate that the MCMC method can learn Bayesian networks

from incomplete data efficiently.

In order to make inferences about the failure parameters of the components, we
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need to update the prior beliefs as in Bayes’ theorem such that

π1(θ | E) =
L(E | θ)π0(θ)∫

∀θ L(E | θ
′
)π0(θ

′
)dθ

′ (4.2)

where L(E | θ) is the likelihood of observing evidence set E for given parameter set

θ. The challenge here is how to formulate the likelihood function due to the fact

that the collected data at different system levels are overlapping, causing dependency

among them. Therefore, the likelihood function cannot be a multiplication of sepa-

rate likelihoods coming from different nodes. A special consideration is needed for

the formulation of the total likelihood function.

In our system representation, we adopt the following convention. Given a com-

ponent, we represent the state of the component with either one of the two states:

1 for failed component, and 0 for working component. The quantification of the

Bayesian network requires the assignment of a probability value to each node. Since

the computation is performed according to a given time t, the failure probabilities of

the components at time t should be provided. For discrete systems, the failure prob-

ability is a parameter of Binomial distribution. For systems and components dealing

with continuous data, on the other hand, the probability of being in a “failed” or

“working” state is a function of time. For example, the probability of a component

being in the “failed” state is Pr(C = 1 = failed) = Pr(C = 1, t) = FC(t) and the

probability of the component being in the working state is Pr(C = 0 = working) =

Pr(C = 0, t) = 1 − FC(t) = RC(t), where FC(t) and RC(t) are the cumulative distri-

bution and reliability functions of that component, respectively.

We next define our system reliability representation as follows. Our system is rep-

resented as a multi-level directed acyclic graph (DAG) which contains a hierarchical

structure. The nodes of a multi-level DAG can be partitioned into levels L1, . . . , Lm,

such that there is no edge within a level and all the edges are between nodes in level
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Li and the nodes in the adjacent levels Li−1 and Li+1 (see Figure 13 for an illustration).

We call the nodes in the adjacent lower level Li+1 as the direct subordinates of the

nodes in level Li.

Figure 13. BN representation of a hierarchical system.

As we develop the model, we will use the following notation. The components,

subsystems, and system in the BN are referred to as nodes, such as Ci and Sj in

Figure 13. The components are denoted by Ci, and subsystems and the system are

denoted by Sj . The direct subordinates of Sj are the nodes in the next lower level,

which constitute node Sj . The set of direct subordinates of Sj is denoted as Aj . In

Figure 13, for instance, system S0 has a direct subordinates set A0 = (S1, S2). The

evidence set E contains the simultaneous lifetime information collected at several

nodes in the BN.

In our Bayesian framework, we represent data and their information by likeli-

hood contributions. We would like to assess system reliability as a function of time;

therefore, we need to formulate the probability of failure as a function of time. The

probability of a component having failed at a given time t is equal to the cumulative

distribution function (CDF), F (t). The CDF is defined by a set of parameters, which
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for the ith component is represented as θi. The set of component parameters for the

system is:

θ = {θ1, θ2, . . . , θn}

Our primary goal is to assess these failure parameters in order to monitor reli-

ability of the system and its components through time. The probability of the ith

component having failed at a given time t is defined by the set of reliability parame-

ters of that component. Thus, the failure probability of component Ci at time t can

be calculated by

pCi
(t | θCi

) = FCi
(t | θCi

) (4.3)

For simplicity, we will denote the component i failure probability as pCi
(t). The

failure probability is a function of time, as opposed to the discrete case, where we

model discrete data as multinomial likelihood. In order to formulate the likelihood

function, we also need to model the lifetime distribution of each component, Ci,

which we will denote fCi
(t | θCi

), where f(·) is the probability density function and

represents the probability that the ith component will fail at time t. However, for

the system node and subsystem nodes (Sj), we need to infer the probability density

function using the relationship of components to the system/subsystem represented

by the Bayesian network, which will not result in a standard distribution. Therefore,

the probability density function of the system is calculated by taking the derivative

of the distribution function, such that

fSj
(t | θSj

) =
d

dt
FSj

(t | θSj
) =

d

dt
(1−RSj

(t | θSj
)) = − d

dt
RSj

(t | θSj
) (4.4)

where the reliability function, RSj
(t | θSj

), is calculated by using the relationship

between components and subsystem using the BN conditional dependence structure:

RSj
(t | θSj

) = 1− FSj
(t | θSj

) = ψSj
(RSk

, RCk
: ∀Sk ∈ Aj, ∀Ck ∈ Aj) (4.5)
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where ψSj
(·) is the structure function of node Sj defined by the BN structure (con-

ditional probabilities), which describes the reliability relationship between the node

and its direct subordinates. Sk, and Ck are, respectively, the subordinate subsys-

tems, and components of node Sj within the direct subordinates set Aj . Differently

from fault trees and reliability block diagrams, the dependence relations among vari-

ables in a BN are not restricted to be deterministic. This corresponds to being able

to model uncertainty in the interaction between components, by suitably specify-

ing conditional probabilities, instead of using deterministic “AND” and “OR” gates.

Probabilistic gates may reflect an imperfect knowledge of the system behavior, also

helping us quantify the dependency structure among the components (see Bobbio

et al. (2001)). As an example, for a 2-component system, the reliability of the system

can be formulated such that

Rsys(t) =ψsys(R1(t), R2(t))

=p00R1(t)R2(t) + p01R1(t)(1−R2(t)) + p10(1−R1(t))R2(t)

+ p11(1−R1(t))(1−R2(t))

where the conditional failure probabilities are defined as pij = Pr(Csys = 1 | C1 =

i, C2 = j) (i, j = 0 or 1). In our work, we make the assumption that these conditional

probabilities are known in advance.

As a result, our BN framework is a generalization of the series and parallel system

structures, where the conditional probabilities are either 0 or 1. Let us for instance

consider the problem of calculating the reliability of a parallel system of three compo-

nents. The components have life-lengths T1, T2 and T3 respectively, and the system’s

life-length is thus given as Tsys = max(T1, T2, T3). However, if the system is con-

nected in series, then Tsys = min(T1, T2, T3). Since Bayesian network is a stochastic

system, we do not have a deterministic relationship for the lifetime of the system.
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The system lifetime largely depends on the conditional probabilities between the

components and the system.

We would like to emphasize the importance of using simultaneous data in our

framework due to the dependencies inherent in a Bayesian network structure. If we

would like to learn about these dependencies, we need to avoid using independent

data, which will make it impossible to quantify the relationships between compo-

nents of a complex system. Therefore, in this work, we only use simultaneous data,

which means all observations come from the same system such that they are depen-

dent to each other. In case of simultaneous and incomplete data, the likelihood of

observed data is not a simple multiplication of likelihoods of the nodes anymore, so

we cannot apply Eq. 4.2 easily. We, therefore, develop a method to formulate the

likelihood function for the BN system by using conditional independencies implied

by the network structure. In the next section, we explain the concept of d-separation

and how we use this concept in the formulation of the likelihood function.

4.3.3 D-Separation in Bayesian Networks

Probabilistic graphical models such as Bayesian networks are efficient in por-

traying conditional independencies and causal relations, and the criterion called d-

separation can be used to read them off the graph (Pearl, 2014). Since every d-

separation in the graph implies conditional independence in the distribution, using

this criterion in our framework proves very efficient in our overlapping data method-

ology.

To better understand the nature of overlapping data sets, the concept of “d-

separation in Bayesian networks” is introduced. The main idea is that each observed
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variable constitutes a subset of variables that is d-separated from the rest of the vari-

ables in the Bayesian network. In effect, d-separation helps us generate separate

likelihood functions given each evidence, and then we can generate an overall likeli-

hood function. Thus, our aim in this section is to understand when we can guarantee

that an independence holds in a distribution associated with a BN structure.

Definition 4.1 D-separation (see Pearl (2014); Koller and Friedman (2009)) A path p is said to

be d-separated by a set of nodes Z if and only if:

1. p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m is in Z,

or

2. p contains an inverted fork i → m ← j such that the middle node m is not in Z and such

that no descendant of m is in Z.

As a result, when influence can flow from a node to another node thoroughZ, we

say that the trail between those two nodes is active. Due to the hierarchical structure

in the reliability representation of our BN system, we only have two types of trails:

chain trail (also called causal trail) (i → m → j) and inverted fork trail (also called

common effect trail) (i→ m← j). Looking back at Figure 13, we can see the causal

trails: C1 → S1 → S0, C2 → S1 → S0, C3 → S2 → S0 and C4 → S2 → S0. The

common effect trails are: C1 → S1 ← C2, C3 → S2 ← C4 and S1 → S0 ← S2.

We will use the concepts of “active trails” and “d-separation” to formulate condi-

tionally independent likelihood functions. A causal trail (i→ m→ j) is active if and

only if m is not observed. This means that every time we observe a variable, it will

block the path of influence between the upstream and downstream nodes. A com-

mon effect trail (i→ m← j) is actived if m is observed. This structure is also called

a v-structure (Koller and Friedman, 2009). As a result, every observed variable ac-
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tivates the v-structure (which consists of the components attached to that variable)

and cuts off the path of influence from other variables, thus creating a region of

influence conditionally independent of the rest of the network given the observed

variable. For example, if we observe variable S1 in Figure 14, then

Figure 14. Two conditionally independent sub-systems given S1.

As seen in the figure above, evidence in variable S1 breaks the BN into two condi-

tionally independent subsystems. Nodes C1 and C2 are d-separated from the rest of

the network given evidence about S1; however, they are not d-separated from each

other, so they belong to the same sub-system. In our research, it is useful to view

probabilistic influence as a flow in the graph. One node can influence another if

there is any trail along which influence can flow. As a result, d-separation provides

us with a notion of separation between nodes in a directed graph (hence the term

d-separation, for directed separation). As a result, the set of independencies derived

from d-separation is a complete characterization of the independence properties that

are implied by the network structure.

