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ABSTRACT 

Origami and Kirigami are two traditional art forms in the world. Origami, from 

‘ori’ meaning folding, and ‘kami’ meaning paper is the art of paper folding. Kirigami, 

from ‘kiri’ meaning cutting, is the art of the combination of paper cutting and paper 

folding. In this dissertation, Origami and kirigami concepts were successively utilized in 

making stretchable lithium ion batteries and three-dimensional (3D) silicon structure 

which both provide excellent mechanical characteristics.  

First chapter of this dissertation demonstrates an origami Lituium-ion battery 

(LIB) that can be deformed at an unprecedented high level, including folding, bending 

and twisting. Deformability at the system-level is enabled using rigid origami, which 

prescribes a crease pattern such that the materials making the origami pattern do not 

experience large strain. The origami battery is fabricated through slurry coating of 

electrodes onto paper current collectors, packaging in standard materials, followed by 

folding using the Miura pattern. The resulting origami battery achieves significant linear 

and areal deformability, large twistability, and bendability.  

Second chapter of this dissertation demonstrates stretchable LIBs using the 

concept of kirigami. The designated kirigami patterns have been discovered and 

implemented to achieve great stretchability (over 150%) to LIBs that are produced by 

standardized battery manufacturing. It is shown that fracture due to cutting and folding is 

suppressed by plastic rolling, which provides kirigami LIBs excellent electrochemical 

and mechanical characteristics. The kirigami LIBs have demonstrated the capability to be 

integrated and power a smart watch, which may disruptively impact the field of wearable 

electronics by offering extra physical and functionality design spaces.  
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Third chapter of this dissertation demonstrates a new strategy to fabricate 

microscale origami using Silicon (Si) nano-membrane (NMs) as the materials that are 

supported by elevated polydimethylsiloxane (PDMS) walls on top of a PDMS substrate.  

This dissertation aims to deepen study origami and kirigami patterns, understand 

mathematics and mechanical properties behind them and discover their applications. 



  iii 

DEDICATION  

I dedicate my dissertation work to my family. I present a special feeling of 

gratitude to my loving parents, Shizhong Song and Yaping Jiang whose words of 

encouragement and push for tenacity ring in my ears. I also dedicate this dissertation to 

my wife, Wenwen Xu, for the unconditional love and support she has for me. 



  iv 

ACKNOWLEDGMENTS 

I would like to first express my deepest gratitude to my supervisor, Prof. Hanqing 

Jiang, who has always been supportive, helpful and caring ever since I entered the Master 

program at Arizona State University. His vision, leadership and perseverance for research 

have been the constant driving force for my progress. I also especially thank him for 

supporting and assisting my wife to pursue her PhD studies in his group. I feel very 

fortunate to have been his student, and therefore to have had such an enjoyable and 

fulfilling graduate school experience. 

I would also like to deeply thank Prof. Hongyu Yu and Prof. Candace K. Chan, 

who were abundantly helpful and offered invaluable assistance and guidance to my 

experimental projects.  

I also love to thank Prof. Hongbin Yu and Dr. Min Tao who have been advising 

me on Intel SRS project during the two and a half years.  

In addition, I am very grateful for all the help and advice from my committee 

members, Prof. Lenore L. Dai and Prof. Ximin He. 

Last but not the least, the help and support from my colleagues at Arizona State 

University, Dr. Teng Ma, Dr. Rui Tang, Dr. Hai Huang, Dr. Hanshuang Liang, Dr. 

Prithwish Chatterjee, Dr. Yonghao An, Qian Cheng, Cheng Lv, Xu Wang, Mengbing 

Liang, Ruirui Han, Haokai Yang, Jinshan Lin, Wei Zeng, Todd Houghton, Yiling Fan, 

Tianwei Sun, Dr. Qiang Liu and Deepakshyam Krishnaraju are truly appreciated. 



  v 

TABLE OF CONTENTS  

          Page 

LIST OF FIGURES ............................................................................................................... vii  

CHAPTER 

 1     GENERAL INTRODUCTION OF ORIGAMI AND KIRIGAMI-FUSION OF ARTS 

AND ENGINEERING  ..................................................................................................  1  

1.1 Introduction of Origami ................................................................................ 1  

1.2 Introduction of Kirigami ............................................................................... 5  

2     ORIGAMI LITHIUM ION BATTERIES  .................................................................  7  

2.1 Background .................................................................................................... 7  

2.2 Experiment and Results ................................................................................. 8  

2.2.1 Battery Design Using Miura Folding .................................................. 8  

2.2.2 Electrochemical and Mechanical Characteristics of Origami LIBs . 16  

2.2.3 Comparison of Origami LIBs with LIBs Using Conventional Active 

Materials and Current Collectors ................................................... 30  

2.3 Discussion .................................................................................................... 35  

3     KIRIGAMI BASED STRETCHABLE LITHIUM ION BATTERIES  .................  37  

3.1 Background .................................................................................................. 37  

3.2 Experiment and Results ............................................................................... 38  

3.2.1 Battery Design Using Kirigami Patterns ........................................... 38  

3.2.2 Electrochemical and Mechanical Characteristics ............................. 41  

3.2.3 Connecting Kirigami Battery with Samsung Gear 2 Smart Watch .. 49  

3.2.4 Thermal test of Kirigami battery and Samsung Gear 2 battery ........ 53  



  vi 

CHAPTER                                                                                                                      Page 

3.3 Discussion .................................................................................................... 53  

4     MICROSCALE SILICON ORIGAMI  ....................................................................  55  

4.1 Background .................................................................................................. 55  

4.2 Introduction of micro Transfer Printing ..................................................... 56  

4.3 Experiment and Results ............................................................................... 59  

4.3.1 Fabrication of Silicon Origami .......................................................... 59  

4.3.2 Studies of Silicon with Different Patterns ......................................... 62  

4.4 Discussion .................................................................................................... 76  

5     CONCLUSIONS AND OUTLOOK  .......................................................................  77  

5.1 Summary ...................................................................................................... 77  

5.2 Future Work ................................................................................................. 78 

REFERENCES...................................................................................................................... 79 

APPENDIX ........................................................................................................................... 89 

A. PATTERNS OF PDMS WALLS DESIGNED BY AUTOCAD ............... 89 



  vii 

LIST OF FIGURES 

Figure Page 

1.1. Origami Paper Crane and Origami Chinese Dragon  ..............................................  1 

1.2. Different Morphologies of Origami Magic Ball Structure  .....................................  2 

1.3. Two Morphologies of Miura-Ori Pattern ................................................................  3 

1.4. Examples of Recent Advances in Active Origami  .................................................  4 

1.5. Steps of Making Kirigami Trees  .............................................................................  6 

2.1. Concept of Origami LIBs  ........................................................................................  9 

2.2. Origami LIBs Using CNT-Coated Paper Current Collectors  .............................. 11 

2.3. Optical Image of an Assembled LIB  .................................................................... 13 

2.4. As-Coated LTO Anode Electrode in Optical and SEM Images  .......................... 13 

2.5. As-Coated LCO Cathode Electrode in Optical and SEM Images  ....................... 15 

2.6. Characteristics of the Origami LIBs Using 45
o
 Miura Folding  ........................... 16 

2.7. Electrochemical Characterizations  ........................................................................ 18 

2.8. Capacity Retention and Coulumbic Efficiency  .................................................... 19 

2.9. Photograph of Linear Deformation of an Origami LIB  ....................................... 20 

2.10. EIS Analysis During the First Discharge Cycle Before and After the 

Mechanical Deformation ..................................................................................... 21 

2.11. Maximum Output Power of the Origami LIB as a Function of Linear 

Deformability Over 50 Cycles of Folding and Unfolding  ................................ 23 

2.12. An Origami LIB Using 45
o
 Miura Folding is Lighting Up a LED  .................... 24 

2.13. Twisting an Origami LIB While It Was Connected With a voltmeter  .............. 26 

 



  viii 

Figure Page 

2.14. Maximum Output Power of the Origami Battery Using 45o Miura 

Folding  ................................................................................................................ 26 

2.15. Finite Element Results of the Strain Contour of a 45
o
 Miura Pattern  ................ 27 

2.16. Bending an Origami LIB While It Was Connected With a Voltmeter  .............. 28 

2.17. Maximum Output Power of the Origami Battery Using 45
o
 Miura Folding 

 ............................................................................................................................... 28 

2.18. Finite Element Results of the Strain Contour of a 45
o
 Miura Pattern  ................ 29 

2.19. An Origami Battery Using 90
o
 Miura Folding  ................................................... 30 

2.20. Comparison of Paper Based Origami LIBs With Conventional Materials 

Based LIBs  ......................................................................................................... 32 

2.21. Optical Images of Graphite Electrodes Prior to and After Folding  ................... 34 

2.22. Capacity of An Origami Battery Using 45
o
 Miura Folding and 

Conventional Active Materials and Current Collectors  .................................... 35 

3.1. Illustrations of Three Kirigami Patterns  ............................................................... 39 

3.2. Geometries of the Three Kirigami Batteries  ......................................................... 40 

3.3. Photograph of a LIB at Its Most Compact State and Stretched State  .................. 42 

3.4. Galvanostatic Charge and Discharge at Different State  ....................................... 43 

3.5. Energy Capacity and Coulombic Efficiency as a Function of Cycle 

Number  ............................................................................................................... 44 

3.6. Rate Performance for Both Compact and Stretched States  .................................. 45 

3.7. EIS Analysis  .......................................................................................................... 46 

3.8. Photograph of Stretching a Kirigami LIB ............................................................. 46 



  ix 

Figure Page 

3.9. Maximum Output Power of the Kirigami LIB  ..................................................... 47 

3.10. SEM of Anode Current Collector Cu at the Cut Before Charge and After 

Discharge  ............................................................................................................ 48 

3.11. SEM of Cathode Current Collector Al at the Cut Before Charge and After 

Discharge  ............................................................................................................ 48 

3.12. Powering a Samsung Gear 2 Smart Watch by a Kirigami LIB Using Cut-

N-Twist Pattern  .................................................................................................. 49 

