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ABSTRACT  
   

One of the fundamental questions in molecular biology is how genes and the 

control of their expression give rise to so many diverse phenotypes in nature. The mRNA 

molecule plays a key role in this process as it directs the spatial and temporal expression 

of genetic information contained in the DNA molecule to precisely instruct biological 

processes in living organisms. The region located between the STOP codon and the 

poly(A)-tail of the mature mRNA, known as the 3′Untranslated Region (3′UTR), is a key 

modulator of these activities. It contains numerous sequence elements that are targeted by 

trans-acting factors that dose gene expression, including the repressive small non-coding 

RNAs, called microRNAs.  

Recent transcriptome data from yeast, worm, plants, and humans has shown that 

alternative polyadenylation (APA), a mechanism that enables expression of multiple 

3′UTR isoforms for the same gene, is widespread in eukaryotic organisms. It is still 

poorly understood why metazoans require multiple 3′UTRs for the same gene, but 

accumulating evidence suggests that APA is largely regulated at a tissue-specific level. 

APA may direct combinatorial variation between cis-elements and microRNAs, perhaps 

to regulate gene expression in a tissue-specific manner. Apart from a few single gene 

anecdotes, this idea has not been systematically explored.  

This dissertation research employs a systems biology approach to study the 

somatic tissue dynamics of APA and its impact on microRNA targeting networks in the 

small nematode C. elegans. In the first aim, tools were developed and applied to isolate 

and sequence mRNA from worm intestine and muscle tissues, which revealed pervasive 

tissue-specific APA correlated with microRNA regulation. The second aim provides 
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genetic evidence that two worm genes use APA to escape repression by microRNAs in 

the body muscle. Finally, in aim three, mRNA from five additional somatic worm tissues 

was sequenced and their 3′ends mapped, allowing for an integrative study of APA and 

microRNA targeting dynamics in worms. Together, this work provides evidence that 

APA is a pervasive mechanism operating in somatic tissues of C. elegans with the 

potential to significantly rearrange their microRNA regulatory networks and precisely 

dose their gene expression. 
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CHAPTER 1 

INTRODUCTION 

Genetics research facilitated by the small nematode C. elegans 
 
 Model organisms have provided an indispensible tool for understanding gene 

function in living organisms since the early days of genetic research. Over a century ago, 

Thomas Hunt Morgan’s study of mutant genes using the fruit fly Drosophila 

melanogaster paved the way for discovery at the interface of genetics and development in 

multicellular species [1]. A key feature of effective model organisms for developmental 

genetics research is their genetic similarity to humans and the applicability of discoveries 

to improvements in human health. Mouse and other mammalian models are close 

representations of human physiology making them broadly useful for disease research. 

However, their organs and tissues are exceedingly complex and they require long periods 

of time to develop from embryo to adult, among other limitations. These disadvantages 

have argued in favor of simpler model systems to investigate many of the fundamental 

biological research questions.  

  Invertebrate models, such as the small, free-living soil nematode Caenorhabditis 

elegans, overcome many of these disadvantages. Sydney Brenner first adapted C. elegans 

in 1974 to begin long-term studies on how genes build a nervous system, a particularly 

challenging biological question to address in higher multicellular organisms. Dr. Brenner 

lauded their rapid and precise development (~3.5 days), limited and invariant number of 

somatic cells, and ease of basic genetic manipulation [2]. Further, C. elegans are 

primarily self-propagating hermaphrodites with the genotype XX (approximately 99.8% 

in population), where XO males (<0.2%) result from relatively rare non-disjunction 
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events in meiosis. This feature allows experimentalists to execute genetic crosses, yet 

makes them easy to propagate in a laboratory setting [3].  

In proceeding years, science has come to further appreciate C. elegans for its 

transparent tissues, simple methodology for transgenesis and its feasibility for genetic 

screens. Its relatively compact genome was also of the first sequenced metazoans, and the 

gene models have since been extensively mapped and characterized. The protein-coding 

portion of its genome shares ~70% homology to that of human, underscoring its 

applicability to modeling human disease. Remarkable discoveries in neurobiology, 

behavior, cell biology and development that have been translated to human biology are a 

testament to this feature. Notably, three such discoveries made in C. elegans laboratories 

have been awarded with the Nobel Prize in Medicine or Chemistry. 

 C. elegans is also an excellent model system to study how genes control somatic 

tissue development. They are eutelic organisms where every adult hermaphrodite has 

exactly 959 somatic cells [4]. Nearly all of these cells are transparent making them easy 

to visualize using standard light microscopy approaches. These unique features have 

enabled researchers to closely observe and map the organism’s entire cell lineage from 

embryo to adult [5], a seminal undertaking that uncovered the widely conserved cellular 

mechanism of apoptosis. Taking advantage of forward genetic screens, scientists have 

coordinated this lineage map with the genes required for its precise development [6, 7]. 

These studies precisely mapped genetic pathways that pattern major worm organs such as 

the hermaphrodite vulva [8], the pharynx [9], and the male tail [10]. Importantly, the 

same genetic pathways play a fundamental role in mammalian development and many are 

implicated in human disease [11-13].  
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 The basic anatomy of C. elegans shares many similarities with humans, having 

organ systems and tissues that are similar across metazoan species. This similarity makes 

them ideal for use in research aimed to investigate how these tissue structures are formed, 

since they are much simpler than mammalian tissues. For example, the human brain is 

excessively complex with over 100 billion neuronal cells formed with a network of 

synaptic connections, making it extraordinarily challenging to map neural connections 

and processes[14]. The eutelic aspect of C. elegans development has made it possible to 

map the connectivity of the exactly 302 neurons formed in adult hermaphrodites [15, 16]. 

Further, its genetic manipulability has made it possible to identify genes responsible for 

these connections [17]. Importantly, many of the genes identified so far have close 

homologs in human that share the same function. Therefore, basic research of tissue and 

organ biology in worms will allow us to identify genes and their networks that direct 

these developmental processes in metazoans.  

 C. elegans is also an effective model system to study human disease and genetic 

disorders. This is owed to the fact that the basic genetic mechanisms controlling the 

developmental events that establish cell fate are well conserved in metazoans. Artificial 

manipulation of these pathways in worms commonly emulates the human disease 

phenotype associated with those changes. Duchenne Muscular dystrophy (DMD) is an 

example of such a disorder. In humans, DMD is caused by a loss-of-function mutation in 

the dystrophin gene that encodes a structural protein important for muscle maintenance. 

The loss-of-function dystrophin allele causes a progressive loss of muscle activity in 

youth, eventually leading to paralysis [18]. This progressive deterioration in muscle 

activity is recapitulated in worms by introducing the same mutation in the worm 
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dystrophin ortholog dys-1, suggesting that the same mechanisms leading to loss of 

muscle function are also conserved [19]. Therefore, the expansive genetics toolset 

available in worms is useful to study the precise series of molecular events underlying 

disease pathologies. 

Many of the cellular processes that are commonly misregulated in cancers are also 

conserved in C. elegans [20]. For example, a program of controlled cell death, called 

apoptosis, is essential in normal states for regulating precise organ patterning in 

development [21]. In mammals, apoptosis is a powerful mechanism of tumor suppression 

that is commonly deactivated in cancer. The genetic components that direct apoptosis are 

also conserved in worms [22], allowing the study of factors that may influence these 

pathways in disease. Similarly, many oncogenes that drive cancers, such as Ras and Lin-

28, are conserved in sequence and function in C. elegans [23, 24]. 

In summary, C. elegans have many suitable features that justify its use for 

questions in basic genetics that can also be translated to study human disease. In 

particular, worms are suitable for large-scale genetic screens that are generally not 

feasible in mammalian models. Such approaches can identify mechanisms that are less 

likely to be restricted to a particular biological context allowing general rules to be 

discovered. Finally, the experiments are done within living organisms having tissues, 

organs, and developmental stages where the mechanisms more closely represent what is 

occurring in these contexts. 
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Regulation of gene expression in metazoan development 
 
 In metazoans, development relies on the precisely coordinated activities of 

genome-encoded proteins in the proper time and space to direct mechanisms that specify 

cell fates. The regulation of gene expression is widely recognized as a key factor 

involved in this process. Mechanisms controlling gene expression involve multiple, often 

competing factors that function at every step of the central dogma: epigenetic (regulation 

of DNA accessibility), pre-transcription (regulation of RNA synthesis), post-transcription 

(regulation of RNA activity or protein synthesis), and post-translation (regulation of 

protein stability or activity), (Figure 1.1). While there are numerous examples of 

regulation occurring at each step, the precise mechanisms involved are not fully 

understood and novel modes where gene expression is controlled continue to be 

discovered. Apart from a few cases, it is also not understood exactly how controlling the 

dosage of gene expression drives tissue development forward.  

 

 
Figure 1.1. A complex program of gene regulation shapes cell identity. This 
illustration depicts the major modes of regulation (light gray circles) that precisely dose 
gene expression at each step of the central dogma (dark gray boxes), eventually 
culminating in tissue identity.  
 

Perhaps the most famous example of gene regulation is that of X-chromosome 

inactivation in mammals. During female embryonic development, one allele of the X-

chromosome is chosen for silencing, allowing somatic cells to achieve the correct dosage 

epigene&c	 transcrip&onal	 post-transcrip&onal	 post-transla&onal	

transcriptome	genome	 proteome	 cell	iden(ty	
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of gene expression from the remaining active X. This process also illustrates the often 

complex nature of the mechanisms that control gene expression in all metazoans. The 

overall process involves a combination of cis and trans-acting factors, primarily derived 

from genes encoded at the X-inactivation center. These include long non-coding RNAs 

that aide in the decision of which X-allele to inactivate and another that coats the chosen 

X-allele, recruiting with it numerous repressive protein complexes, including the 

polycomb repressor complex (PRC), that heavily methylate the chromatin of the chosen 

allele thereby repressing its expression [25]. X-inactivation is a notable example of a 

gene regulatory process requiring multiple mechanisms: those acting at the pre-

transcriptional level (factors that direct expression of the lncRNAs) and others at the 

epigenetic level (ex. the PRC). 

At the pre-transcriptional level, gene expression is often regulated by the activities 

of proteins called transcription factors that bind DNA sequences, usually in promoter or 

enhancer regions, and trans-activate the initiation of RNA synthesis [26]. Many 

transcription factors activate multiple genes in a network to strongly induce cellular 

events associated with the function of the target genes [26]. These proteins play a key 

role specifying cell fates during development [27] and their expression level often 

dictates the strength of their trans-activation on target genes. One of the most notable 

examples of such transcription factors are those belonging to the well conserved Hox 

gene family, which play an important role in tissue patterning in all metazoans [28]. Most 

of the Hox genes in C. elegans and other organisms are arranged on the chromosome in a 

single cluster where their expression pattern along the anterior-posterior body axis 

matches their position on the chromosome, a phenomenon termed co-linearity [29]. Their 
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relative expression levels specify differential cell fates along the axis by activating the 

transcription of genes required for each unique identity [30]. Importantly, transcription 

factors like Hox are often expressed in gradients where precise expression levels 

substantially modulate their activities and the resulting cellular phenotypes. 

It is therefore not surprising that many of the factors that control gene expression 

are often misregulated in disease. For example, misregulation of transcription factors, by 

deregulation of their expression or by mutation often misroutes cells to alternate, 

abnormal fates [31]. A notable example is the well-conserved transcription factor TP53, 

or p53. In normal states, this protein reacts to multiple cellular stressors including lack of 

nutrients or DNA damage [32]. Upon activation, p53 trans-activates multiple genes that 

prevent cell proliferation, activate DNA repair, or induce apoptosis, highlighting its role 

as a tumor suppressor protein [32]. In its absence, cells are subject to adverse effects from 

stressors and prone to adapt malignant cell fates. Accordingly, deregulated alleles of p53 

are common in human cancers and some mutant alleles also have demonstrated 

oncogenic activities [33]. The example of p53 underscores the importance of factors that 

regulate gene expression in deciding cell fates.  

Tissue identity is not conferred solely by a unique set of expressed genes. Rather, 

tissue-specific gene expression coupled with the precise dosing of these genes, coordinate 

activities that specify cell fate (Figure 1.1). Therefore altering not only absolute gene 

expression, but also their level of expression can have a dramatic impact on cell identity. 

Although many factors that dose gene expression have been characterized, it is becoming 

clear that other unexplored modes of gene regulation may exist [34]. Accumulating 

evidence suggests this may be especially true at the post-transcriptional level [35].  
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Post-transcriptional gene regulation induced by miRNAs 

 The messenger RNA (mRNA) molecule is a unique carrier of genetic information 

in that it is not restricted to the nucleus, allowing its interaction with a vast array of 

cellular factors. These interactions represent opportunities for gene regulation for 

example by sequestration of the mRNA [36], directing its localization [37], 

destabilization [38], degradation [39] or interfering with its translation [40]. A lot of this 

regulation is driven by RNA-binding proteins and non-coding RNAs that interact with 

small, mostly uncharacterized, cis-elements located in the three prime untranslated region 

(3′UTR) of the mature mRNA molecule (Figure 1.2). A particularly well-studied class of 

these trans-regulators, are the small ~22nt RNA molecules, called microRNAs (miRNAs) 

that repress gene expression post-transcriptionally through direct interactions with the 

mRNA. 

 

 
Figure 1.2. The 3′Untranslated Region. The 3′end of a representative eukaryotic gene 
model showing the terminal exons (blue) and the 3′UTR (gray). The 3′UTR contains 
numerous sequence elements that are typically targeted by miRNAs and RNA-binding 
proteins that dose gene expression or direct localization of the mature transcript. 
 
 The Victor Ambros laboratory is credited with the first reported discovery of a 

miRNA gene almost 30 years ago. They were intensively studying the heterochronic gene 

pathway, which controls precise transitions through larval development [41]. The 

Ambros lab was focused on a heterochronic gene, called lin-4, known to negatively 

STOP	

3’Untranslated	Region	

miRNA	
regula1on	

RNA	
binding	
proteins	

localiza1on	
signals	

AAAAAA(n)	

PAS	
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regulate the levels of lin-14 and coordinate transitions through the first larval stage. In 

their seminal paper, they report the lack of any functional open reading frame in the lin-4 

gene, indicating it did not encode a protein. They  demonstrate that lin-4 instead encodes 

a small, 22nt RNA with complementarity to sequences inside the 3′UTR of its target gene 

lin-14. Gary Ruvkun’s laboratory then showed that sequences complementary to lin-4 in 

the 3′UTR of lin-14 are required for its post-transcriptional gene regulation [42].  

The lin-4 gene remained the only known miRNA up until seven years later when 

Gary Ruvkun’s lab described that another heterochronic gene, let-7, encodes a miRNA 

that controls developmental timing by repressing expression of five genes at the post-

transcriptional level [43]. Their work further demonstrated that the deletion of let-7 

induces a reversion of adult cells to larval fates and accordingly, its overexpression 

results in pre-mature induction of adult cell fates. The activities of lin-4 and let-7 are a 

reflection of what is appreciated about miRNAs today: they are capable of controlling 

dramatic developmental decisions in living organisms. The widespread conservation of 

let-7 across multiple phylogenies including humans was reported shortly after its initial 

discovery [44], which prompted a concerted investigation into miRNA biology in 

numerous other species.  Thousands of miRNA genes have since been identified in 

diverse species ranging from plants to viruses [45]. 

 miRNAs are encoded from intergenic, intragenic, or intronic chromosomal loci 

and sometimes their genes are clustered [46]. All miRNA genes are transcribed into a 

long precursor RNA molecule, termed the primary miRNA (pri-miRNA) by RNA 

polymerase II. The polyadenylated pri-miRNA molecule forms a hairpin with a distinct 

stem-loop secondary structure that licenses it for processing by RNAse enzymes Drosha 
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and Pasha [47]. The resulting pre-miRNA molecule is then exported from the nucleus by 

Exportin 5 where the hairpin is further cleaved by the RNAse Dicer into the mature ~22nt 

duplex structure in the cytoplasm. One of the two small RNA strands is then loaded onto 

Argonaute, the RNA-binding protein component of the RNA-induced silencing complex 

(RISC), by a still poorly understood mechanism.  

 Argonaute uses the loaded miRNA as a guide to target the RISC to small 

elements, usually located in the 3′UTRs, of target genes [45, 48]. The pairing of the 

miRNA loaded Argonaute can result in several outcomes, depending on the species and 

the degree of complementarity of the miRNA to the target mRNA  [45].  The most 

common outcome of the pairing in metazoans is destabilization of the mRNA[49] [50], 

for example by recruiting deadenylases [51]. Inhibition of mRNA translation has also 

been reported [45]. Argonaute can also induce cleavage of the target mRNA in cases 

where complementarity to the miRNA is high [45].  

 A key challenge associated with the study of miRNA function in cells is the 

general lack of information regarding which genes they target [52]. Experimental 

approaches designed to identify targets are often laborious or lack the throughput 

required to identify biological targets from the ~20,000 annotated protein-coding genes in 

metazoans. Nonetheless, a few experimental approaches have been designed to identify 

precise miRNA targets in high-throughput, although they require a clone library of 

3′UTR candidates to query [53],[54].  

Computational approaches that search for likely biologically relevant miRNA 

targets have aided much of the miRNA research to-date. These approaches use weighted 

prediction algorithms that account factors known to be important for targeting, such as 
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target complementarity and evolutionary conservation[45]. Central to these algorithms is 

the consideration that the nucleotides at positions 2-7 at the 5′ end of the miRNA, called 

the seed, are most often complementary to the target mRNA [45]. However, it is widely 

recognized that many miRNAs pair targets with imperfect complementarity, which may 

be supplemented by nucleotide pairing at the 3′end of the miRNA to facilitate targeting 

[55]. These factors are generally incorporated in the contemporary algorithms used for 

miRNA target prediction. Many such databases to assist with miRNA target prediction 

are now available [56] ,[57], [58], and their algorithms are constantly improved to reflect 

new discoveries in miRNA biology. 

In terms of function, miRNAs are now appreciated for their key roles in 

development, in shaping gene expression and conferring robustness to biological 

pathways [59]. Their potential roles in forming and shaping gene expression gradients 

have put them at the forefront of research into post-transcriptional gene regulation.  A 

pivotal bioinformatics study found that miRNAs are often expressed in tissue regions 

proximal to their targets, but are rarely co-expressed in the same cells [60]. This work 

suggests that miRNAs may play a role in shaping gene expression borders by clearing 

unneeded mRNA transcripts.  Importantly, this work highlights the potential role of 

miRNAs in driving cell fate decisions within developing organisms. Further, disruption 

of overall miRNA function in metazoans gives rise to potent phenotypes. Deletion of the 

miRNA biogenesis factor Dicer altogether disrupts cell differentiation in mice [61] and 

results in severe germline defects and sterility in C. elegans. 

 miRNAs as a class are powerful regulators of gene expression. However, 

functions of most individual miRNAs in worms appear to be subtle. Although the first 
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miRNAs described in worms are potent regulators of developmental timing [41],[43], the 

specific functions of most of the ~150 miRNAs identified in worms since then are 

unknown. An early study of 86 miRNA deletion mutant strains found that most of their 

miRNAs do not give rise to obvious disruptions in development or viability [62]. 

However, close examination of their activities in specific tissues revealed pervasive roles 

for several of them in development processes that are not crucial for overall viability. For 

example, miR-61 is important for coordinating a feedback loop involving the Notch 

pathway in specifying vulva cell fates [63]. Similarly, lsy-6 directs neuronal cell fate, 

specifying left-right asymmetry early in the development of a pair of head neurons [64]. 

These studies in worms highlight the importance of miRNAs in directing tissue-specific 

developmental programs.  

Many aspects of miRNA biology are still not well understood and warrant further 

investigation. What are the targets and functions of individual miRNA genes? What 

factors control when and where a particular miRNA is able to actively target a gene? As 

miRNAs have been suggested to repress residual mRNA transcripts[59, 60], how may 

target genes similarly escape residual miRNAs from earlier developmental processes? 

 

3′end formation of eukaryotic mRNA 
 
 The precise location of the 3′end of the mature mRNA molecule is important 

because it determines the landscape of its 3′ untranslated region (3′UTR) [65]. Since this 

sequence region contains many cis-elements that are targets for a variety of factors that 

dose gene expression, the mechanisms that direct the precise location and formation of 

the 3′end have lately become a subject of intense study. RNA transcription has been 
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studied for more than half a century, focusing mainly on the initiation and elongation 

processes [66, 67]. However, we still do not understand the mechanisms of 

transcriptional termination, preparation of 3′ mRNA ends, or the regulation of these 

events that in turn control gene expression at a post-transcriptional level. Although the 

termination of transcription requires many of the same sequence elements as 3′end 

formation of the pre-mRNA, it is not yet clear exactly to what extent transcription 

termination influences 3′end choice and related processing [68].  

 Evidence from experiments in Saccharomyces cerevisiae has accumulated in 

favor of two mechanistic models for mRNA transcription termination in eukaryotes. In 

the ‘torpedo model’, the 5′ to 3′ exoribonuclease protein Rat1 is recruited to the RNA pol 

II CTD-tail along with 3′end processing factors. After cleavage of the transcript by 3′end 

formation ribo-endonucleases, Rat1 begins to degrade the extending transcript until it 

contacts and destabilizes RNA pol II, thereby terminating further transcription [69] [70]. 

In the second model, termed the ‘allosteric’ model, the elongation complex encounters 

sequence elements near the 3′end that induce a conformational change leading to 

destabilization and termination of transcription [68], [71]. Emerging evidence suggests 

these models are not mutually exclusive [72] and that both mechanisms rely on factors 

that induce cleavage and polyadenylation. 

 Cleavage and polyadenylation directs the processing of mRNA 3′ends, defining 

the precise end of the transcript and determining its 3′UTR landscape. This mechanism 

occurs co-transcriptionally, and for all mRNAs except for replication dependent histone 

encoding genes, is known to require at least two sequences near the 3′end of the nascent 

transcript (Figure 1.3). The poly(A) signal element (PAS) is a hexanucleotide located 



  14 

~10-30 nucleotides upstream of the cleavage site that is most frequently the sequence 

‘AAUAAA’ [73]. This sequence is necessary and sufficient for 3′end polyadenylation 

[74]. Notably, high-throughput sequencing efforts targeting the 3′end of transcripts have 

identified a larger array of PAS elements than initially indicated [75] suggesting they 

may modulate the efficiency of cleavage and polyadenylation and in turn regulate gene 

expression.  Downstream of the cleavage site, another GU- or U-rich sequence is also 

involved [76] (Figure 1.3).  

 

 
Figure 1.3. Sequence elements at the poly(A) site direct 3′end formation. In the 
eukaryotic 3′UTR (gray), the poly(A) site (pink box) contains a hexameric poly(A) signal 
element (blue box) and a downstream G/U-rich element (red box) that direct factors to 
the cleavage site (arrow) to induce 3′end cleavage and poly(A)-tail addition. 
 

These sequences facilitate recruitment of two large multimeric complexes named 

Cleavage and Polyadenylation Specificity Factor (CPSF) and Cleavage Stimulation 

Factor (CstF), [77-79]. CPSF recognizes and binds to the PAS element located ~19nt 

from the poly(A) site in the 3′ UTR of mRNAs. CstF directly interacts with CPSF and 

binds to the GU-rich sequence downstream of the cleavage site. Together, these large 

complexes remodel the local RNA structure and recruit endonucleases (CFI and CFII) 

that cleave the mRNA and poly(A)-polymerases that produce the poly(A)-tail [80] 

(Figure 1.4).  
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Figure 1.4. CPSF and CstF direct 3′end formation events. The multimeric CPSF 
(blue) and CstF (red) complexes bind to the hexameric PAS element ‘AAUAAA’ and 
G/U-rich downstream element, respectively. The complexes remodel the local mRNA 
structure and facilitate recruitment of endonucleases (orange) that cleave the transcript 
and poly(A)-polymerase (green) that adds the poly(A)-tail. 
 
 Several other factors involved in cleavage and polyadenylation have been 

identified in a series of biochemical experiments performed over the past ~25 years [80] 

leading to the idea that mechanisms coordinating formation of the mRNA 3′end may be 

much more complex than once appreciated. Many of these factors may be involved in 

assembly of the polyadenylation machinery or maintaining its structure [81]. Others may 

stimulate its activity or efficiency. For example, U1-snRNP has been shown to directly 

interact with CPSF and positively influence its activity [82].  

A recent biochemical study revealed that the human pre-mRNA 3′end formation 

complex is over 1 megadalton and contains over 50 proteins that have no previously 

described roles in 3′end formation, suggesting much more complexity and flexibility in 

function than what is currently appreciated [83]. Many of these factors are also conserved 

in worms [84], suggesting the existence of widespread mechanisms that regulate cleavage 

and polyadenylation.   
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Alternative polyadenylation 
 

Recent transcriptome data from yeast [85], plants [86], mammals [87], and 

nematodes [88, 89] has shown that alternative polyadenylation (APA), a poorly 

understood mechanism in which the same gene is expressed with multiple 3′UTR 

isoforms, is pervasive in metazoans (Figure 1.5).  Although this process could 

dramatically impact gene expression by controlling the cis-regulatory landscape of the 

3′UTR, the mechanisms that direct APA events are still poorly understood. There are 

currently no general, unified mechanisms described for how the cleavage and 

polyadenylation machinery discriminates between multiple PAS elements in the same 

3′UTR. However, several factors have been identified that influence poly(A) site choice 

and direct APA for a few cases.  

In one such example, an RNAi screen in human cells for protein factors that drive 

APA identified the nuclear poly(A)-binding protein (PABPN1) as a regulator of this 

process[90, 91]. PABPN1 blocks usage of the proximal PAS sites, restricting cleavage 

events to the PAS most distal from the STOP codon and extensive preferred expression 

of long 3′UTR isoforms throughout the transcriptome. Further studies found an 

association between APA-induced 3′UTR shortening along with low expression levels of 

PABPN1 and poor prognosis in small-cell lung cancer [92]. This highlights an important 

association between mechanisms that control APA and disease.    
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Figure 1.5. Alternative polyadenylation allows expression of more than one 3′UTR 
isoform per gene. In this hypothetical illustration, a gene (gene X) is expressed with 
multiple 3′UTR isoforms due to the presence of multiple poly(A) sites (pink boxes) in the 
same 3′UTR (gray).  

 
A recent study has found that the U1 small nuclear RNA (U1 snRNA) similarly 

regulates APA, by recognizing and binding to upstream (proximal) poly(A) sites during 

transcription and blocking 3′end formation at these sites [93]. Depletion of U1-snRNP 

resulted in increased cleavage and polyadenylation at proximal PAS sites and expression 

of short 3′UTR isoforms. Interestingly, this work also showed a decrease of U1 snRNA 

levels in neuronal and immune cell activation. This result points to a potential link 

between APA mechanisms and the known shortening of 3′UTRs during induced cell 

proliferation (discussed below).   

