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ABSTRACT 

 This study employs a finite element method based modeling of cementitious 

composite microstructure to study the effect of presence of inclusions on the stress 

distribution and the constitutive response of the composite. A randomized periodic 

microstructure combined with periodic boundary conditions forms the base of the finite 

element models. Inclusion properties of quartz and light weight aggregates of size 600μm 

obtained from literature were made use of to study the effect of their material (including 

inclusion stiffness, stiffness of interfacial transition zone and matrix stiffening) and 

geometric properties (volume fraction of inclusion, particle size distribution of inclusion 

and thickness of the interfacial transition zone) on the composite. Traction-separation 

relationship was used to incorporate the effect of debonding at the interface of the matrix 

and the inclusion to study the effect on stress distribution in the microstructure. The stress 

distributions observed upon conducting a finite element analysis are caused due to the 

stiffness mismatch in both the quartz and the light weight aggregates as expected. The 

constitutive response of the composite microstructure is found to be in good conformance 

with semi-analytical models as well as experimental values. The effect of debonding 

throws up certain important observations on the stress distributions in the microstructure 

based on the stress concentrations and relaxations caused by the stiffness of the individual 

components of the microstructure. The study presented discusses the different 

micromechanical models employed, their applicability and suitability to correctly predict 

the composite constitutive response. 
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Chapter 1: Introduction 

1.1  Background 

 Contemporary engineering applications have been significantly improved by the 

use of composite materials specially developed and designed to provide the preferred 

mechanical behavior. Some desired properties for instance are light weight, high stiffness 

or high flexibility, good thermal and mechanical durability, high yield strength under static 

or dynamic loading and good surface hardness. Usually homogeneous materials satisfy 

only some of the desired properties. On the other hand, composite materials can be 

specifically designed to bring out a variety of their most desired behaviors based on the 

required scope of application. This is the prime reason why interest in composite materials 

is ever-growing in the field of engineering, which combine the specific properties of its 

constituents in a highly application-oriented approach. Concrete along with fiber 

reinforced materials, ceramics and metal composites are some of the most versatile and 

widely used composite materials used in the industry having far ranging applications. 

Concrete which is the most commonly used construction material on earth, when 

considered over its entire life cycle from processing, construction, operation, demolition to 

recycling makes a significant contribution to the environmental, social and economic 

aspects of sustainable development. Concrete is a versatile construction material: it is 

plastic and malleable when newly mixed, yet strong and durable when hardened. These 

qualities explain why concrete can be used to build skyscrapers, bridges, sidewalks, 

highways, houses and dams. To obtain specific desired properties from concrete or to 

improve certain properties of concrete modification of its binder and/or the modifications 

of its inclusions can be taken up. The cement based mortar binder can be modified by 
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infusing it with flyash, alkali-activated flyash, slag, silica fume etc, which are already 

widely practiced for a variety of components, whereas the inclusions in the binders can 

themselves be replaced partially or completely by a variety of materials like rubber 

particles, light weight aggregates, glass beads, phase changing materials etc.  

 The underlying foundation of all composite materials is that their macroscopic 

properties are strongly influenced and determined by the properties of its micro-

constituents and phenomena on the micro-scale. The description of the micro-structural 

phenomena leads to a better understanding of the macroscopic behavior. However, a 

drawback to the use of micro-heterogeneous materials could be that heterogeneities within 

the microstructure cause local stress concentration, which is often responsible for inelastic 

material behavior, damage and debonding of the inclusions from the matrix material. As 

such, it is essential to know about these phenomena and to evaluate their influence on the 

macroscopic behavior of the composite itself. However, most often the exact 

microstructure is not known, so in general some statistical assumption has to be made. The 

macroscopic properties are determined by a homogenization process which yields the 

effective stresses and strains acting on the effective, homogenized sample of material. This 

sample of material is often called statistically representative element area (REA). The goal 

of the homogenization process is to provide data which can be used to find a material model 

for the effective material, and to identify the parameters introduced in this material model. 

The effective material is supposed to represent all macroscopic properties of the micro-

heterogeneous material. In general, one cannot assume the effective material model to be 

of the same type as the model used for the micro-constituents, which significantly 

complicates the search for an effective material model. Here, an exception is linear elastic 
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material at small strains, since the superposition principle holds for this material. Until 

some years ago, homogenization and the determination of effective material parameters 

could only be done by either performing experiments or tests with the existing material 

sample or by applying semi-analytical methods making rather strong assumptions on the 

mechanical field variables or on the microstructure of the material. Quite often, those semi-

analytical methods do not lead to sufficiently accurate results. Especially for micro-

constituents with extreme properties like near incompressibility, the determination of 

effective material parameters with the commonly used semi-analytical methods leads to 

considerable deviation in results from reality. Recently it is commonly accepted that 

numerical simulations of the microstructural behavior are necessary to get more accurate 

results for the effective properties of the material. These numerical simulations can 

significantly reduce the number of time consuming and expensive experiments with 

laboriously manufactured material samples. This clearly improves the development and 

design of new materials for modern engineering applications. One of the foremost 

progresses in contemporary structural components is the enhancement done on the 

materials to obtain the optimum behavior relevant to its application. This is done through 

the exploitation of the material microstructure. Composite materials have their 

macroscopic characteristics based on the mixture of two or more pure components like 

particles, platelets or fibers suspended in a binding matrix. This mixing is used in many 

materials like metal, concrete, polymer matrix composites, etc. In the construction of 

composite materials, the basic philosophy is to select material combinations to produce 

desired cumulative responses. For example, in aeronautic engineering applications the 

basic choice is a harder particulate phase that acts as a stiffening factor that adds to the 
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metal or polymer matrix enhanced properties against abrasion and extreme temperature-

fluctuation. This suggests to carry out direct numerical simulation of microstructures and 

to try to establish a realistic representation of the heterogeneous structure that appends and 

contains all the micro-scale details. Doing so and in order to capture all the details would 

lead to an extremely fine spatial discretization with a very large meshes of finite elements 

to carry the micro-scale information. Such problems are beyond the capacity of the 

computational power currently available. That is why the approach of taking a small micro 

sample that contains a finite part of inclusions to demonstrate a “representative element 

area” in combination with proper boundary conditions to represent as close as possible the 

real composite material macro-behavior would provide us with a tool to enhance and 

particle understanding of the composite’s material behavior based on its micro-

constituents. This macro response is calculated from the micro response through a variety 

of methods known as numerical homogenization. Because of these essentials the use of 

homogenized material models is of common place in practically all branches of the 

physical sciences. The volume averaging takes place over a statistically representative 

element area (REA). The internal fields to be volumetrically averaged must be computed 

by solving a series of boundary value problems with test loadings [Zohdi and Wriggers 

2008]. Such homogenization processes are referred to as “Numerical Homogenization”, 

“mean field theories”, “theories of effective properties”, etc. For details, see [Jikov, 

Kozlov, and Oleinik 2012]for mathematical aspects see [Aboudi 1991; Zvi Hashin 1983; 

Mura 1987; Nemat-Nasser and Hori 2013] for more in-depth studies into this subject. For 

a sample to be statistically representative it must usually contain a sufficient number of 

inclusions and should have a larger size relative to the size of each inclusion. The 
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calculations for a REA are still large, but are much inferior in comparison with the 

simulation of the real structure. Historically most classical analytical or semi analytical 

methods for estimating the macroscopic response of such engineering materials have 

strongly phenomenological basis, and are in reality non-predictive of material responses 

that are unidentified. This is true even in the linearly elastic, infinitesimal strain range. In 

plain words such models require extensive experimental data to tune parameters that have 

little or no physical significance. The arguments about this issue have led to the 

computational approaches which require relatively simple description on the microscale, 

containing parameters that are physically meaningful or realistic. In other words, the 

phenomenological aspects of the material modeling are reduced, with the burden of the 

work being shifted to high performance computational methods. Stated clearly, the aim of 

computational micro-macro mechanics is to develop relationships between the 

microstructure and the macroscopic response of a composite material, using representative 

models on the microscale that are as simple as possible and provide an acceptable 

presentation for the composite material in investigation.  

 The use of the finite element method (FEM) for the micromechanical analyses of 

random composites, which represent most of the real composites, is very expensive from a 

point of view of processing time and use of computer memory. In fact, the FEM 

discretization of a REA with many heterogeneities involves a problem with a large number 

of degrees of freedom (the REA contains the heterogeneities characterizing the 

microstructure of the composite). Such problems have been analyzed by[Ghosh et al. 

2000], who have developed a plane finite element model based on a polygonal Voronoi 

cell [Voronoi 1907]. Inconveniences due to the use of random distributions of inclusions 
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and defects can be avoided by assuming a periodic distribution of such heterogeneities. In 

fact, in this case it is possible to adopt an REA containing a small number of heterogeneities 

and equipped with suitable periodic boundary conditions. Throughout this work, the case 

of linear elasticity is considered. In this perspective, the mechanical properties of micro 

heterogeneous material are characterized by a spatially variable elasticity tensor C. 

Generally, in order to demonstrate the homogenized effective macroscopic response of 

such materials, the relation between averages turns to be 

𝜎Ω = Ceff . εΩ     (1.1) 

and where σ Ω and ε Ω are the volume average stress and strain tensor fields within a REA 

of volume Ω. The quantity Ceff, is known as the effective property, and is the elasticity 

tensor used in usual structural scale analysis. Similarly, one can describe other effective 

quantities such as conductivity or diffusivity, in virtually the same manner, relating other 

volumetrically averaged field variables. 

1.2 Objective 

 This work comprises a framework for finite element (FE)-models starting from 

micro-structure generation to the calculation of the composite material effective properties. 

It investigates, verifies and compares different types of REAs for spherical inclusions 

representing particle reinforcement. Micro-structures (REAs) are generated as geometry 

which are then meshed with a python script through ABAQUSTM to obtain an orphan mesh 

file. Periodic boundary conditions (P.B.C.) are developed to meet the intended numerical 

homogenization requirements. A meshing module is programmed with python language to 

prepare and append to the input orphan mesh file. After this stage, a targeted perturbation 
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is applied and the job is sent to ABAQUSTM solver. A homogenization module is developed 

to handle the post processing stage over the outcome of the simulation. This module is 

responsible for calculating the composite’s effective material properties in terms of the 

volume averaged stress and strain tensors of the REA. The framework is applied for various 

types of spherical inclusion-filled REAs. The main objectives of the present study can be 

summarized through the following points: 

 Build up a micromechanical model (representative element area) for spherical-

particles reinforced composite materials to be used as a useful tool to verify and 

evaluate existing analytical and semi-analytical material models, and to have a 

reliable FE-model to be used in numerical simulation experiments that replaces 

real experiments. 

 Development of suitable boundary conditions that adhere to all the special 

requirements for the intended simulations and numerical homogenization. 

 Establishing a homogenization process acting as a tool to determine the effective 

material properties of an isotropic composite material based on the matrix/filler 

properties and their realistic micro-geometry or structure. 

 Evaluation of the influence of the phase material and geometric properties on the 

micro-structural stress distribution and the constitutive response of the REA in the 

linear elastic regime based on the matrix/filler properties and their realistic micro-

geometry or structure. 

 Evaluation of the influence of de-bonding of the interface between the matrix and 

the inclusion on the phase material and geometric properties on the micro-

structural stress distribution and the constitutive response of the REA in the linear 



8 

  

elastic regime based on the matrix/filler properties and their realistic micro-

geometry or structure. 

1.3 Organization of Thesis 

 This thesis is primarily composed of a research paper that is submitted and another 

research paper that will be submitted for publication. Some chapters contain additional data 

that are not presented in papers. These papers are presented in Chapter 3-5. This section 

shows overall organization of the thesis for clarity. 

 Chapter 2 consists of extensive literature review on homogenization methods used 

and the need for numerical homogenization. 

 Chapter 3 discusses in detail the development of the F.E. framework which includes 

the theory behind generation of the randomized periodic microstructure, formulation and 

the application of periodic boundary conditions. This chapter gives a generalized 

description of the F.E framework. Detailed application-specific information on materials 

are detailed in individual chapters. 

 Chapter 4 studies the influence of phase material and geometric properties on the 

micro-structural stress distribution in the cement mortar and the constitutive linear elastic 

response of the REA.  

