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ABSTRACT

Isolation-by-distance is a specific type of spatial genetic structure that arises when parent-

offspring dispersal is limited. Many natural populations exhibit localized dispersal, and as a result,

individuals that are geographically near each other will tend to have greater genetic similarity than in-

dividuals that are further apart. It is important to identify isolation-by-distance because it can impact

the statistical analysis of population samples and it can help us better understand evolutionary dy-

namics. For this dissertation I investigated several aspects of isolation-by-distance. First, I looked at

how the shape of the dispersal distribution affects the observed pattern of isolation-by-distance. If, as

theory predicts, the shape of the distribution has little effect, then it would be more practical to model

isolation-by-distance using a simple dispersal distribution rather than replicating the complexities of

more realistic distributions. Therefore, I developed an efficient algorithm to simulate dispersal based

on a simple triangular distribution, and using a simulation, I confirmed that the pattern of isolation-

by-distance was similar to other more realistic distributions. Second, I developed a Bayesian method

to quantify isolation-by-distance using genetic data by estimatingWright’s neighborhood size parame-

ter. I analyzed the performance of thismethod using simulated data and amicrosatellite data set from

two populations of Maritime pine, and I found that the neighborhood size estimates had good cover-

age and low error. Finally, one of the major consequences of isolation-by-distance is an increase in

inbreeding. Plants are often particularly susceptible to inbreeding, and as a result, they have evolved

many inbreeding avoidance mechanisms. Using a simulation, I determined which mechanisms are

more successful at preventing inbreeding associated with isolation-by-distance.
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Chapter 1

INTRODUCTION

Spatial genetic structure (SGS) is observedwhen there is a non-uniformdistribution of allele types

across space. Typically, these alleles are positively autocorrelated such that individuals that are close

together are more likely to share a similar allele than individuals that are further apart. This autocor-

relation manifests in large patches of genetic similarity in the population.

Spatial genetic structure can be a consequence of many physical, geographical, ecological, or be-

havioral factors but the most common and inherent cause of SGS is isolation-by-distance (Epperson,

2003). Isolation-by-distance describes the SGS caused by limited parent-offspring dispersal and was

first introduced by Sewall Wright in 1943. In nature, the offspring of many species tend to disperse

only a short distance from their birth site before mating (Caine et al., 2000; Howe and Smallwood,

1982; Kot et al., 1996), and consequently, the mating pool will contain an excess of related partners.

After a number of generations of local mating and local dispersal, a stationary pattern of isolation-by-

distance will become established. The degree of isolation is a function of the genotype-independent

dispersal ability of the individuals that make up the population. Patterns of isolation-by-distance can

be observed at different spatial scales such as within a continuous population or between different

subpopulations (Epperson, 2003; Rousset, 2004); the former will be the main focus of this disserta-

tion.

Tests for isolation-by-distance are routine in molecular ecology studies and a positive result

should be used to inform downstream data analysis (Meirmans, 2012). Statistical tests often rely on

the assumption that individuals have been sampled randomly and independently from a panmictic

population. The presence of isolation-by-distance violates this assumption causing a reduction in the

effective sample size and biased estimates of population parameters when appropriate steps are not

taken to handle the correlation. When population analyses do not account for isolation-by-distance,

such patterns can easily be conflated with other environmental or evolutionary processes (Meirmans,
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2012). When used properly, however, the pattern of isolation-by-distance for neutral genetic loci can

serve as a null hypothesis from which deviations can be more accurately detected and interpreted.

In addition to the practical statistical reasons, the study of isolation-by-distance is important be-

cause it influences many population and evolutionary processes. Novembre et al. (2008) published a

study which showed that the pattern of SGS in sampled Europeans corresponded closely with the ge-

ography of Europe and follows a pattern of isolation-by-distance. The study of isolation-by-distance

in human populations allowed Novembre et al. (2008) to correctly identify the origin of 90% of Eu-

ropean individuals. Such information can be applied to tests of genetic ancestry and can serve as

a null geographical distribution of neutral variation from which important deviations (e.g. selection

or region specific disease alleles) can be detected. Ecologists and conservation biologists are inter-

ested in isolation-by-distance because it can influence local adaptation, population differentiation

and responses to habitat fragmentation (Zhao et al., 2013; Leonardi et al., 2012; Andrew et al., 2012).

Isolation-by-distance also facilitates inbreeding which will be covered in more detail in Chapter 4.

Isolation-by-distance is often analyzed in two ways. It can be described qualitatively using a cor-

relogram which shows the genetic relationship between individuals over geographical distance. If

isolation-by-distance is present, pairs of individuals that are close together in space will show sig-

nificantly higher genetic similarity than individuals that are further apart. Isolation-by-distance can

also be quantified using Wright’s (1943; 1946) neighborhood size, Nb. Neighborhood size describes

the effective number of individuals in the local vicinity from which parents can be drawn at random

(Rousset, 1997; Wright, 1943). Neighborhood size generally increases as dispersal distances increase.

For this dissertation I will explore several different aspects of isolation-by-distance. In the first

chapter I will look at how the shape of the dispersal kernel affects the pattern of isolation-by-distance

using a spatially-explicit lattice-based simulation. My goal was to verify well established analytical re-

sults that suggest that the pattern of isolation-by-distance depends mostly on the neighborhood size.

To do this, I simulated dispersal using distributions that were parameterized to have to same neigh-

borhood size and analyzed the resulting pattern of isolation-by-distance. I also present an algorithm

for efficiently simulating dispersal using the triangular distribution which produces a uniform distri-

bution over the neighborhood area. I argue that triangular dispersal is more in line with the idea of
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neighborhood size representing a local panmictic unit. These results were published in Furstenau and

Cartwright (2016).

In the second chapter I present a method I developed for the estimation of neighborhood size.

This is the first method developed to estimate neighborhood size using a Bayesian approach. In this

chapter I analyze the performance of this method on data generated from the model, data from a

lattice based simulation and data from two populations of Pinus pinaster Aiton. I look at how well the

method performs when different assumptions are violated and I determine which sampling schemes

provide better estimates.

In the third chapter I examine bi-parental inbreeding which is one of the consequences of

isolation-by-distance. Many plant species have evolved self-incompatibility (SI) systems to avoid

self-fertilization and genetic forms of SI have been particularly successful across the angiosperms.

In addition to preventing self-fertilization, it is often assumed that the success of genetic SI species

is a result of their ability to reduce bi-parental inbreeding. To test this assumption, I developed a

spatially-explicit individual based simulation to model populations of self-incompatible plants under

isolation-by-distance and analyze the amount of inbreeding in the populations compared to a non-

genetic form of SI.
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Chapter 2

THE EFFECT OF THE DISPERSAL KERNEL ON ISOLATION-BY-DISTANCE IN CONTINUOUS

POPULATIONS

Abstract

Under models of isolation-by-distance, population structure is determined by the probability of

identity-by-descent between pairs of genes according to the geographic distance between them. Well

established analytical results indicate that the relationship between geographical and genetic distance

depends mostly on the neighborhood size of the population which represents a standardized mea-

sure of gene flow. To test this prediction, I model local dispersal of haploid individuals on a two-

dimensional landscape using seven dispersal kernels: Rayleigh, exponential, half-normal, triangular,

gamma, Lomax and Pareto. When neighborhood size is held constant, the distributions produce sim-

ilar patterns of isolation-by-distance, confirming predictions. Considering this, I propose that the

triangular distribution is the appropriate null distribution for isolation-by-distance studies. Under

the triangular distribution, dispersal is uniform over the neighborhood area which suggests that the

common description of neighborhood size as a measure of a local panmictic population is valid for

popular families of dispersal distributions. I further show how to draw random variables from the

triangular distribution efficiently and argue that it should be utilized in other studies in which com-

putational efficiency is important.

Introduction

For many populations, individuals do not exist in discrete patches or demes; instead they are spread

across a continuous landscape. Although there are no barriers separating individuals, dispersal dis-

tances are often limited, and individuals that are near one another tend to be more similar genetically

than individuals further apart. This phenomenon is known as isolation-by-distance and introduces

a spatial component that should be considered when studying population genetic processes. Unfor-
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tunately, incorporating multiple dimensions of space at fine scales into analytical models is often

analytically intractable (Epperson et al., 2010). Therefore, many researchers have turned to spatially-

explicit, individual-based computer simulations which offer amore flexible way to incorporate spatial

complexity into biologicalmodels (e.g. Barton et al., 2013; Cartwright, 2009; Epperson, 2003;Novem-

bre et al., 2008; Rousset, 2004; Slatkin, 1993).

A dispersal kernel describes the distribution of Euclidean distances between birth site and repro-

duction site. Ideally, when modeling dispersal, the dispersal distribution would be selected based on

howwell it fits the dispersal kernel estimated fromnatural populations. Classically, dispersal has been

modeled as a diffusion process with Gaussian displacement; however, the observed dispersal kernels

in many species tend to be more leptokurtic with a higher probability of short and long distance dis-

persal (Bateman, 1950). In plants, the shape of the dispersal kernel near the origin depends on the

mechanism of dispersal; for example, there may be a high peak near the origin for gravity or animal

dispersal whereas there may be a minimum near the origin for wind dispersal (Barluenga et al., 2011;

Clark et al., 2005).

The shape of the dispersal kernel impactsmany population processes including the rate of popula-

tion expansion (Clark et al., 2001; Kot et al., 1996), responses to environmental changes (Nathan et al.,

2011), local adaptation (Berdahl et al., 2015), speciation (Hoelzer et al., 2008), and the spatial distribu-

tion of genetic diversity (Bialozyt et al., 2006; Ibrahim et al., 1996). Fat-tailed dispersal kernels, with

a higher probability of long-distance dispersal, are a good fit to many empirical data sets (Bullock and

Clarke, 2000; Clark et al., 2005; Gonzàlez-Martìnez et al., 2006; Martìnez and Gonzàlez-Taboada,

2009; Klein et al., 2006). Many studies have shown that population models behave differently when

fat-tailed dispersal distributions are used instead of Gaussian dispersal. Kot et al. (1996) demon-

strated that population spread is sensitive to the shape of the dispersal kernel and models using a

normal distribution underestimated the rate of invasion compared to fat-tailed distributions. Nathan

et al. (2011) found that long distance dispersal plays a large role during range shifts of wind-dispersed

trees in response to projected climate changes. Houtan et al. (2007) showed that heavy tailed disper-

sal kernels were a better fit for dispersal of Amazonian birds but the shape of the dispersal kernel can

change in response to forest fragmentation.
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While the shape of the dispersal kernel impacts many population processes at different scales, it

remains unclear how it affects patterns of isolation-by-distance within a continuous population. It

has been argued that the number of long-distance dispersal events will not have a noticeable effect

because new long-distance alleles are more likely to be lost due to drift than become established at

the new location (Epperson, 2007; Ibrahim et al., 1996). On the other hand, the shape of the dispersal

kernel near the origin may have a significant impact on the overall rate of migration. In plants, this

could result in a higher probability of self-fertilization and/or a reduction in the number of successful

offspring when there is density dependent regulation (Barluenga et al., 2011; Howe et al., 1985;Moyle,

2006).

Isolation-by-distance theory predicts that the probability of identity-by-descent between two neu-

tral genes will decrease as the geographic distance between them increases and this pattern can help

quantify spatial genetic structure. The analytical model developed by Malécot (1969) depends on the

effective population density, the mutation rate, the spatial dimensions of the population, and the dis-

persal distribution. Much of the isolation-by-distance work has focused on the lattice model which

forces a constant population density (Malécot, 1969; Maruyama, 1970; Sawyer, 1977) but these re-

sults holdwhen considering continuously distributed populationswith spatial clustering (Barton et al.,

2013).

In two dimensions, the relationship between the probability of identity-by-descent and the log of

distance is linear over a certain range of distances and the relationship is proportional to 1/(Deσ
2)

where De is the effective population density and 2σ2 is the mean squared distance of dispersal (i.e.

non-central second moment of Euclidean distance; Barton et al., 2013; Malécot, 1969; Rousset, 1997,

2004; Wright, 1946). Over this range, the slope of the probability of identity-by-descent function is

independent of most aspects of the dispersal distribution except for 2σ2; however, when the distance

between individuals falls below the range, the shape of the dispersal distribution becomes important

(Rousset, 1997). This suggests that as long as 2σ2 stays constant, any dispersal distribution will pro-

duce similar patterns of isolation-by-distance. However, Rousset (1997, 2008a) argues that the mag-

nitude of genetic differentiation will always depend on the shape of the distribution. Rousset (1997)

numerically evaluated the correlation of the probability of identity-by-descent between pairs of genes
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a certain distance apart relative to the probability of identity-by-descent between two genes within an

individual using different discrete dispersal models. While the slope of the relationship over the log

of distance for two-dimensional space depends only on 2σ2, the y-intercept is determined by more

complicated features of the dispersal distribution. The numerical analysis was considered for a lattice

model of discrete demes, however the theory extends to latticemodels of continuous populations with

one individual per lattice node (Rousset, 2000).

Despite the increase in the use of spatially explicit simulations in studies of spatial genetic struc-

ture, it remains unclear whether the shape of the dispersal kernel should be considered. There has

not been a clear comparison of how the shape of different dispersal kernels affect observable pat-

terns of isolation-by-distance in these simulations. Here I attempt to offer such a comparison using

a spatially-explicit, individual-based model to simulate local dispersal in a continuous population to

determine if patterns of isolation-by-distance vary based on the shape of several different dispersal

distributions: Rayleigh, half-normal, exponential, triangular, gamma, Lomax, and Pareto. Each dis-

persal distribution has a different shape, but they can be parameterized such that their non-central

second moment is 2σ2. If the simulations reveal a similar pattern of isolation-by-distance across all

dispersal distributions, I can conclude that, for a wide range of dispersal distributions, 2σ2 is themain

determining factor of how genetic similarity declines with increasing distance in a continuous popu-

lation. Consequently, when designing isolation-by-distance simulations, researchers may choose a

dispersal distribution based on computational needs instead of biological fit.

Wright (1946) uses the term “neighborhood” to describe a local population from which parents

are randomly drawn. Hemeasures the magnitude of the effective size of the neighborhood,Nb, as the

inverse of the probability that two gametes at the same location came from the same parent. Assuming

dispersal is normally distributed along each axis, he calculated thatNb = 4πσ2De, whereDe is the

effective density of individuals, and 2σ2 is the mean squared distance of dispersal. — In his model

this captures 86.5% of parents of central individuals. —AlthoughWright assumedGaussian dispersal,

his formula can be used to calculateNb for many different dispersal models at equilibrium due to the

central-limit theorem. Nb is important because it helps define the rate of decay of genetic similarity
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over spatial distance, i.e. the amount of isolation-by-distance in a population (Barton et al., 2013;

Rousset, 1997, 2000).

If a neighborhood is supposed to represent a local panmictic unit, then in the ideal model par-

ents should be chosen uniformly from within a circle of radius 2σ centered on an offspring, and the

Euclidean distance between parents and offspring should follow a triangular distribution: f(r;σ) =

r/(2σ2), where 2σ2 is again the non-central second moment. This type of neighborhood is similar

to the neighborhood defined in the spatially continuous Fleming-Voit disc model in which a number

of parents, v, are chosen uniformly at random from a disc with radius r to replace a fraction u of the

population (Barton et al., 2013). In this model, neighborhood size is defined by the ratio v/u and

the individuals occupying the disc constitute a panmictic population. If 100% of the population is re-

placed (u = 1), the definition of neighborhood size reduces to the number of individuals competing

for the central location.

Below, I demonstrate that patterns of isolation-by-distance in continuous populations at equilib-

rium are similar for different dispersal kernels with the same second moment, and discuss the use of

the triangular distribution to model dispersal in a continuous population.

Methods

Simulation

In my individual-based simulation, a population exists on a 100× 100 rectangular lattice (cf. Epper-

son, 1995; Epperson and Li, 1997; Epperson, 2007; Hardy and Vekemans, 1999). Individuals are uni-

formly spaced with a single individual per cell. Each individual contains one haploid locus. The initial

population of 10,000 individuals each carry a unique allele. Generations are discrete, and individuals

reproduce by generating a fixed number of clonal offspring that experience mutations according to

the infinite alleles model at rate µ. All starting and mutant alleles are selectively neutral.

The offspring disperse from the parent cell following a given dispersal distribution and when off-

spring disperse off of the lattice they are lost. Offspring that land in the same cell will compete to

become a parent in the next generation. Because all alleles are selectively neutral, a single successful
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offspring is uniformly selected for each cell. To avoid storing all the offspring in memory until disper-

sal is completed, I use a reservoir sampling method to immediately accept or reject offspring when

they land on a cell (Vitter, 1985). This method allows us to keep track of two randomly chosen off-

spring per cell. The first offspring becomes a parent in the next generation and the second individual

is recorded tomeasure the probability of identity-by-descent for offspring competing for the same cell.

In the simulation, it is possible for some cells to remain empty after dispersal; however, I determined

that when each parent generates 15 offspring, the number of empty cells per generation is negligible.

Therefore, the results presented here are from simulations where individuals produce 15 offspring,

and I assume a constant homogeneous population density. Simulations with larger numbers of off-

spring produce similar results, but I did not test any simulations where the number of offspring varied

for different individuals.

Modeling Dispersal

The simulation is spatially-explicit with space represented on a rectangular lattice. Due to the discrete

nature of the lattice, the dispersal kernels will be discretized approximations of continuous distribu-

tions (Chesson and Lee, 2005; Chipperfield et al., 2011). The dispersal kernel function, f(r, θ;σ),

takes a parameter σ and returns continuous polar coordinates. The σ parameter is the square

root of one-half the second moment of dispersal distance. The polar coordinates include the angle,

θ ∈ [0, 2π], which is uniformly distributed to ensure isotropic dispersal, and distance, r > 0, which

is drawn from a continuous distribution.

Once the angle and distance are drawn, the final position is determined by converting the polar

coordinates into rectangular coordinates and adding them to the parent’s position. The new coordi-

nates are then rounded to determine the integer coordinates of the destination cell. This dispersal

scheme is similar to the centroid-to-area approximation of continuous dispersal kernels described by

Chipperfield et al. (2011), which showed minimal deviation from expectations especially when cell

length is less than the expected value of the dispersal distance distribution.

I looked at sevendifferent dispersal distance kernels (Table 1): Rayleigh, exponential, half-normal,
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triangular, gamma, Pareto, and Lomax. I chose these distributions because they provide a range of

shapes for short, intermediate, and long distance dispersal.

The Rayleigh is a distribution of Euclidean distances that result from bivariate normal displace-

ment along the x and y axis. The Rayleigh distribution follows the assumptions of Wright (1946)’s

two-dimensional isolation-by-distance model.

The exponential distribution ismore leptokurtic with a higher probability of dispersal at short and

long distances, and a lower probability at intermediate distances. The exponential tail is the boundary

that separates truly heavy-tailed distributions with potentially infinite higher moments from distribu-

tions with all moments finite. The distinction is important because leptokurtic, heavy-tailed dispersal

kernels are typically a better fit to observed dispersal in nature (Clark, 1998).

The half-normal distribution is equivalent to a normal distribution that has been folded over the

y-axis. In this case, Euclidean distance is simply the absolute value of normally distributed random

variables. The half-normal is a monotonically decreasing distribution with a convex shoulder near

zero. This distribution has a higher probability of dispersal at intermediate distances compared to

the exponential.

The triangular distribution is typically defined using three points: a lower limit, a, an upper limit,

b, and a mode, c. Here I use a special case of the triangular distribution where a = 0 and b = c = 2σ.

I chose this special case of the triangular distribution because in my dispersal function it will return

polar coordinates that are uniformly sampled from within a circle with area 4πσ2, which is the same

as the neighborhood area (See proof in Appendix A). The triangular distribution is also the only one

of my distributions that has a finite range, r ∈ [0, 2σ].