3.13. Galvanostatic Discharge to Simulate the Standby Test and Calling Test  .......... 51 

4.1. Schematic Illustrations of Three Basic Modes for Transfer Printing  .................. 57 

4.2. Schematic Illustration of Using Elevated PDMS Walls  ....................................... 61 

4.3. A Photography of a Si NM Miura-Ori Pattern  ..................................................... 62 

4.4. SEM Image of Periodic Si NM Miura-Ori Pattern  ............................................... 63 

4.5. SEM Images Near the Elevated PDMS Walls  ..................................................... 65 

4.6. Optical Profilometer Image of the Si NM Miura-Ori Pattern  .............................. 66 

4.7. Line Cut Comparisons Between the Experiment, FEA, and Analytical 

Solution  ............................................................................................................... 67 

4.8. A Photography of a Si NM Magic Ball Pattern  .................................................... 69 

4.9. A SEM Image Shows Si NM Magic Ball’ Pattern  ............................................... 70 

4.10. Photography and Optical Images of Si NM Non-Rigidly Foldable Pattern  ...... 71 

4.11. Photography, SEM and Optical Profilometer Images of a Si NM Star 

Pattern  ................................................................................................................. 73 

 



  x 

Figure Page 

4.12. Photography, SEM and Optical Profilometer Images of a Si NM US Flag 

Pattern  ................................................................................................................. 75 

A1. Geometry of the Pre-Patterned PDMS Wall With Miura-Ori Pattern  ................. 90 

A2. Geometry of the Pre-Patterned PDMS Wall With Magic Ball Pattern  ................ 91 

A3. Geometry of the Pre-Patterned PDMS Wall With Non-Rigidly Foldable 

Pattern  ................................................................................................................. 92 

A4. Geometry of the Pre-Patterned PDMS Wall With Star Pattern  ........................... 93 

A5. Geometry of the Pre-Patterned PDMS Wall With US Flag Pattern  .................... 95 



  1 

CHAPTER 1 

GENERAL INTRODUCTION OF ORIGAMI AND KIRIGAMI-FUSION OF ARTS 

AND ENGINEERING 

1.1 Introduction of Origami  

Origami, the art of paper folding (1), is often associated with Japanese culture. 

Paper was first invented in China in the year 102 A.D. and then brought to Japan in the 

sixth century A.D. Since then, Japan has developed origami to a very high art form. In 

modern usage, the word ‘origami’ is used as an inclusive term for all folding practices, 

regardless of their culture of origin. The goal is to provide the ability to create versatile 

3D stable configurations from 2D sheets.  

Origami structures can be simply classified as static origami and dynamic origami; 

or rigid origami and non-rigid origami. Static origami is a common art form of origami 

that has been handed down from parent to child through many generations. Animals, 

birds, fish, puppets, toys and masks are among the models that even very young children 

can learn to make in just one sitting. Figure 1.1(a) shows the most well know paper crane.  

 

                              (a)                                                                              (b) 

Figure 1.1. (a) Origami paper crane. (b) Origami Chinese dragon. 



  2 

Much more delicated static origami such as Chinese dragon shown in figure 1.1(b) 

was created by artists. Dynamic origami is a developed form of origami, namely, 

dynamic origami can deform. One example of dynamic origami structure shown in figure 

1.2 is called ‘waterbomb’ structure, or the nick name ‘magic ball’.  

    

Figure 1.2. Different morphologies of origami magic ball structure. 

Magic ball structure can deform into sphere or cylinder when force applied axial 

or radial, respectively. Kinetic behavior of dynamic origami can be applied to temporary 

shelters, retractable roofs and space structures, etc. Rigid origami is a branch of origami 

that deformability is enabled by the high degree of folding/unfolding at the creases, while 

the facets between creases do not experience deformation. Figure 1.3 shows an example 

of rigid origami named Miura-Ori fold.  
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Figure 1.3. Two morphologies of Miura-Ori pattern. Left picture shows stretched state 

and right picture shows compressed state. 

The crease patterns of the Miura fold form a tessellation of the parallelograms. 

The creases lie along straight lines in one direction. Each parallelogram forms the mirror 

reflection of its neighbor across each crease. In the other direction, creases are zigzag 

shape like and each of zigzag creases consist only mountain folds or valley folds. Miura-

ori structure can be completely deformed in one direction without causing any 

deformation on facets. Conversely, facets in non-rigid origami will bend or twist to 

accommodate global deformation like the Chinese dragon in Figure 1.1(b).  

Recently, origami, providing the ability to create versatile 3D stable 

configurations from 2D sheets, has been transformed by mathematicians, scientists, and 

engineers to utilize the folded objects’ deformability and compactness (2-21).  

Notable progress has been made in the area of origami theory, particularly on 

methods and tools to design origami models and to understand folding and unfolding 

from a theoretical perspective. The most notable example in origami theory is the tree 

method developed by R. Lang and T. Meguro in the 1990s, which provides a powerful 



  4 

design tool to create crease patterns (1). It was followed in subsequent years by more 

powerful design tools (20, 22-25). The success in origami design has inspired great 

interest in applying origami to engineering applications, where engineering materials 

(e.g., polymers), instead of paper, are used. In addition, the use of active materials has led 

to field of ‘action origami’ (26), or active origami (17, 27), with pioneering applications 

generated by this MURI team: M. Dickey demonstrated the use of light absorbing inks to 

create shape memory polymer-based hinges (13) (Figure 1.4(a)), later applied to self-

folding antenna (21) and machines (14, 15); H. Qi integrated 3D printing with shape 

memory polymer to create four dimensional (4D) printed origami (Figure 1.4(b)) (16, 17). 

G. Paulino has designed a new origami structure that combines two origami design 

folding patterns (18) (Figure 1.4(c)). Functional devices, such as batteries made by 

origami is also demonstrated in this dissertation (19) . 

 

(a) 
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(b) 

 

(c) 

Figure 1.4. Examples of recent advances in active origami. (a) Folding of response to IR 

irradiation; (b) origami airplane by 4D printing; (c) origami tubes for reconfigurable 

structures and metamaterials. 

However, origami-based foldable structures have two disadvantages. First, their 

foldability is limited from the folded state to the planar state. Although it can be tuned by 

different folding patterns, the same constraint is still prescribed by the planar state. 

Second, the folded state involves uneven surfaces, which introduces inconvenience when 

integrating with planar systems, though this issue can be somewhat circumvented. 

1.2 Introduction of Kirigami - A Combination of Paper Cutting and Paper Folding 

To overcome those disadvantages, another approach is introduced which 

combines folding and cutting, by the name of kirigami, to define patterns that form an 

even surface after stretching and the stretchability is not limited by the planar state. 

kirigami is symmetrical and an art of folding paper which is cut by scissors to make 

flower, paper doll, paper snowflake and other designs. Figure 1.5 shows the simple 
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process of making kirigami trees. This simple yet amazing form of art yields marvelous 

pieces that would showcase symmetry, consistency and balance. 

 

Figure 1.5. Steps of making kirigami trees. 

In next two chapters, Origami and Kirigami patterns were successively utilized in 

making stretchable Lithium ion batteries, which both provide kirigami LIBs excellent 

electrochemical and mechanical characteristics. 
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CHAPTER 2 

ORIGAMI LITHIUM ION BATTERIES 

2.1 Background 

Deformable energy storage devices are emerging as indispensable components for 

unconventional electronics devices that are able to survive significant degrees of 

deformation, mainly bending and stretching, with strain levels much greater than 1%. 

Examples include flexible displays (28-31), stretchable circuits (32), hemispherical 

electronic eyes (33), and the recently developed epidermal electronics (34). The energy 

storage devices present a significant challenge for developing a robust deformable system, 

since they must be seamlessly integrated with deformable functional devices and energy 

supplies with similar mechanical characteristics, including linear deformability (i.e., 

stretchability and compressibility), bendability, and twistability. For bending deformation, 

many thin film based energy solutions, such as supercapacitors (35-38) and batteries (37, 

39-43) have been developed that take advantage of the inherently small strains (usually 

less than 1%) near the mechanical neutral planes (44). Recently a handful of efforts have 

been undertaken to develop stretchable energy sources. Stretchable supercapacitors using 

buckled carbon nanotube (CNT) macrofilms as electrodes (45, 46) and CNT-coated 

porous conductive textiles (47) have been developed with over 30% stretchability. 

Stretchable LIBs with over 100% stretchability and 50% areal coverage have been 

demonstrated that used serpentine interconnects and that were packaged by elastomeric 

materials (48). To date approaches that simultaneously achieve a high level of 

deformability (including linear stretching and compression, bending, twisting and their 

combinations in any order) with large areal coverage that are compatible with 
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commercially available manufacturing technologies have not been demonstrated. These 

attributes represent desired requirements to fully integrate energy storage devices with 

deformable electronics to reach system-level deformability in realistic applications.  

Origami-based approaches represents a potentially game-changing alternative to 

enable deformability over existing methods that use elastomeric materials and 

mechanically designed structures such as buckling and serpentine shapes. Using origami, 

the ancient art of paper folding, compact deformable three-dimensional structures can be 

created from two-dimensional sheets through high degrees of folding along pre-defined 

creases,. Origami-based approaches have recently been pursued in several practical 

applications, including a foldable telescope lens (5) for space exploration and in heart 

stents (2). 

In this dissertation, an approach to enable origami LIBs with the attributes of 

extreme mechanical deformability was reported, including significant system-level linear 

and areal deformability large twistability and bendability, and up to 74% areal coverage. 

Furthermore, commercially standard packaging technologies were used in the origami 

LIBs, which when combined with other deformable electronic devices, may lead to direct 

practical applications. 