Recent systematic analysis found that extensive combinatorial variation between 

dosing of the core poly(A) machinery, splicing factors and the distance between poly(A) 

sites across developmental contexts are factors in determining poly(A) site choice [94]. 

These data enforce the idea that APA may be controlled by multiple combinatorial 

mechanisms. 

 Although it is widely anticipated that APA has a widespread impact on gene 

expression, the precise influence of the 3′UTR isoforms that result from APA are still not 

clear. 3′UTR isoforms containing distinct targets for factors that regulate gene expression 

may allow for the generation of a wide array of gene expression outputs in a context 
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dependent manner. Several pivotal works have demonstrated the potential for APA to be 

regulated on a context-specific basis in support of this hypothesis. 

 Sandberg and colleagues showed that activation of primary mouse CD4+ T-

lymphocytes results in global APA-induced shortening of their 3′UTRs [95]. This work 

also found a consistent correlation between proliferation and 3′UTR shortening among 

multiple tissue types, supporting the hypothesis that increased proliferation states are 

supported by a general release from 3′UTR mediated regulation through APA. Christine 

Mayr and colleagues extended these results in a seminal finding that global 3′UTR 

shortening is a characteristic of cancer cell lines [96]. Several oncogenes that exhibit this 

phenomenon in the tested cancer cells exclude miRNA targets and presumably avoid 

post-transcriptional gene regulation, suggesting a role for APA in supporting the 

oncogenic state.  

While these studies establish a link between APA and miRNA target loss, they do 

not demonstrate a direct role for APA in allowing genes to escape regulation by the 

activities of co-expressed miRNAs. So far, only one known example of a specific APA 

event used to escape miRNA regulation to dose gene expression in support of function 

has been described. Pax3, a transcription factor controlling muscle cell differentiation, is 

tightly regulated in muscle stem cell tissue by the miR-206 miRNA. In a subset of these 

cells, Pax3 escapes regulation by miR-206, allowing its expression to levels required to 

drive muscle cell differentiation [97]. This example, coupled with the widespread and 

tissue-specific expression of APA, suggests that APA could dose gene expression by 

allowing their tissue-specific escape from miRNA regulation among many different cell 
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types. Indeed, data from retina, brain, placenta and other human tissues [98-100] suggests 

APA functions extensively at a tissue-specific level.   

  
Alternative polyadenylation in C. elegans 

 
The general lack of comprehensive 3′UTR annotations for metazoan 

transcriptomes coupled with the complexity of most mammalian model tissues has made 

it challenging to identify general mechanistic rules for APA and to understand its 

activities in cells. Recently, two large-scale efforts have finely sequenced and annotated 

the 3′UTRs of almost every protein-coding gene in the C. elegans transcriptome [88, 89].  

While both groups used very different approaches to both sequence and map worm 

3′UTRs, their results are largely cross-validating and provide a gold-standard set of 

expressed 3′UTR isoforms for APA research. These results have provided insights into 

APA that point to opportunities to now study its mechanisms, its precise tissue-specific 

expression patterns, and its activities in regulating gene expression.  

Both 3′UTRome mapping efforts confirm the prevalence of APA in worms. 

Almost half (~46%) of worm genes are expressed with multiple 3′UTR isoforms and 

approximately 8% of their genes have more than five 3′UTR isoforms. It is unclear why 

worm genes require so many different 3′ends, but its widespread nature in the worm 

transcriptome suggests it may broadly impact the regulation of gene expression through 

development and in specific tissues.  

Indeed, distinct patterns of 3′UTR isoform expression through C. elegans 

development support this hypothesis. Mangone et al. prepared and sequenced 

developmental stage-specific mRNA libraries finding that average 3′UTR length 
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decreases through worm age [88]. Embryos and dauer worms preferred longer 3′UTR 

isoforms, while adult worms predominate shorter 3′UTRs. These data suggest a tendency 

for increased regulation earlier in development and a release from 3′UTR mediated 

regulation in later stages coordinated by APA. Further, these data give support to the idea 

of context-specific regulation of APA to support temporal and perhaps also spatially 

unique gene expression programs. 

The poly(A) signal elements used to induce 3′end formation events in worms have 

also been mapped and studied transcriptome-wide. This revealed a surprisingly 

infrequent use of the canonical ‘AAUAAA’ hexamer where only ~39% of 3′UTR 

isoforms use this PAS for cleavage [88, 89]. The remaining sites use PAS elements that 

differ from the canonical PAS by one or two nucleotides. Additionally, a surprising 

~13% contain no detectable PAS element near the cleavage site suggesting 

unconventional mechanisms of 3′end formation may be used in these cases [88]. 

Interestingly, genes having two or more 3′UTR isoforms tend to use the canonical PAS to 

cleavage at sites that are distal from the STOP codon and variant hexamers or no PAS for 

cleavage at proximal sites. This result points to potential mechanisms that may drive 

preferred cleavage at proximal PAS sites to allow a release from 3′UTR mediated 

regulation. Although it is known that many human mRNA 3′ends are also sometimes 

cleaved with non-canonical PAS elements [75], the now comprehensive atlas of PAS 

element usage in the worm transcriptome makes it a unique resource to study this poorly 

understood process in metazoans. 
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Hypotheses and specific aims 
 

APA likely provides a powerful regulatory mechanism using combinatorial 

variation between cis-elements and trans-acting factors to regulate gene expression in a 

tissue-specific manner (Figure 1.6).  

 

 
Figure 1.6. Working hypothesis: APA reorganizes miRNA regulatory networks at 
the tissue-specific level to direct their local activities. In this hypothetical example, 
tissues A (brown) and B (blue) express the same miRNA that targets genes 1 through 4. 
gene 2 is uniquely important for inducing a pathway required for tissue B identity and 
achieves the dosage required to carry out this function through an APA event specific to 
tissue B. The opposite APA event expresses the long 3′UTR isoform in tissue A, 
maintaining the miRNA target and blocking entry into the pathway. 
 

Except for a few single gene anecdotes this idea has not been systematically 

explored. The broad questions addressed by this research are: 1) How pervasive is APA 

in living tissues? 2) What is its fundamental role? 3) How does 3′UTR heterogeneity 

integrate with negative regulatory networks driven by miRNAs to reshape gene 

expression in normal states? This research will 1) map APA dynamics at the tissue-
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specific level in living organisms, to learn patterns, rules and mechanisms using systems 

biology approaches, and 2) provide mechanistic insights and genetic validation on how 

APA interfaces with miRNA regulatory networks. Although several researchers use 

mammalian cell, or cancer cell systems to study APA, C. elegans has been selected for 

these experiments because when compared to other metazoans, its 3′UTRome is currently 

the best-annotated 3′UTR dataset available. C. elegans also possesses the best miRNA 

target predictions, and it has very few cells along with a finely annotated developmental 

lineage, enabling the study of APA and miRNAs crosstalk thorough development. In 

addition, worms are amenable for in vivo studies in an intact animal and can be easily 

manipulated with powerful genetic and molecular biology tools. Previous studies have 

used gene-by-gene approaches and unique contexts, such as cancer, that are both lacking 

in that the findings may not be applicable to the whole organism or tissue studied. 

Moreover, APA is likely context dependent in terms of cell type and environment, 

which supports a genome-wide approach in C. elegans, where these contexts are already 

in place. The research presented here uses well-established techniques, such as RNA-IP, 

Next-Gen sequencing and others, that so far have rarely been applied to studying APA.  

The first aim focuses on the development of biochemical methods to isolate and 

sequence tissue-specific mRNA from C. elegans intestine, pharynx, and muscle tissues. 

The sequence data will be used to bioinformatically map poly(A) clusters corresponding 

to the 3′ends of tissue-specific mRNA to identify intestine and muscle-specific 3′UTR 

isoform expression. These data will be used to closely study the extent and dynamics of 

intestine and muscle specific APA in worms and address the hypothesis that much of the 

3′UTR heterogeneity observed in the worm 3′UTRome is restricted to specific tissues. 
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This approach will also allow mapping and identification of potential tissue-specific 

sequence elements located near the cleavage sites that coordinate tissue-specific APA 

events.  

The second aim will develop and employ reporter-based genetics tools in 

transgenic worms to validate select genes having tissue-specific APA events that allow 

them to counteract co-expressed miRNAs. These experiments will provide the first 

evidence for worm genes that use APA to escape regulation by miRNAs to support their 

dosage to levels required to drive their local activities. This is in direct support of the 

overall research hypothesis that APA rearranges miRNA targeting networks in specific 

tissues.  

Finally, the third aim will comprehensively investigate the hypothesis that 

ubiquitously expressed genes in C. elegans use APA to dose their expression levels 

uniquely in each tissue by modulating potential miRNA targeting events. This aim will 

apply the tissue-specific mRNA isolation strategies from aim one to five additional 

somatic worm tissues (hypodermis, seam cells, arcade cells, GABAergic neurons, and 

NMDA neurons) that cover most of the C. elegans somatic tissue anatomy. This 

approach is expected to 1) further refine the commonly expressed and tissue-restricted 

gene pools and 2) allow for an in-depth examination of the patterns of APA-induced 

miRNA target loss between tissues. 
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CHAPTER 2 

COMPARATIVE RNA-SEQ ANALYSIS REVEALS PERVASIVE ALTERNATIVE 

POLYADENYLATION IN CAENORHABDITIS ELEGANS INTESTINE AND 

MUSCLES. 

Publication Note 
 
The research reported in this chapter was previously published in BMC Biology.  

Stephen M Blazie, Cody Babb, Henry Wilky, Alan Rawls, Jin G Park, and Marco 

Mangone. Comparative RNA-Seq analysis reveals pervasive alternative polyadenylation 

in Caenorhabditis elegans intestine and muscles. BMC Biology. 2015;13(1). 

 
Overview 
 
 Transcriptome plasticity is a powerful modulator of gene expression that provides 

multicellular organisms with the complexity needed to drive development and maintain 

tissue identity. Apart from a few cases, we still do not fully understand what specific 

transcriptome rearrangements occur in somatic tissues, and how they integrate with gene 

regulation at the post-transcriptional level to maintain tissue and cellular diversity.  

 The small nematode C. elegans is an ideal model organism to study these events, 

since its gene model has been extensively characterized in past years [101]. It is also 

experimentally tractable with short and precise developmental timing, ~1,000 somatic 

cells, a transparent and simple body plan, and an entirely defined cell lineage [102]. 

Large-scale efforts have detailed its transcriptome at a global level [101]. Promoter 

diversity [103], alternate splicing events [104], and changes in 3′ untranslated regions 

(3′UTRs) [88, 89] are also well characterized.  
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 While the formation of several worm tissues and the genes involved in driving these 

processes have been extensively described [105] [106], we still do not fully understand 

how the synergistic activity of tissue-specific events before, during, and after 

transcription drive and maintain tissue identity. Pre-transcriptionally, enrichment of 

sequence-specific elements within C. elegans promoters has been linked to tissue-specific 

changes in gene expression [107-109], suggesting that these elements, together with 

trans-acting factors that recognize them, are fundamental for driving the transcriptional 

programs of unique tissues.   

 During transcription, mRNA isoforms resulting from alternative splicing increase 

transcriptome complexity, coordinating tissue development [110].  Recently, a genome-

wide study in C. elegans found that thousands of transcripts are alternatively spliced and 

many of them change splicing patterns during development [104], suggesting that tissue-

specific splicing may play key roles in this process.  

 Post-transcriptionally, 3′UTRs are known to contain multiple regulatory sequence 

elements important for gene regulation [45]. Recently, two independent studies suggest 

that more than 40% of worm genes possess 3′UTRs subjected to alternative 

polyadenylation (APA), a mechanism that generates multiple 3′UTR isoforms for the 

same genes [88, 89]. This process is widespread in metazoans [96, 111], coordinated 

through development [88, 89], and misregulated in disease [96], underscoring a potential 

role for APA in tissue-specific modulation of gene expression.  

 The cleavage and polyadenylation of nascent mRNAs in eukaryotes is mainly 

executed by two large multimeric complexes named Cleavage and Polyadenylation 

Specificity Factor (CPSF) and Cleavage Stimulation Factor (CstF) [112]. CPSF 
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recognizes and binds to the Polyadenylation [poly(A)] signal (PAS) element located 

~19nt from the polyA site in the 3′UTR of mRNAs. In metazoans, the PAS sequence is 

commonly AAUAAA [112]. This sequence is necessary and sufficient for 3′end 

polyadenylation [112]. CstF directly interacts with CPSF and binds to GU-rich elements 

downstream of the cleavage site [112].  

 Although APA is pervasive in worms and correlated with development, suggesting 

that APA functions in worms tissues [88], it is unclear whether APA is tissue-specific. 

 Both CPSF and CstF are likely to have a role in managing the choice between PAS 

elements in the same 3′UTR and inducing APA. There may also be additional tissue-

specific accessory factors that modify the basal polyadenylation machinery, controlling 

the usage of one PAS element over another. Tissue-specific isoforms of the CPSF or CstF 

complexes could be responsible for APA [113, 114]. Over a decade ago, stoichiometric 

levels of CstF members were indeed shown to control APA in B cell activation [115], and 

recent high-throughput approaches showed that other factors might also play important 

roles in modulating APA [116, 117]. Other processing factors were also recently shown 

to influence the location of cleavage [117]. These studies underscore the importance of 

the correct stoichiometric ratio of each of the 3′end processing factors for producing a 

mature mRNA. Surprisingly, it was also recently shown that U1 snRNP is involved in 

this process, suggesting possible cross talk between APA and the RNA splicing 

machinery [93]. These models may not be mutually exclusive.  

 In C. elegans, the isolation of tissue-specific mRNA to study transcriptome plasticity 

and APA is challenging due to the lack of in vitro cell cultures, the worm’s tough outer 

cuticle that interferes with sample preparation, and the small size of many tissues that 
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prevents manual dissection.  Several techniques have been developed to circumvent these 

issues, including fluorescence-activated cell and nuclear sorting [118, 119], nuclei-

tagging [120], and mRNA-tagging [121]. In particular, mRNA-tagging has been widely 

used to isolate and study mRNA from muscle [122, 123], epithelial [124], hypodermal 

[125], neuronal [126] and seam cells [123]. This technique uses tissue-specific promoters 

to drive expression of a FLAG epitope-tagged cytoplasmic poly-A binding protein 

(PABPC), which specifically binds to the poly(A)-tail of mRNAs in the cytoplasm, 

followed by crosslinking and immunoprecipitation of tissue-specific mRNAs. Thus far, 

mRNA-tagging has been coupled with DNA microarrays and genomic tiling arrays, 

which both lack the advanced sensitivity and specificity possible today with deep 

sequencing, potentially limiting the results obtained with this methodology. 

 Recently, a novel method that couples tissue-specific nuclei isolation with deep 

sequencing was used to analyze the C. elegans intestine transcriptome [119]. 

Unfortunately, while enhancing the sensitivity of tissue-specific mRNA extraction and 

sequencing, this technique limits the analysis to nuclear mRNA species, and only 

identifies short 3′end portions of 3′UTRs that need to be bioinformatically attached to 

their closest genes, potentially introducing mapping inaccuracies. In addition, this method 

does not provide tissue-specific mRNA isoform data, losing an important component 

needed to study the transcriptome plasticity of individual tissues.  

 Integrating mRNA-tagging with RNA-Seq analysis could significantly improve the 

resolution of these studies and identify additional factors controlling tissue development 

and identity. Here, we have improved tissue-specific transcriptome profiling in C. 

elegans, optimizing mRNA-tagging for deep sequencing. We call this updated method 
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polyA-tagging and sequencing (PAT-Seq). We have applied PAT-Seq and profiled 

tissue-specific mRNA from the C. elegans intestine and two muscle tissues belonging to 

the pharynx and body wall of mixed stage worms.  We describe and compare gene 

expression, promoter sequence composition, mRNA isoforms changes, and alternative 

polyadenylation between each tissue. 

 PAT-Seq significantly improved the resolution of tissue-specific transcriptomes from 

previous studies, adding thousands of novel genes and isoforms that allow for a more 

comprehensive analysis of them. In addition, we have used PAT-Seq to profile the 

transcriptome of a previously uncharacterized tissue (pharynx), allowing us for the first 

time to directly compare gene expression changes between different tissues from the 

same organism at a higher resolution, using the same experimental settings.  

 We find that transcript diversity detected among these three tissues is mirrored by the 

presence of characteristic tissue-specific promoter signatures. In addition, we found that 

APA is widely used at a tissue-specific level, highlighting major complex tissue-specific 

transcript dynamics and post-transcriptional regulatory mechanisms.  We describe a large 

number of 3′UTR isoforms specifically expressed in each tissue and find that these 

3′UTRs are enriched for experimentally and bioinformatically predicted microRNA 

(miRNA) targets, suggesting that tissue-specific APA is used in worms as a mechanism 

to interface with miRNA mediated post-transcriptional gene regulation.    

 Finally, we have remapped, incorporated, and curated 3′UTR data from previously 

published studies [88, 89, 101, 119, 127] and integrated these data with our new tissue-

specific datasets. The database is accessible through our new worm APA-specific website 
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[128], which is publically available and represents a unique resource for the scientists 

interested in 3′UTR biology. 

 

Results 
 
Isolation of mRNAs from intestine and muscle tissues 

 mRNA-tagging has so far been coupled with low-resolution platforms, such as 

microarrays and tiling arrays, that lack the sensitivity required to detect low expressed 

transcripts, pinpoint gene isoform changes, and map 3′UTRs at single base resolution. To 

improve upon its sensitivity and specificity, we made several key changes to the original 

mRNA-tagging protocol [121, 129]; 1) We added three tandem FLAG-epitope (3xFLAG) 

tags instead of one, to improve the efficiency of the FLAG pull-down [130]. 2) In the 

original mRNA-tagging protocol, the FLAG-tagged PABPC construct is selectively 

expressed as extra chromosomal arrays, which are unstable and often lead to mosaic 

expression patterns, or integrated as multiple copy lines [129, 130]. We instead opted for 

the widely used Mos-1 single copy insertion (MosSCI) technology [131], which stably 

incorporates the construct of interest in the worm genome. 3) We adopted a novel 

strategy to prepare the tissue-specific cDNA libraries that relies on linear amplification of 

mRNAs, minimizing the quantification error rate due to limited starting material, 

providing high-quality transcriptome and 3′end data in the same experiment [132], and 4) 

replaced the microarray step with Next Generation sequencing (Illumina HiSeq) to 

improve data resolution. 
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 We used tissue-specific promoters to drive the expression of the C. elegans 

cytoplasmic PABPC gene (pab-1), in-frame with GFP and fused to a 3xFLAG tag 

(PolyA-Pull), in intestine, pharynx, or body muscle (Figure 2.1, see Experimental). 

 
Figure 2.1. Overview of the PAT-Seq approach. PAT-Seq uses Gateway-compatible 
(GW) entry vectors expressing the PolyA-Pull cassette in each tissue using tissue-specific 
(TS) promoters. (1) PolyA-Pull expressed in the intestine (ges-1 promoter), pharynx 
(myo-2), and body muscle (myo-3). (2) Expression of PolyA-Pull produces a 3 × FLAG-
tag (light blue) fused to PAB-1 (blue), which specifically binds to the poly(A) tails of 
mRNAs (TS mRNAs). The complex is immunoprecipitated using α-FLAG beads. (3) 
Tissue-specific cDNA libraries are sequenced and mapped onto the WS190 gene model. 
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 As MosSCI technology mediates transgene and rescue cassette (unc-119) insertion 

into a specified region of chromosome II, we confirmed this integration event in each 

transgenic worm line (Figure 2.2, left panel), and verified its expression using western 

blotting (Figure 2.2, right panel).   

 
Figure 2.2. Detection of stable integration of the PolyA-Pull cassette. Left panel: 
Using PCR we detected genomic integration of the common portion of the PolyA-Pull 
cassette (2.6 kb band, red asterisk) in each tissue. The negative control, myo-2Δpab-1, 
was also integrated. Right panel: Western blotting using α-FLAG antibodies detected the 
in-frame PolyA-Pull fusion protein in lysates from transgenic worms expressing it in the 
pharynx (myo2::pab-1) but not in lysate from wild type N2 worms. 
 
 We tested the sensitivity and tissue-specificity of our mRNA pull-down approach 

using worms expressing PolyA-Pull in the pharynx (myo-2p::PolyA-Pull) (Figure 2.2), 

validating the ability of our construct to selectively bind muscle specific transcripts 

(Figure 2.3, lanes 5 and 6). The known intestine-specific transcript ges-1 (Figure 2.2, 

lane 7) and hypodermis-specific dpy-7 (Figure 2.3, Lane 8) were depleted from the same 

sample. Immunoprecipitation from wild type N2 worms yielded no detectable 

background in RT-PCR for the same genes (Figure 2.3, lanes 9-12). To test if our 

PolyA-Pull construct selectively binds polyA+ RNAs, we prepared a GFP::3xFLAG 

fusion protein that does not contain pab-1. This vector is unable to bind polyadenylated 

mRNAs (Δpab-1-Pull, see Experimental). We expressed this new construct in the 
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pharynx (myo-2p::Δpab-1-Pull).  As expected, using this construct, we were unable to 

detect the pharynx-specific myo-2 transcript (Figure 2.3, right).  

 

 
Figure 2.3. Quantification of the specificity and sensitivity of the pull-down using 
RT-PCR. Left panel: myo-2 (lane 1) (*), ges-1 (lane 3) (**) and dpy-7 (lane 4) 
transcripts were detected in total RNA extracted from wild type N2 worms. Middle panel: 
Using immunoprecipitation, we successfully detected the presence of the muscle-specific 
gene myo-2 (lane 5) (*) and the exogenous unc-54 3′UTR (lane 6), but not the intestine-
specific ges-1 (lane 7) (**) and the hypodermis-specific dpy-7 (lane 8). These transgenic 
worms expressed PolyA-Pull cassette in the pharynx, but not in our negative control in 
wild type N2 worms (lanes 9-12). The primers used to detect unc-54 3′UTR also detected 
18S rRNAs (lane 2). This band was replaced with two unc-54 3′UTR isoforms (lane 6), 
suggesting that PolyA-Pull enriched for polyA+ RNAs. Right panel: We are unable to 
isolate tissue-specific RNA from worms lacking pab-1 (Δpab-1). 
 
 Taken together, these results suggest that our PolyA-Pull construct effectively 

enriches tissue-specific mRNAs and specifically binds polyA+ RNAs. 

 

PAT-Seq analysis of mRNAs from intestine and muscle tissues 
 
 We then prepared our tissue-specific libraries with two biological replicates (6 preps 

in total).  We also performed two negative control pull-down experiments expressing the 

Δpab-1-Pull construct in the pharynx to optimize the sensitivity and specificity of our 

approach. Following the pull-down, the cDNA libraries were prepared using isothermal 
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linear cDNA amplifications, which allows cDNA synthesis across the full length of the 

transcripts with as little as 1 ng of total RNA, thus improving the coverage of our whole-

transcriptome amplification independently of the 3′polyA tail [132]. We then barcoded, 

pooled, and sequenced our eight RNA pull-down libraries on the Illumina HiSeq-2000 

platform (see Experimental). The resulting paired reads were computationally assembled 

and mapped onto the C. elegans WS190 genome.  A summary of the results of this 

mapping is displayed in Table 2.1.   

 We obtained ~15M unique reads per sample (~130 million reads total). The number 

of genes mapped in each tissue was consistent between biological replicates, reflecting 

the robustness of our library preparation from tissue-specific RNA samples. 

Table 2.1.  PAT-Seq raw sequencing data. Raw reads derived from tissue-specific 
mRNA libraries on the Illumina Hi-Seq Instrument, mapped to the C. elegans WS190 
genome annotation.    
 
  

 

samples	()ssue)	 total	reads	 mapped	(%)	 not	mapped	 average	
depth	

intes&ne	
experiment	 18,148,228	 11,473,900	(63%)	 6,674,328	 65.2x	

replicate	 14,948,680	 9,376,501	(63%)	 5,572,179	 49.6x	

pharynx	
experiment	 15,685,384	 12,028,022	(77%)	 3,657,362	 17.4x	

replicate	 14,798,098	 10,370,652	(70%)	 4,427,446	 28.5x	

body	muscle	
experiment	 15,496,850	 10,818,093	(70%)	 4,678,757	 9.8x	

replicate	 16,885,324	 12,829,775	(80%)	 4,055,549	 12.1x	

myo-2Δpab-1	
(-	control)	

experiment	 13,644,473	 10,589,072	(78%)	 3,055,401	 51.2x	

replicate	 18,703,551	 15,863,763	(85%)	 2,839,788	 18.2x	
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 The overall number of genes and their ratio detected in each biological replicate, with 

the exception of our negative control, was comparable (~1 vs 0.7) (Table 2.2), suggesting 

that our approach was consistent. In the intestine, we detected a much larger number of 

genes (7,355 genes) compared with that of pharynx (3,094 genes) and body muscle 

(3,604 genes) tissues. 

 
Table 2.2. PAT-Seq mapped data. Mapped reads from the tissue-specific mRNA 
libraries on the Illumina Hi-Seq instrument. Genes and isoforms are mapped to the C. 
elegans WS190 genome annotation. Genes and isoforms marked with an asterisk 
correspond to genes and isoforms enriched in both biological duplicates. 
 
 Genes and their expression levels between biological replicates correlated well, with 

the exception of the myo2p::Δpab-1 control, further supporting the reproducibility of our 

approach and suggesting that PAT-Seq is specific and sensitive (Figures 2.4 and 2.5). A 

closer look into transcripts recovered with myo2p::Δpab-1 revealed an enrichment of 

ncRNAs and other common contaminants, reinforcing that this sample represented 

random non-specific RNA pulled-down during the immunoprecipitation step (Figure 

2.5).  

samples	()ssue)	 genes		 isoforms	

intes&ne	
experiment	 7,971	

7,355(*)	
8,987	

8,519(*)	
replicate	 8,254	 9,432	

pharynx	
experiment	 4,188	

3,094(*)	
4,427	

3,650(*)	
replicate	 3,998	 4,362	

body	muscle	
experiment	 3,404	

2,604(*)	
3,610	

3,024(*)	
replicate	 3,478	 3,679	

myo-2Δpab-1	
(-	control)	

experiment	 796	
1,011(*)	

826	
1,120(*)	

replicate	 1,146	 1,247	
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We have validated the tissue localization of selected tissue-specific genes identified with 

PAT-Seq by cloning their promoters and using them to drive expression of GFP in vivo 

(Figure 2.6 and Table 2.3). 

 
Figure 2.4. Intestine and pharynx PAT-Seq sequencing results. Scatter plot of 
mapped genes from intestine and pharynx datasets displayed by fpkm value detected in 
each replicate on a logarithmic (log10) scale to highlight similarity of detection between 
replicates. The trendline (yellow) displays the expected distribution for 100% similarity 
between replicates. The right panels show the distribution of the fpkm values in control 
and replicate samples for each tissue. The plots were generated using the cummeRbund 
package v. 2.0. 
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Figure 2.5. Body muscle and control PAT-Seq sequencing results. Scatter plot of 
mapped genes from body muscle and myo-2Δpab-1 datasets displayed by fpkm value 
detected in each replicate on a logarithmic (log10) scale to highlight similarity of 
detection between replicates. The trendline (yellow) displays the expected distribution for 
100% similarity between replicates. The right panels show the distribution of the fpkm 
values in control and replicate samples for each tissue. The plots were generated using 
the cummeRbund package v. 2.0. 
 