Unlike the previous single parameter distributions, the final three distributions have an additional

α shape parameter. The gammadistribution is equivalent to the exponential distributionwhenα = 1,

and as α increases the distribution becomes more symmetrical with a higher probability for interme-

diate distances and a lower probability for short distances.

The Lomax and Pareto distributions are both heavy-tailed power-law distributions. The n-th mo-

ments are finite only when α > n. The support for the Pareto distribution, r ∈ [xmin,+∞), begins

at a parameter xmin > 0. The Lomax distribution is a Pareto distribution that has been shifted so
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that the support begins at zero. I chose values of α between 2 and 3 so that the second moment of the

distribution would be finite but higher moments are infinite.

The dispersal function is executed over 100-billion times per simulation, and thus it is impor-

tant to make the implementation as efficient as possible. With this aim, I used an xorshift algorithm

for uniform pseudo-random number generation and the ziggurat rejection sampling algorithm when

applicable (Marsaglia and Tsang, 2000b; Marsaglia, 2003). I used two different versions of the ziggu-

rat algorithm to draw distances from the exponential and half-normal distribution. For the gamma

distribution I used a rejection sampling method that uses the ziggurat algorithm to draw normal vari-

ates (Marsaglia and Tsang, 2000a). Random variables from the Pareto distribution are generated by

xmine
U where U is an exponentially distributed random variable that is drawn using the ziggurat al-

gorithm. The Lomax distribution is sampled the same way as the Pareto distribution but it is shifted

by−xmin.

In addition to generating random distances, the dispersal function requires costly conversions

from polar to Cartesian coordinates. I was able to avoid this conversion for the Rayleigh and triangu-

lar distributions. I simulated the Rayleigh distribution by drawing vertical offsets from independent

normal distributions using the ziggurat algorithm. For the triangular distribution, I developed a dis-

crete sampling algorithm using the Alias method that allows the vertical and horizontal offsets to be

drawn simultaneously in constant time (Vose, 1991). See Appendix A for a description of the algo-

rithm.

To compare the run time for the different dispersal functions, I simulated one dispersal event

from each cell on a 100 × 100 landscape 100,000 times for a total of 109 dispersal events. For each

simulation σ = 1, and α = 3 for the two parameter distributions. The CPU time was averaged over

5 different runs.

Analysis

A simulationwas run for each of the seven dispersal distributions under 4 levels of dispersal (σ = 1, 1.5,

2, and 4) with a mutation rate of µ = 10−4. Each simulation was run for a burn-in period of 10,000

generations to allow the population to reach a mutation-drift equilibrium. After the burn-in, data
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was collected from populations that were 1,000 generations apart to decrease the correlation between

them for a total of 2,000 replicate populations per simulation. In each population, a straight transect

of 50 individuals was sampled from the center of the landscape to avoid measuring edge effects.

From the transect, all possible pairs of individuals were placed into distance classes based on the

geographical distance between the pair. The number of pairs that shared an identical allele was deter-

mined and recorded as a proportion of the total number of pairs in the distance class. The probabilities

for each distance class were then averaged over all sampled populations. Under this sampling scheme,

the number of pairs per distance class decreases as distance increases so in distance class 50 there is

only one pair sampled per population.

The parameters for each dispersal distribution were calculated so that E[X2] = 2σ2; the calcu-

lations are reflected in the probability distribution functions in Table 1. Due to the discrete nature

of the lattice, some parameters values were adjusted slightly until the simulations produced an aver-

age, observed, squared distance between parent and offspring, s2, that was within 5% of the expected

value, σ2. Three of the distributions require a secondα parameter. For the gamma distribution I used

α = 1, 2, 4, and 8. For the Lomax and Pareto distributions I used α = 2.4, 2.6, 2.8, and 3.0, all of

which result in distributions that are infinite in the 3rd and higher moments.

Under isolation-by-distance, individuals geographically near one another will tend to be geneti-

cally similar, and this similarity will decrease as the distance between pairs of individuals increases.

Therefore, isolation-by-distance is described by constructing correlograms of genetic similarity be-

tween individuals versus the geographical distance between them. Genetic similarity can bemeasured

using identity-by-descent, identity-by-state, relatedness, conditional kinship, or F-coefficients and

can be based on coalescent times, an ancestral population, or the current population (Hardy andVeke-

mans, 1999; Hardy, 2003; Malécot, 1969; Rousset, 1997, 2002; Wang, 2014). For two-dimensional

populations, genetic similarity is often plotted against the log-distance separating pairs because the-

ory predicts that this relationship is approximately linear over a certain range (Barton et al., 2013;

Hardy and Vekemans, 1999; Rousset, 2000).

I recorded the probability of identity-by-descent for pairs of individuals in each distance class. Un-

der the infinite alleles model, pairs of individuals were considered identical-by-descent if they shared
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the same allele. The probability of identity-by-descent in each distance class depends on themutation

rate; the probability will be greater when there are fewer alleles. For more consistent results that are

nearly independent of mutation rate, the probability of identity is often calculated as a ratio that mea-

sures genetic similarity (or differentiation) relative to a particular reference group. I calculated the

kinship coefficient which measures the correlation of genetic similarity between pairs of individuals

a certain distance apart relative to the genetic similarity in the whole sample.

Fr =
pij − p̄

1− p̄
≈ E[T ]− Eij [T ]

E[T ]
(2.1)

Here pij is the probability of identity-by-descent between haploid individuals i and j at distance r

and p̄ is the probability of identity-by-descent between random haploid individuals in the current

sample (Hardy and Vekemans, 1999). The kinship coefficient is related to differences in the expected

coalescent times,T , between a specific pair of individuals and a randompair in the population (Barton

et al., 2013). Kinship coefficients were calculated for each transect and then averaged across transects

for each distance class. Since this statistic is highly dependent on the sampling scheme, I sampled the

same transect in all simulations.

I also calculated the ar parameter of Rousset (2000):

ar =
p0 − pij
1− p0

(2.2)

whichmeasures genetic differentiation over distance relative to the probability of identity-by-descent

within a location. Thear parameter is independent of sampling scheme, but it does dependon the level

of local identity-by-descent, p0, in the population such that ar approaches infinity as p0 approaches

one (Vekemans and Hardy, 2004). Typically, p0 is estimated from the amount of autozygosity in the

population; however, I estimated p0 as the probability that an individual shared an allele with one of

the offspring that it competed with for the cell, which is suitable for haploid organisms and better fits

its definition (Vekemans and Hardy, 2004).

For each simulation, I calculated the average number of unique alleles in a 50-individual transect

(k̄) and the average squared distance between parents and offspring (2s2). Using k̄, I estimated the
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population-level diversity, θ̂k (Ewens, 2004, eq. 9.32) and estimated effective haploid population size

as N̂e = θ̂k/2µ and effective density as D̂e = N̂e/A, whereA = 10, 000.

Finally, I estimated neighborhood size using two different methods. First I used the estimated

demographic parameters to calculate neighborhood size as the product N̂b = 4πs2D̂e. I calculated

an estimate from samples from each population and calculated an average over all populations. I

then estimated neighborhood size using the regressions of both Fr and ar on the log of distance. The

slope of the ar regression is an estimate of 1/2πσ2De and the slope of Fr regression is an estimate of

−(1 − F0)/2πσ
2De (Barton et al., 2013; Hardy and Vekemans, 1999; Rousset, 2000). I performed

the regression for distance classes between 5 and 35. I estimated the slope from each population

sample and then pooled the data from all the samples to get a combined slope estimate.

Results

Behavior of Dispersal Distributions

Figure 1 shows the empirical cumulative distributions generated from 10,000 simulated dispersal

events from each distribution. The probability of not dispersing from the original cell is indicated by

the height of the left-most horizontal line for each distribution. The more leptokurtic distributions

(exponential, gamma-1 and Lomax) with a high probability peak near zero have a much higher proba-

bility of not dispersing from the original cell, especially when σ is low. The Pareto distribution, which

has a fat tail but has been shifted so it does not have a peak at zero, has a very low probability of not

dispersing. Under the gamma distribution as the α parameter increases, the probability of remaining

at the origin decreases; when α = 8 the probability is nearly zero for all values of σ.

The average squared parent-offspring dispersal distance, s2, observed for each distribution was

very similar with a relative error of less than 5% from the expected σ2 value (Table 2); however, the

distribution of these values over sampled generations varied (Fig. 2A). Expectedly, the thin tailed

or no-tail (triangular) dispersal distributions have the smallest variance because their properties are

easier to represent with a small number of samples. The Lomax distribution has the highest variance

with the median falling slightly below the expected value.
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Figure 2B shows the distribution of the average cubed parent-offspring dispersal distances, s3,

for each transect. The theoretical third moment of the Lomax and Pareto distributions is infinite and

while it is not possible to simulate this on a finite landscape, I do observe values of s3 that are several

orders of magnitude larger than distributions with finite third moments. The distribution of s2 and

s3 for the Lomax and Pareto distributions both have a large positive skew.

Allelic Diversity

The distribution of the number of unique alleles is similar for most of the dispersal kernels with the

median falling near the expected value under the infinite alleles model (Fig. 3). The expected number

of alleles under the infinite alleles model (gray horizontal line) is equal to
∑n−1

i=0 θ/(θ + i) = 7.03

where n = 50 is the number of individuals in the sampled transect. The Lomax distributions have a

higher median number of alleles at lower values of σ but this gets closer to the expected value when

σ > 2. The average diversity is also slightly elevated for the exponential and gamma-1 simulations.

Differences in effective population size between simulations can be measured by comparing the

number of unique alleles observed in the transects. Different dispersal kernels produce similar levels

of diversity, except for the Lomax distributions which have a higher θk and consequently a larger

effective population size (Table 2).

Spatial Autocorrelation and Isolation-by-Distance

To describe the patterns of isolation-by-distance, I first measured the average probability of identity-

by-descent for each sampled population as a function of distance. When σ is small, the probability

of identity-by-descent between pairs of individuals is greater at small distance and decreases as the

distance between individuals increases; the strength of this relationship decreases as the dispersal pa-

rameter increases and it flattens out when σ = 4 (Fig. 4). The thin tailed dispersal kernels produced

very similar patterns of isolation-by-distance. This is also true for the Pareto dispersal kernels which

are fat tailed but are shifted so that the probability of not dispersing from the original cell is lower

compared to the Lomax dispersal kernels. For simulations run with the Lomax dispersal kernels, the

probability of identity-by-descent has a steeper decrease at short distances. Additionally, the overall
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pattern seen under the Lomax kernel is shifted lower than the other distributions and this is most

pronounced when dispersal is limited. This overall decrease in the probability of identity-by-descent

is associated with the increase in the number of unique alleles, k̄. Differences between the different

dispersal distributions are more apparent when the distance between individuals is small. The more

leptokurtic dispersal distributions have a steeper incline as distance decreases and they have a higher

probability of autozygosity at distance class zero. The plots for the triangular distribution nearly per-

fectly overlap the plots for the Rayleigh distribution in all cases.

Because the probability of identity-by-descent is sensitive to differences in the number of alleles

present in the sample, I also calculated the pairwise-kinship coefficient over the log of distance (Fig.

5). When the value of the kinship coefficient is greater than zero (horizontal gray dashed line), pairs

of individuals at that distance are more genetically similar than random pairs of individuals in the

sample as a whole, and when the kinship coefficient is less than zero, pairs of individuals are less

genetically similar than random pairs of individuals. The kinship coefficient is nearly independent of

differences in allele number and there is much better overlap of the plots for the different dispersal

distributions. When the kinship coefficient is plotted against the log of distance there is a negative

linear relationship over a certain range of distances (Hardy and Vekemans, 1999). For short distances,

the relationship does depend on the shape of the dispersal distribution; however, over the linear range,

the different distributions more closely overlap, especially when σ > 1.

Finally, I plotted Rousset (2000)’s ar parameter, a measure of genetic differentiation, against the

log of distance. Again, the relationship at small distances depends on the dispersal distribution but at

larger distances, there is a positive linear relationship between ar and the log of distance (Fig. 6). The

overall magnitude of the relationship is different for the different distributions and themore leptokur-

tic distributions typically show greater differentiation. The overall increase in genetic differentiation

with the log of distance (the slope) is fairly similar among the dispersal kernels for different values of

σ.
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Estimated Neighborhood Size

The N̂b(θk) estimates are shown in Table 2 and Figure 7A. Table 2 shows the average estimate over all

population samples. The colored dots in Figure 7A show this same average relative to the expected

values and the bars represent the middle 50% of the individual sample estimates. As mentioned pre-

viously, the populations with Lomax dispersal tend to have a greater number of unique alleles and

this translates to higher θ̂k, higher effective population size, and ultimately higher effective density.

The estimates for s2 were highly variable but skewed towards lower values. As a result, the estimates

of N̂b(θk) for the Lomax distribution appear to be higher on average but the estimates are skewed.

Otherwise, the estimates for the other dispersal distributions are similar and close to the expected

values.

Table 2 shows the N̂b(ar) estimates calculated as the twice the inverse of the regression of ar

and the log of distance for the pooled sample data. Estimates using the slope of the Fr statistics

were identical so they are not shown. The colored dots in Figure 7B show the slope estimate of the

combined data relative to the expected slope, and the bars represent the middle 50% of the slopes

from individual populations. All of the dispersal distributions have similar slopes. When σ = 4, the

actual spread of the slope values is smaller than the the spread of the slopes for the other values of σ

(not shown), but in Figure 7 the values are relative so the middle 50% is wider.

Relative Execution Time of Dispersal Functions

My implementation of the triangular distribution was the most efficient followed by the Rayleigh

which took about 26.8% longer on average (Table 3). The half-normal and the exponential functions

had similar execution times but took nearly 5 times longer than the triangular function. The gamma,

Pareto, and Lomax were the least efficient functions running over 5 times longer than the triangular

function.
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Discussion

Approximating continuous dispersal on a discrete lattice will introduce obvious biases when the dis-

persal distance is small compared to the scale of the lattice nodes (Chipperfield et al., 2011). This bias

can be seen in Fig. 1 by the jagged nature of the empirical cumulative distribution (ECDF) (especially

when σ is small) compared to the CDF of the continuous distribution. In the simulation, the distance

between nodes is one lattice unit so dispersal has to exceed at least a distance of 0.5 lattice units to

leave the original cell. For Lomax simulations with smallσ, the high probability density near zero falls

rapidly before a distance of 0.5 lattice units has been reached. This means that the majority of disper-

sal events do not leave the parent cell. The Pareto and Lomax distributions share a similar shape and

a wide tail, but unlike the Lomax distribution, the mode of the Pareto is greater than zero and almost

all dispersal events leave the original cell. I refer back to the differences between the Lomax and the

Pareto when I discuss whether I can differentiate results that are specific to dispersal with a high peak

at zero or are more general to wide-tailed dispersal.

Allelic diversity is near the expected value predicted by the infinite alleles model for most distribu-

tions. The Lomax distributions tend to have a higher number of alleles up untilσ = 4. This appears to

be in agreement with Maruyama (1972) which showed that the effective population size is larger than

the census size when σ < 1 which is the case in many of the Lomax simulations (Fig. 2). Because the

median allele number for the Pareto simulations falls near the expected value, it seems likely that the

higher allelic diversity in the Lomax simulations is due to the high probability of not dispersing. This

is supported by the fact that the average diversity is slightly higher for the exponential and gamma-1

as well. When dispersal is unlikely to occur outside of the original cell, the number of migrants is low

and the pool of offspring before competition will consist mostly of offspring from the same parent.

It is unlikely that migrants will become established at their new location after competition and thus

more alleles will be maintained.

Much of the theory of isolation-by-distance in continuous populations is based on infinite or pe-

riodic lattice models. Here I simulated dispersal in a continuous population occupying a finite lat-

tice with absorbing boundaries to better understand the effect of the dispersal kernel on isolation-by-
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distance models on a more natural landscape. As expected under isolation-by-distance, the proba-

bility of identity-by-descent between neutral alleles in pairs of individuals decreases as the distance

between them increases. When neighborhood size is small, the relationship is very pronounced with

a high initial probability that quickly declines. As neighborhood size increases (σ = 4), this relation-

ship nearly disappears. This is likely an affect of the size of the lattice, because on any finite landscape,

dispersal greater than a certain threshold will effectively lead to panmixia.

Simulations with the different dispersal kernels show a strikingly similar pattern of isolation-by-

distance. However, theory predicts that when distance is small, deviation in the shape of the dispersal

kernel relative to the Rayleigh distribution will become important (Rousset, 1997, 2000). This is evi-

dent in my results when I compare the probabilities of identity-by-descent at small distances between

the different dispersal kernels. When the dispersal kernel is leptokurtic, the probability is higher be-

tween individuals occupying the same location and there is a steeper decrease in identity at short

distances compared to the Rayleigh results. The pattern of identity-by-descent in the thin tailed dis-

tributions, including the triangular are nearly identical to the Rayleigh. The situation is similar for

the pairwise kinship except there is even greater similarity between the different dispersal kernels.

Rousset (2008a) makes it clear that the increase of genetic differentiation with distance is robust

to the shape of the dispersal kernel but the overall magnitude of differentiation will depend on the

shape of the kernel. Looking at the relationship between ar and the log of distance for the simula-

tions, I can see that the slope for each distribution is similar over larger distance values but the plots

are shifted up or down depending on kurtosis. The two fat tailed distributions, the Lomax and the

Pareto, have very different magnitudes with the Pareto being closer in magnitude to the thin tailed

distributions. This suggests that the magnitude of this relationship greatly depends on the amount

of dispersal at the origin. The ar statistic is a ratio that compares the amount genetic differentiation

between individuals at certain distance to the differentiation within a single individual. When the

probability of identity-by-descent within an individual is high, the differentiation between neighbors

will appearmuchhigher due to a steep initial drop in identity. As a result, thear statisticwill be greater

for leptokurtic distributions even if the actual probability of identity is similar to other distributions.

As expected, the neighborhood-size estimates are similar to the expected value for all simulations.
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Neighborhood size was slightly higher for the Lomax simulations when using allele diversity to esti-

mate effective density. Otherwise, the slopes of the regression methods were similar and thus pre-

dicted similar neighborhood sizes. This reconfirms that neighborhood size is a robust descriptor of

the decrease of genetic identity with distance. However, the actual pattern of isolation-by-distance at

close distances does depend on the shape of the dispersal distribution. Additionally, the pattern of

isolation-by-distance may depend on the size and scale of the landscape. The results shown here are

from simulations on the same sized landscape and the distributions are truncated at the landscape

edge. Therefore, it is possible that the pattern of isolation-by-distance, especially for the fat-tailed

distributions, will depend on the size and scale of the landscape.

The triangular distribution has not been considered as a reasonable distribution to use for model-

ing biological dispersal. However, as discussed previously, it arises from the simple assumption that

dispersal is locally panmictic, making it potentially useful. When I compared the triangular distribu-

tion against some of the more popular dispersal models, there was not a large difference between the

resulting patterns of isolation-by-distance.

The triangular dispersal model can serve as a null model for the probability that two lineages will

meet and coalesce in a previous generation. Identity-by-descent may be defined as the total proba-

bility of coalescence between the current generation, t0, and a generation at some time t in the past

(Rousset, 2002). When a population is not panmictic due to limited dispersal, the time to coalescence

depends on the probability that the two lineages will move close enough together so that there is some

probability that they shared a parent in the previous generation. When the dispersal kernel has an

infinite tail, there is always some small probability that two individuals coalesce even if they are very

far apart. Because the triangular distribution is finite with a maximum distance of 2σ, the probabil-

ity that two individuals coalesce in the previous generation is 1/(4πσ2D) if they are separated by a

distance less than 2σ and zero otherwise.