2.2 Experiment and Results 

2.2.1 Battery Design Using Miura Folding 

Figure 2.1 illustrates the origami LIB concept. Starting from conventional planar 

LIBs (Figure 2.1(a)) consisting of many layers, including current collectors, anode and 

cathode, separator and packaging, the origami LIBs were realized by folding these layers 

based on specific origami patterns of Miura-ori (49). In the Miura-ori pattern, shown in 
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Figure 2.1(b), many identical parallelogram faces are connected by ‘mountain’ and 

‘valley’ creases. Depending on the difference of angles between adjacent ‘mountain’ and 

‘valley’ creases, the Miura-ori can be either almost completely compressible in one 

direction (lower-left of Figure 2.1(b), and referred to as ‘45
o
 Miura folding’ hereafter) or 

collapsible in two directions (lower-right of Figure 2.1(b), and referred to as ‘90
o
 Miura 

folding’ hereafter). Despite the overall high-level of deformability that can be realized, 

the parallelogram faces themselves remain undeformed because the folding and unfolding 

of the creases maintains the faces in a rigid configuration. This class of origami pattern is 

appropriately called rigid origami, where deformability at the system-level is prescribed 

by the creases while the base or substrate materials making the origami pattern do not 

experience large strain except at the creases. 

 

(a) 
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(b) 

Figure 2.1. Concept of origami LIBs (a) exploded view of the multilayer structure of 

conventional LIBs in the planar state. (b) two examples of origami LIBs using Miura 

folding. The lower left pictures refer to 45
o
 Miura folding in the unfolded and folded 

states, showing it can be completely compressed in one direction.  The lower right 

pictures refer to 90
o
 Miura folding in the unfolded and folded states, showing it can be 

completed collapsed in biaxial directions.  

In order to achieve good foldability and electrical conductivity at the creases after 

cyclic folding and unfolding, we adopted CNT coated paper as the current collectors 

upon which we deposited active material layers (37, 50). Figures 2.2(a) and 2.2(b) show 

the optical and scanning electron micrographs (SEM) of this paper current collector, 

which was produced by coating thin and porous laboratory Kimwipes (Kimtech Science, 

Kimberly-Clark) with CNT layers of ~40μm thickness after drying. The electrical 

resistance of this paper current collector on each side was about 5Ω per square. CNT-

coated paper was prepared as the current collector on laboratory Kimwipes using P3 
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CNTs from carbon solutions as described in our previous work (50). The final mass 

loading of CNTs on the CNT-coated paper was ~0.8 mg cm
-2

. Cathodes and anodes were 

prepared by depositing LiCoO2 (LCO, Sigma-Aldrich) and Li4Ti5O12 (LTO, MTI Corp.) 

slurries onto the CNT-coated paper. Multilayer stacking structures as shown in Figure 2.1 

were prepared, with the aluminized polyethylene (PE) (Sigma-Aldrich) as the packaging 

material, CNT-coated papers as anode and cathode current collectors, LTO and LCO as 

anode and cathode electrodes, respectively, polypropylene (Celgard 2500) as separator, 

and 1 M LiPF6 in EC:DMC:DEC (4:2:4) as electrolyte. The mass ratio for LTO:LCO was 

fixed at ~1.6. Three layers of anode electrode connected with a copper (Cu) tab, separator 

soaked in electrolyte, and cathode electrode connected with an aluminum (Al) tab were 

placed in an aluminized/PE bag and assembled in an Argon filled glovebox.                                

 

(a) 
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(b) 

Figure 2.2. Origami LIBs using CNT-coated paper current collectors (a) Optical and (b) 

SEM of CNT-coated paper current collectors. Scale bar in (a) is 2 mm. Scale bar in (b) is 

100 μm. 

Then the assembled battery cell (shown in Figure 2.3) was folded using the 

desired origami patterns (Figure 2.1) in an ambient environment.  
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Figure 2.3. Optical image of an assembled LIB. Scale bar is 2 cm. 

The thickness of the assembled LIB cell was 380 μm. Figures 2.4(a) and 2.4(b) 

provide optical and SEM images of as-coated anode in the regions of a crease. 

 

                                      (a) 
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Figure 2.4. As-coated LTO anode electrode in (a) optical and (b) SEM images in a region 

of crease, as indicated by magenta dashed lines. Scale bar in (a) is 2 mm. Scale bar in (b) 

is 100 μm.  

Figures 2.5(a) and 2.5(b) provide optical and SEM images of as-coated cathode 

electrodes in the regions of a crease, showing that there were no apparent cracks or 

delamination of active materials from the electrodes, as compared to the planar regions. 

Moreover, it was verified that the electrical resistance of the electrodes prior to and after 

folding in the origami pattern (without packaging) remained unchanged. Galvanostatic 

charge and discharge tests were performed using a battery testing unit (Arbin 

Instruments).  
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                                          (a) 

 

                                                     (b) 

Figure 2.5. As-coated LCO cathode electrode in (a) optical and (b) SEM images in a 

region of crease, as indicated by magenta dashed lines. (e) and (g) show the entire region 

of the crease. Scale bar in (a) is 2 mm. Scale bar in (b) is 100 μm.  
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2.2.2 Electrochemical and Mechanical Characteristics of Origami LIBs 

Figures 2.6(a) and 2.6(b) show the pictures of the planar and completely 

compressed configurations, respectively. The dotted black lines highlight the area of 

anode and cathode electrodes, which provides over 74% areal coverage.  

 

(a) 



  17 

 

(b) 

Figure 2.6. Characteristics of the origami LIBs using 45
o
 Miura folding (a) Photograph of 

the origami battery in the completely unfolded state, where the battery was used to power 

a light-emitting diode (LED). The size of the origami battery is       and the active 

electrodes cover the area of            . The areal coverage is 74%. (b) Photograph of 

the origami battery operating a LED in its completely compressed state. The size of the 

battery is      . 

Electrochemical properties of the LIB in its planar state (for the 1st, 5th, and 10th 

cycles) and completely compressed state (for the 30th, 50th, 100th, and 150th cycles) 

under a current density of 20 mA g-1 are shown in Figure 2.7 
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Figure 2.7. Electrochemical characterizations. Galvanostatic charge and discharge of the 

origami LIBs using 45
o
 Miura folding at the planar state (1st, 5th, and 10th cycles) and 

the completely compressed state (30th, 50th, 100th, and 150th cycles). Well-defined 

plateaus at around 2.35V were observed. The mass loading of LCO (specific capacity 145 

mAh g-1) and LTO (specific capacity 160 mAh g-1) were 102 mg and 169 mg, 

respectively, which gave the specific capacity at its compressed configuration of 85.5 

mAh g-1 for the present current density (or equivalently C/7). 

The areal capacity for the planar and completely compressed states as a function 

of charge rate was examined by performing galvanostatic cycling under two current 

densities (Figure 2.8). 
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Figure 2.8. Capacity retention (left axis, black) and Coulumbic efficiency (right axis, red) 

as a function of cycle number for two current densities, 20 mA g
-1

 and 40mA g
-1

. 

At a current rate of 20 mA g
-1

, the areal capacity was about 0.2 mAh cm
-2

 for the 

first 11 cycles when the origami battery was in its planar unfolded state, and increased to 

1.4-2.0 mAh cm
-2

 for the next 10 cycles when the origami battery was completely 

compressed. When the current rate was increased to 40 mA g
-1

 for the next 5 cycles, the 

areal capacity remained at 0.8-1.0 mAh cm
-2

. When the current density was reduced back 

to the initial level of 20 mA g
-1

, the areal capacity nearly recovered to 1.3-1.4 mAh cm
-2

, 

and remained at above 1.0 mAh cm
-2

 for up to 110 cycles, which indicates reasonably 

good areal capacity. Observed decrease of the capacity after many cycles (i.e., two 

months of continuous charging/discharging) may be attributed to factors related to 

leakage in the present aluminized PE packaging, which can be improved with better seals. 

The present areal capacity for the completely compressed state of 1.0-2.0 mAh cm
-2
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could be further increased by adding more active materials (e.g., LTO and LCO) to 

obtain thicker electrodes. However, such a modification might reduce the rate capacity 

and could also lead to difficulty in folding and higher localized strain at the creases. 

The mechanical characteristics of the fully charged LIBs using 45
o
 Miura folding 

were examined. As shown in Figure 2.9, under folding and unfolding, the output voltage 

remained steady at 2.65 V (same as the highest voltage shown in Figure 2.7 for the fully 

charged LIB), even up to 1,340% linear deformability with respect to its completely 

compressed state. 

 

Figure 2.9. Photograph of linear deformation (i.e., folding and unfolding) of an origami 

LIB while it was connected to a voltmeter. 

Electrochemical impedance spectroscopy (EIS) studies were performed during the 

first discharge cycle before and after the mechanical deformation and no significant 

changes in the impedance were found before and after mechanical deformation (Figures 

2.10(a) and 2.10(b)). The EIS studies were performed by applying a small perturbation 

voltage of 5 mV in the frequency range of 0.1 Hz to 100 kHz during the first discharge 

cycle before and after mechanical deformation, using a Gamry Echem Analyst. The 

analysis of the impedance spectra was conducted using equivalent circuit software 

provided by the manufacturer. 
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    (a) 

 

      (b) 

Figure 2.10. EIS analysis during the first discharge cycle before and after the mechanical 

deformation (completely compressed followed by bending and twisting). EIS studies 

were performed by applying a small perturbation voltage of 5 mV in the frequency range 
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of 0.1 Hz to 100 kHz. Typical impedance spectrum with high-to-middle frequency range 

semicircle and a relative straight line representing the low frequency range for both 

curves were observed. There are not significant changes in the impedance before and 

after mechanical deformation. (a) Nyquist plot shows that the surface resistance after 

mechanical deformation slightly increases, which may be due to the presence of tiny 

cracks and thickness change of solid electrolyte interface (SEI) layer. (b) The slope of the 

straight line in low frequency domain (Warburg resistance) in the EIS spectra 

corresponds to solid state Li-ion diffusion in the active electrodes (e.g., LTO and LCO). 

It is found that Li-ion diffusion does not show significant change before and after 

mechanical deformation. 