4.3.4 Formulation of the Likelihood Function for Incomplete Lifetime Data

The likelihood function plays a central role in Bayesian learning. Our approach

addresses how to parametrically model the multilevel system structure to preserve
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the probabilistic constructs defined by the BN, and to coherently combine the si-

multaneous data sets through the derivation of their joint likelihood function. A

descriptive flowchart of the proposed Bayesian approach is given in Fig. 15.

Figure 15. Descriptive flowchart of the proposed approach.

The first framework is a substitution strategy for modeling the multilevel system

structure. It is carried out by re-expressing the reliability function and distribution

function of high level node in terms of the corresponding functions of its direct sub-

ordinates, which are contained in setAj as explained in Section 4.2 (see Eq. 4.5). The

structure function ψSj
derived from the BN is used to construct the inherent func-

tional relationship. The second framework is a combining strategy for integrating

the overlapping data sets. It is implemented by formulating the likelihood function

based on d-seperation. These likelihood contributions are developed according to
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the evidence and parametric models of the nodes. The third framework is a Bayesian

inference strategy for information integration. The Bayesian model is constructed

by deriving the posterior distribution of model parameters using the joint likelihood

function and specified prior distributions. After the joint posterior distribution of

model parameters are obtained, some reliability measures such as the failure rate

and predicted reliability are generated by averaging over the posterior distribution of

related model parameters.

In our model framework, lifetime data collected at individual component and

lifetime data collected at the system/subsystem level are incorporated. The data col-

lected at the higher level provide both direct information both about the system (or

subsystem) at which it was collected, and also partial information about the com-

ponents that comprise the system (or subsystem). As depicted in Figure 15, the

multilevel system structure is modeled based on parametric models of components

Ci, i = 1, . . . , n. As explained in Section 4.2, we use structure functions (ψj) as a

substitution strategy for modeling the high level nodes (Sj). This substitution is im-

plemented by formulating the reliability function of Sj with reliability functions of

its direct subordinates, that is, the nodes in Aj . The PDF, fCi
(t | θCi

), and reliability

function, RCi
(t | θCi

), of the higher level node Sj are expressed as shown in Eq. 4.4

and 4.5, respectively.

Since calculating the PDF of a higher level node requires derivation, one needs

a standard and efficient way to calculate this derivation. Note that the reliability

function RCi
(t | θCi

) is only a function of nodes in the next lower level, which are

composed of at most three elements: the observed component/subsystem, the un-

observed subsystem and the unobserved component in the immediate subordinate

set Aj . Next, the PDF, fCi
(t | θCi

), is calculated by taking the negative derivative
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of the reliability function as in Eq. 4.4. For simplicity, we can use the chain rule of

calculus, by splitting the derivation in 3 different parts and Eq. 4.4 becomes

fSj
(t | θSj) =−

d

dt
RSj

(t | θSj)

=−
∑

∀Oi∈E
∀Oi∈Aj

∂RSj
(t)

∂ROi
(t)
× dROi

(t)

dt
−
∑

∀Sk∈Aj
∀Sk ̸∈E

∂RSj
(t)

∂RSk
(t)
× dRSk

(t)

dt

−
∑

∀Cl∈Aj
∀Cl ̸∈E

∂RSj
(t)

∂RCl
(t)
× dRCl

(t)

dt
(4.6)

where subscript Oi belongs to the observed variables (∀Oi ∈ E), Sk belongs to unob-

served subsystems in the direct subordinates set (∀Sk ∈ Aj, ∀Sk ̸∈ E), and Ck belongs

to unobserved components in the direct subordinates set (∀Cl ∈ Aj, ∀Cl ̸∈ E).

When evidence data is introduced, the d-separated portions of the Bayesian net-

work structure are assessed as previously discussed in Section 4.3. To capture the

temporal dependencies found in the Bayesian network model, we will use a different

form of a special function called the unit step function (also called the Heaviside

unit-step function). In literature, unit-step and impulse functions have been used

to represent evidence (see Boudali and Dugan (2006); Jackson (2011). When the

evidence is observed, it changes the form of the distribution function of the corre-

sponding observed variable, because we know that the failure time is equal to that

instant. Since we are working with reliability functions instead of cumulative distribu-

tion functions in this work, we take a different approach and represent the reliability

function using the unit-step function. CDF of the time to failure of that compo-

nent becomes the unit step function, such that H(t) = 1 when t ≥ 0 and H(t) = 0

otherwise. Since R(t) = 1 − F (t), we can formulate the unit-step function as the

reliability function when there is evidence such that H(tF − t) = 1 when t ≤ tF and

H(tF − t) = 0 otherwise, where tF is the time failure was observed in the evidence
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set. As a result, the reliability function will make a jump from 1 to 0 at the specific

time the component failed, and we can use this unit-step function directly in the

likelihood, modifying Eq. 4.6 to

fSj
(t | θSj) =−

∑
∀Oi∈E
∀Oi∈Aj

∂RSj
(t)

∂ROi
(t)
× dH(tOi

− t)
dt

−
∑

∀Sk∈Aj
∀Sk ̸∈E

∂RSj
(t)

∂RSk
(t)
× dRSk

(t)

dt

−
∑

∀Cl∈Aj
∀Cl ̸∈E

∂RSj
(t)

∂RCl
(t)
× dRCl

(t)

dt
(4.7)

This modification introduces steps into the reliability function of components

based on the evidence observed. As Eq. 4.7 is the PDF of time to failure of an

observed node, it is equivalent to the likelihood function for each observation given

observations and reliability parameters from the next lower level nodes, that is, the

set of nodes in Aj , and each observed variable constitutes a subset of variables that

is d-separated from the rest of the Bayesian network, therefore

LSj
(tj | θj,Aj) =fSj

(t | θSj) = −
dRSj

(t)

dt

∣∣∣∣
t=tj

=−
∑

∀Oi∈E
∀Oi∈Aj

∂RSj
(t)

∂ROi
(t)
× dH(tOi

− t)
dt

∣∣∣∣
t=tj

−
∑

∀Sk∈Aj
∀Sk ̸∈E

∂RSj
(t)

∂RSk
(t)
× dRSk

(t)

dt

∣∣∣∣
t=tj

−
∑

∀Cl∈Aj
∀Cl ̸∈E

∂RSj
(t)

∂RCl
(t)
× dRCl

(t)

dt

∣∣∣∣
t=tj

=−
∑

∀Oi∈E
∀Oi∈Aj

∂RSj
(t)

∂ROi
(t)
× dH(tOi

− t)
dt

∣∣∣∣
t=tj

−
∑

∀Sk∈Aj
∀Sk ̸∈E

∂RSj
(t)

∂RSk
(t)
× fSk

(tj | θSk)

−
∑

∀Cl∈Aj
∀Cl ̸∈E

∂RSj
(t)

∂RCl
(t)
× fCl

(tj | θCl) (4.8)

where fSk
(tj | θSk) is calculated as in Eq. 4.4, causing a recursive structure. Note that

we have as many conditionally independent likelihoods as the number of observed

variables. After identifying the d-separated network with respect to the evidence, we
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need to start from the last level of the network (the component level), and go to

the next upper level, this enabling us to use the recursive structure. If the observed

variable is a component, we can use the pdf of the component directly, instead of

Eq. 4.8.

Suppose m nodes are observed in a Bayesian network. The likelihood of observ-

ing the failure times of the observed components, E = {t1, . . . , tm} given the set of

parameters that define the failure distributions of the components θ = {θ1, . . . , θn},

is defined below. The likelihood functions derived from the data set of each ob-

served component can be multiplied as they have been isolated into conditionally

independent sets of likelihoods.

L(E | θ) = L({t1, . . . , tm} | {θ1, . . . , θn}) =
m∏
k=1

Lk(tk | θk,Ak) (4.9)

According to Bayesian inference, given the prior distribution of model parame-

ters, the posterior distributions can be obtained by

p(θ | E) ∝ L(E | θ)× p(θ) (4.10)

where p(θ) is the joint prior distribution for system model parameters and p(θ | E) is

the joint posterior distribution of model parameters θ. The analysis of reliability as-

sessment and prediction will be based on this posterior distribution. After obtaining

the posterior distributions, we can make some assessments on the system reliability.

For this task, Peng et al. (2013) suggested calculating some measures, such as the fail-

ure rate of the system and reliability as a function of mission time. Therefore, based

on the system reliability function RS0(t) and the joint posterior distribution of the

parameters θ, the failure rate of the system at time t can be obtained from

λS0(t | E) =
∫
Θ

fS0(t | θ)
RS0(t | θ)

p(θ | E)dθ (4.11)
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where E denotes the available simultaneous data. fS0(t | θ),RS0(t | θ) and λS0(t | E)

are separately the PDF, reliability function, and failure rate of the system.

Given that the system has survived up to the present time tp, the probability that

the system will survive another interval of mission time ∆t can be calculated by

R(tp +∆t | tp, E) =
∫
Θ

R(∆t+ tp | θ)
R(tp | θ)

p(θ | E)dθ (4.12)

Similar to the joint posterior distribution of parameters, Eq. 4.11 and 4.12 can-

not be specified analytically. The MCMC is used to collect samples from these dis-

tributions. By substituting the generated posterior samples into the corresponding

PDF and reliability functions above, samples for these reliability measures are ob-

tained. Summary statistics can be easily obtained based on these random samples.

For instance, the integrations above are approximated by the mean of relative sam-

ples. Moreover, the variances and confidence intervals for these measures can be

obtained within this Bayesian framework as well.