 We detected a common core set of ~1,500 unique genes present in all three tissues. 

These transcripts include housekeeping genes such as actin, histone genes, ribosomal 

proteins, genes involved in transcription, basal transcription factors and genes involved in 

DNA maintenance and replication. A complete list of genes and isoforms detected in 

each tissue is shown as diagram in Figure 2.7, top panel. 
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Figure 2.6. Validation of tissue-specific genes detected by PAT-Seq. We have cloned 
promoter regions for eight tissue-specific genes and used them to drive in vivo expression 
of our PolyA-Pull plasmid containing GFP. Top Panel: Electrophoresis results of PCR 
confirming the cloning of each of eight promoters upstream of GFP. Bottom Panel: Three 
selected images of transgenic worms expressing GFP in intestine (top panel) and body 
muscle (middle) driven by let-756 promoter, and pharynx (bottom) driven by nas-1 
promoter. 
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Table 2.3. Table displaying comprehensive results for each of eight promoters 
driving expression of GFP in vivo. The putative expression index reflects the level of 
expression of each gene obtained from PAT-Seq data in each tissue. We validated gene 
expression in 19/21 cases using this strategy. Seven out of eight of these genes were 
detected by our approach in all three tissues. Importantly, the strength of the GFP signal 
detected in most of the tissues correlate with the expression levels from our sequencing 
data (data not shown). Out of 21 total experiments, all but two cases were confirmed by 
GFP expression in the correct tissue (19/21, ~90% of cases). We were unable to detect 
expression data in the correct tissue for tmd-2 (intestine) and lin-3 (body muscle). 
However these genes may be expressed below the limit of GFP detection. Together, these 
results provide evidence that PAT-Seq is indeed a sensitive and specific technique to 
enrich for tissue-specific mRNAs in worms. 
 
 We detected a common core set of ~1,500 unique genes present in all three tissues. 

These transcripts include housekeeping genes such as actin, histone genes, ribosomal 

proteins, genes involved in transcription, basal transcription factors, and genes involved 

in DNA maintenance and replication. A complete list of genes and isoforms detected in 

each tissue is shown as diagram in Figure 2.7, top panel.  

 

gene	
intes(ne	 pharynx	 Body	muscle	

detected	validated	detected	validated	detected	validated	
C05D11.7	 *	 yes	 *	 yes	 *	 yes	
C25A1.5		 **	 yes	 *	 yes	 *	 yes	
nac-3	 *	 weak	 *	 yes	 *	 yes	
tmd-2	 *	 no	 *	 yes	 *	 yes	
fat-2	 ***	 yes	 **	 yes	 *	 yes	
nas-1	 -	 -	 *	 yes	 -	 -	
let-756	 *	 yes	 *	 yes	 *	 yes	
lin-3	 -	 -	 *	 yes	 *	 no	

puta%ve	expression	index:	
-	not	detected;	*	low	expression;	**	expressed;	***	strong	expression	
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Figure 2.7. Distribution of tissue-specific gene expression and alternative 
polyadenylation in intestine, pharynx and body muscle. Top panel: Tissue-specific 
genes identified by PAT-Seq and the distribution of their expression levels between each 
tissue. A large pool of 4,091 genes is uniquely expressed in the intestine, while a smaller 
portion of 312 and 329 genes is expressed uniquely in the pharynx and body muscle, 
respectively. We have detected a common set of 1,556 genes expressed in all three 
tissues. Edges represent the presence of transcripts in each tissue, and color-coding 
indicates expression levels of genes in tissues (legend). Bottom panel: The 1,556 genes 
shared in all three tissues were further sorted based on the 3′UTR isoform and their 
expression levels. Approximately 25% to 30% of these genes use common 3′ends in these 
three tissues, while the remaining 70% use tissue-specific 3′UTR isoforms. 
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The intestine transcriptome is expansive, expressing over 30% of C. elegans mRNAs 

 The intestine is one of the largest tissues in C. elegans, composed of 20 large cells 

and a total of 30-34 nuclei, with a final 32-fold polyploidy in the adult worm. It is also 

one of the most functionally diverse tissues, participating in digestion, nutrient transport 

and storage, innate immunity, response to environmental toxins, defecation, and dauer 

formation [133-135].  While the intestine transcriptome has been studied extensively 

[119, 124, 136], our results correlated with and significantly expanded these studies 

(Table 2.4 and Figures 2.8, 2.9, 2.10, 2.11, and 2.12).  

 

 
Table 2.4. Comparative analysis with other available intestine-enriched datasets. We 
have compared our intestine dataset with Haennei et al., Pauli et al., and McGhee et al. 
The table displays the total number of genes detected in each dataset. 
 
 
 
 
 

datasets	 #	of	genes	

WS190	 28,122	

this	study	(intes4ne)	 7,361	

Haenni	et	al.	 3,502	

Pauli	et	al.	 1,647	

McGhee	et	al.	 5,623	
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Figure 2.8. The overlaps between our intestine dataset and McGhee and Pauli 
datasets. Only 56% of genes present in McGhee et al. and Pauli et al. overlap. Our 
intestine dataset (this study) instead overlaps with these two datasets 71% and 78% 
respectively.  
 
 

 
Figure 2.9. Comparison with Haenni et al. datasets. We downloaded and remapped the 
raw data from the ‘sorted’ dataset produced by Haenni et al., and studied its degree of 
correlation with our dataset (this study). Left: 71% of the top 1,000 genes from the 
remapped Haenni et al. dataset overlap with intestine genes detected from our study, 
whereas 29% of genes are only detected in the remapped Haenni et al., dataset. Right: 
86% (n=6,316) of the polyA sites detected by this study overlap with 3′UTR ends 
remapped from the Haenni et al. intestine dataset. 
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Figure 2.10. Comparison of gene expression levels between genes expressed in both 
Haenni et al., and our intestine dataset. 
 
 
 

 
Figure 2.11. Comparison of gene expression coverage. Example of gene expression 
coverage in our dataset (this study) vs Haenni et al., who used an approach that only 
mapped the 3′ends of transcripts (red arrow) that are bioinformatically attached to the 
closest gene model. 
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Figure 2.12. Overlap between intestine datasets. The overlap between genes detected 
in our intestine dataset (this study), Haenni et al. (not remapped), and McGhee et al. 
datasets. We detected a core set of 1,045 genes that are identified by all three datasets. 
 
 We detected a total of 7,355 expressed genes in this tissue (~1/3 of the worm 

transcriptome), of which 4,091 genes and 4,634 spliced isoforms are uniquely expressed 

in the intestine, but not in either muscle tissue (Figure 2.7, top panel). The most 

abundant in this dataset were metabolic enzymes and nutrient transport genes, consistent 

with this tissue’s physiological function in digestion. Among these intestine-only genes, 

we identified 212 unique transcripts that contain a DNA binding domain and were 

previously described as transcription factors [137, 138]. We speculate that these 

transcription factors may contribute to the gene regulatory network necessary for tissue 

identity and function. As expected, members of the GATA family are among the most 

abundant transcription factors. These factors bind "GATA" elements on promoters and 

have been shown to regulate endoderm specification and all aspects of intestine 

development and function in C. elegans [136]. In addition, a significant portion (45%) of 

all transcription factors uniquely expressed in this tissue (96 out of 212) are members of 

the nuclear hormone receptor family. Many members of this class of transcription factors 

were also previously shown to regulate C. elegans metabolism [139].  
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We also detected a large pool of novel intestine-specific transcription factors with 

unknown roles that need to be further investigated.    

 Recently, Pauli and colleagues coupled mRNA-tagging with DNA microarrays from 

L4-stage worms and identified 1,647 intestine transcripts [124] (Figure 2.8).  Others 

produced a SAGE library of transcripts from dissected worm intestines from mutant 

adults, and detected a total of 5,623 intestine genes (Figure 2.8) [136].  A comparison of 

each of these datasets with ours identified 71% and 78% overlap with McGhee and Pauli 

datasets, respectively (Figure 2.9), suggesting that the increased sensitivity of PAT-Seq 

applied to study the intestine transcriptome of mixed stage worms expanded the core C. 

elegans intestine transcriptome.    

 Haenni and colleagues [119] recently optimized a procedure for extracting intact 

nuclei from C. elegans intestine, followed by fluorescence-activated sorting and deep 

sequencing of mRNA, focusing on the 3′ end of the transcriptome. This approach allowed 

the authors to map 3,502 genes expressed in this tissue (Figure 2.8). We compared our 

intestine datasets with these results, downloading and remapping the raw reads from 

Haenni et al. using the same filtering criteria used in our datasets (see Experimental). We 

found that 71% of genes were detected in both datasets, leaving 29% of genes present in 

the Haenni et al. dataset not present in ours (Figure 2.9).  Despite these differences, the 

distribution of genes detected in both datasets plotted by expression values correlated 

(Figure 2.10). Our inability to detect 1/3 of genes in Haenni et al. may be attributed to 

the fundamentally different techniques used in the preparation of our cytoplasmic, 

intestine-specific mRNAs using Pat-Seq versus nuclear cDNA prepared from isolated 

FACS sorted nuclei as in Haenni et al. (Figure 2.11).   
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The difference in gene pools may have arisen because of the different cellular origin of 

the mRNAs analyzed by the two studies. 

 Finally, we have overlapped our datasets with McGhee et al. and Haenni et al., the 

two intestine transcriptomes datasets obtained by sequencing, revealing a core set of 

shared 1,045 genes (Figure 2.12).  These 1,045 genes represent a collection of high 

confidence intestine expressed genes, supported by at least three independent approaches, 

and will provide important insights in unraveling the genetic basis of intestine tissue 

identity in worms. 

 

Muscle transcriptomes are smaller but contain mostly unique gene pools  

 C. elegans possess only two large muscles: the pharynx and the body muscle. The 

pharynx, or foregut, is an important developmental model composed of eight layers of 

muscle, in addition to surrounding neural and epithelial tissue [106]. The muscle 

component of this tissue is composed of 20 cells that coordinate intake and physical 

crushing of the worm bacterial diet [140], subsequently facilitating raw nutrient transfer 

to the intestinal lumen for digestion. While the genetic factors controlling early 

development of the pharynx have been described in detail [141], individual cell-types of 

the pharynx are less characterized because genetic signatures belonging to these specific 

subgroups have not been extensively studied. 

 We detected 3,099 genes expressed in pharynx muscle (Figure 2.7, top panel).  

Among the top genes expressed were several myosin and actin isoforms, and pharynx-

specific neurotransmitters, consistent with this tissue’s muscular identity. Importantly, we 
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found only 312 unique genes with 338 spliced isoforms significantly expressed in this 

tissue (~10% of the total dataset) (Figure 2.7, top panel). Most of these genes have 

unknown function, with only 70 transcripts (22%) described in Wormbase so far [142]. 

The top genes of this list are collagen isoforms and motor protein genes. Within this pool 

we also detected 13 pharynx-specific transcription factors. Most of their gene targets are 

unknown.    

 The body muscle tissue, defined as all non-pharyngeal muscle cells, is homologous to 

vertebrate skeletal muscle [143], and critical for locomotion, egg laying, defecation, and 

mating [144]. Several groups also studied the transcriptome of this tissue [121, 122]. We 

detected 2,610 genes expressed in the body muscle. Similar to our pharynx dataset, 

within this pool we detected only 329 unique genes corresponding to 365 spliced 

isoforms (Figure 2.7, top panel). The list of top ten genes in the body wall muscle 

dataset was also enriched for muscle-specific genes such as myosin and actin isoforms. 

We also detected a unique gene pool, including previously identified genes, such as those 

in the calveolin family [145], and type IV collagen [146]. Out of predicted worm 

transcription factors, we identified 22 genes that are uniquely expressed in this tissue, 

including unc-120, a SRF-like transcription factor essential for body wall muscle 

development, and blmp-1, a PRDM family member required for embryonic slow muscle 

fiber formation in vertebrates [143, 147].  

 Using PAT-Seq we were able to detect many statistically significant isoform 

expression changes between intestine and muscle tissues (Figure 2.13).  
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Figure 2.13. Differential mRNA isoform expression analysis. We have studied the 
changes in mRNA splice isoform expression for genes detected among each combination 
of two tissues in our datasets. Volcano plots showing the changes of isoform expression 
between each tissue (p-value versus fold-change). Total number of isoforms that 
significantly switch between two tissues (p<0.05) are shown in red and the total number 
of genes in this category are boxed.  
 
Tissue-specific promoters possess unique signatures 

 The compact nature of the promoter regions in the C. elegans genome provides us 

with a unique platform to examine tissue-specific elements in these regions and highlight 

signatures such as transcription factor binding sites.  We first studied the sequence 

composition of these promoters, defined as the portion of genomic sequences from -500 
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to +100 from the TSS of protein coding genes [119]. We compared these sequences to 

promoters of random genes from the whole C. elegans transcriptome (28,122 genes from 

WS190) (Figure 2.14).  We found that, contrary to higher metazoans, such as in humans 

where promoters are significantly enriched in cytosines and guanosines, C. elegans 

promoters are significantly enriched in adenosine and thymidine. These two nucleotides 

represent more than 66% of the total nucleotide composition in these promoter regions 

(data not shown). We also detected a strong T-rich region closer to the transcription start 

site of intestine genes, which perhaps is implicated in intestine-specific mechanisms of 

transcription initiation (Figure 2.14).  
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Figure 2.14. Nucleotide enrichment in of promoter regions for intestine expressed 
genes. We extracted and studied the DNA regions 500bp upstream from the start codon 
for each of 4,095 genes unique in our intestine dataset. The average base composition for 
promoter regions in all WS190 transcripts (top), intestine-specific transcripts (middle), 
and a random dataset of 4,095 genes (bottom). We detected a strong enrichment of 
thymidine within 100nts upstream of the transcription start site (red arrow). 
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 We then scanned these promoter regions for enriched elements uniquely present in 

this tissue, hoping to detect tissue-specific signatures. We calculated the frequency of all 

possible hexamers within the promoter regions of our intestine and random datasets, and 

then gathered the frequency of these elements into six bins consisting of 100 nucleotides 

each (Figure 2.15). Among the top hits, we detected a significant enrichment of many 

'GATA' binding sites in these promoters (24% to 40% higher) (Figures 2.15 and Table 

2.5). 

   

 
Figure 2.15. Enrichment of hexamers in promoters of intestine expressed genes. The 
conserved ‘GATA’ or its antisense ‘CTAT’ element in this tissue compared with the 
same number of randomly selected promoters. The canonical ‘TATAAA’ (TATA-box) 
was used as a comparison (bottom right) to show equal enrichment of this hexamer in 
both intestine and random sets. 
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Table 2.5.  List of hexamers with the conserved ‘GATA’ element in our intestine 
dataset. The percent enrichment of this element over the set of randomly selected genes 
is shown. ***P<0.001, by 2-tailed Chi-square test. 
 
 We expanded these analyses in the muscle tissues and scanned promoter regions for 

enriched hexamers and known trans-acting factors (data not shown). Though we used 

unique gene datasets to search for tissue-specific motifs, the body muscle and pharynx 

shared several highly significant sequences, suggesting the existence of common core 

regulatory elements modified for pharynx and body muscle (data not shown).  

 Many eukaryotic promoters contain a 'TATAA' binding element used to recruit the 

transcription machinery to the transcription start site. When we extended this search in 

promoter regions in the worm genome (WS190) and in our three tissues, the frequency of 

the 'TATAA' box was ~37%, slightly higher than what is observed in human (24%) [148] 

(data not shown), suggesting that while not ubiquitous, the TATA box is still abundant in 

nematodes.   

 

 

 

mo#f	 random	
dataset	

intes#ne	enriched		
(%	increase)	

TATCAG 563	 787	(+40%)	

TTATCA 1,469	 2,011	(+37%)	

GTTATC 451	 602	(+35%)	

GATAAG 524	 701	(+33%)	

CTGATA 583	 745	(+28%)	

GATAAC 409	 519	(+27%)	

TGATAA 1,291	 1,599	(+24%)	
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3′end formation in intestine and muscle tissues is unlikely driven by tissue-specific 

sequences 

 We next studied changes in polyadenylation signal elements (PAS) and APA in these 

datasets. APA is pervasive in C. elegans [88, 89], but it is still unclear in which tissues 

these 3′UTR isoforms are expressed, how they are produced, and their consequences. We 

employed an innovative library preparation method based on isothermal linear 

amplification of polyA+ RNA, which allowed us to bypass ligation-based approaches and 

precisely detect both the transcriptome and 3′UTRome of selected tissues profiled at the 

same time (see Experimental). This method, named SPIA, produces continuous linear 

synthesis of ssDNA amplicons from a single RNA template, producing consistent read 

numbers through the transcriptome and minimizing internal mis-priming that could 

generate false 3′ends during the cDNA library preparation [132]. 

 Using this approach, we were able to build ~20,000 high-quality PAS clusters (72% 

to 78% of the total mapped PolyA clusters) that allowed us to map 3′UTR ends at single 

base resolution for ~6,000, ~2,000, and ~1,200 genes in our intestine and two muscle 

datasets, respectively (Table 2.6). Importantly, more than 80% of these mapped 3′UTR 

isoforms overlapped with previously described datasets [88, 89] (Figure 2.17), strongly 

suggesting that the vast majority of 3′UTRs detected using our approach are bona fide 

3′ends of mRNAs. 
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Table 2.6. Summary of 3′UTR poly-A site mapping in tissue datasets. We used the 
raw sequencing reads to map high-quality polyA sites onto the WS190 worm annotation 
and compared our results with two published C. elegans 3′UTRome datasets. The number 
of polyA clusters mapped from polyA-containing sequencing reads (total), the portion of 
those that mapped to the WS190 worm genome annotation (mapped), the number of 
genes with polyA sites mapped (closest gene to the polyA cluster) and the number of 
isoforms resulting from distinct mapping of polyA clusters (isoforms). 
 
 We then studied the length of the 3′UTRs in these tissues and found that, on average, 

intestine genes possess shorter 3′UTRs, when compared to pharynx and body muscle 

genes (Figure 2.17).  

 
 
 
 
  

polyA	clusters	

total	 mapped	(%)	 genes	(isoforms)	

intes7ne	 14,472	 10,490	(72%)	 6,054	(7,102)	

pharynx	 7,532	 5,892	(78%)	 1,924	(2,152)	

body	muscle	 5,185	 3,952	(76%)	 1,239	(1,335)	
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Figure 2.16. Poly(A)-cluster comparison and 3′UTR length analysis. The majority of 
mapped 3′UTR isoforms are supported by two published 3′UTRomes and almost 90% of 
them are supported by at least one dataset. Left panel: the percentage of isoforms mapped 
to either of two published 3′UTRomes (green and red), to both (blue), and those not 
present in either 3′UTRome dataset (purple). Right panel: the distribution of 3′UTR 
length for all 3′UTR isoforms found in each tissue dataset, along with the median 
(vertical dashed red line) and the average length. 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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 In mammals, shorter 3′UTRs tend to escape post-transcriptional gene regulation and 

are more stable in comparison with longer mRNAs [149]. This activity has not yet been 

documented in worms, but presumably these short 3′UTRs could lead to an increase in 

protein translation in the C. elegans intestine to support its diverse physiological roles.  

 Next, we analyzed the PAS elements, which are sequences in 3′UTRs known to direct 

3′end formation. We superimposed our tissue-specific datasets to the worm 3′UTRome 

from the modENCODE project [88] and extracted the PAS nucleotide composition 

(Figure 2.17). The canonical PAS element 'AAUAAA' in intestine and muscle tissues 

was ~10% more abundant than in the 3′UTRome overall (Figure 2.17). The PAS 

sequences containing one permutation of the canonical element were similar in all three 

tissues, while those containing two or more permutations were drastically reduced 

(Figure 2.17). PAS position within 3′ ends of mRNAs was similar in all three tissues 

(Figure 2.18). 
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Figure 2.17. Analysis of PAS usage between tissues. We extracted the PAS elements 
present in the 3′UTRome and assigned them to 3′UTR isoforms present in each of our 
tissue datasets. Each chart represents the percentage of distinct isoforms present in each 
tissue dataset containing the canonical PAS ‘AAUAAA’ (blue), seven of the next most 
common PAS elements, and the remaining ‘other PAS’ sites. The nucleotide changes 
from the canonical PAS element are highlighted in red. 
 

 

 

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Figure 2.18. PAS location in reference to the cleavage site.  Plot showing the position 
of the canonical PAS ‘AAUAAA’ and other PAS sites with reference to the cleavage site 
for all isoforms in each tissue for 3′UTRs in common with Mangone et al. All three 
tissues have a strict positional requirement for PAS elements at -19nts from the cleavage 
site. 
 
 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then 
open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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 We then studied the sequence conservation near the mRNA cleavage sites in genes 

present in each dataset, hoping to detect tissue-specific signatures (Figure 2.19). The 

nucleotide frequency in these regions was remarkably similar between tissues (Figure 

2.19). We detected only a slight change in frequency of adenosines near the PAS site, 

which was specific to 3′UTRs expressed in the intestine (dashed box in Figure 2.19).   

 Taken together, our results suggest that these sequences may not contain elements 

important in tissue-specific 3′ end formation, or that such elements are further 

downstream of the cleavage site and not detected by our analysis. 

 



  59 

 

Figure 2.19. Nucleotide frequency distribution within the cleavage sites. While all 
these tissues have a very similar pattern, intestine genes have an unusual larger 
adenosine-enriched block at -20nts from the cleavage site (dashed box). 
 

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open 
the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Alternative polyadenylation is pervasive in intestine and muscle tissues 

 The two available worm 3′UTRome datasets estimate that ~46% of C. elegans genes 

use APA [88, 89]. APA is coordinated through development, where proximal 3′UTRs are 

expressed in earlier developmental stages and distal are expressed more frequently in 

later developmental stages [88].  However, the extent to which APA is coordinated 

between C. elegans tissues and how it may participate to establish cell identity has not yet 

been addressed. We employed a normalization method to select for higher confidence 

3′UTR isoform switching events based on the ratio between PAS coverage (see 

Experimental).  Intestine tissue has a larger pool of genes with two or more 3′UTR 

isoforms (twice as many genes as in muscle tissues), while muscle tissues mostly use 

single 3′UTR isoforms (Figures 2.20 and 2.21). 
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Figure 2.20.  Abundance of APA in C. elegans tissues. A finalized list of genes with 
mapped 3′UTR isoforms was generated for each tissue and used to compare the 
abundance of 3′UTR isoforms between tissues. Proportion of genes subject to alternative 
polyadenylation in each tissue. The intestine expressed significantly more genes 
containing more than one 3′UTR isoform, while the muscle tissues expressed similar 
proportions of genes with more than one 3′UTR isoform.  
 
 

 

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been 
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and 
then insert it again.
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Figure 2.21. Isoforms per gene in C. elegans tissues. The average number of 3′UTR 
isoforms detected for each gene/tissue. The number of genes and isoforms (frequency) 
are displayed in each column (left x-axis). We calculated and displayed the change in 
3′UTR isoform to gene ratio (right x-axis) between each tissue (green trend line). We 
detected slightly more APA in the intestine and pharynx, when compared with the body 
muscle tissue. 
 

  We reasoned that if APA is a tissue-specific event, we would be able to detect it by 

following the dynamics of 3′end formation in genes with one 3′UTR isoform detected in 

each tissue. Indeed, we found that 18-26% of those genes switched 3′UTR isoform in a 

tissue-specific manner (Figure 2.22). Interestingly, intestine genes more often used distal 

PAS sites, while both muscle tissues used proximal PAS sites. When we focused this 

analysis comparing 3′UTR switches in genes expressed in all three tissues, we found that 

~25% of these genes use APA in a tissue-specific manner (Figure 2.22), suggesting that 

tissue-specific APA in worms is abundant. 

 

 

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and 
then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Figure 2.22. APA is pervasive between C. elegans tissues. We have followed 3′UTR 
length changes in genes with only one 3′UTR isoform between intestine, pharynx and 
body muscle tissues. Length comparison between the same genes expressed between 
intestine and pharynx, pharynx and body muscle and intestine and body muscle tissues. 
Shaded circles represent those genes expressed with proximal 3′UTR isoforms in the 
intestine (black), pharynx (red) or body muscle (blue), where the distal isoform was 
detected in the other corresponding tissue in each graph. Genes with 3′UTR isoforms that 
were the same length between each tissue are represented in grey as noted in the legend. 
Lower right: Distribution of unique 3′UTR isoforms for genes detected in all three 
tissues. The majority of these 3′UTRs are common in all three tissues (blue). Genes with 
a 3′UTR isoform in the intestine distinct from muscle tissues are also abundant (muscle 
shared). Only 2% of these genes express different 3′UTR isoforms between all three 
tissues (distinct). 
 
 We searched within our three datasets for commonly expressed genes with tissue-

specific 3′UTR isoforms (Figure 2.23, right).  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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While muscle tissues had a similar set of genes with tissue specific 3′UTR isoforms, the 

intestine tissue had, on average, twice the amount (Figure 2.23, right), suggesting that 

the C. elegans intestine uses more APA than the two muscle tissues.  

 
Figure 2.23. Analysis of tissue-specific 3′UTR isoforms. We calculated the proportions 
of genes in each tissue that have tissue-specific 3′UTR isoforms and how many of these 
3′UTRs have predicted microRNA targets. Left: Charts displaying the proportion of 
genes containing tissue-specific 3′UTR isoforms (blue). The intestine expresses 
approximately two times as many tissue-specific 3′UTR isoforms as muscle tissues. 
Right: We compared the proportion of microRNA targeted genes with tissue-specific 
3′UTRs (blue) to the same number of randomly selected genes (grey) in each tissue. 
Significantly more genes with tissue-specific 3′UTR isoforms have microRNA targets. 
microRNA targets were predicted using PicTar Software, using three species and five 
species conservation criteria, and from ALG-1 pull-down experiments (Zisoulis et al. 
2010 [32]). *P-value <0.05, **P < 0.01, based on two-tailed Student’s t-test. 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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 Since we were able to detect widespread tissue-specific APA, we were interested to 

study if the genes that use tissue-specific APA were enriched with miRNAs targets, and 

perhaps use APA to escape their regulation. We searched in each tissue for genes with 

tissue-specific 3′UTR isoforms that have bioinformatically predicted microRNA targets 

(Figure 2.23, right). Remarkably, genes with tissue-specific 3′UTR isoforms were 

enriched with miRNA targets using both a 3-species (~49%) and a 5-species (~25%) 

conservation filter (Figure 2.23, right). This is significantly more abundant than the 

average number of total genes expressed in each tissue having miRNA targets using the 

same criteria (Figure 2.23, right). 

 miRNA prediction software produces significantly high false and negative hits that 

cannot be used to properly assign targets [53]. When we instead compared our dataset to 

in vivo miRNA target footprint data from past studies [127], we found a similar 

enrichment, with an average of 21% of genes with tissue-specific 3′UTR isoforms 

containing validated targets (Figure 2.24). 