The triangular distribution allows us to simulate dispersal more efficiently than other dispersal

kernels because it is uniform over a finite area. It allows us to easily pre-compute probabilities of

dispersal to neighboring cells and use an efficient discrete sampling algorithm to sample dispersal

positions. A similar approach is possible for other dispersal distributions. For distributions with infi-
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nite tails this would require defining a truncated distribution which captures the bulk of the dispersal

probabilities. Then, for two dimensions, double integrals would need to be calculated to determine the

probabilities of dispersal to locations on the lattice. These pre-computations are laborious because in

addition to the double integrals, many cells will have non-zero probabilities. For the triangular distri-

bution, only cells in a radius of 2σ will have non-zero probability and since the distribution is uniform,

the probabilities are easy to calculate. The triangular distribution algorithm introduced here is more

efficient than the other dispersal distributions that were implemented. The differences in absolute

time shown in Table 3 are not dramatically different because the simulations were run for compara-

tively few generations; however, when running the full simulation, there was a time savings of several

hours.

The results suggest that the relationship between probability of identity-by-descent and distance

is similar for a wide range of dispersal kernels in a continuous population and both theoretical and

computational concerns suggest that triangular distributions should be included in themolecular ecol-

ogists toolkit. However, these results should not be taken to mean that it is always safe to ignore the

shape of the dispersal kernel. As I demonstrate here, the high number of extremely limited dispersal

events under the Lomax distribution increases the probability of identity-by-descent within a cell. In

a hermaphroditic plant this could translate into a higher rate of self-fertilization. The shape of the

tail can impact the number of long distance dispersal events which may affect the rate of population

expansion, colonization, responses to climate change, population fragmentation and the movement

of genes between locally adapted populations. Each of these processes will be affected by the disper-

sal distribution chosen for the simulation. However, when simulating a finite, isolated population at

equilibrium, in many cases the shape of the dispersal kernel does not appear to have a strong effect

on the resulting pattern of isolation-by-distance. Because speed is an important factor in deploying

isolation-by-distance simulations in analytical contexts, e.g. approximate Bayesian computation, I

recommend using the triangular distribution when long distance dispersal and other features of the

dispersal kernel can safely be ignored.
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Table 1. The dispersal function, range, probability density function, and two-dimensional density
plots when σ = 1. The counts for the two-dimensional density plots were square-root transformed
and where applicable the α parameter used for the two-dimensional density plot is indicated in bold.
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Table 2. Estimates of allele diversity, θ̂k, effective population density, D̂e, dispersal, s2, and
neighborhood size. Neighborhood size is estimated two different ways. N̂b(θ) is 4πs

2D̂e where D̂e is

estimated from θ̂k. N̂b(ar) is twice the inverse of the slope of ar and the log of distance. The expected
neighborhood size (4πσ2 · 1) is 12.56, 28.28, 50.26, and 201.06 for σ =1, 1.5, 2, and 4, respectively.

σ

1 1.5
θ̂k D̂e s2 N̂b(θk) N̂b(ar) θ̂k D̂e s2 N̂b(θk) N̂b(ar)

Ray 1.82 0.91 0.99 11.31 13.07 1.83 0.91 2.33 26.79 31.16
Exp 2.09 1.04 1.04 13.70 14.32 2.04 1.02 2.26 29.04 29.00
Nor 1.94 0.97 0.98 11.94 13.49 1.91 0.95 2.31 27.69 30.61
Tri 1.82 0.91 1.00 11.37 13.58 1.83 0.92 2.36 27.18 31.02
Gam 1 2.07 1.04 1.05 13.63 14.41 2.01 1.00 2.32 29.22 30.07
Gam 2 1.89 0.94 0.98 11.62 12.80 1.85 0.92 2.32 26.98 30.13
Gam 4 1.83 0.92 1.00 11.49 12.88 1.87 0.94 2.32 27.31 28.27
Gam 8 1.80 0.90 1.01 11.45 13.31 1.79 0.90 2.32 26.16 29.91
Lom 2.4 2.97 1.49 1.06 19.70 13.41 2.62 1.31 2.16 35.53 26.65
Lom 2.6 2.88 1.44 0.97 17.61 13.23 2.47 1.24 2.34 36.25 26.11
Lom 2.8 2.73 1.36 1.04 17.78 12.82 2.41 1.21 2.22 33.66 25.30
Lom 3 2.72 1.36 1.00 17.07 14.28 2.36 1.18 2.34 34.71 28.50
Par 2.4 1.98 0.99 0.98 12.18 11.71 1.93 0.97 2.19 26.56 27.12
Par 2.6 1.95 0.98 1.04 12.74 13.82 1.81 0.91 2.28 25.98 27.95
Par 2.8 1.90 0.95 0.97 11.57 12.25 1.85 0.93 2.25 26.16 30.85
Par 3 1.89 0.95 0.99 11.80 13.56 1.89 0.94 2.24 26.54 29.79

2 4
θ̂k D̂e s2 N̂b(θk) N̂b(ar) θ̂k D̂e s2 N̂b(θk) N̂b(ar)

Ray 1.97 0.99 4.07 50.39 58.81 2.02 1.01 16.11 204.93 236.23
Exp 2.02 1.01 4.08 51.88 49.60 2.09 1.05 16.16 212.48 154.94
Nor 1.95 0.97 4.08 49.87 55.00 2.04 1.02 16.04 205.76 189.69
Tri 1.94 0.97 4.11 50.13 54.57 2.09 1.04 16.09 210.87 245.02
Gam 1 2.03 1.01 4.06 51.74 52.25 2.16 1.08 16.15 218.67 257.28
Gam 2 1.89 0.95 4.12 48.88 54.39 2.02 1.01 16.08 204.41 214.04
Gam 4 1.94 0.97 4.08 49.80 55.60 1.98 0.99 15.94 197.97 191.02
Gam 8 1.89 0.94 4.06 48.21 52.47 2.02 1.01 16.11 203.96 231.04
Lom 2.4 2.48 1.24 3.98 62.01 47.94 2.19 1.09 16.06 220.82 180.03
Lom 2.6 2.36 1.18 3.94 58.49 48.10 2.15 1.07 15.45 208.62 219.14
Lom 2.8 2.27 1.13 4.16 59.23 51.08 2.14 1.07 15.81 212.44 241.05
Lom 3 2.24 1.12 3.97 56.05 47.23 2.07 1.04 16.55 215.21 211.19
Par 2.4 1.93 0.97 4.13 50.12 48.20 2.03 1.02 16.04 204.74 192.65
Par 2.6 1.95 0.97 4.11 50.29 51.74 2.03 1.02 15.91 203.23 189.19
Par 2.8 1.98 0.99 4.02 49.95 47.73 1.95 0.97 15.53 189.90 219.90
Par 3. 1.98 0.99 4.10 50.92 49.58 2.01 1.00 16.30 205.48 169.53
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Table 3. Triangular dispersal algorithm is the most efficient. Execution time and relative time for
109 dispersal events from different dispersal functions ordered from most to least efficient.

Dispersal Function CPU Seconds Relative Time
Triangular 21.853 1.000
Rayleigh 27.713 1.268
Exponential 106.434 4.870
Half Normal 106.771 4.886
Gamma 119.357 5.462
Pareto 127.218 5.822
Lomax 127.376 5.829
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Figure 1. Effect of discretization of continuous dispersal distributions. The plot shows the empirical
cumulative distribution function for each dispersal distribution on a discrete lattice compared to the
CDF of its continuous counterpart (black line). The different plots in each panel represent
simulations run using different σ parameters: 1, 1.5, 2, and 4. An increase in the thickness of the line
corresponds to increasing σ parameter.
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Dispersal Distribution
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Figure 2. Different dispersal kernels have equivalent second moments but different third moments.
Each panel represents groups of simulations run with different σ parameters and contains
box-whisker plots summarizing the distribution of the average (A) squared or (B) cubed
parent-offspring distance of 2,000 sampled transects. The top and bottom of the boxes represent
the 75% and 25% quartiles, while the central bar represents the median. The gray dots outside the
whiskers represent outliers. The gray horizontal line in A represents the expected σ2 value. The
observed values are shown on a log scale which is different in some panels.
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Figure 3. The distribution of unique alleles is similar for most dispersal kernels. Each panel
represents simulations run with a the σ parameter provided in the gray box. For each dispersal
distribution, the box-whisker plot summarizes the number of unique alleles (k) found in 2,000
50-individual transects. The gray horizontal line represents the expectation under the infinite alleles
model. The features of the box-whisker summary are the same as Fig. 2.

27



P
ro

b
a
b
ili

ty
 o

f 
Id

e
n
ti
ty

−
b
y
−

D
e
s
c
e

n
t

0.0

0.2

0.4

0.6

0.8
Rayleigh
Exponential
Normal
Triangular

1 1.5 2 4

0.0

0.2

0.4

0.6

0.8
Gamma 1
Gamma 2
Gamma 4
Gamma 8

0.0

0.2

0.4

0.6

0.8
Lomax 2.4
Lomax 2.6
Lomax 2.8
Lomax 3.0

0.0

0.2

0.4

0.6

0.8
Pareto 2.4
Pareto 2.6
Pareto 2.8
Pareto 3.0

Distance (Lattice Units)

P
ro

b
a
b
ili

ty

0.0

0.2

0.4

0.6

0.8

5 25 45

1

5 25 45

1.5

5 25 45

2

5 25 45

4

Figure 4. Identity-by-descent is similar between different dispersal models. Each plot shows the
average probability of identity-by-descent for pairs of individuals in each distance class. Each panel
represents simulations run with different σ parameters (gray box) for different groups of dispersal
distributions; all of the dispersal distributions are plotted together in the last row.
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Figure 5. Kinship coefficients are similar between different dispersal models. Each plot shows the
average kinship coefficient for pairs of individuals over the log of the distance between them. Each
panel represents simulations run with different σ parameters (gray box) for different groups of
dispersal distributions; all of the dispersal distributions are plotted together in the last row.
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Figure 6. Slopes of genetic differentiation are similar between different dispersal models. Each plot
shows the average differentiation, ar, for pairs of individuals over the log of the distance between
them. Each panel represents simulations run with different σ parameters (gray box) for different
groups of dispersal distributions; all of the dispersal distributions are plotted together in the last row.
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Figure 7. Estimated neighborhood sizes are similar across all dispersal distributions. Neighborhood
size is estimated in two different ways. (A)Nb(θk) is 4πs

2D̂e where D̂e is estimated from θ̂k. The dot
is the average from all populations samples and the bars represent the middle 50% of estimates from
individual samples. (B) The slope estimates, 2

Nb(ar)
, of ar and the log of distance. The dots represent

the slope estimate from the combined data from all samples and the bars represent the middle 50%
of slopes from individual samples.
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Chapter 3

BAYESIAN ESTIMATION OF NEIGHBORHOOD SIZE USING A COMPOSITE MARGINAL

LIKELIHOOD

Abstract

Wright’s neighborhood size is a density-dependent measure of gene flow that quantifies the degree

of spatial genetic structure that is due to isolation-by-distance in a population. The neighborhood

size formula, Nb = 4πσ2De, contains two important demographic parameters: the mean squared

parent-offspring dispersal distance, 2σ2, and the effective density of individuals in the population,De.

Several methods have been devised that make reasonable point estimates of neighborhood size but so

far none have attempted estimates in a Bayesian framework. Here I describe a Bayesian method to

estimate neighborhood size using a composite marginal likelihood (CML) in place of a full likelihood.

The model uses an approximation of the Wright-Malècot (WM) formula to link observed patterns of

isolation-by-distance to the neighborhood size parameter. Data on the proportion of pairs that are

identical-in-state (IIS) at different distances and at different neutral loci can then be modeled using

individual binomial likelihoods; the product of each of these likelihoods is the CML. The neighbor-

hood size parameter is modeled using a log-normal prior and an MCMC algorithm approximates the

neighborhood size marginal posterior distribution. I tested this method using data generated directly

from the model and from a spatially-explicit lattice simulation and show that the estimates have high

coverage and low error but can be biased when fewer markers are analyzed. I examine how well

the model performs under different sampling schemes and when certain assumptions are violated. I

also applied this method to analyze microsatellite data from two populations of maritime pine (Pinus

pinaster Aiton) and compared my estimates to those obtained using a different method. Finally, one

of the advantages of using this Bayesian approach is the ability to incorporate prior information about

density to get a better estimate of the dispersal parameter; I demonstrate that the distribution of the

dispersal parameter estimates reflects the level of certainty in the density prior.
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Introduction

The dispersal ability of many species is spatially limited and a large proportion of offspring tend to

reproduce close to their birth site (Caine et al., 2000; Howe and Smallwood, 1982; Kot et al., 1996).

Wright (1943, 1946) recognized that limited dispersal can lead to localized breeding and genetic differ-

entiation within continuous populations and he developed the isolation-by-distance model to better

understand the genetic consequences under these conditions.

In a panmictic population, parents are equally likely to come from any part of the population;

however, if dispersal is limited, potential parents are restricted to only the individuals within a local

region. The size of this local region depends on dispersal capability and the number of individuals in

this region depends on population density. Wright introduced the term “neighborhood” size (Nb) to

describe the effective number of individuals within this local population.

Wright measured the magnitude of the neighborhood as the inverse of the probability that two

gametes at the same location came from the same parent (1/Nb). For a two-dimensional population,

Wright assumed that individuals disperse according to a normal distributionwith a standard deviation

σ, along each axis, and he calculated that Nb = 4πσ2De, where 2σ2 is the mean squared dispersal

distance, and De is the the effective population density. Under this model, the neighborhood size

captures 86.5% of potential parents of central individuals.

Neighborhood size is important because it quantifies the spatial structure that arises as a result of

isolation-by-distance, and it contains information about two important population parameters: dis-

persal and density. Unfortunately, these parameters, particularly the dispersal parameter (Slatkin,

1987), are difficult to measure directly so neighborhood size is often inferred indirectly from observed

patterns of isolation-by-distance.

Under isolation-by-distance, the genetic similarity shared between individuals decreases as the

geographical distance between them increases. Malécot (1969) described the relationship between in-

dividuals in terms of the probability that their alleles are identical-by-descent. Two homologous genes

are identical by descent if they are both descended from the same common ancestor and nomutations

have occurred. For a population at mutation-drift-migration equilibrium, the Wright-Malècot (WM)
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formula calculates the probability of identity-by-descent (IBD) between pairs of individuals given the

neighborhood size and the distance between the pair. When the pattern of isolation-by-distance is

strong, neighborhood size is small relative to the size of the population, and when pattern of isolation-

by-distance is weak or undetectable, neighborhood size is large and the population is approaching

panmixia. The WM formula provides the necessary link between the observed pattern of isolation-

by-distance and neighborhood size, and it can be used to make inferences about neighborhood size if

information about the probability of IBD between individuals is known.

Existing Methods for Estimating Neighborhood Size

There are several existing methods that use the WM theory to estimate neighborhood size within con-

tinuous populations. For two-dimensional landscapes, Rousset (2000) uses the regression of pairwise

measures of genetic differentiation on the logarithm of geographical distance. The inverse of the slope

of the regression provides an estimate of 4πσ2De. The relationship between genetic differentiation

and the log of distance is only linear over a certain range of distances. When the distance between

pairs is smaller than σ, the relationship depends on the shape of the dispersal kernel; when the dis-

tance is greater than 0.56σ/
√
2µ the relationship depends on the mutation rate (Rousset, 1997). An

implementation of themethod is provided in the GENEPOP software package (Raymond andRousset,

1995; Rousset, 2008b).

Hardy and Vekemans (1999) describe a similar approach using pairwise kinship coefficients. The

regression slope of the pairwise kinship coefficients and the log of distance is −(1 − F )/4πσ2De

where F is the inbreeding coefficient (Hardy and Vekemans, 1999; Vekemans and Hardy, 2004). This

method is implemented in the SPAGeDi (Spatial Pattern Analysis of Genetic Diversity) software pack-

age (Hardy and Vekemans, 2002). Neighborhood size estimates from these methods are robust to

different mutation models, different mutation rates (under µ = 10−3), the shape of the dispersal

kernel, and spatial heterogeneity (Leblois et al., 2003, 2004).

The pairwise statistics used in the previous two methods are defined in terms of the probability

of identity-in-state (ISS) rather than the probability of IBD because the latter is usually difficult to

measure directly. Two genes are IIS if they share the same allele but are not necessarily descendants
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from the same common ancestor. The statistics are also defined in the form of a ratio that compares

the probability of IIS for pairs of individuals at a certain distance to the probability of IIS in some

reference group of genes (Rousset, 2002; Vekemans and Hardy, 2004). The Rousset (2000) statistic

uses pairs of genes sampled from within individuals as a reference, and the Hardy and Vekemans

(1999) statistic uses random genes sampled from the population. Statistics based on the probability

of IIS depend on the mutation process and are not generally equivalent to the probability of IBD,

however when the mutation rate is low, the ratio of IIS probabilities is approximately equal to similar

ratios based on probability of IBD (Rousset, 2002; Vekemans and Hardy, 2004).

Barton et al. (2013) take a different approach to obtain a maximum likelihood estimate of neigh-

borhood size. They assume that fluctuations in allele frequencies are small and can be modeled using

a bivariate Gaussian likelihood. To model spatial correlations they calculate covariances of allele fre-

quencies for observed data and for expected values generated from an approximation of the WM for-

mula. For large distances, theirWM approximation includes a modified Bessel function of the second

kind and degree zero. At smaller distances, this function diverges from the WM formula so they sub-

stitute a constant value. Currently, this method has not been implemented in any publicly available

software package.

Current Method

The method described here is the first to use a Bayesian approach to estimate neighborhood size. A

Bayesian approach offers several advantages. First, prior knowledge about the model parameters can

be incorporated, and I will demonstrate that priors can be used to get better estimates for certain

model parameters. Second, MCMC methods make it is easier to create more complex models (e.g.

hierarchical models) and could allow greater flexibility in handling different types of data.

This method is also unique because it applies a composite marginal likelihood (CML). As models

become more complex, CMLs are becoming increasingly popular because they serve as a good sub-

stitute when the full likelihood is impractical to compute. The CML combines marginal likelihoods

for different subsets of data as if they were independent and ignores any higher order dependencies

thatmay exist. Despite thismisspecification, inferences based on CMLmethods performwell inmany
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cases (Pauli et al., 2011; Xu and Reid, 2011). One problemwith CMLmethods is that they often lead to

deceptively precise inference which, in a Bayesian framework, means underestimation of the width of

the credible interval (Menéndez et al., 2014; Pauli et al., 2011). This issue becomes more pronounced

when additional strain is placed on the already tenuous assumption of independence between the

marginal likelihoods.

This method attempts to fit an observed pattern of isolation-by-distance using an approximation

of the WM formula. To approximate the WM formula, I used a Taylor series for short distances and a

Bessel function, similar to Eq. A.6 in Barton et al. (2013), for long distances. For a given distance class

and marker locus, the proportion of individuals that are IIS is modeled using a binomial likelihood

and each likelihood is combined to forma compositemarginal likelihood. AnMCMCalgorithm is used

to make inferences from the model using the composite marginal likelihood and a prior distribution

for the neighborhood size parameter.

Here I analyze the performance of this method under different dispersal parameters, mutation

rates, mutationmodels, dispersal distributions, and sampling schemes using data generated from the

model and from a spatially-explicit lattice based simulation. I also apply the method to microsatellite

data from two populations of Pinus pinasterAiton (De-Lucas et al., 2009a) and comparemy estimates

to those obtained using SPAGeDi (Hardy and Vekemans, 2002).

Methods

Model

The Wright-Malècot (WM) formula defines the probability that genes from two individuals are

identical-in-state (IIS) as a function of the distance between them (see derivation from Barton et al.,

2013).

ϕ(x) =
1− ϕ(0)

2Nb

∞∑
t=1

e

(
−2µt+ −x2

4σ2t

)
t

(3.1)

In the formula, x is the distance between the pair, µ is the mutation rate, andNb = 4πσ2De is neigh-

borhood size where 2σ2 is the second moment of the dispersal distribution, and De is the effective

population density or the effective number of individuals per unit of area. Equation 3.1 assumes the
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infinite alleles mutation model (IAM) where e−2µ represents the probability that neither gene mu-

tates in a single generation. Assuming Gaussian dispersal, the summation represents the probability

that neither gene has mutated since they shared a common ancestor, and under the IAM this can be

defined as the probability of IBD (Rousset, 1996). Other mutation models could be substituted, but

due to homoplasy they would model the probability of IIS. (Rousset, 1996).