When a new system is running, it is necessary to predict system reliability at fu-

ture time points. Such predictions are usually adopted to set strategies for system

operation and warranty. Therefore, the reliability as a function of mission time is

obtained from

R(t | E) =
∫
Θ

R(t | θ)p(θ | E)dθ (4.13)

Similar to Eq. 4.11 and 4.12, Eq. 4.13 above have no analytical forms. The

calculations are based on the posterior samples of model parameters using simulation

based integration.
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4.3.5 Integrating Incomplete Hybrid Data Structures by Bayesian Inference

Restricting our attention to models containing only discrete or only continuous

variables might be very unrealistic in real applications. Therefore, we need to also

consider Bayesian inference with overlapping hybrid data structures.

The proposed framework with hybrid data structure can be summarized as fol-

lows: Our BN model combines high-level system functionality data with low-level

component failure time data. System node indicates whether the system is working

as intended. We observe a system’s functionality and there are sensors on some (not

all) of the components of the system. When we observe if a system is working or

failed, we analyze the components. The sensors on the components record the fail-

ure times of these components. As a result, we have discrete data from the system,

and continuous life time data from the components.

System reliability problems typically have two types of information, component

tests and system tests. However, in the literature, these component tests and system

tests are modeled separately because they are independent tests. In this research, we

seek a model which provides flexibility for incorporating both types of information

coming from the same test, making the data simultaneous. As stated previously,

dealing with simultaneous data is not a trivial task, and integrating data and prior

information at different levels within a BN has often proven problematic from both

the perspectives of computational tractability and model consistency.

We can consider the pass/fail data coming from the system as censored observa-

tions. When we observe a system has failed, we do not know the exact failure time,

but we know that the system failed within that time period. So we can consider it as

a left-censored observation. On the other hand, when we observe that the system is
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still functioning, we know that it has not failed until that time, so we can consider it

as a right-censored observation. The contribution of a right-censored observation to

the likelihood function is the reliability function, (1−F (t)), evaluated at the censored

value at the appropriate level in the Bayesian network; whereas the contribution of a

left-censored value observation is F (t), the cumulative distribution function. Incor-

porating censored data into our model framework is thus straightforward and can

be accomplished by simply substituting the appropriate expression for the censored

observation for the system in Eq.4.9.

As a result, if we observe that the system has failed, then the likelihood of the

corresponding observation is

LS0(tS0 | θ,A0) = pS0 |t=tS0

where pS0 is a function of conditional probabilities and failure distributions of the

components in the next lower level (A0), just as explained in Section 4.3.4. If we ob-

serve that the system is still functioning at a specific mission time, then the likelihood

of the corresponding observation is

LS0(tS0 | θ,A0) = 1− pS0|t=tS0

In the continuous data case, we use the chain rule of calculus, by splitting the

derivation in 3 different parts, which makes it easier to incorporate evidence from

the lower level. However, in this case, since we only need the failure function, not

the probability density function, we do not need to calculate derivatives as in Eq. 19.

Therefore, we do not need to take the derivative of the unit step function,H(tOi
− t),

which represents the jump in reliability function of an observed variable. The key

point here is that we only need to substitute 1 for H(tOi
− t) when t ≤ tOi

and 0
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otherwise for observed variables while calculating pS0 from the Bayesian network

structure.

4.4 Illustrative Example

Reliability assessment and prediction for missiles in a guidance system is carried

out in this section to demonstrate the proposed Bayesian network approach, which

was also studied by Jackson (2011) as a fault tree. A missile has a guidance system to

allow it to steer and change course towards its intended target, and also a propulsion

system that self-drives it. The missile’s flight path can be guided by use of guidance

information transmitted from the control point via. As a result, guidance systems

improve the performance of themissile, which is themissile accuracy. Over the years,

more and more sophisticated systems have been developed to implement guidance

control rules. Accordingly, operation and management of a guided missile system

requires precise assessment and prediction of the system reliability using available

data and information.

4.4.1 The Guided Missile System Structure

Every missile guidance system consists of an attitude control system and a flight

path control system. The attitude control system functions to maintain the missile

in the desired attitude on the ordered flight path by controlling the missile in pitch.

The attitude control system operates as an auto-pilot, damping out fluctuations that

tend to deflect the missile from its ordered flight path. The function of the flight

path control system is to determine the flight path necessary for target interception
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and to generate the orders to the attitude control system to maintain that path. The

reliability block diagram (RBD) of a simplified system structure is depicted in Figure

16, where subsystem S1 represents flight-path control, subsystem S2 represents atti-

tude control and component C6 represents the power supply. The system consists

of two subsystems and a component: with S1 and S2 being parallel structures, and

C6 being a component connected in series to subsystems S1 and S2. Note that S3 is

a series structure and is one of the parallel components of subsystem S1.

Figure 16. Reliability block diagram of a simplified missile guidance system.

4.4.2 Bayesian Network Model for the Guided Missile with Incomplete Data

In our case study, our focus is on a new guided missile system being tested and

it has sensors embedded that relay information back to a ground station. We model

the system as a Bayesian network (see Figure 17). Note that, we need to add nodes

for the subsystems and system while constructing a BN, even though they are not

actual components (Bobbio et al., 2001). In this system, we can only monitor 3 nodes:
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system node (S0), subsystem S1 and component C5. We get discrete data from S0

and continuous data from S1 and C5 such that: We observe the state of the system

at a specific time (functional or failed), and then we analyze the components with

sensors, which provide lifetime data from the components.

Figure 17. BN representation of the missile guidance system.

As described in Fig. 15, the first step is to define parametric models for the

components of the guided missile system. Prior information exists for the reliabil-

ity parameters from previous testing regimes and expert solicitation. The exponen-

tial distribution is adapted to model the reliability of components C1, C4, C5 and

C6 as Ti ∼ Exponential(λi),i = 1, 4, 5, 6. The 2-parameter Weibull distribution

is employed to model the lifetime of the component C2 as T2 ∼ Weibull(β2, η2).

Its CDF is given as FC2(t | β2, η2) = 1 − e
−
(

t
η2

)β2

. The Lognormal distribution

is used to model the reliability of component C3 as T3 ∼ Lognormal(µ3, σ3) with

FC3(t | µ3, σ3) = 1
2

[
1 + erf

(
lnt−µ3

σ3sqrt(2)

)]
. The selection of these reliability models

for the components is based on their respective goodness-of-fit test of these mod-
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els, and the testimony of experts. Therefore, the parameter vector is defined as

θ = {λ1, β2, η2, µ3, σ3, λ4, λ5, λ6}.

Meanwhile, the prior information is quantify into prior distributions for themodel

parameters given above. The prior is based on the testimony of experts and infor-

mation from previous guided missiles. The priors used in this example are depicted

in Table 15.

Table 15. Missile guidance system’s basic component reliability characteristics.
Components Parameters Priors

1 λ1 π0(λ1) = Gamma(0.5, 0.15)

2
β2 π0(β2) = Uniform(2, 3)
η2 π0(η2) = Uniform(100, 150)

3
µ3 π0(µ3) = Uniform(10, 250)
σ3 π0(σ3) = Gamma(1, 0.007)

4 λ4 π0(λ4) = Uniform(0.01, 0.04)
5 λ5 π0(λ5) = Uniform(0, 0.02)
6 λ6 π0(λ6) = Uniform(0, 0.1)

Suppose we know that components C2 and C3 are connected to in series (forming

subsystem S3), S3 and component C1 are connected to in parallel (forming subsys-

tem S1), and components C4 and C5 are connected in parallel (forming subsystem

S2). However, the system is connected to subsystems S1, S2 and component C6 by a

probabilistic gate. We are interested in exploring how this structure affects the work-

ing mechanism between the system and its components and we would like to make

inferences about reliability parameters of all the components with data coming from

a limited number of nodes (only 3 nodes: S0, S1 and C5).

We start by determining the d-separated structures in the Bayesian network as

explained in Section 4.3 (see Figure 18) with respect to the evidence. In Figure 18,

L1(t | θ), L2(t | θ) and L3(t | θ) are the likelihoods of the evidence for each node.
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The multilevel system structure of the guided missile is modeled following the

substitution strategy depicted in Fig. 15 and Eq. 4.7. The reliability function of the

system depends on the reliability of components through the probabilistic gate of

the BN model.

Figure 18. Three conditionally independent subsystems given S0, S1 and C5.

Using Ci = 0(1) to denote that component i is working (not working), the rela-

tionships given in Eq. 4.14 describing the dependence among the components are

used to fully specify the Bayesian network.

Pr(S0 = 1 | S1 = 1, S2 = 1, C6 = 1) = p111 = 0.9

Pr(S0 = 1 | S1 = 0, S2 = 1, C6 = 1) = p011 = 0.4

Pr(S0 = 1 | S1 = 1, S2 = 0, C6 = 1) = p101 = 0.3

Pr(S0 = 1 | S1 = 1, S2 = 1, C6 = 0) = p110 = 0.5

Pr(S0 = 1 | S1 = 0, S2 = 0, C6 = 1) = p001 = 0.1

Pr(S0 = 1 | S1 = 1, S2 = 0, C6 = 0) = p100 = 0.05

Pr(S0 = 1 | S1 = 0, S2 = 1, C6 = 0) = p010 = 0.25

Pr(S0 = 1 | S1 = 0, S2 = 0, C6 = 0) = p000 = 0 (4.14)

The reliability functions of the system S0 and subsystems S1, S2 and S3 are ob-

tained as follows (Note that pi(t) is the failure probability of basic components such
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that i = 1, . . . , 6).

RS0(t) = 1− pS0(t)

RS1(t) = 1− pS1(t)

RS2(t) = 1− pS2(t)

RS3(t) = 1− pS3(t) (4.15)

where

pS0(t) =p111pS1(t)pS2(t)p6(t) + p011(1− pS1(t))pS2(t)p6(t) + p101pS1(t)(1− pS2(t))p6(t)

+ p110pS1(t)pS2(t)(1− p6(t)) + p001(1− pS1(t))(1− pS2(t))p6(t)

+ p100pS1(t)(1− pS2(t))(1− p6(t)) + p010(1− pS1(t))pS2(t)(1− p6(t))

+ p000(1− pS1(t))(1− pS2(t))(1− p6(t))

pS1(t) =p1(t)pS3(t) = p1(t)[p2(t) + p3(t)− p2(t)p3(t)]

pS2(t) =p4(t)p5(t)

pS3(t) =p2(t) + p3(t)− p2(t)p3(t)

and failure functions of the basic components are formulated by their CDFs. In our

proposed method, we formulate the likelihood functions for each observed node

starting with the lowest level (component level) of the Bayesian network, making it

easier to use the functional relationships since the reliability of the nodes depend on

the next lower level.