 Chapter 5 studies the influence of de-bonding at the interface between the matrix 

and the inclusion on micro-structural stress distribution in the cement mortar and the 

constitutive linear elastic response of the REA. 
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Chapter 2: Literature Review 

2.1  Background 

  The link between the material microstructure and relevant mechanical properties 

provides valuable information towards design and development of sustainable 

cementitious materials for several applications.  In recent years, many novel cementitious  

composites have emerged, incorporating several types of inclusion materials for various 

special applications such as the use of lightweight aggregates (LWAs) for internal curing, 

reduction of dead load, thermal and acoustic insulation[Al-Jabri et al. 2005; Cusson and 

Hoogeveen 2008; Kim, Jeon, and Lee 2012; Nguyen et al. 2014], microencapsulated phase 

change materials (PCM) for control of thermal cracking in pavements and bridge 

decks[Fernandes et al. 2014] and regulating internal environment in buildings [Hembade, 

Neithalath, and Rajan 2013; Thiele et al. 2015], waste and recycled materials such as rubber 

for energy absorption [Hernández-Olivares et al. 2002], and denser/stiffer aggregates for 

radiation shielding [Akkurt et al. 2006; Makarious et al. 1996]. Incorporation of such 

inclusions influences the individual stresses in the micro-structural components and the 

stress distributions in the composite, thereby dictating the failure path/mechanism of the 

material. Hence a comprehensive understanding of the influence of inclusion types on the 

micro-structural stress distribution is necessary to design such materials for desired 

mechanical performance. Dealing with composite materials properties is an early interest 

in the science of materials. Homogenization tools and methods to determine the effective 

material properties of composites have been developed and dealt with since late 19th 

century and until our times. Recently numerical homogenization approaches based on FE 

methods are being developed and enhanced to meet more realistic and precise results based 
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on the microstructure of the composite. Starting from probing the inhomogeneous material, 

for example in linear elastic materials to measure the Young’s modulus and Poisson ratio, 

a sample is tested under tension and compression load tests. The stresses and strains 

measured are the averages for the specimen. Assuming that the material is homogeneous 

and the results are the effective properties of this material while in reality there is no such 

a homogeneous material. Even at the micro scale when two phases are analyzed, one should 

always assume that each phase is homogenous by itself which is not the case in reality 

since even pure material components are inhomogeneous at a certain scale. So the 

assumption of homogenization is always taken when using any type of material properties’ 

predictions, whether using empirical, analytical, semi-analytical or numerical FE-based 

methods.  

2.2  Homogenization techniques 

 Some of the early studies on the concept of homogenization of heterogeneous 

microstructures were done more than a century ago by [Voigt 1889] and [Reuss 1929] who 

both proposed different simple approximations for the effective material data of 

heterogeneous linear elastic materials, which have been the basis for a primary result by 

[Hill 1952]. The Voigt and Reuss assumptions have a physical interpretation as being 

displayed in Figure 2.1. Looking at a rod under a tension load the Voigt approach would 

be exact for different materials being connected in parallel relative to the applied load. The 

Reuss model would be exact for different materials being connected in series.  
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Figure 2.1. Geometrical Interpretation of Reuss and Voigt theoretical bounds 

 

Regarding Voigt bound, it corresponds to the assumption that the inclusion and the matrix 

both experience the same uniform strain. Then the average strain tensors of the inclusion 

and matrix are equal to the composite average strain 𝜀𝐼 =  𝜀, so the following expression 

for the stiffness tensor  is given by [Tucker III and Liang 1999], 

𝐶𝑉𝑜𝑖𝑔𝑡 =  𝐶𝑚 + 𝑉𝐼(𝐶𝐼 − 𝐶𝑚) =  𝑉𝐼𝐶𝐼 + 𝑉𝐼𝐶𝑚   (2.1) 

This leads to the representation of the Voigt upper bound (or the rule of mixtures) of the 

effective stiffness of the composite. On the other hand, Reuss assumes that the inclusion 

and matrix experience same uniform stress. The compliance tensor is given by [Tucker III 

and Liang 1999], 

𝑆𝑅𝑢𝑒𝑠𝑠 =  𝑆𝑚 + 𝑉𝐼(𝑆𝐼 − 𝑆𝑚) = 𝑉𝐼𝑆𝐼 +  𝑉𝐼𝑆𝑚   (2.2) 

This leads to the representation of the Reuss lower bound of the effective stiffness of the 

composite. 

 More tight bounds for linear elasticity were proposed by Hashin and Shtrikman 

(1962), (1963). Hashin and Shtrikman bounds are based on variational principles. They 

engage the principle of minimum potential energy and the principle of minimum 

complementary potential energy. The bounds for the material parameters of an isotropic 



12 

  

linear elastic effective material consisting of two phases with volume fractions  V1 and V2 

and material parameters K1 , K2 , μ1 and μ2 , respectively are described in [Zohdi and 

Wriggers 2008] and [Löhnert 2004]. The Hashin and Shtrikman bounds are only 

asymptotic bounds and strictly valid only for a theoretically infinite size of the 

representative volume element they are used for. But they are the tightest possible bounds 

for general isotropic materials without restrictions on the geometry of the 

microstructure[Löhnert 2004]. 

 The introduction of the Eshelby model middle of the 20th century is one of the major 

achievements in the analytical approach for predicting the effective material properties of 

heterogeneous microstructures besides the previously mentioned bounds. Many models are 

based on this analysis going back to the work of Eshelby (1957) who found a general 

solution for one ellipsoidal particle embedded in an infinite matrix in linear elasticity. 

Eshelby (1957) found that for a homogeneous isotropic infinite body with an ellipsoidal 

inclusion subjected to a uniform eigen strain 𝜀∗, the resulting strain field within the 

inclusion is uniform and can be described by, 

𝜀 =  𝜉 − 𝜀∗      (2.3) 

where ξ is the called the fourth rank Eshelby tensor. It only depends on the geometry of the 

ellipsoidal inclusion and poisson’s ratio. Eshelby’s model can be used to predict the 

effective stiffness of a composite with ellipsoidal inclusions at dilute concentrations. That 

is why it is sometimes called the dilute Eshelby’s model. Note that the average strain is 

identical to the applied strain 𝜀𝐴 [Tucker III and Liang 1999] 

𝜀 =  𝜀𝐴      (2.4) 
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Therefore the relation between the average composite strain and the average inclusion’s 

strain is  

𝜀 =  𝜀𝐼[𝐼 + 𝜉𝑆𝑚(𝐶𝐼 − 𝐶𝑚)]    (2.5) 

For a representative formulation of the above equation, see[(Tucker III and Liang 1999)]. 

Therefore we get, 

𝜀𝐼 =  𝐴𝐸𝑠ℎ𝑒𝑙𝑏𝑦𝜀     (2.6) 

Therefore, 

𝐴𝐸𝑠ℎ𝑒𝑙𝑏𝑦 =  [𝐼 + 𝜉𝑆𝑚(𝐶𝐼 − 𝐶𝑚)]−1   (2.7) 

This form will be later used for the derivation of Mori-Tanaka’s models, which are based 

on Eshelby’s model. 

 The Mori-Tanaka (MT) model was proposed by Mori and Tanaka (1973) and it is 

suited for composites with moderate inclusion volume fraction. For details on formulation 

and numerical implementation see [Doghri and Ouaar 2003]. Mori-Tanaka’s assumption 

was that when many identical particles are introduced to the composite microstructure, the 

average inclusion strain is given by  

𝜀𝐼 =  𝐴𝐸𝑠ℎ𝑒𝑙𝑏𝑦𝜀𝑚     (2.8) 

 This means, within a concentrated composite each single inclusion sees a far field 

strain that is equal to the average strain of the matrix rather than the composite as in 

Eshelby’s case (See eqn. 2.6). Here one obtains the Mori-Tanaka strain concentration 

tensor, which can be used to calculate the overall effective stiffness tensor of the composite. 

 The double inclusion model (DI) was proposed by [Nemat-Nasser and Hori 2013] 

supposes that each spherical inclusion of stiffness CI is wrapped with a matrix material of 

stiffness Cm. The outer reference material has a stiffness CR. The composite has an average 
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or effective stiffness Ceff. For details on formulation and numerical implementation see 

[Doghri and Ouaar 2003]. By choosing the surrounding reference stiffness CR to be either 

the matrix, inclusion’s or the effective composite’s stiffness; one can retrieve many 

homogenization models. The choice CR = Ceff, means that the inclusion is surrounded by a 

material having the effective stiffness of the whole composite, gives the generalized self-

consistent model. A second choice is CR = Cm, the stiffness of the real matrix material gives 

the Mori-Tanaka model, thus describing a lower bound for the alternate concentration 

tensor on the presumption that the inclusion is stiffer than the matrix. A third choice of CR 

= CI, the stiffness of the real inclusion. This means that the matrix is stiffer and engulfing 

a softer material of the inclusion. This case can be called the inverse MT model, as it 

corresponds to MT for a composite where the material properties of the inclusion and the 

matrix are permuted. This describes the upper bound since the reference is taken to be the 

stiffer material of the inclusion. Note that ξI is now calculated for inclusions of matrix 

material and surrounded by the inclusion material, i.e. inversed.  

 Several such homogenization methods have been developed over the years and 

classical references on heterogeneous materials can be found, for example, in[Eshelby 

1957; Weng 1984; Hubert and Palencia 1992; Nemat-Nasser and Hori 2013]. Specific 

references about multiscale approach on cement based material are available in[Z. Hashin 

and Monteiro 2002a; Grondin et al. 2007; Dormieux, Kondo, and Ulm 2006; Sanahuja, 

Dormieux, and Chanvillard 200)]. Some authors have also proposed to use 

micromechanical schemes to predict the failure strength of concrete, as the Mori–Tanaka 

approach [C. C. Yang and Huang 1996b]. Note that the macroscopic response of particle 

reinforced composites is influenced by not only the component properties and component 
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concentrations, but also the interfacial interaction between the particles and the matrix and 

interfacial debonding. In particular, the inclusion of stiff particles to a soft matrix can lead 

to an increase in composite stiffness, strength, impact resistance, and abrasion 

resistance[Leblanc 2009; Leblanc 2002]. Additionally, at large deformations particles tend 

to debond from the matrix, influencing both the ductility and fracture toughness of the 

composite [Qiao 2003; Segurado and LLorca 2004; Kitey and Tippur 2005]. Debonding is 

characterized by a localized region of failure (or interfacial debonding) that accumulates 

around the particle inclusions. On the other hand, as a result of chemical interactions, an 

interphase may form between the particle and the matrix during manufacturing and 

processing. Even though these interphases are typically microscopic, they can greatly 

influence the macroscopic behavior of composite materials. The extent and composition of 

this interphase depends on a number of factors, including the surface area and surface 

treatment of the particles, as well as the level of mixing and age of the composite[Leblanc 

2002]. In contrast to the numerous experimental investigations, there have been few 

theoretical investigations which consider the effect of either interphases or interfacial 

debonding in the finite deformation regime. One of the few formulations for debonding 

under finite strains was presented by [Brassart et al. 2009]. They extend the Mori–Tanaka 

homogenization scheme [Mori and Tanaka 1973a] to account for the debonding of 

composite materials under finite strains; however, they do not account for the presence of 

interphases. More recently, [Goudarzi et al. 2015] presented a theoretical framework 

capable of describing the influence of interphases on the macroscopic constitutive response 

of particle reinforced elastomers. They compare their formulation to both numerical and 

experimental results[Ramier 2004], and found excellent correlation with both. However, 
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their investigation focuses on the influence of perfectly bonded interphases, excluding the 

consideration of interfacial debonding. There are four primary factors which influence the 

macroscopic constitutive response of particle reinforced composites: component 

properties, component concentrations, interphases, and interfacial debonding. This thesis 

presents a computational framework capable of capturing the influence of interphases and 

interfacial debonding on the finite deformation response of particle reinforced composites. 

The influence of the thickness and modulus of the interphase is considered, and debonding 

is accounted for by incorporating bi-linear traction separation relation. 

2.3  Numerical Homogenization 

 The limitations faced when using analytical approximation methods make direct 

numerical simulations necessary. Therefore, during the last years numerical methods to 

directly compute the effective material data gained more and more interest and importance. 

Most of those methods are developed only for linear material laws and small deformations. 

Just recently and due to the increasing computational power available, a couple of methods 

for non-linear elasticity and general non-linear material behavior have been developed 

[Löhnert 2004]. Theoretical work has been done by [C. Huet 1982; C Huet 1990; Torquato 

1991]. [Zohdi and Wriggers 2001a;  Zohdi and Wriggers 2001b] have worked on 

computational homogenization of geometrically linear and possibly materially non-linear 

microstructures. Homogenization at finite strains and possibly inelastic material behavior 

has been done by [Schröder 2000; Miehe, Schröder, and Becker 2002; Miehe 2003]. This 

approach yields a load dependent effective material tangent stiffness and this way is 

applicable to multi-scale methods.  
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 The average strain theorem states that for any perfectly bonded material within the 

REA and for an exterior homogeneous displacement given on the entire boundary of the 

REA, the volume average of the strain is the applied displacement on the boundary. For 

details on the theory and derivation see [Löhnert 2004]. The average strain theorem states 

that for any perfectly bonded material within the REA and for an exterior homogeneous 

displacement given on the entire boundary of the REA, the volume average of the strain is 

the applied displacement on the boundary [Löhnert 2004].  