Because of the infinite series, calculating probabilities directly from the WM formula presents

a computational challenge. To simplify the computation, I approximated the WM formula in two

different ways. First, I use a modified Bessel function of the second kind and degree zero (K0) which

is a good approximation for long distances but it begins to diverge a shorter distances (Barton et al.,

2013; Rousset, 1997; Sawyer, 1977). To approximate the WM formula at short distances, I derived a

Taylor polynomial. I determined empirically that the Taylor polynomial should be calculated to 34

terms because this allows it to be accurate up to a distance of 5σ which is where the relative error of

the Bessel approximation falls below 10−6.

ϕ(x) ≈



∑34
t=0

Li(t+1)(e
−2µ)·x2t·−1t

(2t)!!·2t+1·σ2t

Nb−log(
√
1−e−2µ)

x ≤ 5σ

K0

(
|x|
σ

√
1−e−2µ

)
Nb−log(

√
1−e−2µ)

x > 5σ

(3.2)

The Taylor polynomial in 3.2 is still a fairly complex calculation due to the double factorial and

the polylog function (Lis(z)). To speed up the calculation, I treated the mutation rate as a constant

so that I could pre-calculate and cache the polylog terms.

TheWM formula assumes an infinite population size, so the next challenge was to adjust theWM

approximation to fit data from a finite population. According to the WM formula, the probability of

IBD between two individuals will approach zero as the distance between them increases; however, in a

finite population, the probability approaches the average probability of IBD in the population. To cor-

rect for this, I exploited the fact that the correlation of the probabilities over distance is approximately

equal for finite and infinite populations:
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ϕx − ϕ̄

1− ϕ̄︸ ︷︷ ︸
infinite

≈ px − f̄

1− f̄︸ ︷︷ ︸
finite

(3.3)

where ϕx and px are probabilities of IBD between individuals separated by distance x and ϕ̄ and f̄

are average probabilities of IBD in an infinite and a finite population, respectively. I then solve for the

probability of IBD in a finite population.

px = f̄ + (1− f̄) · ϕx − ϕ̄

1− ϕ̄
(3.4)

This equation simultaneously solves another issue with the model. As previously mentioned, the

data that will be provided to the model will likely be probabilities of IIS rather than probabilities of

IBD. These probabilities are not directly equivalent but they are approximately equal in the ratio form

presented in 3.3. Consequently, Equation 3.4 will allow the model to fit IIS data using the IBD values

from the WM formula, assuming the mutation rate is not too high (Rousset, 2002; Vekemans and

Hardy, 2004).

Composite Marginal Likelihood

Together with the probability of IIS (px) determined by the WM approximation, data on the propor-

tion of IIS pairs can be modeled using a binomial likelihood. Unfortunately, such a likelihood only

describes the relationship for a single distance class and a single locus. Modeling the full relation-

ship across many distance classes and loci would be extremely complex so instead I opted to use a

composite marginal likelihood.

The compositemarginal likelihood treats each of themarginal binomial likelihoods as if they were

independent and is therefore the product over each marginal likelihood or equivalently the sum over

each log likelihood.

lc =

d∑
i=1

m∑
j=1

yij log(pij) + (nij − yij) log(1− pij) (3.5)
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Equation 3.5 is the log CML for the model where yij is the number of identical alleles out of the

totalnij alleles examined and pij is the probability of IIS determined by the finiteWMapproximation

for distance class, d, and locus,m.

The misspecification of the model that results from using a CML is magnified when dependence

between the marginal likelihoods is increased. To minimize the dependence, one can avoid reusing

the same genes to estimate the IIS proportion for multiple distance classes.

Bayesian Inference

The log CML depends on pij which is determined by the finite WM approximation which in turn de-

pends on several parameters: µ, f̄ , andNb. I treat the mutation rate, µ, as a constant that is provided

to the model. The average probability of IIS, f̄ is estimated from the sample as the total number of

IIS pairs among all sampled pairs of individuals. The parameter of interest,Nb, can be broken down

into the product 4πσ2De, whereDe and σ are non-identifiable parameters. Neighborhood size,Nb,

and effective density, De, are assigned independent log-normal priors, and the dispersal parameter,

σ, is calculated deterministically as σ =
√

Nb
4πDe

. The posterior is then proportional to:

p(Nb, De|y) ∝ p(y|Nb, De)p(Nb)p(De) (3.6)

An MCMC algorithm was used to sample from the posterior. The model was programmed in

Python using the PyMC library (Patil et al., 2010) and posterior samples were generated using the

Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953). MCMC chains were run for

30,000 iterations after a 10,000 iteration burn-in and thinned every 6th iteration for a total of 5,000

samples.

Model Comparison

The neighborhood size estimate can only be obtained when a pattern of isolation-by-distance is dis-

cernible in the population sample. To establish whether a sample exhibits a detectable pattern of

isolation-by-distance, I compared the Deviance Information Criterion (DIC) (Spiegelhalter et al.,
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2002) for the model to the DIC for a null model of no isolation-by-distance where the probability

of IIS was set to f̄ for every distance class. The DIC is calculated as

DIC = pD + D̄

where pD is ameasure of the effective number of parameters and D̄ is the expectation of themodel de-

viance. Methods for calculating the DIC value are implemented in PyMC. For simple Bayesian model

comparisons, models with a smaller DIC are preferred. Therefore, large ∆DIC = DICHo − DICHa

values indicate a strong pattern of isolation-by-distance while small ∆DIC values indicate weak or

no isolation-by-distance. The magnitude of the DIC values depend on the likelihood function which

can vary for different data sets, so I used relative δDIC = ∆DIC/DICHo to get more standardized

differences.

Generating Data from the Model

To evaluate the performance of theMCMC algorithm and the influence of the prior, I tested themodel

using data generated from independent binomial counts based on the likelihood in 3.5. Unless oth-

erwise noted, the parameters were set to De = 1, σ = 1, µ = 0.0001, and f̄ = 0.39. The value

of f̄ was chosen because it was the average value from lattice simulations with µ = 0.0001. Given

the parameters, I was able to generate data by drawing random counts from a binomial distribution

for each distance class and for a certain number of loci. When running the model, the mean for the

neighborhood size prior was set to twice the true value, and the starting value was set to four times the

true value. The mean for the density prior was set to the true value and the starting value was twice

the true value. Unless otherwise noted, the precision for both priors was set to τ = 0.0001.

Data from Spatially-Explicit Lattice Simulation

I also tested the model using data generated from a spatially-explicit lattice-based simulation. In the

simulation, diploid individuals occupied a 100 × 100 toroidal lattice with a constant density of one

individual per node (De = 1). In each discrete generation, parents generated 100 gametes that were

displaced from the parent cell a normally distributed distance along each axis where σx = σy. Ga-
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metes carried a certain number of independent marker loci that were inherited through independent

assortment, and each locus mutated according to the infinite alleles model with rate µ = 0.0001 to a

new selectively neutral allele. After dispersal, two gametes from each lattice cell were randomly cho-

sen to become a parent in the next generation. Some simulations deviate from the above description

of mutation rate, mutation model, dispersal model, or sampling scheme and these changes are noted

in the appropriate sections.

Each simulation was run for a 20,000 generation burn-in to reach a drift-mutation equilibrium

and then population samples were collected every 10,000 generations for nearly independent sam-

ples. The populations were sampled in two different ways. For the first sampling method, 20 pairs of

individuals were randomly chosen without replacement for each of 20 distance classes (1–20). This

resulted in a sample of 400 pairs or 800 individuals. Only orthogonal pairs along the same row or

columnwere chosen to avoid non-integer distances. The number of identical alleles between the pairs

was counted and totaled for each distance class and for each marker.

In the second samplingmethod, a 10σ×10σ grid of individuals was sampled from the population.

When σ = 1, this resulted in a sample size of 100 individuals. All possible pairwise comparisons

were made between the individuals in the sample, and the total number of identical alleles between

pairs was counted and totaled for each distance class and for each marker. This sampling scheme

differs from the previous method because fewer individuals are sampled and individuals are reused

in multiple pairings. For this sampling scheme there were ten distance classes (1–10) at one lattice

unit intervals, followed by an 11th class for individuals between 10 and 13 units apart; the distance

classes are inclusive of the upper bound so that individuals that are one unit apart are placed in the

first distance class. The total number of pairs that were analyzed per distance class was: 180, 322,

556, 596, 774, 632, 564, 554, 424, 258, and 90.

In addition to the infinite alleles model (IAM), simulations were run using the K-alleles model

(KAM), and the step-wise mutation model (SMM). Under the IAM, each mutation results in a com-

pletely unique mutation, and any alleles that are identical-in-state are also identical-by-descent

(Kimura and Crow, 1964). Under the KAM, each mutation results in a new allele selected from the

remaining K − 1 possible alleles (Kimura, 1968), in the simulations K = 20. The SMM mutation
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model was developed to model the increase or decrease in repeat number in microsatellite loci. Un-

der the SMM, each mutation results in either an increment or decrement of the repeat number by

one (Ohta and Kumura, 1973). The number of possible repeats was contained to 20 with reflecting

boundaries at the maximum and minimum values. All alleles were selectively neutral regardless of

the mutation model.

In some simulations, different distributions are used to model gamete dispersal distance. These

additional distributions include exponential, half-normal, triangular, gamma, Pareto, and Lomax. A

description of each distribution and implementation details can be found in Section 2. The α param-

eters for the gamma distribution were 1.5, 2, 4, and 8 and the α parameters for the Pareto and the

Lomax were 2.4, 2.6, 2.8, and 3.0. I used the Rayleigh distribution to model the isotropic bivariate

normal that is assumed in the WM formula.

Application to Real Datasets

I applied my model to microsatellite data sets from two populations of maritime pine (Pinus pinaster

Aiton) fromDe-Lucas et al. (2009a). Microsatellitemarkers are ideal for these types of studies because

a large number of alleles are often maintained in the population allowing greater statistical power to

be achieved (Epperson, 2005; Lynch and Ritland, 1999). In this study, De-Lucas et al. showed that

spatial genetic structure is stronger within fragmented populations of maritime pine than in larger

un-fragmented populations in the Iberian Peninsula. They analyzed data from six polymorphic nu-

clear microsatellite markers, and used SPAGeDi version 1.2 (Hardy and Vekemans, 2002) to estimate

neighborhood size. I retrieved their data for the two fragmented populations (Fuentelapeña and Qua-

tretonda) from the Dryad Digital Repository (De-Lucas et al., 2009b), and compared neighborhood

size estimates from my model to the estimates they reported.

The data set contained genotypes for 78 individuals from the Fuentelapeña population, and 85

individuals from the Quatretonda population at 6 microsatellite loci. I used the same distance classes

as the original study which had 6 distance classes (0–60 m) at 10 meter intervals, and a final dis-

tance class for distances greater than 60 meters. Following a similar approach that was used for the

simulated data, I analyzed the data in two different ways. First, I analyzed the data using all possi-
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ble pairwise comparisons, and calculated the number of shared alleles between pairs of individuals

for each distance class and for each microsatellite marker. For this analysis scheme, the number of

pairs per distance class varied for different markers due to missing data but on average the Fuente-

lapeña population had 171, 407, 508, 520, 502, 422, and 360 pairs per distance distance class, and

the Quatretonda population had 227, 528, 622, 663, 541, 402, and 479 pairs per distance class.

For the second analysis approach, I attempted to limit the number of times that the data from

each individual was reused. To accomplish this, I generated data sets where pairs were drawn at ran-

dom without replacement for each distance class and for each marker. However, because the sample

sizes were small for each population, I combined the counts for 20 data sets generated in this way. I

generated 10 different data sets using this sampling scheme, and ran the MCMC model for each set.

Again, the number of pairs per distance class varied due tomissing data and random sampling, but on

average the Fuentelapeña population had 115, 118, 115, 106, 102, 100, and 95 pairs per distance class,

and the Quatretonda population had 122, 123, 120, 118, 116, 112, and 105 pairs per distance class. The

average distance in each distance class was 6.76, 15.39, 24.81, 34.94, 44.89, 54.39, and 67.15 for the

Fuentelapeña population, and 6.76, 15.49, 25.04, 35.06, 44.86, 54.62, and 72.98 for the Quatretonda

population. The prior for neighborhood size had a mean of 2, a precision of 0.0001, and the density

prior had a mean of 1, and precision of 0.0001.

Results

Performance on Data Generated from the Model

I generated 100 data sets with 20 pairs of individuals at 20 distance classes (1–20) with either 10, 20,

or 30 independent loci. Figure 8 shows the estimated mean of the neighborhood size posterior (gray

dots) for each data set arranged in increasing order. The expected neighborhood size is 12.56, indi-

cated by the black dashed line. The vertical lines are the 95% credible interval for each estimate, and

the credible intervals that do not cover the true value are indicated in red. The coverage percentage,

the relative mean-squared error (MSE), and the bias is indicated in each panel. The percentage of

credible intervals that cover the true value is close to 95% in each group. The relative MSE is low and
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decreases when more markers are used. The negative bias indicates that the model is more likely to

underestimate neighborhood size, but the bias is reduced as more markers are used.

Neighborhood Size Estimates for Different Dispersal Parameters

To analyze the performance of the model for a range of neighborhood sizes, I generated 30 data sets

from the model for each of six different dispersal parameters (σ = 0.25, 0.5, 1, 1.5, 2, and 4), and

De = 1. The data sets represent 20 pairs of individuals with 10 independent loci for each of 20

distance classes (1–20). Figure 9 shows box-whisker plots that summarize the distribution of the

relative squared error of the neighborhood size estimates (blue dots) for each dispersal parameter.

The error is low for small neighborhood sizes but gets very large and more variable when σ is larger

than 1.5.

Table 4 summarizes the performance of the estimates for different neighborhood sizes. When σ

is less than 1.5, the average of the 30 neighborhood size estimates (N̄b) is close to the expected value

(Nb) and the MSE, the bias, and the average width of the credible intervals is low. When σ is greater

than 1.5, the average of the estimates is far from the expected value, and the relative mean-squared

error, the bias, and the average credible interval widths are very high. The difference between the DIC

values for the null and alternative model (∆DIC) decreases as σ andNb increase. This indicates that

the pattern of isolation-by-distance is not strong enough to be detected so the model cannot provide a

good estimate of neighborhood size; although, if the populations were sampled over greater distances,

there may have been detectable isolation-by-distance.

Increasing the number of markers and the number of samples should lead to better estimates,

but it is useful to determine which will have a bigger impact on the performance of the estimate. To

better understand this relationship, I generated two different data sets. The first data set had a small

neighborhood size (4π · 0.52 · 1 = 3.14), which according to Table 4, produced accurate and precise

estimates when the sample contained 20 pairs of individuals per distance class with 10 markers. To

determine the minimum amount of data that is sufficient to achieve an accurate estimate, I generated

30 data sets each with either 5, 10, or 15 markers and 1, 2, 5, or 10 pairs of individuals for each of 20

distance classes (1–20). The results in Table 5 show that increasing from 5 to 10 markers reduces the

44



relativeMSEmore than increasing from 10 to 15markers or increasing from 5 to 10 pairs per distance

class. Increasing from 1 or 2 pairs per distance class to 5 or 10 pairs nearly halves the relative MSE in

each case, and it continues to decrease when 20 pairs are sampled (Table 4). The average width of the

credible intervals is an indicator of the precision of the estimates. When the number of pairs per dis-

tance class is low, there is a large reduction in the width of the credible interval when increasing from

5 to 10 markers, but the reduction is not as large when increasing from 10 to 15 markers. Comparing

the decrease in width from 5 to 10 pairs per distance class and from 5 to 10 markers, the increase in

the number of pairs has the greater impact.

For the seconddata set, Iwanted to see how large of a sample andhowmanymarkers are necessary

to get a good estimate for a larger neighborhood size (4π · 22 · 1 = 50.27). According to the model,

there is a weak pattern of isolation-by-distance for this parameter set, but Table 4 shows that a sample

with 10 markers and 20 pairs of individuals per distance class is not enough to detect it. Therefore, I

generated 30 data sets eachwith either 10, 20, or 30markers, and 20, 30, 40, or 50 pairs of individuals

for each of 20 distance classes (1–20). Table 6 shows that a good estimate is possible with at least 30

markers and 50 pairs per distance class with a relative MSE of 0.059 and an average credible interval

width of 4.876. On average, increasing the number ofmarkers reduces the relativeMSE and the width

of the credible interval more than increasing the number of pairs by 10.

Neighborhood Size Estimates for Different Levels of Genetic Diversity

When generating data from the model, the f̄ parameter determines the average probability of IIS in

the sample. Genetic diversity and f̄ have an inverse relationship such that alleles in a highly diverse

population will have a lower probability of being IIS. To look at the effect of genetic diversity on neigh-

borhood size estimates, I generated 30 data sets each with f̄ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

or 0.9, De = 1, σ = 1, and expected neighborhood size of 12.56. Each data set contained 20 pairs

of individuals with 10 independent markers for each of 20 distance classes (1–20). Figure 10 shows

the distribution of the 30 neighborhood size estimates (N̂b) for f̄ = 0.1-0.8; for clarity, estimates for

f̄ = 0.9 are not shown because some estimates were extremely large. When f̄ is small the neighbor-

hood size estimates are clustered close together near the true neighborhood size (gray horizontal line),
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but as f̄ increases the estimates become more variable. Table 7 shows that the relative MSE and the

average width of the credible intervals increase as f̄ increases.

Performance on Data from Lattice Simulation

To examine how well the model performs on data that is not a direct result of the model, I analyzed

data sets from a spatially-explicit lattice simulation. I collected samples from populations simulated

with σ = 1,De = 1, and µ = 0.0001. Independent samples of 20 pairs of individuals at 20 distance

classes (1–20) were collected from 100 different populations with either 10, 20, or 30 independent

marker loci. Figure 11 follows the same format as Figure 8. The performance on the simulated data is

similar to the performance on the data generated from the model, with high coverage percentage and

low relative MSE that decreases when more markers are used; however, the bias is negative when 10

or 20 markers are used, but becomes positive for 30 markers.

Using the same parameters, I ran a second set of simulations with a different sampling scheme.

Here I collected 100 individuals from each population and analyzed the samples using all possible

pairwise combinations the individuals. The performance of the estimates for these data sets had low

error, but the percentage of credible intervals that covered the true value was greatly reduced (Fig.

12). Therefore, all subsequent simulation results are based on data from independent pairs.

Figures 13 and 14 show an example of the posterior predictive fit for a single data set from the non-

pairwise and the pairwise sampling schemes, respectively for each of the 10marker loci. The gray dots

represent the proportion of IIS pairs for each distance class estimated from the data. The blue lines

represent themean (horizontal curve) and the 95% credible interval (vertical lines) of the distribution

of hypothetical values for the data that would be likely given the estimated posterior distribution.