 In conclusion, these data suggest that miRNA targets are much more abundant in 

ubiquitously expressed genes with tissue-specific 3′UTR isoforms than in genes without 

APA, strongly linking APA to miRNA targeting and post-transcriptional gene regulation. 

Our data supports a model whereby the 3′UTRs of genes with APA are regulated in a 

tissue-specific manner in order to evade or participate in microRNA targeting. 
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APAome.org, a tissue transcriptome resource for C. elegans biology 

 We have made our data publically accessible through our APAome website [128]. 

The APAome includes our tissue-specific datasets, as well as other important worm 

3′UTR datasets [88, 89, 119], allowing the community to have a comprehensive view of 

APA and 3′UTR biology in worms. The APAome database provides detailed information 

on 3′UTR isoforms for all protein-coding mRNAs present in Wormbase [142], novel 

PicTar [88] and TargetScan [89] predictions, and includes annotations extracted from 

other databases as well as new annotations generated by others. 

 

Discussion 

 In this study, we have coupled mRNA-tagging with high-throughput sequencing in a 

novel technique that we called PAT-Seq, and used it to perform an integrative analysis of 

the mRNA transcriptome of C. elegans intestine, pharynx, and body wall muscle tissues. 

We have studied their transcriptome and 3′UTRome at an unprecedented resolution. In 

addition, since these three libraries were prepared using the same approach, we were able 

to directly compare the changes in gene expression and the gene content across these 

three somatic tissues, without extrapolating data from other studies. Our approach is an 

improvement over past methodologies [129, 130], allowing the identification of tissue 

specific mRNAs at higher resolution. 
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PAT-Seq highlights C. elegans intestine and muscle transcriptome dynamics  

 We found that the intestine transcriptome is significantly larger than in muscle 

tissues, possibly to support its especially diverse physiological roles. Intestinal cells are 

much larger and are increasingly polyploid throughout larval development, with more 

transcriptional capacity compared to the smaller, diploid muscle cells [150]. Although 

there are no other comparative data in worms, recent genome-wide transcriptome 

analyses in the human intestine track support our findings, showing that more than 75% 

of all protein-coding genes are expressed in this tissue [151]. The twenty large, intestinal 

cells may require a large pool of distinct genes to carry out functions specific to their 

anatomical location, since altogether these cells span from the pharynx to the posterior of 

the animal and the intestine is one of the largest tissues in worms.   

 Overall, intestinal tissue is more different in gene composition than the two profiled 

muscle tissues. In intestine, the most abundant genes detected are common metabolic 

enzymes, such as fat-1, pmt-1, asp-1, and others, which were also detected in other 

available intestine-enriched datasets [119]. Importantly, genes and isoforms detected in 

our intestine dataset correlated with, and significantly expanded, previously described 

worm tissue-specific datasets [119, 124, 136]. In the pharynx and body muscle, the top 

genes detected were myosin genes, actin isoforms, and other genes. We also detected a 

large number of tissue-specific alternative splicing events and fold change differences in 

gene expression for genes in common between tissues.  

 Gene expression changes could be caused by stage-specific enrichments in our pull-

down experiments. We have prepared our tissue specific RNAs using a well established 

protocol that allows the growth of worms in liquid media [152] (www.wormbook.org). 
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This protocol is known to provide an even representation of each worm developmental 

stage. Since all our samples were prepared using the same protocol, it is unlikely that a 

given sample is biased towards a specific developmental stage. Importantly, our intestine 

dataset overlaps consistently with recently published studies [119, 124, 136], suggesting 

that if there is a general bias in all three tissue-specific datasets, it is very low.  

 Our study detected many tissue specific genes in intestine and muscles that were 

previously reported by others in the same tissues (Wormbase). We have also validated a 

selected portion of these hits using a GFP reporter approach (Figure 2.6).  We think that 

although very sensitive and reproducible, our PAT-Seq approach may introduce some 

noise at the lower end of detection. Further experiments may need to be performed to 

validate the tissue specific localization of these low expressed genes. 

 

C. elegans promoters are AT-rich and contain tissue-specific motifs 

 Our promoter analysis showed that worm promoters are AT-rich. This result is 

consistent with what others have found in worm genomic regions [153], Drosophila 

[154], and Xenopus [155], and very different from what is observed in mammalian 

promoters, which are GC-rich [156].  GC-rich regions in promoters increase genomic 

thermostability [157], provide more binding motifs for transcriptional activators [155], 

and support promoter gene silencing through DNA methylation at GC islands. The AT-

rich nature of C. elegans promoters was previously observed in C. elegans genes 

expressed in the germline [158], and perhaps reflects a simpler model of transcription 

initiation with reduced regulation.  
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 We also demonstrate that this approach can effectively identify previously reported 

and novel sequence elements in tissue-specific gene datasets.  As a proof-of-concept, we 

detected GATA transcription factors known to be critical for all aspects of C. elegans 

intestine development and adult function in our intestine transcriptome [119, 124, 159], 

and detected potential GATA sites present at a higher frequency in the promoters of 

intestine-specific genes. Importantly, our study highlighted the presence of many novel 

enriched sequence motifs, many of which have not been described yet in the literature.  

While we were able to predict several transcription factors that could recognize these 

motifs, we still do not know if they are indeed functional, and further in vivo studies need 

to be performed to further characterize their role.   

 

SPIA library preparation increases yield and robustness of polyA sequencing 

 We have sequenced our tissue-specific libraries using a proprietary library 

preparation method, named Single Primer Isothermal Amplification (SPIA), which is 

ideal for use with mRNA-tagging, since the RNA yield from this approach is typically 

low [132, 160].  Unlike recently developed methods used to map 3′UTRs, such as 3P-Seq 

[89] and FANS/3′-end-seq [119], SPIA generates cDNA libraries that cover the entire 

transcript, allowing for more extensive downstream transcriptome analysis within the 

same experiment, such as coupling gene isoform mapping with the study of 3′UTR 

dynamics. Since there is no amplification step, SPIA significantly minimizes internal 

mis-priming that could generate false 3′ends during the cDNA preparation [132]. It is 

important to note that PAT-Seq relies on the binding affinity of pab-1 to polyA tails of 

mature mRNAs, which are known to change in length in eukaryotic genes [161]. This in 
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turn can create difficulties in the quantification of gene expression levels of libraries 

prepared with this technology. Although this is an inherent problem in all RNA-IP based 

approaches, our datasets correlated with previously published studies that did not use a 

PABPC-based approach (Figure 2.12) [119].  

 Using SPIA, we were able to build ~20,000 high-quality PAS clusters that allowed us 

to map 3′UTR ends at unprecedented resolution for ~6,000, ~2,000, and ~1,200 genes in 

intestine, pharynx, and body muscle datasets, respectively. Importantly, we found that 

more than 80% of these 3′UTR isoforms overlap with previously described datasets [88, 

89], strongly suggesting that the vast majority of 3′UTRs detected by our approach are 

bona fide 3′ends of mRNAs.  

 

~18-26% of genes use tissue-specific APA  

 We show that ~18-26% of total genes detected in intestine and muscle tissues used 

tissue-specific APA. Intestine genes seemed to favor proximal-to-distal PAS switches, 

leading to longer 3′UTR isoforms, while both muscle tissues alternated 3′UTR isoforms 

at a similar rate. Previous studies of 3′UTR datasets reported that as much as 46% of 

worm genes use APA across multiple tissues and developmental stages [88, 89]. This 

apparent discordance with our findings indicates that a large majority of genes in worms 

use only one 3′UTR isoform in a given tissue, suggesting that APA is indeed an 

important mechanism used by cells to regulate gene expression at the tissue-specific 

level. 
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 Importantly, our work identified an overall high number of novel 3′UTR isoforms 

that were not present in past analyses [88, 89]. This pool spans from 9% to 16%, 

depending of the tissue examined (Figure 2.16).  Previous work reported that the worm 

3′UTRome is not saturated and other novel 3′UTR isoforms may be present [88]. 

Interestingly, the majority of the 3′UTR isoforms within this pool are tissue-specific 

(82% in intestine and 58% in the muscle), suggesting that perhaps these 3′UTR isoforms 

are also rare, and were not identified in earlier studies because of the limit of sensitivity 

of their mixed-tissue, transcriptome-wide approaches [88, 89]. 

 Our analysis uncovered significant APA in worm tissues, but we could not identify 

upstream tissue-specific elements involved in 3′end formation, suggesting that in worms, 

other accessory tissue-specific factors [162] or their dosage [115] may play a role instead 

[88, 89]. 

 

Tissue-specific 3′UTR isoforms are linked to microRNA regulation  

Past dogma that the protein and the transcription levels in cells are directly 

proportional is not accurate anymore [163, 164]. Thanks to the introduction of novel 

high-throughput technologies, it is now clear that there is not a direct correlation between 

the transcriptomes and the proteomes of cells or tissues. Instead, miRNAs, together with 

other ncRNAs and RNA binding proteins, play key roles in modulating the final gene 

output on its way to protein expression [96]. This modulation, when combined with the 

abundance of APA detected in this study, suggests a more complex picture, where there 

are not only negative regulatory networks through miRNAs, but also novel unexplored 
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positive regulatory networks operated though APA. These positive networks are driven 

by genes that switch between 3′UTR isoforms to escape miRNA targeting, allowing their 

expression. In this view, both miRNAs and APA can, in principle, dramatically reshape 

gene expression output, implying they both play key roles in the establishment and 

maintenance of cell and tissue identity. 

 In this study we found that genes with tissue-specific 3′UTR isoforms are enriched in 

microRNA targets using both a 3-species (~49%) and a 5-species (~25%) conservation 

criteria. This was significantly more abundant than what we saw in randomly selected 

3′UTR isoforms using a 3-species (25-40%) and a 5-species (10-19%) conservation 

criteria in each tissue. We also found a similar enrichment comparing our dataset to the 

experimentally validated ALG-1 footprints [127].  Our results in three worm somatic 

tissues link miRNA regulation to APA, showing that microRNA targets are much more 

abundant in ubiquitously expressed genes with tissue-specific 3′UTR isoforms than in 

genes that do not use APA. 

 Recently, microRNA populations from intestine and body muscle tissues were 

isolated using an RNA-IP strategy, providing a tissue-level atlas of microRNA expression 

[165].  Unfortunately, while this study suggests that miRNAs are also pervasive in worm 

tissues, it is still unclear which genes they target, and further experiments have to be 

performed to highlight these regulatory networks.  
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APAome.org: A resource for 3′UTR biology 

 We have compiled our tissue-specific transcriptomes into a useful online resource for 

scientists interested in 3′UTR biology and APA [128]. The APAome.org site uses an 

Apache web server and several custom-made Perl scripts that query a dedicated MySQL 

database. It is currently hosted in the Biodesign Institute at Arizona State University, and 

offers a simple and well-integrated interactive user interface to query gene records and 

3′UTR isoform data, giving access to a dedicated gBrowse installation specifically 

designed to study APA in worms.  

This database displays tracks for each tissue transcriptome, including tissue-specific 

APA, as well as curated 3′UTR data from previously published studies [88, 89, 119]. 

 

Experimental 

Plasmids and molecular cloning 

The PolyA-Pull plasmid was constructed adapting the Gateway pDONR221 

(Invitrogen, Carlsbad, CA) as follows.  The pab-1 gene was amplified from N2 genomic 

DNA using a forward specific primer containing a SacII site, and a reverse specific 

primer containing BamHI and EcoRI sites (Table 2.7). The amplicon was then ligated in-

frame with GFP (Marco Mangone, unpublished) using T4 DNA Ligase (NEB, Ipswich, 

MA) and SacII and EcoRI sites.  The 3xFLAG epitope DNA sequence was obtained from 

the DNASU Plasmid Repository [166] (DNASU clone ID: HsCD00298297), and 

extracted using PCR amplification using a forward primer containing a BamHI site and 

reverse primer containing an EcoRI site. The amplicon was then ligated into pDONR221, 
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(Invitrogen) downstream and in-frame with the pab-1 gene using T4 DNA Ligase (NEB, 

Ipswich, MA). The Δpab-1-Pull plasmid (GFP::Δpab-1::3xFLAG), which does not 

contain the pab-1 sequence and cannot bind polyA+ mRNAs, was prepared from the 

PolyA-Pull plasmid using the Stratagene QuikChange® Site-Directed Mutagenesis Kit 

following the manufacturer’s guidelines (Stratagene, La Jolla, CA) (Table 2.7). The 

3′UTR of the unc-54 gene, cloned in Gateway pDONR P2R-P3 entry vectors [88], was 

used as an unspecific 3′UTR in all of the destination vectors in this study. The tissue-

specific promoters were selected as the genomic sequence of DNA upstream of their 

transcription start site, up to 2kb. We have designed the primers using the UCSC Genome 

Browser and cloned the resultant amplicons from N2 genomic DNA into the Gateway™ 

pDONR P4-P1R entry plasmid (Invitrogen) (Table 2.7).  We used Multisite 

recombination reactions (LR Clonase plus II, Invitrogen) to join the tissue specific 

promoters, the PolyA-Pull vector, and the unc-54 3′UTRs into the Gateway Compatible 

MosSCI destination plasmid pCFJ150 [131], (Addgene plasmid #19329), and used these 

vectors for the preparation of the transgenic strains. 

 

Nematode strains and preparation of transgenic animals 

Wild-type strain N2 worms were obtained from the CGC (University of 

Minnesota), which is funded by NIH Office of Research Infrastructure Programs (P40 

OD010440).  Worm strain EG4322 (to prepare MosSCI transgenics) were maintained at 

16°C on HB101 containing NGM agar plates prior to microinjection [167]. Stable 

transgenic worm strains were prepared using the MosSCI technology as described [131].  
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Microinjection mixes consisting of pJL43.1(50ng/µl), pCFJ90(1ng/µl), pGH8(10ng/µl), 

pCFJ104(5ng/µl), and pCFJ150::TissuePromoter::GFP::pab-1::3xFlag::unc-54 (25ng/µl) 

were microinjected into worm strain EG4322 (ttTi5605; unc-119(ed9) III), each of which 

was kindly provided by Priscilla Van Wynsberghe (Colgate University). Microinjection 

was carried out using a Leica DMI3000B microscope according to that described 

previously [131, 168]. Injected worms were plated on NGM growth media plates 

containing OP51 bacteria, and plates containing unc-119 rescued (mobile) worms were 

chunked onto four new NGM plates and left to starve for at least 30 days at 25°C. Single 

dauer worms were plated onto small NGM plates, propagated for approximately 2 weeks, 

and verified for GFP expression using a Leica DMI3000B.  DIC and fluorescent images 

were captured using a Leica DFC345FX mounted camera.   

 

Worm gDNA extraction and MosSCI insertion verification 

Genomic DNA was phenol-chloroform extracted from one full 60mm NGM plate 

from each transgenic worm strain, precipitated with sodium acetate, and washed in 

ethanol.  To confirm the MosSCI integration of transgenes into the ttTi5605 intergenic 

region, we performed PCR using Standard Taq Polymerase (NEB, Ipswich, MA) using a 

forward primer annealing outside of the homologous flanking region (5′- 

CCTCTGAACTGGTACCTCA -3′) and a reverse primer annealing within the unc-119 

rescue cassette (5′- GGAAGAAGGAAAAGAGTGTGG -3′), both of which were 

provided by Priscilla Van Wynsberghe (Colgate University).  
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Western blotting   

Western blotting for detection of the GFP::PAB-1::3xFLAG fusion protein in 

transgenic worms was carried out as follows.  One full 60mm NGM plate of worms was 

washed with M9 media into a 1.5ml centrifuge tube and pelleted at 1500rpm.  Worms 

were washed 2x in PBS Buffer and then resuspended in an equal volume of sample buffer 

(125mM Tris-Cl [pH 6.8], 4% SDS, 20% Glycerol, 0.5% bromophenol blue) 

supplemented with 10% beta-mercaptoethanol and boiled at 95°C for 5 minutes.  The 

reaction was spun down and 15µl of supernatant was run at 200V on a 4-15% Tris-

Glycine Criterion™ precast polyacrylamide gel (Bio-Rad, Hercules, CA) for 36 minutes.  

Electrophoretically separated proteins were transferred to an Amersham Hybond™-P 

blotting membrane (GE Healthcare, Little Chalfont, UK) using a Trans-Blot SemiDry 

Transfer Cell (Bio-Rad, Hercules, CA) at 23V for one hour.  The membrane was blocked 

in blocking buffer (5% milk in PBS with 0.01% TWEEN-20) for 1 hour at room 

temperature followed by overnight incubation with ANTI-FLAG® antibody produced in 

rabbit (Sigma-Aldrich, St. Louis, MO).  Following incubation, the membrane was washed 

3x in blocking buffer and then incubated with a 1:1000 dilution of anti-Rabbit IgG HRP-

linked secondary antibody (Cell Signaling, Danvers, MA #7074S) in blocking buffer for 

one hour.  The membrane was finally washed 4x in PBST (1xPBS, 0.01% TWEEN-20) 

and then reacted with SuperSignal ELISA Femto Maximum HRP Substrate (Thermo 

Scientific, Rockford, IL), followed by imaging with a FluorChem FC2 Imager (Alpha 

Innotech, San Leandro, CA). 
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RNA immunoprecipitation 

The mRNA tagging technique was adapted from past studies [127, 129].  Mixed-

stage liquid worm cultures were grown as described [152] at 20°C.  Approximately 106 

pab-1::3xFLAG transgenic worms were harvested from liquid culture after 3 to 4 days, 

crosslinked for one hour in 0.5% paraformaldehyde in M9 solution, and flash frozen in 

ethanol-dry ice bath.  Frozen pellets were crushed using a mortar and pestle in liquid 

nitrogen and the resulting frozen powder was transferred directly into lysis buffer 

(150mM NaCl, 25mM HEPES, pH 7.5, 0.2mM DTT, 10% glycerol, 0.0625% RNAsin, 

1% Triton X-100), described in [169].  Total RNA was extracted from worm lysates 

using Trizol® Reagent (Life Technologies, Carlsbad, CA) and precipitated with 

isopropanol.  An amount of lysate corresponding to 90µg of total RNA was added to 

100µl of Anti-FLAG® M2 Magnetic Beads (Sigma-Aldrich, St. Louis, MO) and 

incubated overnight at 4°C.  Each reaction was washed 3X in 200µl TBS and then 3X in 

200µl Proteinase-K buffer with 1000 RPM mixing.  Proteinase-K (4mg/ml) was added to 

the beads and incubated at 37°C for 30 minutes with 1000 RPM mixing.  7M Urea was 

added to beads and incubated at 37°C at 1000 RPM before RNA was extracted with 

Trizol® Reagent and precipitated with isopropanol and GlycoBlue (Ambion, Austin, TX).  

Precipitated RNA was treated with DNAse I (NEB, Ipswich, MA) for ten minutes and 

extracted again with Trizol® Reagent and isopropanol.  RNA was resuspended in 

nuclease-free water and quantified using a Nanodrop® 2000c spectrophotometer 

(Thermo-Fisher Scientific, Waltham, MA).          
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RT-PCR and 3′RACE reactions 

Precipitated RNA (50ng) was reverse transcribed with a NVdT(23) primer using 

SuperScript Reverse Transcriptase III (Thermo-Fisher Scientific, Waltham, MA).  Three 

microliters of the reverse transcription reaction was used in each PCR reaction using 

Standard Taq Polymerase (NEB, Ipswich, MA) and primers specific to the 3′ end of each 

cDNA ORF (Table 2.7) or 3′UTR, as was the case for unc-54 (forward primer sequence 

was extracted from previous publications [88]).  

 

cDNA Library Preparation and sequencing 

The eight cDNA libraries were prepared using at least 50ng of total RNA 

extracted from different tissues. We used the IntegenX’s (Pleasanton, CA) automated 

Apollo 324 robotic preparation system to reverse transcribe RNA into cDNA and for 

DNA library preparation.  The cDNA synthesis was performed using a SPIA (Single 

Primer Isothermal Amplification) kit (IntegenX and NuGEN, San Carlos, CA) [132]. 

Once the cDNA was generated, we assessed the quantity of the cDNA libraries using the 

Nanodrop instrument (Thermo).  The cDNA Shearing was performed on a Covaris S220 

system (Covaris, Woburn, MA).  After the cDNA was sheared to approximately 300 base 

pair fragments, the Nanodrop instrument was used again to quantify the cDNAs in order 

to calculate the appropriate amount of cDNA necessary for library construction. Tissue-

specific barcodes were then added to each cDNA library. The resultant 8 tissue-specific 
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libraries were then pooled and sequenced using the HiSeq platform (Illumina, San Diego, 

CA) with a 2x100bp HiSeq run. 

Bioinformatics analysis of RNA-Seq data 

Raw Reads Mapping: Paired raw reads were demultiplexed by their unique tissue-

specific barcodes and converted individually to FASTQ files by the CASAVA software 

(Illumina). Unique datasets were then mapped to the C. elegans gene model WS190 

using the Burrows-Wheeler Aligner software (BWA) [170] with default parameters. A 

summary of the results produced by this approach is shown in Table 2.1. Mapped reads 

were further converted into a bam format and sorted using SAMtools software run with 

generic parameters [171]. 

Cufflinks/Cuffdiff Analysis: Expression levels of individual transcripts were 

estimated from the bam files by using Cufflinks software [172]. The fragment per 

kilobase per million base (FPKM) number was used to indicate the gene expression 

levels, and FPKM value >=1 was used as a threshold across all tissues profiled for 

defining expressed genes. The gene expression levels obtained in each tissue dataset were 

compared pairwise with other tissues using the Cuffdiff algorithm [172]. Cuffdiff 

algorithm detected 389 isoforms shared between pharynx and intestine, 286 between 

body muscle and intestine, and 175 between the two muscle tissues (p-value<0.05). 

Cufflinks was unable to assign an FPKM value for eight genes in our intestine dataset 

(vit-5, rpl-24.1, ZK484.1,  hmg-1.1, rps-12, Y24D9A.8 , rps-8 and rpl-7A). These genes 

were omitted in this study. The differential mRNA isoform analysis was performed with 

the CummeRbund package [173] using the output produced by the Cuffdiff algorithm. 

This analysis aimed to identify genes that change in expression level between tissues 
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from large datasets. The data is displayed in Figure 2.13 as a plot. We have detected 

between 175 and 389 tissue specific isoforms that have significantly different expression 

levels between two tissues. Tissue-specific unique genes were assigned if they have an 

FPKM>=1. Genes with an FPKM<1 were ignored in our analysis. 

 

Comparison with other intestine datasets 

A list of 3,502 genes present in the original Haenni et al. dataset was obtained 

from the supplementary materials section of the publisher, and used for our analyses. In 

addition, we downloaded from GEO and re-mapped the original raw 'sorted' BAM file 

used in the Haenni et al., manuscript, using BWA [170] and Cufflinks [172] and standard 

parameters to the WS190 gene model. This mapping effort produced 5,840 clusters 

mapped to 3′UTRs of known genes with a FPKM >=1. This list was labeled "Haenni et 

al., re-mapped" and used for our analysis. The list of genes detected by Pauli et al., and 

by McGhee et al., was obtained from the supplementary materials accompanying their 

respective manuscripts [124, 136]. 

 

Gene expression localization and validation 

We cloned the promoter region of eight randomly chosen genes, designing 

genome-specific primers that selectively amplify promoter regions spanning from -

2,000nt to WS190-annotated start codon of the gene of interest. The results are shown in 

Table 2.3. The genes chosen for this analysis were C25A1.5, nac-3p, tmd-2p, fat-2p, nas-

1p, let-756p, and lin-3p. These forward and reverse primers contain Gateway-compatible 
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sequences to allow the cloning of the resulting promoter regions in Gateway-compatible 

entry vectors (Table 2.7). We used the GFP containing plasmid PolyA-Pull to drive GFP 

expression using these promoters.  Each promoter was introduced at the 5′end of a 

MosSCI-compatible PolyA-Pull fused to the unc-54 3′UTR within the MosSCI-

compatible destination vector pCFJ150 [174] using multisite Gateway recombination 

technology (Invitrogen). The finalized constructs were microinjected into young adult 

worms. At least two independent biological replicates per construct were screened for 

GFP expression. For each tissue, we defined a putative expression index, proportional to 

the FPKM values obtained for each gene in each tissue (* = FPKM < 100, **, FPKM = 

100 – 200, *** FPKM > 200). 

 

PolyA cluster preparation and polyA mapping  

To map polyA-sites to WS190 worm annotations, raw sequence reads were 

filtered using custom made Perl scripts.  We extracted reads containing greater than or 

equal to 30 consecutive adenine nucleotides at their 3′end. We obtained 14,472 total 

reads from intestine, 7,532 for pharynx, and 5,185 for body muscle (Table 2.6). The 

polyA elements were then removed and the reads were converted to FASTA format and 

aligned to the WS190 annotation using the Burrows-Wheeler Aligner [170] with standard 

parameters. Reads mapping to genomic regions containing >=65% adenosines in either 

direction and /or with less than 18 consecutively mapped nucleotides were discarded. The 

reads produced approximately ~27,000 high-quality PAS clusters mapped through the C. 

elegans genome. Each of these clusters was then bioinformatically attached to the closest 

gene within a 1,600nt range in the same orientation. To increase the stringency of our 
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analysis, we ignored clusters with less than 5% of the total number of polyA reads 

detected for a given gene, and PAS clusters that mapped genomic regions with >40% 

adenosines, to eliminate as much background as possible. Each cluster had a median 

length of ~70nt with ~5x coverage, and mapped 3′UTRs of genes detected in the 

corresponding tissue with a FPKM>=1.  

 

PAS analysis 

Mapped polyA sites were compared with Mangone et al. and Jan et al. to map 

common 3′UTR isoforms between these datasets. We assigned common PolyA sites if 

the overlap was between  +-10nt. PAS usage in Figure 2.17 was calculated as in 

Mangone et al. [88]. PAS position and PAS nucleotide composition for 3′UTR isoforms 

in each dataset was extracted from Mangone et al. and used for the analysis in Figure 

2.17. 

 

PAS nucleotide frequency 

We have bioinformatically extracted 70nt sequences between -50 and +20 from 

the cleavage site of all 3′UTR isoforms detected in each tissue, and used these sequences 

to plot the nucleotide frequency.  