 In an attempt to elucidate the influence of stiffness of inclusions on the distribution 

of stresses in the different phases in cementitious systems, this study employs a 

microstructure-guided micromechanical modeling scheme using the finite element method. 

Traditionally, the influences of inclusion type and stiffness on the mechanical 

behavior(elastic modulus, strength) of cementitious systems are evaluated 

experimentally[Bogas and Gomes 2013; Cheeseman and Virdi 2005; J. M. Chi et al. 2003], 

or through analytical approaches such as Mori-Tanaka [Nilsen, Monteiro, and Gjørv 1995; 

C. C. Yang 1997; C.-C. Yang and Huang 1998] and double inclusion [Stora, He, and Bary 

2006; C. C. Yang and Huang 1996a]models or  iterative homogenization techniques[Ke et 

al. 2010; Zouari, Benhamida, and Dumontet 2008]). Analytical homogenization techniques 

have been shown to provide good estimates of the effective property of cementitious  

systems [Das et al. 2015; Dunant et al. 2013].However, these analytical and semi-analytical 

homogenization techniques do not have the capability to evaluate local stress 

concentrations around inclusions which influence the macroscopic behavior, especially for 

cementitious systems that exhibit heterogeneity at a microscopic scale. Thus, 

microstructure-guided numerical modeling is a favored approach under such 
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considerations. A few recent studies have evaluated stress localization in the lightweight 

aggregate-matrix interface using an analytical approach [Ke et al. 2014] or through a 

macroscopic numerical simulation of a compression test [Malachanne et al. 2014], thus 

helping to understand the effect of soft inclusions on mechanical properties. In this thesis, 

2D periodic microstructures for mortars containing spherical quartz (stiff) or lightweight 

aggregate (soft) inclusions, including the interfacial transition zone (ITZ) around 

inclusions, are generated virtually and the representative element areas (REA) thus 

obtained are numerically analyzed using finite elements by invoking periodic boundary 

conditions [Li 2008; van der Sluis et al. 2000; Xia et al. 2006].The fundamental differences 

in stress distributions in the microstructure as a function of the inclusion type, and the 

relative efficiency of matrix and interface stiffening are clearly brought out. In addition, 

the constitutive relationships in the linear elastic regime (considering in-service 

performance of structures) are also evaluated for both the material systems considered. 

Such comprehensive numerical evaluations of fundamental differences in local micro-

stress distributions imparted by differences in inclusion type, and its resultant influence on 

the macro scale mechanical response are rather uncommon. 
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Chapter 3: Finite Element Based Framework for Microstructural Stress Analysis and 

Prediction of Young's Modulus 

 In a numerical simulation, it is unnecessary and not efficient to simulate everything 

we encounter, especially when there are reliable analytical models that sufficiently describe 

and solve the task. Generally, we choose a region of interest in which we conduct a 

numerical simulation where limitations of analytical models exist. The interesting region 

has a certain boundary with the surrounding environment. Numerical simulations therefore 

have to consider the physical processes in the boundary region by appropriately chosen 

boundary conditions (BC). Different boundary conditions may cause quite different 

simulation results. Improper sets of boundary conditions may introduce nonphysical 

influences on the simulation system. So arranging the boundary conditions for different 

problems becomes very important. While at the same time, different variables in the 

environment may have different boundary conditions according to certain physical 

problems. Generally speaking, boundary conditions represent the type and value of 

constraints that control the simulation response of our microstructure (RVE) and their 

usage is dependent on the type of the RVE used due to the various geometric possibilities 

in generating them. 

3.1   Microstructure Generation and the Modeling Scheme 

 This section describes the microstructure-guided constitutive modeling framework 

for heterogeneous materials. The framework explained herein executes multi-scale analysis 

of heterogeneous materials involving generation of a unit cell based on known inclusion 

size distributions, meshing of the unit cell and application of appropriate boundary 
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conditions, and microstructural stress analysis. The detailed procedure is explained in the 

following sub-sections. 

3.2 Generation of Representative Element Area (REA) 

 Generation of REA is accomplished here using the Lubachhevsky-Stillinger 

algorithm [Lubachevsky and Stillinger 1990a; Lubachevsky 1991a; Lubachevsky, 

Stillinger, and Pinson 1991a; Meier, Kuhl, and Steinmann 2008a]. This algorithm employs 

non-overlapping particles on a rectangular REA. First, the desired number of particles are 

randomly distributed inside the periodic bounding box with random initial velocities of the 

particles. The radius of each particle is initialized as zero. The radius of ith particle (ri) in 

the next event is a function of the growth rate (gi), which is tailored to attain the desired 

particle size distribution, as shown in Equation. 3.1.  

i
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dr


     (3.1) 
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The particle radii are then updated using the growth rate and time increment. The position 

of particle “i” is also updated considering a constant velocity between time nodes. Checks 

for particle contacts and post-contact velocities are made in each time step, and all particle 

positions are updated using a forward Euler scheme. These steps are repeated and in the 

process of iterations the particles change position in the bounding box, collide and grow in 

order to obtain the desired volume fraction.  Finally, the obtained microstructural 
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information is scripted in python language to be imported to ABAQUSTM for finite element 

implementation. More details on the microstructure generation algorithm can be found in 

[Lubachevsky and Stillinger 1990a; Lubachevsky 1991a; Lubachevsky, Stillinger, and 

Pinson 1991a; Meier, Kuhl, and Steinmann 2008a]. 

 Within the Lubachevsky–Stillinger algorithm, the generation of a representative 

volume element is accomplished by employing an event-driven scheme advancing from 

event to event, see[Lubachevsky and Stillinger 1990b; Lubachevsky 1991b; Lubachevsky, 

Stillinger, and Pinson 1991b]. Here, an event is considered to be the discrete collision 

between two particles. Each event is considered individually and in serial, postulating that 

only one discrete event is taking place at one discrete time. This leads to the possibility to 

handle each event individually. The basic steps of finding and handling an event are 

specified in Sections 3.2.1 and 3.2.2, whereas the algorithm used to produce the REA is 

described in Section 3.2.3. 

3.2.1 Event-driven time step calculation 

 In an event-driven scheme, the particles evolve independently at all time except for 

discrete asynchronous instances of pair-wise interactions. The time step size is thus 

governed by the sequence of events. To calculate the time step Δt which is needed to 

advance the particle system from time tn (Figure 3.1, left) to time tn+1 (Figure 3.1, right) the 

event, collision between two particles, has to be observed. Since we are using a hard contact 

model we do not allow for particle overlap. Entering at time tn we assume that the positions 

of the particle centers xn
i, the particle radii rn

i as well as the particle velocities vn
i are known. 

The key idea of the present REA generation scheme is that the initial individual particle 

radii are set to zero such that ab initio the particles are not in contact. 
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Figure 3.1. Configuration of particle i and j at time tn prior to contact and at tn+1 

defining the time step size Δt due to the event ‘particles in contact’. 

 

The particle radii ri are then assumed to increase as 

𝑟̇𝑖 =  𝑔𝑖     ∀ 𝑖 ∈ {1, … . . , 𝑛𝑜𝑝}𝑟𝑖, 𝑔𝑖  ∈ 𝑅   (3.3) 

The volume fraction Ф, i.e. the volume occupied by the particles per volume of the periodic 

boundary box is thus controlled by the growth rate gi. If gi is equal for all particles i, a 

monodisperse packing is constructed, while different growth rates gi generate a multi-

disperse packing, see [Kansal, Torquato, and Stillinger 2002]. The discrete counterpart of 

(3.3) can be constructed, e.g. with the help of a finite difference scheme, i.e.                          

𝑟̇𝑖 ≈ [𝑟𝑛+1
𝑖 −  𝑟𝑛

𝑖]/𝛥𝑡, yielding the discrete update equation of the particle radii at time 

tn+1: 

𝑟𝑛+1
𝑖 =  𝑟𝑛

𝑖 + 𝑔𝑖∆𝑡       ∀ 𝑖 ∈ {1 … . . , 𝑛𝑜𝑝}   (3.4) 

Postulating a constant velocity of particle i between the time nodes, the position of particle 

i at time tn+1 is calculated by using the well-known forward Euler formula: 

𝑥𝑛+1
𝑖 =  𝑥𝑛

𝑖 +  ∆𝑡𝑣𝑛
𝑖     ∀ 𝑖 ∈ {1, … . . , 𝑛𝑜𝑝},       𝑥𝑖, 𝑣𝑖  ∈  𝑅𝑑𝑖𝑚 (3.5) 

The branch vector ln+1
i j which connects the centers of the particles i and j is calculated by 
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subtracting the position vectors of the particles: 

𝑙𝑛+1
𝑖𝑗 =  𝑥𝑛+1

𝑗 − 𝑥𝑛+1
𝑖    ∀ 𝑖 ≠ 𝑗,    𝑖, 𝑗 ∈ {1, … , 𝑛𝑜𝑝}  (3.6) 

For the sum of the particle radii being equal to the length of the branch vector, ||ln+1
i 

j||=rn+1
i+r n+1

j, particles i and j are in contact, see Figure 3.1, right. Using (3.4) and (3.5) we 

can define the relevant time step size for the event-driven scheme Δt 

∆𝑡 =  min
∆𝑡>0

{
[ −𝑣 ± √𝑣2−𝑢𝑤 ]

𝑢
}     (3.7) 

with 

𝑣 = 𝑙𝑛
𝑖𝑗 ∙ [𝑣𝑛

𝑗 −  𝑣𝑛
𝑖] − [𝑟𝑛

𝑖 + 𝑟𝑛
𝑗][𝑔𝑖 + 𝑔𝑗]  (3.8) 

𝑢 = [𝑣𝑛
𝑗 −  𝑣𝑛

𝑖]
2

− [𝑔𝑖 + 𝑔𝑗]2    (3.9) 

𝑤 = 𝑙𝑛
𝑖𝑗

2 − [𝑟𝑛
𝑖 + 𝑟𝑛

𝑗]
2
     (3.10) 

The minimum of the two possible solutions for all possible particle contacts of the system 

defines the first contact and thus the time needed to advance to the next event. 

3.2.2 Event handling 

 Being able to advance to the next event, the event itself has to be handled. Contact 

will be treated as a purely elastic impact between two bodies of equal mass. By taking into 

account the additional increase in size of the two colliding particles, the relation between 

the particle normal velocities directly before and right after the collision can be formulated 

as 

𝑣𝑛+1+

𝑛𝑖
= 𝑚𝑖𝑛 {𝑣𝑛+1−

𝑛𝑖
, 𝑣𝑛+1−

𝑛𝑗
} − 𝑔𝑖, 𝑣𝑛+1+

𝑛𝑗
= 𝑚𝑎𝑥 {𝑣𝑛+1−

𝑛𝑖
, 𝑣𝑛+1−

𝑛𝑗
} +  𝑔𝑖(3.11) 

in terms of the growth rate gi and the normal contact velocity 

𝑣𝑛+1
𝑛 =  𝑣𝑛+1 ∙ 𝑛𝑛+1

𝑖𝑗   with   𝑛𝑛+1
𝑖𝑗 =  

𝑙𝑛+1
𝑖𝑗

||𝑙𝑛+1
𝑖𝑗||

       (3.12) 
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Herein, (•)−indicates quantities prior and (•)+posterior to the collision. The assumption 

of the smoothness of the particles leaves the tangential particle velocities unchanged. 

3.2.3 Event-driven generation of the REA 

 For simplicity, the REA is set to be a square with dimensions lrea × lrea; however, 

any reasonable shape is possible. The desired number of particles is randomly distributed 

inside the periodic boundary box, initialized with random particle velocities. Radii of all 

particles are set to zero. Of interest is the next particle pair collision and its time. The time 

step calculation outlined in Section 3.2.1 is performed for each particle pair being able to 

collide. Different algorithms for fast collision detection can be found in the literature 

[Munjiza 2004]. We use a parallelized screening contact detection algorithm, the search 

time is of the order 𝜕(number of particles). The minimum time step of all possible 

collisions, calculated by (3.7), is selected to advance the event-driven scheme. Next, all 

particle positions xn+1
iare updated in terms of a forward Euler scheme (3.5). The post 

contact velocities of the colliding particle pair are determined according to (3.11), followed 

by a new search for the next collision. Allowing the algorithm to take its course, the 

particles float around inside the rea, collide and grow depending on the elapsed time. 