Next, we collect the evidence. The evidence is simulated with respect to the

reliability distributions of the components, as represented in Table 16.

For calculating the likelihood function, L(E | θ), we need to formulate the relia-

bility functions of the nodes with evidence data. As mentioned in Section 4.3.4, we

use a specific form of step function for representing evidence. When the evidence
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is observed, it changes the form of the distribution function and therefore reliability

function of the corresponding observed variable. When we are calculating the pdf

of an upper level node with observation in the lower level nodes, we need to substi-

tute H(tOi
− t) with the reliability function of the observed node. For example, for

test #4, we use H(51− t) for node S1 and H(16− t) for node C5. Note that we do

not need to use the step function for node S0, as it is the last level of the Bayesian

network and the causal flow stops at the system level.

Table 16. Simulated evidence data. (Data with superscript (p for pass) are
right-censored observations where the unit worked at the specific time. Data with
superscript (f for fail) are left-censored observations where the unit has failed.)

Test # {S0, S1, C5}
1 {20(p), 20(p), 17}
2 {40(p), 40(p), 28}
3 {60(p), 60(p), 1}
4 {80(f), 51, 16}
5 {100(f), 100(p), 41}
6 {120(f), 120(f), 27}
7 {140(f), 19, 63}
8 {160(f), 28, 82}
9 {180(f), 180(p), 180(p)}
10 {200(f), 175, 34}

As a result, the reliability function will make a jump from 1 to 0 at the specific time

the component failed, and we can use this unit-step function directly in the likelihood

calculations. We calculate the likelihoods starting with the component level and then

going upwards towards the system level.
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L1(t | θ,Aj) =fC5(t = 16) = λ5e
−16λ5

L2(t | θ,Aj) =fS1(t = 51) = − dRS1(t)

dt

∣∣∣∣
t=51

=− ∂RS1(t)

∂RS3(t)
× dRS3(t)

dt

∣∣∣∣
t=51

− ∂RS1(t)

∂RC1(t)
× dRC1(t)

dt

∣∣∣∣
t=51

=[p2(51) + p3(51)− p2(51)p3(51)]× fC1(51)

+ [p1(51)(1− p3(51))(f2(51))]× fC2(51)

+ [p1(51)(1− p3(51))(f2(51))]× fC3(51)

L3(t | θ,Aj) = pS0(t = 80)

= p111pS1(80)pS2(80)p6(80) + p011(1− pS1(80))pS2(80)p6(80)

+ p101pS1(80)(1− pS2(80))p6(80) + p110pS1(80)pS2(80)(1− p6(80))

+ p001(1− pS1(80))(1− pS2(80))p6(80) + p100pS1(80)(1− pS2(80))(1− p6(80))

+ p010(1− pS1(80))pS2(80)(1− p6(80)) + p000(1− pS1(80))(1− pS2(80))(1− p6(80))

(4.16)

where pS1(80) = 1 and p5(80) = 1 are substituted as evidence from lower levels.

Then the joint likelihood function of the system is obtained. With the prior dis-

tributions given in Table 15, the joint posterior distribution for model parameters of

the guided missile is given as

p(θ | E) ∝ L(E | θ)× p(θ) (4.17)

where L(E | θ) is calculated from the multiplication of likelihoods of the 10 test

datasets, each of which is calculated by Eq. 4.16.

The next step is sampling from the posterior distribution of the model. As de-

scribed in Section 4.4, the assessment and prediction of the system reliability are car-

ried out by generating samples from the joint posterior distribution in Eq. 4.17. The
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WinBUGS software is used to implement the sampling procedure. 220, 000 samples

were generated from this joint posterior distribution with 20, 000 samples for burn-

in and then every other sample was kept (to reduce the auto-correlation of drawn

samples) until there were 100, 000 draws from the joint posterior distribution. The

posterior sample statistics of the model parameters are summarized in Table 17.

Table 17. Summary statistics of the posterior samples for the parameters.
Mean SD 2.5% 25% 50% 75% 97.5%

λ1 3.3476 4.6711 0.009227 0.3653 1.561 4.435 16.68
β2 2.5177 0.2874 2.029 2.273 2.525 2.768 2.977
η2 127.8334 13.8123 102.1 116.7 128.9 139.7 149
µ3 132.3514 69.1485 16.19 72.9875 133.5 192.3 244.3
σ3 122.8305 128.1004 3.231 34.45 82.35 166.9 473.9024
λ4 0.01947 0.007456 0.0103 0.01332 0.01762 0.02419 0.03695
λ5 0.01143 0.005074 0.002014 0.007409 0.01162 0.01572 0.01956
λ6 0.01167 0.01089 0.000326 0.003664 0.008554 0.01642 0.04043

4.4.3 Reliability Assessment and Prediction

Let us assume that we are analyzing a new system. Given the system has survived

up to the present time (tp = 10), our primary interest is on the reliability of the

guided missile at this point in time. According to Eqs. 4.11, 4.12 and 4.13 derived in

Section 4.3.4, the reliability and the failure rate of the system at the present time, and

the probability that the system will survive another mission time∆t = 5 are obtained

and presented in Table 18. The results are obtained based on 100, 000 posterior

samples. The simulation based integration method is implemented.

Suppose a new system is going to be launched, and we are interested in the relia-

bility of this new system. The mean value for the predicted reliability distribution of
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the new guided missile is obtained and presented in Fig. 19. It is generated based on

the 100, 000 posterior samples using simulation based integration.

Table 18. Summary statistics for reliability assessment of the system.
Mean SD 2.5% 25% 50% 75% 97.5%

λS0(tp) 0.02787 0.01304 0.008779 0.01811 0.02582 0.03557 0.05798
RS0(tp + 5 | tp) 0.9051 0.0422 0.8011 0.8835 0.9135 0.9355 0.9622

RS0(tp) 0.7693 0.09899 0.551 0.7061 0.7801 0.8434 0.928

Figure 19. The reliability distribution of the new system with respect to mission
time.

4.5 Conclusion and Future Research

In this chapter, a Bayesian network approach for integrating multilevel hetero-

geneous data sets for reliability assessment is developed. Our objective is to assess

failure distribution parameters of the components and make inferences and predic-

tions about system reliability. We start by developing the likelihood function for
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overlapping continuous datasets coming from some of the nodes (not all) in the net-

work. Next, we extend this case by adding pass/fail data and provide a coherent

framework for integrating multilevel heterogeneous data sets. We calculate some

reliability measures like predicted reliability and failure rate of the system using an

integration by simulation based method on the proposed Bayesian network frame-

work. These measures could be use during decision making for system operation

and management.

A key aspect of our method is the ability to incorporate heterogeneous over-

lapping data. Non-overlapping data ignores the dependencies between the datasets

and removes useful information; and therefore using overlapping data is crucial in

a Bayesian network framework. An overlapping data likelihood function was devel-

oped to incorporate these inherent dependencies through the use of Bayesian infer-

ence. A case study was demonstrated to highlight the effect of overlapping data and

how it can be used to correctly improve our knowledge about the failure distribution

parameters of the system.

The basis of our methodology is specifying the conditional independencies im-

posed by the Bayesian network using d-separation of the nodes. We use d-separation

to formulate the conditionally independent likelihoods coming from overlapping

data. The hierarchical system representation provides a good system structure so that

we can separate the paths of influence easily through d-separation. For future work,

we plan to work on more complex system structures. In our current framework, the

components only belong to a certain subsystem. However, in reality, subsystems

might share some components. The d-separation structure will change with a more

complex system. Therefore, it will be more challenging to formulate the likelihood

function.
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Another area of future research could be to estimate the distributions of condi-

tional probabilities. In this work, we assumed a given system structure and condi-

tional probabilities. We would like to analyze situations where the conditional proba-

bilities are unknown and their distributions need to be estimated from the likelihood

data.
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Chapter 5

A BAYESIAN FRAMEWORK FOR INCORPORATING DIFFERENT

SOURCES OF PRIOR KNOWLEDGE IN RELIABILITY ASSESSMENT

5.1 Introduction and Background

Bayesianmethods growmore andmore complex as the systems get larger, causing

an increase in the complexity of the computational methods used. Using conjugate

priors somewhat overcomes this complexity problem and provides us with exact

form solutions. However, when the data come from different sources and in differ-

ent structures, it becomes impossible to use conjugate priors. Therefore, Bayesian

researchers are showing more interest in working with non-conjugate priors. As

a result, it becomes imperative that elicitation of prior distributions from different

resources be done effectively. Eliciting prior distributions is rather important for

representing prior knowledge more accurately and comprehensively. Thus, there is a

need to develop a methodology to elicit complex, non-standard distributions coming

from different sources. Although there is a broad literature in elicitation techniques,

there is still a lot of aspects to consider for further research.

Bayesian statistical methods are based on the personal (or subjective) interpre-

tation of probability. Bayesian prior and posterior distributions describe the uncer-

tainties in the unknown parameters of the statistical model. Point estimates of pa-

rameters do not capture the uncertainty in the assessment of parameters. Therefore,

Bayesian models are used to represent and quantify uncertainties and dependencies

of the parameters of a complex model.
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However, reliability data is not usually available for new systems or systems with

modifications, so the use of expert judgment is unavoidable. In the simplest case

there is only one expert. In order to include as much information as possible in the

model, analysts often try to combine the distributions of several experts.