 

Promoter analysis 

We have used custom Perl scripts to bioinformatically extract 600nt from -500 to 

+100 from genomic regions of genes in WS190, in our intestine, pharynx, and body 
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muscle datasets. We then calculated and displayed the nucleotide frequency in the graph 

shown in Figure 2.14. This approach was used in the past by others to study promoter 

regions [119]. The analysis in Figures 2.14 and 2.15 was performed binning these 600nt-

long promoter regions in 100nt bins using custom Perl scripts (six bins total), and then 

calculating the frequency of all possible hexamer combinations in each bin. As a control, 

we have extracted genomic regions from a random set of genes. Each random dataset 

used in our analysis was composed of the same number of genes detected in each 

corresponding tissue. We then used custom Perl scripts to bin these regions in and search 

for enriched hexamers within each of these bins. ~70% of worm genes are trans-spliced 

at their 5′ends, make challenging to precisely identify worm promoter regions 

(Wormbook). The analysis in Table 2.5 excluded promoter regions of genes present in 

operons. 

 

Motif identification with MEME 

Promoter regions from each tissue were subjected to analysis for enriched motifs 

using the MEME Suite [175]. We used the DREME tool to search for enriched short 

motifs (up to 8 bases) in the tissue-specific promoter datasets used in our promoter 

analysis, and performed a discriminative motif discovery search using different tissue 

datasets as negative controls. We then overlapped the motifs detected with DREME with 

the high quality transcription factor binding profile database JASPAR using the human 

and the worm datasets (version 2014) [176].  
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Transcription factor search analysis 

We searched our tissue specific datasets for the presence of known transcription 

factors present in the wTF2.0 database [137], and compared the results with Haerty et al. 

[138].  

 

Gene expression network visualization with Cytoscape 

Tissue-specific genes, isoforms, and APAs were extracted from the data tables, 

reconfigured as a binary interaction format with three tissue types, and visualized as 

networks using Cytoscape v3.1 [177]. The FPKM values in the tissues were log2-

transformed, converted to RGB color codes, and used to display relative expression levels 

among three tissues.  
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CHAPTER 3 

GENETIC VALIDATION OF THE CONSEQUENCES OF ALTERNATIVE 

POLYADENYLATION INVOLVING THE CAENORHABDITIS ELEGANS GENES 

TCT-1 AND RACK-1 

Overview 
 
 Alternative polyadenylation (APA) is widespread in eukaryotic organisms, giving 

rise to a dynamic landscape of mRNA 3′ends [88, 89]. Despite nearly twenty years of 

research, it is still not understood how multiple 3′ends for the same gene are produced 

and the activities of the expressed 3′UTR isoforms are largely unknown. This process 

could, in theory, provide genes with a useful mechanism to modulate the activities of 

factors that regulate them given the multitude of regulators that target in 3′UTRs and dose 

gene expression.  

Massive efforts to finely map the 3′ends of the C. elegans transcriptome revealed 

an especially broad landscape of 3′UTR isoforms that could dramatically impact the 

regulation of gene expression. While almost half of worm genes are subject to APA, their 

functions remain unclear. Given the pervasive role of gene regulation in metazoan tissue 

development and physiology, we and others have hypothesized that APA operates 

primarily at a tissue-specific level to drive gene regulatory mechanisms important for 

precisely coordinating those activities.   

 We have recently developed an approach, PAT-Seq (polyA-tagging and 

sequencing), that allows for isolation and sequencing of tissue-specific mRNA from 

small worm tissues [128]. This approach was applied to closely study the dynamics of 

APA in worm intestine, pharynx and body muscle tissues, revealing pervasive tissue-
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specific APA between these three somatic tissues. These studies also uncovered a 

particularly striking correlation between alternative polyadenylation and miRNA 

regulation that warrants further investigation. We uncovered a significant enrichment of 

bioinformatically and experimentally predicted miRNA targets in 3′UTRs of genes 

having tissue-specific 3′UTR isoforms. That is, the capacity for miRNA mediated gene 

regulation appears to be abundant in cases where unique APA events occur in each tissue. 

The data suggest that tissue-specific APA events could fine-tune gene regulation events 

through the coordinated addition and subtraction of miRNA targets between each tissue.  

 A particular limitation to this study is the general absence of precisely validated 

miRNA target information due to the general lack of experimental approaches. For this 

reason, we unfortunately do not have a resource that matches each candidate mRNA with 

a specific miRNA regulator. In absence of this information, bioinformatically predicted 

miRNA targets are commonly used. These software use algorithms that incorporate 

metrics known to influence miRNA targeting mechanistics, such as nucleotide 

conservation and the degree of base-pairing between the miRNA and its target [57, 178]. 

However, they are unfortunately hampered by the tendency to over-predict, leading to 

large numbers of false-positive and negative target predictions [53]. Thus, bioinformatics 

miRNA target prediction software are useful for initial inquiries, but experimental 

validation remains the gold standard for miRNA genetics research. 

 Our results in C. elegans are not unique. Several groups have recently uncovered 

correlations between APA and miRNA regulation in normal human tissue and in 

malignant cell lines [96, 111]. However, it is difficult to identify the consequences of 

APA on miRNA induced gene regulation in these systems due to the lack of context 
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provided by independent cell lines grown outside of the organism. Using C. elegans as a 

model system, we are uniquely positioned to validate interactions between tissue-specific 

APA events and post-transcriptional gene regulation induced by miRNAs within the 

living organism. The array of genetics approaches coupled with their rapid development 

will enable unique insights into not only APA and miRNA regulation, but also its 

biological consequences. 

 Together, our data suggest that APA may influence miRNA induced post-

transcriptional gene regulation by controlling interplay between the gene and its miRNA 

target uniquely in each somatic tissue. Why might cells need to allow genes to escape 

regulation by miRNAs as opposed to directly down-regulating expression of the miRNA? 

Hypothetically, the answer to this question lies in the dynamics of miRNA mediated gene 

regulation known to occur. miRNAs commonly regulate more than one gene [179], [180] 

and often operate in networks where the same gene harbors targets for multiple miRNAs. 

While the miRNAs are commonly expressed across multiple tissues, many of the genes 

targeted in the network may require regulation in one tissue, but not in the other. APA 

could provide a mechanism to allow the same gene to uniquely escape regulation by the 

network in the tissue where it needs to be expressed. 

 Our application of PAT-Seq in C. elegans intestine and muscles has uncovered 

many examples of genes that lose predicted miRNA targets due to APA induced 3′UTR 

shortening in one tissue but not in another. The data suggest these genes may do so to 

escape miRNA mediated gene regulation and, in doing so, dose their expression to levels 

required to maintain a phenotype associated with that tissue’s function. An intriguing 
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example we chose to investigate in detail involves the ubiquitously expressed worm 

genes rack-1 and tct-1. 

 rack-1 is the C. elegans ortholog of human Rack-1 (receptor for activated C-

kinase). This widely conserved eukaryotic gene encodes a seven-bladed multifunctional 

scaffolding protein shown to be important for a variety of biological processes in many 

different cell types [181].Its name originates from its early identification as a major 

effector in an Akt-signaling cascade that recruits the C-kinase to active ribosomes on 

targeted mRNAs, enabling C-kinase mediated phosphorylation of translation machinery 

and stimulation of translation elongation [182]. 

Rack-1 is expressed in many different cell types [181] [183] and is involved with 

an array of biological processes in each, suggesting its modulation may be a key factor in 

supporting their specific activities. For example, in smooth muscle cells, Rack-1 signals 

calcium release from the endoplasmic reticulum required for muscle cell proliferation 

[184]. Additionally, Rack-1 is commonly modified at the post-translational level to 

control its activities [11], [185]. The induction and expression levels of Rack-1 are tightly 

regulated and misregulation of Rack-1 expression levels are associated with cancers, 

brain disorders and muscle atrophy [181]. While C. elegans rack-1 has been less studied 

in general, it was recently implicated as a critical factor in the negative regulation of 

miRNA biogenesis [186]. A genetics approach showed that rack-1 depletion increases 

levels of the let-7 miRNA and disrupts terminal cell differentiation normally controlled 

by this miRNA. Together, these data suggest that the precise regulation of C. elegans 

rack-1 may in fact be very important for supporting its functions in specific tissues and 
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highlighting the potential need for this gene to use APA to modulate its expression on a 

tissue-specific basis. 

 C. elegans tct-1 is the ortholog of human TPT-1 (translationally controlled tumor 

protein). In humans, TPT-1 was originally characterized as a downstream target of the 

p53 transcription factor [187] and later identified as a potent regulator of cell fate upon 

the observation that reduction in its expression levels could revert leukemia cells to their 

original non-malignant state [188]. 

Interestingly, translation of this gene is directly controlled by the nutrient sensing 

mTOR pathway [189], which is also involved in controlling ribosome activities [190]. 

Thus, tct-1 may be functionally related to rack-1. TPT-1 is pleiotropic and is suggested to 

have a powerful role in cell fate decisions by guiding proteins that control cell 

proliferation, inflammation, DNA damage response, and ribosome biogenesis [187]. 

Further, TPT-1 positively regulates RhoA activities in smooth muscle cells. Therefore, 

regulation of TPT-1 expression may have a powerful impact on cell fate decisions in 

muscle cells [191].  

Less is known about the function of tct-1 in nematodes. So far, a single study has 

investigated its role using a reverse genetics approach finding that tct-1 is required for 

proper egg laying [192], which is in part mediated by the function of C. elegans body 

muscle. Given the importance of egg laying to worm generational and reproductive 

viability, these data suggest that the precise regulation of tct-1 in worms may be 

important. 

Here, we investigate the dynamics of tissue-specific APA events between body 

muscle and intestine tissues involving the genes rack-1 and tct-1 in C. elegans. We 
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biochemically validated the short 3′UTR isoform of both genes as expressed in body 

muscle, while an alternate cleavage event expresses the long form in the intestine. Using 

a unique vector-based tool having dual fluorochrome reporters, we forced expression of 

the long 3′UTR isoform of both genes in the body muscle tissue of transgenic worms and 

observed repression for each case. Removing the miRNA targets in the distal portion of 

the forced long 3′UTR rescued sensor expression for both cases. We applied reverse 

genetics approaches (RNAi) to study the role of rack-1 and tct-1 in the body muscle, 

finding their expression is required for normal locomotion. Together, these data suggest a 

critical role for APA in allowing rack-1 and tct-1 to escape the miR-50 mediated post-

transcriptional gene regulatory network, enabling their local cellular functions in body 

muscle required for locomotion. 

 

Results 

 
A body muscle-specific APA event enables expression of rack-1 and tct-1 with short 
3′UTR isoforms  
  
 Our application of PAT-Seq to study the dynamics of APA in C. elegans 

intestine, pharynx and body muscle tissues revealed many examples of differential 3′end 

expression for the same genes.  We carefully studied patterns of APA between each 

tissue and identified two genes, rack-1 and tct-1, that display an interesting dynamic 

(Figures 3.1 and 3.2). The worm ortholog of the receptor for activated C-kinase, rack-1, 

was mapped with a short 3′UTR isoform spanning 41 nucleotides from the STOP codon 

to the poly(A)-tail in the body muscle (Figure 3.1).  
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We mapped the alternate APA event in the pharynx muscle and intestine tissues, where 

the distal PAS element was used, leading to expression of the long 3′UTR isoform 

spanning 78 nucleotides from the STOP codon to the poly(A)-tail for this gene (Figure 

3.1) 

 
Figure 3.1. Mapped poly(A)-sites for rack-1 in intestine and body muscle tissues. 
Screenshot image of the 3′end of the rack-1 gene from the gBrowse interface of 
APAome.org. We mapped a single polyA-cluster in the body muscle (blue peak) 
corresponding to a short 3′UTR isoform and two polyA-clusters in the intestine (grey) 
corresponding to both short and long 3′UTR isoforms expressed in this tissue. 
 

Similarly, we mapped a short 3′UTR isoform for the worm ortholog of 

translationally controlled tumor protein, encoded by the gene tct-1, expressed in the body 

muscle (Figure 3.2). The short isoform spans 51 nucleotides from the STOP codon to the 

poly(A)-tail. We mapped a longer 3′UTR isoform in the pharynx muscle and intestine 

that spans 92 nucleotides from the STOP codon to the poly(A)-tail (Figure 3.2). 

Interestingly, we also mapped a small poly(A)-cluster corresponding to the longest 

3′UTR mapped for this gene in the worm 3′UTRome that spans 113 nucleotides (Figure 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file 
again. If the red x still appears, you may have to delete the image and then insert it again.
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3.2). Together, these sequencing data suggest that rack-1 and tct-1 are expressed with 

short 3′UTR isoforms in the body muscle due to a unique APA event in this tissue. 

 
Figure 3.2. Mapped poly(A)-sites for tct-1 in intestine and body muscle tissues. 
Screenshot image of the 3′end of the tct-1 gene from the gBrowse interface of 
APAome.org. We mapped a single polyA-cluster in the body muscle (blue peak) 
corresponding to a short 3′UTR isoform and two polyA-clusters in the intestine (grey) 
corresponding to both short and long 3′UTR isoforms expressed in this tissue. 
 

 We focused on the APA dynamics of rack-1 and tct-1 in the body muscle, where 

the short 3′UTR isoforms are expressed, and in the intestine where abundant expression 

of the long 3′UTR isoforms for both genes have been mapped. Although we used several 

approaches to build high-quality poly(A)-clusters in these tissues used to define the 

3′ends of each gene, we sought to validate the expression of the mapped 3′ends using an 

alternate approach. Using 3′Rapid Amplification of cDNA ends (3′RACE), we targeted 

the 3′ends of rack-1 and tct-1 mRNA and amplified their 3′UTRs (see Experimental, 

Figures 3.3 and 3.4). The results for rack-1 indicate abundance of the short 3′UTR 

isoform in both tissues (blue arrow, Figure 3.3). However, the long 3′UTR isoform was 

only detected in the intestine, suggesting that cleavage at the distal PAS element was 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file 
again. If the red x still appears, you may have to delete the image and then insert it again.
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specific to this tissue (red asterisk, Figure 3.3). We observed long and short 3′UTR 

isoforms of tct-1 expressed in intestine and body muscle tissues (Figure 3.4). However, 

in the intestine we observed preferential expression of the long 3′UTR isoform and 

conversely, abundant expression of the short 3′UTR isoform for this gene in the body 

muscle (Figure 3.4).  

 
Figure 3.3. Biochemical validation of rack-1 tissue-specific 3′UTR isoform 
expression. We used a 3′RACE strategy to amplify the 3′end of rack-1 from intestine 
(int) and body muscle (bm) mRNA preparations. The short 3′UTR isoform (blue arrow) 
was detected in both tissues, while the long 3′UTR isoform (red asterisk) was uniquely 
detected in the intestine. 
 

 
Figure 3.4. Biochemical validation of tct-1 tissue-specific 3′UTR isoform expression. 
We used a 3′RACE strategy to amplify the 3′end of tct-1 from intestine (int) and body 
muscle (bm) mRNA preparations. The short 3′UTR isoform (blue arrow) was more 
abundant in the body muscle, while the long 3′UTR isoform (red asterisk) was abundant 
in the intestine tissue. 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have 
been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the 
image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have 
been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the 
image and then insert it again.
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Together these data cross-validate our results from poly(A)-cluster mapping of 

rack-1 and tct-1 and support a model where each gene is expressed with short 3′UTR 

isoforms in the body muscle and long 3′UTR isoforms in the intestine. 

 

rack-1 and tct-1 use APA to escape miRNA regulation in the body muscle 

 
 The human homolog of worm rack-1 is expressed in many different cell lines and 

their expression levels are precisely dosed to support a range of different activities 

between cell types [181] [183]. Reflecting these data, rack-1 is also expressed in most 

worm tissues [193]. Our data so far indicate that tct-1 is also abundantly expressed in the 

pharynx, intestine, and body muscle [128]. We therefore hypothesized that the tissue-

specific APA events we observed between intestine and body muscle tissues could 

modulate rack-1 and tct-1 expression levels between each tissue, perhaps by controlling 

their interactions with miRNAs. 

 We used PicTar miRNA target prediction software to search for potential targets 

in rack-1 and tct-1 3′UTRs. This analysis revealed predicted targets for miR-50, a 

ubiquitously expressed miRNA, in both genes (Figure 3.5). miR-50 is predicted to target 

the most distal portion of the long 3′UTR isoform of rack-1, nearest the distal PAS 

element that is expressed in intestine (Figure 3.5). The same miRNA is predicted to 

target both of the longest 3′UTR isoforms of tct-1 that are also expressed in the intestine 

(Figure 3.5). Notably, PicTar software also predicts a miRNA targets for miR-85 in the 

longest 3′UTR isoform of tct-1 and rack-1 (Figure 3.5). Importantly, no miRNA targets 

are predicted in the sequence region expressed in the short 3′UTR isoform of both genes 
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that we have validated as expressed in the body muscle tissue (Figure 3.5). PicTar also 

predicts a miR-50 target in another gene, pek-1, that is only expressed with one 3′UTR 

isoform suggesting it is part of the same network targeted by miR-50 (data not shown).  

Together, these data suggest that tct-1 and rack-1 may escape miR-50 and miR-85 

in the body muscle through APA-induced 3′UTR shortening. 

 

 
Figure 3.5. miR-50 and miR-85 network involving rack-1 and tct-1. Cartoon 
illustrating all 3′UTR isoforms mapped for rack-1 (blue) and tct-1 (orange) in the worm 
3′UTRome. We mapped the short and long 3′UTR isoforms of these genes in the body 
muscle (bm) and the intestine (int), respectively. The relative location of PicTar predicted 
miR-50 and miR-85 targets in the distal region of the long 3′UTR isoforms are indicated.  
   

 To investigate our hypothesis that rack-1 and tct-1 escape miRNA regulation in 

the body muscle, we developed a vector-based sensor tool, called pAPAreg, that can be 

used to sense post-transcriptional gene regulation by miRNAs in transgenic worms 

(Figure 3.6). pAPAreg contains two fluorochromes, mCherry and Green Fluorescent 

Protein (GFP), separated by a trans-spliceable element (Figure 3.6). This trans-splicable 

element is derived from the well-characterized sequence region between trans-spliced 

genes gpd-1/gpd-2 in the mai-1 operon [194]. We placed the body muscle-specific 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you 
may have to delete the image and then insert it again.
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promoter from the gene myo-3 upstream of this construct, allowing transcription of a 

polycistronic pre-mRNA followed by SL2 trans-splicing between mCherry and GFP. The 

mCherry fluorochrome therefore serves as a transcriptional reporter since it is spliced 

away from GFP and it is not subject to conditions between experiments. However, the 

GFP is expressed with a ‘test’ 3′UTR containing putative miRNA targets and therefore 

reports the translation level (Figure 3.6). Importantly, this tool includes a degron tag 

placed downstream of GFP to limit its protein stability and allow detection of sometimes 

subtle repressive events mediated by miRNAs. 

 
Figure 3.6. The pAPAreg expression construct used to detect miRNA-mediated gene 
repression in 3′UTRs. A tissue-specific promoter drives expression of the mCherry-
GFP-PEST operon cassette. After trans-splicing, mCherry is translated, while GFP-
PEST, is subject to regulation dictated by miRNA targets (purple asterisk) in the 3′UTR 
placed downstream of it.  Deletion of PAS1 allows expression of the long 3′UTR 
isoform. 

 
We have used this vector tool to ‘force’ expression of the long 3′UTR isoforms of 

rack-1 and tct-1 in the body muscle and sense putative post-transcriptional gene 

regulation induced by the miR-50 or miR-85 miRNAs (Figures 3.7 and 3.8). Expression 

of wild type rack-1 3′UTR resulted in unabated expression of GFP throughout worm 

developmental stages (Figure 3.7 i). We forced expression of the long 3′UTR isoform of 

rack-1 by deleting the proximal PAS element used to express the short 3′UTR in body 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then 
insert it again.
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muscle and observed global repression of GFP (Figure 3.7 ii). GFP expression was 

significantly rescued when we expressed the long 3′UTR isoform containing a deletion of 

the predicted miR-50 target (Figure 3.7 iii). We also observed a significant rescue in GFP 

after deleting the predicted miR-85 target from the distal portion of the long 3′UTR 

isoform (Figure 3.7 iv). Taken together, these results provide evidence that rack-1 

escapes miR-50 and miR-85 induced repression from a body muscle-specific APA event. 

 

 
Figure 3.7. rack-1 escapes miR-50 and miR-85 regulation in the body muscle through 
APA. Top: Representative mCherry and GFP fluorescent images of transgenic worms 
expressing pAPAreg in the body muscle using the myo-3 promoter and the rack-1 3′UTR 
with (i) wild type sequence (wt), (ii) deleted PAS1 (ΔPAS1), (iii) deleted PAS1 and miR-
50 target (ΔPAS1;ΔmiR-50), or (iv) deleted PAS1 and miR-85 target (ΔPAS1;ΔmiR-85). 
Bottom: Quantification of GFP fluorescence intensity relative to mCherry for each rack-1 
transgenic worm line pictured in left panel using Image-J software (n=34, 
****=p<0.0001, paired T-test). 
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  We then tested the effect of forcing the long3′UTR isoform of tct-1 in the body 

muscle (Figure 3.8). Similar to our results expressing the wild type rack-1 3′UTR, wild 

type expression of tct-1 allowed GFP expression through all developmental stages with 

no obvious changes in expression levels (Figure 3.8 i). We observed a significant 

decrease in GFP expression when forcing the expression of the long 3′UTR isoform of 

tct-1 after deleting its proximal PAS element (Figure 3.8 ii).  

Expression levels of GFP were significantly rescued when expressing the long 3′UTR 

isoform of tct-1 after deleting the predicted miR-50 target in the distal portion of the 

3′UTR (Figure 3.8 iii).  
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Figure 3.8. tct-1 escapes miR-50 regulation in the body muscle through APA. Left: 
Representative mCherry and GFP fluorescent images of transgenic worms expressing 
pAPAreg in the body muscle using the myo-3 promoter and the tct-1 3′UTR with (i) wild 
type sequence (wt), (ii) deleted PAS1 (ΔPAS1), or (iii) deleted PAS1 and miR-50 target 
(ΔPAS1;ΔmiR-50). Right: Quantification of GFP fluorescence intensity relative to 
mCherry for each tct-1 transgenic worm line pictured in left panel using Image-J software 
(n=27, ****=p<0.0001, paired T-test). 
  

In summary, we developed a useful vector based tool that enables ‘sensing’ of 

post-transcriptional gene regulation in transgenic worms (Figure 3.7) and have used this 

vector tool to provide evidence that the worm genes rack-1 and tct-1 use body muscle-

specific APA events escape miRNA regulation by the ubiquitously expressed miR-50 

(Figure 3.8). 
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rack-1 and tct-1 are important for overall viability and locomotion 
 
 Our results are consistent with the emerging hypothesis in the field that APA 

drives combinatorial variation between cis-elements in the 3′UTR and the trans-acting 

miRNAs that target them allowing tissue-specific gene dosing events where miRNAs are 

otherwise co-expressed (Figure 3.9- hypothesis). We hypothesized that rack-1 and tct-1 

may have body muscle-specific functions that require them to escape post-transcriptional 

regulation by miRNAs in this tissue to sufficiently dose their expression. 

 
Figure 3.9. Hypothesis: APA rearranges the miR-50 targeting network in the body 
muscle to support its tissue-specific functions.    
 
 Based on this hypothesis, we reasoned that rack-1 and tct-1 may be especially 

important for specialized functions in the body muscle, such as locomotion. We used an 

RNAi approach to identify the importance of both genes. Knockdown of rack-1 resulted 

in ~40% embryonic lethality (Figure 3.10) indicating its importance for overall viability 

and early development. Of worms that bypass embryonic lethality, ~30% are defective in 

locomotion or display uncoordinated phenotypes suggesting rack-1 is overall important 

for locomotion (Figure 3.11).  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Similarly, knockdown of tct-1 resulted in embryonic lethality at a rate of ~10% (Figure 

3.10) and ~8% of larval worms display an uncoordinated phenotype (Figure 3.11).  

Together, these results suggest that rack-1 and tct-1 may be important for supporting 

body muscle functions in C. elegans, giving reason to use of APA to counteract miRNAs 

in this tissue and allow their expression.   

 
Figure 3.10. RNAi mediated knockdown of rack-1 and tct-1 results in partial 
embryonic lethality. RNAi by feeding experiments performed in L4 animals confer 
embryonic lethality to F0 generation worms at ~40% and ~10% penetrance for rack-1 
and tct-1 respectively, (n=10). Feeding with par-2 (RNAi) was used as a control. (-), 
treated with null(RNAi).  
 

 
Figure 3.11. Worms fed rack-1 or tct-1 RNAi exhibit uncoordinated locomotion. 
Shown are the results from larval worms that bypassed embryonic lethality, shown above 
(n=10). rack-1(RNAi) resulted in ~30% uncoordinated phenotypes and tct-1(RNAi) 
resulted in ~8% uncoordinated phenotypes. (-), treated with null(RNAi). 
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Discussion 
 
Evidence for multiple 3′UTR isoform expression of rack-1 and tct-1 within tissues 

 
We have used a biochemical strategy, 3′RACE, to validate the expression of 

tissue-specific 3′UTR isoforms of rack-1 and tct-1 from mRNA immunoprecipitated from 

C. elegans intestine and body muscle. This approach has shown that 3′UTR isoforms are 

largely not expressed in an absolute manner. Rather, we detected changes in the relative 

abundances of multiple 3′UTR isoforms expressed for both genes. Other groups have also 

reported that APA most often changes the frequency of PAS element usage, thereby 

modulating the ratio of 3′UTR isoforms expressed for the same gene. Our 3′RACE results 

for rack-1 suggest that the short 3′UTR isoform of this gene is actually the most 

abundantly expressed in the intestine. However, the long 3′UTR isoform is not detected 

at all in the body muscle suggesting that the distal PAS is only used in the intestine.  

 This difference in ratios could reflect dynamics of APA within specific tissues 

during development.  For example, early larval stage worms may preferentially express 

the short 3′UTR of rack-1 in the intestine to promote its expression required for activities 

supporting tissue development, while the expression ratio shifts in preference of the long 

3′UTR in adults repress its activities when no longer needed. Further experiments, such 

as staged tissue-specific mRNA pull-downs, will have to be performed to address this 

question. 

 Alternatively, the ratio of 3′UTR expression may control gene expression in the 

same special and temporal context by limiting the effect of miRNA targeting on the total 

transcriptional product. For example, low levels of expressed long 3′UTR isoforms that 



  104 

bear miRNA targets coupled with highly expressed short 3′UTR isoforms for the same 

gene may allow a precise fine-tuning of gene expression. Evidence from biochemical 

studies of 3′end formation dynamics have suggested that gene expression can be 

controlled more directly by modulating the efficiency of cleavage and polyadenylation 

[75]. 