Postulation of a dropout criterion can be accomplished in many ways. We select the 

increase of volume fraction 

∆𝜙 = 𝜙𝑛+1 − 𝜙𝑛+1−𝑐 with 𝜙𝑛+1 =
𝑣𝑛+1

𝑝𝑎𝑟

𝑣𝑟𝑒𝑎
=  

𝜋

𝑣𝑟𝑒𝑎
∑ 𝑟𝑛+12

𝑖
𝑛𝑜𝑝
𝑖=1   (3.13) 

to be the variable of interest. With ΔФ dropping under a certain threshold over a specified 

number of events, c fulfils our criterion. The complete algorithm is listed in Figure 3.2. 
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Figure 3.2. Basic algorithm to produce dense particle packing by using a periodic 

boundary box. The dropout criterion, regarding the REPEAT UNTIL loop, is based on 

the increase of the volume fraction ΔФ, see (3.13). 

 

3.3  Boundary Conditions 

 Choosing appropriate microscopic boundary conditions is an essential step in any 

numerical stress analysis procedure. In micromechanics, the commonly adopted boundary 

conditions are: essential boundary conditions where uniform displacements are applied at 

the boundaries, or Neumann boundary conditions where uniform tractions are prescribed 

at the boundaries of the unit cell. These boundary conditions have been applied to predict 

effective properties of several materials including cementitious binders[Wriggers and 

Moftah 2006b; Christian Huet 1999; Ostoja-Starzewski 1999]. Since it is difficult to realize 

uniform boundary conditions in experimental setups, mixed boundary conditions are also 

proposed [Hazanov and Huet 1994; Hazanov 1998]. In this work, periodic boundary 

condition is adopted since it has been shown to provide better approximations of effective 

properties of heterogeneous materials even with relatively smaller REAs that are favorable 

for computational expediency[Terada et al. 2000; van der Sluis et al. 2000]. 
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 Two-dimensional plane strain microstructural finite element models are employed 

here in order to examine the influence of inclusion and matrix properties on the bulk elastic 

behavior of the composite system. A sufficiently large (4.15 mm x 4.15 mm) representative 

element area (REA) has been considered for the analysis. The spatial distribution of 

inclusions and the chosen boundary conditions play an important role in any numerical 

stress analysis procedure [Li 2008; van der Sluis et al. 2000]. The choice of boundary 

conditions as well as the spatial distribution of inclusions need to be thoroughly 

investigated since the boundary conditions are applied on the REA and the averaged 

response of REA is used as an indicator of the influence of the microstructural phases. 

Hence, this section investigates the effect of different boundary conditions and distribution 

of inclusions (in the REA) on the stress distribution in order to establish the appropriate 

parameters for detailed studies. In this paper, dominant principal stress ( 22
in this case) is 

taken as the microstructural stress measure[Malachanne et al. 2014]. 

3.3.1 Regular arrays and essential boundary conditions 

 In many numerical stress analysis simulations of matrix-particulate inclusion 

composites (such as mortar or concrete), the actual material is simplified into a model that 

considers either a single spherical inclusion and the matrix surrounding it [Gilabert, Garoz, 

and Van Paepegem 2015; Lee, Jin, and Kang 2014] or a uniform array of spherical (or 

circular, in 2D) particles in a continuous matrix [Drago and Pindera 2007; Jiang, Jasiuk, 

and Ostoja-Starzewski 2002]. The single inclusion case is generally applicable for low 

concentrations of particles (dilute limit). Figure 3.3(a) shows a quarter model containing a 

uniform array of particles with essential (displacement) boundary conditions [Ainsworth 

2001]applied at the left and bottom edges, considering symmetry. The REA contains 
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circular quartz particles (aggregates) arranged in a square lattice within a cement paste 

matrix, and contains 50% inclusions. The interfacial zone around the aggregates are also 

accounted for. The top face of the geometry is subjected to uniform compressive loading 

parallel to the Y-axis. The analysis is performed using ABAQUSTM. Figure 3.3(b) shows 

the stress distribution in the REA for an applied external stress of 40 MPa. While this 

configuration results in concentration of stresses at the top face due to direct application of 

load, the stress concentrations at the left and bottom edges are avoided due to the effective 

clearance between the inclusions and the boundaries. Moreover, when considering a 

heterogeneous material such as cement mortar, such a perfectly ordered regular lattice 

structure of inclusions fails to capture the randomness of particle distribution and the 

resultant stress distributions. This limits the application of such models for the case of 

random particulate composites even when the assumption of homogeneity can be applied 

to the global microstructure. 
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Figure 3.3. (a) FE model showing the essential boundary conditions at the edges and 

applied compressive loading for a regular lattice of inclusions containing interfacial 

zones around them. The model contains 50% of inclusions by volume (or area); (b) effect 

of regular inclusion distribution on the stress distribution under the boundary conditions 

shown and an external stress of 40 MPa. The average REA stress is 36.97 MPa 

(compression, shown by the negative sign of 22). 

 

3.3.2 Improvements through the use of periodic microstructure and periodic 

boundary conditions  

 The limitations discussed above necessitate improvements in the model 

formulation with respect to the geometrical features of the microstructure where the spatial 

randomness in particle distribution is considered. Figure 3.5(a) shows such an improved 

model. Instead of having structured array of inclusions in the microstructure, we aim at 

generating a more realistic geometrically periodic REA. Its construction typically starts 

with the definition of a periodic boundary box, see Figure 3.4. Topologically speaking, the 

periodic boundary box for two-dimensional systems can be thought of as a torus with 

particles moving on the torus surface. The torus is set up by connecting the opposite 

boundary box sides. A particle with its center being inside the boundary box is considered 

to be a primary particle. If a primary particle intersects with a boundary of the periodic 
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boundary box, a replica of this particle is positioned on the opposite side. All properties of 

the primary particle are projected onto the replicated particle. As soon as the center of the 

primary particle leaves the boundary box, the replicated particle center enters the boundary 

box and their states change. This leads to a constant number of primary particles inside the 

periodic boundary box. The periodic boundary box is used as a frame for the periodic REA. 

 

Figure 3.4. (a)Schematic illustration of a periodic boundary box including one primary 

particle and its replica. (b)Computational realization including primary and replica 

particles. 

 

The virtual random periodic microstructure is generated using a microstructural stochastic 

packing algorithm[Kumar et al. 2013; Meier, Kuhl, and Steinmann 2008a; Torquato 2013]. 

This algorithm requires the particle size distribution (PSD) and the volume fraction of 

particles as inputs and it packs the circular inclusions with an interface layer of predefined 

thickness around them inside a REA of 4.15 mm x 4.15 mm. Generation of particles and 

their packing in the REA is allowed if the minimum distance between the centroids of 

neighboring particles is always greater than the sum of their radii., i.e., the interfacial zones 

are allowed to overlap in this packing scheme. Generation and random spatial placement 

(a) (b)
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of inclusions goes on simultaneously until the target volume fraction of inclusions is 

reached. The algorithm is described in detail in [Meier, Kuhl, and Steinmann 2008a].  Note 

that Figure 3.5(a) shows only single size inclusions even though multiple sizes, based on 

inclusion PSD can be incorporated, which is implemented in a forthcoming section. After 

the generation of the microstructure, the REA is meshed using a Python script [Van 

Rossum and others 2007] through ABAQUSTM and thus an orphan mesh file is obtained. 

Similar boundary conditions and loading as in the previous case (Figure 3.3) are applied. 

Figure 3.5(b) shows the dominant principal stress ( 22
) distribution in the REA. The 

stresses in the inclusions are similar to that in the case of regular arrangement (Figure 1(b) 

– the color coding is different from that in Figure 3.3(a) because of extremely high stress 

concentrations in this case). However, the magnitude of the concentrated stresses are much 

higher in the regions where the inclusions intersect the edges of the REA. This artifact 

created by the intersection of particle with the REA boundaries are addressed as described 

below. 
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Figure 3.5. Model-II: (a) FE model showing the essential boundary conditions at the 

edges and applied compressive loading for a randomized spatial distribution of inclusions 

containing interfacial zones around them. The model contains 50% of inclusions by 

volume (or area); (b) effect of random spatial distribution of inclusions on the stress 

distribution under the boundary conditions shown and an external stress of 40 MPa. The 

average REA stress is 37.2 MPa 

 

 In order to eliminate the boundary effects, periodic boundary conditions[Li 2008; 

van der Sluis et al. 2000; Xia et al. 2006] are employed in the 2D REA as shown in Figure 

3.6. Figure 3.6(a) shows schematic periodic arrays of repetitive unit cells and Figure 3.6(b) 

shows the periodic boundary conditions applied on one of such schematic representative 

elements for illustration. Periodic boundary condition ensures two continuity criteria at the 

boundaries of neighboring unit cells in order to ensure assembly of individual unit cells as 

a physical continuous body [Suquet 1987]: (i) displacement continuity, i.e., neighboring 

unit cells cannot be separated or they cannot penetrate each other; and (ii) traction 

continuity at the boundary of neighboring unit cells. The displacement field in any 2D 

periodic microstructure is given as: 

),(),( 21

*0

21 xxvxxxv ijiji  
     (3.14) 
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Here, 𝜀𝑖𝑗
0 is the applied strain tensor, and 𝑣𝑖

∗is a periodic function representing the 

modification of linear displacement field due to the heterogeneous microstructure. Figure 

3.6 shows a schematic representation of periodic boundary conditions. For the unit cell 

shown in Figure 3.6(b), the displacements on a pair of parallel opposite boundary edges 

are given as: 

*0

i

s

jij

s

i vxv 



     (3.15a) 

*0

i

s

jij

s

i vxv 



     (3.15b) 

Here, 
s and 

s are sth pair of two opposite parallel boundary surfaces of the unit cell. The 

periodic function 
*v is the same at both the parallel opposite edges due to periodicity. The 

difference between the displacement fields of the two opposite parallel boundary edges is 

given as: 

s

jij

s

j

s

jij

s

i
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i xxxvv 
 00 )( 

    (3.16) 

For a pair of opposite parallel boundary edges, Δ𝑥𝑗
𝑠 is constant for a specified𝜀𝑖𝑗

0 . The 

perturbation is introduced into the system of equations through a reference node which 

only acts as a carrier for the load and is not attached to any element in the model. The 

general form of complete set of equations can be written as: 

0s s dummy

i i iv v v         (3.17) 

Such equations are applied as nodal displacement constraints in the finite element (FE) 

microstructural analysis. 
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Figure 3.6. Schematic representative element area (REA) under applied strain (
0

22  ) with 

periodic boundary conditions 

 

Periodic boundary condition is implemented on the REA as nodal displacement constraints 

through a Python language program appended to the previously obtained (for Model-II, 

Figure 3.5) orphan mesh file containing the periodic microstructure information. A specific 

strain is applied on the REA and the analysis is implemented through ABAQUSTM solver. 

Thus this approach simulates a strain- (or displacement) controlled test scenario. To 

efficiently handle post-processing of the simulated individual element stresses, a 

homogenization module is developed to obtain effective area-averaged REA 

stresses/strains[Sun and Vaidya 1996]and the effective individual phase stresses/strains. 

Figure 3.7(a) shows the generated periodic microstructure and Figure 3.7(b) shows the 

stress distribution obtained after analysis (Model-III) under the application of an imposed 

strain of 0.12% (which is well within the linear elastic range of cementitious systems). This 

value of strain provided an average REA stress of 36.13 MPa, which is very similar to the 

average REA stresses obtained for Models I and II when an external stress of 40 MPa was 

applied. Application of periodic boundary conditions on an REA under a strain-controlled 

regime eliminates all the boundary effects encountered in Models I and II. Hence this 
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model (Model III) is used for further analysis in this paper. Free quad-dominated 4-noded 

bilinear plane strain quadrilateral elements (CPE4R element implemented in ABAQUSTM) 

are used in the FE models. A mesh convergence study was conducted so as to establish the 

mesh size for FE analysis. For an REA of 4.15 mm x 4.15 mm, a seed size of 0.0175 mm 

was found to yield converging responses for all sizes and volume fractions of inclusions. 

The finest mesh (68879 nodes and 68771 elements) that yielded a converged solution is 

shown in Figure 3.7(b) and is used in further simulations. The analysis scheme presented 

here does not consider the separation effects of phases (debonding) under stress. 