The aim of our research in this paper is to obtain as much from data (from com-

ponents and system) as we can, and to elicit expert opinion accurately and combine

these different streams of data to derive prior distributions for the parameters of

a Bayesian model. An advantage of using Bayesian models in this context is that

we can incorporate “non-data information” (also called pseudo-data) into the model.

The pseudo-data can take the form of elicited data from the experts.

There are two big challenges to the problem of combining prior information.

The first challenge is that specifying prior distributions for systems comprising of

many components requires special thought. In the system reliability context, the

reliability and lifetime of systems are functions of the parameters of the components.

Therefore, the prior distributions specified on the parameters of components induce

prior distributions on the reliability and lifetime of systems. Wemight also have direct

prior information on the system parameters. Consequently, if we also have prior

information about the reliability or lifetime of systems, we need a way to combine the

information. There might be even cases when these two streams may have conflicts,

so we also need to reconcile any difference between them. Guo (2011) used the

Bayesian melding method for this problem, which was originally proposed by (Poole

and Raftery, 2000). The second challenge comes from handling the pseudo-data.

Quantifying non-data information is not always straightforward especially when it

comes from expert opinions and it must be handled with care. Therefore, there is
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a need for a solid method to convert expert opinions to equivalent pseudo data for

quantifying and combining prior opinions.

Our motivation for this paper is the lack of a solid unified approach for quan-

tifying expert opinions and combining these with data coming from other sources

to obtain a prior distribution for the system being studied. We propose a Bayesian

methodology that incorporates different sources of prior information and reconciles

these different sources, such as expert opinions and component information in or-

der to form a prior distribution for the system. The next section presents some

background information about obtaining prior distributions from the literature.

5.1.1 Elicitation Techniques

Elicitation of prior distributions is a key task for the Bayesian methodology. It is

the process of formulating beliefs about uncertain quantities into a probability distri-

bution for those quantities. That is, it converts an expert’s opinions into a statistical

expression of these opinions. In the context of Bayesian models, elicitation mostly

arises as a method for specifying the prior distribution for the unknown parameters

of the model. In the literature, the first methods involved choosing hyperparam-

eters using conjugate prior families. With the advance in Bayesian computational

methods, such as Markov chain Monte Carlo (MCMC), researchers are now able to

obtain posterior distributions in the case of non-conjugate priors. However, differ-

ent techniques may produce different distributions because the method of elicitation

may have some effect on the way the expert states his opinions (Smith and Win-

kler, 1967). Bayesian modeling with informative priors based on expert opinion can

provide very useful for reliability analysts (Garthwaite and O’Hagan, 2000).
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In Bayesian statistical modeling, expert elicitation refers to the process of ob-

taining expert opinion, together with uncertainty, which is then carefully formulated

into informative prior distributions (O’Hagan et al., 2006). The main steps involved

in elicitation as experienced by the expert are well documented (see Garthwaite and

O’Hagan (2000); Clemen and Reilly (2013); Renooij (2001); Walls andQuigley (2001);

Jenkinson (2005)). Direct approaches ask experts directly about parameters in the

model, so experts not only require adequate statistical understanding of the role of

parameters in the underlying model, but their knowledge should also be easily com-

municated in this way. That is why sometimes a facilitator (also called analyst or

decision maker) is appointed to handle the conversion of the expert opinion to sta-

tistical form. In contrast, indirect approaches ask experts only about what they have

observed. This typically involves asking experts to predict the response given partic-

ular scenarios, such as in a regression model for known covariate values.

Common approaches elicit quantiles at fixed probabilities or alternately elicit

probabilities of fixed quantiles (O’Hagan, 1998). Other summary statistics may be

elicited, such as moments and the mode or changes to estimates in light of hypo-

thetical new information. Once the summary statistics about the unknown quantity

has been quantified using expert knowledge, then it is necessary to estimate the prior

distribution of that quantity. In most cases additional information about expert un-

certainty is required, such as the equivalent sample size of their knowledge, in order

to estimate the variance of prior distributions.

There has been considerable debate about using subjective opinion to construct

priors (Cox, 2000; O’Hagan et al., 2006). However, representation of probabilities

and uncertainty under Bayesian inference contains a subjective element (Lindley,

2000; Dawid et al., 2004), and other choices such as model and data are similarly
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subjective (Pearce et al., 2001; Ferrier et al., 2002). An advantage of the Bayesian in-

ference is that it requires subjective information in the form of priors to be stated

explicitly and precisely before modeling (Wintle et al., 2003).

Despite abundant research on elicitation techniques, research into methods for

quantifying expert opinion has never kept pace with the growing importance of

Bayesian methods and we aim to reduce this deficit. As more and more Bayesian

belief networks are being developed for complex real-life problem domains, it is be-

coming increasingly apparent that the construction of the qualitative part with the

help of domain experts is feasible; the elicitation of the large number of probabilities

required, however, is a far harder task. In fact, the elicitation of probabilities is often

referred to as a major obstacle in building complex Bayesian models. Most meth-

ods tend to be time-consuming that it is infeasible to apply them when hundreds of

probabilities are to be assessed, especially for very complex models. Faster elicitation

methods are available, but are prone to even more biased answers. Renooij (2001)

presented an overview of some of the issues to consider when relying on expert judg-

ments and described the methods that are available for expert elicitation, along with

their benefits and drawbacks. They discussed various issues that are to be taken into

consideration when faced with the task of probability elicitation.

Garthwaite and O’Hagan (2000) proposed modeling approaches to use the

elicited assessments to form subjective probability distributions. They performed

statistical analysis to evaluate the objective accuracy of elicited distributions. Accord-

ing to their study, eliciting quantiles is the most common approach to estimating the

spread of an expert’s subjective distribution.

O’Hagan and Oakley (2004) outlined a Bayesian technique that allows the impre-

cision in elicitation to be formulated explicitly. They assumed the expert’s true proba-
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bility distribution is unknown to the analyst and represented the uncertainty about the

expert’s distribution as being the analyst’s uncertainty. Oakley and O’Hagan (2007)

also presented a non-parametric Bayesian analysis from this perspective. In their

study, the analyst’s prior beliefs about the expert’s probability density function were

represented by a prior distribution. These beliefs were then updated by Bayes’ the-

orem, treating the expert’s elicited summaries as data. Then the expert’s probability

density function can be estimated by the analyst’s posterior mean.

O’Hagan et al. (2006) addressed applied approaches to extract information and

distributional forms for use in modeling and prediction. They emphasized using dis-

tributional summaries such as probabilities, quantiles, intervals, location measures,

scale and dispersion measures and measures of shape, all of which can be used as

frameworks for developing survey questions in an elicitation process. They analyzed

the problem of extracting critical information from experts, which will then be com-

bined with observed data to build statistical models which can be used for prediction

and inference.

In their paper Choy et al. (2009) outlined a framework for statistical design of

expert elicitation processes for quantifying expert knowledge, in a form suitable for

input as prior information into Bayesian models for ecological applications. They

demonstrated the steps that need to be taken in the elicitation process, providing a

useful overall description of elicitation design.

O’Hagan (2012) provided an overview and an outline of the process of eliciting

knowledge from experts in probabilistic form. They explored approaches to proba-

bilistic uncertainty specification including direct elicitation and Bayesian analysis.

Another major problem in prior knowledge elicitation is that, most of the relia-

bility models are not able to account for prior expert opinion and data when such
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information is simultaneously obtained at several levels within a system. In many

applications, expert opinion plays an important role in assessing system reliability,

especially in large complex systems for which data collected on components may

be sparse. However, Bayesian researchers overlooked the problem of incorporating

pseudo-data information coming from expert opinions. Furthermore, expert opin-

ion may be available from several experts, and the quality of information obtained

from each expert may vary. Johnson et al. (2003) assumed that the prior density ob-

tained from an expert concerning a specific probability takes the form of a beta den-

sity, and obtained point estimates for the probability value from each expert. They

assigned an expert precision parameter for each expert and assumed that each ex-

pert precision parameter was drawn from a gamma density with known parameters.

For example, if the posterior mean for the distribution of precision parameter of an

expert is 12.2, this suggests that the expert’s opinion is worth approximately 12 full

system tests. As a result, their method simply treated expert opinion as “imprecisely-

observed” data.

Another method for integrating pseudo-data into the assessment of prior distri-

butions in literature is the “equivalent prior sample (EPS) method” (Garthwaite et al.,

2005). In the EPS method, an expert expresses his or her knowledge as an equiv-

alent prior sample. However, Garthwaite et al. (2005) also stated that this method

might tend to produce prior distributions that are unrealistically tight. Experts might

equate their knowledge to too large a sample size because they might not realize the

value of sample information. As a result, specification of a “prior sample” whose

information content would approximately equate to an expert’s knowledge is not a

straightforward task, and there is also need for an objective method for relating an
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expert’s opinion to an equivalent prior sample size. As a result, in our work, we

would like to also explore the pseudo data and pseudo sample size method.

5.1.2 Verification and Validation of Experts

In this research, we define “expert” as someone that has special knowledge about

the subject that we are interested in eliciting opinion about. For the sake of a more

formal definition, Czembor et al. (2011) defined an expert as someone with:

• A minimum of 5 years of education, research experience or technical training

in the specific application.

• High levels of theoretical and/or practical experience working in the specific

application.

• Published research on the topic in peer-reviewed journals or reports.

• Peer nomination of being an expert.

The process of expert elicitation is basically about extracting beliefs from some-

one with knowledge and experience. A Bayesian model might be dominated by ex-

pert opinions, especially in case of scarce data; therefore, proper verification and

validation of the experts should be be conducted. There are various techniques for

evaluating the experts in the literature. According to Kadane and Wolfson (1998),

reliability, coherence and calibration components can be used to validate an expert.