The linear deformability                is defined by using the dimensions marked 

in Figures 2.6(a) and 2.6(b) as,               
  

     

  
 for the x-direction, and 

              
 

 
     

  
 for the y-direction.    and    are the dimensions for the completely 

compressed state (Figure 2.8), and    and    are the dimensions for the unfolded states, 

with the extreme case being the planar state shown in Figure 2.6(a). In other words, the 

deformability is defined for the unfolded states using the completely compressed state as 

the reference. This definition allows for the quantification of the extreme capacity for 

deformation in Miura folding, namely from the completely compressed state to the planar 

state through unfolding, and vice versa, from the planar state to completely compressed 

state through folding. Using the measured dimensions shown in Figures 2.6(a) and 2.6(b), 

the origami LIB with 45
o
 Miura folding demonstrated up to 1,340% linear deformability 

in the x-direction going from the completely compressed state to the planar state. The 

areal deformability        can be correspondingly defined as        
         

    
, and was 

found to reach 1,670%. These levels of linear and areal deformability significantly 

surpass those previously reported in stretchable interconnects, devices, supercapacitors 

and batteries. 
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Figure 2.11 shows the maximum output power of the origami battery as a function 

of linear deformability,               
  

     

  
, under different cycles of linear 

deformation. 

 

Figure 2.11. Maximum output power of the origami LIB as a function of linear 

deformability over 50 cycles of folding and unfolding. 

Here the internal resistance of the battery was about 79Ω. Up to a linear 

deformability               
  of 1,340% and over 50 linear deformation cycles, the output 

power was quite stable and showed no noticeable decay. The maximum output power of 

the fully charged battery was calculated using 
 

 

 

  
, where V is the open circuit voltage 

and    is the internal resistance as a function of system-level mechanical strain and cycles 

of mechanical loading. When the origami battery was subjected to different mechanical 

loading, values of voltage were measured using a voltmeter. This stable performance is 

attributed to good bonding quality between the electrodes and CNT-coated paper current 
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collectors, the unchanged electrical resistance of the CNT-coated paper current collectors 

upon linear deformation, and vanishing deformation at the parallelogram faces for rigid 

origami. The output power of 17.5 mW is sufficient to operate commercial light-emitting 

diode (LED). As shown in the supporting information (Figures 2.12(a)-(c)), LEDs driven 

by this LIB do not show noticeable dimming upon cyclic linear deformation, even for a 

higher deformation rate (~ 0.2 ms
-1

). 

 

(a) 
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(b) 

 

(c) 

Figure 2.12. An origami LIB using 45
o
 Miura folding is lighting up a LED while (a) 

linear deformation with over 1,300% strain, (b) twisting, and (c) bending. 
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Figure 2.13 shows the optical photograph of the same origami battery subjected to 

torsion after tension. It is clear that the origami battery using 45
o
 Miura folding can bear 

large torsion of up to 10.8
o
cm-1 twisting angle without degradation of the output voltage. 

 

Figure 2.13. Twisting an origami LIB while it was connected with a voltmeter. 

Fig. 2.14 shows the maximum output power of the battery as a function of 

twisting angle for various twisting cycles in which a similar stability to that for tension 

was repeatedly observed.  
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Figure 2.14. Maximum output power of the origami battery using 45
o
 Miura folding as a 

function of twisting angle for various twisting cycles. 
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It is relevant to note that for a rigid origami, there are (n−3) degrees of freedom 

with n as the number of edges at one vertex (51, 52), which gives only one degree of 

freedom for the Miura pattern (n =4). Therefore, an ideally rigid Miura folded device can 

only bear linear deformation, and torsion will cause strain on those parallelogram faces. 

Finite element analysis (FEA) was conducted by using a recently developed approach and 

the strain contour is shown in Figure 2.15 for 10
o
 per unit cell twisting angle, where the 

size of a unit cell is the shortest length of one parallelogram face. It is clear that the strain 

for most of the area was vanishingly small with strain levels on the order of 0.001%. 

 

Figure 2.15. Finite element results of the strain contour of a 45
o
 Miura pattern subjected 

to twisting with twisting angle of 90
o
 per unit cell. 

After tension and torsion, the same device was subjected to bending, as shown in 

Figure 2.16. Similar mechanical robustness was observed as for tension and torsion: the 

origami battery could be wrapped around an index finger (with bending radius of about 

0.83 cm) without a large change in the output voltage. 
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Figure 2.16. Bending an origami LIB while it was connected with a voltmeter. 

Figure 2.17 shows the maximum output power versus bending radius under 

different bending cycles and the power stability was repeatedly observed. Bending is 

similar to twisting as it causes strain on the parallelogram faces. 

 

Figure 2.17. Maximum output power of the origami battery using 45
o
 Miura folding as a 

function of bending radius for various bending cycles. 

Figure 2.18 shows the strain contour of a bent Miura folding pattern with bending 

radius of 2 unit cells, showing that the strain was again quite small - on the order of 0.1%. 
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Figure 2.18. Finite element results of the strain contour of a 45
o
 Miura pattern subjected 

to bending with bending radius of 2 unit cell. 

In additional to the 45
o
 Miura folding pattern that can achieve significant linear 

deformability and bear tension, torsion and bending, a Miura folding pattern with 90
o
 

angle (lower right panel of Fig. 1) was also utilized. This folding can be completely 

collapsed in biaxial directions and thus can reach very high areal deformability. As 

shown in the supporting information (Figure 2.19), for a 90
o
 Miura pattern with 5×5 

parallelogram faces, the areal deformability        can be as high as 1,600%, which can 

be further increased using a denser Miura pattern, such as 10×10 pattern. It is thus 

believed that this approach can achieve unprecedented areal deformability compared to 

all other fabrication methods, to the best of our knowledge.  
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Figure 2.19. An origami battery using 90
o
 Miura folding subjected to folding and 

unfolding and connected to a voltmeter.  

2.2.3 Comparison of Origami LIBs with LIBs Using Conventional Active Materials 

and Current Collectors 

The superior deformability of origami LIBs is mainly due to two mechanisms, 

namely the use of rigid origami that can achieve deformability through folding and 

unfolding at creases and does not strain the rigid faces, and the use of CNT-coated paper 

current collectors that survive at the creases and form good adhesive between electrodes. 

Figures 2.20(a)–(d) show the optical and SEM images of the lithiated LTO and LCO 

active layers, respectively, in the regions of a crease, after the cyclic electrochemical 

characterization and mechanical loads (linear deformation, twisting, and bending up to 

more than 100 times) were performed. Although there were some voids and cracks 

observed, particularly in the lithiated LTO films at the paper current collector, there was 

no noticeable delamination from the CNT-coated current collectors as compared with 

those before lithiation as shown in Figures 2.4 and 2.5. This behavior could be explained 

by the interconnected fabric-like and porous structure of the CNT-coated paper current 

 

Linear deformability=100% 200% 800% 

1,000% 

1,600% 

100% 200% 800% 
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collectors (as shown in Figures 2.2(a) and (b)) providing a continuous network for 

electron transport and significantly enhancing the bonding to the anode and cathode 

active material layers. To verify this hypothesis, we utilized conventional electrodes and 

current collectors (i.e., graphite on Cu foil for the anode and LCO on Al foil for the 

cathode) to assemble a LIB cell followed by 45
o
 Miura folding. Here the same multilayer 

stacking structures as shown in Figure 2.1 were used to fabricate the origami LIBs using 

the conventional materials, where the aluminized PE (Sigma-Aldrich) was the packaging 

material; Cu and Al as the anode and cathode current collectors, respectively; graphite 

and LCO as anode and cathode electrodes, respectively, polypropylene (Celgard 2500) as 

separator, and 1 M LiPF6 in EC:DMC:DEC (4:2:4) as electrolyte. Anode slurries were 

prepared by mixing the graphite (Fisher Scientific), carbon black (Super 

C45) ,Carboxymethyl cellulose (Fisher Scientific), Styrene Butadiene Rubber (Fisher 

Scientific) and DI water with a ratio of 76:2:1:2:160 by weight. Then the slurry was 

uniformly coated on Cu with 20 μm in thickness (CF-T8G-UN, Pred Materials 

International, Inc.), and then dried on a hot plate at 120 
o
C for 5 hours. Cathode slurries 

were prepared by mixing the LCO, PVDF (MTI Corp.), Carbon black (Super C45) and 

N-Methyl-2-pyrrolidone solvent (CreoSalus) with a ratio of 18:1:1:20 by weight. Then 

the slurry was uniformly coated on Al with 10 μm in thickness (Reynolds Wrap), and 

then dried on a hot plate at 120 
o
C for 5 hours. A mass ratio for graphite:LCO was around 

2:0. Then the anode and cathode electrodes were subject to press to make condensed 

electrodes. Then the same packaging process as discussed in the main text was used. 
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(a)                                                                (b) 

        

(c)                                                                (d) 

       

(e)                                                                (f) 
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(g)                                                                (h) 

Figure 2.20. Comparison of paper based origami LIBs with conventional materials based 

LIBs. For an origami LIB using CNT-coated paper current collectors, after cyclic 

electrochemical charge and discharge, as well as many cycles of mechanical loads, (a) 

optical and (b) SEM of LTO electrodes in the region of a crease as indicated by the 

magenta dashed lines; (c) optical and (d) SEM images of LCO electrodes in the region of 

a crease as indicated by the magenta dashed lines. (b) and (d) show the entire region of 

the crease. For an origami LIB using conventional collectors (Cu and Al), after one 

electrochemical charge and without mechanical loads, (e) optical and (f) SEM images of 

graphite electrodes on Cu current collector in a region of crease as indicated by the 

magenta dashed lines; (g) optical and (h) SEM images of LCO electrodes on Al current 

collector in a region of crease as indicated by the magenta dashed lines. (f) and (h) show 

the entire region of the crease. Scale bars in a, c, e and g are 2 mm. Scale bars in b, d, f 

and h are 100 μm. 

The assembled LIB cell using conventional materials had a similar thickness (360 

μm) as the origami LIBs and the detailed processes are provided in the supporting 

information. Figures 2.21(a)–(d) show optical images of the graphite and LCO electrodes 

before and after folding.  



  34 

      

(a)                                                (b) 

      

(c)                                                (d) 

Figure 2.21. Optical images of graphite electrodes (a) prior to and (b) after folding, 

before change. Optical images of LCO electrodes (c) prior to and (d) after folding, before 

charge. Scale bars in a, b, c and d are 2 mm. 

It is apparent that some active materials were lost from the conventional current 

collectors, even before charging. Figures 2.20(e)–(h) show the optical and SEM images 

of the lithiated graphite and LCO, respectively, in the regions of a crease after the first 

charge and without mechanical loading. It is now apparent that more electrode materials 

have been lost, which indicates insufficient thin film bonding at the creases. Figure 2.22 

shows that the energy capacity of the origami battery using conventional materials 

decayed about 10% after 100 cycles of linear deformation, in contrast to the steady 
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capacity observations for the origami LIBs using CNT-coated paper current collectors. 