Application of low strains (or stresses) ensures adherence to the principles of linear 

elasticity and that the interface debonding effects are not dominant.  
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Figure 3.7. Model-III: (a) FE model showing the inclusions with the interfacial zones 

around them. The model contains 50% of inclusions by volume (or area); (b) effect of 

random distribution and periodic boundary conditions on the stress distribution under an 

imposed strain of 0.12%. The average REA stress is 36.13 MPa. 

 

 A flowchart that depicts the modeling and analysis sequence employed in this study 

is shown schematically in Figure 3.8. Area-averaged dominant principal stresses and 

strains in the REA, computed using the FE analysis, are calculated at different externally 

applied uniaxial displacements in order to obtain the effective composite Young’s 

modulus. 
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Figure 3.8. The sequence followed in the numerical analysis process including 

microstructural generation, meshing, application of periodic boundary conditions, 

homogenization, and determination of average REA stresses and effective E. (P.B.C 

denotes periodic boundary conditions). 
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Chapter 4: Influence of Inclusion Modification on Microstructural Stress 

Distribution and Linear Elastic Constitutive Response of Cementitious Mortar 

 Based on the discussions in the previous section, simulations are carried out on 

periodic virtual microstructures on which periodic boundary conditions are imposed 

(Model III). This section evaluates the sensitivity of the averaged (within a given phase or 

the REA) linear elastic stress responses as a function of varying material and geometric 

parameters of the microstructure, and brings out the fundamental differences in elastic 

response between systems containing hard (quartz) or soft (lightweight aggregates) 

inclusion particles. The size of inclusions is considered to be identical (600 µm) for both 

the quartz and lightweight aggregate systems, for simplicity. The default volume fraction 

of inclusions is 50%. However, the modeling technique and discussions presented herein 

are not restricted to such simplified systems and can tackle any realistic inclusion sizes and 

volume fractions. The effect of multiple inclusion sizes on the effective stresses is also 

demonstrated later in this thesis. The thickness of inclusion-matrix interface has been kept 

constant at 30µm for the simulations[Grondin and Matallah 2014; C. C. Yang 1998; 

Zanjani Zadeh and Bobko 2014]. The default material properties of different components 

are reported in Table 4.1.   

4.1  Influence of Material Properties  

 In this section, the sensitivity of effective REA and individual phase stresses in 

quartz and LWA mortar systems to variations in material properties are evaluated. The 

constitutive relationships for all the components: cement paste, hard (quartz aggregates) 

and soft (lightweight aggregate - LWA) inclusions, and the paste-inclusion interfaces are 

considered in their respective linear elastic regimes only. The default elastic properties of 
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the components, extracted from available literature[Grondin and Matallah 2014; Z. Hashin 

and Monteiro 2002b; Ke et al. 2009; Lutz, Monteiro, and Zimmerman 1997; Nilsen, 

Monteiro, and Gjørv 1995; C. C. Yang 1998; Zanjani Zadeh and Bobko 2014], are 

presented in Table 4.1.However, for parametric studies discussed later in the paper, a range 

of values are considered, which are indicated in the respective sections. 

  Table 4.1. Elastic properties of the components of the mortar for FE simulations 

Elastic property 

 

Hardened 

cement 

paste 

Quartz 

inclusion 

Quartz- 

cement 

paste 

interface 

LWA 

inclusion 

LWA- 

cement paste 

Interface 

Young's Modulus, 

E(GPa) 
20 70 15 16 30 

Poisson's Ratio,  (--) 0.22 0.17 0.22 0.20 0.20 

 

4.1.1 Influence of inclusion stiffness and prediction of composite E 

 Figures 4.1(a) and (b) show the dominant principal stress ( 22 ) distribution 

considering the material properties shown in Table 1 for both the quartz and LWA mortar 

systems respectively, when a strain of 0.12% is applied to the REA. The LWA inclusions 

exhibit significantly higher deformation as compared to the quartz inclusions as can be 

seen from these figures, which is expected. While the quartz particles are highly stressed 

in the quartz mortar system, in the LWA mortar, it is the ITZ that bears the highest stress.  

This is expected considering the significantly higher stiffness of quartz particles as 

compared to that of LWA as shown in Table 4.1. Another distinct observation from Figure 

4.1 is that the magnitude of stress inside the quartz particles increases when the particles 

are very close to each other, attributable to the significant stiffness mismatch between the 

inclusions and the matrix. On the contrary, LWA mortar does not exhibit an increase in 
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stress inside LWA. Instead, the stress concentration in the ITZ is higher if the neighboring 

particles are close to each other. Thus, the relative stiffness of the inclusions with respect 

to the matrix results in distinctively different stress distributions, and thus differing 

propensities of failure in the microstructure. Note that the magnitude of the maximum 

dominant principal stresses ( 22
), which occur in the inclusions when the inclusion is 

stiffer and the inclusion-paste stiffness mismatch is higher, and in the ITZ when inclusion-

paste stiffness mismatch is lower, are rather comparable. The quantified averaged REA 

stress and the stresses in the other microstructural phases are plotted in Figure 4.2 as a 

function of the inclusion stiffness. 

 

Figure 4.1. Dominant principal stress ( 22 ) (MPa) distributions in:  (a) quartz mortar 

system and (b) lightweight aggregate mortar system. Magnified representation of stress 

distributions in both mortar systems containing the zones around the inclusions are shown 

for clarity. The REA is subjected to a strain of 0.12%. 

(a)

(b)

(a)

(b)
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 Figure 4.2(a) shows the area-averaged dominant principal stresses in the REA as 

well as those in the individual microstructural phases for a mortar system containing quartz 

particles as a function of the Young’s modulus of quartz (in the range of 50 to 100 GPa).  

With increasing E of quartz (at the same inclusion volume fraction, and leaving the E of 

the paste and the interface unchanged), the average stresses in all the phases in the 

microstructure increase linearly. The quartz inclusions experience the highest average 

stress amongst all the phases because of the significantly higher E values compared to the 

paste or the ITZ, in line with Figure 4.1(a). The ITZ and the paste matrix components show 

similar averaged stresses, attributable to the fact that the stiffness difference between these 

phases is negligible when compared to the difference in stiffness between quartz and these 

phases. Figure 4.2(b) shows the averaged REA and other component stresses in the LWA 

mortar system for varying stiffness of LWA inclusions (between 6 and 21 GPa[Ke et al. 

2009]). Here, the highest stress is observed in the ITZ as shown in Figure 4.2(b) because 

of the fact that its stiffness is the highest among all the phases in this microstructure.  While 

the average stress increases in all the phases when stiffer LWA is used, the rate of increase 

in stress is higher in the LWA inclusions compared to the other phases or the REA. The 

average stress in the cement paste matrix and ITZ of the LWA mortar system linearly 

increases with LWA stiffness whereas the stress increase in the LWA inclusions is found 

to be nonlinear, primarily attributed to the deformational effects of the LWA and the 

consideration of perfect bonding between the phases in the model. The rate of stress 

increase in the LWA and the paste decreases with increasing LWA stiffness and the stresses 

in these phases are almost equal when the LWA and the paste stiffness are similar, as 

expected. Figures 4.2(a) and (b) also show that the averaged stresses in all the components 
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are lower in the LWA system as compared to those in quartz mortar system. This can be 

attributed to the stresses concentrated over large areas in quartz particles that increases the 

average inclusion stresses as well as the other phase stresses in quartz mortar system due 

to assumption of perfect bonding between phases. On the contrary, LWA system shows 

lower stresses due to lower stiffness of LWA inclusions as well as lower effective stiffness 

of REA. Furthermore, several important, microstructure-based design-relevant 

considerations are obtained through these simulations, which are summarized below:  

(i) Although significant stress concentrations are observed inside stiff particles in the 

quartz mortar, the interfaces between the paste and the inclusions are more critical since 

ITZ is the weakest component in this system and the stiff inclusions can sustain 

significantly higher load without failure. The average stress in ITZ increases by about 

16% and the average REA stresses by about 20% when the E of the stiff inclusion is 

doubled, denoting that there is no significant advantage in terms of propensity to fail 

(strength) even if a very stiff (and thus generally strong) inclusion is used, unless the 

paste (and interface) properties are concurrently altered. However, at low strains, the 

beneficial effects of a higher composite stiffness also cannot be discounted;  

(ii) Even though the inclusions in the LWA mortar exhibit the lowest stress among all the 

components under applied external strains, the softer and weaker (compared to the 

cement paste matrix and ITZ) LWA inclusions are critical towards failure of LWA 

mortar system;  

(iii)Tripling the stiffness of LWA inclusions (within limits without compromising various 

benefits of LWAs such as low density and thermal performance) results in more than 

doubling of the stress in the LWA inclusions. While stiffening of LWA inclusions 



42 

  

increases the stress inside LWA inclusions, the strength of the inclusions also likely 

increases concurrently. Hence a suitable combination of stiffening and strengthening 

of LWA inclusions can be selected for optimal mechanical performance;  

(iv) Increase in stiffness of LWA inclusions is also associated with increase in stress in the 

ITZ and matrix. Hence, the results indicate that the ITZ and matrix also needs to be 

strengthened if the LWA stiffness (and strength) is to be increased. These results 

exhibit that the fundamental material-design approach, which is based on traditional 

stiff inclusion incorporation, needs to be altered when softer inclusions are incorporated 

in cementitious systems.  

 The modeling approach and the results described here indicate the probable failure 

modes and provide valuable information on the mechanical performance and design of 

particulate composite materials such as mortars and concrete, especially when new 

inclusion materials are used for specific performance features or to address sustainability 

issues (e.g., the use of different types of soft inclusions such as LWAs for internal curing 

[Bentz and Snyder 1999; Cusson and Hoogeveen 2008], fly ash-based aggregates [Kayali 

2008; Wasserman and Bentur 1997], microencapsulated phase change materials for 

thermal cracking control [Fernandes et al. 2014], and waste and recycled materials such as 

rubber for energy absorption[Hernández-Olivares et al. 2002]).It is reiterated that the 

models consider perfect bonding between the particles and the matrix; a case not 

completely realistic, but helps provide comparisons of material response.  

 Figure 4.2(c) shows the constitutive response of the quartz and LWA mortars 

containing 50% of inclusions by volume, extracted from numerical simulations. The 

dominant principal stresses ( 22 ) and principal strains ( 22 ) in the linear elastic range of 
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these systems are used. Thus the approach presented here can be used to determine the 

composite elastic moduli of systems containing multiple inclusion types. In addition to the 

E value, as described earlier, this methodology also provides estimates of the microstresses 

in the different phases under imposed strains (in the linear elastic regime) and facilitates 

the development of constitutive relationships for composite materials, which otherwise 

would be experimentally tedious. Comparison of Young’s modulus values obtained from 

numerical simulation (FEA) to those calculated using analytical/semi-analytical 

approaches as well as experimental validation of the adopted numerical technique is 

detailed in a later section of this paper. 
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Figure 4.2. Effective REA and individual component stresses ( 22 )as a function of 

inclusion stiffness for: (a) quartz mortar system and (b) LWA mortar system; and (c) 

linear constitutive relationship for quartz and LWA mortar systems for defaults values of 

material parameters (shown in Table 4.1) and microstructural features. 

 

4.1.2 Influence of ITZ stiffness 

 Figure 4.3(a)shows the area-averaged dominant principal stresses in the REA as 

well as those in the individual microstructural phases for a mortar system containing quartz 

particles as a function of the Young’s modulus of ITZ (in the range of 8 to 18 GPa). With 

increasing E of the ITZ (at the same inclusion volume fraction, and leaving the E of the 

paste and the quartz inclusion unchanged), the average stresses in all the phases in the 

microstructure increases. The rate of increase in the stresses is highest in the ITZ which is 

(b)(a)

(c)
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to be expected as the ITZ is being stiffened. The stresses in the matrix and the quartz 

inclusion are still higher than that of the ITZ, which is attributed to their higher stiffness 

compared to that of the ITZ. For a E of ITZ close to that of the matrix, it is observed that 

the stresses in the ITZ are almost similar to that in the matrix. This is significant as the ITZ 

is the weakest component in the quartz mortar system and is the region where failure is 

most likely to first occur. With a stiffer ITZ, failure would be most likely be delayed as the 

strength of the ITZ would also increase, thereby enabling the REA to take more load than 

with a softer ITZ. Figure 4.3(b) shows the area-averaged dominant principal stresses in the 

REA as well as those in the individual microstructural phases for a mortar system 

containing LWA particles as a function of the Young’s modulus of ITZ (in the range of 20 

to 40 GPa). In the case of the LWA mortar system, the ITZ is the stiffest component of the 

composite microstructure. As such, the stresses are highest in the ITZ compared to the 

matrix and the LWA inclusion. Another observation from figure 4.3 b is that the stresses 

in the matrix and the LWA inclusion do not show much change with increasing ITZ 

stiffness. This is due to the fact that even though the ITZ is stiffer than both the matrix and 

the inclusion, the difference in the stiffness between the phases is not large. 
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Figure 4.3. Effective REA and individual component stresses ( 22 ) as a function of ITZ 

stiffness for: (a) quartz mortar system and (b) LWA mortar system. 