 
 
APA as a mechanism to escape miRNA regulation in C. elegans 
 

Here, we have provided evidence that the C. elegans genes rack-1 and tct-1 are 

subject to a specific APA event in the body muscle that induces expression of short 

3′UTR isoforms and allows them to escape repression by miRNAs. So far, this idea has 

only been genetically validated for a single gene. In murine quiescent satellite cells 

(QSCs), the differentiation-inducing transcription factor Pax3 is maintained at low levels 

due to the broad expression of miR-206, a miRNA that targets the distal portion of its 

3′UTR isoform[97]. In a subset of QSCs, APA of Pax3 enables miR-206 target exclusion, 

allowing it to counteract miRNA repression and dose its expression to levels sufficient to 

induce muscle cell differentiation[97]. This example highlights an important positive 

regulatory role for APA in the post-transcriptional control of gene expression. However, 

it is not clear if this is an isolated example or if APA is instead a conserved mechanism 

allowing genes to escape miRNA regulation.  
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Our results for rack-1 and tct-1 suggest APA also allows genes to escape 

regulation by miRNAs in C. elegans. These results, together with the widespread and 

tissue-specific expression of alternative polyadenylation in C. elegans and the enrichment 

of miRNA targets in affected genes suggests an extensive positive regulatory role for 

APA in worms where genes could rearrange miRNA targeting networks to precisely dose 

their expression between tissues.  

Given the ubiquitous expression of rack-1 and tct-1 among worm tissues and their 

established roles in mammalian cells [181] [183], both genes likely play an important role 

in the body muscle tissue of C. elegans. We have used a reverse genetics approach to 

provide evidence that both genes appear to be important for locomotion, indicating their 

activities in body muscle. However, this approach is not ideal since RNA from both 

genes is depleted transcriptome-wide and our phenotypes cannot be distinguished from 

loss of function in other tissues that support locomotion, such as neurons. Indeed, a role 

for rack-1 in promoting axon guidance during neural development has already been 

shown [194]. Further experiments, such as body muscle-specific rescue of rack-1 

expression in mutants carrying a defective rack-1 allele, are necessary to provide 

evidence for a cell autonomous role of each gene in supporting body muscle activities. 

 

Experimental 
 
3′RACE Reactions 

For each N2 total RNA or intestine or body muscle-specific RNA sample (from RNA-IP 

of ges-1::PAP and myo-3::PAP worms, [128]), 100ng RNA was reverse transcribed with 

an NVdT(23) primer containing a 5′anchor sequence [195] (Table 3.1) using Superscript 
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Reverse Transcriptase III (Thermo-Fisher Scientific), according to the manufacturer’s 

protocol.  One microliter of the resulting cDNA was used as a template for each PCR 

reaction, along with 1µM of gene-specific forward primer for rack-1 or tct-1 (Table 3.1), 

the anchor reverse primer (Table 3.1) and Taq DNA Polymerase (NEB) to drive the 

reactions. 

 

Nematode strains and transgenesis  

The EG4322 background worm strain, which we used to prepare pAPAreg expressing 

transgenic worm lines, were maintained at 16°C on NGM plates seeded with HB101 

bacteria prior to microinjection. Extrachromosomal array transmitting worm lines were 

prepared by microinjecting pCFJ150 Tissue-specific Promoter::pAPAreg::3′UTR 

(25ng/µl) along with the unspecific plasmid pMA122 into the background worm strain 

EG4322 (ttTi5605; unc-119(ed9) III), which were kindly provided by Priscilla Van 

Wynsberghe (Colgate University, Hamilton, NY, USA). Microinjection was carried out 

as described previously [168] using a Leica DMI3000B microscope.  

 

Preparation of 3′UTR entry plasmids 

 We cloned the rack-1 and tct-1 3′UTR sequences from the annotated STOP codon 

of each gene to 35 nucleotides downstream of the most distal annotated poly(A) signal 

element (for tct-1) and 73 nucleotides downstream of the most distal annotated poly(A) 

signal element (for rack-1).   
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Each sequence was amplified from N2 worm genomic DNA using forward primers 

overlapping the STOP codon and a reverse primer targeting the region downstream of the 

poly(A) signal element designed using the UCSC genome browser (Table 3.1). We used 

BP clonase™ reactions (Invitrogen) to clone each 3′UTR sequence into the third position 

Gateway™ pDONR P2R-P3 entry plasmids. 

 To prepare 3′UTR plasmids that would ‘force’ expression of the long 3′UTR 

isoforms for each gene we deleted their mapped proximal PAS elements from each  

pDONR P2R-P3 DONOR plasmid and replaced this element with the BglII restriction 

site to maintain the 3′UTR size. We replaced the rack-1 3′UTR proximal PAS 

‘AATAAA’ located 28 nucleotides from the STOP codon in the pDONR P2R-P3 rack-1 

plasmid using the Stratagene QuikChange® Site-Directed Mutagenesis Kit (Stratagene, 

La Jolla, CA, USA) and the rack-1delPAS primers (Table 3.1). The proximal PAS 

‘AATGAA’ in the tct-1 3′UTR was replaced with a BglII restriction site using the 

Stratagene QuikChange® Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) 

and the tct-1delPAS primers (Table 3.1). 

 We deleted select predicted miRNA targets from the distal portion of each 3′UTR 

in their pDONR P2R-P3 DONOR plasmids using the Stratagene QuikChange® Site-

Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) and the forward and reverse 

primers specified in Table 3.1. 
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Plasmids and molecular cloning 

Molecular cloning of the Gateway™ pDONR P4-P1R entry plasmids containing 

the body muscle-specific myo-3 promoter have been described previously [128], and 

were used in this research with no modifications.  

The pDONR ROG plasmid was prepared joining the mCherry sequence, a trans-

splicable region between gpd-2 and gpd-3 and the GFP sequence in the pDONR221 

vector backbone. The restriction sites used were introduced into pDonr221 using the 

Stratagene QuikChange® Site-Directed Mutagenesis Kit following the manufacturer’ s 

guidelines (Stratagene, La Jolla, CA, USA). All primers used in this study are shown in 

Table 3.1.  We used two different versions of the pAPA_reg cassette in this study, named 

APAreg_1 and APAreg_2. 

To prepare the pDONR 221 APAreg_1 entry plasmid, we amplified the PEST 

sequence from pAF207 [196], kindly gifted by Allison Frand, using a forward primer 

containing AgeI restriction sites and a reverse primer containing KpnI sites (Table 3.1). 

We added AgeI and KpnI restriction sites downstream of GFP in the pDONR ROG 

plasmid using the nROGinsAgeIKpnI primers (Table 3.1) and used them to ligate the 

amplified PEST sequence downstream and in frame of GFP in the pDONR 221 ROG 

entry plasmid using NEB Quick ligase (NEB, Ipswich, MA). We observed slightly 

stronger GFP expression with the pDONR 221 APAreg_1 vector and used it in the 

experiments with the tct-1 3′UTR.  

 The pDONR 221 APAreg_2 entry plasmid contains the rpl-10 CDS sequence 

upstream and in frame of the mCherry and the GFP ORFs, to increase the vector’s 

nuclear localization. We first added an EcoRI restriction site to pDONR 221 ROG 
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upstream of the mCherry using the Stratagene QuikChange® Site-Directed Mutagenesis 

Kit (Stratagene, La Jolla, CA, USA) using the mCherry_ins_EcoRI primer and a ClaI 

restriction site downstream of GFP using the GFP_insClaI primer (Table 3.1). The rpl-10 

sequence was amplified from N2 worm genomic DNA using a forward primer containing  

a SpeI restriction site and a reverse primer containing an EcoRI restriction site. The 

amplicon was then ligated upstream and in-frame of the mCherry sequence in pDONR 

ROG using NEB Quick ligase (NEB, Ipswich, MA).  To ligate rpl-10 upstream of and in-

frame with GFP, the rpl-10 sequence was amplified from N2 worm genomic DNA using 

a forward primer containing a SacII restriction site and a reverse primer containing a ClaI 

restriction site (Table 3.1). The amplicons were then ligated into pDONR 221 ROG 

upstream of and in-frame with GFP coding sequences using NEB Quick ligase (NEB, 

Ipswich, MA).  

To prepare the pAPAreg expression vectors, we joined the myo-3 promoter, each 

Gateway™ cassette and the 3′UTR of interest (see preparation of 3′UTR entry plasmids 

above) into the Gateway™ compatible destination plasmid pCFJ150, which contains the 

unc-119 rescue cassette, using Multisite recombination reactions (LR clonase plus II, 

Invitrogen).  

 

Nematode imaging and fluorescence quantification 

 The fluorescence produced by extrachromosomal array worms carrying the 

pAPAreg expression plasmid transgene was detected using a Leica DMI3000B 

microscope. Images were captured using a Leica DFC345FX mounted camera with 

Gain=1X, Gamma=0.5 and 1 second exposure. GFP/mCherry fluorescence ratios were 
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quantified using the integrated density (ID) function of ImageJ software [197] using the 

formula [(IDGFPt-((IDGFPb/Areab)xAreat)]-IDGFP_N2] / [(IDmCherry_t-

((IDmCherry_b/Areab)xAreat)-IDmCherry_N2] where: IDGFPt and IDmCherry_t are the integrated 

density values of each transgenic worm image obtained from GFP and mCherry channels, 

respectively. IDGFPb and IDmCherry_b are the integrated density values obtained from a 

small selection of the dark area (background) surrounding the worm in each image. Areab 

is the area of this small background selection and Areat is the total area of the entire 

image. IDGFP_N2 and IDmCherry_N2 are the average integrated density values obtained from 

non-fluorescent N2 worms (n=15) in the GFP or mCherry channels, respectively.  

 

RNA interference assays 

 Each RNAi clone was obtained from the Julie Ahringer library [198] and the 

RNAi by feeding procedure was performed as described [199]. Briefly, each RNAi clone 

was grown in LB overnight at 37°C, 1,000rpm. Each clone was plated on small NGM 

media plates supplemented with 1mM IPTG and activated overnight at room temperature. 

To observe embryonic lethality and uncoordinated phenotypes, ten L4 stage myo-

3::PolyApull expressing transgenic worms [128] were plated onto the seeded plates and 

incubated at 20°C for 24 hours.  We then singled the adult worms onto new plates seeded 

with the same RNAi clones. After incubation at 20°C for 12 hours, the adults were 

removed and larval offspring on the plates were allowed to incubate for 24 hours before 

scoring their phenotypes.  
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CHAPTER 4 

A ROLE FOR ALTERNATIVE POLYADENYLATION IN REARRANGING TISSUE-

SPECIFIC MIRNA REGULATORY NETWORKS IN GENES COMMONLY 

EXPRESSED AMONG EIGHT CAENORHABDITIS ELEGANS SOMATIC TISSUES 

Overview 
 

Multicellular organisms rely on sophisticated gene expression programs to confer 

tissue identity and maintain homeostasis.  The mRNA molecule is a dynamic mediator of 

these programs as it is capable of transferring genetic information into many different 

isoforms that shape gene expression outputs and precisely direct protein expression. 

However, the dynamics of mRNA expression in the somatic tissues of living organisms 

that give rise to their specialized functions are still not clear in most cases. Thus, mapping 

metazoan transcriptomes at the tissue-specific level to identify gene isoforms and their 

expression levels is key to understanding the how mRNA coordinates development in 

normal states and how its expression is disrupted in disease.   

 The small nematode C. elegans is useful for such studies, since it has a complete 

cell-lineage map [102], its development is well studied at the physiological and molecular 

level [6, 7], it has small, relatively simple tissues, and its transcriptome has been 

extensively characterized [101] [104]. The development of biochemical approaches to 

isolate tissue-specific mRNA have been applied to study a range of tissue transcriptomes 

in worms, from the large intestine [119] (McGhee et al. 2007) [124], to smaller tissues 

composed of just a few cells, such as sensory neurons [126]. However, most of these 

approaches have limited resolution as they have classically relied on low-throughput 

technologies, such as microarrays or tiling arrays, for detection.   
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We have recently developed a method, called PAT-Seq, which is an adaptation of 

the mRNA-tagging method coupled with high-throughput sequencing that improves the 

resolution of tissue-specific transcriptome profiling in worms [128].  In this method, 

transgenic worms expressing a 3xFLAG-tagged cytoplasmic poly(A)-binding protein 

(PABPC) using tissue-specific promoters in each tissue of interest are prepared, followed 

by crosslinking and immunoprecipitation of tissue-specific mRNA.  Our application of 

PAT-Seq to the C. elegans intestine, pharynx, and body muscles allowed the mapping 

and study of thousands of expressed mRNAs and mRNA isoforms that are dynamically 

expressed among each tissue and contribute to mechanisms that regulate gene expression.   

The 3′ Untranslated Region, the portion of the mature mRNA molecule located 

between the STOP codon and the poly(A)-tail, plays an important role in the regulation 

of gene expression. These regions of the gene model contain numerous sequence 

elements that are targeted by non-coding RNAs and RNA-binding proteins that dose gene 

expression post-transcriptionally [200, 201]. 3′UTRs expression is also dynamically 

regulated due to a mechanism called alternative polyadenylation (APA), that enables 

expression of multiple 3′UTR isoforms for the same gene. APA is widespread among 

eukaryotes [85-89], but the mechanisms that direct APA and its activities in cells of 

living organisms remain poorly understood.  

Cleavage and polyadenylation of eukaryotic mRNAs is directed through the 

combinatorial action of cis-elements near the cleavage site and trans-factors within the 

core polyadenylation machinery [80]. Upstream of the poly(A)-site the hexameric 

poly(A)-signal element (PAS) is bound by a large multimeric complex known as 

cleavage and polyadenylation specific factor (CPSF) [77]. This complex interacts with a 
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second large complex called cleavage stimulation factor (CstF), which binds G/U-rich 

elements downstream of the cleavage site [79].  

Together,  CPSF and CstF recruit endonucleases to cleave the transcript and poly(A)-

polymerase to add the poly(A)-tail [80].  

Aside from a few examples [90] [93], there are no unified mechanistic rules 

described for how the cleavage and polyadenylation machinery discriminates between 

multiple polyadenylation sites (PAS) in the same 3′UTR.  Recent transcriptome-wide 

3′UTR mapping efforts in C. elegans discovered APA among ~46% of worm genes and 

have delivered many insights into the mechanisms that direct APA [88, 89]. These 

analyses uncovered a surprisingly small portion of PAS sites (~39%) enriched with the 

canonical poly(A)-signal element, ‘AAUAAA’. Interestingly, in genes with APA, non-

canonical PAS elements that vary by at least one nucleotide from the canonical PAS were 

more prevalent among cleavage sites proximal to the STOP codon, whereas the canonical 

hexamer is used predominately for distal cleavage sites [88]. It is still not understood how 

the cleavage and polyadenylation machinery chooses between different PAS elements in 

these cases.  

We have recently reported that APA is pervasive among C. elegans intestine, 

pharynx, and body muscle tissues, where ~70% of genes among them are expressed with 

tissue-specific 3′UTRs, suggesting that much of the 3′UTR heterogeneity observed in the 

worm transcriptome is restricted to specific tissues [128]. Notably, genes expressed with 

intestine or muscle-specific 3′UTRs are significantly enriched with predicted and 

experimentally validated miRNA targets suggesting crosstalk between APA and miRNA-

induced post-transcriptional gene regulation. These data point to a large potential for 
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genes using APA to selectively exclude or maintain miRNA targets on a tissue-specific 

basis to precisely dose their expression among them.  

So far, this idea has only been genetically validated for a single gene.  

In murine quiescent satellite cells, the differentiation-inducing transcription factor Pax3 is 

maintained at low levels due to the broad expression of miR-166, a miRNA that targets 

the distal portion of its 3′UTR isoform. In a subset of QSCs, APA of Pax3 enables miR-

166 target exclusion, allowing it to counteract miRNA repression and driving its 

expression to levels sufficient to induce muscle cell differentiation. The widespread 

nature of alternative polyadenylation in worms coupled with its dynamic expression 

among tissues and enrichment of miRNA targets suggests this mechanism may play-out 

in many more cases than what is currently appreciated. 

Here, we have applied the PAT-Seq approach to isolate and sequence mRNA 

from C. elegans hypodermis, seam cells, arcade cells, N-methyl-D-aspartate (NMDA) 

neurons, and gamma-aminobutyric acid (GABA) neuronal cells. We have mapped each 

of the resulting tissue transcriptomes and remapped our former PAT-Seq derived muscle 

and intestine transcriptomes [128] to the latest C. elegans genome annotation (WS250), 

which allowed identification of thousands of genes expressed in each tissue. We studied 

the now refined pools of tissue-specific genes and identified hundreds of genes uniquely 

important for their functions. Mapping of poly(A)-sites revealed widespread alternative 

polyadenylation in each tissue transcriptome that allows ~20% of predicted miRNA 

targets to be lost. We find that, on average, ubiquitously expressed genes among all 

tissues are longer and more enriched with predicted miRNA targets than tissue-restricted 

genes suggesting APA as a mechanism to allow precise dosing of these genes between 
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tissues. Ubiquitously expressed genes lose ~40% of predicted miRNA targets to APA 

events among all tissues and tend to escape distinct miRNAs from tissue-restricted gene 

sets. Finally, many of the predicted miRNA targets in the proximal portion of the 3′UTRs 

of the same genes are brought closer to the poly(A)-tail suggesting a dual role for APA in 

allowing transcripts to either escape from or potentiate miRNA activities. 

 

PAT-Seq from C. elegans hypodermis, seam cells, arcade and intestinal valve cells, and 

GABAergic and NMDA neurons 

We have applied the PAT-Seq approach to isolate, sequence and map mRNA 

transcripts from C. elegans hypodermis, seam cells, GABAergic neurons, NMDA 

neurons, and cells of the pharyngeal epithelium (Figure 4.1).   

 
Figure 4.1. C. elegans somatic tissues we have profiled using PAT-Seq. Color-coded 
boxes correspond to each illustrated tissue. 

 
These cells cover much of the somatic tissue anatomy in worms, allowing for a 

more comprehensive sampling of tissue-specific transcriptomes to study gene expression 

and APA dynamics. To further enrich the analysis of tissue-specific transcriptomes in our 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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current study, we have also incorporated datasets from our previously mapped intestine, 

pharynx, and body muscle transcriptomes [128].  

In PAT-Seq, the worm ortholog for the cytoplasmic polyA-binding protein 

(PABPC), encoded by pab-1, is cloned in-frame with GFP and a 3xFLAG epitope, 

together forming a construct we call PolyA-Pull. PolyA-Pull is then expressed in each 

tissue of interest using tissue-specific promoters, followed by crosslinking and 

immunoprecipitation of bound tissue-specific mRNA (Figure 4.2). Each of the resulting 

transcriptome datasets has been incorporated into the latest version of our previously 

reported APAome.org database [128]. 

 

 
Figure 4.2. Overview of the PAT-Seq method. The Poly(A)-Pull cassette containing 
GFP fused to 3xFLAG-tagged pab-1 is fused to tissue-specific promoters. Transgenic 
worm lines that express this construct are then prepared, grown in liquid culture, 
followed by crosslinking, lysis and immunoprecipitation of 3XFLAG-tagged PAB-1 
complexes. The tissue-specific mRNA extracted from the IP is then used to prepare 
cDNA libraries for next generation sequencing and transcriptome mapping, which is 
stored in the APAome.org database. 
 

To ensure efficient immunoprecipitation of mRNA from the smaller tissues, such 

as the seam cells, we adjusted the PAT-Seq method to make it more sensitive.  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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In our original protocol, we used the Mos-1 single copy insertion technology to prepare 

stable transgenic worm lines with a genome integrated polyA-pull cassette [131] [128].  

While this method guarantees homogenous expression of the transgene, the low 

expression levels gained from single copy inserted transgenes may not allow PolyA-Pull 

expression at levels sufficient for RNA pulldown in tissues composed of just a few cells. 

We therefore prepared transgenic worm lines expressing PolyA-Pull from multicopy 

extrachromosomal arrays, which typically overexpress transgenes in somatic 

tissues[202]. We have also implemented a sonication step to improve worm lysis 

following crosslinking (see Experimental).   

We have prepared transgenic worm lines using tissue-specific promoters to drive 

expression of the Poly(A)-Pull construct in hypodermis (dpy-7 promoter), seam cells 

(grd-10 promoter), GABAergic neurons (unc-47 promoter), NMDA-type receptor 

neurons (nmr-1 promoter), and the arcade and intestinal valve tissue (bath-15 promoter) 

(Figure 4.3).  
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Figure 4.3. Fluorescent images of five tissues profiled using PAT-Seq in this study. 
Representative fluorescent images are of worms expressing the Poly(A)-Pull cassette in 
each tissue using the indicated promoters. Yellow arrows mark small cells expressing the 
construct. 
 

After crosslinking and immunoprecipitation of tissue-specific mRNA we used an 

RT-PCR approach to confirm the enrichment of tissue-specific mRNA. The dpy-7 and 

grd-10 transcripts were selectively enriched in the hypodermis and seam cell mRNA 

preparations, respectively, while pharynx muscle (myo-2) and neuronal cell (unc-47 and 

nmr-1) transcripts were depleted (Figure 4.4). These data indicate that our updated PAT-

Seq protocol is sufficiently sensitive to enrich tissue-specific transcripts and specific 

enough to limit mRNA background from other tissues.   

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Figure 4.4. RT-PCR experiments demonstrating the specificity of mRNA pulldown 
from hypodermis and seam cells. We detected dpy-7, myo-2, and unc-47 transcripts in 
total RNA from all tissues, while dpy-7 is specifically enriched in mRNA prepared from 
dpy-7::PAP worms. The same transcripts were not detected in mRNA 
immunoprecipitated using our negative control construct lacking PABPC (myo-
2ΔPABP). We specifically detected grd-10, but not unc-47 or nmr-1 transcripts, from 
mRNA immunoprecipitated from worms expressing Poly(A)-Pull in the seam cells.   
 

We then prepared cDNA libraries from two biological replicate mRNA pull-down 

samples for each tissue. As in our former application of PAT-Seq, we used the Single 

Primer Isothermal Amplification (SPIA) cDNA library preparation technology as it 

enriches cDNA from small amounts of mRNA and limits mispriming artifacts to improve 

transcriptome mapping quality [132] [128] (see Experimental). We pooled and barcoded 

the cDNA libraries (10 total) and sequenced them using a 1x50 flow cell on the Illumina 

Hi-Seq Instrument. This approach yielded millions of reads per sample (Table 4.1).  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file 
again. If the red x still appears, you may have to delete the image and then insert it again.
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Table 4.1. Summary of results from PAT-Seq after deep sequencing. 
Raw reads derived from tissue-specific mRNA libraries on the Illumina Hi-Seq 
Instrument, mapped to the C. elegans WS250 genome annotation. Remapped data from 
our former sequencing is indicated in red text. 
 

In our last application of PAT-Seq, we mapped reads onto the C. elegans WS190 

worm genome annotation as this version is compatible with miRNA-target prediction 

datasets, the C. elegans 3′UTRomes, and other useful features of the gene model. In 

recent years, the C. elegans genome annotation has been updated with considerable 

improvements including updated gene name assignments, refining gene coordinates, gene 

descriptions, and other useful features.   We therefore improved our transcriptome 

mapping for the current study using the latest WS250 worm genome annotation (see 

Experimental). We have also remapped our intestine, pharynx, and body muscle datasets 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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to the latest C. elegans WS250 genome annotation, allowing us to integrate these data 

into our current analysis and improve their quality (red text in Table 4.1). Our strategy 

successfully mapped over 50% of the raw reads from most of the tissue samples (Table 

4.1). Unmapped reads typically contained stretches of homopolymeric nucleotides, in 

many cases corresponding to the poly(A)-tail, rendering them ambiguous (data not 

shown).  

We were able to map reads corresponding to a similar number of genes between 

each biological replicate (Table 4.2) suggesting that despite the sometimes low portion of 

reads mapped for a few replicates (Table 4.1), this did not interfere with the overall 

consistency of our approach. The mapped genes and their expression levels between 

tissue biological replicates also correlated well, further highlighting this consistency 

(Figures 4.5 and 4.6). Although we were unable to map large portions of reads from one 

of the biological replicates from the seam cells and correspondingly mapped fewer genes 

in this replicate (Tables 4.1 and 4.2), the overall density of genes mapped per their 

expression value (fpkm) are well correlated (Figures 4.5 and 4.6). This data indicates 

that these replicates are consistent despite the difference in numbers of reads mapped 

between them. 
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Table 4.2. Summary of sequencing results after mapping genes to WS250. 
Mapped reads from the tissue-specific mRNA libraries on the Illumina Hi-Seq 
Instrument. Genes are mapped to the C. elegans WS250 genome annotation.  Genes 
marked with an asterisk correspond to genes enriched in both biological duplicates 
(fpkm>=1). Remapped data from our former sequencing is indicated in red text. 
   

 

 

 

 

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Figure 4.5. Correlation between sequenced biological replicate mRNA libraries 
prepared from hypodermis, seam cells, and NMDA-type neurons. Left: Scatter plot of 
expression values (log10 fpkm) between biological replicates for each gene. Right: 
Histogram plot of the density of genes from each biological replicate falling into 
expression value bins (log10 fpkm), where red and blue represent each biological 
replicate. 
 
 
 
 
 
 
 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to 
delete the image and then insert it again.
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Figure 4.6. Correlation between sequenced biological replicate mRNA libraries 
prepared from GABAergic neurons and arcade and intestinal valve cells. Left: 
Scatter plot of expression values (log10 fpkm) between biological replicates for each 
gene. Right: Histogram plot of the density of genes from each biological replicate falling 
into expression value bins (log10 fpkm), where red and blue represent each biological 
replicate. 
 

Epithelial, neuronal, muscle and epidermal tissues display dynamic gene expression 

profiles 

In total, our analysis has assigned almost 11,500 genes to the tissues where they 

are expressed (Figure 4.7). We have profiled transcriptomes that comprise the muscle 

(pharynx, body muscle), neuronal (GABAergic, NMDA neurons), epithelial (intestine, 

arcade and intestinal valve cells) and epidermal (hypodermis, seam cells) tissue types and 

studied their gene expression dynamics (Figures 4.7 through 4.11).  

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may 
have to delete the image and then insert it again.
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The epithelial tissues express the majority of genes detected in our analysis (8,885 

genes in total) and express 2,199 genes uniquely (Figures 4.7 and 4.10). As previously 

reported by us and others, this pool contains many genes encoding metabolic enzymes, 

components supporting innate immunity, and the GATA transcription factors [119, 124, 

128, 136]. Interestingly, we detected 73 F-box domain protein genes in this pool, which 

are the target of ubiquitin ligase complexes that regulate protein homeostasis [203, 204]. 

These genes are known to participate in epithelial-to-mesenchymal transitions, are 

commonly misregulated in cancers [205], and potentially regulate the aging process 

[206].  

We detected a much smaller pool (616 genes) exclusively in the GABAergic and 

NMDA neuronal cells (Figures 4.7 and 4.9). As expected, this pool was enriched in 

common neural genes such as neurotransmitter receptors (cholinergic, FMRF, nicotinic, 

GABA, and others ), calcium and potassium channels, and factors that support axon 

development.  

After remapping our pharynx and body muscle datasets to the WS250 genome 

annotation and subtracting genes expressed in the six tissues profiled in this analysis, we 

found 360 genes uniquely expressed in these muscle tissues (Figures 4.7 and 4.8). 