Therefore, good conductivity and strong bonding after cyclic folding and unfolding are 

two key attributes for origami LIBs. 
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Figure 2.22. Capacity of an origami battery using 45
o
 Miura folding and conventional 

active materials and current collectors.  

2.3 Discussion 

The origami design concept enables LIBs with unprecedented mechanical 

deformability including folding, unfolding, twisting and bending. The use of CNT-coated 

paper as current collectors provides stable electrochemical characteristics under cyclic 

mechanical deformations. The fabrication process for origami LIB cells, including slurry 

mixing, coating and packaging, is completely compatible with mainstream industrial 

processing. At a high level, the strategy of fusing the art of origami with materials 

science, and energy storage devices provides a dramatically alternative approach for 
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powering deformable (including, flexible, foldable, stretchable and curvilinear) 

electronics ranging from displays, sensors, solar cells and antenna. 
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CHAPTER 3 

KIRIGAMI BASED STRETCHABLE LITHIUM ION BATTERIES 

3.1 Background 

Energy storage devices, such as supercapacitors and LIBs that are able to sustain 

large strains (much greater than 1%) under complex deformations (for instance, bending, 

tension/compression, and torsion) are indispensable components for flexible, stretchable 

electronics, and recently emerging wearable electronics, such as flexible displays (29-31, 

53), stretchable circuits (32), hemispherical electronic eyes (33), and epidermal 

electronics (34). Various approaches have been employed to achieve flexible and 

stretchable energy storage devices, such as thin film based bendable supercapacitors (35-

38) and batteries (37, 39-43), buckling-based stretchable supercapacitors (45, 46), and 

island-serpentine-based stretchable LIBs (48). Recently, an origami-based approach was 

adopted to develop highly foldable LIBs, where standard LIBs were produced followed 

by designated origami folding (54). The folding endows the origami LIB with a high 

level of foldability by changing the LIB from a planar state to a folded state. However, 

the previously developed origami-based foldable devices (54, 55)have two disadvantages. 

First, their foldability is limited from the folded state to the planar state. Although it can 

be tuned by different folding patterns, the same constraint is still prescribed by the planar 

state. Second, the folded state involves uneven surfaces, which introduces inconvenience 

when integrating with planar systems, though this issue can be somewhat circumvented. 

The approach introduced here combines folding and cutting, by the name of kirigami, to 

define patterns that form an even surface after stretching and the stretchability is not 

limited by the planar state. The folding and cutting lead to high level of stretchability 
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through a new mechanism, ‘plastic rolling’, which has not yet been discovered and 

utilized in the stretchable electronics/systems. The LIBs were produced by the standard 

slurry coating (using graphite as an anode and LiCoO2 as a cathode) and packaging 

procedure, followed by a designated folding and cutting procedure to achieve a particular 

kirigami pattern. Over 150% stretchability has been achieved and the produced kirigami 

LIBs have demonstrated the ability to power a Samsung Gear 2 smart watch, which 

shows the potential applications of this approach. The kirigami-based methodology can 

be readily expanded to other applications to develop highly stretchable devices and thus 

deeply and broadly impact the field of stretchable and wearable electronics. 

3.2 Experiment and Results 

3.2.1 Battery Design Using Kirigami Patterns 

Three kirigami patterns are utilized, as illustrated in Figure 3.1, with (a) a zigzag-

cut pattern, (b) a cut-N-twist pattern, and (c) a cut-N-shear pattern. The zigzag-cut pattern 

(Figure 3.1(a)) represents one of the most commonly seen kirigami patterns and is 

produced by cutting a folded stack of foil asymmetrically between the neighboring 

creases, which creates zigzag-liked cuttings in the longitudinal direction. The zigzag 

pattern can be stretched beyond its length in the planar state, which is the advantage of 

kirigami. To accommodate stretching, the out-of-plane deformation (or equivalently, 

buckling) occurs at the vicinity of cuts. The level of stretchability depends on the length 

of the cut and is a function of buckling amplitude. To eliminate the out-of-plane 

deformation, one of the advantages of kirigami compared with the origami pattern, the 

cut-N-twist pattern (Figure 3.1(b)) is utilized, in which a folded stack of foil is 

symmetrically cut at all creases, and then unfolded to a planar state, followed by twisting 
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at the two ends. The twisted structure is shown in the bottom panel of Figure 3.1(b) and 

analogous to a twisted telephone cord. This pattern represents a locked structure in the 

sense that the out-of-plane deformation, induced by stretching, is constrained and rotation 

occurs at the cuts to accommodate stretching. The packing density of cut-N-twist pattern 

is defined by the width of each face. To increase the packing density, the cut-N-shear 

pattern (Figure 3.1(c)) is introduced, where folding is employed after symmetric cutting 

and then the folded structure is subjected to shear, thus the packing density doubles 

compared with that for the cut-N-twist pattern. The stretching is also achieved by the 

rotations of the cuts and no out-of-plane deformation is involved. 

 

                                  (a)                                        (b)                               (c) 

Figure 3.1. Illustrations of three kirigami patterns. (a) A zigzag-cut pattern, where the 

out-of-plane deformation occurs to accommodate stretching. (b) A cut-N-twist pattern, 

where the rotation is involved to accommodate stretching and no out-of-plane 

deformation. (c) A cut-N-shear pattern, where the packing density doubles compared 

with that of the cut-N-twist pattern. Rotation is involved to accommodate stretching and 

no out-of-plane deformation.  

Now we demonstrate kirigami LIBs, specifically the LIBs using cut-N-twist here 

and cut-N-shear and zigzag-cut patterns in the Supporting Information. Conventional 
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materials and approaches of LIBs preparation were used, with graphite (Fisher Scientific 

Inc.) and LCO (MTI Corp.) as the anode and cathode active materials, respectively. 

Conventional slurries of these active materials were prepared and used to coat the current 

collectors, where Cu and Al served as the anode and cathode current collectors, 

respectively. The Cu and Al current collectors were first cut to the three patterns (Figure 

3.1) based on the specific geometries as provided in the Figure 3.2, followed by slurry 

coating.  

 

(a) 

 

 

(b) 

 

(c) 

Figure 3.2. Geometries of the three kirigami batteries. (a) Zigzag-cut pattern, (b) cut-N-

twist pattern, and (c) cut-N-shear pattern. The dashed line shows a battery cell. 

battery cell 

battery cell 



  41 

To prepare packaging, polypropylene (Celgard 2500) as separator and aluminized 

PE (Sigma-Aldrich) as packaging materials were also cut using the same kirigami pattern; 

thus all the layers of a LIB have the same pattern. Then these layers were perfectly 

laminated in the order of packaging material, cathode electrode, separator, anode 

electrode, and packaging material, and delivered to an Argon-filled glovebox for 

packaging. The impulse sealer was used to seal the sides of the each cell (Fig. 12) except 

one side for the electrolyte (1 M LiPF6 in EC:DMC:DEC (1:1:1), MTI Corp.) injection, 

followed by sealing the last side of the battery cell. The key to achieve excellent 

packaging is that the cutting of all layers of a battery cell must be uniform and the 

alignment must be perfect. We have designed a customized puncher for cutting. The 

cutting quality can be significantly improved by using laser cutting in the future. 

3.2.2 Electrochemical and Mechanical Characteristics 

Figures 3.3-3.11 show electrochemical and mechanical characterization results for 

LIBs using cut-N-twist pattern. 

Using the most compact state (Figure 3.3(a)) as the reference, Figure 3.3(b), 

displaying the LIB at its most stretched state, shows that the stretchability of a kirigami 

LIB is over 100%. It should be noted that there is no significant change on the thickness 

of this LIB between the most compact state (h = 1.31 mm) and at the most stretched state 

(h = 1.07 mm). 
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(a) 

    

(b) 

Figure 3.3. (a) Photograph of a LIB at its most compact state. (b) Photograph of a LIB at 

its most stretched state.   

Figure 3.4 shows the electrochemical cycling results of a kirigami LIB at its most 

compact state (for the 1st to 5th cycles), followed by that at its most stretched state (for 

the 6th to 10th cycles), then that at its most compact state again (for the 11th to 15th 

cycles), and then that at its most stretched state again (for the 16th to 20th cycles), and 

finally that at its most stretched state (for the 21st to 100th cycles) under C/3 

charge/discharge rate.  Well-defined plateaus at around 3.7V are observed along with 

fairly stable charge/discharge behaviors under compact and stretched states.  
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 The present mass loading (see caption of Figure 3.4) gives this kirigami LIB 30 

mAh energy capacity. 
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Figure 3.4. Galvanostatic charge and discharge at the most compact state (1st to 5th 

cycles), the most stretched state (6th to 10th cycles), the most compact state again (11th 

to 15th cycles), and the most stretched state again (16th to 20th cycles) under C/3 

charge/discharge rate. The mass loading of LCO (specific capacity 145 mAh g-1) and 

graphite (specific capacity 372 mAh g-1) were 95 mg and 255 mg, respectively, which 

gave LIB the capacity of 30 mAh.   

Figure 3.5 shows reasonable cyclic stability of the LIBs up to 100 cycles with 

over 85% capacity retention and 99.8% Coulombic efficiency. It should be emphasized 

that this result represents the stability of this kirigami LIB at mixed states, i.e., both 

compact and stretched states. 
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Figure 3.5. Energy capacity (left axis, black) and Coulombic efficiency (right axis, red) 

as a function of cycle number for C/3 charge/discharge rate. The mass accounts for all the 

materials involved in a cell, which is 1.49 g.   

Figure 3.6 shows the rate performance of this kirigami battery when the 

charge/discharge rate varied in the sequence of C/3, C/2, C and C/3 again at both 

compact and stretched state. When discharge rates increase, as expected, the capacity 

decreases from 29.3 mAh for C/3 rate to 26.5 mAh for C/2 rate, and 21.4 mAh for 

discharge rate C. However, the capacity recovered to the 27.6 mAh when the discharge 

rate resumed to C/3 after 30 cycles charge/discharge at the both compact the stretched 

state under varies C-rates, which indicates great rate performance of this kirigami battery. 
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Figure 3.6. Rate performance when the charge/discharge rates varied from C/3, C/2, to C, 

and C/3 again for both compact and stretched states. 