 

4.1.3 Influence of ITZ thickness  

 Figure 4.4(a)shows the area-averaged dominant principal stresses in the REA as 

well as those in the individual microstructural phases for a mortar system containing quartz 

particles as a function of the thickness of ITZ (in the range of 20 to 50μm). With increasing 

thickness of the ITZ (at the same inclusion volume fraction, and leaving the E of the paste, 

ITZ and the quartz inclusion unchanged), the average stresses in all the phases in the 

microstructure decreases. With an increase in the thickness of the ITZ, the area of low 

stiffness around the inclusion increases and as such, stress transfer into the inclusion is 

impeded. This is reflected in the drop in the stresses in the quartz inclusion phase with 

increasing thickness of the ITZ. This is not a desirable condition, as it defeats the purpose 

of using a stiff inclusion. With increasing thickness, the stresses in the ITZ decrease but 

the drop is not significant enough to warrant that failure would be delayed or would not 

occur. Figure 4.4(b) shows the area-averaged dominant principal stresses in the REA as 

well as those in the individual microstructural phases for a mortar system containing LWA 
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particles as a function of the thickness of ITZ (in the range of 10 to 50μm). With increasing 

thickness of the ITZ (at the same inclusion volume fraction, and leaving the E of the paste, 

ITZ and the quartz inclusion unchanged), the average stresses in all the phases in the 

microstructure do not show any significant change. With an increase in the thickness of the 

ITZ, the area of stiffer region around the inclusion increases and as such, stresses should 

concentrate on the ITZ, but the overall volume fraction of the ITZ in the microstructure is 

not large enough to cause any deviation in the stresses with an increase in its thickness. 

The stresses in the LWA inclusion also do not show much change and as such would be 

still critical towards failure of LWA mortar system. From figure 4.4 it is evident that 

increase in the thickness of ITZ does not have much beneficial effect on the stresses both 

in the individual components and the REA in the quartz and LWA mortar systems. 

 

Figure 4.4. Effective REA and individual component stresses ( 22 ) as a function of ITZ 

thickness for: (a) quartz mortar system and (b) LWA mortar system. 
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4.1.4 Influence of matrix and ITZ stiffening 

 This section reports the influence of matrix as well as ITZ strengthening/stiffening 

(such as those accomplished through the use of additives like silica fume as a partial 

replacement of cement) in mortars containing quartz or LWA as inclusions with an aim of 

understanding the relative influences of matrix modification.  The Young’s modulus of 

silica fume modified cement paste is taken as 25 GPa[C. Hu and Li 2015] as opposed to 

20 GPa for the unmodified systems. The stiffness of the ITZ was also increased 

proportionally (Young’s modulus of ITZ is taken as 18.75 and 37.5 GPa in quartz and 

LWA mortars respectively) since silica fume incorporation is known to result in interface 

densification and stiffening [Duan et al. 2013; C. Hu and Li 2015]. Figures 4.5(a) and (b) 

show average stresses in the REA as well as in the individual microstructural phases 

corresponding to an applied strain of 0.12% for the quartz and LWA mortars respectively. 

Stresses increase in all the phases for both the mortar types when the paste phase contains 

silica fume. In the quartz mortar, the average stress in the ITZ increased by about 15% 

when 10% silica fume was incorporated. However, the strength enhancement of both the 

ITZ and the paste phase will likely be larger than the stress increase, thereby rendering 

improved mechanical performance to the quartz mortar when silica fume is incorporated 

in the paste phase. This has been demonstrated through experimental studies [C. Hu and Li 

2015; Shannag 2000]. The stress increase inside the quartz inclusions has an insignificant 

influence on material failure because of the higher strength of quartz particles [Axelson 

and Piret 1950]. On the contrary, the inclusions in the LWA mortar system are relatively 

weak and even a marginal increase in inclusion stress is likely to result in material failure 

at even lower applied strains as compared to that in LWA mortar systems without silica 
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fume incorporation. Thus the combined stiffening of ITZ as well as the matrix in LWA 

mortar system has a detrimental effect on the strength, provided it is the lightweight 

inclusion that is weaker and fails first. This points to the fact that matrix strengthening 

methods such as the use of silica fume might not be beneficial from a viewpoint of 

mechanical response in these systems, unless the LWA is stronger. However, the 

densification of the matrix and the ITZ will still lead to better durability properties in such 

concretes.  

 

Figure 4.5. Effect of silica fume incorporation on the average REA and phase stresses for: 

(a) mortar containing quartz inclusion, and (b) mortar with LWA inclusions. The 

modified matrices contain 10% silica fume by mass as a cement replacement material. 

 

4.2  Influence of Inclusion Content 

 The preceding sections have dealt with systems containing a constant inclusion 

volume fraction of 50%. Figures 4.6(a) and (b) show the effect of inclusion volume fraction 

on the average principal stresses in the quartz and LWA mortars respectively. With 

increasing volume fraction of inclusions, the average REA stresses as well as the stresses 

in all the phases in both the systems increase linearly. For the quartz mortar (Figure 4.6(a)), 

the rates of stress increase in the microstructural phases as well as the REA as a function 

(a) (b)
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of the inclusion volume fraction are higher as compared to those in LWA mortar (Figure 

4.6(b)). This is once again attributed to the higher stiffness of quartz inclusions. While an 

increase in the ITZ stress at higher volume fractions of quartz is likely to be responsible 

for interface failure (since ITZ is the weakest component in the quartz mortar) and thus the 

material failure under smaller applied strains in quartz mortar, a stress increase inside the 

LWA inclusions (which is the weakest component in the LWA mortar) at higher volume 

fractions of LWA is expected to be the cause of failure of LWA mortar system under 

smaller external applied strains. 

 

Figure 4.6. Effective REA and individual phase stresses as a function of inclusion volume 

fraction for: (a) quartz mortar and (b) LWA mortar. 

 

4.3 LWA Mortar with Multi-Sized Particles: Microstress Distribution and REA 

Stresses 

While all the previous parametric studies considered the response of systems with 

single sized inclusions, the influence of several inclusion sizes (as is the realistic case) on 

the average REA and phase stresses is dealt with in this section. Default values of 

(a) (b)
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material/geometrical properties of inclusions, paste, and ITZ (Table 4.1) are used here. 

Table 4.2 shows the three different uniform inclusion size distributions used in this study. 

The inclusion sizes are uniformly distributed around a mean of 0.6 mm and standard 

deviations of 0.06, 0.12, and 0.24 mm respectively. Figures 4.7(a) and (b) show the 

dominant principal stress ( 22 ) distribution in single- and multi-sized particulate (LWA) 

systems respectively. Here, LWA inclusions with a mean size of 0.6 mm and a standard 

deviation of 0.24 mm are considered. Figures 4.7(a) and (b) also show enhanced stress 

concentrations between the closely spaced inclusions, especially if they are aligned in a 

direction perpendicular to that of the applied strain. In Figure 4.7(b), when smaller 

particles, particularly with varying sizes are in proximity with each other, a slight stress 

relaxation trend is observed. With smaller particles, there is a reduction in the continuous 

volume of ITZs (the highly stressed phases in the LWA mortar systems) that are adjacent 

to each other, resulting in such an observation. These are reflected in the individual phase 

stresses as well as the average principal REA stresses for the different particle size 

distributions, which are shown in Figures 4.8(a) and (b) respectively. These figures provide 

average stress information on mortars containing 50% LWA inclusions by volume. The 

averaged stresses are highest in the single-sized LWA mortar due to the higher stress 

concentrations in the inter-inclusion areas as explainer earlier. The stresses reduced 

considerably (by about 20%) when non-uniform particle sizes are considered since 

interactions between neighboring smaller and larger particles reduce the stresses, contrary 

to the higher stress-concentrations encountered between two closely spaced similar-sized 

inclusions. For the same reason, the averaged REA stresses also decrease as the inclusion 
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size distribution is more spread out (the mean size being the same), as reflected in Figures 

4.8 (a) and (b).  

 

Figure 4.7. Influence of particle sizes on the dominant principal Stresses (MPa) in the 

REA for: (a) single-sized LWA inclusions, and (b) multiple sized (Mean = 0.6 mm and 

std. dev. = 0.24 mm) LWA inclusions embedded in a cement paste. Magnified 

representation of stress distributions in the vicinity of the particles (similar and dissimilar 

sizes) are shown for clarity. 

 

Table 4.2. Size distributions (uniform distribution) of the LWA particulate inclusions for 

FE simulation 

PSD Type 
Range 

(mm) 

Mean 

(mm) 

Std. Dev. 

(mm) 

Single Size NA 0.6 0 

Multiple Size (Narrow) 0.5-0.7 0.6 0.06 

Multiple Size (Medium) 0.4-0.8 0.6 0.12 

Multiple Size (Wide) 0.2-1.0 0.6 0.24 
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Figure 4.8. Effect of LWA inclusion size distribution on: (a) the matrix and inclusion 

stresses; and (b) effective REA stresses (mean particle size is 0.6 mm) 

 

4.4  Micromechanics-Based Elastic Modulus Predictions 

4.4.1 Comparison with analytical modeling schemes 

 Predicting the material properties of composite systems is an important attribute 

desired from a micromechanical model, so that material design decisions could be made in 

a rational manner with limited experiments. This section compares the composite Young’s 

modulus values predicted using the above-described micromechanical model as well as 

using well-established analytical models such as Mori-Tanaka[Mori and Tanaka 1973b], 

double inclusion [Hori and Nemat-Nasser 1993] and Hobbs method[Hobbs 1971].Mori-

Tanaka (M-T) method has been previously used for determination of effective properties 

of cement-based materials[da Silva, Němeček, and Štemberk 2013; G. K. Hu and Weng 

2000; Miled, Sab, and Le Roy 2011; C. C. Yang 1997]. It considers a discrete spherical 

inclusion embedded in an infinitely extended homogeneous reference medium (matrix). 

The homogenized elastic moduli for two-phase materials can be quantified from the 

individual phase properties as recently explained in [Das et al. 2015; Mori and Tanaka 

(a) (b)
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1973b]. A two-step homogenization is performed for the determination of effective 

Young’s modulus for binder systems using the M-T method. In Step I, the cement paste 

and ITZ are homogenized and in Step II, the inclusions and the resultant phase from Step-

I (which is the new reference medium) are homogenized. While the Mori-Tanaka model 

consists of an ellipsoidal inclusion in an infinitely extended homogeneous reference 

medium, the double inclusion (DI) model considers an ellipsoidal inclusion embedded in 

another ellipsoidal matrix, which is further embedded in an infinitely extended 

homogeneous medium [Hori and Nemat-Nasser 1993; C. C. Yang and Huang 1996a]. 

Detailed derivation and analysis procedure are described in [Hori and Nemat-Nasser 1993; 

G. K. Hu and Weng 2000; C. C. Yang and Huang 1996a]. Here the inclusion (quartz or 

LWA) is considered to be embedded in ITZ, and this composite particle is embedded in an 

infinite cement paste matrix.  

 Another analytical homogenization approach derived by Hobbs [Hobbs 1971]is 

also used here for comparison. The resultant homogenized Young’s modulus (E*) for a 

two-phase composite is given as: 

 𝐸∗ = 𝐸𝑚 [1 +
2𝜙𝑖(𝐸𝑖−𝐸𝑚)

(𝐸𝑖+𝐸𝑚)−𝜙𝑖(𝐸𝑖−𝐸𝑚)
] (4.1) 

where 𝜙𝑖 is the volume fraction of the inclusions, and Ei and Em are the Young’s modulus 

of the inclusion and matrix respectively. Here also, a two-step homogenization procedure 

for the multiple phases as adopted for the M-T method is carried out in order to obtain the 

homogenized Young’s modulus. 