Neurotransmitter receptor genes such as dopaminergic, cholinergic, nicotinic, and others 

were detected in the muscle cells that may function as post-synaptic sites at 

neuromuscular junctions [207]. These neurotransmitter genes are distinct from those 

detected in the neuronal datasets. We also found many lectin genes, which support 

locomotion [144], uniquely expressed in muscles. After subtracting genes expressed in all 

other tissues, we have now refined our pharynx muscle-specific gene pool to 78 genes 
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uniquely expressed in this tissue (Figure 4.8). The body muscle-specific gene pool was 

refined to 269 genes after subtracting all other tissues (Figure 4.8). Similar to what we 

previously reported, we detected a small overlap of only 13 genes expressed in common 

between pharynx and body muscle (Figure 4.8). Three of these shared genes (zip-8, bed-

1 and klu-2) are putative transcription factors that we speculate may be important for 

conferring basic muscle identity.  

We detected 920 genes uniquely expressed in the epidermal tissues (Figures 4.7 

and 4.11). Among them included genes bearing wormbase descriptions that point to an 

array of roles in molting or embryonic development. Interestingly, we commonly 

detected several neurotransmitter receptors in the epidermal transcriptome, highlighting 

the role of the epidermal cells in sensing environment. Consistent with this, serpentine 

receptor genes, which are important for C. elegans chemosensory mechanisms [208], are 

also abundant in the epidermal gene pool.  

Many of the genes uniquely expressed in epithelial, neuronal, muscle, and 

epidermal tissues do not yet have annotated functions and need to be further investigated. 
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Figure 4.7. Venn diagram displaying the portions of genes expressed between four 
tissue groups we have profiled using PAT-Seq. Tissues were grouped by muscle 
(pharynx and body muscle), neuronal (GABAergic and NMDA-type neurons), epithelial 
(intestine and arcade and intestinal valve), and epidermal (hypodermis and seam cells) 
tissue groups. 
 

 
Figure 4.8. Venn diagram of muscle-unique genes. Illustrated are the portions of genes 
shared between body muscle and pharynx tissues. We detected a total of 360 genes 
uniquely expressed in muscle tissues. 
 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image 
may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may 
have to delete the image and then insert it again.
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Figure 4.9. Venn diagram of neuronal-unique genes. Illustrated are the portions of 
genes shared between GABAergic and NMDA-type neuronal tissues. We detected a total 
of 616 genes uniquely expressed in the two neuronal tissues. 
 

 

 
Figure 4.10. Venn diagram of epithelial-unique genes. Illustrated are the portions of 
genes shared between intestine and arcade and intestinal valve tissues. We detected a 
total of 2,199 genes uniquely expressed in epithelial tissues. 
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Figure 4.11. Venn diagram of epidermal-unique genes. Illustrated are the portions of 
genes shared between hypodermis and seam cells tissues. We detected a total of 920 
genes uniquely expressed in epidermal tissues. 
 

Only 9% of genes in the GABAergic and NMDA-type neuronal transcriptomes are co-

expressed  

C. elegans adult hermaphrodites have 26 neurons expressing the GABA receptor 

[209].  19 of these are D-type motor neurons that span the ventral chord and function to 

inhibit contraction of the body muscles on one side, opposing the excitatory contraction 

on the other side to coordinate locomotion [210]. The 5 AME-GABAergic neurons 

control flexing movements of the head that support foraging activities.  Two GABA-

neurons, AVL and DVB, are located on the anterior and posterior ends of the worm, 

respectively and stimulate enteric muscles used for defecation.  The remaining GABA-

neuron, RIS, is an interneuron with no physiological role defined so far. Cinar et al. have 

profiled the transcriptome of GABAergic neurons using the mRNA-tagging approach 

coupled with a microarray detection approach that detected over 250 genes expressed in 

this tissue [211].  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have 
been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the 
image and then insert it again.
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Our NextGen sequencing approach has identified a total of 4,885 genes expressed in this 

tissue, many of which overlap extensively with the top expressed genes detected using 

microarray approaches (Figure 2.12).  

 
Figure 4.12. Comparison with Cinar et al. mRNA-tagging derived datasets. We 
compared our GABAergic neuron tissue transcriptome with the microarray-derived 
GABAergic neuron transcriptome from Cinar et al. (n= 242). Left: Venn diagram 
showing 44% overlap with our GABAergic neuron dataset. Right: Cinar et al. genes 
ordered by expression level (rank) detected in our dataset. We detect most of the top 100 
expressed genes from the Cinar et al. dataset.   
 

Of the genes uniquely expressed in neurons, we detected 286 genes uniquely 

expressed in the GABAergic neurons (Figure 4.9). The top expressed genes in this list 

include potassium channels and several genes previously found important for locomotion. 

Interestingly, the third most expressed gene in this list is lin-38, which encodes a protein 

with a predicted RNA-binding domain shown to be important for vulva development 

[212], but as of yet has no neural function described. Out of the 286 unique genes in 

GABAergic neurons, eighty-six genes in this list have not yet been functionally 

characterized. 

Neurons expressing the ionotropic glutamate receptor enable rapid excitatory 

neurotransmission. C. elegans have ten such receptors, two of which are specifically 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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gated by NMDA agonists and are expressed in six interneurons (AVA, AVD, AVE, PVC, 

AVG, and RIM) important for locomotory control [213]. We detected many G-protein 

signaling components (dmsr-3, dmsr-6, rab-37, and others) and potassium channels (twk-

16, twk-17, and twk-39) consistent with neural activities. Interestingly, we detected eight 

genes belonging to the nematode-specific peptide families that do not have functions 

described for this tissue. The NMDA-type neuron pool of genes also included 

transcription factors such as tbx-34, a T-box transcription factor with no described 

function so far.  We also many detected worm orthologs of human disease genes. One of 

these genes is ceh-6, a homolog of human POU3F4 transcription factor commonly 

mutated in conductive deafness [214] (OMIM: 304400) Another, mbtr-1, contains human 

malignant brain tumor repeats (OMIM: 608802) that when mutated in drosophila lead to 

malignant transformation of the larval brain [215]. These and other disease associated 

genes point to opportunities to study the role of these genes in normal neuronal 

phenotypes in worms.  

We detected a total of 616 genes uniquely expressed in both neural tissues, but 

surprisingly only 55 genes are shared between them (Figure 4.9). This lack of similarity 

in their gene expression profiles may reflect the distinct functional differences between 

these tissues despite their common neural identity. Among the top hits in this list of 

shared genes are insulin family genes (ins-1 and ins-17), previously shown to be 

expressed in neurons through development [216]  and G-protein signaling components 

(rgs-6, M04G7.3, srsx-25, and others). Notably, one of the transcription factors detected 

in this list is mab-9, which is a T-box transcription factor gene known to be enriched in 

motor neurons and important for axon guidance  [217] [218]. We have also detected other 
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transcription factors, such as hlh-1 and nhr-67 that may be broadly important for 

specifying neural identity. Importantly 13 genes (~24%) of the genes in this list do not 

have a function described yet and their neuronal roles need to be further characterized.  

 

Arcade and intestinal valve cells share large overlap in gene expression with the intestine 

transcriptome 

The epithelium adjacent to the pharynx muscle in the buccal cavity includes 

arcade cells at the anterior end and the pharyngeal/intestinal valve posterior to the 

pharynx (Figures 4.1 and 4.3). The arcade cells are specialized epithelial cells, organized 

into two rings, that anchor the pharynx epithelium to the epidermis in the buccal cavity 

[106]. These cells play an important role in pharyngeal extension during early 

development of the digestive tract [219]. The six intestinal valve cells posterior to the 

pharynx muscle form an anatomical barrier between the pharynx and intestine and permit 

translocation of the physically processed bacterial diet from the pharynx into the 

intestinal lumen [106]. In the embryo, these cells develop in coordination with the 

pharyngeal and intestinal primordium to form a wedge-shaped structure that bridges the 

two organs [220]. 

We detected a total of 3602 genes expressed in this tissue. This dataset is enriched 

in genes involved in embryonic morphology and development (eef-1A.2, lev-11, icd-1, 

and others) and lifespan(dao-6, ril-1, pghm-1, and others). After subtracting genes 

expressed in all other tissues, we detected 153 genes uniquely expressed in the arcade and 

intestinal valve cells (Figure 2.10). This pool contains ~13 genes with WormBase 

descriptions indicating a role in embryonic development including prp-4, C25E10.11, 
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clec-233. There are also several transcription factors with poorly understood functions in 

this pool that need to be further investigated. We detected a large portion of 211 genes 

uniquely co-expressed between this tissue and the intestine (Figure 2.10), which may 

reflect the similar roles of intestinal valve cells and the intestinal tract posterior to it. 

Three of the seven most abundantly expressed genes in this category (sptf-2, nhr-106, and 

elk-2) are transcription factors that we speculate may play a role in gut formation. 

Surprisingly, only eleven genes are shared between the pharynx muscle and the arcade 

and intestinal valve cells (data not shown), suggesting at the genetic level this tissue is 

more similar to its epithelial intestine counterpart. 

 

The hypodermis transcriptome contains over 6,000 genes associated with a vast array of 

functional activities 

The hypodermis is a large epidermal tissue composed of the 138 nuclei hyp7 

syncytium, five cells in the head (hyp 1 – hyp5), and four cells in the tail (hyp8 – hyp11) 

of the adult hermaphrodite [221]. It has multiple functions, including forming the cuticle 

and basement membranes, directing neuronal placement and influencing axon 

pathfinding, regulating the development of neighboring cells, removing apoptized cells, 

and establishing the body plan. We detected a total of 6,033 genes expressed in the 

hypodermis. Our hypodermis transcriptome overlaps extensively with a published dataset 

from Spencer et al. derived from mRNA-tagging experiments followed by analysis on 

tiling arrays (Figure 2.13). 
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Figure 4.13. Comparison with Spencer et al. mRNA-tagging derived datasets. We 
compared our hypodermis tissue transcriptome with the microarray-derived hypodermis 
transcriptome from Spencer et al. (n= 1,234) Left: Venn diagram showing 68% overlap 
with our hypodermis dataset. Right: Spencer et al. genes ordered by expression level 
(rank) detected in our dataset.  
 

 Consistent with its function in cuticle formation, we detected 87 collagen genes 

expressed in the hypodermis which are genes regulated through development of the 

animal to coordinate precise molting events [222].  We also detected many hedgehog-

related genes, known to be expressed in the hypodermis, and are thought to contribute to 

cuticle formation in nematodes [223].   

We detected 751 genes uniquely expressed in the hypodermis after subtracting 

genes expressed in the other seven tissues (Figure 2.11). Aside from the many cuticle 

formation genes enriched in this pool, it is also enriched with genes involved in molting 

(F42A8.1, fkb-5, mlt-10, mlt-2, and others), lifespan and growth rate (old-1, osm-1, nphp-

4, F56D5.5 and others), embryonic development (C03B8.2, C17E7.4, C46A5.5, nphp-4 

and others), and solute carriers/transporters (K08H10.6, snf-12, T11G6.3, vglu-2, vglu-3, 

and others). We also detected transcription factors that are either known to control larval 

development like ceh-16 [224] and nhr-23 [225]  or have putative roles in hypodermal 

cell fate (Y73F8A.24, ztf-23, atf-8, attf-5 and others).   

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Over 31% of the 751 genes (238 genes) we detected uniquely expressed in the 

hypodermis have no known role described so far.  

 

The seam cell transcriptome contains many epidermal and neuronal genes  

Cells located laterally along the hypodermis, called seam cells, undergo a 

coordinated asymmetric division, forming either hypodermal cells or neural cells, with 

each molting cycle through larval development [221]. A single symmetric division event 

at the L2 larval stage produces ten total seam cells that are maintained until the L4 stage, 

at which point they terminally differentiate into skin cells that produce the adult alae 

structure [226]. These cells have served as models for stem cell biology as they 

asymmetric divisions result in a posterior daughter neuronal cell or a hypodermal cell 

while the anterior seam cell maintains an undifferentiated state [227].  

Similar to the hypodermis and consistent with its role in epidermal activities, we 

detected 52 collagen genes and many molting genes expressed in this tissue. We also 

detected eight hedgehog-like genes, known to function in this tissue [223]. In contrast 

with the hypodermis, we detected a much smaller pool of 105 total genes uniquely 

expressed in the seam cells (Figure 2.11). We speculate that these genes expressed in 

epidermal tissue contribute to unique seam cells identity as opposed that of the 

hypodermis. Interestingly, this pool of seam cell specific genes contains ceh-10 and ceh-

43, which are involved in neural fate specification. Whether these genes may contribute 

to neural identity specifications of daughter cells resulting from these asymmetric cell 

divisions during larval development [227] remains to be investigated. Indeed ceh-43 is 

expressed in anterior hypodermis and neuronal cells and its loss results in loss of head 
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hypodermal cells culminating in embryonic lethality [228]. Interestingly, a related 

transcription factor, ceh-20 was recently shown to be important for controlling seam cell 

asymmetric divisions [229],  providing support for this hypothesis. 67 of the genes 

uniquely expressed in seam cells have no function described so far and need to be further 

investigated. 

 

Mapping poly(A)-clusters in hypodermis, seam cells, GABAergic and NMDA neuron 

expressed genes 

 We recently provided evidence for pervasive 3′end heterogeneity between 

intestine, pharynx, and body muscle mRNAs due to a mechanism called alternative 

polyadenylation (APA) that permits expression of multiple 3′UTR isoforms for the same 

gene [128]. Our results showed that tissue-specific APA was common and that genes 

expressed with tissue-specific 3′UTR isoforms are significantly enriched in predicted and 

experimentally validated miRNA targets [128]. We sought to expand these datasets of 

tissue-specific 3′UTR expression into the five tissues we have profiled using PAT-Seq 

and study their expression dynamics.  

 We employed a strategy similar to that used in our former approach [128] to map 

poly(A)-clusters and define the 3′ends for the genes detected in our tissue transcriptomes 

(see Experimental). We mapped raw reads containing poly(A) ends from each tissue 

transcriptome and remapped those from the intestine, pharynx, and body muscle tissues 

to the WS250 worm genome annotation. To improve the resolution of poly(A)-cluster 

mapping, we trimmed each of the mapped poly(A) containing reads and scaffolded them 

onto the WS250 worm genome annotation, then clustered reads for each poly(A)-site. In 
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addition to using Single Primer Isothermal Amplification (SPIA) to limit artifacts that 

arise from internal priming of oligo-dTs during cDNA library preparation [132] [128], we 

further removed reads mapping near A-rich stretches of the genome (see Experimental).  

 This approach built poly(A) clusters for ~5,500 hypodermis genes, ~1500 genes 

expressed in seam cells and arcade and intestinal valve cells, and ~3,000 genes for the 

GABAergic and NMDA-type neurons (Table 4.3). Many of the genes in each tissue 

express more than one 3′UTR isoform as reflected by the isoforms/gene ratios of each 

tissue transcriptome (Table 4.3). 

We also remapped poly(A)-sites using our new strategy for ~6,000 intestine 

genes, 1,500 pharynx genes, and 1,300 body muscle genes (Table 4.3). The number of 

genes mapped in each tissue is similar to our old approach [128] suggesting that our 

refined strategy did not compromise mapping quality. We then remapped the C. elegans 

3′UTRome datasets [88, 89]  to the newest WS250 C. elegans genome annotation. The 

majority of the poly(A)-sites mapped in each tissue dataset agrees with both 3′UTRome 

datasets suggesting that the our refined poly(A) cluster building strategy allowed us to 

map high-quality 3′ends (Figure 4.14). 
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Table 4.3. Mapped poly(A) clusters in each tissue. We have mapped poly(A) clusters 
using a refined approach to improve resolution of 3′ends that map close to one another. 
Shown are the numbers of genes and 3′UTR isoforms with mapped or poly(A) clusters. 
We remapped our intestine and muscle datasets using this new strategy and display the 
results with red text. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and 
then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Figure 4.14. Mapped poly(A) clusters are largely supported by the two published C. 
elegans 3′UTRome datasets.  We compared the 3′ends mapped by our refined poly(A) 
cluster mapping approach with those mapped by Mangone et al. or Jan et al. The majority 
of the poly(A) clusters are supported by either C. elegans 3′UTRome dataset. Remapped 
poly(A) clusters from Blazie et al., 2015 are boxed in red dashes. 
 
 
Abundant APA within and between tissues induces loss of predicted miRNA targets 

 We then studied the use of APA in all eight tissues by quantifying the number of 

genes having more than one 3′UTR isoform in each tissue transcriptome (Figure 4.15). 

With the exception of the hypodermis, each tissue expresses 20-30% genes with multiple 

3′UTR isoforms, on average (Figure 4.15).  

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Figure 4.15. Portion of genes expressing multiple 3′UTR isoforms in each tissue. 
Blue line indicates the portion of genes in each tissue with more than one 3′UTR 
isoform. Most of the tissues express multiple 3′UTR isoforms for ~10-40% of genes 
(yellow box), while the hypodermis expresses a much larger portion of genes with APA. 
 

However, a much larger portion of these genes (almost 80% of total genes 

expressed in each tissue) have multiple poly(A)-sites, indicating that the remaining ~35-

40% of genes selectively express tissue-specific 3′UTR isoforms (Figure 4.16). These 

results are consistent with our previous findings that tissue-specific APA is pervasive 

between intestine and muscles and provides more comprehensive evidence that C. 

elegans somatic tissues use APA in a tissue-specific manner. 

Conversely, we have found that the hypodermis instead expresses ~80% of genes 

with APA, and fewer of them are tissue-specific 3′UTR isoforms (Figures 4.15 and 

4.16). This large increase in alternative polyadenylation in the same tissue may reflect an 

increased role for APA during development in this tissue since the hypodermis is known 

to display dynamic morphology in embryonic development and between larval stages 

[221].   

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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We have previously shown that genes having tissue-specific 3′UTR isoforms are 

significantly enriched in predicted and experimentally validated miRNA targets [128], 

leading to the hypothesis that tissue-specific APA interferes with post-transcriptional 

regulatory networks driven by miRNAs. This idea has been further supported by results 

from others who have suggested that miRNA targets lost to APA-induced 3′UTR 

shortening may allow genes to escape miRNA regulation [111] [96]. We hypothesized 

that miRNA target loss due to the APA observed in each tissue transcriptome may be 

dynamically regulated between tissues. To investigate this idea, we downloaded miRNA 

target prediction data from PicTar [57] and miRanda [230] databases and mapped the 

predicted targets to the tissue transcriptomes (see Experimental). We used a stringent 

approach to select the most abundant 3′UTR isoform expressed for each gene and 

quantified the number of predicted miRNA targets lost due to each unique APA event 

(Figure 4.16). On average, each tissue lost ~20% of the predicted miRNA targets due to 

APA-induced 3′UTR shortening (Figure 4.16). However, the NMDA-type neurons lost 

only ~3% predicted targets, presumably due to a preference for long 3′UTR isoforms and 

therefore maintenance of miRNA targets (Figure 4.16). Conversely, the intestine loses 

~33% and the hypodermis transcriptome loses greater than 60% of its predicted miRNA 

targets indicating a high propensity for genes expressed in these tissues to escape miRNA 

regulation (Figure 4.16).  

 



  143 

 
Figure 4.16. Dynamics of miRNA target loss driven by APA in each tissue. Displayed 
are the portions of PicTar or miRanda targets lost between tissue transcriptomes (light 
purple bars) due to APA. The portion of genes having multiple 3′UTR isoforms within or 
between tissues is indicated (blue line).  
 

Commonly expressed genes lose distinct predicted miRNA targets due to APA 

 We then hypothesized that each tissue transcriptome may prefer to escape distinct 

miRNAs to buffer their gene expression. We focused on the general enrichment of C. 

elegans miRNA families, which have the same ‘seed’ sequence used to target the mRNA 

[231] and ranked their general enrichment in genes expressed within each tissue 

transcriptome regardless of the 3′UTR they expressed (Figure 4.17). The top five most 

enriched miRNA families are strikingly similar between each tissue transcriptome 

(Figure 4.17). In particular, predicted targets of miRNA families miR-2, let-7, and miR-

58  dominated the top three most enriched miRNAs in every tissue and only six miRNA 

families (ex. miR-1, miR-86) appeared in the top five ranks of less than two tissue 

transcriptomes (Figure 4.17). We found that the same miRNA families are also enriched 

in the pool of genes that are commonly expressed among tissues (Figure 4.17).  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Next, we ranked the miRNA families with predicted targets that are lost in the 

same genes due to alternative polyadenylation using the most abundantly expressed 

3′UTR isoform (see Experimental, Figure 4.18). Surprisingly, the most frequently lost 

miRNA families (Figure 4.18) have distinct identities from those that are simply 

enriched in genes in each tissue transcriptome (Figure 4.18). However, the predicted 

miRNA targets that are most frequently lost are highly similar between tissues where 

only four families (miR-2, miR-58, miR-72, and miR-34) are lost in fewer than three 

different tissues (Figure 4.18). This data suggests that each tissue transcriptome is 

frequently escaping many of the same miRNAs. In contrast, four of the top five most 

frequently lost miRNA family targets among genes that are commonly expressed among 

all eight tissues have a very different profile of predicted miRNA targets lost (Figure 

4.18). Notably, miRNA families frequently lost in each tissue transcriptome such as lin-4 

and let-7 are known to be expressed in many different tissues [232] [233]. Conversely, 

miRNA families such as miR-1, which is frequently lost among commonly expressed 

genes, is known to be expressed only in the body muscle [234]. We speculate this may 

point to a mechanism where tissue-specific genes most frequently escape commonly 

expressed miRNAs and commonly expressed genes more often escape tissue-specific 

miRNAs to buffer gene dosage in each unique environment where they are expressed.  
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Figure 4.17. Enrichment ranking of miRNA family targets predicted in each tissue-
transcriptome. We downloaded PicTar and miRanda miRNA target prediction data for 
each tissue transcriptome and the pool of 777 genes that are expressed in every tissue 
(commonly expressed). We then grouped the predicted targets by miRNA families. 
Shown are the top five most abundantly predicted miRNA family targets, where #1 is 
most enriched. miRNA family names are color-coded. Predicted miRNA family targets 
uniquely enriched in fewer than three tissues are highlighted in yellow with red boxes. 
The enrichment of predicted miRNA targets between tissues is similar. 
 

 
Figure 4.18. Enrichment ranking of miRNA family targets lost due to APA in each 
tissue-transcriptome. We downloaded PicTar and miRanda miRNA target prediction 
data for each tissue transcriptome and the pool of 777 genes that are expressed in every 
tissue (commonly expressed). For each set of genes, we selected the most abundantly 
expressed 3′UTR isoform for each gene and counted the predicted miRNA targets 
(grouped by miRNA families) that are lost. Shown are the top five most abundant 
predicted miRNA family targets lost to APA, where #1 is most enriched. miRNA family 
names are color-coded. Predicted miRNA family targets that are lost to APA and 
uniquely enriched in fewer than three tissues are highlighted in yellow with red boxes. 
The enrichment of predicted miRNA targets lost to APA between tissues is similar, while 
those in the commonly expressed gene pool are mostly distinct. 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image 
and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and 
then insert it again.
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Commonly expressed genes express longer 3′UTRs and 85% of them use alternative 
polyadenylation 
 

We previously reported that C. elegans pharynx and body muscle tissues express 

slightly longer 3′UTRs, while the intestine expresses 3′UTRs closer to the overall median 

length of ~140 nucleotides observed in the worm 3′UTRome [128] [88, 89]. Recent 

transcriptome RNA sequencing efforts have provided evidence for generally longer 

3′UTRs expressed in mammalian brain tissue that are enriched with neural miRNA 

targets [98]. We hypothesized that C. elegans GABAergic and NMDA-type neurons may 

also prefer longer 3′UTRs. After remapping poly(A)-clusters for our muscle and intestine 

datasets and remapping those for the five tissues profiled in this study, we found that 

median 3′UTR length was similar between tissues with common roles (Table 4.4). 

Muscle tissues express the longest 3′UTRs with medians over 200 nucleotides as 

previously reported [128]. Both neural tissues express longer 3′UTRs, on average, having 

3′UTR median lengths slightly less than 200 nucleotides. Seam cells, arcade and 

intestinal valve cells, and hypodermis 3′UTRs are slightly shorter, with median lengths 

averaging ~180 nucleotides (Table 4.4).  
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Table 4.4. Median 3′UTR length for all genes expressed in each indicated tissue. 
Tissues are sorted by ascending median length. 
 

We then extracted tissue-restricted genes, those expressed uniquely in each tissue, 

and binned them by 3′UTR length (Figure 4.19). This revealed a consistent distribution 

of 3′UTR lengths between tissues that were on average shorter than the C. elegans 

3′UTRome (colored lines versus dotted line in Figure 4.19).  

 
Figure 4.19. Histogram displaying the length distribution of 3′UTRs of tissue-
restricted genes. 3′UTRs of tissue-specific genes (colored lines) have very similar 
lengths and are slightly shorter, on average, than all genes in the 3′UTRome (black dotted 
line). 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then 
open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Conversely, 3′UTRs of genes expressed in all eight tissues (commonly expressed 

genes) were on average much longer than tissue-restricted genes and also longer than the 

3′UTRome overall (Figure 4.20).  

 
Figure 4.20. Histogram comparing the length distribution of 3′UTRs of tissue-
restricted genes or commonly expressed genes. Portion of genes in each length bin that 
are tissue-specific are denoted by squares and commonly expressed genes are denoted by 
triangles. Commonly expressed genes have longer 3′UTRs, on average. 
 

Commonly expressed genes also express over three times more 3′UTR isoforms 

per gene than tissue-restricted genes (Figure 4.21). Consistent with this observation, 85% 

of commonly expressed genes use APA between tissues (Figure 4.22). Together, these 

data suggest an increased role for APA in regulating the expression of ubiquitously 

transcribed mRNAs. 

 

 

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still 
appears, you may have to delete the image and then insert it again.
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Figure 4.21. APA in tissue-restricted versus commonly expressed genes. Number of 
tissue-specific or commonly expressed genes (dark gray bars) and their 3′UTR isoforms 
(light gray bars) are displayed and designated by the left axis. The isoforms per gene ratio 
in each pool of genes is displayed by the blue line and designated by the right axis. 
Commonly expressed genes have many more 3′UTR isoforms per gene, on average. 

 
 

 
Figure 4.22. Portion of genes with APA in tissue-restricted versus commonly 
expressed genes. Pie charts display the proportion of tissue-restricted genes (left chart) 
or commonly expressed genes (right chart) with more than one 3′UTR isoform (genes 
with APA). Nearly all commonly expressed genes are prepared with more than one 
3′UTR isoform. 