Figure 3.7 provides the results for EIS studies during the first discharge cycle at 

the most compact state before stretching and stretched state after 100 cycles of 

mechanical stretching. No significant changes in the impedance were found.  
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Figure 3.7. EIS analysis during the first discharge cycle at the most compact state before 

stretching and stretched state after 100 stretching cycles. EIS studies were performed by 

applying a small perturbation voltage of 5 mV in the frequency range of 0.1 Hz to 100 

kHz. Typical impedance spectrum, with high-to-middle frequency range flat curve and a 

relative straight line representing the low frequency range, was observed. No obvious 

semicircle was observed because of the low internal resistant. There are not significant 

changes in the impedance before and after mechanical deformation.   

The mechanical characteristics of the fully charged kirigami LIB using cut-N-

twist are then examined. As shown in Figure 3.8, at different stretchability, the output 

voltage remained steady at 3.83 V. 

 

Figure 3.8. Photograph of stretching a kirigami LIB while it was connected to a voltmeter.  
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Figure 3.9 shows the maximum output power of the kirigami LIB as a function of 

stretchability,          , under different cycles of stretching. Here the internal resistance of 

the battery was measured to be about 1.8Ω. Over 1,000 stretching cycles and a 

stretchability          of up to 90%, it is found that the output power is stable and shows 

no noticeable decay. The maximum output power is 4.1 W and is sufficient to operate 

commercial LEDs. As shown in the Supporting Information, LEDs driven by this 

kirigami LIB do not show noticeable dimming upon cyclic stretching for a few hours. 
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Figure 3.9. Maximum output power of the kirigami LIB as a function of stretchability 

over 1,000 cycles of stretches. 

Figures 3.10(a) and 3.10(b) show the SEM images for the anode current collectors 

(e.g., Cu foil) at the cuts before charging, and after discharge and 100 cycles of 

mechanical deformation. 
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(a)                                                     (b) 

Figure 3.10. (a) SEM of anode current collector Cu at the cut before charge. (b) SEM of 

anode current collector Cu at the cut after discharge and 100 cycles of stretching.   

The similar SEM images are given for the cathode current collectors (e.g., Al foils) 

in Figures 3.11(a) and 3.11(b). There are no cracks after cyclic mechanical stretching, 

which contribute to the robust electrochemical and mechanical characterizations.  

 
(a)                                                     (b) 

Figure 3.11. (a) SEM of cathode current collector Al at the cut before charge. (b) SEM of 

cathode current collector Al at the cut after discharge and 100 cycles of stretching. 

3.2.3 Connecting Kirigami Battery with Samsung Gear 2 Smart Watch 

We demonstrated that the stretchable kirigami LIB is able to power a Samsung 

Gear 2 smart watch. The original LIB with energy capacity 300 mAh was removed from 

the Samsung Gear 2 and a kirigami LIB using cut-N-twist pattern was connected to the 

device. The same geometry as that in Fig. 13 was used. The mass loading for active 
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materials are 0.26 g for graphite, 0.65 g for LCO, which gives the energy capacity 80 

mAh. At the compact state, the kirigami LIB is 51.3 mm in length, 27 mm in width, and 

2.6 mm in thickness. The produced kirigami LIB was sewn between two elastic bands at 

its two ends and wrapped around the wrist, allowing the elastic bands to function as an 

elastic watch strap. By sewing the kirigami LIB to the elastic band at the two ends, the 

LIB can be stretched and contracted, driven by the elasticity of the band. Some snapshots 

are provided in Figure 3.12.  

 
                            (a)                                     (b)                                       (c) 

   
(d)                                           (e)                                               (f) 

Figure 3.12. Powering a Samsung Gear 2 smart watch by a kirigami LIB using cut-N-

twist pattern. The kirigami LIB sewn between two elastic bands was (a) at the wrist, (b) 

at the upper arm, (c) at the upper arm with elbow straightened, (d) at the upper arm with 

elbow bent. The kirigami LIB was removed from the elastic bands and stretched directly. 

(e) At the compact state and (f) at the stretched state. 

Figure 3.12(a) shows that when the elastic band and the kirigami LIB were at 

their most compact states, the Samsung Gear 2 was just turned on. Then, while the elastic 

band was stretched from the wrist to the upper arm, the Samsung Gear 2 was working 

normally (Figure 3.12(b)). It is estimated from the circumferences of the wrist and upper 

arm, the kirigami LIB was subjected to a strain of 30%, lower than its full stretchability.  
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While the elbow bent (Figure 3.12(c)) and straightened (Figure 3.12(d)), the smart watch 

was able to maintain normal functionality, and even display a video. During bending and 

straightening of the elbow, the biceps introduced an additional 15% strain to the kirigami 

LIB. Finally, the kirigami LIB was removed from the elastic bands and stretched directly 

while powering the smart watch (Figures 3.12(e) and 3.12(f)). 

To further evaluate the performance of the kirigami battery, standby and calling 

tests of the smart watch powered by the kirigami battery were carried out. For a fully 

charged kirigami battery with 80 mAh capacity that was connected with a Samsung Gear 

2 smart watch, the standby time was measured to be 24.5 hours. When the smart watch 

was paired with a Samsung Galaxy S5 cell phone with a Bluetooth connection when they 

were separated by 30 cm, the smart watch was able to make calls through the Bluetooth 

connection. The calling time was measured to be 90 minutes. To simulate the standby and 

calling tests, quantitative discharge characterizations were also conducted by applying the 

corresponding constant discharge currents for standby (2.9 mA) and calling (48 mA) 

using an Arbin electrochemical workstation. The stopping voltage of the smart watch was 

measured to be 3.6 V. Details of the measurement of the discharge currents and stopping 

voltage are shown in Figure 3.13(a) for the simulated standby test, the calling time (when 

the voltage drops to the stopping voltage 3.6 V) is 25.8 hours, which is consistent with 

the direct test. 
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(b) 

Figure 3.13. (a) Galvanostatic discharge to simulate the standby test with discharge 

current 2.9 mA. (b) Galvanostatic discharge to simulate the calling test with discharge 

current 48 mA. The stopping voltage is 3.6 V. 
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For the simulated calling test (Figure 3.13(b)), the calling time is 90 minutes, 

which perfectly matches the direct test. It should be noticed that the discharge currents 

for standby and calling are relatively low C-rate for the present kirigami battery with 80 

mAh capacity, specifically discharge current for standby 2.9 mA ≈ C/30 and that for 

calling 48 mA ≈ C/2. Given the stable rate performance as shown in Figure 3.5 (though 

for a kirigami battery with different capacity), a stable cyclic charge/discharge 

performance can be expected. These experiments demonstrate the promises of using a 

kirigami LIB to replace present rigid and bulky batteries and to power a commercial 

smart watch, which has been a bottle-neck in developing compact wearable devices. It is 

worth mentioning that if the kirigami LIB is scaled up to cover the entire area of the 

elastic band (25 cm in length, 3 cm in width) with a battery thickness of 0.3 cm, the 

energy capacity is about 700 mAh, which significantly exceeds the current LIB used in 

most smart watches, and the energy density is about 160 Wh/Kg, which is comparable to 

the current LIB used in smart watches or smart phones. By using the space of watch strap 

instead of using the limited space of watch body, the kirigami battery may disruptively 

impact the field of wearable electronics by offering extra physical and functional design 

space. Furthermore, to test the compatibility of the Kirigami battery integrated with real 

watchband, a Cut-N-Twist battery was embedded in a watchband made of Sorta-Clear 40 

(Smooth-On, Inc.).  

3.2.4 Thermal test of Kirigami battery and Samsung Gear 2 battery 

The Kirigami battery is thin film based. It is has much higher surface-to-volume 

ratio than bulky battery, which is beneficial for heat radiation. The thermal test of 

Kirigami battery and Samsung Gear 2 bulky battery were conducted. In the test both 
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batteries discharged at 48mA for one hour. Obvious temperature rise was observed for 

the Gear 2 bulky battery, while the Kirigami battery was consistent with the ambient 

temperature during the discharge period. 

3.3 Discussion 

The demonstration of stretchable kirigami LIBs in a Samsung smart watch only 

represents one application of this type of stretchable energy sources that fully utilize the 

mainstream manufacturing capability. Other applications may include smart bracelets and 

smart headbands among many others. It is expected that the kirigami LIBs are able to 

resolve one of the bottlenecks in the development of wearable devices by providing a 

scalable solution for a stretchable energy source to profoundly change the form factor. 

The methodology involved in kirigami-based approach, i.e., competing mechanisms 

between ‘crack growth’ and ‘plastic rolling’ also provide a much broader spectrum of 

employing the concept of kirigami to other fields, such as in microelectromechanical 

systems (MEMS) where robust interconnects can be placed at the cut/fold locations and 

the functional devices are fabricated on the rigid faces, which leads to stretchable devices 

using standardized procedures. These areas appear promising for further research.  
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CHAPTER 4 

MICROSCALE SILICON ORIGAMI 

4.1 Background 

Chapter 2 and chapter 3 introduce two macro level applications of origami and 

kirigami, namely stretchable lithium ion batteries. In micro regimes, one particularly 

interesting application of origami is to form complicated 3D architectures from 2D sheets, 

which paves a way to fabricate complex 3D patterns in micro level that are otherwise 

impossible. The applications of 3D architectures span from many disciplines. There are 

3D MEMS, artificial biological systems (56, 57), metrology (58), and energy storages 

(59). Some strategies have been developed to fabricate microscale 3D structures, such as 

self-assembly (60) and residual stress-induced bending (61) that are limited to choices of 

materials. A recent compressive buckling (62) approach is capable to fabricate 3D 

ribbon-liked structures. The intrinsic geometrical feature of origami, i.e., high aspect ratio 

between the out-of-plane dimension of the origami (vertical distance from the ‘mountain’ 

vertex to the ‘valley’ vertex) and thickness of 2D sheets, which is typical much greater 

than 100, makes the widely-used fabrication approaches, such as photolithography and 

3D printing., incapable for microscale origami. 