 While the analytical models can predict only the elastic modulus of the composite, 

the micromechanical model presented in this paper also provides the average linear elastic 
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stresses and strains in the REA (in addition to the stresses in the different microstructural 

phases) from which the effective Young’s modulus can be determined. Figures 4.9(a) and 

(b) show the composite Young’s modulus with varying inclusion volume fractions for 

quartz and LWA mortar systems respectively. The Young’s modulus increases 

significantly in the quartz mortar with increasing volume fraction of inclusions whereas it 

decreases with increasing inclusion volume fraction in the LWA mortars, as expected. In 

both the systems, the M-T and double inclusion models predict higher values of Young’s 

modulus as compared to those quantified using the micromechanical FE analysis. This is 

because these analytical schemes do not adequately capture the realistic inter-inclusion 

interactions that result in stress-concentrations/relaxations in these micro-heterogeneous 

systems that influence the composite REA stresses for a given imposed strain. Hobbs 

method is also a simple geometry-independent and volume-fraction based analytical 

method which also does not capture stress-concentrations in heterogeneous systems with 

complex geometries. On the contrary, a numerical scheme such as the one described here 

adequately captures such interactions[Dunant et al. 2013].Besides, the accuracy of the 

analytical homogenization techniques has been shown to be limited if the stiffness contrast 

between the phases is high [Dunant et al. 2013; Idiart et al. 2009].This is reflected in 

Figures 4.9(a) and (b) that shows the predicted elastic modulus as a function of the 

inclusion volume fraction for both the quartz and LWA mortars. In the quartz mortar 

system (Einclusion/Epaste= 3.5) with 50% inclusion volume fraction, the analytical schemes 

(M-T and DI) predict about 20% higher value of homogenized Young’s modulus as 

compared to the micromechanical FE analysis. On the other hand, the homogenized 

Young’s moduli predicted using analytical schemes are about 10% higher than that 
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quantified using the FE analysis for the LWA mortar system (Einclusion/Epaste= 0.8).In the 

case of quartz mortar, the Young’s modulus predicted by Hobbs method correlates well 

with that obtained using numerical simulation at lower quartz volume fractions (up to 

30%). However, the predictions diverge at higher quartz volume fractions because of the 

dilute limit being exceeded and the inter-particle interactions becoming dominant, the 

effect of which cannot be accounted for by analytical models. The trends in Figure 4.9 

suggest that Hobbs method over-predicts the Young’s modulus as compared to numerical 

approach when the inclusions are stiffer than the matrix and under-predicts it when the 

inclusions are softer than the matrix. A comparison of the results from the numerical 

analysis scheme to the experimentally determined elastic moduli is shown in the 

forthcoming section.  

 

Figure 4.9. Young’s modulus predicted using the micromechanical model and its 

comparison with well-established analytical models for: (a) quartz mortar and (b) LWA 

mortar 

 

 

 

(a) (b)
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4.4.2 Experimental validation 

 To validate the micromechanical FE model, experimental values of Young’s 

modulus of quartz mortar at different volume fractions of quartz has been adopted from an 

experimental study [Falzone et al. 2015] where the elastic modulus was measured in 

accordance with ASTM C469, using cylindrical specimens (10cm diameter x 20cm height). 

For numerical simulations, the Young’s modulus of quartz, cement paste and ITZ were 

taken as 64 GPa, 16.75 GPa and 8.375 GPa respectively, ITZ thickness as 5 µm, and the 

Poisson’s ratio of all the components as 0.22as reported in the above-referenced 

experimental study. Four different volume fractions of quartz (10, 20, 30 and 55%) are 

used for simulations. For the numerical analysis, four replicate microstructures with 

random spatial distributions were generated for each of the inclusion volume fractions. The 

median inclusion size of quartz for the micromechanical analysis was matched to those 

used in the experimental studies (365 m). Figure 4.10 shows the Young’s modulus of 

quartz mortar, predicted using the FE scheme (principal stresses and strains measured in 

the REA, when the microstructure was subjected to different strains in the linear elastic 

regime, as shown in section 4.1.1) along with the experimental measurements. A very good 

correlation is noticed between the predicted and measured Young’s modulus as can be seen 

from this figure, contrary to the analytical schemes described earlier, establishing the 

viability of using the numerical homogenization scheme in determining the Young’s 

modulus of micro-heterogeneous systems. Also, the standard deviations of the predicted 

Young’s modulus values from four replicate microstructures are negligible as compared to 

standard deviations of experimental measurements, reinforcing the efficacy of using 

microstructure-guided numerical simulation towards prediction of Young’s modulus. 
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Figure 4.10. Relationship between experimentally obtained E value and those predicted 

using the micromechanical FE scheme for a mortar containing different volume fractions 

of quartz particles. 
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Chapter 5: Influence of Interfacial Debonding on the Microstructural Stress 

Distribution and Linear Elastic Constitutive Response of Cementitious Mortar 

 Interfacial debonding is one of the prime factors which influence the macroscopic 

constitutive response of a particle reinforced composites. The current chapter presents a 

framework capable of capturing the influence of interfacial debonding on the finite 

deformation response of particle reinforced composites. The influence of debonding is 

accounted for through the use of traction-separation relationship. This chapter evaluates 

the sensitivity of the averaged REA linear elastic stress responses as a function of varying 

material and geometric parameters of the microstructure, and brings out the fundamental 

differences in elastic response between systems containing hard (quartz) or soft 

(lightweight aggregates) inclusion particles when interfacial debonding is considered. The 

mean size of inclusions is considered to be identical (600μm) with a variance of (400μm) 

and a standard deviation of (240μm) for both quartz and lightweight aggregates systems, 

for simplicity. The default volume fraction of inclusions is 30% so as to reduce the 

computational demand. The thickness of inclusion-matrix interface has been kept constant 

at 30μm for the simulations [Meier, Kuhl, and Steinmann 2008b; Wriggers and Moftah 

2006a; M. Chi and Huang 2013]. The default material properties of different components 

of the composites are reported in Table 4.1. 

5.1 Traction-Separation Law 

  The major challenge in the cohesive zone model is the determination of the 

traction–separation relationship. For plain concrete, a linear softening model was employed 

by [Hillerborg, Modéer, and Petersson 1976], and a bilinear softening model was 

introduced by [Petersson 1981]. Since then, a bilinear softening model has been widely 
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utilized [Bazant and Planas 1997]. The majority of cohesive zone models are based on 

intrinsic formulations which require a pre-defined debonding path and penalty stiffness 

prior to the softening behavior, as shown in Figure 5.1.a. The intrinsic CZM has four stages 

as shown in Figure 5.1.b. The first stage is characterized by general elastic material 

behavior without separation (Figure 5.1.b : Stage I).The quasi-brittle material properties 

are assumed to be homogeneous and linear elastic in this stage. The next stage is the 

initiation of debonding when a certain criterion is met, for example, critical tensile bending 

stress(Figure5.1.b: Stage II).In this study, the fracture initiation criterion for mode I 

fracture is assumed to occur when the state of stress reaches the cohesive strength (e.g. 

concrete tensile strength, f't).Stage III describes the evolution of the debonding, which is 

governed by the cohesive law or the softening curve, i.e., the relation between the stress (r) 

and crack opening width(w) across the debonded surface, as shown in Figure5.1.b (Stage 

III).  

 

Figure 5.1 (a) Bilinear softening for quasi-brittle materials and (b) four stages of the 

cohesive zone model[Roesler et al. 2007] 
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 Different constitutive relationships, such as a linear[Hillerborg, Modéer, and 

Petersson 1976], bilinear[Petersson 1981; Roelfstra and Wittmann 1986; Park, Paulino, 

and Roesler 2008], trilinear[Cho et al. 1984], and exponential [Gopalaratnam and Shah 

1985] softening curve, have been developed to predict interfacial debonding. Among the 

various softening curves, the bilinear softening relationship has been used extensively and 

has been chosen in this work. [Petersson 1981] originally proposed a bilinear softening 

curve with a fixed kink point, which was also adopted by [Gustafsson and Hillerborg 

1985].[Wittmann et al. 1988] determined a bilinear softening curve with the stress ratio of 

the kink point at 0.25.[Elices et al. 2002] and [Guinea, Planas, and Elices 1994] 

characterized a bilinear softening curve using the tensile strength, the total fracture energy, 

and two parameters which represent the shape of a softening curve.[Bažant 2002] further 

refined the bilinear softening model by introducing an additional fracture parameter called 

the initial fracture energy. In this research, the bilinear softening model [Bažant, Yu, and 

Zi 2002] was selected since the softening curve has two slopes which can be controlled by 

the measured fracture properties. The CZM has been mentioned above to describe the 

various stages and in particular the stage at which traction-separation relationship affects 

the softening curve. In this research, only the traction-separation relationship is used to 

account for debonding at the interfaces between the matrix and the inclusions. The 

following experimental fracture parameters that define the bilinear softening curve shape 

are simple to measure using Two Point Beam (TPB) and split tensile testing configuration: 

total fracture energy (GF), initial fracture energy (Gf), and tensile strength (f't). 
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 In order to evaluate the interfacial debonding, this research utilizes a bilinear 

softening model [Park, Paulino, and Roesler 2008]. The bilinear traction-separation model 

is defined by four experimental fracture parameters: 

 tensile strength (f't) 

 initial fracture energy (Gf) 

 total fracture energy (GF) and 

 fracture toughness (KIC) 

 The values for the four experimental fracture parameters; the tensile strength (f't), 

initial fracture energy(Gf), total fracture energy(GF) and fracture toughness(KIC) which 

define the bilinear softening model for ordinary portland cement are adopted from the 

literature [Das et al. 2015; Das et al. 2016]. 

 

5.2 Influence of Interfacial Debonding on the Micro-Stress Distributions and 

Effective Young’s Modulus 

 The approach presented here can be used to determine the composite elastic moduli 

of systems containing multiple inclusion types. In addition to the E value, as described 

earlier, this methodology also provides estimates of the microstresses in the different 

phases under imposed strains (in the linear elastic regime) and facilitates the development 

of constitutive relationships of composite materials while considering the effect of 

debonding. Figure 5.2 (a) and (b) show the constitutive response of the quartz and LWA 

mortars, extracted from numerical simulations. The dominant principal stresses ( 22 ) and 

principal strains ( 22 ) in the linear elastic range of these systems are used. It is observed 

from both Figure 5.2 (a) and (b) that effect of debonding is much prominent for a 
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randomized microstructure than a microstructure containing a single inclusion or four 

inclusions for a constant volume fraction of inclusions. Thus, a randomized microstructure 

with varying sizes of the inclusions in the matrix helps bring out the effect of interfacial 

debonding better than just a single-inclusion or a four inclusion case. While the single-

inclusion or four-inclusion systems do show noticeable interfacial debonding, the effect of 

debonding on the effective composite modulus is much more prominent for the case of 

randomized microstructure. Combined with the fact that randomized microstructure is 

inherently realistic, it makes more sense to make use of randomized microstructure when 

incorporating the effects of debonding in a microstructure. Another observation from 

Figure 5.3 is that the magnitude of stress inside the quartz particles increases when the 

particles are very close to each other, attributable to the significant stiffness mismatch 

between the inclusions and the matrix. Also, in the partially debonded inclusions, 

prominent stress concentrations are observed where the matrix and the inclusions are still 

bonded, whereas the recently debonded areas of the matrix show stress relaxations. This is 

due to the fact that debonding between the matrix and the inclusion tends to redirect the 

stresses to be imposed on the microstructure based on the stiffness of the component phases 

in the composite microstructure. Under any kind of loading conditions, the stresses are 

shared by the matrix and the inclusions in the microstructure based on the stiffness of the 

individual components of the composite microstructure. When debonding occurs, the 

interfacial surfaces of the matrix and the inclusions are no longer in contact, which thereby 

impedes stress transfer between the matrix and the inclusions leading to the stress 

relaxations as observed in Figure 5.3. The stresses which could not be transferred due to 

debonding are then redistributed to the nearby contact areas of the matrix and the inclusions 
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leading to stress concentrations at these locations perpendicular to the direction of 

debonding under uniaxial loading conditions. 

 

Figure 5.2. Effect of debonding on the REA Young's Modulus for (a) Quartz Mortar 

System and (b)LWA Mortar System. 

 

 

 

Figure 5.3. Effect of debonding on the stresses in the individual components for a quartz 

mortar system 

 The preceding sections have dealt with systems having inclusions without an 

interfacial transition zone (ITZ). In this section, we study the effect of systems with ITZ 

on the interfacial debonding occurring at the interface between the ITZ and the inclusion. 