Model fit can be assessed by comparing how likely the observed data would be under the posterior

predictive distribution. In both cases, the model produces replicate data sets that fit the observed

data fairly well. However, the credible intervals for the replicated data are extremely narrow for the

pairwise data so many of real data points fall far outside of the predicted credible interval. For the

independent pairs, 89.5% of the data points fall within the credible intervals compared to only 62.7%

for the pairwise data.
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Effect of the Dispersal Kernel

The WM formula that is implemented in the model assumes that dispersal is isotropic and follows

a normal distribution along each axis; however, at equilibrium, the pattern of isolation-by-distance

is similar for a wide range of dispersal distributions (Fig. 4). Using the spatially-explicit lattice sim-

ulation, I generated thirty data sets using either the Rayleigh, exponential, half-normal, triangular,

gamma, Pareto, or Lomax dispersal kernels. The parameters for the dispersal kernel were set so that

the average squaredparent-offspring distance (s2)would be approximately 1 for an expectedneighbor-

hood size of 12.56. Each data set contained 20 pairs of individuals with 20 independent markers for

each of 20 distance classes (1–20). Figure 15 summarizes the distribution of the 30 neighborhood size

estimates (blue dots) for each dispersal kernel. Table 8 provides the dispersal parameters that were

set for each distribution (σ and α), the observed mean-squared, parent-offspring dispersal distance

(s2), the average of the neighborhood size estimates, the relativeMSE, the bias, and the average width

of the credible intervals. Most of the distributions result in estimates that are close to the expected

neighborhood size with low relative MSE and similar CI widths. The neighborhood size estimates for

the Lomax distributions are lower on average with a higher relative MSE.

Effect of Different Mutation Rates

In the model, the mutation rate is treated as a constant parameter that must be provided. Assum-

ing that an accurate estimate of the mutation rate is not always available, I wanted to determine how

much an inaccurate mutation parameter will affect the neighborhood size estimate. To test this, I

simulated 30 data sets from the lattice simulation with different mutation rates (µ = 10−2, 10−3,

10−4, 10−5, and 10−6). The dispersal parameter was set to 1 for an expected neighborhood size of

12.56. Each data set contained 20 pairs of individuals with 20 independent markers for each of 20

distance classes (1–20). For each data set, the MCMC algorithm was provided a different mutation

rate estimate (µ̂ = 10−2, 10−3, 10−4, 10−5, and 10−6). Figure 16 shows the distribution of neighbor-

hood size estimates for each combination of simulated and provided mutation rates. Table 9 shows

the average observed heterozygosity (H̄o), the relative MSE, the bias, and the average width of the
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credible intervals. In most cases, the median of the neighborhood size estimates is closer to the true

value when the mutation parameters agree. However, even when the mutation rate provided to the

model is orders of magnitude higher or lower, the estimates are still close to the true value.

Better estimates are obtained when the true mutation rate is high (10−2, 10−3, or 10−4 vs. 10−5,

or 10−6). When the mutation rate is low, the observed heterozygosity is also low (H̄o = 0.131 when

µ = 10−5) and there is less genetic diversity. These results complement the findings for generated

data with high f̄ .

Effect of Different Mutation Models

The WM formula implemented here assumes an infinite alleles mutation model, but I wanted to de-

termine how well the model performs using data simulated under different mutation models. Figure

17 shows the distribution of neighborhood size estimates for 30 simulations using either the infinite

allelesmodel (IAM), the K-allelesmodel (KAM), or the step-wisemutationmodel (SMM) and four dif-

ferentmutation rates,µ = 10−2, 10−3, 10−4, and 10−5. The expected neighborhood size is 12.56 and

each data set contained 20 pairs of individuals with 30 independent markers for each of 20 distance

classes (1–20). The neighborhood size estimates are close to the expected value for each mutation

model, and there does not seem to any clear bias in the estimates for the different mutation models.

Table 10 shows the average number of alleles and the average frequency of heterozygotes observed for

each group of simulations. For every mutation rate except for 10−5, the populations under the IAM

maintained more alleles and had a slightly higher frequency of heterozygotes. Here, similar to results

shown in Section 3 for µ = 10−5, neighborhood size estimates become more variable and had higher

error when heterozygosity is low. When µ = 10−5, the average frequency of heterozygotes is higher

under the SMMmodel, and the estimates are clustered more tightly around the true value.

Effect of the Sampling Scale

Next, I tested whether the sampling scale affects neighborhood size estimates. I generated 30 data

sets from the model with σ = 0.5, 1.0, 2.0, or 10.0, and the density was set so that the expected

neighborhood size was 12.56 in each case. The data sets contained 20 pairs of individuals with 10
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independent markers for each of 20 distance classes from either 1–20 (constant), or 1σ–20σ (scaled).

Figure 18 shows the distribution of neighborhood size estimates for each sampling scheme and for

each dispersal parameter. The estimates for the constant and the scaled sampling schemes are similar

when σ = 0.5, 1.0, and 2.0, but the scaled sampling scheme improves the estimates when σ = 10.

Effect of Different Sampling Schemes

To test different sampling schemes, I simulated 30 data sets with σ = 1 for an expected neighborhood

size of 12.56. Each data set contained 20 pairs of individuals with 20 independent markers for each

of 40 distance classes (1–40). Neighborhood size estimates were made using different subsets of the

40 distance classes. The following sampling schemes were used: (1) all 40 distance classes, (2) the

first 20 distance classes, (3) the first 10 distance classes, (4) each distance class from 11–20, (5) each

distance class from 6–15, (6) every other distance class from 1–19, (7) every third distance class from

1–28, and (8) every fourth distance class from 1–37. Figure 19 shows the distribution of neighborhood

size estimates for each sampling scheme. Using all 40 of the distance classes does not seem to improve

neighborhood size estimates more than using the first 20 distance classes, but reducing the sampling

scheme to only the first 10 distance classes results in more variable estimates. Sampling schemes that

do not sample short distance classes (schemes 4 and 5) are more variable and tend to underestimate

neighborhood size. Sampling 10 distance classes over a larger range (schemes 6, 7, and 8) provides

better estimates than sampling the first 10 distance classes. Table 11 shows the average of the neigh-

borhood size estimates, the relative MSE, the bias, and the average width of the credible intervals for

each sampling scheme. The average of the neighborhood size estimates is close to the expected value

for all schemes except for 4 and 5. Sampling the first 20 distance classes has the lowest relative MSE.

When only 10 distance classes are sampled, the average width of the credible intervals is larger but it

decreases when distance classes are sampled over a larger range.

Estimating Dispersal Parameter with Different Density Priors

In the model, a prior is assigned to the neighborhood size parameter and the density parameter, and

the dispersal parameter is calculated deterministically from these values. If density can be estimated

49



separately, information from the estimate, including the level of certainty, can be be included in the

prior to get a better estimate for the dispersal parameter. To demonstrate this, I generated 30data sets

from the model with σ = 0.5, 1.0, 2.0, or 10.0, and the density parameter was set so that the expected

neighborhood size is 12.56 in each case (De = 12.56/4πσ2). The data sets contained 20 pairs of

individuals with 10 independent markers for each of 20 distance classes (1σ–20σ). For each data set,

the prior distribution for the density parameter had a mean equal to the true value and a precision

of either τ = 0.0001, 1, or 100. Figure 20 shows the distribution of relative squared error for the

dispersal parameter estimates. The error decreaseswhen the precision, τ , of the density prior is larger.

Table 12 shows the dispersal, σ, and the density,De, parameters that were used to generate the data,

the density prior precision, τ , the average for the neighborhood size estimates, N̄b, the average for

the dispersal parameter estimates, σ̄, the relative MSE, the bias, and the average width of the credible

interval for the dispersal estimates. The average of the neighborhood size estimates is close to the

expected value for each data set. The average of the dispersal estimates are closer to the expected

value, the relative MSE is lower, and the average width of the credible intervals is smaller when τ is

larger.

Performance on Pinus pinaster Aiton

The neighborhood size estimates reported in De-Lucas et al. (2009a) were 37.86 for the Fuentelapeña

population and 51.03 for the Quatretonda population. Using the data sets that contained all possible

pairwise comparisons, my method estimated the Fuentelapeña neighborhood size as 48.36 with 95%

CI [27.97,77.07], and the Quatretonda neighborhood size as 21.27 with 95% CI [5.58,48.44]. The es-

timated credible interval for the Fuentelapeña population included the original point estimate from

De-Lucas et al. (2009a). The neighborhood size estimate for the Quatretonda population was much

lower than the original estimate, and the original estimate falls outside of the estimated credible in-

terval.

Figure 21 shows the mean of the neighborhood size posterior (gray dots), and the 95% credible

intervals for the 10 data setswhere pairswere chosenwithout replacement for each population. The es-

timates for the Fuentelapeña population were similar to the previously published value (black dashed
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line). The estimates for the Quatretonda population were not as close to the reported value and were

more variable. Table 13 shows the average width of the credible intervals, the average DIC values

for the model (DICHa) and the null hypothesis (DICHo), the difference between the two DIC values

(∆DIC = DICHo − DICHa), and the relative difference δDIC = ∆DIC/DICHo for both populations.

The Fuentelapeña estimates have tighter credible intervals and a higher relative δDIC compared to

the Quatretonda population.

Figure 22 shows the posterior predictive fit for the pairwise data and Fig. 23 shows the posterior

predictive fit for the second data set shown in Fig. 21 for each population for each of themicrosatellite

loci. While the total number of genotyped samples are the same, the credible intervals for the repli-

cated data in Fig. 22 are much narrower than the credible intervals in Fig. 23. In Fig. 22, 69.0% of

the data points fall within the 95% credible intervals compared to 76.2% in Fig. 23.

Discussion

When a clear pattern of isolation-by-distance exists, this method is able to make accurate estimates

of neighborhood size using data generated directly from themodel. The estimates have high coverage

around 95% and low error. The slightly negative bias indicates that the model is more likely to under-

estimate the neighborhood size, but the bias is reducedwhenmoremarkers are analyzed. Themethod

performed similarly well when independent pairs of individuals were collected from the lattice-based

simulation. The bias of the estimates from the simulated data showed a slightly different pattern than

the generated data, but this is likely due to the placement of the expected value. The expected value

was based on the parameters that were provided to the simulation, but due to the discrete nature of

the lattice, it is unlikely that the simulation will be a perfect reflection of the parameters.

The performance of the method suffers when non-independent pairs are sampled from the lattice

simulation. In these simulations, fewer samples were collected, but the data was analyzed using all

possible pairwise comparisons of the sampled individuals. Because this sampling scheme reuses the

data from individualsmany times, the total number of pairs that are counted per distance class ismuch

larger. Themodel incorrectly interprets the counts as if they were from a large sample of independent
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pairs when they are actually based on highly dependent pairs from a small sample. As a result of

this discrepancy, the model tends to estimate artificially narrow credible intervals which have as low

as 47% coverage rather than the expected 95%. The error and the bias indicate that the estimates

are close to the true value, and they are comparable to the results from the independent data sets;

however, due to the lower coverage, the true value is less likely to be contained within the credible

interval. The pairwise sampling scheme used in these simulations is typically appliedwhen estimating

neighborhood size using the regression methods (Rousset, 2000; Vekemans and Hardy, 2004), but it

should be avoided in favor of a more independent sampling scheme when using this method.

The method performed well on data that was generated with different dispersal parameters when

σ was less than 1.5. The relative MSE for σ = 0.25 was slightly elevated but this may be because the

sampling scalewas not fine enough for such lowdispersal. Whenσwas 1.5 or greater, the estimates be-

came unreliable with higher relative error and larger credible intervals. At the higher dispersal values,

the observed pattern of isolation-by-distance in the data was very weak, and it was not detected by the

model. When this occurs, the model makes extremely large and variable estimates of neighborhood

size. A relative δDIC value less than 0.01 appears to indicate the point where isolation-by-distance is

no longer detected.

When the pattern of isolation-by-distance is strong, estimates are accurate with fewer samples

and fewer markers. On the other hand, when the pattern of isolation-by-distance is weak, accurate

estimates can bemade if more data is available. In some cases, increasing the number of markers had

diminishing returns, but larger sample sizes generally improved the estimates.

The method performs better when genetic diversity is high in the sample for both the generated

and simulated data. For the generated data, I adjusted the f̄ parameter which determines the average

probability of identity in the sample. The f̄ parameter has an inverse relationship with genetic diver-

sity, so when f̄ was high, the neighborhood size estimates were less accurate and more variable. For

the simulated data, a higher mutation rate increased the genetic diversity, and the method provided

better estimates when themutation rate was high. When genetic diversity is low, it is difficult to detect

isolation-by-distance but perhaps better estimates can be made if more data is available. Generally

this should not be a concern because only highly polymorphic markers would be considered in such a
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study. Leblois et al. (2003) report that Rousset’s regression method (Rousset, 2000) is also sensitive

to genetic diversity, but they point out that the heterozygosity at microsatellite loci is usually within

the range of 0.5-0.8; which is where both methods perform well. Markers that are less polymorphic

(e.g. single nucleotide polymorphisms or allozymes) could be used but likely many more markers or

samples would need to be analyzed to produce good estimates.

The mutation rate for each marker is treated as a constant parameter that must be provided to

the model. I found that when the true mutation rate is high (µ = 10−2, 10−3, and 10−4), the pro-

vided mutation rate can differ by several orders and the model will still provide decent estimates of

neighborhood size but values that are closer to the true value perform better. This suggests that the

provided mutation rate can be a very rough approximation of the assumed mutation rate.

The model is robust to data generated using different mutation models. I compared estimates for

data simulated under the infinite allelesmodel, the K-allelesmodel, and the step-wisemutationmodel

and found that the neighborhood size estimates were close to the true value in each case. The number

of possible alleleswas restricted to 20 for both theKAMand SMMmodels, andwhen themutation rate

was high, it resulted in a large difference in the average number of alleles in the population compared

to the IAM, but the average number of heterozygotes was approximately the same for each model.

Leblois et al. (2003), using a more stringent K = 10, showed similar results using the regression

method from Rousset (2000). They suggest that the pattern of local differentiation corresponds to

events that have occurred in the recent past, and therefore it is less dependent on themutation process.

TheWM approximation assumes that dispersal follows a normal distribution along each axis, but

as shown in Figure 4, the pattern of isolation-by-distance is similar for a wide range of dispersal dis-

tributions. I found that the neighborhood size estimates were close to the expected value for many

of the dispersal distributions. Similar to the likelihood-based method from Novembre and Slatkin

(2009), the neighborhood size estimates using my method also show a negative bias when the dis-

persal distribution is highly leptokurtic (i.e. Lomax). This negative bias may be due to the steeper

decrease in genetic identity at short distances that is observed for these distributions 4. Because the

model assumes normal a normal distribution, this pattern may be interpreted as a stronger pattern

of isolation-by-distance which would result in an smaller neighborhood size estimate.
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Many studies have looked at how the sampling scale can influence the observed pattern of

isolation-by-distance and ultimately neighborhood size estimates (Epperson and Li, 1997; Leblois

et al., 2003; Vekemans and Hardy, 2004). Rousset (2000) recommends sampling most individuals

within an area of 10σ × 10σ but Leblois et al. (2003) suggest that such a sampling scale could be-

come prohibitive in practice. They tested deviations from the recommended scheme and found that

the MSE remained low, but the estimates did become negatively biased if the scale was too small and

positively biased if the scale was too large. I tested the impact of the sampling scale in mymodel and I

found that scaling the distance classes with σ did not have a large impact on the neighborhood size es-

timate unless σ is very large in which case it is better to sample distance classes 1σ−20σ. I also tested

different sampling patterns, and I found estimates are more accurate when the nearest neighbors are

included in the sample. This is expected because isolation-by-distance is often only detected at the

shortest spatial scales (Epperson and Li, 1997; Vekemans and Hardy, 2004). Leblois et al. (2003) rec-

ommend that distances do not exceed 10σ − 50σ because at larger scales the mutation rate and the

mutationmodel can no longer be neglected especially when themutation rate is high. Most of the data

sets tested here included data for 20 distance class but estimates using 10 distance classes showed low

MSE. The method presented here does not technically require that the data be grouped into distance

classes, but the computational efficiency of the model would suffer if each pair is modeled separately.

Neighborhood size contains information about effective population density and the dispersal abil-

ity of a species. Many biologist are particularly interested in information about dispersal because it

can be difficult to measure directly. Unfortunately, none of the indirect methods described here al-

low these parameters to be estimated independently of neighborhood size. However, if density can

be measured separately, this information can be used to calculate a point estimates of the dispersal

parameter as σ2 = Nb/4πDe. One of the advantages of my method is that the level of certainty in

the density estimate can be included in themodel and reflected in the credible intervals for the disper-

sal estimate. I demonstrated that different levels of certainty in the density prior led tighter credible

intervals and accurate estimates for the density parameter.

Finally, I tested the method on microsatellite data from samples from two populations of Pinus

pinaster Aiton. De-Lucas et al. (2009a) reported neighborhood sizes estimates for these samples
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using SPAGeDi which uses data sets based on all possible pairwise comparisons between samples.

I estimated neighborhood size using a data set that contained all pairwise data as well as data sets

where I attempted to limit the number of times that each sample was reused. My estimates for the

Fuentelapeña samples were fairly consistent and close to the value estimated in the original paper

but for the Quatratonda population, my estimates were more variable and much lower than the value

estimated in the paper. The variability in the estimates may be due to the lower relative δ DIC value

for the Quatratonda which indicates that isolation-by-distance is weaker. The posterior predictive fit

is good for both the pairwise and non-pairwise data sets, but the credible intervals are more narrow

for the pairwise data. As discussed previously, this is likely due to the reuse of data in the pairwise

sampling scheme.

The estimate provided by the SPAGeDi package is only a point estimate of neighborhood size.

Leblois et al. (2003) introduced a method to compute 95% confidence intervals for estimates based

on the slope of Rousset (2000)’s ar statistic. However, they reported that their ABC bootstrap pro-

cedure produced inaccurate intervals with lower than expected coverage. An accurate estimate of

uncertainty is important when making inferences. My Bayesian approach naturally provides a prob-

abilistic statement about the certainty of the estimated parameter in the form of the credible interval,

and I have shown that when samples are independent, the estimated credible intervals have high cov-

erage. Additionally, my method is able to provide a posterior predictive check which allows one to

access model fit for each of the markers independently. This will help determine if the behavior of

certain markers are driving the overall estimate.

MCMCmethods canbe cumbersome in certain situations but I did not experience anymajor issues

with convergence and I was able to generate many independent samples from the posterior in a short

amount of time. The average time to run the Pinus pinaster Aiton data was 209.9 ± 59 seconds for

30,000 iterations plus a 10,000 iteration burn-in.

Overall, this method performs well and is robust to certain violations of the model assumptions.

This method is recommended for estimating neighborhood size from genetic data sets collected from

continuous populations at drift-mutation-dispersal equilibrium. The credible intervals for the esti-

mates behave best when pairs of individuals are independent. The model assumes that spatial ge-
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netic structure observed in the data is a consequence of isolation-by-distance and estimates will be

more accurate when the pattern of isolation-by-distance is strong. When the pattern of isolation-by-

distance is weak, includingmore samples andmoremarkers should produce more accurate estimates

of neighborhood size.
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Table 4. The neighborhood size estimates are accurate when dispersal is local but they become less
accurate and more variable as dispersal distance increases. Thirty data sets were generated from the
model withDe = 1, f̄ = 0.39, and σ = 0.25, 0.5, 1, 1.5, 2, or 4. Twenty pairs of individuals with 10
independent markers were generated for each of 20 distance classes (1–20). The table shows the
average of the neighborhood size estimates (N̄b), the relative mean squared error (MSE), the bias,
the average width of the credible intervals, the DIC values for both the model and the null hypothesis
of no isolation-by-distance, their difference (Ho DIC−Ha DIC), and their relative difference
(δDIC = ∆DIC/Ho DIC).

σ 0.25 0.5 1 1.5 2 4

De 1 1 1 1 1 1

Nb 0.785 3.142 12.566 28.274 50.265 201.062

N̄b 0.763 2.769 11.123 543.587 37334.619 43974.325

MSE 0.263 0.053 0.047 4753.022 8323973.557 327725.582

Bias -0.022 -0.373 -1.444 515.313 37284.354 43773.263

CI Width 1.651 2.708 11.068 4816.192 331098.758 387265.153

Ho DIC 1876.341 1546.122 1212.816 1160.790 1144.325 1151.911

Ha DIC 1137.717 1138.801 1145.810 1147.562 1140.767 1151.296

∆DIC 738.624 407.321 67.006 13.229 3.558 0.615

δDIC 0.394 0.263 0.055 0.011 0.003 0.001
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Table 5. Accurate estimates can be made with fewer samples and fewer markers when
isolation-by-distance is strong. Thirty data sets were generated from the model withDe = 1,
σ = 0.5, and f̄ = 0.39 for an expected neighborhood size of 3.14. Each data set contained either 1,
2, 5, or 10 pairs of individuals with either 5, 10, or 15 independent loci for each of 20 distance classes
(1–20). The table shows the relative mean square error, the bias, and the average width of the
credible intervals.