The expert’s assessments should be coherent and valid such that his assessments

should follow the same pattern for the same variable. The reliability of an expert

depends on the performance of the expert and it can be measured. Finally, calibra-

tion deals with the bias component in the expert’s assessments and the biases can

be evaluated by setting some scoring rules (Refer to Morgan et al. (1992) for more
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details about scoring rules and measuring calibration.). Cooke (1991) defined scor-

ing as a numerical evaluation of probability assessments on the basis of observations.

Scoring is of great importance for evaluating expert opinions. The expert is scored

on the basis of his assessment and the observed value of that quantity. Cooke (1991)

discussed two basic properties for scoring: entropy and calibration.

Entropy is defined as a good measure of degree to which the density function

is spread out. Let H(P ) be the entropy associated with a probability density func-

tion and P (x) be the probability that the elicited parameter is x. When P (x) = 1,

H(P ) = 0; hence an expert whose probability function has low entropy is desired.

The entropy function is represented as

H(P ) = −
∫
P (x)ln(P (x))dx

In order to define the calibration, Cooke (1991) presented a statistical hypothesis:

C(P ) := the uncertain quantities are independent and identically distributed with the

probability density function (P ) provided by the expert. Let S be a sample distribu-

tion generated by observing the true values for all parameters. Then, the discrepancy

between S and P is given in the following equation.

I(S, P ) =

∫
S(x)ln

S(x)

P (x)
dx

As a result, calibration and entropy can be used to analyze expert probability

assessments. Usage of these techniques can open help the experts to get adjusted

to the process and give better assessments. It can be concluded that good experts

should have good entropy scores and good calibration scores. However, calibrat-

ing the bias might be very tricky and it should not be skipped during the validation

process. Experts are not usually accustomed to quantifying their beliefs, and there

might be a number of psychological issues that make the task difficult (Denham et al.,
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2007). Wolfson (1995) discussed some of the key psychological issues and biases

that commonly occur in the elicitation process.

The biases usually represent misperceptions of probabilities. There might also

be domain biases connected with experts’ preferences relating to their specific fields.

Identification of the bias errors generally require knowledge of the experts involved

the elicitation, and require substantial amount of data. Gavasakar (1988) introduced a

hierarchical model component to model elicitation errors. They tested the elicitation

methods by assuming that the prior distribution had a certain form, and then adding

random errors to what the answers should have been, given the specified prior. The

results from the elicitation were used to compare the estimated hyperparameters with

the true hyperparameters.

Overconfidence might be another cause of bias and might be the result of poor

calibration. As a result, calibration provides a form of control on experts and their

subjective probability assessments. There is always room for improvement for the

elicitation process and training in “elicitation of subjective probabilities” can be

worthwhile. Therefore, using suitable measures for calibration is a very important

step in the process of expert verification and validation.

5.1.3 Combination of Several Prior Distributions

In many applied problems, the construction of informative priors using expert

opinions is a delicate problem, because it might be difficult to quantify qualitative

knowledge for people (O’Hagan et al., 2006). With more than one expert, we may

elicit from each expert a different prior and in many situations it is desirable to com-

bine these different priors into a single “consensus” prior for the parameter θ. The
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more information you have, the better the results will be; therefore, it can be prefer-

able to elicit the opinions of several experts. However, what is often needed is not

a collection of different distributions but one distribution that represents the com-

bined opinion of the experts, the result of their combined expertise, that can be used

as a prior distribution in a Bayesian analysis. A good review of the issues surrounding

the combination of probability distributions is given by Clemen and Winkler (1999).

There are many possible ways of combining probability distributions, which can

be classified in 2 major approaches: mathematical and behavioral approaches. Our

scope is only on mathematical approaches in this research. Mathematical approaches

are also divided into two different approaches: axiomatic approaches (opinion pools)

and Bayesian approaches. The two main axiomatic approaches are the linear opinion

pool and the logarithmic opinion pool. There is a substantial literature on opinion

pooling. For a detailed review of this literature, refer to Genest and Zidek (1986);

Givens and Roback (1999); Jacobs (1995); O’Hagan et al. (2006). Let pi(θ) represent

the ith expert’s probability density function and wi be the weight for the ith expert’s

opinion. Then, the linear opinion pool is given by

p(θ) =
n∑

i=1

wipi(θ) (5.1)

with non-negative weights wi such that
∑n

i=1wi = 1. This combination method satis-

fies the ”marginalization property”, that is, for a multivariate θ the marginal probabil-

ity from the combined density for any of the variables in θ is the same as what is ob-

tained when the elicited marginal distributions for that variable are combined. Linear

pooling is the only combination method that satisfies the marginalization property.

The logarithmic opinion pool, on the other hand, is a weighted geometric mean
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of the densities such that

p(θ) = k
n∏

i=1

pi(θ)
wi (5.2)

where k is the normalizing constant. The logarithmic method does not satisfy the

marginalization property; however, it does satisfy the ”external Bayesian” princi-

ple. The external Bayesian principle is satisfied if the result of updating the indi-

vidual expert distributions and then combining the updated distributions provides

the same posterior distribution as updating the combined distribution (Poole and

Raftery, 2000). Unlike the linear opinion pool, it is typically uni-modal and less dis-

persed. Thus, it is more likely to indicate consensual values, making it a preferable

option when experts’ elicited distributions are similar. Except in trivial cases, the

linear opinion pool fails to have this property, while the logarithmic pool does have

it, when the weights sum to one.

Despite its advantages, the logarithmic opinion pool suffers from the same prob-

lem as the linear opinion pool in that it lacks a standard method for choosing the

pooling weights. It also suffers from the fact that a single expert’s opinion that a

probability being zero implies that the pool must also assign zero probability to that

event.

Cooke (1991) described a method of choosing weights based on the experts’ per-

formance in assessing distributions for seed variables, which are quantities whose

true value is known to the facilitator but not to the experts. Weights are based on

p-values for evaluating how well expert assessments on seed variables align with em-

pirical results. This method produces better elicitation than equal weighting of the

experts (Cooke and Goossens, 2000). Cooke (1991) also generalized the pooling

methods by raising the individual densities to the rth power, taking a weighted aver-
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age, raising it to the 1/rth power and then multiplying by a constant to ensure that

the combined density integrates to one.

In conclusion, the linear and logarithmic opinion pools have both their advan-

tages and disadvantages and it is not possible to find an opinion pooling method

that satisfies all good qualities like the externally Bayesian and the marginalization

criteria, without making any assumptions.

A quite different approach to combiningmultiple experts’ opinions together is the

Bayesian approach, which involves experts giving information about certain events

or quantities to a decision maker (DM - sometimes called a supra-Bayesian) who

then updates a prior distribution using Bayes’ Theorem. There are difficulties with

obtaining the likelihood function required by the Bayesian methods (Clemen and

Winkler, 1990). From the viewpoint of the DM, the opinions expressed by the ex-

perts are ”data”. The DM combines the probability distributions provided by the

experts with his own prior distribution using Bayes’ rule. Therefore, in the supra-

Bayesian method, the pooling operator becomes the Bayes’ rule and the DM’s pos-

terior distribution is the combined distribution. However, selecting the DM’s prior

might be problematic. Moreover, defining an appropriate likelihood function for the

experts’ opinions can be tedious and computationally expensive. However, due to

the advancements in Markov chain Monte Carlo (MCMC) methods, we can nowa-

days evaluate complex posterior distributions. For example, Gelfand et al. (1995)

modeled the likelihood function for the experts’ opinions as a finite mixture of Beta

distributions, and used Gibbs sampling to evaluate the DM’s posterior distribution.

O’Hagan and Oakley (2004) and Oakley and O’Hagan (2007) both outlined a

supra-Bayesian technique and assumed the experts’ true probability distribution is

unknown to the DM and represented the uncertainty about the experts’ distribution
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as being the DM’s uncertainty. In both their studies, the DM’s prior beliefs about

the expert’s probability density function were updated by Bayes’ theorem, treating

the expert’s elicited summaries as data. Then they estimated the expert’s probability

density function by the DM’s posterior mean.

There are several different approaches to the problem of combining prior distri-

butions in the literature. Savchuk and Martz (1994) developed Bayes estimators for

the true binomial survival probability p when there exist multiple sources of prior

information. For each source of prior information, incomplete (partial) prior infor-

mation is assumed to exist in the form of either a prior mean of p or a prior credibility

interval on p. Both maximum entropy and maximum posterior risk criteria are used

to determine a beta prior for each source. A mixture of these beta priors is then

taken as the combined prior, after which Bayes theorem is used to obtain the final

mixed beta posterior distribution. Pulkkinen (1993) also discussed the problem of

combining expert probability distributions. Their approach was based on the use of

information theory. They derived combination procedures based on minimization

of the sums of the Kullback-information between the expert distributions and the

aggregated distribution. Pulkkinen and Holmberg (1997) described a method for us-

ing expert judgments, in which the combination of experts judgments is based on a

Bayesian framework utilizing hierarchic models. The posterior distributions were de-

termined by applying MCMCmethods. Lipscomb et al. (1998) adopted a hierarchical

approach that reflects a different statistical perspective on how to conceptualize and

model the expert judgment synthesis problem within the supra-Bayesian framework.

They presented a general approach to opinion pooling based on hierarchical model-

ing. Rosqvist (2000) used a Bayesian aggregation approach for experts’ judgments

on the failure intensity function of repairable systems. Their Bayesian statistical ap-
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proach yielded posterior distributions of the parameters of the Power Law and the

Log-Linear intensity functions using MCMC methods.

5.2 Methodology

In our approach, we deviate from the traditional approaches of averaging and

pooling, by treating the elicited information as data and converting these pseudo

data to equivalent samples of observations. Our prior combination model is based

on a Bayesian approach. In this section, we will incorporate different experts with

different confidence levels (that is, different pseudo sample sizes), we also combine

the pseudo data with actual data coming from the components of the system, which

will also induce a prior on the system parameters.