Figure 5.4 a shows the average principal stress in the quartz mortar with an ITZ for a 

perfectly bonded case and Figure 5.4 b shows the effect of ITZ on the interfacial debonding 

and the average principal stress in the quartz mortars respectively. As the ITZ for a quartz 

Stress Concentration

Stress Relaxation

Debonding at interface
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inclusion is generally weaker than the matrix, the stiffness contrast between the inclusion 

and the ITZ is higher in the quartz-mortar system with an ITZ than in the quartz-mortar 

system without an ITZ. As such, the debonding index is found to be about 10% higher than 

in a microstructure having quartz inclusions without an ITZ. The presence of weaker ITZ 

around a stiffer inclusion leads to increase in the debonding index in the microstructure. 

As discussed in the previous chapter, for a perfectly bonded case with the presence of ITZ, 

the stresses are concentrated on the quartz inclusions which are much stiffer than the ITZ. 

For the case incorporating interfacial debonding, there is visible stress relaxations in the 

ITZ in the partially bonded regions. The region within quartz inclusion close to the 

debonded areas also show stress relaxations, whereas stress concentrations are observed in 

the central region of the quartz inclusion greater than that in the perfectly bonded system. 

Since the ITZ around a quartz inclusion is generally weaker, it is still likely to fail even 

though there are regions of stress relaxations.  

 

Figure 5.4 Average principal stresses in a quartz mortar with ITZ for (a) Bonded case and 

(b) Debonded Case 

Stress Concentration

Stress Relaxation at ITZ

Debonding at interface

(a)

(b)
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Figure 5.5.a shows the average principal stress in the LWA mortar for a pure 

bonded case and Figure 5.5.b shows the effect of ITZ on the interfacial debonding and the 

average principal stress in the LWA mortars respectively. As discussed in the previous 

chapter, for a pure bonded case with the presence of ITZ, the stresses are concentrated on 

the ITZ which are stiffer than the inclusions. While for the case incorporating interfacial 

debonding, there is visible stress concentrations perpendicular to the direction of applied 

uniaxial loading, in the ITZ in the debonded regions. The region within LWA inclusion 

close to the debonded areas also show stress relaxations, whereas at the locations of the 

interfacial debonding prominent stress concentrations are observed in the direction 

perpendicular to that of the applied strain, where the ITZ and the inclusions are debonded. 

In the partially bonded regions of the interface stress relaxations are observed in the ITZ. 

Since the ITZ around a LWA inclusion is generally stiffer and hence stronger, it is unlikely 

to fail even though there are regions of stress concentrations. Although the presence of an 

ITZ around an inclusion does affect the stress concentrations and stress relaxations in the 

microstructure, there is not a significant change in the stress levels. The highest stresses 

were observed in the stiffest component in both the systems namely quartz inclusion in the 

quartz mortar system and the ITZ for the LWA mortar system. As such, there is no real 

advantage of considering ITZ around an inclusion while incorporating interfacial 

debonding for simulations. 
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Figure 5.5 Average principal stresses in a LWA mortar with ITZ for (a) Bonded case and 

(b) Debonded Case 

 

 

Table 5.1 Composite Young's Modulus for mortars with Quartz and LWA inclusions with 

and without ITZ for the case of perfectly bonded and debonded systems. 

Cement Mortar Modulus (MPa) With ITZ Modulus (MPa) Without ITZ 

Inclusion Type Bonded Debonded Bonded Debonded 

Quartz 26664.14 26424.66 27093.74 26781.7 

LWA 19901.66 20029.27 19540.09 19625.47 

  

 The composite Young's Modulus for cement mortars with quartz and LWA 

inclusions for the case of perfectly bonded and debonded systems with and without ITZ 

have been presented in Table 5.1. In the case of debonding with quartz inclusion the 

composite modulus decreases compared to that of the perfectly bonded case. For quartz 

mortars containing ITZ the composite modulus is lesser than compared to a quartz mortar 

without an ITZ for the bonded and the debonded systems. This is to be expected as the ITZ 

around a quartz mortar is weaker and is quite softer compared to quartz thereby reducing 

the composite modulus. For the case of debonding with LWA inclusion the composite 

Stress Relaxation

Stress Concentration 
at ITZ

Debonding at interface
(b)

(a)
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modulus increases compared to that of the perfectly bonded case. For LWA mortars 

containing ITZ the composite modulus is greater than compared to a LWA mortar without 

an ITZ for the bonded and the debonded systems. This is to be expected as the ITZ around 

a LWA mortar is stronger and is stiffer than the LWA inclusions thereby increasing the 

composite modulus. 

Figure 5.6 shows the constitutive response of the quartz and LWA mortars 

containing 30% of inclusions by volume, extracted from numerical simulations. The 

dominant principal stresses ( 22 ) and principal strains ( 22 ) in the linear elastic range of 

these systems are used to calculate the effective modulus. Thus the approach presented 

here can be used to determine the composite elastic moduli of systems containing multiple 

inclusion types while considering the effects of debonding at the interface between the 

matrix and the inclusions. In addition to the E value, as described earlier, this methodology 

also provides estimates of the microstresses in the different component phases under 

imposed strains (in the linear elastic regime) and facilitates the development of constitutive 

relationships for composite materials, which otherwise would be experimentally tedious. 

It is reiterated that the models consider the effect of debonding at the interface between the 

matrix and the inclusions; a case which is more realistic than the models considering 

perfect bonding. As such models considering debonding help provide more accurate and 

realistic comparisons of material response with respect to the stress distributions and the 

constitutive response.  
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Figure 5.6. Linear constitutive relationship for quartz and LWA mortar systems for 

defaults values of material parameters (shown in Table 4.1) and microstructural features 

including debonding. 

 

 

5.3 Influence of Externally Applied Strain on the Initiation and Propagation of 

Interfacial Debonding  

 The effect of externally applied strain on interfacial debonding has been evaluated 

here using debonding index. The debonding index is defined as the ratio of length of the 

interface which has debonded to the total length of the interfaces between the matrix and 

all the inclusions present in the composite microstructure. Figure 5.7 shows the debonding 

index for both the quartz and the LWA mortar systems, extracted from the numerical 

simulation. From the figure, it is observed that the debonding index for a quartz inclusion 

system is greater than that for the LWA inclusion system for all strain levels. Quartz 

inclusions show significantly higher interfacial debonding due to higher stiffness contrast 

between the matrix and the inclusions whereas the LWA mortar exhibit lower amount of 

interfacial debonding due to lower stiffness contrast as compared to the quartz mortar case. 

The current framework determines the extent of interfacial debonding in a microstructure 
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which provides valuable information towards design of cementitious composites with 

various unconventional inclusions for various applications. 

 

Figure 5.7. Debonding Index for quartz and LWA mortar systems for applied strains. 

 

5.4 Influence of Stiffness of the Inclusions on the Interfacial Debonding 

 Figure 5.8 shows the debonding index as a function of the varying inclusion 

stiffness for 30% volume fraction of the inclusion in the microstructure. For a matrix 

modulus of 20 GPa it is observed that debonding index increases with an increase in the 

stiffness of the inclusion. The debonding index increases linearly with an increase in the 

stiffness of the inclusion in the composite microstructure. The debonding index increases 

with an increase in the stiffness contrast between the inclusions and the matrix. For an 

inclusion with stiffness of 70GPa the debonding index is about 20% more than the 

debonding index of an inclusion with a modulus of 16GPa. The higher the contrast in the 

stiffness between the inclusion and the matrix, greater is the debonding index. 
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Figure 5.8. Debonding Index for varying inclusion stiffness in a matrix of stiffness 20 

GPa. 
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Chapter 6: Conclusion 

 The main objective of the present study was to develop a finite element based 

microstructural model of cementitious composites and study the influence of phase 

material and geometric properties on the linear elastic constitutive response of the 

cementitious mortars for both bonded and debonded cases. Finite element analysis gives a 

better understanding of the microstructural stress distributions between the inclusions and 

the matrix which contribute significantly to the macroscopic response of the composite.  

 To generate a realistic finite element model of the composite microstructure, different 

microstructures and boundary conditions were evaluated. Finally, a randomized periodic 

geometry along with periodic boundary conditions were selected as the base for all finite 

element models in this study. The influence of material properties such as inclusions 

stiffness and matrix stiffening on the stress distributions in the microstructure and the 

effective modulus of the microstructure were studied. The stresses were concentrated on 

the quartz inclusion and the matrix for the quartz mortar and light weight aggregate mortar 

system respectively i.e. the stresses concentrate more in the stiffer component of the 

respective mortars as expected. The dominant average principal stress for the composite 

was found to be higher for the quartz mortar than in the LWA mortar. The linear 

constitutive response for default material properties mentioned in Table 4.1, of the quartz 

mortar was found to be 31.4 GPa, whereas that of the LWA mortar was found to be 19.6 

GPa, values which are in close conformation with those available in literature. For 

increasing volume fractions of the inclusions the average principal REA stresses in both 

the systems increase linearly, though the average principal REA stress for the quartz mortar 

is still higher than that for the LWA mortar system. The highest stresses were observed in 
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the stiffest component in both the systems namely quartz inclusion in the quartz mortar 

system and the ITZ for the LWA mortar system. For a microstructure with a mean size of 

0.6 mm and standard deviations of 0.06, 0.12, 0.24mm the stress concentrations were 

observed between closely spaced inclusions especially when aligned perpendicular to the 

direction of applied strain. For varying particle sizes 20% stress reduction were observed 

as the interactions between the neighboring inclusions of varying sizes reduces the stresses, 

contrary to the high stress concentrations encountered between two closely spaced 

inclusions of similar sizes. 

 The effective modulus of the composite microstructure obtained from numerical 

simulations when compared against modulus obtained from the analytical models throw 

interesting observations. The analytical models (Mori-Tanka, Double Inclusion) predict 

about 20% & 10% higher value of composite modulus for quartz mortar and LWA mortar 

systems. Composite modulus obtained from Hobbs's analytical model correlates well with 

the numerical simulations for low volume fractions. Analytical schemes do not effectively 

capture the inter-inclusion interactions that result in stress concentrations/relaxations in 

heterogeneous microstructures. Analytical techniques have been shown to be limited if 

stiffness contrast between phases is high, as such numerical technique is a much better 

scheme to obtain the effective composite modulus since it also captures the inter-inclusion 

interactions mentioned above.  Also, a very good correlation is obtained between the 

numerically predicted and experimentally measured composite modulus which further 

establishes the viability of using numerical homogenization scheme in determining 

Young's modulus of heterogeneous microstructures. 
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 The first phase of this thesis focused on the perfectly bonded systems in the linear 

elastic regime. In the second phase of this thesis, the effect of debonding occurring at the 

interface between the matrix and the inclusions on the stress distributions in the 

microstructures is studied. To incorporate the effect of debonding in the finite element 

models, bilinear softening curve based on traction-separation relationship of quasi brittle 

material available in literature were adopted.  The effect of debonding was checked for a 

single inclusion, four-inclusion and multiple inclusion system with random microstructure. 

For the random microstructure a better difference was observed between the bonded and 

debonded effective composite modulus. As such, randomized microstructure was chosen 

as a norm for the debonded case of finite element models. The % of debonding of the 

interfaces was obtained for both quartz and LWA mortar systems when under applied 

strain. For the quartz mortar system, % debonding is observed to be about 30% more than 

that for that of LWA mortar systems. With this the extent of debonding in a microstructure 

can be calculated. When considering ITZ along with debonding in a system, there is visible 

stress relaxations in the ITZ for the quartz-mortar systems. The highest stresses were 

observed in the stiffest component namely quartz inclusion in the quartz mortar system. 

While for the LWA-mortar systems, there are stress concentrations at the ITZ. The highest 

stresses were observed in the stiffest component in both the systems namely quartz 

inclusion in the quartz mortar system and the ITZ for the LWA mortar system. For the 

quartz mortar system, even though there are stress relaxations at the ITZ, since the ITZ is 

generally quite weak, probability of failure occurring at these locations are still high. 

While, for the LWA mortar system, even though stress concentrations are observed at the 

ITZ, since the ITZ is comparatively much stiffer, failure of the system would be dominated 
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by the soft LWA inclusions. In both systems, failure would be initiated at the softer phases 

of the heterogeneous microstructure. 

The microstructure based numerical homogenization technique accurately captured 

the stress concentrations in quartz mortar and LWA mortar systems. This resulted in 

improved predictions of the elastic modulus using the micromechanical scheme, especially 

for the systems where stiffness contrast between the phases is high, as compared to many 

analytical homogenization schemes. This study also links the effect of debonding of 

interfaces in the microstructure with mechanical behavior of two different heterogeneous 

composites to bring out their fundamental differences in stress distributions and provides 

valuable input towards material design of cementitious systems with different inclusions 

of varying stiffness.  
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