 

 Cleavage and polyadenylation is guided by the poly(A)-signal (PAS) element, a 

hexamer positioned ~19 nucleotides upstream of the cleavage site [80]. C. elegans uses 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file 
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the canonical PAS element ‘AAUAAA’ for only 39% of cleavage events and variant 

PAS elements are frequently used, especially in genes that use APA [88, 89]. We mapped 

PAS sites using the iterative procedure previously described [128] (see Experimental). 

We found that tissue-restricted genes use the canonical PAS at a similar rate to that 

observed in the 3′UTRome (Figure 4.23). NMDA-type neurons are the large exception 

and appear to use the canonical PAS element more frequently (~50% of NMDA-type 

neuron restricted genes) (Figure 4.24).   

 

 
Figure 4.23. PAS usage in tissue-restricted versus commonly expressed genes. Pie 
charts display the proportion of 3′UTR isoforms expressed with tissue-restricted genes 
(left chart) or commonly expressed genes (right chart) using the canonical PAS 
AAUAAA or all other PAS elements. 3′UTR isoforms of commonly expressed genes use 
the canonical PAS slightly less often. 
 

 

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the 
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Figure 4.24. Frequency of PAS element usage in tissue-restricted genes. Portion of 
3′UTRs of tissue-restricted genes that use the canonical PAS ‘AAUAAA’ (blue) or other 
variant PAS elements (red) are indicated. Seam cells and muscle tissues have been 
omitted from this analysis because too few poly(A) clusters were mapped for their tissue-
restricted genes. Genes uniquely expressed in NMDA neurons use canonical and variant 
PAS elements at a similar rate. 
 

In contrast, commonly expressed genes use the canonical PAS elements slightly 

less frequently than tissue-restricted genes (26% compared to 40%) and more often use 

variant PAS elements (74% compared to 60%) (Figure 4.23). This increased usage of the 

variant PAS elements in commonly expressed genes likely reflects their more abundant 

use of APA and points to a role for variant PAS elements in controlling tissue-specific 

APA events.  We further studied PAS usage for the pool of commonly expressed genes in 

each tissue individually (Figure 4.25). Interestingly, the hypodermis and intestine use 

variant PAS elements more often than each of the other tissues, while GABAergic and 

NMDA-type neurons use canonical PAS elements more frequently (Figure 4.25). We 

believe this preference for variant PAS elements in the intestine and hypodermis reflects 

their general increased loss of miRNA targets through APA-induced 3′UTR shortening 

events (Figure 4.25).  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open 
the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Similarly, the preference for canonical PAS elements in neural tissues likely reflects their 

preference for APA-induced longer 3′UTRs and, in the NMDA-type neurons, lower rates 

of miRNA target loss (Figure 4.16). 

 

 
Figure 4.25. Frequency of PAS element usage in commonly expressed genes. Portion 
of 3′UTRs of commonly expressed genes that use the canonical PAS ‘AAUAAA’ (blue) 
or other variant PAS elements (red) in each tissue are indicated. The neuronal tissues use 
canonical and variant PAS elements at a similar rate. 
 

Alternative polyadenylation modulates the presence and positioning of predicted miRNA 

targets in 3′UTRs of commonly expressed genes 

Since commonly expressed genes appear to use APA more frequently than tissue-

restricted genes and we have previously shown that genes expressing tissue-specific 

3′UTR isoforms are enriched in miRNA targets [128], we hypothesized that commonly 

expressed genes are also enriched in miRNA targets. We observed predicted miRNA 

targets in 75% of genes commonly expressed between tissues (Figure 4.22).  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the 
red x still appears, you may have to delete the image and then insert it again.
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This frequency is much greater than tissue-restricted genes, of which only 35% are 

predicted to be targeted by miRNAs (Figure 4.22).  

 
Figure 4.26. Portion of commonly expressed or tissue-restricted genes with 
predicted miRNA targets. Commonly expressed genes have more predicted miRNA 
targets than tissue-restricted genes. 
 

Commonly expressed genes express much longer 3′UTRs than tissue-restricted 

genes, on average (Figure 4.26), and therefore contain more sequence landscape to 

harbor such targets. However, commonly expressed genes are also more enriched for 

miRNA targets in 3′UTRs of similar length to 3′UTRs of tissue-restricted genes, 

including short 3′UTRs that are less than 200 nucleotides in length (Figure 4.27).  

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and 
then open the file again. If the red x still appears, you may have to delete the image and then insert it again.



  154 

 
Figure 4.27. Predicted miRNA target density in 3′UTRs of tissue-restricted versus 
commonly expressed genes. Commonly expressed genes (squares) of a similar length 
harbor more predicted miRNA targets than tissue-restricted genes (triangles). 
 

These data suggest that commonly expressed genes have greater potential for 

post-transcriptional regulation by miRNAs. We therefore hypothesized that the extensive 

APA observed in commonly expressed genes (Figure 4.21) coupled with the abundance 

of predicted miRNA targets could potentiate miRNA target loss. We selected the shortest 

3′UTR expressed for each gene and quantified the predicted targets loss due to these 

specific APA events (Figure 4.28). This analysis shows that ~43% of predicted miRNA 

targets in commonly expressed genes are lost due to APA (Figure 4.28), suggesting a 

potent role for APA in modulating the activities of miRNAs in C. elegans somatic 

tissues.   

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the 
red x still appears, you may have to delete the image and then insert it again.
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Figure 4.28. Predicted miRNA targets in commonly expressed genes lost to APA-
induced 3′UTR shortening. We quantified predicted miRNA targets that are lost in all 
APA events where the shortest 3′UTR isoform is expressed in commonly expressed 
genes. APA affects almost half of all predicted miRNA targets in commonly expressed 
genes. 
 

Although APA appears to relieve commonly expressed genes from 43% predicted 

miRNA targeting events, it is not clear if APA events may play a role in modulating 

activities of the 57% of targets that remain after 3′UTR shortening. A recent study 

provided biochemical evidence that mRNA transcript deadenylation is enhanced when 

miRNA targeting occurs proximal to the poly(A)-tails of mature mRNAs [235].  We 

therefore hypothesized that APA-induced 3′UTR shortening events could potentiate 

miRNA activities by bringing the remaining 57% targets closer to the poly(A)-tail. We 

binned miRNA target position relative to their distance from the STOP codon for each of 

three categories, 1) genes without APA expressed with a single 3′UTR isoform, 2) 

commonly expressed genes expressed with the longest 3′UTR isoform, and 3) commonly 

expressed genes expressing the shortest 3′UTR isoform (Figure 4.29). Predicted miRNA 

targets in 3′UTRs of genes without APA show a relatively even dispersion throughout the 

length of the 3′UTR, with a slight preference for the distal end near the poly(A)-tail 

(orange dashed-box in Figure 4.29). In commonly expressed genes expressing the 

longest 3′UTR isoform, the miRNA targets that are not lost due to shortening are mostly 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, 
and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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located close to the STOP codon (red dashed-box in Figure 4.29). Due to APA, 

shortening of the 3′UTR for the same pool of genes results in a shift of the poly(A)-tail 

position proximal to the remaining miRNA targets (Figure 4.29), potentially allowing 

increased activities of the corresponding miRNAs. These results highlight a role for APA 

in driving not just miRNA target loss, but also potentiation of miRNA activities by 

controlling the proximity of targeting events to the poly(A)-tail. 
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Figure 4.29. Repositioning of predicted miRNA targets due to APA. We binned 
predicted miRNA targets by their relative distance from the STOP codon and studied the 
change in position of these targets relative to the poly(A)-tail after APA-induced 3′UTR 
shortening. Top: Portion of predicted miRNA targets that remain in commonly expressed 
genes after APA-induced 3′UTR shortening, shown as purple peaks. When the long 
3′UTR is expressed through usage of the distal PAS, the same predicted miRNA targets 
are located centrally. Conversely, predicted miRNA targets are brought closer to the 
poly(A)-tail when the proximal PAS is used. Bottom: In genes expressed with a single 
3′UTR isoform (n=114), predicted miRNA targets are positioned more evenly along the 
3′UTR. 
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Discussion 

PAT-Seq enables isolation and sequencing of mRNA from small worm tissues  

The mRNA-tagging method, developed almost fifteen years ago, was initially 

used to profile mRNA from large tissues for microarray analysis. Since then, several 

groups have improved it to allow isolation of mRNA from smaller tissues such as 

neurons [126, 130, 236]. We have recently coupled the mRNA-tagging with NextGen 

sequencing [237], making it useful for sequencing of tissue-specific mRNA and mapping 

their mRNA isoforms. However, it was unclear if this approach could be used to profile 

mRNA from small tissues composed of just a few cells.   

Here, we have used PAT-Seq to profile mRNA from tissues either composed of 

just a few (arcade and intestinal valve and NMDA-type neurons) or having smaller 

(GABAergic neurons and seam cells) cells. Using an RT-PCR approach, we have shown 

that the RNA pull-down is specific enough to enrich for tissue-specific transcripts from 

the seam cells with little background from surrounding tissues (Figure 4.4), consistent 

with others who have performed RNA pull-downs from small neurons [130, 211, 236]. 

Sequencing the mRNA from these pull-downs enabled us to detect significantly more 

genes with increased sensitivity compared to past approaches. This is reflected by our 

sequencing results from GABAergic neurons, which correlate with the top expressed 

genes from other groups and significantly expand the number of genes detected in this 

tissue from just over 200 genes to almost 5,000 genes. Our results highlight PAT-Seq as a 

sensitive and specific method for profiling small tissue transcriptomes in C. elegans. 
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Refined pools of tissue-specific expressed genes reveal hundreds of genes that contribute 

to their specialized functions 

 Our application of PAT-Seq to profile three large tissues from our former study 

[128] and five additional tissues reported here has now assigned ~60% (almost 12,000 

genes) of the protein-coding genome to tissues where they are expressed. Our tissues 

span the four major cell-type categories in worms: muscle, epithelial, neuronal, and 

epidermal. We have studied the dynamics of gene expression between these tissue groups 

and found many genes unique to each group that we speculate give rise to their identities. 

We also found tissue-specific transcription factors that likely contribute to the 

transcriptional programs conferring identity to each. 

The comprehensive nature of our approach has allowed us to further refine the 

pools of genes expressed uniquely in each tissue pool. Other tissue specific RNA-Seq 

approaches in C. elegans, including our recent application of the PAT-Seq method, 

typically restricts analysis to just a few tissue types at a time. These approaches are 

limited in that they cannot properly study pools of tissue-specific genes relative to many 

other somatic tissues as we report here. Our former study of worm intestine and muscles 

uncovered hundreds of genes specific to muscle tissues and over four thousand in the 

intestine. We have now refined these pools to only 78 pharynx-specific genes, 269 genes 

in the body muscle, and 1,643 specific to the larger intestine tissue. The genes we find 

expressed in these tissues match their specialized physiological roles and will allow for a 

more close examination of the genes specifically required for their functions. 
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Dynamic loss of predicted miRNA targets to 3′UTR shortening 

 We have shown that ubiquitously expressed worm genes rack-1 and tct-1 use 

APA to escape miRNA regulation by miR-50, a miRNA that is also widely expressed 

among worm tissues. Although these experiments limited the validation of APA as a 

mechanism that genes can escape miRNA regulation to just two genes, the widespread 

nature of APA in C. elegans and its correlation with miRNA enrichment suggests this 

mechanism is operating on a much wider level that what is currently appreciated. This 

provoked our more comprehensive analysis of the effect of APA on predicted miRNA 

regulatory networks operating among worm transcriptomes reported here. Using target 

predictions, we find that APA appears to be driving target loss at a rate of ~20% in each 

tissue-transcriptome, on average. Interestingly, APA-induced miRNA target loss was 

greatest in the hypodermis and intestine, which are two tissues known to be involved with 

a large number of physiological roles. On the other hand, target loss due to APA was 

minimal in the NMDA-type neurons, which are more specialized tissues. These data lead 

us to speculate that the extent of 3′UTR shortening is correlated with the functional 

capacity of tissues. Hypothetically, many more genes may need to be upregulated in the 

hypodermis and intestine to support their large array of functions, while fewer functions 

are needed in the NMDA neurons where APA-induced 3′UTR lengthening and gene 

repression appears to be more common. More experiments are needed to clarify the 

specific role of APA in each of these tissues. Others have reported widespread shortening 

of 3′UTRs due to misregulation of APA in cancer cells [96] [238]. Our results suggest 

APA may also operate in normal states to selectively remove genes from post-

transcriptional regulatory networks driven by miRNAs.  
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Commonly expressed genes are subject to greater regulation 

 We have now profiled mRNA from eight worm tissues and mapped their poly(A) 

sites and studied a refined pool of 777 genes that are transcriptionally expressed in every 

tissue. We found that these genes have much longer 3′UTRs with greater predicted 

miRNA target enrichment, and more APA than tissue-restricted genes. These data point 

to a model where commonly expressed genes use APA to precisely buffer their 

expression levels between tissues by selectively escaping miRNAs.  

Interestingly, Chen and colleagues have recently shown that average 3′UTR 

length in metazoans is proportional to their number of tissue types [239]. These data 

suggest that activities driven by sequences in metazoan 3′UTRs may play a role in 

conferring tissue identity. Our finding that 3′UTRs of commonly expressed genes are 

substantially longer than the worm 3′UTRome highlights the idea that these genes may 

require more sequence landscape to support the varying 3′UTR mediated regulatory 

activities across each tissue. 

Our results are also supported by a recent survey of APA in a consortium of 

human cell lines by Lianoglou and colleagues, which showed that APA is frequently used 

as a mode of post-transcriptional regulation among commonly expressed genes [111]. 

Lianoglou et al. also reported an interesting correlation where genes commonly 

transcribed among tissues may use APA to counteract repression mediated by 

ubiquitously expressed miRNAs. Indeed, our examination of the relative enrichment of 

predicted miRNA targets revealed a distinct profile of miRNAs that are lost in commonly 

expressed genes compared to those lost in individual tissue-transcriptomes suggesting 

this may be the case in worms. It is not clear, however, whether the expression pattern of 
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these miRNAs is tissue ubiquitous or tissue-restricted. Further experiments that address 

their specific expression patterns will shed insight on this idea. 

 

Alternative polyadenylation as a mechanism to modulate miRNA targeting activities 

between tissues 

 We have found an interesting dynamic between alternative polyadenylation and 

miRNA target positioning that may indicate a dual-role for tissue-specific APA. 

Approximately ~85% of commonly expressed genes express more than one 3′UTR 

isoform between tissues. Among these APA events, 3′UTR shortening drives loss of 

~46% of the predicted miRNA targets in these genes. We believe this target loss  

 We have also found that the 57% targets that remain after APA shortening are 

brought closer to the poly(A)-tail, which may influence the activities of the miRNAs that 

target them. In the cases where the distal PAS is used resulting in long 3′UTR expression, 

the same miRNA targets are otherwise positioned in the central region of the 3′UTR, 

which is associated with dampened miRNA activities [240]. Two recent studies have 

shown that 3′UTR shortening induced by APA can position miRNA targets closer to the 

poly(A)-tail, augmenting their functionality [235, 241] . 

Our results are consistent with and complement the results of both studies. We 

show that this effect is prominent among the pool of genes that are commonly expressed 

among eight somatic worm tissues. These data suggest a model where APA events that 

express short 3′UTRs can lead to two results, 1) miRNA target exclusion enabling 

selective removal from miRNA targeting networks or 2) re-positioning of miRNA targets 

proximal to the poly(A)-tails increasing their potency.  
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These mechanisms may not be mutually exclusive and highlight the context-dependent 

nature of APA among somatic tissues in C. elegans.  

 

Experimental 

Plasmids and molecular cloning 

Molecular cloning of the PolyA-Pull and Δpab-1-pull plasmids have been described 

previously [237], and were used in this manuscript with no modifications.  The tissue-

specific promoters used in this study were selected as up to 2kb of genomic sequence 

located between the start codon of the target gene (WS250) and stop codon of the next 

closest gene.  The primers were designed using the University of Santa Cruz (UCSC) 

Genome Browser software with 5-prime Gateway-compatible recombination (Invitrogen) 

elements for cloning into pDONR P4-P1R entry plasmid (Table 4.5). The DNA promoter 

elements were amplified using PCR from N2 genomic DNA and cloned into Gateway™ 

pDONR P4-P1R entry plasmids. We used Multisite recombination reactions (LR Clonase 

II plus, Invitrogen) to combine the tissue-specific promoters with the PolyA-Pull and the 

unc-54 3′UTR into the destination plasmid pCFJ150, which contains the unc-119 rescue 

cassette.  

 

Nematode strains and transgenesis  

The EG4322 background worm strain, which we used to prepare PolyA-Pull expressing 

transgenic worm lines, were maintained at 16°C on NGM plates seeded with HB101 

bacteria prior to microinjection. Extrachromosomal array transmitting worm lines were 

prepared by microinjecting pCFJ150 Tissue-specific Promoter::GFP::pab-1::unc-45 



  164 

3′UTR (25ng/µl) along with the markers pJL43.1 (50ng/µl), pCFJ90 (1ng/µl), 

pGH8(10ng/µl), pCFJ104 (5ng/µl) into the background worm strain EG4322 (ttTi5605; 

unc-119(ed9) III), which were kindly provided by Priscilla Van Wynsberghe (Colgate 

University, Hamilton, NY, USA). Microinjection was carried out as described previously 

[168]  using a Leica DMI3000B microscope.  

 

RNA immunoprecipitation 

Mixed stage cultures of each transgenic worm line were grown in liquid culture at 20°C 

as described [152].  Worms harvested from liquid culture were crosslinked in 

formaldehyde, and flash frozen as previously described [237]. Worm lysates were 

prepared as follows: each worm pellet was thawed, centrifuged for 30 seconds at 10,000 

RPM and resuspended in lysis buffer (150 mM NaCl, 25 mM HEPES, pH 7.5, 0.2mM 

dithiothreitol).  Samples were then sonicated on ice 5-times (10 second pulses, 18W RMS 

output) with 50 seconds pauses between pulses. Lysates were centrifuged at 16,000 x g 

for 15 minutes at 4°C. The supernatant from each lysate was used for 

immunoprecipitation of mRNA, which was carried out as previously described [237]. 

Each sample was quantified using the Nanodrop Instrument (Thermo Scientific) and 

subsequently used in RT-PCR reactions and cDNA library preparation for sequencing. 

 

RT-PCR reactions 

For each tissue-specific RNA sample, 100ng RNA was reverse transcribed with an 

NVdT(23) primer (Table 4.5) using Superscript Reverse Transcriptase III (Thermo-Fisher 

Scientific), according to the manufacturer’s protocol.  One microliter of the resulting 
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cDNA was used as a template for each second DNA strain reaction, along with 1µM of 

gene-specific primer (Table 4.5) and Taq DNA Polymerase (NEB) to drive the reactions. 

 

PolyA cluster building and mapping 

 PolyA clusters were built using custom Perl scripts. We extracted FASTQ 

sequence reads containing at least 23 adenosines at their 3′ ends, removed the A’s and 

mapped the remaining sequence (≥10nts) to the WS250 worm genome annotation using 

Bowtie [242]. For each aligned read we selected 5nts upstream and downstream of the 

sequence region surrounding the 3′ end of each mapped read and  built PolyA clusters 

from overlapping 3′end sequence fragments using BedMerge [243]. We ignored PolyA 

clusters mapping to regions containing ≥65% adenosines within 20nt of the end of each 

cluster. Each PolyA cluster was then bioinfomatically attached to the closest WS250 gene 

on the same strand within no more than 100nt downstream of the furthest WS250 defined 

3′UTR end.  We merged PolyA clusters mapping within ≤5nt across all the datasets. We 

ignored PolyA clusters having less than 5% of the total reads for all clusters in a given 

3′UTR.  
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miRNA target prediction analysis 

 We downloaded C. elegans miRNA target prediction data from the PicTar [57] 

and miRanda [230] databases and obtained the miRNA name and target coordinates for 

each mapped 3′UTR of each gene. To study the enrichment of predicted miRNA family 

targets between tissue transcriptomes, miRNA targets were grouped into their families 

[231] using custom VBA scripts in Microsoft Excel. We ignored miRNAs not belonging 

to C. elegans families [231]. 
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CHAPTER 5 
 

CONCLUSION 
 

 The genome sequencing era ushered in new insights into how a genome gives rise 

to so many diverse phenotypes in multicellular organisms. Current Ensembl data 

estimates the absolute numbers of protein-coding gene loci mapped in the DNA of many 

common multicellular model organisms is surprisingly similar, despite their obvious 

differences in morphological complexity [244] (Figure 5.1). Therefore, metazoans are 

much more than simply the sum of their protein-coding parts. Instead, it is becoming 

clear that the combinatorial variation in gene expression driven by a variety of 

mechanisms extending from the epigenetic to the post-translational level finely tunes 

gene expression and establishes cell identity. Past dogma that cellular protein and 

transcription levels in cells are directly proportional is no longer considered accurate. The 

discovery of vast regulatory non-coding RNAs in metazoans over the last twenty-five 

years has established that dosing of gene expression at the post-transcriptional level is a 

common and potent mechanism contributing to tissue development and maintenance of 

homeostasis. 
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Figure 5.1. Protein-coding gene count is similar among metazoan genomes. We used 
data from the Ensemble database [244] of estimated protein-coding genes for the listed 
organisms and plotted them by absolute number of genes in ascending order. Despite 
their differences in morphological complexity, the invertebrates and vertebrates only 
show a modest increase in number of protein-coding genes. 
 

The expression of multiple 3′UTR isoforms for the same gene through APA has 

long been suspected as a mechanism that substantially contributes to these programs by 

controlling the variation of regulatory target elements in the 3′UTR landscape. However, 

its complex nature has made it challenging to detect general rules for its mechanisms and 

activities in mammalian models where comprehensive 3′UTR annotations are generally 

not available. The recent exhaustive sequencing of C. elegans 3′UTRs, coupled with its 

genetic tractability, makes this organism a facet to detect general rules for this process 

that can then be applied to other organisms.  

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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This dissertation research has provided systems-level insights into the biology of APA in 

a living organism for the first time, showing that APA is largely regulated at a tissue-

specific level and has significant potential to interfere with miRNA induced post-

transcriptional gene regulation. 

We have developed methods for isolation and sequencing of C. elegans tissue-

specific mRNA that enabled the study of 3′UTR isoform expression dynamics in an array 

of somatic tissue types ranging from large muscles to small neurons, to the 

morphologically dynamic epidermal tissues. This work uncovered extensive APA among 

C. elegans tissues where each tissue commonly prefers selective expression of one 

3′UTR isoform, presumably to regulate genes on a tissue-specific basis. This data 

confirms observations made in mammalian model systems and expands these findings to 

a living organism with in-tact tissues where developmental contexts are in place.   

We identified a significant enrichment of miRNA targets in genes that express 

tissue-specific 3′UTR isoforms, leading to the hypothesis that these APA events allow 

many genes to counteract regulation by miRNAs. We were able to genetically validate a 

tissue-specific APA event in the C. elegans body muscle that allows the genes rack-1 and 

tct-1 to escape the broadly expressed miRNA miR-50. These results elucidate a role for 

APA in the tissue-specific modulation of miRNA activities. While our experiments have 

only demonstrated this mechanism for two genes, the widespread nature of APA in C. 

elegans suggests it may be implicated at a much larger level. We have also used a reverse 

genetics approach to show that rack-1 and tct-1 appear to be important for muscle 

activity, although we cannot yet be certain these genes have a cell autonomous role in the 

body muscle and further experiments that specifically target these genes in the body 
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muscle will be required to delineate their roles. It will also be important to establish a 

biological role for APA using more direct approaches. C. elegans is a tractable model for 

such experiments, since one could use genome editing techniques to modify PAS sites in 

the genome and score phenotypes that result from the artificial APA events.  

 Since rack-1, tct-1 and miR-50 are broadly and co-expressed we hypothesized that 

many other genes that are ubiquitously expressed among tissues may use APA to allow 

miRNAs to target distinct sets of genes in each. A study of genes that are commonly 

expressed among eight total somatic worm tissues uncovered extensive APA among 

these genes. Commonly expressed genes were also enriched in predicted miRNA targets. 

We found that almost half of the predicted miRNA targets in this gene pool are lost to 

APA-induced 3′UTR shortening events. These data agree with studies from human cell 

lines and suggest that commonly transcribed genes may more often control their dosage 

at the post-transcriptional level. Former transcriptome studies that have only examined 

transcript levels, for example by using microarray-based technologies, may be misleading 

since APA appears to extensively effect how these genes interface with miRNA targeting 

events among cell types. This dissertation research further improves upon past data as it 

provides evidence for this mechanism in a living organism that can be genetically 

manipulated to further study its precise implications. 

How the cleavage and polyadenylation machinery discriminate between multiple 

PAS sites in the same 3′UTR is a long-standing mystery. We detected extensive tissue-

specific APA leading to the hypothesis that tissue-specific cis-acting elements near the 

cleavage site may play a role in driving these decisions. We therefore closely examined 

the sequence regions near PAS sites in muscle and intestine tissues for motifs, including 
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PAS element usage, that may play a mechanistic role in tissue-specific APA. This 

analysis uncovered only minor changes in overall PAS element usage and nearly identical 

nucleotide composition in sequence regions near the cleavage sites, arguing against a 

model where such tissue-specific sequence elements are major factors controlling APA. 

Future studies will need to further examine this hypothesis by extending the analysis of 

the sequence regions to the five additional tissues we have now profiled. Additional work 

will also be required to now address the alternate hypotheses that tissue-specific factors 

accessory to the core 3′end formation complex are involved in these mechanisms. The 

research presented here provides a platform for this future work, since it is now known 

exactly where many 3′UTR isoforms are expressed and a pool of potential tissue-specific 

factors is already defined by our tissue-specific expression data. Further, high-throughput 

genetic screens for such factors are feasible in worms where experiments can be 

performed in vivo where developmental contexts are in place. 
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Figure 5.2. Alternative polyadenylation as a novel, unexplored mode of post-
transcriptional gene regulation. This illustration depicts the major modes of regulation 
(light gray circles) that precisely dose gene expression at each step of the central dogma 
(dark gray boxes), eventually culminating in tissue identity. miRNAs are well known for 
their role in repressing gene expression at the post-transcriptional level. Current data 
suggests APA is a key player in the same mode of gene regulation that interferes with 
miRNA regulation. 
 

The RNA research field exploded following the discovery of miRNAs. Over the 

last several decades, their pervasive roles in normal cellular states, through development, 

and in disease have been intensively studied and characterized (Figure 5.2). It is now 

becoming clear that miRNA expression patterns do not entirely explain their regulatory 

activities as APA makes many genes into moving-targets. While still poorly understood, 

APA is now considered as a mediator of positive regulatory networks that allow genes to 

escape modes of post-transcriptional gene regulation (Figure 5.2). This dissertation 

research provides clear evidence that 3′UTR heterogeneity driven by APA is largely a 

tissue-specific phenomenon that appears to have broad impacts on their miRNA targeting 

networks. We have provided a framework for future studies in this model system that will 

more precisely delineate how cells use APA to fine-tune their gene expression.  

 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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