Number of Pairs Per Distance Class

1 2 5 10

N
um

be
r
of
Lo
ci

5
MSE 0.526 0.530 0.284 0.289

Bias -1.252 -0.769 -1.300 -1.300

CI Width 14.653 11.852 4.897 3.916

10

MSE 0.311 0.321 0.144 0.142

Bias -1.509 -1.404 -0.854 -0.766

CI Width 6.779 5.476 4.319 3.208

15

MSE 0.314 0.292 0.124 0.083

Bias -0.767 -1.357 -0.786 -0.573

CI Width 6.790 4.724 3.715 2.863
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Table 6. When isolation-by-distance is weak, more samples and more markers can improve
estimates. Thirty data sets were generated from the model withDe = 1, σ = 2, and f̄ = 0.39 for an
expected neighborhood size of 50.27. Each data set contained either 20, 30, 40, or 50 pairs of
individuals with either 10, 20, or 30 independent markers for each of 20 distance classes (1–20). The
table shows the relative mean square error, the bias, and the average width of the credible intervals.

Number of Pairs Per Distance Class

20 30 40 50

N
um

be
r
of
Lo
ci

10

MSE 7055.300 287.408 15131.937 9.696

Bias 1066.537 336.470 1490.264 42.134

CI Width 8077.658 2874.703 11450.843 726.678

20

MSE 29.559 6.487 0.370 0.195

Bias 122.509 15.579 -0.994 -1.165

CI Width 1440.785 376.768 157.077 124.136

30

MSE 4.053 0.935 0.668 0.059

Bias 37.527 10.392 8.882 -0.768

CI Width 165.385 67.050 59.472 4.876
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Table 7. Neighborhood size estimates are more accurate and precise when genetic diversity is high
(low f̄ ). Thirty data sets were generated from the model withDe = 1, σ = 1, and f̄ = 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, or 0.9 for an expected neighborhood size of 12.56. Each data set contained 20
pairs of individuals with 10 independent markers for each of 20 distance classes (1–20). The table
shows the relative mean square error, the bias, and the average width of the credible intervals.

Average Probability of Identity (f̄ )

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MSE 0.006 0.021 0.030 0.036 0.102 0.127 0.599 274.151

Bias -0.546 -1.312 -1.081 -1.085 -2.574 -2.615 -1.493 63.851

CI Width 4.105 6.716 9.208 11.826 13.289 19.041 42.104 739.914
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Table 8. Neighborhood size estimates are close to the expected value for most dispersal distributions.
Thirty data sets were simulated with different dispersal distributions. The parameters of the
dispersal distributions were set so that the average squared parent-offspring distance (s2) would be
approximately 1 for an expected neighborhood size of 12.56. Each data set contained 20 pairs of
individuals with 20 independent markers for each of 20 distance classes (1–20). The table shows the
dispersal distribution, the dispersal parameters (s2), the average of 30 neighborhood size estimates,
the relative mean squared error, the bias, and the average width of the credible intervals.

Distribution σ α s2 N̄b MSE Bias CI Width

Rayleigh 1 – 1.088 13.518 0.036 0.952 9.248

Exponential 1 – 1.065 11.766 0.060 -0.800 8.647

Half-Normal 1 – 1.066 12.404 0.048 -0.162 8.476

Triangular 1 – 1.120 13.264 0.026 0.698 9.686

Gamma 1 1.5 1.064 11.859 0.078 -0.708 8.960

Gamma 1 2 1.065 11.797 0.036 -0.769 8.072

Gamma 1 4 1.098 12.206 0.035 -0.360 8.475

Gamma 1 8 1.082 13.775 0.035 1.209 9.753

Pareto 0.98 2.4 1.076 10.219 0.071 -2.348 6.768

Pareto 0.962 2.6 1.095 11.836 0.030 -0.730 6.799

Pareto 0.917 2.8 1.077 10.775 0.037 -1.791 6.395

Pareto 0.944 3 1.112 11.515 0.034 -1.052 7.270

Lomax 1.25 2.4 0.971 7.990 0.188 -4.577 7.764

Lomax 1.108 2.6 1.138 7.707 0.229 -4.859 7.275

Lomax 1.058 2.8 1.066 8.479 0.187 -4.087 8.068

Lomax 1.05 3 1.144 8.344 0.207 -4.222 8.694
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Table 9. The mutation rate provided to the model has a small impact on the neighborhood size
estimate. Thirty data sets were simulated with different mutation rates µ = 10−2, 10−3, 10−4, and
10−5, σ = 1, and an expected neighborhood size of 12.56. Each data set contained 20 pairs of
individuals with 20 independent markers for each of 20 distance classes (1–20). For each data set,
the MCMC algorithm was run with a different mutation rate parameter µ = 10−2, 10−3, 10−4,
10−5, or 10−6. The table shows the average observed heterozygosity (H̄o), the relative mean square
error, the bias, and the average width of the credible intervals.

MCMCMutation Rate

H̄o 10−2 10−3 10−4 10−5 10−6

Si
m
ul
at
io
n
M
ut
at
io
n
R
at
e

1
0
−
2

0.851
MSE 0.012 0.045 0.022 0.016 0.025

Bias 0.699 2.117 0.974 -0.182 -1.226

CI Width 2.485 3.550 3.612 3.624 3.772

1
0
−
3

0.779
MSE 0.032 0.015 0.031 0.034 0.031

Bias -1.993 0.915 1.775 1.846 1.567

CI Width 2.511 3.502 4.626 5.403 5.783

1
0
−
4

0.537
MSE 0.066 0.021 0.028 0.054 0.062

Bias -2.837 -0.274 0.488 0.216 -0.001

CI Width 5.064 6.675 8.521 9.064 9.569

1
0
−
5

0.131
MSE 0.528 0.675 0.189 15.654 29.264

Bias -3.448 -2.090 -3.033 4.359 8.949

CI Width 38.095 44.762 30.501 107.715 143.118
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Table 10. When the mutation rate is high, more alleles are maintained under the infinite alleles
model and the heterozygote frequency is high. Samples were collected from populations simulated
under the IAM, KAM, or SMM and µ = 10−2, 10−3, 10−4, or 10−5. The table shows the average
number of alleles (k̄), and the average observed frequency of heterozygotes (H̄o).

Model k̄ H̄o

M
ut
at
io
n
R
at
e

1
0
−
2 IAM 525 0.851

KAM 20 0.807

SMM 19 0.785

1
0
−
3 IAM 78 0.779

KAM 20 0.741

SMM 10 0.674
1
0
−
4 IAM 12 0.528

KAM 9 0.500

SMM 5 0.441

1
0
−
5 IAM 2 0.131

KAM 2 0.150

SMM 2 0.159
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Table 11. Neighborhood size estimates are less precise when fewer distance classes are sampled and
estimates are not accurate when small distances are not sampled (4 and 5). Thirty populations were
simulated with σ = 1 for an expected neighborhood size of 12.56. Each data set contained 20 pairs
of individuals with 30 independent markers for each of 40 distance classes (1–40). The table shows
the average neighborhood size estimates, the relative mean squared error, the bias, and the average
credible interval width for different subsets of the 40 distance classes. The following sampling
schemes were used: (1) all 40 distance classes, (2) the first 20 distance classes, (3) the first 10
distance classes, (4) each distance class from 11–20, (5) each distance class from 6–15, (6) every
other distance class from 1–19, (7) every third distance class from 1–28, and (8) every fourth
distance class from 1–37.

Sampling Scheme

1 2 3 4 5 6 7 8

N̄b 13.6 13.010 12.472 5106.555 342.229 13.501 13.351 13.669

MSE 0.024 0.019 0.066 2078145.007 16856.458 0.053 0.039 0.046

Bias 1.099 0.444 -0.095 5093.989 329.663 0.935 0.785 1.102

CI Width 4.640 5.915 14.938 49373.045 2306.524 9.840 8.475 7.239
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Table 12. Estimates of the dispersal parameter are closer to the true value when the density prior
has high precision (τ ). Thirty data sets were generated from the model with different combinations
of parameters for dispersal (σ) and density (De) that resulted in an expected neighborhood size of
12.56. Each data set contained 20 pairs of individuals with 10 independent markers for each of 20
distance classes (1σ–20σ). For each data set, the prior distribution for the density parameter had a
mean equal to the true value and a precision of τ = 0.001, 1, or 100. The table shows the average of
the neighborhood size estimates, the average of the dispersal estimates (s̄), the mean squared error,
the bias, and the average width of the credible intervals.

σ De τ N̄b σ̄ MSE Bias CI Width

0.5 4 0.001 11.108 0.534 0.412 0.034 1.478

1 1 0.001 11.710 1.055 0.313 0.055 2.988

2 0.25 0.001 11.012 1.663 0.348 -0.337 4.715

10 0.01 0.001 11.167 11.441 0.698 1.441 28.661

0.5 4 1 11.927 0.508 0.074 0.008 0.830

1 1 1 12.973 1.065 0.041 0.065 1.778

2 0.25 1 12.835 1.959 0.032 -0.041 3.275

10 0.01 1 12.258 10.484 0.092 0.484 17.244

0.5 4 100 12.722 0.501 0.006 0.001 0.174

1 1 100 13.321 1.026 0.004 0.026 0.366

2 0.25 100 12.639 1.963 0.036 -0.037 0.694

10 0.01 100 12.620 9.813 0.038 -0.187 3.456
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Table 13. Estimates for the Fuentelapeña population have tighter credible intervals and the∆DIC
values are larger compared to the Quatretonda population. The table shows the average credible
interval width, the DIC value for the model (DICHa) and the DIC value for the null model of no
isolation-by-distance (DICHo), the difference between the two DIC values
(∆DIC = DICHo −DICHa), and the relative difference (δDIC = ∆DIC/DICHo) for the independent
samples from both populations.

Population CI Width DICHa DICHo ∆DIC δDIC

Fuentelapeña 55.515 358.455 385.562 27.106 0.070

Quatretonda 78.915 342.822 361.520 18.698 0.052
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Figure 8. The method performs well on data generated directly from the model but there is a bias
toward lower estimates. Each panel shows the neighborhood size estimates for 100 data sets
randomly generated with σ = 1,De = 1, and f̄ = 0.39 for an expected neighborhood size of 12.56
indicated by the black dashed line. Twenty pairs of individuals were generated for each of 20
distance classes (1–20). Different panels represent data generated for either 10, 20, or 30
independent markers. The gray dots are the mean of the neighborhood size posterior distribution
shown in increasing order. The vertical lines are the 95% credible intervals; the intervals that do not
cover the true value are shown in red. Each panel indicates the percent of estimates that cover the
true value, the relative mean squared error, and the bias.
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Figure 9. The relative error is low for small neighborhood sizes but estimates are more variable and
less accurate after neighborhood size reaches 50.27 (σ = 2). Thirty data sets were generated from
the model withDe = 1, f̄ = 0.39, and σ = 0.25, 0.5, 1, 1.5, 2, or 4. Twenty pairs of individuals with
10 independent loci were generated for each of 20 distance classes (1–20). The box-whisker plot
summarizes the distribution of the relative squared error (log scale) of the neighborhood size
estimates for each data set (blue dots), where the top and bottom of the boxes represent the 25% and
75% quartiles and the center bar represents the median.
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Figure 10. Neighborhood size estimates are more accurate and precise when genetic diversity is high
(low f̄ ). Thirty data sets were generated from the model withDe = 1, σ = 1, and f̄= 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, or 0.9 for an expected neighborhood size of 12.56 (gray horizontal line). Each
data set contained 20 pairs of individuals with 10 independent markers for each of 20 distance
classes (1–20). The box-whisker plots summarize the distribution of neighborhood size estimates
(blue dots) for each data set. The features of the box-whisker plot are the same as in Figure 9.
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Figure 11. The method performs well on simulated data. Each panel shows the neighborhood size
estimates for 100 data sets from the lattice simulation with σ = 1 andDe = 1 for an expected
neighborhood size of 12.56 indicated by the black dashed line. Each data set contained 20 pairs of
individuals with either 10, 20, or 30 independent markers for each of 20 distance classes (1-20). The
features of the plot are the same as described in Fig. 8.
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Figure 12. The coverage percentage suffers when pairwise data are used. Each panel shows the
neighborhood size estimates for 100 pairwise data sets from the lattice simulation with σ = 1 and
De = 1, for an expected neighborhood size of 12.56 indicated by the black dashed line. Each data set
was a sample of 100 individuals from a 10σ × 10σ grid and each individual had either 10, 20, or 30
independent markers. The features of the plot are the same as described in Fig. 8.
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Figure 13. The posterior predictions fit the simulated data sets. The plots show the posterior
predictive fit for one of the data sets from the lattice simulation for each of 10 marker loci. The gray
dots represent the proportion of IIS pairs for each distance class (1–20). The blue lines represent the
mean (horizontal curve) and the 95% credible intervals (vertical lines) for the distribution of
hypothetical values that would be likely given the posterior distribution.
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Figure 14. The posterior predictions fit the simulated pairwise data sets. The plots show the
posterior predictive fit for one of the data sets from the lattice simulation for each of 10 marker loci.
The gray dots represent the proportion of IIS pairs for each distance class. The blue lines represent
the mean (horizontal curve) and the 95% credible intervals (vertical lines) for the distribution of
hypothetical values that would be likely given the posterior distribution.
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Figure 15. Neighborhood size estimates are close to the expected value for most dispersal
distributions. Thirty data sets were simulated with different dispersal distributions. The parameters
of the dispersal distributions were set so that the average squared parent-offspring distance (s2)
would be approximately 1 for an expected neighborhood size of 12.56 (gray horizontal line). Each
data set contained 20 pairs of individuals with 20 independent markers for each of 20 distance
classes (1–20). The box-whisker plots summarize the distribution of neighborhood size estimates
(blue dots) for each data set. The features of the box-whisker plot are the same as in Figure 9.
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Figure 16. The mutation rate provided to the model has a small impact on the neighborhood size
estimate. Thirty data sets were simulated with different mutation rates µ = 10−2, 10−3, 10−4, 10−5,
and 10−6, σ = 1, and an expected neighborhood size of 12.56 (gray horizontal line). Each data set
contained 20 pairs of individuals with 20 independent markers for each of 20 distance classes
(1–20). For each data set, the MCMC algorithm was run with a different mutation rate parameter µ
= 10−2, 10−3, 10−4, 10−5, or 10−6. The box-whisker plots summarize the distribution of
neighborhood size estimates (blue dots) for each data set. The features of the box-whisker plot are
the same as in Figure 9.
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Figure 17. Neighborhood size estimates are similar for different mutation models. Thirty data sets
were simulated with three different mutation models: infinite alleles model (IAM), K-alleles model
(KAM), and step-wise mutation model (SMM); and four mutation rates, µ = 10−2, 10−3, 10−4, and
10−5. The expected neighborhood size is 12.56 (gray horizontal line). Each data set contained 20
pairs of individuals with 30 independent markers for each of 20 distance classes (1–20). The
box-whisker plots summarize the distribution of the neighborhood size estimates for each data set
(blue dots).
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Figure 18. When dispersal distances are large, scaling the distance classes improves neighborhood
size estimates. Thirty data sets were generated from the model with σ = 0.5, 1.0, 2.0, or 10.0 and
density was set so that the expected neighborhood size would 12.56 in each case. Each data set
contained 20 pairs of individuals with 10 independent markers for each of 20 distance classes from
either 1–20 (constant) or 1σ–20σ (scaled). The box-whisker plots summarize the distribution of the
neighborhood size estimates (blue dots).

77



Sampling Scheme

N^
b

0

5

10

15

20

1 2 3 4 5 6 7 8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 19. Neighborhood size estimates are less precise when fewer distance classes are sampled
and estimates are not accurate when small distances are not sampled (4 and 5). Thirty populations
were simulated with σ = 1 for an expected neighborhood size of 12.56 (gray horizontal line). Each
data set contained 20 pairs of individuals with 30 independent markers for each of 40 distance
classes (1–40). Neighborhood size estimates were made using different subsets of the 40 distance
classes. The box-whisker plots summarize the distribution of neighborhood size estimates (blue
dots). The following sampling schemes were used: (1) all 40 distance classes, (2) the first 20
distance classes, (3) the first 10 distance classes, (4) each distance class from 11–20, (5) each
distance class from 6–15, (6) every other distance class from 1–19, (7) every third distance class from
1–28, and (8) every fourth distance class from 1–37.
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Figure 20. Estimates of the dispersal parameter are closer to the true value when the density prior
has high precision (τ ). Thirty data sets were generated from the model with σ = 0.5, 1.0, 2.0, or
10.0 and density was set so that the expected neighborhood size was 12.56 in each case. Each data
set contained 20 pairs of individuals with 10 independent markers for each of 20 distance classes
(1σ–20σ). For each data set, the prior distribution for the density parameter had a mean equal to
the true value and a precision of τ = 0.001, 1, or 100. The box-whisker plots summarize the
distribution of the relative squared error of the dispersal parameter estimates (blue dots).
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Figure 21. Estimates for the Fuentelapeña population were similar to the previously published value
but the estimates for the Quatretonda population were more variable. The plot shows the mean of
the neighborhood size posterior (gray dots) and the 95% credible interval (vertical lines). The blue
lines indicate estimates for 10 different samples where pairs of individuals were randomly drawn
from the data set independently, without replacement. The green lines indicate estimates using all
pairwise comparisons of the samples. The black dashed line represents the point estimates from
De-Lucas et al. (2009a).
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0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

itp
h4

51
6

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

fr
pp

94

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

ss
rP

t_
ct

g2
75

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

R
P

te
st

11

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

fr
pp

91

0 10 20 30 40 50 60 70
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

ss
rP

T
_c

tg
43

63

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

itp
h4

51
6

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

fr
pp

94
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

ss
rP

t_
ct

g2
75

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

R
P

te
st

11

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

fr
pp

91

0 10 20 30 40 50 60 70
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

ss
rP

T
_c

tg
43

63

Figure 22. The posterior predictions fit the observed pairwise data. The plots show the posterior
predictive fit for pairwise data from both populations. The gray dots represent the proportion of IIS
pairs for each distance class. The blue lines represent the mean (horizontal curve) and the 95%
credible intervals (vertical lines) for the distribution of hypothetical values that would be likely given
the posterior distribution. The rows correspond to the six different microsatellite loci.
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Figure 23. The posterior predictions fit the observed data. The plots show the posterior predictive fit
for the first independent data set shown in Figure 21 for each population. The gray dots represent
the proportion of IIS pairs for each distance class estimated from the data. The blue lines represent
the mean (horizontal curve) and the 95% credible intervals (vertical lines) for the distribution of
hypothetical values that would be likely given the posterior distribution. The rows correspond to the
six different microsatellite loci.
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Chapter 4

THE ROLE OF SELF-INCOMPATIBILITY SYSTEMS IN THE PREVENTION OF BIPARENTAL

INBREEDING

Abstract

Hermaphroditic plants can experience inbreeding in two ways: self-fertilization, when they mate

with themselves, or bi-parental inbreeding, when they mate with close relatives. Under isolation-by-

distance when pollen and seed dispersal are limited, plants experience greater bi-parental inbreeding.