Here we demonstrate a new strategy to fabricate microscale origami using Si NMs 

as the materials that are supported by elevated PDMS walls on top of a PDMS substrate. 

Thus the Si NMs are suspended. Upon relaxation of the pre-stretch applied on the PDMS 

substrates, the suspended Si NMs buckle with the pre-patterned wall as the support and 

constraints to form designated microscale Si origami. The final microscale origami 

patterns are controlled by the patterning of the elevated wall. 
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4.2 Introduction of micro Transfer Printing  

Micro-Transfer-Printing (μTP) is one of the essential processes to meet the goal 

of making silicon origamis. The (μTP) process, which was invented by Professor John 

Rogers at the University of Illinois, Urbana-Champaign (63, 64), utilizes engineered 

elastomer stamps to selectively pick-up and print large arrays of microscale devices onto 

non-native substrates. In its simplest process, (μTP) is analogous to using a rubber stamp 

to transfer liquid-based inks from an ink-pad onto paper. However, in (μTP) the ‘inks’ are 

actually a diversity of material classes with a wide range of geometries and confi 

gurations having functional integration into the precise architectures required by devices 

and the ‘paper’ can be many things, including plastics and other semiconductors.  

In transfer printing-based fabrication schemes, almost any class of material can be 

developed in the form of an ink from complex molecular scale materials nanotubes and 

grapheme (65-68), photoresists (69), (self-assembled monolayers (SAMs) (70-72), DNA 

(73-75) and functional polymers, (76-78) etc.), to high performance hard materials 

(metals (79-82), oxide thin films (83, 84), single-crystalline inorganic semiconductors (63, 

85-88), complementary metal oxide semiconductor (CMOS) circuits (89-91), etc.), to 

fully integrated device structures (solar cells (92, 93), thin film transistors (TFTs) (63, 64, 

91, 94, 95), sensing arrays(33, 96), LEDs, (97, 98) etc.). 

Transfer printing process can be classified into three distinct categories as shown 

in Figure 4.1: additive transfer, subtractive transfer, and deterministic assembly. Additive 

transfer, shown in Figure 4.1(a) is an effective method for processing many types of 

organic and inorganic materials (99-108). Transfer occurs between a receiving substrate 
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and an entire ink layer, or selected parts of it, which have been deposited on the surface 

of a stamp. 

 

Figure 4.1. Schematic illustrations of three basic modes for transfer printing. (a) Additive 

transfer. (b) Subtractive transfer. (c) Deterministic assembly. 
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Figure 4.1(b) shows the second method, named subtractive transfer. It utilizes a 

stamp to selectively pick up regions of a blanket film and use ink structures on stamp 

and/or donor substrate. Figure 4.1(c) shows deterministic assembly which is a 

combination of additive transfer and subtractive tranfer. Ink structure is first prepared on 

a donor substrate, followed by selectively being picked up by a stamp. Then the stamp 

with ink structure is contacted with receivers and delivers ink onto it.  

At the heart of these three method is how to selectively tune the adhesion between 

the elastomer stamp and the donor or receiver by varying the speed of the print-head (64).  

Gstamp/ink = G0[1+φ(v)]                                                  (1)  

Where Gstamp/ink is the adhesion energy hysteresis taken as the separation energy, 

or the energy release rate between stamp and ink structures. v is the separation speed 

between stamp and ink structures. φ is an increasing function of v and φ(v)=0 when v=0. 

G0 is the initial energy release rate when v=0. 

Separation energy Gstamp/ink depends strongly on the speed of separation speed v 

owing to the viscous behavior of stamps. Conversely, the separation energy between ink 

structure and donor or receiver Gink/substrate is typically independent of rate. As the speed of 

separation speed v increase, Gstamp/ink increases relative to Gink/substrate until the stamp-ink 

interface becomes strong enough to break the ink-substrate interface. 

 When the stamp is moved quickly away from a bonded interface, the adhesion is 

large enough to ‘pick’ the ink structures away from their native substrates, and 

conversely, when the stamp is moved slowly away from a bonded interface the adhesion 

is low enough to ‘let go’ or ‘print’ the element onto a foreign surface. 
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In this dissertation, we utilized the second transfer method, subtractive transfer to 

make silicone origamis. To futher increase bonding between stamp (PDMS) and ink 

structure (Si NMs), PDMS is pretreated under UV/ozone (UVO) light to form a thin SiOx 

layer, such that strong –O-Si-O- bonding occurs with the native oxide of the Si NMs (109) 

The chemistry upon PDMS exposure to UV radiation at 185 and 254 nm in air 

atmosphere has been proposed as below (110). 

 

4.3 Experiment and Results 

4.3.1 Fabrication of Silicon Origami 

The methodology is illustrated in Figure 4.2. Silicon mold was made by a single 

side bare silicon wafer (500um in thickness), which was patterned with origami patterns 

by deep Silicon Etching (STS ICP Advanced Silicon Etch, 75minutes, 200um in depth) 

following photolithography (EVG 620, 400mJ/cm2,) using photoresist (AZ 4330), The 

photoresist was then removed with acetone and a thin layer of release agent 

1H,1H,2H,2H-perfluorooctyltrichlorosilane was vapor coated on top of the silicon. 

PDMS (Sylgard 184, Dow Corning) solution (mixed base and curing agent with 10:1 

ratio by weight) was then poured into the mold and cure at 80
o
C for 3 hours. PDMS was 
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peeled and cut into desire shape ca. 20mm wide, 15mm long, followed by biaxial or 

uniaxial pre-stretch (from L to       and       along the perpendicular directions), 

which can be achieved by mechanical means or heating. The characteristic sizes of the 

elevated walls are on the order of 10   120μm. The pre-stretched PDMS is subjected to 

ultraviolet/ozone treatment in order to form activated hydroxyl groups for bonding as 

mentioned before. Because the PDMS walls are elevated, they thus provide selective 

bonding sites. Then a Si NM is prepared by patterning The top thin silicon layer (300nm 

in thickness) of a Si-on-insulator (SOI) wafer to form membranes ca. 7mm wide, 8 mm 

long with hole-arrays inside (8um in diameter for each hole) by reactive ion etching 

(Oxford Plasmalab80 RIE Fluorine; SF6, 100 W, 1 minute) following photolithography 

(EVG 620, 300mJ/cm2,) using photoresist (AZ 4330). Removing the photoresist with 

acetone and then etching the sacrifice SiO2 layer with hydrofluoric acid (49%, 50 

minutes) releases the membranes from the underlying Si substrate. Then Si NMs is 

derived from the SOI wafer and brought to contact with the patterned PDMS. Specifically, 

the elevated PDMS walls provide supports to Si NM and thus Si NM is suspended. 

Because of the surface treatment, condensation reactions occur at room temperature 

between the elevated PDMS walls and the native oxide surfaces of Si NMs (111-113). Si 

NMs then can be exfoliated from the SOI wafer and adhere to the elevated PDMS walls. 

Once the pre-stretch exceeds a certain critical level, relaxation of the pre-stretch buckles 

suspended Si NMs and forms origami patterns. The buckling is the result of releasing the 

membrane energy through the out-of-plane deformation via mainly bending and 

sometime twisting. The resulted origami patterns are defined by two factors: (1) the shape 

of the pre-patterned, elevated walls, and (2) the nature of pre-stretch (i.e., biaxial with 
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different pre-stretches in two directions vs. equi-biaxial pre-stretch). The first factor 

determines the type of the origami and later fine tunes the patterns. 
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Figure 4.2. Schematic illustration of using elevated PDMS walls to suspend Si NM and 

releasing the pre-stretch to generate designated microscale origami patterns. Here the 

elevated PDMS walls have been pre-patterned for the Miura-ori pattern. 

4.3.2 Studies of Silicon with Different Patterns 

As a specific example using the pre-patterned walls with shapes illustrated in 

Figure 4.2, a Miura-ori pattern (49) can be obtained. Figure 4.3 shows a photography of a 

Si NM Miura-ori pattern generated using this approach, where the thickness of the Si NM 

is 300 nm and the equi-biaxial pre-strain is 3.6% introduced by heating the PDMS from 

room temperature to 120
o
C. 

 

Figure 4.3. A photography of a Si NM Miura-ori pattern. The inset shows a paper-based 

Miura-ori pattern for comparison. 

The detailed geometry of the pre-patterned PDMS wall is given in Figures A1(a) 

and A1(b).  

It is apparent that in a 12.5mm × 10.9 mm area this Si NM Miura-ori pattern 

replicates the paper-based Miura-ori, given by the inset of Figure 4.3. The observable 
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difference is that the sharp ‘mountain’ creases in paper-based Miura-ori are replaced by 

the flat PDMS walls in the Si NM Miura-ori, because the downwards out-of-plane 

buckling occurs and the elevated PDMS walls actually form as ‘mountain’ supports for 

the Si NMs. The ‘valley’ creases are not as sharp as paper-based pattern because of the 

buckling. It is emphasized here that using this origami inspired methodology, a planar 

structure is transferred to a 3D architecture across an entirely continuum film, rather than 

discretized ribbons (62). Figures 4.4(a) and 4.4(b) show the SEMs of the Si NM Miura-

ori patterns, where the well-defined periodicity is clearly observed. 

 

(a) 
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(b) 

Figure 4.4. (a) SEM image shows periodic Si NM Miura-ori pattern in an overall 1 mm × 

1 mm area. (b) A SEM image shows the details of the Si NM Miura-ori pattern. 

The measured width of the PDMS wall is about 117.02 μm (shown within red 

arrows in Figures 4.4(a) and 4.4(b), which is larger than the pre-designed 111.8 μm 

(Figure A1(b)) due to partial delamination at the wall. Figure 4.5 provides a cross-

sectional view near the elevated PDMS walls using an integrated focused ion beam (FIB) 

and an SEM system, where the partial delamination is observed at the vertices of the 

elevated PDMS walls. The partial delamination may release the stress concentration at 

the wall. 
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(a) 

 

(b) 

Figure 4.5. SEM images near the elevated PDMS walls. Triangular dash lines in (a) 

indicate creases and in ractangular dash lines is the delamination region and has been 

zoomed in in (b). 