5.2.1 Incorporating Priors From Experts

In Bayesian probability theory, if the posterior distributions p(θ | x) are in the

same family as the prior probability distribution p(θ), the prior and posterior are

then called conjugate distributions, and the prior is called a conjugate prior for the

likelihood function. For example, the Gaussian family is conjugate to itself with

respect to a Gaussian likelihood function: if the likelihood function is Gaussian,

choosing a Gaussian prior will ensure that the posterior distribution is also Gaussian.

This means that the Gaussian distribution is a conjugate prior for the likelihood that

is also Gaussian.

A conjugate prior gives a closed-form expression for the posterior in Bayesian

analysis; otherwise a difficult numerical integration may be necessary. Conjugate
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priors also show how a likelihood function updates a prior distribution. All members

of the exponential family have conjugate priors.

It is often useful to think of the hyperparameters of a prior distribution as corre-

sponding to having observed a certain number of pseudo-observations with proper-

ties specified by the parameters. This is the main logic we will follow in this work.

For example, the hyperparameters α and β of a beta distribution can be thought

of as corresponding to α − 1 successes and β − 1. In general, for nearly all conju-

gate prior distributions, the hyperparameters can be interpreted in terms of pseudo-

observations. This can help to choose reasonable hyperparameters for a prior in

a Bayesian framework. In a reliability based point of view, the failure probabilities

can well be represented by Beta distributions, so beta-binomial models are used ex-

tensively to model pass/fail data with a probability of failure modeled by a Beta

distribution. The Beta hyperparameters are often called pseudo-counts and there-

fore we can think of these hyperparameters as the number of times we have seen

the different outcomes (pass or fail) in our prior experience before seeing actual data

(Koller and Friedman, 2009). The total n = α+β of the pseudo-counts reflects how

confident we are in our prior, and is often called the equivalent sample size. The

relative magnitude of α + β therefore represents total weight of the pseudo-counts.

Christensen et al. (2011) calls the priors that allow the hyperparameters to be

represented as pseudo-samples as “data augmentation priors” (DAPs). For example,

the beta-binomial model is represented by the posterior distribution such that

p | x ∼ Beta(x+ a, n− x+ b) (5.3)

where p is the failure probability, x is the observed number of failures in a test, n is

the total number of observations, and a and b are the hyperparameters of the prior

beta distribution for p. In the posterior p | x ∼ Beta(x + a, n − x + b), the number
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of “failures” x and the hyperparameter from the prior a play similar roles. Also, the

number of “successes” n−x and b play similar roles. Therefore, we can think of the

prior as augmenting the data with a failures and b successes out of a + b trials. In

DAPs, the prior density π(p) has the same functional form as the sampling density

f(x | p) when viewed as a function of p.

However, assigning hyperparameters of a prior distribution might not reflect the

actual uncertainty of experts. An expert is not usually a statistician in reality, and in

most situations in reality, he is not. They might not understand the value of “sample

size”. It is usually an analyst who elicits experts’ estimates and converts them to

distributions. Therefore, after obtaining a prior distribution from the experts, we

need to calibrate the experts’ hyperparameters so that their uncertainty is represented

in the prior distribution as accurately as possible.

In many industrial applications, expert opinion plays an important role in assess-

ing system reliability, particularly in large complex systems because data collected on

specific components and the system might be sparse. Furthermore, expert opinion

may be available from several experts, and the quality of information obtained from

each expert may be different due to the difference in their expertise and confidence.

Incorporating expert knowledge into estimates of system reliability can therefore be

a complicated task. Our solution to this problem is to elicit information from ex-

perts in the form of pseudo-observations. We analyze the continuous data case, by

analyzing a gamma-exponential model and demonstrate how to incorporate several

expert opinions in our Bayesian framework.

In our framework, we assume that lifetime data and prior expert opinion are

available at different levels of the system, and that our primary goal is to evaluate the

system reliability function, R0(t | θ), defined as the probability that the system will
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function beyond time t, given the value of a parameter vector θ. Ri(t | θi) denotes

the reliability of the component i. We are also interested in assessing the posterior

distribution of the parameters, which are the failure distribution parameters of the

components.

Several sources of information relevant to estimating system reliability are incor-

porated into our model framework. The first is lifetime data collected at individual

components. The second is lifetime data collected at the system level. A third source

of information is expert opinion regarding the failure rate of particular components

and the system. That is, we ask each expert to provide a value for the failure rate

for each component. We could ask a question such as ”How often do you think

this component would fail?” We then formulate a prior distribution representing the

expert opinions, also including a “weight” parameter for each expert in the prior.

This “weight” parameter adjusts the precision of the information solicited from each

expert. We can elicit other quantities from the experts such as the failure probability,

or average lifetime for a component, and formulate our priors based on these quan-

tities. In this work, we choose to elicit the failure rate because it is directly related

the failure time distributions in our system.

We assume that the prior information obtained from expert e concerning the

lifetime distribution of component Ci can be formulated by a Gamma distribution

such that

Gamma(λi | Ne + 1,
Ne

µi,e

) ≡ (Ne/µi,e)
Ne+1

Γ(Ne + 1)
λNe
i e

− Ne
µi,e

λi (5.4)

In Eq. 5.4, µi,e represents the failure rate estimate that we get from expert e for

λi, and Ne represents the weight assigned to information collected from expert e,

representing the number of observations assigned to the expert e’s assessment; that

is, the number of the pseudo-counts. The reason we derive the expert distribution
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as in Eq. 5.4 is due to the interpretation of hyperparameters of Gamma distribution.

Consider a gamma-exponential model such that

λ | ti ∼ Gamma(α + n, β +
n∑

i=1

ti)

where λ is the failure rate, ti is the lifetime likelihood data, n is the number of lifetime

observations, and α and β are the hyperparameters of the gamma prior. α and n have

the same interpretation, and β and
∑n

i=1 ti have the same interpretation. Therefore,

the hyperparameters are interpreted as “α observations that sum to β”. As a result,

we calibrate the expert parameters such that it will correspond to the interpretation

of gamma priors.

We model Ne as a random parameter, by assigning a prior distribution to it. Ne

also represents the consistency of the expert’s assessment with observed data. We

assume that each expert weight parameter Ne is drawn from a gamma density with

parameters αe and βe, such that

Gamma(Ne | αe, βe) ≡
βαe
e

Γ(αe)
Nαe−1

e e−βeNe (5.5)

LetE = {ti} denote the test data available for constructing the likelihood function

and Ee = {µi,e} denote the set containing expert e’s elicited opinion on component

i. Then the posterior distribution on model parameters is proportional to

p(θ, η | E) ∝
∏
∀i

∏
t∈Ei

[fi(ti | θi)]×
∏
∀e

[
Nαe−1

e e−βeNe
∏
i∈Ee

λNe
i e

− Ne
µi,e

λi

]

× π(θ | η)× π(η) (5.6)

where π(θ | η) is the hierarchical priors of the parameters coming from the com-

ponents and π(η) is the hyper prior distribution on the η. In 5.6, we represent the

system failure time distribution as a function of component life time distributions

with respect to the reliability structure posed by the system reliability block diagram.
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5.3 An Application to an Anti-Aircraft Missile System

As a simple demonstration of the proposed methodology, consider a weapon

system (previously studied by Guo (2011) and Reese et al. (2005b)). The system (C0)

works if all of the components (C1, C2, C3) work. The reliability block diagram for

this system is depicted in Figure 20, which shows that this system consists of three

components connected in series.

Figure 20. Reliability block diagram for a weapon system.

Test data available for estimating the reliability functions for this system are pro-

vided in Table 19. Twenty tests were conducted for each component, and ten system

tests were performed. Failure times for each test are depicted in the table.

Table 19. Test data.
Component Data (hours)
System (C0) 23.9, 18, 53.1, 27.6, 53.7, 34.5, 47.2, 25.7, 20.8, 7.1

C1 5.3, 65.9, 15.5, 39.4, 47.2, 28.2, 91.7, 33.6, 13.4, 13.9
117.7, 29.3, 35.5, 4.4, 150.4, 15.7, 47, 5.1, 23.5, 25.1

C2 65.5, 51.9, 120.2, 32, 51.5, 70.5, 37.7, 9.7, 78, 24.9
47.7, 46.6, 105.8, 70.5, 39.9, 29.8, 48.3, 25.4, 17.7, 27.6

C3 28.8, 51.3, 41.2, 59.2, 19.9, 57.5, 64.4, 15.7, 75, 35.2
57.5, 49.2, 18.2, 48.8, 57.5, 35.7, 29.4, 14.6, 46.2, 9
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Table 20. Expert opinions for the weapon system.
Component Expert Failure rate

C0 e1 0.03
C0 e2 0.02
C1 e1 0.01
C1 e2 0.01
C3 e2 0.01

Two experts provided prior assessments for the system or component failure

rates (see Table 20). Expert 1 provided information about the system and component

1. Expert 2 provided information about the system, and components 1 and 3. No

expert opinion is available for component 2. For example, expert 1 claims that the

failure rate of the system is 0.03 per hour. This means that expert 1 thinks that the

system will function for about 33 hours on average.

In this application, we use an Exponential distribution to model the component

failure times. The Exponential density for failure times for component Ci, i = 1, 2, 3,

is represented by

fi(t | λi) = λie
−λit (5.7)

so that θi = {λi}. All values of λi are drawn mutually independently from gamma

distributions; that is

π(λi | δλ, ζλ) ∝ λδ−1
i e−δλλi (5.8)

We assume that δλ, ζλ have independent exponential distributions with mean 1.

We assigned a Gamma(5, 1) prior density to the expert weight parametersN1 andN2,

which means that each expert’s assessment is considered to be worth approximately

5 observations before observing the data.

124



Figure 21. Posterior distributions of the reliability parameters.

Figure 22. Posterior reliability distributions of the system and components. The
solid line is the posterior mean and the dashed lines are the 90% credible interval.