Many plant species have evolved physical and genetic self-incompatibility (SI) systems which limit

self-fertilization, but only the genetic SI systems can also limit bi-parental inbreeding. Genetic SI

species are prevalent across the angiosperms and it is often assumed that the additional reduction

in bi-parental inbreeding may be a factor in their success. To test this assumption, I developed a

spatially-explicit, individual-based simulation of plant populations with either physical SI or one of

three different types of genetic SI, and compared the amount of inbreeding in the populations. I found

that the amount of inbreeding in the genetic SI populations was significantly lower than the physical

SI populations and this reduction is due to bi-parental inbreeding avoidance. However, compared

to the overall reduction in inbreeding this was relatively small. Genetic SI populations also suffered

reduced female fecundity and had smaller census population sizes. Overall, I found little evidence

that the success of genetic SI systems is due to bi-parental inbreeding avoidance because the effect

is small compared to the reduction in self-fertilization and there would need to be a strong selective

advantage to outweigh the cost of reduced female fecundity.

Introduction

Due to the sessile nature of angiosperms, offspring dispersal occurs only through the movement of

pollen and seed, and in many plant species, pollen and seed dispersal distances rarely exceed a few

meters from the parent (Fenster, 1991; Levin, 1981). Plants are therefore more likely to become estab-
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lished near their parent’s location where there is a higher concentration of related individuals. Under

these conditions, populations become spatially structured due to isolation-by-distance. If pollen dis-

persal is also limited, these related individuals aremore likely to interbreed. This type of inbreeding is

referred to as bi-parental inbreeding to distinguish it from the more extreme inbreeding that occurs

when hermaphroditic plants self-fertilize. In many plant species, crosses between close neighbors

have been shown to produce offspring that are less fit than average, and because the reduction in

fitness is associated with spatial proximity, this is likely evidence of inbreeding depression resulting

from isolation-by-distance (Heywood, 1991).

Both bi-parental inbreeding and self-fertilization (selfing) can increase homozygosity within a

genome. Offspring that are produced through inbreeding are more likely to express recessive dele-

terious alleles and suffer reduced viability and fecundity (Charlesworth and Charlesworth, 1987;

Charlesworth et al., 1990). Self-fertilizing species have more opportunities to purge highly delete-

rious alleles, but they tend to maintain a large number of slightly deleterious alleles (Charlesworth

et al., 1990; Wang et al., 1999). Out-crossing species tend to maintain recessive deleterious alleles in

a heterozygous state which can lead to inbreeding depression. However, when bi-parental inbreed-

ing is common, some of the segregating deleterious alleles can be purged in outcrossing populations

(Heywood, 1991).

Presumably as a result of inbreeding depression, plants have evolved a variety of inbreeding avoid-

ancemechanisms, many of which are specifically directed at reducing self-fertilization. In heteromor-

phic self-incompatibility (SI) systems, each plant expresses one of the two or more genetically deter-

mined flowermorphologies and pollen from onemorph can only fertilize flowers of a different morph.

Homomorphic SI systems are also genetically determined but they result in a large number of differ-

ent molecular phenotypes that do not affect flower morphology. Although both of these SI systems

have a genetic basis, I will refer to heteromorphic SI as physical SI because the mechanism is based

on physical morphology, and I will refer to homomorphic SI as genetic SI.

Genetic SI systems are typically controlled by two tightly linked genes at an S locus, which deter-

mine the molecular phenotype of the pollen and allow the female receptors to recognize and reject

pollen with the same phenotype. Genetic SI systems can be split into two categories: gametophytic
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SI and sporophytic SI. In gametophytic SI systems, the phenotype of the pollen is determined by the

pollen’s S locus haplotype; whereas, in sporophytic SI systems, the phenotype is determined by the

diploid genotype of the pollen donor. In both systems, the female receptor discriminates against any

pollen with a matching S phenotype, regardless of whether it originated from the same plant.

Physical SI strategies reduce self-fertilization, but they do not provide a mechanism to prevent

bi-parental inbreeding. Genetic SI systems, on the other hand, prevent self-fertilization and prevent

crosses with individuals that share similar S alleles. Because similar S alleles are often shared among

related individuals, genetic SI systems also provide a mechanism to limit bi-parental inbreeding.

Genetic SI systems are prevalent across angiosperm families (Igic et al., 2008), and it is commonly

assumed that the evolutionary success of these systems is tied to their ability to reduce bi-parental

inbreeding in addition to preventing self-fertilization (Charlesworth and Charlesworth, 1987). How-

ever, because the genetic consequences of bi-parental inbreeding and self-fertilization are similar, it

is difficult to distinguish between the two types of inbreeding (Griffin and Eckert, 2003). As a result,

there are no studies that directly estimate howmuch genetic SI systems reduce bi-parental inbreeding

compared to self-fertilization.

There is evidence that bi-parental inbreeding is reduced in regions of the genome that are linked

to the S locus. The forced heterozygosity at the S locus extends to other linked loci and can reduce

the expression of recessive deleterious alleles at those loci. Deleterious alleles can accumulate in this

region because they are sheltered from selection (Llaurens et al., 2009). It remains unclear, however,

whether genetic SI systems reduce bi-parental inbreeding at loci that are not linked to the S locus.

Cartwright (2009) presented results from a simulation study which compared the amount of in-

breeding in populations with physical or genetic SI systems. He confirmed that there was a large

decrease in bi-parental inbreeding in genetic SI simulations near the S locus compared to physical SI

systems, but at unlinked loci, the reduction in bi-parental inbreeding was comparatively small. This

suggests that at unlinked loci, genetic SI systems only have a small impact on the amount of bi-parental

inbreeding; however, Cartwright points out that he did notmodel inbreeding depression which would

have introduced a selective advantage to avoid inbreeding.

In this study, I test whether bi-parental inbreeding avoidance is a driving force behind the evolu-
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tion of genetic self-incompatibility systems in angiosperms. I develop a spatially-explicit, individual-

based simulation to model continuous populations of self-incompatible plants. To differentiate be-

tween the two types of inbreeding, I compare the amount of inbreeding observed in genetic SI popu-

lations to the amount of inbreeding in physical SI populations where individuals are prevented from

selfing but are free to mate with related individuals. Any reduction in inbreeding in the genetic SI

populations compared the physical SI populations will be a result of a reduction in bi-parental in-

breeding. I predict that the reduction in bi-parental inbreeding in the genetic SI populations will be

more dramatic when isolation-by-distance is strong.

In the simulation, I model three different genetic SI systems which vary in the way they discrim-

inate against pollen with matching S alleles. The first system is modeled after the gametophytic SI

system (GSI). The GSI system is the least stringent system because half of the pollen produced by a

plant can successfully fertilize a plant that has one S allele in common. The second system is modeled

after the sporophytic system that is common in the Brassicaceae (BSI). In the BSI system, dominance

relationships exist between the S alleles, and the pollen phenotype will reflect the dominant S allele.

In this case, pollen can successfully fertilize a plant that shares the recessive allele but it cannot fertil-

ize a plant that shares the dominant allele. Finally, I modeled a codominant version of sporophytic SI

(SSI), where both of the S alleles are equally expressed in the pollen phenotype. There is no known

biological equivalent of this SI system, and a situation where all S alleles are equally codominant is

highly unlikely. Nevertheless, the SSI system serves tomodel an extreme case of discriminationwhere

pollen is prevented from fertilizing any plant that shares either S allele. I predict that more stringent

SI systems will show a greater reduction in bi-parental inbreeding.

One consequence of genetic self-incompatibility is that female fecundity can suffer when pollen

from compatible mates is limited (Larson and Barrett, 2000). In genetic SI populations, the S locus

is under negative, frequency-dependent selection, and pollen with a rare S phenotype will be favored.

For this reason, a large number of S alleles needs to be maintained in the population for mating to

be successful. When isolation-by-distance is strong, the pollen pool is reduced and individuals may

struggle to find amate. There is evidence that suggests that effective dispersal at the S locus increases
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in SI populations (Cartwright, 2009; Leducq et al., 2011) but mate limitation will still likely lead to

reduced seed set.

Methods

I developed a spatially-explicit, individual-based simulation to model discrete generations of a self-

incompatible plant population. In the simulation, populations inhabit a toroidal lattice where each

cell is occupied by a single, hermaphroditic individual. The plants are diploid and have several inde-

pendently assorting genetic loci.

In natural SI systems, theS locus usually contains two genes that control the pollen and the recep-

tor phenotypes. Due to repressed recombination, these genes are tightly linked and inherited together

(Casselman et al., 2000; Castric et al., 2010; Charlesworth and Awadalla, 1998; Kamau et al., 2007;

Kawabe et al., 2006; Vieira et al., 2003). Therefore, in the simulation, theS locus is treated as a single

gene with one allele. Mutations occur at the S locus at rate µs = 10−5, and each mutation results in

a completely new S haplotype according to the infinite alleles mutation model.

The M -locus is a marker locus where all alleles are selectively neutral. The M -locus mutates

at rate µm = 10−4 under the infinite alleles model. This marker is used to measure the amount of

inbreeding in the population. In the initial population, eachS andM allele is unique so the simulation

must run for a burn-in period before it reaches a drift-mutation equilibrium.

Individuals also carry a total of 10 independentD-loci that are not linked to each other and are not

linked to the S orM loci. Each locus may carry two possible alleles: a wild-type allele and a recessive

deleterious allele. Individuals start out with all wild-type alleles that may mutate into the deleterious

allele. TheD locusmutates into the deleterious allele at rate µd = 0.1, and cannot mutate back to the

wild-type state. Each homozygous recessive genotype at aD locus increases the probability that an in-

dividual will become sterile by 0.005. Affected individuals are viable but are unable to produce pollen

or seed. The purpose of theD locus is to model inbreeding depression by simulating the segregation

of slightly deleterious alleles in the population. Usually, the probability of a deleterious mutation at

a single locus is rare, but the probability of a deleterious mutation is high when the whole genome is
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considered. To maintain a large enough penalty for inbreeding, I used a high mutation rate at eachD

locus so that, on average, there would be one new deleterious mutation per haplotype.

At the beginning of each generation, fertile parent plants produce gametes — 10 pollen grains and

5 ovules — through independent assortment of loci. Pollen grains are dispersed from the parent’s

location according to a normal distribution along each axis with standard deviation σ. The pollen is

then checked for compatibility with the plant in the new location based on the rules of the assigned

SI system. If compatible, it is randomly assigned to an ovule, otherwise it is discarded. When pollen

dispersal is complete, some ovules will be remain unfertilized while some ovules will have a pool of

pollen from which they will randomly choose one. Unfertilized ovules will be aborted and fertilized

ovules will form seeds. Seeds are then dispersed from the parent’s location in the same way as the

pollen. When seed dispersal is complete, a single seed from each cell will be randomly selected to

become a parent in the next generation. Random mutations occur in the germ line of these parents

before they produce gametes so that all of their offspring will carry the mutation.

Mating Systems

Pollen and receptor compatibility is determined by four different SI systems. The first is a physical self-

incompatibility system (PSI) where individuals are obligate out-crossers but no geneticmating system

is in place to prevent bi-parental inbreeding. This synthetic PSI system is 100% efficient at preventing

self-fertilization. In the gametophytic self-incompatibility (GSI) system, theS phenotype of the pollen

is determined by the pollen’s haplotype. Pollen is compatible if its S allele does not match either S

allele in the pollen recipient. In the co-dominant sporophytic self-incompatibility (SSI) system, the

S phenotype of the pollen is determined by the diploid genotype of the pollen donor. All S alleles

are codominant, and pollen is compatible with any plant that does not share either of its parent’s

S alleles. Dominant sporophytic self-incompatibility (BSI), is similar to SSI; however, dominance

relationships exist between S alleles. The S alleles in the population are randomly assigned into a

dominance hierarchy and pollen is compatible with any plant that does not share its dominantS allele.

For comparison, some simulations were run with no self-incompatibility system (NSI) where plants

88



were allowed to self-fertilize. Self-fertilization occurred when self pollen did not disperse outside the

parent cell.

Simulation and Analysis

Simulations were run for each of four different landscape sizes (50× 50, 100× 100, 200× 200, and

400× 400) and for each of the four different SI systems (PSI, GSI, BSI, and SSI). The pollen and seed

dispersal parameters were both set to either σ = 1, 2, 4, or 6. For the 50× 50 and 100× 100 popu-

lations, a random sample of 500 individuals was collected from the population everyN generations

after a 10,000 generation burn-in period, whereN is the size of the population. I collected a total of

500 replicate samples from these nearly independent populations. Simulations using the 200× 200

and 400×400 require a much larger investment in computing time. To reduce the computation time,

I collected samples from the population every 10,000 generations after anN generation burn-in pe-

riod. Relative to the size of the population, the number of generations between the samples is small

so they may not be independent; however, to reduce some of the correlation, I combined data from 5

different simulation runs for a total of 500 equilibrium samples.

To measure inbreeding in each sample, I calculated the average probability that an individual

carried two alleles at theM locus that were identical-by-descent. The alleles were considered to be

identical-by-descent if they both descended from the same allele in a grandparent, regardless of muta-

tion. From each sample, I also recorded the average homozygosity, and the average number of alleles

at the S andM locus, and the average squared parent-offspring dispersal distance (s2). For pollen

and seed dispersal, total s2 is expected to be σ2 = σ2
s + σ2

p/2, where σs represents seed movement

and σp represents pollen movement (Crawford, 1984). In this formula, seed dispersal contributes

more than pollen dispersal because seeds carry gametes from both parents whereas pollen only car-

ries gametes from the father. From the whole population, I recorded the total number of adults, the

seed set, and the number of sterile individuals.

To analyze the results, I used the Anderson-Darling two-sample test (Scholz and Stephens, 1987)

implemented in the kSamples R package (R Core Team, 2015; Scholz and Zhu, 2016). The test statistic

was T.AD = (AD − (k − 1))/σ, and the P-value estimation method was set to simulate the default
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10,000 random rank permutations. The distribution of values for each measurement was compared

between the different simulations under the null hypothesis that the values came from the same un-

derlying distribution. The P-values from the pairwise comparisons were adjusted for multiple tests

using the Holm correction (Holm, 1979) and the significance criterion was set at 0.05 for all tests.

Results

Effect of Inbreeding Depression

In the simulations, inbreeding individuals that are homozygous at certain loci were penalized with

an increased probability of becoming sterile. To determine the impact of this imposed inbreeding

depression, I compared the amount of inbreeding in simulations with and without the deleterious

effect. The probability of grandparental identity-by-descent at the M locus was used as a measure

of recent inbreeding in the population. Figure 24 shows the pairwise comparisons for the results

from simulations on a 100 × 100 landscape with the pollen and seed dispersal parameter σ = 1 for

the NSI, PSI, GSI, BSI, and SSI systems. The dark blue squares represent comparisons that are not

significantly different and the values along the right side of the figure represent the average probability

of grandparental identity-by-descent across all population samples. The different mating systems are

arranged from left to right in descending order based on the average probability. For the genetic SI

systems, there is not a significant difference between the simulations with inbreeding depression (1)

and without inbreeding depression (0).

To compare the stationary level of inbreeding in the populations, I also measured the average

frequency of homozygotes (Fig. 24). Here, the physical and genetic SI systems all have a significantly

lower frequency of homozygoteswhen there is a penalty for inbreeding compared to simulationswhere

there is nopenalty. The simulationswithnoSI system (NSI) had the highest frequency of homozygotes

and there was not a significant difference between simulations with or without inbreeding depression.
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Probability of Grandparental Identity-By-Descent

Figure 26A shows the results of pairwise comparisons for the 100 × 100 simulations with σ = 1 for

the NSI, PSI, GSI, BSI, and SSI systems. The dark blue squares represent comparisons that are not

significantly different and the values along the right side of the figure represent the average probability

of grandparental identity-by-descent across all population samples. The different mating systems are

arranged from left to right in descending order based on the average. The probability of identity-by-

descent is significantly different between all SI systems except for GSI and BSI, and it decreases as the

SI systems become more stringent. Figure 26B shows the empirical distribution of the probabilities.

The distributions for the genetic SI systems are all significantly different than the PSI distribution;

however, the difference is small when compared to the NSI distribution.

To ensure that this pattern is consistent for different population sizes, I compared results from

50 × 50, 100 × 100, 200 × 200, and 400 × 400 simulations. Figure 27 shows a plot similar to Fig.

26A that includes comparisons for each of these simulations. Because the simulations are arranged

based on the average probability, the different SI mating systems group together such that the PSI

simulations are at the high end and SSI simulations are at the low end. The GSI and BSI simulations

group together in the middle with none of them showing a significant difference in inbreeding. The

overall pattern is consistent for the different population sizes.

Isolation-by-Distance

I predicted that the greatest reduction in bi-parental inbreeding would occur when isolation-by-

distance is strong. To test this, I compared the amount of inbreeding in 100 × 100 simulations with

different seed and pollen dispersal abilities. Figure 28 shows the pairwise comparisons between these

simulations. In this case, the simulations group together based on the dispersal parameter with σ = 1

(strong isolation-by-distance) at the high end and σ = 6 (weak isolation-by-distance) at the low end.

When σ = 1, 2, or 4, we see the same pattern as before. PSI has the highest inbreeding, and it is

significantly different from the other SI systems, BSI and GSI have lower inbreeding and are not sig-

nificantly different from each other, and finally, SSI has the lowest inbreeding and is significantly
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different from the other SI systems. However, when σ = 6, SSI is not significantly different fromGSI.

The reduction in the average probability of identity-by-descent in the genetic SI systems compared to

PSI is largest when isolation-by-distance is strong.

Homozygosity and Allele Diversity

Because M alleles mutate according to the infinite alleles model, any two alleles that are identical

must have shared a common ancestor at some time in the past. Homozyotes are therefore a result of

inbreeding that potentially occurred further back than the grandparent generation. Figure 29 shows

the results of pairwise comparisons of the frequency of homozygotes at theM locus for each mating

system and for each level of dispersal. The frequency is highest when dispersal is limited (σ = 1) and

significantly different from the other dispersal levels. At each dispersal level, the different SI systems

are not significantly different from each other.

I analyzed allele diversity at both the S locus and theM locus. Figure 30 shows the comparisons

of allele counts at theM locus. When dispersal is low, the average number of allelesmaintained in the

population is higher and significantly different frommost other simulations. For each dispersal level,

the different SI types are not significantly different. Figure 31 shows the comparisons of allele counts

for the S locus. Here, the simulations group together by SI type with SSI simulations maintaining the

highest number of S alleles followed by GSI, BSI, and PSI. The simulations with σ = 1 maintain a

significantly higher number of alleles in each SI system.

Population Demographics

In the 100×100 simulations, a maximum of 10,000 individuals can exist in the population, however,

it is possible that some lattice cells will remain unfilled. Table 14 shows the average census number of

individuals for each simulation. The PSI simulations have the largest average population sizes and the

population size is not largely affected by dispersal. The genetic SI simulations have a higher average

number of individuals when the dispersal parameter is larger. Whenσ = 1, the genetic SI simulations

all have significantly reduced population sizes with the greatest reduction seen in the SSI simulations

(Fig. A32).
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Each individual carries a number of deleteriousD loci and for each homozygous recessive geno-

type they carry, they will have an increased probability of becoming sterile. The average number of

sterile individuals in the population across all simulations was 484.5 which is around 5% of the pop-

ulation. Table 14 shows averages for each simulation but none of the simulations were significantly

different (Fig. A33).

In the simulation, each plant produces 5 ovules and amaximum of 50,000 seeds can be produced

per generation. To achieve maximum seed set, there needs to be enough compatible pollen to fertilize

all of the ovules. Table 14 shows the average seed set for each simulation. Seed set is lowest for the

SSI simulations, and it is highest for the PSI simulations. For each SI system, seed set is lowest when

there is strong isolation-by-distance (see Fig. A34 for pairwise comparisons).

The expected mean-squared parent-offspring dispersal distances are 1.5, 6, 24, and 54 for dis-

persal parameters 1, 2, 4, and 6, respectively. The observed s2 values for each simulation are listed

in Table 14. In all cases, the observed values are slightly higher than the expected values but when

isolation-by-distance is strong, the relative difference is much larger. Between the different SI groups,

the s2 values are not significantly different when σ = 2, 4, or 6. When σ = 1, the SSI simulations

show significantly higher dispersal than GSI and PSI (Fig. A35).