Figures 4.6(a) and 4.6(b) provide the optical profilometer images of the Si NM 

Miura-ori pattern. It is observed that the Si NM has apparent deformation at the vertices 
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of the elevated wall (marked by the red triangle) in Figure 4.6(a), which suggests a 

localized and possibly large strain presents. 

 

(a) 

 

(b) 

Figure 4.6. (a) A optical profilometer image shows the Si NM Miura-ori pattern. The line 

cut measurement was performed. (b) A optical profilometer image shows the details of 

the Si NM Miura-ori pattern. 
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Figures 4.7(a), 4.7(b) and 4.7(c) show the line-cut with comparison between the 

experiments, FEA results, and analytical expression of rigorous Miura-pattern. Use n to 

denote the number of creases at one vertex and n=4 for Miura-ori. For ideally rigid 

origami (e.g., Miura-ori) where all facets are rigid and only the creases deform during 

folding, it is known that there are n-3 degrees of freedoms (51, 52); thus Miura-ori has 

only one degree of freedom. The closed loop solution can be obtained and detailed. It is 

observed that the generated Si NM origami agrees reasonably well with both the 

analytical and FEA results. The major discrepancies occur at the ‘mountain’ vertices 

since the analytical solution and FEA results are based on zero size of creases while the 

experiments have finite size of the elevated PDMS walls.  

 

(a) 
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(b) 

 

(c) 

Figure 4.7. Line cut comparisons between the experiment, FEA, and analytical solution. 

The inset shows an image of optical profilometer, in which the line cut profile was 

measured in experiment. The measured directions are: (a) ‘mountain’-‘valley’-‘mountain’ 

cut along y-direction, (b) along the mid-point of ‘mountain’ creases, and (c) ‘mountain’-

‘valley’-‘mountain’ cut along x-direction. 
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Wide range and more complicated Si NM origami patterns can be realized, with 

the inspiration from the paper-based origami. The logic is to vary the shape of the 

elevated PDMS walls. As there are significant variations of paper-based origami, the first 

extension from Figure 4.3 is an origami pattern with three (3) degrees of freedoms. 

Figure 4.8 shows a photography of a Si NM origami with waterbomb pattern, or the 

nickname ‘magic ball’ pattern, through the relaxation of 3.6% pre-strain via thermal 

expansion of the PDMS. 

 

Figure 4.8. A photography of a Si NM ‘magic ball’ pattern. The inset shows a paper-

based Miura-ori pattern for comparison. 

The detailed shape and geometry of the elevated PDMS walls to form this pattern 

are given in the Figures A2(a) and A2(b). 

Great similarity is observed when compared with the paper-based ‘magic ball’ 

pattern (inset of Figure 4.8). However, a discrepancy is also noticed and in fact related to 
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the methodology of generating microscale origami using elevated PDMS walls. For ideal 

‘magic ball’ pattern (as detailed in the supporting information), the ‘mountain’ creases 

always form a curved geometry and cannot stay flat unless at the completed collapsed 

state, which is different from the Si NM origami (Figure 4.8) where the ‘mountain’ 

creases (i.e., elevated PDMS walls) are on the flat state. The reason is that Si NM is not 

ideal rigid and facets are allowed to deform. 

Figures 4.9(a) and 4.9(b) further show the SEM and optical profilometer of Si 

NM ‘magic ball’ patterns. This example suggests that the methodology is able to mimic 

paper-based origami with complicated shapes and further modify them by utilizing the 

deformability of Si NMs. 

 

(a) 
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(b) 

Figure 4.9. A SEM image shows Si NM ‘magic ball’ pattern in an overall 13.9 mm × 

15.2 mm area. (d) A optical profilometer image shows the Si NM ‘magic ball’ pattern. 

Figures 4.10(a) and 4.10(b) provide more Si NM origami patterns that cannot be 

rigidly folded using paper but can be achieved using the present methodology. 

 

(a) 
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(b) 

Figure 4.10. (a) A photography of a Si NM non-rigidly foldable pattern. (b) A optical 

profilometer image shows the Si NM non-rigidly foldable pattern. 

Figure 4.10(a) presents the photography of a non-rigidly foldable pattern using 

staggered PDMS walls given in Figures A3(a) and A3(b). 

To be rigid foldable, at all vertices, the difference between numbers of ‘mountain’ 

and ‘valley’ creases must be 2 or 0. As seen from Figure 4.10(a), this condition is not 

satisfied at neither vertices; thus it is not rigid foldable. To generate this pattern, Si NMs 

have to be geometrically compatible at the facets through bending, which can be clearly 

observed in Figure 4.10(b) (optical profilometer). Very sharp creases are observed. 

Related to this pattern that it is not rigid foldable at all vertices, some patterns are rigid 

foldable at the unit cell level but are not at the assembled level, such as the star pattern 

shown in Figures 4.11(a) – 4.11(c). 
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(a) 

 

(b) 
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(c) 

Figure 4.11. (a) A photography of a Si NM star pattern. (b) A SEM image shows Si NM 

star foldable pattern. (c) A optical profilometer image shows the Si NM star pattern. 

The shape and geometry of the PDMS walls for star patern are given in Figures 

A4(a) and A4(b).  

In this pattern, the unit cell is a star, which is rigid foldable. However, when two 

stars are assembled, their boundaries are not rigid foldable. Composite and non-periodic 

patterns can be generated by combing multiply patterns, such as the mimicked US Flag 

shown in Figures 4.12(a) - 4.12(c) consisting of stars and stripes. 
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(a) 

 

(b) 
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(c) 

Figure 4.12. (a) A photography of a Si NM US Flag pattern. (b) A SEM image shows Si 

NM US Flag pattern. (c) A optical profilometer image shows the Si NM US Flag pattern. 

The shape and geometry of the PDMS walls for US flag patern are given in 

Figures A5(a) and A5(b). 

4.4 Discussion 

Control over the geometrical configuration of semiconductor nanostructures is 

important for nearly all applications. In this chapter, a mechanical strategy for creating 

3D origami silicons that would be difficult to generate in other ways is reported. This 

approach involves transfer printing Si NMs on pre-stretched, elevated PDMS walls, 

following by releaing the pre-strain to achieve 3D origamis. One big challenge of this 

approach is that pattern of PDMS wall needs to be carefully designed to minimize the 

strain at vertex where highest strain tends to occur. 
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CHAPTER 5 

CONCLUSIONS AND OUTLOOK 

5.1 Summary 

In summary, history, classification and theory of origami and kirigami are studied 

in the first chapter of this dissertation. Applications of origami and kirigami are then 

demonstrated in followed chapters.  

In chapter 2, an approach to enable origami LIBs with the attributes of extreme 

mechanical deformability was reported, including significant system-level linear and 

areal deformability large twistability and bendability, and up to 74% areal coverage. 

Furthermore, commercially standard packaging technologies were used in the origami 

LIBs, which when combined with other deformable electronic devices, may lead to direct 

practical applications. 

In chapter 3, the LIBs were produced by the standard slurry coating (using 

graphite as an anode and LiCoO2 as a cathode) and packaging procedure, followed by a 

designated folding and cutting procedure to achieve a particular kirigami pattern. Over 

150% stretchability has been achieved and the produced kirigami LIBs have 

demonstrated the ability to power a Samsung Gear 2 smart watch, which shows the 

potential applications of this approach. The kirigami-based methodology can be readily 

expanded to other applications to develop highly stretchable devices and thus deeply and 

broadly impact the field of stretchable and wearable electronics. 

In chapter 4, 3D silicon origami structures was created by tranfer printing Si NMs 

onto pre-stretched PDMS wall followed by releasing the prestrain to form origami 

structures. PDMS walls were created by exposing under UVO light to increase bonding 
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with Si NMs. Several origami structures such as Miura-ori, magic ball, star and US flag 

structures were achieved. 

5.2 Future work 

The strategy described here represents the fusion of the art of origami, kirigami, 

materials science, and functional energy storage devices, and could provide a paradigm 

shift for architecture and design of flexible and curvilinear electronics with exceptional 

mechanical characteristics and functionalities. 

This critical feature of the present work could well benefit the general field of 

flexible and stretchable, electronics from a manufacturability perspective. To utilize this 

origami and kirigami battery concept in realistic applications with high level of 

deformability, at least two approaches can be considered. The first approach would be to 

build a functional system that includes energy harvesting devices (e.g., solar cells), 

energy storage devices (e.g., lithium-ion batteries) and a functional device (e.g., a display) 

in the same origami platform to enable equivalent deformability to each component in the 

system. The second approach would be to build a standalone lithium-ion battery by 

encapsulating the origami or kirigami battery with highly deformable elastomers to 

provide a flat device that could then be integrated with other functional devices leading to 

a fully deformable system. It is therefore expected that this technology can be applied to 

various deformable systems.  

Because of the microscale characteristics of the origami architectures and the 

continuum feature of the NMs, the microscale origami may lead to multiple 

breakthroughs, such as in electromagnetics. Other potential applications include 

microscale grating, thermal invisible device, and low observable (stealth) structures.   
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APPENDIX A 

PATTERNS OF PDMS WALLS DESIGNED BY AUTOCAD 
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(a) 

 

(b) 

Figure A1. Geometry of the pre-patterned PDMS wall with Miura-ori pattern. (a) Overall 

dimension. (b) Detailed dimension. 
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(a) 

 

(b) 

Figure A2. Geometry of the pre-patterned PDMS wall with magic ball pattern. (a) 

Overall dimension. (b) Detailed dimension. 
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(a) 

 

(b) 
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Figure A3. Geometry of the pre-patterned PDMS wall with non-rigidly foldable pattern. 

(a) Overall dimension. (b) Detailed dimension. 

 

(a) 
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(b) 

Figure A4. Geometry of the pre-patterned PDMS wall with star pattern. (a) Overall 

dimension. (b) Detailed dimension. 
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(a) 

 

(b) 

Figure A5. Geometry of the pre-patterned PDMS wall with US flag pattern. (a) Overall 

dimension. (b) Detailed dimension. 

 