To sample from the posterior distribution on model parameters and reliabilities,

we ran MCMC simulations through the Bayesian software package, WinBUGS. The

posterior distributions were based on 100, 000 draws from the joint posterior distri-
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Figure 23. Posterior distributions of the experts’ weight parameters. The solid line
is the posterior distribution for the first expert and the dashed line is the posterior
distribution for the second expert.

bution with a 20, 000 burn-in period. The posterior distribution for each parameter

is plotted in Figure 21. The reliability functions of the system and components are

plotted in Figure 22.

The posterior distributions for the expert precision parameters are depicted in

Figure 23. These plots suggest that assessments from expert 1 were more consistent

with observed data than were those from expert 2, due to the fact that the distribution

obtained from expert 1 is closer to 1. Parameters for both expert 1 and expert 2 turn

out to be less than 1, because the sample size of the data is much greater than the

number of expert assessments, thus dominating the likelihood. We can say that the

2 experts are worth around 1 system test.

In order to analyze the effect of priors on the posterior distribution, the simula-

tion was run with different prior distributions (see Figure 24).

According to Figure 24, the posterior distribution for the system failure rate was
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analyzed. In this comparison, four different models are compared: model with prior

specifications from components (without expert data), pseudo data method (with

expert data), logarithmic and linear opinion pools (using equal weights). As can

be seen from the figure, adding the pseudo data into the model clearly improves

the posterior. Linear opinion pool performs poorly, in terms of the variance and

precision. We can therefore conclude that prior distributions do have an effect on

the posterior distribution, and special care must be taken when combining priors in

a Bayesian model.

Figure 24. Posterior distributions of the failure rate given different priors.

5.4 Conclusion

In this chapter, we present a Bayesian framework for incorporating multiple

sources of prior information through the treatment of expert opinion as imprecisely-
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observed data (pseudo-data). Our proposed hierarchical model for system reliability

offers several advantages over other existing models for system reliability. Firstly,

incorporating expert opinion in the form of pseudo-observations substantially sim-

plifies statistical modeling. We can use the hierarchical priors directly in our Bayesian

model, without having to use a mathematical aggregation method to combine dif-

ferent priors. The linear and logarithmic pooling techniques and supra Bayesian

methods used for combining prior distributions in the literature require complex

calculations and might be tedious to work with. Therefore, converting the experts’

distributions to pseudo data proves as an effective method in a Bayesian framework.

Another advantage of our methodology is that experts are assigned a “weight”

parameter representing their pseudo sample size, thus calibrating the experts’ beliefs

with respect to their accuracy. We formulate this weight parameter as a random

variable with gamma distribution, and our hierarchical Bayesian model updates this

parameter with the likelihood data. This method is especially useful when we do not

have enough likelihood data, because it increases our observed sample size.

An example from the literature, a weapon system, is used as a case study in this

work. We present a gamma-exponential model, modeling the lifetime data with

Exponential distribution and parameters with Gamma priors. We elicit estimates

about the failure rate parameter of several components from each expert and derive

a Gamma distribution by calibrating the hyperparameters of the Gamma prior. As a

result, we were able to obtain posterior densities for both the failure parameters and

expert weight parameters.

In future work we plan to extend this framework to include more complex distri-

butions. We would like to analyze the case of non-conjugate priors. In this case,

assigning a prior distribution to the expert becomes more challenging, as it gets
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harder to evaluate the hyperparameters. Determining the pseudo sample size there-

fore might require more complicated calculations. We also would like to analyze

the situations in which we elicit different quantities than the failure rate from the ex-

perts, such as the failure probability during mission time. There might be situations

in which, our pseudo samples are discrete and our likelihood data are continuous,

thus causing a mixture likelihood. As a result, there are many scenarios to extend

this study to, creating many future research areas.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

The fundamental problem that this dissertation addresses is the reliability analysis

of complex engineering systems through the use of Bayesian networks coupled with

Bayesian inference. In the preceding chapters, we present Bayesian methods for

assessing system reliability (Chapter 2, Chapter 3 and Chapter 4) and for combining

prior distributions coming from different resources (Chapter 5). In this final chapter,

we summarize the main contributions and discuss promising directions for further

research.

6.1 Summary of Methods and Contributions

Chapter 2 proposes a Bayesian network model for assessing the system reliabil-

ity at the system’s early design stage. Information from parent products that was

stored as a function failure record are used for inference. In our framework, fail-

ure modes and failure causes represent the nodes of the Bayesian network, whereas

the conditional probabilities represent the dependencies between these causes and

modes. The objective is to quantify the relationships and dependencies between

failure modes and failure causes using historical records from parent products. A

Bayesian network methodology is provided for early reliability prediction problem

by integrating both objective and subjective reliability information. After analyzing

the functional dependencies in the system, these dependencies are established in a

Bayesian network model. Then, belief propagation is used to update the current
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knowledge about the system. Using our method, we can identify functions with high

failure risk and offer suggestions for improvement.

Chapter 3 also presents a Bayesian network methodology with a deeper analysis

of a complex system. In this chapter, the relationship of system/subsystem reliabil-

ity to its components are examined using simultaneous pass/fail data. Information

frommultiple sources and multiple levels of the system to infer the conditional prob-

abilities in a BN is combined. Firstly, a naïve scenario is presented where the com-

plete historical dataset of the states of the system and its components are available.

Then, this case is extended to a multi-state Bayesian network. Finally, the scenario

of incomplete lower-level system information is discussed. Since Bayesian networks

represent dependencies between the system and its components, overlapping data

instead of independent data should be used in the analysis. Therefore, in this re-

search, only data drawn simultaneously from the same system are used for inference.

The dependencies between higher-level failure data and lower-level failure data are

characterized by the conditional probabilities in a BN model; therefore, the objec-

tive of Chapter 3 is to infer the parameters of a Bayesian network given overlapping

pass/fail data. In the independent data case, the likelihood is a multiplication of in-

dividual likelihood data coming from each component. However, in the incomplete

simultaneous data case the likelihood function of evidence becomes a summation of

several likelihoods that correspond to all possible state vectors of the system. For

such complicated function, it is impossible to find a closed form solution of poste-

rior probability; therefore, the computational Bayesian method, MCMC is employed.

The resulting method is successful at quantifying system reliability structure with in-

complete data. A MATLAB program is developed to perform compilation of the set

of combinations of state vectors to be used in the MCMC simulation in WinBUGS.
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Chapter 4 extends the work in Chapter 3 to systems with continuous likelihood

data. A Bayesian network model has been developed for overlapping lifetime data

at various levels within a complex system. A key aspect of this methodology is its

ability to incorporate overlapping data. An overlapping data likelihood function is

developed using d-separation in the Bayesian network model. The model developed

highlights the effect of the information overlapping data contains and how it can be

used to correctly improve our state of knowledge (which is the set of component reli-

ability characteristics parameters). The resulting method completely incorporates all

information taking into account the dependencies imposed by the system structure.

Chapter 5 proposes a fully Bayesian model for incorporating expert opinions with

different precision and offers several advantages over other existing models. Among

these are an efficient Bayesian framework for incorporating multiple sources of prior

information through the treatment of expert opinion as imprecisely-observed data

(also called pseudo data), and evaluating the experts’ precision with a weight parame-

ter assigned as a random variable in the model. Proposed method provides efficiency

in calculations, avoiding the computational complexity posed by the pooling meth-

ods proposed in the literature.

6.2 Suggestions for Future Research

The discussions at the end of Chapter 2, Chapter 3, Chapter 4 and Chapter 5 have

addressed some future research directions. We organize those that are promising and

suggest other possibilities.

In system reliability, the first goal is to address more complex and general sys-

tems. As discussed previously, we can extend the proposed methods to more com-
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plex systems by modeling the relationship between different levels. If we model a

very complex system using a large BN, we would have too many parameters as the

complexity of systems increases because there would be too many nodes and param-

eters. As a result, it would be interesting to address assessing system reliabilities for a

very complex Bayesian network and develop more efficient algorithms for inference.

Developing more efficient simulation techniques for the proposed models is there-

fore very crucial. In this direction, further work could be done to propose better

MCMC algorithms, especially for overlapping data.

One of the promising areas for BN related applications is safety assessment of

software based systems. Software reliability is very challenging to compute, since

many of the aspects of the software are not directly measurable. Therefore, BNs

could be used to model software based systems to constitute a systematic way to

combine quantitative reliability data with qualitative data and show the link between

these components. The BN methodology can provide a useful and practical frame-

work that supports decision-making in software engineering because of the ease of

representation of causal relationships among variables (Fenton et al., 2008; Fenton

and Neil, 2012). Lewis (1999) discussed some of the issues surrounding Bayesian net-

work software process modeling and outlined directions for future research. Dahll

(2000) discussed how to combine disparate sources of information in the safety as-

sessment of software-based systems using Bayesian networks. Bibi and Stamelos

(2004) suggested the use of Bayesian networks for representing software process

models. Misirli and Bener (2014) investigated the applications of Bayesian networks

in software engineering in terms of techniques used to learn causal relationships

among variables and techniques used to infer the parameters. They proposed a hy-

brid BN to improve evidence-based decision-making in software engineering, show-
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ing that hybrid BNs are powerful frameworks that combine expert knowledge with

quantitative data.

Bayesian networks can provide a network of software work flows and their in-

terdependencies. They are highly visual tools that can indicate which work flows

affect others. They enable evolution of the process as they can be used for sensi-

tivity analysis in order to explore the impact of some changes in software process

before actually implementing them. To satisfy this objective, the software process

needs to be analyzed and carefully modeled in order to encourage it’s understanding,

assessment and improvement. Therefore, it would be a good research direction to

develop generic Bayesian network process models for software based systems.

Another future research area is assessing prior distributions from experts and

combining these distributions. In real life, we might get very complex distributions,

so it would be an interesting research direction and more work could be done on

how to assess the hyperparameters of different prior distributions.

MCMC simulation techniques were used all throughout this dissertation. Further

work could be done on inference for Bayesian networks using other approximation

techniques.
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