Discussion

For this study, I assumed that any reduction in inbreeding below the level observed in the PSI simula-

tions indicated a reduction in bi-parental inbreeding. I found that there was a significant decrease in

identity-by-descent in the genetic SI systems compared to the physical PSI systems and the difference

was consistent for a range of population sizes. The strictest SI system that was simulated was the SSI

system and it showed the greatest reduction in bi-parental inbreeding. The amount of inbreeding was

not significantly different between the GSI and BSI populations and the amount of inbreeding was

lower than what was observed for the PSI simulations. This result suggests that, in addition to pre-

venting inbreeding associated with self-fertilization, genetic SI systems are responsible for reducing

bi-parental inbreeding. This supports the hypothesis that bi-parental inbreeding avoidance offers an
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additional selective advantage in genetic SI species. However, when looking at the total reduction in

inbreeding from a self-compatible system (NSI), the reduction due to bi-parental inbreeding is rela-

tively small compared the reduction due to preventing self-fertilization.

The amount of bi-parental inbreeding is expected to be greater when the dispersal of both seeds

and pollen is reduced. When seeds are dispersed locally, offspring are more likely to become estab-

lished near the parent plant and will be surrounded by related individuals. If pollen dispersal is lim-

ited, there will be a large proportion of related individuals in the mating pool. Therefore, genetic SI

systems should be most advantageous in populations structured by isolation-by-distance and they

should show the greatest reduction in bi-parental inbreeding in this situation. As, expected, the re-

sults of simulations run with different dispersal parameters supports this. The genetic SI systems

showed a greater reduction in inbreeding compared to the PSI systemwhen isolation-by-distance was

strong and this decreased as the dispersal parameter increased. Again, the BSI and GSI systems were

not significantly different from each other and the SSI system showed the greatest reduction. The

frequency of homozygotes in the population was not significantly different between the different SI

systems within the same level of dispersal, but the frequency of homozygotes was significantly higher

when isolation-by-distance was strong.

These results are consistent with the results from Cartwright (2009). However, here I included

a selective advantage for avoiding inbreeding by introducing several deleterious loci. In the simula-

tion, inbreeding lead to the expression of recessive deleterious alleles at the 10 D loci, and as more

deleterious alleles were expressed there was a higher chance of inbreeding depression induced steril-

ity. The probability of a deleterious mutation at each loci was 0.1 which resulted in a genome-wide

recessive mutation rate close to 1. When comparing the amount of inbreeding to simulations without

inbreeding depression, I found that the amount of recent inbreeding, indicated by the probability of

grandparental identity-by-descent, was not significantly different. However, the amount of inbreed-

ing at equilibrium, indicated by the average frequency of homozygotes, was significantly lower when

inbreeding depression was applied. This suggests that there is little selection against inbreeding in

the very recent past but overall there is selection against homozygotes when there is a penalty for

inbreeding.
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Among the simulations with inbreeding depression, the average number of sterile individuals was

not significantly different for any of the different SI systems. For these simulations, I used only a single

fixed selection coefficient of 0.005 per loci. This selection coefficient was selected because it was high

enough to produce a large effect in the population but it was small enough that the slightly deleterious

alleles would not be quickly purged from the population. However, using a wider range of selection

coefficients may reveal different relationships.

In genetic SI systems, the S-locus experiences negative frequency-dependent selection which fa-

vors low frequency alleles (Wright, 1939). This type of selection allows a large number of S alleles to

be maintained in population which is necessary to keep the number of available mates high (Byers

andMeagher, 1992). This is especially true under isolation-by-distance because the number of poten-

tial mates is already restricted to a local region. Here I found that at equilibrium, the SSI simulations

maintained the highest number of alleles, especially when dispersal was restricted. The GSI popula-

tions had the next highest number followed by the BSI populations. The number of alleles was much

lower for the BSI populations and this is most likely an effect of the dominance relationships between

theS alleles. In the BSI system, recessiveS alleles aremasked by dominant alleles allowing the pollen

to be compatible with other plants that share the recessive S allele. Ultimately, fewer S alleles need

to be maintained in this system because more crosses are compatible (Hiscock and Tabah, 2003).

Due to reduced recombination and linkage disequilibriumnear theS locus, it has been shown that

themaintenance ofmany alleles (Cartwright, 2009) andheterozygosity (Uyenoyama, 1997) seen at the

S locus extends to linked loci. Enforced heterozygosity near the S locus can lead to the accumulation

of deleterious alleles that are sheltered from selection. This leads to an increase in the genetic load

because these deleterious alleles are difficult to purge. In this study, the deleterious alleles were not

linked to the S locus, and I did not consider the effect of linked deleterious alleles.

Reducing bi-parental inbreeding came with a cost in the genetic SI simulations. As expected, the

total seed set and therefore female fecundity suffered under the genetic SI systems (Vekemans et al.,

1998). Fecundity selection in the simulation was modeled by limiting the number of pollen grains

produced by each plant. After pollen dispersal, each plant has a finite pollen pool that is further

reduced when a high proportion of the pollen grains are incompatible. If the number of compatible
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pollen grains is less than the number of ovules, therewill be a reduction in seed set. The lowest seed set

was observed in the SSI simulations which had the strictest rules for compatibility. Seed set was also

lowest when dispersal was limited; this is likely because the pollen pool consisted of a high proportion

of close neighbors which were more likely to be related and thus incompatible. The reduction in seed

set also translated into a reduction the census population size which followed a similar pattern.

In summary, there is some evidence that genetic SI systems reduce the amount of inbreeding in

a population more than the physical SI system, and this is due to a reduction in bi-parental inbreed-

ing. However, the effect is small and approximately the same number of individuals experienced

inbreeding depression for each of the SI systems. Under the genetic SI systems, female fecundity and

population size is reduced. In the conditions simulated here, it is possible that any benefit received

from bi-parental inbreeding avoidance is negated by a reduction in fecundity. Further studies could

be carried out to better understand the evolutionary dynamics of genetic SI systems versus physical

SI systems. Competition or invasion simulations may help determine if genetic SI systems can res-

cue plant populations suffering from inbreeding depression and to better understand the adaptive

dynamics.
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Table 14. Seed set and population size is reduced when the SI system is more stringent. The table
provides the average number of individuals (N ), the average number of sterile individuals, the
average seed set, and the average squared parent-offspring dispersal distance (s2) for simulations
with different SI systems and different dispersal parameters (σ). The maximum possible number of
individuals in the population is 10,000 and the maximum number of seeds is 50,000.

σ N Sterile Seed Set s2

PS
I

1 9906.1 484.8 45678.8 1.72

2 9905.2 486.4 46344.5 6.20

4 9905.0 485.5 46460.8 24.22

6 9905.2 486.3 46474.6 54.23
G
SI

1 9886.6 483.8 44134.1 1.72

2 9901.8 486.1 45965.9 6.22

4 9902.7 483.6 46291.9 24.26

6 9902.8 483.6 46341.2 54.20

B
SI

1 9878.2 484.4 43545.9 1.72

2 9900.2 484.2 45750.6 6.21

4 9901.7 484.8 46109.6 24.22

6 9901.3 483.1 46169.4 54.23

SS
I

1 9846.7 483.3 41549.9 1.74

2 9896.6 484.2 45447.2 6.23

4 9900.8 484.7 46071.9 24.18

6 9901.2 484.2 46169.1 54.16
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Figure 24. The probability of grandparental identity-by-descent for the genetic SI simulations is not
significantly different when there is inbreeding depression compared to when there is no inbreeding
depression. The plot shows the pairwise comparisons for each SI system with inbreeding depression
(1) or without inbreeding depression (0). The simulations were run on a 100× 100 landscape with
the pollen and seed dispersal parameter σ = 1. The dark blue squares represent comparisons that
were not significantly different. The values along the right side represent the average probability of
grandparental identity-by-descent across all population samples, and the simulations are arranged
from right to left in decreasing order based on the average probability.
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Figure 25. The frequency of homozygotes significantly decreases when inbreeding depression is
introduced in the simulation. The plot shows the pairwise comparisons for each SI system with
inbreeding depression (1) or without inbreeding depression (0). The simulations were run on a
100× 100 landscape with the pollen and seed dispersal parameter σ = 1. The dark blue squares
represent comparisons that were not significantly different. The values along the right side
represent the average frequency of homozygotes across all population samples, and the simulations
are arranged from right to left in decreasing order based on the average frequency.

99



A.

N
S

I

P
S

I

G
S

I

B
S

I

S
S

I

NSI

PSI

GSI

BSI

SSI

0.112

0.034

0.027

0.026

0.020

B.

●

0.00 0.05 0.10 0.15

0
2
0

4
0

6
0

PSI
GSI
BSI
SSI

NSI

Figure 26. The probability of grandparental identity-by-descent decreases when the SI system is
more stringent but BSI and GSI are not significantly different. A. The results of pairwise
comparisons of the 100× 100 simulations with σ = 1. The dark blue squares represent comparisons
that were not significantly different. The values along the right side represent the average probability
of grandparental identity-by-descent across all population samples. The different mating systems
are arranged from left to right in descending order based on the average. B. The empirical density
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Figure 27. The probability of grandparental identity-by-descent follows a similar pattern for all
population sizes. The plot shows the results of pairwise comparisons for each SI system and for each
population size with σ = 1. The dark blue squares represent comparisons that were not significantly
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system at different dispersal levels. The features of the plot are the same as in Fig. 27. The labels
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Figure 29. The frequency of homozygotes is higher when dispersal is limited but there is not a
significant difference between the SI systems. The plot shows the results of the pairwise
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Figure 30. When isolation-by-distance is strong, more alleles are maintained at theM locus. The
plot shows the results of the pairwise comparisons of the number ofM alleles for each SI system at
different dispersal levels.
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Figure 31. The SSI simulations maintain the highest number of S alleles followed by GSI, BSI, and
PSI. More alleles are maintained when dispersal is limited. The plot shows the results of the
pairwise comparisons of the number of S alleles for each SI system at different dispersal levels.
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Chapter 5

CONCLUSION

For this dissertation I explored several different aspects of isolation-by-distance. In the first chap-

ter I confirmed that the pattern of isolation-by-distance was similar for different dispersal distribu-

tions as long as they have the same second moment. I then argue the merits of modeling isolation-by-

distance using the triangular distribution which produces uniform dispersal over the neighborhood

area. I argued that this is more in line with the theory that the neighborhood represents a local pan-

mictic unit and I provided an efficient algorithm for simulating triangular dispersal.

In the second chapter I presented a method I developed for the estimation of neighborhood size;

the first such method to take a Bayesian approach. In this chapter I analyzed the performance of this

method on data generated from the model, data from a lattice based simulation and a data set from

two populations of Pinus pinaster Aiton. I found that when using independent data, the method had

high coverage and low error but it was biased when fewer marker loci were used. I demonstrated

that when using a composite marginal likelihood, the width of the credible intervals are artificially

narrow when pairwise data is used and this results in reduced coverage. The method is robust to

several violations of the model assumptions including the use of different dispersal distributions and

different mutation models. Finally, I compared neighborhood size estimates using my model to the

estimates published for the Pinus pinaster populations. For one population, the estimates agreed but

for the second population my method provided a lower estimate.

In the third chapter, I examined bi-parental inbreeding, a consequence of isolation-by-distance,

in simulated populations of self-incompatible plants. Genetic self-incompatiblity (SI) systems are

extremely common across the angiosperms and I wanted to determine if this is a result of their ability

to reduce bi-parental inbreeding. Surprisingly, I found reduced bi-parental inbreeding only accounts

for a small portion of the total reduction in inbreeding demonstrated in the genetic SI systems. In

addition, genetic SI populations produced fewer seeds and had a smaller population size, putting

them at a disadvantage compared to physical SI systems.
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Xorshift Random Number Generator

Xorshift is a type of pseudo-random number generator that relies on exclusive-or and bitshift opera-
tors (Marsaglia, 2003). Xorshift is one of the most efficient, high-quality random-number generators
known. My implementation is a 64-bit xorshift with shift parameters (5, 15, 27) added to aWeyl series
to decrease bit correlations (Brent, 2007). It passes the BigCrush tests in the TestU01 suite (L’Ecuyer
and Simard, 2007).

Triangular Distributed Distances Produce a Uniform Distribution on a Disk

Proof

The probability density of a uniform distribution over a finite two-dimensional shape is defined as:

f(x, y) =

{
1

area of S if (x, y) ∈ S

0 otherwise

where (x, y) are coordinates on the Cartesian plane and S is the set of all points within the shape. A
uniform distribution on the region bounded by a circle is defined by 1

πR2 whereR is the radius of the
circle. I am interested in a circle with radiusR = 2σ and areaA = 4πσ2 so the non-zero part of the
joint probability distribution is given by:

f(x, y;σ) =
1

4πσ2
when x2 + y2 ≤ 4σ2

Using the change of variables theorem for polar coordinates, (r, θ), I have:∫∫
D
f(x, y) dx dy =

∫∫
D∗

f(r cos θ, r sin θ)r dr dθ

=

∫∫
D∗

r

4πσ2
dr dθ

=

∫∫
D∗

1

2π

r

2σ2
dr dθ

I then integrate out the angle θ to isolate the distribution of distance, f(r;σ).

f(r;σ) =

∫ 2π

0

r

4πσ2
dθ =

r

4πσ2
θ
∣∣∣2π
0

=
r

2σ2
for 0 ≤ r ≤ 2σ

The distribution of distances is equivalent to a special case of the triangular distribution. The proba-
bility density function for the triangular distribution is

f(r; a, b, c) =


0 for r < a

2(r−a)
(b−a)(c−a) for a ≤ r ≤ c

2(b−r)
(b−a)(b−c) for c ≤ r ≤ b

0 for r > b
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where a is the lower limit, b is the upper limit, and c is the mode. In the special case I set a = 0
and b = c = 2σ. The probability density function for the special case of the triangular distribution
simplifies to

f(r;σ) =

{
r

2σ2 for 0 ≤ r ≤ 2σ

0 otherwise

Generating from a Triangular Distribution

Inverse sampling can be used to generate values from a triangular distribution. — Note that I am
only working with monotonically increasing triangular distributions and not more general formula-
tions. — If u is uniformly distributed in (0, 1), the value d = 2s

√
u has a triangular distribution with

parameter s. However, a modified rejection sampling algorithm is faster. If u1 and u2 are indepen-
dent and uniformly distributed in (0, 1), then d = 2smax(u1, u2) also has a triangular distribution.
Because I can generate 32-bit values for both u1 and u2 from a single 64-bit random number, this
second algorithm is more efficient than the first. While it is possible to construct a ziggurat algorithm
(Marsaglia and Tsang, 2000b) for a triangular distribution, my second algorithm is more efficient
because it involves fewer steps and never rejects.

I compared the speed of these algorithms and a naive rejection sampler using the medium Crush
tests (L’Ecuyer and Simard, 2007). This allowed us to compare the speeds of these algorithms in
a data-intensive application as well as verify that the algorithms produced independent and identi-
cally distributed values from the correct distribution. The ‘maximum’ algorithm took 1656 seconds to
complete, while the ‘sqrt’ took 1700s and the rejection sampler took 1911s. The maximum algorithm
produced faster execution, but only sped up the tests by 3% over sqrt.

Generating Discrete Two-Dimensional Dispersal from a Triangular Distribution

I can use the maximum algorithm above to generate the values in polar coordinates and convert them
to Cartesian coordinates; however, this requires calculating sine and cosine functions, which I would
rather not do. Whenmodeling dispersal on a lattice, the bounded nature of the triangular distribution
allows dispersal to bemodeled discretely. To discretize this distribution on a rectangular lattice Imust
determine the probabilities for each cell which are proportional to the area of the cell that is covered by
a disk of radius r = 2σ (centered on a focal cell). The algorithm described here produces probability
tables by calculating the appropriate area for each cell and dividing by the total area. I assume that
cells are squares with unit area.

Since the disk is symmetrical, this algorithm may be simplified by calculating areas for quad-
rant I of the disk and mirroring those values to the other quadrants. I further simplify by calculat-
ing approximately half of the areas for quadrant I and mirroring those as well. — Note that this
results in cells along the x and y axes having an area of 1/2. — Starting at the center of the fo-
cal cell (y0 = 0), I record the top/bottom boundary of each cell along the y-axis up to the radius:
y1 = 0.5, y2 = 1.5, . . . , yn = n− 0.5 where n = supn∈Z yn ≤ r.

Next I calculate the area of the first column of cells which has a left boundary at x0 = 0 and a
right boundary at x1 = min(0.5, r):

A =

∫ x1

x0

√
r2 − x2 dx
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Starting with the bottom cell, I check if the area of a cell is less than the area of the column. If so, the
cell is completely contained in the disk, and the cell is assigned a weight equal to its area. Its area is
then subtracted from the area of the column. I continue this procedure until the the area of last cell
is less than the remaining area of the column and assign the final cell a weight equal to the remaining
area in the column.

I then move to the next column by setting x0 = 0.5 and x1 = 1.5. However, before I calcu-
late the area, I must check if the edge of the disk passes through the bottom of the top cell. This
occurs if x21 + y2 > r2, where y is the value of the bottom boundary of the cell. When this occurs,
I split the column into two smaller columns and each column is processed just like before. I con-
tinue calculating the area of subsequent columns until I reach the column that contains the point
{x, y} =

{
r/
√
2, r/

√
2
}
, which marks the point where the edge of the disk intersects the diagonal.

After this column is processed, the weights for these cells can be copied symmetrically. The weight
of each cell is divided by the total area of the disk and becomes a probability. These probabilities are
then copied symmetrically to the other three quadrants. The completed table of probabilities can then
be passed into the alias algorithm for discrete sampling (Vose, 1991).

My implementation of a discretized triangular kernel can be found in src/disk.h and src/disk.cpp
in the source code. Code for generating an alias table can be found in src/aliastable.h.
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Figure 32. Population size is higher for PSI simulations compared to genetic SI simulations. The
plot shows results of pairwise comparisons of the 100× 100 simulations. The dark blue squares
represent comparisons that were not significantly different. The values along the right side
represent the average census population size across all populations for each type of simulation. The
labels along the left and bottom axes indicate the SI system and the dispersal parameter (σ). The
simulations are arranged from left to right in descending order based on the average population size.
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Figure 33. The average number of sterile individuals in the population is similar in all simulations.
The plot shows results of pairwise comparisons of the 100× 100 simulations. The dark blue squares
represent comparisons that were not significantly different. The values along the right side
represent the number of sterile individuals per population averaged across all populations for each
type of simulation. The labels along the left and bottom axes indicate the SI system and the dispersal
parameter (σ). The simulations are arranged from left to right in descending order based on the
average number of sterile individuals.
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Figure 34. The seed set is lower for the genetic SI simulations and when dispersal is limited. The
plot shows results of pairwise comparisons of the 100× 100 simulations. The dark blue squares
represent comparisons that were not significantly different. The values along the right side
represent the total number seeds produced per population averaged across all populations for each
type of simulation. The labels along the left and bottom axes indicate the SI system and the dispersal
parameter (σ). The simulations are arranged from left to right in descending order based on the
average number of seeds produced.
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Figure 35. Observed dispersal is slightly higher than expected. The plot shows results of pairwise
comparisons of the 100× 100 simulations. The dark blue squares represent comparisons that were
not significantly different. The values along the right side represent the average squared
parent-offspring dispersal distances per population averaged across all populations for each type of
simulation. The labels along the left and bottom axes indicate the SI system and the dispersal
parameter (σ). The simulations are arranged from left to right in descending order based on the
dispersal distance. The expected values are 1.5, 6, 24, and 54 for dispersal parameters 1, 2, 4, and 6,
respectively.
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